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Abstract

Flow and Reactive Transport Processes in Porous Media

Emmanuel Adoliwine Amikiya

Department of Mathematical Sciences,

Applied Mathematics Division,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

December 2013

Flow and reactive transport of chemical species is a very common phenomenon that oc-

curs in natural and artificial systems. However in this study, the topic is related to acid

mine drainage in the South African mining environment. Due to the hazards associated

with acid mine drainage, prevention or treatment of mine effluent water before discharg-

ing to receiving waters and other environments is a necessity. A new time-dependent

mathematical model is developed for a passive treatment method, based on multi-scale

modelling of the coupled physico-chemical processes such as diffusion, convection, re-

actions and filtration, that are involved in the treatment process. The time-dependent

model is simulated on a two-dimensional domain using finite volume discretization to

obtain chemical species distributions.
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Uittreksel

Vloei en Reagerende Transportproses in Poreuse Media

(“Flow and Reactive Transport Processes in Porous Media”)

Emmanuel Adoliwine Amikiya

Departement Wiskundige Wetenskappe,

Afdeling Rekenaarwetenskap,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Desember 2013

Vloei en reagerende transport van chemiese spesies is ’n baie algemene verskynsel wat

in natuurlike en kunsmatige stelsels plaasvind. In hierdie studie is die onderwerp egter

verwant aan suurmyndreinering in die Suid-Afrikaanse mynbou-omgewing. As gevolg van

die gevare wat verband hou met suurmyndreinering, is die voorkoming of die behandeling

van die afval-mynwater voor dit in opvangswaters en ander omgewings beland ’n noods-

aaklikheid. ’n Nuwe tydafhanklike wiskundige model vir ’n passiewe behandelingsmetode

is ontwikkel. Dit is gebaseer op die multi-skaal modulering van gekoppelde fisies-chemiese

prosesse soos diffusie, konveksie, reaksies en filtrasie, wat by die behandelingsproses be-

trokke is. Die tydafhanklike model word gesimuleer op ’n twee-dimensionele domein met

behulp van eindige volume diskretisasie om die verspreiding van chemiese spesies te be-

paal.
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Chapter 1

Introduction to Acid Mine Drainage

Acid mine drainage (AMD) refers to a pollutant that is generated in abandoned mines

by the oxidation of sulphur minerals, and enters the environment as polluted water [4].

The polluted water generally consist of an acid, dissolved metals including Aluminium

(Al), Mercury (Hg) and Manganese (Mn) and other chemical compounds [54, 4, 63].

Mostly, AMD is generated by the oxidation of sulphur minerals that have been exposed

to air and water, by mining activities [54, 4, 63]. The most common sulphur mineral is

pyrite (FeS2). This mineral is available on the earth’s surface but in smaller quantities,

thus due to the limited quantities, it is consumed in reactions in a short time [54, 4, 63].

The amount of acid produced is not enough to result in a hazardous pollutant [54, 4, 63].

However, in the mining environment and during mining processes, rocks are crushed

resulting in the exposure of more pyrite [54, 4, 63]. When it rains or when water is

supplied, chemical reactions take place and more acid is produced, thus resulting in a

highly concentrated acid.

The high concentration of the acid allows the water to dissolve more chemical metal-

containing minerals [54, 4, 63]. The dissolution of the water-soluble metal-containing

minerals releases metallic ions into the acidic water, thus causing further contamination.

Formation of acid and subsequent pollution of water caused by crushed rocks at the

surface of the earth is commonly called acid rock drainage (ARD) or acid mine drainage

(AMD) [54, 4, 63].

1
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Moreover, as mining continues more rocks are crushed and deep vertical voids, long

horizontal voids or large shallow voids called mines are created within the earth. These

openings are filled with air and exposed to water sources. The surfaces or walls of the

openings contain pyrite in larger quantities as compared with the quantity on the earth’s

surface, thus with the availability of water from rain or dew, reactions occur along the

walls of the mines, resulting in the production of a high concentrated contaminant. Figure

1.1 is a picture of a typical large-scale mine where the mineral of interest is distributed

widely in shallow depths. Highly efficient machines are used for large-scale mining in

such places where the mineral of interest is distributed widely in shallow depths. These

machines create large shallow voids that can store large quantities of water.

Figure 1.1: A picture of a typical large-scale mine [63].

Moisture and air within the mines are the cause of the reactions which lead to the con-
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taminant production. When the mines are full during heavy rains or due to water sup-

plied from other sources, some of the contaminants that are less dense than water are

transported to the earth’s surface and even transported further away from the mining

environment by run-off. Figure 1.2 shows a mine that is almost filled with contaminated

water. It can also be observed in Figure 1.2 that the sludge is not separated from the

water by sedimentation. This implies that the density of the sludge (colloidal particles)

is not greater than that of water.

Figure 1.2: A mine filled with acid mine drainage. The source of this picture is [63].

The contaminants carried from the production region reduces in concentrations as the

flow and transportation take place. The reduction in concentration are due to physical

and chemical processes such as filtration, deposition or chemical transformation. From

the pictures in Figure 1.3, it can be observed that the sludge (metal precipitates) have

been deposited along the drain (flow domain).
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Figure 1.3: Pictures showing deposited contaminants along drains.

Figure 1.4: Pictures showing environmental hazards caused by AMD. The source of these
pictures is [63].

AMD is really a serious environmental problem that can affect every life on earth. It is

produced in one area and spread to other areas. As the acid has a corrosive effect, the hard

metals dissolved by the acid are toxic to living organism [54]. If the acid water drains into

surface streams or the biotic environment, there would be a very great ecological impact,

including those shown in Figure 1.4 [63]. The pictures shown in Figure 1.4 show simple
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effects of mine effluent water on the vegetation. One of the effects of mine effluent water

which affects human life directly is the pollution of water bodies that provide portable

water for human consumption.

Deposits of the precipitates (sludge) also "jeopardize the integrity" of urban infrastructure

[63]. Figure 1.5 shows a decant of the contaminant. When the situation in Figure 1.5

occurs in settlements, the beautiful appearances of houses, stadia, parks and gardens will

be destroyed.

Figure 1.5: A picture showing deposited contaminants. The source of this picture is [63].

Due to the hazardous nature of this pollutant efforts are made to prevent its occurrence

or treat the mine effluent water. South Africa is currently facing AMD problems in some

of its mining sites including Mpumalanga and KwaZulu-Natal Coal fields, Witwatersrand

fields and O’Kiep Copper district [63].
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As a matter of urgency, a team of experts was set-up to assess the problem and provide

efficient solution measures [63]. The team of experts assessed the potential risks associated

with the AMD problem and identified mine flooding to have potential of causing;

• Contamination of shallow groundwater resources, which is required for human con-

sumption and Agricultural purpose [63].

• "Geotechnical impacts, such as the flooding of underground infrastructure in areas

where water rises close to urban area" [63].

• "Increased Seismic activity which could have a moderate localised effect on property

and infrastructure" [63].

The team also identified "decant of AMD to the environment" to have a potential of

causing:

• "Serious negative ecological impacts" [63].

• "Regional impacts on major river systems" [63].

• "Localised flooding in low-lying areas" [63].

The team of experts proposed a management approach which includes prevention and

management of the decant, using ingress control measures and treating the effluent water

[63].

Prevention and management of the decant involves preventing the mines from filling

up. Keeping the mines partially full will prevent the transportation and deposition of

contaminants to other environments including settlements. The team also stated that the

source of water does not come from rain only, but "groundwater seeping into the workings,

surface streams that lose water to shallow mine workings, open surface workings, seepage

from mine residue deposits and losses from water, sewage and storm-water reticulation

systems" [63]. Creating canals to redirect surface waters, and sealing of mine-cracks are

ingress control methods [63].
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The team also mentioned that even if all ingress control and preventive measures are

implemented AMD will still occur in the mines. Therefore, treatment of the effluent water

is a necessity. Treatment of the effluent water involves neutralizing the acid, precipitating

the ferrous ions and other metals present. Treatment methods can be classified into active,

passive, or "in situ" [63].

The team of experts provided many recommendations in their report, one of them is

neutralization of effluent water pumped out of mines. The process of neutralization

should also address high iron and other metal concentrations [63]. The treatment process

that is recommended by the team, is a passive treatment method called Open Limestone

Channel (OLC) treatment.

In our study, we provide a mathematical model that accounts for the flow and reactive

transport of the contaminants in the open limestone channel treatment method. The goal

of our study is to derive a model that can predict spatial distributions of the contaminants

and the change in species concentrations with time. Mathematical modelling of the

phenomenon is based on multi-scale modelling. Our model consists of a system of partial

differential equations that represent energy, chemical species and momentum transport

equations. The following simplifying assumptions are used:

1. The flow domain is limestone.

2. The density, viscosity and specific heat capacity for the carrier fluid are used to

approximate corresponding parameters for effluent water, and are considered con-

stant.

3. The limestone is homogeneous, isotropic, and has constant parameters.

4. The flow is single-phase, incompressible and in the laminar regime. There is no-slip

at the fluid-solid interface.

5. In the flow domain, the pH of the effluent water is less than 3.5.

In Chapter 1, a brief introduction to acid mine drainage is provided. A summary of a

report written by a team of experts on the state of South Africa with regards to the
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acid mine drainage problem is also provided. The goal of the study and some simplifying

assumptions are introduced.

In Chapter 2, the composition of mine effluent water is ascertained from a review of pyritic

systems. Physical and chemical processes in the passive treatment method called open

limestone channel (OLC) is discussed. Kinetic data (required for closure of the model in

Chapter 3 is obtained from a review of literature.

In Chapter 3, the continuum approaches for modelling fluid flows on and through mate-

rials are used to derive a system of partial differential equations. A complete model is

obtained by closure of the partial differential equations with kinetic data that resulted

from discussions on chemical kinetics of calcite dissolution, oxidation of ferrous ions and

filtration.

In Chapter 4, the finite volume discretization method is used to discretize the partial

differential equations on a rectangular domain. Central differencing, Upwind and hybrid

schemes are used for approximating the coefficients in the linear systems. The finite

difference scheme is used to obtain implicit and explicit time marching schemes.

In Chapter 5, numerical schemes are verified by comparing solutions obtained by the

central differencing, upwind and hybrid schemes to an analytical solution. The code used

for our experiments is validated by three test examples. Numerical experiments are carried

out for coupled uniform flow, energy and contaminant transport. The investigations are

based on Peclet number.

We conclude our discussion in Chapter 6 based on our results. A recommendation is also

provided based on our results. Future research topics are provided.
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Chapter 2

Chemical Kinetics in AMD Generation

and Treatment

In this Chapter, we review literature on the chemical processes that are involved in acid

mine drainage. The kinetics of pyritic oxidation which lead to AMD is provided in the

first paragraph. Treatment methods for contaminated water are discussed in the second

paragraph, and chemical reactions involved in the treatment method are discussed.

2.1 Oxidation of pyrite

Pyrite is among the most common reactive sulphite minerals found on the earth’s surface

[33, 15]. Weathering of this mineral contributes to electron cycling [33, 15] and the result-

ing current from the electron cycling is often used to derive processes such as formation

of acid mine drainage [33, 45, 15], mobilization and redox cycling of metals in sediments

from mining and other environments [33, 40, 66, 2], degradation of pollutants [33, 52],

reduction of aqueous trace metal complexes to form ore deposits [33, 17, 32], nutrient

and metal cycling at oxic-anoxic boundaries on lake bottoms and in estuaries [33, 67].

The oxidation of pyrite has special importance in technological applications ranging from

hydrometallurgy [33, 39] to solar energy conversion [33, 22].

9

Stellenbosch University  http://scholar.sun.ac.za



Oxidation of pyrite takes place in moist air and oxygenated aqueous solutions. When

pyrite is exposed to moist air, the oxidation that occurs is called atmospheric oxidation,

and when the oxidation occurs in a solution, it is called aqueous oxidation [47, 13]. A

review of the atmospheric and aqueous oxidation is given in [47, 13]. The major oxidation

product in the oxidation reaction is sulphate ions. Iron oxy-hydroxide (FeOOH), iron

hydroxide (Fe(OH)3) and iron oxide (FeO) are other products from the atmospheric

oxidation [47, 62].

The oxidation of pyrite is a complicated chemical process that has not yet been understood

very well. The products of oxidation vary from one pyritic system to another due to

varying environmental and reaction conditions [47]. The mineral pyrite occurs naturally

in varieties, which undergo different oxidation processes [15, 55]. While some researchers

in [15] are of the view that the oxidation is an electrochemical process, other researchers

[50, 47] are of the view that the oxidation is a chemical-controlled process. Despite the

diverging view-points, the oxidation of pyrite can be explained by four chemical reactions

that appear in most of the studies related to pyritic oxidation or acid mine drainage.

These chemical reactions include [54, 18, 16]:

• Oxidation of pyrite by oxygen which occurs by the chemical Equation 2.1.1;

2FeS2(s) + 7O2(g) + 2H2O(l) −→ 2Fe2+
(aq) + 4SO2−

4 (aq) + 4H+
(aq). (2.1.1)

• Oxidation of ferrous ions which occurs by the chemical Equation 2.1.2;

4Fe2+
(aq) + 4H+

(aq) +O2(g) −→ 4Fe3+
(aq) + 2H2O(l). (2.1.2)

• Precipitation of iron hydroxide which occurs by the chemical Equation 2.1.3;

Fe3+
(aq) + 3H2O(l) −→ Fe(OH)3(s) + 3H+

(aq). (2.1.3)
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• Oxidation of pyrite by ferric ions which occurs by the chemical Equation 2.1.4;

FeS2(s) + 14Fe3+
(aq) + 8H2O(l) −→ 15Fe2+

(aq) + 2SO2−
4 (aq) + 16H+

(aq). (2.1.4)

The generalized reaction pathway given by chemical Equations 2.1.1 to 2.1.4 is a summary

of overall chemical reactions that are identified in any pyritic system, but not a set of

elementary reactions as expected in any reaction mechanism [18]. Thus the individual

reactions in the pathway may occur as reaction mechanisms depending on the reaction

environmental conditions [18].

Moreover, according to [8, 47, 13, 62] and from the generalized oxidation reaction pathway,

the major oxidants in pyritic systems are ferric ions and oxygen. Oxidation of pyrite by

ferric ions is slow as compared with the oxygen oxidation, but the presence of Thiobacillus

ferrooxidan can greatly increase the rate of ferric ion oxidation [18, 34, 1]. Since the

bacteria present depends on oxygen and also, since ferric ions do not occur naturally as

with oxygen, then the initiator and sustainer of the pathway is the oxygen oxidation of

pyrite which is given by chemical Equation 2.1.1 [18, 50, 16].

According to [18], the location of pyrite determines whether the given chemical reaction

2.1.1 can occur or not, and how fast the reaction will occur. It is argued in [18] that, if

the pyrite is immersed in deep water where there is no oxygen then oxygen supply to the

surface of the pyrite will not be possible. The recorded cases of pyritic oxidation are gob

piles, strip pits, spoil banks and underground mines. These examples provide supporting

evidence that pyritic oxidation by oxygen is vital for sustaining the oxidation pathway

[18]. The air circulation in such pyritic systems is suitable and fairly consistent, thus

reaction 2.1.1 will always occur as long as water and pyrite is available.

After the oxygen oxidation reaction given by Equation 2.1.1 has occurred, excess water

supplied (by rain, seepage and rivers) to the reaction environment washes the oxidation

products (and other metals present) to form a solution. A fraction of the ferrous ions

produced in the pyritic oxidation are oxidized by oxygen to form ferric ions when the

pH is below three (3), chemical complexes or Ligands [16, 4]. The oxidation of ferrous

ions is given by chemical Equation 2.1.2. Many researchers [18, 33, 10, 3, 54] predict this

reaction step as the slowest, thus implying the rate-determining step in the generalized
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pathway. This reaction step can be catalysed by Thiobacillus ferrooxidans, which survives

in a very acidic solution (pH less than 2) [16, 18, 54]. The abiotic oxidation of ferrous ion

to ferric iron is dominant at higher pH values [16, 18, 4].

The major product from the ferrous oxidation reaction given by Equation 2.1.2 is ferric

ions. This product also undergoes reaction in two ways depending on the pH of the

solution [59, 54, 16, 4]. It forms iron hydroxide precipitates when the pH of the solution

is greater or equal to 3.5 [4, 16, 54]. The chemical equation describing the formation of

iron hydroxide is Equation 2.1.3. For greater pH values (pH greater than 3.5), the ferrous

oxidation product is iron hydroxide instead of ferric ions given by chemical Equation

2.1.2.

Another chemical reaction involving ferric ions is the oxidation of pyrite to form ferrous

ions, sulphate ions and hydrogen ions (H+) [4, 16, 47]. This reaction is parallel to the

precipitation reaction given by Equation 2.1.2. The chemical equation describing the

ferric ion oxidation of pyrite is Equation 2.1.4.

The degree to which mine waters are polluted depends on the quantity of pyrite that has

been oxidized, and the rate of pollution of mine waters depends on the rate of oxidation

of pyrite. In addition to the rate of oxidation of pyrite, the rate of generation of AMD

depends on the presence or absence of acid neutralising minerals [18]. The contaminants

in mine effluent water are the products of pyritic oxidation and chemical metals from dis-

solved minerals, however in our discussion, the effluent water contaminants are oxidation

products from the generalized reaction pathway only. Table 2.1 contains the chemical

species in the mine effluent water.

Index (k) 1 2 3 4 5 6 7 8

Species H+ Fe3+ Fe2+ Fe(OH)3 SO2−
4 Ca2+ O2 HCO−3

Concentration

(Ck)

C1 C2 C3 C4 C5 C6 C7 C8

Table 2.1: A table of chemical species involved in AMD.
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2.2 Effluent water treatment

Treatment methods for mine effluent water can be categorized as active or passive methods

[25]. The generalized procedure for treating effluent water consists of three physico-

chemical unit operations such as neutralization of acid, oxidation of iron and sludge

removal [9].

The active treatment method involves adding neutralizing agents directly to polluted

water bodies. The active treatment method requires monitoring and sophisticated equip-

ment. It is also not an efficient method for metal removal. In addition it is expensive.

Therefore, budget reduction, equipment failure and changes in weather conditions could

result in serious problems (e.g kill fish) [25].

The passive treatment method combines many pH-raising techniques and metal removal

techniques. The pH raising techniques involve using chemicals such as limestone or

lime, and using bacteria to raise the pH of effluent water. It is expensive to initiate

but not operation-intensive as compared with active treatment [25]. The passive treat-

ment method may involve periodic maintenance [25]. There are many passive treatment

methods, however, each method has its advantages and disadvantages. Some of the pas-

sive treatment methods include limestone dumping, limestone dosing, anoxic limestone

drain (ALD), anaerobic Wetland, aerobic wetland successive alkalinity producing systems

(SAPS), leach bed and open limestone channel (OLC) [25].

Among the passive treatment methods, Open Limestone Channel is of interest in our

study. The open limestone channel treatment method involves allowing the effluent wa-

ter to flow through a drain containing limestone [25]. This method is very convenient

at undulating locations where natural gradients exist (e.g hills, mountains) [25]. It is

convenient for removing chemical metals and raising the pH of the effluent water. It is

designed in a special way to allow oxygen supply to the effluent water and to sustain acid

neutralization [25]. Figure 2.1 contains pictures of limestone drains. The chemical and

physical processes that occur in the open limestone channel treatment include oxidation

of iron, neutralizing of acid and filtration. Kinetic data related to these physical and

chemical processes is required in our modelling study. Such information is usually deter-
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mined by laboratory experiments. However, we review literature in the following sections

of this Chapter to obtain the kinetic data.

Figure 2.1: Open limestone channels for treating mine effluent water [49].

2.3 Oxidation of ferrous ions in aqueous solution

Oxidation of metallic ions is an important chemical reaction in nature and chemical

technological applications (including water-treatment) [59]. A review of studies conducted

on the oxidation process is given by [58]. According to [58, 59], the oxidation of iron has

been extensively studied in homogeneous solutions containing acids.

The extensive studies have yielded valuable information with regards to the reaction mech-

anism between ferrous ions and oxygen, but have not yielded information that specifically

applies to bicarbonate-containing water (water containing CO2−
3 compounds or ions) [58].

A sequence of steps by which the oxidation of ferrous iron proceeds was suggested in

1935, these steps include [58]:

Fe2+ +O2 � Fe3+ +HO2 (2.3.1)

Fe2+ +HO2 −→ Fe3+ +H2O2, (2.3.2)
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Fe2+ +H2O2 −→ Fe3+ +HO +H2O, (2.3.3)

Fe2+ +HO −→ Fe3+ +H2O. (2.3.4)

By observing the chemical Equations 2.3.1 to 2.3.4, it can be noticed that the reactions

are not balanced with respect to hydrogen ions. The reason for the omission is that,

the objectives of the researchers at that time (1935), did not include dependence of the

oxidation process on hydrogen ions [58]. The rate determining step was predicted to be

reaction 2.3.1, and the oxidation rate was predicted to be first order with respect to Fe2+

ion concentration or dissolved oxygen concentration. The rate law for reaction 2.3.1 is

given by:

d[Fe2+]

dt
= −Ko[Fe

2+]PO2 . (2.3.5)

where Ko is the rate constant for the reaction and PO2 is the partial pressure of oxygen.

Moreover, the rate of a reaction depends on environmental factors. One of the environ-

mental factors that affects ferrous ion oxidation is the nature of anions present in the

solution. According to [58], the rate of oxidation increases proportionally to increasing

affinity of the anions for ferric ions [58]. The rate of ferrous oxidation has been measured

in experiments involving different anions in acidic solutions. According to [58], results

show a decreasing rate in sulphate and hydroxide solutions. The rate law 2.3.5 does not

apply in a solution containing perchlorate and sulphate ions [58]. It has been determined

by experiment that there is a second order dependence on the ferrous ion concentration

in an acidic solution containing sulphate ions [58, 59, 20]. The second order rate law is

given by [14, 61]:

d[Fe2+]

dt
= −Ko[Fe

2+]2PO2 . (2.3.6)

In addition to anions, substances that catalyse decomposition of anions especially perox-

ides in the presence of charcoal, ferrous iron-platinum, and cupric salts, increase the rate

of oxidation [58].
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Another environmental factor is the pH of the aqueous solution. In very acidic media the

rate of ferrous oxidation does not depend on the pH of the solution [14, 59]. However, the

rate of oxidation depends strongly on pH in less acidic media. At neutral pH, the rate of

oxidation is given by:

d[Fe2+]

dt
= −Ko[Fe

2+]PO2 [H
+]−2. (2.3.7)

In bicarbonate solutions, the rate of iron oxidation is affected by solubility of ferrous

and ferric iron [58]. Ferrous compounds are observed in experimental studies to be more

soluble than ferric compounds [58], based on this observation it has been proposed that

Fe(OH)3(s) co-exist with aqueous Fe(OH)3 [58]. Experimental results confirmed that

during the oxidation process, colloidal ferric hydroxide is formed under suitable conditions

but do not have any effect on the rate of oxidation [58]. In bicarbonate solutions, the

rate of ferrous iron oxidation is given by [58]:

d[Fe2+]

dt
= −Ko[Fe

2+]PO2 [OH
−]2, (2.3.8)

where [OH−] is concentration of hydroxyl (OH−) ions in the solution.

Furthermore, catalysts especially Cu2+ and anions which form complexes with ferric ions

are observed to increase the rate of oxidation significantly, while small concentrations of

Fe3+, and SO2−
4 have no effect on the reaction rate [58].

From the discussion in this section, one can conclude that the oxidation of ferrous ion is

a complicated chemical process. The effluent water is an acidic medium, thus the rate

law given by Equations 2.3.5 and 2.3.6 could be used to describe the ferrous oxidation

process in the effluent water. However, since the limestone is an alkaline medium and the

flow occurs through it, then the rate law given by Equation 2.3.7 could also be used to

approximately describe the ferrous oxidation process. None of the three rate laws 2.3.5,

2.3.6 and 2.3.7 provides an exact description to the problem under investigation.

A mathematical model for a passive treatment method is proposed by [20]. The model

applies to a case where the effluent water flows on a limestone bed. According to [20],

the oxidation of ferrous ions to ferric ions is a reversible reaction which results in the

production of hydrogen ions. Thus the water becomes more acidic when ferrous oxidation
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occurs. A generalized rate law for ferrous oxidation reaction in mine effluent water has

been proposed by [20]. This generalized reaction rate law is given by [20]:

Ib = S3 = −kfRC4
3C

4
1PO2 + kbRC

4
2 , (2.3.9)

where kfR, kbR are, respectively, the forward and backward reaction rate constants.

This rate law 2.3.9 may be a better choice for our study, however, its high order and

dependence on four variables makes it complicated and expensive for computational rea-

sons. As part of simplicity, we choose the rate law 2.3.5 for our study. The species

concentrations in the rate law 2.3.9 are measured in moles per unit volume, however, we

will use mass concentration in this work. Thus we convert the molar concentration in

2.3.9 to mass concentration by dividing the molar concentration of each species by its

molecular weight. The partial pressure is expressed in concentration by using Henry’s

constant. Rearanging the results, we obtain:

S3 =
dC3

dt
= −KoC3C7, (2.3.10)

where Ko includes Henry’s constant.

2.4 Formation of ferric ions

With reference to chemical Equation 2.3.2, the stoichiometric ratio of ferrous to ferric

ions is one to one. Thus the rate of formation of ferric ion is equal and opposite to the

rate of oxidation of ferrous ions. Thus we obtain:

S2 =
dC2

dt
= −dC3

dt
= KoC3C7. (2.4.1)

2.5 Rate of oxygen consumption

With reference to chemical Equation 2.3.2, the stoichiometric ratio of ferrous to oxygen

is one to four. Thus the rate of oxygen consumption is equal one-fourth of the rate of
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ferrous oxidation. Thus we obtain:

S7 =
dC7

dt
= −0.25KoC3C7. (2.5.1)

2.6 Filtration of Fe(OH)3

Fe(OH)3 is described by [58] as colloidal. Thus in this section, we discuss filtration

models for colloids that will be used later in our transport model.

Physical and chemical heterogeneities of the transporting medium greatly affect the fil-

tration process [44]. The rate of filtration of colloids is expressed in number concentration

by [44]:

∂nc
∂t

= − θL
πd2

p

∂θ

∂t
, (2.6.1)

where nc is the colloidal particle-number concentration, dp is the radius of the colloidal

particle, t is time, and θ is the fractional surface coverage of the colloidal particles.

Deposition of the colloidal particle can occur at favourable and unfavourable parts of

the collector (grain of limestone). A patch-wise model that accounts for deposition at

favourable and unfavourable parts is given by [44]:

∂θ

∂t
= λL

∂θf
∂t

+ (1− λL)
∂θu
∂t

, (2.6.2)

where θu, θf represent unfavourable and favourable fractional surface coverages on the

collector. λL is a parameter that accounts for chemical heterogeneity.

The rate of deposition or release at the favourable and unfavourable parts of the collector

are given by [44]:

∂θf
∂t

= πd2
pKdep,fncB(θf )−Kdet,fncR(θf ), (2.6.3)

and
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∂θu
∂t

= πd2
pKdep,uncB(θu)−Kdet,uncR(θu). (2.6.4)

Subscripts f, u indicate favourable and unfavourable, Kdep, Kdet represent colloid depo-

sition and release rate constants, and B(θ),R(θ) represent dynamic blocking and release

functions defined by [44]:

B(θ) = 1− a1

( θ

θmax

)
+ a2

( θ

θmax

)2

+ a3

( θ

θmax

)3

, (2.6.5)

where θmax is the maximum attainable surface coverage. The dynamic blocking function

accounts for the effects of deposited colloids on the rate of deposition [44]. The coefficients

a1, a2, a3 must be determined empirically or theoretically [44].

The deposition rate constant is a function of single-collector efficiency, defined by [44]:

Kdep =
αfη0εfv

4
, (2.6.6)

where αf is the collision efficiency, εf is the porosity of limestone, v is the velocity of the

colloidal particle and η0 is the favourable single-collector efficiency.

We take the chemical heterogeneity parameter as one (i. e. λL = 1) and assume that

there is no particle release after deposition. Thus the resulting Equations 2.6.2 and 2.6.3

are combined to obtain:

∂θ

∂t
= πd2

pKdep,fB(θf )nc. (2.6.7)

Substituting 2.6.7 into Equation 2.6.1, we obtain:

∂nc
∂t

= −θLKdep,fB(θf )nc. (2.6.8)

Furthermore, we convert the number concentration (nc) into mass concentration (C4) by

multiplying Equation 2.6.8 by the mass of colloidal particles. Thus we obtain:

S4 =
∂C4

∂t
= −θcθLKdep,fB(θf )C4, (2.6.9)

where θc is a coupling parameter for measuring the surface area available for Fe(OH)3

attachment.

19

Stellenbosch University  http://scholar.sun.ac.za



2.7 Calcite dissolution and precipitation

Limestone is an aggregate of many chemical compounds but the dominant compound

is calcite. In our discussion, we assume that the limestone consist of calcite only, this

assumption conforms to the homogeneity assumption of the flow domain. When the acidic

water passes through limestone, the calcite dissolves [58]. In this section, the chemical

equations and the rate of dissolution of calcite is discussed.

According to [38], studies were conducted by [42] on the "dissolution of calcite in CO2 −

H2O solution, using pH -stat and free drift methods, over pH ranges from about 2 − 7,

PCO2 from 0.0003 to 0.97 atm, and temperature from 5o to 60oC." Results from the study

indicate that, three reactions occur simultaneously on the surface of the calcite. These

reactions include:

CaCO3 +H+ 
 Ca2+ +HCO−3 , (2.7.1)

CaCO3 +H2CO3 
 Ca2+ + 2HCO−3 , (2.7.2)

CaCO3 +H2O 
 Ca2+ +HCO+
3 +OH−. (2.7.3)

The proposed dissolution mechanism given by Equations 2.7.1 to 2.7.3 implies that the

dissolution of calcite is not caused by hydrogen ions only, but also caused by the water

(H2O) and carbonic acid H2CO3 which is produced during the dissolution process. How-

ever, among the dissolution reactions, calcite dissolution by H+ is greater than H2CO3

and H2O [38].

According to [38], the rate law that was proposed for the dissolution of calcite in the

experiment is given by:

RCaCO3 = KH+ [H+]∗ +KH2CO3 [H2CO3]∗ +KH2O[H2O]∗

−KCa2+ [Ca2+]∗[H2CO
−
3 ]∗, (2.7.4)

where KH+ , KH2CO3 , KH2O are the forward reaction rate constants in chemical Equations

2.7.1, 2.7.2, 2.7.3, respectively. KCa2+ is the backward reaction rate constant which

depends on temperature and partial pressure of carbon dioxide (PCO2). [i]∗ indicates
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activity of the chemical species i. The value of KCa2+ is given by [38]:

KCa2+ =
K∗H2CO3

Ksp

[
K ∗H+ +

1

[H+]∗
(
KH2CO3 [H2CO3]∗ +KH2O[H2O]∗

)]
, (2.7.5)

whereK∗H2CO3 is the second dissociation constant for carbonic acid, K∗H+ is a first-order

mechanistic rate constant for H+ attacks, and Ksp is the calcite equilibrium constant for

the chemical reaction:

CaCO3 
 Ca2+ + CO2−
3 . (2.7.6)

The rate law given by Equation 2.7.4 determines the net rate of dissolution of calcite under

the given experimental conditions. Table 2.2 contains numerical values of the reaction

constants that are involved in the dissolution process.

KH+ KH2CO3 KH2O logKsp logK∗H2CO3

0.051 3.45× exp(−5) 1.19× exp(−7) −8.475 −6.351

Table 2.2: Rate constants for calcite dissolution in units of cm/s given by [38].

However, from the Table 2.2, the numerical values for the reaction constants KH2CO3 and

KH2CO3 , are small. Thus the effects of terms KH2CO3 [H2CO3] and KH2O[H2O] are small.

The sum KH2CO3 [H2CO3]∗+KH2O[H2O]∗ in the rate law given by Equation 2.7.4 will be

negligible when the activities [H2CO3]∗ and KH2O[H2O]∗, are small. In our discussion, we

neglect the sum KH2CO3 [H2CO3]∗ + KH2O[H2O]∗ and obtain a simplified rate law given

by:

RCaCO3 = KH+ [H+]∗ −KCa2+ [Ca2+]∗[HCO−3 ]∗. (2.7.7)

The implication of neglecting the contribution KH2CO3 [H2CO3]∗ + KH2O[H2O]∗ is that,

calcite dissolution by carbonic acid and water which are described by chemical Equations

2.7.2 and 2.7.3 are not significant. Thus the only chemical equation that describes the

dissolution of calcite in our discussion is Equation 2.7.1.

By chemical Equation 2.7.1, dissolution of calcite by the acid is a reversible reaction. The

forward reaction is called dissolution and the backward reaction is called precipitation

[36]. Dissolution is dominant when there is low concentration of Ca2+ and HCO−3 , and

21

Stellenbosch University  http://scholar.sun.ac.za



high concentrations of CaCO3 and H+ ions [36]. Precipitation is dominant when there is

high concentrations of Ca2+ and HCO−3 ions and low concentrations of CaCO3 and H+

ion [36]. When the concentrations of reactants are equal to the concentrations of product

equilibrium is established and neither dissolution or precipitation occurs. Thus the rate

law given by Equation 2.7.7 becomes:

KH+ [H+]∗ −KCa2+ [Ca2+]∗[HCO−3 ]∗ = 0,

=⇒ [Ca2+]∗[HCO−3 ]∗

[H+]∗
=

KH+

KCa2+
, (2.7.8)

where KH+

KCa2+
= KC is the equilibrium constant of the chemical reaction Equation 2.7.1.

For consistency, we express the left hand side of Equation 2.7.8 in concentration instead

of ion activity. This is achieved by multiplying Equation 2.7.8 by activity coefficients

[16, 59, 58]. Thus we obtain:

ηCa2+ [Ca2+]ηHCO−3 [HCO−3 ]

ηH+ [H+]
=

KH+

KCa2+
, (2.7.9)

where ηHCO−3 , ηCa2+ and ηH+ are the activity coefficients for HCO−3 , Ca2+ and H+, re-

spectively. Let ηeq =
ηH+

ηCa2+ηHCO−3

, then Equation 2.7.9 becomes:

[Ca2+][HCO−3 ]

[H+]
= Keq (2.7.10)

where Keq = ηeqKC , which has a dimension of [L3M−1T−1].

2.7.1 Analytical solution to calcite dissolution rate law

The features of the reversible reaction 2.7.1 can be illustrated graphically by solving the

calcite dissolution rate law given by Equation 2.7.7. In this section, we derive an analytical

solution of the rate law. Let [H+]0, [Ca
2+]0 and [HCO−3 ]0 be the initial concentrations of

the species H+, Ca2+ and HCO−3 , respectively. If the concentrations in the acidic solution

at a later time are [H+], [Ca2+] and [HCO−3 ], then the change in species concentration

denoted by χ, is given by:

χ = [H+]0 − [H+] = [Ca2+]− [Ca2+]0 = [HCO−3 ]− [HCO−3 ]0. (2.7.11)
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By rearranging Equation 2.7.11, the species concentrations at any time is given by:

[H+] = [H+]0 − χ, (2.7.12)

[Ca2+] = [Ca2+]0 + χ, (2.7.13)

and

[HCO−3 ] = [HCO−3 ]0 + χ. (2.7.14)

The summary of the dissolution reaction progress and the changes in species concentration

with time, is given by Table 2.3.

CaCO3 + H+ 
 Ca2+ + HCO−3

Initial conc.: 0 [H+]0 [Ca2+]0 [HCO−3 ]0

Later conc.: χ −χ +χ +χ

Resultant: [H+]0 − χ [Ca2+]0 + χ [HCO−3 ]0 + χ

Table 2.3: Calcite dissolution and species concentrations at any time.

To proceed with the derivation, we substitute Equations 2.7.12, 2.7.13 and 2.7.14 into

Equation 2.7.7, and express the ion activities as functions of concentration. Thus we

obtain:

RCaCO3 = KH+ηH+

(
[H+]0 − χ

)
−KCa2+ηHCO−3 ηCa

2+(([Ca2+]0 + χ)([HCO−3 ]0 + χ)). (2.7.15)

Let Kf = KH+ηH+ and Kb = KCa2+ηHCO−3 ηCa
2+ . Expanding and rearranging Equation

2.7.15, we have:

dχ

dt
= Kf [H

+]0 −Kb[Ca
2+]0[HCO−3 ]0

+ (−Kf −Kb[Ca
2+]0 −Kb[HCO

−
3 ]0)χ−Kbχ

2. (2.7.16)
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Let

α1 = Kf [H
+]0 −Kb[Ca

2+]0[HCO−3 ]0,

and

α2 = −(Kf +Kb[Ca
2+]0 +Kb[HCO

−
3 ]0).

Then Equation 2.7.16 becomes:

dχ

dt
= α1 + α2χ−Kbχ

2. (2.7.17)

Rearranging Equation 2.7.17, we have:

dχ

α1 + α2χ−Kbχ2
= dt. (2.7.18)

The roots of α1 + α2χ−Kbχ
2 are given by:

Θ1 = χ =
−α2 −

√
α2

2 + 4Kbα1

−2Kb

, (2.7.19)

and

Θ2 = χ =
−α2 +

√
α2

2 + 4Kbα1

−2Kb

. (2.7.20)

Thus by substituting Equations 2.7.19 and 2.7.20 into Equation 2.7.18, we obtain:

(χ−Θ1)(χ−Θ2) =
(
χ− −α2 −

√
α2

2 + 4Kbα1

−2Kb

)(
χ− −α2 +

√
α2

2 + 4Kbα1

−2Kb

)
= χ2 − α2 −

√
α2

2 + 4Kbα1

2Kb

χ− α2 +
√
α2

2 + 4Kbα1

2Kb

χ

+
α2

2 − α2
2 − 4Kbα1

4K2
b

= χ2 − α2

Kb

χ− α1

Kb

(2.7.21)

Therefore, by Equation 2.7.21: α1 + α2χ −Kbχ
2 = −Kb(χ − Θ1)(χ − Θ2). Substituting

into Equation 2.7.18, we obtain:

dχ

(χ−Θ1)(χ−Θ2)
= −Kb dt. (2.7.22)
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Since Equation 2.7.22 is an ordinary differential equation, it can be integrated to obtain

a solution. However, we first need to express the integrand in partial fractions, thus we

write:

1

(χ−Θ1)(χ−Θ2)
=

P

(χ−Θ1)
+

Q

(χ−Θ2)
, (2.7.23)

where P and Q are arbitrary constants. Comparing both sides of Equation 2.7.23, we

have:

P (χ−Θ2) +Q(χ−Θ1) = 1,

when χ = Θ2, we have:

Q =
1

(Θ2 −Θ1)
.

And when χ = Θ1, we have:

P =
1

(Θ1 −Θ2)
.

Now substituting P and Q into Equation 2.7.22, we obtain:

dχ

(χ−Θ1)(Θ1 −Θ2)
− dχ

(χ−Θ2)(Θ1 −Θ2)
= −Kb dt. (2.7.24)

Integrating both sides of Equation 2.7.24, we have:( 1

(χ−Θ1)(Θ1 −Θ2)
− 1

(χ−Θ2)(Θ1 −Θ2)

)
dχ = −Kb dt.

=⇒ 1

(Θ1 −Θ2)

(∫ dχ

(χ−Θ1)
−
∫

dχ

(χ−Θ2)

)
=

∫
−Kb dt.

=⇒ln|χ−Θ1| − ln |χ−Θ2| = −Kb(Θ1 −Θ2)t+R (2.7.25)

where R is an integration constant. Initially when t = 0, there is no change in concentra-

tion since no reaction has occurred, thus χ(0) = 0. Substituting χ(0) = 0 into Equation

2.7.25, we obtain R = ln(Θ1

Θ2
). By substituting R = ln(Θ1

Θ2
) into Equation 2.7.25, we obtain

a more specific solution as:

ln(χ−Θ1)− ln(χ−Θ2) = −Kb(Θ1 −Θ2)t+ ln(
Θ1

Θ2

),

=⇒ ln(
(χ−Θ1)

(χ−Θ2)
) = −Kb(Θ1 −Θ2)t+ ln(

Θ1

Θ2

),

=⇒(χ−Θ1)

(χ−Θ2)
=

Θ1

Θ2

exp−Kb(Θ1−Θ2)t . (2.7.26)
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Multiplying both sides of Equation 2.7.26 by (χ−Θ2), we have:

(χ−Θ1) = (χ−Θ2)
Θ1

Θ2

exp−Kb(Θ1−Θ2)t . (2.7.27)

Expanding and rearranging Equation 2.7.27, we obtain:

χ
(

1− Θ1

Θ2

exp−Kb(Θ1−Θ2)t
)

= Θ1 −Θ1 exp−Kb(Θ1−Θ2)t . (2.7.28)

Dividing both sides of Equation 2.7.28 by
(

1 − Θ1

Θ2
exp−Kb(Θ1−Θ2)t

)
and simplifying, we

obtain:

χ =
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

. (2.7.29)

Therefore the concentration of the chemical species at any time is given by:

[H+] = [H+]0 −
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

, (2.7.30)

[Ca2+] = [Ca2+]0 +
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

, (2.7.31)

[HCO−3 ] = [HCO−3 ]0 +
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

. (2.7.32)

The graphs in Figure 2.2 are generated from the analytical solution using data from [58].

Figure 2.2: Species concentration profiles and dissolution-rate profiles for reaction 2.7.1.
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The graph at the left hand side of Figure 2.2 shows the species concentration profile with

time. The data used for generating the graphs contain a high concentration of hydrogen

ions. It can be observed that while the concentration of H+ (a reactant) decreases with

time, the concentration of Ca2+ (which is a product) increases with time until equilibrium

is achieved. The graph at the right hand side of Figure 2.2 shows the dissolution-rate

profile in time. It can be observed that, while the rate of forward reaction is highest at the

beginning of the reaction, the rate of backward reaction is lowest at the beginning of the

reaction. It can also be observed that while the rate of forward reaction decreases until

equilibrium is achieved the rate of backward reaction increases with time until equilibrium

is achieved. It can also be observed that the net rate of reaction is highest at the beginning

but decreases to zero when equilibrium is achieved.

2.7.2 Equilibrium concentrations of chemical species

At the beginning of the chemical reaction 2.7.1, no products are formed and very small

amounts are available in the aqueous solution (mine effluent water), thus as defined

previously, let the initial concentration of HCO−3 , Ca2+ be given by [HCO−3 ]0, [Ca
2+]0

and the concentration of H+ which is a reactant be given by [H+]0. At equilibrium, the

concentration of the H+ ions is the sum of the initial concentrations and the change

that occurred later as the reaction proceeded. Since the stoichiometric coefficients of

HCO−3 , Ca
2+ and H+ ions are equal to one, the equilibrium concentration of the chemical

species is given by:

[H+]eq = [H+]0 − χ, (2.7.33)

[HCO−3 ]eq = [HCO−3 ]0 + χ, (2.7.34)

[Ca2+]eq = [Ca2+]0 + χ. (2.7.35)
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Thus substituting Equations 2.7.33, 2.7.34 and 2.7.35 into Equation 2.7.10, we obtain:

([Ca2+]0 + χ)([HCO−3 ]0 + χ)

[H+]0 − χ
= Keq,

=⇒χ2 +
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
χ− [H+]0Keq = 0,

=⇒χ =
−
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
±
√(

[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq

2
.

(2.7.36)

The value of
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
is always positive, and since the concentration

of H+ must be positive so that the solution can be physically realistic, the discriminant

is always positive, i. e.√(
[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq ≥ 0.

Thus the solution that will avoid negative concentration values is:

χ =
−
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
+

√(
[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq

2
(2.7.37)

Therefore, combining Equations 2.7.37 and 2.7.35, the equilibrium concentration of Ca2+

is given by:

[HCO−3 ]eq = [Ca2+]0+

−
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
+

√(
[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq

2
.

(2.7.38)

By combining Equations 2.7.37 and 2.7.34, the equilibrium concentration of HCO−3 is

given by:

[HCO−3 ]eq = [HCO−3 ]0+

−
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
+

√(
[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq

2
,

(2.7.39)
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By combing Equations 2.7.37 and 2.7.33, the equilibrium concentration of H+ is given

by:

[H+]eq = [H+]0−

−
(

[Ca2+]0 + [HCO−3 ]0 +Keq

)
+

√(
[Ca2+]0 + [HCO−3 ]0 +Keq

)2

+ 4[H+]0Keq

2
.

(2.7.40)

2.7.3 Modifications to the dissolution-precipitation rate law

The rate law given by Equations 2.7.7 is a function of three arguments and each argument

is a function of other variables. The expressions for the rate law arguments are given by

Equation 2.7.30. At each time point, all the arguments must be evaluated first before the

rate can be computered. If the arguments are involved in other reactions, then the system

becomes a large complicated network. However, the network system can be decoupled

by using stoichiometric transformation. In this section, we modify the rate law 2.7.7 to

obtain a decoupled set of equations describing the same rate law.

If the equilibrium concentration of HCO−3 or Ca2+ is known, the rate law given by

Equation 2.7.7 can be reduced to a two-variable-dependent expression. According to [23],

the rate of precipitation (backward reaction rate) can be approximated by:

KCa2+ [Ca2+]∗[HCO−3 ]∗ ≈ 2KCa2+
(
[Ca2+]∗

)2
, (2.7.41)

and

KCa2+ [Ca2+]∗[HCO−3 ]∗ ≈ 2KCa2+
(
[HCO−3 ]∗

)2
. (2.7.42)

The approximations 2.7.41 and 2.7.42 are verified in experiments involving pure water

and calcite interactions. By substituting Equation 2.7.41 into Equation 2.7.7, the calcite

dissolution rate law becomes:

RCaCO3 = KH+ [H+]∗ − 2KCa2+
(
[Ca2+]∗

)2
. (2.7.43)
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Substituting Equation 2.7.42 into Equation 2.7.7, the calcite dissolution and precipitation

rate law is also given by:

RCaCO3 = KH+ [H+]∗ − 2KCa2+
(
[HCO−3 ]∗

)2
. (2.7.44)

At equilibrium RCaCO3 = 0 and the activities/concentrations of HCO−3 and Ca2+ ions

are the respective equilibrium activities/concentrations. Thus applying this boundary

condition to Equations 2.7.43 and 2.7.44 and rearranging the results, we obtain [23]:

2KCa2+ =
KH+ [H+]∗(
[Ca2+]eq

)2 , (2.7.45)

and

2KCa2+ =
KH+ [H+]∗(
[HCO−3 ]eq

)2 . (2.7.46)

Substituting Equation 2.7.45 into Equation 2.7.43, we obtain [23]:

RCaCO3 = KH+ [H+]∗
(

1−
(
[Ca2+]∗

)2(
[Ca2+]eq

)2

)
, (2.7.47)

and by substituting Equation 2.7.46 into Equation 2.7.44, we obtain:

RCaCO3 = KH+ [H+]∗
(

1−
(
[HCO−3 ]∗

)2(
[HCO−3 ]eq

)2

)
. (2.7.48)

The modified rate laws given by Equations 2.7.47 and 2.7.48 are compared with the

original rate law 2.7.7 in Figure 2.3.
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Figure 2.3: Comparing the modified rate law with the original rate law 2.7.7.

The modified rate law under estimates the original rate law with a maximum relative

error of 13%. However, the error depends on the ratio between initial activities/con-

centrations of H+ and products (Ca2+, HCO−3 ). For any initial activities/concentrations
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[HCO−3 ]0, [H+]0, and [Ca2+]0 a scalar ratio αsca, can be defined such that:

[H+]0 + [Ca2+]0 = αsca[H
+]0. (2.7.49)

Equation 2.7.49 can be rearranged to obtain:

αsca =
[H+]0 + [Ca2+]0

[H+]0
. (2.7.50)

To investigate the relationship between the scalar (αsca) and the accuracy of the modified

rate law, the scalar αsca and maximum relative error was calculated from different input

data values for [HCO−3 ]0, [H
+]0, and [Ca2+]0. Table 2.4, contains the measured values

for αsca and the maximum relative error. The third graph in Figure 2.3 illustrates the

relationship between the scalar αsca and the maximum relative error. By comparing the

graph at the left hand side with the graph at the right hand side of Figure 2.3, one can

notice the effect of the scalar αsca.

Scalar (αsca) Maximum relative error

0.10000 0.1308

0.01000 0.0780

0.00100 0.1000

0.00010 0.1019

0.00001 0.01021

Table 2.4: Relationship between error and the ratio of reaction products and reactants.

However, the problem under consideration concerns nature and we can not control the

input data. Thus the modified rate laws given by Equations 2.7.47 and 2.7.48 are not

suitable for our discussion.

Furthermore, we express Equation 2.7.7 in concentrations instead of activities, thus we

obtain:

RCaCO3 = Kf [H
+]−Kb[HCO

−][Ca2+]. (2.7.51)
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By rearranging Equation 2.7.12, the change in concentration χ, is given by:

χ = [H+]0 − [H+]. (2.7.52)

Substituting Equation 2.7.52 into Equations 2.7.13 and 2.7.14, we obtain:

[Ca2+] = [Ca2+]0 + [H+]0 − [H+], (2.7.53)

and

[HCO−3 ] = [HCO−3 ]0 + [H+]0 − [H+]. (2.7.54)

By substituting Equations 2.7.53 and 2.7.54 into Equation 2.7.51, we obtain:

RCaCO3 = Kf [H
+]

−Kb

(
[HCO−3 ]0 + [H+]0 − [H+]

)(
[Ca2+]0 + [H+]0 − [H+]

)
. (2.7.55)

Expanding and simplifying Equation (2.7.55), we obtain:

RCaCO3 = Kb[H
+]2 + α3[H+]− α4, (2.7.56)

where:

α3 = Kf +Kb

(
[H+]0 + [HCO−3 ]0

)
+Kb

(
[H+]0 + [Ca2+]0

)
, (2.7.57)

and

α4 = Kb

(
[H+]0 + [HCO−3 ]0

)(
[H+]0 + [Ca2+]0

)
. (2.7.58)

Equation 2.7.56 is a modified rate law for the calcite dissolution reaction. This rate law

2.7.56 is a function of H+ ion concentration only.

Similarly, we will obtain a modified rate law that is a function of Ca2+ ion concentration

only. We express the change in concentration χ, in terms of Ca2+ ion concentration, thus:

χ = [Ca2+]− [Ca2+]0. (2.7.59)
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Substituting Equation 2.7.59 into Equations 2.7.12 and 2.7.14, we obtain:

[H+] = [H+]0 − [Ca2+] + [Ca2+]0 (2.7.60)

and

[HCO−3 ] = [HCO−3 ]0 + [Ca2+]− [Ca2+]0. (2.7.61)

By substituting Equations 2.7.60 and 2.7.61 into Equation 2.7.51, and after expansion

and simplification, we obtain:

RCaCO3 = α5 − α6[Ca2+]−Kb[Ca
2+]2, (2.7.62)

where:

α5 = Kf

(
[H+]0 + [Ca2+]0

)
, (2.7.63)

and

α6 =
(
Kf +Kb[H

+]0 −Kb[Ca
2+]0

)
. (2.7.64)

Equation 2.7.62 is also a modified rate law for the calcite dissolution reaction. This rate

law 2.7.56 is a function of Ca2+ ion concentration only. Since the mole ratio of Ca2+ and

HCO−3 ions is one to one, in Equation 2.7.62 we replace [Ca2+] by [HCO−3 ] and [Ca2+]0

by [HCO−3 ]0. Thus modification to the calcite dissolution rate law 2.7.51 with respect to

HCO−3 ion concentration is given by:

RCaCO3 = α7 − α8[HCO−3 ]−Kb[HCO
−
3 ]2, (2.7.65)

where:

α7 = Kf

(
[H+]0 + [HCO−3 ]0

)
, (2.7.66)

and

α8 =
(
Kf +Kb[H

+]0 −Kb[HCO
−
3 ]0

)
. (2.7.67)

In Figure 2.4, we compare the modified rate laws given by Equations 2.7.56, 2.7.62 and

2.7.65 to the original rate law 2.7.51.
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Figure 2.4: Comparing modified rate laws 2.7.56, 2.7.62 and 2.7.65 and the original rate

law given by Equation 2.7.51.

From Figure 2.4, we observe that the modified rate laws given by Equations 2.7.56, 2.7.62

and 2.7.65 are exactly the same as the original rate law 2.7.51. Any one of the modified

Equations 2.7.56, 2.7.62 and 2.7.65 depends on one variable only, thus can be used for

decoupling a system of equations. The accuracy does not depend on initial inputs as with

the earlier modification.

The dissolution-precipitation reaction that has been discussed takes place in an aqueous

solution. However, the dissolution-precipitation reaction in the open limestone channel

treatment method takes place at an interface. Interface reactions depend on concentra-

tions of solutes and the surface area of the dissolving solid [36]. The surface area measures

the probability that the dissolving solid (calcite) is available for reaction. We will modify

the rate law for calcite dissolution-precipitation reaction derived for the aqueous case

(given by Equation 2.7.51), to obtain a calcite dissolution-precipitation rate law for the
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interface reaction case. If there is no surface area dissolution does not occur but precipi-

tation can still occur, thus the surface area only affects the rate of forward reaction. We

propose a first-order dependence of the rate of dissolution on the specific surface area

of the limestone. However, since filtration of Fe(OH)3 will prevent dissolution, the sur-

face area available for hydrogen ion attachment and reaction is given by (1− θc)B(θf )θL.

Therefore, the modified calcite dissolution rate law for the interface reaction is given by:

RCaCO3 = Kf

(
(1− θc)B(θf )

)
θL[H+]−Kb[Ca

2+][HCO−3 ]. (2.7.68)

The molar concentration rate law is converted to the mass concentration rate law:

RCaCO3 = 100(1− θc)B(θf )θLC1 − 0.04098361KbC6C8. (2.7.69)

2.8 Rate of hydrogen ion consumption

From the dissolution reaction given by Equation 2.3.1, the mole ratio of hydrogen and

calcite is one to one, thus the rate of consumption of the hydrogen ions is equal to the

rate of dissolution of calcite. Thus we obtain:

S1 = −Kf

(
(1− θc)B(θf )

)
θL[H+] +Kb[Ca

2+][HCO−3 ]. (2.8.1)

Converting the molar concentrations to mass concentrations, we obtain:

S1 = −Kf

(
(1− θc)B(θf )

)
θLC1 + 0.00040984KbC6C8. (2.8.2)

2.9 Rate of calcium ion formation

From the dissolution reaction given by Equation 2.3.1, the mole ratio of calcium and

calcite is one to one, implying that the rate of formation of the calcium ions is equal to

the rate of dissolution of calcite. Thus we obtain:
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S6 = Kf

(
(1− θc)B(θf )

)
θL[H+]−Kb[Ca

2+][HCO−3 ]. (2.9.1)

We convert the molar concentration rate law 2.9.1 to the mass concentration rate law:

S6 = 40Kf

(
(1− θc)B(θf )

)
θLC1 − 0.0164KbC6C8. (2.9.2)

2.10 Rate of HCO−3 formation

From the dissolution reaction given by Equation 2.3.1, the mole ratio of HCO−3 and

calcite is one to one, thus the rate of formation of the HCO−3 is equal to the rate of

consumption of hydrogen ions. Thus we obtain:

S8 = Kf

(
(1− θc)B(θf )

)
θL[H+]−Kb[Ca

2+][HCO−3 ]. (2.10.1)

We convert the molar concentration rate law 2.10.1 to the mass concentration rate law:

S8 = 61Kf

(
(1− θc)B(θf )

)
θLC1 − 0.025KbC6C8. (2.10.2)

2.11 Summary

In this Chapter, the composition of mine effluent water is obtained by reviewing literature

on pyritic systems. Kinetic data for the physico-chemical processes in the OLC treatment

is obtained. A decoupling technique is developed based on stoichiometry. The rate at

which species are produced or consummed is obtained from the kinetic data.
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Chapter 3

Mathematical Modelling of AMD in

Limestone

Material bodies that have multiphase structures with one of the phases being solid are

called porous media [69, 70, 7]. The solid phase is distributed throughout the entire

structure, and the other phases (which include one or more fluid phases, e.g. water

and oil) occupy spaces called void or pore space within the structure. Porous media

exist naturally or artificially. Examples are bread, lungs, kidneys, sand, soil and foam

[7, 69, 70].

The porous medium considered in this work is a porous rock called limestone. Some

porous rocks are composed of particles that are cemented together (e.g. sandstone), such

rocks are said to be consolidated [12]. Other types of porous rocks have pore-spaces that

were created by evolution of gases during crystallization or by leaching. Examples of

such rocks include limestone and dolomites [12]. The pore-spaces in such porous rocks

are channels called vugs [12, 11]. According to [11], the vugs occupy tiny volumes in the

rocks and are usually narrow and interconnected, thus porosity of vugular limestone is

typically low but their permeabilities are high.

Furthermore, not all limestones are vugular. Some were formed by cementation of lime-

stone particles [12]. Such limestones can also be called consolidated. The limestone in

our study is unconsolidated.
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There are two broad steps for describing transport phenomena in porous media. These

steps are microscopic and macroscopic approaches [69]. The microscopic approach is a

statistical approach that accounts for the mean behaviour of a molecular system. The

macroscopic approach is also a statistical approach used to circumvent complicated geo-

metrical problems and large length scale problems.

In this Chapter 3, we give detailed derivations of both microscopic and macroscopic

models.

3.1 Microscopic model

In this section, a generalized microscopic transport equation is derived by conserving

fluid mass through a control volume. Mass, momentum and energy transport equations

are deduced from the general conservation equation. Figure 3.1 shows a simple three-

dimensional control volume in rectangular coordinates.

OutflowInflow

Outflow

Inflow

Outflow

Inflow

x

z
y

Figure 3.1: A simple control volume.

3.1.1 General conservation equation

An extensive property is a property that is integrable in space and time [7]. In our

study, we refer to an extensive property as a mass dependent quantity. Examples include

concentration, energy, density and momentum. Let G, denote an amount of such a

property in a fluid.
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Consider an infinitesimal control volume dVf , (located inside a fluid of volume Vf ) in

which a property with density Φ, is moving through it in time t, with velocity v, in a

fixed rectangular coordinate system.

The amount of property (∂G) within the small volume dVf , inside the volume Vf , of the

fluid is given by:

∂G = ΦdVf . (3.1.1)

The total mass of the property inside the whole volume of fluid that occupies a region

W, is given by the following integral equation:

G(W, t) =

∫∫∫
W

ΦdVf , (3.1.2)

for the sake of simplicity, we shall write the volume integral as
∫
W

ΦdVf , instead of∫∫∫
W

ΦdVf .

We shall now consider total efflux across the boundaries of the volume occupied by the

fluid. Let ∂Sf be a small area element with outward unit normal n, which is the boundary

of the volume of fluid and let J be a vector of the convective fluxes of the property G,

across the boundaries of the fluid volume i.e.

J = Φve. (3.1.3)

Then the net flow of the property across the boundaries of volume Vf , is given by:

inflow − outflow = −
∮

J · n∂Sf . (3.1.4)

However, the rate of change of the amount of property inside the volume is equal to the

difference between the amount that flows in and the amount that flows out, thus we have:

∂

∂t
G(W, t) = −

∮
J · n∂Sf , (3.1.5)

The divergence theorem states that:∮
f · ndA =

∫
W

∇ · fdV, (3.1.6)

40

Stellenbosch University  http://scholar.sun.ac.za



where f is any differentiable vector, dA, dV are infinitesimal area and volume elements,

respectively [7]. Applying this theorem, we have:∮
J · ndSf =

∫
W

∇ · JdVf ,

thus Equation 3.1.5 becomes:

∂

∂t
G(W, t) +

∫
W

∇ · JdVf = 0,

=⇒
∫
W

∂Φ

∂t
dVf +

∫
W

∇ · JdVf = 0,

=⇒
∫
W

[∂Φ

∂t
+∇ · J

]
dVf = 0. (3.1.7)

The general conservation equation in integral form for the extensive property in a fluid of

volume Vf , is given by Equation 3.1.7. However, by the continuum approach we implicitly

assumed that the domain is continuous and the properties are differentiable, our interest

is to know the instantaneous changes of the property at specific points of the domain.

Since we arbitrarily chose the infinitesimal volume, Equation 3.1.7 holds (is true) only

if the integrand is zero. Thus due to our interest in obtaining differential equations, we

extract the integrand as the differential form of the conservation equation, thus we obtain:

∂Φ

∂t
+∇ · J = 0. (3.1.8)

This Equation 3.1.8 is called a microscopic equation and it applies to every point inside

the volume of fluid. However, this equation does not describe a situation where there are

sources or sinks inside the fluid volume. To account for sources and sinks which appear

in the form of reactions and deposition within the volume, we shall include the term SΦ,

in Equation 3.1.8.

Furthermore, we shall identify microscopic coordinates in the microscopic equations by

attaching (′) to each microscopic independent variable. Thus Equation 3.1.8 is rewritten

as follows:
∂Φ

∂t′
+∇′ · J = SΦ. (3.1.9)

41

Stellenbosch University  http://scholar.sun.ac.za



3.1.2 Microscopic mass transport equation

When the general property G, is taken as the fluid mass, the density Φ, is the mass

density of the fluid. Let ρe be the mass density of the effluent water, then;

Φ = ρe. (3.1.10)

The mass flux across the control volume boundaries is obtained by substituting Equation

3.1.10 into Equation 3.1.3, thus we obtain:

J = ρeve, (3.1.11)

where ve is the mass average effluent water velocity vector. Let the amount of mass

produced or used in the control volume be Sρe , then the source term in the general

Equation 3.1.9 is given by:

SΦ = Sρe . (3.1.12)

By substituting Φ = ρe, SΦ = Sρe , and J = ρeve into Equation 3.1.9, the microscopic

mass balance for the effluent water is given by:

∂ρe
∂t′

+∇′ · ρeve = Sρe . (3.1.13)

Equation 3.1.13 states that the rate of increase in mass of the fluid inside the control

volume is a result of mass fluxes across the boundaries of the control volume and mass

sources or sinks inside the control volume. Equation 3.1.13 applies when the fluid is

homogeneous (single phase and single component) [7].

3.1.3 Microscopic momentum transport equation

When the property G, is momentum, the density Φ, is the momentum density. How-

ever, momentum of the fluid is the product of mass and velocity of the fluid, therefore

momentum density which is simply the momentum of the fluid per unit volume is;

Φ = ρeve. (3.1.14)
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Momentum is transported by the convective fluid motion across the boundaries of the

control volume, thus by substituting Equation 3.1.14 into Equation 3.1.3 the convective

flux J, is given by;

J = ρeveve, (3.1.15)

Substituting Equations 3.1.14 and 3.1.15 into the general conservation Equation 3.1.9,

we obtain:
∂ρeve

∂t′
+∇′ · ρeveve = SΦ. (3.1.16)

Equation 3.1.16 states that the rate of change in momentum of the fluid inside the control

volume is equal to the net (resultant) force acting on it (fluid). The forces acting on the

fluid can broadly be classified as body forces and surface forces. While the body forces

act throughout the fluid, the surface forces act on the surface of the fluid. The surface

forces include pressure and viscous forces and the body force is assumed to be due to

gravity only. Thus splitting the source term into the body force part and surface force

part, we have:
∂ρeve

∂t′
+∇′ · ρeveve = ∇′ · σ̄ + Fb, (3.1.17)

where σ̄ is a tensor describing the stress on the fluid and Fb body force per unit volume

[7, 36, 51]. The stress tensor is given mathematically by:

σ̄ = −peδ + τ̄ , (3.1.18)

where Kronecker delta δ, represents a unit tensor, pe represents static pressure and τ̄

represents the viscous stress tensor. The body force density (body force per unit volume)

Fb, which is due to gravity is given by [7, 51, 36]:

Fb = ρeg, (3.1.19)

where g is the gravitational force per unit mass. Substituting Equations 3.1.19 and 3.1.18

into Equation 3.1.17, we obtain:

∂ρeve

∂t′
+∇′ · ρeveve = ∇′ · (−peδ + τ̄) + ρeg. (3.1.20)

Expanding the right hand side of Equation 3.1.20, we have:

∂ρeve

∂t′
+∇′ · ρeveve = −∇′pe +∇′ · τ̄ + ρeg. (3.1.21)
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It has been shown (by [7, 51, 36, 69]) that the divergence of the viscous stress tensor

(∇′ · τ̄), can be expressed as:

∇′ · τ̄ = ∇′ · µe∇′ve +∇′ve · ∇′µe + µe∇′(∇′ · ve) (3.1.22)

where µe represents viscosity of the fluid. By assumption, the viscosity of the mine effluent

water is constant, implying that;

∇′ve · ∇′µe = 0. (3.1.23)

We also assume that the fluid is incompressible (no volume changes due to pressure

changes), thus;

µe∇′∇′ · ve = 0. (3.1.24)

Substituting Equation 3.1.22 into Equation 3.1.21 and using information from Equations

3.1.24 and 3.1.23, the microscopic momentum transport equation is given by:

∂ρeve

∂t′
+∇′ · ρeveve = −∇′pe +∇′ · µe∇′ve + ρeg. (3.1.25)

3.1.4 Microscopic energy transport equation

The energy in the control volume is given by the sum of the kinetic and internal energies.

When the property G, is energy, then Φ is the energy density. The kinetic energy density

(Ke) is given by:

Ke =
ρev

2
e

2
, (3.1.26)

where v2
e = ve · ve. Let En, be the internal energy density, then the total energy density

in the control volume is given by:

Φ = En +
ρev

2
e

2
. (3.1.27)

By substituting Equation 3.1.27 into Equation 3.1.3, the convective energy flux across

the boundaries of the control volume is given by:

J =
(
En +

ρev
2
e

2

)
ve. (3.1.28)
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Let the energy source or sink term be ST . Thus, substituting Equations 3.1.27 and 3.1.28

into the general conservation Equation 3.1.9, we obtain:

∂
(
En + ρev2e

2

)
∂t′

+∇′ ·
(
En +

ρev
2
e

2

)
ve = ST . (3.1.29)

Equation 3.1.29 states that the rate at which energy changes in the control volume is

equal to the sum of convective transfer and other transfers (ST ) [26, 35]. The other forms

of energy transfers include work done by body and surface forces, heat generation from

energy sources STT , and conductive transfer [26, 35]. The work done by body forces (Wb)

is given by [26, 35, 51]:

Wb = ve · ρeg. (3.1.30)

Work done by the surface forces (Ws) is given by [51, 26, 35]:

Ws = ∇ · σ̄ · ve. (3.1.31)

Energy transfer by conduction is given by Fourier’s law which states that the heat flux

across a surface is directly proportional to the temperature gradient [51]. Mathematically,

Fourier’s law states that:

qc = −κe∇Te, (3.1.32)

where qc is the heat flux, κe is the constant of proportionality called thermal conductivity,

and Te is temperature. By Fourier’s law, the net energy flux by conduction into the control

volume is given by [26]:

−∇ · qc = −∇′ · −κe∇Te, (3.1.33)

the negative sign indicates heat flow from high to low temperature.

Combining Equations 3.1.30, 3.1.31, 3.1.33, the heat source term (STT ) and substituting

the result in the right hand of Equation 3.1.29 we obtain:

∂
(
En + ρev2e

2

)
∂t′

+∇′ ·
(
En +

ρev
2
e

2

)
ve = ∇′ · κe∇′Te +STT +∇′ · σ̄ ·ve + ve · ρeg. (3.1.34)

Equation 3.1.34 is the energy transport equation obtained by the energy conservation

law. However, it can be split into a dissipative part and work done by forces. Since
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our interest is the dissipative part, we subtract the part describing work done by forces.

Taking a dot product of the fluid velocity and the momentum Equation 3.1.25, we obtain:

∂ ρev
2
e

2

∂t′
+∇′ · ρev

2
e

2
ve = ve · ∇′ · σ̄ + ve · ρeg. (3.1.35)

Equation 3.1.35 describes kinetic energy transport only. Subtracting Equation 3.1.35)

from Equation 3.1.34, the part describing internal energy transport is given by:

∂En
∂t′

+∇′ · Enve = ∇′ · κe∇Te + STT +∇′ · σ̄ · ve)− ve · ∇′ · σ̄,

= ∇′ · κe∇′Te + STT + σ̄ · ∇′ · ve,

= ∇′ · κe∇′Te + STT − pe∇′ · ve + τ̄ · ∇′ · ve. (3.1.36)

The last term in Equation 3.1.36 accounts for the irreversible viscous dissipation of energy

[26]. Thermodynamically, En is defined as [26]:

En = ρehe − pe, (3.1.37)

where he is enthalpy. Substituting Equation 3.1.37 into Equation 3.1.36 and rearranging,

we obtain:

∂ρehe
∂t′

+∇′ · (ρeheve) = ∇′ · κe∇′Te + STT −
∂pe
∂t′
−∇′ · peve − pe∇′ · ve + τ̄ · ∇′ · ve.

(3.1.38)

In the case of constant pressure, the enthalpy he is given by [21, 26]:

he = (Cp)eTe (3.1.39)

where (Cp)e heat capacity at constant pressure. Thus substituting Equation 3.1.39 into

Equation 3.1.38, the energy transport equation further reduces to the following:

∂ρe(Cp)eTe
∂t′

+∇′ · (ρe(Cp)eTeve) = ∇′ · κe∇′Te + STT + τ̄ · ∇′ · ve. (3.1.40)
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The energy transport equation for our study will account for the conductive and convec-

tive energy transfer in the fluid phase, and conduction in solid phase with a source term.

Therefore, energy transport by the fluid phase is given by:

∂ρe(Cp)eTe
∂t′

+∇′ · (ρe(Cp)eTeve) = ∇′ · κe∇′Te + STT , (3.1.41)

and energy transport by the solid phase is given by:

∂ρs(Cp)sTs
∂t′

= ∇′ · κs∇′Ts, (3.1.42)

where κs, Ts, (Cp)s, and ρs are the thermal conductivity, temperature, specific heat ca-

pacity at constant pressure, and density of the solid.

3.1.5 Flow development

The mass conservation Equation 3.1.13 is also called continuity Equation. Employing

the continuity Equation 3.1.13 and the momentum Equation 3.1.25, a Newtonian fluid

flowing freely (outside a porous domain) can be described. We only discuss a case where

the effluent water flows between two fixed, parallel and impermeable walls separated by

some distance (see Figure 3.2). This type of flow is commonly called Plane Poiseuille

flow.

For such a flow, a uniform entrance velocity profile changes until the velocity profile is

parabolic (in a 2-D flow case) or the fluid exits the domain, this is called flow development

[29, 35]. Figure 3.3 illustrates flow development in the empty channel.
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Vertical axis
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Wall one
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Separation distance

Figure 3.2: A simple free flow domain.

Figure 3.3: A schematic illustrating flow development.
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Moving fluid particles come to a complete stop when in contact with a boundary (wall),

this is called no-slip [29, 35]. The stationary fluid particles in contact with the wall also

cause adjacent fluid particles to come to a stop due to fluid friction. To conserve fluid

mass in the flow process, the fluid velocity at the mid-section of the domain increases,

thus establishing a velocity gradient and destroying the uniform profile [29, 35]. The

region where the fluid particles are at rest is called the boundary layer [35, 29]. The flow

is divided into two regions due to the boundary layer formation, i.e. the "boundary layer"

region and the "irrotational (core)" flow region [35, 29].

The boundary layer thickness increases in the flow direction until both boundary layers

(at each wall) merge at the center of the domain. The region between the domain inlet

and the point where the boundary layers intersect is called the entrance region, and the

length of the entrance region is called entrance length [29, 35]. Fluid flow in the entrance

region is called hydrodynamically developing flow. The region beyond the entrance region

is called fully developed region [29, 35]. In the fully developed region the velocity profile

is parabolic and there is no further changes in the profile [29].

Flow development can be described by solving steady forms of Equation 3.1.13 and Equa-

tion 3.1.25. Figures 3.4 and 3.5 are graphs of horizontal velocity component against

vertical distance, for specific horizontal distances.
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Figure 3.4: Flow development profiles

Figure 3.5: Flow development profiles

The graph at left hand side of Figure 3.4 is the uniform entrance velocity profile and the

graph at right hand side of Figure 3.4 is the velocity profile at a short distance from the

entrance. The graph at the right hand side of Figure 3.5 shows the fully developed velocity

profile. It can be observed that, the velocity profiles clearly illustrate flow development.
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3.2 Macroscopic Modelling

The microscopic description considers the transport phenomena at every mathematical

point within any phase (considered as a continuum). In principle this method is feasible,

since the resulting microscopic model can be used to describe phenomena in the pore

length scale. However, due to our inability to measure quantities at the pore level,

coupled with large length scale problems usually encountered in practical cases, and

due to our inability to describe the complicated geometry of the porous domain, the

microscopic description is not employed in practical problems involving phenomena in

porous structures. Figure 3.6 illustrates the complicated geometry of a porous domain.

Figure 3.6: Schematic and real porous media.

An alternative modelling approach that circumvents the problems listed in the previous

paragraph, is a higher continuum approach (macroscopic) in which the real porous domain

is replaced by a fictitious continuum [69, 70, 7, 31]. The method considers matter present

in the domain as continuum which completely fills the domain. Thus, if the matter

is composed of multi-phases, each phase is treated as continuum. Which further implies

that, a multi-phase domain is simply a set of overlapping continua that are interacting [69,

70]. The difficulties encountered with the microscopic method are overcome by averaging
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over a small volume domain located in the porous medium called an elementary volume.

The average of a variable is taken over an elementary volume and assigned to the centroid

of that volume. This averaged value is called a macroscopic value [69, 70].

The higher continuum approach and the representative elementary volume (REV) con-

cepts are not new, see the next section for a detailed discussion of REV. Many researchers

have elaborated these concepts in detail [69, 24, 41, 68, 27, 57, 46], however in this work,

we employ those concepts as part of literature review and methodology to derive a math-

ematical model for the AMD process.

The assumptions used in this section include: constant viscosity, constant thermal con-

ductivity and constant specific heat capacity for the effluent water. The limestone is

assumed to be isotropic and homogeneous. No-slip condition applies to fluid-solid inter-

faces.

3.2.1 Representative elementary volume

A sample elementary volume of the porous domain which always consist of a void space

and a solid phase, that represents a mathematical/physical point, and returns a constant

averaged value is called a REV [69, 7, 60]. Figure 3.7 is a simple representative elementary

volume.
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Figure 3.7: A Representative Elementary Volume.

Void space is the area that the fluid either occupies or flow through in the porous medium.

Between the solid phase and the void space is an interface called solid-fluid interface (de-

noted by Asf in Figure 3.7). Other interfaces include fluid-fluid and solid-solid interfaces

located at the REV boundaries [69].

Two important theorems are used to obtain macroscopic models from microscopic model.

These theorems are Slattery’s theorem and volume averaging theorem.
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3.2.2 Volume averaging and Slattery’s theorem

Let X ′ denote a point in the volume Vf of fluid located inside the REV of size V, and let

X denote the position of the REV’s centroid in a fixed coordinate system.

An intrinsic volume average of a property is the amount of that property present in a unit

phase volume of an REV. The intrinsic phase average is used when the parameters or

variables of interest are physically measured per phase. For the property G, an intrinsic

volume average over the fluid phase of an REV is defined by [19]:

〈G〉f (X, t) =
1

Vf (X, t)

∫
Vf (X,t)

G(X ′, t)dVf (X
′). (3.2.1)

and the intrinsic average of the solid phase is given by:

〈G〉s(X, t) =
1

Vs(X, t)

∫
Vs(X,t)

G(X ′, t)dVs(X
′). (3.2.2)

where Vs is the volume of the solid phase in the REV.

Parameters can also be given or measured per unit volume of the REV instead of phase

volume, these parameters or variables are called superficial parameters or variables. Su-

perficial variables are obtained directly by averaging over an REV, the procedure is called

superficial averaging. The formula for superficial averaging is defined by [19]:

〈G〉(X, t) =
1

V (X, t)

∫
V (X,t)

G(X ′, t)dV (X ′) = εf〈G〉f (3.2.3)

where:

εf =
Vf
V
, (3.2.4)

is the volumetric porosity of the fluid phase. The sum of the void fraction and the solid

phase fraction of the REV is unity, thus we have:

εs + εf = 1, (3.2.5)

where εs is the solid phase fraction of the REV. Since the macroscopic value or variable

(the averaged value assigned to the centroid) of the REV is a mean of microscopic values

or variables at any point inside the REV, then any microscopic value or variable inside

that same REV can be expressed in terms of the the mean and a deviation, thus we have:

G(X ′, t;X) = 〈G〉(X, t) + Φ′(X ′, t;X) (3.2.6)
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or:

G(X ′, t;X) = 〈G〉f (X, t) +G′(X ′, t;X), (3.2.7)

where G′(X ′, t;X) is deviation of the property G, at position X ′ in time t, from the aver-

aged value assigned to the centroid of the REV. Equation 3.2.6 expresses the microscopic

property in terms of the superficial average, and Equation 3.2.7 expresses the microscopic

property in terms of the intrinsic average. Henceforth, we omit the functional arguments

(X ′, t;X), thus G′(X ′, t;X) will be written simply as G′.

Each term in the microscopic equations must be averaged to obtain macroscopic terms.

However, it can be observed that almost all the terms in the equation are derivatives.

Thus when the averaging theorems are applied to the derivatives, the resulting terms

will need further treatment. Slattery proposed a theorem that relates the average of

derivatives to derivatives of average, this theorem is given by [69, 19]:

〈∇G〉 = ∇〈G〉+
1

V

∫
Asf

GndA, (3.2.8)

where n is a unit outward normal pointing from the fluid phase towards the solid phase.

The average of the time derivative is related to the time derivative of an averaged quantity,

by [69] :

〈∂′tG〉 = ∂t〈G〉 −
1

V

∫
Asf

Gvesf · ndA, (3.2.9)

where vesf is the velocity of the solid-fluid interface (Asf ), and ∂′t = ∂
∂t′

is a microscopic

time derivative.

Other rules used in the volume averaging procedure include [69]:

〈∇′G〉 = εf∇〈G〉f +
1

V

∫
Asf

G′ndA. (3.2.10)

Mean of sum rule:

〈G1 +G2〉 = 〈G1〉+ 〈G2〉, (3.2.11)

where G1 and G2 are extensive properties.

Mean of product rule:

〈G1G2〉 = 〈G1〉〈G2〉+ 〈G′1G′2〉. (3.2.12)
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Mean of scalar constant product:

〈αconstantG〉 = αconstant〈G〉, (3.2.13)

where αconstant is any constant.

The mean of the deviations in Equation 3.2.7 and Equation 3.2.6 is zero, thus we have:

〈G′〉 = 0 and 〈G′〉f = 0. (3.2.14)

3.2.3 Macroscopic continuity equation

Applying the volume averaging theorem given by Equation 3.2.8 to the microscopic con-

tinuity Equation 3.1.13, we obtain:

〈∂ρe
∂t′

+∇′ · (ρeve)〉 = 〈Sρe〉. (3.2.15)

Applying rule 3.2.11 to Equation 3.2.15, we obtain:

〈∂ρe
∂t′
〉+ 〈∇′ · (ρeve)〉 = 〈Sρe〉. (3.2.16)

Replacing the gradient operator in Slattery’s theorem given by 3.2.8 with a divergence

operator, and applying the results to the second term in Equation 3.2.16, we obtain:

〈∇′ · (ρeve)〉 = ∇ · 〈(ρeve)〉+
1

V

∫
Asf

ρeve · ndA (3.2.17)

Applying no-slip condition (i. e. ve · n = 0), the integral term vanishes. The density ρe

and the velocity are expressed in terms of their intrinsic mean and deviations by using

Equation 3.2.6, thus ρe = 〈ρe〉f + ρ′e and ve = 〈ve〉f + v′e, where v′e is the velocity

deviation from the mean velocity, and ρ′e is the density deviation from the mean density.

Substituting into Equation 3.2.17 :

〈∇′ · (ρeve)〉 = ∇ ·
(
〈
(
〈ρe〉f + ρ′e

)(
〈ve〉f + v′e

)
〉
)

(3.2.18)
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Expanding Equation 3.2.18, we obtain:

〈∇′ · (ρeve)〉 = ∇ ·
(
〈
(
〈ρe〉f + ρ′e

)(
〈ve〉f + v′e

)
〉
)

= ∇ ·
(
〈
(
〈ρe〉f〈ve〉f + ρ′e〈ve〉f + 〈ρe〉fv′e + ρ′ev

′
e

)
〉
)

= ∇ ·
(
〈〈ρe〉f〈ve〉f〉+ 〈ρ′e〈ve〉f〉+ 〈〈ρe〉fv′e〉+ 〈ρ′ev′e〉

)
. (3.2.19)

Replacing the superficial average in Equation 3.2.19 by the intrinsic average and applying

rule 3.2.13 to the results, we obtain:

〈∇′ · (ρeve)〉 = ∇ ·
(
εf〈ρe〉f〈ve〉f〈1〉f + εf〈ρ′e〉f〈ve〉f

+ εf〈ρe〉f〈v′e〉f + εf〈ρ′ev′e〉f
)
. (3.2.20)

Since the average of a constant is the constant, and the average of a deviation is zero

(according to rule 3.2.14), then Equation 3.2.20 can be written as follows:

〈∇′ · (ρeve)〉 = ∇ ·
(
εf〈ρe〉f〈ve〉f + εf〈ρ′ev′e〉f

)
,

= ∇ ·
(
εf〈ρe〉f〈ve〉f

)
+∇ ·

(
εf〈ρ′ev′e〉f

)
. (3.2.21)

The average of the time derivative in Equation 3.2.16 can also be expanded by applying

Equation 3.2.9. thus we obtain:

〈∂ρe
∂t′
〉 =

∂〈ρe〉
∂t
− 1

V

∫
Asf

ρevesf · ndA. (3.2.22)

Replacing the first term of Equation 3.2.16 by the right hand side of Equation 3.2.22, and

also replacing the second term left hand side of 3.2.16 by the right hand side of Equation

3.2.21, the macroscopic continuity equation for the effluent water is given by:

∂εf〈ρe〉f

∂t
+∇ ·

(
εf〈ρe〉f〈ve〉f

)
+∇ ·

(
εf〈ρ′ev′e〉f

)
= εf〈Sρe〉f

+
1

V

∫
Asf

ρevesf · ndA. (3.2.23)

Equation 3.2.23 is the macroscopic mass balance for a homogeneous (a single) fluid flowing

through a porous medium. It describes a flow through a homogeneous medium whose
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porosity changes in time and space [7]. The first term at the left hand side of Equation

3.2.23 accounts for the rate at which the mass density is changing with time in the

domain. The second term (left hand side of Equation 3.2.23) is the convection term, which

describes the rate at which mass is transported across domain boundaries by convection.

The third term (left hand side of Equation 3.2.23) is the dispersion term, it quantifies

mass transport relative to convection. The first term right hand side is the averaged

source term, and the last term is a source term that quantifies inter-phase transfer of

mass.

3.2.4 Contaminant transport and carrier fluid continuity

equations

The mine effluent water can be separated into pure water and contaminants by physical

or chemical methods. The density and other parameters of the effluent water is the sum

of the parameters for the pure water and the contaminants. Thus the mine effluent water

density 〈ρe〉f , can be written as;

〈ρe〉f = 〈ρw〉f + 〈ρc〉f , (3.2.24)

where 〈ρw〉f is the intrinsic density of water and 〈ρc〉f is the intrinsic density of the

contaminants.

Substituting the right hand side of Equation 3.2.24 into the macroscopic continuity Equa-

tion 3.2.23, we obtain:

∂εf

(
〈ρw〉f + 〈ρc〉f

)
∂t

+∇ ·
(
εf

(
〈ρw〉f + 〈ρc〉f

)
〈ve〉f

)
+∇ ·

(
εf〈ρ′ev′e〉f

)
= εf〈Sρw〉f + εf〈Sρc〉f + SRC , (3.2.25)

where SRC = 1
V

∫
Asf

ρevesf · ndA, and 〈Sρe〉f = 〈Sρw〉f + 〈Sρc〉f .

Equation 3.2.25 can be split into the pure water transport equation;

∂εf〈ρw〉f

∂t
+∇ ·

(
εf〈ρw〉f〈ve〉f

)
= εf〈Sρw〉f , (3.2.26)
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and the contaminant transport equation:

∂εf〈ρc〉f

∂t
+∇ ·

(
εf〈ρc〉f〈ve〉f

)
+∇ ·

(
εf〈ρ′ev′e〉f

)
= εf〈Sρc〉f + SRC . (3.2.27)

Equation 3.2.27 requires closure since the dispersion term contains variables that cannot

be written into separate mean values. The dispersive flux 〈ρ′ev′e〉f , is related to the

gradient of the mass density [7] by:

〈ρ′ev′e〉f = −D̄ · ∇〈ρc〉, (3.2.28)

where D̄ is a second-rank tensor called coefficient of mechanical dispersion. Replacing

the dispersive flux in Equation 3.2.27 with the right hand side of Equation 3.2.28, we

obtain:

∂εf〈ρc〉f

∂t
+∇ ·

(
εf〈ρc〉f〈ve〉f

)
−∇ ·

(
εfD̄ · ∇〈ρc〉

)
= εf〈Sρc〉f + SRC . (3.2.29)

The pure water is the component of the effluent water that is in excess, therefore dom-

inates in the flow process. The dominant fluid or component is called carrier fluid [30].

The flow parameters from the contaminants are considered negligible as compared with

the flow parameters for the carrier fluid. Thus the flow parameters in the continuity,

momentum and energy equations for the mine effluent water are approximated by pa-

rameters for pure water. In the continuity Equation 3.2.25 for the pure water, the source

term accounts for the water that is produced during chemical reaction, but comparing

the source to the flowing fluid, the source is negligible. Since the density and porosity

are assumed constant, the macroscopic continuity equation for the carrier fluid (water) is

given by:

∇ · ve〉f = 0. (3.2.30)

Moreover, the water contaminant is a mixture of chemical species. The goal in this

Chapter is to obtain a transport equation for each chemical species. The density of the

contaminants is the sum of the densities of all the chemical species present in the effluent

water, thus we have:
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〈ρc〉f =

Nspe∑
k=1

〈ρk〉f , (3.2.31)

where 〈ρk〉f is the density of the kth chemical species, and Nspe is the total number of

chemical species present in the water. The fraction of each chemical species is called mass

fraction [30], [28]. The mass fraction (ωk) of species k, is defined as:

ωk =
〈ρk〉f

〈ρc〉f
. (3.2.32)

The macroscopic transport equation for each species is obtained by multiplying the mass

fraction ωk, by each term in the contaminant Equation 3.2.29. Thus we obtain:

∂εfωk〈ρc〉f

∂t
+∇ ·

(
εfωk〈ρc〉f〈ve〉f

)
−∇ ·

(
εfD̄ · ∇ωk〈ρc〉

)
= Sk, (3.2.33)

where Sk = ωk

(
εf〈Sρc〉f + SRC

)
, is the portion of the source mass for the kth chemical

species. The product ωk〈ρc〉f = Ck in Equation 3.2.33 is the mass concentration of species

k, thus we can rewrite Equation 3.2.33 as:

∂εfCk
∂t

+∇ ·
(
εf〈ve〉fCk

)
−∇ ·

(
εfD̄ · ∇Ck

)
= Sk. (3.2.34)

3.2.5 Hydrogen ion transport equation

When k = 1, Equation 3.2.34 is the transport equation for H+ ions, thus we have:

∂εfC1

∂t
+∇ ·

(
εf〈ve〉fC1

)
−∇ ·

(
εfD̄ · ∇C1

)
= S1. (3.2.35)

For closure of Equation 3.2.35, we substitute S1 using Equation 2.8.2, thus we obtain:

∂εfC1

∂t
+∇ ·

(
εf〈ve〉fC1

)
−∇ ·

(
εfD̄ · ∇C1

)
= −Kf

(
(1− θc)B(θf )

)
θLC1 + 0.00040984KbC6C8. (3.2.36)
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3.2.6 Ferric ion transport equation

When k = 2, Equation 3.2.34 is the transport equation for Fe3+ ions, thus we have:

∂εfC2

∂t
+∇ ·

(
εf〈ve〉fC2

)
−∇ ·

(
εfD̄ · ∇C2

)
= S2. (3.2.37)

For closure of Equation 3.2.37, we substitute S2 using Equation 2.4.1, thus we obtain:

∂εfC1

∂t
+∇ ·

(
εf〈ve〉fC1

)
−∇ ·

(
εfD̄ · ∇C1

)
= KoC3C7. (3.2.38)

3.2.7 Ferrous ion transport equation

When k = 3, Equation 3.2.34 is the transport equation for Fe2+ ions, thus we have:

∂εfC3

∂t
+∇ ·

(
εf〈ve〉fC3

)
−∇ ·

(
εfD̄ · ∇C3

)
= S3. (3.2.39)

For closure of Equation 3.2.39, we substitute S3 using Equation 2.3.10 to obtain:

∂εfC3

∂t
+∇ ·

(
εf〈ve〉fC3

)
−∇ ·

(
εfD̄ · ∇C3

)
= −KoC3C7. (3.2.40)

3.2.8 ’Yellowboy’ transport equation

When k = 2, Equation 3.2.34 is the transport equation for Fe(OH)3, thus we have:

∂εfC4

∂t
+∇ ·

(
εf〈ve〉fC4

)
−∇ ·

(
εfD̄ · ∇C4

)
= S4. (3.2.41)

For closure of Equation 3.2.41, we substitute S4 using Equation 2.6.9 to obtain:

∂εfC4

∂t
+∇ ·

(
εf〈ve〉fC4

)
−∇ ·

(
εfD̄ · ∇C4

)
= −θcθLKdep,fB(θf )C4. (3.2.42)
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3.2.9 Sulphate ion transport equation

When k = 5, Equation 3.2.34 is the transport equation for SO2−
4 ion, thus we have:

∂εfC5

∂t
+∇ ·

(
εf〈ve〉fC5

)
−∇ ·

(
εfD̄ · ∇C5

)
= S5. (3.2.43)

This ion has no source or sink, thus we substitute S5 = 0 into Equation 3.2.43 to obtain:

∂εfC5

∂t
+∇ ·

(
εf〈ve〉fC5

)
−∇ ·

(
εfD̄ · ∇C5

)
= 0. (3.2.44)

3.2.10 Calcium ion transport equation

When k = 6, Equation 3.2.34 is the transport equation for Ca2+ ion, thus we have:

∂εfC6

∂t
+∇ ·

(
εf〈ve〉fC6

)
−∇ ·

(
εfD̄ · ∇C6

)
= S6. (3.2.45)

For closure of Equation 3.2.45, we substitute S6 using Equation 2.9.2 to obtain:

∂εfC6

∂t
+∇ ·

(
εf〈ve〉fC6

)
−∇ ·

(
εfD̄ · ∇C6

)
= 40Kf

(
(1− θc)B(θf )

)
θLC1 − 0.0164KbC6C8. (3.2.46)

3.2.11 Oxygen transport equation

When k = 7, Equation 3.2.34 is the transport equation for O2, thus we have:

∂εfC7

∂t
+∇ ·

(
εf〈ve〉fC7

)
−∇ ·

(
εfD̄ · ∇C7

)
= S7. (3.2.47)

For closure of Equation 3.2.47, we substitute S7 using Equation 2.5.1 to obtain:
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∂εfC6

∂t
+∇ ·

(
εf〈ve〉fC6

)
−∇ ·

(
εfD̄ · ∇C6

)
= −0.25KoC3C7. (3.2.48)

3.2.12 HCO−3 transport equation

When k = 8, Equation 3.2.34 is the transport equation for HCO−3 ion, thus we have:

∂εfC8

∂t
+∇ ·

(
εf〈ve〉fC8

)
−∇ ·

(
εfD̄ · ∇C8

)
= S8. (3.2.49)

For closure of Equation 3.2.49, we substitute S8 using Equation 2.10.2 to obtain:

∂εfC8

∂t
+∇ ·

(
εf〈ve〉fC8

)
−∇ ·

(
εfD̄ · ∇C8

)
= 61Kf

(
(1− θc)B(θf )

)
θLC1 − 0.025KbC6C8. (3.2.50)

3.2.13 Macroscopic momentum equation

Applying the volume averaging theorem given by Equation 3.2.8 to the microscopic mo-

mentum Equation 3.1.25, we obtain:

〈∂ρeve

∂t′
+∇′ · (ρeveve)〉 = 〈−∇′pe +∇′ · (µe∇′ve) + ρeg〉. (3.2.51)

Applying rule 3.2.11 to Equation 3.2.51, we obtain:

〈∂ρeve

∂t′
〉+ 〈∇′ · (ρeveve)〉 = −〈∇′pe〉+ 〈∇′ · (µe∇′ve)〉+ 〈ρeg〉. (3.2.52)

The averaged time derivative in Equation 3.2.52 is expanded by applying Equation 3.2.9,

thus we obtain:

〈∂ρeve

∂t′
〉 =

∂〈ρeve〉
∂t

− 1

V

∫
Asf

ρevevesf · ndA. (3.2.53)
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We want to obtain the derivatives of averaged quantities and not the average of derivatives

thus, we can write the microscopic velocity and density as sums of intrinsic averages and

deviations. Thus substituting ve = 〈ve〉f + v′e, and ρe = 〈ρe〉f + ρ′e into first term at the

right hand side of Equation 3.2.53, we obtain:

〈∂ρeve

∂t′
〉 =

∂〈
(
〈ρe〉f + ρ′e

)(
〈ve〉f + v′e

)
〉

∂t
− 1

V

∫
Asf

ρevevesf · ndA. (3.2.54)

Expanding Equation 3.2.54, we obtain:

〈∂ρeve

∂t′
〉 =

∂

∂t

(
〈〈ρe〉f〈ve〉f〉+ 〈ρ′e〈ve〉f〉+ 〈〈ρe〉fv′e〉+ 〈ρ′ev′e〉

)
− 1

V

∫
Asf

ρevevesf · ndA. (3.2.55)

Changing superficial averaging to intrinsic averaging, and applying rules 3.2.13 and 3.2.14,

Equation 3.2.55 is simplified to the following:

〈∂ρeve

∂t′
〉 =

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+
∂

∂t

(
εf〈ρ′ev′e〉

)
− 1

V

∫
Asf

ρevevesf · ndA. (3.2.56)

Replacing the gradient operator in Slattery’s theorem 3.2.8 with a divergence operator,

applying the results to the second term in Equation 3.2.52, and using the no-slip condition,

we obtain:

〈∇′ · (ρeveve)〉 = ∇ · 〈(ρeveve)〉. (3.2.57)

Expressing the velocities and density in terms of intrinsic averages, Equation 3.2.57 be-

comes:

〈∇′ · (ρeveve)〉 = ∇ · 〈(ρeveve)〉,

= ∇ · 〈
((
〈ρe〉f + ρ′e

)(
〈ve〉f + v′e

)(
〈ve〉f + v′e

))
〉. (3.2.58)
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Expanding the right hand side of Equation 3.2.58, we have:

〈∇′ · (ρeveve)〉 = ∇ · 〈
((
〈ρe〉f + ρ′e

)(
〈ve〉f + v′e

)(
〈ve〉f + v′e

))
〉,

= ∇ · 〈
((
〈ρe〉f + ρ′e

)(
〈ve〉f〈ve〉f + v′e〈ve〉f + 〈ve〉fv′e + v′ev

′
e

))
〉,

= ∇ · 〈
((
〈ρe〉f〈ve〉f〈ve〉f + 〈ρe〉fv′e〈ve〉f + 〈ρe〉f〈ve〉fv′e

+ 〈ρe〉fv′ev′e + ρ′e〈ve〉f〈ve〉f + ρ′ev
′
e〈ve〉f

+ ρ′e〈ve〉fv′e + ρ′ev
′
ev
′
e

)
〉. (3.2.59)

Changing superficial average to intrinsic average, and applying rules 3.2.11, 3.2.13 and

3.2.14 to Equation 3.2.59, we obtain:

〈∇′ · (ρeveve)〉 = ∇ · εf
(
〈ρe〉f〈ve〉f〈ve〉f + 〈ρe〉f〈v′ev′e〉f + 〈ρ′ev′e〉f〈ve〉f

+ 〈ρ′ev′e〉f〈ve〉f + 〈ρ′ev′ev′e〉f
)

= ∇ · εf
(
〈ρe〉f〈ve〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈v′ev′e〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′ev′e〉f

)
(3.2.60)

Applying rule 3.2.10 to the averaged pressure term in Equation 3.2.52

〈∇′pe〉 = εf∇〈pe〉f +
1

V

∫
Asf

p′endA, (3.2.61)

where p′e is the pressure deviation from the mean.

Replacing the gradient operator in Slattery’s theorem 3.2.8 with a divergence operator,

and applying the results to the second term at the right hand side of Equation 3.2.52, we

obtain:

〈∇′ · (µe∇′ve)〉 = ∇ · 〈(µe∇′ve)〉+
1

V

∫
Asf

(µe∇′ve) · ndA (3.2.62)

Changing superficial average to intrinsic average, applying rule 3.2.8 to the first term at

the right hand side of Equation 3.2.62, and taking µe as a constant, we obtain:
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∇ · 〈(µe∇′ve)〉 = ∇ ·
(
εf〈µe〉f∇〈ve〉f +

1

V

∫
Asf

vendA
)

= ∇ ·
(
εf〈µe〉f∇〈ve〉f

)
+

1

V
∇ ·
∫
Asf

vendA. (3.2.63)

Thus replacing the first term at the right hand side of Equation 3.2.62 with the right

hand side of Equation 3.2.63, we obtain:

〈∇′ · (µe∇′ve)〉 = ∇ ·
(
εf〈µe〉f∇〈ve〉f

)
+

1

V
∇ ·
∫
Asf

vendA

+
1

V

∫
Asf

(µe∇′ve) · ndA. (3.2.64)

Assembling all the expanded averaged terms of Equation 3.2.52, which are given by Equa-

tions 3.2.56, 3.2.60, 3.2.61 and 3.2.64, the macroscopic momentum transport equation is

given by:

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+
∂

∂t

(
εf〈ρ′ev′e〉f

)
+∇ · εf

(
〈ρe〉f〈ve〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈v′ev′e〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′ev′e〉f

)
= −εf∇〈pe〉f +∇ ·

(
εf〈µe〉f∇〈ve〉f

)
+ εf〈ρe〉fg +

1

V
∇ ·
∫
Asf

vendA

+
1

V

∫
Asf

(µe∇′ve) · ndA−
1

V

∫
Asf

p′endA+
1

V

∫
Asf

ρevevesf · ndA. (3.2.65)

The last integral term in Equation 3.2.65 quantifies the interfacial momentum flux in the

case of a multi-phase flow. Since a single phase flow is assumed in our study, we consider

the effect of that integral term negligible. Thus Equation 3.2.65 reduces to:

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+
∂

∂t

(
εf〈ρ′ev′e〉f

)
+∇ · εf

(
〈ρe〉f〈ve〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈v′ev′e〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′e〉f〈ve〉f

)
+∇ · εf

(
〈ρ′ev′ev′e〉f

)
= −εf∇〈pe〉f +∇ ·

(
εf〈µe〉f∇〈ve〉f

)
+ εf〈ρe〉fg +

1

V
∇ ·
∫
Asf

vendA

+
1

V

∫
Asf

(µe∇′ve) · ndA−
1

V

∫
Asf

p′endA. (3.2.66)
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The first term at the left hand side of Equation 3.2.66 describes the unsteady macroscopic

momentum transport in the considered domain and the second term at the left hand

accounts for unsteady momentum dispersion due to the presence of the solid in the flow

domain. The third term accounts for macroscopic momentum convection across the

domain boundaries, and the rest of the terms at the left hand side of Equation 3.2.66 are

dispersion terms which occurred as a result of the presence of solid surfaces in the flow

domain. The first three terms at the right hand side of Equation 3.2.66, respectively, are

the macroscopic, pressure term, diffusive momentum transport term and body force per

unit volume. In the case of a homogeneous fluid, the macroscopic momentum equation

further reduces to:

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈ve〉f〈ve〉f

)
= −εf∇〈pe〉f +∇ ·

(
εf〈µe〉f∇〈ve〉f

)
+ εf〈ρe〉fg +

1

V
∇ ·
∫
Asf

vendA

−∇ · εf
(
〈ρe〉f〈v′ev′e〉f

)
+

1

V

∫
Asf

(µe∇′ve) · ndA−
1

V

∫
Asf

p′endA. (3.2.67)

The fifth term at the right hand side of Equation 3.2.67 is a dispersive momentum flux,

we consider this term negligible for simplicity. However, since there are still integral terms

in the macroscopic momentum Equation 3.2.67, the equation is not closed for numerical

or analytical considerations. Let;

SpD =
1

V
∇ ·
∫
Asf

vendA+
1

V

∫
Asf

(µe∇′ve) · ndA−
1

V

∫
Asf

p′endA,

where SpD quantifies the pressure drop due to the presence of the solid surfaces in the

flow domain. Thus replacing the integral in Equation 3.2.67 with SpD, we obtain:

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈ve〉f〈ve〉f

)
= −εf∇〈pe〉f +∇ ·

(
εf〈µe〉f∇〈ve〉f

)
+ εf〈ρe〉fg + SpD. (3.2.68)

Furthermore, closure of the Equation 3.2.68 requires pore-scale modelling since the mi-

croscopic velocity and its gradient appear in the integral terms, however, we use Darcy

law for the closure in our discussion. Thus by the Darcy law, the pressure drop is given

by:

SpD = −〈µe〉
f

〈Kp〉
〈ve〉f (3.2.69)
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where 〈Kp〉 is the permeability of the porous medium.

Therefore, the closed macroscopic momentum equation for the mine effluent water is given

by:

∂

∂t

(
εf〈ρe〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈ve〉f〈ve〉f

)
= −εf∇〈pe〉f +∇ ·

(
εf〈µe〉f∇〈ve〉f

)
+ εf〈ρe〉fg −Kh〈ve〉f , (3.2.70)

where Kh = 〈µe〉f
〈Kp〉 is the hydraulic conductivity.

3.2.14 Macroscopic energy transport equation

Applying the volume averaging theorem given by Equation 3.2.8 to the microscopic energy

transport Equation 3.1.41, we obtain:

〈∂ρe(Cp)eTe
∂t′

+∇′ · (ρe(Cp)eTeve)〉 = 〈∇′ · κe∇′Te〉. (3.2.71)

Applying rule 3.2.11 to Equation 3.2.71, we obtain:

〈∂ρe(Cp)eTe
∂t′

〉+ 〈∇′ · (ρe(Cp)eTeve)〉 = 〈∇′ · κe∇′Te〉+ 〈STT 〉. (3.2.72)

The averaged time derivative in Equation 3.2.72 is expanded by applying Equation 3.2.9,

thus we obtain:

〈∂ρe(Cp)eTe
∂t′

〉 =
∂

∂t
〈ρe(Cp)eTe〉 −

1

V

∫
Asf

ρe(Cp)eTevesf · ndA. (3.2.73)

We want to obtain the derivatives of averaged quantities but the average of derivatives,

thus we write the microscopic temperature and density as sums of intrinsic averages and

deviations. Thus substituting; Te = 〈Te〉f + T ′e, and ρe = 〈ρe〉f + ρ′e into the first term on

the right hand side of Equation 3.2.73, we obtain:
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〈∂ρe(Cp)eTe
∂t′

〉 =
∂

∂t
〈
(

(Cp)e
(
〈ρe〉f + ρ′e

)(
〈Te〉f + T ′e

))
〉

− 1

V

∫
Asf

ρe(Cp)eTevesf · ndA. (3.2.74)

Expanding the first term at the right hand side Equation 3.2.74, we obtain:

〈∂ρe(Cp)eTe
∂t′

〉 =
∂

∂t
〈
(

(Cp)e〈ρe〉f〈Te〉f + (Cp)eρ
′
e〈Te〉f

+ (Cp)e〈ρe〉fT ′e + (Cp)eT
′
eρ
′
e

)
〉 − 1

V

∫
Asf

ρe(Cp)eTevesf · ndA. (3.2.75)

Changing superficial average to intrinsic average, and applying rules 3.2.11, 3.2.13 and

3.2.14 to Equation 3.2.75, we obtain:

〈∂ρe(Cp)eTe
∂t′

〉 =
∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f + 〈(Cp)e〉f〈 T ′eρ′e〉f

)
− 1

V

∫
Asf

ρe(Cp)eTevesf · ndA,

=
∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f

)
+
∂

∂t
εf

(
〈(Cp)e〉f〈 T ′eρ′e〉f

)
− 1

V

∫
Asf

ρe(Cp)eTevesf · ndA. (3.2.76)

Similarly for the average energy convection term in Equation 3.2.72, we replace the gradi-

ent operator in Slattery’s theorem (3.2.8) with a divergence operator, and apply a no-slip

condition to the results, thus we obtain:

〈∇′ · (ρe(Cp)eTeve)〉 = ∇ · 〈(ρe(Cp)eTeve)〉. (3.2.77)

Expressing microscopic variables at the right hand side of Equation 3.2.77 in terms of
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deviations and mean, we have:

〈∇′ · (ρe(Cp)eTeve)〉 = ∇ · 〈
((
〈ρe〉f + ρ′e

)
〈(Cp)e〉f

(
〈Te〉f + T ′e

)(
〈ve〉f + v′e

)
〉,

= ∇ · 〈
((
〈ρe〉f + ρ′e

)
〈(Cp)e〉f

(
〈Te〉f〈ve〉f + T ′e〈ve〉f + 〈Te〉fv′e + T ′ev

′
e

))
〉,

= ∇ · 〈
(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f + 〈ρe〉f〈(Cp)e〉fT ′e〈ve〉f

+ 〈ρe〉f〈(Cp)e〉f〈Te〉fv′e + 〈ρe〉f〈(Cp)e〉fT ′ev′e
)

+ ρ′e〈(Cp)e〉f〈Te〉f〈ve〉f

+ ρ′e〈(Cp)e〉fT ′e〈ve〉f + ρ′e〈(Cp)e〉f〈Te〉fv′e

+ ρ′e〈(Cp)e〉fT ′ev′e
)
〉. (3.2.78)

Changing superficial average to intrinsic average, and applying rules 3.2.11, 3.2.13 and

3.2.14 to Equation 3.2.78, we obtain:

〈∇′ · (ρe(Cp)eTeve)〉 = ∇ · εf
(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈T ′ev′e〉f

)
+∇ · εf

(
〈ρ′eT ′e〉f〈(Cp)e〉f〈ve〉f

)
+∇ · εf

(
〈(Cp)e〉f〈Te〉f〈ρ′ev′e〉f

)
+∇ · εf

(
〈(Cp)e〉f〈ρ′eT ′ev′e〉f

)
. (3.2.79)

Replacing the gradient operator in Slattery’s theorem 3.2.8 with a divergence operator,

and applying the results to the second term at the right hand side of Equation 3.2.72, we

obtain:

〈∇′ · κe∇′Te〉 = ∇ · 〈(κe∇′Te)〉+
1

V

∫
Asf

(κe∇′Te) · ndA (3.2.80)

Changing superficial average to intrinsic average, applying rule 3.2.8 to the first term at

the right hand side of Equation 3.2.80, and taking κe as constant, we obtain:

∇ · 〈(κe∇′Te)〉 = ∇ ·
(
εf〈κe〉f∇〈Te〉f +

1

V

∫
Asf

TendA
)

= ∇ ·
(
εf〈κe〉f∇〈Te〉f

)
+

1

V
∇ ·
∫
Asf

TendA. (3.2.81)
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Thus replacing the first term at the right hand side of Equation 3.2.80 with the right

hand side of Equation 3.2.81, we obtain:

〈∇′ · κe∇′Te〉 = ∇ ·
(
εf〈κe〉f∇〈Te〉f

)
+

1

V
∇ ·
∫
Asf

TendA

+
1

V

∫
Asf

(κe∇′Te) · ndA. (3.2.82)

Assembling all the expanded averaged terms of Equation 3.2.72, which are given by

Equations 3.1.33, 3.1.35, and 3.1.38, the macroscopic energy equation is given by:

∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f

)
+
∂

∂t
εf

(
〈(Cp)e〉f〈 T ′eρ′e〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈T ′ev′e〉f

)
+∇ · εf

(
〈ρ′eT ′e〉f〈(Cp)e〉f〈ve〉f

)
+∇ · εf

(
〈(Cp)e〉f〈Te〉f〈ρ′ev′e〉f

)
+∇ · εf

(
〈(Cp)e〉f〈ρ′eT ′ev′e〉f

)
= ∇ ·

(
εf〈κe〉f∇〈Te〉f

)
+

1

V
∇ ·
∫
Asf

TendA

+
1

V

∫
Asf

(κe∇′Te) · ndA+
1

V

∫
Asf

ρe(Cp)eTevesf · ndA+ 〈STT 〉. (3.2.83)

The first term on the left hand side of Equation 3.2.83 describes the unsteady macroscopic

energy transport in the considered domain and the second term at the left hand accounts

for unsteady energy dispersion due to the presence of the solid in the flow domain. The

third term accounts for macroscopic energy convection across the domain boundaries,

and the rest of the terms on the left hand side of Equation 3.2.83 are dispersion terms

which occurred as a result of the presence of solid surfaces in the flow domain. In the

case of a homogeneous fluid, the macroscopic energy equation reduces to the following:

∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f

)
= ∇ ·

(
εf〈κe〉f∇〈Te〉f

)
−∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈T ′ev′e〉f

)
+

1

V
∇ ·
∫
Asf

TendA

+
1

V

∫
Asf

(κe∇′Te) · ndA+
1

V

∫
Asf

ρe(Cp)eTevesf · ndA+ 〈STT 〉. (3.2.84)
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The effect of the dispersion term on the right hand side of Equation 3.2.84 is assumed

negligible for the sake of simplicity. However, due to the presence of the integral terms

in Equation 3.2.84, the equation is not closed for numerical or analytical treatment,

therefore, closure is required. The integrals in the equation are due to the presence of the

solid phase in the flow domain. Let

SFT =
1

V
∇ ·
∫
Asf

TendA+
1

V

∫
Asf

(κe∇′Te) · ndA+
1

V

∫
Asf

ρe(Cp)eTevesf · ndA.

Then the macroscopic energy Equation (3.2.84) can be written as:

∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f

)
= ∇ ·

(
εf〈κe〉f∇〈Te〉f

)
+ SFT + 〈STT 〉. (3.2.85)

The macroscopic energy transport equation for the solid phase is obtained by averaging

Equation 3.1.42 over the REV, thus by applying the volume averaging theorem given by

Equation 3.2.8 to Equation 3.1.42, we have:

〈∂ρs(Cp)sTs
∂t′

〉 = 〈∇′ · κs∇′Ts〉. (3.2.86)

By the same procedure used to obtain Equation 3.2.76, the expanded averaged unsteady

term in Equation 3.2.86 is obtained as:

〈∂ρs(Cp)sTs
∂t′

〉 =
∂

∂t
(1− εf )

(
〈(Cp)s〉s〈ρs〉s〈Ts〉s

)
+
∂

∂t
(1− εf )

(
〈(Cp)s〉s〈 T ′sρ′s〉s

)
− 1

V

∫
Asf

ρs(Cp)sTsvesf · ndA. (3.2.87)

where 〈Ts〉s is the solid phase average of temperature, T ′s is the temperature deviation

from the mean and εs = 1− εf , is the solid fraction.

By the same procedure used to obtain Equation 3.2.82, the expanded averaged conduction

term in Equation 3.2.86 is obtained as:

〈∇′ · κs∇′Ts〉 = ∇ ·
(

(1− εf )〈κs〉s∇〈Ts〉s
)

+
1

V
∇ ·
∫
Asf

TsndA

+
1

V

∫
Asf

(κs∇′Ts) · ndA. (3.2.88)
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Combining Equations 3.2.87 and 3.2.88, the macroscopic energy transport through the

solid phase is given by:

∂

∂t
(1− εf )

(
〈(Cp)s〉s〈ρs〉s〈Ts〉s

)
+
∂

∂t
(1− εf )

(
〈(Cp)s〉s〈 T ′sρ′s〉s

)
= ∇ ·

(
(1− εf )〈κs〉s∇〈Ts〉s

)
+

1

V
∇ ·
∫
Asf

TsndA

+
1

V

∫
Asf

(κs∇′Ts) · ndA+
1

V

∫
Asf

ρs(Cp)sTsvesf · ndA. (3.2.89)

The integrals and the dispersive unsteady term (second term on the left hand side of

Equation 3.2.89) occur due to the presence of the fluid phase. Let

SST =
1

V
∇ ·
∫
Asf

TsndA+
1

V

∫
Asf

(κs∇′Ts) · ndA+
1

V

∫
Asf

ρs(Cp)sTsvesf · ndA.

For a homogeneous solid, the dispersive unsteady term vanishes, thus we obtain:

∂

∂t
(1− εf )

(
〈(Cp)s〉s〈ρs〉s〈Ts〉s

)
= ∇ ·

(
(1− εf )〈κs〉s∇〈Ts〉s

)
+ SST . (3.2.90)

The complete macroscopic energy transport equation is the combined energy transport

Equation 3.2.85 for the fluid phase, and Equation 3.2.90 for the solid phase. Thus we

have:

∂

∂t
(1− εf )

(
〈(Cp)s〉s〈ρs〉s〈Ts〉s

)
+
∂

∂t
εf

(
〈(Cp)e〉f〈ρe〉f〈Te〉f

)
+∇ · εf

(
〈ρe〉f〈(Cp)e〉f〈Te〉f〈ve〉f

)
= ∇ ·

(
(1− εf )〈κs〉s∇〈Ts〉s

)
+∇ ·

(
εf〈κe〉f∇〈Te〉f

)
+ SET + 〈STT 〉, (3.2.91)

where SET = SFT + SST .

In a case where the fluid and the solid exist in thermodynamic equilibrium, their temper-

atures are the same, i. e. 〈Te〉f = 〈Ts〉f = T, where T is a common temperature variable.

In this case, the energy transport Equation 3.2.91 can be simplified to the following:

∂

∂t
ρMT +∇ ·

(
εf〈ρe〉f〈(Cp)e〉f〈ve〉fT

)
= ∇ · κM∇T + SET + εf〈STT 〉f , (3.2.92)

where

ρM =
(

(1− εf )〈(Cp)s〉s〈ρs〉s + εf〈(Cp)e〉f〈ρe〉f
)
,

73

Stellenbosch University  http://scholar.sun.ac.za



and

κM =
(

(1− εf )〈κs〉s + εf〈κe〉f
)
.

The oxidation of iron and the dissolution of calcite are exothermic processes. Thus, the

heat released from these reactions is used for the closure of the energy Equation 3.2.85.

When the oxidation of iron occurs, the amount of heat released is 17800 J/mol [21].

Converting moles to mass, the energy released from the oxidation is 317.85 J/g. Energy is

released is equal to the product change in concentration and the enthalpy of the oxidation.

The rate of energy release is given by:

〈STT 〉f = (∆C3)× 317.86, (3.2.93)

where ∆C3 is the change in concentration of ferric ion per unit time.

Similarly, when calcite dissolution occurs, the amount of heat released is 1206.92 J/mol

[21]. Converting to mole to mass, we obtain 12.07 J/g. Thus, the energy released from

calcite dissolution per unit time is given by:

ST = (∆C6)× 12.07, (3.2.94)

where ∆C6 is the change in concentration of calcium ions per unit time. Substituting

Equations 3.2.94 and 3.2.94 into Equation 3.2.92, the closed macroscopic energy equation

is given by:

∂

∂t
ρMT +∇ ·

(
εf〈ρe〉f〈(Cp)e〉f〈ve〉fT

)
= ∇ · κM∇T + 12.07(∆C6) + 317.86εf (∆C3). (3.2.95)

3.3 Complete mathematical model for AMD

Let v = 〈ve〉f , µ = 〈µe〉f , (Cp)f = 〈(Cp)e〉f , p = 〈pe〉f and ρ = 〈ρw〉f . The water

produced during reactions inside the domain is considered negligible. The complete model

for the flow and reactive transport processes inside the limestone is given by:

∇ · v = 0. (3.3.1)
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∂

∂t

(
εfρv

)
+∇ · εf

(
ρvv

)
= −εf∇p+∇ ·

(
εfµ∇v

)
+ εfρg −Khv. (3.3.2)

∂εfC1

∂t
+∇ ·

(
εfvC1

)
−∇ ·

(
εfD̄ · ∇C1

)
= −Kf

(
(1− θc)B(θf )

)
θLC1 + 0.00040984KbC6C8. (3.3.3)

∂εfC2

∂t
+∇ ·

(
εfveC2

)
−∇ ·

(
εfD̄ · ∇C2

)
= KoC3C7. (3.3.4)

∂εfC3

∂t
+∇ ·

(
εfvC3

)
−∇ ·

(
εfD̄ · ∇C3

)
= −KoC3C7. (3.3.5)

∂εfC4

∂t
+∇ ·

(
εfvC4

)
−∇ ·

(
εfD̄ · ∇C4

)
= −θcθLKdep,fB(θf )C4. (3.3.6)

∂εfC5

∂t
+∇ ·

(
εfvC5

)
−∇ ·

(
εfD̄ · ∇C5

)
= 0. (3.3.7)

∂εfC6

∂t
+∇ ·

(
εfvC6

)
−∇ ·

(
εfD̄ · ∇C6

)
= 40Kf

(
(1− θc)B(θf )

)
θLC1 − 0.0164KbC6C8. (3.3.8)

∂εfC7

∂t
+∇ ·

(
εfvC7

)
−∇ ·

(
εfD̄ · ∇C7

)
= −0.25KoC3C7. (3.3.9)
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∂εfC8

∂t
+∇ ·

(
εfvC8

)
−∇ ·

(
εfD̄ · ∇C8

)
= 61Kf

(
(1− θc)B(θf )

)
θLC1 − 0.025KbC6C8. (3.3.10)

∂

∂t
ρMT +∇ ·

(
εfρ(Cp)fvT

)
= ∇ · κM∇T + 12.07(∆C6) + 317.86εf (∆C3). (3.3.11)

We remark that the coupling of temperature and the chemical species is through the

second and third term of Equation 3.3.11 and the parameterK0. In general, the parameter

K0 is temperature-dependent but here we assume it to be constant for simplicity.

In addition to the Equations 3.3.1 – 3.3.11, one needs initial and boundary conditions.

These are problem specific and they will be presented in Chapter 5 for specific cases.

3.4 Summary

In this Chapter, the continuum approaches for modelling fluid flows on and through

materials are used to derive a system of partial differential equations. A complete model

is obtained by closure of the partial differential equations with kinetic data that resulted

from discussions on chemical kinetics of calcite dissolution, oxidation of ferrous ions and

filtration.
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Chapter 4

Numerical modelling

In this Chapter, we assume a uniform flow with a constant pressure gradient. The result-

ing model is a system of linear partial differential equations that are coupled in the source

term. The finite volume method is used to obtain a discretized model to the continuous

model.

The model obtained in Chapter 3 will be simulated in a two-dimensional rectangular

coordinate system, in an xy−plane. The y-axis is the vertical axis and the x-axis is the

horizontal axis of the domain. The domain denoted by Ωd, is the area enclosed by a

rectangle of finite size. Specifically, we consider a case in which the effluent water flows

through a distance Lx units in the x direction and Ly units in the y direction. Figure 4.1

shows the domain used in our numerical study.
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y-axis

x-axis

Ωd

Effluent water
in-let Limestone medium

Treated water

out-let

Figure 4.1: A 2-dimensional rectangular domain Ωd.

The gradient operator in two-dimensional rectangular coordinates is given by:

∇ =
∂

∂x
i +

∂

∂y
j, (4.0.1)

and the velocity vector is expressed in component form by:

v = ui + vj. (4.0.2)

In general the governing equation for any transport phenomena can be written as:

∂ρφφ

∂t
+∇ · (ρφvφ) = ∇ · (Γφ∇φ) + Sφ, ∈ Ωd (4.0.3)

where φ the dependent variable is a scalar quantity such as temperature or concentration

and ρφ is the density of φ. The first term at the right hand side of Equation 4.0.3 describes

the rate of change of the quantity φ due to a gradient in φ. The last term (left hand side of

Equation 4.0.3) describes the rate of production or consumption of φ. The discretization,

linear system and solution methods used for Equation 4.0.3 apply to each of the chemical

and energy transport equations derived in Chapter 3. We first discuss the discretization

procedure for a steady transport case, and conclude with a discretization procedure for

the time-dependent Equation 4.0.3.
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4.1 Discretization of a steady transport equation

For a steady transport case, the first term in Equation 4.0.3 vanishes, thus we have:

∇ · (ρφvφ) = ∇ · (Γφ∇φ) + Sφ. ∈ Ωd (4.1.1)

By Equations 4.0.1 and 4.0.2, the two-dimensional form of Equation 4.1.1 is given by:( ∂
∂x

i +
∂

∂y
j
)
·
(
ρφφ(ui + vj)

)
=
( ∂
∂x

i +
∂

∂y
j
)
·
(

Γφ

( ∂
∂x

i +
∂

∂y
j
)
φ
)

+ Sφ. (4.1.2)

Expanding and simplifying Equation 4.1.2, we obtain:

∂ρφuφ

∂x
+
∂ρφvφ

∂y
=

∂

∂x
Γφ
∂φ

∂x
+

∂

∂y
Γφ
∂φ

∂y
+ Sφ. ∈ Ωd (4.1.3)

Partitioning lines.

Polygon.

Main grid
point.

y

x

Figure 4.2: A partitioned rectangular domain Ωd.

The set of points are located at the intersecting points of the partitioning lines, these

points are called main grid points. The polygons (rectangles in the Figure 4.2) are the

areas enclosed by a set of grid points connected by partitioning lines. The partitioned

domain is called a grid or mesh.

Let Nx and Ny be the number of partitions in the x and y directions respectively. The

ratio of length and number of partitions is called grid size or step size. The step size in

the x direction is given by:

∆x = Lx/Nx, (4.1.4)
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and the step size in the y direction is given by:

∆y = Ly/Ny. (4.1.5)

The numerical solution to the transport equations is stored on the grid points.

However, further details of the discrete domain are required to solve the linear system of

equations which is obtained by discretizing the transport equation. These details include

a description of the exact location of a grid point and its neighbours. Figure 4.3 shows

a detailed description of the discretized domain. The broken lines in Figure 4.3 are the

centrelines of the solid (unbroken) lines in Figure 4.2 and the black dots (•) are the main

grid points (grid points in Figure 4.2).

NW N NE

W P E

SW S SE

nn

ss

Nw Ne

nW nw n ne nE

ww w e ee

sW sw s se sE

Sw Se

x

y

Figure 4.3: Practice B grid used in discretization [65, 28].

In Figure 4.3, the single upper-case letters indicate main grid points. At any grid point P,

inside the partitioned domain, there are four (4) neighbouring points. These grid points
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are denoted by W,E,N, and S for western, eastern, northern and southern neighbouring

grid points respectively.

The lower case (n, nn, e, s, ss, ee, ww,w) and mixed case (nE, sE,Ne, Se, · · · , sW ) letters

located in-between the main grid points denote minor grid points formed by the broken

lines. These minor grid points aid in describing locations in the domain.

From Figure 4.3, the rectangles surrounding the main grid points (e.g. P,), formed by

connecting the neighbouring minor grid points with the broken lines is called a control

volume. The size of the control volume (denoted by VCV ) is the measurable area of the

rectangle enclosing the main grid point and bounded by the minor grid points. The

length of each side of the control volume is called interface area. The interface area at the

western side of the control volume is denoted by Aw, the eastern interface area is denoted

by (Ae), the northern interface area is denoted by (An) and the southern interface area

of the control volume is denoted by As. For a two dimensional rectangular domain, the

interface areas are given by the Table 4.1.

Interface area Ae Aw An As VCV
Size ∆y ∆y ∆x ∆x ∆x∆y

Table 4.1: Control volume size and its interface area sizes for a dimensional problem.

The control volume is the most important component of the domain that is used in

discretization of the governing equation. The detail description of the control volume

parts can be found in Figure 4.4.
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S

E

N

W P

δxw− δxw+ δxe+ δxe−

∆xP

δxw δxe

δyn−

δyn+

δys+

δys−

∆yP

δys

δyn

Figure 4.4: A control volume (CV ) around a grid point P, with its linear dimensions.

In Figure 4.4, the distance between the western main grid point (W ) and the central main

grid point P, is denoted by δxw, the distance between the eastern grid point E, and the

central main grid point P, is denoted by δxe, the distance between the southern main grid

point S, and the central main grid point P, is denoted by δys, and the northern distance

is denoted by δyn.

Apart from the control volume interface areas, other useful lengths can also be identified

with the control volume. The distance between the central grid point P, and the northern

interface of the control volume is denoted by δyn+ , the distance between the central grid

point (P ) and the southern interface of the control volume is denoted by δys+ , the

eastern distance is denoted by δxe+ , and the western distance is denoted by δxw+ . These

distances are generally referred to as linear dimensions. The distance from the control

volume interface to neighbouring main grid points are also indicated in Figure 4.4.

The grid shown in Figure 4.3 is called Practice B by [65, 28] and will be used in our

subsequent discussion. It is constructed such that the main grid points are located in the
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center of the control volume. However, grid points are not always located at the center

of the control volume, linear dimensions of the control volume are used in locating grid

points or interpolating the unknown variable φ, at the grid points.

The distances (apart from the control volume interface areas) defined by Figure 4.4 are

used to adequately locate the main grid points. Dimensionless ratios used for interpolation

can also be defined using such distances or lengths. These dimensionless ratios are given

by:

fe =
δxe+

δxe
, fw =

δxw+

δxw
, fn =

δyn+

δyn
, and fs =

δys+

δys
. (4.1.6)

For a uniform partition (implying a uniform grid), δxw = δxe = ∆xP , δyn = δys = ∆yP ,

and all the dimensionless ratios are equal to half, i.e. fe = fw = fn = fs = 1
2
.

The discretization of the steady transport Equation 4.1.2 is obtained by integrating it

over the control volume defined by Figure 4.4. That is:∫
CV

∂ρφuφ

∂x
dVc +

∫
CV

∂ρφvφ

∂y
dVc =

∫
CV

∂

∂x
Γφ
∂φ

∂x
dVc +

∫
CV

∂

∂y
Γφ
∂φ

∂y
dVc +

∫
CV

SφdVc,

(4.1.7)

where dVc is an infinitesimal element of the control volume, defined by;

dVc = Perpendicular Area × length. (4.1.8)

For the two-dimensional control volume given above in Figure 4.4, the size of the infinites-

imal element is the area of an infinitesimal rectangular element. That is:

dVc = dxdy, (4.1.9)

where dx and dy are infinitesimal lengths in the x and y directions respectively. Thus by

substitution, Equation 4.1.7 becomes:

∫
CV

∂ρφuφ

∂x
dxdy +

∫
CV

∂ρφvφ

∂y
dxdy =

∫
CV

∂

∂x
Γφ
∂φ

∂x
dxdy

+

∫
CV

∂

∂y
Γφ
∂φ

∂y
dxdy +

∫
CV

Sφdxdy. (4.1.10)
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4.1.1 Discretization of the convection terms

The integrand of the first integral term at the left hand side of Equation 4.1.10 contains

a derivative in the x direction, thus the discretization of that term is in the x, direction.

Since the area is always perpendicular to the reference direction, then the infinitesimal

volume element in the term under consideration, can be written as:

dxdy = Ac × dx (4.1.11)

where Ac = dy is the perpendicular area.

Substituting Equation 4.1.11 into the first term at the left hand side of Equation 4.1.10,

the volume integral becomes a line integral. Thus we obtain:

∫
CV

∂ρφuφ

∂x
dxdy =

∫ e

w

∂ρφuφ

∂x
Acdx

=
(
ρφuAcφ

)
e
−
(
ρφuAcφ

)
w

=
(
ρφuAc

)
e
φe −

(
ρφuAc

)
w
φw (4.1.12)

where w, e are defined in Figure 4.3.
(
ρφuAc

)
e
is the convective flux across the eastern

interface of the control volume and
(
ρφuAc

)
w
, is the convective flux across the western

interface. Let

Fe =
(
ρφuAc

)
e
,

and

Fw =
(
ρφuAc

)
w
,

then Equation 4.1.12 becomes:

∫
CV

∂ρφuφ

∂x
dxdy = Feφe − Fwφw. (4.1.13)
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Similarly, the second volume integral term at the left hand side of Equation 4.1.10 is

transformed into a line integral, and then followed by the discretization below:∫
CV

∂ρφvφ

∂y
dxdy =

∫ n

s

∂ρφvφ

∂x
Acdy

=
(
ρφvAcφ

)
n
−
(
ρφvAcφ

)
s

=
(
ρφvAc

)
n
φn −

(
ρφvAc

)
s
φs, (4.1.14)

where s, n are defined in Figure 4.3 and
(
ρφvAc

)
n
,
(
ρφvAc

)
s
are the convective fluxes

across the northern and southern interfaces respectively. Let

Fn =
(
ρφvAc

)
n
,

and

Fs =
(
ρφvAc

)
s
,

then Equation 4.1.14 can be written as:

∫
CV

∂ρφvφ

∂y
dxdy = Fnφn − Fsφs. (4.1.15)

Combining the discretized convection terms given by Equations 4.1.13 and 4.1.15, we

obtain:∫
CV

∂ρφuφ

∂x
dxdy +

∫
CV

∂ρφvφ

∂y
dxdy = Feφe − Fwφw + Fnφn − Fsφs. (4.1.16)

4.1.2 Discretization of the diffusion terms

The diffusion terms at the right hand side Equation 4.1.10 are discretized, by using the

control volume given by Figure 4.4 to obtain:∫
CV

∂

∂x
Γφ
∂φ

∂x
dxdy =

(
AcΓφ

∂φ

∂x

)
e
−
(
AcΓφ

∂φ

∂x

)
w
,

= (AcΓφ)e

(∂φ
∂x

)
e
− (AcΓφ)w

(∂φ
∂x

)
w
. (4.1.17)

and
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∫
CV

∂

∂y
Γφ
∂φ

∂y
dxdy =

(
AcΓφ

∂φ

∂y

)
n
−
(
AcΓφ

∂φ

∂y

)
s
,

= (AcΓφ)n

(∂φ
∂y

)
n
− (AcΓφ)s

(∂φ
∂y

)
s
. (4.1.18)

However, Equation 4.1.17 still contains derivative that must be discretized. At the eastern

interface of the control volume, a derivative is approximated by:(∂φ
∂x

)
e

=
φE − φP
δxe

. (4.1.19)

The approximations for the other derivatives are as follows:

(∂φ
∂y

)
n

=
φN − φP
δyn

, (4.1.20)(∂φ
∂x

)
w

=
φP − φW
δxw

, (4.1.21)(∂φ
∂y

)
s

=
φP − φS
δys

, (4.1.22)

for the northern, western and southern interfaces respectively. Substituting the approxi-

mated derivatives into Equations 4.1.17 and 4.1.18, we obtain:

∫
CV

∂

∂x
Γφ
∂φ

∂x
dxdy =

(AcΓφ)e
δxe

(φE − φP )− (AcΓφ)w
δxw

(φP − φW ), (4.1.23)

and ∫
CV

∂

∂y
Γφ
∂φ

∂y
dxdy =

(AcΓφ)n
δyn

(φN − φP )− (AcΓφ)s
δys

(φP − φS). (4.1.24)

The coefficients; (AcΓφ)e
δxe

,
(AcΓφ)w
δxw

,
(AcΓφ)n
δyn

, and (AcΓφ)s
δys

are the diffusive fluxes across the

control volume, at the eastern, western, northern and southern interfaces, respectively.

Let

De =
(AcΓφ)e
δxe

, Dw
(AcΓφ)w
δxw

, Dn =
(AcΓφ)n
δyn

, and Ds =
(AcΓφ)s
δys

, (4.1.25)
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then Equations 4.1.23 and 4.1.24 can be written as:∫
CV

∂

∂x
Γφ
∂φ

∂x
dxdy = De(φE − φP )−Dw(φP − φW ), (4.1.26)

and ∫
CV

∂

∂y
Γφ
∂φ

∂y
dxdy = Dn(φN − φP )−Ds(φP − φS). (4.1.27)

Combining Equations 4.1.26 and 4.1.27, the discretization for the diffusive transport terms

is given by:∫
CV

∂

∂x
Γφ
∂φ

∂x
dxdy +

∫
CV

∂

∂y
Γφ
∂φ

∂y
dxdy =

De(φE − φP )−Dw(φP − φW )

+Dn(φN − φP )−Ds(φP − φS). (4.1.28)

4.1.3 Discretization of the source term

The discretization for the source term (last term at the right hand side of Equation 4.1.10

is given by: ∫
CV

Sφdxdy = S̄φ∆xP∆yP , (4.1.29)

where S̄φ indicates an average of Sφ.

However, the source term is usually a function of the unknown variable. This function

can be a polynomial of any degree in the unknown variable. Following the discretization

procedure for conservation laws, developed by [65] and [28], the linearised average source

term is given by:

S̄φ = SC + SPφP . (4.1.30)

For higher degree (degree> 1) polynomial source terms, iterative methods are appropriate

for solving the resulting linear system [65]. Substituting Equation 4.1.30 into Equation

4.1.29, the discretized source term for the transport equation is given by:∫
CV

Sφdxdy = SC∆xP∆yP + SP∆xP∆yP φP . (4.1.31)
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4.1.4 Discretized steady transport equation

Combining the discretized convection terms given by Equation 4.1.16, the diffusion terms

given by Equation 4.1.28 and the linearised source term given by Equation 4.1.31, we

obtain the discretization for the steady transport Equation 4.1.1 as:

Feφe − Fwφw + Fnφn − Fsφs = De(φE − φP )−Dw(φP − φW )

+Dn(φN − φP )−Ds(φP − φS)

+ SC∆xP∆yP + SP∆xP∆yP φP . (4.1.32)

Furthermore, from Figure 4.3 it can be observed that the notations; e, w, n, s that corre-

spond to control volume interfaces, do not coincide with the main grid points where the

unknown variable φ is defined. Therefore, the values; φe, φw, φn, φs in Equation 4.1.32 do

not coincide with main grid points, thus must be interpolated from neighbouring values

on main grid points. There are many approximating schemes for such cases, however, we

only discuss the upwind, central differencing and the hybrid schemes.

4.1.5 Central differencing scheme

When the approximation of the unknown variable is a weighted mean of neighbouring

values, then the scheme is a piece-wise linear scheme. A second order piece-wise linear

scheme, approximates the values of φ at the control volume interface as follows:

φe =
δxe+ φP + δxe− φE

δxe
= feφP + (1− fe)φE, (4.1.33)

φw =
δxw+ φP + δxw− φW

δxw
= fwφP + (1− fw)φW , (4.1.34)

φn =
δyn+ φP + δyn− φN

δyn
= fnφP + (1− fn)φN , (4.1.35)

φs =
δys+ φP + δys− φS

δys
= fsφP + (1− fs)φS. (4.1.36)

In the case of a uniform grid, the weighted mean is equal to arithmetic mean and the

piece-wise linear scheme is called central differencing scheme. The important feature

88

Stellenbosch University  http://scholar.sun.ac.za



of the central differencing scheme is that, it assumes the control volume interfaces are

located midway between main grid points. Thus the approximations for φ at the control

volume interfaces, by the central differencing scheme are given by:

φe =
φP + φE

2
, (4.1.37)

φw =
φP + φW

2
, (4.1.38)

φn =
φP + φN

2
, (4.1.39)

φs =
φP + φS

2
. (4.1.40)

Substituting the central differencing approximations of φ, in the left hand side of Equation

4.1.32, we have:

Feφe − Fwφw + Fnφn − Fsφs = Fe

(φP + φE
2

)
− Fw

(φP + φW
2

)
+ Fn

(φP + φS
2

)
− Fs

(φP + φS
2

)
. (4.1.41)

Substituting Equation 4.1.41 into Equation 4.1.32 and rearranging the resulting terms,

we obtain:(
De −

Fe
2

+Dw +
Fw
2

+Dn −
Fn
2

+Ds +
Fs
2

+(Fe − Fw) + (Fn − Fs)− SP∆xP∆yP

)
φP =(

De −
Fe
2

)
φE +

(
Dw +

Fw
2

)
φW

+
(
Dn −

Fn
2

)
φN

+
(
Ds +

Fs
2

)
φS,

+ SC∆xP∆yP . (4.1.42)

In a compact form, Equation 4.1.42 is written as follows:

aPφP = aEφE + aWφW + aNφN + aSφS + b, (4.1.43)

where the coefficients aE, aW , aS, aN and b are defined in Table 4.2 and the central coef-

ficient is given by:

aP = aE + aW + aS + aN + (Fe − Fw) + (Fn − Fs)− SP∆xP∆yP .
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aW aE aN aS b
Dw + Fw

2
DE − Fe

2
Dn − Fn

2
Ds + Fs

2
SC∆xP∆yP

Table 4.2: Central difference coefficients for Equation 4.1.43 [65, 28].

Equation 4.1.43 is the final discretization for any two dimensional steady scalar transport

equation. However, the coefficient in the equations are evaluated using expressions that

differ for different discretization schemes.

4.1.6 Upwind differencing scheme

The upwind scheme takes the flow direction into consideration. The upstream values of φ,

that are on neighbouring main grid points are used to approximate the interface values.

In the case of a two-dimensional control volume, the possible directions include:

• uw > 0 and ue > 0, which implies that Fw > 0 and Fe > 0. Figure 4.5 illustrates

this possibility. For this possibility, the interface values are approximated by setting

φw = φW , and φe = φP .

• vs > 0 and vn > 0, which implies that Fs > 0 and Fn > 0. For this possibility, the

interface values are approximated as follows φs = φS, and φn = φP .

• uw < 0 and ue < 0, which implies that Fw < 0 and Fe < 0. Figure 4.6 illustrates

this possibility. For such a case, the interface values are approximated by setting

φw = φP , and φe = φE.

• vs < 0 and vn < 0, which implies that Fs < 0 and Fn < 0. For this case, the

interface values are approximated as follows φs = φP , and φn = φN .
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Figure 4.5: Flow in and out of a control volume from left to right.

φw

φe

φP

φW φE

uw ue

W w
P e E

δxw− δxw+ δxe+ δxe−

Figure 4.6: Flow in and out of a control volume from right to left.

By the first two possibilities, the left hand side of the discretized transport Equation

4.1.32 becomes:
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Feφe − Fwφw + Fnφn − Fsφs = FeφP − FwφW + FnφP − FsφS, (4.1.44)

which implies that:

FeφP − FwφW + FnφP − FsφS = De(φE − φP )−Dw(φP − φW )

+Dn(φN − φP )−Ds(φP − φS)

+ SC∆xP∆yP + SP∆xP∆yPφP . (4.1.45)

Grouping like-terms, we obtain a linear system (Equation 4.1.43) as in the case of the

central differencing scheme, but the coefficients aE, aW , aS, aN and b are defined in Table

4.3 and the central coefficient is given by:

aP = aE + aW + aS + aN + (Fe − Fw) + (Fn − Fs)− SP∆xP∆yP .

Coefficient aW aE aN aS b
Fe > 0, Fw > 0, and Fs > 0, Fn > 0 Dw + Fw De Dn Ds + Fs SC∆xP∆yP

Table 4.3: Upwind coefficients for Equation 4.1.43, when the flow is from left to right.

Taking the last two possibilities into consideration, the left hand side of the discretized

transport Equation 4.1.32 becomes:

Feφe − Fwφw + Fnφn − Fsφs = FeφE − FwφP + FnφN − FsφP , (4.1.46)

which implies that:

FeφE − FwφP + FnφN − FsφP = De(φE − φP )−Dw(φP − φW )

+Dn(φN − φP )−Ds(φP − φS)

+ SC∆xP∆yP + SP∆xP∆yPφP . (4.1.47)
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Coefficient aW aE aN aS b
Fe < 0, Fw < 0, and Fs < 0, Fn < 0. Dw De − Fe Dn − Fn Ds SC∆xP∆yP

Table 4.4: Upwind coefficients for Equation 4.1.43, when the flow is from right to left.

Grouping like-terms, we obtain the linear system defined by Equation 4.1.43, with the

coefficients aE, aW , aS, aN and b defined by Table 4.4.

The upwind coefficients for a general case, which satisfies all the four conditions, is given

by Table 4.5 [65, 28].

aW aE aN aS b
Dw + max(Fw, 0) De + max(−Fe, 0) Dn + max(−Fn, 0) Ds + max(Fs, 0) SC∆xP∆yP

Table 4.5: Generalized upwind coefficients for Equation 4.1.43. [65, 28]

4.1.7 Hybrid scheme

The hybrid scheme is a combination of the upwind and central differencing schemes.

Peclet number which is a ratio of convective and diffusive fluxes is used to combine both

schemes. At each interface of the control volume, the Peclet number can be evaluated

using the convective flux and diffusive conductance at that interface, e.g. at the northern

interface, the Peclet number is calculated as follows:

Pen =
Fn
Dn

.

If −2 < Pen < 2, the approximation for φn is the central differencing approximation.

Otherwise, the approximation for φn is given by the upwind differencing scheme. Accord-

ing to [28, 65], the coefficients for the linear system 4.1.43, obtained by using the hybrid

scheme, are given by:
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aW = max
[
Fw,

(
Dw +

Fw
2

)
, 0
]

(4.1.48)

aE = max
[
− Fe,

(
De −

Fe
2

)
, 0
]

(4.1.49)

aN = max
[
− Fn,

(
Dn −

Fn
2

)
, 0
]

(4.1.50)

aS = max
[
Fs,
(
Ds +

Fs
2

)
, 0
]

(4.1.51)

b = SC∆xP∆yP . (4.1.52)

The central coefficient aP is same as with the other schemes.

4.2 Properties of a discretization scheme

There are many numerical schemes, however, schemes that produce physically relevant so-

lutions have some common properties. These properties include conservativeness, bound-

edness and transportiveness.

4.2.1 Conservativeness

Discretization schemes must ensure that the flux across control volume interfaces is the

same, if there is no source or sink. The conservativeness of a scheme is enforced by the

consistency rule, which states that [65]:

" When a face is common to two adjacent control volumes, the flux across it must be

represented by the same expression in the discretization equations for the two control

volumes."

All the three schemes used in this work, are consistent at control volume interfaces, since

the unknown variable φ and its gradients at the control volume interfaces are uniquely

defined by the schemes.

94

Stellenbosch University  http://scholar.sun.ac.za



4.2.2 Boundedness

Considering the steady state Equation 4.1.1, its final discretization, Equation 4.1.43, is

a linear equation, which may be solved by direct or iterative methods. The iterative

methods start with a guessed solution, then successively update until convergence. We

refer to [65, 28] for a detailed discussion.

However, convergence is not always guaranteed, thus a sufficient condition for conver-

gence, called Scarborough criterion, which is expressed in terms of the coefficients in the

linear system is given by [65, 28]:

∑
|anb|
|aP |

 ≤ 1 : at all main grid points

< 1 : atleast one main grid point

Where
∑
|anb| is the sum of all neighbouring coefficients. It should be noted here that,

the expression for aP contains the gradient of φ (SP ) from the linearised source term. If

this criterion is satisfied, then the scheme produces coefficients that result in a diagonally

dominant matrix.

The boundedness property is satisfied when the following rules are observed by the nu-

merical schemes:

1. The central coefficient aP , forms the diagonal elements in the coefficient matrix

for the linear system given by Equation 4.1.43. Achieving diagonal dominance im-

plies that the central coefficient aP , is larger than the other coefficients. It can be

observed in the expression for the central coefficient (aP =
∑
anb − SP∆xP∆yP )

that the guarantee for diagonal dominance is when SP < 0, thus the first rule is [65]:

"The linearised source term, S̄φ = SC + SPφ, must have a negative slope, therefore

SP ≤ 0."

2. Without sources and sinks, the central coefficient is the sum of all the neighbouring

coefficients. that is [65]:

"In the absence of a source, aP =
∑
anb."
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3. It can be deduced from rule 2, that if one or all the neighbouring coefficient are

negative, diagonal dominance may not be achieved. Thus another rule that guar-

antees diagonal dominance is [65]:

"All the neighbouring coefficients, anb, as well as the central coefficient aP must be

positive."

4.2.3 Transportiveness

Flow directions can influence transportation of a quantity at any grid point. Peclet

number, which is a dimensionless ratio of convective transport to diffusive transport, is

used to quantitatively describe transportiveness.

When the Peclet number (Pe) is zero, there is no convective transport, only diffusion.

The effect of diffusion in an isotropic medium is to spread the quantity evenly in all

directions (see Figure 4.7).

W E
P

Figure 4.7: Pure diffusion Pe → 0, for an isotropic medium. This figure is reproduced

from [28].

W P E

Direction
of flow

Pure
convection Pe →∞.

Figure 4.8: Convection and diffusion. This figure is reproduced from [28].
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In Figure 4.7, two point sources at W and E spread out evenly (due to diffusion) at the

same rate, thus their effects or influence at point P is the same.

In the presence of both convection and diffusion, the Peclet number is non-zero. Con-

vection introduces directional dependence into the transport process. In Figure 4.8, the

direction of influence is from left to right. It can be observed from the Figure 4.8 that,

point P is only affected by transported quantity from point W. One can observe that

concentric circles in the pure diffusion process, have turned into ellipses. As the Peclet

number goes to infinity, (implying that convection is dominant), the effect of diffusion

can not be noticed, and the elliptic lines are completely stretched-out.

Apart from the central differencing scheme, the other schemes considered in the discus-

sion satisfy the transportiveness property [65, 28]. We conclude here that, the schemes

considered in this work are qualitatively capable of providing physically relevant solutions

to our model.

4.3 Discretization of a time-dependent transport

equation

In this section, we discuss the discretization procedure for a generalised scalar time-

dependent transport equation. That is:

∂ρφφ

∂t
+
∂(ρφuφ)

∂x
+
∂(ρφvφ)

∂y
=

∂

∂x

(
Γφ
∂φ

∂x

)
+

∂

∂y

(
Γφ
∂φ

∂y

)
+ Sφ, x, y ∈ Ωd, t ∈ [0,>],

(4.3.1)

Where > is the final time. The time period is also partitioned to obtain a time grid. Let

N> be the total number of points on the time grid, then the time step size ∆t, is given

by:

∆t =
>
N>

. (4.3.2)

Integrating the time-dependent Equation 4.3.1 over the control volume given above by
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Figure 4.4, and over a time grid, we obtain:∫ t+∆t

t

∫
CV

∂ρφφ

∂t
dV dt+

∫ t+∆t

t

∫
CV

∂(ρφuφ)

∂x
dV dt+

∫ t+∆t

t

∫
CV

∂(ρφvφ)

∂y
dV dt =∫ t+∆t

t

∫
CV

∂

∂x

(
Γφ
∂φ

∂x

)
dV dt+

∫ t+∆t

t

∫
CV

∂

∂y

(
Γφ
∂φ

∂y

)
dV dt+

∫ t+∆t

t

∫
CV

SφdV dt.

(4.3.3)

To avoid complicated long expressions in the discretization process, we first integrate

over the control volume, and then follow with time integration. Thus integrating over the

control volume, we obtain:

∫
CV

∂ρφφ

∂t
dV +

∫
CV

∂(ρφuφ)

∂x
dV +

∫
CV

∂(ρφvφ)

∂y
dV =∫

CV

∂

∂x

(
Γφ
∂φ

∂x

)
dV +

∫
CV

∂

∂y

(
Γφ
∂φ

∂y

)
dV +

∫
CV

SφdV. (4.3.4)

By following the procedure used in the steady case discussed in the previous section,

Equation 4.3.4 can be written into the semi-discretized equation:

∫
CV

∂ρφφ

∂t
dV + aPφP = aEφE + aWφW + aNφN + aSφS + b, (4.3.5)

where the coefficients aW , aE, aN , aS, b and aP are given by any of the discretization

schemes discussed above. By comparing the steady equation and the time-dependent

equation, it can be observed that unsteady integral term at the left hand side of Equation

4.3.5 is part of the source term in Equation 4.1.3. Thus we first treat the unsteady integral

term like a source term, and then discretize later in time. The final discretization over

the control volume is given by:

∂ρφφ

∂t
∆xP∆yP + aPφP = aEφE + aWφW + aNφN + aSφS + b. (4.3.6)

Since Equation 4.3.6 still contains a derivative (a time derivative), we integrate over the
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time period. Thus we have:∫ t+∆t

t

∂ρφφ

∂t
∆xP∆yPdt+

∫ t+∆t

t

aPφPdt =

∫ t+∆t

t

aEφEdt+

∫ t+∆t

t

aWφWdt

+

∫ t+∆t

t

aNφNdt+

∫ t+∆t

t

aSφSdt+

∫ t+∆t

t

bdt.

(4.3.7)

The time derivative in Equation 4.3.7 is approximated by [28, 65]

∂φ

∂t
=
φP − φoP

∆t
. (4.3.8)

If the density is constant, the discretization for the time integral is given by:∫ t+∆t

t

∂ρφφ

∂t
∆xP∆yPdt =

ρφ∆xP∆yP
∆t

(φP − φoP ), (4.3.9)

where φoP is the previous value of φ at grid point P.

Replacing the first integral in Equation 4.3.7 by using Equation 4.3.9 we obtain:

ρφ∆xP∆yP (φP − φoP ) +

∫ t+∆t

t

aPφPdt =

∫ t+∆t

t

aEφEdt+

∫ t+∆t

t

aWφWdt

+

∫ t+∆t

t

aNφNdt+

∫ t+∆t

t

aSφSdt

+

∫ t+∆t

t

bdt. (4.3.10)

Discretization of the integral terms in Equation 4.3.10 can be achieved, by a weighted

mean of the integrands at a given grid point. An example is [65, 28]:∫ t+∆t

t

φPdt =
(
ξφP + (1− ξ)φoP

)
∆t, (4.3.11)

where 0 ≤ ξ ≤ 1, is a control parameter for controlling the influence of φ in different times

on the current value. Thus by Equation 4.3.11, the time integrals in Equation 4.3.10 are

discretized to obtain:
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ρφ∆xP∆yP (φP − φoP ) + aP

(
ξφP + (1− ξ)φoP

)
∆t =

aE

(
ξφE + (1− ξ)φoE

)
∆t

+ aW

(
ξφW + (1− ξ)φoW

)
∆t

+ aN

(
ξφN + (1− ξ)φoN

)
∆t

+ aS

(
ξφS + (1− ξ)φoS

)
∆t

+ b∆t. (4.3.12)

Dividing both sides of Equation 4.3.12 by ∆t and rearranging the resulting terms, we

have:

(
aoP + aP ξ

)
φP =

(
aoP − aP (1− ξ)

)
φoP

+ aE

(
ξφE + (1− ξ)φoE

)
+ aW

(
ξφW + (1− ξ)φoW

)
+ aN

(
ξφN + (1− ξ)φoN

)
+ aS

(
ξφS + (1− ξ)φoS

)
+ b, (4.3.13)

where aoP =
ρφ∆xP∆yP

∆t
.

4.3.1 Fully implicit scheme

When the control parameter is exactly one, the scheme is fully implicit. Thus Equation

4.3.13 reduces to the following:(
aoP + aP

)
φP = aoPφ

o
P + aEφE + aWφW + aNφN + aSφS + b. (4.3.14)

By observing Equation 4.3.14, it can be qualitatively concluded that the scheme satisfies

all the rules discussed above, especially the rule concerning positivity of coefficients. Since

the coefficients are always positive, the implicit scheme is unconditionally stable, and it

is first order accurate.
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4.3.2 Explicit scheme

When the control parameter is zero, the scheme is explicit. Thus Equation 4.3.13 reduces

to the following:

aoPφP = (aoP − aP )φoP + aEφ
o
E + aWφ

o
W + aNφ

o
N + aSφ

o
S + b. (4.3.15)

For the explicit discretization (Equation 4.3.15), the coefficient aoP − aP , is capable of

violating the positivity rule. The violation occurs when aoP − aP < 0, thus aoP must

always be less than aP to ensure numerical stability. The explicit scheme is first order

accurate, with regards to a Taylor series truncation error.

4.4 Summary

In this Chapter, a uniform flow is assumed for simplicity and a constant pressure gradient

is also assumed. The finite volume discretization method is used to discretize the resulting

partial differential equations on a rectangular domain. Central differencing, Upwind and

hybrid schemes are used for approximating the coefficients in the linear systems. The

finite difference method is used to obtain implicit and explicit time marching schemes.
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Chapter 5

Results and Discussion

5.1 Accuracy and stability test for numerical schemes

In this section, we assess the accuracy of numerical schemes that were discussed in Chapter

4. A one-dimensional convection-diffusion equation that has an analytical solution is used

for the assessment.

(1). Spatial discretization schemes

Spatial discretization schemes are applied to a steady case of the one-dimensional

convection-diffusion equation whose analytical solution and parameter values are

given by Example (5.1) of [28]. Table 5.1 contains the data for testing the accuracy

of spatial schemes.

Parameter Numerical Value Units of measurement
Lx 1.0 m
ρφ 1.0 kg/m3

Γφ 0.1 kg/m.s
u 0.1, 2.5 m/s

Boundary φL = φ(0) 1.0 depends on φ
Boundary φR = φ(Lx) 0.0 depends on φ

Table 5.1: Accuracy test data for spatial numerical schemes [28].
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The analytical solution for the one-dimensional convection-diffusion equation is

given by [28]:

φ(x) = φL +
(φR − φL)×

(
exp(

ρφux

Γφ
)− 1

)
exp(

ρφuLx
Γφ

)− 1
. (5.1.1)

(2). Time discretization schemes

For the time discretization schemes, data for accuracy test is taken from Example

(8.1) of [28]. Table 5.2 contains the input data for assessing the accuracy of the

time discretization scheme.

Parameter Numerical Value Units of measurement

Lx 2× 10−2 m

ρφ 107 J/m3.K

Γφ 10 W/m.K

u 0 m/s

Boundary condition; ∂φ
∂x

(0, t) 0 oC/m

Boundary condition; φ(Lx, t) 0 oC

Initial condition φ0 = φ(x, 0) 2× 102 oC

Table 5.2: Accuracy test data for time discretization schemes [28].

The analytical solution for the one-dimensional time-dependent transport equation,

used for the accuracy test is given by [28]:

φ(x, t) =
4φ0

π

∞∑
n=1

(−1)n+1

2n− 1
exp(−αnλ2

nt) cos(λnx), (5.1.2)

where

λn =
(2n− 1)π

2Lx
,

and

αn =
Γφ
ρφ
.

Some of the results obtained in our study do not match exactly with results obtained

in [28]. The discrepancy is attributed to rounding and truncation errors.
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5.1.1 Accuracy and stability test for central differencing scheme

The numerical solution for a course grid of five (5) points, obtained by using central

differencing coefficients is given by the graph at the left hand side of Figure 5.1. The

relative error across the domain is given by the graph at the right hand of Figure 5.1.

Figure 5.1: Comparing analytical solution 5.1.1 with central differencing solution for a

course grid.

It can be observed from Figure 5.1 that even for a course grid of five (5) points, the

central differencing scheme gives a good approximation of the analytical solution 5.1.1.

Effects of grid size (number of grid points) on the numerical solution is investigated. The

graph at the left hand side of Figure 5.2 shows a comparison of the analytical solution

with the central differencing solution obtained by using 15 grid points. The graph at the

right hand side of Figure 5.2 shows a comparison of the analytical solution 5.1.1 with the

central differencing solution, obtained by using 25 grid points.
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Figure 5.2: Comparing the analytical solution 5.1.1 with central differencing solutions

for finer grids.

From Figure 5.2, it can be qualitatively concluded the central differencing solution con-

verges to the exact solution as the grid becomes finer (implying smaller step sizes or more

grid points). Thus the central differencing scheme can be used to obtain good numerical

approximations.

However, the velocity used to obtain Figures 5.1 and 5.2 is 0.1 m/s.When the velocity was

set to 2.5 m/s, the central differencing solution oscillated about the analytical solution

as shown in Figure 5.3.
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Figure 5.3: Comparing central differencing solution and analytical solution for a high

Peclet number.

The calculated Peclet number for the case where the velocity is 0.1 m/s, is 0.2, while

the calculated Peclet number for the case where the velocity is 2.5 m/s, is 5. Since 5 is a

higher value (> 2,), the transportiveness property must be satisfied to obtain numerical

stability as discussed in Chapter 4. The instability of the central differencing solution

suggest that, the scheme is not reliable and must be used with other schemes.

5.1.2 Accuracy and stability test for the upwind scheme

The numerical solution for a course grid of five (5) points, obtained by using the upwind

coefficients is given by the graph at the left hand side of Figure 5.4. The relative error

across the domain is given by the graph at the right hand side of Figure 5.4.
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Figure 5.4: Comparing analytical solution 5.1.1 with upwind solution for a course grid.

It can be observed from Figure 5.4 that even for a course grid of five (5) points, the

upwind scheme gives a good approximation of the analytical solution 5.1.1.

Effects of grid size (number of grid points) on convergence is also investigated, the graph

at the left hand side of Figure 5.5 shows a comparison of the analytical solution with the

upwind solution obtained by using 15 grid points. The graph at the right hand side of

Figure 5.5 shows a comparison of the analytical solution 5.1.1 and the upwind solution,

obtained by using 25 grid points.
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Figure 5.5: Comparing the analytical solution 5.1.1 with upwind solutions for finer grids.

Figure 5.6: Comparing upwind solution and analytical solution for a high Peclet number.
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From the results given by Figure 5.5, it can be qualitatively concluded that the upwind

solution converges to the exact solution as the grid becomes finer (implying smaller step

sizes or more grid points). Thus for more accuracy a finer grids should be used.

However, effects of a high Peclet number on the upwind solution is also investigated.

Figure 5.6 shows a comparison of the analytical solution and the upwind solution for a

Peclet number of 5.

The results in Figure 5.6 do not contain oscillations because the upwind scheme satisfies

the transportiveness property. The observed results imply that the upwind scheme is

reliable high Peclet number problems.

5.1.3 Accuracy and stability test for hybrid scheme

The numerical solution for a course grid of five (5) points obtained by using the hybrid

coefficients is given by the graph at the left hand side of Figure 5.7. The relative error

across the domain is given by the graph at the right hand side of Figure 5.7.

Figure 5.7: Comparing analytical solution 5.1.1 with hybrid solution for a course grid.
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It can be observed from Figure 5.7 that even for a course grid of five (5) points, the hybrid

scheme gives a good approximation of the analytical solution 5.1.1.

Effects of grid size (number of grid points) on convergence is also investigated, the graph

at the left hand side of Figure 5.8 shows a comparison of the analytical solution with the

hybrid solution obtained by using 15 grid points. Figure 5.8 shows a comparison of the

analytical solution 5.1.1 and the hybrid solution obtained by using 25 grid points.

Figure 5.8: Comparing the analytical solution 5.1.1 with hybrid solutions for finer grids.

From the graphs given by Figure 5.8, it can be qualitatively concluded the hybrid solution

converges to the exact solution as the grid becomes finer (implying smaller step sizes or

more grid points). Thus if more accuracy is desired in numerical simulations, finer grids

should be used.

Furthermore, effects of a high Peclet number is also investigated on the hybrid scheme.

Figure 5.9 shows a comparison of the analytical solution and the hybrid solution for a

Peclet number of 5.
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Figure 5.9: Comparing hybrid solution and analytical solution for a high Peclet number.

The results in Figure 5.9 do not contain oscillations because the hybrid scheme satisfies

the transportiveness property. The hybrid scheme is more efficient in high Peclet number

cases as compared with the central differencing scheme. The results suggest that the

hybrid scheme is reliable for high Peclet number problems.

To compare the performance of the spatial discretization schemes, we compare the effects

of grid size on convergence for the three schemes. Figure 5.10 shows the results for the

comparison.
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Figure 5.10: Convergence rate of the upwind, central differencing and hybrid solutions.

The results in Figure 5.10 show that the upwind scheme has minimal errors for the test

case. It can also be observed that, all the schemes converge as the number of grid points

increases. However, the central differencing solution converges faster, followed by the

hybrid.

5.1.4 Accuracy and stability test for the explicit scheme

The explicit solution for the time-dependent problem is given by the graph at the left

hand side of Figure 5.11. The relative error across the domain is given by the graph at

the right hand of Figure 5.11.
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Figure 5.11: Comparing analytical solution 5.1.2 with the explicit solution for a course

grid of five points and time step size of 2 s.

Figure 5.12: Comparing the analytical solution 5.1.2 with the explicit solution for a

course grids and for different time steps .
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It can be observed from Figure 5.11 that the explicit scheme gives a good approximation

of the analytical solution 5.1.2 for a course grid of five (5) points.

Effects of time step size on convergence of the solution is investigated, Figure 5.12 shows

a comparison of the analytical solution with the explicit solution for two time step sizes.

The graph with the smaller time step size in Figure 5.12 gives a better approximation

of the analytical solution. Thus using smaller time step sizes will improve the accuracy

of the explicit scheme. However, for time-dependent convection-diffusion problems, the

accuracy of the numerical solution also depends on grid size. Smoothness of the numerical

solution is determined by the grid size as shown by the graph on the left hand side of

Figure 5.13 and fitness of the numerical solution with the analytical solution is determined

by time step size as shown by the graph at the right hand side of Figure 5.13.

Figure 5.13: Comparing the analytical solution 5.1.2 with the explicit solution for a fine

grid (15 points) and for different time step sizes (0.2 s for the left graph and 0.002 s for

the right graph).
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Figure 5.14: Comparing the explicit solution with analytical solution for a time step size

of 10 s.

From the results given by Figures 5.13, it can be qualitatively concluded that the accuracy

of the explicit solution improves when the time step size is small and a fine grid is used.

The stability of the explicit scheme is investigated by setting the time step to 10 s. The

results are given in Figure 5.14.

The results in Figure 5.14 confirm that the explicit scheme is conditionally stable, thus

not reliable.

5.1.5 Accuracy and stability test for the fully implicit scheme

The implicit solution for the time-dependent problem is given by the graph at the right

hand side of Figure 5.15. The corresponding relative error across the domain is given by

the right hand side graph of Figure 5.15.
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Figure 5.15: Comparing analytical solution 5.1.2 with the implicit solution for a course

grid of five points and time step size of 2 s.

It can observed in Figure 5.15 that, the implicit scheme gives a good approximation of

the analytical solution 5.1.2 even for a course grid of five (5) points.

Effects of time step size on convergence of the solution is investigated, Figure 5.16 shows

a comparison of the analytical solution with the implicit solution for two time step sizes.
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Figure 5.16: Comparing the analytical solution 5.1.2 with the implicit solution for a

course grids and for different time steps .

Figure 5.17: Comparing the analytical solution 5.1.2 with the implicit solutions for a

fine grid (15 points), and different time step sizes (time steps = 2, 0.2 for left and right

graphs respectively).
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The graph with the smaller time step size in Figure 5.16 gives a better approximation of

the analytical solution. Thus using smaller time step sizes will improve the accuracy of the

implicit scheme. Since the accuracy of a time-dependent convection-diffusion problems

also depends on grid size, we used a fine grid to investigate the effect of grid size on

convergence. The numerical solution becomes smoother (as shown the graph at the

left hand side of Figure 5.17) compared with a course grid. Overall convergence of the

numerical solution is a combined effect of the grid size and the time step-size as shown

by the graph at the right hand side of Figure 5.17.

The stability of the implicit scheme is investigated by setting the time step to 10 s. The

results are given by Figure 5.18.

Figure 5.18: Comparing implicit solution with analytical solution for a large time step

size (10 s).
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Figure 5.19: Comparison of the explicit, implicit and analytical solutions for time step

size of 2 s.

Although the solution given by Figure 5.18 is not very accurate, it does not contain

oscillations. Thus the implicit scheme is reliable. We investigated the performance of the

explicit and implicit schemes for the same time step (2 s) and grid size (0.004 m). Figure

5.19 shows the results of the investigation.

The results show that the explicit scheme performs better than the implicit scheme for

the given problem and test data. All the validated numerical schemes will be applied to

obtain solutions to the model derived in Chapter 3.

5.2 Validation of computer code

In this section, we investigate the validity of our computer code that is used for the

numerical experiments. Three test cases are used, these include a rotating body problem,

transportation of a pulse and an oblique inflow convection-diffusion-reaction problem.
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5.2.1 Rotation of bodies

The rotating-body problem is a pure-convective transport problem. The rotating bodies

deteriorate with time as the rotation occurs. However if a fine grid is used, the deterio-

ration minimizes and shapes of the bodies do not change significantly. The data for this

test case is taken from [56]. Figure 5.20 shows the initial condition and exact solution for

this test case.

Figure 5.20: Initial condition and exact solution for the rotating-body problem.
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Figure 5.21: Shapes of the cylinder and cone after one cycle.

Figure 5.22: Shapes of the cylinder and cone after four cycles.
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5.2.2 Transportation of a pulse

Transportation of a pulse involves advection and diffusion. The pulse flattens-out with

time, while moving across the domain. The data for this test case is taken from [56].

Figure 5.23 shows the initial condition for this test case.

Figure 5.23: Initial condition and exact solution for the rotating-body problem.

Since this problem is not a high Peclet number problem, we couple each spatial scheme

with implicit or explicit time discretization schemes. The results obtained by coupling all

the spatial scheme with the time schemes are given by Figures 5.24 and 5.25 for a grid

size of 1
64
× 1

64
.
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Figure 5.24: Shape of the pulse after 0.25 s.

Figure 5.25: Shape of the pulse after 1 s.
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5.2.3 Oblique inflow convection-diffusion-reaction problem

The oblique inflow convection-diffusion-reaction problem is a transport equation with a

linear source term. The initial condition used in this test case is zero. Figure 5.26 shows

the initial condition for the oblique inflow case. Figure 5.27 shows the distribution of φ

in the domain after 0.5 s, and Figure 5.28 shows the distribution of φ after t = 1 s.

Figure 5.26: Initial condition for the convection-diffusion-reaction problem.

124

Stellenbosch University  http://scholar.sun.ac.za



Figure 5.27: φ distribution after 0.5 s

Figure 5.28: φ distribution after 1 s
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All the results obtained in this section are similar to those obtained in [56]. Thus we have

confidence that our numerical code is valid for our experiments.

The parameters used to obtain results in this section are given in Appendix B. A uniform

flow profile is coupled with the species and energy transport equations. All boundaries

were set to zero except the southern boundary, which was set to 80 oC.

The initial concentrations of the species are 0.01 g/m3 of hydrogen ions, 10−13 g/m3 of

ferric ions, 10−3 g/m3 of ferrous ions, 0.02 g/m3 of iron hydroxide, 10−3 g/m3 of sulfate,

10−7 g/m3 of calcium ions, 0.002 g/m3 of oxygen, 10−13 g/m3 of hydro-carbonate ions, and

80 oC for temperature. The initial concentrations are distributed uniformly throughout

the domain as shown in Figure 5.29.

Figure 5.29: Initial hydrogen ion distribution.

In this section, we present results of our numerical experiments. The investigations that

are carried out include effects of dispersion and convection on chemical species and tem-

perature distributions, and the changes in concentration of species with time. All appro-

priate numerical schemes that were discussed earlier were applied in each investigation
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and the results showed no significant differences. Thus we do not specify the schemes

used to obtain the results.

5.2.4 Effects of equal convection and dispersion

The magnitudes of the velocity and dispersion coefficient were set equal to 10−2, and the

grid cell size was set to 1
25
× 1

25
. The distributions of chemical species and temperature

after 2 min, using a time-step size of 0.1 are given by Figures 5.30 to Figure 5.38.

Figure 5.30: Hydrogen ion distribution, velocity 10−2 m/min.

Figure 5.31: Ferric ion distribution, velocity 10−2 m/min.
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Figure 5.32: Ferrous ion distribution, velocity 10−2 m/min.

Figure 5.33: Iron hydroxide distribution, velocity 10−2 m/min.

Figure 5.34: Sulfate distribution, velocity 10−2 m/min.

128

Stellenbosch University  http://scholar.sun.ac.za



Figure 5.35: Calcium distribution, velocity 10−2 m/min.

Figure 5.36: Oxygen distribution, velocity 10−2 m/min.

Figure 5.37: Hydro-carbonate distribution, velocity 10−2 m/min.
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Figure 5.38: Temperature distribution, velocity 10−2 m/min.

From Figures 5.30 to 5.37, it can be observed that the initial uniform species distributions

have been transformed into Gaussian distributions. However, Figure 5.38 shows a different

profile because of the imposed non-zero constant boundary. Thus equal convection and

dispersion will transform a uniform distribution into a normal (Gaussian) distribution

when all boundaries are zero. The difference between the chemical species profiles is the

heights and area covered by the remaining unreacted, unfiltered and undispersed species

(indicated by red). The changes in heights is attributed to reaction, production and

filtration of the species.

Further, we investigated the effects of different magnitudes of equal convection and dis-

persion on the species distribution. Figures 5.39 to 5.47 show the distributions of chemical

species and temperature after 20 min, using a time-step size of 2. The magnitudes of the

velocity and dispersion coefficient are equal to 10−4, and the grid cell size is 1
25
× 1

25
.

130

Stellenbosch University  http://scholar.sun.ac.za



Figure 5.39: Hydrogen ion distribution, velocity 10−4 m/min.

Figure 5.40: Ferric ion distribution, velocity 10−4 m/min.

Figure 5.41: Ferrous ion distribution, velocity 10−4 m/min.
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Figure 5.42: Iron hydroxide distribution, velocity 10−4 m/min.

Figure 5.43: Sulfate distribution, velocity 10−4 m/min.

Figure 5.44: Calcium distribution, velocity 10−4 m/min.
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Figure 5.45: Oxygen distribution, velocity 10−4 m/min.

Figure 5.46: Hydro-carbonate distribution, velocity 10−4 m/min.

Figure 5.47: Temperature distribution, velocity 10−4 m/min.
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From Figures 5.39 to 5.47, it can be observed that a larger part of the domain remains

uniform even after twenty (20) minutes. Thus the rate at which the uniform distribution

transforms into a Gaussian depends on the magnitude of convection and dispersion.

In this section, we present results for a case where convection is greater than dispersion.

The velocity was set to 10−2m/min, dispersion coefficient set to 10−4m2/min, and the

reaction constants maintained. The distributions of chemical species after 2 min, using

a time-step size of 0.1 and a grid cell size of 1
25
× 1

25
, are given by Figures 5.48 to 5.55.

Figure 5.48: Hydrogen ion distribution, convection-dominated transport.

Figure 5.49: Ferric ion distribution, convection-dominated transport.
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Figure 5.50: Ferrous ion distribution, convection-dominated transport.

Figure 5.51: Iron hydroxide distribution, convection-dominated transport.

Figure 5.52: Sulfate distribution, convection-dominated transport.
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Figure 5.53: Calcium distribution, convection-dominated transport.

Figure 5.54: Oxygen distribution, convection-dominated transport.

Figure 5.55: Hydro-carbonate distribution, convection-dominated transport.
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From Figure 5.48 to 5.55, it can be observed that the unreacted, unfiltered and undis-

persed species (indicated by the red area in the Figures) is exiting the domain at one

corner of the domain. Thus when convection is dominant, a large quantity of the unre-

acted, unfiltered and undispersed species will exit the domain. The species profiles differ

in height, this is attributed to reaction, formation and filtration of the species.

In this section, we present results for a case where dispersion is greater than convection.

The velocity was set to 10−30m/min, dispersion coefficient set to 10−2m2/min, and the

reaction constants maintained. The distributions of chemical species after 2 min, using

a time-step size of 0.1 and a grid cell size of 1
25
× 1

25
, are given by Figures 5.56 to 5.63.

Figure 5.56: Hydrogen ion distribution, dispersion-dominated transport.

Figure 5.57: Ferric ion distribution, dispersion-dominated transport.
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Figure 5.58: Ferrous ion distribution, dispersion-dominated transport.

Figure 5.59: Iron hydroxide distribution, dispersion dominated

Figure 5.60: Sulfate ion distribution, dispersion-dominated transport.
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Figure 5.61: Calcium ion distribution, dispersion-dominated transport.

Figure 5.62: Oxygen distribution, dispersion-dominated transport.

Figure 5.63: Hydro-carbonate ion distribution, dispersion-dominated transport.
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The results shown by Figures 5.56 to 5.63 imply that for an isotropic medium and the

given boundary conditions, a Gaussian distribution of the species will be obtained. The

heights of the Gaussian distribution differ due to reaction, production and filtration of

species.

In this section, we present results for a case where dispersion and convection less than

the rate of reaction. The velocity was set to 10−30m/min, dispersion coefficient set to

10−30m2/min, and the reaction constants maintained. The distributions of chemical

species after 5 min, using a time-step size of 0.5 min and a grid cell size of 1
25
× 1

25
, are

given by Figure 5.64 to 5.71.

Figure 5.64: Hydrogen ion distribution, reaction-dominated process.

Figure 5.65: Ferric ion distribution, reaction-dominated process.
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Figure 5.66: Ferrous ion distribution, reaction-dominated process.

Figure 5.67: Iron hydroxide distribution, reaction-dominated process.

Figure 5.68: Sulfate ion distribution, reaction-dominated process.
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Figure 5.69: Calcium ion distribution, reaction-dominated process.

Figure 5.70: Oxygen distribution, reaction-dominated process.

Figure 5.71: Hydro-carbonate ion distribution, reaction-dominated process.
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From Figures 5.64 to 5.71, it can be observed that the initial uniform distributions of

species have not changed. Thus without convection and dispersion, the initial distri-

butions will be maintained. Comparing the final concentrations of species with their

corresponding initial concentrations, it can be observed that the final concentrations are

different from the initial concentrations. The observed behaviour is attributed to reac-

tions, production and filtration of species.

5.2.5 Concentration of chemical species with time.

In this section, we present and discuss the results related to changes in concentrations of

chemical species with time.

Neutralization implies raising the pH of the effluent water by removing the hydrogen ions.

Thus it is expected that the concentration of hydrogen ions decreases in with time in the

treatment process. Figure 5.72 shows the concentration of hydrogen ions with time.

Figure 5.72: Hydrogen ion concentration plotted against time.

The final pH of the water is less than 3.5, this conforms with our earlier assumption.
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Figure 5.72 shows the expected behaviour of hydrogen in the treatment method. The

graph is not exactly linear because a reversible rate law is used.

Oxidation of ferrous iron implies reduction of ferrous ions. Thus it is expected the that

concentration of ferrous ions decrease with time. Figure 5.73 shows the concentration of

ferrous ion with time.

Figure 5.73: Ferrous ion concentration plotted against time.

It can observed that from Figure 5.73 that the concentration of ferrous ion decreases with

time.

Filtration of the iron hydroxide implies a reduction in concentration of iron hydroxide

with time. Figure 5.74 shows the concentration of iron hydroxide with time.
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Figure 5.74: Iron hydroxide concentration plotted against time.

Figure 5.75: Sulfate ion concentration plotted against time.
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It can be observed that the concentration of the iron hydroxide decreases with time as

expected.

The concentration of sulfate ions is not expected to decrease with time since the ions

are neither produced nor reacted. Thus the expected behaviour is a linear. Figure 5.75

shows the concentration of sulfate ions with time. The observed non-linear behaviour is

attributed to rounding errors.

Ferric ions are produced in the oxidation of ferrous ion, thus the concentration of ferric

ions is expected to increase with time. Figure 5.76 shows the concentration of ferric ions

with time.

Figure 5.76: Ferric ion concentration plotted against time.

Figure 5.76 shows that the concentration of ferric ions increases linearly with time. The

neutralization process involves dissolution of calcite, thus the concentrations of calcium

ions and hydro-carbonate ions are expected to increase with time. Figures 5.77 and 5.78

show the concentrations of calcium and hydro-carbonate ions with time.
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Figure 5.77: Calcium ion concentration plotted against time.

Figure 5.78: Calcium ion concentration plotted against time.
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The concentration of oxygen is expected to decrease with time since it take part in the

oxidation reaction. Figure 5.79 shows the concentration of oxygen with time.

Figure 5.79: Oxygen concentration plotted against time.

In this Chapter, numerical schemes were verified by comparing solutions obtained by the

central differencing, upwind and hybrid schemes to an analytical solution. The code used

for numerical experiments is validated by three test examples. Numerical experiments

are carried out for coupled uniform flow, energy and contaminant transport. The investi-

gations were based on Peclet number. The results from the experiments were discussed.
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Chapter 6

Conclusion and recommendation

A passive treatment method called Open Limestone Channnel treatment has been mod-

elled and simulated on a two dimensional domain. The results show that the pH of the

effluent water increases with time, the concentration of ferrous ion decreases with time

and the iron hydroxide (’yellowboy’) decreases with time as expected. There was no sig-

nificant changes in the initial temperature profile. We suspect this to be due to source

term approximation and further investigations are recommended. The results also show

that the model can be used to predict information inside the domain unlike other models

that do not include spatial information. Thus the open limestone channel treatment is

recommended for implementation.

Each numerical scheme was validated and the code used for the numerical experiment was

validated by three test examples. We have confidence in our results because we used a

validated computer code and verified numerical schemes for simulation/experiment, and

all the schemes yielded similar results. Further, the experiments were conducted within

the pH limit as stated in our assumptions.

However, the results may not be very accurate due to rounding errors. The model has

not been validated due to lack of field and laboratory experimental data. Some of the

assumptions are unrealistic and would be relaxed in future modelling studies. The rate

laws used in our study are simplified forms of very complicated rate laws, thus our results

may not fit well with field data. We will consider more complicated rate laws in future.
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The model is a large system of equations, this will be reduced by decoupling techniques

in future. Neutralization involves chemical interaction of the solid matrix and interstitial

fluid. According to [36], reaction gradients, reaction fronts and mixing zones are the

main scenarios that are identified with solid-fluid reactions. We will also investigate

these scenarios in future studies.

In summary, a brief discussion on Acid Mine Drainage hazards and the main assumptions

used in our modelling studies were given in Chapter 1. Oxidation of pyrite, calcite disso-

lution, ferrous oxidation, filtration and treatment methods were discussed in Chapter 2.

The mathematical model for the open channel limestone treatment was derived in Chap-

ter 3. In Chapter 4, numerical modelling studies were discussed. Verification of numerical

schemes and validation of the numerical code (used for our experiments) were discussed

in Chapter 5. Finally, we concluded our discussion in Chapter 6. Based on our results,

we recommended the open limestone channel treatment method for implementation. We

also stated possible research topics for future studies.
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Appendix A

Basic Chemistry

A.1 Weathering

Weathering refers to the disintegration or alteration of rocks into products that are com-

patible with environmental conditions [37]. Rocks are formed deep down the earth’s

surface under conditions that are very different from conditions in shallow depths, and

conditions on the surface of the earth. Thus when rocks from underground are exposed

to different conditions due to natural or anthropogenic influences (e.g. erosion and min-

ing), they tend to breakdown physically and chemically [37]. Weathering contributes to

many biochemical and geomorphic processes including; formation of soil and supply of

nutrients to plants [37]. There are three broad mechanisms involved in the weathering

process, these include: chemical, physical and biological processes.

Rocks are aggregates of minerals composed of chemicals Elements. When the chemical

composition is altered, then chemical instability occurs in the rock thus resulting in

disintegration, this is called chemical weathering. Each of the products of this weathering

process has different chemical and mineralogical properties from the parent rock. The

products become different from the parent rocks due to chemical changes that occur as a

result chemical processes such as; oxidation, reduction, hydrolysis, hydration, carbonation

and solution [37].

Physical weathering refers to the mechanical breakdown of rocks. Some of the forces that
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cause mechanical weathering are internal and other are external. The stresses from both

external and internal sources, exerted on and in rocks destabilizes equilibrium, which

may lead to distortion and eventual rapture of rocks. Some of the processes that cause

physical weather include: thermal isolation, abrasion, wetting and drying, crystallisation

and pressure release [37].

Through some life processes, living organisms also cause weathering of rocks. When

weathering occurs as a result of the activities of living organisms, it is known as biological

weathering. Many organisms in the soil cause movements among rock particles, which

results in the collision of particles, thus making the soil particles to the disintegrate into

smaller fragments. An example of biological weathering is when the roots of some plants

grow through rocks and force the rock particles to break apart [37].

Weathering of rocks occurs through natural processes and anthropogenic activities. Weath-

ering through anthropogenic activities is the major contributor of environmental hazards.

Since rocks are aggregates of minerals, chemical weathering is the major weathering pro-

cess in rocks. Among the chemical weathering mechanisms, Oxidation is the most com-

mon chemical weathering mechanisms identified with chemical metals.

A.2 Chemical kinetics

Chemical kinetics refer to the study of how molecules of substances (reactants) collide

and interact to form other substances called products. It involves determining the rate

at which the reaction takes place [8, 59].

The rate of a chemical reaction simply refers to the quantity of a reactant consumed or

product formed per unit time [8, 53, 59]. For a general chemical equation:

aA+ aB −→ products (cC) (A.2.1)

the rate of reaction (R) is given by:

R = −1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

c

d[C]

dt
, (A.2.2)
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where a, b, c are stoichiometric coefficients with respect to reactants A,B, and product

C. The symbol [i], is used to denote concentration of the ith chemical species, and the

negative (-) implies decreasing reactant concentration. The rate of a chemical reaction

is proportional to the rate at which each chemical species is either consumed or formed.

However the individual chemical species react in different stoichiometric proportions, thus

the rate of reaction of each chemical species in the system is multiplied by the inverse of

its stoichiometric number as indicated in Equation A.2.2 [8, 53, 59, 16, 30]. Thus the rate

of a chemical reaction is given by the weighted rate of reaction of each chemical species.

However, the rate of a reaction is related to the concentrations of the reactants by a

principle called mass action [8, 53, 59]. When the principle of mass action is applied to

determine the rate of a reaction, the resulting equation is called rate law [8, 53, 59]. For

the general chemical equation given above (Equation A.2.1 ), the rate law is given by:

R = K[A]ox[B]oy, (A.2.3)

where K is a constant called the rate constant which depends on temperature, concen-

tration, surface area and pressure. The indices ox, oy are called orders of the reactants A

and B respectively [8, 53, 16, 30]. The sum of all the orders of the reactants is called order

of the reaction [8, 53, 16, 30]. The orders of the chemical species can only be determined

by Laboratory experiment [8, 53, 16, 30, 59].

Many reactions do not occur in a single reaction step, a sequence of steps or reactions by

which an overall reaction occurs is called a reaction mechanism [8, 53]. Each of the steps

is called an elementary reaction and has its own rate law [8, 53]. The products formed

in each elementary reaction that also become reactants in subsequent reaction steps, but

do not appear in the overall reaction are called intermediates [8]. Among these reactions,

the slowest reaction step limits the overall rate of reaction, as a result, the overall rate of

reaction is determined by that elementary reaction, this rate-limiting elementary reaction

is called rate-determining step [8, 53, 16, 30].

In a reaction mechanism, if the rate-determining step is the first elementary reaction,

then the overall rate of reaction is simply equal to the concentration of the reactants

in that elementary reaction, raised to their respective orders [8, 53, 16, 30]. Otherwise,
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all the reaction intermediates in the rate law have to be substituted with appropriate

non-intermediates [53, 8].

According to [59], the basic unit of any chemical process is the elementary reaction.

Since an elementary reaction occurs due to molecular events, all the physical factors

(including temperature, pressure and ionic strength) affecting molecular motion also affect

the elementary reaction [59]. The physical factors affect elementary reaction through the

rate constant. The Activated Complex Theory (ACT) also known as Transition State

Theory (TST) was developed to study the relationship between physical factors and

elementary reactions [59].

Ions are chemical reacting species with charges. These charges interact electrostatically

with each other in a solution, which may affect the availability of the ion for reaction. As a

result of the electrostatic interaction, the effect concentration of the ion is specially called

activity. The activity and concentration are proportional to each other, the constant

of proportionality is called activity coefficient. Mathematically the relationship between

activity (ai) and concentration (Ci) on ion (i) is given by:

ai = ηiCi (A.2.4)

where η is the activity coefficient which depends on pressure and temperature. When the

solution is dilute, the activity coefficient is taken as one, due minimal interaction ions.

A collection of elementary reactions (a mechanism) that is describes a full chemical process

may be classified as parallel, series or reversible reactions [59]. A parallel system of

elementary reactions is a chemical process in which, one reactant is common to all the

elementary reactions. When the products formed by one elementary reaction are reactants

in the next step of the mechanism, then the elementary reactions are in series. A reversible

system describes a chemical process where the products formed by an elementary reaction,

undergo reaction to form the reactants of that same elementary reaction.
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A.3 Pyritic oxidation

According to [50, 47], the chemical oxidation of Pyrite is described by three steps such as:

oxidation of Pyrite to sulphate and ferrous iron by molecular oxygen; oxidation of ferrous

iron to ferric iron by molecular oxygen; and the oxidation of ferric iron to sulphates and

ferrous iron.

Electrochemical oxidation of pyrite has been described by [50] as reactions involving an-

odic and cathodic reactions on the Pyrite’s surface. It is stated in [50] that the mechanism

for the electrochemical oxidation process is not well known, this statement is supported

by [15, 55]. The elementary reactions that are involved in the electrochemical oxida-

tion processes are complicated by the reaction environment [15, 55]. In red-ox reactions

the elementary steps involve transfer of a single electron at a time. This implies that,

monosulphite minerals (e.g. Gelena, Sphalerite) requires eight elementary steps to re-

lease a sulphate, and disulphite minerals (e.g. Pyrite and Marcasite) require seven steps

[15, 55]. Pyrite is a semiconductor, which implies that electrons can migrate from one

site to another on the mineral’s surface, this implies that reactions can occur at different

sites, thus it is very difficult to provide a consistent description due to the randomness

of events [15, 55]. The semiconductor properties critically depend on the composition of

the Pyrite sample, or the region or zone of the sample [15]. According to [15], the elec-

trochemical oxidation of Pyrite occurs in three broad steps including: cathodic reaction,

electron transfer and anodic reaction.

When an aqueous species (oxidant) accepts electron on the surface of the mineral, the

reaction is cathodic [15]. Natural oxidants include O2 and Fe3+, which oxidise Pyrite in

reactions described by the following chemical equation [15]:

FeS2 + 3.5O2 +H2O 
 Fe2+ + 2H+ + 2SO2−
4 (A.3.1)

and

FeS2 + 14Fe3+ + 8H2O 
 15Fe2+ + 16H+ + 2SO2−
4 . (A.3.2)

The chemical Equations A.3.1 and A.3.2 are balanced overall chemical reactions that

occur in several elementary steps [15]. According to [15], Sulphur is the reducing agent

instead of iron (ferrous ion).
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A.4 Transport mechanisms for particle removal

Filtration mechanism refers to all the physical processes that result in filtration due.

Some of the physical processes include; straining, interception, inertia, sedimentation,

and orthokinetic flocculation [64, 6, 43].

The first and most common transport mechanism is straining. When a porous material

is placed in a flowing fluid, due to larger size of suspended particles relative to the pore

size of the material, the suspended particles (or solutes) are trapped on the surface of the

material. If all the solutes in the solution are larger than the pore sizes, then no particle

would be able to go through the material surface, but are trapped on the surface of the

material like a mat [64, 6, 43].

Solid grains or struts are sometimes in the radii of the advecting solutes, thus the advect-

ing particles come to a halt when in contact with solid grains or struts. This is referred

to as filtration by interception [64, 6, 43].

During fluid flow through the porous material, some particles are streamlined with the

solid grains of the material. The streamlines diverge at the point of contact with the solid

grains, however, if the advecting particles have sufficient inertia, the particle trajectory

remain unchange, thus resulting in a collision and coalition with the solid grains. This

filtration mechanism is referred to as inertia [64, 6, 43].

Another important filtration transport mechanism is sedimentation. Due to larger density

of particles, the gravitational force acting on the particles is greater than the surface

tension, thus the solute particles are subjected to a velocity (in response to resultant

force) relative to the motion of the fluid until the resultant force is neutralize [64, 6, 43].
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Appendix B

Transport Parameters

A uniform flow is coupled with the chemical species transport equations. Table B.1

contains the data, used to obtain the concentration profiles for the chemical species and

temperature.
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Parameter Numerical value Unit of measurement

Domain (0, 1)× (0, 1) m2

Specific heat capacity (limestone) 0.908 [5] J/gK

Porosity 0.2 [5]

Density of limestone 2.3 [5] g/cm3

Thermal conductivity of limestone 1.26 [5] W/mK

Specific heat capacity water 1.996 [5] J/gK

Density of water 1 [5] g/cm3

Thermal conductivity of water 0.016 [5] W/mK

Deposition rate constant 6.4× 10−3 m/min

Dissolution rate constant 10−4 m/min

Precipitation rate constant 2.5× 10−9 m/min

Ferrous oxidation rate constant 2.5× 10−5 m/min

Grain diameter 0.3 m

Colloid radius 0.000015 m

a1, a2, a3 4, 3.308, 1.4069 [44]

θmax 0.345

Table B.1: Parameters used to obtain concentration and temperature profiles.
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