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ABSTRACT

Quasi-periodic pulsations (QPPs) are routinely observed in a range of wavelengths during flares but in most cases

the mechanism responsible is unknown. We present a method to detect and characterise QPPs in time series such as

light curves for solar or stellar flares based on forward modelling and Bayesian analysis. We include models for QPPs

as oscillations with finite lifetimes and non-monotonic amplitude modulation, such as wave trains formed by dispersive
evolution in structured plasmas. By quantitatively comparing different models using Bayes factors we characterise the

QPPs according to five properties; sinusoidal or non-sinusoidal, finite or indefinite duration, symmetric or asymmetric

perturbations, monotonic or non-monotonic amplitude modulation, and constant or varying period of oscillation. We

demonstrate our method and show examples of these five characteristics by analysing QPPs in white light stellar

flares observed by the Kepler space telescope. Different combinations of properties may be able to identify particular
physical mechanisms and so improve our understanding of QPPs and allow their use as seismological diagnostics. We

propose three observational classes of QPPs can be distinguished; decaying harmonic oscillations, finite wave trains,

and non-sinusoidal pulsations.
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1. INTRODUCTION

Quasi-periodic pulsations (QPPs) are frequently ob-

served in solar and stellar flares (e.g. Anfinogentov et al.

2013; Pugh et al. 2015, 2017b; Namekata et al. 2017;

Hayes et al. 2020). There is no precise definition
but it is generally acknowledged that the amplitude

and period modulation are important features (e.g.

Nakariakov et al. 2019). Numerous mechanisms have

been proposed which can potentially explain QPPs

though it remains an open question which are most
common (see, e.g., reviews by Van Doorsselaere et al.

2016; McLaughlin et al. 2018; Kupriyanova et al. 2020).

Due to their non-stationary nature, wavelet analysis

is commonly used to reveal QPPs in light curves al-
though care is needed to distinguish oscillations from

noise particularly when there is a strong background

trend (e.g. López-Santiago 2018). The temporal and

frequency resolution can also be sensitive to the choice

of mother wavelet (e.g. De Moortel et al. 2004). The
problem of robust identification of QPPs was ap-

proached by Broomhall et al. (2019) who tested var-

ious methods against synthetic data, demonstrating

that forward modelling with Bayesian analysis (e.g.
Anfinogentov et al. 2020) and empirical mode decom-

position (EMD; e.g. Kolotkov et al. 2015) are the most

suitable methods for QPPs with non-stationary periods.

Bayesian analysis is widely used in astronomical data

analysis (see review by Sharma 2017), such as the es-
timation of cosmological parameters (Lewis & Bridle

2002; Wraith et al. 2009) and the search for exoplan-

ets Nelson et al. (2020). Bayesian analysis is increas-

ingly being applied to data analysis in solar physics
(see review by Arregui 2018) such as heliosesmol-

ogy (e.g. Broomhall et al. 2010; Howe et al. 2015),

the inference of longitudinal structuring of coronal

loops (Arregui et al. 2013a), and forward modelling

of their EUV intensity profiles (Pascoe et al. 2017b;
Goddard et al. 2017). In particular, Bayesian analysis

has been extensively applied to study transverse os-

cillations in coronal loops, allowing them to be used

as a seismological tool to infer the transverse den-
sity structure. These transverse oscillations are sim-

pler that QPPs in having an accepted interpretation

in terms of a standing kink mode damped by reso-

nant absorption (e.g. review by Nakariakov & Kolotkov

2020). Kink oscillations were first analysed by fitting an
exponentially damped sinusoid (e.g. Nakariakov et al.

1999) but modern techniques attempt to accurately

measure the (non-exponential) amplitude modulation

which contains information about the density profile
of the loop (e.g. Hood et al. 2013; Pascoe et al. 2013a,

2019). The non-exponential damping profile may also

be revealed through methods such as wavelet anal-

ysis (De Moortel et al. 2002) or least-squares fitting

(Pascoe et al. 2016a,b; Morton & Mooroogen 2016) but

Bayesian methods allow the density profile parame-
ters, which in some cases may only be partially con-

strained by the data, to be calculated (Arregui et al.

2013b; Pascoe et al. 2017a,d, 2018). Forward modelling

of the observed time series also allows detailed prop-

erties to be investigated by directly incorporating our
physical understanding in the model. For example,

Pascoe et al. (2017a) were able to detect the signature

of low amplitude higher longitudinal harmonic kink

modes by modelling them as having periods that are
approximately integer multiples of the fundamental,

having the same start time as the fundamental, and a

frequency-dependent damping rate appropriate for res-

onant absorption. Fourier and wavelet techniques were

shown to be unsuitable for the same problem of low-
amplitude harmonics (Figure 18 of Pascoe et al. 2017a)

since frequency-dependent damping reduces the spectral

signature of higher harmonics whereas forward mod-

elling can correct for this bias. Recently, Pascoe et al.
(2020) used Bayesian analysis to distinguish between

models of kink oscillations containing either one or two

perturbations to test if loops in an active region had

been affected by both solar flares that occurred nearby.

The techniques that have been applied to analyse
strongly damped kink oscillations are therefore well

suited to study QPPs. In particular, Pascoe et al.

(2017d) modelled kink observations which feature rapid

shifts in the equilibrium position of the coronal loop in
addition to a smoother background trend, including a

contracting loop (Simões et al. 2013) whose period of

oscillation decreased commensurate with the shortening

loop length. In this work we use a similar approach

in constructing a model comprised of an oscillation, a
smooth background, and a rapidly varying background

which in this case represents the sharp increase in flux

during the rise phase of a flare.

QPPs have been observed in a range of elec-
tromagnetic frequencies, for example; white-light

(Mathioudakis et al. 2003; Anfinogentov et al. 2013),

microwave (Kupriyanova et al. 2010), EUV (Dominique et al.

2018), X-ray (Mitra-Kraev et al. 2005; Pandey & Srivastava

2009; Hayes et al. 2020), and gamma-ray (Nakariakov et al.
2010; Li et al. 2020), and often in multiple bands simul-

taneously (e.g. Van Doorsselaere et al. 2011; Dolla et al.

2012; Hayes et al. 2016; Kupriyanova et al. 2019). In

this paper we analyse white-light flares observed by the
Kepler space telescope (Borucki et al. 2010), though

the same method would be applicable to other obser-
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vations with appropriate models for the behaviour of

background trends.

Balona et al. (2015) analysed 257 flares observed by

Kepler and found 47 which contained additional peaks,
and seven which showed evidence of damped oscillations

lasting several cycles. The lack of a correlation for the

periods with stellar parameters suggested the oscilla-

tions were due to magnetohydrodynamic (MHD) pro-

cesses similar to those observed in the Sun. Pugh et al.
(2016) analysed 56 Kepler flares which contained QPPs

and found that their properties are independent of

global stellar parameters. QPPs have also been de-

tected in stellar flares using the Galaxy Evolution Ex-

plorer (GALEX; Doyle et al. 2018), the Transiting Ex-

oplanet Survey Satellite (TESS; Vida et al. 2019), and

XMM-Newton (e.g. Broomhall et al. 2019b). A compar-

ison of damped oscillations in solar and stellar flares by

Cho et al. (2016) demonstrated that the ratios of damp-
ing times to periods were statistically identical and that

both exhibited a scaling consistent with MHD oscilla-

tions.

Bayesian analysis is particularly useful for quantita-
tive model comparison. Since numerous mechanisms

for QPPs have been proposed, ideally each mechanism

could be tested against observations to identify those

most likely. However, detailed theoretical models de-

scribing the observable signal for most QPP mechanisms
do not currently exist. Therefore, it is currently not pos-

sible to test mechanisms directly but instead we can con-

struct a series of models to investigate particular prop-

erties of QPPs with the aim of reducing the possibilities.
The properties we focus on are;

1. Confirmation of the presence of an oscillation.

We examine previously-studied examples of stel-

lar QPPs for which confirmation of a QPP is sim-

ple. However, since our general model also in-
cludes flaring emission we can test an alterna-

tive interpretation of periodically triggered flares

(Nakariakov et al. 2006) rather than an oscillation

based on a sinusoidal function.

2. The oscillation has a finite or indefinite duration,

depending on whether it has a well-constrained
end time or not.

3. Perturbations are either symmetric or asymmetric

relative to the background trend.

4. Amplitude modulation is monotonic (decreasing)

or non-monotonic.

5. Period of oscillation is constant or varying.

Our models for the light curves are described in Sec-

tion 2, with application to Kepler data in Section 3.

Further discussion and conclusions are presented in Sec-

tion 4.

2. MODELS

Our method is based on modelling an arbitrary time
series i.e. without detrending and with no particular

choice of start and end time for the data. Pugh et al.

(2017a) use a method to identify QPPs based on power

spectra which does not require detrending but does re-
quire that the background trend is not too steep, and

that the start and end times of the time series are chosen

carefully. Inglis et al. (2015) also use a method based on

modelling power spectra without detrending and per-

form model comparison using the Bayesian information
criterion (BIC). The avoidance of detrending is impor-

tant since the assumption of a particular fixed trend can

bias subsequent analysis of an oscillation. This is par-

ticularly important for asymmetric oscillations such as
strongly damped oscillations or those with higher har-

monics present. A longer time series may also better

reveal other background trends or noise levels, and al-

lows the flare to be studied simultaneously with the

QPP, convenient for investigating any dependence of
QPP properties on flare properties.

Our general model for a time series consists of three

components (though components may be excluded for

particular analyses)

1. a general background trend which is based on
spline interpolation (for three or more interpola-

tion points). The number of interpolation points

is chosen to allow an accurate description of the

background behaviour, depending on factors such
as the length of the time series and any long-term

trends which are evident (the periodicity associ-

ated with the spline background must be longer

than that of any QPP).

2. an asymmetric function describing a localised in-

crease in flux due to a flare.

3. a component based on a sinusoidal function repre-
senting an oscillatory QPP.

We model the flaring emission using asymmetric expo-

nential and Gaussian functions with different temporal

scales for the rising and decay phases (see examples in

Figure 1). We note that the Gaussian profile, previously
used in the analysis of synthetic data in Broomhall et al.

(2019a), was found to provide a poor description of the

light curves in this paper and so we will focus on ex-

ponential profiles, though a Gaussian profile may be
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more suitable for soft X-ray emission (e.g. Gryciuk et al.

2017). The exponential flare profile is

yf (t) =







Af exp ((t− tf )/τrise) t ≤ tf

Af exp (−(t− tf )/τdecay) t > tf
(1)

whereAf is the amplitude at the peak time tf , τrise is the

rise time, and τdecay is the decay time. We impose that

the decay time is greater than the rise time, as expected

for flares, by considering that τdecay = τriseτratio where

τratio is defined to be greater than 1, typically by using
a uniform prior with the limits τratio = [1, 100]. The

rise time can vary significantly for different events but a

range of τrise = [0.1, 50] minutes was found to be suitable

for those in this paper. Flare amplitude can also vary
significantly but our normalisation of the time series en-

sures a range of Af = [0, 1.5] is sufficient. Here, values

above 1 are permitted for estimation of uncertainties

when Af ≈ 1. (Similarly, in some cases the background

trend may be very close to 0 and so a suitable prior for
background parameters is [−0.1, 1].) For models with a

single flare the prior tf = [min (t) ,max (t)] may be used

but for cases with multiple flares more specific estimates

preserve the order of the flares and so avoid degeneracy.
Davenport et al. (2014) studied the temporal mor-

phology of thousands of white-light flares on the M dwarf

star GJ 1243 (KIC 9726699) and found the decay phase

is best described using two exponential regimes. These

two decay profiles describe impulsive and gradual cool-
ing phases associated with blackbody and red contin-

uum emission, respectively (Kowalski et al. 2013). In

our models the spline component is capable of describ-

ing slower variations in the background, but we can also
explicitly include a second decay phase in our model as

required, with the form

yf (t) =















Af exp ((t− tf )/τrise) t ≤ tf

Af exp (−(t− tf )/τdecay) tf < t < t2

A2 exp (−(t− t2)/τ2) t > t2
(2)

where the amplitude A2 = Af exp (−(t2 − tf )/τdecay) at

the start of the second decay phase t2, after which the

decay time is τ2, which is defined to be greater than τrise,

as with τdecay.
We consider two main forms for the sinusoidal function

describing the QPP, and a generalised model which can

reduce to either case. The first (Type O; oscillatory) is

the common form

yO = A sin
(

ωt̃
)

, (3)
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Figure 1. Examples of light curve models featuring a flare
and QPP. The light curve (green line) is comprised of a back-
ground (solid blue line) and a QPP modelled as an oscillation
with a finite duration. The QPP component is shown sepa-
rately as a solid red line, with the dashed red line represent-
ing zero perturbation (shifted for visibility). The thin black
line represents the envelope of the QPP. The background
consists of a flare (dotted blue line) and a spline component
(dashed blue line). Type O, Type P, and Type G QPPs are
distinguished based on how they contribute to the total flux,
as described by Equations (3) – (5), respectively.

with amplitude A, period of oscillation P , frequency ω =

2π/P , and start time t0, with t̃ = t − t0. The second

form (Type P; positive) is

yP = A
[

1− cos
(

ωt̃
)]

, (4)

which defines the oscillatory perturbations to be strictly

positive. The second form is related to the square of
the first form via the identity 2 sin2 x ≡ 1 − cos (2x)

but the version given in Equation (4) retains the same

definition of the amplitude and period of oscillation as

Equation (3). This is convenient for parameter estima-
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tion since the same values may be used for both models.

We note that we model the periodicity associated with

the observed signal which is not necessarily the period-

icity of the underlying physical mechanism since it also
depends on how the observed emission is generated.

We can also consider a general (Type G) form for the

oscillation

yG = 2A sin
(

ωt̃/2
)

cos
(

ωt̃/2− φ
)

, (5)

with a phase shift φ = [0, π/2], where lower and upper
limits correspond to Type O and Type P oscillations, re-

spectively. Alternatively, we can characterise the asym-

metry of the QPP in terms of the positive fraction

FP = 0.5 (1 + sinφ) , (6)

with limits of 0.5 (Type O) and 1 (Type P). A compar-

ison of models for Types O, P, and G allows us to test
for and potentially quantify any asymmetry in the oscil-

lation. The asymmetry of the oscillation may be related

to the mechanism which generates the observational sig-

nal. For a particular mechanism this could be modelled
directly. We note however that these functions do not

describe any distortion to the sinusoidal profile which

might also arise for a nonlinear relationship between the

physical perturbation and the observed emission.

For the oscillations described above the start time t0 is
a time for which the sinusoidal function is zero. The lo-

calisation of the QPP in time is described by the chosen

form of the amplitude modulation. A common choice is

a decay profile of the form exp
(

−t̃n/nτn
)

with a decay
time τ and exponent n. Exponential and Gaussian decay

profiles are given by n = 1 and 2, respectively. An ex-

ponential profile or half-Gaussian profile, each nonzero

for t̃ ≥ 0, describe monotonic amplitude modulation but

without a defined end time. As in Pugh et al. (2016), we
can also consider a full Gaussian profile to describe non-

monotonic amplitude modulation, in which case there

is also no defined start time and t0 corresponds to the

time of maximum amplitude.
However, our main focus is on models which describe

QPPs as having an explicit end time rather than, or

in addition to, harmonic oscillations defined on an in-

finite or semi-infinite interval. The detection of a well-

defined end time can assist in the identification of the
QPP mechanism or interpretation of the the signal du-

ration. For example, in the case of quasi-periodic wave

trains generated by an impulsive perturbation of an in-

homogeneous plasma the duration of the wave train is
determined by dispersion (e.g. Roberts et al. 1983), with

a characteristic ‘tadpole’ signature generated by pertur-

bations that are sufficiently localised in space and time

(e.g. Nakariakov et al. 2004, 2005; Goddard et al. 2019).

We consider several oscillation envelopes which have

explicit start and end times. The amplitude of each of

the envelopes is defined as 1 at the start time t0, and 0

at the end time t1. A finite lifetime for the QPP also has
the practical benefit of providing a finite time for which

any period modulation also needs to be considered. In

contrast, for an exponential damping profile the QPP

would continue to exist indefinitely with a vanishingly

small amplitude unconstrained by the data (which is
often quite noisy) and so any period modulation would

also be unconstrained. This is a key issue since accurate

detection of amplitude and period modulation in QPPs

is essential to identifying the mechanism responsible.
Oscillation envelopes considered in this work are; a

linear decrease

F (t) = 1 + (t− t0) / (t0 − t1) (7)

a cosine function (quarter of a cycle from 1 to 0)

F (t) = cos (0.5π (t− t0) / (t1 − t0)) , (8)

and a spline envelope

F (t) = spline ([t0, ti, t1] , [1, yi, 0] , t) . (9)

The spline envelope starts at 1 and ends at 0 with one

or more points (ti, yi) in between which are free param-

eters of the model. The linear and cosine envelopes are

monotonically decreasing by definition, whereas for the
spline envelope the priors for the interpolation points

yi can include values greater than 1 which allows this

envelope to describe non-monotonic amplitude modu-

lation. Examples of these three envelopes are shown in
Figure 1. The linear, cosine, and spline envelopes shown

are qualitatively similar to exponential, half-Gaussian,

and full Gaussian decay profiles, respectively, but having

explicit start and end times rather than being defined

on a semi-infinite or infinite interval.

3. RESULTS

We demonstrate our method by applying it to sev-

eral QPPs observed during white light stellar flares by

the Kepler space telescope and compare our results to

previous analysis. The observational data are the simple

aperture photometry (SAP) light curves. The statistical
study by Pugh et al. (2016) demonstrates that the QPP

properties are not correlated with the emission ampli-

tude so for convenience we normalise each of our light

curves to the range [0, 1]. The dates and normalisation
fluxes for our observational data are noted in Table 2.

We compare our models to the observational data using

a version of the Solar Bayesian Analysis Toolkit (So-

BAT; Pascoe et al. 2017a; Anfinogentov et al. 2020) for
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Markov chain Monte Carlo (MCMC) sampling. Our cal-

culations are based on 2× 106 MCMC samples for each

model, with a burn-in stage of 105 samples, which is

found to be sufficient for the problems in this paper.
The burn-in stage ensures our parameter results are in-

dependent from their initial estimates and that the main

sampling begins in a region of the parameter space with

high probabilities. Model parameters use uniform prior

probability density functions, except where stated that
results from previous analysis by Pugh et al. (2016) are

used to define a normal prior. By definition FP must

be in the interval [0.5, 1] but for other model parame-

ters estimates are used to define the limits, which are
checked using the posterior probability density function

to ensure they are not unreasonably restricting the pa-

rameter values. Prior limits are also used to avoid un-

necessary degeneracy in models, for example in a model

with multiple flares their times are restricted so as to
preserve the order in which they occur.

SoBAT generates samples using the Metropolis-

Hastings algorithm (Metropolis et al. 1953; Hastings

1970) with the multivariate normal distribution used
as the proposal distribution. The covariance matrix is

automatically tuned to keep the acceptance rate in the

range of 10 – 50% during sampling, to ensure efficient

sampling of the high-dimensional parameter space. If

the acceptance rate becomes too high or too low the step
size is retuned and the chain is restarted. We assume

that the error in our data is normally distributed with a

standard deviation of σn which is considered as an ad-

ditional free parameter in our models. In this paper we
consider models with 6 – 27 free parameters which the

SOBAT code is well suited to consider. For problems

with a far greater number of free parameters alternative

MCMC strategies can be used (e.g. Haario et al. 2004).

3.1. KIC 2852961

In their analysis of this QPP, Pugh et al. (2016) calcu-

late an adjusted flux by subtracting a smoothed version
of the time series. This method can generate spurious

results when applied to a rapidly changing signal, such

as the rising phase of a flare. This problem is avoided

in Pugh et al. (2016) by only considering the decaying

phase of the signal and cropping the time series accord-
ingly. Here we first consider a similarly cropped time se-

ries but model the background simultaneously with the

QPP rather than detrending. In this case, the general

background component (a spline with 5 interpolation
points) is found to be sufficient to describe the slight

rise and subsequent decay of the flux, so here we do not

include a flare component such as Equation (1) which

includes a large, rapid rise phase.

Pugh et al. (2016) take the time of maximum flux to

be the start time for their adjusted flux (with times

before this considered to be negative). However, it is

evident in the top left panel of their Figure B1 that
the QPP likely starts before this time, in which case

their first zero of the sinusoidal oscillation might actu-

ally be closer to a maximum. (This also means their

QPP oscillation has an initially negative perturbation.)

Their fitting method estimates the period of the QPP as
P = 67± 1 minutes and a decay time of τ = 27± 2 min-

utes, with a Gaussian decay profile found to be bet-

ter than an exponential one. In general the Gaus-

sian profile of Pugh et al. (2016) includes the increas-
ing phase as well as the decreasing phase, with the time

of maximum amplitude determined by their parameter

B = 35 ± 2 minutes−2. In Figure B1 of Pugh et al.

(2016) the fitted damping profile appears to significantly

underestimate the maximum at ≈ 100 minutes, suggest-
ing a Gaussian profile eventually becomes too strong,

though the behaviour for the first few extrema justifies

its choice over an exponential decay profile.

Results of our analysis are shown in Figure 2. Here
our time series starts and ends at approximately the

same times as that shown in Figure B1 of Pugh et al.

(2016). However, each of our models is applied to the

full time series shown, whereas in Pugh et al. (2016)

only the time after peak flux (here ≈ 55 minutes) was
considered. In the top panels we first consider a model

with no QPP component, i.e. just a spline background

using five interpolation points. The total number of pa-

rameters in this model is therefore np = 6 including the
observational noise σn.

The significance of an oscillatory QPP in a time series

can be quantified by comparing the Bayesian evidence

for the model which includes the oscillation to a model

without the oscillation but otherwise the same. How-
ever, this relies on the Bayesian analysis for the model

with a QPP having already been done. We can con-

sider the problem of identifying the need for a QPP

from a model containing only the background compo-
nents. From the posterior predictive distribution (PPD)

for our model without a QPP (top right panel of Fig-

ure 2) it can be seen that the data points which ex-

ceed the 1-σ confidence level do so in a manner which

is consecutive, oscillatory, and mainly during the first
part of the signal. This is consistent with there being

a localised oscillatory feature missing from the model.

The PPD histograms in this paper are based on nor-

mally distributed noise, with the level of the noise σn

being an additional free parameter of the model. We

expect for a reasonable model that approximately 68%

of the data points should fall within the 1-σ region and
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Figure 2. Model for the decay phase of KIC 2852961 without a QPP (top panels) and for our strongest QPP model (bottom
panels). The middle panels correspond to a Gaussian decay profile similar to that considered by Pugh et al. (2016). The left
panel shows the model fit based on the maximum a posteriori probability (MAP) parameters, with line styles as described in
Figure 1 (as for other figures). np is the number of free parameters in the applied model. The right panel shows the posterior
predictive distribution (PPD) with contours corresponding to one-sigma, two-sigma, and three-sigma confidence levels. σn is
the estimated level of noise in the data when described by the corresponding model.

those which lie outside it should be distributed through-
out the time series in an unbiased manner. The lack

of a QPP in the model means the level of the noise

is overestimated to attempt to account for the system-

atic error from the oscillatory behaviour. We can per-
form quantitative tests to check our assumption that

the model residuals χ are normally distributed. Fig-

ure 3 shows the one-sample Kolmogorov-Smirnov tests

for the models shown in Figure 2. This test is based

on the maximum absolute distance (located by the dot-
ted line and highlighted in red) between the cumulative

distribution function (CDF) for the proposed distribu-

tion (here a normal distribution) and the empirical cu-

mulative distribution function (ECDF) for the model

residuals based on the maximum a posteriori probabil-
ity (MAP) values for model parameters. We also calcu-

late the one-sample Anderson-Darling test, which con-

siders the difference over the entire CDF rather than just

the maximum difference. Our Kolmogorov-Smirnov and
Anderson-Darling tests use µ = 0 and σn as estimated

from our MCMC sampling to calculate the CDF. We

also apply the Lilliefors test for normality which uses a

mean and standard deviation calculated from the resid-

uals themselves. This tests if the residuals are described
by some normal distribution even if not the specific dis-

tribution N
(

µ = 0, σ2
n

)

that our MCMC sampling es-

timates. Using critical values based on a significance

value of α = 0.05 we find that the model without a
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Figure 3. One-sample Kolmogorov-Smirnov tests for the
models shown in Figure 2. For a significance value of α =
0.05 the model with no QPP (top) fails the test for normality
while the models with QPPs with Gaussian (middle) and
spline (bottom) envelopes both pass.

QPP fails all three of these normality tests whereas the

models with a QPP pass all three. We note that model

residuals might also fail normality tests in the case of a

different noise distribution, such as a Poisson distribu-
tion for very low flux measurements, though this is not

the case for the observations in this paper.

The above tests are therefore useful in identifying a

weak model which can be improved, but we will focus
on the use of Bayes factors to quantitatively compare

detailed models for the purpose of characterising the

QPPs. A strength of the Bayes factor is that it con-

siders the model behaviour over the entire parameter

space rather than tests which only make use of a single
point (e.g. the MAP values) such as the three mentioned

above and others such as BIC. Furthermore, Bayes fac-

tors are suitable for comparison of non-nested models,

for example our comparison of different QPP envelopes,

and Type O versus Type P QPP models.

We applied different QPP models for the different

properties described in Section 2. The middle panels of
Figure 2 show results for a Type O QPP with a Gaus-

sian decay profile, similar to that used by Pugh et al.

(2016) except here the analysed time series extends ear-

lier than the time of peak flux (≈ 55 minutes). As in

the previous analysis, we find that the imposition of the
Gaussian profile underestimates the peak at ≈ 160 min-

utes due to the constraint that the oscillation appears to

end shortly after this time which requires a short decay

time.
The bottom panels of Figure 2 show the results for

our model which best describes the time series (based

on Bayes factors discussed below), which is a Type G

QPP (FP ≈ 0.8) with spline envelope and constant pe-

riod of oscillation. This model has explicit start and end
times and so the localisation of the QPP in time does

not depend on the shape of the amplitude modulation

alone, as is the case for the Gaussian decay profile for

which the localisation is implied through the decay time.
This allows us to characterise the amplitude modulation

independently of the localisation in time by consider-

ing different envelopes, such as the additional examples

shown in Figure 4 and summarised in Table 1.

The Gaussian and spline models discussed above each
provide a good description of the oscillatory behaviour in

the light curve and the results are qualitatively similar.

Both models pass all three normality tests for residu-

als whereas the model without a QPP failed all three.
The sums of the absolute values of the residuals are also

nearly identical, so these tests based on the MAP pa-

rameters do not allow us to differentiate the models.

The Bayes factor (Jeffreys 1961) provides more robust

model comparison by taking the entire parameter space
into account. The Bayes factor comparing model i with

model j is

Kij = 2 lnBij (10)

where Bij is the ratio of Bayesian evidence for model i to

model j. The Bayes factor for the spline envelope model

compared with the Gaussian decay model is KSG = 19.

The value being greater than 10 indicates very strong
evidence (e.g. Kass & Raftery 1995) in favour of the

model with a spline envelope. We can consider this

as a measure of our confidence in the QPP having a

finite duration since it compares our strongest model
with explicit start and end times to our strongest model

without these. On the other hand, the Gaussian decay

model outperforms models with cosine (KGC > 40) and

linear (KGL > 69) envelopes, indicating that the non-
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Figure 4. Models for KIC 2852961 with Type O (left) and Type P (right) QPPs, with linear (top), cosine (middle), and spline
(bottom) envelopes.

monotonic amplitude modulation is a much stronger fea-

ture of the QPP than the finite duration.

In Table 1, the Bayes factorKQ0 compares each model

to that with no QPP (top panels of Figure 2) and as ex-

pected all of them greatly exceed the threshold for very
strong evidence. The Bayesian evidence favours Type

O QPPs over Type P for both the linear and cosine

envelopes, but favours Type P when using the spline

envelope. The Bayes factor for the Type P spline com-
pared to the Type O spline is KPO = 24, indicating

very strong evidence. These results demonstrate the im-

portance of accurately modelling the amplitude modula-

tion since the evidence for a Type P QPP only becomes

apparent when allowing the non-monotonic amplitude
modulation. This is due to the large amplitude of the

second peak which cannot be accounted for by either

the linear or cosine envelopes which are monotonically

decreasing. However, for Type O models there is flex-

ibility to adapt to this by shifting the location of the

equilibrium, whereas for Type P models the equilibrium

is effectively constrained to follow the local minima of

the flux since the perturbations are defined to be posi-
tive only. When the spline envelope is used and the am-

plitude modulation is permitted to be non-monotonic

the constraint on the background trend no longer dis-

advantages the Type P QPP model and it provides the
best description of the light curve. This behaviour is

also seen in the results for the Type G models, with the

positive fraction being FP ≈ 0.5 for linear and cosine

envelopes, but being well constrained with FP ≈ 0.8 for

a spline envelope.
We also see how the asymmetry of the QPP affects the

estimate for the start time, with Type P models having

an earlier start time in accordance with the longer time
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Type Envelope t0 (min) t1 (min) P0 (min) P1 (min) A0 A1 FP KQ0

O Linear 41.5+1.2
−1.2 223+13

−11 55.0+1.2
−1.0 – 0.20+0.02

−0.01 – 0.5 361

Cosine 41.1+1.3
−1.1 211+10

−11 55.4+1.0
−1.1 – 0.17+0.01

−0.01 – 0.5 390

Spline 40.0+1.3
−1.6 181+10

−6 56.3+1.3
−1.1 – 0.09+0.03

−0.04 1.9+1.7
−0.5 0.5 418

Spline 40.1+2.1
−2.8 182+9

−7 56.3+5.4
−4.4 56.3+1.5

−1.2 0.09+0.03
−0.05 1.8+2.2

−0.5 0.5 414

P Linear 30.3+1.6
−1.6 228+20

−14 53.5+1.3
−1.2 – 0.16+0.02

−0.02 – 1 255

Cosine 29.8+1.4
−1.5 217+10

−10 53.8+1.1
−1.0 – 0.14+0.02

−0.01 – 1 310

Spline 26.2+1.5
−1.3 183+6

−3 56.2+1.0
−1.0 – 0.04+0.03

−0.004 4.5+0.5
−2.0 1 442

Spline 28.2+2.9
−2.2 183+6

−3 52.7+3.3
−4.8 56.4+1.1

−0.9 0.05+0.02
−0.02 3.3+1.4

−1.0 1 442

G Linear 41.4+1.1
−1.4 222+14

−11 55.1+1.1
−1.0 – 0.20+0.01

−0.02 – 0.50+0.05
−0.00 355

Cosine 40.8+1.2
−1.7 213+9

−12 55.4+0.9
−1.2 – 0.17+0.01

−0.01 – 0.51+0.10
−0.01 385

Spline 34.2+2.3
−3.9 184+5

−5 56.0+1.2
−0.7 – 0.06+0.02

−0.02 2.7+1.7
−0.6 0.82+0.12

−0.11 449

Spline 35.2+3.2
−3.9 182+7

−3 52.8+4.5
−3.1 56.6+1.1

−1.1 0.07+0.03
−0.02 2.5+1.1

−0.8 0.84+0.12
−0.20 447

Table 1. Models for KIC 2852961 (cropped time series). Posterior summaries correspond to the MAP value and 95% confidence
interval. P0 is the constant or initial period of oscillation. P1 is the final period of oscillation for models with a linear variation.
A0 is the initial amplitude of the envelope. A1 is the additional free parameter for the spline envelope, corresponding to the
amplitude at the centre of the envelope relative to the initial amplitude. FP is the positive fraction given by Equation (6). KQ0

is the Bayes factor for each model compared with the model without a QPP.

required to reach the first maximum. This difference

is approximately a quarter of the period of oscillation.

The period of oscillation is approximately 56 minutes
compared to 67± 1 found by Pugh et al. (2016) though

this difference can be accounted for by the different in-

terpretation of the start time of the QPP. The associ-

ated uncertainty is slightly smaller in our method with

σP ≈ 0.5 minutes.
We examine if the QPP has a varying period of os-

cillation by considering models with a linear variation

from P0 to P1 at the start (t0) and end (t1) times, re-

spectively, i.e.

P (t) = P0 + (t− t0)
(P0 − P1)

(t0 − t1)
t0 ≤ t ≤ t1. (11)

The results in Table 1 show that for models with a vary-
ing period the credible intervals significantly increase

compared to those for a constant period, indicating poor

constraint of the parameters by the data. The Bayes fac-

tor for the equivalent non-stationary model compared to

the strongest stationary model is KNS = 1.9. The value
is positive, i.e. in favour of a varying period, but the

magnitude is less than 2 which is the minimum thresh-

old to be considered “positive” rather than “not worth

more than a bare mention” (Kass & Raftery 1995).
To summarise (see Table 2) we find the evidence for

the QPP is conclusive and the strongest model is a Type

G oscillation with finite duration, non-monotonic ampli-

tude modulation, and a constant period of oscillation.

Our conclusion of a constant period of oscillation

applies to the time series used in this section which

is cropped around the decay phase of the flare as in
Pugh et al. (2016). Next we consider an extended time

series for the same event and find evidence for a decreas-

ing period. However, we stress that this is not due to

our method itself being sensitive to the choice of start

and end times (as can be the case with Fourier/wavelet
analysis). Instead, extending the time series presents

an additional local maximum (at ≈ 300 minutes in Fig-

ure 5) which we model as also being part of the QPP.

This additional oscillation cycle has a longer periodicity
than the subsequent ones and so the QPP model bet-

ter describes the data when using a varying period of

oscillation.

Figure 5 shows the same event with the time series

extended on both sides of the QPP to include the rise
phase of the flaring emission. This demonstrates the in-

clusion of the flare component(s) of our model. There

appear to be three flares during the extended time series

which we model with exponential rise and decay phases.
We assume that the rise and decay times are the same for

each flare. To avoid degeneracy, the priors for the times

of the flares are defined by the non-overlapping inter-

vals [125, 140], [275, 300], and [755, 780] minutes. There

appear to be significant deviations from an exponen-
tial decay, seen most clearly during the decay phase of

the third flare (∼ 1000 minutes). This behaviour does

not resemble two exponential decay phases either, and

appears to be approximately linear. Our spline back-
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Figure 5. Analysis of KIC 2852961 using an extended time series featuring multiple flares. The top left panel shows the
PPD for a model without a QPP. The right panels show the MAP components of models with Type O (top) and Type P
(bottom) QPPs. The bottom left panel shows wavelet analysis for the detrended light curve. The green line shows the signal
after detrending with the background from the Type P QPP model (shifted for visibility). The colour contour represents the
normalised wavelet power and the hatched region is the cone of influence. The dashed line shows the modelled period variation
(MAP values).

ground component (dashed blue line) is able to describe

this behaviour without the need to modify the form of
the flare component.

The right panels of Figure 5 show the results for Type

O (top) and Type P (bottom) QPP models. For this

extended time series, the very strong evidence for an

asymmetric QPP remains (KPO = 809), although Type
G is no longer stronger than Type P (KPG = 5.7). The

evidence for a (linearly) varying period of oscillation,

described by Equation (11), is very strong (KNS = 96)

for this extended time series which includes the addi-
tional cycle at ≈ 300 minutes. The period of oscillation

decreases by 19% over the lifetime of the QPP and the

shape of the QPP resembles an impulsively generated

quasi-periodic wave train formed by the dispersive evo-

lution of MHD waves. This is also seen in the bottom
left panel of Figure 5 which shows the wavelet analy-

sis (using the code by Torrence & Compo 1998) of the

detrended light curve with the characteristic tadpole sig-

nature (Nakariakov et al. 2004).

3.2. KIC 12156549

Figure 6 shows our time series for this event which is

again extended in comparison to Figure 1 of Pugh et al.

(2016) to show more of the background behaviour. This

highlights a smaller flare just before the main one, and a

long term background that appears to be flat (which we
model as being constant rather than using a spline back-

ground component). There are four strong peaks in the

light curve. Unlike the previous example, the difference

between peaks which should be attributed to flares and

those which are part of an oscillation is not so clear.
This suggests two alternative models; two flares with

an oscillatory QPP, or four flares without an oscillatory

QPP. The latter case could still be considered a QPP

as the repetitive triggering of flares is also a proposed
mechanism for generating quasi-periodic pulsations in

emission. Quantitatively comparing these two interpre-

tations is a non-nested model comparison problem which

Bayesian analysis is well suited to.

Results of models without an oscillatory component
are shown in Figure 6. As in the previous example,

for multiple flares we assume that the rise and decay

times are the same for each flare. For the model with

four flares, the priors for the flares times are defined
by the intervals [245, 260], [310, 325], [345, 360], and

[395, 420] minutes (models with two flares use the first

two of these). The model with two flares is clearly insuf-

ficient and the residuals fail our three tests for normality

(see Figure 7). However, the model with four flares pro-
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Figure 6. Models for KIC 12156549 with a constant background and no QPP component; two flares (top) and four flares
(bottom), each of which is modelled using the asymmetric exponential profile in Equation (1).
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Figure 7. One-sample Kolmogorov-Smirnov tests for the
models shown in Figure 6. For a significance value of
α = 0.05 the model with two flares (top) fails the test for
normality while the model with four flares (bottom) passes.

vides a very good description of the light curve and its
residuals pass the three normality tests. The Bayes fac-

tor for four flares compared with two is K42 = 562.

Previous analysis of this event is shown in Figure 1
of Pugh et al. (2016) and was found to have a period of

44.6± 0.6 minutes and Gaussian profile with decay time

36± 2 minutes and B = 28± 2 minutes−2. In the previ-

ous example (Section 3.1) we had a different interpreta-

tion of the start time of the oscillation and so obtained
a different period of oscillation. That is not the case

here and so we can make use of the previously reported

mean period and its standard deviation to define a nor-

mal prior for the period in our analysis. Based on the
Gaussian decay profile with B > 0 we can also expect a

spline envelope to provide the best description. Results

of models with two flares and an oscillatory component

are shown in Figures 8. For the oscillatory QPP models,

we find Type P is better than Type O (KPO = 60), and
Type G provides no further improvement (KPG = 0.1).

There is also strong evidence against a varying period of

oscillation (KNS = −6.1) based on comparing a model

with a linearly varying period to one with a constant pe-
riod. However, the four flare model remains remarkably

better than the Type P model (K4P = 112).

These results demonstrate very strong evidence for a

multi-flare model over an oscillation model for this QPP

(or at least over the simple sinusoidal oscillations con-
sidered in this paper). The apparent periodic nature of

the three later flares may simply be coincidental. How-

ever, we can also consider the mechanism of the quasi-

periodic modulation of flaring emission by an MHD os-
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Figure 8. Models for KIC 12156549 with two flares and a QPP with spline envelope; Type O (top) and Type P (bottom).

cillations (Nakariakov et al. 2006). We can speculate

that the first flare generated an oscillation in a loop or
structure which then triggered periodic flaring energy

release in an associated active region. This is consistent

with the amplitude and timing of the first flare appear-

ing to be different from the three subsequent ones. The
decrease in flare amplitude in time may also be inter-

preted as each subsequent flare having less energy stored

in the flaring system to release. Oscillatory reconnection

can also generate periodic outputs, without the need for

an oscillating structure. An impulsive phase is followed
by a stationary phase resembling a damped harmonic

oscillator (McLaughlin et al. 2012). Alternatively, the

signal might be better described by a nonlinear or multi-

harmonic oscillation with cycles that are more triangu-
lar than the sinusoidal function used in this paper. In

both our analysis and previous by Pugh et al. (2016),

the main limitation of sinusoidal models appears to be

the significant underestimation of the local maximum at

≈ 350 minutes.

3.3. KIC 9726699

Here we consider an example for which the strongest

QPP model is that of an exponentially damped sinu-

soid. This was selected from the examples in Pugh et al.
(2016) on the basis of their analysis supporting an ex-

ponential decay profile with a large decay time, and

we again use their estimates (P = 24.2 ± 0.1 and

τ = 133± 33) to define our Bayesian priors.

The statistical study by Davenport et al. (2014) found

over 6100 flares in KIC 9726699 and, after suitable
rescaling in amplitude and duration, was able to fit de-

tailed models to the rise and decay phases. The rise

phase was fit by a fourth-order polynomial. The decay

phase was fit using two separate exponential profiles,
and with an improved model which smoothed out the

transition between phases. For this flare the rise time

is short and so we continue to use an exponential rise

phase, rather than a polynomial, but we include the

two exponential decay phases found by Davenport et al.
(2014), as described in Equation (2). We also have a

smooth background component that helps improve our

total background trend.

The analysis for our strongest model is shown in the
top panels of Figure 9. The background uses a spline

component based on five interpolation points and a flare

with two decay phases (we find very strong evidence

against a single decay phase K = −73). For this time

series we choose to place one interpolation point just
before the flare (at t = 15 minutes). This allows the

model to better describe the short pre-flare signal than

equally separated interpolation points would allow (and

without increasing the number of points such that one
would be there when equally separated). This model

differs from Pugh et al. (2016) (see their Figure B7) in

which the QPP begins at the time of maximum flux.

We can consider an equivalent model using our method,
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Figure 9. Models for KIC 9726699 with a flare with two decay phases and an exponentially damped QPP. The top panels
represent our strongest model while the bottom panels correspond to a model for which the QPP start coincides with the peak
flux similar to that considered by Pugh et al. (2016).

shown in the bottom panels of Figure 9, though we find

very strong evidence against it (K = −32).

Aside from this different start time our results are
consistent with those of Pugh et al. (2016); we find an

exponential decay profile to be better than a Gaus-

sian (KGE = −2.7), and no evidence of asymmetry

(KPO = −1.2). The evidence for the oscillation is very
strong (KQ0 = 38) but there is no evidence for a non-

stationary period of oscillation (KNS = 0.1). (For an

exponential damping profile with a varying period t1 in

Equation (11) is taken to be the end of the time series).

There is strong evidence against a finite oscillation with
a spline envelope (K = −6.0), consistent with the os-

cillation retaining a measurable amplitude until the end

of the time series and so not having a well-defined end

time. We cut our time series just before a discontinuity
in the data which may be an instrumental effect, but

even still the signal quality (τ/P ≈ 4.7) is significantly

higher than that observed in our examples of finite wave

trains.

3.3.1. Interpretation as standing hydrodynamic mode

In this paper our aim is to characterise QPPs by

testing different functional forms for the oscillatory be-
haviour. However, it is also desirable to consider specific

mechanisms where possible, as has been demonstrated

in the Bayesian analysis of kink oscillations in coronal

loops. A large number of mechanisms have been pro-

posed but currently there are few testable predictions

which can be used to distinguish them observationally.

For this event our method supports the interpretation in
terms of an exponentially damped sinusoid. This oscil-

latory behaviour is commonly associated with standing

modes in waveguides such as coronal loops. Since the

oscillation has a long period and modulates the plasma
emission a possible interpretation is a standing slow

MHD mode. Another possibility is a standing hydrody-

namic mode proposed by Reale (2016) and applied to os-

cillations in stellar X-ray flaring emission by Reale et al.

(2018). This interpretation is particularly interesting in
terms of forward modelling due to the potential to relate

different observational features of the data, specifically

the flare properties and the oscillation properties. The

flare decay time (in minutes) can be expressed as (e.g.
Serio et al. 1991; Reale 2007; Reale et al. 2018)

τd ≈ 300
L⊙√
T6

, (12)

where L⊙ is the flux tube radius (in units of solar radius)

and T6 is the peak flare temperature (in MK). We note
that this approximation is expected to be valid within

a factor of 2 which is sufficient for the demonstration

here but more accurate relationships, for example from

numerical parametric studies, would be useful.
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For the oscillation we consider a fundamental standing

mode with

P =
2L⊙

cs
, (13)

where cs is the sound speed (in units of solar radius

per minute). To apply this interpretation to the data

we use a flare profile with two decay phases, given in

Equation (2), and consider a constant background so
that the decrease in flux is quantified by the flare profile

alone. The first decay phase describes the initial de-

crease in flux and the second decay phase τ2 is given

by Equation (12). The two free parameters τ2 and
P in previous models have been replaced by relation-

ships between three free parameters (L⊙, T6, and cs)

in this new model. The problem is now underdeter-

mined though MCMC sampling may still be used to

consider typical values. Results are shown in Figure 10
and demonstrate that these relationships and observ-

ables alone are not sufficient to strongly constrain the

model parameters, e.g. the posterior for T6 extends to

the upper limit imposed by the assumed prior interval
[1, 300] MK. This upper limit leads to a constraint on

tube length L⊙ . 8R⊙, and the corresponding limit on

sound speed cs . 0.7R⊙/min. Further constraints on

the model parameters could be provided through addi-

tional physical relationships or observational data, for
example in Reale et al. (2018) synthetic X-ray spectra

are calculated for the density and temperature distribu-

tions of the modelled flux tube.

3.4. KIC 6184894

In the statistical study by Pugh et al. (2016) oscilla-

tions with a Gaussian decay profile, low signal quality

(decay time ∼ period), and parameter B > 0, represent-

ing the time at which the profile is maximum, would be
most consistent with a non-monotonic envelope such as

that found in Section 3.1. The clearest example of this

in their analysis is for KIC 6184894, for which the fitted

period and decay time were P = 57 ± 1 minutes and
τ = 59 ± 8 minutes. We use these values to construct

our Bayesian priors where required.

The results of our analysis are shown in Figure 11 us-

ing models with a spline envelope with two free param-

eters (top panels), and a Gaussian decay profile as in
Pugh et al. (2016) (bottom panels). As in the previous

example we find very strong evidence for the flare hav-

ing two exponential decay phases (K = 163), described

by Equation (2). We find that the strong background
variation can be accurately modelled using a spline com-

ponent with four interpolation points. Our Bayes factors

support a QPP being present (KQ0 = 63) with an asym-

metric oscillation favoured for both the spline envelope

(KPO = 19) and Gaussian decay profile (KPO = 15).

There is no evidence for a varying period of oscillation

(KNS = 0.4).

For this case, there is no improvement for the spline
envelope compared to the Gaussian decay profile models

(KSG = −4.0) indicating the improved description of

the data is balanced by the inclusion of additional free

parameters. However, it is evident that the Gaussian

decay profile is also describing a finite wave train due
to its extremely low signal quality (τ/P ≈ 1.0) meaning

the oscillation is well localised within the time series

(in contrast to the example in Section 3.3 where the

oscillation persisted until the end of the time series).
To further consider our result that this flare exhibits

two decay phases, we can examine another flare that

occurred slightly earlier (beginning at BKJD 1409.45)

shown in Figure 12. We do not include a QPP compo-

nent in the models for this additional flare, and again
find strong evidence of a second decay phase (K = 24).

4. CONCLUSIONS

In this paper we have demonstrated the use of forward

modelling and Bayesian inference to analyse QPPs. We

have shown that it is practical and useful to model QPPs

as oscillations with a finite lifetime to facilitate accurate
measurement of their amplitude and period modulation

(e.g. Section 3.1). This can be in addition to the more

common analysis based on harmonic oscillations with a

decay profile but unspecified end time (e.g. Section 3.3).
We have also considered a non-oscillatory interpretation

of a QPP in the form of repetitive flaring (Section 3.2).

We have applied different models to examine key prop-

erties which may be used to classify QPPs and hence

assist in revealing the mechanisms responsible for gener-
ating them. In particular, we have used Bayesian model

comparison to distinguish five properties of QPPs. A

summary of our results is shown in Table 2. For KIC

12156549 our most probable model is pulsations de-
scribed by multiple flares, though we have not consid-

ered any nonlinear oscillation models which might also

describe the data better than the sinusoidal models we

tested. We generally find evidence in favour of asym-

metric oscillations (Type P/G) rather than symmetric
ones (Type O). The asymmetry of the oscillation may be

related to the emission mechanism and so be a source of

further information if specific mechanisms can be tested.

This property can be revealed by our method since
we directly model the background trend simultaneously

with the oscillation, including flares modelled with both

single and two phase decay models (Davenport et al.

2014). In Figure 12 we also demonstrate that this can
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Figure 10. Model for KIC 9726699 based on an interpretation as a fundamental standing hydrodynamic mode. The bottom
panels show 2D histograms representing the the marginalised posterior probability density functions for the parameters defined
in Equations (12) and (13).
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Figure 11. Models for KIC 6184894; Type P QPPs with a spline envelope (top panels) and a Gaussian decay profile (bottom
panels).

also be useful to characterise flare emission profiles out-

side of QPP studies.

Classification of QPPs should be based on their obser-

vational properties but also linked to theoretical mod-
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Figure 12. Models for another flare observed on KIC 6184894, without a QPP, with a single decay phase (top panels) and two
decay phases (bottom panels), described by Equations (1) and (2), respectively.

Date (BKJD) Flux (e− / sec) Modulation

KIC Start End Minimum Maximum Sinusoidal Duration Type Amplitude Period

2852961 405.18 405.43 1283030 1288860 Yes Finite G Non-monotonic Constant

404.95 406.20 1279290 1288860 Yes Finite P Non-monotonic Decreasing

12156549 454.7 455.3 6048.44 6871.48 No (Finite) (P) (Non-monotonic) (Constant)

9726699 568.145 568.252 266668 272530 Yes Indefinite O Exponential Constant

6184894 1410.7 1411.3 70288.4 71407.2 Yes Finite P Non-monotonic Constant

Table 2. Summary of our observations and results. Dates correspond to the Kepler Barycentric Julian Day (BKJD). We
characterise the QPPs according to five properties. For KIC 2852961 we consider two time series lengths for the same event. For
KIC 12156549 the strongest model is non-sinusoidal but for comparison we include the characteristics of our strongest sinusoidal
model in parentheses.

els as much as possible. Numerous mechanisms to gen-

erate QPPs have been proposed, many of which pre-

dict similar observational behaviour. We therefore can-
not generally relate observational properties to a spe-

cific mechanism, but can reduce the possibilities by

classification based on distinct observational features.

Kupriyanova et al. (2010) discuss classification of mi-
crowave QPPs based on period modulation with cate-

gories being stable, decreasing, increasing, or multiple

(“X-shaped”). Kupriyanova et al. (2020) identify two

classes of QPP being decaying quasi-harmonic oscilla-

tions and triangular signals. They also discuss QPPs
occurring during impulsive and decay phases of flares.

However, in the case of multiple flares this difference

may be ambiguous. Nakariakov et al. (2019) also find

two possible classes of QPP to be decaying harmonic os-

cillations and trains of symmetric triangular pulsations.
Based on our results we can suggest refining this to dif-

ferentiate between pulsations which are sinusoidal wave

trains and those which are non-sinusoidal. For our ex-

amples, KIC 9726699 can be classified as a decaying har-
monic, KIC 12156549 as non-sinusoidal pulsations, and

the other examples as sinusoidal wave trains. This differ-

ence may also be associated with potential mechanisms.

For example, numerical simulations have demonstrated

the formation of quasi-periodic wave trains by structures
such as current sheets, coronal loops, magnetic funnels,

and coronal holes (e.g. Jeĺınek et al. 2012; Nisticò et al.



18 Pascoe et al.

2014; Pascoe et al. 2013b, 2014, respectively). Dis-

persion inhibits steepening for wave trains trapped in

waveguides whereas leaky components can form wave

trains with nonlinear steepening (Pascoe et al. 2017c).
The disadvantage of the method we have presented is

that forward modelling is typically much more computa-

tionally expensive than techniques such as Fourier and

wavelet analysis. MCMC sampling used in our Bayesian

analysis is also more computationally expensive than
least squares fitting although it is also more robust when

model parameters are poorly constrained by data, in ad-

dition to allowing quantitative model comparison using

the Bayesian evidence. Also, some degree of user inter-
pretation is required to choose the appropriate models

to consider, for example the number of flares. However,

other methods can also require user input such as choos-

ing appropriate start and end times for the time series.

The advantages of the method presented include: ro-

bust model comparison; accurate measurement of ampli-

tude and period modulation; the ability to consider any

asymmetry in an oscillation; modelling of flares simul-
taneously with QPPs; and no constraint on time series

length. Another advantage is that models can easily be

updated to incorporate additional details revealed by

future studies on QPP mechanisms.
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