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Abstract 

Tuberculosis (TB) has become a global health epidemic affecting millions of people worldwide 

with a high incidence in third-world countries. The emergence of multi-drug and extremely-drug 

resistant M. tuberculosis strains together with the HIV/AIDS pandemic warrants the need for 

new drugs or new drug combinations. 

The folic acid synthesis pathway is one of the key pathways that are essential for the survival of 

bacteria in general. Sulfonamides are a group of compounds that target folic acid synthesis, 

particularly dihydropteroate synthetase, the first enzyme in the folate pathway. Some of these 

sulfonamides were used during the introduction of chemotherapy for the treatment of TB in the 

1930s, but had toxic side effects. Newer derivatives became safer, but were not employed again 

for TB treatment.  

In a recent case study it was reported that the combination of trimethoprim-sulfamethoxazole 

(Bactrim), which is used to treat various bacterial infections, such as urinary tract infections, had 

activity against M. tuberculosis. In light of this and the fact that trimethoprim-sulfamethoxazole 

is well tolerated by humans, we have investigated their antimycobacterial activity with particular 

interest in the combinational effect of sulfamethoxazole and trimethoprim with the first-line 

anti-TB drugs, Isoniazid, Rifampicin and Ethambutol against M. tuberculosis. Since sulfonamides 

are known to produce oxidative stress, we also investigated the contribution of this factor to the 

efficacy of sulfamethoxazole using a mycothiol deficient strain of M. tuberculosis, ΔmshA. 

Though trimethoprim-sulfamethoxazole targets the folic acid pathway, we also investigated the 
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possibility that trimethoprim-sulfamethoxazole may have other cellular targets and applied 

proteomic analysis. 

We have found that Trimethoprim-Sulfamethoxazole has activity against M. tuberculosis and 

that Sulfamethoxazole is the active compound. However, our observation was that not all 

sulfonamides are active against M. tuberculosis. In addition we observed that sulfamethoxazole 

enhances the activity of Rifampicin against M. tuberculosis in a synergistic way. We also 

observed that a mycothiol deletion mutant was more susceptible to Sulfamethoxazole compared 

to the wild type strain CDC 1551. Through global protein expression profiling (Proteomics) we 

were also able to show that sulfamethoxazole could also kill M. tuberculosis by oxidative stress 

production as we identified oxidative stress responsive proteins that were differentially 

regulated upon exposure to sulfamethoxazole. As trimethoprim-sulfamethoxazole is a registered 

drug combination, inexpensive and widely available, we propose that this regimen could be used 

in our fight against M. tuberculosis infection. 
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ABSTRAK 

Tuberkulose (TB) is ‘n globale gesondheidsprobleem wat miljoene mense wêreldwyd affekteer 

met ‘n besoderse hoë voorkoms in die derdewêreld lande. Die voorkoms van multi-middel 

weerstandige en uitersweerstandige M. tuberculosis stamme, tesame met die HIV/VIGS 

pandemie, steun die erns vir die ontwikkeling van nuwe middels teen M.tuberculosis. 

Die foliensuur sintesepad is essensieël tot die oorlewing van bakterieë in die algemeen. Vir 

daardie rede is daar vele middels ontwerp om hierdie metaboliese pad te teiken. Die 

sulfonamiedes is ‘n groep antibiotika wat foliensuursintese, spesifiek dihidropteroaatsintese, 

die eerste ensiem in die foliensuursintese pad, teiken. Van hierdie sulfonamiedes is voorheen 

in die 1930’s gebruik vir die behandeling van tuberkulose, maar het toksiese newe-effekte 

getoon. Nuwe, minder toksiese derivate, is later ontwikkel maar is nooit vir TB behandeling 

weer aangewend nie. In ‘n onlangse gevallestudie is daar gerapporteer dat die kombinasie 

trimethoprim-sulfamethoxazole (TMP/SMX. Handelsnaam: Bactrim), wat normaalweg 

gebruik word vir die behandeling van algemene bakteriële infeksies soos blaasinfeksies, 

aktiwiteit teen M. tuberculosis getoon het. Na aanleiding hiervan en dat Bactrim veilig in 

mense gebruik kan word, het ons die aktiwiteit van Bactrim komponente teen M. tuberculosis 

bepaal en in die besonder die aktiwiteite van SMX en TMP in kombinasie met die eerstelinie 

anti-tuberkulose middels Isoniasied, Rifampisien en Ethambutol. Aangesien sulfonamiedes 

ook oksidatiewe stres intrasellulêr genereer, het ons ook die bydrae van hiervan tot die 

doeltreffendheid van SMX bepaal deur gebruik te maak van ‘n mycothiol-gemuteerde M. 
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tuberculosis stam ( mshA). Omdat TMP/SMX die foliensuur-pad hoofsaaklik teiken het ons 

ook die moontlikheid ondersoek dat SMX ander sellulêre teikens het en het ons proteomiese 

(Proteomics) tegnieke hiervoor aangewend. Ons het gevind dat TMP/SMX  aktiwiteit teen M. 

tuberculosis toon en dat SMX die aktiewe komponent van Bactrim is teen M. tuberculosis. 

Ons wys ook dat sulfonamiedes in die algemeen nie noodwendig ook aktiwiteit teen M. 

tuberculosis toon nie. Ons het ook waargeneem dat SMX die aktiwiteit van rifampisien 

bevorder en dat die twee middels saamwerk op ‘n sinergistiese wyse. Ons het ook getoon dat 

oksidatiewe stres ‘n rol speel deurdat‘n mycothiol delesie-mutant meer vatbaar was vir SMX 

in vergelyking met die wilde-tipe stam van M. tuberculosis (CDC1551). Met globale proteïen-

kartering (Proteomics) het ons ook getoon dat SMX M. tuberculosis kan doodmaak deur 

oksidatiewe stres te genereer omdat ons oksidatiewe stres reaktiewe proteïne geïdentifiseer 

het wat differensieël gereguleer is gedurende blootstelling aan SMX. Aangesien Bactrim ‘n 

reeds geregistreerde middel is, goedkoop is en geredelik beskikbaar is, stel ons voor dat 

Bactrim moontlik geïnkorporeer kan word in die huidige behandeling van .Ttuberkulose. 
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1.1 General introduction 

Tuberculosis remains one of the most deadly diseases in the world, second to Human 

Immunodeficiency Virus (WHO, 2002). It is caused by the bacillus Mycobacterium tuberculosis. 

There were about 8.7 million incident cases of new TB cases in 2011 of which 59% came from 

Asia and 26% came from Africa and 1.4 million TB deaths (WHO, 2012). 

The spread of this disease is correlated with the socio-economic condition such as housing 

quality and overcrowding and is therefore extremely sensitive to changes in the standard of 

living and nutrition 
(Puranen Bi, 2003). Figure 1.1 shows a geographic estimation of new TB cases 

around the globe, even though there has been a significant decrease in new cases, South Africa 

is still placed among the top 5 countries with a high TB burden (WHO, 2012). The other factor 

that has greatly fuelled the deaths caused by TB is the HIV co-infection, with the highest HIV-TB 

cases in the African region (WHO, 2012) (figure 1.2). 

 
Figure 1.1: Estimated new TB cases per 100 000 population (WHO, 2012). 
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Figure 1.2: shows a global estimation of HIV/TB prevalence (WHO, 2012).  

 

1.2 Historical point of view and epidemiology of Tuberculosis 

Tuberculosis is one of the old human afflicts and is estimated that this disease has existed even 

before the dawn of humankind and may have infected early hominids (Gutierrez et al.,2005; 

Daniel, 2006).  According to the evidence obtained using modern molecular genetics, sequencing 

of the genome of various strains of Mycobacterium tuberculosis and the archeological evidence, 

it could be that the ancestral home of tubercle bacilli and its human hosts was in East Africa 

(Daniel, 2006).  

This disease attacks various parts of the body and is thus categorized into two forms, pulmonary 

(figure 1.3) and extra-pulmonary tuberculosis (Leung, 1999). Pulmonary tuberculosis is the most 

common form of TB, with extra-pulmonary TB constituting about 15 to 20 per cent in immune 
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competent individuals and about 50 per cent in HIV infected individuals (Sharma and Mohan 

2004).  

 
Figure 1.3:  This x-ray shows a single lesion (pulmonary nodule) in the upper right (Board, 2012) 
 

Extra-pulmonary Tuberculosis (EPT) develops in many organs and the risk of developing this type 

of TB increases with the decrease in immune competency (Golden and Vikram 2005).  

Pleural Tuberculosis is another form of EPT which accounts for about 5% of all TB cases; its 

symptoms are usually pleuritic chest pain, fever, or dyspnea (Golden and Vikram 2005). Skeletal 

(Bone and joint), spinal  and central nervous system (meningitis) tuberculosis are other forms of 

extra-pulmonary Tuberculosis and occur in different degrees figure 1.4 (Golden and Vikram 

2005). 
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Figure 1.4: shows different forms of extra-pulmonary tuberculoses (A) Cervical tuberculoses, (B) 
Pleural tuberculosis, (C) Osteoarticular tuberculosis and (D) Spinal tuberculosis (Golden and 

Vikram, 2005). 
 

The cases of these forms of extra-pulmonary tuberculosis vary from country to country and also 

depending on the origin of an individual within a country (Smith, 2003). Generally, extra-

pulmonary tuberculosis arises from pulmonary tuberculosis through dissemination from an 

infected lung (Smith, 2003). A sequence of events illustrating how primary tuberculosis occurs 

has been generated (Grange and Zumla, 2008). 

The first stage of Wallgren’s time table begins from 3 to 8 weeks after inhalation of M. 

tuberculosis aerosols, which travel to alveoli and then disseminated by lymphatic circulation to 

lung lymph nodes forming the Ghon complex. The second stage begins when M. tuberculosis 
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enters into the blood circulation to other parts of the body and organs that is termed Miliary 

tuberculosis that lasts for 3 months. The third stage is thought to be the result of release of M. 

tuberculosis from haematogenous dissemination or from the lungs to the pleural space giving 

rise to pleural tuberculosis. The last stage is the resolution of the Ghon complex or primary 

complex and might last for 3 years, this stage is marked by bone and joint pains (Smith, 2003). 

1.3 Antibiotic treatment for Tuberculosis  

Since the discovery of Mycobacterium tuberculosis by Robert Koch in 1882, the treatment of this 

disease was based mainly on resting, fresh air, good nutrition and improving social and hygienic 

conditions. These methods were later combined with artificial pneumothorax and other surgical 

methods to reduce the lung volume, which proved to be more effective at the time. Following 

these innovative methods of therapy, was an unexpected discovery of an attenuated form of 

Mycobacterium bovis, Bacillus Calmette–Guérin (BCG), which was used for preventive measures 

(Hsu et al., 2003). Streptomycin discovered in 1943, was the first antibiotic active against 

Mycobacterium tuberculosis which was well tolerated by the body, with limited toxicity and was 

administered for the first time in patients in 1944 (Schatz et al., 1944). A few years later it was 

realized that resistance to the single drug occurred rapidly thereby threatening the success 

gained from streptomycin (Graessle and Pietrowski, 1949). 

Para-Aminosalicylic acid (PAS) was also discovered in 1943 and found to be active against M. 

tuberculosis in vitro, but its use in humans was delayed until 1948 due to the conflicting reports 

from clinical trials (Houghton, 1950). 
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Graessle and Pietrowski (1949) showed that addition of PAS to the TB treatment prevented in 

vitro development of resistance of M. tuberculosis to streptomycin (Graessle and Pietrowski, 

1949).  These results gave rise to the start of combined therapy against Mycobacterium 

tuberculosis. 

   

(a)  (b)   

Figure 1.5: chemical structure of Streptomycin (a) and Para-Aminosalicylic acid (b) (structures 

obtained from PubChem). 

 

Isoniazid was introduced in 1953 and improved the efficacy of the treatment. In 1960 

Ethambutol replaced para-aminosalicylic acid and Rifampicin was introduced in 1970. The 

multidrug combination reduced the course of the treatment from 24 to 6 months (Almeida et al., 

2007). 

1.4 Resistance of M. tuberculosis to current drug treatment 

The current management system of the tuberculosis disease consists of two regimens; The front-

line regimen (isoniazid, rifampicin, ethambutol and pyrazinamide) and the second-line regimen 

which is often toxic and expensive (amikacin or kanamycin, capreomycin and moxifloxacin) and 

their target sites  are summarizes in table 1.1. 
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The search for new anti-tuberculosis drugs or measures have been renewed by the emergence 

of the multi-drug resistant M. tuberculosis strains (MDRs), defined as the strains of M. 

tuberculosis that are resistant to isoniazid and rifampicin, the most effective first-line drugs and 

extensively drug resistant TB strains (XDRs), defined as the MDRs that have gained resistance to 

fluoroquinolones and at least one of the injectable drugs, aminoglycosides or polypeptides (Basu 

and Galvani, 2008). 

 Apart from drug resistance, the current regimen is also marked by high levels of cytotoxicity and 

to some degree, antagonism of activity of drugs that are co-administered with the regimen (Lees 

et al., 1971).   

Drug Mode of action  (Target genes that contain alterations ) 

Isoniazid cell wall integrity KatG and InhA genes 

Rifampicin Nucleic acid synthesis rpoB gene 

Ethambutol Mycobacterial cell wall embB gene 

 

Pyrazinamide Disrupts membrane energetics and 

inhibit membrane transport functions 

 

pncA gene 

Amikacin Inhibits translation rrs gene 

Kanamycin Inhibits translation rrs gene 

Capreomycin Translation in Mycobacteria tlyA gene 

Moxifloxacin Release of DNA breaks Quinolone resistance-determining region 

(QRDR) of gyrA gene 

Table 1.1: A Summary of the mechanism of action of the first-line and the second-line anti-TB 
drugs, together with the mechanisms of resistance, Adapted from literature review (Alangaden 

et al., 1998; Maus, Plikaytis, and Shinnick 2005; Mphahlele et al., 2008; Sreevatsan et al., 1997; 

Chen et al., 1996; Ma et al., 2010). 
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Further, for many years it was accepted that drug resistance develops through the process of 

spontaneous mutations in the target genes as shown in table 1.1 (Louw et al., 2011). There are 

other mechanisms involved in the susceptibility of microorganisms to antibiotics. In recent years 

the focus has been in defining these mechanisms of drug resistance in order to effectively treat 

bacterial infections. This was prompted by the inability to detect the mechanism of resistance of 

isolates that did not harbor mutations in the target genes of the drugs.  

For example, it is estimated that about 30% of isoniazid resistant isolates do not have mutations 

in the putative target genes and that about 5% of rifampicin resistant isolates do not harbor 

mutations in the RNA polymerase gene (Telenti et al., 1993). It is now known that active efflux of 

drugs plays a major role in drug resistance (Li and Nikaido, 2004). These efflux pump systems 

can be drug specific and also transport various drugs from deferent classes (Higgins, 2007). They 

are categorized into five groups, namely ATP-binding cassette (ABC) superfamily, major 

facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE) family, small 

multidrug resistance (SMR) family and the resistance-nodulation-division (RND) superfamily (Li 

and Nikaido, 2009).  

These mechanisms of drug resistance work together in helping microorganisms to successfully 

evade antibiotic stress. Therefore, there is a need for new antimycobacterial agents that are 

more effective, less toxic and that would shorten the treatment duration in order to prevent 

patient non compliance.  
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1.5 New anti-TB drugs in the pipe-line and new TB treatment regimen 

The failure of the current TB treatment regimen are mainly due to the long periods of 

administration and adverse side effects leading to patient non compliance (Boogaard et al., 

2009), thus promoting mutations in the targets genes and the induction of other defence 

mechanisms in the organism that are exposed to low levels of antibiotics.  Therefore, new drugs 

must have different mechanisms of action to the existing drugs to avoid cross resistance. 

 New effective anti-tuberculosis treatment regimens must be able to shorten the duration of 

treatment and allow co-administration with HIV and AIDS treatment and must have minimal 

cytotoxicity (Ma et al., 2010).  Progress has been made in the development of new compounds 

for TB treatment.  In 2012, the Food and Drug Administration (FDA) announced that a Johnson & 

Johnson tuberculosis drug TMC207 has been approved, which is the first new effective TB drug in 

more than four decades (FDA, 2013).  

There are other compounds with novel targets that are in the late stages of clinical trials and are 

anticipated to greatly improve the control of TB (Swindells, 2012). Figure 1.6 lists the new anti-

TB drugs and the stages of clinical trials at which they are being evaluated. Figure 1.7 illustrates 

the different targets and mechanism of action of the new anti-tuberculosis drugs. 
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Figure 1.6: Summary of the drug clinical trials in oder to determine the safety and eficacy of the 

new anti-TB drugs (Figure adpted from http://www.newtbdrugs.org/pipeline) 

 

Lead optimization
Early stage 

Development
GLP Tox Phase I Phase II Phase III

Discovery Preclinical Development Clinical Development

Cyclopeptides
Diarylquinoline
DprE Inhibitors
Inca Inhibitors
LeuRS Inhibitors
Macrolides
Mycobacterial 
Gyrase Inhibitors
Pyrazinamide 
Analogs
Ruthenium (II) 
Complexes
Spectinamides
Translocase-1 
Inhibitor

CPZEN-45
DC-159a
Q203
SQ609
SQ641
TBI-166

PBTZ169
TBA-354

AZD5847
Bedaquiline 
(TMC-207)
Linezolid
Novel Regimens2

PA-824
Rifapentine
SQ-109
Sutezolid
(PNU-100480)

Delamanid
(OPC-67683)
Gatifloxaxin
Moxifloxacin
Rifapentine

Chemical classes: fluroquinolone, rifamycin, oxazolidinone, nitroimidazole, diarylquinoline, benzothiazinone
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Figure 1.7: Summary of the targets of new anti-tuberculosis agents (Ma et al., 2010). One of the 
key requirements of the new anti-TB drug is that it must have completely different target to the 
existing drugs. As illustrated on the figure, these promising anti-TB drugs have that valuable 
feature.   
 

 

A new TB regimen that does not contain rifampicin, PaMZ, that is composed of PA-824 which is a 

nitroimidazo-oxazine, moxifloxacin, (a fluoroquinolone) and pyrazinamide cured mice faster than 

the first-line regimen (which contains INH and RIF) and an experimental regimen RIF-MXF-PZA 

(Stover et al.,  2000). 

 This is the first time a regimen that does not contain rifampicin and isoniazid was able to 

prevent relapse more effectively than the first-line regimen and also reduce the treatment 

duration to 4 months (Nuermberger et al., 2008). Diacon and his colleagues also confirmed the 

efficacy of this regimen, and showed that this combination could kill MDR-TB within 2 weeks 

(Diacon et al., 2012).  
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Figure 1.8: chemical structures of the compounds in the novel TB regimen (structures obtained 

from PubChem). 

 

Thus far, progress has been made in the search for new drugs. Figure 1.9 summaries this progress 

from the discovery of streptomycin to the present day and the development of new TB regimens. 

 
Figure1.9: Time line of TB drug discovery and development of TB regimens for tuberculosis. 
Arrow with dashed line represents future regimen. Red dots represent when the drugs were first 
reported (Ma et al., 2010). 

PA-824 Pyrazinamide Moxifloxacin
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While new drugs are being searched for, the recall of old and forgotten drugs has found a place 

in many pharmaceutical companies, because it takes about 10 to 15 years to find a new 

compound that is effective, safe and this process is very expensive. While on the other hand, the 

repurposing of old and forgotten drugs is cheaper and faster.   Figure 1.10 illustrates the process 

of drug development. 

 

 

Figure 1.10: Time-line for discovery of new TB-drugs 

Total 15 years

3-6 YEARS

DRUG DISCOVERY

Target identif ication and synthesis 
of  drug candidate                

Clinical Trials (Phase I, II, III)

Testing toxicity and ef fectiveness of the new drug in 
humans.

6-7 years

Registration

FDA approval 

2 yrs

Post-Approval studies

To monitor any side ef fect in a 
larger population

PRECLINICAL 

Testing toxicity of the candidate in
microphages and mouse models

Repurposing

Shortens time and saves 
money
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1.6 History of sulfonamides and the treatment of TB   

The repurposing of one class of FDA approved drugs for treating tuberculosis, the sulfonamides, 

have recently drawn attention. These compounds were the first chemical substances to have a 

real antibacterial activity discovered in the 1940s (Woods, 1940).  

Recently, Forgacs and co-workers observed that a patient that was thought to have had 

nocardiosis and was placed on TMP-SMX improved after the start of the treatment. The patient 

was later found to have tuberculosis and not nocardiosis. They then decided to evaluate more 

samples from this patient and their results concluded that Mycobacterium tuberculosis is 

susceptible to TMP-SMX whose putative targets are dihydrofolate reductase and 

dihydropteroate synthase, respectively (see figure 1.12) (Forgacs et al., 2009).  

The first sulfonamides that showed an inhibitory effect against M. tuberculosis was sulfanilamide 

and sulphapyridine, these compounds however required high concentrations, which were very 

toxic to the host to achieve sterilization (Follis 1940; Smith at al., 1942).  

Subsequently, Smith and co-workers also discovered other sulfonamides (sulfathiazole, and 

sulfadiazine) that inhibited the growth of Mycobacterium tuberculosis (Smith at al., 1942). Figure 

1.11 shows the chemical structures of some sulfonamides that are active against Mycobacterium 

tuberculosis. 
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Figure 1.11: Chemical structures of the early sulfonamides that have inhibitory action against 

Mycobacterium tuberculosis (structures obtained from PubChem). 

 

 

1.7 Mechanism of action of Sulfonamides 

Sulfonamides target the folic acid pathway and inhibit the first enzyme in the pathway, 

dihydropteroate synthase and they are structural analogs of the substrate, para-aminobenzoic 

acid (figure 1.12) (Follis, 1940). The inhibition of this pathway results in the depletion of purines, 

thymine and serine whose synthesis depends on tetrahydrofolate (Hitchings, 1973).  

Dihydropteroate synthase does not exist in higher organisms and therefore depend on dietary 

sources for dihydrofolate.  Woods-Fildes showed that the addition of para-aminobenzoic acid to 

the medium suppressed the inhibitory effect of the sulfonamides. However, some researchers 
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argued that the inhibitory effect of sulfonamides can not only be centered on the competitive 

action with para-aminobenzoic acid. 

 

 

 

Sulfonamides also block the functioning of various pathways including pyruvate dismutation, 

oxidation, and the synthesis of amino acids, succinate and lactate. They also inhibit enzymes 

such as bacterial dehydrogenase, cytochrome reductase, cytochrome oxidase, flavoproteins, 

bacterial luciferase, staphylococcal coagulase, yeast sucrase and amylase (Yegian and Long, 

1951). Para-aminobenzoic acid antagonises the inhibitory effect of sulfonamides and other 

antagonisers include cocarboxylase, flavine-adenine dinucleotide, riboflavin and methylene blue.  

Figure 1.12: Schematic representation of the mode of action of sulfonamides.  
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In 1980, it was reported that homocysteine sulfonamide (figure 1.13), is a competitive inhibitor 

of Escherichia coli and Saccharomyces cerevisiae glutamine synthetase, an enzyme that catalyses 

the synthesis of glutamine from glutamate, a physiological important reaction in central nitrogen 

metabolism of living organisms (Meek and Villafranca, 1980; Masters and Meister, 1982). 

 

  
Figure 1.13: chemical structure of a sulfonamide that inhibits glutamine synthetase, 
homocysteine sulfonamide.  
 

Recently, carbonic anhydrases have also been identified as targets of sulfonamides; these 

enzymes catalyze the hydration of carbon dioxide to form bicarbonate (Meldrum and Roughton, 

1933). Bicarbonate is very important in the synthesis of long chain fatty acids, pH homeostasis 

and other small molecules (Covarrubias et al., 2005). Various sulfonamides that effectively 

inhibit carbonic anhydrases have been identified (figure 1.14) (Vullo et al., 2003; Winum et al., 

2003; Weber et al., 2004).
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Figure 1.14: Chemical structures of sulfonamides that inhibit carbonic anhydrases (Vullo et al., 

2005). 
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Carbonic anhydrases are widely distributed throughout living organisms and there are at least 

five classes (α-, β-, γ-, δ-, and ζ carbonic anhydrases) with α- found in humans and β found 

mainly in bacteria (Supuran, 2011). It has been reported that one of the three carbonic 

anhydrases in Mycobacterium tuberculosis, Rv3588c, is essential for survival in vivo and all 

Mycobacterium tuberculosis carbonic anhydrases are inhibited by sulfonamides (Sassetti and 

Rubin, 2003). Further, it has been reported that oxidative stress also plays a role in the 

mechanism of action of sulfonamides, possibly due to their bio-activation (Coleman et al., 1989; 

Cribb et al., 1990).  

Microarray, proteomics and other techniques have facilitated the identification of drug targets. 

Global proteomic profiling has been carried out in many studies in order to identify possible 

proteins and pathways contributing to a specific phenotype such as cross resistance (Sleno and 

Emili, 2008).  

1.8 Study design  

This study was undertaken in the understanding that the work reported by Forgacs and co-

workers 2009 warranted further investigation and that the new generation of sulfonamides 

could offer a great benefit in tuberculosis treatment. We systematically designed a study in 

order to investigate the inhibitory effect of TMP-SMX and other sulfonamides on Mycobacterium 

tuberculosis. Secondly, we investigated the combinational effect of SMX with the existing anti-

tuberculosis drugs and also set out to identify the target(s) of SMX in M. tuberculosis. These 

studies were conducted in the Biosafety level 3 facility and an ethical clearance for this was 
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obtained from the Health Research Ethics Committee of Stellenbosch University (Ethics 

reference no. N11/07/230). 

1.8.1 Hypothesis 

SMX, a sulfonamide drug, has antimycobacterial activity through numerous targets and could 

interact synergistically with first-line anti-tuberculosis drugs. 

 

 

1.8.2 Objective 1: Susceptibility testing of M. tuberculosis to TMP-SMX, TMP, SMX including 

other sulfonamides and SMX in combination with the first-line anti-TB drugs. The following 

will be determined: 

 

 

 

1.8.3 Objective 2: Sequence analysis and expression of genes essential in the folate pathway in 

drug sensitive and drug resistant strains of M.tuberculosis. 

 

 

 

 

 

1.8.4 Objective 3:  Protein expression profiling in SMX treated and untreated drug resistant 

strains of M.tuberculosis. 
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CHAPTER 2 
 
 
 

 

 

 

 

 

 
 
Susceptibility testing of Mycobacterium 
tuberculosis to folate inhibitors and to 
combinations of folate inhibitors with anti-
TB drugs  
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 2.1 Background 

 
SMX-TMP is a combination drug that is commercialised under the trade names such as Bactrim® 

or Purbac®. This combination is active against most of the gram positive and gram negative 

bacteria and it is used to treat various infections including opportunistic infections in HIV 

patients (Klein et al., 1992). These compounds target enzymes in the folic acid synthesis 

pathway. SMX is a structural analogue of para-aminobenzoic acid (PABA), and it inhibits 

dihydropteroate synthase preventing the production of dihydropteroate, while TMP inhibits 

dihydrofolate reductase (the last enzyme in the pathway) (Hitchings, 1973). 

In 2009, it was reported that TMP/SMX combination has activity against Mycobacterium 

tuberculosis clinical isolates (Forgacs et al., 2009). These findings triggered further investigation 

of this compound as a potential anti-TB drug. TMP-SMX has been shown to inhibit the clearance 

of compounds such as tolbutamide and phenytoin, by inhibiting cytochrome P450 enzymes that 

are involved in oxidative metabolism of compounds in humans (Wing and Miners, 1985). A 

detailed study in vitro investigated the effects of TMP and SMX on the major P450 isoform 

activities in human liver microsomes and recombinant P450s (Wen et al., 2002). This study found 

that these compounds selectively inhibited the cytochrome P450 enzymes in a concentration 

dependent manner, with TMP concentrations ranging from 5 to 100 µM and SMX concentrations 

ranging from 50 to 500 µM. This indicates that TMP is more toxic than SMX and that ideal MICs 

of these drugs must be less than these concentrations that affect cytochrome P450 enzymes. 
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In this study, we sought to investigate the antimycobacterial activity of the TMP-SMX 

combination, the individual activity of the drugs and also evaluate any possible interactions 

between SMX and the first-line anti-tuberculosis drugs against drug susceptible and drug 

resistant strains of Mycobacterium tuberculosis. Since sulfonamides have been reported to 

produce oxidative stress, we also evaluated the activity of SMX against the mycothiol mutant 

strain (mshA) that is susceptible to oxidative stress. 

Efflux pumps are the major role players in drug resistance in many organisms (Romanova et al., 

2006; Balganesh et al., 2012). Extensive research has been done on the effect of efflux pumps on 

the activity of many anti-mycobacterial drugs. These studies have identified several types of 

efflux pumps, which include proton dependent ATP dependent efflux pumps. These types of 

systems constitute a broad mechanism of drug resistance, which is capable of conferring 

resistance to a variety of drugs (Silva et al., 2001). We also evaluated the possible involvement 

of efflux pumps in the cross-resistance of isoniazid mono-resistant clinical isolates to SMX 

through the use of various inhibitors that inhibit different types of efflux pumps in combination 

with SMX. 

In this study, we used the BACTEC 460 TB system to evaluate all drug activities. This system 

measures radio-labelled carbon dioxide produced by mycobacteria that is obtained from 

metabolism of radio labelled palmitic acid in the BACTEC vial. This labelled carbon dioxide is 

equivalent to the amount of bacteria in the vial and each carbon dioxide detected is assigned a 

growth index value of 1 (Siddiqi, 1989). We employed BACTEC 460 rather than BACTEC 960 

Stellenbosch University  http://scholar.sun.ac.za



 

25 

 

(MGIT), because this system is faster and results are obtained within 5 days and it also has a 

lower rate of contamination than the BACTEC 960 (MGIT) system (Whyte et al. 2000). 

2.1.1 Objective of this part of the study: Susceptibility testing of M. tuberculosis to TMP-SMX, 

TMP, SMX including other sulfonamides and SMX in combination with the first-line anti-TB 

drugs. The following will be determined: 

a) Test the activity of TMP-SMX, TMP and SMX on the drug susceptible reference strain of 

Mycobacterium tuberculosis H37Rv. 

b) To determine the combinational effect of SMX with first-line anti-TB drugs; Isoniazid, 

Rifampicin and Ethambutol on the drug susceptible reference strain of Mycobacterium 

tuberculosis. 

c) Test the activity of SMX on M. tuberculosis drug resistant clinical isolates 

d) Evaluation of the role of oxidative stress in SMX efficacy by testing the susceptibility of a 

deletion mutant strain of M. tuberculosis (mshA) to SMX compared to the wild type strain 

e) Evaluation of the activity of other sulfonamides and antifolates on M. tuberculosis  

f) Test the activity of SMX in isoniazid resistant strains in the presence of efflux pump inhibitors 
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2.2 Results and Discussion 

2.2.1 Test the activity of TMP-SMX, TMP and SMX on a drug susceptible strain of Mycobacterium 

tuberculosis 

 

To evaluate the possible interactions between several compounds, it is important to first 

determine their individual MICs (see materials and methods section 5.4). The activities of 

TMP and SMX individually on H37Rv are shown in figure 2.1. TMP had negligible activity 

against M. tuberculosis, showing only 22% growth inhibition at 76 µg/ml, doubling to 44% at 

152 µg/ml (Figure 2.1a). In contrast, SMX showed 93% growth inhibition at 76 µg/ml and 

95% growth inhibition at 152 µg/ml (Figure 2.1b). At 9.5 µg/ml SMX still showed 90% growth 

inhibition, which was determined as the MIC of SMX (see section 2.1) for M. tuberculosis 

H37Rv (Figure 2.1). MIC was defined as the lowest concentration that inhibited 90% of 

bacterial growth. 
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(b) 
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Figure 2.1: (a) Shows the activity of TMP on H37Rv. (b) shows the activity of SMX on H37Rv. 
Results was obtained from three separate experiments and standard deviations were calculated 
using Excel.  
 

 

Our findings are in agreement with other previous studies in that it is only the sulfonamide 

component of the BACTRIM combination that is active against M. tuberculosis. It is not surprising 

that TMP exhibits minimal inhibition of the growth of M. tuberculosis as it has been reported in 

several studies that it does not inhibit M. tuberculosis growth (Wallace et al., 1986; Ong et al., 

2010). TMP is a weaker inhibitor of mycobacterial enzymes and as result it is used in the 

cultivation method of mycobacterial strains in MGIT medium as a supplement together with 

other antibiotics (BBL™, MGIT™ and PANTA™ Antibiotic Mixture) to eliminate non-

mycobacterium contaminating organisms (Rengarajan et al., 2004; Suling et al., 1998). 
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 One of the reasons TMP is not active against Mycobacterium tuberculosis is that this organism 

contains a distinct class of dihydrofolate reductase that is inherently less susceptible to this 

compound (Burchall, 1975). Mycobacterium tuberculosis is not the only bacterium that contains 

this naturally insensitive dihydrofolate reductase to TMP. There are other species that are also 

naturally resistant to TMP, including Bacillus anthracis and Cryptosporidium hominis (Zhou et al., 

2013).  

Studies have shown that the reason for this low potency is that the trimethoxyphenyl ring of 

TMP does not form maximal van der waal contacts with the hydrophobic pocket that normally 

houses the para-aminobenzoic acid moiety of dihydrofolate, leaving a gap between the 

trimethoxyphenyl ring and specific residues of the enzyme (Liu et al., 2009).  

The ideal distance between interacting residues and an inhibitor for van der Waals force to occur 

must be less than 4.2 Å, (Tan et al.,  2013) and only one residue that has a distance less than 4.2 

Å, (3.40 Å in figure 2.3), which may explain the low potency of TMP in Mycobacterium 

tuberculosis. Thus, it seems inappropriate to suggest the introduction of TMP to the TB drug 

regimen as its contribution to the killing effect of the combination is minimal. 
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Figure2.3: Shows TMP on the active site M. tuberculosis DHFR and the distances between the 
residues and the inhibitor. Images were created using DeepView and POV-ray (SWISS-
MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. 
Electrophoresis 18, 2714-2723.) (Persistence of Vision Pty. Ltd. (2004), Persistence of Vision 
Raytracer Version 3.6, Computer software) (Guex and Peitsch 1997).  

 

Using X/Y<1/Z (see material and methods section 5.4.1) for interpretation of drug interactions, 

we showed that there is no synergistic interaction between SMX and TMP but an additive effect 

(quotient 0.62) against M. tuberculosis (Table 2.2).  
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2.2.2 Determine the combinational effect of SMX with first-line anti-TB drugs; Isoniazid, 

Rifampicin and Ethambutol on the drug susceptible strain of Mycobacterium tuberculosis, H37Rv 

We evaluated how SMX would interact with the current anti-tuberculosis agents. We first 

determined the MICs of the individual drugs using the BACTEC 460 TB system (see section 5.4) 

against the reference stain H37Rv (Table 1). The MICs of the first-line ant-TB drugs were in 

agreement with other published reports of the MICs of these drugs for H37Rv (Chen et al., 2006). 

 

Table2.1. MICs of the first-line drugs and SMX against Mycobacterium tuberculosis strain H37Rv* 
Drugs MICs of H37Rv (µg/ml) 

INH 0.05 

EMB 1.6 

RIF 0.8 

SMX 9.5 

INH-isoniazid; EMB-ethambutol; RIF-rifampicin; SMX-sulfamethoxazole. The MICs were 
determined using the BACTEC 460TB system following the manufacturer’s recommendations.    
 
 
Table 2.2 lists the drug interactions evaluated in this study. We showed that SMX has a 

synergistic effect with RIF (quotients less than 0.5), an additive effect with ethambutol and no 

interaction with isoniazid. It is evident from these results for in vitro testing, no antagonism was 

observed between SMX and the tested compounds. This is clinically important as antagonistic 

activity would interfere with co-administration of SMX with the first-line anti-TB drugs should it 

be included in the TB regimen.  

The MIC of SMX was reduced to 2 µg/ml in the combination and RIF reduced to two and three 

times less than it’s MIC (table 2.2). The synergy between SMX and RIF is not unexpected, since 

SMX indirectly inhibits RNA synthesis through inhibiting tetrahydrofolate production, a co-factor 
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in the synthesis of thymidine and RIF directly inhibits RNA synthesis by inhibiting the DNA 

dependent RNA polymerase 
(Libecco and Powell, 2004; McIlleron et al., 2007). These results 

could have a valuable implication in the anti-TB regimen due to the benefits that this 

combination offers, which include the reduction of toxic side effects of both compounds, while 

retaining their efficacy.  

 The combination SMX-RIF could also have valuable clinical relevance, especially to the co-

administration of a tuberculosis regimen with HIV treatment. It has been reported that high 

concentrations of Rif induced P450 up-regulation and reduces Protease inhibitor exposure 

(Decloedt et al., 2011). The reduced concentrations potentially result in the reduction of antiviral 

efficacy leading to the development of drug resistance (McIlleron et al., 2007). 

 
Table 2.2: Interaction between SMX and TMP, rifampicin, ethambutol and isoniazid 

SMX (µg/ml) TMP (µg/ml) Quotients (mean x/y  +/- SD) 

9.5 0.5 0.62 +/- 0.03 
4.75 0.25 1.06 +/- 0.02 
2.4 0.1 1.18 +/- 0.26 
1.2 0.1 1.02 +/- 0.12 
   
 RIF (µg/ml)   
2 0.3 0.16 +/- 0.19 
 0.4 0.19 +/- 0.16 
   
 EMB (µg/ml)  
2 0.4 0.49 +/- 0.02 
   
 INH (µg/ml)  
2 0.025 1.06 
Interactions between SMX; TMP, RIF, EMB and INH. All results were obtained from three 
separate experiments and standard deviations were calculated using Excel. 
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2.2.3 Activity of SMX on drug resistant clinical isolates 

We further evaluated the effect of SMX in the growth of drug-resistant clinical strains of 

Mycobacterium tuberculosis. Table 2.3 shows the activity of SMX at various concentrations in 

three drug resistant clinical isolates, two INHR (R1129 and R1845) strains and a RIFR (R5182) 

strain (see materials and methods section 5.1). SMX inhibited the growth of the RIF resistant 

isolate at concentrations between 9.5 µg/ml and 19 µg/ml. INHR clinical isolates were also 

resistant to SMX, with an MIC higher than 19 µg/ml.  

 
 
Table2.3. Activity of SMX in clinical isolates 
 
SMX (µg/ml)  

 
Rif mono-resistant  

 
% inhibition  

4.75  R5182 (rpoB)  34.9 

9.5  R5182 (rpoB) 76.5 
19  R5182 (rpoB) 96.6 

   
SMX (µg/ml)               INH mono-resistant     

4.75               R1129 (KatG)  19.9 

9.5   43.6 
19   86.1 
4.75               R1845 (InhA)  1.6 

9.5   18.9 
19   44.4 

The activity of SMX on RIF mono-resistant clinical isolate R5182 and INH mono-resistant clinical 
isolates R1129 and R1845 were obtained from three separate experiments. 
 

The higher MIC of this drug on the INH mono-resistant clinical isolates may indicate a multiple 

drug overlapping mechanism of resistance. Drug resistance may be attributed to a number of 

factors, which may include mutations in the target gene, see chapter 3. Efflux pumps may also 

contribute to drug resistance, both in intrinsic and acquired drug resistance (Rossi et al., 2006). 
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Intrinsic drug resistance involves efflux pumps that are naturally active in the cell, synergistically 

working with membrane permeability, which restrict drug passage (Nikaido, 2001).  

Examples of these efflux pumps are AcrB of E. coli, MexB of P. aeruginosa and MtrD of N. 

gonorrhoeae, that confer natural resistance to various antibiotics, including tetracyclines, 

chloramphenicol and macrolides (Nikaido, 1996). On the other hand, antibiotics can serve as 

inducers, regulating the expression of efflux pumps at the level of gene transcription resulting in 

the acquired drug resistance conferred by efflux pumps (Rossi et al., 2006). 

 

2.2.4 Evaluating the role of oxidative stress in SMX efficacy 

Some antimycobacterial agents have been reported to produce oxidative stress as part of their 

mechanism of action. These compounds include INH, via the production of various adducts and 

RIF via unknown mechanisms (Sodhi et al., 1997). Sulfonamides have also been reported to 

produce oxidative stress as their secondary mechanism of action (Rieder et al., 1988). 

To evaluate the role of oxidative stress in the efficacy of SMX, we employed the mshA CDC 1551 

mutant (see section 5.1) and compared the growth of this strain to the wild type parent strain 

CDC1551 in the presence of varying concentrations of SMX (9.5, 4.75, 2.4 mg/L). The MIC of 

CDC1551 was not different from the MIC in H37Rv, 9.5 mg/L and a decrease in the MIC of SMX 

was observed in the M. tuberculosis ΔmshA mutant, where the MIC was decreased four-fold 

(from 9.5 mg/L to 2.4 mg/L), see figure 2.4 
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Figure 2.4: (a) The growth profile of ΔmshA mycothiol mutant and (b) CDC1551 reference strain, 
exposed to SMX. Growth was monitored by BACTEC 460 TB system and GI values were obtained 
after the first day of inoculation until the GI of the 1:100 culture was more than 30. Vials were 
incubated at 370 C and each point represents a mean value of duplicates. 

 

 

A possible explanation for the increased susceptibility of the mycothiol mutant could be that 

SMX is converted to intermediates that eventually produce oxidative stress (figure 2.5). In 
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human keratinocytes, SMX is converted to arylhydroxylamine (SMXNOH) by flavin-containing 

monooxygenases (Vyas et al., 2005). This less stable metabolite is auto-oxidised to a nitroso 

metabolite (SMXNO) which generates oxidative stress (Figure 2.6) (Reilly et al., 2000; 

Roychowdhury and Svensson, 2005; Vyas et al., 2005). 

 A similar enzyme encoded by the etaA gene exists in M. tuberculosis. This putative flavin-

containing monooxygenase is responsible for the activation of the second-line anti-TB pro-drug 

ethionamide, which is a structural analog of INH, and inhibits mycolic acid synthesis (Baulard et 

al., 2000; DeBarber et al., 2000).
 We postulate that the observed ΔmshA mutant phenotype is 

potentially as a result of the lack of mycothiol which would normally neutralize these free 

radicals (Buchmeier et al., 2003) and that the accumulation of these intermediates results in the 

increased sensitivity observed.  

 

Figure 2.5: Shows a schematic representation of the activation of SMX by various enzymes in 

human cells. This schematic representation was modified from Sanderson et al., 2006 (Sanderson 

et al., 2006). 

Stellenbosch University  http://scholar.sun.ac.za



 

36 

 

 

Figure 2.6: A schematic representation of oxidative stress generated by SMX/Sulfonamides. 

(Adapted from Vyas et al., 2006).  

 

2.2.5: Evaluation of the activity of other sulfonamides and antifolates on M. tuberculosis  

Since SMX displayed bacteriostatic activity against M. tuberculosis (Macingwana et al., 2012; 

Vilchèze and Jacobs, 2012), we investigated the activity of other sulfonamides against 

Mycobacterium tuberculosis. We evaluated the antimycobacterial activity of some of the 

clinically approved sulfonamides dapsone, griseofulvin (Grifulvin V) and sulfasalazine (Azulfidine) 

against the M. tuberculosis reference strain H37Rv. Figure 2.7 (a, b & c), shows activities of these 

sulfonamides. We observed that Griseofulvin and Sulfasalazine exhibited no activity up to 100 

µg/ml and 30 µg/ml respectively, whereas INH used as a control maintained its MIC of 0.05 

µg/ml.  
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Figure 2.7: A Growth curves showing the effect of Dapsone on H37Rv as tested with BATEC 460 

TB system (see M&M 5.4). The numbers on the legend are the concentrations (µg/ml) that were 

tested for each drug. B: Growth curves showing the effect of Griseofulvin on H37Rv. The 

numbers on the legend are the concentrations (µg/ml) that were tested for each drug. C: Growth 

curves showing the effect of sulfasalazine on H37Rv. The numbers on the legend are the 

concentrations (µg/ml) that were tested for each drug. 

 

Dapsone (DDS) is the most effective sulfonamide against Mycobacterium leprae, malaria and 

against Pneumocystis pneumonia in patients with HIV disease (Shepard, 1967). The reports of 

susceptibility of M. tuberculosis to dapsone have been reported (Rastogi et al., 1993;
 
Opravil et 

al., 1995; Nopponpunth et al., 1999; Gonzalez et al., 1989), but there are few studies that have 

evaluated the activities of dapsone against Mycobacterium tuberculosis. We therefore evaluated 

the activity of dapsone against M. tuberculosis, using the reference strain H37Rv. Using BACTEC 

TB 460 TB system, we determined the MIC of dapsone, which was defined as the lowest 

concentration that inhibited more than 90% of M. tuberculosis growth (Reddy et al., 2010). The 

MIC of dapsone ranged between 20 to 30 µg/ml (see figure 2.7 A), which is in agreement with 

previous results (≥ 32 mg/l) that were obtained by the agar disk elution method (Gonzalez et al., 
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1989).When DDS was combined with various drugs at concentrations that inhibited less than 

50% of M. tuberculosis growth, the combination of DDS-SMX and DDS-EMB showed an additive 

effect (see table 4) and the addition of DDS to RIF and INH did not result in any positive 

interaction, but no antagonistic effect was observed. However, DDS has been associated with 

various dose-dependent side effects such as hemolysis, methemoglobinemia, peripheral 

neuropathy, agranulocytosis and aplastic anemia (Coleman, 1995). It has been reported that the 

plasma concentration of DDS that exceed 5 µg/ml increase the risk of developing these adverse 

side effects (Reilly et al., 1999; Vieira et al., 2010). Therefore, DDS is not a suitable candidate 

drug for tuberculosis treatment since the MIC for H37Rv is very high (≥ 32 mg/l), that is more 

than six fold above the critical concentration. 

Table 2.4: Interactions between dapsone (DDS) and various antituberculosis drugs 
Drugs Concentration (µg/ml) Quotients 

DDS +SMX 5+2 0.6 

5+4.75 0.5 

10+2 0.6 

10+4.75 0.7 

DDS +EMB 5+0.8 0.5 

5+0.4 0.5 

5+0.2 0.5 

10+0.8 0.5 

10+0.4 0.5 

10+0.2 0.6 

DDS +RIF 5+0.3 - 

5+0.01 - 

DDS +INH 
 

5+0.025 - 

10+0.025 - 

*DDS- Dapsone, EMB-Ethambutol, RIF-Rifampicin, INH-Isoniazid 
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Griseofulvin is an antifungal agent that is used to treat many dermatophyte infections and 

exhibit insignificant toxicity to humans (De Carli and Larizza, 1988; Chan and Friedlander, 2004). 

It inhibits mitosis by disrupting mitotic spindles in susceptible strains and recently it was 

reported that it can also inhibit cancer cells and does not affect healthy cells (Jordan and Wilson, 

2004; Rebacz et al., 2007). We hypothesize that interference with the mechanisms involved in 

cell division will result in killing of Mycobacterium tuberculosis. We evaluated the activity of 

griseofulvin and we could not find any inhibition of M. tuberculosisM. tuberculosis growth (see 

figure 2.7 B)  

Sulfasalazine is prescribed for the treatment of inflammatory bowel disease (Wahl et al., 1998; 

Das and Dubin, 1976; Svartz, 1942). The drug is metabolised by intestinal bacteria, releasing two 

components (Peppercorn, 1984). We postulated that the sulfonamide component sulfapyridene, 

which is also structurally related to dapsone, will inhibit the growth of Mycobacterium 

tuberculosis (Paniker and Levine, 2001). Sulfasalazine also did not have any in vitro activity 

against M. tuberculosis even at concentrations that were higher than the mean peak 

concentration (14 µg/ml) in the treatment of inflammatory bowel disease (see figure 2.7 C).  

2.2.6 Testing the effect of efflux pump inhibitors on the activity of SMX in M. tuberculosis INHR 

(R1129) strain 

We investigated the possible involvement of efflux pumps in the cross resistance of the isoniazid 

mono-resistant clinical M. tuberculosis isolate (R1129) to SMX. The MIC of SMX for the R1129 

isoniazid resistant strain was determined to be more than 19 µg/ml (see table 3). Three efflux 

pump inhibitors (verapamil, reserpine and CCCP) were investigated. The concentrations of 
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verapamil and reserpine chosen were 50 µg/ml and 80 µg/ml respectively, which did not directly 

affect the growth of the bacterial strain tested (Louw et al., 2011). These concentrations were 

then added individually to the INHR cultures to assess their inhibitory effect and were also 

combined with various concentrations of SMX (see figure 2.8). The MIC of CCCP was 20 µg/ml for 

the R1129 strain. We used various concentrations of CCCP that were lower than 20 µg/ml; 2, 4, 

8, 12 and 14 µg/ml in combination with SMX and interpreted the results based on the effect they 

had on the growth of R1129 individually and in combination with SMX. 

 The synergy between efflux pump inhibitor and SMX was interpreted using X/Y<1/Z (see 

material and methods section 5.4.1). It was observed that the MIC of SMX on the isoniazid 

mono-resistant clinical M. tuberculosis isolate was decreased to between 9.5 µg/ml and 19 

µg/ml by the addition of 80 µg/ml reserpine. The addition of 50 µg/ml verapamil did not have an 

effect on the MIC of SMX for this strain. Using concentrations of CCCP (12 µg/ml and 14 µg/ml), 

lowered the MIC of SMX for the resistant strain R1129 to that of the drug susceptible H37Rv lab 

strain, that is 9.5 µg/ml (see figure 2.9 B). 

 

Figure 2.8: Growth curves showing the effect of combination of SMX with Reserpine (RES) and Verapamil (VEP) 

against H37Rv. The numbers on the legend are the concentrations (µg/ml) that were tested for each drug. 
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Figure 2.9: (a) Growth curves showing the effect of combination of SMX with CCCP against 

H37Rv. The numbers on the legend are the concentrations (µg/ml) that were tested for each 

drug. (b) Growth curves showing the effect of combination of SMX with CCCP against H37Rv. The 

numbers on the legend are the concentrations (µg/ml) that were tested for each drug. 
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These results obtained suggest that there are efflux pumps that are involved in the cross 

resistance and particularly those belonging to the ATP Binding Cassette transporters (ABC 

transporters) inhibited by reserpine and CCCP (Klyachko et al., 1997; Pasca et al., 2004). Thus, 

high concentrations of SMX would be required in order to overcome the effect of the efflux 

pumps. 

Cross-resistance may result from exposure to one agent that belongs to the substrate profile of a 

particular efflux pump, inducing its over-expression and subsequently leading to the cross-

resistance to all other substrates of that particular efflux pump (Webber and Piddock, 2003). For 

example, over-expression of the MexAB-OprM efflux system in P. aeruginosa due to the 

exposure to triclosan resulted in cross-resistance to TMP, ciprofloxacin and other antibiotics 

(Chuanchuen et al., 2001). 

Our results together with previous reports suggest that efflux pump inhibitors may play a critical 

role in the treatment of tuberculosis, particularly MDR and XDR tuberculosis (Gupta et al., 2006; 

Amaral et al., 2008; Louw et al., 2011). We are aware that CCCP used in this study had a direct 

effect on the growth of M. tuberculosis and that these experiments were done with one clinical 

isolate. More clinical isolates (INH resistant) must be tested to substantiate these results. 

Developments are under way to generate efflux pump inhibitors that do not inhibit growth on 

their own and that are selective for bacterial efflux pumps. Currently, most of the available efflux 

pump inhibitors are not suitable for treatment application, for example verapamil, which also 

inhibits human P-glycoprotein and cytochrome P450 (Prakash et al., 2003). 
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In conclusion, our findings support reports that SMX is the active compound in the TMP-SMX 

combination. SMX has synergistic activity with RIF and an additive effect with EMB. TMP-SMX is 

a registered drug combination for other indications, is inexpensive and widely available. Clinical 

trials should be initiated to clarify the potential of SMX and SMX-RIF in drug susceptible TB and 

of SMX as an additional option for patients with highly resistant strains.  

Furthermore, a potential new mechanism of action of SMX has been identified, which shows that 

SMX produces oxidative stress and thus plays a role in its efficacy.   The fact that M. tuberculosis 

ΔmshA mutants are more susceptible to SMX, suggest that it may be useful in combination with 

mycothiol synthesis inhibitors against M. tuberculosis. We have also determined that efflux 

pumps may potentially play a role to the cross resistance of an isoniazid mono-resistant clinical 

isolate to SMX. 
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3.1 Background 

The folic acid pathway is one of the essential pathways that help bacteria survive inside their 

host (figure 1.12). Sulfonamides are presumed to inhibit this pathway as discussed chapter 1 

section 1.7, either as their main target or one of several pathways (Nopponpunth et al., 1999). 

This part of the study was designed to verify the target of SMX and possibly also discover new 

targets of SMX in M. tuberculosis and also to try to uncover the underlying mechanisms of cross 

resistance of the isoniazid mono-resistant M. tuberculosis isolates to SMX. 

We monitored the levels of metabolites formed or utilised by the folic acid pathway as a 

measure of the activity of SMX towards its target dihydropteroate synthase (DHFS). It was 

assumed that the binding of SMX to DHFS would result in high levels of PABA and reduced levels 

of dihydrofolate and tetrahydrofolate. We also monitored the expression of the gene that codes 

for DFHS, folP1 in the SMX resistant M. tuberculosis. 

Furthermore, we monitored the global protein expression in the SMX resistant clinical isolate 

after exposure to sub-lethal concentrations of SMX. This approach has been used before in 

Mycobacterium tuberculosis studies to identify targets for specific compounds and elucidate new 

genes that confer resistance to known anti-TB drugs owing its ability to provide a broad overview 

of proteomic changes (Singhal et al., 2012). 
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 Objectives of this part of the study: 

 (1) Sequence analysis and expression of genes essential in the folate pathway in drug sensitive 

and drug resistant strains of M.tuberculosis. (2) Protein profiling in SMX treated and untreated 

drug resistant strains of M.tuberculosis. These will include the following; 

 

a) To evaluate folate levels in Mycobacterium tuberculosis treated with SMX 

b) To sequence and search for possible mutations in the putative target gene of SMX and 

genes that may impede the effect of SMX in the isoniazid mono-resistant clinical isolates 

c) To evaluate gene expression of the folP1 gene in response to SMX treatment in isoniazid 

mono-resistant clinical isolates 

d) To evaluate the global protein expression profile in isoniazid mono-resistant clinical M. 

tuberculosis isolate treated with and untreated SMX employing High Performance Liquid 

Chromatography-Mass Spectrometry (HPLC-MS) 

3.2 Results and Discussion 

3.2.1 Measurement of folate in Mycobacterium tuberculosis treated with SMX 

To determine whether SMX inhibits dihydropteroate synthase in Mycobacterium tuberculosis, 

folate species were extracted as described in materials and methods section 5.7.2 and quantified 

using high performance liquid chromatography- mass spectrometry (LC-MS) under the 

conditions described in section 5.7.4 of materials and methods.  

 We used Mycobacterium bovis BCG as a model of M. tuberculosis in order to optimise our 

methods of folate extraction. We extracted folate using two methods and in the first method we 
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used EDTA, perchloric acid and acetonitrile, routinely used in our laboratory to extract 

metabolites (Emani et al., 2013). This method yielded no detectable folate species, THF and DHF 

and we thought this was due to the fact that folates are unstable and sensitive to oxidation (Lu 

et al., 2007). Figure 3.1 (a & b), shows the results from the first method of extraction. We 

therefore used the second method as described in materials and methods section 5.7.3, which 

includes an antioxidant ascorbic acid, to protect folate from oxidation (See figure 3.2 & 3.3). 

  

Figure 3.1 A: Shows the measurement of the total THF in samples treated with 9.5 µg/ml SMX or 

DMSO. The chromatograms are as follows; (Chrom 1) DMSO treated sample, (Chrom 2) SMX 

treated sample, (Chrom 3) THF standard and its peak. 
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Figure 3.1 B: Shows the measurements of the total DHF in samples treated with 9.5 µg/ml SMX, 

(Chrom 4) DHF standard and its peak, (Chrom 5) SMX treated sample, (Chrom 6) DMSO treated 

sample. Peak 3 and 4 are unknown.  
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In theory, M. tuberculosis samples treated with SMX at specific concentrations should have 

decreased THF and DHF levels compared to the controls, because SMX inhibits their synthesis, 

but in our experiments we were not able to detect any of these metabolites with both 

methods. There is a peak that was detected in our samples in the measurement of DHF that 

appeared at the retention time of 3.75 minutes (figure 3.1 b); however this peak was not 

identified successfully. We then added 1 µg/ml of each of the metabolites (DHF and THF) before 

or after extraction for evaluation and measured THF and DHF as before, but we could not 

detect these metabolites as well (see figure 3.2 & 3.3). This indicates that the folate species are 

very unstable. Previously, it has been shown that folates are not good biomarkers because of 

their instability which result from the cleavage of the bond between pterin and pABA moieties 

induced by light (Scott, et al., 2000; Brain et al., 2008). 

 Many studies that have analysed folates have used ascorbic acid as an antioxidant to prevent 

their loss due to oxidation. In our study, we used ascorbic acid as the sole antioxidant in the 

buffer solution in the second method, but we were not able to detect any folate species in our 

samples, even in the spiked samples. It has been reported that folates under elevated 

temperature undergo interconversion even in the presence of ascorbic acid due to the 

formation of formaldehyde from the oxidation of ascorbic acid (Wilson and Horne, 1983). The 

presence of formaldehyde in the solution promotes the conversion of THF to other folate 

species (5,10-CH2THF) and DHF is very unstable at pH 8 and below and at elevated 

temperatures even at 370C when kept for an extended period (De Brouwer et al.,  2007).
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Figure 3.2 (a, b & c): Shows chromatograms of total THF extracts from BCG samples that were 

spiked with 1µg/ml of each of the folate standards before or after sonication. 
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Figure 3.3 (a, b & c): Shows chromatograms of total DHF extracts from BCG samples that were 

spiked with 1µg/ml of each of the folate standards before or after sonication. 
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 The other factor that could have affected our analysis of DHF and THF  is that these folates are 

the least abundant forms and the most abundant forms are polyglutamated folates with 4 to 5 

glutamates attached (Quinlivan et al., 2006; Arcot and Shrestha, 2005). The polyglutamation of 

folate is necessary for the retention of folates inside the cell and folate exporters, such as 

reduced folate carriers, have low affinity for polyglutamate folate and it has also been reported 

that many folate dependent enzymes, such as thymidine synthase prefer polyglutamated forms 

(Shane and Stokstad, 1975; Lu et al., 1984; Schirch and Strong, 1989).  

 We then measured the levels of para-aminobenzoic acid (PABA), a substrate of 

dihydropteroate synthase and an analog of SMX (Brain et al., 2008). In this experiment we 

expected to detect PABA in SMX treated samples, because SMX will block its utilisation 

resulting in the accumulation of PABA (see figure 1.12).  

We were able to detect PABA in SMX treated samples although peaks had a low signal-to-noise 

ratio (4.5:1) (see figure 3.4) whereas a ratio of 10:1 is required for quantitation purposes (Shan 

et al., 2012). In figure 3.4, the first chromatogram shows PABA detected in the sample with a 

retention time of 2.11 as for the standard.  
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 Figure 3.4: Shows chromatograms of PABA from BCG extracts. BCG cultures were treated with 

9.5 µg/ml of SMX and extracted after 2hrs of incubation at 37oC. 

Table 3.1 shows the amount of PABA that was present in samples treated with various 

concentrations of SMX (4.75, 2.4 and 0.6 µg/ml). Experiments were repeated at least three 

times and yielded the same results, each sample had two technical replicates (see table 3.1). 

From these experiments we could detect PABA in samples treated with SMX, but not in samples 

treated with DMSO (control samples). However, we could not detect PABA from intracellular 

extracts (see table 3.1 samples 24 to 31). We then added SMX to 7H9 medium in order to be 

certain that it was not SMX that was detected in SMX treated samples (Yun et al., 2012). In 

table 3.1, samples 32 and 33; show that there was no detection of SMX as PABA in the medium. 
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Name Sample  Peak area Conc. (ppm). µg/vial 

1 PABA 0.0004 ppm 567.8   

2 PABA 0.004 ppm 4842.8   

3 PABA 0.020 ppm 23747.4   

4 PABA 0.040 ppm 48092.2   

8 4.75 R1 M 3.7 0.0003 0.0002 

9 4.75 R2 M 399.4 0.0003 0.0002 

10 2.4 R1 M Not detected   

11 2.4 R2 M Not detected   

12 0.6 R1 M 477.2 0.0004 0.0002 

13 0.6 R2 M 349.3 0.0003 0.0002 

14 DMSO R1 M Not detected   

15 DMSO R2 M Not detected   

16 4.75 R1 E 688.0 0.0006 0.0003 

17 4.75 R2 E 819.2 0.0007 0.0004 

18 2.4 R1 E 544.5 0.0005 0.0003 

19 2.4 R2 E 605.3 0.0005 0.0003 

20 DMSO R1 E Not detected   

21 DMSO R2 E Not detected   

22 0.6 R1 E 394.9 0.0003 0.0002 

23 0.6 R2 E 9.8 0.0003 0.0002 

24 4.75 R1 I Not detected 

25 4.75 R2 I Not detected 

26 2.4 R1 I  Not detected 

27 2.4 R2 I Not detected 

28 DMSO R1 I Not detected 

29 DMSO R2 I Not detected 

30 0.6 R1 I Not detected 

31 0.6 R2 I Not detected 

32 9.5 R1 SMX Not detected 

33 9.5 R2 SMX Not detected  

Table 3.1: Concentrations of PABA detected in samples treated with SMX; M- PABA was 

measured from the medium after cells were pelleted; E- cells were re-suspended in the 

extraction buffer and incubated on ice for 15 mins, cells were then centrifuged and PABA was 

measured in the supernatant; I- intracellular PABA was measured from sonicated cells. 
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 A study using a filter culture system to support metabolomic profiling of M. tuberculosis in 

response to PAS treatment, found that treatment of M. tuberculosis with SMX and DDS resulted 

in low accumulation of PABA compared to PAS and they suggested that M. tuberculosis may 

inactivate sulfonamides through unknown mechanisms and they concluded that these results 

indicated that dihydropteroate synthase inhibition alone cannot explain the growth inhibitory 

activity of SMX (Chakraborty et al., 2013).  

In this study, the difficulty of quantifying DHF and THF was also acknowledged, because they 

exhibit a half-life of less than an hour and are prone to oxidation/reduction, methylation, and 

polyglutamylation (Chakraborty et al., 2013). Since we could not detect folate levels 

successfully, the next step was to detect mutations and expression regulation of the genes 

involved in the folate pathway in M. tuberculosis. 

3.2.2 Sequencing of the putative target gene of SMX and the thyA gene that may impede the 

effect of SMX in an isoniazid mono-resistant clinical isolate 

DNA sequencing was performed to determine whether mutations occurred in the folP1 and 

thyA (a gene that codes for an enzyme that catalyses the biosynthesis of thymidylate and also 

known to cause resistance to folate inhibitors when mutated) (Zhang et al., 2007; Carreras and 

Santi 1995) genes in the Isoniazid mono-resistant clinical isolate R1129, (see section 5.6.3). 

Sequences of the fragments of folP1 and thyA were aligned to Mycobacterium tuberculosis 

sequences obtained from Tuberculist (http://tuberculist.epfl.ch/) using SequencherTM software 

version 4.10.1-Build 5828 Ref number 1010033.  
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Figure 3.5: Schematic representation of the locations of the two genes sequenced (folP1 & 

thyA) in the M. tuberculosis genome; (a) Shows the six genes of the folate pathway operon, (b) 

shows a method used to PCR amplify the entire folP1 gene using multiple primer pairs (P1-4) 

and the resulting fragments were sequenced. (c) Shows the location of the thyA gene in the M. 

tuberculosis genome, (d) shows the method used for sequencing.  

 

When sequencing folP1, which is part of the folate operon, we included 200bp upstream and 

downstream to cover the entire gene, however the sequenced region is not likely to contain a 

promoter, as the promoter of an operon is located close to the first gene and folP1 is located in 

the middle of the operon (figure 3.3). In the sequencing of the thyA gene, we also included 

200bp in the upstream and downstream regions in order to cover the promoter sequence 

which lies a few base pairs (+/- 30bp) upstream (Newton-Foot and Gey van Pittius, 2013). No 
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mutations were detected in the folP1 and thyA genes. DNA sequences were identical to those 

obtained from Tuberculist.  

3.2.3 Relative gene expression of folP1 gene in response to SMX treatment in the INHR clinical isolate 

In order to survive the effect of a drug, Mycobacterium tuberculosis induces the over-

expression of a drug’s target as an adaptive strategy (Karakousis et al., 2008). In order to gain 

insight into the phenotypic tolerance of the isoniazid mono-resistant isolate to SMX, we 

monitored the expression the folP1 gene in response to SMX treatment. We hypothesised that 

the expression of this gene would differ significantly upon exposure to SMX compared to the 

unexposed bacilli and might explain the phenotypic tolerance to SMX. 

We treated the mid log phase liquid cultures of the INHR isolate with SMX at 2 µg/ml 

(approximately 4x below the MIC which inhibited approximately 50% of H37Rv growth) and 

harvested the cells at defined time points (see section 5.6.2). Total RNA collected from the cells 

treated with DMSO at time zero was used as the reference sample (Wilson et al., 1999).  

The quality of the extracted RNA was found be at an acceptable standard (RNA Quality 

Indicator (RQI) values raging from 7-10) according to the manufacturer’s recommendation 

(ExperionTM, Bio-RAD). The gene expression of the folP1 gene was monitored by semi-

quantitative real time RT-PCR using SYBR Green I and 16s rRNA as the housekeeping gene (Pfaffl 

et al., 2002; Harper et al., 2010). The difference between the control at time zero and the 

experiment treated with SMX was analyzed using the REST® program (Pfaffl et al., 2002).  
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No change in the folP1 gene expression upon exposure to SMX after 30 minutes, 1hour and four 

hours was observed.  

 
Table 3.2: RT–PCR of INHR folP1 
 Gene- folP1  

SMX treatment (µg/ml) Time  Fold Change 

2 30 minutes 1.1228 

2 1hour 1.185 

2 4hours 1.076 

The table shows gene regulation in INH-mono-resistant clinical isolate exposed to 2µg/ml of 
SMX at different time points versus untreated cultures, where 16s was used as the internal 
control. The data was obtained from two separate experiments. 
 

 

The finding that the expression of the target gene of SMX is not differentially expressed upon 

SMX treatment, may suggest that SMX activity in M. tuberculosis may be via other mechanisms 

that does not involve the folate pathway inhibition. To address this possibility, we applied a 

global protein profiling approach in order to identify other potential target genes involved in 

the mode of action of SMX. 

3.2.4 To evaluate the proteomic profile of the isoniazid resistant isolate treated with SMX using 

High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS, LTQ Orbitrap) 

In order to gain understanding on the potential mechanisms involved in the cross-resistance of 

the isoniazid mono-resistant M. tuberculosis strain to SMX and also identify other possible 

targets of SMX, we evaluated the variation of the global protein expression in response to the 

treatment with SMX (9.5 µg/ml) that inhibited about 50% of the growth of the strain (see 

chapter 2, table 2.3). Cultures were exposed to 9.5 µg/ml of SMX at the mid log phase and 

intracellular proteins were extracted at two time points (see section 8.1). We identified 162 
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proteins that were differentially regulated upon exposure of isoniazid mono-resistant M. 

tuberculosis strain to SMX, of which, 96 were induced within the first 30 minutes of exposure to 

SMX and the remaining 66 were induced after 24 hours of exposure to this sub-inhibitory 

concentration of SMX (Table 3.3-3.6). A total of 65 proteins were up-regulated and 97 proteins 

were down-regulated and belong to the following groups; proteins of cell wall synthesis and cell 

processes, lipid metabolism, information pathways, regulatory, virulence, detoxification and 

adaptation, conserved hypothetical and intermediary metabolism and respiration category 

(Figures 3.4 and 3.5).  

 
Figure 3.6: Functional groups of proteins up-regulated upon exposure to 9.5 µg/ml of SMX, 22 
proteins within 30 minutes and 43 proteins after 24 hours. 
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Figure 3.7: Functional groups of proteins down-regulated upon exposure to 9.5 µg/ml of SMX, 
74 proteins within 30 minutes and 23 proteins after 24 hours. No members of information 
pathways and Virulence, Detoxification and Adaptation were down-regulated after 24 hours. 
 

 

Among the proteins that were up-regulated, were proteins involved in oxidative stress 

response, toxin and antitoxin proteins (Rv0117, OxyS- oxidative stress protein, Rv1242, vapC33-

toxin and Rv0300, vapB2- antitoxin). OxyS is a regulatory gene, belonging to the LysR family in 

Mycobacteria and it is associated with the mediation of oxidative stress responses (Domenech 

et al., 2001; Philipp et al., 1996; Cole et al., 1998).  

OxyS directly regulates katG by binding directly to the katG promoter region and the conserved 

binding site for OxyS in the promoter region of katG has been mappad (Li and He, 2012). It was 
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shown that oxidative stress up-regulates the expression of OxyS which directly down-regulates 

the expression of katG and concluded that OxyS is a negative regulator of katG in response to 

oxidative stress in mycobacteria (Li and He, 2012). Together with the over-expression of OxyS 

and down-regulation of KatG, is the up-regulation of mca that encodes for Mycothiol S-

conjugate amidase. It catalyzes the hydrolysis of an amide bond in MSH-toxin conjugates, 

producing a mercapturic acid which is excreted from mycobacteria and glucosaminyl inositol is 

recycled back to mycothiol (Newton et al., 2000). It has been reported that oxidative stress 

conditions that deplete the levels of thiols (e.g. mycothiol) induce over-expression of sigR, rsrA, 

mshA and mca (Newton and Fahey, 2008).   

These observations together with our findings that a strain of M. tuberculosis lacking mycothiol 

(mshA) was more susceptible to SMX (see chapter 2, section 2.2.4), suggest that SMX kills M. 

tuberculosis via oxidative stress and that the up-regulation of mca is the means of mopping up 

the reactive intermediate species produced by SMX which would damage cell wall, DNA and 

cellular proteins (Zhou and Moore, 1997). Furthermore, the up-regulation of these proteins 

suggests their possible involvement in drug resistance in M. tuberculosis, making them 

potential drug targets (Provvedi et al., 2009).  It has been reported that a Mycobacterium 

smegmatis mutant strain lacking the mca gene was more susceptible to a number of antibiotics 

including rifampicin and streptomycin (Rawat et al., 2004).  

We also observed up-regulation of toxin (Rv1242, VapC33-toxin) and antitoxin (Rv0300, VapB2- 

antitoxin) in the isoniazid mono-resistant M. tuberculosis strain treated with SMX. The toxin-

antitoxin systems (TA) are present in almost all prokaryotes and they function as a stress 
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response system that induces a nonreplicative persistent state or cell cycle arrest that result in 

bacterial tolerance (Gerdes, 2000; Hayes, 2003; Gerdes et al., 2005). The genes coding for these 

systems are grouped in an operon of two genes, one coding for the antitoxin and the other 

coding for the toxin (Provvedi et al., 2009). Unlike the plasmid encoded TA, which target 

plasmid-free cells and cause cell death or growth restriction, the chromosomal encoded TA, 

which exist in mycobacteria and other advanced pathogens, adjust the state of the cell in 

response to an external stimulus (Hayes, 2003). Antitoxin regulates toxin, but it gets degraded 

rapidly giving an increase to toxin levels, which mediates toxicity by RNA cleavage, inhibiting 

translation thereby resulting in a metabolic change of the bacteria (Provvedi et al., 2009). 

Toxins which contain a PIN domain, like VapC, have also been shown to have RNase activity and 

are involved in growth regulation (Moyed and Bertrand, 1983; Ramage et al., 2009; Provvedi et 

al., 2009; Ahidjo et al., 2011). Figure 3.6 shows the mode of oxidative stress production by 

SMX. 

The induction of VapC33 and  VapB2 (TA), upon treatment with SMX suggests their involvement 

in the growth rate of isoniazid mono-resistant M. tuberculosis strain in response to oxidative 

stress. In this scenario, the inhibition of tetrahydrofolate involved in the thymine synthesis 

required for DNA and RNA synthesis would not be effective as the organism is slowing growth 

shown by the down-regulation of gyrB, a DNA gyrase (see table 3.4).  

We also observed down-regulation of many proteins involved in fatty acid metabolism (see 

table 3.4 and 3.6). Many studies have indicated that M. tuberculosis in vivo uses cholesterol or 

host fatty acids as a preferred carbon source rather than glycerol and glucose (Schnappinger et 
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al., 2003). This process requires different classes of enzymes, such as fadD genes, which code 

for enzymes that are responsible for fatty acid activation (Black et al., 1992), producing acyl-

CoA thioesters that are degraded to acetyl-CoA by fadE, fadB and fadA enzymes (Campbell and 

Jr, 2002; Binstock et al., 1977). FadD enzymes have been reported to also activate endogenous 

fatty acids (Pech-Canul et al.,  2011), therefore these enzymes are capable of triggering 

degradation of membrane lipids of the bacterium. The down-regulation of proteins involved in 

beta oxidation (fadE20, fadD7, fadD16, fadD13, fadA2, fadD36, fadB, fadE32, fadD15) (see table 

3.4) indicates that M. tuberculosis prevents further destruction of its cell wall. 

 Furthermore, down regulation of proteins involved in mycolic acid synthesis (fabG4, accD2, 

accD4, pks16) (Gande et al., 2004; Gurvitz, 2009) and repression of the FtsK protein, an ATP-

dependent DNA translocase, which is involved in the translocation of DNA from the mother cell 

compartment into the smaller compartment during cell division (Massey et al., 2006), suggests 

that the bacterium is slowing down all energy consuming processes.  

The up-regulation of recC (see table 3.3 and 3.5), which is a protein involved in DNA repair 

(Wigley, 2013) and an energy requiring process, suggests that the energy reserved from the 

fatty acid or mycolic acid synthesis pathways is shifted to cell protection processes. 

Furthermore, the rec gene cluster has been reported to be up-regulated in response to DNA 

damaging external stress, such as H2O2 (Voskuil and Bartek, 2011). 

 The suppression of nuoI (table 3.4), which is part of the three subunits (NuoL, NuoM, and 

NuoN) of NADH dehydrogenase I that is involved in proton translocation, expressed during 

rapid growth. A deletion or loss of function of either NuoL or NuoM, results in the total loss of 
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activity of the enzyme, further suggests the scaling down of energy expensive metabolic 

pathways and suggests slowing of growth, but not cell death (Provvedi et al.,  2009; Torres-

Bacete et al.,  2011). 

In conclusion, these results suggest that the isoniazid mono-resistant clinical isolate, upon 

exposure to SMX experiences stress, resulting in the induction of stress response systems in 

order to protect itself. Some of the proteins that were induced upon exposure to SMX are also 

induced by some antibiotics that inhibit cell wall synthesis, such a isoniazid and vancomycin 

(Provvedi et al.,  2009), suggesting that SMX might also be targeting similar pathways as these 

drugs. This could explain the cross resistance in the isoniazid resistant M. tuberculosis clinical 

isolates to SMX.  

Furthermore, in this study we have identified proteins that could be potential drug targets, such 

as the mca gene. This proteomic approach has allowed us to be able to identify proteins that 

may be involved in the protection of Mycobacterium tuberculosis from the oxidative stress 

imposed by SMX and could potentially be involved in the cross-resistance of the isoniazid 

mono-resistant clinical isolate to SMX.  

Stellenbosch University  http://scholar.sun.ac.za



 

66 

 

 

Figure 3.8: Proposed mode of oxidative stress induction by SMX and the response thereof in 

Mycobacterium tuberculosis. The   green colour indicates up-regulated and   red colour 

indicates down-regulated proteins.  
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Table 3.3: Proteins that are deferentially regulated in SMX resistant clinical isolate upon exposure to SMX, classified according to 
biological function. Up +/-30mins*  
Rv number Protein 

Name 
Function Functional 

Group 
p-value  Fold change 

Rv0190 Rv0190 CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical   

0.002                3.383 

Rv3504 fadE26  PROBABLE ACYL-CoA DEHYDROGENASE FADE26 lipid metabolism 0.003 3.351 
Rv3229c desA3 POSSIBLE LINOLEOYL-CoA DESATURASE (DELTA(6)-DESATURASE) lipid metabolism 0.004 3.335 

Rv3090  Rv3090 HYPOTHETICAL ALANINE AND VALINE RICH PROTEIN  Conserved 
hypothetical                                 

0.004 3.320 

Rv0291   mycP3  PROBABLE MEMBRANE-ANCHORED MYCOSIN MYCP3 (SERINE PROTEASE) 
(SUBTILISIN-LIKE PROTEASE) (SUBTILASE-LIKE) (MYCOSIN-3) 

Intermediary 
metabolism and 
respiration 

0.010 3.185 

Rv0451c  mmpS4 PROBABLE CONSERVED MEMBRANE PROTEIN MMPS4 Cell wall and cell 
processes  

0.017 3.096 

Rv0117  oxyS OXIDATIVE STRESS RESPONSE REGULATORY PROTEIN OXYS Regulatory 0.019 3.068 
Rv1914c  Rv1914c HYPOTHETICAL PROTEIN Conserved 

hypothetical 
0.022 3.038 

Rv1242  vapC33 POSSIBLE TOXIN VAPC33. CONTAINS PIN DOMAIN. Virulence, 
detoxification and 
adaptation  

0.023 3.017 

Rv2345  Rv2345  POSSIBLE CONSERVED TRANSMEMBRANE PROTEIN  Cell wall and cell 
processes 

0.024 3.014 

Rv0501 
 

galE2  POSSIBLE UDP-GLUCOSE 4-EPIMERASE GALE2 (GALACTOWALDENASE) 
(UDP-GALACTOSE 4-EPIMERASE) (URIDINE DIPHOSPHATE GALACTOSE 4-
EPIMERASE) 
 (URIDINE DIPHOSPHO-GALACTOSE 4-EPIMERASE) 

Intermediary 
metabolism and 
respiration 

0.026 2.993 

Rv2536   Rv2536 PROBABLE CONSERVED TRANSMEMBRANE PROTEIN Cell wall and cell 
processes 

0.031 2.942 

Rv0631c 
 

recC PROBABLE EXONUCLEASE V (GAMMA CHAIN) RECC 
(EXODEOXYRIBONUCLEASE V GAMMA CHAIN)(EXODEOXYRIBONUCLEASE 
V POLYPEPTIDE) 

Information 
pathways 

0.036 2.900 

Rv1729c  Rv1729c POSSIBLE S-ADENOSYLMETHIONINE-DEPENDENT METHYLTRANSFERASE lipid metabolism 0.038 2.884 
Rv2257c 
  

Rv2257c CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.040 2.869 

Rv1211  Rv1211 CONSERVED HYPOTHETICAL PROTEIN Conserved 0.036 2.855 
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hypothetical 

Rv1990c 
  

Rv1990c PROBABLE TRANSCRIPTIONAL REGULATORY PROTEIN Regulatory 0.047 2.821 

Rv3565 
  
 

aspB POSSIBLE ASPARTATE AMINOTRANSFERASE ASPB (TRANSAMINASE A) 
(ASPAT) (GLUTAMIC--OXALOACETIC TRANSAMINASE) (GLUTAMIC--
ASPARTIC TRANSAMINASE) 

Intermediary 
metabolism and 
respiration 

0.048 2.812 

Rv1530   adh PROBABLE ALCOHOL DEHYDROGENASE ADH Intermediary 
metabolism and 
respiration  

0.048 2.805 

Rv1362c Rv1362c POSSIBLE MEMBRANE PROTEIN Cell wall and cell 
processes 

0.048 2.804 

Rv0690c  Rv0690c CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.052 2.786 

      
*Proteins that were up-regulated within 30 minutes of exposure to 9.5 µg/ml of SMX 

 
Table 3.4: Proteins with that are deferentially regulated in SMX resistant clinical isolate upon exposure to SMX, classified 
according to biological function. Down +/-30mins*  
Rv 
number 

Protein 
Name 

Function Functional Group   p-value Fold change         

Rv3240c secA1 PROBABLE PREPROTEIN TRANSLOCASE SECA1 1 SUBUNIT Cell wall and cell processes 0.001 3.417  

Rv1830  Rv1830 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.002 3.407223  

Rv2982c gpdA2 PROBABLE GLYCEROL-3-PHOSPHATE DEHYDROGENASE 
[NAD(P)+] GPDA2 (NAD(P)H- DEPENDENT GLYCEROL-3-
PHOSPHATE DEHYDROGENASE) 

lipid metabolism  0.002 3.404  

Rv1480 Rv1480 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.002 3.369  

Rv0974c  accD2 PROBABLE ACETYL-/PROPIONYL-CoA CARBOXYLASE (BETA 
SUBUNIT) ACCD2 

lipid metabolism  0.003 3.343  

Rv3799c  accD4 PROBABLE PROPIONYL-CoA CARBOXYLASE BETA CHAIN 4 
ACCD4 (PCCASE) (PROPANOYL-CoA:CARBON DIOXIDE LIGASE) 

lipid metabolism  0.003 3.341  

Rv3153  nuoI PROBABLE NADH DEHYDROGENASE I (CHAIN I) NUOI (NADH-
UBIQUINONE OXIDOREDUCTASE CHAIN I) 

Intermediary metabolism 
and respiration 

0.004 3.324  

Rv3866  espG1 ESX-1 SECRETION-ASSOCIATED PROTEIN ESPG1 Cell wall and cell processes 0.004 3.321  

Rv1908c  katG CATALASE-PEROXIDASE-PEROXYNITRITASE T KATG Virulence, detoxification and 
adaptation 

0.004 3.319  
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Rv0583c  lpqN PROBABLE CONSERVED LIPOPROTEIN LPQN Cell wall and cell processes 0.004 3.306  

Rv3808c  glfT2 BIFUNCTIONAL UDP-GALACTOFURANOSYL TRANSFERASE 
GLFT2 

Cell wall and cell processes 0.006 3.278  

Rv1771  Rv1771 L-GULONO-1,4-LACTONE DEHYDROGENASE Intermediary metabolism 
and respiration 

0.008 3.238  

Rv2192c trpD PROBABLE ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE 
TRPD 

Intermediary metabolism 
and respiration 

0.008 3.225  

Rv1340  rphA PROBABLE RIBONUCLEASE RPHA (RNase PH) (tRNA 
NUCLEOTIDYLTRANSFERASE) 

Information pathways 0.011 3.177  

Rv1001 arcA PROBABLE ARGININE DEIMINASE ARCA (ADI) (AD) (ARGININE 
DIHYDROLASE) 

Intermediary metabolism 
and respiration 

0.012 3.157  

Rv1559 ilvA PROBABLE THREONINE DEHYDRATASE IlvA Intermediary metabolism 
and respiration 

0.013 3.146  

Rv2187 fadD15 PROBABLE LONG-CHAIN-FATTY-ACID-CoA LIGASE FADD15 
(FATTY-ACID-CoA SYNTHETASE) (FATTY-ACID-CoA SYNTHASE) 

lipid metabolism  0.014 3.129  

Rv1894c Rv1894c CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.015 3.116  

Rv1638 uvrA PROBABLE EXCINUCLEASE ABC (SUBUNIT A - DNA-BINDING 
ATPase) UVRA 

Information pathways 0.016 3.108  

Rv0005  gyrB DNA GYRASE (SUBUNIT B) GYRB (DNA TOPOISOMERASE (ATP-
HYDROLYSING)) (DNA TOPOISOMERASE II) (TYPE II DNA 
TOPOISOMERASE) 

Information pathways 0.016 3.100  

Rv2298  Rv2298 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.017 3.090  

Rv0896  gltA2 PROBABLE CITRATE SYNTHASE I GLTA2 Intermediary metabolism 
and respiration 

0.019 3.069  

Rv1865c Rv1865c PROBABLE SHORT-CHAIN TYPE DEHYDROGENASE Intermediary metabolism 
and respiration 

0.020 3.056  

Rv3671c Rv3671c POSSIBLE MEMBRANE-ASSOCIATED SERINE PROTEASE Intermediary metabolism 
and respiration 

0.020 3.051  

Rv0408  pta PROBABLE PHOSPHATE ACETYLTRANSFERASE PTA 
(PHOSPHOTRANSACETYLASE) 

Intermediary metabolism 
and respiration 

0.021 3.041  

Rv3563  fadE32 PROBABLE ACYL-CoA DEHYDROGENASE FADE32 lipid metabolism  0.022 3.031  

Rv3048c nrdF2 RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE (BETA CHAIN) 
NRDF2 (RIBONUCLEOTIDE REDUCTASE SMALL SUBUNIT) (R2F 
PROTEIN) 

Information pathways 0.022 3.030  

Rv0860 fadB PROBABLE FATTY OXIDATION PROTEIN FADB lipid metabolism  0.025 3.005  

Rv3212 Rv3212 CONSERVED HYPOTHETICAL ALANINE VALINE RICH PROTEIN Conserved hypothetical 0.025 2.998  
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Rv1692 Rv1692 PROBABLE PHOSPHATASE Intermediary metabolism 
and respiration 

0.026 2.993  

Rv1229c  mrp PROBABLE MRP-RELATED PROTEIN MRP Intermediary metabolism 
and respiration 

0.026 2.986  

Rv2030c  Rv2030c CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.027 2.982  

Rv1193  fadD36 PROBABLE FATTY-ACID-CoA LIGASE FADD36 (FATTY-ACID-CoA 
SYNTHETASE) (FATTY-ACID-CoA SYNTHASE) 

lipid metabolism  0.028 2.969  

Rv3220c  Rv3220c PROBABLE TWO COMPONENT SENSOR KINASE Regulatory  0.028 2.968316  

Rv0307c Rv0307c HYPOTHETICAL PROTEIN Conserved hypothetical 0.029 2.956  

Rv1106c Rv1106c 3-BETA-HYDROXYSTEROID DEHYDROGENASE Intermediary metabolism 
and respiration 

0.030 2.952  

Rv3464 rmlB dTDP-GLUCOSE 4,6-DEHYDRATASE RMLB Intermediary metabolism 
and respiration 

0.030 2.950  

Rv1018c  glmU PROBABLE UDP-N-ACETYLGLUCOSAMINE 
PYROPHOSPHORYLASE GLMU 

Cell wall and cell processes 0.030 2.946  

Rv3305c  amiA1 POSSIBLE N-ACYL-L-AMINO ACID AMIDOHYDROLASE AMIA1 (N-
ACYL-L-AMINO ACID AMINOHYDROLASE) 

Intermediary metabolism 
and respiration 

0.031 2.938  

Rv0242c  fabG4 PROBABLE 3-OXOACYL-[ACYL-CARRIER PROTEIN] REDUCTASE 
FABG4 (3-KETOACYL-ACYL CARRIER PROTEIN REDUCTASE) 

lipid metabolism  0.032 2.931  

Rv1475c  acn PROBABLE IRON-REGULATED ACONITATE HYDRATASE ACN 
(CITRATE HYDRO-LYASE) (ACONITASE) 

Intermediary metabolism 
and respiration 0.032 2.930 

 

Rv0466 Rv0466 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.033 2.920  

Rv0423c  thiC PROBABLE THIAMINE BIOSYNTHESIS PROTEIN THIC Intermediary metabolism 
and respiration 0.034 2.919 

 

Rv1257c  Rv1257c PROBABLE OXIDOREDUCTASE Intermediary metabolism 
and respiration 0.034 2.914 

 

Rv2178c aroG PROBABLE 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-
PHOSPHATE SYNTHASE AROG (DAHP SYNTHETASE, 
PHENYLALANINE-REPRESSIBLE) 

Intermediary metabolism 
and respiration 

0.034 2.913 

 

Rv1297  rho PROBABLE TRANSCRIPTION TERMINATION FACTOR RHO 
HOMOLOG 

Information pathways 

0.035 2.904 
 

Rv2540c aroF PROBABLE CHORISMATE SYNTHASE AROF (5-
ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE PHOSPHOLYASE) 

Intermediary metabolism 
and respiration 0.036 2.897 

 

Rv2005c  Rv2005c UNIVERSAL STRESS PROTEIN FAMILY PROTEIN Virulence, detoxification and 
adaptation 0.037 2.891 

 

Rv3120 Rv3120 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.038 2.881  
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Rv0479c Rv0479c PROBABLE CONSERVED MEMBRANE PROTEIN Cell wall and cell processes 0.038 2.880  

Rv1422  Rv1422 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.039 2.874  

Rv2916c ffh PROBABLE SIGNAL RECOGNITION PARTICLE PROTEIN FFH 
(FIFTY-FOUR HOMOLOG) (SRP PROTEIN) 

Cell wall and cell processes 0.039 2.873  

Rv0243  fadA2 PROBABLE ACETYL-CoA ACYLTRANSFERASE FADA2 (3-
KETOACYL-CoA THIOLASE) (BETA-KETOTHIOLASE) 

lipid metabolism  0.040 2.867  

Rv2786c  ribF PROBABLE BIFUNCTIONAL FAD SYNTHETASE/RIBOFLAVIN 
BIOSYNTHESIS PROTEIN RIBF: RIBOFLAVIN KINASE 
(FLAVOKINASE) + FMN ADENYLYLTRANSFERASE (FAD 
PYROPHOSPHORYLASE) (FAD SYNTHETASE)(FAD 
DIPHOSPHORYLASE) (FLAVIN ADENINE DINUCLEOTIDE 
SYNTHETASE) 

Intermediary metabolism 
and respiration 

0.038 2.855  

Rv2748c  ftsK POSSIBLE CELL DIVISION TRANSMEMBRANE PROTEIN FTSK Cell wall and cell processes 0.043 2.847  

Rv2989  Rv2989 PROBABLE TRANSCRIPTIONAL REGULATORY PROTEIN Regulatory  0.043 2.846  

Rv1013  pks16 PUTATIVE POLYKETIDE SYNTHASE PKS16 lipid metabolism  0.044 2.836  

Rv3918c parA PROBABLE CHROMOSOME PARTITIONING PROTEIN PARA Cell wall and cell processes 0.044 2.836  

Rv2457c  clpX PROBABLE ATP-DEPENDENT CLP PROTEASE ATP-BINDING 
SUBUNIT CLPX 

Intermediary metabolism 
and respiration 

0.045 2.827  

Rv2299c  htpG PROBABLE CHAPERONE PROTEIN HTPG (HEAT SHOCK PROTEIN) 
(HSP90 FAMILY PROTEIN) (HIGH TEMPERATURE PROTEIN G) 

Virulence, detoxification and 
adaptation 

0.045 2.827  

Rv20c  Rv20c CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.046 2.824  

Rv0952  sucD PROBABLE SUCCINYL-CoA SYNTHETASE (ALPHA CHAIN) SUCD 
(SCS-ALPHA) 

Intermediary metabolism 
and respiration 

0.046 2.820  

Rv0750  Rv0750 CONSERVED HYPOTHETICAL PROTEIN Conserved hypothetical 0.047 2.811  

Rv0265c  Rv0265c PROBABLE PERIPLASMIC IRON-TRANSPORT LIPOPROTEIN Cell wall and cell processes 0.048 2.809  

Rv1293  lysA PROBABLE DIAMINOPIMELATE DECARBOXYLASE LYSA (DAP 
DECARBOXYLASE) 

Intermediary metabolism 
and respiration 

0.047673 2.809  

Rv0932c pstS2 PERIPLASMIC PHOSPHATE-BINDING LIPOPROTEIN PSTS2 (PBP-
2) (PSTS2) 

Cell wall and cell processes 0.048 2.805  

Rv2605c  tesB2 PROBABLE ACYL-CoA THIOESTERASE II TESB2 (TEII) lipid metabolism  0.049 2.803  

Rv2922A acyP PROBABLE ACYLPHOSPHATASE ACYP (ACYLPHOSPHATE 
PHOSPHOHYDROLASE) 

Intermediary metabolism 
and respiration 

0.049 2.801  

Rv3602c panC PROBABLE PANTOATE--BETA-ALANINE LIGASE PANC 
(PANTOTHENATE SYNTHETASE) (PANTOATE ACTIVATING 
ENZYME) 

Intermediary metabolism 
and respiration 

0.050 2.795  

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 

72 

 

Rv0818  Rv0818 TRANSCRIPTIONAL REGULATORY PROTEIN Regulatory  0.051 2.784  

Rv1383 carA PROBABLE CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN 
CARA (CARBAMOYL-PHOSPHATE SYNTHETASE GLUTAMINE 
CHAIN) 

Intermediary metabolism 
and respiration 

   0.051     2.782  

Rv3089  fadD13 PROBABLE CHAIN -FATTY-ACID-CoA LIGASE FADD13 (FATTY-
ACYL-CoA SYNTHETASE) 

lipid metabolism   0.052 2.776  

Rv3634c  galE1 UDP-GLUCOSE 4-EPIMERASE GALE1 (GALACTOWALDENASE) 
(UDP-GALACTOSE 4-EPIMERASE) (URIDINE DIPHOSPHATE 
GALACTOSE 4-EPIMERASE) (URIDINE DIPHOSPHO-GALACTOSE 
4-EPIMERASE) 

Intermediary metabolism 
and respiration 

   0.054 2.767  

Rv0078A Rv0078A HYPOTHETICAL PROTEIN Conserved hypothetical     0.054 2.767  

*Proteins that were down-regulated within 30 minutes of exposure to 9.5 µg/ml of SMX 
 

3.5: Proteins with that are deferentially regulated in SMX resistant clinical isolate upon exposure to SMX, classified according to 
biological function. Up 24hrs*  
Rv number Protein 

Name 
Function Functional Group p-score Fold change 

Rv0070c  glyA2 PROBABLE SERINE HYDROXYMETHYLTRANSFERASE GLYA2 (SERINE METHYLASE 
2) (SHMT 2) 

Intermediary 
metabolism and 
respiration 0.001 3.419 

Rv1511  gmdA GDP-D-MANNOSE DEHYDRATASE GMDA (GDP-MANNOSE 4,6 DEHYDRATASE) 
(GMD) 

Intermediary 
metabolism and 
respiration 0.006 3.272 

Rv3671c  Rv3671c POSSIBLE MEMBRANE-ASSOCIATED SERINE PROTEASE Intermediary 
metabolism and 
respiration 0.006 3.265 

Rv2171 lppM PROBABLE CONSERVED LIPOPROTEIN LPPM Cell wall and cell 
processes 0.006 3.265 

Rv1311  atpC PROBABLE ATP SYNTHASE EPSILON CHAIN ATPC Intermediary 
metabolism and 
respiration 0.010 3.190 

Rv1423  whiA PROBABLE TRANSCRIPTIONAL REGULATORY PROTEIN WHIA Regulatory 
0.011 3.181 

Rv3535c hsaG PROBABLE ACETALDEHYDE DEHYDROGENASE (ACETALDEHYDE 
DEHYDROGENASE [ACETYLATING]) 

Intermediary 
metabolism and 
respiration 0.013 3.149 
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Rv3281  accE5 PROBABLE BIFUNCTIONAL PROTEIN ACETYL-/PROPIONYL-COENZYME A 
CARBOXYLASE (EPSILON CHAIN) ACCE5 

lipid metabolism 

0.013 3.139 
Rv23c Rv23c CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.013 3.138 
Rv0645c  mmaA1 METHOXY MYCOLIC ACID SYNTHASE 1 MMAA1 (METHYL MYCOLIC ACID 

SYNTHASE 1) (MMA1) (HYDROXY MYCOLIC ACID SYNTHASE) 
lipid metabolism 

0.015 3.115 
Rv2954c Rv2954c HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.015 3.110 
Rv2237  Rv2237 CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.015 3.110 
Rv1754c  Rv1754c CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.018 3.084 
Rv3226c  Rv3226c CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.018 3.077 
Rv0300  vapB2 POSSIBLE ANTITOXIN VAPB2 Virulence, 

detoxification and 
adaptation 0.020 3.050 

Rv0564c gpdA1 PROBABLE GLYCEROL-3-PHOSPHATE DEHYDROGENASE [NAD(P)+] GPDA1 
(NAD(P)H-DEPENDENT GLYCEROL-3-PHOSPHATE DEHYDROGENASE) (NAD(P)H-
DEPENDENT DIHYDROXYACETONE-PHOSPHATE REDUCTASE) 

lipid metabolism 

0.023 3.019 
Rv3231c Rv3231c CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.023 3.019 
Rv3030  Rv3030 CONSERVED HYPOTHETICAL PROTEIN Conserved 

hypothetical 0.024 3.010 
Rv0500 proC PROBABLE PYRROLINE-5-CARBOXYLATE REDUCTASE PROC (P5CR) (P5C 

REDUCTASE) 
Intermediary 
metabolism and 
respiration 0.025 2.994 

Rv1296 thrB PROBABLE HOMOSERINE KINASE THRB Intermediary 
metabolism and 
respiration 0.026 2.986 

Rv0928 pstS3 PERIPLASMIC PHOSPHATE-BINDING LIPOPROTEIN PSTS3 (PBP-3) (PSTS3) 
(PHOS1) 

Cell wall and cell 
processes 0.027 2.979 

Rv1594 nadA PROBABLE QUINOLINATE SYNTHETASE NADA Intermediary 
metabolism and 
respiration 0.027 2.977 

Rv3634c  galE1 UDP-GLUCOSE 4-EPIMERASE GALE1 (GALACTOWALDENASE) (UDP-GALACTOSE 
4-EPIMERASE) (URIDINE DIPHOSPHATE GALACTOSE 4-EPIMERASE) (URIDINE 
DIPHOSPHO-GALACTOSE 4-EPIMERASE) 

Intermediary 
metabolism and 
respiration 0.028 2.972 
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Rv2008c  Rv2008c CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.030 2.951 

Rv0161  Rv0161 POSSIBLE OXIDOREDUCTASE Intermediary 
metabolism and 
respiration 0.032 2.936 

Rv1082 mca MYCOTHIOL CONJUGATE AMIDASE MCA (MYCOTHIOL S-CONJUGATE 
AMIDASE) 

Virulence, 
detoxification and 
adaptation 0.034 2.914 

Rv2826c Rv2826c HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.037 2.914 

Rv0394c Rv0394c POSSIBLE SECRETED PROTEIN Cell wall and cell 
processes 0.034 2.913 

Rv0562  grcC1 PROBABLE POLYPRENYL-DIPHOSPHATE SYNTHASE GRCC1 (POLYPRENYL 
PYROPHOSPHATE SYNTHETASE) 

Intermediary 
metabolism and 
respiration 0.035 2.909 

Rv2714  Rv2714 CONSERVED HYPOTHETICAL ALANINE AND LEUCINE RICH PROTEIN Conserved 
hypothetical 0.038 2.883 

Rv1295  thrC PROBABLE THREONINE SYNTHASE THRC (TS) Intermediary 
metabolism and 
respiration 0.038 2.883 

Rv1421 Rv1421 CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.038 2.880 

Rv3566c  nat ARYLAMINE N-ACETYLTRANSFERASE NAT (ARYLAMINE ACETYLASE) Intermediary 
metabolism and 
respiration 0.039 2.876 

Rv2403c  lppR PROBABLE CONSERVED LIPOPROTEIN LPPR Cell wall and cell 
processes 0.043 2.843 

Rv2188c pimB MANNOSYLTRANSFERASE PIMB lipid metabolism 
0.044 2.836 

Rv1493 mutB PROBABLE METHYLMALONYL-CoA MUTASE LARGE SUBUNIT MUTB (MCM) lipid metabolism 
0.046 2.821 

Rv0911  Rv0911 CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.047 2.812 

Rv0449c Rv0449c CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.047 2.812 

Rv1596 nadC PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHATASE NADC Intermediary 
metabolism and 
respiration 0.048 2.810 
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Rv1006  Rv1006 HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.049 2.802 

Rv0631c  recC PROBABLE EXONUCLEASE V (GAMMA CHAIN) RECC (EXODEOXYRIBONUCLEASE 
V GAMMA CHAIN)(EXODEOXYRIBONUCLEASE V POLYPEPTIDE) 

Information 
pathways 0.049 2.799 

Rv2564  glnQ PROBABLE GLUTAMINE-TRANSPORT ATP-BINDING PROTEIN ABC 
TRANSPORTER GLNQ 

Cell wall and cell 
processes 0.050 2.794 

Rv3780  Rv3780 CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 0.050 2.794 

      

*Proteins that were up-regulated after 24 hours of exposure to 9.5 µg/ml of SMX 
 
 

Table 3.6: Proteins with that are deferentially regulated in SMX resistant clinical isolate upon exposure to SMX, classified 
according to biological function. Down 24hrs*  
Rv number Protein 

Name 
Function Functional Group p-score Fold change 

Rv1408  rpe PROBABLE RIBULOSE-PHOSPHATE 3-EPIMERASE RPE (PPE) (R5P3E) (PENTOSE-
5-PHOSPHATE 3-EPIMERASE) 

Intermediary 
metabolism and 
respiration 

0.001 3.442 

Rv3607c  folB PROBABLE DIHYDRONEOPTERIN ALDOLASE FOLB (DHNA) Intermediary 
metabolism and 
respiration 

0.002 3.389 

Rv0130  htdZ PROBABLE 3-HYDROXYL-THIOESTER DEHYDRATASE Intermediary 
metabolism and 
respiration 

0.009 3.314 

Rv2404c  lepA PROBABLE GTP-BINDING PROTEIN LEPA (GTP-BINDING ELONGATION FACTOR) Intermediary 
metabolism and 
respiration 

0.005 3.305 

Rv0604  lpqO PROBABLE CONSERVED LIPOPROTEIN LPQO Cell wall and cell 
processes 

0.005019 3.292 

Rv1676  Rv1676 HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.006 3.282 

Rv1480 Rv1480 CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.007 3.249 

Rv2495c bkdC PROBABLE BRANCHED-CHAIN KETO ACID DEHYDROGENASE E2 COMPONENT 
BKDC 

Intermediary 
metabolism and 

0.007 3.244 
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respiration 

Rv2724c  fadE20 PROBABLE ACYL-CoA DEHYDROGENASE FADE20 lipid metabolism 0.008 3.220 

Rv0119  fadD7 PROBABLE FATTY-ACID-CoA LIGASE FADD7 (FATTY-ACID-CoA SYNTHETASE) 
(FATTY-ACID-CoA SYNTHASE) 

lipid metabolism 0.011 3.183 

Rv3614c espD ESX-1 SECRETION-ASSOCIATED PROTEIN ESPD Cell wall and cell 
processes 

0.018 3.083 

Rv0023 Rv0023 POSSIBLE TRANSCRIPTIONAL REGULATORY PROTEIN Regulatory 0.020036 3.054 

Rv0852  fadD16 POSSIBLE FATTY-ACID-CoA LIGASE FADD16 (FATTY-ACID-CoA SYNTHETASE) 
(FATTY-ACID-CoA SYNTHASE) 

lipid metabolism 0.021 3.045 

Rv1332 Rv1332 PROBABLE TRANSCRIPTIONAL REGULATORY PROTEIN Regulatory 0.023 3.021 

Rv3528c  Rv3528c HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.0234 3.017 

Rv3455c  truA PROBABLE TRNA PSEUDOURIDINE SYNTHASE A TRUA (PSEUDOURIDYLATE 
SYNTHASE I) (PSEUDOURIDINE SYNTHASE I) (URACIL HYDROLYASE) 

Information 
pathways 

0.029 2.958 

Rv2409c  Rv2409c CONSERVED HYPOTHETICAL PROTEIN Conserved 
hypothetical 

0.031 2.938 

Rv3058c  Rv3058c POSSIBLE TRANSCRIPTIONAL REGULATORY PROTEIN (PROBABLY TETR-FAMILY) Regulatory 0.035 2.907 

Rv1187  rocA PROBABLE PYRROLINE-5-CARBOXYLATE DEHYDROGENASE ROCA Intermediary 
metabolism and 
respiration 

0.035 2.904 

Rv3302c  glpD2 PROBABLE GLYCEROL-3-PHOSPHATE DEHYDROGENASE GLPD2 Intermediary 
metabolism and 
respiration 

0.037 2.891 

Rv1011  ispE PROBABLE 4-DIPHOSPHOCYTIDYL-2-C-METHYL-D-ERYTHRITOL KINASE ISPE 
(CMK) (4-(CYTIDINE-5'-DIPHOSPHO)-2-C-METHYL-D-ERYTHRITOL KINASE) 

Intermediary 
metabolism and 
respiration 

0.040 2.869 

Rv0939 Rv0939 POSSIBLE BIFUNCTIONAL ENZYME: 2-HYDROXYHEPTA-2,4-DIENE-1,7-DIOATE 
ISOMERASE (HHDD ISOMERASE) + CYCLASE/DEHYDRASE 

Intermediary 
metabolism and 
respiration 

0.046 2.819 

Rv3667  acs ACETYL-COENZYME A SYNTHETASE ACS (ACETATE--CoA LIGASE) (ACETYL-CoA 
SYNTHETASE) (ACETYL-CoA SYNTHASE) (ACYL-ACTIVATING ENZYME) (ACETATE 
THIOKINASE) (ACETYL-ACTIVATING ENZYME) (ACETATE--COENZYME A LIGASE) 
(ACETYL-COENZYME A SYNTHASE) 

lipid metabolism 0.049 2.798 

*Proteins that were down-regulated after 24 hours of exposure to 9.5 µg/ml of SMX 
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CHAPTER 4 

 

 

 

Conclusion 
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The rise in drug resistance and the economic strain that many countries experience affects the 

control of tuberculosis. A new and less expensive drug would help in the eradication of the 

disease. The search for less expensive compounds has focussed attention on existing drugs that 

are used for other diseases other than tuberculosis or drugs that were once used for 

tuberculosis, but were abandoned due to the discovery of newer drugs. Sulfonamides are a 

class of antibiotics that are used effectively to treat many bacterial infections and were once 

used to treat tuberculosis, but were abandoned due to toxicity of the early derivatives.  

In this study, we evaluated the effect of some of the newer, less toxic sulfonamides on the 

growth of Mycobacterium tuberculosis and also attempted to identify their mechanism of 

action. The Mycobacterium tuberculosis reference strains, H37Rv, CDC1551, mshA and an INHR 

clinical isolate were used in this study for the evaluation of drug activity, drug interaction and 

identification of possible modes of action. Mycobacterium bovis (BCG) was also used in some 

parts where the use of Mycobacterium tuberculosis was deemed inconvenient, such as in the 

optimisation of a protocol, due to the non-pathogenic nature of the organism.      

In this study, it was found that SMX, which is available in combination with TMP, is active 

against Mycobacterium tuberculosis. We also showed that it has a synergistic effect in 

combination with rifampicin, one of the key drugs in the current tuberculosis regimen. We then 

investigated the effect of SMX on drug resistant Mycobacterium tuberculosis clinical isolates. 

We found that a rifampicin resistant Mycobacterium tuberculosis strain was also susceptible to 

SMX, although the minimum inhibitory concentration was between 9.5 µg/ml and 19 µg/ml. 

We also found that two isoniazid resistant Mycobacterium tuberculosis strains were also 
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resistant to SMX with a minimum inhibitory concentration that was more than 19 µg/ml. We 

then attempted to uncover the underlying mechanisms that are involved in the cross-

resistance. We sequenced the putative target of SMX (folP1) in these resistant strains and 

genes that may have a negative effect on the activity of this drug when they are mutated, such 

as thyA. We did not find any mutations in the genes that we sequenced (folP1 and thyA) from 

an isoniazid mono-resistant strain of Mycobacterium tuberculosis that was also resistant to 

SMX. We also evaluated the expression levels of folP1 in this strain and the expression of this 

gene was not increased upon exposure to the drug.  

Efflux pump systems are one of the factors that have been reported to play a major role in drug 

resistance, conferring resistance to a number of structurally unrelated compounds (Webber and 

Piddock, 2003). We used efflux pump inhibitors in combination with SMX against the isoniazid 

mono-resistant M. tuberculosis strain that was also resistant to SMX. We were able to restore 

the susceptibility of this strain to SMX to the level that was similar to the reference strain. This 

data indicates the involvement of efflux pump systems in the cross resistance of the tested 

isoniazid resistant M. tuberculosis strain to SMX.  

We also tried to measure folate levels in Mycobacterium bovis BCG treated with SMX in an 

attempt to verify that this drug also targets the folate pathway in mycobacteria, however this 

strategy proved unsuccessful, due to the instability of these metabolites and their very short 

half-life.  
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To further investigate the underlying mechanisms that are involved in the cross resistance of 

this strain and also try to identify other possible modes of action of SMX on Mycobacterium 

tuberculosis, we employed a global protein profiling approach. We treated an isoniazid mono 

resistant M. tuberculosis clinical isolate with a sub-lethal concentration of SMX and evaluated 

changes in protein expression using LC-MS/MS. Our data showed that Mycobacterium 

tuberculosis upon treatment with SMX induced over-expression of genes that are involved 

oxidative stress response and also down-regulation of genes that are involved in energy 

consuming pathways, such as fatty acid synthesis, proton translocation and replication in order 

to counter the effect of SMX. 

 These results are in agreement with the data obtained from using a strain of Mycobacterium 

tuberculosis that lacked mycothiol (mshA). We treated this strain with various concentration of 

SMX and compared it to the parental strain CDC1551 strain of Mycobacterium tuberculosis. We 

found that the mshA mutant strain was more susceptible to SMX than the wild-type strain, 

indicating that SMX produces oxidative stress (see figure 2.4).  

This study has elucidated more aspects on the action of SMX and the possible application in 

tuberculosis treatment. TMP/SMX is a registered drug combination for other bacterial 

infections, is inexpensive and is widely available. Further studies, such as drug efficacy mouse 

studies will be undertaken before proceeding to clinical trials to clarify the potential of SMX and 

SMX/rifampicin in drug-susceptible tuberculosis.  
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 CHAPTER 5 
 
 
 
 
 
 

 

Materials and Methods 
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5.1 Mycobacterium tuberculosis strains 

H37Rv (ATCC 27294) and CDC 1551 laboratory strains were used as references in this study. 

Two strains of isoniazid mono-resistant strain (INHR) were used in the study, one harboured 

mutation in the KatG gene +S/315ACC (R1129) and the other one in inhA promoter (R1845) and 

rifampicin mono-resistant (RIFR) harboured a mutation in rpoB gene +S/531TTG (R5182) (see 

table 5.1). These clinical isolates were randomly selected from the Mycobacterium tuberculosis 

strain bank of our division.  

The Beijing phenotype was chosen because of its association with drug resistance and its 

association with outbreaks (Glynn et al., 2002; Buu et al., 2012). Classification of these clinical 

isolates was based on IS6110 restriction fragment length polymorphism patterns (Mathema et 

al., 2006).  The drug resistance of these strains was tested by a routine laboratory (NHLS, green 

point, Cape Town) using the standard method on MGIT 960 TB system (Scarparo et al., 2004). 

The Mycothiol mutant stain ΔmshA and its parent strain CDC1551 were generously provided by 

Prof William R Jacobs, Jr (Howard Hughes Medical Institute, Department of Microbiology and 

Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA). ΔmshA was 

generated by specialized transduction with phAE222 (Vilcheze et al., 2008). 

Table 5.1: Genetic characteristics and drug susceptibility profile of the clinical isolates 

Spoligotype Spoligotype Family Family IS6110 Resistance Mutation region 

R1129 2Beijing 11 1038 Inh mono  katG    +S/315ACC 

R1845 2Beijing 29 7037 Inh mono InhAProm +S/15 

R5182 2Beijing   Rif mono rpoB +S/531TTG 
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5.2 Bacterial culturing condition and stock preparation  

(Refer to appendix for buffer and solution preparation). 

All M. tuberculosis strains, (drug susceptible and drug resistant) were prepared by inoculating 

1ml of 15 % glycerol frozen stock obtained from the division to 5ml of 7H9 Mycobacterial 

medium (Difco, Detroit, USA) supplemented with 0.2% (v/v) glycerol, 10%(v/v) OADC, and 

0.025% (v/v) Tween 80 and incubated at 370C until the culture reached an optical density 

(OD600) of 0.5. These cultures were then transferred to various 50ml cell culture flaks (CELL 

STAR®, fricknhause, Germany) containing 50 ml 7H9, such that the initial OD600 was 0.005 and 

incubated at 370C until the culture  reached an OD600 0.8. The cultures were then tested for 

contamination by ZN stain and blood agar.  

Briefly, aliquots of cultures were heat-fixed to microscope slides at 1000C for 2hrs. Slides were 

flooded with ZN Carbol Fuchsin (BD), heated with a flame until steaming, and allowed to stand 

for 5 minutes. Slides were rinsed with water, decolorized with 5% acid-alcohol (see appendix) 

solution for 2 minutes and rinsed with water. Slides were then counterstained with Methylene 

Blue (BD) for 1-2 minutes and rinsed with water and allowed to air dry. Slides were then 

observed using a light microscope under the 100X (oil immersion) magnification. 

5.2.1 Blood agar  

Following ZN staining, cultures were screened for contamination using blood agar (5% blood 

content, Diagnostic media products, NHLS). Briefly, aliquots of Mycobacterial cultures were 

spread on the blood agar plates. Plates were then incubated at 370C and were observed after 

two days. When the cultures were found to be clean with no contamination, they were frozen 
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in 1ml of 15% glycerol aliquots at -800C and these aliquots were used in future experimental 

procedures. 

5.3 Compounds used in this study 

Sulfamethoxazole, trimethoprim, Ethambutol (EMB), Para-aminosalicylic acid (PAS), 4-

Aminophenyl sulfone, Thymidine, (±) - Verapamil hydrochloride, Reserpine and carbonyl 

cyanide m-chlorophenyl hydrazone (CCCP) were purchased from Sigma-Aldrich, St. Louis, MO.  

Isoniazid (INH) and Pyrazinamide were purchased from BD (Becton, Dickinson and Company); 

Rifampicin (RIF) was obtained from Novartis. Griseofulvin tablets were kindly donated by Prof 

Mark Cotton.  

TMP, SMX, RIF, PAS, Griseofulvin, CCCP, Verapamil and Reserpine were dissolved in 100% 

dimethyl sulfoxide (DMSO; Sigma-Aldrich) to make stock concentrations and these compounds 

were serially diluted in sterile water to the desired concentrations.  INH, EMB and Thymidine 

were dissolved in sterile water to make stock concentrations. 

5.4 Drug susceptibility testing in BACTEC 460 TB system  

The susceptibility of M. tuberculosis strains to a various drugs was evaluated using BACTEC 460 

TB system as described by (Tortoli and Simonetti 1995). Briefly, an inoculum was prepared by 

inoculating 0.1ml from a frozen stock of a M. tuberculosis strain into a BACTEC vial and the vial 

was incubated at 370C. This vial was read in BACTEC 460 until it reached a Growth Index (GI) of 

500. 0.1ml from this vial was inoculated into a new BACTEC vial containing 0.1ml of a drug 

tested for activity. 
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The control vials contained only drug solvent (DMSO or H2O) and an inoculum of bacteria (the 

final concentration of DMSO in the growth medium was less than 2%) and a 1:100 dilution of 

the inoculum was added to a separate drug free vial (Lenaerts et al.,  2005). The GI of bacteria 

was monitored every 24hrs, until the ΔGI of the 1:100 culture was more than 30 (Siddiqi, 1989). 

The susceptibility of M. tuberculosis strains to a specific drug was interpreted using a standard 

method (Springer et al., 2009). A strain was regarded as susceptible, when the GI of the drug-

exposed culture at a specific concentration on the final day of the experiment (GI 1:100>30) 

was below or equal to the GI of the preceding day, indicating a reduction of metabolic activity 

in the test vial. The GI of the drug-exposed culture on the last day was also compared to the GI 

of the drug free vial containing undiluted culture on the same day and MIC was defined as 

minimum concentration of a drug that inhibited 90% of bacteria (Ollinger et al., 2012). 

5.4.1 Drug Interactions  

The interactions between the compounds were evaluated at concentrations that were below 

their MICs or concentrations that inhibited less than 50% of the bacterial growth. Two drugs 

were combined in one tube to a total volume of 0.1ml to give a final concentration of each drug 

that is 1X, 2X or 3X less that the MIC of the respective drug. The 0.1ml of the combined drugs 

was then injected into the BACTEC vial containing 0.1ml of the inoculum to give a total of 4.2 ml 

in the vial. Vials were incubated at 370C and GI of bacteria was monitored every 24hrs, until the 

ΔGI of the 1:100 culture was more than 30.  

The effect of the two drugs in combination was interpreted using a formula described by 

Hoffner and Källenius, (1987), in which synergism is defined as X/Y<1/Z, where X is the GI of the 

vial with two drugs on the final day; Y is the lowest GI of the single drug in the combination and 
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Z the number of the drugs in the combination. We used two drugs in a combination, therefore, 

Z=2. X/Y<0.5=synergy; X/Y>0.5 but <0.75=additive; XY/=1 no interaction and when 

X/Y>2=antagonism (Hoffner et al., 1987).  

5.4.2 Effect of Efflux inhibitors on the activity of SMX in INHR 

Role of efflux pumps on the cross resistance of isoniazid mono-resistant isolates to SMX was 

evaluated using efflux inhibitors. We used the commonly used inhibitors, verapamil, reserpine 

and CCCP at non lethal concentrations. The procedure in section 5.4.1 was followed 

substituting the first-line drugs with efflux inhibitors. 

5.4.3 Statistical analysis 

The data of M. tuberculosis susceptibility to SMX or other drugs and drug interaction in this 

study is presented as the mean of two or three separate experiments and the data was 

analyzed using prism GraphPad Prism®, prism 5, version 5.01, August 7, 2007 

5.5 Extraction of Genomic DNA (gDNA) 

Genomic DNA was extracted and purified from isoniazid mono-resistant clinical isolates (InhR) 

obtained from the Division of Molecular Biology and Human Genetics using our lab protocol. 

Briefly, 300 µl InhR M. tuberculosis culture was spread on two 7H11 plates (9 cm diameter) and 

incubated at 370C for a month. The cultures were then heat inactivated by incubating the plates 

at 800C for 1hr and samples were allowed to cool down for 20mins. A 50ml polypropylene tube 

was filled with approximately 20ml of glass beads (5mm Dia) and 7ml of extraction buffer 

(50mM TRIS-HCL pH7.4, 25mM EDTA and 5% Monosodium glutamate) was added to it. 
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 Colonies were carefully scraped from the plates and re-suspended in the 50ml tube containing 

the buffer and the beads. The tube was then vortexed vigorously for 2 mins and 500µl of 

lysozyme (Roche) with a final concentration of 100mg/ml was added. The vortexed tube was 

incubated for 2hrs at 370C and gently mixed every 30mins and then 650 µl of 10x Proteinase K 

buffer and 300 µl of Proteinase K (10mg/ml) were added to the mixture, mixed and the 

incubated overnight at 450C.  To the overnight mixture, 5ml of 

phenol/chloroform/isoamylalcohol (25:24:1) was added and the mixture was incubated for 2hrs 

at room temperature with gentle mixing every 30mins. The mixture was then centrifuged at 

2500 xg for 20 mins at room temperature. 

 The top liquid phase was removed and transferred to a new tube containing 5ml of 

chloroform/isoamylacohol (24:1) and mixed by inverting and centrifuged as the above step.  

The top liquid phase was again transferred into a new tube containing 600 µl of 3M sodium-

acetate at pH 5.2 and mixed well. Ice-cold isopropanol (7ml) was then added to the mixture and 

slowly inverted back and forth until DNA became visible.  

The precipitated DNA was fished out immediately with a thin glass rod and the rod was placed 

into a 1.5ml eppendoeff® tube containing 1ml of 70% ethanol for 10mins. The rod was then 

placed in an empty 1.5ml tube at room temperature until DNA was air dried. DNA was re-

hydrated by adding 300 µl of TE buffer at pH 8.0 and the DNA was stored at -200C for future 

use. 
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5.5.1 PCR amplification of target genes from gDNA 

Target genes were PCR-amplified from the purified DNA with the primers listed in table 2. 

These primers were designed using sequences of Mycobacterium tuberculosis obtained from 

Tuberculist (TubercuList Web Server, 2013) using a web based program, Primer3    (version. 

0.4.0). Briefly, a master mix was made from the PCR reagents (Qiagen) as follows; 5 µl (n) 2x Q 

buffer, 2.5 µl (n)  10x Buffer, 2 µl (n)  MgCl2, 2 µl (n) dNTPs, forward and reverse primer (table 

5.2) to a final concentration of 0.5 µM and 0.25 µl (n)  Hot Star Taq polymerase, where n is total 

number of reactions.  PCR conditions were as follows; 15 min activation at 950C followed by 35 

amplification cycles and each cycle conditions as follows; 940C for 1 min denaturation, 600C for 

1 min annealing, 1 min extension at 720 C  and the final elongation step of 10 min at 720C in a 

thermal cycler (Gene Amp® PCR system 9700, Applied Bio-systems). PCR amplification was 

confirmed by 1% agarose gel electrophoresis stained with ethidium bromide separated at 100 

Volts for 1 hour. The PCR amplicons obtained were sequenced at the Central Analytic Facility of 

Stellenbosch University using primers in table 5.2. 

Table 5.2. Primers used for sequencing. 
Gene Forward (5

’
-3

’
)                                                                   Reverse(5

’
-3

’
) Product   Size(bp) 

thyA gcctccgttgtactcctgtg gcctgtatcacttgcccatt 427 

aatcggtagcctacgagctg ctgcgttggtagagctgaca 343 

tccatccggtgagcacat acacgcgtcactccttgatt 550 

folP1 gcggactgttcaaaaccaat cgtcgagatcgagataacacc 149 

gcggactgttcaaaaccaat cttgtgctgcaagctctttg 299 

gcgggtgttatctcgatctc caattatgttgcgccgtctt 505 

gcccagatggtcaacgac catcgcgttctatcctttcc 538 
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5.6 Gene expression of inhR M. tuberculosis exposed to SMX 

5.6.1 Growth conditions and drug treatment 

The bacterial growth conditions and drug treatment procedures were designed to match those 

of Betts et al.,  (2003) with the following modifications; 1ml of frozen stock of M. tuberculosis 

strain was grown in 50ml of 7H9 Mycobacterial medium supplemented with 0.2% (v/v) glycerol, 

10%(v/v) OADC, and 0.025% (v/v) Tween 80 at 37°C to an optical density (OD600) of 0.8 and then 

a 1:100 dilution of the culture was inoculated in 120ml of the same medium in roller bottles 

(Betts et al.,  2003). 

The cultures were then placed in a roller culture apparatus (Wheaton) and rolled at 2rpm at 

37°C until they reached an OD600 of 0.3.  Cultures were then incubated overnight at 37°C 

standing. 30ml of the culture was transferred to 125ml sterile storage bottles (corning) and 

treated with 10µl Dimethyl Sulfoxide (DMSO) and incubated at 37°C while slowly stirring with a 

sterile stirrer bar. The remaining 90ml in the roller bottle was then treated with 30µl of SMX to 

give a final concentration of 2µg/ml and was also incubated at 37°C while agitated on a roller 

machine. 

5.6.2 RNA extraction and cDNA synthesis      

RNA was extracted with the TrizolTM (Invitrogen) extraction method as described by Harper and 

colleagues briefly; Cells from the 30ml control cultures were harvested at time zero by 

centrifugation at 18626×g for 10 minutes (Harper et al.,  2010). In drug treated cultures, cells 
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were harvested as above after 30 minutes, 1hr and 4hrs of treatment. Cells were suspended in 

1ml Trizol in 2ml screw-cap cell ribolysation tubes containing 0.5mm glass beads and ribolysed 

(Fastprep FP120, Bio101 Savant) at the speed of 6m/s for  20 seconds and ribolysation was 

repeated  3 times with cooling in-between on ice for 1 minute.   

The cell lysate was then allowed to incubate at room temperature for 5 minutes. Ribolysed cells 

were centrifuged at 18626×g for 10 min at 4°C. The supernatant containing nucleic acids was 

transferred to a 2ml tube. 200μl of absolute chloroform was added to the ribonucleic acid 

containing fluid and was mixed rapidly for the first 20 seconds and then inverted periodically 

for an additional 2-3 minutes at room temperature. The mixture was then centrifuged 18626×g 

for 10 min at 4°C. The clear aqueous phase was transferred to a new 1.5ml tube and 750μl of 

absolute ethanol was added to the 1.5ml tube. Nucleic acids were allowed to precipitate 

overnight at -20°C. Precipitated nucleic acids were collected by centrifugation 18626×g for 10 

min at 4°C. The supernatant was discarded and the pellet was washed with 1ml of 75% ethanol. 

Samples were then centrifuged at 18626×g for 5 min at 4°C. The supernatant was discarded and 

the pellet allowed to air dry for 10 minutes. 

 Ribonucleic acids were dissolved in 50μl RNase–free water (AmbionTM).  Agarose gel was used 

to check for DNA contamination, 1% gel was prepared and 4µl ethidium-bromide (see 

appendix) was added to it. 5 µl of MassRuler DNA Ladder (Fermentas) was run along with the 

samples. 3 µl of loading buffer (fermentas) plus 2 µl of a sample were loaded in the wells for 

separation in SB running buffer. Furthermore, PCR using 16S primers (table 3), was also 

performed to identify contaminating DNA, (see section 6.3 for PCR procedures). 
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Any DNA contamination was removed by TURBO DNA-free™ kit (Ambion) with the following 

modifications; 15µl of total RNA was added to a new RNase-free 1.5ml tube, 2µl of TURBO 

DNase and 2µl of 10X TURBO DNase Buffer was added to the tube and incubated for 1hr at 

37°C. RNase free water was added to the DNase treated RNA to a final volume of 200µl and an 

equal volume of cold Phenol: chloroform (4:1) was added, mixed and stored in ice for 10min.  

The mixture was centrifuged at 13400×g for 10min at room temperature and 150µl of the top 

aqueous layer was transferred to a new tube. 0.1 volumes of cold  RNase-free sodium acetate 

pH 5.2 and 2.5 volumes of cold RNase-free 100% ethanol was added to the tube and incubated 

at 40C for 1hr. RNA was collected by centrifugation at 13400×g for 30min at 40C.  

The total RNA was washed with 1ml of cold RNase-free 70% ethanol and centrifuged at   

13400×g for 10min at 4°C. Ethanol was aspirated and the pellet was air-dried for 20min and re-

dissolved in 20µl RNase free water. Following phenol precipitation, PCR was again performed to 

detect DNA contamination using 16S primers (table 3). 

 The quality and the quantity of the total RNA was determined by ExperionTM (Bio-RAD), 

according to the manufacturer’s instructions. cDNA was synthesized from 0.5µg of the 

extracted total RNA using Quantitect Reverse Transcription Kit (Qiagen) according to the 

manufacturer’s instructions. 

5.6.3 PCR 

Qiagen PCR kit with HotStar Taq polymerase was used in all PCR reactions according to 

manufacturer’s instructions with the following amplification parameters; 15min activation step 
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at 95°C for 15 minutes followed by 35 to 40 cycles of (i) a 30sec denaturation step at 72°C (ii) a 

30 sec annealing step at the required annealing temperature (Ta) of the specific set of primers 

and (iii) an elongation or synthesis step at 72°C for one minute. A final elongation step at 72°C 

for 10min. In all PCR reactions, a negative control (No templet) and positive controls (genomic 

DNA) were included. Products of the PCR reaction were analyzed with 1% agarose gel 

electrophoresis. 

5.6.4 Real-Time RT-PCR 

Real time PCR was performed in a LightCycler version 1.5 (Roche) using 20µl capillaries (Roche). 

A 10µl reaction mixture was prepared, which included 1:10 diluted cDNA, 0.5µM of each primer 

(listed in table 3) and LightCycler MasterPlus SYBR Green PCR master mix (Roche). PCR 

parameters; (1) Activation at 95°C for 15 min (2) Amplification 40 cycles, Quantification analysis 

mode  (95°CΙ15s, 60°CΙ30s, 72°CΙ06s) with a single fluorescence measurement (3) Melting curve 

analysis, 60-99°C with a heating rate of 0.1°C/s and a continuous fluorescence measurement (4) 

Cooling at 40°C. 

RNA template and non template controls were included to determine DNA contamination in 

the samples. PCR efficiency for each transcript was calculated from serially diluted H37Rv 

genomic DNA. In order to determine the relative transcript levels in the samples, the statistical 

programme REST-384 Version 1 was used to evaluate relative quantification of gene expression 

(Pfaffl et al., 2002). The expression levels of the target genes were normalized to 16s which is 

the internal standard (Eleaume and Jabbouri, 2004). 
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Table3. Primers for gene expression 

Gene                          Forward (5’-3’)                                                                    Reverse(5’-3’)  Product 

size(bp)        

Annealing 

Tem(°C) 

FolP1 cgtcacggacgactctttct cttgtgctgcaagctctttg  200 56.7 

16s tcatgttgccagcacgtaat ctggacataaggggcatgat  102 55 

 

5.7 Measurement of folate in Mycobacterium tuberculosis treated with SMX 

5.7.1 Bacterial culturing conditions 

M.bovis BCG was used as model for M. tuberculosis to optimize our protocols for the 

assessment folate levels in response to the treatment of SMX. Folate was extracted from in 

vitro growing BCG under the stress of SMX using the following two methods. The first one was 

adapted from Steenkamp & Vogt and the second method was adapted from Lu and colleagues 

(Lu et al., 2007; Steenkamp and Vogt, 2004). All the standards and the reagents used in this part 

of the study were purchased from Sigma-Aldrich (St. Louis, MO). 

5.7.2 First method 

BCG was grown in 200ml of 7H9 to an OD600 of 0.6 and the culture was split into four 50ml 

tubes and the tubes were centrifuged at 2755×g for 15mins at 40C. Supernatant was discarded 

and the pellets from the four tubes were combined in one 50ml tube (total mass of wet cells ≈ 

1g). The pellet was re-suspended in 875 µl of 5.7mM EDTA, 625 µl of 1M perchloric acid and 
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1000 µl of acetonitrile.  The solution was sonicated (Amplitude 30 for 20 seconds, 6 times with 

1min cooling intervals) and the lysate was centrifuged at 2755×g for 15mins at 40C. pH was 

adjusted to 8-9 using potassium carbonate and the solution was centrifuged for 15mins at 40C 

at 2755×g. The supernatant was freeze dried and sent for analysis by the Central Analytical 

Facility, Mass Spectrometry Unit. 

5.7.3 Second method 

BCG was grown in 300ml of 7H9 to an OD600 of 0.6 and the culture was also split into four 50ml 

tubes and the tubes were centrifuged at 2755×g for 15mins at 40C. Supernatant was discarded 

and the pellet in each 50ml was re-suspended into 300 µl of 80:20 Methanol: Water + 0.1% 

ascorbic acid + 20mM ammonium acetate Solution (-750C cold and prepared fresh daily). The 

solution was kept in ice for 15min.  

The solution was then centrifuged at 2755×g for 5min at 40C and the supernatant was 

transferred to a 1.5ml tube and was taken as the first extraction. The pellet was then re-

suspended in 200 µl of the solution and sonicated (QSONICA) (Amplitude 30 for 20 seconds, 6 

times with 1min cooling intervals). The lysate was centrifuged at 18626×g for 5min at 40c and 

supernatant was transferred to a 1.5ml tube and was taken as the second extraction. The 

extracts were then lyophilized and sent for analysis by the Central Analytical Facility, Mass 

Spectrometry Unit. 

5.7.4 Analysis 

For the quantification of folate levels in BCG cultures treated with SMX and untreated cultures, 

dihydrofolate, tetrahydrofolate and Para-Aminobenzoic Acid (PABA) were used as standards 
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and LC-MS analysis was performed by the Central Analytical Facility with the following settings; 

The lyophilized material was re-dissolved in a solution containing 25% acetonitrile and 0.05% 

formic acid and analyzed by ultraperformance liquid chromatography-electrospray ionization-

tandem mass spectrometry (UPLC-ESI-MS/MS). UPLC-ESI-MS/MS analysis was performed with a 

Waters Acquity UPLC system coupled to a Waters Xevo TQ MS system (Waters Corporation, 

Milford, MA, USA). Compounds (THF, DHF and PABA) were separated on a Waters Acquity BEH 

phenyl column (100 by 2.1 mm; 1.7 μm) at 50°C using a 1% formic acid (in water) (solvent A)–

acetonitrile (solvent B) gradient, starting with 100% solvent A for 0.1 min at a flow rate of 0.3 

ml/min. The acetonitrile concentration was increased linearly to 40% over 3.5 min at a flow rate 

of 0.3ml/min and then increased to 95% over 5.1 min at a flow rate of 0.5 ml/min and 

maintained for 0.2 min. The column was re-equilibrated for 2 min (the total run time was 8 

min). Compounds were analyzed in the ESI-positive mode, and the multiple-reaction-

monitoring (MRM) transition m/z 446.1 > 120.2 (cone voltage = 15 V; collision energy = 30 V) 

for THF, m/z 444.1 > 178.1(cone voltage = 15 V; collision energy = 15 V) for DHF and m/z 138.0 

> 65.1 for PABA (cone voltage = 30 V; collision energy = 25 V). The source capillary was at 3.5 

kV. The source and desolvation temperatures were 140°C and 400°C, respectively and standard 

curves were generated for quantification of these compounds. 

5.8 Proteomics 
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5.8.1 Culturing conditions and drug treatment of Isoniazid mono-resistant clinical isolate 

(R1129) 

Isoniazid mono-resistant clinical isolate (R1129) was grown in eight 50ml flasks with 7H9 liquid 

medium enriched with DC (Glucose and catalase) to an OD600≈ 0.6. The cultures were mixed 

together to make a homogenous culture and then split into four 50ml cultures. Four 50ml 

cultures were treated with 20µl of SMX each in order to give final concentration of 9.5µg/ml 

SMX in the flask and the other four was treated with DMSO. Cultures were harvested at time 

zero and 24 hours by centrifugation as follows: Briefly, each 50ml liquid culture was aliquoted 

into two 25ml aliquots in 50ml conical tubes (SPL Lifesciences) and centrifuged at 2500g for 

10min at 4°C.  

Supernatant was frozen at -800C for future use which contained culture secretion proteins. Cells 

were washed with 1ml extraction buffer (100µl of a Tris-HCL 1M, pH 7.4), 200µl Protease 

inhibitor (Roche), 3µl Tween 80 and H20 to a final volume 10ml and transferred to 2ml screw 

cap tubes (Quality Scientific Plastics). The suspension was centrifuged at 14000g for 4min and 

kept on Ice for 1min and centrifuged again for 2min and kept on ice for 1min. The supernatant 

was removed and cells were kept. An Equal amount of glass beads (0.1mm), 300µl extraction 

buffer and 10µl DNase were added to the cells and the mixture was rybolised (Fastprep FP120, 

Bio101 Savant) at 4 m/s for 20sec for 6 intervals and tubes were kept on ice after every run. The 

lysate was centrifuged at 14000g for 2 min and the tubes were kept on ice for 0.5min for two 

intervals.  
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Only the supernatant was kept (contains cellular proteins). 20µl of extraction buffer was filtered 

through the filter (0.22 µm, 33mm Low Protein Binding Durapore® Membrane, Millex®-GV) 

using a syringe in order to prepare the filter before using (because if it is dry, you will lose your 

proteins). The whole-cell lysate (supernatant) was filter sterilized through the prepared filter. 

5.8.2 Protein quantification 

Protein concentrations were determined spectrophotometrically using RCDC Protein assay (Bio-

Rad Laboratories). Briefly; 2mg/ml of Bovine Serum Albumin (BSA) working stock was prepared 

by adding 80 µl of extraction buffer to 20 µl of 10mg/ml BSA stock. The concentrations of BSA 

used to generate standard curve are listed in table 4. 

Table 4:  BSA standards for the standard curve 
Standard concentration µl for 2mg/ml BSA stock µl for Protein extraction buffer 

0 0 25 

0.2 2.5 22.5 

0.5 6.25 18.75 

1.0 12.5 12.5 

1.5 18.75 6.25 

2.0 25 0 

 

Samples were diluted by 1:5 by taking 5 µl of a sample together with 20 µl of protein extraction 

buffer. From the kit, the following buffers were prepared according to manufacturer’s 

instructions. Buffer A+S was prepared by adding 2000 µl buffer A and 5 µl of buffer S and this 

buffer was enough for 16 samples including BSA standards. 125 µl RC Reagent I was added into 

each sample tube, vortexed and incubated for 1 minute at room temperature. 125 µl RC 
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Reagent II was then added into each tube, vortexed and tubes were centrifuged at room 

temperature at 18626×g for 5 minutes. 

The supernatant was discarded by inverting the tubes on clean absorbent tissue paper and 

liquid was allowed to drain completely from tubes. 127 µl of Reagent A was added (prepared 

from Reagents S and A) to each tube, vortexed and the tubes were incubated at room 

temperature for 5 minutes, (or until precipitate was completely dissolved). Tubes were 

vortexed before proceeding to next step. One ml of DC reagent B was added to each tube, 

vortexed immediately and the tubes were then incubated at room temperature for 15 minutes. 

After 15 minutes incubation, absorbance was read at OD=595 nm. A standard curve was drawn 

on Excel as linear regression to determine protein sample concentrations. 

5.8.3. SDS Polyacrylamide Gel Electrophoresis 

5.8.3.1 Preparation of the Samples 

Loading buffer (4X) from Bio-Rad was added to the samples such that the final concentration of 

the buffer in the sample is 1X. Loading buffer and protein samples were vortexed and the tubes 

were placed in a 950C heating block for 5min. Samples where then centrifuged at 18626×g for 5 

seconds and loaded on the gel along with PageRulerTM Prestained Protein Ladder (Thermo 

Scientific). 

5.8.3.2 Protein separation 

CriterionTM   XT precast gels (4-12% Bis-Tris, 12+2 well comb, 45 µl, 1.0 mm, Bio-Rab were used 

for the separation of the intracellular proteins. Proteins were separated at 150V (Voltage) until 

the dye front reached the end of the gel. XT MOPS (Bio-Rad) running buffer was used. 
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 5.8.3.3 Staining of the gels 

Gels were stained with Coomassie blue for two hours with gentle shaking at room temperature. 

 The stain was prepared as follows; 2.5 g Coomassie Brilliant blue, 450ml absolute methanol, 

100ml of glacial acetic acid and 250ml of water. 

8.3.4 De-staining of the gels 

Gels were de-stained with the de-staining solution overnight, which was prepared as follows; 

100ml 100% Glycerol, 375ml glacial acetic acid, 250ml absolute Methanol and volume was 

made up to 5L with sterile water. 

5.8.4 Protein Identification 

LC-MS/MS analysis was carried out by Dr S. Smit on the LTQ Orbitrap Velos (Thermo Scientific) 

at the proteomic reach group at the Central Analytical Facility, Stellenbosch University.  

 5.8.4.1 In-gel trypsin digestion  

The gel pieces were cut into smaller cubes and washed twice with water followed by 50% (v/v) 

acetonitrile for 10 min. The acetonitrile was replaced with 50 mM ammonium bicarbonate and 

incubated for 10 min, and repeated two more times. All the gel pieces were then incubated in 

100% acetonitrile until they turned white, after which the gel pieces were dried in vacuo. 

Proteins were reduced with 10 mM DTT for 1 h at 57 °C. This was followed by brief washing 

steps of ammonium bicarbonate followed by 50% acetonitrile before proteins were alkylated 

with 55 mM iodoacetamide for 1 h in the dark. 

 Following alkylation the gel pieces were washed with ammonium bicarbonate for 10 min 

followed by 50% acetonitrile for 20 min, before being dried in vacuo. The gel pieces were 

digested with 100 μl of a 10 ng/μl trypsin solution at 37:C overnight. The resulting peptides 
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were extracted twice with 70% acetonitrile in 0.1% trifluoroacetic acid for 30 min and then 

100% acetonitrile for 30 min, and then dried. The dried peptides were then dissolved in 5% 

formic acid and cleaned using Stage Tips (Thermo Scientific) according to the instructions. The 

peptides were again dried and stored at -20:C. Dried peptides were dissolved in 5% acetonitrile 

in 0.1% formic acid and 10 μl injections were made for nano-LC chromatography.  

5.8.4.2 Mass spectrometry  

All experiments were performed on a Thermo Scientific EASY-nLC II connected to a LTQ 

Orbitrap Velos mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with a 

nano-electropsray source. For liquid chromatography, separation was performed on a EASY-

Column (2 cm, ID 100μm, 5 μm, C18) pre-column followed by XBridge BEH130 NanoEase 

column (15 cm, ID 75 μm, 3.5 μm, C18) column with a flow rate of 300 nl/min. The gradient 

=7used was from 5-17 % B in 5 min, 17-25% B in 90 min, 25-60% B in 10 min, 60-80% B in 5 min 

and kept at 80% B for 10 min. Solvent A was 100% water in 0.1 % formic acid, and solvent B was 

100 % acetonitrile in 0.1% formic acid.  

The mass spectrometer was operated in data-dependent mode to automatically switch 

between Orbitrap-MS and LTQ-MS/MS acquisition. Data were acquired using the Xcaliber 

software package. The precursor ion scan MS spectra (m/z 400 – 2000) were acquired in the 

Orbitrap with resolution R = 60000 with the number of accumulated ions being 1 x 106. The 20 

most intense ions were isolated and fragmented in linear ion trap (number of accumulated ions 

1.5 x 104 using collision induced dissociation. 

 The lock mass option (polydimethylcyclosiloxane; m/z 445.120025) enabled accurate mass 

measurement in both the MS and MS/MS modes. In data-dependent LC-MS/MS experiments, 
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dynamic exclusion was used with 60 s exclusion duration. Mass spectrometry conditions were 

1.8 kV, capillary temperature of 250 °C, with no sheath and auxiliary gas flow. The ion selection 

threshold was 500 counts for MS/MS and an activation Q-value of 0.25 and activation time of 

10 ms were also applied for MS/MS.  

5.8.4.3 Data analysis  

MaxQuant 1.2.2.5 was used to identify proteins via automated database of all tandem mass 

spectra against the TBDB H37 July 2013 database. Carbamidomethyl cysteine was set as fixed 

modification, and oxidized methionine, N-acetylation and deamidation (NQ), Pyro-Gln, Pyro-Glu 

was used as variable modifications. The precursor mass tolerance was set to 20 ppm, and 

fragment mass tolerance set to 0.8 Da.  

Two missed tryptic cleavages were allowed. Proteins were considered positively identified 

when they were identified with at least 1 tryptic peptide per protein, and protein and peptide 

FDR of 0.01. Statistical analysis was done using Perseus. Data were transformed (log 2) and 

imputated (width 0.3, Down shift 1.8) to replace missing values. ANOVA testing was performed 

using a p-value with threshold of 0.05. Z-scoring normalisations were also done. 
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APPENDIX 
6.1) Culture media 

6.1.1) DC mycobacterial liquid culturing media supplement: 

10g Glucose, 0.75ml Catalase and the mixture was dissolved in 500ml double distilled 

water. The solution was sterilised by it passing through a 0.22 micron filter. The solution 

was aliquoted into 50ml tubes and stored at 40C for 1 month. 

6.2) Buffers and solutions 

6.21) 1M Tris-HCl buffer: 

12.114g Tris (Sigma) was dissolved in 80mL water. Adjust pH to the desired value by 

adding concentrated HCl. The final volume was adjusted to 100ml with water and 

sterilized by autoclaving. 

6.2.2) 0.5M EDTA: 

 9.306g was dissolved in 50ml water 

6.2.3) DNA extraction buffer:  

(5% sodium glutamate, 50 mM Tris-HCl [pH 7.4], and 25 mM EDTA) 

6.2.4) 10X proteinase K buffer: 

 (5% sodium dodecyl sulfate, 100 mM Tris-HCl [pH 7.8], 50mM EDTA) 

6.2.5) Phenol-chloroform-isoamyl alcohol (25/24/1): 

400ml phenol, 384ml chloroform, 16ml isoamyl alcohol 

6.2.6) Chloroform-isoamyl alcohol (24/1): 

384ml chloroform, 16ml isoamyl alcohol 

6.2.7) 3 M sodium acetate (pH 5.2) (500ml): 
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204.1g NaOAc was dissolved in 400mL water. Adjust pH to the desired value by adding 

concentrated glacial acetic acid. The final volume was adjusted to 500ml with water and 

stored at room temperature.TE: (10 mM Tris-HCl [pH 8.0], 1 mM EDTA) 

6.2.8) Agarose gel: (1X Tris-borate-EDTA, pH 8.3) 

All agarose gels were prepared using 1X TE buffer and was also used as a running buffer 

6.2.9) 20× SB Buffer:  

19.1g di-Sodium tetraborate decahydrate dissolved in 500ml water. 

6.2.10) 10% SDS: 10g in 100ml distilled water: 

A 10% SDS stock solution (Sigma) was diluted to the desired working solution. 

6.2.11) 15% glycerol (for bacterial stock): 

 7.5ml of 100% glycerol into 42.5ml of bacterial culture. 

6.2.12) 5% Acid alcohol (ZN-staining): 

 5% HCl in 100% methanol 

6.2.13) Folat extraction buffer (100ml): 

80:20 Methanol: Water + 0.1% ascorbic acid + 20mM ammonium acetate Solution 

0.2g Ammonium acetate 

0.1g   Ascorbic acid 

The solution was made fresh every day and stored at -800C 
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Objectives: To investigate the effect of trimethoprim/sulfamethoxazole on the survival of Mycobacterium
tuberculosis and trimethoprim and sulfamethoxazole individually and combined with the first-line tuberculosis
drugs (isoniazid, rifampicin and ethambutol).

Methods: M. tuberculosis strains were exposed to either trimethoprim/sulfamethoxazole combination or sulfa-
methoxazole and trimethoprim alone at various concentrations. The strains were also exposed to sulfameth-
oxazole in combination with existing antibiotics to assess the combined effect on the growth of M. tuberculosis
in the BACTEC 460TB system. The effect of the drugs was compared with vehicle-treated controls. Drug inter-
actions were interpreted using quotient values obtained from the growth index of cultures treated with a single
drug or the combination.

Results: Trimethoprim showed a negligible effect on the growth of M. tuberculosis while sulfamethoxazole
inhibited 80% of the growth of M. tuberculosis at 4.75 mg/L. There was no synergistic activity between sulfa-
methoxazole and trimethoprim, although an additive effect was observed. A statistically significant synergistic
effect was observed between sulfamethoxazole and rifampicin. Sulfamethoxazole also had an additive effect
with ethambutol, but there was no interaction with isoniazid.

Conclusions: Sulfamethoxazole is the main active compound against M. tuberculosis in the combination
trimethoprim/sulfamethoxazole and has a synergistic effect with rifampicin. These findings suggest that
sulfamethoxazole has potential in the multidrug regimen against M. tuberculosis.

Keywords: trimethoprim, isoniazid, ethambutol, synergy

Introduction
The emergence of extensively drug-resistant Mycobacterium
tuberculosis strains (although quite rare in some parts of the
world) is a medical and public health concern as the inexpensive
and easily administered first-line drugs lose efficacy. Therefore,
there is a need for new drugs and drug combinations. While
new drugs are being sought, it is important to re-examine avail-
able, registered and inexpensive compounds for their potential
role as part of antituberculosis regimens.

Trimethoprim/sulfamethoxazole is an old drug combination
used in the last few decades for treating various bacterial infec-
tions, such as urinary tract infection.1 More recently, however,
trimethoprim/sulfamethoxazole has been used extensively in

HIV-infected patients for the prevention and treatment of
Pneumocystis jirovecii and Toxoplasma gondii infections.2

Trimethoprim inhibits dihydrofolate reductase, thereby blocking
the reduction of dihydrofolate to tetrahydrofolate. Sulfameth-
oxazole is the structural analogue of para-aminobenzoic acid
(PABA) and inhibits dihydropteroate synthetase, a key enzyme
in folate biosynthesis, encoded by folP1.3 A recent study reported
that a patient, initially thought to have nocardiosis, improved on
trimethoprim/sulfamethoxazole, but later was found to have had
tuberculosis without nocardiosis or any other infection. This
study suggested that M. tuberculosis was susceptible to the
combination of sulfamethoxazole and trimethoprim.4

Sulfonamides were used for the treatment of tuberculosis in
the 1940s, but toxicity from early sulfonamides and the fact
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that the newer antimycobacterial compounds were much safer
and more effective resulted in sulfonamides being abandoned
for the treatment of tuberculosis.4 With the new knowledge
about trimethoprim/sulfamethoxazole and the fact that this
combination is well tolerated, this study presents the investiga-
tion of the antimycobacterial activity of trimethoprim/sulfameth-
oxazole. The combined effect of sulfamethoxazole with
trimethoprim or with the first-line antituberculosis drugs isoni-
azid, rifampicin and ethambutol against M. tuberculosis was
also studied.

Materials and methods
Ethics approval for this study was obtained from the Health Research
Ethics Committee of Stellenbosch University (reference no. N11/07/230).

Reagents and antibiotics
Drugs were purchased from Sigma-Aldrich (St Louis, MO, USA). Stock
solutions of 76000 mg/L sulfamethoxazole, 40 mg/L trimethoprim and
332 mg/L rifampicin were prepared in 100% sterile DMSO. Stock solutions
of 332 mg/L isoniazid and 200 mg/L ethambutol were prepared in
deionized water and filter sterilized with a 0.2 mm Suporw membrane
Acrodiscw syringe filter (Pall Corporation, USA). All stock solutions were
prepared under sterile conditions and stored at 2208C.

M. tuberculosis strains
The reference strain of M. tuberculosis H37Rv (ATCC 27294) was used for
drug evaluation. The H37Rv strain was cultured at 378C in 7H9 Middleb-
rook medium supplemented with 10% (v/v) oleic acid/albumin/dextrose/
catalase (OADC) (Becton Dickinson, Sparks, MD, USA) and 0.025% (v/v)
Tween 80 to an optical density (OD600) of 0.7. Ziehl–Neelsen staining
and blood agar cultures were performed to control for contamination
of the bacterial stocks. Bacterial stocks were stored at 2808C until
further use.

Inoculum preparation
A volume of 0.1 mL of each M. tuberculosis frozen stock was inoculated in
BACTEC 12B medium (Becton Dickinson). The cultures were incubated at
378C and the growth monitored daily in a BACTEC 460TB system (Becton
Dickinson) to establish a working culture. The growth was monitored until
the culture reached a maximum growth index (GI) of 999. A volume of
0.1 mL of the working culture was subsequently inoculated into a new
vial containing BACTEC 12B medium and grown to a GI of 500 (GI500).
This culture was used for susceptibility testing and synergistic effect
determinations.

Drug susceptibility testing
The MICs of trimethoprim/sulfamethoxazole, sulfamethoxazole, tri-
methoprim, isoniazid, rifampicin and ethambutol for M. tuberculosis
H37Rv were determined using the BACTEC 460TB system as described
by Tortoli et al.5 Briefly, 0.1 mL from a culture at GI500 was inoculated
into BACTEC vials containing a drug at the required concentration. The
control vials contained a drug solvent with undiluted bacterial inoculum
and a 1:100 diluted bacterial inoculum. The cultures were monitored
daily until the GI of the 1:100 control culture was ≥30.6

M. tuberculosis strains were categorized as susceptible to a specific
drug when the GI of the drug-exposed culture at a specific concentration
on the final day of the experiment (GI 1:100.30) was below or equal to
the GI of the preceding day, indicating a reduction of metabolic activity in

the test vial. The GI of the drug-exposed culture on the final day was also
compared with the GI of the drug-free vial containing undiluted inoculum
on the same day and MIC was defined as the minimum concentration of
a drug that inhibited 99% of bacteria.

Sulfamethoxazole in combination with trimethoprim
and the first-line antituberculosis drugs isoniazid,
rifampicin and ethambutol
The drug–drug interaction of sulfamethoxazole in combination with iso-
niazid, rifampicin and ethambutol was assessed by evaluating drug com-
binations that were two to four times less than the MICs of the individual
drugs and for sulfamethoxazole and trimethoprim in a 19:1 ratio. Growth
was monitored daily in the BACTEC 460TB system, as described earlier.

Synergism
The effect of the drug combinations was interpreted using a formula in
which synergism is defined as x/y,1/z, where x is the GI of the vial
with two drugs on the final day (day 5), y is the lowest GI of the single
drug in the combination and z is the number of drugs in the combination.
In this instance, two drugs were used in a combination, hence z¼2.
Therefore, x/y,0.5¼synergy, x/y≥0.5 and ,0.75¼additive, x/y≥0.75
and ,2¼no interaction, and x/y≥2¼antagonism.7

Results
Sulfamethoxazole and trimethoprim using a fixed ratio of 19
sulfamethoxazole to 1 trimethoprim8 displayed antimycobacter-
ial activity. In order to determine which of the two drugs was
responsible for the observed antimycobacterial effect, the indi-
vidual drugs were tested for growth inhibition of M. tuberculosis.
The antimycobacterial activities of these compounds on
M. tuberculosis strain H37Rv are shown in Figure 1. Trimethoprim
(Figure 1a) had negligible activity against M. tuberculosis,
showing only 22% growth inhibition at 76 mg/L, doubling to
44% at 152 mg/L. In contrast, sulfamethoxazole (Figure 1b)
showed 93% growth inhibition at 76 mg/L and 95% growth
inhibition at 152 mg/L. At 9.5 mg/L, sulfamethoxazole still
showed 90% growth inhibition, which was determined as the
MIC of sulfamethoxazole for M. tuberculosis (Figure 1).

Combined effect of sulfamethoxazole and
trimethoprim on H37Rv

Table 1 lists the quotient values for the combination of sulfa-
methoxazole and trimethoprim. The drug–drug interaction was
assessed at concentrations that were below the cytotoxic level
in a 19:1 ratio.

9 There was no synergistic killing between the
two compounds. However, an additive effect was observed
between 9.5 mg/L sulfamethoxazole (MIC) and 0.5 mg/L
trimethoprim.

Combined effect of sulfamethoxazole with first-line
drugs on H37Rv

The MICs of the compounds for the laboratory strain H37Rv
were determined using the BACTEC 460TB system and Table 2
lists the MIC of each drug. A concentration below the MIC of
sulfamethoxazole (2 mg/L, approximately five times less than
the MIC) was tested in combination with the first-line
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tuberculosis drugs isoniazid, rifampicin and ethambutol. Table 1
includes only concentrations where synergy or an additive
effect was observed. For combinations where no interaction
was noted, only the quotient obtained from half the MIC is
listed. A strong and concentration-dependent synergistic inter-
action between rifampicin and sulfamethoxazole was observed,
indicated by the quotients. There was no synergistic killing
effect or antagonistic effect observed between sulfamethoxa-
zole and isoniazid. The combination of sulfamethoxazole
(2 mg/L) with 0.4 mg/L ethambutol showed a borderline syner-
gistic effect. It therefore appears that there was no antagonism
in any of the combinations of sulfamethoxazole with the first-
line drugs.

Discussion
We have shown that sulfamethoxazole possesses antimycobac-
terial activity that could be explored further for clinical use.
Trimethoprim/sulfamethoxazole is readily available and is an
inexpensive combination. A single dose of trimethoprim/
sulfamethoxazole (160/800 mg) yields a sulfamethoxazole
Cmax of 45 mg/L at �2 h and a sulfamethoxazole Cmin of

13 mg/L 24 h after ingestion.10 Both are in excess of the MIC
for 90% inhibition for M. tuberculosis strain H37Rv in this study.
An early randomized study in HIV-infected adults with active tu-
berculosis in Coté d’Ivoire comparing trimethoprim/sulfameth-
oxazole with placebo showed efficacy in reducing mortality and
morbidity, largely due to reduced septicaemia and enteritis.11

There was a modest, non-significant reduction in mycobacterial
disease in subjects receiving trimethoprim/sulfamethoxazole
[hazard ratio 0.6 (0.3–1.2)]. An antimycobacterial effect may
have contributed to the benefit. Forgacs et al.4 recently reported
that this combination showed activity against M. tuberculosis.
After documenting a clinical response in a patient treated only
with trimethoprim/sulfamethoxazole for suspected nocardiosis,
who was subsequently shown to have drug-susceptible
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Figure 1. Growth profile of M. tuberculosis H37Rv in the presence of
various concentrations of sulfamethoxazole and trimethoprim plus
DMSO (control). The GIs of H37Rv in BACTEC vials with various drug
concentrations were measured using the BACTEC 460TB system. The
BACTEC vials were incubated at 378C and GI readings were obtained
after the first day until the DGI of the 1:100 culture was .30. (a)
Activity of trimethoprim. (b) Activity of sulfamethoxazole. Results were
obtained from three separate experiments and standard deviations
were calculated using Excel. TMP, trimethoprim; SMX, sulfamethoxazole.

Table 1. Interaction between sulfamethoxazole and trimethoprim,
rifampicin, ethambutol and isoniazid

SMX (mg/L) TMP (mg/L) Quotients (mean x/y+SD)

9.5 0.5 0.62+0.03
4.75 0.25 1.06+0.02
2.4 0.125 1.18+0.26

SMX (mg/L) RIF (mg/L)
2 0.3 0.16+0.19

0.4 0.19+0.16

SMX (mg/L) EMB (mg/L)
2 0.4 0.49+0.02

SMX (mg/L) INH (mg/L)
2 0.025 1.03+0.05

The table shows the interaction between sulfamethoxazole (SMX) and
trimethoprim (TMP), rifampicin (RIF), ethambutol (EMB) and isoniazid
(INH). The data were obtained at day 5 when the GI of the 1:100
culture was ≥30 or when the GI of the control treated with DMSO
(solvent) reached 999. Synergy was defined as x/y,1/z, where x is the
GI value of the combination, y is the lowest GI of the single drug in
the combination and z is the number of drugs combined (which was
two in our case). Synergy, x/y,0.5; additive, x/y≥0.5 and ,0.75; no
interaction, x/y≥0.75 and ,2; antagonism, x/y≥2. All results were
obtained from three separate determinations and standard deviations
were calculated using Excel.

Table 2. MICs of the first-line drugs and sulfamethoxazole for
M. tuberculosis strain H37Rv

Drug MIC (mg/L)

INH 0.05
EMB 1.6
RIF 0.8
SMX 9.5

INH, isoniazid; EMB, ethambutol; RIF, rifampicin; SMX, sulfamethoxazole.
MICs were determined using the BACTEC 460TB system following the
manufacturer’s recommendations.
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tuberculosis, they then showed an antituberculosis effect in clin-
ical isolates, including multidrug-resistant tuberculosis.4

Our data support the findings of Ong and colleagues,12 who
reported that in the combination of trimethoprim and sulfa-
methoxazole, it is only sulfamethoxazole that has an activity
against M. tuberculosis. We evaluated the interaction of sulfa-
methoxazole with trimethoprim and the first-line drugs isoniazid,
rifampicin and ethambutol and there was no synergistic killing
between sulfamethoxazole and trimethoprim. Sulfamethoxazole
showed a strong synergistic effect with rifampicin, one of the two
key drugs in the tuberculosis regimen.13 This synergism was
achieved at very low concentrations of both drugs, where sulfa-
methoxazole at four times less than its MIC of 9.5 mg/L in com-
bination with rifampicin between two and three times its MIC of
0.8 mg/L gave the same killing effect as rifampicin at its MIC.
The combination of sulfamethoxazole and ethambutol showed
an additive effect, with no positive or negative interaction
between sulfamethoxazole and isoniazid. There was no antagon-
ism in all combinations involving sulfamethoxazole. The synergy
between sulfamethoxazole and rifampicin may be the result of
their respective targets; sulfamethoxazole indirectly inhibits
RNA synthesis through inhibiting tetrahydrofolate production, a
co-factor in the synthesis of thymidine, and rifampicin directly
inhibits the RNA synthesis by inhibiting DNA-dependent RNA
polymerase.3,14

Our findings support reports that sulfamethoxazole is the
active compound in the trimethoprim/sulfamethoxazole combin-
ation. Sulfamethoxazole has synergistic activity with rifampicin
and an additive effect with ethambutol. Trimethoprim/sulfa-
methoxazole is a registered drug combination for other indica-
tions, is inexpensive and is widely available. Mouse studies will
be undertaken before proceeding to clinical trials to clarify the
potential of sulfamethoxazole and sulfamethoxazole/rifampicin
in drug-susceptible tuberculosis. Also, we plan to evaluate clinical
isolates.

Acknowledgements
We wish to thank Gail Louw, Melanie Grobbelaar, Albertus Viljoen, Carine
Sao Emani, Ray-Dean Petersen and Vuyiseka Mpongoshe for their
technical support.

Funding
This work was supported by the University of Stellenbosch, the South
African Medical Research Council and the South African National
Research Foundation.

Transparency declarations
None to declare.

References
1 Hooton TM, Stamm WE. Diagnosis and treatment of uncomplicated
urinary tract infection. Infect Dis Clin North Am 1997; 11: 551–81.

2 Rodriguez M, Fishman JA. Prevention of infection due to Pneumocystis
spp. in human immunodeficiency virus-negative immunocompromised
patients. Clin Microbiol Rev 2004; 17: 770–82.

3 Libecco JA, Powell KR. Trimethoprim/sulfamethoxazole: clinical update.
Pediatr Rev 2004; 25: 375–80.

4 Forgacs P, Wengenack NL, Hall L et al. Tuberculosis and
trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother 2009;
53: 4789–93.

5 Tortoli E, Piersimoni C, Bacosi D et al. Isolation of the newly described
species Mycobacterium celatum from AIDS patients. J Clin Microbiol 1995;
33: 137–40.

6 Siddiqi SH. Bactec TB System, Product and Procedure Manual, Revision B.
Towson, MD, USA: Becton Dickinson Diagnostic Instrument Systems,
1989.

7 Hoffner SE, Svenson SB, Källenius G. Synergistic effects of
antimycobacterial drug combinations on Mycobacterium avium complex
determined radiometrically in liquid medium. Eur J Clin Microbiol 1987;
6: 530–5.

8 Winslow DL, Pankey GA. In vitro activities of trimethoprim and
sulfamethoxazole against Listeria monocytogenes. Antimicrob Agents
Chemother 1982; 22: 51–4.

9 Wen X, Wang J-S, Backman JT et al. Trimethoprim and
sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9,
respectively. Drug Metab Dispos 2002; 30: 631–5.

10 Varoquaux O, Lajoie D, Gobert C et al. Pharmacokinetics of the
trimethoprim-sulphamethoxazole combination in the elderly. Br J Clin
Pharmacol 1985; 20: 575–81.

11 Wiktor SZ, Sassan-Morokro M, Grant AD et al. Efficacy of
trimethoprim-sulphamethoxazole prophylaxis to decrease morbidity
and mortality in HIV-1-infected patients with tuberculosis in Abidjan,
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