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Abstract

RFI Mitigation in Radio Astronomy

N.C. Thompson

Department of Electrical and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng (E&E)

April 2014

Technical advances in electromagnetics, signal processing and processing power

have led to a significant increase in sensitivity and accuracy in radio telescopes.

With this increase in sensitivity, radio frequency interference (RFI) has become a

much larger problem. The notable growth in wireless communication as well as

self generated RFI has further escalated this problem. In order to utilise the full

capabilities of modern radio telescopes, RFI mitigation is required on the captured

signals. With the enormous data rates of modern radio telescopes, managing RFI

has become increasingly difficult, and in order to utilise the full captured radio

spectrum, more accurate RFI mitigation strategies will be necessary.

The use of different RFI mitigation strategies is studied in the form of online

and offline techniques. This includes Spectral Kurtosis, Spectral Flatness and the

Var/SumThreshold method. The special case for RFI mitigation in timing pulsars

will also be studied. These techniques are well known in the radio astronomy com-

munity; here, spectral kurtosis and spectral flatness will be implemented on the raw

data as well as the post correlated data. System speed and accuracy will be the

deciding factors when testing these methods as possible solutions to this problem.
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Radiofrekwensiesteuring Matiging in Radioastronomie

(“Radio Frequency Interference Mitigation in Radio Astronomy”)
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Privaatsak X1, Matieland 7602, Suid Afrika.
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‘n Toename in die sensitiwiteit van hedendagse radioteleskope kan toegedra word

aan die tegniese bevordering in elktromagnetika en seinverwerking. Die toename

in sensitiwiteit het egter tot die gevolg dat radiofrekwensiesteuring ‘n groter rol

speel in hedendaagse radioteleskope. Die groei in die gebruik van radioverbindings

asook die gevolge van self gein̈duseerde radiofrekwensiesteuring dra ook verder

by tot hierdie probleem. Radiofrekwensiesteuring matiging word toegepas op die

opgevangde seine, om sodoende gebruik te maak van die volle kapasiteit van mod-

erne radioteleskope. Die bestuur van radiofrekwensiesteuring word bemoeilik deur

die groot hoeveelheid intydse data van die radioteleskope. Meer akurate radiofrek-

wensiesteuring matigingstegnieke word vereis om die bandwydte ten volle te hanteer.

Daar word op ‘n aantal verskillende matingstegnieke gefokus. Hierdie tege-

nieke kan in twee kategorieë verdeel word, naamlik aanlyn- en aflyntegenieke. On-

derafdelings van hierdie kategorieë sluit in: spektrale kurtose, spektrale matheid en

“Var/SumThreshold”. Daar word ook na ‘n spesiale geval van radiofrekwensies-

teuring matiging gekyk, in die opmeeting van tydsberekening-pulsars. Alhoewel

hierdie tegnieke bekend is in die radioastronomie gemeenskap, word spektrale kur-

tose en spektrale matheid egter toegepas op die rou data sowel as postgekorreleerde

data. Daar sal op stelsel spoed en akuratheid gefokus word, om vas te stel of hierdie

metodes wel moontlike oplossings bied tot die probleem bespreek.

iii
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Chapter 1

Introduction

1.1 Background

Astronomy is one of the oldest sciences, as shown by historical and pre-historical

artefacts. For millennia the sky has been observed, driving improvements in obser-

vation techniques. This includes the invention of hardware to aid observation, from

the light refracting telescope to the modern interferometric radio telescopes. Radio

astronomy as a sub field of astronomy is a very recent discovery in the science, dat-

ing to the confirmation of radio frequency emissions by Jansky in the 1930s of the

Milky Way. Radio astronomy aided in the Big Bang theory with the detection of

the cosmic background radiation, the hydrogen line and the discovery of pulsars by

S. J. Bell in 1967. Modern radio telescopes rely on interferometry to increase the

resolution of measurement, to look at fainter and more distant sources. The large

array that are constructed using interferometry increase the collecting area and thus

increase sensitivity. This is done to better understand the formation of the universe.

With the advances in electromagnetics and electromagnetic simulation software

such as FEKO and CST as well as silicon based electronics, the sensitivity of mod-

ern radio telescopes has increased over the century. These advances have also aided

in the development of wireless communication technologies and radar. This in-

cludes:

• Wi-Fi.

• Cellphones.

• Aeroplane radar navigation.

• Satellite communication

• Satellite navigation.

The advances in these fields have also aided in radio astronomy, as discovery of

radio emissions by Jansky was part of a project to locate RFI in telecommunication.

1
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CHAPTER 1. INTRODUCTION 2

Radio Astronomy in turn, has also directly help with the development of the 802.11

wireless standard by reducing the effects of multipath [1].

The rise in use of these technologies has led to an increase in radio frequency

interference (RFI) for radio astronomy. Other sources of RFI include electrical

fence sparking that produces broadband noise, as well as lighting that has a similar

yet larger effect.

With the increased sensitivity and data throughput in radio telescopes, the prob-

lem of RFI has escalated. In order to fully utilise modern radio telescopes, RFI

mitigation strategies will have to be implemented on the raw recorded data as well

as on the post-processed data.

1.2 Objectives

There are a large collection of RFI mitigation strategies for radio astronomy. Within

this project a number of these strategies will be discussed, simulated and tested. The

strategies normally follow an online or offline approach in the detecting of RFI. The

online approach handles raw data as it is observed by the radio telescope, which

results in high data rates. The offline data is usually compressed and thus smaller in

size. The list of strategies that will be looked at are:

• Spectral Kurtosis.

• Spectral Flatness.

• Var/SumThreshold.

• Timing-Pulsar specific algorithms.

The focus of each algorithm will be the effectiveness of RFI detection with the

least number of false positives, while remaining computational inexpensive. Where

possible, the algorithms will be tested on online data as well as offline data. This

project will focus only on the flagging of the data and not the removal.

1.3 Overview

The basic background theory of radio astronomy will briefly be discussed as well

as the theory of kurtosis. The layout of a modern radio telescope will then be

introduced, with the discussion of the hardware and software components that make

up the system. The theory behind a number of RFI mitigation techniques will be

explained and then tested in simulations. The chosen RFI mitigation algorithms

will then be implemented on real radio astronomy data in order to fully test the

theory. The data from a two element interferometer in an urban environment, KAT-

7 data as well as radiometer data will be used for the testing of the algorithms.

The radiometer will be used as a online example and the KAT-7 and two element

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

interferometer as offline examples. Lastly, a conclusion will be drawn from the final

test results by looking at the RFI detection effectiveness of the algorithms and the

computational costs.

1.4 Contribution

The theory of spectral kurtosis, spectral flatness as Var/SumThreshold is not novel

as shown in the work done by [2] [3] [4]. The novelty of the work, however, is

described as follows:

• The use of spectral kurtosis on post correlator data in order to detect RFI

before the formation of the visibility function.

• The use of spectral flatness to detect RFI in radio astronomy, with the varia-

tion of detecting on a per frequency bin basis.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2

Background, Definitions and

Literature Survey

The radio telescope is a scientific instrument used in a variety of experiments. The

experiments range from the mapping of sky to the detection of the formation of

the universe. For this reason, the radio telescope has a number of configurations in

order to accomplish all of the tasks. The basic layout of a radio telescope is shown

in Fig 2.1. The modern approach in radio astronomy is to leave out the IF system

and digitise the the full band with no down-conversion. A number of configurations

are introduced and explained in the following chapter as well as basic theory behind

some of the RFI mitigation techniques. The radio telescope configurations include:

• Spectrometer.

• Radiometer.

• Interferometer.

• Pulsar Measurement.

The basic theory of kurtosis is briefly introduced and will be later expanded on

in Sec 4.1.1.

Antenna Element

Local

Ossillator

LNA
Data

Processor
Digitiser

System

Control

IF

System

Analogue Font-end Digital Back-end

Figure 2.1: The basic layout of a radio telescope.

4
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CHAPTER 2. LITERATURE SURVEY 5

2.1 RF and Microwave Operating Bands

For earth-based radio astronomy, the radio window is used to determine viable

bands to do observations in. The radio window is the frequency band where ra-

dio frequencies can pass through earth’s atmosphere. The ionosphere determines

the lower limit at 30 MHz, where as the upper limit is about 1 THz [5]. The trans-

parency of the atmosphere is shown in Fig. 2.2. From this we can see that the

transparency is not only dependent on frequency, but on altitude as well.

Figure 2.2: The transparency of the atmosphere as taken from [6].

Within the radio window, a number of bands are allocated for radio astronomy in

South Africa [7]. The use of these bands are further discussed in [8]. The summary

of the allocated bands are shown in Table 2.1. A number of the bands are shared

with other services, as shown in [7].

Although a number of frequency bands are allocated for radio astronomy, ra-

dio astronomical observations are not limited to these bands. The bandwidth of the

observations are increased in order to raise the signal-to-noise ratio of the measure-

ments [9]. This can be seen in the radiometer equation [9]:

SNR =
Tsrc

Tsys

√
δtB (2.1.1)

SNR : Signal-to-noise ratio of the observed source.

Tsrc : The temperature of the source.

Tsys : The system temperature of the full system.

δt : The time of the observation.
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Frequency Band

(MHz)

Shared Service Scientific Observations

Frequencies below 100MHz

25.550 - 25.670 RF Bursts (Sun, Jupiter), Inter-

stellar Medium, Steep spectrum

sources

37.5 - 38.25 Mobile Communication. RF Bursts (Sun, Jupiter), Inter-

stellar Medium, Steep spectrum

sources

73.0 - 74.6 RF Bursts (Sun, Jupiter), Inter-

stellar Medium, Steep spectrum

sources

Frequencies below 1000MHz

150.05 - 153.0 Mobile Communication except

Aeronautical.

RF Bursts (Sun), Interstel-

lar Medium, Steep spectrum

sources, Pulsars

322.0 - 328.6 Mobile Communication. Deutrium line (327.384

MHz),RF Bursts (Sun), Inter-

stellar Medium, Steep spectrum

sources, Pulsars

406.1 - 410.0 Mobile Communication except

Aeronautical.

RF Bursts (Sun), Interstel-

lar Medium, Steep spectrum

sources, Pulsars

608.0 - 614.0 UHF TV Broadcasting. RF Bursts (Sun), Interstel-

lar Medium, Steep spectrum

sources, Pulsars

Frequencies below 5000MHz

1400.0 - 1427.0 Space Research and Earth

Oration-Satellite. (passive)

Galactic and local extragalatic

H1 (Hydrogen-1) (1420.406

MHz), Galactic Continuum

1610.6 - 1613.8 Mobile Satellite and Aeronauti-

cal Radio Navigation.

OH(Hydroxyl)

1660.5 - 1670.0 Mobile Satellite, Mobile Com-

munication and Space Research.

OH(Hydroxyl)

1710.0 - 1930.0 Mobile Communication. OH(Hydroxyl)

2655.0 - 2700.0 Mobile Communication except

Aeronautical, Mobile Satellite,

Space Research and Earth Explo-

ration Satellite.

4800.0 - 5000.0 Mobile Communication and

Space Research.

Formaldehyde, Continuum,

VLBI

Table 2.1: The frequency bands that are allocated for radio astronomy between 25

MHz and 5 GHz. This also includes the services that share these bands, as well as

the radio astronomical use of the radio bands.
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B : The bandwidth of the observation.

The H1 line mentioned in Table 2.1 is used to identify galaxies, due to the

abundance of hydrogen in the universe. Due to red-shift, the frequencies of the H1

line of galaxies further away from earth are decreased [9]. This requires the full

band from 1420.406 MHz down to 30 MHz to be able map distant galaxies.

The observations made by modern radio telescopes are not always limited to the

set, protected, frequency bands and are thus more prone to RFI contamination. For

this reason, RFI mitigation is necessary.

2.2 Spectrometer and Radiometer

The basic concept of the Radiometer is to measure the power received by the sys-

tem. This can be done in terms of total power or power per frequency bin. By

definition this includes no phase information. This is useful for determining the

total power received from a source.

The frequency spectrum of a given signal is produced by a spectrometer and the

output of the spectrometer has polarisations information. Again, the measurements

are divided into frequency bins. These bin sizes are a function of the processing

capacity of the computer or Field Programmable Gate Array (FPGA). The output

for the spectrometer is generally in full Stokes parameters.

A design for a spectrometer has been done on on a Reconfigurable Open Archi-

tecture Computing Hardware version 1(ROACH1) board for use with pulsar mea-

surements as well as direct observations. The design for the spectrometer was part

of the requirements for AVN project and also included a pulsar-timing system. The

help with the design of the digital back-end for the AVN project was done as an

introduction into digital signal processing for radio astronomy. The block diagram

of the spectrometer design is shown in Fig 2.3.

The basic layout of the ROACH1 implementation is an auto-correlator, where

the output is then converted into Stokes parameters. The two polarisations are sent

to the Analogue to Digital Converter (ADC) to be digitised, the digital signals are

then sent to a Finite Impulse Response (FIR) filter to be windowed before perform-

ing a Fourier transform. The windowing of the signal minimises spectral leakage

after the Fast Fourier Transform (FFT) [10]. The frequency domain signals of the

two polarisations are multiplied with each other, as well as with themselves. This

results in the three outputs as shown in the figure Xi×X∗
i , Xi×X∗

j and X j×X∗
j . This

is sent to a computer to be transformed to Stokes parameters (3.2.1).

2.3 Interferometry

The basic concept of interferometry, as defined in [11], is to increase the resolution

of a radio telescope by correlating a number of antenna outputs with each other.
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KatADC ROACH1

Xi

X j

PPF

PFF

FFT

FFT

Multiplier

Xi ×X∗
i

Xi ×X∗
j

X j ×X∗
j

Spectrometer

Figure 2.3: The layout of a spectrometer design.

This will allow a number of smaller parabolic dishes to increase their overall reso-

lution in order to achieve the same resolution as a large, unmanageable dish.

2.3.1 Electric Field Propagation

With radio astronomy, the electromagnetic field from sources in space is measured

at a point on earth. This means that the summation of electric fields from a random

source is measured by an antenna on earth. The signal that is observed from earth

is however a time varying signal [12]. Maxwell’s equation (2.3.1) in the monochro-

matic form for an electric field, describes this quasi-monochromatic time-varying

observation. It is written in phaser form to deal with time varying signals more

elegantly.

Ev(r) =
∫∫∫

Pv(R,r)Ev(R)dxdydz (2.3.1)

R : The vector of the source location

r : The vector location of the observer

Ev(r) : The field effect at the observer as a complex Fourier transform at r

Pv(R,r) : The propagation and source effect at R that influence the observer at r

Ev(R) : The complex Fourier transform of the source at R

To simplify (2.3.1), a number of assumptions are made by Clark [12]. The first

is to ignore polarization on the source signal. This reduces the vector equation to a

scalar equation, and the dot product becomes a simple multiplication.

The second assumption is based on the fact that most of the sources are very

far away. This means that |R| becomes very large. The result is that sources can
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only be described by a surface brightness, and not by their depth. This also means

that space is seen as an extremely large sphere, which implies that there are no

“external” sources. All of the sources are from the surface of the “celestial sphere”.

The last assumption says that this celestial sphere is empty and that the propagation

is directly from the source to the observer with no obstructions. (2.3.1) is then

simplified to (2.3.2)

Ev(r) =
∫

S
εv(R)

e2πiv‖R−r‖/c

‖R− r‖ dS (2.3.2)

εv(R) : The electric field distribution on the surface of a sphere with radius |R|.

The integral is across S, which represents the surface of the celestial sphere.

The equation is written with the physics conversion of e2πiv, in comparison to the

engineering conversion of e− jωt .

2.3.2 The Correlation of the Electric Field

The correlation of two signals are demonstrated for illustration purposes. These two

signal are received at position r1 and r2. The correlation is then defined in (2.3.3)

as the expected value of a product:

Vv(r1,r2) = 〈Ev(r1)E
∗
v(r2)〉 (2.3.3)

Ev can then be substituted into (2.3.2) from (2.3.3).

Vv(r1,r2) =

〈∫∫
εv(R1)εv(R2)

e2πiv‖R1−r1‖/c

‖R1 − r1‖
e−2πiv‖R2−r2‖/c

‖R2 − r2‖
dS1dS2

〉

(2.3.4)

It can also be assumed that the source will be spatially incoherent. This implies

that 〈εv(R1)εv(R2)〉= 0 if R1 6= R2. (2.3.4) is then simplified to (2.3.5)

Vv(r1,r2) =
∫

〈

‖εv(R)‖2
〉

‖R‖2εv(R2)
e2πiv‖R1−r1‖/c

‖R1 − r1‖
e−2πiv‖R2−r2|/c

‖R2 − r2‖
dS (2.3.5)

The final simplification done by Clark is to rewrite (2.3.5) by substituting R
‖R‖ with

the unity vector s as well as
〈

‖εv(R)‖2
〉

‖R‖2 with Iv(s) (the observed intensity).

An assumption can be made that most sources will be at a great distance, as most

observation are intergalactic. This will allow all the small terms to fall away as well

as the replacement of dS with ‖R‖2dΩ:

Vv(r1,r2)≈
∫

Iv(s)e
−2πivs·(r1−r2)/cdΩ (2.3.6)

This equation shows that the output of the correlation is only dependent on the

distance between the two receivers. The source can then be mapped by keeping
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one antenna stationary and moving the second antenna to form different baseline

lengths. The same result can be achieved by allowing the earth’s rotation to change

the baseline lengths between the two antennas as the earth rotates. The visibility

function or spatial coherence function is the Fourier transform of the source bright-

ness.

2.4 Pulsars

A pulsar is a rapidly rotating, highly magnetised neutron star [13, p.54]. They were

first observed by S. Jocelyn Bell in 1967 after observing strange pulsating sources

of electromagnetic energy in the sky [14]. The neutron star produces a high energy

radio beam that rotates with the star at a set frequency. The star loses energy by the

emission of the electromagnetic beam and causes a decrease in angular momentum.

The rotation and magnetisation is a result of the formation of the neutron star. This

formation process is due to the core of a large star collapsing after a supernova event,

leaving most of the angular momentum to the much smaller neutron star. Due to the

large decrease in radius, the neutron star’s rotation speed is increased. The neutron

star has a weight of more than one solar mass, but a radius close to 20km which

results in an extremely high density core as well as a strong gravitational pull. For

this reason, the gravitational effects, as well as the strong magnetic field emitted by

the star, provide a testing platform for physics. This includes gravity, gravitational

potential and the magnetic field of the galaxy. A model of the star is shown if Fig.

2.4.

Pulsars can be discovered when the strong radio beam of the neutron star sweeps

past an observing radio telescope. The periodic rotation of the beam is seen as

frequency dispersed pulses. These pulses are dispersed in frequency because of the

interstellar medium (ISM). Looking at the refractive index R of the ISM as shown

in (2.4.1), the effect of electron density as well as the observing frequency can be

seen in interstellar observations [13, p84].

R( f ) =

√

1−
( fp

f

)2
(2.4.1)

where f is the observing frequency and fp the plasma frequency defined as:

fp =

√

e2ηe

πme

≃ 8.5kHz
( ηe

cm−3

) 1
2

(2.4.2)

ηe : Electron density where ηe ∼ 0.03cm−3

e : Electron charge.

me : Electron mass.
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Rotation Axis

Radio Beam

Magnetic Field

Neutron

Star

Figure 2.4: A simplified model of a pulsar.

The signal delay from the source to earth can now be computed using the refraction

index (2.4.1).

t =
(

∫ d

0

dl

vg

)

− d

c
(2.4.3)

t : Time delay between source and earth.

d : Distance between source and earth.

c : Speed of light in a vacuum.

vg : Group velocity of the propagating wave, where vg = cR, with R defined as

in (2.4.1)
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It can be seen from (2.4.3) that the delay in wave propagation is a function

of frequency and distance. The result is that the broadband pulses from pulsars

are dispersed in frequency. An example of a received dispersed pulse from the

Vela pulsar is shown in Fig. 2.5. In radio astronomy, these electromagnetic pulses

Figure 2.5: An example of a measured pulse from the Vela pulsar as measured at

2013/06/24 07:13:00 using a second of folded data (see Sec 2.5). The graph is

drawn using PSRchive [15]. The data was provided by [16].

emitted by pulsars are monitored and classified. The frequency of the pulses can

vary from millisecond to a few seconds [13]. The accurate timing of millisecond

pulsars is important as they can be used to compare the performance of clocks as

well as indicate the internal workings of a pulsar if it glitches [13]. Glitches in

pulsars can occur when the pulsar’s rotational speed is increased for a brief period.

RFI in the measurements, as seen in the Vela measurement (Fig. 2.5) at 1620 MHz,

will result in timing of the pulsar varying for each pulse. RFI mitigation is thus

necessary for the accurate measurement of known pulsars, to distinguish between

glitches and RFI noise.

2.5 Known Pulsar Observation and Timing

The process of discovering new pulsars usually involves de-dispersing chunks of

data with a number of trial de-dispersion measures which we then analysed for pe-
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riodic signals [13, p127]. The full procedure of finding new pulsars is not discussed

in this thesis as the main focus is the RFI mitigation for known pulsars.

For a known pulsar, the data must be analysed and the pulsar classified. The

pulse itself has to be de-dispersed in order to extract the true pulse shape. The data

is folded in order to increase the signal to noise ratio of the weak observed pulse.

The basic steps for folding data are as follow [13, p165]:

• De-disperse the data. This can be done incoherently or coherently.

• The pulse profile is split up in pulse phase bins across the pulse period, in

which to save folded data.

• Sample the time series and calculate the pulse phase relative to the pulse

period.

• Add the sample to the corresponding phase bin.

• Repeat from step 3 for the next sample.

As mentioned above, the data can be de-dispersed either coherently or incoher-

ently. Incoherent de-dispersion is the simplest way of de-dispersing the incoming

signal from the pulsar. The power of each frequency channel relative to time is

looked at and the phase of the incoming signal is ignored. Each frequency chan-

nel is then delayed by a certain time to de-disperse the overall incoming signal.

This technique can be done offline, as it can be used on time averaged data and

is also computationally inexpensive to use. However, incoherent de-dispersion

does not compensate completely for the dispersion effects of the ISM. Coherent

de-dispersion is necessary to remove all the effects of the ISM. The de-dispersion

is done on the raw voltage by looking at the ISM as an all-pass filter with transfer

function H( f ). The recorded and Fourier transformed voltage is described as the

original signal passed through the ISM all-pass filter [13, p115].

V ( f ) =Vint( f )H( f ) (2.5.1)

V ( f ) : Fourier transform of the recorded signal.

H( f ) : ISM transfer function.

Vint( f ) : Original unmodified Fourier transformed signal from the pulsar.

The description of H( f ) becomes

H( f ) = e− jk( f )d (2.5.2)

d : The distance between earth and the source.

k( f ) : 2π
c

R( f ) f

R( f ) : The refraction index as defined in (2.4.1).
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The process of coherent de-dispersion must be done online. The computational

costs as well as the data rates (from the digitiser to the computer) are high.

The result of the de-dispersion and folding is a pulse profile for the pulsar. An

example of a pulse profile for Vela can be seen in Fig. 2.6.

Figure 2.6: An example of a pulse profile from the Vela pulsar as measured at

2013/06/24 07:13:00 using a second of folded data. The graph is drawn using

PSRchive [15]. The data was provided by [16].

Once the pulse is folded and de-dispersed, the pulsar can be timed. This is useful
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for gathering information about the neutron star itself as well as effects that the ISM

have on the propagating signal. Millisecond pulsars are more widely used for this,

as they are much more stable timing sources. A known pulsar has a pulse profile

built up and each new de-dispersed pulse is then matched to this pulse profile. The

time of arrival for the pulse is then normally chosen midway in the pulse profile.

The precision of the arrival time is a function of the pulse width and signal to noise

ratio of the pulse profile, and is proportional to system parameters.

σTOA ≃ W

S/N
∝

Ssys√
tobs∆ f

× Pδ
3
2

Smean
(2.5.3)

σTOA : Uncertainty of pulse arrival time.

W : Pulse width.

S/N : Profile signal to noise ratio.

Ssys : System equivalent flux density.

tobs : Integration time for observation.

∆ f : Bandwidth of the observation.

P : Pulse period.

δ : W
P

, the pulse duty cycle.

Smean : The mean flux density of the pulsar.

Ssys is defined as the strength of a source with a temperature equal to Tsys, and used

to characterise the ratio performance of pulsar systems [13]. The signal to noise

ratio for the pulse profile is defined as:

S/N =
1

σp

√

Weq

nbins

∑
i=1

(pi − p̄) (2.5.4)

σp : Pulse variance.

p̄ : Mean Pulse.

pi : pulse bins.

Weq : The equivalent width (in bins) of a pulse of near-uniform energy density, with

the same area and peak height as the observed profile.

Unwanted noise, like RFI, in the system will cause a greater uncertainty in pulse

time of arrival and skew results.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE SURVEY 16

2.6 Kurtosis

Kurtosis was introduced by Pearson to measure the shape of a probability distribu-

tion function, specifically looking at peak and tails of the function [17, p109]. The

formal definition is the ratio of the fourth moment to the square of the variance. It

is used to categorise probability density functions based on their shapes. For radio

astronomy this is useful as most radio astronomical signals are Gaussian; kurtosis

can then be used to determine if the signal is RFI or valid data. The practical imple-

mentation of kurtosis is discussed in Sec. 4.1.1. For now, the following definitions

are introduced:

β2 =
µ4

(σ2)2
(2.6.1)

β2 : Kurtosis.

µ4 : Fourth moment of the probability distribution function.

σ2 : Variance of the probability distribution function.

The value of the kurtosis for a Gaussian distribution function is 3. This will

increase or decrease depending on the shape of the function. For this reason γ2 is

defined in [17] as the following.

γ2 = β2 −3 =
µ4

(σ2)2
−3 =

κ4

κ2
2

(2.6.2)

γ2 : Excess kurtosis.

κn : The nth cumulant of the probability distribution function.

By this definition γ2 will be zero for a Gaussian function. All functions for

which γ2 = 0 are said to be mesokurtic, γ2 > 0 leptokurtic and γ2 < 0 platykuric.

An example of the kurtosis for a number of common probability density functions

is shown in Fig. 2.7.

The coefficient of dispersion as shown in (2.6.3) is related to kurtosis. This

relation is discussed in Sec. 4.1.1 and is later used to derive the spectral kurtosis

estimate.

V 2
k =

σ2
k

µ2
k

(2.6.3)

2.7 Conclusion

In conclusion, the concept of radio astronomy was explained. This included the

basic layout of a radio telescope as well as the building blocks thereof. The theory

on the chapters to follow will make use of these subsystems in order to accomplish
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Probability distribution functions with kurtosis value

Gaussian; β2 = 3

Uniform; β2 = 1.8
Laplace; β2 = 6
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Figure 2.7: The kurtosis, β2, for three probability distribution functions; Gaus-

sian/Normal distribution, Uniform distribution and the Laplace distribution

RFI mitigation. Pulsars as well as pulsar timing was also introduced, as this was

part of the AVN design specification. The theory on pulsar timing is then later used

in order to inspect RFI mitigation techniques specifically for timing-pulsars. The

basic theory of Kurtosis is briefly looked at, and will later be expanded on.
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Chapter 3

The Basic Digital Back-end

Components of a Radio Telescope

As with most technologies over the past century, the radio telescope has shifted

from a mostly analogue to a more digital instrument. The main advantage this

brings, is the predictability and repeatability of the system, compared to an analogue

system. Current FGPA and Graphics Processing Unit (GPU) based system have

the added advantage that the instrument itself has become much more fluid in its

configuration, as a simple change in software can allow it to change configuration.

In this chapter the main components of the digital back-end of a radio telescope

will briefly be introduced and explained, as they relate to current multi-application

telescopes such as MeerKAT. This includes the physical hardware that is used, the

software to set up an application of choice and the layouts for different systems.

3.1 The Digital Back-end Hardware of Radio

Telescopes

The first step in the digital back-end of the radio telescope is to digitise the signal,

as shown in Fig. 3.1. In the traditional setup, the RF signals are fed to a central

point and then digitised. This is true for the seven-dish MeerKAT precursor array

(KAT-7), as the RF signal is fed via Analogue Over Fiber links to the control room

where it is digitised using a ROACH1 board and KatADCs. The ROACH1[18]

board is a open source FPGA based processing board developed by the Collabora-

tion for Astronomy Signal Processing and Electronic Research (CASPER), and the

KatADC is an analogue to digital converter developed by SKA-SA. The full spec-

ifications of the ROACH1 as well as the KatADC is described later in this chapter.

MeerKAT will implement direct digitisation at the antennas and feed the digital data

via Ethernet links to the control room.

After the data is in the digital domain, it is then usually pasted through as pol-

lyphase filter bank (PFB), which comprises of a FIR filter and an FFT. This process

is also referred to as the F engine. The Fourier transformation can either be com-

18
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pletely performed on a FPGA, or only coarsely channelised by the FPGA and finely

channelised on a GPU. Most of modern radio astronomy is done using some form of

spectral analysis. The frequency domain signal can be passed to a multiplier, called

the X engine, to form a correlator, or used as a spectrometer where the data can be

sent to a pulsar analysis system for monitoring and timing. This spectrometer can

be performed per dish or as a tied-array over a number of dishes. The correlation

is also done either on a FPGA based system, or on a GPU based one. The data

can then be stored to do Very-Long-Baseline Interferometry (VLBI) or for further

analysis.

In each step the signal must be time stamped to ensure the accuracy of the mea-

surements, as all the analyses are time sensitive. In the case of pulsars, the arrival

time of each pulse must be accurately labelled to ensure the precise timing of the

pulsar. As correlation makes use of the phase differences between antennas, to ef-

fectively increase the capture area by combining a number of antennas, any timing

jitter will result in phase noise in the correlation process. To ensure microsecond

timing accuracy, a combination of masers, atomic clocks and GPS time servers are

implemented.

The reprogrammable digital radio telescope setup allows for a much more dy-

namic system, as it is not limited to a single application. It also allows the use of

real time calibration techniques and RFI mitigation. Each hardware component is

discussed in more detail in the following subsections.

Antenna Element

Antenna Element

Analogue

frontend

Analogue

frontend

ADC

ADC

F Engine

F Engine X Engine

Spectrometer
Pulsar

System

Digital Back-end

Figure 3.1: The basic components of a radio telescope, specifically the digital back-

end.
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3.1.1 The Analogue to Digital Converter

The first step in the digital chain is to digitise the input signal. The two main spec-

ifications to look at are the input bandwidth of the ADC and the number of bits

to which it digitises. These are not the only factors to consider, since the internal

noise of the ADC is a major influence on the dynamic range of the telescope. The

internal structure of the ADC can lift the noise floor when a number of cores are

interleaved to increase the bandwidth. This will cause spurious signals in the output

and increase the noise floor. The best solution is to use a monolithic core to ensure

a pure digitised signal. Furthermore, timing jitter in the ADC itself can include ad-

ditional phase noise in the measurements. Non-linearity of the ADC can also affect

the signal if it cannot be compensated for correctly, as the power measurements of

the frequency bins result in a non-flat spectral response.

There are a number of ADCs available that are compatible with ROACH boards,

that make use of the Z-DOK connector. The measurements done in this thesis make

use of the KatADC shown in Fig. 3.2, a 8 bit analogue to digital converter with a

maximum of 1.5 GSPS per channel[19]. The analogue signal is firstly amplified by

20 dB. The signal can then by attenuated by 0 to 31.5 dB in intervals of 0.5 dB. The

attenuation is software controlled via an I2C bus on the ADC. The frequency range

of the amplifier at the front end of the board is between 50 MHz and 850 MHz. This

can be upgraded to 50 MHz to 6 GHz with a few adjustments on the ADC itself.

The output is then demuxed in four lines per channel. This allows for the FPGA to

run at quarter of the ADC clock speed, as the data rate is divided by four.

Figure 3.2: A picture of the KatADC as shown in the Casper wiki [19]

3.1.2 FPGA computation

The advantages of the FPGA are the high IO it can handle as well as the low power

consumption. The high IO makes it the only practical solution at present to handle

the high data rate from the ADC. The FPGA can be used to only channelise and

packetise the data, to be sent via Ethernet to an alternative computation processor.

The FPGA can also be used to implement the F as well as X engines. In the case

of MeerKAT, a smaller FPGA will be used to packetise the time domain samples.

The samples will then be sent to a processing bank consisting of ROACH2 boards

which are Vertex 6 FPGA based systems. The F engines as well as the X engines
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will be implemented on the ROACH2 boards. Other current systems have been

implemented where only the F engine is on a FPGA based system, and the X im-

plemented on a GPU. This is done in LEDA [20] where X engines is implemented

on a GPU based system. The disadvantages of the FPGAs include:

• Expensive.

• Difficult to program.

• Historically do not support floating point arithmetic.

Newer versions of Xilinix’ Vertex range, however, are starting to support float-

ing point operations. The CASPER development chain also simplifies the program-

ming of the ROACH system with the implementation of drag-and-drop boxes in

Matlab Simulink.

For the measurements done in this thesis a ROACH1 (see Fig. 3.3) is used for

the F and X engine where appropriate. The output from the ADC is fed directly

to the Vertex 5 FPGA via the Z-Dok connector, which enables interchangeability

between other supported ADC’s. The FPGA allows for the mathematical manip-

ulation of the real-time data. More specifically, it allows for real-time FFT and

multiplication of the ADC data. The FPGA is programmed and controlled via the

on-board PowerPC [18].

The PowerPC can boot from an on-board SD card or netboot. For a stand alone

setup, booting from the SD card is the easiest. For larger setups, such as MeerKAT

and KAT-7, netboot is a better option as this ensures that all of the boards are run-

ning the same operating system version. The PowerPC also has a serial connection

as well as an Ethernet adaptor.

To allow for sample buffering and averaging, the ROACH1 has 3 memory types.

• Dynamic Random-Access Memory (DRAM)

• Quad data rate static Random-Access Memory (QRAM)

• Block Random-Access Memory (BRAM)

The DRAM is standard DDR2 RAM that is connected directly to the FPGA. The

external RAM of 1 GB allows for a large sample size to be integrated. The PowerPC

interface speed is extremely slow, which in turn decreases the copy speed of the

DRAM data.

The QRAM module is a Static RAM block that is also connected directly to the

FPGA. The interface speed is faster than the DRAM block, but the storage space is

limited compared to the DRAM.

The BRAM is block RAM, addressed directly on the FPGA. The space is ex-

tremely limited as the memory is allocated on the FPGA’s as primitives; however,

this is fastest memory access method.

The data can then be extracted from the FPGA via two methods. Firstly, the

PowerPC can access the FPGA data via registers. The data is then extracted via the
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1 Gig Ethernet adaptor. The ROACH also has four 10-gigabit Ethernet ports that

are connected directly to the FPGA. This allows for the data to be directly extracted

from the FPGA without the PowerPC slowing it down. The 1 gigabit Ethernet

port is sufficient for time averaged observations, where as the 10 gigabit ports are

required for real-time data output.

Figure 3.3: A picture of the ROACH1 board as shown in the Casper wiki [18]

3.1.3 GPU Computation

The GPUs are less expensive and easier to program than FPGA based systems, al-

though more complicated than normal x86 based system. Writing code for a GPU

system makes use of CUDA for Nvidia GPUs, or OpenCL for cross platform com-

patibility. GPUs also support floating point arithmetic and are extremely effective

with parallel processing. This is a great advantage for radio astronomy as the F

and X engines are parallelizable. Implementating an FFT on a GPU permits up to

a million point frequency spectrum. The FPGA will do a coarse channelisation of

1024 channels and send it to the GPUs. The GPUs can then the use 1024 coarse

spectra to produce a 1024× 1024 spectrum. With these narrow channels, locating

narrowband RFI becomes much simpler. The affected channels can be removed

without compromising too much unaffected data.

When the F engine is implemented on a FPGA, the output can then be sent to a

X engine GPU cluster. This can reduce the startup and running cost of the system,

but only becomes practical on radio telescopes with a large amount of antennas.

This is due to the fact that the PCIe bus limits the connection speed to the GPU.

The processing requirements are usually of order O(N2) where as the IO of the

system is of order O(N). In a smaller telescope the GPUs can sit idle while waiting

for new data, wasting energy in the process. The GPUs are also more power hungry

than FPGA.

GPUs are also used for coherent de-dispersion in pulsar analysis as is done in

GAPPI [21]. GPUs are not used in the RFI mitigation in this report, as the system

is to small to require implementation.
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3.1.4 CPU Computation

The use of the CPU is mostly for monitoring, graphing and data transfer/buffer-

ing, as the bulk of the data is either handled by GPUs or FPGAs. The incoherent

de-dispersion of PSRchive is done on the CPU and the buffering done by PSRdada

[22] as well. The monitoring of the system usually includes sensors on each antenna

element, which include data such as system temperature and cryogenic system pres-

sure. On the GPU clusters, the CPU transfers the data from the network interface

card, to the GPU and back. The CPU load can be reduced with the use of Infini-

bands’ Remote Direct Memory Access (RDMA) and the newer implementation of

RDMA on Ethernet.

3.2 Software

The supporting software for the digital back-end is dependent on the application of

the radio telescope. Most of the software is generally custom made for the specific

radio telescope, due to the fact that a lot of the hardware is developed for the radio

telescope. [23] has brought some conformity to radio astronomy with the develop-

ment of the open source hardware and supporting tool chain. Other open source

projects have also developed packages for radio astronomy, such as PSRchive and

PSRdada for pulsar analysis.

3.2.1 Spectrometer

As mentioned in Sec. 3.1, the spectrometer can be implemented on a FPGA-

exclusive system or in combination with a GPU cluster. The signal is split in to a

number of down-sampled signals, as the frequency of the FPGA is slower than that

of the ADC. In the FPGA-only system, the signal is passed through a polyphase

filter bank. The FIR minimises spectral leakage between channels once the FFT is

performed. Fig. 3.4 shows the effects of pre-filtering compared to a standard square

window. The multiple FFT windows of the PFB reduces the width of the channel

response, where normal windowing can broaden the channel response.

The Stokes parameters are then calculated if necessary [9]. For a linear polarised

system the Stokes parameters are defined as follows:

I = |Xi|2 + |X j|2

Q = |Xi|2 −|X j|2
U = 2ℜ(XiX

∗
j )

V = 2ℑ(XiX
∗
j )

(3.2.1)

Xi : The i axis of the FFT of the recorded signal X .

X j : The j axis of the FFT of the recorded signal X .
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Figure 3.4: An example of the effect of a Hamming window on a digital signal

compared to a square window.

This is performed on the FPGA by multiplying the two polarisations with each other

as well as with themselves. The multiplication for the computation of the Stokes

parameters is done on the FPGA and then fed to a computer or other secondary

system. At the next stage, multiple streams of down sampled data are recombined

as interleaved data. For the implementation on the ROACH1 with a KatADC, the

input signal is split into four down sampled signals. The ADC is then sampling at

800MHz and the ROACH is running at 200MHz.

In the GPU implementation, the data is sent to a GPU cluster after the polyphase

filtering. The FPGA is then used to do a coarse channelisation and package the data

into UDP packets. Custom software is then run on the GPU cluster to handle the

incoming UDP stream and perform the FFT and Stokes parametrisation.

3.2.2 Pulsar Timing

The pulsar timing is done with pre-developed packages such as PSRchive and PSR-

dada. PSRdada is a ring buffer software that handles the high data rates from the

spectrometer. Other software such as PSRchive can then couple to the ring buffer

and extract data to be processed. PSRchive can handle the folding, dedispersion

pulsar profile and RFI mitigation. At HartRAO, the sigproc package is used for the

pulsar timing, to determine pulsar jitter.
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3.3 Conclusion

The FPGA is suited for IO intensive operations, as the PCIe bus of GPU results in

a bottleneck for data transfers. The GPU, however, implements floating point arith-

metic, which in turn simplifies the implementation of the FFT and multiplication

operations. The CPU as a computational platform does not compete with either the

GPU or FPGA in radio astronomy.

The majority of the software used in radio astronomy is custom built for a spe-

cific radio telescope. The development tools and open source hardware created by

CASPER simplifies the creation of custom software.
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Chapter 4

RFI Mitigation

The increase sensitivity of modern radio telescopes result in a higher influence of

external as well as internal RFI on measurements. The RFI contaminated data can

cause distortions, artefacts or drown out all the weaker intergalactic radio emissions.

In order to fully utilise the radio telescope, the RFI has to be flagged and removed

from the final data.

This can be done in a number of ways:

• Removing and blanking all the affected bins.

• Removing a whole time series that has been affected (useful for broadband

RFI).

• Removing all bins with the same frequency (useful when removing narrow-

band RFI).

In the following section we will mostly be looking at the flagging process for

RFI, to indicate possible data corruption. This is done either online on the raw data

as it is captured, or offline on stored data as part of the data processing system.

The online methods include Spectral Kurtosis and Spectral Flatness. The offline

methods include the Sum Threshold as well as pulsar focused methods that are

included in the PSRchive package.

4.1 Online

The online methods are more focused on handling raw data with little computational

costs, but are not limited to online usage.

4.1.1 Spectral Kurtosis

The general theory of Kurtosis has been discussed in Sec 2.6. The theory of Spec-

tral Kurtosis by Nita [2] builds on kurtosis as discussed in Sec. 2.6 to produce an

estimation.

26
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A number of assumptions are made about the digital time domain signal xn:

• The time domain samples are Gaussian noise with the mean < xn >= 0 and

a constant variance σ2
x =< x2

n >.

• The time domain samples are uncorrelated noise, with zero covariance.

• The signal is bandwidth limited to the Nyquist frequency fc by the sampling

frequency, where fc =
1
2 fn and fn the sampling frequency.

• The test signal is a band limited Gaussian signal (white noise).

Spectral Kurtosis is a frequency domain analysis of the recorded signal, there-

fore the first step is to transform the time domain signal to a frequency domain

signal with the standard DFT as shown in (4.1.1).

Xk =
N−1

∑
n=0

wnxne−2πikn/N (4.1.1)

Xk : Frequency domain signal.

k : Frequency bin number.

N : Window size of the DFT.

n : Time domain sample number.

wn : Time domain windowing function coefficients to reduce spectral leakage in

the DFT.

xn : Time domain samples of the recorded signal.

For spectral kurtosis, we are interested in the power of each frequency bin. The

frequency bins are then defined in the following (4.1.2).

fk =
2k

N
fc where; k = 0,1...

N

2
(4.1.2)

k : Frequency bin number.

N : Window size of the DFT, number of samples.

fk : Frequency of frequency bin k.

fc : Nyquist frequency of the system.
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The windowing function has an influence on the statistics of the frequency do-

main analysis of each frequency bin, although it cannot change the Gaussian nature

of the signal [24, p89]. In order to simplify the derivation, a standard symmetrical

windowing function will be assumed e.g. Hamming or Blackman window. The

power spectral density (PSD) of the signal can now be estimated using the deriva-

tion in [25, p657]. The power per frequency bin is defined as follow.

P̂0 = P( f0) =
1

Wss
|X0|2 (4.1.3)

P̂k = P̂( fk) =
1

Wss

[

|Xk|2 + |XN−k|2
]

for k = 1,2, ...,
(N

2
−1

)

(4.1.4)

P̂N
2
= P̂( fc) = P( f N

2
) =

1

Wss
|XN

2
|2 (4.1.5)

P̂k : Power spectral density estimation per frequency channel fk.

Xk : Frequency domain of recorded signal as defined in (4.1.1).

Wss : Window squared and summed, see (4.1.6).

Wss = N
N−1

∑
n=0

w2
n (4.1.6)

The input signal is assumed to be real, thus the Fourier transform of the signal

will be symmetric around fc. For this reason |Xk|2 = |XN−k|2 and (4.1.4) can be

simplified to the following.

P̂k =
2

Wss
|Xk|2;k = 0,1,2, ...,

N

2
(4.1.7)

(4.1.7) takes into account the power at k = 0 and k = N
2 , as we are regarding P̂k

as the true power density (i.e. power divided by the unit frequency interval) and is

thus normalised in the equation.

The statistical analysis of (4.1.7) is done in [2] to produce the following results

(see App. A). The equation is split into real and imaginary parts to help with the

derivation. The result is that at k = 0, N
2 , the probability function is purely real.

p(P̂k) =
1

√

2πσ2
Ak

P̂k

e

(

− P̂k

2σ2
Ak

)

where; k = 0,
N

2
(4.1.8)

p(P̂) : probability function of P̂.

P̂ : PSD estimate.
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µk : Mean value of the PSD estimate.

(4.1.8) is used to evaluate the moments of P̂ for k = 0, N
2 . This is done using

(A.0.12), with the results shown next.

σ2
N
2
= σ2

0 =
8σ4

x

N2
(4.1.9)

and

µk =< P̂k >=
2σ2

x

N
(4.1.10)

With these two results the coefficient of dispersion V 2
k can be computed for k = 0, N

2 .

V 2
k =

8σ4
x

N2

(
2σ2

x

N
)2

= 2 (4.1.11)

When a standard square window, wn = 1 for k = 0,1, ..., N
2 , is used, the real and

imaginary parts of P̂ are shown to be independent. This simplifies the distribution

function for k 6= 0, N
2 .

p(P̂k) =
1

µk

e
− P̂k

µk (4.1.12)

The first and second moment can now be computed quite easily.

< P̂i
k >= n!µ2

k (4.1.13)

This result is then < P̂k >= µk and < P̂2
k >= 2µ2

k , and the value of Vk can then be

computed.

Vk =
2µ2

k − (µk)
2

µ2
k

= 1, for k 6= 0,
N

2
(4.1.14)

This is however not a valid result if a more complex window is used, as Ak

and Bk are not statistically independent any more. The Gaussian-Bivariate function

show in (4.1.15) is necessary to compute Vk as shown in [24, p440].

p(Ak,Bk) =
1

2πσAk
σBk

√

1−ρ2
k

× exp
[ 1

1−ρ2
k

(

− A2
k

2σ2
Ak

− B2
k

2σ2
Bk

ρk

AkBk

σAk
σBk

)

]

(4.1.15)

where

ρk =
σ2

AkBk

σAk
σBk

(4.1.16)

The full derivation of Vk is shown in App. A, but the result is a simple equation.

V 2
k = 1+ |W2k|2 (4.1.17)

where

W2k =
1

∑w2
n

N−1

∑
n=0

w2
ne−2πikn/N (4.1.18)
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W2k : The normalised DFT of the squared time domain windowing function.

V 2
k : The spectral variability

2k : 2 fk, the even indexed frequency bins.

As W2k is normalised, the value of |W2k| can only be between zero and one, and

the result is that V 2
k is bounded between one and two. For standard symmetrical

windows, such as the Hamming of Blackman window, the windowing function is

well behaved. The value of wn slowly approaches zero as n reaches 0 and N
2 . This

causes the value of |W2k| to be zero for most of the values of k. It slowly climbs up

to one at the edges of the window, which in turn implies that Vk is one for most of

the spectrum, except at the edges. Although the effect of the windowing function is

minimal, the influence is further investigated in [2].

A number of previous authors have also produced results similar to (4.1.17)

in order to use frequency statistics to detect non-Gaussian signal. In the paper by

Dwyer [26], frequency domain analysis is used in order to detect non-Gaussian

signals in an underwater acoustic experiment and he obtains the following equation.

K( fk) =
< A4

k >

< A2
k >

2
(4.1.19)

K( fk) : The frequency domain kurtosis estimate.

< An
k > : The moment n about the origin, as defined in Appendix A.

The value K( fk) will be three for a Gaussian signal, except for the DC and

Nyquist frequencies where the value becomes 2 as seen in (4.1.17) as well. The

paper, however, only uses a standard square window and thus treats the real and

imaginary part as two zero-mean variables.

[27] then defines a spectral kurtosis estimate, and is 0 for a Gaussian time do-

main signal. The definition given by [27] is shown in (4.1.20).

SK(Fk) =
< |Xk|4 >−2 < |Xk|2 >2

< |Xk|2 >2
(4.1.20)

SK(Fk) : Spectral kurtosis estimate of frequency fk.

< |Xk|n > : The nth moment of the PSD of Xk.

We know that |Xk|2 has the same PSD as P̂k, which implies a relation between

the spectral kurtosis estimate (4.1.20) and (4.1.17) for all but k = 0, N
2 .

V 2
k = SK( fk)+1 (4.1.21)

In [28], the values for SF( fK) at k = 0, N
2 are redefined to accommodate the

purely real result of the spectral kurtosis estimate. The work done by Nita [2] then
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combines previous work in the field of spectral statistics, as previously described in

this Sec 4.1.1, in order to produce a usable model.

The theory behind spectral kurtosis is then transformed into an equation that can

easily be used on hardware. To be able to do this more easily, (2.6.3) is redefined to

be an estimate. As P̂k is an unbiased linear estimate of the PSD, it can directly be

used to compute the kurtosis estimate.

V̂ 2
k =

σ̂2
k

µ̂2
k

(4.1.22)

V̂ 2
k : The spectral kurtosis estimate of frequency bin k.

σ̂2
k : The estimate of the variance computed from P̂k, where < σ̂2

k >= σ2
k .

µ̂k : The estimate of the mean computed from P̂k, where < µ̂k >= µk.

The estimate is computed taking a number of spectral samples M, each N
2 wide.

The samples form the PSD estimate P̂ik where k = 0,1, ..., N
2 and i = 0,2, ...,M. As

we assume the signal xn is a real random time domain signal, half of the frequency

spectrum can be discarded due to symmetry. The values of µ̂k and σ̂2
k are then

defined as follow from [17, p351].

µ̂k =
S1

M
(4.1.23)

σ̂2
k =

MS2 −S12

M(M−1)
(4.1.24)

where

S1 =
M

∑
i=0

P̂ki (4.1.25)

S2 =
M

∑
i=1

(P̂ki)
2 (4.1.26)

The derivation of the variance of the SK estimator is done in full in App. B. The

final result is shown in (4.1.27).

Var(V̂ 2
k ) =

4M

(M−1)2
(1+5|W2k|2 −|W2k|4 + |W2k|6) (4.1.27)

If we take the value of |W2 f | at k = 0, N
0 as 1 and assume most of the rest of the

bins |W2 f | ≈ 0, the first order approximation of the variance can be simplified quite

easily.

Var(V̂ 2
k )≈

{

24
M

for k = 0, N
2

4
M

for k = 1,2, ..., N−2
2

(4.1.28)
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The appropriate values for M are discussed in Sec 5.1.

The computational cost of spectral kurtosis is O(N) where N is the number of

spectral samples M. The computation of the parameters, for the M iterations (the

power per frequency bin) are already done in a running system, this makes spectral

kurtosis essentially a minor calculation of O(1).

4.1.2 Spectral Flatness

Spectral flatness is used to detect an information carrying signal in noise and the

derivation assumes communication. The use of spectral flatness for RFI in radio

astronomy will be used in reverse to ensure no information carrying signal is de-

tected.

The derivation of spectral flatness is shown in [3] with the use of entropy. For a

given probability density function f (x), the entropy is defined as

H(x) =−
∫

f (x) log f (x)dx (4.1.29)

The entropy for 2 variables is then defined as:

H(x1,x2) =−
∫

f (x1,x2) log f (x1,x2)dx1dx2 (4.1.30)

From (4.1.30) and (4.1.29), the mutual information between x1 can be defined

as [25, p760]:

I(x1,x2) = H(x1)+H(x2)−H(x1,x2) (4.1.31)

Rewriting xn
1 as a n sample vector (x1,x2, ..,xn), the general mutual information

equation can be written as:

I(xn
1) =

n

∑
i=1

H(xi)−H(xn
1) (4.1.32)

(4.1.32) defines the common information in the xn
1 vector. The marginal information

can then be defined as the difference between the common information in the whole

set xn
1 and the subset xn−1

1 .

ρ(xn
1) = I(xn

1)− I(xn−1
1 ) (4.1.33)

In the physical system, ρ(xn
1) will be the measure of information that is added to the

system as time progresses, known as the redundancy. Redundancy is then related to

entropy through (4.1.33) as follows:

ρ(xn
1) = H(xn)−H(xn|xn−1

1 ) (4.1.34)

For n → ∞ (4.1.34) reduces to the difference between the marginal entropy of

process x and the entropy rate. The entropy rate Hr(x) of a Gaussian signal with a

PSD P(ω) from [29, p568] is given as:
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Hr(x) =
1

4π

∫ π

−π
lnP(ω)dω+ log2

√
2πe (4.1.35)

and the marginal entropy is shown to be:

H(x) =
1

2
ln
( 1

2π

∫ π

−π
P(ω)dω

)

+ log2

√
2πe (4.1.36)

From (4.1.35) and (4.1.36) the redundancy for a Gaussian signal can be com-

puted.

ρ = H(x)−Hr(x) (4.1.37)

The spectral flatness is then defined as e−2ρ

SF = e−2ρ =
exp

(∫ π
−π lnP(ω)dω

)

1
2π

∫ π
−π P(ω)dω

(4.1.38)

1
2π

∫ π
−π lnP(ω)dω is then total power in the signal as integrated over frequency.

For a digital signal this simplifies to 1
N ∑

N−1
k=0 Xk.

SF =
exp

(

1
N ∑

N−1
k=0 lnXk

)

1
N ∑

N−1
k=0 Xk

=

N

√

∏
N−1
k=0 Xk

1
N ∑

N−1
k=0 Xk

(4.1.39)

Xk : Fourier transform of the signal xn with frequency bin k

SF : Spectral Flatness of signal X .

N : Size of the FFT.

For a real signal only N
2 will be used, because of the symmetry in the frequency

spectrum. The spectral flatness is then the geometric mean of the power spectrum

divided by the arithmetic mean. This will be 1 for a pure Gaussian signal.

The computational cost of spectral flatness is O(N), where N the size is of the

FFT.

4.2 Offline

The offline methods are in general more computationally expensive and used on

data that has been compressed in some form or another.
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4.2.1 Sum Threshold

In the online RFI detection methods, the statistical shape of the probability distri-

bution function is investigated to determine if RFI is detected. This can be done in

real-time on the incoming samples. An alternative is to look at recorded samples

and filter RFI out by determining whether the power in a region is disproportionally

high. This process can be done post-correlation. This is the basic idea for the sum

threshold method as described by [4]. The method is run on a matrix representation

of the recorded values of the correlated visibility V ( f , t) as shown in (4.2.1).

V ( f , t) =











v f ,1 v f ,2 · · · v f ,t
...

... . .
. ...

v1,0 v1,1 · · · v1,t

v0,0 v0,1 · · · v0,t











(4.2.1)

Sum thresholding uses a combinatorial thresholding technique to determine

whether the data sample contains RFI or not. This is done by looking at each sam-

ple and determining if it is above a threshold χ1 and if the threshold is triggered, the

bin becomes flagged. A second pass is then made with a lower threshold of χ2, but

now looking at two adjacent bins. When both bins exceed the threshold both bins

are flagged, but if only one of the bins exceed the threshold, no bins are flagged. A

third pass through is made with an even lower threshold χ3, now looking at three

adjacent bins and so on.

This algorithm is run on both the frequencies as well as time axis. The number

of iterations pre-set to N, with each iterations i threshold as {χi}N
i=1.

For an example of the basic algorithm, look at the following data set.

Vexp =





5 3 2 7

7 4 9 7

5 4 2 8



 (4.2.2)

Assume χ1 = 8 and χ2 = 6. The flag matrix of the sample set will then look as

follows, with each flag shown with appropriate flagging.

FlagVexp
=





0 0 0 fχ2

0 0 fχ1
fχ2

0 0 0 fχ2



 (4.2.3)

From this limited characterisation of the algorithm, VarThreshold can be fully

defined. The full definition requires a number of parameters to be explained in more

detail, including:

• The subsets 1 to N to compare.

• The threshold for {χi}N
i=1.

• The false positive rate of the algorithm.
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The threshold itself is only loosely described, which makes implementation dif-

ficult. A set formula is defined in [4]

χi =
χ1

ρlog2 i
(4.2.4)

and from empirical evidence ρ = 1.5 is found work for VarThreshold and the later

defined SumThreshold. The start value χ1 will have to change for each situation,

depending on the power of the RFI as well as the observing signal. This exponential

function works well as it starts off by flagging strong RFI and can then filter out

broadband RFI on the higher iterations without removing too much usable data.

This is a major problem in the higher iterations, as more samples are flagged on

each turn.

The full definition of each search subset, for either a search with constant time

or constant frequency is

M = {i ∈ Z : 1 ≤ i ≤ max(N f ,Nt)} (4.2.5)

N f : The maximum number of frequency bins.

Nt : The maximum number of time domain bins

Although it is not specified, the number of iterations is also something to consider,

though after five iterations diminishing returns are seen.

To compute the false positive ratio, a number of assumptions are made. The

residual R of the complex correlated visibility V and surface fit V̂ is related to a

random distortion D(σNs
) with the average power of σNs

. The probability of a non-

contaminated bin from the residual R flagged as RFI, by being larger the χ, is given

in (4.2.6).

∀ f∀t : P(|R( f , t)| ≥ χ) =
∫ −χ

−∞
ϕσ(x)dx+

∫ ∞

χ
ϕσ(x)dx (4.2.6)

P(|R( f , t)| ≥ χ) : The probability of the residual being flag as RFI.

ϕ(x) : PSD of the random distortion D(σNs
).

The answer is computed numerically to simplify the solution and a value for

M = 2 is chosen. As the input signal of uncontaminated data is assumed to be

Gaussian noise, the two samples R( f1, t1) and R( f2, t2) are statistically independent.

The probability of a false positive can the be computed using (4.2.7) with all the

neighbours R2...5.

Pfalse( f , t) = P(flag fM=2( f , t)∨flagtM=2( f , t))

= P(|R1|> χ∧∃i ∈ [2...5] : |Ri|> χ)

= P(|R|> χ)−P(|R|> χ)(1−P(|R|> χ))4

(4.2.7)
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With larger sample sizes, the result becomes a lot more complex.

An improvement can be made to the VarThreshold method to more accurately

flag RFI. The basic algorithm is still the same as in VarThreshold, except for the

comparison made. In SumThreshold, the sum of the samples are compared instead

of looking at each sample individually.

N

∑
i=1

MN > N
χ1

ρlog2 N
, for N = 1,2..,N (4.2.8)

The problem occurs when a strong RFI signal is introduced to a sample set.

As an example, look at the following sample set [0,9,7,0,0,0] with χ1 = 7. This

implies a value for χ6 ≃ 2.45 using (4.2.4) with ρ= 1.5. The problem is that the sum

of all the values in the sample set is 16, while 6χ6 = 14.7. This will flag all six values

as RFI even though there are clearly only 2 bins that are RFI contaminated. The

solution is to leave out the previously flagged data and replace it with the current

RFI threshold value. For the sixth iteration of the sample set, this will become

(0+χ6 +χ6 +0+0+0) = 2χ6. The only flagged data will then be 9 and 7.

For the false positive ratio of the SumThreshold method for M = 2, the proba-

bility of two random variables being larger than χ are given in (4.2.9).

∀ f1 f2t1t2 : P(Tχ,1,2) = P[R( f1, t1)+R( f2, t2)≥ χ]

= P(D(2σNs
)≥ χ)

=
∫ ∞

χ
ϕ2σ(x)d

(4.2.9)

Assuming the number of time bins are equal to the number of frequency bins, N,

the computational cost of both Var- and SumThreshold are O(N2).
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4.2.2 Basic Pulsar RFI Mitigation Techniques

There are two basic techniques to either deal with narrowband RFI or broadband

RFI; these are part of PSRchive and described in [30]. For the narrowband RFI

mitigation, the algorithm is quite simple. Compute a median-smooth spectrum

by looking at a number of adjacent frequency bins. This window is swept over

the full frequency spectrum and the median is computed for each bin to form the

median-smoothed spectrum as shown in Fig 4.1 and 4.2. The default window size

of PSRchive is 21 frequency bins. Compute the standard deviation using the origi-

nal spectrum, whilst ignoring previously flagged bins. Compare each bin, with the

equivalent media-smoothed bin. If a bin differs by more than 4 times the standard

deviation, null that bin. Once done with the whole spectrum, check if any bins were

flagged. If bins where flagged, recompute the standard deviation leaving out the

newly flagged bins and sweep the spectrum again. Repeat this process until no bins

are flagged. The value of the window size as well as the tolerance of 4 times the

deviation can be adjusted for each situation. The flagged bins are usually zeroed as

the loss of a small frequency band does not effect the final results greatly, especially

if the bandwidth is much larger than the individual frequency bins.

F
re

q
u

en
cy

B
in

s

Pulse Bins

Window

Selected Bin

Figure 4.1: Example of the narrowband median-smoothing.

The idea of the broadband RFI mitigation is not to throw away a lot of data

because of corruption caused by, for example, a lightning strike. To start off, each

phase for the pulse is integrated for all frequencies to return the total flux for each

phase bin. This is done before the signal is de-dispersed. The median windowing

is again done, but on the total flux of the phase bins as shown in Fig. 4.3. This
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4 5 80 6 7 4

4 4 5 6 4 4

4 4 5 4 5 80 5 80 6 80 6 7 6 7 4 7 4 4

Original Vector

Median-smoothed Vector

3 Point Median Window

Figure 4.2: Example of the median-smoothing of a vector.

time, however, the median absolute deviation is computed recursively instead of the

standard deviation, as it adds robustness to the filter. After all of the affected phase

bins are flagged, each frequency bin for each phase bin is corrected independently.

The value of each frequency bin of a flagged phase is set to the locally computed

median plus uncorrupted noise. The noise is taken as the difference between the

observed pulse profile and the local median of a randomly selected un-flagged phase

bin.
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Window

Selected Bin

Summed Frequency Phase Bins

Figure 4.3: Example of the broadband RFI mitigation, frequency integration and

phase bin windowing.
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4.3 Other Known Methods

The following methods are also used for RFI mitigation, but not studied in this

thesis. A brief summary of each method will be given.

4.3.1 MAD - Median Absolute Deviation

A real-time RFI mitigation system is implemented at the GMRT in Pune India that

makes use of MAD to detect RFI [31]. MAD is more robust than looking at the

standard deviation of a signal, as it can handle outliers more easily. With the system

at the GMRT, the median absolute deviation is computed for the spectrum after

it has been Fourier transformed. The strong sources can then be flagged if the

frequency bin is more than the given threshold from the computed MAD value,

similar to the pulsar technique shown in Sec. 4.2.2. The threshold is set as the

median plus N times the standard deviation σ, where N is chosen by the user. The

values of the flagged bins are then replaced with Gaussian noise with the same

power as signal background noise.

4.3.2 Active RFI Cancellation

An alternative to using statistics to determine if a signal contains RFI, is to use an

active RFI cancellation method. This is shown in [32] where an extra antenna is

pointed to a known source for RFI cancellation. This method is very suitable when

the source is known, but obviously of limited value when this is not the case. The

standard method makes use of a simple reference antenna, such as a Yagi-Uda or

Log-Periodic, that is pointed at the source of the RFI. The signal for the telescope,

which contains an astronomical signal as well as RFI, is then cross correlated with

the reference signal to determine the power of the RFI. The gain of the reference

signal is then adjusted to null RFI from the telescope if subtracted, as shown in Fig.

4.4.

The gain and phase of the RFI can be extracted from the covariance matrix of

the interferometer. In the setup of [32], 10 telescopes are used with 2 reference

antennas which results in a 12× 12 covariance matrix C. Eigen decomposition is

then done on C to form C = GPGH , where G then forms the gain matrix and P,

the Eigen matrix that represents the power from each source. The power of the RFI

source in P is then not completely zeroed out, but only partially as a zeroed matrix

could potentially distort weak celestial signal.

4.4 Conclusion

Both the spectral flatness and spectral kurtosis algorithms are simple to compute.

This allows for these methods to be implemented in real-time, as the algorithms will

not cause a bottleneck. The Var/SumThreshold as well as the pulsar RFI mitigation
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gA

gRFI

X Correlat DSP

gAI +gAS

gRFII

−gAI

× gA

gRFI

gAS

I

I

S

∑

Figure 4.4: Example of the active RFI cancellation method used by [32], with I as

the interference and S as the celestial signal.

techniques require a number of iterations to flag RFI. This does not allow for the

methods to be implemented on real-time data, but only on the compressed post

correlation data.
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Chapter 5

Modelling

Before the algorithms are tested on physical system, the theory discussed in chapter

4 will be simulated using tools such at Matlab, SciPy and Simulink. The following

chapter will look at most of the simulations of the techniques discussed. The cases

that are looked at are:

• Continuous narrowband RFI, as seen on TV broadcast.

• Random narrowband RFI, such as cellphone transmissions.

• Broadband bursts, such as sparks and lighting strikes.

5.1 Spectral Kurtosis

The simulation of Spectral Kurtosis as described in Sec. 4.1.1 is done in Matlab.

The cases that are simulated using Matlab are:

• A single tone, varied in amplitude

• A single tone, varied in duty cycle.

• A single tone, varied in M.

• A broadband signal, varied in duty cycle.

For the varied duty cycle, M amount of spectra are summed to produce the PSD

estimate. This is done for each change in duty cycle and the resulting waterfall plot

can be seen in Fig. 5.1. All of the simulations are done with M = 1000 and a win-

dow size of 512, but the minimum for M is shown in [2] for stationary deterministic

signals. The equation given is

M(ηk)≥ 36(1+
1

ηk

)4 (5.1.1)

M : The number of spectra that are summed to form the PSD estimate.

41
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ηk : The signal to noise ratio of the RFI to celestial signal.

From (5.1.1) we can see that no RFI will be detected when M is made less than 36,

irrespective of the signal to noise ratio. It also implies that M must be greater or

equal to 576 in order to detect RFI with the same power as the celestial signal. To

accurately see what is happening at the tone frequency, a slice of the waterfall plot

is shown in Fig. 5.2. The signal to noise ratio for references at M = 1000 is then:

ηk =
1

4

√

M
36 −1

≃ 0.772 (5.1.2)

Waterfall of change in duty cycle
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Figure 5.1: A Waterfall plot of the spectral kurtosis of a varied duty cycle sine wave.
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Figure 5.2: A slice of the waterfall plot at the RFI frequency.

The amplitude of the tone is also varied, to see the effectiveness of spectral

kurtosis on different signal to noise levels. This can be seen in Fig. 5.3. The signal

is a random Gaussian noise source, similar to the electromagnetic signal from a

radiating black body. The continuous wave tone is used as the corrupting noise.

The upper an lower references, indicated by the blue lines, are set by (4.1.28). It is

clear to see in all of the above simulations that, for a 50% duty cycle sine wave, the

spectral kurtosis estimate is 1. This is always true, irrespective of the power of the

contaminating RFI signal and thus masks the RFI.
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Figure 5.3: A sine wave varied in amplitude with the duty cycle of the wave changed

from 0% to 100%.

The effect of a broadband signal will also be looked at. The sample PSD of the

spread spectrum signal is shown in figure 5.4. The spread spectrum used for the

spectral kurtosis estimate is generated using the code of [33].

The duty cycle of the spread spectrum signal is also varied from 0% to 100%

with the power in the signal 10dB greater than the noise. The waterfall plot is shown

in figure 5.5. The DC offset seen in figure 5.1 is removed in the waterfall. The effect

of the DC value can be neglected in the analysis as the roll-off of the KatADC is

30MHz before DC, and the spectrum near bin 0 is ignored.

To see the effects of the spread spectrum signal at the limits of the duty cycle, a

slice is taken from the waterfall plot at 1% duty cycle and at 100% duty cycle. This

is shown in Fig. 5.6 and 5.7 respectively. The signal to noise ratio of the spread

spectrum signal at 1% duty cycle is 10 dB, but the maximum value of the kurtosis

estimate for this signal is 2.1. This can be seen at Fig. 5.6 at frequency bin 0.14.

The spectral kurtosis estimate of a single tone at a duty cycle of 1% is shown in

Fig. 5.3. The spectral kurtosis estimate of the tone at a duty cycle of 1% is 3.4.

The spectral kurtosis estimate is larger for the weaker signal tone RFI, than for the

stronger spread spectrum signal. This is due to the fact that the power is dispersed

in frequency and not concentrated at a single tone. The broadband noise generated

in this instance is an extreme case, as the bandwidth usage of this example for the

KatADC will be the equivalent of a 200MHz spread spectrum signal.
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Figure 5.4: The PSD of the spread spectrum used for the spectral kurtosis estimate.
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Figure 5.5: The spectral kurtosis estimate of a broadband signal, varied in duty

cycle.
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Figure 5.6: The spectral kurtosis estimate of a broadband signal at 1% duty cycle
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Figure 5.7: The spectral kurtosis estimate of a broadband signal at 100% duty cycle.
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5.2 Spectral Flatness

The simulation of Spectral Flatness is only done in Matlab as the FPGA on the

ROACH 1 does not support floating point arithmetic. This is due to the fact that

the calculations of the spectral flatness makes use of logarithms. This is done in the

time domain, per time sample as well as in the frequency domain per frequency bin.

The spectral flatness is tested on a single tone as well as a broadband signal.

The spectrum with noise generated is shown in Fig. 5.8. The tone is on a single

frequency for all time samples. The broadband noise is Gaussian noise added to

the spectrum, with a bandwidth of 0.56 of the full spectrum. The broadband noise

is shaped using a hamming window for a slower increase in power. The shaping is

done in time and frequency. The total power per frequency bin is computed over

all time bins of the waterfall plot and shown in Fig. 5.9. The tone is visible at

frequency bin 0.3, but the broadband noise disappears in the background noise.

Waterfall plot of the spectrum over time
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Figure 5.8: A waterfall plot of the test spectrum used.

The power of the spectrum is then computed and the spectral flatness of each

frequency bin is computed. This is done by calculating the arithmetic mean of each

frequency bin, as well as the geometric mean. The values are then divided for each

frequency channel. The result is shown in Fig. 5.10. The broadband Gaussian noise

is shown in the red rectangle and the single tone is visible between the Gaussian

noise.

The same procedure is followed as for Fig. 5.10, but for all time samples. The

geometric and arithmetic mean is computed for each time sample, i.e. for each
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Figure 5.9: The total power in each frequency channel when summed for all time.

Frequency Bins

S
p
ec

tr
al

F
la

tn
es

s

Spectral Flatness per frequency channel

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Figure 5.10: The Spectral Flatness for each frequency channel.
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spectrum. The result is that the spectral flatness is shown for each time sample and

not per frequency bin. The power of each time sample is shown in Fig. 5.11 and

the spectral flatness result is shown in Fig. 5.12. The single tone will not be visible

in the total power graph and the broadband noise is just visible at time bin 400.

The the Spectral Flatness of the time domain shows the broadband noise clearly

between bins 300 and 400. It also has an offset from one for all time bins because

of the tone.
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Figure 5.11: The total power in each time bin for the whole frequency band.
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replacements

Time Bins

S
p

ec
tr

al
F

la
tn

es
s

Spectral Flatness per time bin

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Figure 5.12: The Spectral Flatness for each time bin, for the whole frequency band.

5.3 SumThreshold

For both the VarThreshold and SumThreshold, the simulated RFI generated in Sec.

5.2 for spectral flatness is used again. The simulations are done using Matlab to

generate the data and test the algorithm. The spectrum for the input signal over

time is again displayed using a waterfall plot. This is shown in Fig. 5.13. There is

again a single tone, as well as a broadband noise source in the generated spectrum.
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Waterfall plot of the spectrum over time
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Figure 5.13: The waterfall plot of the spectrum used for the VarThreshold and Sum-

Threshold.

The first method that is tested is VarThreshold and the threshold value for χ1 is

set empirically to χ1 = 97. The resulting graph for the threshold is shown in Fig.

5.14. The white areas indicate flagged bins while the black areas indicate unflagged

bins. The tone is visible at frequency bin 0.3 and the broadband burst is at time

300, between frequency bins 0.1 and 0.4. There are also a number of false positives

in the resulting graph. The more stable SumThreshold method is used on the same
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Figure 5.14: The waterfall plot of the spectrum as flagged by VarThreshold.

data as the VarThreshold method. The first threshold is set to χ1 = 120 as it was

found that the SumThreshold method is much more sensitive than the VarThreshold

method. The threshold was set until the resulting number of false positives was

equal to that of the VarThreshold method. The main focus was on the edge cases at

the tone, as well as the broadband noise. The result is shown in Fig. 5.15.
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Figure 5.15: The waterfall plot of the spectrum as flagged by SumThreshold.

To more clearly see the difference between the two methods, the flag map of the

VarThreshold method is subtracted for the SumThreshold flag map. The graph has

3 colours to indicate the difference between the methods, and shown in Fig. 5.16.

The red indicates no difference between the graphs, the white a flag only present

in SumThreshold and the black, a flag only present in the VarThreshold. It is clear

to see that for the same false positive ratio for VarThreshold as for SumThreshold,

the SumThreshold more accurately detects the tone as well as the edge cases of the

broadband noise.

5.4 Conclusion

The computational time for both the spectral kurtosis and spectral flatness is signif-

icantly less than the Var/SumThreshold method. Var/SumThreshold does, however,

allow for a much more selective flagging of RFI as a whole frequency bin for all

time is not removed but only the affected bins. The thresholding method is also not

blind to certain signal types such a 50% duty cycle tone, but flags all data over the

threshold.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. MODELLING 54

Time

F
re

q
u

en
cy

B
in

Difference between Sum and VarThreashold

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5.16: The waterfall plot of the difference between the VarThreshold and

SumThreshold.
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Chapter 6

Measurement Setup

This chapter will focus on the setup of each final measurement and testing of the

algorithms. The Spectral Kurtosis setup will include a Simulink model that can be

validated using a Simulink simulation as well as provided data. The pulsar RFI

mitigation techniques will be run on PSRchive directly using pulsar data. The Sum-

Threshold and VarThreshold methods as well as Spectral Flatness method will run

on provided data using Python.

The data sets used to test spectral kurtosis, spectral flatness, VarThreshold and

SumThreshold are KAT7 data provided by [34], interferometer measurements done

by JP van Rensburg [35] and measurements done using a radiometer implementa-

tion.

The KAT7 data is packaged in an HDF5 binary file which contains the complex

values of the spectrum of each baseline, for a number of time samples. The header

of the binary file contains the following data:

• Time interval of measurement.

• Bandwidth of the observation.

• Number of frequency channels.

• Channel frequency width.

The data obtained by [35] derived from a 2-element interferometer described in

that thesis. The sun was used as a test source and allowed to pass before the focus

of the two 3m dishes in drifts-scan mode. The distance between these dishes was

changed after each measurement to produce more baselines for the formation of

the visibility function. The measurements were done at the Faculty of Engineering

at Stellenbosch University. As this is an urban area, the measurement were con-

taminated by strong RFI sources and allows strenuous testing of the RFI mitigation

techniques. The RFI environment plots shown in [35] indicate the extent of the RFI

contamination on the data. The interference fringes will be used to calculate the

signal-to-noise ratio of the filtered data, in order to compare the effectiveness of the

algorithms.
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The signal-to-noise ratio is calculated, using the raw interference fringe plot as

reference. A narrow bandpass filter, with the same frequency as the interference

fringes, is generated in Matlab. The RFI contaminated interference fringe data is

passed through the bandpass filter to produce the clean signal. The power from the

clean signal is used as the signal reference for the power-to-noise ratio calculation.

The radiometer data is obtained using the same system that is used for the in-

terferometer data. The system is only setup as a radiometer, and the captured data

is used test RFI mitigation techniques. The tests are also performed at Stellenbosch

University, ensuring RFI contaminated data.

All of the offline methods are tested on desktop computer with the following

specifications:

• Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz

• 8GiB DDR3 Synchronous 1600 MHz

• OCZ-AGILITY3 with an ext4 partition

• Python 2.7.3

• Ubuntu 12.10

• Matlab R2012b

The run-time of the algorithms are computed in python. The starting and stop-

ping times of the algorithms are saved, and the difference between the two values

are taken as the run-time. Although the algorithms are not optimised, the timing

will still indicate with some measure the computational cost of each algorithm.

6.1 Spectral Kurtosis

The spectral kurtosis is tested with three data sets: KAT7 data, interferometer data

from [35] and self observed radiometer data. For both the KAT7 data and the ra-

diometer data, the RFI is only flagged and shown in a graph. The interferometer

data is processed for RFI and the flagged data is removed before post processing.

6.1.1 Radiometer Data

The spectral kurtosis is partly performed on the ROACH1 to improve the efficiency

of the online technique. The block diagram of the system on the ROACH1 board is

shown in Fig. 6.1.

The signal is digitised, passed to the polyphase filter and then Fourier trans-

formed. The output of the FFT is squared to produce the power of each signal, and

is then split into 2 streams. This first stream is passed to a delay, to allow for the
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Figure 6.1: Spectral Kurtosis as implemented on the ROACH1 board set up as a

radiometer.

power measurement as well as the spectral kurtosis estimate to arrive simultane-

ously at the computer. The delayed signal is then passed to BRAM for accumu-

lation, then out to the PC. The second stream is down-scaled from a 37 bit fixed

point number to a 15 bit fixed point number. With this downscaling, a multiplier

is added to adjust the gain to the spectral kurtosis system to prevent overflowing or

underflowing. The stream is then spilt into two streams again, one for S1 and one

for S2. The S1 stream is squared again, accumulated and then delayed to allow for

the S2 signal to arrive on time. The S2 signal is delayed to allow for the lost time of

the S1 signal being squared. The S2 signal is then accumulated, squared and then

passed to the PC.

The power of the recorded signal, as well as the S1 and S2 parameters, as de-

scribed in Sec. 4.1.1, are formed on the ROACH1. A Python script is then used to

communicate with the Berkeley Operating system for ReProgrammable Hardware

(BORPH) server running on the ROACH1. The data is then extracted via the Pow-

erPC. The connection between the Vertex 5 and the PowerPC is speed limited and

for this reason, the recorded values must be integrated over more than a second to

ensure no data loss.

Once the data is on the computer, the Python script interleaves the data received

and computes the spectral kurtosis estimate. A mask is then produced to indicate all

of the frequency channels that contain RFI. Since the spectral kurtosis is computed

for the same data set as the integrated radiometer power data, the spectral kurtosis

mask can be applied directly to the recorded values and the RFI removed. The data

is then exported to a Matlab file, to be graphed using a Matlab script.
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6.1.2 KAT7 Data

The data from the binary HDF5 file is read into memory via a Python script. The

spectral kurtosis estimate is then computed for 1000 spectra, and is performed on

two baselines as a proof of concept. The spectral kurtosis estimate is then used to

determine which bins contain RFI, by flagging bins where then spectral kurtosis

estimate deviates by more than a given amount. The raw spectrum as well as the

spectral kurtosis estimate is written to a Matlab file. The Matlab is then used to

graph the results of the spectral kurtosis estimate on the KAT7 data. The KAT-7

data contains RFI, as the data is part of a RFI scan result.

6.1.3 Interferometer Data

The interferometer data is read in via a Python script from the HDF5 file which

contains the complex values of the auto correlated as well as cross correlated values

of the interferometer. For the spectral kurtosis method, only the cross correlation

is looked at, as the result of removing RFI can be observed in the post processing

stage when forming the grating lobes.

The first step is to produce the spectral kurtosis estimate of a single measurement

set. This is done in Python after the data is read in. The spectral kurtosis estimate

is saved in a Matlab format to be graphed. The saved spectral kurtosis estimate is

then also used as a template for the RFI that is observed. A mask is made from the

spectral kurtosis estimate, where any value larger or smaller than a given deviation

is flagged as RFI. This mask is then used on each sampled spectrum to remove the

affected frequency bin before it is used to produce the fringes. The raw data is

displayed as a waterfall plot as well as the cleaned spectrum and the fringes.

The time duration of the algorithm is extracted from the python script, and given

as measure of computational cost.

6.2 Spectral Flatness

6.2.1 Radiometer Data

The power measurements done for the spectral kurtosis are also used for the spectral

flatness. The power measurements are fed into Matlab from the saved radiometer

data. The RFI mask is built up from the saved data to produce the cleaned spectrum.

6.2.2 KAT7 Data

The correlated data is read in via a Python script from the binary HDF5 file. The

spectral flatness is then computed for the frequency spectrum, by summing the same

frequency bin for a number of consecutive time samples. The standard spectral

flatness is also computed by summing each spectrum for each time series. The

possible corrupted frequency bins, as well as the possible corrupted time slices are
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then indicated by flagging abnormalities in the spectral flatness results. The results

are then also exported to a Matlab file, where it is then used to graph the results.

6.2.3 Interferometer Data

The spectral flatness is only used to flag RFI and to remove it. The interferometer

data is read from the HDF5 files by a Python script. The spectral flatness is com-

puted for each spectrum recorded in time, as well as for each frequency bin of the

recorded spectrum. The spectral flatness as well as the raw spectrum is written to a

Matlab file for further processing. Matlab is used to graph and display the spectral

flatness as well as the raw spectrum.

The time duration of the algorithm is extracted from the python script, and given

as measure of computational cost.

6.3 Pulsar RFI Mitigation

The pre-recorded pulsar data received from HartRAO[16] is used to test the algo-

rithms of PSRchive. This included data from Pulsars J0835-4510, J0437-4715 and

J0738-4042. The first basic step is to remove persistent narrowband RFI. These are

bands that always contain RFI and can always be ignored as its influence is known.

The narrowband RFI mitigation is done using a script for PSRchive. The stan-

dard median algorithm looks at the total flux summed over all pulse phases. This

can cause the RFI to be masked behind the total power of all of the channels, es-

pecially short bursts. In [22] a per-frequency operation is performed, where the the

minimum of each channel is subtracted from the maximum. The median operation

is then performed on this difference. The code for the script is given as:

# ! / u s r / b i n / env p s r s h

zap median exp ={ $ a l l : max−$ a l l : min}

zap median

The standard mow function (that is part of PSRchive) performs the broadband

RFI removal, but it does not utilise the MAD operation for robust statistics. A script

is used to force the mow function to use robust statistics as well as changing the size

of the window. The parameters are redefined as follows:

# ! / u s r / b i n / env p s r s h

zap mow r o b u s t

zap mow window =0.1

zap mow

The algorithms are pre-set in the software, but they do not allow for parame-

ter changes. Using a script to define the algorithms allows for fine tuning of the

parameters to suit the problem.
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6.4 Var/SumThreshold

VarThreshold and SumThreshold can be run on post correlated data, as it does not

uses statistics to detect RFI. For this reason algorithms can be tested on both pro-

vided data from KAT7 [34] as well as data recorded using the correlator built by

Jansen van Rensburg [35].

6.4.1 KAT7 Data

For the KAT7 data, the SumThreshold as well as the VarThreshold algorithm is run

in both frequency as well as time. The data is read in via a Python script from a

HDF5 file which contains the correlated data stored in binary format.

The final tests are done on an the auto correlation and a cross correlation data

sets in order to test the algorithm. The data provided explicitly contains more RFI,

as the interferometer was used to capture RFI.

The data is read into Python as an N×M matrix, where one axis represents time

and the other frequency. The SumThreshold and VarThreshold algorithms are run

on the data with a given threshold parameter and five iterations. The threshold is

firstly chosen as three times the median of the data. This is then adjusted until the

best results are obtained of the given dataset. The KAT7 data is only flagged to

show possible locations of RFI, which is then displayed using a waterfall plot.

6.4.2 Interferometer Data

The data contains the auto correlation of each antenna as well as the correlation of

the two antennas. This cross correlation data is used to produce the fringes of the

interferometer. This is then done for each baseline to produce an image of the sun

at 1.4GHz. To test the SumThreshold as well as the VarThreshold method, the data

is manipulated before producing the fringes. The algorithms are applied both in the

time as well as frequency axis, but the uneven distribution of the power spectrum the

of the sun provides difficulty for algorithms to remove all RFI. The dirty channels

are flagged and removed before the fringes are produced. This is done in python as

the data is also stored in a HDF5 file. The results are then exported to Matlab to

produce the graphs of the raw signal, flagged noise and cleaned signal.

The time duration of the algorithm is extracted from the python script, and given

as measure of computational cost.

6.5 Conclusion

Computationally inexpensive algorithms of spectral flatness and spectral kurtosis

allows for the implementation of these methods on both pre- and post-correlated

data. The Var/SumThreshold method is, however, bound to only post-correlated

data.
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Chapter 7

Measurements

The final measurements are done on data that is either previously recorded, or on

live data as recorded by the ROACH1 and KatADC as described in Chapter 6. The

four methods that are tested include:

• Spectral Kurtosis

• Spectral Flatness

• Sum/VarThreshold

• Pulsar RFI Mitigation

The speed of each method is a factor, especially for online methods as this can

cause a bottleneck in the system when dealing with high data rates. The effective-

ness of the method will also be evaluated. This will include false positives as well

as possible inability to flag RFI.

7.1 Spectral Kurtosis

Spectral Kurtosis is tested pre- and-post correlator. Both the interferometer data and

KAT-7 data is post correlator data, where as the radiometer data is not correlated.

The threshold value for each test is set manually. The threshold value is lowered un-

til data corruption is observed. The previous value that did not cause data corruption

is then used as the threshold value.

7.1.1 Radiometer Data

The spectral kurtosis algorithm is partially implemented on the ROACH1 board.

The raw radiometer data as well as the S1 and S2 values are sent to the computer

for analysis. The number of iterations M for this measurement is set to 20000 as the

integration time has to be large enough to reduce data rates from the ROACH1 to

the computer. The integrated power of the recorded spectrum is shown in Fig. 7.1

61
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and the spectral kurtosis computed from the given S1 and S2 is shown in Fig. 7.2.

The median of the spectral kurtosis is computed to determine the valid signal level

with a deviation of 0.3. The spectral kurtosis of the valid signal is less than 1. The

cleaned spectrum is shown in Fig. 7.3.
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Figure 7.1: The integrated spectrum of the radiometer as recorded for the online

spectral kurtosis implementation on the ROACH1.
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Figure 7.2: The spectral kurtosis estimate of the integrated spectrum shown in Fig.

7.1.
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Figure 7.3: The cleaned radiometer spectrum using spectral kurtosis.
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7.1.2 KAT7

The KAT7 measurement contain a number of correlation products, in this thesis

correlation product 10 will be used throughout. The raw spectrum of this measure-

ment set is shown in Fig. 7.4. The measurement has 4096 frequency bins with a

bandwidth of 6.25 MHz and centre frequency at 1417 MHz. For convenience, only

4096 time sample are taken, to make the waterfall plot a 4096× 4096 graph. The

full 4096×4096 spectrum is read in before any algorithm is performed on it.
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Figure 7.4: The raw KAT7 spectrum of measurement, correlation product 10[34].

Once the data is read in from the HDF5 file using python, the spectral kurtosis

(using the full 4096 spectral samples) is computed. The spectral kurtosis is then

saved in a Matlab file to produce the graph shown in Fig 7.5. This data is also used

to produce the RFI mask for the removal of RFI in the raw data. The median of

the spectral kurtosis is computed and a margin is chosen around the median. Any

frequency bin of the spectral kurtosis that is more or less than the margin within the

median is flagged as RFI.

The flagged bins are removed from the dataset to produce the graph shown in

Fig. 7.6. The strong RFI source at 1414 MHz, as well a a weaker source at 1416

MHz still remains after filtering. The other larger sources are, however, completely

removed from the cleaned spectrum. These large RFI sources can be seen in the

graph containing the removed noise, shown in Fig. 7.7. The run-time is 0.7867

seconds.
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Figure 7.5: The spectral kurtosis estimate of the spectrum shown in Fig. 7.4.

Time

Frequency MHz

N
o
rm

il
is

ed
P

o
w

er
in

d
B

Cleaned Signal

5

10

15
×1010

1414 1416 1418 1420

-25

-20

-15

-10

-5

0

Figure 7.6: The cleaned KAT7 spectrum

as filtered by spectral kurtosis.
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Figure 7.7: The noise of the KAT7 spec-

trum as filtered by spectral kurtosis.

7.1.3 Interferometer Data

Spectral kurtosis is performed on the cross correlation of an observation performed

on the sun. The two antennas are placed nine meters apart and pointed in the path

of the sun. The system then recorded the auto correlation of each antenna, as well

as the cross correlation between the two as the sun moves past the focus of the

two antennas. This is done in the effective frequency band of the system which is

from 1292MHz to 1548MHz. The result of the raw data is shown in Fig 7.8. There

are a number of continuous RFI sources present in the raw data, as can be seen at

1350MHz as well as broadband noise at 250 seconds.

The cross correlation data is used to create the interference fringes for the ob-

served source. The noise in the spectrum will result in artefacts in the interfer-

ence fringes of the observed source. The interference fringes produced from the
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Figure 7.8: The raw interferometer spectrum as observed for a number of seconds.

above spectrum suffers from RFI as can be seen in the number of artefacts in the

graph shown in Fig 7.9. The interference fringes are calculated using only the spec-

trum 1292MHz to 1548MHz and not the full spectrum shown, as this is the system

bandwidth. The signal-to-noise ratio of the unfiltered interference fringe plot is

−17.67dB. The spectral kurtosis estimate is calculated on the full spectrum for the

full recorded time, and is shown in Fig 7.10 in dB. The run-time for the algorithm

is 0.095217 seconds. The spectral kurtosis estimate is used to produce a mask to

indicate the noise in the recorded spectrum. For the data in Fig 7.8, a threshold is set

to flag RFI. This is done by taking the median of the spectral kurtosis and adding a

differential limit of one. This mask is then used to filter out the bins in the spectrum

above to produce the cleaned spectrum as well as a re-evaluated visibility.

The contaminated bins are simply zeroed out to produce the clean spectrum.

This time-shortened spectrum can be seen in Fig 7.11. The signal-to-noise ratio of

the filtered interference fringe plot is 7.27 dB. Although not visible on the averaged

graph shown in Fig. 7.11, there are a number of small broadband bursts remaining in

the data. This can be filtered out by removing the time series with the contaminated

broadband noise. There is also uncontaminated data that is flagged as RFI and

removed. In Fig 7.12, the removed frequency bins are shown. Uncontaminated data

can be seen in the noise graph at the frequency bin 1500 MHz.
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Figure 7.9: The interference fringes as produced from the recorded spectrum in Fig

7.8.
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Figure 7.10: The spectral kurtosis estimate of the spectrum as seen in Fig 7.8.
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Figure 7.11: The clean interferometer

spectrum as observed for a number of

seconds after filtered by spectral kurto-

sis.
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Figure 7.12: The noise of the interfer-

ometer spectrum as observed for a num-

ber of seconds after filtered by spectral

kurtosis.

The interference fringes are produced again using the cleaned spectrum as shown

in Fig 7.11 to produce Fig 7.13. As can be seen from this figure, all of the artefacts

are removed from the visibility and more recorded time is usable from the interfer-

ence fringes. The only glitch that remains is located at 4000s where the amplitude

of the fringe is distorted. This can be attributed to residual RFI in the final signal.
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Figure 7.13: The interference fringes as produced from the cleaned spectrum in Fig

7.11.
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7.2 Spectral Flatness

The spectral flatness method is used on all of the datasets described below. The

threshold value for each test is set manually. The threshold value is lowered until

data corruption is observed. The previous value that did not cause data corruption

is then used as the threshold value.

7.2.1 Radiometer

The integrated data from the ROACH1 is sent to the computer for analysis as the

FPGA cannot implement the floating point arithmetic for spectral flatness. A num-

ber of integrated spectra are saved for further processing. The raw spectrum as

observed over time can be seen in Fig. 7.14. The geometric mean and arithmetic

mean are computed in Matlab and the spectral flatness is produced. The result is

shown in Fig. 7.15. The spectral flatness of the valid data is clearly 1 within the

bandwidth of the system specifications. A number of short tones are injected over

time to add RFI noise to the measurement and are visible between samples 40 and

60 as small bumps in the operating frequency band. A deviation of 0.2 less than 1

is chosen as the cut-off for RFI to produce the RFI mask. The cleaned spectrum is

shown in Fig. 7.16 with the noise removed shown in Fig. 7.17. All of the added

RFI is removed from the cleaned spectrum.
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Figure 7.14: The raw radiometer spec-

trum used for spectral flatness.
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Figure 7.15: The spectral flatness as

computed for Fig. 7.14.
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Figure 7.16: The cleaned radiometer

spectrum using spectral flatness.
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Figure 7.17: The noise in the radiome-

ter spectrum as removed by spectral flat-

ness.

7.2.2 KAT7 Data

The same dataset that is used for the spectral kurtosis test on the KAT7 data is also

used for the spectral flatness test. The waterfall graph of the data can be seen at

Fig. 7.4. The spectral flatness is again computed for the full 4096 spectra and this

is shown in Fig. 7.18. The median of the spectral flatness is then computed, to

determine the level of the valid signal. A threshold around the median is chosen as

a valid signal and any frequency bin of the spectral flatness that does not fall within

the deviation is marked as RFI.

The RFI marked bins are then used to produce a RFI mask for the dataset and

are removed from the measurement. The cleaned spectrum is shown in Fig. 7.19.

The strong RFI source is again present at 1414 MHz, as well as the weaker source

at 1416 MHz after spectral flatness has been applied. There is also a weaker RFI

source present at 1419 MHz that is not visible in the spectral kurtosis cleaned spec-
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Figure 7.18: The spectral flatness measure of the KAT7 dataset shown in Fig 7.4.

trum. The frequency bins that are removed from the cleaned spectrum is shown in

Fig. 7.20. The run-time is 1.2751 seconds.
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Figure 7.19: The raw spectrum Fig. 7.4

cleaned using spectral flatness.
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Figure 7.20: The noise from the raw

spectrum Fig 7.4 when removed using

spectral flatness.
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7.2.3 Interferometer Data

The same dataset is used for the spectral flatness tests, that was used in the spectral

kurtosis (Sec. 7.1.3), with the spectrum and resulting visibility plot shown in Fig

7.8 and 7.9. The spectral flatness for each of the frequency bins is computed for the

full duration of the sun measurement. The resulting spectral flatness is then shown

in Fig 7.21. The run-time for the algorithm is 0.184751 seconds. The median of the

spectral flatness is then computed to use as a base for the signal content. A threshold

values is set for the maximum deviation of the spectral flatness from the computed

median. When the RFI mask produced from Fig 7.21 is applied to the raw data
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Figure 7.21: The spectral flatness for each frequency bin as computed from the

spectrum shown in Fig 7.11.

shown in Fig 7.8 and the flagged bins removed, the resulting waterfall plot is shown

in Fig 7.22. The amount of data that is removed, compared to spectral kurtosis, is

more as the number of flagged bins indicated. This is supported by the noise plot of

the spectrum shown in Fig 7.23. There are, however, still a number of broadband

sources remaining in the cleaned spectrum, again masked by the averaging of the

waterfall plot.

The visibility function is again generated, this time using the spectral flatness

cleaned data. The resulting graph is shown in Fig 7.24. All of the glitches are

removed from the final result, as well as the amplitude glitch seen in the spectral

kurtosis clean visibility function (Fig. 7.13). The fringes, however, indicate mi-

nor distortions at the peaks, but this can be a result of the large amount of data

that is thrown out in the cleaning process. The signal-to-noise ratio of the cleaned

interference fringe plot is 5.94 dB.
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Figure 7.22: The raw spectrum Fig 7.8

cleaned using spectral flatness.
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Figure 7.23: The noise from the raw

spectrum Fig 7.8 when removed using

spectral flatness.

Time in seconds

V
is

ib
il

it
y,

R
ea

l
A

rb
it

ra
ry

v
al

u
es

Real part of the complex visibility

2000 4000 6000 8000 10000 12000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 7.24: The interference fringes produced from the spectral flatness cleaned

spectrum shown in Fig 7.22.
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7.3 Var- and SumThreshold

The Var- and SumThreshold methods are tested on both the interferometer data

and the KAT7 data as post-processing method. The χ1 value for each test is set

manually. χ1 is lowered until data corruption is observed. The previous value that

did not cause data corruption is then used as χ1.

7.3.1 Interferometer Data

The same measurements are used for both the Var and SumThreshold as for the

spectral flatness in Sec. 7.1.3. The spectrum can be seen in Fig 7.8. The start

threshold level χ1 = 0.0057, which is equals to three times the median. The number

of iterations M is set to five, and the value of ρ is set to 1.5 as advised by Offeringa

[4]. For the test, all of the flagged bins are removed from the final results. The clean

spectra for both methods are shown in Fig. 7.25 and Fig. 7.26. The run-time for

SumThreshold was 153.766261 seconds, and 174.433670 seconds for VarThresh-

old. All of the small strong sources are removed from the final result, which include

the broadband pulses that remained after applying spectral flatness or spectral kur-

tosis. The weaker continuous RFI sources, however, are still visible in the cleaned

spectrum. This is due to the fact that the power of the observed signal, namely the

sun, does not stay constant over time. As the sun moves across the focus of the

interferometer, the total power observed changes over time. Applying the threshold

for the full duration of the observation, limits the threshold to the maximum peak

power observed by the sun. The result is that a signal weaker than the sun’s power

still remains. The noise detected is shown in Fig. 7.27 and Fig. 7.28. The overall

computation time of these methods are significantly longer than the spectral flatness

or spectral kurtosis methods.

The visibility functions are then computed from both the VarThreshold and

SumThreshold cleaned spectra. The results are shown in Fig. 7.29 and Fig. 7.30.

The difference between the two methods are not clearly visible from visibility func-

tions. The visibility plot cleaned using VarThreshold shows slightly more noise at

the phase glitch (at 5000s), which is present in both plots. The signal-to-noise ratios

of the interference fringe plots of VarThreshold and SumThreshold are 3.10 dB and

3.18 dB.

7.3.1.1 Parameter Check

The effect of the parameters M and ρ tested on the interferometer data. The values

for M and ρ are varied and the signal-to-noise ratio is measured of the interference

fringes. This is only done for the SumThreshold case, as it will have the same

influence on VarThreshold. The value of ρ is varied from one to two, and the value

of M is varied from one to nine. The following graphs show the signal-to-noise

ratio of each test, in relation to the varied value. The effect of varying ρ is shown in

Fig. 7.33 with M = 5. The effect of varying M is shown in Fig. 7.31, with ρ = 1.5.
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Figure 7.25: The spectrum shown in Fig

7.8 cleaned using VarThreshold.
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Figure 7.26: The spectrum shown in Fig

7.8 cleaned using SumThreshold.
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Figure 7.27: The noise in the spectrum

shown in Fig 7.8 flagged using Var-

Threshold.
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Figure 7.28: The noise in the spectrum

shown in Fig 7.8 flagged using Sum-

Threshold.
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Figure 7.29: The interference fringes

produced from the VarThreshold

cleaned spectrum shown in Fig 7.25.
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Figure 7.30: The interference fringes

produced from the SumThreshold

cleaned spectrum shown in Fig 7.26.
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As only M effects the run-time of SumThreshold, this is shown if Fig. 7.32. At
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Figure 7.31: The effect on signal-to-

noise ratio for varying M.
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Figure 7.32: The effect on run-time for

varying M.

M = 7 the signal becomes distorted and this in turn lowers the signal-to-noise ratio

as seen in Fig. 7.31. The run-time stays constant as expected, as only the number of

iterations increase. As ρ is increased, the amount of data flagged on each iteration
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Figure 7.33: The effect on signal-to-noise ratio for varying ρ.

increases as well. The result is that valid data is being flag as RFI once ρ becomes

larger than 1.6.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7. MEASUREMENTS 77

7.3.2 KAT7 Data

The dataset from KAT7 is used to test both the VarThreshold as well as the Sum-

Threshold method. The χ1 value for both is set to 0.7, with the standard ρ = 1.5
and M = 5. The data is read in via the Python script from the HDF5 file to produce

the 4096× 4096 matrix. The data is then iteratively run through both methods to

produce the RFI map of the dataset. All of the bins that are flagged as RFI are then

removed from the raw dataset. The cleaned data for both methods are shown in

Fig. 7.34 and Fig. 7.35. Both cleaned spectra display a similar shape. The iterative

nature of the algorithm results in a much longer computation time in comparison

to the online methods. The flagged RFI bins can also be seen in Fig. 7.36 and

Fig. 7.37. The run-time of VarThreshold was measured to be 1111.4 seconds, and

SumThreshold 1673.6 seconds.
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Figure 7.34: The spectrum shown in Fig

7.4 cleaned using VarThreshold.
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Figure 7.35: The spectrum shown in Fig

7.4 cleaned using SumThreshold.
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Figure 7.36: The noise in the spectrum

shown in Fig 7.4 flagged using Var-

Threshold.
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Figure 7.37: The noise in the spectrum

shown in Fig 7.4 flagged using Sum-

Threshold.
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7.4 PSRchive RFI Mitigation

For the testing of the PSRchive methods, two datasets are selected that illustrate the

use case of the methods. These datasets do not contain pulsar information, only RFI

to illustrate the use case.

7.4.1 Narrowband Noise

The data for the narrowband noise is provided by HartRAO [16]. The noise is ob-

served in a recording of pulsar 110904 in the 700 MHz to 760 MHz frequency band.

The raw contaminated dataset is shown in Fig. 7.38. Three strong narrowband RFI

sources are visible, one just below 740 MHz and two right above and right below

720 MHz. The dataset is passed through the algorithm to remove RFI. The cleaned

spectrum is shown in Fig. 7.39. The three strong RFI sources are removed from

the final result as well as a minor source. There are also frequency bins removed

that did not indicate RFI contamination on the raw signal; however, a weaker RFI

source can be hidden by the three strong sources.
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Figure 7.38: The raw data contaminated with narrowband

noise as provided by HartRAO [16].

Figure 7.39: The cleaned data after it is passed through

PSRchive.
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7.4.2 Broadband Noise

The data recorded by [36] provided a sufficient example of broadband noise. The

raw data shown in Fig. 7.40 indicates broadband noise close to phase bins 0.5

and 0.7. These are no pulsar pulses, as the raw data indicates no dispersion of the

pulse over frequency. Narrowband noise is also present in the example, but will

be ignored as the broadband RFI detection algorithm for timing pulsar data is only

valid for broadband noise. The data is passed through PSRchive to remove the

broadband noise and replace it with noise of the same power as the uncontaminated

areas. The result is shown in Fig. 7.41.
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Figure 7.40: The raw data contaminated with broadband

noise as provided by [36].

Figure 7.41: The cleaned data after it is passed through

PSRchive.
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7.5 Daisy-Chain

A number of the algorithms are daisy-chained, in order to test their cumulative

effect. As the data provided by [35] allows for signal-to-noise measurements of

the interference fringes, this dataset will be used thought the daisy-chain system to

validate the tests. The run-time of each algorithm will be displayed as well as the

signal-to-noise measurement of the final result.

7.5.1 Spectral Kurtosis to Spectral Flatness

The raw interferometer data (Fig. 7.8) is passed through spectral kurtosis and spec-

tral flatness to investigate the effect of daisy-chaining. The cleaned spectrum is

shown in Fig. 7.43 with the resulting interference fringe plot shown in Fig. 7.43.

The resulting signal-to-noise ratio is 7.27 dB, the same as using spectral kurtosis on

its own.
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Figure 7.42: The clean interferometer

spectrum as observed for a number of

seconds after filtered by spectral kurto-

sis and spectral flatness.
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Figure 7.43: The interference fringes as

produced from the cleaned spectrum in

Fig 7.42.
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7.5.2 Spectral Kurtosis to SumThreshold

The raw interferometer data (Fig. 7.8) is passed through spectral kurtosis and

SumThreshold to investigate the effect of daisy-chaining. The cleaned spectrum

is shown in Fig. 7.45 with the resulting interference fringe plot shown in Fig. 7.45.

The resulting signal-to-noise ratio is 7.28 dB. This is due to the small broadband

spikes mentioned, that are removed.
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Figure 7.44: The clean interferometer

spectrum as observed for a number of

seconds after filtered by spectral kurto-

sis and SumThreshold.
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Figure 7.45: The interference fringes as

produced from the cleaned spectrum in

Fig 7.44.
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7.5.3 Spectral Flatness to SumThreshold

The raw interferometer data (Fig. 7.8) is passed through spectral flatness and Sum-

Threshold to investigate the effect of daisy-chaining. The cleaned spectrum is

shown in Fig. 7.47 with the resulting interference fringe plot shown in Fig. 7.47.

The resulting signal-to-noise ratio is 6.27 dB.
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Figure 7.46: The clean interferometer

spectrum as observed for a number of

seconds after filtered by spectral flatness

and SumThreshold.
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Figure 7.47: The interference fringes as

produced from the cleaned spectrum in

Fig 7.46.
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Algorithm SNR (dB) Run-Time (Seconds)

Unfiltered -17.67 N/A

Spectral Kurtosis 7.27 0.095

Spectral Flatness 5.94 0.184

VarThreshold 3.10 174.433

SumThreshold 3.18 153.766

Table 7.1: A summary of the algorithm results using the two element interferometer

data provided by JP van Renseburg [35]

7.6 Conclusion

The use of spectral kurtosis and spectral flatness in post correlated data allows for a

computationally inexpensive operation to detect RFI. The values for these on Gaus-

sian noise for the correlated data, however, does not equal the theoretical pre corre-

lated data values, but differers for each situation. The Var/SumThreshold methods

work as expected, except when the power of the observed source varies over time.

The run-time results of the Var/SumThreshold methods indicate a significant in-

crease in processing time as shown in Table. 7.1. The run-time of SumThreshold

is longer than VarThreshold for the KAT-7 data, but shorter than VarThreshold for

the interferometer data. The two datasets are processed differently. The difference

in timing can be an effect of inefficient memory usage when manipulating the ma-

trices.
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Conclusion

8.1 Summary

The broad thrust of the work done has been the investigation of RFI mitigation in

radio astronomy. The implementation of these techniques relies on the digital back-

end of the radio telescope. As part of this work, the design and implementation

of a spectrometer on a ROACH1 (shown in Fig. 2.3) which completed for the

AVN project was included in this work to permit testing of a radiometer. The AVN

radio telescope is also specified to function as a pulsar observation- and timing-

system, and for this reason a background study in pulsar theory has been done. This

included the software that is used to de-disperse and time pulsar signals, namely

Tempo2 and PSRchive [15].

The major components of the digital back-end of a modern radio telescope has

been examined in Chapter 3. This included the hardware used to digitise the signal

as well as process the signal to a final result. It also included the software used to

manage the high data rates.

The RFI mitigation techniques can be split into two major groups, as discussed

in Chapter 4; the offline methods, and the online methods. The offline methods are

generally more computationally expensive, and thus are run on smaller data sets.

The online methods have to be computationally inexpensive, as they are run on the

raw data. The online techniques include:

• Spectral Kurtosis.

• Spectral Flatness.

• Active RFI cancelling.

• Median Absolute Deviation.

The offline methods include:

• Var/SumThreshold.

86
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• PSRchive RFI mitigation techniques.

The majority of the tested online methods rely on statistics to determine the

nature of the recorded signal. Spectral kurtosis computes the shape of the PSD of

the recorded signal, whereas spectral flatness determines the power distribution of

the signal. Var/SumThreshold as well as MAD makes use of thresholding to detect

strong sources in the recorded signal. This is also implemented in the PSRchive

RFI mitigation techniques.

The chosen methods were simulated in Chapter 5 to test the theory and most of

the tests are performed in Matlab. These methods were tested on real data provided

by a number of sources as indicated in Chapter 6 and 7. The final results were

shown and discussed.

8.2 Tests and Measurements

Each of the techniques was tested with actual radio astronomy data. This is to

ensure the validity of the test results.

8.2.1 Spectral Kurtosis

The spectral kurtosis estimate as formulated by Nita [2] is a lightweight algorithm

that can be implemented alongside a full spectrometer on a standard FPGA based

system such as the ROACH1. The algorithm only requires the computation of the

power of the signal as well as the square of the power. This will then have to be

buffered on the system before it is sent with the recorded data to a computer for

processing to simplify the FPGA design.

The timing of the data, as well as the spectral kurtosis estimate, is required to

be correct in order to flag the appropriate data. The special cases where spectral

kurtosis breaks down will also have to be considered. The 50% duty cycle blind

spot is fortunately not significant when the RFI source is a constant, known source.

This technique performs well with short RFI bursts and can easily detect a

broadband pulse. If the algorithm is only implemented on the frequency bins, a

number of time samples worth of frequency bins will be lost instead of removing

the time samples that have been affected. The number of samples lost is equal to

the value of M for spectral kurtosis estimation. A trade-off has to be made between

ensuring a high signal-to-noise ratio by increasing the value of M, or reducing the

number of data bins removed by reducing the value of M.

The spectral kurtosis estimate can also be implemented on post-correlator data

as shown in Chapter 7. The value of the spectral kurtosis estimate can, however,

differ from one for the valid signal as shown. To compensate for this, a median for

the spectral kurtosis estimate can be computed and a deviance chosen to flag data as

RFI or not; however, this process breaks down once the RFI contamination is large

enough to completely skew the results of the median. It is also blind to a broadband
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burst as the value of the spectral kurtosis estimate will be shifted for all frequencies,

thus changing the computed median.

8.2.2 Spectral Flatness

Spectral flatness is mostly used for voice detection algorithms, to detect information

in a noisy signal. The value of the spectral flatness is also only meant to be com-

puted per spectra, to indicate the start of information in a time series. Applying the

algorithm on each frequency bin will result in a breakdown of some of the theory.

A source with constant power over time will result in a spectral flatness of one, as

the power distribution over time is equal.

The value of the spectral flatness for the correlated data results in a value lower

than 1. This can be useful when detecting constant tones, as the tone will not be

masked by the valid celestial signal as shown in both cases for spectral flatness in

Chapter 7. The spectral flatness of the radiometer power resulted in a value of one

for all of the valid frequency bins. A constant tone will thus be masked by the valid

signal.

The spectral flatness algorithm is not as sensitive to small power changes as

spectral kurtosis, as the computation of both medians can hide the small distur-

bance.

The computation of the geometric mean will rely on floating point arithmetic

and is difficult to implement on a FPGA based system, but easily implemented on a

GPU based system.

8.2.3 Var/SumThreshold

Both the VarThreshold and SumThreshold rely on thresholding to determine whether

a data set contains RFI. The algorithms pass iteratively through the data to detect

stronger power sources between the valid celestial signal. Only the bins that con-

tain the RFI are marked and removed, where as spectral kurtosis or spectral flatness

removes the whole frequency bin for all time samples. This allows for a much more

precise selection of the RFI.

The algorithms assume that the power of the observed source stays constant for

all time. This poses a problem for the interferometer data as supplied by [35]. As

the sun passes though the focus of the interferometer, the power detected increases.

This results in an uneven power plot for the valid data. The threshold for the al-

gorithms cannot be set lower than the peak of the valid data, which in turn allows

weaker RFI to remain even after filtering. The value of the first threshold χ1 must

also be set by hand.

8.2.4 PSRchive Techniques

Both the techniques require user intervention in order to fully utilise the algorithms,

as the length of the windows must be set. The techniques are integrated in PSRchive
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which makes the application simple once PSRchive is used for pulsar timing.

If either of the two algorithm’s windows are set too small, valid pulsar data will

be flagged as RFI.

8.2.5 To Conclude

Although spectral kurtosis and spectral flatness require less user intervention func-

tion on new data sets than Var/SumThreshold, some user interaction is still required.

The thresholds for the spectral flatness and kurtosis must be adjusted to ensure more

precise RFI removal. Spectral kurtosis provides a more stable testing platform for

online monitoring than spectral flatness, as the blind spots for spectral kurtosis are

less likely to occur on a radio telescope.

The signal-to-noise ratio tests indicate that spectral kurtosis was able to flag

more valid RFI than any of the other techniques. Spectral kurtosis also outper-

formed spectral flatness in run-time tests, by nearly half the time. The overall

computation time for SumThreshold is extremely large compared to both spectral

flatness and spectral kurtosis. The run-time could potentially be decreased using, a

GPU based approach, an AVX approach on a standard x86 CPU or simply refining

the algorithm. This will, however, not compensate for SumThreshold’s lack in the

detection of RFI with less power than the observed signal power.

8.3 Future Development

The use of spectral flatness and spectral kurtosis on a per spectrum basis, in order

to flag broadband bursts can be investigated. The data can then be passed though a

spectral flatness or kurtosis algorithm twice. The first iteration will review the data

on a per frequency bin bases and the second iteration review the data on a per time

bases. Two iterations of spectral flatness or kurtosis will still be significantly less

costly in time than Var/SumThreshold as indicated by the run-time results.

An automatic level detection can be implemented for Var/SumThreshold to de-

termine the value of χ1. Using the value of the median to determine χ1 was briefly

considered, but did not work with the interferometer data as the change in power

resulted in valid data being thrown away.

The handling of the flagged data will have to be considered for large telescopes.

If data loss is acceptable, the flagged bins can be removed as the data is captured.

If data loss is not acceptable, an extra data set will have to be stored to indicate

whether the bins are flagged as RFI or not. This will introduce extra storage that

may not be practical, depending on the setup, although KAT-7 implements a system

to indicate signal integrity.
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Appendix A

Spectral Variability of a Windowed

Time Domain Gaussian Signal

The derivation of the spectral variability is done in [2] as follows.

Equation 4.1.7 is firstly split up in to the following form.

P̂k = A2
k +B2

k (A.0.1)

where

Ak =

√

2

Wss

N−1

∑
n=0

wnxn cos
(2πkn

N

)

(A.0.2)

Bk =

√

2

Wss

N−1

∑
n=0

wnxn sin
(2πkn

N

)

(A.0.3)

As seen in [24, p89], a linear combination of a zero mean Gaussian signal will

also produce a zero mean output. The result is that equations (A.0.2) and (A.0.3)

are also zero mean with a computable variance. This is shown is [17, p350] using

equation (A.0.4).

σ2
g(x1,...,xn)

=
N−1

∑
i, j=0

∂g

∂mi

∂g

∂m j
Cov(xi,x j) (A.0.4)

σ2
g(x1,...,xn)

: The variance estimate.

∂g
∂mi

: Partial derivative that is evaluated at the mean value mi =< xi >.

Cov(xi,x j) : The covariance of the random Gaussian variables.

As the variables are Gaussian and independent, the covariance will evaluate to

zero for all values of i and j, except where i = j. The covariance will result in the

variance σ2
x at i = j. The answer for equation (A.0.4) can now be computed for

(A.0.2) and (A.0.3) as follows:
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σ2
Ak

=
N−1

∑
n=0

( ∂A

∂ < xn >
σx

)2

=
(

√

2σ2
x

N ∑
N−1
n=0 w2

n

)2
sumN−1

n=0

(

wn cos
(2πkn

N

)

)2

=
2σ2

x

N ∑
N−1
n=0 w2

n

N−1

∑
n=0

(

w2
n

1+ cos
(

4πkn
N

)

2

)

=
σ2

x

N ∑
N−1
n=0 w2

n

N−1

∑
n=0

(

w2
n +w2

n cos
(4πkn

N

)

)

=
[

1+ℜ(W2k)
]σ2

x

N

(A.0.5)

Here,

ℜ(W2k) =
N−1

∑
n=0

w2
n cos

(

4πkn
N

)

∑
N−1
n=0 w2

n

(A.0.6)

which is the real part of the normalised Fourier transform of the windowing function

Wk =
1

∑w2
n

N−1

∑
n=0

w2
ne−2πikn/N (A.0.7)

The same hold for Bk.

σ2
Bk

=
[

1−ℜ(W2k)
]σ2

x

N
(A.0.8)

The values of WN = W0 = 1 for all windowing functions, as this is part of the

definition. This results in a simple answer for DC and Nyquist frequencies σ2
A0

=

σ2
B0

=
2σ2

x

N
. We also already know that Ak and Bk are zero mean random variables,

as per definition. This implies that < A2
k >= σ2

Ak
and < B2

k >= σ2
Bk

, and can now

be used to compute the expected mean of the PSD estimate µk ≡< P̂k > as shown

in (A.0.9).

µk =< P̂k >=< A2
k >+< B2

k >=
2σ2

x

N

for k = 0,1, ...,
2

N

(A.0.9)

As expected, the power is shown to be equally distributed across all channels

of the PSD estimate. The power is however not equally distributed between the

real and imaginary part, as can be seen in equations (A.0.5) and (A.0.8), but is

influenced by the Fourier transform as well as the windowing function. It can also
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be seen from equation (A.0.3) that for k = 0 and k = N
2 , B0 = B N

2
= 0. This means

that the probability distribution function for the PSD can be computed using only

Ak as a standard Gaussian distribution.

p(Ak) =
1

√

2πσ2
Ak

e

(

− A2
k

2σ2
Ak

)

(A.0.10)

Substituting P̂k for Ak in (A.0.10) results in the following.

p(P̂k) =
1

√

2πσ2
Ak

P̂k

e

(

− P̂k

2σ2
Ak

)

(A.0.11)

The nth-order moment about the origin of the PSD estimate can be computed

using (A.0.11) as follows.

µ′k(n) =< P̂n
k >= 1×3...× (2n−1)σ2n

Ak

for k = 0,
N

2

(A.0.12)

This follows that the variance of the PSD estimate can be computed at k = 0, N
2 .

σ2
N
2
= σ2

0 = µ′0(2)−µ′0
2
(1) =

8σ4
x

N2
(A.0.13)

Having computed both σ2
k and µ2

k the value of Vk (See (2.6.3))for k = 0, N
2 can

now be computed using (2.6.3).

V 2
N
2
=V 2

0 = 2 (A.0.14)

To compute the spectral variability for all other frequencies, the PSD estimate

for both Ak and Bk will have to be computed. This is again done using the Taylor

expansion in [17, p350].

Cov( f ,g) =
N−1

∑
i, j=0

∂ f

∂mi

∂g

∂m j
Cov(xi,x j) (A.0.15)

As in equation A.0.4, the covariance of Ak and Bk will be zero for j 6= i and

where i = j the result is Cov(xi,x j) = σ2
x . Replacing (A.0.2) and (A.0.3) in (A.0.15)
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results in the following answer.

Cov(Ak,Bk) =
N−1

∑
n=0

∂Ak

∂ < xn >

∂Bk

∂ < xn >
σ2

x

=
2

N ∑
N−1
n=0 w2

n

N−1

∑
n=0

w2
n cos

(2πkn

N

)

sin
(2πkn

N

)

σ2
x

=
σ2

x

N ∑
N−1
n=0 w2

n

N−1

∑
n=0

w2
n sin

(4πkn

N

)

= ℑ(W2k)
σ2

x

N

(A.0.16)

where

ℑ(W2k) =
∑

N−1
n=0 w2

n sin
(

4πkn
N

)

∑
N−1
n=0 w2

n

(A.0.17)

This forms the imaginary part of the Fourier transform of the square windowing

function and is computed at frequencies f2k = 2 fk. For a symmetrical window, the

result of ℑW2k = 0 as can been seen from the (A.0.17). This result implies that

Ak and Bk is statistically independent, but in Sec. 4.1.1 it was already mentioned

that any asymmetry in the windowing function will result in a correlation between

Ak and Bk. To find the result for the cases where k 6= 0, N
2 , the Gaussian-Bivariate

function is used as shown in [24, p440].

p(Ak,Bk) =
1

2πσAk
σBk

√

1−ρ2
k

× exp
[ 1

1−ρ2
k

(

− A2
k

2σ2
Ak

− B2
k

2σ2
Bk

ρk

AkBk

σAk
σBk

)

]

(A.0.18)

where

ρk =
σ2

AkBk

σAk
σBk

(A.0.19)

To simplify the evaluation of (A.0.18), the moment-generating function is used.

M(t) =
〈

e(A
2
k+B2

k)
〉

=
1

√

1−2(σ2
Ak
+σ2

Bk
)t +4σ2

Ak
σ2

Bk
(1−ρ2

k)t
2

(A.0.20)

The moments can then simply be calculated using the following equation.

µ′k(n) =
dn

dtn
|t=0M(t) (A.0.21)

With the above (A.0.21), the variance of the PSD can be computed for all values

of k 6= 0.N
2 .

σ2
k = 2(σ4

Ak
+σ4

Bk
+2σ2

AkBk
) (A.0.22)
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It can however also be shown that (A.0.22) holds for k = 0, N
2 , as the following

is already proven.

σB0
= σB N

2

= 0

σA0B0
= σA N

2
B N

2

= 0

σ2
A0

= σA N
2

=
2σ2

x

N

With the results of (A.0.22) and (A.0.9), the answer for (2.6.3) can now be

computed for k = 0,1, ..., N
2 .

V 2
k =

2(σ4
Ak
+σ4

Bk
+2σ2

AkBk
)

(σ2
Ak
+σ2

Bk
)2

(A.0.23)

Equation A.0.23 can then be simplified using (A.0.5), (A.0.8) and (A.0.16) to

the following simple answer.

V 2
k =

2
(

[1+ℜ(W2k)]
2 σ4

x

N2 +[1−ℜ(W2k)]
2 σ4

x

N2 +2
σ4

x

N2 ℑ(W2k)
)

σ4
x

N2 ([1+ℜ(W2k)+ [1−ℜ(W2k)]])2

= 1+ |W2k|2
(A.0.24)

It is also shown that Wo = Wn = 1, which in turn corresponds with the results

obtained in (A.0.14). This implies that (A.0.24) holds for all values of k = 0,1, ..., N
2 .
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Appendix B

Variance derivation of the Spectral

Kurtosis estimator

The following derivation is done in [2] and starts by rewriting (4.1.24).

V̂ 2
k =

M

M−1

(m′
2

m′2
1

−1
)

(B.0.1)

where

m′
1 =

S1

M
(B.0.2)

m′
2 =

S2

M
(B.0.3)

V̂ 2
k : Spectral Kurtosis estimator.

m′
n : The nth moment about the origin.

M : The number of spectral samples.

(A.0.4) can then be used to to compute the variance of V̂ 2
k .

Var(V̂ 2
k ) =
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)2
Var
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(B.0.4)

This simplifies the problem to only computing the variance of the ratio m′
2

m′2
1

. The

variance can be computed using the equation on [17, p351].
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Again from [17], the equation can be simplified.
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+
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(B.0.6)

If k = 0, N
2 (B.0.6) can be simplified even further to.

Var
(m′

2

m′2
1

)

=
24

M
(B.0.7)

For k 6= 0, N
2 (B.0.6) can be rewritten in terms of the windowing function.

Var
(m′

2

m′2
1

)

=
4

M
(1+5|W2k|2 −|W2k|4 + |W2k|6) (B.0.8)

Equation (B.0.8) however also holds for k = 0, N
2 as |W0|= |WN |= 1.

The variance of the spectral kurtosis estimator can now be written as.

Var(V̂ 2
k ) =

4M

(M−1)2
(1+5|W2k|2 −|W2k|4 + |W2k|6) (B.0.9)
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