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REAL-TIME PREDICTION OF RELIABILITY OF DYNAMIC 
POSITIONING SUB-SYSTEMS FOR COMPUTATION OF DYNAMIC 
POSITIONING RELIABILITY INDEX (DP-RI) USING LONG SHORT 

TERM MEMORY (LSTM)  

ABSTRACT 
In this study, a framework using Long Short Term Memory 

(LSTM) for prediction of reliability of Dynamic Positioning (DP) 

sub-systems for computation of Dynamic Positioning Reliability 

Index (DP-RI) has been proposed. The DP System is complex 

with significant levels of integration between many sub-systems 

such as the Reference System, DP Control System, Thruster / 

Propulsion System, Power System, Electrical System and the 

Environment System to perform diverse control functions. The 

proposed framework includes a mathematical computation 

approach to compute reliability of DP sub-systems and a data 

driven approach to predict the reliability at a sub-system level 

for evaluation of model performance and accuracy. The 

framework results demonstrate excellent performance under a 

wide range of data availability and guaranteed lower 

computational burden for real-time non-linear optimization.  

There are three main components of the proposed architecture 

for the mathematical formulation of the DP sub-systems based 

on individual sensor arrangements within the sub-system, 

computation of reliability of sub-systems and optimized LSTM 

deep learning algorithm for prediction of its reliability. Firstly, 

the mathematical formulation for the reliability of sub-systems is 

determined based on the series/parallel arrangement of the 

sensors of each individual equipment item within the sub-

systems. Secondly, the computation of the reliability of sub-

systems is achieved through an integrated approach during 

complex operation of the vessel. Thirdly, the novel optimized 

LSTM network is constructed to predict the reliability of the sub-

systems while minimizing integral errors in the algorithm. 

In this paper, numerical simulations are set-up using a state-of-

the-art advisory decision-making tool with mock-up and real-

world data to give insights into the model performance and 

validate it against the existing risk assessment methodologies. 

1 Contact author: charles.fernandez@dnvgl.com 
2 Contact author: a.k.dev@newcastle.ac.uk 

Furthermore, we have analyzed the efficiency and stability of the 

proposed model against various levels of data availability. In 

conclusion the prediction accuracy of the proposed model is 

scalable and higher when compared with other model results. 

Keywords: Dynamic positioning systems, Station Keeping, 

Deep Learning,  Long Short Term Memory, DP sub-system 

reliability,  Forecasting, Decision making, Reliability Index.  

1. INTRODUCTION
Dynamic Positioning (DP) systems have enabled the maritime,

Oil and Gas industry to operate in deeper and deeper waters in

search for resources to meet ever increasing energy demands.

Loss of position or Loss of heading are considered to be serious

incident / accident events in the context of the DP system. Loss

of position / heading indicates that the vessel is not able to stay

in the pre-defined stationary position or path. The loss of position

may be due to drive off or drift off. The DP system consists of

several sub-systems all of which contribute to the overall

reliability. The Dynamic Positioning Reliability Index (DP-RI)

indicates the quantitative reliability during complex marine

operations [1]. The key elements for evaluating the performance

of the system are its holding capability and reliability. The

holding capability is measured through DP capability

assessment. However, the reliability cannot be directly measured

and calculated. The reason for this is that rules and guidelines

doesn’t specify the requirements for the level of reliability, they

just provide minimum requirements for the reliability and safety

of the vessels, equipment, persons and the environment [2]. One

of the ways to ensure reliability is to provide redundancy in the

design. Redundancy itself does not guarantee a sufficient level

of reliability. The vessel’s mission profile should determine what

overall level of reliability should be attained to achieve the

required vessel availability. Higher vessel availability can be

achieved by the application of non-critical redundancy.
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The most effective way to ensure good reliability is through 

design, for example by specifying high reliability components, 

carriage of critical spare parts and reducing the number of fault 

paths that lead to a loss of redundancy. Similarly, during in 

service operation, planned maintenance, condition monitoring 

and annual trials will contribute to ensuring sufficient reliability. 

Reliability is a product of the quality of equipment and suppliers 

selected, the competence of the engineers who design and build 

the DP vessel and competence of the crew and management who 

maintain and operate it [3]. The DP system of a vessel involves 

complex interactions between a large number of sub-systems. 

Each sub-system plays a unique role in the continuous overall 

DP function for safe and reliable operation of the vessel [4]. The 

DP system is divided into the following sub-systems in the DP-

RI concept [1, 4]: 

• Reference System (System A1)

• DP control system (System A2)

• Thrusters / Propulsion System (System A3)

• Power System (System A4)

• Electrical System (System A5)

• Environment System (System A6)

• Human / Operator Error System (System A7)

In Section 2 of this paper the authors present the current method 

of assessing the sub-system reliability and the application of 

LSTM followed by Section 3 in which the reliability modelling 

methodology is defined with sub-system architecture, modes of 

operation and criticality  categorization among sub-system 

signals. Section 4 presents the experimental set-up for the 

reliability determination through mathematical calculation and 

reliability prediction through the LSTM model. In Section 5, the 

results and analysis of the effectiveness of the LSTM for the 

reliability prediction of sub-systems are discussed and validated. 

Finally, Section 7 is the conclusion on the effectiveness of 

proposed framework with LSTM for prediction of reliability of 

sub-systems and using it in a bottom-up approach for  overall 

DP-RI prediction. 

2. LITERATURE REVIEW
Recent developments in technology have contributed towards

the optimal performance of DP systems with increased accuracy

of positioning and faster response to the effects caused by the

environmental conditions. This in-turn has resulted in the

addition of sensors and equipment for redundancy leading to

complex DP system design [5].  Redundancy does not in itself

guarantee a sufficient level of reliability to necessarily lead to

overall availability although it can contribute to availability if the

redundant elements themselves are sufficiently reliable [2].

There are various factors that needs to be considered in the

selection of DP control systems which include reliability and

potential service life of components, subsystems and systems,

sensor handling, sources of power, remote diagnostic capability,

mathematical modelling, consequence analysis aligned with

WCFDI and potential  service life and obsolescence. This clearly

indicates the reliability of sub-system is one of key aspect for DP

control system and it plays vital role during complex operation.

Reliability of sub-systems is usually defined as the probability 

that a sub-system can perform a required function under given 

conditions for a given time interval [6]. Today industrial practice 

is that the sub-system reliability is a product of the quality of the 

equipment and suppliers selected, the competence of the 

engineers who design and build the DP vessel and the 

competence of the crew and management who maintain and 

operate it. DP vessels should ensure a required level of station 

keeping reliability before preparing for any operation.  

DP rules and guidelines sometimes do not specify a level of 

reliability. When mentioned, it is in the context of the 

consequences of loss of position, then the DP  vessel’s 

availability to work can be related to the probability of losing 

fault tolerance [7]. DP related equipment should be selected on 

the basis of high reliability and resistance to internal and external 

influences which may reduce that reliability [2]. Modern DP 

vessels are complex machines with several layers of automation, 

integration between sub-systems, degrees of diversity and more 

fault tolerance enabling the following features [3]: 

• Autonomy • Diversity

• Decentralization • Differentiation

• Orthogonality

Most of the shipyard’s contractual position is to meet the class 

requirement, however the vessel owners should express the need 

for higher reliability for the sub-systems. The mission profile and 

desire to achieve greater availability may end up influencing the 

vessel operators and owner to exceed minimum requirement. 

This will lead to improvement in reliability, operability and 

maintainability. The sub-system reliability is achieved from 

component reliability which is choice of individual elements of 

equipment or software for prolonging mean time between failure 

(MTBF) [8]. 

Typically for Quantitative Risk Assessment (QRA) of DP 

systems, Fault Tree Analysis (FTA) will be developed 

considering the impact of the worst case failure. Following on 

from this, Bayesian networks are used for advanced offshore 

vessels for evaluating the reliability during the design stage, 

before the proving trial [6]. However, any of these methods does 

not guarantee the status of sub-systems and their reliability in all 

failure scenarios [9]. The risk analysis and the assessment just 

focus on the evaluation during the design stage and improve the 

design rather than supporting the operator during complex 

marine operations. Recently LSTM has been used for prediction 

within the maritime industry [10].Thus a new framework was 

developed to test its suitability for DP-RI. 

3. METHODOLOGY

DP can be considered as a safety related system as it incorporates

one or more electrical and/or electronic and/or programmable

electronic devices for its control functions to keep the Equipment

Under Control (EUC) during any undesirable event. Therefore,

functional safety concepts could be easily applied to the DP

system for the detection of a potentially dangerous condition
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resulting in the activation of a protective or corrective device or 

mechanism to prevent hazardous events arising or providing 

mitigation to reduce the consequence of the hazardous event. The 

application of IEC 61508 to DP systems is concerned with 

achieving functional safety, where unacceptable risk (loss of 

position) results in physical injury or damage to the health of 

people, either directly or indirectly [11]. 

The reliability of the sub-systems at a high level is calculated by 

using the principles of IEC 61508 which enabled to 

mathematically compute the approximate reliability to be used 

for most of QRA to improve the design by providing more 

redundancy [12]. With these calculations, the reliability reduces 

due to complexity and the greater the number of independent 

systems, the more likely it is that one or more will be unavailable 

in a given time period. These dis-advantages cannot be easily 

addressed with the current traditional method of reliability 

assessment. Therefore, it is necessary to develop a mathematical 

model which will enable accurate calculation of the reliability of 

sub-systems at any point in time and provide a solution for each 

of the items below [6]: 

• Limiting the impact of the worst case failure to enhance

post failure capability

• Optimizing equipment utilization

• Providing fault tolerance in the form of redundancy

3.1 Reliability Block Diagram 
A reliability block diagram (RBD) presents a logical relationship 

of the system, sub-systems and components. A system can be 

modelled for reliability computation and analysis using block 

diagrams [12]. A DP system consists of sub-systems and 

components connected to perform given functions and maintain 

vessel position and heading. Due to the integration between sub-

systems, it can become complex, making reliability analysis 

difficult. A mathematical model reduces the system to a 

graphical representation of the interconnection of its sub-

systems. A typical reliability model can be represented as shown 

in Figure 1. These RBD can be used for  mathematical 

calculation and prediction of the reliability of sub-systems. 

Figure 1. Typical Reliability Block Diagram of Complex System 

3.2 Sub-System Architecture 
The sub-systems can be represented through an RBD based on 

the system design architecture. The system architecture can be 

one of the below models [12]: 

• Static System Models • Stand-By System

• Series Model • (K,n) System

• Parallel Model

Based on the system configuration, the sub-system reliability is 

calculated using the principle of probability theory.  If the system 

has more than one function, each function must be considered 

individually, and a separate reliability block diagram has to be 

established for each system function. The system reliability can 

then be modeled using the reliability of the various sub-systems. 

The mathematical model can be used to assist in making changes 

to the system for reliability improvement. The model can be used 

to identify weak links in the system and to indicate where 

reliability improvement activities should be introduced. It can be 

used to determine test and maintenance procedures. Modeling of 

the system should be initiated as soon as preliminary designs are 

completed, and the model should be updated as design changes 

are made to the system.  

3.3 Modes of Operation 
A DP system operates in different modes during complex marine 

operations depending on the functionalities required by the 

vessel in one of the following modes [2, 3, 13]: 

• Station Keeping • Joystick

• Auto-Pilot mode • Auto Heading

• Follow Target Auto track

The Operator and Captain would ensure that the sub-systems are 

arranged as per the operating manuals, instructions and based on 

experience for particular complex marine operations. From a 

functional safety perspective, the components within the sub-

system will be operating in specific modes to fulfill the 

requirements of the safety related systems. The modes of 

operation for the components within the sub-systems will fall 

into one of the following modes for safety functions based on the 

vessel type and DP configuration [11, 14]: 

• Low demand mode

• High demand mode

• Continuous Mode

3.4 Sub-System voting configuration 
The sub-system architecture and modes of operation determine 

the component’s configuration and voting group to prevent 

failure of a safety function in the case of accidental events. The 

sub-system and  the components within the sub-system are 

grouped under one of the following voting configurations (in 

which “oo” stands for “out-of” to provide redundancy and 

reliability functionality [11, 12]: 

• 1oo1 • 2oo2

• 1oo2 • 2oo3

• 1oo3

3.5 Critical, Non-Critical, Redundant or Non-
Redundant grouping 
In evaluation of DP system design it is often revealed that the 

common connection between the sub-systems intended to 

provide redundancy creates the probability for a fault to occur 

[8]. A fault in one redundant system can affect another 

independent system. Redundancy doesn’t guarantee a high level 

of reliability therefore, it is evident that the fault tolerant concept 
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needs to follow the above class requirements. The following 

arrangement can be found on typical DP vessels in order to 

achieve higher reliability and availability [3, 13, 15]: 

• Critical Redundant • Non-Critical Redundant

• Critical Non-redundant • Non-Critical Non-redundant

3.6 Sub-System Equipment, Sensors and Criticality 
Definition 
The mathematical computation model and prediction model for 

the reliability of the sub-system can be computed only when the 

system design assumptions and uncertainties are properly 

defined [16]. In this section, the vessel type, class, system set-

up, sub-system configuration, critical, non-critical, redundant, 

non-redundant grouping and design boundary are defined for the 

experiment in the next section. The sub-system signals were 

identified and grouped across different categorizations, 

considering the design phase for evaluation. The grouping of the 

signals for the different sub-systems are presented in the 

following sections [17, 2, 3, 13, 15, 6] 

The sub-systems component arrangement, architecture, voting 

group and criticality grouping are shown in Table 1 to Table 7. 

Table 1: Reference System – Signal Configuration 

DESCRIPTION CRITICAL REDUNDANT 

GYRO – 3 Unit (1oo3) 

Heading  (deg) Yes Yes 

Rate of Rotation (deg/min) Yes Yes 

Yaw (%) Yes Yes 

Preferred No No 

Enable  No No 

Failure / Error No No 

VESSEL REFERNECE UNIT – 4 Unit (1oo3) 

Roll (mm) Yes Yes 

Pitch (mm) Yes Yes 

Yaw (mm) Yes Yes 

Preferred No No 

Enable  No No 

Failure / Error  No No 

GLOBAL POSITIONING SYSTEM (GPS)  - 3 Unit (1oo3) 

Vessel Speed (m/s) Yes Yes 

Course Direction (deg) Yes Yes 

Preferred No No 

Enable  No No 

Failure / Error  No No 

DGPS – 2 Unit (1oo2) 

Relative Speed (m/s) Yes Yes 

Relative Direction (deg) Yes Yes 

Preferred No No 

Enable  No No 

Failure / Error  No No 

Table 2: DP Control System – Signal Configuration 
DESCRIPTION CRITICAL REDUNDANT 

GYRO – 3 Unit (1oo3) 

Operator Station (OS) Yes Yes 

Power Supply (PS) Failure Yes Yes 

DESCRIPTION CRITICAL REDUNDANT 

Communication Failure Yes Yes 

NETWORK DISTRIBUTION UNIT NDU – 6 Unit (1oo2) 

Network (Dual Network) Yes Yes 

FIELD STATION FS – 6 Units (1oo2) 

Field Station (FS) Yes Yes  

Input/Output Signal Failure  Yes Yes 

Input/Output Signal Failure No No 

Input/Output Module Failure Yes Yes 

Failure / Error  No No 

REDUNTANT CONTROLLER  UNIT RCU – 6 Units (1oo3) 

Controllers (Triple Redundant) Yes Yes 

Vessel Mode of Operation Yes Yes 

Vessel Class (DP 3, DP 2 & DP1) Yes Yes 

Rotation Center Position Yes Yes 

Thruster Force Vector Yes Yes 

Pitch Yes Yes 

Roll Yes Yes 

Vessel Model Yes Yes 

Environmental Error  Yes Yes 

High Precision Control Mode Yes Yes 

Current Position (deg) No Yes 

Set Position  (deg) No Yes 

Allocation Mode No Yes 

Moment (kNm) No Yes 

Resultant Force (kN) No Yes 

Resultant Direction (deg) No Yes 

Required Force (kN) No Yes 

Required Direction (deg) No Yes 

Table 3: Thruster / Propulsion System – Signal Configuration 
DESCRIPTION CRITICAL REDUNDANT 

THRUSTERS – 8 unit (1oo2) 

ANALOG CONTROL SIGNAL 

Azimuth Pitch Command (deg)  Yes Yes 

Azimuth Speed Command (rpm) Yes Yes 

Torque Command (N) Yes Yes 

Pitch Dev  Yes Yes 

Speed Dev  Yes Yes 

Torque Dev Yes Yes 

Power Available (kW) Yes Yes 

ANALOG MONITORING SIGNAL 

Power Used (kW)  Yes Yes 

Torque (N)  Yes Yes 

Current (A) Yes Yes 

Voltage (V)  Yes Yes 

Speed (rpm)  Yes Yes 

Pitch Angle (deg)  Yes No 

Steering Oil Pressure (bar)  Yes Yes 

Azimuth Speed (RPM)  Yes Yes 

Azimuth Angle (deg) Yes Yes 

Motor Speed (RPM)  Yes Yes 

Reserve Power Available (kW) No Yes 

Hydraulic Oil Temperature (oC)  No No 

Lube Oil Temperature (oC)  No No 

Running Hours (hrs)  No No 

DIGITAL CONTROL SIGNAL 

Start Yes Yes 
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DESCRIPTION CRITICAL REDUNDANT 

Stop  Yes Yes 

Connect Yes Yes 

Dis-connect Yes Yes 

Increase Load/Speed Yes Yes 

Decrease Load/Speed Yes Yes 

Local/Remote  No No 

Running  No No 

DIGITAL MONITORING SIGNAL 

Local  Yes Yes 

Remote Yes Yes 

Running Yes Yes 

Running Idle  No No 

Run Rated No No 

Shutdown Yes Yes 

Start Inhibit No No 

System Ok No No 

Circuit Breaker (CB) Opened Yes Yes 

CB Closed  Yes Yes 

LO Tank Low  Yes Yes 

Hydraulic Pressure Low  Yes Yes 

Phase Fault Error No No 

Emergency Yes Yes 

VFD Interlock Yes Yes 

Table 4: Power System – Signal Configuration 

DESCRIPTION CRITICAL REDUNDANT 

ENGINE / GENERATOR – 8 unit (1oo2) 

ANALOG CONTROL SIGNAL 

Load Ref (KW)  Yes Yes 

Frequency Ref (Hz)  Yes Yes 

Re-active Load (kVAR)  Yes Yes 

Load Dev (KW) Yes Yes 

Frequency Dev (Hz)  Yes Yes 

Voltage Dev Yes Yes 

Load % Yes Yes 

ANALOG MONITORING SIGNAL 

Load (kW) Yes Yes 

Re-active Load (kVAR) Yes Yes 

Current (A) Yes Yes 

Voltage (V)  Yes Yes 

Power Factor  Yes No 

Frequency (Hz)  Yes No 

Fuel Rack Pos (%)  Yes No 

Field Current (A)  Yes No 

Speed (RPM)  Yes No 

SWBD Load (kW)  Yes No 

Winding Temperature U (oC )  No No 

Winding Temperature V (oC )  No No 

Winding Temperature W (oC )  No No 

Engine Cylinder Temp 1 (oC )  No No 

Engine Cylinder Temp 2 (oC )  No No 

Engine Cylinder Temp 3 (oC )  No No 

Engine Cylinder Temp 4 (oC )  No No 

Engine Cylinder Temp 5 (oC )  No No 

Engine Cylinder Temp 6 (oC )  No No 

Engine Cylinder Temp 7 (oC )  No No 

Engine Cylinder Temp 8 (oC )  No No 

DESCRIPTION CRITICAL REDUNDANT 

Fuel Oil Temp (oC )  No No 

Lube Oil Temp (oC )  No No 

Running Hours (hrs) No No 

DIGITAL CONTROL SIGNAL 

Start Yes Yes 

Stop Yes Yes 

Connect  Yes Yes 

Dis-connect  Yes Yes 

Increase Load/Speed Yes Yes 

Decrease Load/Speed Yes Yes 

Local/Remote  No No 

Running  No No 

AVR Fail  Yes Yes 

DIGITAL MONITORING SIGNAL 

Local  Yes Yes 

Remote  Yes Yes 

Running  Yes Yes 

Running Idle  No No 

Run Rated No No 

Shutdown Yes Yes 

Droop Mode  No No 

Isoch Mode  No No 

AGS Mode  No No 

Start Inhibit No No 

System Ok No No 

CB Opened Yes Yes 

CB Closed  Yes Yes 

Table 5: Electrical System – Signal Configuration 

DESCRIPTION CRITICAL REDUNDANT 

SWITCHBOARD SWBD – 4 UNITS (1oo2) 

ANALOG MONITORING  

SWBD 1 Voltage (kV) Yes Yes 

SWBD 1 Frequency (Hz) Yes Yes 

SWBD 2 Voltage (kV) Yes Yes 

SWBD 2 Frequency (Hz) Yes Yes 

SWBD 3 Voltage (kV) Yes Yes 

SWBD 3 Frequency (Hz) Yes Yes 

SWBD 4 Voltage (kV) Yes Yes 

SWBD 4 Frequency (Hz) Yes Yes 

SWBD 1 Load (Kw) No Yes 

SWBD 1 Spare Load (Kw) No Yes 

SWBD 1 Load Percentage (%) No Yes 

SWBD 2 Load (Kw) No Yes 

SWBD 2 Spare Load (Kw) No Yes 

SWBD 2 Load Percentage (%) No Yes 

SWBD 3 Load (Kw) No Yes 

SWBD 3 Spare Load (Kw) No Yes 

SWBD 3 Load (%) No Yes 

SWBD 4 Load (Kw) No Yes 

SWBD 4 Spare Load (Kw) No Yes 

SWBD 4 Load (%) No Yes 

DIGITAL CONTROL SIGNAL 

SWBD1 Slave CB Connect Yes Yes 

SWBD1 Slave CB Dis-Connect  Yes Yes 

SWBD1 Master CB Connect Yes Yes 

SWBD1 Master CB Dis-Connect  Yes Yes 
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DESCRIPTION CRITICAL REDUNDANT 

SWBD2 Slave CB Connect Yes Yes 

SWBD2 Slave CB Dis-Connect  Yes Yes 

SWBD2 Master CB Connect Yes Yes 

SWBD2 Master CB Dis-Connect  Yes Yes 

SWBD3 Slave CB Connect Yes Yes 

SWBD3 Slave CB Dis-Connect  Yes Yes 

SWBD3 Master CB Connect Yes Yes 

SWBD3 Master CB Dis-Connect  Yes Yes 

SWBD4 Slave CB Connect Yes Yes 

SWBD4 Slave CB Dis-Connect  Yes Yes 

SWBD4 Master CB Connect Yes Yes 

SWBD4 Master CB Dis-Connect  Yes Yes 

DIGITAL MONITORING SIGNAL 

SWBD1 Earth Fault Yes Yes 

SWBD 1 Blackout Yes Yes 

SWBD 1 Dead Bus Yes Yes 

SWBD 1 Slave CB Fault Yes Yes 

SWBD 1 Master CB Fault Yes Yes 

SWBD 2 Earth Fault Yes Yes 

SWBD 2 Blackout Yes Yes 

SWBD 2 Dead Bus Yes Yes 

SWBD 2 Slave CB Fault Yes Yes 

SWBD 2 Master CB Fault Yes Yes 

SWBD 3 Earth Fault Yes Yes 

SWBD 3 Blackout Yes Yes 

SWBD 3 Dead Bus Yes Yes 

SWBD 3 Slave CB Fault Yes Yes 

SWBD 3 Master CB Fault Yes Yes 

SWBD 4 Earth Fault Yes Yes 

SWBD 4 Blackout Yes Yes 

SWBD 4 Dead Bus Yes Yes 

SWBD 4 Slave CB Fault Yes Yes 

SWBD 4 Master CB Fault Yes Yes 

UPS Fault Yes Yes 

Open Bus Fault Yes Yes 

Closed Bus Fault Yes Yes 

Table 6: Environmental System – Signal Configuration 

DESCRIPTION CRITICAL REDUNDANT 

WIND SENSOR – 3 Unit (1oo3) 

Relative Speed (A) m/s Yes Yes 

Relative Direction (A) deg Yes Yes 

Preferred (D) No No 

Enable (D) No No 

Failure / Error (D) No No 

WAVE – 3 Unit (1oo3) 

Wave Drift - Force Yes Yes 

Wave Momentum Yes Yes 

Preferred (D) No No 

Enable (D) No No 

Failure / Error (D) No No 

CURRENT – Model (1oo3) 

Current Speed (A) m/s Yes Yes 

Current Direction (A) deg Yes Yes 

Preferred (D) No No 

Enable (D) No No 

Failure / Error (D) No No 

Table 7: Human / Operator Error System – Signal Configuration 
DESCRIPTION CRITICAL REDUNDANT 

DEXTIRITY (DEX) 

Level 1 Yes Yes 

Level 2 Yes Yes 

Level 3 Yes Yes 

DECISION (DEC) 

Level 1 Yes Yes 

Level 2 Yes Yes 

Level 3 Yes Yes 

DISTRACTION (DIS) 

Level 1 Yes Yes 

Level 2 Yes Yes 

Level 3 Yes Yes 

SITUATION AWARENESS (SA) 

Level 1 Yes Yes 

Level 2 Yes Yes 

Level 3 Yes Yes 

TANGIBLE EXTERNAL 

Weather  No No 

Technical failures No No 

Temperature No No 

Documentation No No 

Design No No 

INTANGIBLE EXTERNAL 

Relationship No No 

Commercial Pressures No No 

Financial No No 

Culture No No 

TANGIBLE INTERNAL 

Illness No No 

Fatigue No No 

Stress No No 

Drugs No No 

INTANGIBLE INTERNAL 

Dis-Orientation No No 

Fixation No No 

Visual Illusions No No 

Denial No No 

Memory No No 

4. Experimental Set-Up
DP system is a composite entity with complex integration

between sub-system comprising equipment, software, facilitates,

materials, procedures and personnel. In this paper we have

considered the analysis for the sub-systems from two different

points of view [16]:

• Structural Focus

• Functional Focus

The reliability block diagrams are built as success oriented 

networks illustrating how the sub-systems operate as functional 

blocks to fulfil the overall DP system functional requirement [6, 

7]. The structure of the RBD is described mathematically by 

structure functions. These structure function will be used to 

calculate the sub-system reliability. 
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The experimental set-up for the reliability calculation of the sub-

systems was performed with the following parameters defined as 

common for the two approaches and validation [18]: 

• System

• System Boundary

• Outputs

• Inputs

• Boundary conditions

• Support

• External Threats

o Natural Environmental threats

o Infrastructure threats and Social threats

o Threats from other technical system

For this particular experiment, the data from a DP 3 vessel was 

used which was taken from a historical database during the 

annual trial and these samples are stored as time series with 

sample interval of 1 milli-second. The data was extracted for the 

period of the annual trial which was for one week and in addition, 

operation data for a period of two years was extracted.  The sub-

system signals were identified and grouped across different 

categorizations, considering the design phase for evaluation. The 

data was split into train and test for LSTM prediction and data 

was sorted to use for mathematical calculation. In this section the 

reliability of the seven sub-systems is calculated through 

mathematical computation through equation in next section and 

deep learning algorithm LSTM. The research framework of the 

experiment is shown in Figure 2 where the information from the 

sub-system level is carefully selected and diligently used for the 

calculation and prediction. 

4.1 Mathematical Computation of DP Sub-System 
Reliability 
The mathematical computation of reliability of DP sub-systems 

is highly dependent on the structural focus which is expressed 

through the RBDs. The structural physical architecture defines 

the basis system hierarchy of each of the sub-systems and the 

association of lower parts and components with higher level 

assemblies and systems. Once the structural aspects of the 

physical sub-system are defined then the functional focus is 

taken into consideration for the mathematical computation [16, 

18, 8]. As shown in Figure 2, for mathematical computation, 

each sub-system is further divided into groups of equipment. The 

three main activities involved in the calculation of reliability of 

sub-systems are [19]: 

• Reliability Block Diagram based on system

configuration

• System Diagnostic based on voting group

• Pattern recognition for functional fault identification

The reliability of sub-systems can be calculated thought the 

below mathematical equation [20, 12]: 

PFDSUB-SYSTEM = PFDCOMP1 + PFDCOMP2 + …… + PFDCOMPn 

Where 

PFDSUB-SYSTEM  → Average probability of failure on demand for DP sub-system 

PFDCOMP1  → Average probability of failure on demand for components 

n → Number of components in the sub-system 

Figure 2. DP Sub-System Reliability Computation Framework 

Note: The description of abbreviations is in Table 1 to 7 
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The arrangement and voting of components can in one of the 

following architectures, as shown in Figure 3,4 5, 6 & 7.  

1oo1: 

𝑃𝐹𝐷𝐴𝑉𝐺 = (𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸

1oo2: 

𝑃𝐹𝐷𝐴𝑉𝐺 = 2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅

+ 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)

1oo3: 

𝑃𝐹𝐷𝐴𝑉𝐺 = 6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)3𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸

+ 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)

2oo2: 

𝑃𝐹𝐷𝐴𝑉𝐺 = 2𝜆𝐷𝑡𝐶𝐸

2oo3: 

𝑃𝐹𝐷𝐴𝑉𝐺 = 6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅

+ 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)

𝜆𝐷𝑈→ Dangerous Undetected failure rate of a channel in a Subsystem

𝜆𝐷𝐷→ Detected dangerous failure rate of a channel in a subsystem

𝑡𝐶𝐸 → Calculate the channel equivalent mean down time

𝑡𝐺𝐸 → System equivalent down time 

𝛽 → The fraction of undetected failures that have a  common cause 

𝛽𝐷 → the fraction that have a common cause of those failures that are detected 

by the diagnostic tests 

𝑀𝑇𝑇𝑅 → Mean time to restoration 

𝑀𝑅𝑇 →  Mean repair time 

𝑇1 → Proof test interval

𝑇2 → Interval between demands 

The system architecture / voting are used to calculate sub-system 

Reliability from Probability of failure on demand (PFD) [18, 12]: 

Reference System (A1): 

PFDA1 = PFDGYRO + PFDMRU + PFDGPS + PFDDGPS 

𝑃𝐹𝐷𝐴1 = {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} + {2𝜆𝐷𝑡𝐶𝐸} + {6((1 − 𝛽𝐷)𝜆𝐷𝐷 +

(1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} +

{2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+

𝑀𝑅𝑇)}  

DP control System  (A2): 

PFDA2 = PFDOS + PFDNDU + PFDFS + PFDRCU 

𝑃𝐹𝐷𝐴2 = {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 +

𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 −

𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {6((1 −

𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)3𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+

𝑀𝑅𝑇)}  

Thruster / Propulsion System (A3): 

PFDA3 = PFDT1 + PFDT2 + PFDT3 + PFDT4 + PFDT5 + PFDT6 + 

PFDT7 + PFDT8 

𝑃𝐹𝐷𝐴3 = {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 +

𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 −

𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 −

𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)}

Power System (A4): 

PFDA4 = (PFDDG1 + PFDDG2)+ (PFDDG3 + PFDDG4)+ (PFDDG5 + 

PFDDG6)+  (PFDDG7 + PFDDG8) 

𝑃𝐹𝐷𝐴4 = {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 +

𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 −

𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)} + {2((1 −

𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)2𝑡𝐶𝐸𝑡𝐺𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈(
𝑇1

2
+ 𝑀𝑅𝑇)}

Figure 4 1oo2 architecture 

Figure 3 1oo1 architecture 

Figure 5 1oo3 architecture 

Figure 7 2oo3 architecture 

Figure 6 2oo2 architecture 
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Electrical System (A5): 

PFDA5 = PFDSWBD1 + PFDSWBD2 + PFDSWBD3 + PFDSWBD4 + PFDCB1 

+ PFDCB2 +  PFDCB3 + PFDCB4 

𝑃𝐹𝐷𝐴5 = {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸} + {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸} + {(𝜆𝐷𝑈 +
𝜆𝐷𝐷)𝑡𝐶𝐸)} + {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸} +  {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸} + {(𝜆𝐷𝑈 +
𝜆𝐷𝐷)𝑡𝐶𝐸} + {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸)} + {(𝜆𝐷𝑈 + 𝜆𝐷𝐷)𝑡𝐶𝐸}

Environmental System (A6): 

PFDA6 = PFDWIND + PFDWAVE + PFDCURRENT 

𝑃𝐹𝐷𝐴6 = {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} + {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 −

𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} + {6((1 −

𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+

𝑀𝑅𝑇)} + {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)}

Human / Operator Error (A7): 

PFDA7 = PFDDEX + PFDDEC + PFDS + PFDDGPS 

𝑃𝐹𝐷𝐴7 = {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} + {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 −

𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)} + {6((1 −

𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 + 𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+

𝑀𝑅𝑇)} + {6((1 − 𝛽𝐷)𝜆𝐷𝐷 + (1 − 𝛽)𝜆𝐷𝑈)
3

𝑡𝐶𝐸𝑡𝐺𝐸𝑡𝐺2𝐸 +

𝛽𝐷𝜆𝐷𝐷𝑀𝑇𝑇𝑅 + 𝛽𝜆𝐷𝑈 (
𝑇1

2
+ 𝑀𝑅𝑇)}

Therefore, the overall reliability of DP system (DP-RI) is 

calculated as per equation (1): 

PFDDP = PFDA1 + PFDA2 + PFDA3 + PFDA4 + PFDA5 + PFDA6

+ PFDA7                                                                     (1) 

4.2 LSTM prediction of DP Sub-System Reliability 
Reliability prediction is becoming the most commonly used 

method in the oil and gas industry for predicting the reliability of 

complex systems [17, 21, 8]. For this specific application the 

research framework is defined in Figure 2. The DP sub-system 

data from the field and test simulations are used for training the 

deep learning algorithm LSTM for predicting the near future 

values.  

The experimental set-up for the reliability prediction was based 

on the following parameters and boundaries, defined upfront to 

address the uncertainties through the key parameters [18]: 

• Reliability Prediction uses (Why)

o Reliability goal assessment

o Mission Reliability Estimation

o Prediction of Reliability performance

• Reliability Prediction in the system life cycle (When)

o Operational Phase

• Factors to select Reliability Prediction method (What)

o Product Technology

o Consequence of failure

o Failure criticality

The field data are directly extracted from the DP3 vessel for 

which the mathematical computation was performed using the 

RBD model. The LSTM model was developed for the reliability 

prediction and the field data of DP 3 vessel was used which was 

taken from a historical database during the annual trial was used 

to train the model. The test data was simulated to address bias 

for the missing system configuration. The reliability prediction 

through LSTM was performed with the information such as 

Reliability requirements, System Architecture, Operating 

environment, operating profile and failures, mechanism and 

causes were fed into the model to ensure that there will be the 

desired degree of precision in the prediction as per IEEE 1413 

standard [18]. This is real-time prediction which involves the 

prediction of future system reliability based on the information 

of the current and past status of the sub-systems. 

The LSTM model is a variant of Recurrent Neural Networks 

(RNN) which are application specific and use purpose-built 

memory cells to address time series prediction for sequential data 

[22, 23]. This unique attribute of LSTM supports the model to 

hold only relevant data and at the same time ‘removing’ or 

‘forgetting’ in the memory cells which are regulated by structures 

called gates. Each of the memory cells have three gates 

maintaining and adjusting its cell state   𝑠(𝑡): 

• Forget gate:  𝑓(𝑡) which defines what information is

removed from the cell state

• Input gate:   𝑖(𝑡)
 which specifies what information is added

to the cell state

• Output gate:  𝑜(𝑡)
 which specifies what information in the

cell state is used.

The real-time sequential update formula is represented by 

𝑔(𝑡) =  𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥(𝑡) + 𝑊𝑔ℎℎ(𝑡−1) + 𝑏𝑔)

𝑰𝒏𝒑𝒖𝒕 𝑮𝒂𝒕𝒆:    𝑖(𝑡) =  𝜎(𝑊𝑖𝑥𝑥(𝑡) + 𝑊𝑖ℎℎ(𝑡−1) +  𝑏𝑖)

𝑭𝒐𝒓𝒈𝒆𝒕 𝑮𝒂𝒕𝒆:  𝑓(𝑡) =  𝜎(𝑊𝑓𝑥𝑥(𝑡) +  𝑊𝑓ℎℎ(𝑡−1) + 𝑏𝑓)

𝑶𝒖𝒕𝒑𝒖𝒕 𝑮𝒂𝒕𝒆:  𝑜(𝑡) =  𝜎(𝑊𝑜𝑥𝑥(𝑡) + 𝑊𝑜ℎℎ(𝑡−1) +  𝑏𝑜)

𝑪𝒆𝒍𝒍 𝑺𝒕𝒂𝒕𝒆:        𝑠(𝑡) =   𝑔(𝑡) ⊚ 𝑖(𝑡) + 𝑠(𝑡−1) ⊚ 𝑜(𝑡)       

𝑯𝒊𝒅𝒅𝒆𝒏 𝑮𝒂𝒕𝒆:  ℎ(𝑡) = tanh( 𝑠(𝑡)) ⊚ 𝑜(𝑡)       

𝑶𝒖𝒕𝒑𝒖𝒕 𝑳𝒂𝒚𝒆𝒓: 𝑦(𝑡) =  (𝑊ℎ𝑦ℎ(𝑡) + 𝑏𝑦)

Where  x^((t)) is the input vector for the time step t, W are the 

network weights, b are bias parameters, y is the output to be 

compared to observations, h is the hidden state, σ is the 

sigmoidal function, ⊚ is element wise multiplication and s is 

called the cell state of memory cells, which is unique to LSTM. 

The Root Mean Square Error (RMSE) represents the prediction 

accuracy and it is defined by [1]: 

𝑹𝑺𝑴𝑬 =  √
𝟏

𝑳
∑ (𝑽𝒋 − �̂�𝒋)𝟐𝑳

𝒋=𝟏

Where ∑ is summation, 𝑳  is sample size,   𝑽𝒋 is predicted values

and �̂�𝒋  is calculated or actual values. 
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The Correlation Coefficient (CC) represents the linear 

dependency of two random variables. The linear dependency is 

strong if CC is greater than 0.8 and weak if CC is less than 0.5. 

𝑪𝑪 =  
𝑪𝒐𝒗 (𝑽,�̂�)

√𝑽𝒂𝒓 (𝑽)𝑽𝒂𝒓(�̂�)

Where 𝑽 is predicted values, �̂�  is calculated or actual values, 

Cov () is covariance  and Var () refer to the variance operator. 

The Gated Recurrent Unit (GRU) is a simpler version of LSTM 

where the cellular state and the hidden state are combined which 

reduces the number of variables [24]. ELM provides a unified 

solution for a generalized feedforward network. In ELM, the 

input parameters, hidden node parameters are randomly 

generated, and output weights are computed analytically. The 

unique feature of ELM is high accuracy, minimal user 

intervention and real-time learning [24]. From Table 8 it is 

clearly evident that the performance indices of the LSTM model 

outperform the other deep learning algorithms that were tested. 

Therefore, LSTM was chosen for further research by optimizing 

for the activation function (ReLU) and hyperparameters (number 

of neurons = 400 , hidden layers = 6 and Learning rate = 0.3). 

Table 8. Performance Analysis Results 

SNo MACHINE LEARNING RSME CC 

1 LSTM 0.000713 0.9518 

2 GRU 0.3078 0.8895 

3 ELM 0.2578 0.8789 

5. RESULTS AND ANALYSIS
In this section, we present the results of the reliability of DP sub-

systems derived from two different methods: one through

mathematical computation and another through the deep learning

algorithm model. The Root Mean Square Error (RMSE) is used

as the performance measure to compare the performance of

prediction against mathematical calculation [1].

Figure 8  RMSE curve of LSTM with optimized hyperparameters 

First, we present results of the reliability at sub-system level 

using the data collected from the same sources (vessel, 

configuration, period and mode of operation). A total of 4500 

samples for each sub-system were collected and 3000 samples 

used in the training which was collected from the vessel during 

operational phase. The remaining data of 1500 samples were 

used for testing for each sub-system. In this experiment the 

comparison was performed in offline mode as online sequential 

operation was not possible to due to a confidentiality agreement 

and cybersecurity risks when interfacing the research laptop to 

the actual operational technology loop in the vessel. 

The framework was developed for a DP 3 vessel where all the 

possible configurations, operation modes, voting logics and 

system architectures can be tested to evaluate the suitability for 

DP2 and DP1 vessels. As shown in the Table 9 and Figure 8, 

LSTM can predict the reliability of the DP-sub-system 

accurately under various conditions.  

Table 9 DP sub-system reliability RSME 

SNo Number of Samples RSME 

1 1500 0.005102 

2 2000 0.003428 

3 2500 0.001895 

4 3000 0.001289 

5 3500 0.001099 

6 4000 0.000919 

7 4500 0.000713 

In general, mathematical calculation involves huge 

computational effort and requires significant processing time, 

which limits its applicability for complex marine operations 

where the time for action is very limited. The deep learning 

algorithm LSTM provides a method for faster prediction of 

reliability of sub-systems and provides information directly 

during critical operations. Based on the type of Graphical 

Processing Unit (GPU) used in the Google Cloud Engine, the 

computation time will range from 30 minutes (8 GPUs, 96 GB 

GDDR5, 1 - 64 vCPUs,1-416 GB) to 8 hours (2 GPUs,16 GB 

GDDR5. 1 - 48 vCPUs, 1 - 312 GB). This supports the operator 

to make decisions at the right time more effectively. 

Table 10 DP-RI calculation and prediction comparison 

CASE CASE ID IN IMCA DATABSAE CAL VAL LSTM 

1 Year 2005  →  0501 70.1 70.3 

2 Year 2006  → 0614 82.6 81.9 

3 Year 2008  → 0892 60.4 60.9 

4 Year 2009  → 0908 50.7 50.6 

5 Year 2010  → 1047 34.5 33.9 

6 Year 2011  → 1105 76.9 76.6 

7 Year 2014  → 1431 56.1 55.9 

8 Year 2015  → 1517 65.9 65.8 

9 Year 2017  → 1787 48.4 48.6 

10 Year 2018  → 18123 58.9 58.8 

Secondly, in the research we present the results based on a 

cascaded bottom-up approach to evaluate the prediction at 

system level for DP-RI values. The results of the LSTM 

prediction for the DP-RI matched with the mathematical 

calculation as shown in Table 10 when the validation was 

performed for the 10 different case studies obtained from IMCA 

accident database [25]. In addition, LSTM showed improved 

results for the DP-RI when compared with its prediction at sub-
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system level. This is due to the fact that the model was able to 

train itself with the different data during the testing period for the 

unknown values and correct it with the approximations. 

Therefore, LSTM can be applied at system level for DP-RI 

prediction. 

6. CONCLUSION
In this paper, we have investigated the performance of LSTM to

predict the reliability for sub-systems of Dynamic Positioning.

The proposed framework was effective as it included both a

mathematical computation approach to compute reliability of DP

sub-systems and a data driven approach to predict the reliability

at a sub-system level. This provided a way to evaluate

performance and accuracy of the model prediction against the

mathematical computation.  The data was collected from the

vessel during annual trial phase for a period of one week and the

previous two years operational data were taken from an event

logger / historical station. The data from the first year of

operation was used for training and the data from the second year

was used for testing. The data is chosen such that the study

covers all the different possible scenarios of operations. The

framework can be used on any operational vessel to predict the

reliability of sub-systems at any point in time during complex

marine operations.

It must be noted that the work on prediction of reliability for sub-

systems of DP using LSTM can be easily extended to the overall 

DP system for prediction for DP-RI. This will support in vessel 

performance analysis, operation planning and prescriptive 

solutions in the case of any failures in components during 

complex operations. Moreover, the features that are critical for 

each sub-system are selected based on the guidelines provided 

by IMCA, Classification societies such as DNV GL, ABS, LR 

etc. and DP system vendors. However, there is a need for a 

detailed study on the effects of individual sub-systems on overall 

performance during different configuration / operation modes/ 

voting logic throughout the life cycle of the DP system. 

Therefore, the ideal choice of critical signals and optimized deep 

learning algorithm for DP-RI prediction with prescriptive 

analytics will be a separate study topic for future work. 
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