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Abstract 

 

The strong bond that is formed between ewe and lamb after parturition is important for lamb 

survival.  Evidence exists that the ewe mainly employs olfactory recognition cues to 

distinguish her lamb from other lambs in the flock.  We have found that volatile organic 

compounds in the wool of Merino lambs that presumably constitute the neonatal recognition 

cue in sheep undergo temporal changes, at least during the first 100 days of their lives.  To 

compensate for changes in the composition of the recognition cue, ewes are compelled to 

sample the changing effluvia of lambs to refresh their memories of their lambs’ odor in order 

to preserve the exclusive olfactory attachment to their lambs.  These changes could be the 

reason for the well-known regular sniffing of ewes at their lambs.  Parallel changes in the 

effluvia of twin lambs ensure the retention of the previously observed intra-twin similarity of 

the recognition cues of twin lambs.  The coherent manner in which these changes take place 

probably contributes to the cohesion in a flock of sheep. 
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Introduction 

Sheep are seasonal breeders, and large proportions of ewes give birth during a relatively short 

lambing season.  Recognition of a lamb is, therefore, crucial for the mother to provide 

nourishment selectively to her offspring.  The attraction to the amniotic fluid results in the 

mother licking and grooming the lamb, low-pitched bleating and the acceptance of the new-

born lamb at the udder.  These behavioral patterns are directed towards the formation of an 

exclusive olfactory attachment between the ewe and lamb. This relies on the ewe's ability to 

memorize the individual olfactory cues from her offspring (Lévy et al. 2004). 

The bond between ewe and lamb is established through contact with the new-born 

lamb within 4–6 h after birth.  If this bond is not formed, maternal interest wanes and the ewe 

will not accept the lamb.  Once the bond has been formed, however, ewe and lamb can be 

separated for relatively long periods without disrupting the integrity of the bond (Lindsay 

1988).  The selective ewe–lamb bond did not develop in ewes that were rendered anosmic 

(Lévy et al. 2004), indicating that maternal selectivity and ewe–lamb bond depends strongly 

on the individual odor of the offspring.  Although ewes are capable of recognizing their lambs 

by auditory and visual cues (Morgan et al. 1975; Shillito and Alexander 1975; Poindron and 

Carrick 1976; Alexander and Shillito 1977; Terrazas et al 1999), Alexander and Stevens 

(1981) and Lynch et al. (1992) have presented evidence showing that the discrimination of 

ewes between their own and alien lambs is mediated primarily by an olfactory cue from the 

lamb’s wool and skin  not from a specific area on the lamb’s body, nor from the amniotic 

fluid.  Ewes primarily rely on olfactory cues as final assurance before allowing lambs at the 

udder (Lindsay, 1988). 

Exploring the possibility that the neonatal recognition pheromone originates from the 

wool of the lamb, Burger et al. (2011b) identified 133 volatile organic compounds (VOCs) 

associated with the wool of Dohne Merino (Ovis aries) lambs that are presumably 

constituents of a putative neonatal recognition cue in this species.  Quantitative analysis, 

using the sample enrichment (SEP) technique (Burger et al. 2011a), and subsequent 

comparison of the odor profiles of twin lambs revealed that the wool volatiles of twins are 
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both qualitatively and quantitatively practically identical, but differ from those of other twins 

or non-twin lambs in the flock (P < 0.001).  The analytical results also highlighted the 

accuracy with which analyses of the VOCs of the cranial wool samples were carried out using 

the SEP technique.  However, attempts at fostering lambs using synthetic mixtures were 

unsuccessful (Burger et al. 2011b).  The fostering experiments were carried out by dressing 

alien lambs in cotton fleece jackets sprayed with solutions of synthetic mixtures emulating the 

composition of the wool VOCs of the lambs of the experimental ewes.  The failure of these 

experiments could be ascribed to various imponderables, such as the unpredictable difference 

in the rate of release of different compound classes from cotton wool jackets instead of lamb’s 

wool, and the co-evaporation of the solvent and some highly volatile constituents of the 

synthetic mixture (Burger et al. 2011b).  The possibility also has to be considered that the 

lamb’s unique recognition cue could wear off or change in composition as the lamb grows 

older, in which case the formulation of synthetic mixtures for bioassays and fostering 

experiments would require accurate information on the extent of the change in the recognition 

cue and the rate at which it takes place.  

The present study was carried out to gain information on the properties of the 

recognition cue, such as the consistency of its composition and its persistence (longevity), 

information that could in future studies contribute to ensuring the success of bioassays with 

mixtures of synthetic analogues of the wool VOCs. 

Materials and methods 

 

Sample collection  

A flock of Dohne Merino ewes and their lambs was available at Stellenbosch University’s 

experimental farm Mariendahl for the collection of wool samples.  At Mariendahl, single-

bearing ewes and their lambs are released into large camps soon after parturition, whereas 

twin-bearing ewes are kept in small pens until the lambs are stronger.  Although not required 

for the envisaged research, collection of wool samples from twin lambs in their small pens 

was preferred as more convenient and less stressful for the lambs than collecting samples in 

large camps.  Cranial wool was chosen for analysis because the heads of the lambs were 

expected to be less contaminated with foreign matter than the rest of their bodies.  We have 

also observed that ewes almost invariably sniff at lambs on first contact.  To follow possible 

temporal changes in the odor of lambs, cranial wool samples were collected from the lambs (n 

= 10) the morning after birth (Day 1) and on Day 7 during the lambing season (March to 
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April) in 2007.  After about 7 days twin-bearing ewes and their offspring are normally also 

released into the large camps housing the single-bearing ewes.  Here they are not readily 

available for sample collection until Day100 when the lambs are all brought in for 

performance evaluation and treatment.  In 2010, samples were therefore collected from the 

lambs (n = 6) on Days 1, 7 and 100.   All samples were stored in glass vials (25 ml) with 

Teflon-faced septa at 20 C until analyzed.  No microbial activity was detected in wool 

samples stored at this temperature.   

The procedures followed in our research were approved by the Stellenbosch 

University Ethics Committee: Animal Care and Use (Ethics number 11NC_BU01). 

 

Analytical procedures 

Sample enrichment of the headspace VOCs of the collected cranial wool samples using the 

SEP technique (Burger et al. 2011a), gas chromatographic (GC), low- and high-resolution gas 

chromatographic-mass spectrometric analysis (GC-MS analysis), enantioselective GC 

analysis, Kovats retention index (RI) determination and GC-MS comparison of the tentatively 

identified VOCs with authentic synthetic analogues were carried out as described by Burger 

et al. (2011b). 

 

Statistical analysis  

The vast amount of data generated during this investigation into the composition of VOCs 

present in the wool of the lambs made multivariable methods of analysis indispensable in 

attempts at reaching meaningful interpretation of the data.  The changes in the relative 

concentrations of the wool VOCs over a period of 1 week and 100 days in 2007 and 2010, 

respectively, were assessed to determine whether the odor of the lambs changes in a 

predictable and uniform manner.  The VOCs from cranial wool samples collected from 10-

week-old lambs (5 twins) born in 2007, and from 6 lambs (3 twins) born in 2010 were 

analyzed and the resulting data used for statistical analysis.  In 2007 and 2010, 87 and 81 

constituents, respectively, were used as variables in statistical analyses.   

Biplots can be considered as multivariate scatterplots that simultaneously give a 

graphical presentation of samples (lambs as points on the graph) and variables (identified 

constituents as linear axes on the graph).  The significance of an axis of a biplot is similar to 

that of an ordinary scatterplot; if a line is drawn from any point in a biplot perpendicular to a 

biplot axis, the value of the variable at that point can be read off from the axis.  In addition to 
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this usage of biplot axes, the angle between any 2 axes is an approximation of the correlation 

between the 2 relevant variables.  Constituents lying on axes close to one another have a high 

level of correlation with one another and constituents displayed as axes that are 90 degrees in 

relation to one another have no correlation with each other.  An axis is labeled at the positive 

value of its calibration.  The quality of a biplot is an overall measure of the accuracy of the 

two-dimensional approximation of the data matrix and hence also of the reliability of the 

analytical data. 

Of the 133 wool VOCs identified in the cranial wool of neonatal lambs (104 in the 

headspace and 29 in extracts of the wool), 87 headspace VOCs identified in the lambing 

season of 2007 and 81 headspace VOCs identified in 2010 were used as variables for 

statistical analysis.  Peak areas were normalized across all samples to produce comparable 

variables with zero means and unit standard deviation (Kowalski and Bender, 1972).  The 

qualitative and quantitative data of the 87 constituents (2007) and 81 constituents (2010) were 

used to construct principal component analysis (PCA) biplots.  The biplots were constructed, 

and permutation tests and investigations into axis predictivity were carried out using R 

(Vienna, Austria), as described by Aldrich et al. (2004), Garden-Lubbe et al. (2008) and 

Gower et al. (2011).   

 

Results 

Consistence of composition of the recognition cue  

Assuming that the recognition cue is produced by the lamb, a series of experiments 

was carried out to gain insight into the consistency of the composition of the neonatal 

recognition cue.  Samples of the cranial wool of Dohne Merino lambs (n = 10) were collected 

the morning after birth (Day 1) and on Day 7 during the lambing season in 2007.  

Comprehensive qualitative and quantitative headspace analyses of the VOCs of these wool 

samples revealed temporal changes, mainly with respect to the quantitative composition of the 

VOCs.  In view of these results, the experiment was repeated and extended in 2010 to include 

the collection of cranial wool samples from the experimental lambs (n = 6) on Day 100.  The 

results of the previous experiment were confirmed.  A summary of the relevant data is given 

in Table 1. 
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Table 1  Compounds from the cranial wool of Döhne Merino lambs collected during the lambing seasons 
of 2007 and 2010 arranged according to compound class. 

No. Compounds 
2007a 2010 

Remarks b 
Day 1 Day 7 Day 1 Day 7 Day 100 

C10 Nonane  
  

a,b,c,j,l 
C20 Decane  

  
a,b,c,j,l 

C28 Undecane  
 

 a,b,c 
C36 Dodecane      a,b,c 
C46 Tridecane      a,b,c,i 
C58 Tetradecane      a,b,c,i 
C72 Hexadecane      a,b,c,i 
C80 Heptadecane      a,b,c,i 
C89 Octadecane      a,b,c,i 

C100 Nonadecane  


  a,b,c,i 

        C91 2,6,10,14-Tetramethylhexadecane      a,b,c,g 

        C44 1-Tridecene  


  a,b,c,e 
C55 1-Tetradecene  

  
a,b,c,e,l 

C66 1-Pentadecene      a,b,c,e 
C118 1-Pentacosene 


   a,b,d,m 

        C2 1-Pentanol  
  

a,b,c,j,l 
C15 1-Heptanol      a,b,c 
C25 1-Octanol      a,b,c,i 
C33 1-Nonanol      a,b,c 
C75 1-Tetradecanol      a,b,c,i,k 
C87 1-Pentadecanol      a,b,c,i,k 
C98 1-Hexadecanol      a,b,c,i,k 

C108 1-Octadecanol 


   a,b,c,i,k,m 
C114 1-Eicosanol 

  
 a,b,c,i,m 

        C6 4-Methyl-1-pentanol      a,b,c 
C95 6,10,14-Trimethyl-2-pentadecanol  

 
 a,b,c,g 

        C4 Hexanal      a,b,c,j 
C8 Heptanal      a,b,c,j 

C19 Octanal      a,b,c 
C27 Nonanal      a,b,c 
C35 Decanal      a,b,c 
C45 Undecanal      a,b,c 
C57 Dodecanal      a,b,c 
C67 Tridecanal      a,b,c 
C73 Tetradecanal      a,b,c 
C81 Pentadecanal      a,b,c 
C90 Hexadecanal      a,b,c 

C101 Heptadecanal      a,b,c 

        C1 3-Methylpentanal  
  

a,b,c,g,l 
C24 7-Methyloctanal  

  
a,b,c,d,l 

C31 8-Methylnonanal  
 

 a,b,c,d 
C41 9-Methyldecanal  

  
a,b,c,d,l 

C51 10-Methylundecanal  
  

a,b,c,d,l 
C68 12-Methyldodecanal  

  
a,b,c,d,l 

C77 13-Methyltetradecanal  
  

a,b,c,d,l 
C86 14-Methylpentadecanal  


  a,b,c,d 

C97 15-Methylhexadecanal  
 

 a,b,c,d 

        C23 (E)-2-Octenal      a,b,c,d 
C30 (E)-2-Nonenal      a,b,c,d 
C40 (E)-2-Decenal      a,b,c,d 
C50 (E)-2-Undecenal      a,b,c,d,e 
C62 (E)-2-Dodecenal  


  a,b,c,d 
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C78 (E)-2-Tetradecenal      a,b,c,d 

        C5 2-Methylpyrimidine  
  

a,b,c,l 
C9 Dimethyl sulfone 


   a,b,c,m 

C11 2,5-Dimethylpyrimidine  
  

a,b,c,l 

        C17 2-Octanone  
  

a,b,c,j,l 
C26 2-Nonanone      a,b,c 
C34 2-Decanone      a,b,c 
C43 2-Undecanone    


a,b,c 

C54 2-Dodecanone 


   a,b,c,m 
C65 2-Tridecanone    


a,b,c 

C71 2-Tetradecanone      a,b,c 
C79 2-Pentadecanone      a,b,c 
C99 2-Heptadecanone      a,b,c 

        C16 3-Octanone  
  

a,b,c,l 

        C14 6-Methyl-2-heptanone      a,b,c,j 
C47 3-Methyl-2-undecanone 

   
a,b,c,d,f,l 

C56 6,10-Dimethyl-2-undecanone 
   

a,b,c,g,l 

C60 
(5E)-6,10-Dimethyl-5,9-
undecadien-2-one 

     a,b,c 

C93 
6,10,14-Trimethyl-2-
pentadecanone 

     a,b,c,g 

        C48 Nonan-4-olide      a,b,c,f 
C61 Decan-4-olide 

 
  a,b,c,f,m 

C76 Dodecan-4-olide 


   a,b,c,f,m 
C109 Hexadecan-4-olide 

  
  a,b,c,f,m 

        C42 Nonanoic acid    


a,b,c,i 
C53 Decanoic acid      a,b,c,i 
C69 Dodecanoic acid    


a,b,c,i 

C85 Tetradecanoic acid      a,b,c,i 
C94 Pentadecanoic acid 

 
  a,b,c,i,m 

C104 Hexadecanoic acid      a,b,c,i 
C112 Octadecanoic acid 


 


a,b,c,i,m 

C115 Eicosanoic acid 
  

 a,b,c,i,m 

        C103 (Z)-9-Hexadecenoic acid 
 

   a,b,c,e,m 
C110 (Z,Z)-9,12-Octadecadienoic acid 

   
 a,b,c,m 

C111 (Z)-9-Octadecenoic acid 


 a,b,c,e,m 

        C88 Ethyl tetradecanoate    


a,b,c 
C92 Isopropyl tetradecanoate    


a,b,c,d 

        C18 2-Pentylfuran  
  

a,b,c,l 
C22 Phenylacetaldehyde 


   a,b,c,m 

C29 N-Methyl-2-piperidinone  





a,b,c 

C37 
3-Ethyl-4-methyl-1H-pyrrole-2,5-
dione  

   a,b,h,m 

C38 
2-Ethyl-3-methyl-pyrrolidine-2,5-
dione  


 

a,h,f,m 

C39 
3-Methyl-4-vinyl-1H-pyrrole-2,5-
dione  

 


a,b,h,m 

C124 Cholest-5-en-3β-ol 
 

   a,b,c,i,m 

        C21 Unidentified  
 


 

C59 Unidentified 
   

l 
C63 Unidentified  

  
l 

C64 Unidentified  
  

l 
C70 Unidentified  

  
l 

C74 Unidentified  
  

l 
C83 Unidentified  

 


 
C96 Unidentified 

   
a,b,l 
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C3 Unidentified     
 aAs published in Burger et al., 2011b.  bReliability of identification is indicated by the following: a, low-resolution EI mass spectrum;  

b, library spectrum (NBS and/or NIST);  c, retention time comparison with synthetic compound;  d, kovats retention index;  e, 
double bond localization by DMDS derivatization and GC-MS analysis;  f, absolute configuration given in Burger et al. (2011b);  g, 
absolute configuration not determined;  h, tentative identification;  i, compounds previously identified in lanolin (Schlossman and 
McCarthy, 1979; Motiuk, 1979a, 1979b, 1980);  j, compounds previously identified in wool (Lisovac and Shooter, 2003);  k, 
compounds previously identified in inguinal gland of ewes (Rietdorf, 2002);  l, compounds only identified during the lambing season 
of 2007;  m,  compounds only identified during the lambing season of 2010. 
 

 

Of the 133 wool VOCs identified in the cranial wool of neonatal lambs during the 

2007 and 2010 lambing seasons, 104 were identified as wool headspace VOCs and 29 were 

present in extracts of the wool.  The headspace VOCs comprised the following: saturated and 

unsaturated hydrocarbons, branched and unbranched primary alcohols, branched and 

unbranched aldehydes, unsaturated aldehydes, branched and unbranched ketones, saturated 

and unsaturated carboxylic acids, carboxylic acid esters, butanolides (-lactones), 2-

pentylfuran, dimethyl sulfone, 2-methylpyrimidine, 2,5-dimethylpyrimidine, 3-ethyl-4-

methyl-1H-pyrrole-2,5-dione, 3-methyl-4-vinyl-1H-pyrrole-2,5-dione and 2-ethyl-3-

methylpyrrolidine-2,5-dione, all of which were unambiguously identified by the analytical 

techniques nentioned above.  The additional 29 VOCs identified in wool extracts in our 

previous study (Burger et al. 2011b) were not considered relevant in the present study and 

hence only the 104 VOCs present in headspace samples identified in the cranial wool of twin 

Dohne Merino lambs are included in Table 1. 

Considerable quantitative differences were found between the VOCs enriched from 

the headspace gas of cranial wool samples collected from the same lambs on Days 1 and 7 

after they were born during the lambing season of 2007, as well as on Days 1, 7 and 100 

during the lambing season of 2010.  Typical differences are illustrated in Figure 1 in which 

examples of the total ion chromatograms (TICs) of the VOCs enriched on the three sampling 

occasions in 2010 are depicted. 
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Figure 1  TICs of the headspace VOCs from cranial wool collected on (a) Day 1, (b) Day 7 

and (c) Day 100 from Dohne merino lamb US-2010-0205 during the lambing season of 2010.  

 

These differences can also be visualized by superimposing reconstructed TICs of wool 

VOCs collected from the same lamb on the respective sampling days.  The sharp contrast 

between the difference in quantitative composition of the cranial wool VOCs of lambs on the 

3 sampling occasions, and the remarkable similarity of the VOCs from day-old dizygotic twin 

lambs (Burger et al. 2011b) is illustrated in Figures 2a and 2b, respectively. 
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Figure 2  Quantitative comparison (percentage peak areas) of the headspace VOCs of 
cranial wool collected, (a) during the lambing season of 2010 on Day 1 (black), Day 7 (grey) 
and Day 100 (dashed line) from lamb US-2010-0205; and (b) during the lambing season of 
2007 from day-old twin lambs US-2007-0224 (black) and US-2007-0225 (grey) by 
superimposing the reconstructed gas chromatograms.  Note that the concentrations of 
compounds 88 and 93 are so similar that the black chromatogram of lamb US-2007-0224 is 
only visible at the apexes of the peaks (Burger et al. 2011b). 
 

The differences in the average percentage peak areas (>1%) of the wool VOCs present 

in wool samples collected from lambs on different days during the lambing seasons in 2007 

and 2010 are shown in Figure 3. 
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Figure 3  Comparison of the average percentage peak areas (> 1%) of the headspace VOCs 
of cranial wool collected during the lambing season of 2007 (a) on Day 1 (black), Day 7 
(grey), and during the lambing season of 2010 (b) on Day 1 (black), Day 7 (dark grey) and 
Day 100 (light grey).  
 

Approximately 78% of the total average peak area of the total ion chromatograms 

(TICs) of the VOCs present in the headspace of the wool of day-old Dohne Merino lambs 

born in the 2007 lambing season consisted of only 9 compounds, viz ethyl tetradecanoate 

(C88) (33%), 6,10,14-trimethyl-2-pentadecanone (C93) (9%), nonanal (C27) (9%), isopropyl 

tetradecanoate (C92) (5%), dodecanoic acid (C69) (5%), tetradecanal (C73) (5%), 

tetradecanoic acid (C85) (5%), pentadecanal (C81) (4%) and hexadecanoic acid (C104) (3%).  

In comparison, approximately 61% of the total quantity of VOCs present in the headspace of 

wool samples collected from the same lambs on Day 7 comprised 7 constituents: nonanal 

(C27) (27%), tetradecanal (C73) (9%), 6,10,14-trimethyl-2-pentadecanone (C93) (7%), 

heptanal (C8) (6%), dodecanoic acid (C69) (4%), octanal (C19) (4%) and dodecanal (C57) 

(4%).   

 Ignoring the presence in the wool of cholest-5-en-3-ol (C124), which is practically 

non-volatile and ubiquitous in mammalian material, 62% of the total average peak area of the 

VOCs present in the headspace of the wool of day-old Dohne Merino lambs born in the 2010 

lambing season comprised 4 constituents: ethyl tetradecanoate (C88) (29%), nonanal (C27) 
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(15%), isopropyl tetradecanoate (C92) (13%) and heptanal (C8) (5%).  In the wool analyzed 

from the same lambs on Day 7, 50% of the VOCs present in the headspace of the wool 

samples comprised 7 compounds: nonanal (C27) (17%), 6,10,14-trimethyl-2-pentadecanone 

(C93) (8%), tetradecanal (C73) (7%), hexanal (C4) (6%), heptanal (C8) (4%), decanoic acid 

(C53) (4%) and octanal (C19) (4%).  On Day 100, 61% of the VOCs present in the headspace 

of these lambs comprised 9 compounds: tetradecanal (C73) (14%), nonanal (C27) (9%), 6-

methyl-2-heptanone (C14) (9%), heptanal (C8) (6%), hexanal (C4) (5%), dodecanal (C57) 

(5%), tridecanal (C67) (5%), (Z)-9-hexadecenoic acid (C103) (4%) and octanal (C19) (4%).  

During the lambing seasons of 2007 and 2010 the majority of the compounds present in the 

olfactory signature of the lambs were aldehydes. 

The majority of the VOCs (53% in 2007, 60% in 2010) showed an increase in 

concentration as the lambs grew older.  The majority of these compounds were saturated and 

unsaturated, branched and unbranched aldehydes.  In 2007 and 2010, the concentrations of, 

respectively, 46% and 37% of the VOCs decreased as the lambs grew older.  The 

concentrations of the 2 esters C88 and C92 were always lower in the older lambs.  The 

relevant information is summarized in Table 2. 

 

Table 2.  Temporal changes in the percentage peak areas of VOCs from the cranial wool collected on Days 
1 and 7 in 2007 and Days 1, 7 and 100 in 2010  

Higher average relative concentrations  Lower average relative concentrations 

C48 Nonan-4-olide  C4 Hexanal 

C60 (5E)-6,10-Dimethyl-5,9-undecadien-2-one  C6 4-Methyl-1-pentanol 

C65 2-Tridecanone  C8 Heptanal 

C69 Dodecanoic acid  C14 6-Methyl-2-heptanone 

C72 Hexadecane  C15 1-Heptanol 

C85 Tetradecanoic acid  C19 Octanal 

C88 Ethyl tetradecanoate  C23 (E)-2-Octenal 

C92 Isopropyl tetradecanoate  C26 2-Nonanone 

C93 6,10,14-Trimethyl-2-pentadecanone  C30 (E)-2-Nonenal 

C99 2-Heptadecanone  C33 1-Nonanol 

C104 Hexadecanoic acid  C34 2-Decanone 

   C44 1-Tridecene 

   C45 Undecanal 

   C46 Tridecane 

   C50 (E)-2-Undecenal 

   C54 2-Dodecanone 

   C57 Dodecanal 

   C62 (E)-2-Dodecenal 

   C66 1-Pentadecene 
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   C67 Tridecanal 

   C73 Tetradecanal 

      C78 (E)-2-Tetradecenal 

 

Some compounds were only identified in wool collected on one of the wool sampling 

occasions.  For example, 3-methyl-2-undecanone (C47), 6,10-dimethyl-2-undecanone (C56), 

and the two unidentified compounds (C59) and (C96) were present only in wool collected on 

Day 1 in 2007.  2-Ethyl-3-methyl-pyrrolidine-2,5-dione (C38) was only detected on Day 1 in 

2010 and (Z,Z)-9,12-octadecadienoic acid (C110), 1-icosanol (C114) and icosanoic acid 

(C115) were only detected in samples collected on Day 100 in 2010.  Although these 

compounds could possibly be contaminants, they belong to the compound classes that are 

typically present in the collected wool samples, and they are therefore probably secreted by 

the lambs and reach detectable levels only in older lambs.  Of the large number of VOCs 

belonging to the wide variety of compound classes identified as wool VOCs from the 

headspace analyses of wool collected from ten lambs in 2007, and from six lambs born in 

2010, the majority were present in all the wool samples investigated during both lambing 

seasons, albeit in varying concentrations.  Certain constituents were always present in high 

concentrations, and in total accounted for the larger part of the wool volatiles.  

 

Statistics 

The PCA biplots depicted in Figures 4a and 4b were constructed to obtain insight into the 

multivariate character of the results.  These biplots provide optimal two-dimensional 

representations of the data matrices under discussion.  Only 63 of the wool VOCs were 

present in the wool samples collected in 2007 and in 2010, for comparison purposes, only 

these 63 were used to construct the biplots.  Not all 20 samples and 87 variables are equally 

well represented in the biplot and axis predictivity (Gardner-Lubbe et al. 2008).  Sample 

predictivities and axis predictivities provide detailed information about how accurately each 

data point is represented in the biplot and the degree of accuracy in the predictions made from 

the biplot axes.  Predictivity values range from 0 to 1, with a value of 1 representing the best 

predictivity.  In Figure 4a, only the 11 axes with predictivities higher than 0.800 are 

displayed.  The quality of display for the PCA biplot in Figure 4a is 58%, a value reflecting 

the proportion of the variation in the data accounted for in the first 2 dimensions of the two-

dimensional display (Gower and Hand, 1996).  The other 42% is explained in the remaining 
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18 dimensions.  The 11 constituents with predictivities higher than 0.800 are, in order of 

decreasing predictivity:  8-methylnonanal (C31), decanal (C35), undecanal (C45), 1-

hexadecanol (C98), hexadecanal (C90), heptadecane (C80), 2-pentadecanone (C79), 1-

tetradecanol (C75), 2-2,6,10,14-tetramethylhexadecane (C91), tetradecanone (C71), and 

nonanal (C27).  According to the biplot (Figure 4a), there are two groups of highly correlated 

high molecular weight constituents: the first comprises 2-tetradecanone (C71), hexadecanal 

(C90) and 1-hexadecanol (C98), and the second comprises 1-tetradecanol (C75), 2-

pentadecanone (C79), heptadecane (C80) and 2,6,10,14-tetramethylhexadecane (C91).  The 

wool collected from day-old lambs contains higher concentrations of these constituents than 

the wool from week-old lambs.  The more volatile, lower molecular weight aldehydes 

nonanal (C27), 8-methylnonanal (C31), decanal (C35) and undecanal (C45) also display 

mutual correlation.  

 

 

Figure 4  (a) PCA biplot for the headspace VOCs of cranial wool collected from lambs during 
the lambing season of 2007 on Day 1 (black) and Day 7 (dashed line); and (b) PCA biplot for 
the headspace VOCs of cranial wool collected from lambs during the lambing season of 
2010 on Day 1 (unbroken line), Day 7 (dashed line) and Day 100 (dotted line).   
 

The PCA biplot constructed from the data captured in 2010 is depicted in Figure 4b.  

The quality of display for this PCA biplot is 66% and only the 23 constituents with 

predictivities higher than 0.800 are displayed.  The biplot indicates that the following 

constituents are highly correlated: C81, C45, C54, C78, C75, C73, C87, C67, C66, C14, 

C44, C21, C62, C97, C95, and C31.  Wool collected on Day 1 had the lowest concentration 

of these highly correlated compounds.  The concentrations of these compounds increased with 

the age of the lambs, and they were present in the highest concentrations in wool collected on 

Day 100.  Furthermore, the concentration of (E)-2-octenal (C23) also increased as the lambs 

grew older, but this constituent it is not highly correlated with the last-mentioned group of 
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constituents.  Constituents C43, C69, C85, C48, C40 and C30 are also correlated, and appear 

to be more important during the earlier stages of a lamb’s life.  As expected, there is more 

similarity between the VOC profiles of wool collected in 2010 from the same lambs on Days 

1 and 7 than between the wool collected on Days 1 and 100. 

Some compounds were only identified in wool collected on one of the wool sampling 

occasions.  For example, 3-methyl-2-undecanone (C47), 6,10-dimethyl-2-undecanone (C56), 

and the two unidentified compounds (C59) and (C96) were present only in wool collected on 

Day 1 in 2007.  2-Ethyl-3-methyl-pyrrolidine-2,5-dione (C38) was only detected on Day 1 in 

2010 and (Z,Z)-9,12-octadecadienoic acid (C110), 1-icosanol (C114) and icosanoic acid 

(C115) were only detected in samples collected on Day 100 in 2010.  Although these 

compounds could possibly be contaminants, they belong to the compound classes that are 

typically present in the collected wool samples; they are therefore probably secreted by the 

lambs and reach detectable levels only in older lambs.  Of the large number of VOCs 

belonging to the wide variety of compound classes identified as wool VOCs from the 

headspace analyses of wool collected from ten lambs in 2007, and from six lambs born in 

2010, the majority was present in all the wool samples investigated during both lambing 

seasons, albeit in varying concentrations.  Certain constituents were always present in high 

concentrations, and in total accounted for the larger part of the wool volatiles.  Only 4 

constituents, 8-methylnonanal (C31), undecanal (C45), 1-tetradecanol (C75) and 1-

hexadecanol (C98), showed good predictivities in the lambing seasons of both 2007 and 

2010.  

Analysis of distance (AoD) (Gower et al. 2011) of the quantitative data obtained in 

2010 was not a primary object of this investigation, and the sample size (number of lambs) 

was also too small for a rigorous statistical analysis.  Nevertheless, the AoD plots depicted in 

Figure 5 showed that temporal changes in the odor of the experimental lambs took place in a 

coherent manner.  Collecting wool samples from twins thus had the unforeseen advantage that 

AoD plots could be constructed and provided information on the intra-twin similarity of the 

odor profiles of twins.   
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Figure 5  Analysis of distance (AoD) biplots (Gower et al. 2011) of data on the quantitative 
composition of the volatile organic compounds (VOCs) from cranial wool samples collected 
from Dohne Merino lambs on Days 1, 7, and 100 during the 2007 and 2010 lambing 
seasons, demonstrating the similarity of the odor profiles of twin lambs relative to those of 
other lambs from the small flock of lambs available for the experiment.  Pairs of twins were 
considered as separate groups.  Group means are indicated with solid squares, group 
members with solid circles and twin lambs are connected with black bars.  Biplot axes 
representing the compounds have been suppressed. 

 

Discussion 

There is general consensus between sheep farmers and ethologists that the strong bond 

formed between a ewe and her lamb within the first few hours after its birth is disrupted if 

they are separated for a few days.  However, the duration of the separation that results in 

irreversible disruption of the bond has not yet been established with reasonable accuracy, but 

apparently it is influenced by the duration of contact between ewe and lamb before they are 

separated, as well as the duration of the separation of ewe and lamb afterwards (Lévy et al. 

1991; Keller et al. 2005).  It is also not known whether ewes are simply not capable of 
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retaining the olfactory image of their lambs for more than a few days, or whether there is 

some other logical explanation for this phenomenon.  

The present investigation into the characteristics of the presumed neonatal recognition 

cue of sheep showed that the largest majority of the VOCs listed in Table 1 were present in 

cranial wool collected during the lambing season of 2007 as well as that of 2010, albeit in 

different relative concentrations.  If it is taken into consideration that there are certain 

limitations regarding the sensitivity of the analytical instrumentation that was used, it is even 

possible that all of the VOCs could have been present in both seasons, but some of them were 

not detected because they were present in concentrations below the detection threshold of the 

analytical techniques.  Despite the higher rate of evaporation of low-boiling compounds, the 

more volatile compounds were mostly present in higher concentrations in wool collected from 

older lambs. This could be construed as evidence in favor of the cue being produced by the 

lamb and not by the ewe, but this possibility still has to be investigated in more detail. 

Some of the compounds listed in Table 1 have previously been identified in lanolin 

(Schlossman and McCarthy, 1979; Motiuk, 1979a, 1979b, 1980), the wool of sheep (Lisovac 

and Shooter, 2003), or in the inguinal gland of ewes (Rietdorf, 2002).  The occurrence, 

identification and probable function of many of the branched and unbranched long-chain 

aliphatic compounds listed in the table, or compounds belonging to the same compound 

classes, have been discussed in considerable detail in reference books or review articles (e.g., 

Albone 1984; Burger 2005).  In the current context, it might be more appropriate to consider 

the occurrence of these compounds as skin volatiles in other mammals, for example in 

humans.  Unfortunately, only human skin volatiles have been investigated in sufficient detail 

for such a comparison.  More than 400 compounds have already been isolated and identified 

from human skin extracts (Dormont et al. 2013).  However, using headspace analysis, only 20 

to 90 compounds from human odors have been detected at naturally occurring body 

temperature.  Of the 25 chemical compounds most often reported in these studies, only 8 were 

also identified in the cranial wool of lambs in the present study, viz. undecane, hexadecane, 

hexanal, octanal, nonanal, decanal, undecanal, and 6,10-dimethyl-5,9-undecadiene-2-one.  

Members of some of the other compound classes present in lamb’s wool, such as alcohols, 

ketones, carboxylic acids and esters, have also been reported in the volatile profile of human 

skin (Dormont et al. 2013).  2-Pentylfuran is found in alcoholic beverages and in many foods, 

including coffee, potatoes, tomatoes, roasted filberts and soybean oil, and is sold as a 

flavouring agent.  2-Pentylfuran is found in the breath of patients with Aspergillus fumigatus 

infections (Chambers et al. 2009), it is a plant growth promoter (Zou et al. 2010), and it has 
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been identified in human breast milk (Stafford et al. 1976).  If present in sheep’s milk, it could 

have been picked up by the cranial wool of the lambs of suckling lambs.  It is difficult to 

rationalize the presence of the nitrogen-containing compounds, C22, C29, C37, C38, and 

C39, in the wool samples.  However, these compounds were identified in the cranial wool of 

twins that were housed with their dams in a shed, and although the wool samples were 

collected from lambs before their earmarks were treated with an disinfectant, it is possible 

that these compounds could be ingredients and/or metabolites of the constituents of the 

disinfectant spray that were picked up from the air by the wool of the lambs before the 

samples were collected. 

Regarding the qualitative and quantitative composition of their cranial wool VOCs, 

twin lambs remained grouped together, although not as closely on Day 100 as on Days 1 and 

7.  This is confirmed by the AoD plots depicted in Figure 5, which show that in 2010 as well 

as in 2007, twin lambs possessed odor profiles that were more similar to each other than to 

those of other randomly selected non-twin lambs in the flock, at least during the first 100 days 

of their lives.  Nevertheless, each twin still had its own unique olfactory signature. 

As illustrated in the PCA biplots depicted in Figures 4a and 4b, complete separation 

was observed between the wool samples collected from the lambs on Days 1 and 7 in 2007 as 

well between those collected on Days 1, 7 and 100 in 2010.  The fact that there is no 

overlapping of the VOC content of the wool samples collected from lambs at various stages 

during the first 100 days of their lives indicates that a complete change in the VOC profile of 

the wool and thus in the odor of the lambs took place as the lambs grew older.  Clearly, the 

neonatal recognition cue of sheep does not have a fixed and permanent composition, but 

continuously changes as lambs grow older.  It is interesting that the odor profiles of individual 

lambs in the flock change in a parallel manner so that the flock of lambs remains grouped 

closely together, as does the flock as a whole.  If perpetuated throughout their lives, this trend 

could contribute to cohesion in a flock of sheep.  It is interesting that many sheep breeders 

and farmers have observed that twin lambs mostly prefer to graze together and are often found 

together when they are sheared or have to undergo veterinary treatment. 

We conclude that in order to preserve the exclusive olfactory attachment to her lamb, a 

ewe has to adjust or adapt her olfactory system to the temporal changes in the odor of her 

lamb.  Thus, if the recognition of a lamb is based mainly on the available olfactory 

information, she has to continuously monitor the odor of her lamb in order to keep up with its 

changing odor profile.  Temporal changes in the odor of the lambs, rather than an inability to 
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retain an olfactory image of their lambs for more than a few days, appear to be the main 

reason for ewes’ frequent sniffing at their lambs. 

The failure of attempts at fostering lambs using mixtures of synthetic analogs of the 

wool VOCs of a ewe’s own lamb (Burger et al. 2011b) could be ascribed to, inter alia, co-

evaporation of the solvent and some of the highly volatile constituents of the synthetic 

mixture, and to the dissemination of the synthetic VOC from cotton fleece jackets instead of 

lamb’s wool.  The temporal changes that take place in the odor of neonatal lambs now 

introduce another complicating factor into the execution of bioassays with synthetic analogs 

of the natural VOCs, in as far as the outcome of such experiments also will depend also on 

whether the collection of a wool sample, the quantitative analysis of the wool VOCs, the 

formulation of a corresponding synthetic mixture, and the fostering experiment could be 

carried out within a quite limited time span. 

One question that still has to be answered is whether the neonatal recognition cue of 

sheep is produced by the lamb, or whether it is a maternal label.  Despite their higher rate of 

evaporation, the low-boiling VOCs were present in higher concentrations in the wool of older 

lambs than in wool collected from young lambs.  If the cue is a maternal label, the 

concentration of the more volatile compounds would be expected to evaporate as lambs grow 

older.  Furthermore, exploratory experiments have shown that the integrity of the recognition 

cue is compromised when cue-impregnated cotton fleece jackets are exposed to a moderate 

breeze at temperatures around 25 °C for periods ranging from 2 to 5 hours (unpublished 

results).  These observations could be construed as evidence in favor of the cue being 

constantly replenished by the lamb.  However, it is not yet known whether all of the identified 

wool VOCs, or only some of the highly volatile compounds are essential constituents of the 

cue.  It is also possible that autoxidation of, for example, the aldehydes, instead of selective 

evaporation of any highly volatile compounds, could be responsible for the loss of 

attractiveness of jackets exposed to the atmosphere.  These possibilities still have to be 

investigated.   

Poindron et al. (2010) have shown that amniotic fluid is important in experienced ewes for the 

establishment of maternal responsiveness, and that it also carries some chemosensory 

information facilitating exclusive bonding.  We have found that the amniotic fluid in which a 

lamb is born contains most of the compounds identified in its cranial wool, albeit in totally 

different relative quantitative concentrations (unpublished results), an observation that 

apparently supports the hypothesis that the cue is produced by the lamb.  Finally, it is also 

possible that bacterial metabolism of residual amniotic fluid or compounds produced by skin 
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glands could play a role in the production of the neonatal recognition cue in sheep, as it does 

in some other animals.  The role of microbial ecology in kin recognition and other aspects of 

animal behavior have recently been reviewed by Archie and Theis (2011).  This aspect will 

receive our urgent attention in the near future.   
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