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DECLARATION ii

We often forget how science and engineering function. Ideas come from
previous exploration more often than from lightning strokes. Important ques-
tions can demand the most careful planning for con�rmatory analysis. Broad
general inquiries are also important. Finding the questions is often more im-
portant than �nding the answer. Exploratory data analysis is an attitude, a
�exibility, and a reliance on display, NOT a bundle of techniques, and should
so be taught. Con�rmatory data anlaysis, by contrast, is easier to teach and
easer to computerize. We need to teach both; to think about science and engi-
neering more broadly; to be prepared to randomize and avoid multiplicity.

� John W. Tukey, 1980
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Background

New methods to facilitate exploratory analysis in scienti�c data are in high
demand. There is an abundance of available data used only for con�rmatory
analysis from which new hypotheses can be drawn. To this end, two new
exploratory techniques are developed: one for chemometrics and another for
visualisation of fundamental scienti�c experiments. The former transforms
large-scale multiple raw HPLC/UV-vis data into a conserved set of putative
features - something not often attempted outside of Mass-Spectrometry. The
latter method ('StatNet'), applies network techniques to the results of designed
experiments to gain new perspective on variable relations.

Results

The resultant data format from un-targeted chemometric processing was
amenable to both chemical and statistical analysis. It proved to have in-
tegrity when machine-learning techniques were applied to infer attributes of
the experimental set-up. The visualisation techniques were equally successful
in generating hypotheses, and were easily extendible to three di�erent types
of experimental results.

Conclusion

The overall aim was to create useful tools for hypothesis generation in a
variety of data. This has been largely reached through a combination of novel
and existing techniques. It is hoped that the methods here presented are
further applied and developed.
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Agtergrond

Nuwe metodes om ondersoekende ontleding in wetenskaplike data te fasili-
teer is in groot aanvraag. Daar is 'n oorvloed van beskikbaar data wat slegs
gebruik word vir bevestigende ontleding waaruit nuwe hipoteses opgestel kan
word. Vir hierdie doel, word twee nuwe ondersoekende tegnieke ontwikkel: een
vir chemometrie en 'n ander vir die visualisering van fundamentele wetenskap-
like eksperimente. Die eersgenoemde transformeer grootskaalse veelvoudige
rou HPLC / UV-vis data in 'n bewaarde stel putatiewe funksies - iets wat
nie gereeld buite Massaspektrometrie aangepak word nie. Die laasgenoemde
metode ('StatNet') pas netwerktegnieke tot die resultate van ontwerpte eksper-
imente toe om sodoende ân nuwe perspektief op veranderlike verhoudings te
verkry.

Resultate

Die gevolglike data formaat van die ongeteikende chemometriese verwerking
was in 'n formaat wat vatbaar is vir beide chemiese en statistiese analise. Daar
is bewys dat dit integriteit gehad het wanneer masjienleertegnieke toegepas
is om eienskappe van die eksperimentele opstelling af te lei. Die visualiser-
ingtegnieke was ewe suksesvol in die generering van hipoteses, en ook maklik
uitbreibaar na drie verskillende tipes eksperimentele resultate.

Samevatting

Die hoofdoel was om nuttige middele vir hipotese generasie in 'n verskei-
denheid van data te skep. Dit is grootliks bereik deur 'n kombinasie van oor-
spronklike en bestaande tegnieke. Hopelik sal die metodes wat hier aangebied
is verder toegepas en ontwikkel word.
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Chapter 1

Introduction

Modern developments in computation and technology have allowed for biology
to become a data rich science. Advances in the ability to derive information
from, for example, genetic and chemical samples have caused a deluge in the
available data for analysis; such that it is necessary to continually develop new
methods for handling and interpreting this in�ux of information.

This provides platforms for both the generation of new types of data, as
well as novel insights into pre-existing data. In this study, focus is lent to
the latter, whereby methods are developed to mine data for information which
would otherwise be overlooked. The focus is not in the experiments themselves
- how the data is generated and collected - but on methods of interpretation
after the fact.

To this end, methods for two di�erent purposes are covered: �rstly, the
processing and interpretation of chemometric data; secondly, the interpretation
of the results of various experiments, using network analyses.

1.1 Background

1.1.1 Chemometrics

Chemometrics is the application of data-driven methods to chemical data in
order to deconvolute the high-dimensional outputs of common analytical chem-
istry tools. It augments the trained chemist's ability to manually search and
quantify target chemicals from an analysis by �rstly, correcting for technical
error from the machine; and secondly, o�ering an analysis of the resultant
data in such a way as to deliver results that would otherwise not be realised
by inspection.

The untargeted approach in chemometrics is a "bottom-up" approach whereby
putative molecules that in�uence the data in interesting ways can later be
identi�ed. This is in contrast to the traditional analysis method of identify-

1

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

ing compounds of interest before the chemical analysis, then tracking their
quantitative change exclusively across experimental perturbations.

Methods are here developed to allow for this type of untargeted analysis
in large-scale experiments. Within these experiments, variables and condi-
tions are perturbed to di�erent degrees so that compounds are not necessarily
conserved across all measurements - causing chemical heterogeneity between
samples. Additionally, the samples were taken over a time series, adding a fur-
ther layer of complexity. This massive and multi-modal data set necessitated
a relatively novel development and combination of analysis tools in order to
compare chemical phenomena across samples.

1.1.2 Network Visualisation - StatNet

Networks are excellent tools for visualisation of complex relationships within
data. One such kind of complex data is that which is typically generated
from scienti�c experimentation - the targeted perturbation of input variables
in order to gauge the level of some output. The visualisation of these kinds
of scienti�c data is still largely facilitated by classical methods of line, scatter
and box plots.

It is contended that networks can be used as an alternative for visualising
the results from scienti�c experiments, not only to draw conclusions from the
original hypotheses behind the experiment, but to generate new hypotheses as
well. Not only are they amenable to interpretation by the human mind, they
also lend themselves to advanced user interaction. In this way networks can
represent trends on a large scope, as well as execute advanced queries through
�ltering, nearest-neighbor searches and subgraph generation. To this end a set
of related methods are devised, dubbed 'StatNet'.

Several data sets generated by scienti�c experimentation are subjected to
this network analyses in order to assess their viability. Although they are all
related to the �eld of wine biotechnology and chemistry, as data types and
structures they di�er widely. Di�erent variations of similar network work�ows
are applied to each, with the central theme being the statistical testing for
signi�cant results followed by structured representation.

1.2 Problem Statement

The traditional scienti�c method prescribes a cycle of hypothesis and con-
�rmation. While this is useful for targeted investigation of phenomena, the
generation of new hypotheses is often overlooked. This is notable in chemomet-
ric analysis, where the vast majority of analyses on data is targeted on speci�c
molecules with conjectured concentrations in the substance in question. This
approach is also present to a lesser extent in general scienti�c investigation
with experimental setups targeted towards the answer of a preconceived prob-
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CHAPTER 1. INTRODUCTION 3

lem. In this case the traditional visualisations of results can be overwhelming
and often confound the search for new hypotheses.

1.3 Aims

The primary and overarching aim is to develop novel methods for exploratory
analysis and hypothesis generation. This common aim is pursued along two
di�erent avenues: �rstly, a large scale generation of putative features from raw
machine-generated data; secondly, innovative visualisation of small scale data
collected through targeted scienti�c experimentation.

Aims speci�cally related to chemometrics are to develop a work�ow both
simple and e�cient enough to process the chromatograms of a large and ex-
haustive experiment, and ultimately to detect putative compounds and derive
experimental conclusions about them. Thereafter, to coerce the data into a
format amenable to statistical and machine-learning exploration; speci�cally,
some representation of putative features. As the chemometric data is derived
from a targeted experiment, validation of the original hypotheses through such
exploration forms a further aim.

Regarding the second channel of data exploration, the aim is to build on
research into generalised and extensible methods of network visualisation (ten-
tatively named 'StatNet') that can be broadly applied. The �nal product
should be something that is intuitive to explore; able to present answers to the
original hypothesis, and have the latent facility to generate new ones.

1.4 Chapter Overview

The thesis is split into �ve chapters. Following the present chapter, there is
a single literature review chapter covering all of the pertinent literature for
both the research chapters. The research chapters are split in two: the �rst
(Chapter 3) will cover the body of chemometric work and includes a discrete
introduction, results and conclusion. The second (Chapter 4), contains the
majority of the research for network visualisation with a similar structure.
The �nal chapter contains a �nal conclusion to the overall thesis.
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Chapter 2

Literature Review

2.1 Chemometric Literature

2.1.1 Experimental Data

An interesting model case for a large-scale experiment with HPLC/UV-vis
data is that of Buica (2012) into the e�ects and causes of browning in white
wine during aging. Several conditions were directly altered in order to observe
their combined e�ect on browning and oxygen levels in model wine. One of the
main sources of variance was the addition two phenolic compounds in three
separate treatments.

Phenols constitute some of the most important compounds in wine, con-
tributing to the aroma, colour and palette. In their study into the brown-
ing of white wine, Kallithraka et al. (2009) observed the changes in phenolic
compounds over time as well as their correlation to various browning mea-
sures. Two of the most signi�cant phenolic compounds were Ca�eic Acid and
Catechin - cited as two phenolic compounds in�uencing browning, leading to
the formation of by-products due to polymerisation of ortho-quinones (Guyot
et al., 1996). The �uctuations of these phenols also a�ects the �avour pro�le
of the wine. Kallithraka et al. (2009) found that the concentration of Catechin
decreased over time in the experiment; whereas Ca�eic Acid was one of the
few phenols that increased during aging.

A further e�ect that was studied was the addition of sulphur dioxide. This
has the ability to reduce the same ortho-quinones created by the presence of
Ca�eic Acid and Catechin (Singleton, 1987). Simpson (1982), however, found
that the inhibitory e�ects of SO2 were �eeting; ine�ective in the advanced
stages of browning once depleted.

In a large study regarding the overall kinetic e�ects of aging in white wine,
Ferreira (2002) found that the majority of chemical �uctuations occurring
during the aging process were a result of the e�ects of oxidation, and pH-
induced reactions - in that order. These two are linked by the fact that phenols
can su�er autoxidation, which leads to rapid consumption of oxygen within the

4
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CHAPTER 2. LITERATURE REVIEW 5

media. Autoxidation of phenols is extremely sensitive to pH level, as con�rmed
by Ferreira (2002) in the same work; a di�erence of 3- or 4 pH was noted to
have the capacity to alter the rate of autoxidation up to 9 times for certain
compounds.

2.1.2 Chemometric Methods

In a �eld such as chemometrics, in which there has been a long and vested data
analytic interest, there are a wealth of techniques that allow for the analysis
of extremely complex data types. The particular type of data commonly sub-
jected to such analyses is High-Performance Liquid Chromatography (HPLC)
with UV/vis spectra. This is a chromatographic technique coupled with ab-
sorbance spectrometry, which produces a continuous absorbance feature for
each time point. Currently it is common (especially with metabolomics) to
couple chromatography with mass spectrometry. This produces a discrete set
of mass/charge ratios for each feature; in contrast to the continuous nature
of absorbance spectroscopy, with the result that many of the algorithms and
software developed are not compatible across these two di�erent types of de-
tectors.

The individual methods used for parts of the overall analysis are reviewed
in sections 2.1.2.1 to 2.1.2.4 below. A review of some of the pertinent software
and algorithms for the feature map alignment problem for mass spectroscopic
analysis is given in section 2.1.2.5 for comparison to the custom feature align-
ment method presented in the next chapter.

2.1.2.1 Wavelets

Many of the contemporary methods used in chemometric analysis are make use
of wavelet transforms in some manner. In particular, the baseline correction
and peak detection implementations often used are based on these transforms.
This type of analysis is gaining increased popularity due to the arrival of
computational capacity allowing for it's somewhat intensive execution.

Throughout much of the history of chemometrics, Fourier analysis was
the dominant peak deconvolution approach. Fourier theorems propound the
hypothesis that any signal can be reduced to a series of sines and cosines in
what is known as Fourier expansion. A problem with Fourier expansion is that
it describes a signal in frequency space, but loses the measure of time due to
Heisenberg's uncertainty principle. In signal processing terms this is expressed
by the fact that it is not possible to know both the frequency and the time
at which that frequency occurs in a signal simultaneously (Valens, 1999). Due
to this phenomenon, it is necessary in Fourier analysis to slice the time vector
into discrete frames for expansion.

Wavelets have the ability to overcome this limitation by applying what
is known as multiresolution analysis. This is achieved by shifting a moving
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Figure 2.1: The Mexican hat wavelet (Daubechies and Others (1992))

window across the data, and calculating a wavelet-space spectrum for each
shift. The window is dynamically scaled by a scaling function, and the same
moving window analysis is applied at each new window size. The spectrum
can then be represented by amplitude or a weighted coe�cient. At the end of
the analysis a time-scale representation of the signal is generated, which can
be used for a number of di�erent purposes (generally for data compression,
but in this case - peak detection).

Two di�erent types of transforms are commonly used: Discrete- and Con-
tinuous Wavelet transforms. Discrete transforms eliminate redundant coe�-
cients, and are thus more e�cient; in peak detection, however, a high resolution
is desired thus continuous transforms are preferred and the redundant coe�-
cients retained (Du et al., 2006). At a high level of resolution, the wavelet
coe�cient matrix re�ects the actual peak shapes along the signal allowing for
improved interpretation of peak position.

The central equation describing continuous wavelet transforms is:

C(a, b) =

∫
R

s(t)ψa,b(t)dt, ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, a ∈ R+ − 0, b ∈ R (2.1.1)

In the above, C(a, b) is the �nal 2D matrix of wavelet coe�cients; s(t) is the
signal; a is the scale; b is the translation and ψa,b(t) is the wavelet. This
wavelet is scaled and translated from the 'mother wavelet' ψ(t). The mother
wavelet can be one of a number of mathematical functions, to which the signal
is matched with a requisite wavelet coe�cient.

The type of wavelet typically used for peak detection is the Mexican hat
wavelet, developed by Daubechies and Others (1992) and expressed by the fol-
lowing (equivalent to the second derivative of the Gaussian probability density
function):

ψ(t) =
2

√
3σπ

1
4

(
1− t2

σ2

)
e

−t2
2σ2 (2.1.2)

The wavelet is appropriate for matching peak signals as it has the same basic
shape, is symmetrical and also positive (Figure 2.1). Generally, the wavelet
coe�cients will reach a local maximum at the signal peak center. This local
maximum increases as the scale is increased from a = 1, and itself reaches
a maximum when the scale best matches the peak width, before decreasing

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 7

Figure 2.2: Polynomial regression and �tting of the frame center, as depicted
in the original paper (Savitzky and Golay (1964)). The frames, denoted by the
brackets, are �tted with separate polynomial functions and are used to predict
their respective center values (denoted by the circles)

again. These local amplitude maxima resemble ridges if superimposed on the
2-D coe�cient matrix, presenting a robust method for detection of peaks.
The peak width is represented as the scale corresponding to the maximum
value on the ridge, and its area, if desired, can be approximated from the
maximum coe�cient on the ridge. Refer to section 3.2.1.4 and �gure 3.4 for
the application of this technique.

2.1.2.2 Savitzky-Golay Smoothing Filter

Raw chromatographic data, much like any other time-series, is subject to noise.
To this end a Savitzky-Golay �lter can be applied before any further corrective
measures. This particular smoothing method is one of the oldest and most
commonly applied, and is a simple way to eliminate noise conservatively and
unobtrusively. Its base algorithm is essentially unchanged since the method's
original publication (Savitzky and Golay, 1964).

Parameters de�ning the smoothing �lter include segment length, polyno-
mial order and an optional derivative function. The algorithm then operates by
considering segments of the chosen length from one side of the chromatogram
to the other: for each segment, a polynomial of the chosen order is �tted by
least squares. The point at the direct center of the segment is then de�ned
by the �tted polynomial at that point. The frame shifts by one data point
on either side, and a new polynomial function is regressed for the segment.
The new center value adjacent to the previous is then inferred, and the frame
moves one point further along the chromatogram; this is repeated until all
points have been approximated. The �gure from the original paper depicting
this process is shown in Figure 2.2.
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2.1.2.3 Baseline Correction

A set of useful tools for baseline correction is that developed by Zhang et al.
(2011) and o�ered in the authors' and collaborators' open-source software
alignDE. The method requires initial peak detection, and thus may have the
potential to introduce bias before the rest of the analysis is performed.

The �rst step for the method of Zhang et al. (2011) is thus to apply the
CWT peak detection method as described in section 2.1.2.1. For baseline
adjustment, the Haar wavelet is used, as opposed to the Mexican Hat wavelet.
This is due to the fact that the Mexican Hat wavelet has the tendency to
underestimate the scale of a peak (Zhang et al., 2010). The Haar wavelet, in
contrast, has the ability to accurately detect the start and end points of a peak
due to its discrete nature.

With these peak positions, a putative start and end point is assigned for
each peak using a local minima algorithm. A penalised least squares algorithm
is then applied, as developed by Zhang et al. (2010). The concept behind this
algorithm is one of reaching an equilibrium between two measures: �rstly, the
'roughness' of the �tting, and secondly the '�delity' of the �tting to the original
data. These measures can be discretely de�ned as follows:

The �delity of the data is measured by the di�erence of �tting vector z to
the original chromatogram c over m points:

F =
m∑
i=1

(ci − zi)2 (2.1.3)

Conversely, the relative roughness is measured by the di�erence between
neighbouring points in the �tted data:

R =
m∑
i=2

(zi − zi−1)2 =
m∑
i=2

(4zi)2 (2.1.4)

Penalised least squares attempts to maximise �delity between the corrected
and raw data, while at the same time minimising the roughness of the �nal �t.
The trade-o� between these measures can therefore be described by Q, and is
regulated by an adjustable parameter λ:

Q = F + λR = |c− z|2 + λ|Dz|2 (2.1.5)

D is the derivative of the identity matrix of size m2, and represents delta in
4zi. Finding for the vector of partial derivatives and solving for (δQ/δz) = 0
gives a linear system of equations:

z = (I+ λD'D)−1c (2.1.6)

These can be simultaneously solved to arrive at a �nal �t. The adjustable
parameter λ strengthens or attenuates the aggressiveness of the correction.
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Further development of the method to account for missing values in the
data is described in Zhang et al. (2011).

The algorithm is run in three steps: 1.) �t an initial rough estimate o� the
raw chromatogram using λ; 2.) apply the same method on the initial estimate
to obtain a re�ned �t and 3.) adjust the re�ned �t for possible errors in peak
position and width. The �nal corrected signal is then prepared for further
analysis.

2.1.2.4 2-Dimensional Alignment

2.1.2.4.1 Methods Review

Undoubtedly one of the most challenging and contentious steps in the pre-
processing of chromatographic data is that of alignment. Alignment is made
necessary due to the ubiquitous phenomenon of drift in chromatographic tech-
niques. Disparate positions of the same peak along the time axis is symp-
tomatic of drift and can even be present between technical repeats of the
same sample due to di�erences in basic environmental conditions, such as col-
umn temperature between runs (Tomasi et al. (2004)). This drift leads to
mismatches in peak position, and has a signi�cant confounding e�ect on mul-
tivariate analysis if vectors of the whole chromatogram are used (Nielsen et al.
(1998)).

There are a myriad of approaches one can take for correcting drift and these
are embodied in hundreds of di�erent methods and variations. At present,
these can be divided into broad categories of methods that either use the entire
chromatographic signal for alignment, or �rst detect peaks and align according
to detected peak position (Arancibia et al. (2012)). Another distinguishing
factor is whether it is necessary to assign a target chromatogram on which to
base the alignment method. This can have a signi�cant e�ect on accuracy,
especially with di�erent measurements from an experiment of factorial design.
In their current review of chromatographic calibration, Arancibia et al. (2012)
state that the two most important methods currently employed are correlation
optimised warping (COW) (Nielsen et al. (1998)) and rank alignment based on
PCA of an augmented data matrix (Prazen et al. (1998)). COW is often cited
as the most extensively used alignment algorithm and has many algorithmic
implementations. It is also relatively simple and fast to execute: an important
factor for mass pre-processing. COW evolved from Dynamic Time Warping,
which is less constrained and allows warping of the signal over large spans of
time. A comparison by Tomasi et al. (2004) in the original formulation of
COW found that COW is a more precise method for large-scale pre-processing
of chromatographic data. Another prevalent method to review is the o�ering
from the AlignDE software, which is used for peak detection in the current
work.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 10

A further, recently developed method for alignment falls under the PyMS
project (Isaac et al. (2012)). The alignment algorithm circumvents the bias of
choosing a single target chromatogram by aligning signals between experiments
in a clustered similarity tree structure. Experiments that are most similar are
aligned �rst; their combined alignment is then set against the next closest
experimental cluster and so on, until the �nal uppermost branch is reached.
The disadvantage of this method is that it relies heavily on peak detection
before alignment, which adds a potential layer of bias that COW avoids by
using the full-length signal.

2.1.2.4.2 AlignDE

AlignDE is one of the methods that use detected peaks to generate an align-
ment. As mentioned, this has its disadvantages; however the authors conclude
that the resultant alignment is more true to the original peaks of each re-
spective chromatogram (Zhang et al., 2011). It involves the alignment of each
chromatogram to a single target, optimising the correlation coe�cient between
them in a manner similar to COW (see section 2.1.2.4.3).

The way it achieves this optimisation is through di�erential evolution (DE).
This is a variation of a genetic algorithm; a population-based optimiser for
which �tness is determined for a number of vectors in degenerate generations.
Each vector is populated with peak positions, the variance of which is assigned
an upper and lower bound.

The algorithm is initialised with random values for each target position
(either a positive or negative slack for the relative shift of a peak position).
Each of these vectors are then subjected to mutation (the random alteration of
parameters), crossover (the 'mating' of vectors up to a set fraction - a section
of one replacing that of another), and selection, whereby the vectors with the
best correlation value with the target chromatogram are kept for the next
generation.

Once this process is completed, the peaks are aligned according to their
respective slacks and the space in-between the peaks are subjected to linear
interpolation.

In the author's comparison with COW, they found that while COW had
a higher correlation coe�cient, it tended to transform peak features more
aggressively such that the determination of peak width became di�cult.

However, AlignDE was not used for several reasons. The most important
of these is that it does not scale as well as COW to large data sets (seeing that
its algorithm is semi-dynamic). Due to its use of peak position for alignment,
it is not easy to extend into 2-Dimensions, as well as introducing some bias
into the data.

Finally, due to the fact that the methods developed here are primarily for
the purposes of hypothesis generation, and not for the exact and accurate
quanti�cation and identi�cation of features in each chromatogram, the peak
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height was used as a proxy quantity for feature intensity. Thus the peak
distortion seen with COW due to its aggressive optimisation of correlation is
a reconcilable shortcoming.

2.1.2.4.3 COW

For the above reasons, as well as methodological restrictions documented in
COW is often chosen as the primary alignment technique in the chemometric
analysis. A brief description of its operation follows.

COW works primarily on 1-Dimensional data. Attempts have been made
to extend the algorithm to 2-D data (an example of this is found in Zhang
et al. (2011)), however the complexity of warping data in 2 dimensions in-
creases greatly. The method used to apply COW to HPLC/UV-vis 2-D data
is discussed in section 3.2.1.3.

The basic operation of COW is to warp a sample chromatogram along the
time axis so that the intensity pattern most closely matches that of some other
target chromatogram. This warping of the intensity vector is performed by
linear interpolation, and the measure for the match parity is linear correlation
(Nielsen et al. (1998)).

More speci�cally, given a target T and a sample P of length L, to be warped
to P ′, the sample is split into a set number of segments N each of equivalent
length m given by N = P/m. For each section with starting value xs and �nal
value xe, a warping is applied to each intensity value p of P after warping of
xs to x

′
s and xe to x

′
e:

pj =
j

x′e − x′s
(xe − xs) + xs, j = 0, 1..., x′e − x′s (2.1.7)

The value of P ′(x′s + j) is then calculated by interpolating between the
points in P adjacent to pj. Each warping can be done to within a certain set
magnitude. Giving a �nite limit to the number of possible warpings for each
segment is an important aspect of COW. This number is referred to as the
'slack', t. Given this limit - that each segment has a set number of possible
warpings 0...t - the global alignment problem can be reduced to optimisation
of the warpings for each segment i in N . If the original segment positions are

x0 = 0 < x1 < ... < xN−1 < xN = L (2.1.8)

and the warpings u are

ui ∈ [4− t;4+ t]; i = 0, ..., N − 1 (2.1.9)

so
xi+1 = xi +m+ ui; i = 0, ..., N − 1 (2.1.10)
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Figure 2.3: The possible positions of nodes x0 to x4 with a slack of 5, in the
example covered in Nielsen et al. (1998).

then the correlation ρ for the segment de�nes the optimal node position x* by

x* = arg maxx

(
N−1∑
i=0

ρ(P ′[xi;xi+1], T [xi;xi+1])

)
(2.1.11)

= arg maxx

(
Cov(P ′[xi;xi+1], T [xi;xi+1])√
V (P ′[xi;xi+1], T [xi;xi+1])

)
(2.1.12)

Using this correlation as a penalty function, the optimal solution can be
arrived at through dynamic programming. This is done by iterating through
all segments starting at x0, keeping the optimal warpings and discarding all
other suboptimal warpings. While sequentially considering the position of
every xi (referred to as a node) two matrices are constructed - U , the optimal
warping of each node (numerically between −t..0..t), and F , the cumulative
bene�t function. Both these matrices have the same dimensions: the number
of nodes i along the rows, and all possible node positions along the column -
(N + 1)× (L+ 1).

A crucial aspect of the optimisation process is that the bene�t function is
determined for the current node as well as the previous node in the iteration.
This optimisation variant is known as backward dynamic programming. An
example in the original paper by Nielsen et al. (1998) is based on the following
simple warping: L = 40, m = 10 and t = 5, giving three warping segments
with �ve nodes in total. The �rst (x0) and last (x4) nodes are constrained at
the beginning and ends of signal, and thus x1 and x4 can only be warped 5
positions either way of their origin. The further a node is away from these
constraints, however, the more possible warping positions are available due to
the cumulative nature of the warping; thus the middle nodes x2 and x3 have
the highest span of possibilities (refer to �gure 2.3).

Consider the warping of x3. If x2 is placed at position 29 then the position of
x3 is constrained to two values: 34 or 35. Position 34 represents the maximum
warping for the 3rd segment, with warping u2 = 5 and u3 = 4; whereas position
35 is the maximum allowable warping for segment 4 (u2 = 4 and u3 = 5).
Each of these possibilities has a corresponding cumulate bene�t function value
f([x2, x3]) + f([x3, x4]). The highest of these is the optimal, and is stored in
F2,29 with the requisite optimal warping u2 stored at U2,29.
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Once all the nodes have been treated in this way, backtracking through U
will give the �nal optimal warping.

It can be deduced from the above demonstration that the only parameters
that are necessary to set are the segment length m, and the 'slack' t. Extensive
review of the choice of these two parameters, and how they e�ect the �nal
correlation between sample and target, is covered in Nielsen et al. (1998). It
was determined that the segment length should be set to around the width of
the smallest peak in the signal; smaller segments allow for a higher-resolution
warping, though do not signi�cantly add to the �nal correlation values. The
choice of slack is less de�ned: the larger the slack, the more possibilities exist
for warping and therefore the more computationally intensive the alignment.
One therefore needs to �nd a balance between alignment �exibility and time.
Another cost to take into account is over-�tting of the data.

It was found by the authors that a slack of just 10% of the segment length
was su�cient for a reasonable level of accuracy. Anything above this value did
not signi�cantly add to the accuracy of their model alignment, only increasing
the computational time gratuitously.

2.1.2.5 Feature Map Alignment

When aligning between multiple measurements along 3 Dimensions, there are
two types of approaches (Lange and Tautenhahn, 2008). The �rst is know
as 'Raw Map Alignment', which is the global correction of retention times
across multiple measurements; followed by their superposition and subsequent
simultaneous analysis. This type of approach is, however, extremely compu-
tationally intensive on a large scale. A second type of approach is known as
'Feature Map Alignment', which usually involves a dewarping step followed
by feature detection. Finally, alignment of these features is performed before
�nal analyses.

In the latter method, 'features' are manifestations of chemical compounds
in chemometric data - typically a peak region in retention with a signature
along a second dimension (depending on what is attached to the chromato-
graphic column). A 'feature map' is the collection of features for a single
dataset from a particular run. Generally 'consensus features' are obtained
through the feature map alignment process. They represent unique features
that are common to feature maps within the larger data set. The 'consensus
map' is, in turn the map of these global features.

The existing algorithms and software to achieve the above are almost exclu-
sively for cases in which the second dimension is described by the mass-charge
ration (m/z) of mass spectroscopy - GC or LC-MS data. There are, however,
few to no existing algorithms suitable for the solution of the feature map align-
ment problem with HPLC/UV-vis data as is used in this study. Nevertheless,
it is still informative to review the existing LC/GC-MS methods as the un-
derlying problem remains similar. A brief review of the most prominent of
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these methods is presented in a comparative study by Lange and Tautenhahn
(2008); the methods and software suites compared remain some of the most
commonly used.

Typically, as Lange and Tautenhahn (2008) describes, there are 6 stages of
achieving a feature map alignment:

1. Signal pre-processing and centroidisation

2. Detection of the 2-Dimensional features or putative compounds

3. Normalization

4. Warping to correct for drift in retention times

5. Computation of a 'consensus map' by multiple comparisons of features
across maps

6. Statistical analysis and interpretation

Items 1 through 4 are explained in the subsection above; 6 in the section
below. While there are many di�erent methods that can be applied for these
steps, they are relatively standard in comparison to the 5th step; for which
there are as many algorithms as there are software packages.

Two common distinctions between algorithms are �rstly, whether a global
correction or 'warping' in retention time is applied (either linear or non-linear);
secondly whether clustering or sequential star-wise iteration is used for step
5 above. Notable dangers in feature map alignment are that corresponding
features across maps are not grouped into the same consensus feature; secondly
that consensus features include multiple features instead of a single unique
feature. The most prominent of these software packages, as well as a brief
explanation of their approaches, are listed below:

� X-Align (Zhang et al., 2005). The algorithm is reliant on pre-de�ned
'windows', into which detected features are binned for each feature map
The most intense feature for each of these windows is then compared
across maps; features found in all maps are deemed signi�cance and an
'average' mapping is created. The map having the features closest to this
average mapping is then used as the reference map, to which all other
maps are aligned. A �nal 'consensus' map is the micro-alignment of all
the resultant features.

� XCMS (Smith et al., 2006). Part of the R bioconductor package (Gen-
tleman et al., 2004). XCMS also employs a window 'binning' technique.
Features in the same bin are matched by their mass-spectra signatures.
Matching features in the same bin are then resolved using a kernel den-
sity estimator, using a probabilistic approach to assign �nal �nal feature
retention times.
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� msInspect (Bellew et al., 2006). Combines the features from multiple
experiments into what it calls a single 'peptide array'. It is assumed
that warping in the measurements occurs due to a global linear e�ect,
which is �rst estimated using the most intense features with similar m/z
values. After warping according to this linear transformation, it uses a
method of 'divisive clustering' to compare and assign the features into
the �nal peptide array. User-de�ned parameters to achieve this include
a window threshold for both retention time and m/z ratio.

� MZmine (Katajamaa et al., 2006). The method used in this software
is subtly di�erent from the ones above due to the fact that it does not
assume a global trend from which individual experiments must be de-
warped. Rather, a 'master list' of features is created. Each map is
compared in turn to this master list of features within a retention time
window; if the compared feature is deemed similar to the master feature
according a set tolerance (both in retention time or m/z value) using some
similarity score, the feature is assigned to the master feature. If not, it is
appended to the master list as a new feature. The �nal consensus map
becomes this master list once the analysis is complete.

Lange and Tautenhahn (2008) performed quality checks on all of the above
methods by obtaining a 'ground truth' of consensus feature maps using MS/MS
data that was excluded from the respective software's analysis. The �nal
results from each software suite was then compared to the ground truth in
two ways: �rstly precision, the probability that an assigned feature is correct;
secondly recall, the probability that an assigned feature is found.

This comparison was performed on both protein and metabolic-centric data
sets. For the latter, MZmine generally performed best according to both mea-
sures.

A more recently developed implementation is an iteration of peak map
alignment in PyMS. The algorithm employs an unsupervised clustering tech-
nique; building a tree-like structure from feature maps and performing a
bottom-up alignment (Isaac et al., 2012). It relies on a 'common ion' to indi-
cate similarity between features in di�erent data sets; once again precluding
its use with the UV-vis data at hand. No comparisons in literature of this
method with the aforementioned were found; however there does appear to be
conceptual promise in this unbiased approach.

2.1.3 Machine Learning Techniques

The analysis of data processed by the above means should be statistically
analysed for both the purpose of validation and hypothesis generation for the
un-targeted analysis. To this end, several machine learning techniques can
be applied; namely, decision trees, principal component analysis and network
analysis methods.
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2.1.3.1 Decision Trees

Decision trees are one of the most popular machine learning methods for clas-
sifying data (Rokach and Maimon, 2005). They are consistently used for their
easy interpretability; simplicity and the fact that little to no preprocessing is
necessary on the data. It sequentially divides the data into discrete classes
using optimal binary partitioning, based on some metric. This process con-
structs a network in the form of a directed tree. The nodes - or 'leaves' -
represent classes, while the edges ('branches') are partitions of the data. Each
branch is created from a test on one of the variables in the input data. The
test will result in a binary split.

At the top of the decision tree is the �rst variable criterion by which the
data is split - at the bottom are the �nal class assignments once the model
has reached its conclusion. Each level of the tree from the apex downward
constitutes a re�nement of the model - a lower mis-classi�cation rate - until
the data is classi�ed with perfect �delity. This top-down approach is known
as 'recursive partitioning'; and this type of algorithm is greedy - aggressively
�nding local optima, aiming for a globally optimum solution (Rokach and
Maimon, 2005).

The metric by which the variable test is chosen is most commonly the gini
index. The gini index measures the divergent probabilities of the binary split
in the data based on a given variable test. Concretely, it is the likelihood that
a random sample will be mis-classi�ed within its sample subset at that point
in the tree, given all the previous binary conditions.

If samples can take on class labels (1..m), and fi is the number of samples
with label i in the data subset at that point in the tree, then the probability
that it is misclassi�ed at that point is as follows:

P =
m∑
i=1

fi(1− fi) = 1−
m∑
i=1

f 2
i (2.1.13)

This heuristic is greedily estimated for all possible variable splits at each
level; in this way the algorithm is NP-complete, which can become restrictive
with large scale data.

A useful aspect of decision trees lies in the ability to determine a quick
variable importance metric from the model. This is known as gini importance,
and is calculated for each variable by simply adding up the reduction in gini
impurity at each branch in which the variable is the tested.

This measure has already been used to good e�ect in chemometrics by
Menze and Kelm (2009) for feature selection on several spectral data sets,
using random forests - essentially an ensemble method combining multiple
decision tree models.
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2.1.3.2 Principal Component Analysis

Principal component analysis is a ubiquitous method for data mining in chemo-
metrics (Wold et al., 1987). It is most often used for the purposes of clustering
as well as the discovery of new- or validation of known latent variables in data.

At its base, it is a technique that maps a dataset from its existing set of
variables onto a new set of axes or 'principal components'. These new axes
coincide with the direction of most variance within the data set, in decreasing
order; in this way they form an orthogonal set of vectors.

Typically only a few of these principal components are needed to explain
most of the data's variance, so that the dimensionality is greatly decreased. It
is often found that the �rst few components are re�ective of latent variables.
The process of mapping the data onto principal components results in two
useful matrices: the loading and score matrices. The scores are essentially
the distance of each sample from the principal components; the loadings are
vectors of the relative 'direction', or transformation from each of the original
variables to the principal components.

The scores are useful in deriving how principal components relate to latent
variables, while the loadings inform how original variables in�uence the prin-
cipal components; combining these two sources of information, one can draw
qualitative and quantitative conclusions as to how original variables in�uence
latent variables.

2.1.3.3 Network Analysis

Networks are a relatively novel tool in the analysis of metabolomic data on a
large scale. Recent work by Jacobson et al. (2013) used a method of network
reconstruction to represent underlying chemical reactions in the aging of port
wine. Seeing that the data used in this study is also wine-related and time-
series based, much the same techniques were applied for statistical analysis
on the �nal preprocessed data. Network reconstruction is particularly useful
for the un-targeted approach used, as it maps out the underlying chemical
relationships between detected features in a manner that is visually stimulating
to the analyst, aiding in hypothesis generation.

Networks have the ability to model the correlation between chemical fea-
tures. A simple metric such as Pearson correlation can be used, although the
method is open to other statistical metrics should these be more applicable.
An all-against-all calculation of correlation can then be performed between
features. The nodes of the networks thus consisted of the features; while the
edges were weighted by the correlations between them.

Two ways of depicting the resultant network is either to make an arbitrary
threshold of correlation, so that only the signi�cant interactions are shown; or
constructing a Maximum Spanning Tree (Jacobson et al., 2013). While the
former is capable of showing a more complete view of the interactions in a
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data set, its interpretability can su�er from an abundance of information. In
this way, a Maximum Spanning Tree can reduce the data set to only its most
salient components, and in so doing represent the skeleton of the network's
strongest lines of communication.

A Maximum Spanning Tree is simply the inverse of a Minimum Spanning
Tree, a network construct often seen in literature - originally for the solution of
the classic 'Travelling Salesman' problem (Kruskal, 1956). A spanning tree is
a subgraph of any connected graph in which there are no cycles, and all nodes
within the graph are connected. In weighted graphs, the Minimum Spanning
Tree is the spanning tree for which the overall sum of edge weights is the
minimum possible.

The same algorithm devised by Kruskal is used; the inverse of the edge
weights are simply taken. Brie�y, the algorithm works as follows (Kruskal,
1956): �rstly, a 'forest' is initialised from the graph at hand by adding each
individual node as a separate tree. A set of all the edges from the original
graph is then created. At each iteration, the edge with minimum weight is
removed from this set. If this edge connects two of the trees in the forest, it
is included into the growing minimum spanning tree; else it is discarded. The
iterations cease once all nodes are connected (there is only a single tree in the
former forest).

Jacobson et al. (2013) stated that a further advantage of the Maximum
Spanning Tree when applied to models of chemical reactions is that it is ro-
bust to missing data - intermediate steps within chemical reactions are not
re�ected in the tree as the strongest correlations over time will be between
initial substrates and �nal products. Additionally, it was proposed that with
time-series data the maximum spanning tree has a kinetic element; the �ow
through the tree representing consecutive reactions in a directed chemical evo-
lution of the media.

2.2 StatNet Literature

2.2.1 Background

Wong and Bergeron (1994) compiled an historical review of the advancement
of scienti�c visualisation, especially regarding that of multi-dimensional, mul-
tivariate data (MDMV). The �rst stage of analysis, dubbed the 'Searching
Stage', was characterised by small datasets usually visualised in 2-dimensional
plots, occasionally augmented by other graphics denoting categories (in one
case the display of cartoon faces with di�ering expressions on each data point).

The second stage of data analysis ('The Awakening', assigned to the years
1977-1985), was fomented by Tukey's exploratory data analysis (EDA). This
was more a foundational paradigm, as enshrined by a brief paper entitled
'We Need Exploratory and Con�rmatory' (Tukey, 1980). The principal idea
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behind this movement was to generate hypotheses instead of only con�rming
pre-existing ones. Naturally, the visualisation of experimental results was at
the center of this ideal. This stage was also aligned with the advancement
of computing power, and the advent of the personal computer, allowing for
widespread adoption and development of techniques related to EDA. The data
sets were generally two- or three dimensional at most; however many of the
techniques developed remain the most prevalent today.

Included in Tukey's book on EDA (Tukey, 1977) are typical graphical ex-
ploratory techniques; ones that are still applied today with great success. Ex-
amples include boxplots, histograms, pareto charts, scatter plots, and stem-
and-leaf plots. All of these methods draw their power from classical statistical
measures, by which they are de�ned.

Wong et al. describe the third stage of scienti�c visualisation (1986-1991) as
that of discovery. Studies into interpretation of mdmv data moved away from
statistical metrics in two dimensions, and attempted to describe all dimensions
of the data in a single plot. This type of analysis relies heavily on the drive
of graphical computing, which was gradually facilitating this shift. The �nal
stage was described, at that time, as being one of elaboration - combining the
techniques developed up to that time into new methods.

Although there have been many advances in the �eld of visualisation, in
the interpretation of experimental results often the simplest methods are still
employed. The plotting of several overlaid line graphs over a time axis; surface
response plots and bar graphs are still prevalent in literature.

2.2.2 Network Visualisation

Networks have been used extensively in the �eld of data visualisation. A review
of the various manifestations of networks in this realm is done by Herman et al.
(2000). The author claims that most information systems in which there are
inherent relationships between data elements are susceptible to being rendered
into a network.

The application areas listed, however, are generally de�ned by relationships
of extant - not putative - knowledge. Included are systems of predetermined
interactions such as computer �ling systems; object-oriented programming rep-
resentations such as UML diagrams and various other hierarchical formats. In
addition to this, biology is a �eld at the fore of large-scale network analysis
for phylogenetics; biochemical pathways; metabolomics and genomics.

Probably the most prevalent example of network visualisation for data
mining is that of decision trees (Rokach and Maimon, 2005). This machine-
learning technique is typically applied to high-dimensional data sets in order
build a supervised model of the data and ascertain which variables are most
signi�cant towards the prediction of a (single) outcome. In simplistic data
sets, the application of this method would not lead to sensible results; it is
more appropriate for large-scale data sets.
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Some of the concepts within decision trees may, however, be applicable.
The topography of a decision tree - with inputs leading from a root node to
leaves representing the outputs - is a fundamentally concise and representative
way of presenting relationships for dependent data.

2.2.3 Temporal Data

Two of the three experimental data sets analysed in this study were based
on time-series (temporal) data. As one of several fundamental types of data
(Shneiderman, 1996) it often requires distinct methods for its presentation.
Aigner et al. (2008) performed a review on contemporary methods for visu-
alising time data speci�cally. The authors distinguish between analyses that
include time as an incidental variable, or simply integrate it into the depiction
of others. The latter is more common for scienti�c analysis; the former for the
purposes of planning.

Furthermore, three important distinguishing factors are listed for visual-
isation of temporal data: �rstly, whether the time measurement is linear or
cyclical. Both instances of the temporal data analysed were linear; the most
common and easiest to visualise. The second distinction is whether the data
involves discrete time points or time intervals; only the former is used in the
current study. The last is whether time is organised or branches; branching
cases were not encountered in the current development.

According to these criteria, the most applicable method covered by the
authors is 'TimeWheel' analysis (Tominski et al., 2004). This analysis relies
on a 2-Dimensional multi-axis view. Time occupies a central axis, around
which axes related to output variables are evenly spaced, reminiscent of the
spokes of a wheel. At each discrete time point (the method does not lend itself
to time intervals), a line is drawn between its position on the temporal axis and
the corresponding level on the variable axis. For each attribute, therefore, the
�uctuation of an attribute over time can be characterised the relation to the
central axis; for example - if the attribute decreases over time, the formation
of the parallel lines will be upper-triangular; if the opposite is true it will be
lower triangular (depending on the orientation of the time axis).

There is value to combining several attribute graphs in this way, however
the inclusion of so many parallel lines can be overwhelming to the end-user.
While the overall trend may be characterised, it is di�cult to identify poten-
tially interesting edge cases. All of the data is included in the visualisation,
making the method exhaustive, but there is no elimination of insigni�cant
comparisons.

Although it may not be the express purpose of the technique, visualising
experimental data where there are perturbed variables and several measured
outputs remains di�cult. Essentially these are two conceptual layers in the
data - an 'input' and 'output' paradigm which is challenging to view simulta-
neously.
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Figure 2.4: Time Wheel Method for visualising temporal data as depicted in
Aigner et al. (2008)

2.2.4 Principal Component Analysis

Probably the most prevalent technique, however, in visualising and interpreting
high-dimensional data is Principal Component Analysis. This has the ability
to reduce the pertinent information in a multivariate data set into a few com-
ponents that can be analysed in 2-dimensional plots. The technique itself is
discussed more fully in section 2.1.3.2; however, many of the interactions and
subtleties between variables in a data set are often not su�ciently described
in loading plots. In data sets with relatively small numbers of variables, this
technique also loses it's power of description; often classical visualisations from
the above-mentioned second stage of development (line graphs, box plots and
surface plots) are reverted to in order to describe outcomes.

2.2.5 Data Interaction

While the nature of how data is presented is the primary concern in inter-
pretation, an important augmentation of any visualisation is the ability to
interact with the results. Keim (2002) summarised the various ways in which
interactive data representation can assist in visualisation.

The �rst is 'dynamic projection'. This includes methods of projecting
high-dimensional data onto low-dimensional spaces in order to render the
information amenable to human interpretation, which is at most capable of
three dimensions. The most prevalent of these techniques it the 'Grand Tour'
method, which projects subsequent representations of high-dimensional scatter
plots onto 2-dimensional planes.

Another aspect of interactivity is the ability to �lter the data. Splitting
the data into subsets is an extremely useful tool for any end-user; the ability
to extract meaningful segments from the overall analysis to arrive at logical
syllogisms. These can also be de�ned as advanced data 'queries' that re�ect
speci�c questions related to the data. Consummate with �ltering should be
an automated re-organisation of the visualisation so that interpretability is
retained.
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The third factor listed by Keim (2002) is interactive zooming. The visu-
alisation should have an overarching structure from which conclusions can be
drawn; however, users should have the freedom to focus on particular areas of
interest, so that detailed conclusions can be drawn.

Two further types of data interactivity are interactive distortion (simulta-
neous presentation of di�ering levels of detail) and interactive linking (combi-
nations of disparate visualisation techniques); neither of which are applicable
to the present method.

2.2.6 Statistical Methods

The statistical methods used in StatNet are relatively straightforward. Most
of the power of visualisation lies in the topographical structure of a network
than in the descriptive ability of the statistics themselves. Nevertheless, an
overview of the statistical measures, tests and corrections is discussed below.

2.2.6.1 Metrics

The metrics used to quantify the relationships in the data were generally either
fold change and Pearson correlation. Fold change F is simply the symmetrical
ratio of two measures a and b; such that their relative change is centered at 1
and -1:

r =
a

b
;F =

{
r : r ≥ 1
−1

r
: r < 1

}
(2.2.1)

Pearson correlation is de�ned by the familiar equation; the ratio between co-
variance and combined standard deviations:

ρX,Y =
Cov(X, Y )

σXσY
(2.2.2)

Where covariance is de�ned as the combined expected deviations from respec-
tive means:

E [(X − µX) (Y − µY )] (2.2.3)

2.2.6.2 Statistical Tests

Di�erent tests are appropriate to determine signi�cance for variable com-
parison, depending on whether an underlying probability distribution is as-
sumed; and if so, which distribution. Two examples of a parametric and non-
parametric test are illustrated below.

In general for testing of signi�cance di�erences where a normal distribu-
tion is assumed, a Student's t-test can be used. The T-Test is used for normal
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distributions, and has the advantages of speed and ease of application. The
t-statistic is given by the following equation for the comparison of two inde-
pendent samples of identical length n:

t =
X1 −X2

sX1X2 ·
√

2

n

(2.2.4)

where

sX1X2 =

√
1

2

(
s2X1

+ s2X2

)
(2.2.5)

sX1X2 is the pooled standard deviation; s2X1
and s2X2

estimators of the vari-
ances of the two samples respectively. This is essentially a normalisation for
the combined samples.

This t-statistic is assumed to follow a normal distribution. A test is there-
fore performed at the requisite de�ned thresholds in the normal distribution
to establish whether the null hypothesis - that the samples' means are not
signi�cantly di�erent - is true.

A non-parametric alternative to the t-test can also be used, especially when
the vectors being compared were of a small length N . This was in the form
of the Wilcoxon Rank Sum test (Wilcoxon, 1945). Its appeal is that the only
assumptions needed in order to perform the test was that the samples are
randomly drawn from the same population and are amenable to sorting - i.e.
they vectors have an ordinal scale.

The test compares the requisite pairs of values (x1,i and x2,i) for each sample
in the ordinal ranking. For each one of these pairs in i = 1..N , |x2,i−x2,i| and
sgn (x2,i − x1,i) are calculated. The Nr pairs are then ranked by the absolute
di�erence measure, after which the test statistic W is calculated:

W = |
Nr∑
i=1

[sgn (x2,i − x1,i) ·Ri] | (2.2.6)

The null hypothesis is then rejected if W is below a set threshold, as is the
case with the p-value generated from the t-test.

2.2.6.3 Correction for Multiple Hypothesis Testing

The danger in making many simultaneous hypothesis tests is that it is possible
to propagate false positives, or 'Type 1' errors. This is also known as familywise
error rate (FWER). A correction for this is in the form of the Holm-Bonferroni
Correction (Holm, 1979). It is based on the Bonferroni Correction method,
but is cited by Holm et al. as being statistically more powerful.

The multiple hypotheses are corrected by �rst rank-ordering the p-values
P1..Pm from all hypotheses H1..Hm. All probabilities are then iterated through
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sequentially in order of lowest to highest; at each iteration the probability Pk is
compared to a new probability threshold, adjusted from the original as follows:

Pk >
α

m+ 1− k
(2.2.7)

Where α is the selected signi�cance level. If a p-value fails this test along
the bottom-up search, all subsequent hypotheses with higher p-values are
voided and the algorithm terminates.

2.3 Conclusion

A body of literature has been reviewed to establish a platform for untargeted
chemometric analysis and network visualisation.

In terms of model data for untargeted chemometric analysis, HPLC/UV-vis
is a good candidate for novel methods. The data generated by the extensive
experiments into browning phenomena by (Buica, 2012) is conserved, has ex-
perimental duplicates and presents an interesting challenge due to its scale and
diversity of experimental conditions. There are also clear targets for building
models of the data, in the form of distinct classes of experimental variables.

After reviewing a number of pre-processing techniques, it is proposed that
the following should be incorporated into a large-scale analysis: smoothing
using the standard Savitzgy-Golay �lter (Savitzky and Golay, 1964); base-
line correction using wavelet methods as implemented in the alignDE package
(Zhang et al., 2011) and peak alignment using the simple yet e�ective COW
(Tomasi et al., 2004).

HPLC/UV-vis data has a rich feature map, with continuous features along
wavelengths. Untargeted analysis using the full map is something not often
attempted, and may yield useful results. The incorporation of information
across both dimensions would be preferable as features can di�er across wave-
lengths. As feature map alignment algorithms are generally only implemented
for discrete MS data, a new implementation would need to be developed that
is memory e�cient and can be applied sequentially for a group of UV-vis chro-
matograms. A brief review of some of the more prominent MS implementations
was expounded; the closest method to the stated requirements is most likely
MZmine as developed by (Katajamaa et al., 2006).

Several candidate machine learning and statistical methods were reviewed,
the applications of which to the results of an untargeted analysis may give
insight and validation.

Opportunities for the application of network methods were also explored.
While there has been much progress in the �eld of exploratory data analysis
and visualisation, there is still room for new methods to explore the multivari-
ate space of scienti�c experimentation - especially with temporal data, which
has an added layer of complexity.
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Pure network representations are not often applied to this �eld, but rather
used as a motif for conceptual design. It may be possible to employ networks
as a multivariate comparison tool for hypothesis generation using experimental
results. Several statistical metrics for feature comparison were also reviewed
as possible bases for network visualisations.
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Chapter 3

Chemometric Analysis

A method for untargeted analysis of multiple HPLC/UV-vis chromatograms
is developed. Approximately one thousand chromatograms taken from a sin-
gle experiment are preprocessed en masse for smoothing, baseline correction
and alignment. Using a newly developed algorithm, feature map alignment is
performed to create a conserved list of chemical features.

A reduced data set using these features is then validated and explored using
Machine-Learning techniques. It was found through permutation tests that the
generated data had integrity with regards to the experimental set-up. Finally,
hypotheses were drawn regarding the role of di�erent features in the experi-
ment.

3.1 Introduction

3.1.1 HPLC/UV-vis

The data used for the development of this method were approximately 1000
HPLC/UV-vis chromatograms from a single large-scale experiment. To sum-
marise this separation technology: HPLC exploits the di�erence of interaction
strenghts between molecules to e�ect a separation of compounds within a sam-
ple. This separation is achieved by pumping a liquid solvent containing the
sample through a column loaded with solid compounds. The column solids
(stationary phase) interact with the compounds within the solvent (mobile
phase) to di�erent magnitudes of attraction, inducing a separation. Com-
pounds will therefore elute from the column at di�erent times (retention times)
throughout the run interval. HPLC di�ers from regular liquid chromatogra-
phy due to the higher pressure induced by a pump within the column; whereas
ordinary liquid chromatography relies mostly on gravitational forces.

The end of the column is �tted with a UV-vis spectrophotometer. This
detector measures the absorbance of the the liquid exiting the HPLC column
at speci�ed time intervals. Absorbance is measured at wavelengths within the
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Ultra-Violet range (in this case speci�cally - 190 to 560 nanometres), created
by di�racting a single light source though a prism. The detector operates
by measuring the intensity of light after it passes through the sample, and
comparing this to either the light before sample absorbance, or an appropriate
separate reference material; the ratio of these two measures is known as the
transmittance.

The data from a single HPLC-UV-vis run is therefore separated across
two dimensions (time and wavelength), and measured along a third (spectral
absorbance at a wavelength, based on transmittance). This high-dimensional
data presents a challenge for traditional data analysis, for a number of reasons.

3.1.2 Technical Issues

Perhaps some of the most signi�cant challenges to overcome are the issues
arising from technical errors from the machinery itself. Several phenomena re-
lated to the process of chromatography can translate into artefacts in the data
that need to be corrected before any meaningful information can be extracted.
These types of artefacts include baseline drift, which is common in any type
of chromatography; as well as shifts in retention time between technical or
sample repeats.

3.1.3 Data

The test data used for the chemometric analysis was from a study into the
e�ects of various conditions related to browning in white wine. There were
a number of experimental conditions thought to relate to the phenomenon
of browning that were independently perturbed in a factorial-like manner.
HPLC/UV-vis readings were then taken for each experimental duplicate over
the duration of the experiment.

The media used was a standard synthetic media for white wine, with 12%
alcohol and 5g/L tartaric acid.

The experiments were divided into two main groups: slow- and rapid oxida-
tion. Slow oxidation was preformed in a sealed bottle with restricted O2 and a
constant headspace - small in comparison to the volume of liquid (0.5 mL/135
mL). For rapid oxidation, the bottle was left open and there was no restric-
tion in available O2. Beyond oxidation conditions, three other experimental
conditions were tested: phenolic treatment, pH and SO2 levels.

The phenolic treatment involved the addition to the media of two of the
main phenolic compounds typically present in white wine: Ca�eic Acid (CA)
and Catechin (C). Three di�erent treatment types were tested: the addition
of Catechin on its own (150 mg/L); Ca�eic Acid on its own (200 mg/L), and a
combination of both phenolic compounds together (150 mg/L and 200 mg/L
for C and CA, respectively).
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pH is typically at 3.6 in white wine. It was tested at 1.9, 3.1, 3.6, 4.1 and
7.2 in order to observe its e�ects on oxygen and browning. The addition of
the phenolic compounds was timed to well after the pH had stabilised at the
desired value as their e�ect on pH level was strong and fast-acting in terms of
observed browning.

Similarily, SO2, which is ordinarily added at 25 ppm, was also tested at
0- and 50 ppm. This was postulated to have a direct e�ect on the oxidation
process of the wine - typically SO2 is added to suppress the e�ects of oxidation.

Each of the conditions were tested at their respective levels in a factorial
design experiment. A batch was created for each combination of conditions,
from which three separate repeats were decanted. The oxidation reactions
were started in both cases with the addition of catalysts: Fe at 5 mg/L and
Cu at 0.3 mg/L. Two of these repeats were measured using HPLC/UV-vis on
days 0, 1, 3, 7, 15, 45 and 60 for each separate condition.

3.1.4 Purpose

The purpose of the method development presented in this section is to create
a platform for an untargeted analysis of HPLC/UV-vis data. This approach
is entirely di�erent from that of a targeted analysis, where the compounds of
interest are known before the time and systematically identi�ed after the chem-
ical analysis. Rather, the analysis is �rst performed and interesting features -
hopefully related to compounds - are identi�ed for further investigation.

This kind of analysis can lend itself to novel research because it removes
the factor of bias towards a speci�c outcome for a project. The fact is that
many substances have a high degree of chemical complexity, the entirety of
which is not currently known. Wine is a good example of this potential com-
plexity; having a huge variety of di�erent compounds. The approach taken
within this project is to �rst �nd signi�cant putative compounds within sin-
gle experiments, with the intention of �nding common compounds within all
experiments, as expressed by the feature map alignment problem mentioned
by Lange and Tautenhahn (2008). By mapping the data to putative fea-
tures and their relative intensities, one essentially reduces the 2-Dimensional
HPLC/UV-vis data to a 2-Dimensional matrix - the exact methodology for
which is described in 3.2.2. Once this is achieved, it should be possible to
apply statistical methods to the resultant data in order to identify the func-
tion and signi�cance of the putative compounds with regards to experimental
variations.

3.2 Methodology

The methodology was used to analyse all experiments on a large scale. This
can be roughly split into two parts: �rstly, the preprocessing of the data to
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create feature maps. This part is mostly the combination of several existing
methods, applied en-masse and in parallel to each experiment. The second
part is the solution of the feature map alignment problem, most of which was
devised and coded independently of any existing solution.

3.2.1 Preprocessing

Preprocessing of the HPLC/UV-vis runs comprised much of the computational
e�ort involved in the chemometric analysis. As explained in the previous sec-
tion, a large portion of the analysis of chemometric data involves the correction
of technical artefacts. The premise behind this kind of preprocessing is, �rstly,
that it allows for improved qualitative analysis further down the pipeline; for
example improved detection of peaks. Secondly, it allows for a dataset that can
subsequently be more accurately and meaningfully compared to other datasets
in feature map alignment.

With this in mind, several methods were applied in serial to correct and
standardise the data. These included data parsing; baseline correction; smooth-
ing and alignment. While these are fairly standard tasks in any analysis of
chemometric data, and are easily performed on single datasets, the mass pro-
cessing of approximately one thousand of these high-dimensional datasets re-
quired more involved solutions with regards to computational and algorithmic
complexity. All of the steps after the initial data parsing were performed
in parallel on a computing cluster through the application of open-source li-
braries. While there is an additional layer of complexity in this regard, it is
more than compensated for by the great increase in processing throughput.

3.2.1.1 Data Parsing

The initial data was in the raw, proprietary format of the chromatographic
system, in this case Agilent's Chemstation. It was desired that the data be in
a ASCII text format, as this is more universal and can be used for whichever
multitude of languages may be required along the preprocessing pipeline.

Due to the fact that there were 918 datasets in total, and that manually
navigating the Chemstation menu system for each one was laborious, some
Chemstation macros were written to automate the process. These macros
were based on the �le structure of the chemstation .D �les. The macro would
search through a speci�ed folder and load each of the chromatogram �les in
series. Once loaded, the �le registry would be searched for the methods label
- present in each run, describing which levels of pH and SO2; the applied
treatment, as well as the time point at which the sample was taken.

The full spectra was then written to a text�le using Chemstation macro
commands. For each folder, an index linking the methods label to the run name
was generated. This ensured that unique experimental names were maintained.
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A perl script was then made to collect, rename and move the text �les to
a central folder. A wrapper was also created, using a bash script to utilise
the GNU iconv library to re-encode the text �les to UTF-8. Once all this was
achieved, there was a single folder containing methods-labeled HPLC/UV-vis
data for each experimental run, including technical repeats.

3.2.1.2 Baseline Correction and Smoothing

The data was �rst smoothed using the Savitzky-Golay noise �lter (Savitzky and
Golay, 1964). The implementation used was that developed in the MassSpecWavelet
library developed by Du et al. (2006), which forms part of the bioconductor
package in R. A quadratic �tting was used on the data, with a frame/segment
size of 15 intervals. This produced an adequate and not overly-aggressive
initial smoothing of the data.

Baseline correction is an essential step in preprocessing. Background sources
of light and interference can lead to an arti�cially raised baseline in UV-vis
spectra. An additional source of baseline drift is the possible change in solvent
composition over time. This can happen either deliberately or as a consequence
of di�erential, possibly unintentional interaction of the mobile and stationary
phases. Whatever the cause, correction of baseline drift is essential, especially
with regards to linear correlation - the cost function of COW.

The baseline correction method was that developed by Zhang et al. (2011).
The implementation in the R package alignDE was used. It is based on the
initial detection of peaks and peak widths; preserving these features while
warping the chromatographic space between them. Visually, the default pa-
rameters of alignDE worked well with the data (based on a small representative
spread of experiments), allowing for a reasonable balance between roughness
and �delity.

The steps of smoothing and baseline correction were both implemented in
R. Due to the huge scale of processing all text data for each experiment, it
was found to be easiest to parse and organise the data in perl; an interface
was therefore used whereby R was called within a perl script using the CPAN
module Statistics::R (Graciliao, 2011). The output of the R code is then
parsed again through perl and a �nal CSV �le is made with the corrected data
of each experiment. This script was executed in parallel for each dataset on a
High-Performance Computing (HPC) cluster.

3.2.1.3 Alignment

Two di�erent alignment techniques were tested on single chromatograms before
one was chosen to be applied to the data large-scale. Considerations included
constraints in their implementation - as it was desired that the �nal scripts be
compatible with the Linux-based HPC cluster; their computational e�ciency,
or their conceptual compatibility. Another important factor is that the method
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(a) Before correction (b) After correction

Figure 3.1: Correction of baseline using alignDE

should be extendible to 2-Dimensional separation data. Additionally, only
open-source implementations were used in the interest of reproducibility.

Among these were methods that relied on peak detection before alignment.
As mentioned by Tomasi et al. (2004), this has the potential to introduce
unwanted bias. Seeing, however, that the downstream analyses depend heavily
on peak detection, this would not be such a great disadvantage with this
particular approach.

AlignDE was one such method. The alignment works by �rst detecting all
peaks in a signal; grouping clusters of peaks together; then using Di�erential
Evolution (analogous to a modi�ed genetic algorithm) to match the peaks
according to a global optimal correlation. Similar to COW, it warps the spaces
between the peaks in order to reach this optimum.

While it served excellently in baseline correction of the signals, there were
several problems with alignment on a larger scale; most notably the fact that
it is di�cult to extend to 2-Dimensional detection techniques - whereas for
COW this is a relatively simple extrapolation (as will be demonstrated below).
Additionally, it is more appropriate for data that comes from a similar source as
the algorithm allows for the peaks to be matched over a large spans of the signal
non-sequentially (Zhang et al. (2011)). In measurements from heterogeneous
experimental sources these shifts may be done spuriously if some peaks are
not present in both chromatograms. COW is designed for more heterogeneous
data alignment as it is insensitive to peak features, and will not gratuitously
shift a peak that is not present in the target (doing so will not improve the
correlation - see equation 2.1.12).

Thus, COW was the algorithm of choice for alignment of the multiple
chromatograms under question. Conceptually it was the most appropriate for
the data, which is heterogeneous and continuous. Implementing the algorithm
on a large scale was not too costly in computational time, and parallelising
it in an open-source environment, while requiring some adjustment, was not
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infeasible. Additionally a relatively simple extension to 2-D data was possible.
Parallelisation of the alignment process involved simply running a separate job
for each dataset CSV �le.

An implementation of COW was written in MATLAB by the authors of
Tomasi et al. (2004). The code was translated into Octave, which required little
alteration, and run on an HPC cluster through another octave script. To run
multiple alignment jobs simultaneously and without employing a di�erential
alignment such as in PyMS, a simpli�cation had to be made as to which
datasets were compared to each other in order for all experiments to be globally
comparable. To this end a single HPLC/UV-vis data set was chosen against
which all other data sets were aligned (centroidisation).

This is a simpli�cation with many issues, and one should take special care
in relatively disparate data sets. The downstream validation of peaks (refer to
section 3.2.2) should overcome some of the potential errors in alignment that
may result from this; however an attempt was made to at least select for a run
that is rich in peak features. As stated above, COW should theoretically avoid
falsely aligning peaks in a sample when none are present in nearby segments of
the target (as this has no increase in the bene�t function in the optimisation
step); the target was thus chosen for the number of signi�cant peaks present
as it is believed that misalignment of di�erent features could be corrected in
the next step.

An initial run of peak detection therefore needed to be performed to char-
acterise the peak richness within each data set. It was performed in parallel
with the method underscored in section 3.2.2 below. Each job was split up
on the HPC cluster per HPLC/UV-vis data set and peak detection was run
on every wavelength. A summative score S over each wavelength w was cal-
culated for all N peaks along the wavelengths, using the peak height p and
average peak height p̄:

S =
560∑

w=190

Nw

p̄w

Nw∑
i=1

pw,i (3.2.1)

The data set with the highest score was an experiment with both treatments
(ca�eic acid and catechin); highest pH of 7.2; highest SO2 of 50 ppm, and taken
on day 15 of the experiment - which is half way. This makes intuitive sense
for a number of reasons: having both treatments present will naturally result
in a higher frequency of peaks - not only due to the treatment compounds
themselves but due to their probable combined impact on the media's chemical
nature. High levels of pH and SO2 are also the cause of signi�cant variation -
as depicted in the following chapter. Sampling half way through an experiment
will most likely capture intermediate compounds in the kinetic evolution of the
sample, so one could hypothesise that the peak density at this stage should be
highest. This sample was therefore kept as the 'centroid' for alignment.
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(a) (b)

Figure 3.2: Alignment by consecutive wavelengths. Observe the 'drift' in peaks
from wavelength to wavelength in (b)

The segment length parameter m was estimated by observation of the
smallest peak width. All wavelengths were considered, and it was set to a
conservative value a little lower than the smallest width: 20 time intervals. In
Nielsen et al. (1998), the slack parameter for COW was set to approximately
one-tenth of the segment size. In order to avoid under-�tting the alignment, a
slack slightly greater than this was chosen: 3.

The question then remained of how to align 2-Dimensional separation data
using 1-Dimensional COW. The �rst approach was to align each data to the
centroid simply by consecutively aligning the corresponding chromatograms at
each wavelength. An octave script was written as a wrapper for COW and a
separate job was run for CSV data �le on the HPC cluster. The results from
this analysis were not promising (see Figure 3.2). It seems that the optimal
correlation for each wavelength resulted in di�erent alignments. This is indi-
cated by a shift in the peak features across wavelengths. It is postulated that
the cause of this could be the over-�tting danger suggested by Nielsen et al.
(1998); lowering the slack and lengthening the segments, however, did not solve
the problem. The issue of 2-D COW alignment is addressed by Zhang et al.
(2008); however the results of the 'grid-warping' method used are complex;
unvalidated and have not been implemented in code. A method was indepen-
dently developed in the form of a 'TAC' (Total Absorbance Count), commonly
used in mass spectrometry in the form of a 'TIC' (Total Ion Count). A TIC is
simply a summation of intensities over all mass/charge ratios for each reten-
tion time point. Precisely the same method can be used for UV/vis detection,
summing all absorbance values over all wavelengths for each time point. The
resultant pseudo-chromatogram is then representative of peak positions for the
entire spectrum.

The summation chromatograms were then used as a proxy for every HPLC/UV-
vis data set alignment. This was thought to be more robust than the former
approach, as optimisation of the correlation between such signals is unlikely to
encounter the localised variations over wavelengths. This can potentially lead
to better comparisons across aligned samples later on in the analysis. Natu-
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rally, this is a simpli�cation and may be subject to some error. One of the
assumptions behind this is that peak features that span many wavelengths do
not vary signi�cantly in time over said span. While this is not strictly true -
corrections for this had to be made in section 3.2.2 - in general this variation
for peak apexes were small (in the region of 3-7 time intervals).

Once the alignment had been done, it was extrapolated back to the origi-
nal data using a custom-built transformation script. This is made possible
by COW's inherent simplicity: the input of COW is a vector of the be-
ginning and end-points of the segments in order (for L = 100 and m = 4:
[x0, x1, ..., x24, x25] = [0, 4, ..., 96, 100]), and the output is simply the segment
nodes after warping (e.g. [0, 3, ...92, 100]). These parameters can be retro-�tted
back to the original data by warping the chromatogram at each wavelength
in the same way using linear interpolation. The chromatograms of each wave-
length are divided into segments of m; the new points p′i at newly warped
times t′i between t

′
0 and t

′
n of the new segment are calculated as follows.

The p′0 and p
′
n simply inherit the original p0 and pn at the respective original

segment bounds of t0 and tn. An approximate original time ti is calculated for
new times t′i by:

ti = t0 + (ti − t0)×
(
t′i − t′0
t′n − t′0

)
(3.2.2)

The original height at this approximate time is then used as the new height
p′i, interpolated between heights p−i and p+i at the integer time values above
and below it:

p′i = p−i + (p+i − p−i )×
(
pi − p−i
p+i − p−i

)
(3.2.3)

This interpolation was added to the alignment script, so that the generation of
the 'TAC', the subsequent COW alignment and the interpolative adjustment
were performed as part of one job. This was done in Octave, calling the
alignment implementation by Tomasi et al. (2004).

The interpolation of the alignment back across all peaks proved to be an
e�ective tactic for alignment, preserving the integrity of the features and elim-
inating the drift seen in Figure 3.2. A demonstration of the 'TAC' alignment
is found in Figure 3.3. This is fairly representative of most of the alignment
processes; for the many cases visually inspected, it appeared that the time
shifts were not extreme and only minor adjustments were necessary.

Because the alignment was only done on a single pseudo-wavelength, the
running time of the alignment was fairly low (about 70s per job on the HPLC
cluster). Once alignment had been performed on each HPLC/UV-vis data,
peak detection could be performed towards the end of multiple feature maps
for comparison.
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Figure 3.3: Alignment of the summative 'TAC' over all wavelengths.

3.2.1.4 Peak Detection

Peak detection was done using an implementation of Continuous Wavelet
Transforms . The library used for this was the MassSpecWavelet package,
which is part of the Bioconductor project in R and was developed by Du et al.
(2006). Due to the scale of the data, the peak detection process was again done
in parallel on the HPC cluster through an R interface with perl. The peak de-
tection was performed in two steps: �rstly, the continuous wavelet transform
was created; then peak identi�cation was performed using the transformed
output. The �rst step is depicted in Figure 3.4.

The wavelet scales used were those recommended by Du et al. (2006):
spanning from 1 to 64 with an interval of 2. It is clear from the high resolution
coe�cient matrix that there are around six or seven peaks that dominate the
wavelet space, having large local maxima at high scales.

In order to de�ne these local maxima, a ridge object is created from the
coe�cient matrix. This is formed algorithmically from the original wavelet
coe�cient matrix as follows: �rstly, the local coe�cient maxima are detected
using a sliding window approach, with the window the size of the wavelet
support region at the scale. These local maxima must then be approximated
as ridge lines for subsequent peak identi�cation. The algorithm is applied
by simply creating ridge features within the sliding window, starting at the
largest scale in the coe�cient matrix and moving downwards to scale one. A
maximum gap threshold is set for the ridge feature; any ridge with a gap larger
than the threshold is discarded.

This results in another 2-D matrix, as depicted in Figure 3.4. The ridges
are coloured according to the coe�cient strength at each scale point - blue
being the strongest, down to yellow - close to zero. The major peaks are easily
identi�able as ridge features with the requisite coe�cient strength values.

The SNR ratio threshold is perhaps the most important parameter to set,
and has a signi�cant e�ect on which level of peaks are detected. As further
stated by Du et al. (2006), noise can be assumed to be either negative or
positive peaks with very small width, and can thus be approximated by the
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(a) Baseline corrected chromatogram
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(b) The chromatogram in wavelet space
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(c) Resultant ridge lines

Figure 3.4: Continuous Wavelet Transform for Peak Detection
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Figure 3.5: Depiction of the SNR ratio for each detected peak in the chro-
matogram (same signal as for Figure 3.4). The SNR ratios in red are those
above the set ratio of 7.
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Figure 3.6: The �nal result of the peak �nding algorithm on the CWT coe�-
cient matrix.

wavelet coe�cients at small scale values. They further de�ne the local noise
surrounding a peak to be the 95th percentile of absolute wavelet coe�cients at
scale a = 1, measured within a set window surrounding that peak. This can
be displayed in the form of a histogram for each peak (refer to Figure 3.5).

Besides for the threshold of SNR ratio, two additional restrictions are ap-
plied in order for a ridge feature to be identi�ed as a peak. Firstly, the max-
imum amplitude on a ridge (which re�ects the width of the peak) must lie
above a set wavelet scale; secondly, the overall ridge line length must be above
a certain value. The latter eliminates the small peaks that are often found
near major peaks, which are simply artefacts of the latter. Default values for
both of these thresholds proved e�ective. The �nal peak position is estimated
by the position of the ridge among its lowest wavelet scales. The result of the
peak detection process is shown in 3.6.

The above �gures depict the peak �nding algorithm for a single sample
at one wavelength. The data at hand, on the contrary, spans just under a
thousand samples and is measured at 186 wavelengths. The method therefore
had to be generalised to account for this. The aforementioned perl-R interfaced
program was set to run through all wavelengths within a sample, generating a
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Figure 3.7: Peak Finding with SNR ratio 8 at 550 nm (near highest) as com-
pared to that at 190 nm in Figure 3.6

list of peaks, saved in text format for later processing. The program was run
separately for each sample in parallel.

Seeing as the method was applied across all wavelengths, it was important
to optimise the signal to noise ratio carefully. The danger of a high signal to
noise ratio is that smaller peaks, which may still be of chemical signi�cance,
may be unwittingly eliminated from the resultant peak list. If it is set too
low, then noise is incorporated into the peak list, which results in spurious
comparisons and false results in the analysis downstream. In the case of the
HPLC/UV-vis data, clearly de�ned peaks were visible at the lower wavelengths
in the UV spectrum; however for the higher wavelength values the peaks were
closer to noise and the features were not clearly delimited over spectra. A fairly
low SNR ratio was appropriate at the lowest wavelength of 190 nm, however
at the higher wavelength of 550 nm the small peak height demanded a much
higher threshold (refer to 3.7).

One solution for this issue would be to dynamically change the SNR thresh-
old for higher length wavelengths, de�ning spectra beyond which the threshold
is reduced. While easy to implement, there is no guarantee of where the low-
lying peaks begin on the spectrum for each HPLC injection, and checking this
property for every dataset defeats the purpose of mass processing. The SNR
threshold for the lower wavelengths, where the peaks had consistently higher
amplitudes across all datasets, is more de�nitive.

The problem was reconciled by applying a simple height �lter across all
wavelengths. The �lter was set low enough to eliminate the noise seen at the
higher wavelengths and depicted in Figure 3.7. The level of this noise was
consistent across many of the datasets, and its elimination led to a much more
structured and unconvoluted peak landscape as shown in 3.8. While this is a
very simple abstraction to apply, it was deemed appropriate given the nature
of the data and the scale of the analysis.

Once this threshold was set to a conservative level, the SNR ratio was
adjusted to its appropriate level respectively. This involved viewing sample
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Figure 3.8: High wavelength signal with a minimum noise level threshold of
0.05

caption (a)

Figure 3.9: Identi�ed Peak landscapes with SNR threshold set to (a.) 5 and
(b.) 8 respectively

datasets either in a peak 'landscape' plot - where the detected peaks were
plotted against wavelength and time in a 2-Dimensional scatter plot (Figure
3.9); and alternating between conventional peak views at lower and higher
wavelengths as in Figures 3.6 and 3.8 respectively. Scripts were created in R
and MATLAB to facilitate this.

An important aspect of the �nal peak landscape is that it should not include
noisy features that are inconsistent in retention time through the spectrum.
In theory, a feature at a particular retention from HPLC should be absorbed
through a number of spectra with little deviation on the time axis. Essentially,
this refers to the straightness of the feature line; a concept that is algorith-
mically formalised in the following section 3.2.2. A good compromise between
this ideal, and the ability to detect low-lying peaks at all, was found in an
SNR threshold of 8 for the HPLC/UV-vis data. This was arrived at through
systematic trial-and-error, using the centroid data set as a primary test and
validating with other edge-case experiments.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. CHEMOMETRIC ANALYSIS 44

3.2.2 Feature Matrix Generation

3.2.2.1 Problem Statement

As mentioned above, the ultimate aim of this analysis is to have a comparable
list of features, where each feature represents a compound and is either present
and quanti�ed with a single value; or completely absent from a sample. This
can be represented as a matrix, where the columns are putative compounds
and the rows the samples for comparison. Once a conserved matrix is obtained,
it can then be subjected to any number of statistical modelling techniques.

Once again, this method of dimensionality reduction applies a simpli�ed
abstraction to complex data, but this can be justi�ed both from its means and
end. One may ask why entire HPLC/UV-vis data sets cannot be compared to
each other without being forced into the context of peak detection. Indeed,
this would be the least bias comparison, and as the chromatograms are aligned,
this can be a valid approach. An implementation of this was attempted on the
data, but it failed on a practical front. Due to the fact that the data for each
sample is 2-Dimensional (2-Dimensional separation coupled with intensity val-
ues), it needed to be vectorised in order for each sample to occupy a single
row in the resultant matrix. This was achieved by 'unfolding' the separation
values; making a column entry for each wavelength at each respective retention
time. The number of columns were therefore the retention time range (7650
points - a resolution below which one loses information) multiplied by the ab-
sorption spectra (186 wavelengths total) - totalling 1,422,900. Unfortunately,
this column number is simply too large to be parsed into most mathematical
languages through text �les, much less used for the proposed techniques. A
reduction of the resolution to achieve a manageable scale would also detract
too severely from the quality of the data.

There are, of course, ways of splitting up the data into more digestible
subsets. A script was made that iterates through each chromatogram's CSV
�le, extracting the signal for each wavelength and writing to separate individual
wavelength CSV �les. The problem with this is that wavelengths are highly
correlated, and features can span many wavelengths (consider the lines in
Figure 3.9). Therefore, comparing samples across single wavelengths, while
overcoming the practical limitation of vector length, was inconsistent with the
nature of the analysis, which is to compare complete features.

Describing chemometric data within the context of peak features is im-
portant for later interpretation by chemists. Thus no matter the method of
comparison, the recording of feature position is important. From this point
of departure, an e�cient method was devised to �rstly consolidate the peak
features detected by the wavelet algorithms described in section 3.2.1.4; sec-
ondly to compare these consolidated peak lists to each other such that putative
peak features can be compared across samples in a novel implementation of a
feature map alignment algorithm.
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Interpretability is also essential. If a compound is thought to exist and
have some kind of impact on the kinetics of a sample, for example, then that
feature must be traceable to an existing compound. Another requirement is
that the feature should ideally have its magnitude described by a single value,
so that all the data can be reduced to a single matrix.

Furthermore, the information contained in the feature matrix, while rep-
resented by a single-dimension number, should contain the information of the
2-D extraction. Using a 'TAC' to asses peak similarity would constitute a glar-
ing oversight in that (especially in a summative feature) two slightly di�erent
chemical features may co-exist at the same time point, and exhibit di�erent
absorption patterns across wavelengths.

3.2.2.2 Overview

The question of how to sequentially build this feature matrix arises. Some of
the requirements for this matrix have been outlined above: the features must
be globally comparable and there must be a conserved list to compare across
samples.

A number of approaches to ful�l these requirements were considered. The
order and manner by which chromatograms were cross-compared was a crucial
detail. Underlying this consideration was the fact that the alignment and peak
position detection procedures must be imperfect; thus peaks for equivalent pu-
tative molecules (sharing identical absorption patterns) may reside at slightly
di�erent time points in the chromatogram.

The most common and simple method of multiple comparisons is an all-
against-all approach. Its simplicity is often outweighed by its 'brute force'
computational intensity; in this context, however, there are larger conceptual
concerns. The peaks need to be globally comparable and an all-against-all
analysis is by nature dual-comparable. While this will be accurate and inter-
esting on a local level, the comparison is not extensible to a global scale.

The developed solution was in the form of a dynamic peak database. The
concept behind this was to retain a 'master list' of peak features against which
all chromatograms are compared, similar to the method of MZmine (Kataja-
maa et al., 2006). This list or database of peaks is initially populated with
a 'seed' chromatogram, and if a feature in a subsequent chromatogram is not
found in the database it is dynamically added to the database for future com-
parisons. Thus if the alignment has a predictable level of accuracy, and new
peak features are added as discovered, the sequential manner of comparison
should not miss meaningful feature matches between chromatograms.

To satisfy the stated requirement of meaningful chemical interpretation, a
second database was maintained that stored each unique peak added to the
comparison database, as well as the identity of the original chromatogram in
which it was found. The list is then written to a text �le for later reference.
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Figure 3.10: Depiction of work�ow for comparison of all peaks in the generation
of a feature matrix

While this is a relatively concise concept, the implementation was quite
involved given the number of experiments compared, and to this end a perl
program was written from scratch to import the data, manipulate it and write
out the results. A depiction of the work�ow is included in Figure 3.10 below.

Chronologically, there is an initialisation step (traced from left to right
along the top part of �gure 3.10) whereby the database is created, followed
by the main comparison step from the top left down and to the right. A �nal
pruning and correction step is then taken from right to left at the bottom of
the �owchart.

The feature 'aggregator' is described in detail in section 3.2.2.3 below. The
dynamic database comparison is then elaborated in section 3.2.2.4.

3.2.2.3 Aggregating Peak Features

For the sake of clarity with regards to this analysis, a feature is de�ned as the
apex of a peak along all its wavelengths in the spectrum.

Before feature map alignment can take place, the feature map for each ex-
periment must be generated from the detected peaks. This was achieved using
some custom algorithms, using window searching techniques as is common in
feature map alignment software (Lange and Tautenhahn, 2008). Figure 3.9
depicts the detected peaks across the separation dimensions. The slight 'dis-
tortions' of the peak features over wavelengths are clearly visible over time,
in the form of deviations from the straight lines one expects in compound
features - e�ectively small drifts in time over wavelengths. These deviations
can be attributed to any number of causes; exploring the features visually in
2-Dimensional space gives an idea of how this happens. This is demonstrated
in heatmaps in Figure 3.11. From this and several other observed examples,
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(a) Heat map of single experiment at 100%. A
zoomed-in image of the area outlined in white is
shown below.
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Figure 3.11: 'Drift' of detected peaks along a single feature.

it was clear that this it not an artefact of the peak detection algorithms, but
rather a change in the shape of the peak itself over wavelengths.

Naturally, when one wants to compare peak features between di�erent sam-
ples, it is advantageous to compare features along a single time point; com-
paring along a time frame increases the complexity enormously. Thus the
peaks features exhibiting drift were aggregated and re-assigned to a central
time point. The peaks, with the exception of low-lying peaks at higher wave-
lengths, adhered to this aggregation well as the drift was generally not severe.
A few parameters are needed to direct the aggregation, and are shown in al-
gorithm 1.

The algorithm iterates through a moving window of set size that shifts
along the retention time one interval at a time. At each time iteration, the
window is de�ned by an interval either side of the central time (in this case,
an interval of two on either side was considered). The algorithm then passes
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Algorithm 1 De�ne peak features

Import Peak list and data matrix for HPLC run
Select a time window size of n and apply over all N times
Keep reference structure of done peaks (D)
Keep reference structure of found peaks (F )
for n ∈ 1 : N do

keep count of number of consecutive peaks (c) along each wavelength (w)
over entire spectrum (S)

Store last peak wavelength: wl ← w1

for w ∈ S do

for t ∈ n do
Select a consecutive tolerance gap g between peaks
Select a minimum number m for c to add to F
if w − wl < g then

c← c+ 1
else if w − wl > g and c > m then

Add wavelength range to peak feature in F
Start new putative feature at w

else if a < b then
if c > m then

Add wavelength range to peak feature in F
end if

end if

end for

end for

end for

through each wavelength in order, checking for peak points within the window.
If one is found, it is added to a growing list of consecutive peaks. The minimum
number of peak points considered to constitute a feature is set. Additionally,
the maximum gap between points is de�ned, so that separate peaks or spurious
detections that appear farther down the spectrum are considered separately.

If the number of consecutive peaks along the spectrum for a certain time
window is above this minimum feature length, and the algorithm does not
�nd any further points within the set minimum spectral gap, then that peak
feature is added to a list of features for the experiment (feature map). If these
requirements are not ful�lled then that consecutive peak list is destroyed and
the search along the time point begins anew at the current wavelength.

Only the retention time of the feature and its wavelength interval are stored
during the search. The �nal output includes entire features with corresponding
intensity values along all wavelengths. Depiction of the result of the algorithm
is displayed for a sample in �gure 3.12.
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Figure 3.12: Aggregation algorithm as applied to a sample. Focus on one
particular feature within the sample is shown on the right.

3.2.2.4 Experiment-Database Alignment

The �rst decision to be made for initialisation of the database comparison
algorithm is which chromatogram is to be used for the initialisation step; the
'seed'. In the case of the demonstrated set of data, the most logical choice
was the chromatogram chosen as the centroid for alignment (refer to section
3.2.1.3). This is both because as it was used as the alignment centroid, its
peak features should be approximately at the average time of all other peaks;
it also contains the most peak features as calculated in equation 3.2.1.

The database itself is stored in the form of a perl reference structure. The
reference structure holds tiered information for a feature in order: �rstly, the
retention time of the feature; secondly, a unique number for the feature at
that time (bearing in mind that more than one feature can appear at the same
retention time). Attached to this is a hash table of matching wavelengths
and intensities, so that the entire feature is stored. As the reference structure
is stored in the form of tiered hash tables, it is e�cient to search, sort and
compare.

After initialisation of the database, each experiment is analysed in succes-
sion. Feature extraction is the �rst step of analysis, after which the feature set
is compared to the features in the database. If it is found that, within some
tolerance, the feature matches one of the features found in the database, the
maximum point in the feature is recorded. If a signi�cant feature is, however,
extracted from the experiment but is not found in the database, it is added to
the database for future comparisons. This process is outlined in algorithm 2
below.

When a new feature is considered by the algorithm, a linear coe�cient
(Pearson) is calculated between the two features. A linear comparison be-
tween the two peaks was chosen as it is a simple and e�cient means of deter-
mining qualitative similarity between features, and is insensitive to the peaks'
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Figure 3.13: The comparison of two features to obtain a correlation coe�cient

magnitude. The coe�cients between features that are visually congruent was
generally observed to be very close to one. A �gure depicting a comparison
between peak features over length is shown in 3.13.

One of the complications surrounding this comparison included the fact
that some peaks at the same approximate retention time will only have a very
small overlap in the spectrum, and may thus introduce a spurious comparison.
A minimum number of overlapping wavelengths was therefore imposed. An-
other was that parts of features with very low intensity may exhibit disjointed
sections, where a continuous feature will exist for a compound at a higher
concentration.

An important parameter to set is the retention time tolerance ∆tmin, par-
ticularly with regards to the phenomenon of elution order change. Lange and
Tautenhahn (2008) encountered elution order changes in at least one instance
for most of the aligned features in their data sets. They attribute this to pres-
sure �uctuations or changes in column temperature. The closeness of features
to one another also has a signi�cant in�uence. Additionally, one of the main
phenolic treatment compounds, Catechin, exhibits chirality. Enantiomers are
known to swap elution order in HPLC, a fact which is addressed by Okamoto
(2002). The possibility of elution order changes were therefore accounted for
in fairly relaxed ∆tmin.

Naturally, the widening of this tolerance foments the probability that none-
related features are compared; it should therefore be coupled with a stricter
threshold for feature comparison across wavelengths, Rmin. Several correc-
tions for possible misalignment in this way are also accounted for in the post-
processing on the feature matrix at the conclusion of the feature map align-
ment.

Once each experiment has been analysed in this way, a �nal 'sweep' through
all the experiments is done with the full feature database. For the dataset used,
no additional feature matches were found. This is an encouraging result, as it
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Algorithm 2 Comparing chromatograms to the peak database, while
adding to the database itself

Set retention time tolerance for peak similarity ∆tmin

Set minimum correlation between features Rmin

for Experiment retention times te ∈ P do

for Database retention times td ∈ D do

if |te − td| < ∆tmin then

Extract features fe, fd
Record maximum intensity imax ∈ fe
if Correlation (fe, fd) > Rmin then

Add entry [fd, imax] to feature matrix M
else

Add fe to D
Add entry [fe, imax] to M
Record experiment name, te in O

end if

end if

end for

end for

indicates that the database accrual method may be exhaustive.
Further re�nement of the �nal matrix was performed by comparing the

intensities of features in an all-against-all manner, using a similar method
to algorithm 2 in an attempt to ensure that the same putative peak is not
repeated.

Thereafter pruning exercises were done on the �nal feature matrix to en-
sure that spurious entries were eliminated: �rstly, features with only a single
experimental entry (singletons) were eliminated. Additionally, in several in-
stances it was found that two putative features shared very similar values
across experiments. For each pair of features in the matrix, if only 5% of the
entries were dissimilar - and to only a small degree, the features were merged
by averaging between them. Generally, the name of the original feature with
the most entries was kept, and a record of the duplicate features recorded in a
�nal text �le for future reference. The possible repercussions of the choice of
these thresholds are revealed in section 3.3.

Finally, text �les were created to store the �nal feature matrix, as well as
the record of the original feature intervals with their requisite experiment.

This method of feature map alignment is relatively simple, relying on two
properties of the data: �rstly, a reproducible alignment across all spectra using
reliable preprocessing techniques, and secondly, the �delity of the signature of
a feature through the wavelengths of the UV spectra. The validity of this
approach is addressed in the results section that follows.
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3.3 Results and Discussion

As mentioned in 3.1, the aim of the analysis was to identify putative com-
pounds and thereafter to identify their signi�cance across the experiments.
What remains after the method described above for data reduction is a matrix
with experiments represented as rows and putative compounds as columns.
The intensity of these compounds for each experiment constitute the entries
in the matrix.

This feature matrix can be useful in its own right. Firstly, it can be com-
pared to the original HPLC/UV-vis data as a reference. The small shifts due
to the alignment and peak database matching procedure should not be large
enough to obscure a comparison. In this way the feature matrix can serve as
a kind of common mapping for all experiments, so that visible features in the
original data from one experiment can be compared to the features of another.
Secondly, the feature matrix can be used to identify known compounds. As
mentioned in section 3.2.2, a list of the detected peaks is kept along with the
original experiment in which the feature was found, as well as the range of
wavelengths that the feature spans. An index of comparison for all signi�cant
features across experiments has therefore been constructed.

Naturally, validation of the representative nature of the feature matrix is
necessary. Two approaches can be taken to this end: �rstly, the features can
be identi�ed empirically by a quali�ed chemist. This is outside the scope of
this project; so the second approach was adopted: verify if the feature matrix
is related to the original data through correlating it with what is known of the
experimental conditions.

The latter is more in keeping with the untargeted philosophy of �nding
signi�cance �rst, identity later. Additionally it has the advantage of �nding
the more in�uential features towards the experimental �uctuations, so that
feature identi�cation - a labour-intensive task - can be prioritised on a per-
feature basis. A further advantage in reducing the dataset to a set of common
peaks is that ordinary machine learning techniques can be applied on the entire
dataset, whereas before this was prohibitively computationally intensive.

Three separate techniques were used as data exploration and validation:
Principal Component Analysis (PCA), Decision Trees and network analysis.All
analyses were performed using python numpy and scipy (Oliphant, 2007), as
well as scikit-learn (Pedregosa and Varoquaux, 2011) libraries. The experi-
mental data was kept in a pandas multi-indexed array (McKinney, 2012), and
results were visualised in matplotlib (Hunter, 2007).

3.3.1 PCA

A PCA model was �tted to the entire feature matrix for some initial data
exploration. The nature of the data is such that there are many confounding
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Figure 3.14: Variance explained by PCA on entire feature matrix

factors - from the use of rapid oxidation to the time of the experiment. This is
the type of data that PCA is especially good at de-convoluting, by describing
orthogonal directions of highest variance. If that variance coincides with some
known attributes of the data, then the validity of the data itself can be implic-
itly veri�ed. Additionally, the variables (putative compounds/features in the
current case) most responsible for the observed variance can then be ascribed
to the observed attribute.

The question of whether to normalise the data should also be addressed.
It was found that distinctions between attribute groups were more apparent if
the data was normalised using the standard scale (by standard deviation) and
mean-center technique. However, when PCA was applied to smaller subsets
of the data, it often did not converge if normalisation was applied. This may
be due to the fact that, upon reducing the data to, for example, a single set of
speci�c conditions over the experimental time period; many of the peaks are
not present that appear in other conditions. This results in a relatively sparse
matrix, which may high collinearity between samples.

The results of the overall PCA analysis with normalisation are shown below.
The variance explained by each principal component is �rst depicted in �gure
3.14. The trend of the variance explained is not of the kind generally desired
from a PCA model; ideally the cumulative explained variance of the �rst few
principal components should reach near 100%. In the current case, the �rst
two components combined constitute less than 20% of the variance. While this
is far from ideal if one wants to exhaustively explain a data set, the purpose
here is to validate the dataset itself - if meaning can still be extracted from
the �rst few principal components then some degree of validation can still be
drawn.
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Figure 3.15: Score plot of treatment - 2D

Labelled plots of the principal component scores were analysed thereafter
to identify if there is correlation between the principal components and the
original experimental conditions. Within the �rst two principal components,
a clustering or separation of conditions was apparent for both treatment type
and pH.

The �rst attribute analysed with PCA was the treatment type - see �gure
3.15 with the requisite labels. It appears that the type of treatment is roughly
separated across the �rst principal component. It is also interesting to note
that the combined treatment (ca�eic acid with catechin) clusters closely with
the ca�eic acid, and is completely separated from the catechin treatment on
its own. This could indicated that the chemical e�ects of ca�eic acid addition
far outweigh that of catechin; as their combination seems to vary in more or
less the same direction as ca�eic acid and not at all with catechin.

In �gure 3.16 the data was not normalised, and a 3-Dimensional view is
taken with the �rst three components. In contrast to the previous �gure, the
combined treatment does not entirely coincide with ca�eic acid. Rather, it
only partly intersects with ca�eic acid while remaining quite separate from
both clusters (a thorough rotation of the �gure indicates this more clearly).
This stands to reason, as removing the normalisation procedure will increase
the e�ects of the respective treatment molecules themselves, while minimising
their latent e�ects on other compounds. If the combined treatment has similar
carry-over e�ects to one of the treatments on its own, this phenomenon will
be masked by the concentration of the treatment compounds themselves.

Another attribute that was clearly identi�able through the PCA model
was the controlled pH of the medium. The second principal component seem
to approximately coincide with the pH labels in �gure 3.17. Wine typically
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Figure 3.16: Score plot of treatment - 3D, no normalisation

Figure 3.17: Score plot with labelled pH levels

has a pH nearer to 3.6, so it seems logical that the pH far beyond this (7.2)
represents most of the outlying scores. In addition, raising the pH far below
normal levels seems to have more of an e�ect on the chemical nature of the
medium than extreme lowering of the pH (1.9). Strati�cation of all levels of
the pH is clear, however there is an outlier e�ect of contracting the lower pH
clusters by the pH 7.2 experiment scores.

The oxidation technique also exhibited some separation across principal
component two, as seen in �gure 3.18. It is possible, however, that this is due
to the fact that the rapid oxidation experiments' pH levels were not �uctuated
to the full range of the experiments with ordinary oxidation. However, the
region spanned by the rapid oxidation experiments does seem to coincide with
that of the lower pH levels - which poses the question of the mutual e�ects of
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Figure 3.18: Score plot with labelled oxidation type - 'Normal oxidation' (NO)
or 'Rapid oxidation' (RO)

pH and rapid oxidation.
This was originally addressed by Ferreira (2002), who found that these are

the two most signi�cant mechanisms in the kinetics of the wine media in the
aging process. The link between pH level and autoxidation of phenols could
be a further cause of this covariance.

Other attributes of the data to be considered were the time of the exper-
iment and the SO2 content. Analysing all of the data within a single PCA
model does not reveal any clustering by time (even for the higher-dimension
principal components). A reduction in the scope of the data was therefore
attempted in order to see whether time can be ascribed to variance within the
data at a smaller scale. A single experiment was chosen (at the conditions that
were chosen for the centroid in the alignment - combined treatment at 25 ppm
SO2 and pH 3.6) to apply the small scale PCA. The results are shown below
in �gure 3.19. One observes that there is a distinct separation of time values
across both the �rst and second principal component. Two separate clusters
of time points seem to be split at approximately one week in the experiment.
To some extent this does validate that the feature matrix varies according to
the time of the experiment; however it appears that across all experiments it
is not as in�uential a source of variance compared to the other experimental
conditions.

The relative insigni�cance of SO2 regarding the oxidation levels at advanced
stages of ageing is mentioned by Simpson (1982) in their own study on the
causes of browning. This appears to be con�rmed with the absence of clear
SO2 clustering of the data with any combination of principal components.

Finally, the loading plot from the PCA on the entire data set (�gure 3.20)
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Figure 3.19: Score plot of time with a reduced data set. The legend refers to
days after the experiment's commencement

can be analysed to infer the importance of certain putative compounds towards
experimental conditions. As mentioned above, it may be possible to prioritise
the investigation of putative compounds related to experimental phenomena
using PCA. The loading plot can serve as a guide to this end. The compounds
most contributing towards the variance of the �rst principal component, for
example, are probably related to the di�erent treatment types. They can
either represent the catechin or ca�eic acid molecules themselves; or some of
the compounds most in�uenced by their addition. Along the second principal
component, compounds possibly related to the alteration of pH levels should
be found at either end of the scale along the second axis.

The loading plot corresponding to the reduced PCA model (the scores of
which are in Figure 3.19) is shown in �gure 3.21. The variance across the �rst
and second principal components - both of which seem to separate the samples
over time - is again explained in relative strength by the putative compounds
at the far ends of the axes. In this way one can focus on particular experiments
to explore chemical changes over time in a single experiment.

3.3.2 Decision Trees

It is now considered whether di�erent experimental conditions for each sample
can be used as targets against which to �t a predictive model; a 'supervised'
learning approach in contrast to PCA, which is traditionally an 'unsupervised'
learning or clustering approach. This has the advantage of using the target
classes in the decomposition of the original matrix, which is a more direct
approach of trying to infer signi�cance of putative compounds. There are
a plethora of machine learning methods available to achieve this; several of
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Figure 3.20: Loading plot of PCA on entire data set. Point labels refer to
putative compounds

the methods in the scikit-learn library were applied to the data with di�ering
levels of success. The ability to interpret the outcome of a machine learning
method is the over-ruling factor with this type of investigation. With this in
consideration, decision trees were selected as the primary classi�er for their
simplicity and e�ectiveness.

Similar to the PCA analysis, each experimental condition was analysed
separately; a decision tree model was �tted using the feature matrix as the
predictor and the class labels as the predicted values. An important param-
eter when �tting and displaying decision trees is the maximum depth. Here
the maximum depth chosen is 7; this simply constituted a reasonable compro-
mise between accuracy and interpretation: any higher, and the tree was over-
simpli�ed; lowering the depth resulted in an abundance of spurious branches.
A program was written to generate decision trees using scikit-learn from the
feature matrix pandas DataFrame (McKinney, 2012); thereafter to generate a
graph �le using graphvis (Ellson et al., 2003).

The decision tree for the treatment type is shown in �gure 3.24. The levels
of the tree from the top downwards exhibit decreasing e�ectiveness at splitting
the data into the target classes, as measured by gini impurity. The top entry
in the decision tree is therefore the variable (putative compound in this case)
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Figure 3.21: Loading plot of PCA on reduced data set

by which the data can be most e�ectively split into the respective classes. The
second level of tree indicate the two next most e�cacious compounds with
regards to pH classi�cation.

In this way, compounds can again be identi�ed for their relative importance
with regards to experimental conditions. In the case of decision trees, the puta-
tive compounds are conveniently ranked for importance by their classi�cation
e�cacy.

The �rst few levels of �gure 3.24 exhibit an e�ective split in the data.
Almost all of the experiments with separate treatments (Catechin and Ca�eic
Acid) are split down the right hand side of the tree, with zero gini impurity
at a very low level. This is in congruence with our expectations of the data;
the experiments with di�erent treatments should be readily split by feature
intensity while the experiments with the combined treatments should be much
more di�cult to di�erentiate. Note that the left side of �gure 3.24 extends far
beyond the frame; gradually splitting o� small numbers of experiments with
single treatments until a relatively deep level.

A notable result of this tree is that the compound with the highest splitting
e�cacy is 3177_1, which is one of the most in�uential compounds in principal
component 2 as seen in �gure 3.20. In a similar way, on the second level of the
tree, compounds 3537_1 and 7223_1 are at the far ends of the left and right of
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Figure 3.22: Decision tree for treatment class - groups represent (C, CA, C-
CA)

Figure 3.23: Gini importance for variables in the decision tree for treatment

principal component 1. The ranking of the importance of putative compounds
can be re-enforced by cross-referencing in this way. This also served as an
additional layer of validation for both machine learning techniques, as well as
the integrity of the data itself. The methods for the application of PCA and
Decision Tree learning are completely di�erent, as can be evidenced in the
descriptions in the literature review; their agreement is therefore a non-trivial
occurrence.

The gini importance (Rokach and Maimon, 2005) for the features, as re-
lated to the model for treatment type is shown in �gure 3.23. This validates
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Figure 3.24: Decision tree for pH class - groups represent (1.9, 3.1, 3.6, 4.1,
7.2)

Figure 3.25: Gini importance for variables in the decision tree for ph

the observations already drawn from �gure 3.24. As expected, the �rst three
variables used in the classi�cation have the highest gini importance; in fact
according to scale they appear to dominate the feature space completely.

The second decision tree, classifying the data into groups of pH, was also
e�ective at splitting the data into classes in relatively few recursions. A ques-
tion that arises with this kind of data is whether to �t either a regression or
classi�cation tree, seeing that the levels of pH can either be distinct labels or
continuous values. In this case a classi�cation tree was selected; this was due
to the fact that the pH levels were an a-priori controlled condition - not a
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de�nitively measured variable during the experiment.
The �rst group of experiments to be cleanly classi�ed with a gini impurity

of zero are those with a pH of 7.2. Again, this is in line with what we would
expect given the PCA score plots; as mentioned above, these experiments are
sources of high levels of variance within the data. As such it is unsurprising
that they are the �rst substantial subset to be pared of from the rest of the
data - almost all of the experiments with pH of 7.2 are accounted for in the
�rst large-scale pure classi�cation. This is after the model specifying the levels
of only two separate feature.

The second large group to be isolated with zero impurity are all the exper-
iments with the lowest pH - 1.9. As the other experiments are at pH levels
close to ordinary in wine, it seems natural that the two extremes are most
easily identi�ed with the fewest number of signi�cant compounds.

The feature importances in 3.25 show more of a range than that for the
features in the treatment tree - if features are selected for further investigation
using gini importance, then a larger range such as this could facilitate a more
interesting study.

The decision tree constructed for oxidation is shown in �gure 3.26. It is
clear that the model is not as e�ective as for treatment and pH; wherein most of
the signi�cant classes were almost distinguished in the �rst few levels. However
it should still be possible to derive meaning from the tree - one can follow the
branches with the highest impurity decrease toward the graph's outer leaves.

An observation that is of potential interest is that two of the more impor-
tant features at the beginning of the spectrum in Figure 3.27 are shared with
pH in Figure 3.25. The overlap in the score plot with oxidation and low levels
of pH mentioned in section 3.3.1 may have a link with this phenomenon.

While the top node is not identi�able in the loadings of the �rst two princi-
pal components as shown in �gure 3.20 above, it is worth noting that features
at retention times near 7032 are at at the far ends of the third principal com-
ponent.

The decision tree model for SO2 is not shown due to the fact that its
accuracy and e�ectiveness was not high, the same di�culty in distinguishing
SO2 classes that was found for the PCA model.

The development of models to describe variable outputs can result in falsely
high accuracy if there is an underlying bias in the data. In the present case,
where the data is constructed using previously untested methods, it is crucial
that the model is validated to verify that it is not simply �tting collinear,
dependent variables to the output classes.

Validation tests were performed for each of the experimental conditions in
the form of random class permutations. This involves the random shu�ing of
class labels in the target vector before �tting a test model, for a set number
of iterations.

The results are shown in �gure 3.28. The accuracy is de�ned as the fraction
correctly labelled classes using a decision tree at a given depth of 7. Displayed
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Figure 3.26: Decision tree for oxidation class - groups represent (Normal Oxi-
dation, Rapid Oxidation)

in each �gure are the results for the random permutations in blue bars; a ver-
tical green line denoting the accuracy of the model with a correctly labelled
target vector; and a black line for what the accuracy should be in a completely
random assignment of class labels. The probability given in each �gure leg-
end is for how likely it is that a random class label permutation will give an
improved answer over the original label ordering.

In each case, this probability is so small as to reach it's �nite limit. The
correct alignment of class labels always results in an improved model accu-
racy. This is a very positive result - since essentially it means that there is
some underlying integrity to the data with respect to the experimental inputs.
Should the feature matrix represent the original data poorly, the shu�ing of
class labels in the target vector would have no e�ect on the accuracy of the
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Figure 3.27: Gini importance for variables in the decision tree for oxidation

(a) Treatment (b) pH

(c) Oxidation (d) SO2

Figure 3.28: Random permutation tests on decision tree models for each ex-
perimental condition
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outcome.
The �gures are also instructive as to which experimental condition is most

easily predicted using a decision tree; in accordance with all previous �ndings
it appears that treatment, pH and oxidation (to a lesser extent) are most
e�ectively modelled, while SO2 is less easily predicted from the feature matrix.
However there still appears to be some power of prediction, seeing that the
correct label ordering categorically out-performs the random permutations.

3.3.3 Chemical Network

While the previous analysis methods have been instructive in indicating which
are the signi�cant features either with regards to chemical conditions or in
general (in the case of PCA); the interactions between the features themselves
have not been explored.

One way to analyse the feature matrix to this end is in the form of a
network. One could view the chemical features as a set of interacting nodes
with relative strength. The edges could be weighted according to a number
of metrics. In this way chemical �ux over the span of the experiments can be
represented.

A network was constructed to this end using the python module networkx
(Hagberg et al., 2008), and visualized in Cytoscape (Shannon et al., 2003).
The network was built by �rst calculating the Pearson correlation between
all of features using the full data set over all experimental conditions. These
constituted the edge weights between features. In this case, it was postulated
that negative Pearson correlations still indicate an interesting result. For ex-
ample, the reactants and products in a reaction taking place over time in an
experiment will exhibit an inverse correlation - as one is depleted, the other
accrues.

Node attributes were also added for the mean value of the maximum in-
tensity for each feature. These are used simply to display the relative levels
of the compounds. Due to the fact that some compounds were present in the
media at levels in multiple orders of magnitude higher than others, the natural
logarithm of this value was used for ease of interpretation. A guide for the
interpretation of these �gures is given in the section that follows.

3.3.3.1 Network Layout

The networks presented throughout this work generally have the same layout
for interpretation. There is a central colour scheme: red denotes a positive
value and blue a negative. These colours have a range of shading intensity
proportional to their value. Values around zero are white, however these are
not often displayed if a signi�cance threshold is imposed.

Nodes have a colour between red, white and blue depending on the chosen
metric assigned to entities being displayed in the network. Lines are coloured
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according to the metric assigned to the interactions between these entities.
The thickness of a line re�ects this same interaction metric (Centered around
zero; interactions with high negative- or positive values will have the same
thickness).

3.3.3.2 Maximum Spanning Tree

There are several methods available to present a network constructed from
weighted edges in this way; one of the simplest and most elegant is a maximum
spanning tree. Keeping the provisos about the simpli�cations of an MST in
mind (Jacobson et al., 2013), the maximum spanning tree for the full feature
matrix is shown in �gure 3.29.

One feature of this network that is immediately apparent is that the nodes
with the highest log-average seem to cluster together. The correlation between
these high-concentration compounds is seldom high, suggesting that they may
be independently present in the media. The fact that the full matrix is used
in �gure 3.29 does mean that temporal trends cannot be traced.

3.3.3.3 Correlation Network

The correlation network can be pruned by imposing a simple threshold on
the edge weights for clarity. This was done with the full feature matrix in
an attempt to identify global relationships between putative compounds. The
result of imposing a very loose 0.5 threshold on the data is shown in �gure 3.30.
It is evident from the presence of several sub-graphs that global relationships
between putative compounds are not common. Additionally, many of the
strongest correlations are between features at very close retention times. This
could mean one of two things: either the putative compounds are the same,
or di�erent features at di�erent wavelengths for the same retention time are
correlated.

One interesting trend to note from this network is that putative compound
3537_1 is the only compound to exhibit a negative correlation in the network.
This same feature is the highest outlier in principal component 2 in �gure
3.20; and is one of the most important features for treatment in the decision
tree analysis. As mentioned above it is possible that the negative correlation
describes the relationship between reactant and substrate, perhaps indicating
that 3537_1 is an important pre-cursor to signi�cant substrates in the wine
media.

3.3.3.4 Focused Correlation Network

Due to the large variability between experiments - especially considering that
experiments at all times are simultaneously compared, it is not surprising that
there are few interesting global correlations between features. Focusing on
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Figure 3.29: Maximum spanning tree derived from full feature matrix. The
colour of the nodes represents fold change; the line colour the Pearson corre-
lation. The layout is described in section 3.3.3.1
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Figure 3.30: Correlation network with threshold of 0.5, derived from full fea-
ture matrix

a single experiment should therefore shed a better light on the kinetic rela-
tionships between compounds. To this end a network was constructed for the
'centroid' experiment. Similar graphs constructed with threshold-correlation
and maximum spanning trees are shown in �gures 3.31 and 3.32 below.

The amount of 'signi�cant' correlations between putative compounds is
much higher for this type of localised network, evidenced by its high level of
connectedness in �gure 3.31. Additionally, high correlations are found between
compounds further apart in retention time. This could simply indicate that
the possibly spurious correlations between similar features found in �gure 3.30
are not as present in a single experiment. Due to the fact that the only per-
turbed variable in this network is time, the correlations between the putative
compounds should be strictly kinetic; whereas for the entire feature matrix,
feature correlation across other experimental perturbations have a compound
contribution.
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Figure 3.31: Correlation network with threshold of 0.5, derived from a single
experiment

If one considers the loading plot for the same experiment in �gure 3.21,
where time appears to be re�ected in the �rst principal component, the sig-
ni�cant features have interesting properties in �gures 3.31 and 3.32. At the
ends of the range in PCA 1 are features 3177_1, 3537_1 and 878_1 to the left
of the axis; 1676_1 to the right. Presumably these are some of the features
responsible for the most variance over the passage of time. In �gure 3.31, these
are 'hub' nodes at the centre of the network, with respectively high degrees.
Interestingly, node 1676_1 has a high apparent importance despite its rela-
tively low concentration. It is highly negatively correlated with 3177_1; this
pair also has the highest distance across PCA 1 as seen in �gure 3.21.

This correlation between 3177_1 and 1676_1 is shown in a simple plot in
�gure 3.33. The nature of the negative correlation is immediately apparent.
Feature 1676_1 is only present after day 15, and appears to be completely
dependent on the presence of feature 3177_1 thereafter.

There are several cases, evident in both networks and PCA loading plots,
where two features are very tightly coupled. It is not impossible that the
methods used to create the feature maps would report the same feature as
separate entities. While this may expose �aws in the method, it does not
greatly detract from the original purpose of the investigation, which is to
create a platform for hypothesis generation from which further investigation
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Figure 3.32: Maximum spanning tree of single experiment

Figure 3.33: Comparison of negatively correlated features in a single experi-
ment
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into putative compounds can be conducted.
A further interesting phenomenon when linking PCA with networks, is

that the two compounds at the far ends of the second principal component -
3486_1/2 and 6937_1 - are respectively leaf and leaf-adjacent nodes at the
opposite ends of the maximum spanning tree. As the only known latent vari-
able across this experiment is time, it is di�cult to ascribe a second; however
the dataset does include experimental replicates at each time point. Variance
between replicates could be explained by this principal component. If the
maximum spanning tree is re�ective of the kinetic evolution of the media over
time, then the leaf nodes could represent �nal products the experiment after
the experiments conclusion. These types of compounds are naturally the most
likely to be di�erent between experiments, as they are the �nal result of a high
number of pre-requisite reactions; decreasing their combinatorial probability.
Indeed, feature 6937_1 is only present in one of the experiments at day 60,
appearing as a relatively low-intensity peak.

3.4 Conclusion

A possible solution to the original problem - to reduce an enormous and com-
plex data-set to a interpretable and meaningful form from which to conduct
further investigation, has been presented. The nature of the analysis was un-
targeted and blind to pre-determined compounds of interest.

Much of the energy - both cognitive and computational, is invested in
the mass preprocessing of this data in order that it might be mined for new
hypotheses. It can be argued that the preprocessing was largely successful,
preparing the data for feature map alignment. An unconventional approach of
'TAC' alignment using a modi�ed reversed COW interpolation was used; this
allowed for a more conserved feature alignment between experiments.

A method for feature map alignment of HPLC-UV/vis data was developed
in the absence of any existing software. The algorithm is based on a dynamic
feature database or 'master list' approach; comparison between features was
done on a linear basis. The signature of a feature across the UV-spectra was
exploited in the comparison of features from di�erent experiments. It was
found that the use of simple correlation was su�cient to infer congruency
between these features.

While there is certainly room for improvement of the algorithm, it served
its purpose in the generation of a comparable list of features for each experi-
ment upon which data exploration techniques could be applied. It was found
by various means of validation that the resulting peak matrix had statisti-
cal signi�cance with regards to various experimental conditions to which the
wine media was subjected. Decision tree models used to predict experimen-
tal conditions based on the feature matrix were highly e�ective; furthermore,
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permutation tests performed on the experiment labels revealed that these cor-
relations were far from random.

Both decision trees and PCA were instrumental in identifying important
putative compounds with regards to experimental conditions; however rela-
tionships between the putative compounds were explored more e�ectively us-
ing network models based on linear correlation. Networks constructed on data
where time was the only perturbed variable were potentially instrumental in
the mapping of the kinetics of reactions occurring in the media between puta-
tive compounds.

It was, however, found that networks focusing on a smaller scale reveal some
tightly coupled features that could be repeated reports of the same putative
compound. While these occurances are not ideal, the aim of this type of
analysis is not to achieve a perfect and conserved accuracy for the reporting of
results; rather to generate new hypothesis and focus further investigation into
compounds of interest. Additionally, the occurance of these possible repeats
is small relative to the number of putative compounds.

This is symptomatic of the fact that there are still many potential streams
for improvement in the analysis pipeline presented here. Unfortunately, as
mentioned in the literature review, there are no standard feature map align-
ment procedures for this particular type of data with which to compare the
present outcome. An exhaustive investigation into the translation of the MS
feature map alignment algorithms to UV-vis would be a large undertaking; fur-
ther work into this type of analysis would be hugely bene�cial as it remains a
prevalent method in analytical chemistry. Many of the algorithms reviewed in
for feature map alignment ((Zhang et al., 2005), (Smith et al., 2006), (Kata-
jamaa et al., 2006), (Bellew et al., 2006)) have the potential to be applied,
and could possibly be integrated into the work-�ow developed in this study;
however an undertaking of this nature would be outside the present scope.

While imperfect in its application, it is proposed that this kind of untar-
geted mass-analysis, alignment and feature comparison will be useful in gener-
ating hypotheses regarding heretofore disregarded putative compounds; in dis-
covering new kinetic relationships which would otherwise have gone unnoticed,
and to explore global trends in signi�cant compounds related to experimental
perturbations.
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Chapter 4

Network Visualisation

Extensible methods of visually exploring experimental data with networks were
sought. Three di�erent scienti�c experiments were individually modelled to
develop general and specialised instances of these methods.

In order to pare down the information presented in a network, statisti-
cal tests were used to gauge signi�cance. Signi�cant relationships were then
mapped to networks, along with quanti�cation of results. Networks assumed
di�erent topological formats depending on the nature of the data. Loading the
networks into Cytoscape allowed for interactive viewing.

It was found that these networks allowed for advanced queries and hypoth-
esis generation. The diversity of the data on which the methods were used
suggests that they are broadly applicable.

4.1 Introduction

The visual presentation of data has evolved over time to accommodate an in-
creasing demand for exploratory data analysis. Generation of new hypotheses
from innovative representations is instrumental if one desires to fully utilise
data at hand.

In particular, data generated from scienti�c experiments bene�t from com-
prehensive and interpretable visualisations. This is both because the genera-
tion of new hypotheses from targeted analyses constitutes a 'free score'; also
the cost of performing a scienti�c study is usually high in materials, facilities
and labour.

While the classical techniques of scienti�c visualisation - line and scatter
plots, boxplots and surface responses - are exhaustive, they can also stymie the
researcher through an overload of information. Tracking global relationships
in this way is also di�cult for the human mind. If the data is time-dependent,
the complexity of its interpretation is severely increased.

Network visualisation is traditionally applied to extant data in order to map
relationships between objects (Herman et al., 2000). For scienti�c visualisation
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of generated data, the most common instance is in the form of decision trees.
These are typical for classi�cation and regression solutions in applications with
many predictor variables; for data generated from small-scale experiments it
is generally not appropriate.

Given this status in the visualisation of scienti�c data, this study aims to
develop extensible methods of scienti�c visualisation using networks; dubbed
'StatNet' in lieu of any existing description. Networks have the potential to
provide an intuitive framework for inference and hypothesis generation, as the
human mind has a natural aptitude for topography. This property should be
exploited to maximise the usefulness of scienti�c data.

The developed methods should embrace and expound the ideals of ex-
ploratory data analysis, as well as ful�l the requirements for clear data anal-
ysis as described in Kelleher and Wagener (2011). The bene�cial properties
of interactive visualisation as listed by Keim (2002) also serve as targets of
utility.

4.2 Methodology

The methodology of the developed visualisation technique generally follows
similar patterns of data collection; storing; statistical testing and network
generation. Three di�erent types of data were processed in this manner from
three di�erent experiments; these are brie�y outlined in the section below.

4.2.1 Experimental Data

The �rst data set on which network methods were applied was drawn from
an experiment on aroma in white wine. Several known compounds related to
aroma in white wine were added to a model wine media. These were namely
3-Mercaptohexanol (3MH); 2-Methoxy-3-Isobutylpyrazine (IBMP); Methional
(Meth) and Phenylactaldehyde (Phen). They were added in �ve respective
concentrations, corresponding to empirical sensorial threshold levels found in
literature (for example, level 1 is at the perception threshold, 3 at normal levels
in wine and 5 at the most extreme).

The aim of the experiment was to observe what the e�ects of these con-
centrations are on both the intensity of certain aromas, as well as the aroma
pro�le as a whole. A further aim was to observe the aromatic relationships
between these compounds - for example, whether some compounds may have
additive or suppressive e�ects on the sensorial e�ects of others.

To this end the aroma compounds were added in two di�erent ways: �rstly,
by 'spiking' the wine with the compounds separately - adding each to all of
its �ve levels in the absence of any other aroma compounds. Secondly, the
compounds were added in di�erent combinations of concentration with each
other. Naturally, the potential combinatorial subspace for this type of analysis
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is huge; therefore, a central composite design was chosen. This choice is also
aligned with the aims of the experiment as it is a minimal design that still
retains the ability to test for interactions between experimental variables.

The measurement of the aroma pro�les and intensities was done by a panel
of judges. Every precaution was taken to ensure that the judgment was un-
biased. A standardised list of aroma descriptors was used between all judges
for both the spiking and composite design experiments - for example 'earthy'
and 'grassy'. The judges scored the intensity of each of these descriptors us-
ing a 100 mm unstructured line scale - 'quantitative descriptive analysis' as
prescribed by sensory literature. Each test was performed in triplicate.

The second data set was the most straightforward. It was derived from an
experiment assessing the resilience of various cultivars of Vitis vinefera (grape
vines) against fungal infection in the form of Botrytis cinerea. Each strain,
represented by a single plant, was infected with the fungus on four of its leaves
with four targeted infection points on each leaf.

The level of infection was then tracked and recorded for each leaf at set
intervals. In some cases, the infection was so rapid that a leaf was completely
destroyed before the experiment's conclusion.

The last data set on which the method was developed was from an ex-
periment on the browning in white wine. This is the same experiment as
that analysed in Chapter 3. In summary: various conditions were perturbed
in samples of white wine media in order to ascertain what the e�ects are on
browning and oxidation.

The experimental design was factorial, with the result that there were
approximately one thousand samples in total (including replicates). The per-
turbed experimental conditions included slow- and rapid oxidation (open or
sealed wine bottles) and several levels of pH and SO2. In addition, samples
were subjected to one of three phenolic treatments - the addition of catechin,
ca�eic acid or both. The measured outputs for each of the samples were con-
centrations of dissolved O2 and SO2 as well as the absorbance of the samples
at 420 nm (a proxy for the overall e�ect of browning).

4.2.2 Network creation

In each case, a custom script was created in either perl or python in order
to render a particular type of network. Each data set originated from csv
�les of di�ering formats, necessitating �exible parsers to be written. The
data was coerced into a format amenable for statistical testing - mostly in the
form of vectors attached to tiered reference structures in order of compared
attribute. In general, replicates were collected into separate vectors if time-
independent; for temporal data a number of vector combinations were tested.
These vectors were then compared either to all other vectors, or to a single
centroid or reference vector using the chosen statistical test or metric. The
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data sets analysed, being derived from fundamental experiments, were quite
small and therefore computational intensity was not a concern.

Relationships between vectors that were deemed statistically signi�cant
according to the pre-determined threshold were then stored in a hash or refer-
ence structure. Statistical tests were performed with either using some of the
statistic modules in perl, or scipy in python (Oliphant, 2007). Attributes of
the vectors themselves, or the tested relationship, are stored separately in a
similar manner. These hash structures are then the basis for the �nal network.

The network is then written to a compatible format in order to be visualised
in the chosen software. In this case, Cytoscape (Shannon et al., 2003) was used
for visualisation as it provides many of the interactive features mentioned in
2.2.5.

4.3 Results and Discussion

4.3.1 Sensory Data

The sensory data used is time-independent and split into two di�erent experi-
ments: orthogonal (aroma 'spiking') and central-composite (aroma interaction
studies), as mentioned in Section 4.2.1.

4.3.1.1 Correlation Network

As the �rst type of experiment is relatively straightforward, a simple network
was chosen to represent it: the familiar correlation network. The question
surrounding the orthogonal study was essentially which - and to what degree -
aromatic properties are e�ected by particular compounds. The interaction be-
tween compounds cannot be mapped as they were individually spiked; likewise,
the relationships between aromas are not of particular interest.

A simple Pearson correlation was therefore calculated between the levels (1
through 5) of the aromatic compounds and the aromatic properties recorded at
each respective level. The intensity of each aromatic descriptor was averaged
across all panelists. The generated network is shown in Figure 4.1. Aromatic
compounds and properties are depicted together and form the nodes of the
network; correlations the edges between them. The width of the edges is
mapped to the strength of the correlation and the colour its sign (red for
positive, blue for negative).

Due to the fact that in the absence of some of the aromatic compounds
the requisite score for a sensorial property was zero, and given the resultant
simplicity of the network, there was no need to impose a correlation threshold.
The aromatic pro�les are �rst mapped to the network, followed by their corre-
lation (should it exist) to the aromatic compounds. The linkage of compounds
through common sensory pro�les is therefore incidental.
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Figure 4.1: Correlation network for orthogonal sensory data. Elliptical nodes
represent aroma descriptors; square nodes aromatic compounds. The thick-
ness of the line indicates the magnitude of the correlation and the colour the
direction: red for a positive correlation and blue for a negative.

The representation of the data in this way is bene�cial both for the identi�-
cation of the direct aromatic e�ects of the added compounds, and the linkages
of shared aroma pro�les between compounds. The 'dusty' descriptor, for ex-
ample, has a shared correlation (albeit sometimes negative) with three di�erent
compounds, a �nding possibly signi�cant in the composite design study.

It is proposed that this type of representation is more concise and informa-
tive than typical presentations of this data in tables, line plots and bar graphs.
The relationships between compounds and descriptors are easy and clear to
infer; the incidental linkages between compounds immediately apparent.

4.3.1.2 Central Composite Network

Due to the relative complexity of the central composite experiment, a more
exhaustive network representation was developed, shown in Figure 4.2. For the
central composite design, there were three reference vectors for which all four
of the compounds were at the same level (2, 3 and 4). Three subgraphs were
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Table 4.1: Aroma compound index for reference levels. For instance the refer-
ence level '1-2-3-4' refers to levels in Meth, Phen, 3MH and IBMP respectively

Aroma Compound 3MH (ng/L) IBMP (ng/L) Meth (ug/L) Phen (ug/L)
Index 1 2 3 4
Level 1 40.0 1.0 0.3 0.5
Level 2 60.0 2.0 0.5 1.0
Level 3 500.0 10.0 3.0 30.0
Level 4 2000.0 20.0 6.0 15.0
Level 5 6000.0 40.0 15.0 130.0

Figure 4.2: The complete network for the central composite experiment. Each
subgraph represents a statistical reference point. The colour intensity of the
node represents fold-change from the reference levels: red for positive; blue for
negative fold-change. A more focused �gure is presented in Figure 4.3

therefore made with each of these references. Note that the labelling of the
aroma compounds follows the table given in table 4.1.

Any deviations from these reference points, whereby one- or two compounds
were raised or lowered from the reference level, are subjected to a statistical
test to ascertain how the aroma pro�le di�ers. For example (refer to Figure
4.3), from the reference point of '2-2-2-2' - all compounds at a level just below
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the average commonly found in wine - if 3MH and IBMP are both raised to
level four ('2-2-4-4') then several changes in the aromatic properties of the
wine are observed. Each of the aroma descriptor vectors for the conditions
at '2-2-4-4' are statistically tested against the requisite descriptor vector at
reference '2-2-2-2'. If the di�erence between these two vectors are deemed to
be signi�cant, the descriptor is included in the network.

For this network, a T-Test was used to gauge signi�cance. If the null
hypothesis is rejected at a signi�cance level of 0.05, the node is included in
the �nal network (connected to the reference level with which it was tested).
The fold-change of the descriptor between the reference point and the tested
sample is then used to colour the node in relative intensity (red for a positive-
and blue for a negative change as is the convention).

In this way, only salient changes from the reference points are included
in the �nal network, which allows for a scalable level of complexity. The
individual and combined responses to the level of each compound are included,
consummate with the original aim of a central composite design.

Figure 4.3 is a subgraph created from selecting a subset of nodes and edges
from the original graph (a task easily accomplished using Cytoscape). From a
brief overview, several conclusions regarding aromatic responses can be drawn.
Firstly, their combination seems to have a compound e�ect on the perception
of green pepper (a di�erence in sensory scores between 11 and 13 respectively,
and 18 in combination). Secondly - and more interestingly - IBMP when raised
on its own increases the dusty aroma; however, when combined with 3MH this
e�ect is reversed, decreasing its intensity. These types of conclusions are easily
drawn if the overall network is sensibly divided in this way.

The interactive features of this visualisation are aligned with many of those
mentioned by Keim (2002): in particular, the freedom to partition the data
and zoom in on logical subsets. Hypothesis generation can be aided by these
abilities.

As an exercise in validation, the networks are compared to the results of
principal component analysis on the same data. The PCA was performed on
the central composite component of the experiment only, and the loadings are
depicted in Figure 4.4. The clustering of the aromatic compounds with the
descriptors mirrors the relationships mapped out in Figure 4.1 closely. This is
both a con�rmation of the integrity of the data - the orthogonal and central
composite experiments matching - and the exhaustive ability of the network
method to describe the aromatic e�ects.

4.3.2 Botrytis Infection

4.3.2.1 All-against-all Network

Three simple networks were used to describe the Botrytis infection experiment.
It was di�cult to conceptualise time in a comparative network, thus for the �rst
instance, the infection rate was compared at a single time point near the end
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Figure 4.3: A focused view of the interaction network, from the reference level
at slightly below the average found in wine. The node colourings follow the
same rules as for Figure 4.2

Figure 4.4: PCA loadings of the central composite experiment. Both the
aromatic compounds and the sensory descriptors are included.
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of the experiment in an all-against-all manner (see Figure 4.5). Note that this
�gure details the interactions between individual leaves in the experiment, so
that the naming convention is '<cultivar>_<leaf>'. Each leaf was compared
against all other leaves using a T-Test to assess the di�erence in means. The
vectors for comparison were built from the infection levels at the four infection
points on each leaf. Only signi�cant edges were mapped to the network. Edges
are coloured according to the di�erence in infection between the nodes; the
comparison is read in the direction of the arrow.

The information from an all-vs-all type of comparison can be overly con-
voluted. It is possible to create sub-graphs from nearest-neighbor selection;
however the most value from this network view is to identify the 'hub' leaves -
those with the most signi�cant di�erences globally. To this end, a degree-sorted
circular layout was applied to Figure 4.5, such that the node with highest de-
gree (ControlA_4) is placed at the bottom with successively signi�cant nodes
arranged anti-clockwise.

4.3.2.2 ET50 Network

A second network was constructed with time as a focal object. As the central
question of the experiment is the rapidity with which the leaves of di�erent
cultivars of Vitis vinifera succumb to infection, time was quanti�ed for each
infection point. The time at which the infection reached half of its �nal value
('ET50') was used as an approximation for the rapidity of infection. If the
ET50's for each infection point on a leaf are combined into a vector and statis-
tically tested against each other, a new network can be generated (Figure 4.6).
As the ET50 values varied much less across cultivars and leaves, the network
is much simpler. This is presented as a simple way of gauging the relative
infection rates.

4.3.2.3 Time-centric Network

The entire strain may also be taken as a vector, including all leaves and in-
fection points. A network was generated to observe the di�erences in Vitis
vinifera cultivars on each day of the experiment. A subgraph of this is shown
in Figure 4.7 for day 4 of the experiment. The di�erence in the infection of
strain 14A on this particular day is clearly indicated.

4.3.3 Browning Experiment

For the browning experiment, measurements were taken in triplicate for the
oxygen and browning levels on set days for each combination of parameters in
the factorial design. Therefore, if one experiment is compared to another at a
single point in time, small vectors of length three are subjected to statistical
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Figure 4.5: An all-against-all comparison of the infection rate near the ter-
mination of the experiment. The nodes represent individual leaves, and the
interactions between the nodes signi�cant interactions. The interactions are
coloured according to the degree of correlation, scaled to intensity: red for
positive, and blue for negative.
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Figure 4.6: All-against-all ET50 metric for infection rate. The naming con-
vention for the leaves as well as the colouring of the interactions follow the
same pattern as in 4.5.

Figure 4.7: Subgraph of strain infection on day four of the experiment. The
three nodes attached to the central node are individual leaves; the outer nodes
are the leaves with which there is a signi�cant di�erence for that particular
day. The intensity of the node is coloured by the absolute di�erence: red for
positive and blue for negative.
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testing. With this in mind, the Wilcoxon test was most frequently used as it
is di�cult to assume a distribution with such low statistical power.

Due to the fact that the experiment was factorial there were a large number
of comparisons to be made at any time point. This has the potential to increase
the family-wise error rate (FWER), an issue often encountered in analyses
with high numbers of hypothesis testing (Holm, 1979). A Holm-Bonferroni
correction for FWER was therefore consistently applied.

In contrast to the all-against-all approach used in Section 4.3.2, a central
set of experimental variables was selected as a reference against which all other
combinations were tested. This was a natural selection given the nature of the
experiment: the combination of variables most often associated with normal
levels in wine were chosen (pH of 3.6 and SO2 levels of 25 ppm). The combined
phenolic treatment was chosen, against which the absence of one of the two
compounds could be compared.

4.3.3.1 Time-centric Network

The �rst type of network generated focused on time as the central variable.
Separate subgraphs were created for each point in time, as the data was mea-
sured at discrete time points of 0, 1, 3, 7, 15 and 30 days after initialisation.
Samples at each combination of conditions were compared to the reference
sample using the abovementioned test and correction, and if deemed signi�-
cant was added to the network, the �rst portion of which is shown in Figure
4.8.

The leaves of these time subgraphs are the fold-change of the measured
outputs (browning and O2 level) as compared to the samples at the reference
conditions at that time point.

As is clear from the above, the deviations of the outputs from the reference
values grow more numerous as time increases; almost nothing on day '0', but
plentiful by day 3. If one performs a search-and-select for a particular subset
of samples (for example, Catechin-only treatment with no SO2 but including
all variations in pH); perform a nearest-neighbor selection and create a new
network, a fairly powerful query is executed. Figure 4.9 refers.

One can quickly infer from this view that, for this treatment and SO2 level,
the consumption of O2 is lower over time (except in the case of pH 7.2), and
that pH 7.2 samples tended to quicken the browning process up to day 15,
beyond which point it is no longer signi�cantly di�erent from the reference
value. These type of global and local trends are intuitively displayed across
the time subgraphs.

4.3.3.2 Tiered Variable Network

If one desires to eliminate the variance of one of the variables, then it is possible
to create networks centered on that variable, while holding all others constant
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Figure 4.8: An overview of the time network generated for browning data. The
fold change of the measurements from the reference levels on that particular
day are depicted by the colour intensity: red for positive, blue for negative.

Figure 4.9: Focused subset of conditions over time subgraphs in 4.8.

as a reference. A 'tiered' network is demonstrated to this end, with each
condition branching o� from the center, terminating in the measured outputs
of browning level and O2 for each time point. An example of this approach
is shown in Figure 4.10, where separate subgraphs are created for each of the
three treatment types.

Varying levels for pH, then SO2 form subsequent branches from the con-
stant treatment at the center (the order is variable and can be altered for
interpretability). The �nal variable of time is then compared to the reference
sample for pH and SO2 at the chosen reference levels for the treatment type
of that subgraph.

From this network one can infer that a high pH of 7.2 introduces large
deviations from the reference sample in O2 and browning. Additionally, it is
clear that within samples of this high pH value, successively higher levels of
SO2 inhibit the onset of browning, but exacerbates O2 depletion in the early
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Figure 4.10: Tiered network centered on a constant treatment. The outermost
leaves in the network are the experimental results for browning and oxygen
levels. They have a colour intensity according to the fold change as compared
to the reference level for that time and set of conditions: red for positive and
blue for negative fold change.

stages of the experiment.

4.3.3.3 Star Network

A further type of network that can be constructed uses edges instead of nodes
to describe the experimental outputs. The 'star' network shown in Figure
4.11 is more compact than the other �gures, and also lends itself to advanced
queries. To build such a network, two conditions are selected as nodes and a
third the edges between them. In the case of Figure 4.11, the inner nodes are
treatment types; outer nodes pH and the third variable SO2, mapped alongside
browning and O2 levels in the network edges.

A disadvantage to simplifying the data in this way is that a single time
point has to be chosen. In this case, the average ET50 for browning in the
reference samples was used as the comparison time, as it was assumed that
this would be the point at which variation would be highest across samples.

Any signi�cant changes in experimental outputs are then mapped along
with the third condition, so that its direct e�ects on the experiment are made
clear. The overall network shows, predictably, a high concentration of strong
di�erences with pH 7.2. If one selects a subgraph in a similar manner to the
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Figure 4.11: 'Star' network for more concise representation of browning data.
The inner and outer nodes are for two respective experimental variables. The
edges between these nodes represent the signi�cant di�erences for the levels of
a third variable, for the outputs of browning- and oxygen levels. The intensity
is re�ective of the fold change from the reference level: red for positive and
blue for negative.

Figure 4.12: Query into speci�c conditions in 'star' network - a subgraph
selection of Figure 4.11

tiered network, a direct comparison of conditions can be done as depicted in
�gure 4.12.

The subgraph is essentially a query into the relative e�ects of changing
pH when the treatment is constant. At the assumed midway point in the
experiment, it would appear that the browning rate is more rapid for the higher
pH level, something that has been observed in previous networks. Many such
queries can be made of the experiment in this way.
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4.4 Conclusion

Several new techniques were presented for the visualisation of scienti�c data
in networks. A basic framework of data import, statistical testing and visual-
isation through Cytoscape interactive software was used; this basic method is
widely extensible and permutations can be built on an ad-hoc basis for di�erent
types of data.

Through its application to three di�erent data sets, all derived from dis-
parate sources and with di�ering structure, the broad nature of the method
was demonstrated. It can be applied to time-dependent and independent data
alike; if the data is temporal then di�erent views can either use time points
as a corporeal variable or as a background feature about which simplifying
assumptions are made.

The potential of these methods to generate new hypotheses and facilitate
exploratory data analysis was also summarily described. The presentation of
the graphical model in an interactive topographical space assists in these ends.
In particular, there is ful�lment of many of the interactive features described
by Keim (2002): the ability to 'zoom', as well as to split the data into logical
subsets and re-order. The advantage in having these abilities is that advanced
queries into speci�c relationships and features of the data can be made with
relatively little e�ort.

It is therefore proposed that statistical network models of the data - StatNet
- be used in conjunction with traditional techniques in order to fully explore
both global and localised trends and relationships within scienti�c experimen-
tal data.
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Chapter 5

Conclusion

5.1 Summary

Two research avenues were explored within the context of data exploration. In
the �rst, a new method for untargeted analysis was developed for HPLC/UV-
vis data. The data set used was a large-scale analysis of the e�ects of various
experimental conditions on the browning e�ects of white wine.

The method was derivative of known techniques of data pre-processing,
which were often parallelised to accommodate the massive scale of the data.
This pre-processing included baseline adjustment, smoothing and alignment.
After pre-processing, the data was subjected to a new feature map alignment
technique based on feature similarity across wavelengths.

The putative features collected in this way were then mined for information
related to the original experimental setup using three di�erent methods: PCA,
decision tree analysis and network modelling. It was found through validation
techniques (especially related to the decision tree analysis and PCA) that there
were indeed signi�cant relationships between putative features and aspects of
the experimental conditions.

For the second research avenue, there was a focus on a conserved net-
work modelling technique. This technique was broadly applied and adapted
to several disparate data sets. These included a sensory analysis of wine; fun-
gal infection of Vitis vinifera leaves, and the same browning study as for the
�rst section of research. The example data included both temporal and static
data, for which the adaptability of the method was demonstrated. For each
case study, several network views were generated with respective structure and
topography related to experimental variables.

5.2 Conclusion

The primary aim of this thesis is to build novel platforms for new insights and
hypothesis generation in scienti�c data. To this end two di�erent develop-
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ment projects were undertaken - one more fundamentally associated with raw
data generated from chemometrics; the other focusing entirely on meaningful
representation and visualisation of existing experimental data.

Though these two avenues of research are entirely di�erent in content, they
demonstrate the value in the same fundamental truth: that, as suggested by
Tukey, '�nding the questions is often more useful than �nding the answers'.
HPLC/UV-vis chromatograms are ubiquitous in research, however the pur-
pose of generating the data is almost always con�rmatory - not exploratory.
Methods to detect and contextualise unexplored compounds can refocus the
direction of an experiment and facilitate novel directions of research. Much of
the time such pre-existing data is used for con�rmatory analysis is available
to be mined, a cost e�ective measure indeed for scienti�c research.

Likewise, experimental data is almost always value-enriched by simply vi-
sualising the results from a di�erent angle. When the question underlying an
experiment is broad, such as in the case of factorial- or composite design with
multiple input variables, the ability to map variable relationships; query out-
puts and formulate conclusions and hypotheses about causality is pivotal. In
this way questions and answers must be simultaneously presented.

It is contended that the primary aim of the thesis has, to a great extent,
been ful�lled. Novel platforms were developed from combinations of existing
and developed techniques to condense a myriad of chromatograms into a com-
mon matrix of putative compounds; thereafter to identify possible signi�cance
of the compounds in the overall experiment. The resultant data was validated
through machine learning techniques.

The network views generated for application to scienti�c experimental data
also constitutes a moderately successful attempt at a new paradigm for data
interpretation. While the proof of its usefulness is more anecdotal, it is pro-
posed that viewing data in this way can be less convoluted than traditional
techniques and provide scientists with a powerful tool for delving the complex
relationships of dependent variables.

5.3 Future Perspectives

Many of the studies presented here can be considered preparatory forays into
the respective �elds of UV-vis feature map alignment and network visualisa-
tion. There is certainly room for improvement of the feature map alignment
problem, the possible shortcomings of which have been outlined. As a next
step, the existing methods for MS feature map alignment could be system-
atically extended to UV-vis data and the results compared. A probabilistic
approach is probably worth exploring �rst, as an alternative to much of the
existing deterministic algorithms of the MS methods.

While the current work seeks to explore an untargeted space in chemomet-
rics, the actual interpretation of the results by a chemist should still be done.
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This would include identifying the signi�cant putative compounds of interest
and checking whether their proposed relationships can be kinetically validated.
Furthermore, empirical con�rmation of their signi�cance with regards to the
experimental conditions can be attempted.

Other machine learning methods can also be attempted for classi�cation
of experimental variables using the putative compounds (besides PCA and
decision trees). For multiple classi�cation, an ensemble method such as random
forests could be applied. Non-linear methods such as Support Vector Machines
could also be tested, as the assumption of linearity in the feature map could
be an over-simpli�cation.

NetStat could also be further extended. The network visualisation methods
were only tested on 3 di�erent data sets, however there is no theoretic limi-
tation to its application with experimental data (besides perhaps a very large
number of experimental variables). As demonstrated, network visualisation of
experimental data can be adapted to suit fundamentally di�erent formats -
though often some creative thought is required to devise an appropriate topol-
ogy.

Similar to the above, there is also a need for interpretation and validation
by the researchers that performed the experiments. Much of the work in which
NetStat features is already under review.
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