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1 The role of statistical physics

Physics is the empirical science that investigates matter
and its properties in space and time, and, indeed, the
features of the very space and time with which matter is
associated. Accordingly, physicists’ attempts at under-
standing the physical world range in perspective from
the universe itself to particles on the tiniest conceivable
length scale, and span the time from the Big Bang thir-
teen billion years ago to the short durations of quantum
mechanical transitions measuring only quadrillionths of
a second. In order to be able to formulate scientific
statements, experimental methods are utilised to make
measurements and these numbers need to be compared
constantly with the paradigms of our theories. As our
knowledge of the physical world becomes more refined,
the theoretical foundations, the experiments and the
nature of the quantities that we need to measure change
too.

One primary endeavour of physics is to identify and
determine the properties of the most elementary con-
stituents of matter. The search for elementary particles
associated with theories of matter continues and has
received much public attention through the successful
major discoveries in large international experiments at
the Large Hadron Collider. However, we also know that
huge numbers of elementary particles acting together
produce a wealth of interesting and frequently con-
founding collective phenomena — that having identified
fundamental particles and forces there is still much to
understand about how these produce everyday physical
phenomena. Determining the elementary constituents
of a physical system does not necessarily imply that
the system of which they are a part is yet completely
understood.

Statistical physics is one of the branches of physics
that explores ways of connecting the properties of matter
on some elementary scale, denoted as microscopic, to a
larger macroscopic scale where large numbers of these
microscopic elements interact.! An example of a com-
mon statistical physical question is the following: How
do we take our knowledge of some species of molecules
and the mutual forces between such molecules to de-
scribe the fact that these molecules can condense from
a gas to a liquid and eventually form a solid? Statistical
physics also mediates between the different quantities
one should measure at different scales. For instance, for
a single microscopic gas molecule it is probably useful
to know the speeds or energies of the particles, but for a
truly large group of particles the temperature or pressure
are far better characterising quantities.

Since physics knowledge of any experimental system
of many particles is always incomplete, it is certainly
true that only a limited degree of microscopic details
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may be available while there are also limitations on
certain macroscopic measurements for any given sys-
tem. Therefore it is sensible to ask whether certain
macroscopic properties might be compatible with a hy-
pothetical microscopic scenario. The strategy is that,
using this modelling approach, one might learn about
possible microscopic explanations for a certain type of
macroscopic behaviour.

The role of theoretical physicists is to engage with
these models, to cast them in the appropriate mathemat-
ical formalism and to deduce the physical phenomena
and predictions that are encoded within the framework.
Should a model not produce predictions that are com-
patible with experimental observations, careful consider-
ation is required whether it should either be refined or
discarded, unless, of course, there are good reasons to
doubt the experiment.

A typical formalism of a statistical physical model
contains the mathematical description of the states of
particles that constitute the system; the laws of physics
for these states change as the particles are influenced
by each other and by their environment. As in human
experience, it is the interactions that make everything
interesting, but also rather complicated and challeng-
ing. The algebraic descriptions developed in theoretical
physics do not only represent formulae to use in com-
puting the quantitative results of experiments but, more
fundamentally, they express the logical and physical re-
lationships between various quantities. Mathematics
provides a compact and precise language with which to
explore the connections between physical quantities, to
weave together related strand of arguments that should
lead to the discovery of novel contexts and interpreta-
tions.

In this inaugural article the focus will be on systems
of intermediate size, where polymer molecules or fila-
ments assembled from molecules will form the important
basic constituents, and the macroscopic scale ranges
from nanometres to centimetres. Networks are formed
when the molecules or filaments become linked to each
other by permanent, reversibly attaching or moving link-
ing units. The resultant system can now transfer forces
across the whole network rather than the single macro-
molecules. Its macroscopic properties are due to the
combination of the properties of the chains, the linking
units and the nature of the network. Networks not only
lie at the foundations of the classical theory of rubber
elasticity, but also occur in cells as various parts of the
cytoskeleton. Here there is much scope for new and
fascinating statistical physical modelling.

Recent progress in experimental techniques has made
possible astonishing insights on the physics of the cell
and subcellular structures. Fluorescent labelling to-
gether with super-resolution microscopy enableFigure,
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for example, the tracking of the shape and fluctuations
of filaments of the cytoskeleton in real time. Optical
tweezers can be used to manipulate individual strands
of DNA to tie knots in these strands. One can also de-
termine the tiny forces exerted by filaments or molecular
motors. Such new observations require novel biophysical
models and theoretical physical approaches. Clearly, it
is also an exciting time for both cell biology and physics,
since particular physics questions are truly relevant to
the functioning of biological systems. Furthermore, the
experimental tools currently available and those that
will still be developed will prove to create an excellent
symbiosis of physics with biology, physics experiment
and theoretical modelling.

2 Networks of filaments

In their simplest forms networks simply consist of micro-
scopic filaments or polymer chains that are tied together.
In Figure 1 a so-called cross-link is depicted as joining
two filaments. The cross-link might attach the two
filaments to one another either permanently or tem-
porarily. Extrapolating the single link to large numbers
of cross-links for many different chains yields a three-
dimensionally connected structure of linear molecules.
With a sufficiently high density of permanent linkages
and polymer chains the network is able to bear loads
and deform in response to applied forces, which is not a
property the individual unconnected chains would have
shown.

Figure 1: Two filaments that are cross-linked.

Various modes of linking filaments or chains into net-
works occur besides cross-linking. The ends of chains
can be combined into groups and thus influence the func-
tionality of the junction, which is given by the number
of parts of strands emerging from a particular junction.
The networks may contain contain many closed loops
of polymer chains or may be completely without loops

in a tree-like structure. The reader can imagine that
the way in which the networks are connected influences
their elastic properties fundamentally.

2.1 The components

As already discussed, the minimal components of the
network are the polymers or filaments and the linkers
of these chains. Polymers, of which the double helix
depicted in the cartoon of Figure 2 is an example, have
intrinsic mechanical properties and interactions with
each other and their fluid environment. The stiffness
of filaments is significant. It is expressed in terms of
the persistence length over which the chain remains
more-or-less straight in its thermal environment.

In cells actin filaments (Figure 3) and microtubules
(Figure 4) both play important structural and other bio-
logical roles and form part of the cytoskeleton (Fletcher
and Mullins, 2010). The persistence lengths of these
filaments are greater than for many synthetic polymers
for which polymer network theories have been developed.
The filaments themselves can polymerise or depolymerise
and can be cross-linked in an astonishingly varied num-
ber of ways. Actin filaments can form tree-like structures
by the branching effects of the Arp2/3 complex (Rotty
et al.,, 2012). In erythrocytes a network is formed of
spectrin whose filaments link into a network by mutual
entwinement.

Figure 2: A schematic illustration of a double-stranded

molecule, depicted here with counter-ions that affect its
electrostatic interaction. (The water molecules are not
shown, but indicated by the rather unrealistic subma-

rine.)



Figure 3: The actin filament consists of a simple ar-

rangement of dimers.

Figure 4: Microtubules are stiff polar filaments.

2.2 The thermal environment

The filaments typically are not isolated but move around
in a surrounding fluid that is characterised by a temper-
ature. A thermodynamic system at a given temperature
above absolute zero will always possess kinetic energy
(i.e. its molecules will be in a state of motion or vibration)
and the hotter the system becomes the more vigorous
this motion becomes. Consequently the molecules of
the fluid surrounding a polymer as depicted in Figure 5
will exert forces on the chain and constantly rearrange
its conformation. Thinking of the chain as analogous to
a rope being held by two persons that is being wiggled
along its length (the wiggling motion being the thermal
effect), one can intuitively understand the forces of con-
traction that the rope exerts on the two people holding
it.

The statistical physical equivalent of the conclusion
above for the mathematically simplest model of a poly-
mer chain can be formulated in terms of a measure
related to the number of possible chain conformations
that are compatible with a certain separation of the
ends. This measure is known as the entropy S which
decreases as the chain is ever more tightly stretched.
A fundamental thermodynamic law states that systems
seek to maximise their entropy. Upon brief considera-
tion, it is clear that this statement is compatible with
the attractive force of polymer ends. For a stiff polymer,
where bending also costs energy, it is the Helmholtz free
energy that must be minimised:

F=E-TS. (1)

The equation means that the statistical physical system
will tend to minimise its energy E and simultaneously
maximise its entropy .S, and how the systems balances
these depends on the temperature T

For a polymer network in equilibrium, Equation (1)
encodes the statistical physics of the properties one
wishes to understand. However, the individual quanti-
ties in that seemingly simple mathematical expression
are extremely difficult to calculate. One of the reasons
for this is that the permissible configurations of a whole
network of molecules are extremely complicated. Since
the polymer chains are now connected, the conformation
of one chain is no longer necessarily independent of the
conformation of any other chain, as the chains are well
connected.

Figure 5. Two different conformations of a polymer

chain.

2.3 Measuring the response and struc-
ture

Notwithstanding the challenges of calculating the quan-
tities in Equation (1), if it is possible (and it is) to com-
pute good estimates for these quantities, a researcher
is in the position to derive the mechanical properties of
the network to be modelled. One thinks of the network
being localised in some containing box. The question
then arises how the Helmholtz free energy would change
if the box were somehow stretched or deformed with



the network inside. The response of the system would
reveal the elastic properties.

Figure 6: A cross-linked network.

3 Equilibrium networks

For the computation of the free energy one usually con-
siders the system to be in a state of equilibrium, which
means that the average behaviour of the system does
not change over time and that no constant addition
of energy is required to maintain the system in this
constant state.

3.1 Counting all connections: disorder

A question that arises is which realisation of a network
one should choose in order to calculate its properties.
This rings especially true in that hardly any microscopic
system can be controlled well enough to be able to
specify or characterise which polymer chain is linked
with which other chains at what part of their lengths.
A network that could be prepared repeatedly from the
same number of original chains and cross-links would
in all likelihood have a completely different connectiv-
ity each time it is cross-linked as this would depend
on the instantaneous conformations of the chains and
cross-links at the moment of cross-linking.

Indeed, a statistical physical treatment needs to in-
clude the randomness or disorder that is inherent in the
cross-linking process. Moreover, one should expect that
the disorder, although significant on the microscopic
view of the system, has little effect on the overall macro-
scopic quantities determined using statistical physics
methods. In a seminal work, Deam and Edwards (Deam
and Edwards, 1976) addressed the role of disorder and
introduced a method with which one is able to perform
the average over all possible cross-links. Later Solf
and Vilgis (Solf and Vilgis, 1995) also showed under
certain circumstances that macroscopic properties are
independent of the microscopic cross-link disorder.

3.2 Enforcing the links

The statistical physical sum that leads to the free energy
needs to enumerate all possible conformations of the
chains in the network subject to the permanent cross-
links keeping the same parts of the chains co-localised.
Only after the macroscopic free energy (for example)
has been calculated may one average over the different
compatible versions of the disorder. The distinction of
these two averaging procedures is crucial when dealing
with permanently linked networks.

The networking constraints require the descriptions
of the polymer chain as a series of coordinates for the
N chemical bonds of one polymer chains

1 1 1
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and another chain
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A permanent cross-link of the i'th bond on chain 1 with
the j'th bond on chain 2, for example, requires that the
condition

1 2
i) =1 (4)

holds for all possible polymer conformations. There is
one such constraint for each cross-link, of course.

A field-theoretical treatment introduced by Ed-
wards (Edwards and Freed, 1970a,b; Edwards, 1988;
Boué et al., 1988) resolves some of the issues related to
enforcing and generating the cross-linking in the mathe-
matical formulation of the gel. The method is based on

the Gaussian functional integral expression for a complex
field:
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The expression above contributes two important aspects
to pairwise linked systems. It simultaneously enumer-
ates all possible ways of linking IV sites in space and
enforces the cross-links through the delta functions.

It is now possible to use these fields to produce
cross-links (Fantoni and Miiller-Nedebock, 2011). The
method can be applied in the closed multimerisation sce-
nario (Nyrkova and Semenov, 2005). With f-functional
cross-linkers a complicated-looking theory for the cross-



link constraints emerges:

Zn :N/[d¢] [d*] {H dR} {H G}
exp (_ / dr o(r)e* (r)+
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Z is the partition function that is related to Helmholtz
free energy F' and the temperature T of Equation (1)
through

F
= —lZ
T n (7)

One can show that a saddle-point approximation (fre-
quently used in such field theories) always leads to
exactly one physical result.

Although it might not seem obvious by inspection
of the equations above, the correct enumeration of all
permissible realisations of the disorder as well as of the
constraints the disorder imposes on the polymer degrees
of freedom is addressed in the formalism above.

In a recent paper (Fantoni and Miiller-Nedebock,
2011) the clustering by so-called Janus particles was
described. These particles have a rather specific inter-
action that favours clustering of the particles in certain,
limited multiples or functionalities. When Janus parti-
cles are coupled to a chain, reversible networks form.
The field-theoretical formalism outlined above can be
used to characterise the degree of clustering and the
resultant stability against a collapse transition for the
Janus chains.

The field theory can be implemented in useful man-
ner in scenarios where cross-links are permanent, but is
also evidently useful for reversible cross-linking. Indeed
this has interesting repercussions for systems in which
there are charged polymers and counter-ions (such as
the charged DNA in Figure 2). It is known that highly
valent counter-ions can cause salt bridges similar to
the scenario in Figure 1, but that ions can also simply
condense on chains without necessarily causing bridging.
Recent calculations using the formalism indicate that
the classification and identification of the various elec-
trostatic roles of counter-ions is possible and leads to a
single formalism that includes several possible effects. It
is possible to identify the amount of charge condensation
on chains, the degree to which the salt bridges cause a
local attraction, as well as the degree of screening that
is prevalent in the system. As for the Janus particles,
the complicated-seeming formalism provides exactly one
physical solution under all conditions.

3.3 Confining networks and enforcing

topology

Two additional aspects of the polymer networks are
worth examining and remain widely open questions. The
first is that the network is contained within some confin-
ing volume — such as the cytoskeleton that occupies the
small volume of a cell. Most analytical treatments of
polymer networks impose an averaged deformation on
the system and do not study in detail how the network
behaves at its boundaries. Boundaries will couple to the
orientations of filaments (Miiller-Nedebock et al., 2003),
influencing the possible conformations of the network.

The second challenge to theorists is that cross-linking
may introduce closed loops of polymers. As one knows
from normal pieces of string, the possibility exists that
the polymers are knotted. For example, the simple tre-
foil knot in Figure 7 cannot turn into any other type of
knot unless the loop itself is broken.

Figure 7: A trefoil knot must remain a trefoil knot unless

it is cut open.

Similary, the Borromean rings in Figure 8 must stay
co-localised. The conservation of the state of knotted-
ness of loops is non-local, i.e. it depends on the whole
path the polymer chain follows, which imposes some
severe challenges for a suitable statistical physical ap-
proach (Miiller-Nedebock and Edwards, 1999; Edwards
and Miiller-Nedebock, 1999).



Figure 8: Borromean rings are not entangled with each

other when viewed as pairs, but the triplet of rings

definitely is entangled.

One possible scenario is depicted in Figure 9 where the
entanglement of the strand seems to indicate some lo-
calisation. This has been modelled as a “slipping link”
(Ball et al., 1981).

w%/vw

Figure 9: Entanglement of one strand of network with

another.

Both these challenges of topology and confinement
are currently being addressed at Stellenbosch University.

4 Networks out of equilibrium

4.1 Molecular motors

Molecular machines are responsible for a huge variety
of biological functions. The machines utilise chemical
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energy in the form of adenosine triphosphate (ATP)
to produce forces, rotation or other types of motion.
Physicists have investigated the interesting mechanisms
of the function of molecular machines for the past two
decades (Julicher and Prost, 1995; Jillicher et al., 2007).

The actin filaments and microtubules mentioned ear-
lier act as tracks for the motion of some types of the
molecular motors. Various types of myosins can move
along actin filaments and kinesins and dyneins are re-
sponsible for transportation along microtubules. Since
both types of filaments consist of assembled dimers these
filaments have inherent directions, or polarity. Motors
will consistently prefer to move along the filaments in a
preferential direction. Figure 10 shows a cartoon of a
kinesin walking along a microtubule. Myosins typically
exert forces by attaching, exerting a power stroke and
then detaching from the filament (cf. Figure 11).

Figure 10: A schematic of kinesin on a microtubule.
The load or attachment occurs where the cartoon shows

a square.

Such motors utilise chemical energy and exert lo-
cal forces, which means that the equilibrium formalism
for statistical physics as discussed in the preceding sec-
tion is mostly inapplicable to these types of systems.
A dynamical statistical physical formulation becomes
requisite in most cases. The reader might not be sur-
prised to learn that dynamical formalisms for networks,
and especially networks where machines might exert
forces, pose significant challenges to both theorists and
experimentalists.



Figure 11: Myosin motors are associated with actin

filaments. The stepping action differs from that of

kinesins.

4.2 Molecular machines as linkers

How then would molecular machines affect the proper-
ties of a network of filaments? One scenario is that pairs
of motor heads link two filaments in much the same way
as a cross-link. However, depending on the orientation
of the underlying filament, the motor head will exert a
force and start to move in a specific direction, whereas
the other head, attached to another filament, might
pull in a completely different direction. The results
of this should be that additional stresses now emerge
in the network. An example is depicted in Figure 12.
The arrows indicate the directions in which the motors
prefer to travel along the filaments. (It is the orienta-
tion of the filament together with the type of motor
that determines the direction of the motion.) In the
scenario depicted the motors pull in opposite directions,
stretching the tether connecting the two motor heads
and (statistically) causing the filaments to bunch up in
their wakes. The ends of the two strands consequently
experience an additional attractive force that is caused
by the pulling action of the motors. If the filaments

were aligned in parallel such that both motor heads
travel in the same direction the behaviour would be less
interesting. Apart from moving along the filaments the
whole active cross-link might also become detached,
diffuse around the network and attach elsewhere.

Networks which contain molecular motor pairs as
cross-linkers are referred to as active gels. The com-
putation of their properties is of great current interest
in the biophysics community. A two-stranded system
coupled by motors was investigated by Liverpool and
coworkers (Liverpool et al., 2009). The researchers con-
cluded on the contractile behaviour the motors cause
in a two-stranded system.

Figure 12: A schematic representation of two motors
(blocks) that are tethered to each other (dotted line)
pulling along the preferential directions (arrows) given

by the orientation of the filaments.

The system of Liverpool and coworkers was also the
inspiration of two Master’s theses, by Mohau Mateyisi
and Karl Maller, at Stellenbosch University in the past
years (Mateyisi, 2011; Moller, 2011).

Using the ideas and the formalism of the motor as
slipping link (referred to earlier in the discussion on
topology), but now with preferential positioning along
the filament according to a force that is dependent on
the displacement along the filament, it is possible to con-
struct a minimal model for force-applying, permanently
attached cross-links. The resulting calculations show
that such a system can have a non-monotonic force-
extension relationship. This is due to the force-exerting
slipping link relocalising from near the end of a filament
— where it is cross-linked permanently to other filaments
— to a more central position. This also yields completely
different elastic coefficients. Further calculations draw
on the work of Edwards (Deam and Edwards, 1976) to
conclude on the role of disorder in such networks.

Cross-links that move in a preferential direction are
of course dynamical. The simple two-stranded (or ef-
fectively single-strand) system can also be modelled
using a Langevin equation, where the directed diffusion
of the motor attachment point o () is joined with a
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dynamically fluctuating filament r(s, t):

87’((;, t) _ _&‘Zit) + f(s.1) (8)
7/827?5) - (;E) + () + Om - 9)

The Hamiltonian H models the chain and the motor
tether elasticity with stochastic forces f and f/, and
¢m indicates the motor force. The coupled equations
enable the derivation of a steady state for the motor
system and lead to conclusions on the fluctuations of
the motor position and forces in the filament.

The model described above do not allow for the
motors to become detached. However, a good model
will need to account for detachment of motors due to
stochastic effects or as induced by forces in the system.
In some situations motor clusters rather than single
motors produce the traction forces on filaments, which
requires the description of multiple states of the motors
comprising the cluster as shown in Figure 13.

Figure 13: Two attached motors, one stretched and

another detached motor in a cluster near a filament.

5 Continuing the quest

Many biological systems in the course of the processes of
life have some structures or functions where the poten-
tial additional understanding brought about by using the
methods of statistical physics may prove to be extremely
useful. New and amazing experimental techniques take
the theoretical physicist’s enterprise far beyond the hy-
pothetical, enabling the testing and informing of models
and theories.

The daily discoveries of novel complexity and yet
more beauty astound and fascinate us. They nourish
our enthusiasm to learn more and to disentangle the
clues of how the world works.
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