
Biomass Modelling of Selected 
Drought Tolerant Eucalypt Species in 

South Africa 

 

 

 

 

 

by 

 

Darius Phiri 

December, 2013 

Thesis presented in partial fulfilment of the requirements for the degree 

of Masters of Science in Forestry in the Faculty of AgriSciences at 

Stellenbosch University 

Supervisor: Prof. Thomas Seifert 

Co-supervisor: Pierre Ackerman 

 



i 

 

Declaration  

By submitting this thesis electronically, I declare that the entirety of the work contained 

therein is my own original work, that I am the authorship owner thereof (unless to the extent 

explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it 

for obtaining any qualification. 

Signature: 

Date: 30
th

 September 2013 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
Copyright É 2013 Stellenbosch University
All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



ii 

 

 

Abstract 

The study aims at developing models for predicting aboveground biomass for selected 

drought tolerant Eucalyptus (E) species (E. cladocalyx, E. gomphocephala and E. grandis x 

camaldulensis) from the dry west coast. Biomass models were fit for each of the species and 

a cross-species model was parameterised based on pooled data for all the three species. Data 

was based on destructive sampling of 28 eucalypt trees which were 20 years of age and 

additional five five-year old E. gomphocephala trees. Preliminary measurements on diameter 

at breast height (dbh), height (h) and crown height were recorded in the field. The sampled 

trees were then felled and samples of discs, branches and foliage were collected. Density of 

the wood discs and the bark was determined by a water displacement method and computer 

tomography scanning (CT-scanner). Stem biomass was reconstructed using Smalian’s 

formula for volume determination and the calculated densities. Upscaling of the crown was 

carried out by regression equations formulated by employing the sampled branches. Further 

assessment was carried out on a sub-sample by subjecting the samples to different drying 

temperatures in a series between 60 and 105 ºC. 

Linear models were parameterised by a simultaneous regression approach based on 

Seemingly Unrelated Regression (SUR) using the “Systemfit” R statistical package. The 

predictor variables employed in the study were dbh, d
2
h and h in which the coefficient of 

determination (R
2
), Mean Standard Error (MSE) and Root Mean Standard Error (RMSE) 

were used to determine the goodness of fit for the models. Akaike Information Criteria (AIC) 

was also used in the selection of the best fitting model. A system of equations consisting of 

five models was formulated for each Eucalyptus species. The biomass prediction models had 

degrees of determination (R
2
) ranging from 0.65 to 0.98 in which dbh and d

2
h were the main 

predictor variable while h improved the model fit. The total biomass models were the best 

fitting models in most cases while foliage biomass had the least good fit when compared to 

other models. When the samples were subjected to different drying temperatures, stem wood 

had the largest percentage change of 6% when drying from 60 ºC to 105 ºC while foliage had 

the lowest percentage change of less than 2%. 

Keywords: E. cladocalyx, E. gomphocephala, E. grandis x camaldulensis, Regression, 

Modelling, Seemingly Unrelated Regression, aboveground biomass, Drying Temperature 
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Opsomming 

Die doel met hierdie studie is om modelle vir die voorspelling van die bogrondse biomassa 

van drie droogte-bestande Eucalyptus (E) spesies (E. cladocalyx, E. gomphocephala en 

E. grandis x camaldulensis), gekweek op die droë kusvlakte in Wes-Kaapland, te ontwikkel. 

Biomassa modelle vir elk van die spesies is gepas en ’n model gegrond op die gekombineerde 

data van al drie die spesies, is geparameteriseer. Verder is die biomassa variasie onder 

verskeie droogingstemperature vasgestel. Die data versameling is uitgevoer gegrond op die 

destruktiewe mostering van 28 Eucalyptus bome wat 20 jaar oud was en ’n bykomende vyf  

vyfjarige E. gomphocephala bome. Die aanvanklike mates, naamlik deursnee op borshoogte 

(dbh), boomhoogte (h) en kroonhoogte is in die veld opgemeet. Die gemonsterde bome is 

afgesaag en monsters van stamhout skywe, takke en die bas is versamel. Die digtheid van die 

skywe en die bas is deur die waterverplasing metode, en Rekenaar Tomografie skandering 

(“CT-scanning”) vasgestel. Stam biomassa is rekonstrukteer deur gebruik te maak van 

Smalian se formule vir die vasstelling van volume en berekende digtheid. Die opskaal van die 

kroon biomassa is gedoen  met behulp van regressie vergelykings van gekose takmonsters. 

Submonsters is onderwerp aan ’n reeks van verskillende drogingstemperature tussen 60 en 

105 ºC. 

Lineêre modelle is deur ’n gelyktydige regressie benadering gegrond op die Seemingly 

Unrelated Regression (SUR) wat ’n“Systemfit” R statistiese pakket gebruik, 

parameteriseer. Die voorspeller veranderlikes wat in hierdie studie gebruik is, is dbh, d
2
h en h 

waarin die koëffisient van bepaling (R
2
), gemiddelde standaardfout (MSE) en vierkantswortel 

van die gemiddelde standaardfout (RMSE) gebruik is om vas te stel hoe goed die model pas. 

Akaike Inligting Kriteria is gebruik vir die seleksie van die gepaste model. ’n Reeks 

vergelykings wat bestaan uit vyf modelle is vir elke Eucalyptus spesie geformuleer. Die 

biomassa voorspelling model het waardes vir die koëffisiente van bepaling (R
2
) opgelewer 

wat strek van 0.65 to 0.98% en waarin dbh en d
2
h  die hoof voorspelling veranderlikes is, 

terwyl h die pas van die model verbeter. Die totale biomassa model het in die meeste gevalle 

die beste gepas en die blaarbiomassa die swakste as dit met die ander modelle vergelyk word. 

Tydens droging vind die grootste persentasie verandering van 6% by stamhout plaas tussen 

temperature van 60 ºC tot 105 ºC, en die kleinste persentasie verandering van minder as 2% 

by blare. 
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Chapter 1 : INTRODUCTION 

1.1. Background 

Climate change and the emphasis on renewable energy as an alternative for fossil fuel have 

made plant biomass to be considered as an important alternative energy source. Samalca 

(2007) pointed out that the entire forest ecosystem stores about 80% of aboveground carbon 

and 40% of the belowground carbon. Forests reduce the amount of carbon in the atmosphere 

predominantly in four ways; (1) storage of carbon in the biosphere, (2) storage of carbon in 

forest products, (3) use of wood as a product instead of other products that cost more in 

carbon during the production process, and (4) replacing of fossil fuels by renewable energy 

(Ross, 2004; Botman, 2010). The Department of Minerals and Energy (2003) reported that 14% 

of the world energy is in the form of bioenergy of which 38% is used in developing and 

emerging economies, such as South Africa. 

Biomass is commonly sourced from existing plantations established for the production of 

timber or pulp wood. Besides these plantations, biomass is also obtained from other 

plantations established specifically for biofuel production (Botman, 2010). Ackerman et al. 

(2012) referred to the importance of forest residues as a vital source of biomass especially 

after harvesting operations. Thus branches, foliage and bark contribute to available biomass. 

Further consideration on sources of biomass showed that invasive species are an important 

source of forest biomass (Kitenge, 2011). Although alternative sources of biomass exist, 

forest plantations have remained the major source of biomass especially in South African 

context. 

The Department of Fisheries and Forest (DAFF) (2011) indicated that forest plantations cover 

1.1% of South African land area of which Mpumalanga has the largest plantation area of 

40.8%, followed by KwaZulu-Natal (KZN) with 39.6%, Limpopo 4.6% and the Western 

Cape has the smallest plantation area of 3.9% (Figure 1.1). The majority of these plantations 

are stocked with pines - 51%; eucalypts - 40.4 %, wattle - 8.2%, and other species - 0.4% 

(Forestry South Africa, 2010; De Beer, 2012; DAFF, 2011; Louw & Smith, 2012).  

Besides biomass production, De Beer (2012) reported that forests plantations have multiple 

contributions to the country’s economy, for instance, in 2008/9 the forest sector in South 

Africa contributed about R20 376 million to the Gross Domestic Products (GDP) which 
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translated to about 1.2% of the GDP. Furthermore, about 77 000 people are employed in the 

forest sector in South Africa of which the majority are from rural communities (De Beer, 

2012). 

The overall envisaged contribution of the forest sector to the nation is to achieve social, 

economic and ecosystem sustainability. However, due to limited land available and suitable 

for afforestation; the expected goals have not been achieved due to South Africa being 

identified as a water scarce country (Magumba 1998; Ham & Theron, 2001; Botman, 2010). 

The Western Cape is not an exception with regards to water constraints where rainfall is 

below average (Section 2.11 and 3.1.3) occurring during winter when vegetative growth is 

minimal. Van Wyk et al. (2001) also argued that afforestation programmes have diminished 

because of lack of suitable land while the existing land is being prioritised for agricultural 

purposes. Nevertheless, Seifert (2012) proposed three strategies for increasing forest 

ecosystem services while alleviating poverty for rural communities; (1) increasing 

competitiveness in the existing plantation and sawmill to secure jobs, (2) plantation 

establishment for rural communities who participate in value addition process on the forest 

side, and (3) mobilisation of small grower woodlots for farmers. 

The philosophy of establishing woodlots as a solution to the potential shortage of forest 

products is feasible because it does not have high demanding prerequisites such as larger 

pieces of land and access to substantial capital (Magumba, 1998; van Wyk et al., 2001). 

However, due to the nature of the arid climatic conditions experienced in large parts of South 

Africa, drought tolerant species are needed for the establishment of woodlots on marginal 

sites.  
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Figure 1.1: Distribution of forest plantations and indigenous forests in South Africa (De Beer, 2010) 

As a driver for woodlot establishment in the Western Cape region, related climatic conditions 

of Australia and Israel were taken into account (Magumba, 1998). Species which were 

drought tolerant in the native environment in Australia were expected to be suited to dry 

areas of South Africa. This led to the establishment of several experimental plots along the 

West Coast of South Africa (van Wyk et al., 2001). 

The West Coast trials were established in 1991 with eucalypt hybrids and genetically pure 

Eucalyptus species from Australia, Morocco and Israel, which included E. gomphocephala 

and E. cladocalyx as explained in Section 3.1.4 of Chapter 3. Results of the trials showed that 

under correct silvicutural and management practices, some selected species perform better in 

the arid regions of South Africa. The genetic stock from Australia, which comprised 

E. gomphocephala and E. cladocalyx proved to be the best performing species while the 

hybrid E. grandis x camaldulensis performed comparatively well (van Wyk et al., 2001; 

Magumba, 1998; Botman, 2010). In order to gain further understanding on these drought 

tolerant species (E. gomphocephala, E. cladocalyx and E. grandis x camaldulensis), the study 

in this thesis developed biomass models of each of these species for use as preliminary 

models in biomass resource assessment and its related management. 

Commercial plantation 

Indigenous forest 

Major Processing Mill 

SOUTH 

AFRICA 

Western 

Cape 
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1.2. Problem Statement 

The decline in availability of forests products, especially fuel wood and sawn timber from 

indigenous sources and existing plantations has necessitated the establishment of woodlots in 

rural communities. This is to meet the ever rising demand while maintaining the existing 

forests which have been subject to exploitation pressure from adjacent communities. 

Although woodlots potentially provide a promising solution to this problem, there is need to 

planting fast growing species, such as eucalypts species, which can survive in arid region, 

especially the west coasts of South Africa where the average rainfall is below 400 mm per 

annum and occurs in winter (Figure 2.4). Growing trees under these adverse climatic 

conditions require information not only on the establishment and growth but also on timber 

yield. However, such information is currently lacking, especially biomass models and other 

biomass characteristics. For these reasons, preliminary biomass models for the three eucalypt 

species (E. gomphocephala, E. cladocalyx and E. grandis x camaldulensis) need to be 

developed.  

1.3. Objectives of the study 

1.3.1. Main objective 

The main objective of this study was to develop biomass models for the selected drought 

tolerant eucalypt species. 

1.3.2. Specific objectives 

The specific objectives of the study were to: 

1. Formulate models for each species using different statistical methods to ensure 

additivity of biomass components. 

2. Selecting the most suitable modelling method for each species. 

3. Compare two density determination methods through displacement and CT-scanning. 

4. Assess the variation in amounts of biomass when dried at different temperatures 

(lower than the standard drying temperature of 105 ˚C). 

5. Assess the error-propagation pattern when upscaling with the biomass models. 
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1.3.3. Research questions 

The objectives were met through the following research questions: 

1. Does the formulated model follow the general additivity properties? 

2. How do biomass components of leaves, bark, stem wood and branches vary between 

species? 

3. How big are the biomass (dry weight) variations for different biomass components 

when dried at different temperatures?  

4. Are there species specific differences in the drying pattern? 

5. Does the displacement method underestimate or overestimate wood basic density as 

compared to the CT-scanning method of determining basic densities? 

6. What is the size of the propagated error? 

1.4. Rationale of the study 

Forest ecosystems are complex because of the dynamics and interactions among biotic and 

abiotic factors within an ecosystem. Due to this complexity, the need for specific quantitative 

and qualitative information is essential in order to manage the forest sustainably (Samalca, 

2007). Sustainable management of forest resources demands a deeper understanding of 

ecosystem functions which require supportive tools for forest management decisions. Among 

many options for forest management tools, forest models are vital. Forest models represent 

the dynamics of the forest ecosystem in different aspects such as mortality, growth and 

productivity (van Laar & Akça, 1997; Subasinghe, 2008; Bettiger et al., 2009). However, 

models to represent different dynamics and interactions are lacking and most often have 

limitations. 

The lack and limitation of models affect the efficiency in the management of forest resources. 

Subasinghe (2008) explained that forests established for the production of substantial 

amounts of ecosystem services
1
 need large amount of information and models for effective 

management and planning. Eucalyptus species growing on the dry west coast of South Africa 

                                                 

 

 

1
 Ecosystems services are tangible and intangible products which a realised from the forest which include wood 

products, employment, carbon sequestration and many others. 
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equally need management tools in order to monitor amongst others, biomass products. As 

motioned in Section 1.1, increased expectations in renewable energy, sustainable use of forest 

resources and carbon sequestration has brought about an increase on the demand of biomass 

models (Salis et al., 2006; Fehrmann & Kleinn, 2006; Bettinger, 2009; FAO, 2012).  

Particular attention should be paid to species that can withstand adverse conditions such as 

aridity because these species often offer the only supply of biomass in those areas and are 

important in supplying other ecosystem services. Therefore, this study focused on biomass 

modelling of the selected Eucalyptus species (E. gomphocephala, E. cladocalyx and 

E. grandis x camaldulensis). Models parameterised in the present study will contribute 

towards developing biomass assessment (quantification) methods, and identifying other 

biomass attributes of these species. Thus, these models will be useful in inventories 

especially in the carbon offsetting potential of forest plantations under similar environmental 

conditions. In addition, the formulated models can be included in bioenergy resource 

quantification and carbon sequestration programs such as Reducing Emissions from 

Deforestation and Forest Degradation (REDD) as suggested in FAO (2012) and Samalca 

(2007). Finally, the results from this study will be vital in determining the feasibility of 

establishing small scale woodlots for timber and biomass production. 

1.5. Thesis Structure 

This thesis comprises six chapters. Chapter 1 has given an introduction to the context of the 

study. Chapter 2 focuses on a comprehensive literature study on different theoretic aspects of 

biomass modelling. A detailed description of the study sites, material and methods are 

presented in Chapter 3 while the results are given and discussed in Chapter 4 and Chapter 5, 

respectively. Conclusion and recommendations are provided in Chapter 6. Relevant data 

sheets used during data collection have been included in the appendix. 
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Chapter 2 : LITERATURE REVIEW 

2.1. Forest models: Importance and use  

Sustainable management of forest resources requires supportive information because it is a 

dynamic process in which variables defining it change over time (Subasinghe, 2008). 

Saint-André et al. (2004) pointed out that forest models are now widely used in forestry and 

agroforestry in order to simulate the dynamic nature of the forests. These models have the 

same basic objective; i.e., mimicking key variables that are difficult to measure with 

conventional methods (Salmaca, 2007; Seifert & Seifert, 2013). 

Vanclay (1994) defines forest models as an abstract representation of natural dynamics of a 

forest, which include aspects of growth, mortality and other changes. Forest models are 

considered to be an important tool for sustainable forest management, requiring detailed 

information on tree growth, forest dynamics and ecosystem services. Some of the common 

ecosystem services are carbon sequestration and bioenergy production which directly relate 

to biomass and biomass models (Davis & Johnson, 1982; Philip, 1994; Bettiger et al., 2009; 

Baishya & Barik, 2011). 

2.2. Forest Biomass 

Several studies on climate change have indicated that forest ecosystems play a major role in 

carbon sequestration and storage. Carbon from the atmosphere is taken up by vegetation 

during photosynthesis and stored as plant biomass as part of the carbon cycle process 

(Samalca, 2007). Forest ecosystems store about 80% of all aboveground and 40% of all 

belowground terrestrial organic carbon (Baney et al., 1978; Montagu et al., 2005; Samalca, 

2007; Litton, 2008). Consequently, the United Nations Forum on Climate Change (UNFCC) 

through Kyoto Protocol under Article 3.3 recognised the important role that forests play in 

carbon sequestration (Samalca, 2007; FAO, 2012; Zeng & Tang, 2012).  

In order for the forest to significantly contribute towards the process of carbon sequestration, 

sustainable management strategies are needed to maintain existing forests and not expose 

them to unnatural disturbances (Samalca, 2007). FAO (2012) reported that human influence 

on forests through land use conversion contributes to the loss of forests, especially in Africa. 

This loss of forest affects the carbon balance as the trees undergo decomposition which 

releases carbon to the atmosphere. It is these carbon dynamics which call for assessment of 
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present and future biomass quantities as it directly translates to carbon
2
 (Samalca, 2007). 

With the increased emphasis on ecosystem services, quantification of carbon by determining 

the amount of biomass available has also increased because both carbon and biomass are 

important components of ecosystem services (Chidumayo, 1990; Litton, 2008). 

Zeng and Tang (2012) argued that because of global climate change and the importance of 

carbon sequestration, it is necessary to add forest biomass estimation to national forest 

resource monitoring inventories. Thus, efficient and effective methods of biomass assessment 

have to be continuously developed. Parresol (1999) pointed out that assessment of biomass is 

important for two major reasons; (1) resource use, and (2) environmental management. In 

addition, the determination of quantities of biofuel available has become another important 

topic in the field of renewable energy. Samalca (2007) stated that biomass plays a dual role in 

greenhouse gas mitigation as related to the objectives of the United Nations Framework 

Convention on Climate Change (UNFCCC); (1) as an energy source to substitute fossil fuels; 

and (2) as carbon storage. Besides these two aspects, in environmental management, biomass 

is used as an indicator of the growth of forest ecosystems. Therefore, knowledge on biomass 

loss or accumulation over time is important (FAO, 1997; Subasinghe, 2008; Bettiger et al., 

2009). 

2.2.1. Methods of biomass assessment 

Samalca (2007) introduced three approaches to biomass assessment which includes; field 

measurement, Geographic Information System (GIS) and remote sensing. The field 

measurement approach was found to be more accurate when compared to the other two 

approaches. However, the field approach involves extensive fieldwork at potentially high 

cost. In nearly all the above approaches, ground data is needed for validating. This implies 

that it is equally important to have field measurements for both remote sensing and GIS based 

methods for the purpose of validation. The most common predictive parameters measured 

during field work are diameter at breast height dbh (height of 1.3m), height (h) and crown 

                                                 

 

 

2
 The amount of carbon is calculated by multiplying biomass by 0.5. 
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dimensions (Philip, 1994; Parresol, 1999; van Laar & Akça; 1997; Samalca, 2007; Seifert & 

Seifert 2013). 

Field measurement for biomass sampling includes the following two methods; (1) 

destructive, and (2) non-destructive (Samalca, 2007). The destructive method is mostly used 

in tree biomass sampling in which selected trees are felled and necessary variables (dbh, h, 

component masses) are measured. The mass of a tree is measured by weighing or sampling of 

individual tree components. Sampling of tree components is usually preferred for big trees 

because the total weight method is expensive and time consuming (Seifert & Seifert, 2013). 

Parresol (1999) and Carvalho et al. (2003) reported that the total weighing method is not only 

time consuming and expensive but less accurate. Furthermore, sampling of components has 

been improved by including regression in sampling. For example, Seifert and Seifert (2013) 

recommended this method of sampling as it provides detailed compositional biomass data for 

individual trees.  

A non-destructive sampling procedure does not require trees to be felled for measurement. 

Stem volume is assessed along the stem by a tree climber and wood density measurements 

are taken by core sampling. In order to obtain branch data, diameters of branches are 

measured while climbing the trees with certain branch samples cut off for volume and 

biomass determination (Samalca, 2007; Seifert, personal communication). 

2.3. Biomass tree components 

2.3.1. Branches 

An efficient way of sampling branches involves a two phase sampling procedure (Seifert & 

Seifert, 2013). In the first phase, diameters at the base of all the branches (preferably 4 to 5 

cm from the main stem) are measured. It is from these branches that a sub-sample is drawn at 

random to estimate biomass through oven-drying. The estimated biomass from the sampled 

branches is then regressed against the branch diameter or basal area in the second phase. 

Other predictor variables such as branch heights have been used successfully as well (Seifert 

& Seifert, 2013). Van Laar and Akça (1997) showed that a considerable increase on R² can 

be attained by adding branch height as a predictor variable. Although these variables can be 

used, only a slight improvement on the model is attained. Therefore, branch diameter or 

branch basal areas still remain the most important independent variables (Chiyenda & 

Kazoka, 1984; Samalca, 2007). 
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Figure 2.1: Above and belowground biomass components (Seifert & Seifert, 2013) 

Montagu et al. (2005) proposed a different sampling method for estimating branch biomass. 

A representative sub-sample is collected from the branches, which is then oven dried from 

which the ratio of oven-dry biomass to green biomass is derived. It is important to note that in 

the method proposed by Seifert and Seifert (2013), dry masses are used directly in 

regressions. In this method however, the ratio between dry mass to green mass is used to 

determine the branch biomass. Mutakela (2009) cautioned that it is important to measure the 

ratios of the live and dead branches separately because these give different masses as a result 

of variation in moisture content. Van Laar and Akça (1997) reported a ratio of 0.45 and 0.8 

moisture content for dead and live branches respectively hence indicating the variability on 

weight. 

Merchantable 

branch 
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stem 
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2.3.2. Foliage 

Unlike smaller trees, where foliage is measured together with other components during total 

weighing, bigger trees demand foliage sampling. A number of branches of the total branches 

(preferably 25%) are sampled (van Laar & Akça, 1997). In two separate studies by Mutangu 

et al. (2005) and Litton (2008) five branches per tree were sampled for foliage. It is from 

these branches that foliage is separated and oven dried until a constant mass is attained 

(Montagu et al., 2005; van Laar & Akça, 2007; Litton, 2008). During the analysis, foliage 

biomass from trees of the same species is regressed with the diameter or basal area of the 

respective branches in order to increase the size of the sample (Saint-André et al., 2004). 

2.3.3. Stem wood 

Biomass determination for stem wood is typically done in two phases; (1) Volume 

determination, and (2) disc measurements in which density is calculated. Volume of the 

felled tree is determined using the Smalian’s formula (Table 2.1). In some cases Newton’s 

formula is used (Table 2.1) (Philip, 1994; Jayaraman, 1999). During Phase 2, discs are cut 

from the stem and separated from the bark. The discs are then oven dried and the ratio of 

oven-dry weight to green weight assessment is determined. Basic density is then derived for 

the discs, which is attributed to the respective stem section and biomass is finally determined 

by the product of basic density and volume (Montagu et al., 2005; Ackerman et al., 2012; 

Seifert & Seifert, 2013). 

Table 2.1: Formula to determine volume of a stem sections (logs) 

No. Name Formula 

1. Smalian’s formula 
V=  

2. Huber’s Formula 
V=  

3. Newton’s Formula 
V=  

Note: d1 is diameter at base of the log, dm is diameter of the log at mid length of log, d2 is diameter at top 

of log, L is length of the log and V is the volume of the log 
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2.3.4. Bark  

In the same way as stem biomass determination (Section 2.3.3), the collected discs are also 

considered for the bark density measurement. Bark thickness is measured from four 

directions of the disc at 90 º for volume under bark (V.u.b) and volume over bark (V.o.b) 

determination. Furthermore, the wood to bark ratio and respective densities are derived. In 

another alternative method recommended by Saint-André et al. (2004), the bark is removed 

from the disc and density measurements are carried out directly. The preliminary 

measurements usually requires oven-drying of biomass. 

2.4. Drying of Biomass samples 

The standard drying temperature in biomass studies is usually 105 ºC or 103 ± 2 °C 

(Ackerman et al., 2012; Seifert & Seifert, 2013). However, literature shows that different 

drying temperatures between 60 and 105 ºC have been used in cases where other chemical 

properties are the focus of the analysis. Saint-André et al. (2004) and Montagu et al. (2005) 

reported using 60 ºC in separate biomass studies while Cunia and Briggs (1985) used 65 ºC. 

In a study carried out on dry Miombo woodlands, Grundy (1995) used the standard biomass 

drying temperature of 105 ºC. FAO (2012) recommended drying biomass components at 

different temperature, thus foliage can be dried at 70 ºC, flowers and fruits at 65 ºC, while 

stem wood and branches were recommended to be dried at the standard biomass drying 

temperature of 105 ºC. Seifert and Seifert (2013) pointed out that lower drying temperatures 

are employed in biomass studies in order to prevent some chemical components (nutrients) 

such as volatile nitrogen and sulphur from escaping. The loss of such elements at high drying 

temperature has been associated to the reduction of biomass by 2 to 3 % in Pinus patula 

(Forrest, 1968; Barney et al., 1978). Seifert and Müller-Starck (2009) reported similar results 

in a study on Norway spruce. When the cones were dried at 38 ºC, biomass reduced to 84%, 

at 60 ºC it reduced to 80% and at 105 ºC it reduced to 78% of the fresh weight. Once biomass 

samples are dried at lower temperatures than the standard (105 ºC), the resulting biomass is 

usually overestimated since the water which is still bound in the biomass components is 

weighed as part of dry mass (Ackerman et al., 2012; Seifert & Seifert, 2013).  

2.5. Sampling and Upscaling of biomass 

Biomass determination for a stand usually employs sampling. FAO (2012) pointed out that 

sampling need to take into account stand specifics such as site and stand density which 
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cannot be noticed if the entire forest stand biomass was determined. In order to attain this, 

biomass is usually modelled at the individual tree level. Seifert and Seifert (2013) explained 

that biomass modelling for bioenergy purposes is typically an upscaling process and includes 

two steps; (1) from samples to an individual tree, and (2) from the tree to stand level (Figure 

2.2).  

There are a number of methods used to determine the amount of biomass for individual trees 

and forest stands. Seifert and Seifert (2013) suggest three methods; (1) bulk sampling 

method, (2) fresh weight sampling, and (3) sampling with regression. Bulk sampling is 

applied in short rotation biomass plantations in which all sampled trees are cut and chipped. 

The fresh weight for the chips is determined before drying while the oven-dry mass is 

determined after drying. The fresh weight sampling method involves determining the full 

fresh weight of the entire tree. This is followed by selecting a representative sample which is 

then oven dried and the ratio of dry: fresh weight is determined to finally convert the 

measured fresh mass to dry mass. This method, while very useful for smaller trees, has 

disadvantages in bigger trees, in particular when many different biomass components should 

be assessed (Seifert & Seifert, 2013). Employing sampling with the regression approach 

requires a sub sample of branches, foliage and stem to be collected, which is then oven-dried. 

In the next step, regression models are constructed for scaling up to the entire tree. FAO 

(2012) and Ackerman et al. (2012) indicated that sampling with regression is the most 

commonly used method since it provided detailed compositional biomass data for individual 

trees.  

 

Figure 2.2: Biomass upscaling steps involved in forest stand (Ackerman et al., 2012) 
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2.6. Additivity in biomass models 

Additivity refers to the concept that the sum of the biomass components (stem wood, bark, 

foliage, branches) estimates should equal the total biomass obtained from the total biomass 

model. Parresol (2001) and Saint André et al. (2004) explained that the additivity property 

assures harmonised regression functions which are consistent with each other.  

Van Laar and Akça (2007) explained that proper inventory depends on reliable and additive 

component estimates because it shows an exact relationship between the components and 

total biomass. Furthermore, studies of ecosystem productivity, energy flow, and nutrient flow 

often break down biomass into component parts hence additivity is required (Chayenda & 

Kozak, 1984; Cunia & Briggs, 1985).  

There are a number of statistical procedures which were successfully used to attain the 

additive property in biomass modelling. These methods are Nonlinear Seemingly Unrelated 

Regressions (NSUR), Seeming Related Regression (SUR) and Isometric Log Ratio (ILR) 

Composition models (Parresol 1999; Parresol 2001; Seifert & Seifert, 2013). Saint André 

et al. (2004) explained that SUR is a reliable method in the study of above and belowground 

biomass while IRL composition models are commonly used in geochemical studies which 

require high precision. Common methods which strive to satisfy additivity as proposed by 

Parresol (2001) are discussed in Section 2.6.1 and Section 2.6.2. 

2.6.1. SUR and NSUR 

SUR is a method of joining all components and the total tree biomass model by taking into 

account contemporaneous correlations and introducing restrictions on a set of regression 

equations (Srivastava & Gile, 1987; Cadavez & Henningsen, 2011; Goicoa et al., 2011). 

Non-linear models with multiplicative errors have been used widely to model biomass as it 

can be transformed into linear model by logarithmic transformation. Saint-André et al. (2004) 

explained that as a result of the additivity restriction, the inherent model for the total tree 

cannot be linearized. In order to take this problem into account, a more flexible procedure for 

non-linear functions that attempts to achieve additivity while taking into account non-

independence correlation is usually employed. This method is called NSUR.  

Goicoa et al. (2011) explained that joint general linear models can be divided into three 

groups. The first group called NSUR model where a number of nonlinear model are grouped 

together and the error term in the common allometric model is additive. In Nonlinear 
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Seemingly Unrelated Regressions Log transformed (NSURLOG) models, the allometric 

models have a multiplicative error. The logarithmic transformation leads to two linear 

regressions, nevertheless, the equation for the total cannot be linearized. Another group of 

regressions includes squares of explanatory variables, in which the weights are the same in all 

the equations, thus additivity property is automatically satisfied because the explanatory 

variables are the same (Parresol, 1999). 

2.6.2. Compositional models 

Composition data analysis uses ILR transformation models and was first applied to tree 

biomass in Seifert and Seifert (2013). In this method, the elements of the composition are 

non-negative and sum up to a unity. In this case, data is restricted to non-negative quantities 

such as weights, counts and areas which are scaled to a total of the components. Buccutied 

and Pawlowsky-Glahn (2006) explained that the simplest example of a composition scenario 

is as follows: The total of the two components can be taken as one unity and the difference 

between the unit and one of the components is just one minus the first component. Although 

this method has not been extensively used in biomass modelling, it is commonly used in 

geochemical analysis. Thomas and Aitchison (2010) used ILR transformation method to 

model sandstone composition and the resulting models were highly significant and additivity 

was satisfied. 

2.7. Goodness of fit for regression models 

A number of measures for goodness of fit and comparing alternatives between different 

models have been recommended by Parresol (1999). Some of these methods are; Coefficient 

of determination (R²), Fit index (FI) which is more like R², standard error of estimates (se), 

Coefficient of variation (CV), Furnival’s index (I) and relative standard error S (%).  

FI is similar to R², the bigger the value of FI the better the model. To obtain the FI value, the 

total sum of squares (TSS) and the residual sum of squares (RSS) are calculated and the FI is 

found by subtracting the ratio from one (Equation 1). 

FI = 1 - (RSS / TSS)       (1) 

 Where: 

FI = Fit index 

TSS = Total sum of squares 
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RSS = Residual sum of squares 

Another measure of goodness of fit is the se which uses the actual units of measurements. 

Saint-André et al. (2004) and FAO (2012) highlighted that when the value for se is small 

compared to the value from other models, it means the model has a good fit. It is usually 

calculated as shown in Equation 2. 

se =        (2) 

Where: 

se = Standard error 

RSS = Residual sum of square 

P = number of model parameters 

n = sample size  

Besides the FI and se of estimate, Parresol (1999) also recommended the CV to be used as a 

measure of goodness of fit. CV is one of the measures for making quick comparisons 

between models and is expressed in percentage form. Equation 3 shows the formula for 

calculating CV. 

CV= (se / x) 100        (3) 

Where: 

CV = Coefficient of Variation 

se =Standard error 

x = mean 

Another common measure of goodness of fit, which is also used in model selection, is I. This 

measure was proposed by Furnival in 1961 based on the normal likelihood functions 

(Parresol, 1999; Saint-André et al., 2004). When testing equations, the large value of I 

indicates a poor fit while the smaller value indicate a better fit (Parresol, 1999). The general 

formula for I is as shown in Equation 4. 

I = [f’(Y)] - x RMSE        (4) 

Where: 
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I = Furnival’s Index 

Y = mean 

RMSE = Root mean square error 

Other measures of goodness of fit are: percentage standard error S (%), the percentage error 

(Pe), and the Akaike Information Criterion (AIC). S (%) is applied by calculating the 

residuals in relation to the predicted values. This statistic indicates the size of error as a 

percentage of the mean of the distribution of the predictor valuable. Parresol (1999) stated 

that if the value of S (%) is close to zero, then the precision of the model is high.  

Pe is a precision index, which uses a Chi-square test. For instance, the value of Pe can be 

used to represent the relative difference in percentage of estimate of tree or component 

weight to its true value. This statistic computes the value of Pe that would be necessary to 

assure non-significance Chi-square test (Parresol, 1999). 

The AIC is a common measure for comparing models and is used in selecting the best fitted 

model. The smaller AIC value indicates a better fit for the model. AIC takes into account the 

number of parameters in the model when comparing different models and thus ensures 

parsimony in model selection (Parresol, 1999; Ott et al., 2001)  

2.8. Back transformation bias correction 

Regression analysis is the most widely used method for estimation of biomass in forest 

stands. Sprugel (1983) and Smith (1993) pointed out that the standard least squares 

techniques are commonly used in fitting regression lines with different parameters. The 

resulting equations or models can either be linear or nonlinear. Nonlinear correlations of 

variables are often logarithmically transformed to attain the linearity while satisfying the 

assumptions of homoscedasticity (Figure 2.3). 
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Figure 2.3: Example a biomass regression (Ackerman et al., 2012) 

A large amount of literature has been built on how to comply with various assumptions, 

especially when data transformations are involved prior to the fitting procedure. Baldwin 

(1986) explained that most biological data, such as dimensions of organisms, logarithm 

transformation should be undertaken prior to the testing of hypothesis on regression analysis 

since it reduces the heteroscedasticity. Seifert and Seifert (2013) compared the results of 

ln-transformed regression after back transformation with and without a bias correct factor. 

This example clearly demonstrated the necessity for a back transformation bias correction in 

order to obtain unbiased results. The reason is that the antilogarithms of values from the 

logarithm regression results in biased estimates. As a result of this biasness, a method shown 

in Section 3.3.5 has been developed for the corrections of error in biomass inventories. 

2.9. Error propagation 

Samalca (2007) pointed out that forest inventories are an efficient way of assessing carbon 

stocks and emission through deforestation. However, biomass assessments procedures are not 

free from errors. In order to make correct inferences about long term dynamics in biomass 

stocks, it is important to understand the uncertainties (errors) associated with the biomass 

estimation. Three sources of errors were cited in Samalca (2007) and Chave et al. (2004); (1) 

measurement errors (2) error due to choice of allometric model, and (3) sampling errors. 

Efforts to reduce these errors during inventory have been made by using random sampling 

but this does not guarantee unbiased estimates (van Laar & Akça, 1997; Segura, 2005).  

Stellenbosch University  http://scholar.sun.ac.za



19 

 

 

Samalca (2007) explained that in most cases random sampling designs for forest inventories 

consist of two phases. During the first phase, a relatively large sample of trees is selected in 

which different tree parameters are measured. It is important to note that during the first 

phase, trees are not measured for biomass but for the common parameters such as dbh and h. 

A relatively small sample (ideally a sub-sample of the first sample) is taken in the second 

phase of which biomass is determined. The biomass is estimated for the bigger stand in an 

upscaling process from a regression based relation of biomass and auxiliary variables such as 

dbh and h. This estimation is made with an assumption that the trees sampled for biomass are 

representative for the trees in the larger sample. The process can be referred to as an 

upscaling procedure because a number of steps are involved in estimation to a stand level 

(Ackerman et al., 2012; Seifert & Seifert, 2013). 

In the upscaling procedure, two types of errors are prominent; errors due to the random 

selection of the trees in Phase 1 and error due to sampling in Phase 2. Errors in Phase one is 

largely affected by the sampling design used, sample size, type of estimator used and the 

inherent variation between the sampled trees (Seifert & Seifert, 2013). Errors due to sampling 

in the second phase involve regressions (Samalca, 2007). The magnitude of the error is 

mainly affected by the sampling design, the sample size, the estimation procedure and the 

variation of the biomass value of the regression function. The combination of the two errors 

in the two phases gives a value for the total error propagated. Samalca (2007) based on the 

works of Cunia (1986), proposed a procedure for determining the error propagated 

(Equation 6).  

S
2
 = S

2
 (x) + S

2
 (y)        (6) 

Where: 

S
2
= Total variance  

S
2
 (X) = variance associated with sampling 

S
2
 (y) = variance associated with regression 

2.10. Review of existing biomass models 

A substantial number of studies have been conducted in developing allometric equations to 

predict different parameters such as volume and biomass. The majority of these models use 

variables such as dbh, h, d
2
h and crown dimensions as predicting parameters (van Zyl, 2005; 
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Samalca, 2007; Subasinghe, 2008; Ackerman et al., 2012). In addition to these parameters, 

Parresol (2001) indicated that diameter at the base of live crowns proved to be one of the best 

predictor variables. However, this parameter was not significant in other independent studies 

as reported in Samalca (2007).  

In regression analysis, the parameters of the models are estimated typically by least squares 

method with some additional assumptions that should be satisfied. The main assumptions for 

regressions are that residuals of the model must be independent, a constant variance 

(homoscedasticity) should exist and residuals should be normally distributed (Jayaraman, 

1999; Parresol, 2001; Goicoa et al., 2011).  

Samalca (2007) revealed that the simplest form of biomass predicting models that can be 

formulated is the simple linear model which is fitted using simple least squares estimation 

procedure (Equation 7). Parresol (1999) stated that linear regression models exhibit 

heteroscedasticity in most biomass studies because of the increasing dimensions of trees with 

age. Thus, the variance increases with the increase in dbh and h. In such a case, either 

weighted least square estimation or logarithmic transformation (Section 2.8) procedure is 

applied to solve the problem of heteroscedasticity. The general form of a linear model is 

shown in Equation 7. Saint-André et al. (2004) and Samalca (2007) pointed out that an 

addition of more independent variables (Equation 8) can improve the model significantly. For 

example, Grundy (1995) used dbh as predictor variables in the biomass study on the Miombo 

woodland in which an addition of h and age significantly improved the model fit. 

Simple linear regression  

Y (biomass) = b0 +b1 (X1) +ε      (7) 

Multiple linear regressions 

Y (biomass) =b0 + b1 (X1) +bixi + ε     (8) 

Where: 

b0, bi= estimated parameters 

x= independent variable 

ε= error 

The most commonly used biomass models are nonlinear (power function) models based on 

the allometric theory (Samalca, 2007). A review of 65 tree species models of North America 
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reported in Samalca (2007) indicated that all the models were nonlinear. The popularity of 

nonlinear biomass models is attributed to the good fit exhibited by these models on biological 

data (Crow & Schlaegel, 1988; van Zyl, 2005; FAO, 2012). In order to simplify these models, 

linearization using logarithm transformation on both the left and right hand side of the 

equation is employed (Equation 10). Parresol (1999) explained that the transformed model 

parameters can easily be estimated by the least square method and the model is simple to 

interpret, however, this causes a problem of biased back transformed biomass values if 

uncorrected as explained earlier in Section 2.8. 

Nonlinear model: 

Y (biomass) = b0 (X1)
 n

ε       (9) 

Logarithm transformed model: 

lnY (biomass) = ln (b0) + b1 ln(X1) + ln ε    (10) 

Where: 

b0, b1 = estimated parameters 

X = independent variable 

ε = error 

2.10.1. Biomass models used in South Africa 

Diverse biomass models exist for the prediction of biomass of different species in South 

Africa. A critical review on biomass models in South Africa in Ackerman et al. (2012) 

showed that a substantial number of biomass models exist for pines and eucalypts. However, 

models applicable at a national scale and a regional level do not exist. In addition, the review 

indicates a clear lack of biomass information on most productive hybrids especially in a 

South African context. Subsequently, the majority of the models were classified as 

preliminary models because they are formulated based on a small number of trees and the 

drying temperature in most cases is lower than the standard drying temperature of 105 °C. As 

a result of the small sample and lower drying temperature, existing models need to be tested 

and validated before use (Seifert & Seifert, 2013). 

A number of eucalypt models have been developed for local forests and forests in other 

countries with climates conditions related to South Africa. In South African context, 
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numerous authors have reported a number of models with dbh, h and d
2
h as independent 

variables (Table 2.2). For instance, models on E. smithii, E. nitens and E. grandis have been 

formulated for forest plantations in Mpumalanga and KZN (Herbert, 2003; Dovey, 2009). 

These models were based on drying temperature lower than the standard biomass drying 

temperature (105 °C). As a result, these models overestimate biomass quantities (Forrest, 

1968; Barney et al., 1978; van Laar & Akça, 2007; Seifert & Seifert, 2013). 

Models applicable to eucalypt in South African Mediterranean region have been 

parameterised in other countries such as Chile and Israel. Zohar and Karschon (1984) 

reported models formulated on E. camaldulensis plantation of dry areas of Israel (Table 2.2). 

Israel experiences climate conditions (Mediterranean) which is related to the study sites in the 

present study (van Wyk et al., 2001; Botman, 2010). Furthermore, in Chile, biomass models 

were formulated for E. nitens with the drying temperature of 70 °C (Ackerman et al., 2012). 

Table 2.2 summarises some of the existing eucalypt biomass models. 
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Table 2.2: Existing Eucalyptus biomass model from South Africa and other countries (Ackerman et al., 

2012) 

Species Component 

(Kg) 

Formula Age Dry 

temp 

 Location 

A.  

E. smithii 

 Leaves y=-0.4622 + 0.0445(dbh)
2
 4yrs  70 °C Mpumalanga 

South Africa.  Branches y=-0.4622 + 0.1294(dbh)
2
 

 Bark y=-0.0859 +0.0239(dbh)
2
 

 Stem y=-0.5217 + 0.1286(dbh)
2
 

B. 

E.camaldulens

is 

 Bark ln y =-1.769+0.808ln(dbh
2
h) 4-

35yrs 

 70 °C Israel 

 Twigs ln y =-1.068+0.599ln(dbh
2
h) 

 Leaves ln y =1.420+0.651ln(dbh
2
h) 

 stem ln y =-1.668+0.599ln(dbh
2
h) 

Total tree ln y =-0.990+0.830ln(dbh
2
h) 

C.  

E. nitens 
Branches Y=-0.6819 +0.0770*(dbh)

3
 5yrs  75°C  Mpumalanga 

 South Africa Leaves Y=-0.2147 + 0.0371(dbh)
4
 

Stemwood Y=-0.5847 + 0.1683*(dbh)
6
 

Bark Y=0.0967 + 0.0248*(dbh)
5
 

D. E.nitens Branches ln Y= -11.07 + 2.033ln(dbh
2
) 15yrs  75°C Central 

Chile Stemwood ln Y= -4.56+1.037ln(dbh
2
h) 

Bark ln Y= -8.33 +1.1987n(dbh
2
h) 

leaves ln(y)=-0.4622 + 0.045(dbh
2
h) 

Total tree ln(Y)= -4.833+1.083ln(dbh
2
h) 

E.  

E. grandis 
 Stem Y=450*0.02volume(m

3
) 6-

12yrs 

 70°C KwaZulu-

Natal 

South Africa 

bark Y=0.12*timber volume(m
3
) 

Branch Y=0.12*timber volume 

Leaves Y=0.09*timber Volume(m
3
) 
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Species Component 

(Kg) 

Formula Age Dry 

temp 

Location 

 

F. Eucalypt 

(Hybrids) 

Leaves Y=(-0.9335- 0.5551Age 

+0.3147Age
2
) +(0.3145 - 

0.1059Age) Circ1.30m + 

0.0007208Cir1.30m 

 

1.2-

7yrs 

60°C Congo 

(Pointe- 

Noire) 

Branches y=-0.2051 - 0.8321Age + 

0.1729Cir1.30m + 

0.00003Age2Cir1.30m 

 

Bark Y=-0.089 + (0.001896 + 

0.000113Age)Cir1.30m 

2.11. Forests and arid climatic conditions in South Africa 

South Africa is a semi-arid country with an average rainfall below 450 mm. Poynton (1979) 

reported that 65% of the country receives 500 mm per annum which is acceptable for dry 

land farming (Figure 2.4). However, the rainfall is very unevenly distributed within South 

Africa. About 21% of the country receives less than 250 mm rainfall per annum which cannot 

support agriculture and forestry activities (Botman, 2010). Large portions of South Africa 

receiving below average rainfall are located in the Western Cape Province in which rainfall is 

received during winter (van Wyk et al., 2001). Figure 2.4 shows the rainfall distribution in 

South Africa. 
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 South African Rainfall Pattern 

 

Figure 2.4: Map of rainfall pattern in South Africa (Shulze, 2007) 

Van Wyk et al. (2001) pointed out that drought tolerant species growing on marginal sites are 

a timely solution, especially with the increased demand on land. This could facilitate the 

establishment of woodlots and consequently increase the supply of forest products (van Wyk 

et al., 2001; Magumba, 1998). Equation 11 and 12 shows models developed to predict 

diameter and height at a specific age on the dry west coast of South Africa (Van Wyk et al., 

2001). 

dbh = –22.462 – 124.1476.age + 124.1476. ln (age)   (11) 

h = –22.45 + 1215.419. age – 9.013. age²    (12) 

Where: 

dbh = diameter at breast height 

h= height 

The ever rising demand for ecosystem services has indicated that an increase in the supply of 

forest product is essential in order to meet the demand (Louw & Smith, 2012). For instance, 

the sustainable annual allowable cut in South Africa is 19 million fresh tons against a demand 

of 22 million tons per year. Moreover, the current projection for the next 30 years indicates 

that the demand will reach 28 tons per year (De Beer, 2012). With this case at hand, van Wyk 

et al. (2001) recommended that one of the solutions is to intensify plantation establishment 

programs by using drought tolerant species.  
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2.12. The genus Eucalyptus 

The genus Eucalyptus comprises in excess of 400 species of which more than half are sub 

species, which include hybrids (Poynton, 1979). Nearly all Eucalyptus is endemic to 

Australia and Tasmania (Figure 2.5). However, very few commercially important species are 

found as indigenous in New Guinea and islands in Indonesia. Brooker (1990) explained that 

in Australia and Tasmania, Eucalyptus account for almost 95% of the flora of the native 

vegetation. Most of these species are found to be located south of latitude 7 ºN to 43 ºS and 

from sea level to 1800 m above sea level (Florence, 1996). The Eucalyptus species are 

adapted to a wide range of climatic conditions which are specific to each species.  

Poynton (1979) explained that it is expected that different species vary in yield when grown 

in distinct region especially under very diverse climatic conditions. Thus, species of the 

genus Eucalyptus can be found from the warm tropics to a cold snow line and from summer 

to winter rainfall areas. This range of mean annual precipitation in the habitats where 

eucalypts grow is from 250 mm to more than 3000 mm, covering various biomes from 

rainforest to arid regions (Brooke, 1990; Florence, 1996). 

Distribution of Eucalyptus 

 

Figure 2.5: Distribution of Eucalyptus spp in the world (Brooker, 1990) 

Eucalypt endemic 

area  
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2.12.1. Physiognomic and morphology of Eucalyptus 

Generally the Eucalyptus spp are monoecious and evergreen plants ranging in stature and 

habit from erect forest trees with clear bole to branched shrubs (Brooke, 1990). Florence 

(1996) explained that eucalypts have well developed roots systems which grow deep and 

spread widely as compared to other tree species. Many eucalypts, when young, produce an 

efficient storage and protective organ called lignotuber which has its origins in regions of 

meristematic tissue present in the axil of cotyledons or of the first few pairs of leaves 

(Poynton, 1979). 

2.12.2. Silvicultural characteristics of Eucalyptus 

Eucalypts have attributes which make it exceptional among the exotic tree species. The most 

outstanding attributes from a Silvicultural point of view are; exceptional vigour, remarkable 

capacity to survive under adverse environmental conditions and the extraordinary speed of 

recovery after experiencing a disturbance to growth such as forest fires (Florence, 1996). 

Poynton (1979) explained that sustained vigorous growth of Eucalyptus as a genus can be 

ascribed largely to having shoots capable of rapid and continuous development. 

The ability of eucalypts and many other trees to survive and regrow after forest fires, drought 

or damage has been attributed to the presence of lignotubers, which help in the development 

of shoots in the juvenile phase of the tree (Poynton, 1979). In addition, eucalypts seed freely, 

and those that do not form a lignotuber often produce and extraordinary abundance of seed in 

case the parent trees die (Brooke, 1990; Florence 1996). These seeds grow into resilient 

seedlings with an ability to survive in conditions where they are exposed to intense 

competition by bigger trees. Generally, most eucalypts coppice strongly but certain 

non-lignotuber forming, thin baked species are regarded as poor coppicers (Poynton, 1979).  

The eucalypts rooting system is another important aspect, which contributes greatly to the 

survival in harsh conditions. The roots of large eucalypts have been traced horizontally for a 

distance of more than 21 m in clay soils and 37 m in sandy soils (Poynton, 1979). In the later 

soils, the roots penetrate the soil to a depth of about 30 to 40% of the corresponding tree 

height at the age of 5 years (Florence, 1996). As a result of these different characteristics 

among the species, eucalypt varies in the ability to resistance drought and frosts (Table 2.3). 

Apart from withstanding drought conditions (Table 2.3), eucalypts also perform considerably 

well in salt coastal areas (Magumba, 1998; Hengari, 2008). 
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Table 2.3: Key site requirements of commercial Eucalyptus species and hybrids (Louw & Smith, 2012) 

Species MAT(ºC) 

Range 

Max 

Jan 

Temp 

(ºC) 

Frost  

Resist 

Snow 

Resist 

Soil 

Drainage 

Comments 

MIN MAX 

 

E.grandis 

16.5 20.5 29.0 N N I High susceptible 

termites 

 

E. badjesis 

14.5 17.0 26.5 H M G Susceptible to 

snout beetles, 

Phytophthora 

 

 

E.benthamii 

14.5 18.0 26.5 S L I-M Susceptible to 

snout beetle, 

competitive on 

rocky/stone sites 

 

E.elata 

15.0 18.0 27.0 M L-M G High susceptible 

to termites, beetles 

E.grandis x 

camaldulensis 

18.0 22.0 31.0 L N I-M Broad site 

adaptation, modest 

yield 

E.grandis x 

nitens 

15.0 17.5 27.0 H N VG-I High leaf area 

index, die back on 

drought sites 

Key: 

Frost Resistance: Nil (N), Light (L), moderate (M), high (H) 

Snow Resistance: Nil (N), Light (L), moderate (M), high (H) 

Soil drainage: Poor (P), moderate (M), imperfect (I), Good (G) 

2.13. Eucalyptus cladocalyx 

E. cladocalyx is commonly called Sugar Gum and belongs to family Myrtaceae. 

E. cladocalyx produces cream white flowers in summer and its old bark is smooth and grey in 

colour (Poynton, 1979). The taxonomy for E. cladocalyx in line with Florence (1996) is 

summarised as follows: 
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Kingdom     Plantae (Plants) 

Sub kingdom    Tracheobionta (Vascular plants) 

Super division    Spermatophyta (Seed plants) 

Division     Magnoliophytta (Flowering plants) 

Class     Magnoliopsida (Dicotyledons) 

Subclass     Rosidae 

Order     Myrtales 

Family     Myrtaceae 

Genus     Eucalyptus (gum) 

Species     Eucalyptus cladocalyx (Sugar gum) 

2.13.1. Occurrence and Ecology 

E. cladocalyx (Figure 2.6) is endemic in South Australia and very limitedly distributed in 

region of Spencer Gulf and the Kangaroo Island. Brooker (1990) explained that it attains its 

best development in the Southern Flinders Range and North Coast of Kangaroo Island, but it 

does not usually grow into a big tree on the eastern side of the Eyre Peninsula. In these 

regions, climate is temperate and humid to sub humid, summer is hot and dry while the 

winters are mild to cool and fairly wet. Temperatures in summer often exceed 38 ºC while in 

winter the temperature can fall below 10 ºC. Minimum rainfall is usually around 380 mm and 

the maximum rainfall being 600 mm per annum with occasional droughts (Poynton, 1979; 

Florence, 1996). 
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Figure 2.6: E.cladocalyx at the study site in the western coast of South Africa at the age of 20 years 

2.13.2. Morphology of E. cladocalyx 

E. cladocalyx is a medium sized tree, growing to a height of up to 37 m and a diameter of 

between 90 and 180 cm under favourable conditions. However, Florence (1996) explained 

that on poor soils and in dry localities, it often reaches no more than one third of the optimal 

size. In favourable conditions, it develops into a well-shaped tree with straight trunk that is 

free of branches while in poor conditions it is usually stunted. It generally has an open crown 

with foliage massed at the bent ends of the branches to produce an umbrella like canopy 

(Poynton, 1979; Brooker, 1990; Florence, 1998). 

2.13.3. E. cladocalyx in South Africa 

E. cladocalyx has been planted in South Africa for the supply of utility grade timber, shelter, 

shade and for ornamental purposes. It grows rapidly and thrives in warm dry conditions. 

Poynton (1979) and Magumba (1998) explained that this specie has been widely planted in 
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the Western Cape Province. Despite its early introduction; it has not played a significant role 

in afforestation program for many years (van Wyk et al., 2001). 

Nevertheless, E. cladocalyx was planted in the western coast area because of its 

corresponding geographic conditions with the winter rain areas of Australia. E. cladocalyx 

thrives best in a warm climate; however, it is not well suited to either subtropical and frost 

conditions. Poynton (1979) confirmed the later argument by stating that it has a great ability 

to withstand drought conditions but is sensitive to frost, especially when the trees are still 

young. Hengari (2008) reported that in coastal areas it may be affected by sea breeze while 

young, though it stands storm wind and hot dry winds during mature stage. 

One of the key merits of this species is its ability to grow on less fertile soils. E. cladocalyx 

produces utilisable timber crop on marginal sites where other eucalypts do not succeed, 

particularly in the winter rainfall areas (Jacobs, 1979; van Wyk et al., 2001). However, its 

performance declines especially towards mountainous areas where soils are shallower, sandy 

and extremely deficient in nutrients (Poynton, 1979). 

E. cladocalyx responds well to early and heavy thinning until the age of five years. It 

generally has a fairly compact, dense crown though with time the head becomes open and 

spreading. On poor sites the trees assume a more stunted branch habit, however; in 

favourable conditions it produces moderate straight trunk free of branches (Florence, 1996). 

Apart from performing well in marginal environmental conditions, E. cladocalyx is also free 

from serious diseases and pests under climatic conditions where it is best suited. 

Nevertheless, it is attacked by Phoracantha semipunctata (Poynton, 1979) which induces 

bark cracks down to the cambium in stands grown in the Western Cape (Seifert, personal 

information). 

2.13.4. Uses of Eucalyptus cladocalyx  

The heartwood is different from the whitish sapwood and sometimes has a particularly 

attractive dark brown colour. The species has a high wood density (see Table 2.4) of above 

650 kg/m
3
 with favourable mechanical properties (Florence, 1996; Botman, 2010). Although 

the heart wood is resistant to decay, it can be attacked by some insects. As a result of all these 

good properties, it is suitable for heavy construction, high class joinery and railway sleepers. 

In rural communities, it is used as firewood (Poynton, 1979; Jacobs, 1979; Florence, 1996). 

The tree flowers regularly between September and March, and yields an abundance of nectar 
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for honey production; however, it does not rate highly as a source of pollen (Poynton, 1979; 

Florence, 1996).  

Table 2.4: Density of selected Eucalyptus wood species (McMahon et al., 2010) 

No. Species Green density 

kg/m
3
 

Air dried density 

kg/m
3
 

Basic density 

kg/m
3
 

1 E. cladocalyx 1200 800 750 

2 E. camaldulensis 1130 800 650 

3 E. grandis 950 630 510 

4 E. gomphocephala 1250 1030 840 

2.13.5. Potentialities of E. cladocalyx in arid regions 

E. cladocalyx has proven to grow better than most Eucalyptus species on poor, salt and 

skeletal soils in winter rainfall areas, where its wood is used for poles, fuel and other 

purposes in rural communities (Poynton, 1979). Florence, 1996 stated that this species is 

important in those environmentally marginalised areas as it has potential for afforestation. Its 

excellent honey potential and the fact that the leaves are browsed by horses, cattle and sheep 

make it an ideal tree for small scale forestry. 

2.14. E. gomphocephala 

E. gomphocephala is also known as Tuart (Barber et al., 2003). It has dense foliage, white 

cream flowers and a grey structured bark (Figure 2.7). The fruits are narrow, cup shaped and 

13 to 25 mm long (Poynton, 1979).  
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Figure 2.7: E. gomphocephala on the study site in the western coast of South Africa at 20 years 

2.14.1. Occurrence and Ecology 

E. gomphocephala is found naturally in Western Australia and has limited distribution on the 

sandy plains in the eastern coast belt. The climate is temperate and humid with a mean 

minimum and maximum temperature for the warmest and coolest months respectively that 

vary from 25 to 29 ºC; and from 4 to 7 ºC. Average rainfall is between 760 mm and 1020 mm 

per annum while the mean monthly temperature in summer does not exceed 25 ºC (Poynton, 

1979; van Wyk et al., 2001).  

2.14.2. Morphology of E. gomphocephala 

E. gomphocephala is a tree of medium to large size, reaching height of 24 to 46 m and a 

diameter of 90 to 240 cm in most places except in the northern Australia where it grows no 

taller than 12 m (Florence, 1996). It forms a short erect straight trunk which accounts for half 
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its overall height and a well-developed and a fairly dense crown supported by large and 

spread branches. Van Wyk et al. (2001) stated that E. gomphocephala regenerates readily 

from coppice, but is usually crooked or forked under South African environmental 

conditions. The species yields one of the strongest and most durable of the Australian timbers 

(Poynton, 1979). 

2.14.3. E. gomphocephala in South Africa 

E. gomphocephala has been grown in South African coastal district of Western Cape for 

shelter and general amenity purposes (van Wyk et al., 2001). Its introduction in South Africa 

can be traced back to 1895 (Poynton, 1979). This species of Eucalyptus has shown vigour in 

its performance in the winter rainfall areas of the western coastal areas. Furthermore, 

E. gomphocephala has proved outstanding on salt soils and in semi-arid region (Jacobs, 1979; 

Magumba, 1998; Hengari, 2008). 

2.14.4. Uses of E. gomphocephala 

The heartwood of E. gomphocephala ranges in colour from pale brown to almost oak with a 

whitish sapwood. Florence (1996) reported that timber from E. gomphocephala is 

exceedingly heavy, having a density of 850 kg/m³ (Table 2.4). Consequently, the timber is 

strong and hard. Although it is hard on the plane, it takes a good and smooth finish in 

furniture. Besides being used in the furniture industry, this timber is used in heavy 

construction, framing, for railway sleepers and fencing. Brooker (1990) added that 

E. gomphocephala flowers regularly from December to April and yields both nectar and 

pollen in moderate quantities hence it is good for honey production. This species produces 

high grade honey even though its pollen is considered to be of low quality. The tree is wind 

firm and has been recommended to be planted in dry wind areas, especially in areas with 

winter rainfall (Poynton, 1979; Hengari, 2008).  

2.14.5. Potentialities of E. gomphocephala in arid regions 

E. gomphocephala is not popular as a plantation species in South Africa and other countries. 

However, Barber et al. (2003) indicated that there is a decline in the number of 

E. gomphocephala trees both in its native environment and were it is planted as an exotic 

tree. This trend has been attributed to excessive exploitation of E. gomphocephala for timber. 

Furthermore, in plantation establishment, this species is less preferred because of its relative 
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slow growth and mediocre form (Poynton, 1979). It is however, suitable for tall shelterbelts, 

particularly at the coast, and can be used for stabilisation of coastal sandy soils. The major 

advantage of E. gomphocephala is its ability to grow in dry winter areas as possible woodlot 

species with a potential source of many forest products (van Wyk et al., 2001; du Toit, 2003; 

Botman, 2010).  

2.15. E. grandis x camaldulensis (Hybrid) 

In order to meet the ever rising demand for forest products, tree breeders have been working 

on combining different genetic stocks to form hybrids. Hybridisation is done in tree 

improvement programs that target favourable traits such as the enhanced growth rate, product 

quality, and resistance to drought and diseases (Poynton, 1979; Magumba, 1998; Hengari, 

2008). E. grandis x camaldulensis clones were among the first eucalypt hybrids grown on a 

commercial basis in Australia (Florence, 1996). This hybrid is mostly used in afforestation 

programs because of its ability to grow fast in water scarce areas. Furthermore, E. grandis x 

camaldulensis produces a straight trunk, which makes it attractive for sawmilling (van Wyk 

et al., 2001). E. grandis x camaldulensis is a hybrid of E. grandis and E. camaldulensis, 

hence it is important to separately consider the attributes of each parent tree. 

2.15.1. E. camaldulensis 

2.15.1.1. Characteristics of E.camaldulensis 

E. camaldulensis is fast growing, and usually reaches 40 to 45 m in height depending on its 

location. Florence (1996) and van Wyk et al. (2001) explained that E. camaldulensis is the 

most wide spread eucalypt in Australia and is commonly found along waterways. Tree form 

is straight under favourable conditions; however, the species can develop twisted branches in 

drier conditions (Poynton, 1979).  

In South Africa, E. camaldulensis is grown in semi-arid zones and is adapted to different 

types of soils. In a provenance trial at Lake Albacutya in Victoria, it proved superior in areas 

with rainfall of 350 mm per year (Jacobs, 1979). Apart from this species growing fast in arid 

regions, it is also salt tolerant hence making it possible to grow in arid salt regions 

(Magumba, 1998; Hengari, 2008).  
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Figure 2.8: Foliage for E. grandis x camaldulensis at the study site in the western coast of South Africa 

2.15.1.2. Utility of E. camaldulensis 

The utility of timber from E. camaldulensis tree is determined by the quality of the sapwood 

and the heartwood. Usually the sapwood is greyish in colour and 5 to 8 cm wide while the 

heart wood is orange or deep red. The heart wood has high density of over 650 kg/m
3
 making 

it heavy hence the wood is strong and hard but moderately stiff (Poynton, 1979; Magumba, 

1998). Furthermore, the wood is characterised by a finer texture and an attractive figure 

(appearance) than with most eucalypt species. In addition to timber, the tree yields a lot of 

pollen as it flowers regularly between October and March (Poynton, 1979; Florence, 1996). 

2.15.2. E. grandis 

2.15.2.1. Characteristics of E. grandis 

E. grandis grow as a straight and tall forest tree, reaching heights of 50 m. The annual rainfall 

in its natural habitat varies from 1100 to 3500 mm with mean maximum and minimum 
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temperatures range from 29 to 35 °C and 11 to 20 °C from warmest and coolest months 

respectively (Poynton, 1979; Brooker, 1990). E. grandis is the dominant tree of wet forests in 

Australia and is popular because of its straight trunk. Consequently, it is in high demand for 

timber and pulp. It has been grown as an exotic tree in the plantations of Brazil and southern 

Africa. However, it faces challenges in many locations such as Namibia and desert areas were 

rainfall is minimal, which has been resolved through hybridisation with drought tolerant 

species like E. camaldulensis (Poynton, 1979; van Wyk et al., 2001; Hengari, 2008). 

 

Figure 2.9: Stem for E. grandis x camaldulensis at the study area in the west coast of South Africa 

2.15.2.2. Potentiality of E. grandis x camaldulensis 

Considering the combined characteristic of the hybrid, a trial on the western coast of South 

Africa selected E. grandis x camaldulensis as a possible candidate for arid regions. The 

resultant growth rate of many of the hybrid families was unexpected as the parent species 

originated from summer rainfall regions (Wyk et al. 2001). The yield of the best E. grandis x 

camaldulensis would have been equivalent to the best performing species (E. gomphocephala 
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and E. cladocalyx) if the survival was equally good. This hybrid was selected as it would 

provide a combination of straight stems and fast growing trees that can survive in arid 

conditions of the west coast (Magumba, 1998). 
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Chapter 3 : MATERIALS AND METHODS 

3.1. Study sites 

3.1.1. Location 

The study sites are located on the western Atlantic coastline of South Africa in Western Cape 

Province (Figure 3.1). The actual study sites are Pampoenvlei farm, Chemfos and 

Coetzenburg. Pampoenvlei is located at 33° 29' S and 18° 23' E, Chemfos is at 32°57' S and 

18°26' E while Coetzenburg is situated in Stellenbosch at 33°57' S and 18°52' E (Botman, 

2010; du Toit, Botman & Kunneke, 2012 ).  

 

Figure 3.1: Location of study sites and other experimental site in Western Cape (du Toit et al., 2012) 
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3.1.2. Climate and natural vegetation 

The three study sites (Pampoenvlei, Chemfos and Coetzenburg) experience Mediterranean 

type of climate with winter rainfall and dry hot summer months. Botman (2010) indicated 

that Pampoenvlei and Chemfos are classified as a semi-arid area with winter rainfall of less 

than 400 mm (Figure 2.4) received between May and August. Temperature ranges between 7 

ºC to more than 35 ºC with an Aridity Index
3
 (AI) between 0.20 and 0.50 (du Toit et al., 

2012). Furthermore, Coetzenburg is classifieds as dry sub-humid area because the area is not 

as dry as the other two sites (Pampoenvlei and Chemfos) (van Wyk et al., 2001; Botman, 

2010). 

Natural vegetation covering the study sites is collectively called Fynbos (Magumba, 1998). 

Fynbos is the term used to describe the indigenous vegetation of the Western Cape which is 

dominated by sclerophyllous scrubs up to 3 m in height. Acocks (1953) identified two types 

of Fynbos; (1) Coastal Fynbos, and (1) Coastal Renosterveld. The major botanic families in 

these two botanic groups are Proteaceae and Restionaceae respectively. 

 

Figure 3.2: Typical natural vegetation of the study sites 

                                                 

 

 

3
 Aridity Index (AI) is the ration between precipitation and potential evapotranspiration hence being 

dimensionless (AI = P/Ep). 
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3.1.3. Soil type and land use  

The terrain at two of the study sites is almost flat with slopes of less than 3%, while 

Coetzenburg is located near more hilly terrain having a less gentle slope (Botman, 2010). 

Soils at these sites have been classified under South African Soil Classification System 

(SASCS) as Lamotte, Constantia, Fernwood and Kroonstad, which support normal rooting 

system (Magumba, 1998; van Wyk et al., 2001). During winter, water tables can be found to 

be between 2 to 3 m from the soil surface (Botman, 2010). 

 

Figure 3.3: Dry sand soils on the west coast of South Africa 

Although these sites receive low rainfall, the areas are successfully used for agricultural 

purposes (Table 3.1). As a result of the high demand for agriculture land, only marginal sites 

and grasslands are left for potential plantations and woodlot establishment. Thus most 

woodlots have been established on marginal
4
 land which cannot support agriculture crop 

production because of poor soil fertility, shallow depth, poor drainage and unsuitable 

chemical properties (van Wyk et al., 2001; Botman, 2010). 

                                                 

 

 

4
 Site quality is one of the most important aspects in plantation establishment apart from aspects such as species 

choice, accessibility and location as it determines the quality of the products. 

Stellenbosch University  http://scholar.sun.ac.za



42 

 

 

Table 3.1: Area allocated to various land use in the Western Cape (Botman, 2010) 

 Land use Area (ha) 

Cultivated 2 256 270 

Degraded 305 578 

Grassland 120 878 

Thicket and Bush land 653 527 

Indigenous Forest 62 430 

Woodland 2 

Exotic Plantations 107 661 

Scrubland 9 199 979 

Water body 47 376 

3.1.4. Description of the trials at the study sites 

Studies on the performance of different drought tolerant tree species in arid region of Western 

Cape started in 1991 under the Dry-land Industry and Rural Afforestation Project (DIRAP). 

After considering the performance of selected Eucalyptus species in other Mediterranean 

regions of the world, it was assumed that these Eucalyptus species would perform well if not 

better in similar environmental conditions in South Africa. The then Faculty of Forestry at the 

University of Stellenbosch initiated the project and trials were established in the winter of 

1991 (Figure 3.4). The trials included 50 seedlings spaced at 5 m x 2 m laid in a completely 

randomised block design (CRBD) with five replications in three blocks (Magumba, 1998; 

van Wyk et al., 2001).  
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Figure 3.4: Eucalyptus species on the experimental plot on the west coast of South Africa at 20 years of 

age 

Performance assessment of these tree species was carried out by taking into consideration the 

survival, height and diameter growth. After planting the seedlings, measurements were taken 

at ages one, three and six years. Forest mensuration and statistical methods of analysis were 

used in understanding the performance of the trial using dbh and height. Based on results of 

the trial, E. gomphocephala, E. cladocalyx and a hybrid E. grandis x camaldulensis 

performed better than the other species (van Wyk et al., 2001). 

3.2. Tree sampling methods 

3.2.1. Tree selection 

Tree sampling for the study was done at the study sites described in Section 3.1. Selection of 

trees depended on the species and size of the tree, and was restricted to a relatively small 

number of trees. This restriction was to conserve the continuation of growth of the remaining 

trees on the experiment plots, as the study employed a destructive approach. In order to cover 

the existing range of potentially harvestable tree sizes, trees were sampled in three groups; 

(1) small (dbh < 21 cm), (2) medium (dbh of 21 to 30 cm), and (3) large (dbh > 30 cm). A 

total of 33 trees were sampled with 14 trees from the Pampoenvlei farm, 14 tree from 
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Chemfos, and five additional small trees from Coetzenburg (Table 3.2). The smaller trees 

consolidated the even distribution of dbh and height of the sample. 

Table 3.2: Selected Eucalyptus trees used in the study 

Species Site Age (years) Number of Trees 

E. cladocalyx Pampoenvlei farm 20 5 

Chemfos 20 4 

E. gomphocephala Pampoenvlei farm 20 5 

Chemfos 20 4 

Coetzenburg 5 5 

E. grandis x 

camaldulensis 

Pampoenvlei farm 20 5 

Chemfos 20 5 

Total   33 

3.2.2. Biomass sampling 

Prior to felling, dbh (diameter at height of 1.3 m), tree height, crown height, and crown 

diameter were measured and recorded for each tree. The selected trees were felled using 

chain saws and the stems were marked at five points for discs cutting (Figure 3.5). In order to 

reconstruct volume, the stem diameter was measured at every one meter point along the tree 

height until the diameter over bark was 5 cm. 

 

 

         0.3m    1.3 m                             25% h             60% h                      5 cm dob 

Note: h is total tree height in meters; dob is diameter over bark 

Figure 3.5: Points for disc removal on sampled trees 

 

 

Sampled Tree 

Point of disc cutting 
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3.2.2.1. Discs and bark sampling 

In order to estimate the wood and bark density distribution along the stem, discs were cut at 

marked points using Chainsaws (Figure 3.5). The thickness of all the discs was measured to 

be 5 cm. Diameters under bark and over bark was also measured at four directions at 90 ° on 

all the discs in order to calculate the bark volume. Tree numbers, types of species and trees 

sizes were marked on upper surfaces of the discs for identification. This followed by putting 

the disc in plastic bags (Figure 3.7) in order to avoid excessive loss of moisture during 

transportation to the laboratory. Figure 3.6 shows measurements on a sampled tree after 

felling. 

 

Figure 3.6: Sampled tree after felling at the study site 

3.2.2.2. Branches sampling 

Five branches per tree were randomly sampled following a range of diameters along the stem 

to avoid sampling branches of almost the same size. The diameters of the sampled branches 

were measured using a vernier calliper and recorded on a data sheet (Appendix I). The 
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selected branches were cut and packed in plastic bags (Figure 3.7) for biomass upscaling. The 

diameters of all the dead and live branches on the sampled trees were measured. This was 

followed by transportation of the samples to the laboratory for drying (Section 3.2.3).  

3.2.2.3. Foliage sampling 

Foliage (leaves and fruits) were collected for the complete analysis of aboveground biomass 

for each of the five sampled branches. Prior to drying, leaves and fruits were separated from 

the branches and packed in separate paper bags while the diameter of the particular branch 

from which the leaves were collected was recorded in order to be used during regressing. For 

the purposes of identification; species name, tree number and tree size were marked on the 

paper bag. At this point, foliage was ready for drying in the ovens. 

 

Figure 3.7: Biomass samples packed in plastic bags for transportation to the laboratory 
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3.2.3. Laboratory procedures 

Water displacement on the fresh discs was carried out for the purpose of volume 

determination with and without the bark as proposed in Seifert and Seifert (2013). The discs 

and the bark were separated using knives and totally submerged in a water basin while taking 

the weight on a scale in grams following Archimedean principle
5
 of water displacement. The 

basic principle of the displacement method is that the weight in grams equals volume in cm
3
. 

The resulting volume and dry mass was used for the calculation of basic density.  

All the samples were put in separately marked paper bags before drying. Drying of these 

samples was carry out in the oven at 60 °C for 48 hours in order to reach a constant weight. It 

is important to note that the volume and dry mass of both the bark and the discs was used to 

calculate basic density as illustrated in Equation 13 and 14 of Section 3.2.7.2. 

 

Figure 3.8: Oven drying and weighing of biomass samples in the laboratory 

                                                 

 

 

5
Archimedes' principle, a law of physics, which indicate that the upward that is exerted on a body immersed in a 

fluid is equal to the weight of the fluid that the body displaces. 
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3.2.3.1. Drying series of sub-sample 

The Initial samples were dried at 60 ºC to minimise the loss of volatile nitrogen components 

since further analysis on nutritional levels was planned on the same samples. To obtain 

compatibility of this biomass study to other studies, a sub-sample of 40 samples (10 for 

leaves, 10 for bark, 10 discs and 10 for the branches) was selected from the sample for further 

drying at different temperatures in a drying series. The sub sample was dried at 60 °C, 65°C, 

80 °C, 90 °C and 105 °C to a constant weight for 48 hours while the dry weight was 

determined for each drying temperature. 

3.2.3.2. Density analysis using CT-scanning method 

X-ray based CT-scanning was used for alternative density determination in order to validate 

the accuracy of the density. The samples (discs) were placed on a rotating stage, and about 

2000 to 3000 two dimension (2D) images were acquired at various angles around the object 

as it rotated (Figure 3.9). The images were then reconstructed to form a tomogram in three 

dimensions (3D) and stored in form of slice images and image stacks as suggested by du 

Plessis and Seifert (2012). 

 

Figure 3.9: CT-scanning density determination equipment and method (Holger Roth, GE Systems) 

The X-ray attenuation is represented as grey values in the visual CT image. These values 

were regressed to the absolute material density in the calibration procedure. Further analysis 

on average grey values was done with the image analysis software ImageJ (Collins, 2007). 

This was followed by density calibration curves construction based on 13 known wood 

Stellenbosch University  http://scholar.sun.ac.za



49 

 

 

densities. It was these density curves, which were used to predict unknown densities for the 

samples as indicated in Section 4.2.5. 

3.2.4. Up-scaling Procedure 

Upscaling is a procedure of building up biomass quantities from the field samples to the 

individual tree and stand level (Seifert & Seifert, 2013). The upscaling of the crown and stem 

was carried out separately. The crown included the foliage and branches while the stem 

included the stem wood and the bark. Section 3.2.7.1 and 3.2.7.2 presents how upscaling was 

done for the two parts. 

3.2.7.1. Upscaling of branch and leaf biomass with a regression approach 

The diameters of all the branches on the same tree were recorded as well as the distance from 

the bottom of the tree at the insertion with the stem. Biomass for sample branches and leaves 

were then pooled across the sampled trees of one species and used in fitting allometric 

models. Branch diameters and branch basal area were used as independent variables to 

simulate biomass. These allometric equations were subsequently used in determining the 

biomass of all the other branches and foliage for each tree during upscaling. 

3.2.7.2. Upscaling wood stem and bark based on a geometric approach 

The stem volume was reconstructed geometrically using Smalian’s formula (Equation 13) for 

the entire stem with diameter taken at both ends of a meter section as explained in Section 

3.2.2. Diameter over and under bark were used to calculate the ratio of the bark to the stem 

volume in percentage. These respective volumes of each section were then multiplied with 

basic density values for wood and bark (Equation 14). This process of upscaling resulted in 

obtaining the total mass for all the biomass components hence obtaining the total biomass for 

each individual tree. 

Smalian’s formula: V=       (13) 

Biomass = V x r0         (14) 

Where: 

 V = volume  

 r0 = basic density  
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 d1= diameter at the bottom end of a stem section 

 d2= diameter at the upper end of the stem section 

 l = stem length
 

3.3. Data analysis 

Data analysis focused on parameterising of biomass models that ensure additivity. 

Furthermore, analysis was conducted on variations of oven-dry weight (biomass) at different 

drying temperatures. Statistical analysis was done in R statistical software (R Core Team, 

2013) using a package called “Systemfit” (Henningsen & Hamann, 2013). The principle 

method used was a multivariate regression that estimates all biomass components 

simultaneously to ensure that biomass add up to the total and thus ensuring additivity (Seifert 

& Seifert, 2013). Additivity of the biomass components was attained by joint regression 

using a Seemingly Unrelated Regression (SUR) approach (Parresol, 1999). 

3.3.1. Seemingly unrelated regression 

In biomass modelling a frequently desired feature is that the individual biomass components 

are summing up to the total biomass as predicted by a model for the all the components at 

once, which is called additivity. In order to attain this condition, many methods have been 

proposed and used (Seifert & Seifert, 2013). Parresol (1999) proposed a method called NSUR 

and SUR, which takes into account the contemporaneous correlations between the variables 

of the different components. The method results in a higher efficiency of estimation 

(Parresol, 1999; Ackerman et al., 2012). 

3.3.2. Error propagation 

Biomass assessment methods produce a propagated error which needs to be quantified. In this 

study, error propagation was partitioned into sampling error and error due to regression 

(Equation 15) as proposed in Cunia (1979) and Samalca (2007). 

S
2
 = S

2
(x) + S

2
(y)        (15) 

Where: 

S
2
 = Total variance  

S
2
 (x) = variance associated with sampling 
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S
2
 (y) = variance associated with regression 

3.3.3. Assumptions in biomass modelling 

The following assumptions need to be tested in regression analysis; (1) homoscedasticity, 

(2) additivity, (3) normal distribution of residuals, and (4) independence of data (Ott et al., 

2001; Schabenberger & Pierce, 2002). Homoscedasticity is a condition of uniform variances 

tested on residuals plotted against the predicted values. In most cases, the variance changes 

along with the independent variable which is called heteroscedasticity and is a violation of 

regression assumptions (Ackerman et al., 2012; Seifert & Seifert, 2013) and in this study it 

was minimised through logarithmical (ln) transformation of the data and using weighted 

linear models. Biomass component models also demands that the additivity assumption to be 

attained. In order to achieve this, the SUR models will be used as suggested in 

Parresol (1999). Normal distribution of the residuals, i.e., the probability distribution 

characterised by a bell shape, will be tested by Shapiro-Wilk test (Ott et al., 2001; Chamber 

& Hand, 2008). Furthermore, independence of the data ensures that the data is not in clusters, 

and is managed by using reliable sampling methods (Seifert & Seifert, 2013). 

3.3.4. Goodness of fit  

To select the best model, different measures of goodness of fit will be used. The best models 

for this study will be selected by; coefficient of determination (R²), Standard error (se) 

(Equation 16) in form of Mean Standard Error (MSE) and Root Mean Standard Error 

(RMSE), and Akaike Information Criteria (AIC).  

se =         (16) 

Where: 

se = Standard error of estimate 

RSS = Residue sun of square 

P = number of parameters in the model 

n = sample size 
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3.3.5. Back transformation correction 

To make linear models the data will be logarithmically (ln) transformed. It has been observed 

that when data is log transformation, biased estimated values are obtained after back 

transformation (Seifert and Seifert, 2013). In order to avoid this, all the transformed models 

will be subject to bias correction, which is variance, divided by two (Equation 17)) as 

suggested by Baskerville (1972). 

Biomass = exp (b0 + b1 (dbh) +       (17) 

Where: 

b0, b1 = are coefficients, 

dbh = the diameter at breast height (1.3m) in cm 

= variance 

3.3.6. Data analysis for drying series 

The effect of increasing drying temperature on biomass was initially assessed using scatter 

plots to visualise trends in the data. A further analysis on the total percentage change on oven 

dry weight (biomass) from the lowest temperature to the highest temperature were compared 

amongst the samples using analysis of variance (ANOVA). In cases where there was a strong 

correlation between increase in temperature and weight percentage change, simple linear 

regression models were formulated. It is important to note that the reference point of 100% 

was based on drying temperature of 105 ˚C. 
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Chapter 4 : RESULTS 

4.1. SAMPLED TREES 

4.1.1. Distribution of sampled trees 

Mean dbh of the three eucalypt species was 25.08 cm while it ranged from 7.2 to 37.1 cm 

(Figure 4.1). The standard deviation for the dbh distribution over all selected eucalypt species 

was ± 7.88 cm. 
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Figure 4.1: Diameter distribution of the sampled eucalypt trees for the biomass study 

Mean height was 14.26 m while its range was from 7.8 to 19.4 m (Figure 4.2) with a standard 

deviation of ± 3.01 m. There was a strong correlation between height and dbh as indicated by 

Pearson’s products moments correlation value of 0.76 with a smaller p-value (p = 0.0018) 

indicating that the correlation is significantly different from zero. 
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Figure 4.2: Dbh and height relationship of the three tree species 

4.1.2. Height Model 

Two models were formulated to predict height; not all the models were significant. The 

transformed model (Model 4.2 in Table 4.1) had a coefficient of determination (R²) of 0.72 

while the untransformed Model (Model 4.1) had R² of 0.57. Table 4.1 shows the details of all 

the estimated parameters for the two height models. 

Table 4.1: Diameter height Models 

M
o
d
el

 Dependent 

variable 

Independent 

variable 

Parameter estimate and the 

p-values 

 

R
2
 

 

Model 

p-value b0 b1 

4.1 h dbh 6.94 

(1.29e-06) 

0.29 

(2.28e-07) 

0.57 0.654 

4.2 ln(h) 1/(dbh) 2.99 

(2e-16) 

 

-7.60 

(3.50e-10) 

0.72 2.6e-10 

Note: h is tree height and dbh is diameter at breast height 

The p-value of Model 4.1 was not significant (p > 0.05) while that for Model 4.2 was highly 

significant (p < 0.05). Predicted values for Model 4.2 were plotted against the residuals; the 

plots did not show a clear pattern (Figure 4.2) indicating that the residuals were 
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homoscedastic. The normality assumption of the models was determined by using 

Shapiro-Wilk test on the residuals, which indicated a large p-value (p > 0.05). With this 

larger p-value for Shapiro-Wilk test, it can be assumed that the normality assumption was 

attained.  

 

Figure 4.3: Height and diameter predicted vs. residual plots 

4.1.3. Volume Models 

Three models were parameterised for volume prediction. The first model (Model 4.3) had 

dbh as the only predictor variable; the second model (Model 4.4) was a transformed model 

based on dbh and h while the third model (Model 4.5) had d
2
h and h as predictor variable 

(Table 4.2). Figure 4.3 shows the empirically measured distribution of dbh and volume of the 

trees. 
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Figure 4.4: Dbh and volume distribution of sampled trees 

All the three formulated models for predicting volume were significant (p-value < 0.05); 

however, the intercept and h for Model 4.5 were not significant as indicated in Table 4.2. 

Model 4.4 had the highest R
2
 value of 0.94 while Model 4.5 had the lowest R

2
 value of 0.85. 

Table 4.2: Volume models with parameters p-values in brackets  

M
o
d
el

 

Dependent 

variable 

Independent 

variable 

Parameter estimates and their  

p-values 

 

R
2
 

 

Model 

p-values b0 b1 b2 

 

4.3 Volume dbh -0.25 

 (213e-6) 

0.02 

(1.01e-14) 

 0.91 0.002 

4.4 ln(Volume) ln(dbh), ln(h) -10.29 

(2.12e-14) 

1.69 

(1.12e-8) 

1.38 

(0.001) 

0.94 

 

2e-16 

4.5 Volume (d
2
h),h -4.5e-5 

(0.366) 

3.04e-05 

(1.52e-14) 

5.91e-3 

(0.204) 

0.85 0.001 

The plot for residuals against predicted values for Model 4.4 did not show a clear pattern 

indicating that the uniformity of the residuals was maintained (Figure 4.5). Therefore, 

Model 4.4 was chosen as the best model for volume prediction. 
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Figure 4.5: Volume and dbh model predicted values vs. Residuals for model 4.4 

4.2. UPSCALING MODELS 

4.2.1. Pooled crown model 

4.2.1.1. Pooled foliage model 

Models for predicting foliage biomass for all the branches were fitted using branch diameters 

(d) and branch basal area (ba) as independent variables
6
. Models with one predictor variable 

(Models 4.7, 4.8 and 4.9) and a two predictor variable model (Model 4.6) were 

parameterised. Model 4.9 was a logarithmically (ln) transformed model of branch 

diameter (d). Figure 4.6 shows the relationship between biomass and branch diameters. 

                                                 

 

 

6
 Independent variable represents the input or predicting parameter which the dependent variable is the output or 

response. 
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Figure 4.6: Pooled branch biomass and diameter relationship 

Assessment of the significance of the parameters of the foliage models showed that 

Model 4.6 had only one parameter (ba) significant while intercept and d were not significant 

(p > 0.05). Model 4.8, which had the highest R
2 

of 0.70 and all its estimated parameters 

significant (p < 0.05), was the best fitting model (Table 4.3). Furthermore, the residuals 

against predicted values plot did not indicate a clear noticeable pattern. 
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Table 4.3: Pooled crown foliage and branch models 

 

M
o

d
el

 

Dependent 

variable 

Independent 

variable 

Parameter estimate with there  

p-values in brackets 

 

R
2
 

b0 b1 b2 

F
o

li
a
g

e 

4.6 Fbm ba, d 153.35 

(0.061) 

2355456.5 

(0.002) 

-2.01 

(0.123) 

0.69 

4.7 Fbm d -556.16 

(0.003) 

257.55 

(352e-7) 

 

 

0.61 

4.8 Fbm ba 147.34 

(0.001) 

233874.16 

(232e-5) 

 0.70 

4.9 ln(Fbm) ln(d) 1.777 

(0.004) 

1.341 

(145e-5) 

 0.40 

B
ra

n
ch

es
 

4.10 Bbm ba, d -2230.3 

(0.012) 

790206.17 

(312e-3) 

850.3 

(0.294) 

0.69 

4.11 Bbm d -4635.4 

(345e-4) 

1731 

(0.003) 

 

 

0.67 

4.12 Bbm ba 299.0 

(0.214) 

1459157.5 

(0.003) 

 0.68 

4.13 ln(Bbm) ln(d) 2.05 

(256e-4) 

10.53 

(0.001) 

 0.71 

Note: Fbm is foliage biomass, Bbm is branch biomass, ba is basal area, and d is branch diameter 

4.2.1.2. Pooled branch model 

Four models were formulated so that the best model could be selected for predicting branch 

biomass. Model 4.13 [ln (Bbm) = 2.05 + 1.96ln (d)] was considered the best fitting model 

because all the parameters were significant and it had the highest R
2 

value of 0.71 (Table 4.3). 

The residual against predicted values plots for Model 4.8 in Figure 4.7 was consistent on a 

range of predicted values indicating the homoscedasticity of the residuals. 
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Figure 4.7: Branch biomass model predicted values vs. residuals for Model 4.13 

4.2.2. E. cladocalyx crown models 

There is a strong correlation between diameter and biomass (r = 0.84) and p-value of 0.002. 

The p-value showed that the correlation was significant different from zero. Basal area and 

total branch biomass relationship were strong with a high value of r (r = 0.93) and a smaller 

p-value (p < 0.05). Figure 4.8 shows the relationship between branch biomass and branch 

diameters. 
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Figure 4.8: E.cladocalyx biomass and branch diameter relationship 

4.2.2.1. E. cladocalyx foliage models  

To predict the foliage biomass for E. cladocalyx, four models (Model 4.14, 4.15, 4.16 and 

4.17) were parameterised using ba and d as predictor variable as shown in Table 4.4. 

Model 4.14 and 4.15 had R
2 

of 0.77; Model 4.15 had R
2
 of 0.71 while Model 4.17 had the 

lowest R
2
 value of 0.49. Three models (4.15, 4.16 and 4.17) had all the estimated parameter 

significant; however, not all the estimated parameters were significant for Model 4.14 as 

shown in Table 4.4. The plots for residuals against predicted values for the finally chosen 

Model 4.16 had no clear pattern indicating the uniformity in the residuals hence 

homoscedasticity of the residuals (Figure 4.9). 
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Figure 4.9: E. cladocalyx foliage biomass model predicted values vs. residuals for Model 4.16 

4.2.2.2. E. cladocalyx Branches 

Four models were formulated to predict branch biomass for E. cladocalyx from which the best 

model was selected (Table 4.4). All the models were significant, however, only Model 4.18 

had all its estimated parameters significant different from zero (p-values < 0.05). Model 4.18 

and 4.20 had the highest value of R
2
 of 0.91 while Model 4.21 had the lowest R

2 
of 0.81. In 

this case, Model 4.18 was the best model for predicting E. cladocalyx branch biomass since it 

was the only model with all the estimated parameters significant. 
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Table 4.4: Biomass models for crown components for E.cladocalyx 

 

 M
o

d
el 

Dependent 

variable 

Independent 

variable 

Parameter estimate with 

p-values in brackets 

 

R
2
 

b0 b1 b2 

 F
o

lia
g

e 

4.14 Fbm ba, d 108.20 

(0.057) 

222913.15 

(0.001) 

48.07 

(0.345) 

0.77 

4.15 Fbm d -600.80 

(564e-4) 

301.95 

(0.003) 

 0.71 

4.16 Fbm ba 254.59 

(0.001) 

260150.49 

(741e-4) 

 0.77 

4.17 ln(Fbm) ln(d) 1.8671 

(0.041) 

1.3956 

(0.001) 

 0.49 

B
ra

n
ch

es 

4.18 Bbm ba, d -1403.3 

(0.001) 

1490683.5 

(231e-5) 

408.8 

(0.002) 

0.91 

4.19 Bbm d -6414.8 

(0.023) 

2177.4 

(0.111) 

 0.84 

4.20 Bbm ba -163.5 

(0.004) 

802792.3 

(0.105) 

 0.91 

4.21 ln(Bbm) ln(d) 1.95 

(2.134) 

2.14 

(267e-4) 

 0.81 

Note: Fbm is foliage biomass, Bbm is branch biomass, ba is basal area and d is branch diameter  

4.2.3. E. gomphocephala crown biomass model 

The scatter plot for E. gomphocephala crown biomass showed a strong relationship between 

biomass and branch diameter. Figure 4.10 shows that the branch biomass was high for each 

particular diameter as compared to the foliage biomass. R values of 0.79 and 0.83 were 

calculated for foliage and branches biomass respectively with a small p-value (p < 0.05) for 

both foliage and branches. 
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Figure 4.10: Branches and foliage biomass relationship with branch diameter for E.gomphocephala 

4.2.3.1. E. gomphocephala foliage models 

Four models were formulated to predict foliage biomass from which the best fitting model 

was selected. Model 4.23, 4.24 and 4.25 had all the estimated parameters
7
 significant 

(p-value < 0.05). All the models were significant with a small p-value (p < 0.05), and Model 

4.25 [In (Fbm) = 1.59 + 1.55 ln (d)] was a better model since it had the highest R
2 

(0.72) value 

and all its parameters significant (Table 4.5). The residuals against predicted plots confirmed 

the homoscedasticity of the variance as there was no clear pattern on the plot in Figure 4.11. 

                                                 

 

 

7
 Estimate parameters refer to the intercept (a) and the partial slopes (b1, b2, b3) of the regression. 
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Figure 4.11: E.gomphocephala foliage biomass model predicted values vs. residuals plots 

4.2.3.2. E. gomphocephala branch models 

Four models were formulated for the prediction of E. gomphocephala branch biomass. Only 

Model 4.29 had all estimated parameters significant from zero (p-value < 0.05) with R
2
 of 

0.78 while Model 4.28 had the lowest R
2
 of 0.67. All the models (Model 4.26, 4.37, 4.28 and 

4.29) were significant with small p-values (p < 0.05). In this case model 4.29 is the best 

fitting model having all its estimated parameters significant and the highest R
2
 (Table 4.5). 
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Table 4.5: E.gomphocephala crown component biomass models 

 

 M
o

d
el 

Dependent 

variable 

Independent 

variable 

Parameter estimate with 

p-values in brackets 

 

R
2
 

b0 b1 b2 

 F
o

lia
g

e 

4.22 Fbm ba, d 75.57 

(0.001) 

198632.93 

(214e-5) 

27.20 

(0.421) 

0.71 

4.23 Fbm d -598.39 

(0.021) 

268.12 

(0.001) 

 0.63 

4.24 Fbm ba 158.25 

(0.003) 

218108.01 

(364e-4) 

 0.71 

4.25 ln(Fbm) ln(d) 1.59 

(0.004) 

1.55 

(0.014) 

 0.72 

B
ra

n
ch

es 

4.26 Bbm ba, d -1832.8 

(0.013) 

322730.9 

(231e-7) 

832.8 

(0.154) 

0.72 

4.27 Bbm d -2885.2 

(0.345) 

1219.31 

(0.012) 

 0.71 

4.28 Bbm ba 634.1 

(0.011) 

924392.2 

(0.341) 

 0.67 

4.29 ln(Bbm) ln(d) 1.92 

(0.001) 

2.02 

(0.003) 

 0.78 

4.2.4. E. grandis x camaldulensis crown biomass model 

Crown biomass for E.grandis x camaldulensis was predicted by models parameterised using 

the linear relationship between branch biomass, ba and d. Figure 4.12 shows the strong 

positive relationship between diameter and biomass. The value of r for foliage biomass and 

branch diameter was 0.72 while whole stem biomass and branch diameter had 0.83 as 

correlation coefficients which were all significant (p < 0.05).  
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Figure 4.12: The relationship between branch biomass and branch diameter 

4.2.4.1. E. grandis x camaldulensis foliage biomass models  

Four models were fitted on the data for E. grandis x camaldulensis from which the best 

model was selected. All the models had all the estimated parameters significant with a small 

p-value (p < 0.05); Model 4.30 was the best model since it had the highest R
2
 value of 0.65 

while Model 4.33 had the lowest R
2 

of 0.35 (Table 4.6). Figure 4.13 show the residuals 

plotted against predicted values for the best model confirming the homoscedasticity of the 

residuals since there was no clear pattern. 
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Figure 4.13: E. grandis x camaldulensis foliage biomass model predicted values vs. residuals plots 

4.2.4.2. E. grandis x camaldulensis Branch biomass  

All the parameterised models for E. grandis x camaldulensis branch biomass models had all 

the estimated parameters significant (p-value < 0.05) except for Model 4.35. Model 4.34 had 

the highest R
2
 value of 0.76 (Table 4.6) and the residual against predicted values did not 

show a clear noticeable pattern. In this case, Model 4.34 can be referred to as the best fitting 

model. 
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Table 4.6: E.grandis x camaldulensis crown component biomass models 
 

M
o

d
el

 

Dependent 

variable 

Independent 

variable 

Parameter estimate with  

p-values 

 

R
2
 

b0 b1 b2 

F
o

li
a
g

e 

4.30 Fbm ba, d -621.5 

(0.004) 

455575.3 

(213e-6) 

216.57 

(0.012) 

0.65 

4.31 Fbm d -337.8 

(0.001) 

185.75 

(0.012) 

 0.51 

4.32 Fbm ba 76.28 

(314e-7) 

224039.4 

(0.003) 

 0.62 

4.33 ln(Fbm) ln(d) 1.78 

(0.012) 

1.25l 

(0.012) 

 0.35 

B
ra

n
ch

es
 

4.34 Bbm ba, d -6203 

(0.002) 

5473513 

(212e-5) 

2893.4 

(0.001) 

0.76 

4.35 Bbm d -5455 

(0.123) 

1952 

(0.001) 

 0.56 

4.36 Bbm ba -1138 

(0.004) 

2387697 

(256e-8) 

 0.69 

4.37 ln(Bbm) ln(d) 2.03 

(0.001) 

2.01 

(0.041) 

 0.60 

Note: Fbm is foliage biomass, Bbm is branch biomass, ba is basal area and d is branch diameter  

4.2.5. Density determination 

The mean density of the pooled samples was 620.65 kg/m
3
 for displacement and 810.24 

kg/m
3
 for CT-scanning. From Shapiro-Wilk test and Bartlett test, both the displacement and 

CT-scan densities were normally distributed and homoscedastic with larger p-values 

(p > 0.05). The two independent sample t-tests indicated a smaller p-value of 0.001 (p < 0.05) 

showing that the density from displacement method was significant different from that from 

the CT-scanner. In the present study, densities from the CT-scanning were adopted for further 

biomass calculation because these values were in line with the values in literature (Botman, 

2010; McMahon et al., 2010). Figure 4.14 and 4.15 shows an example of a scan and results 

from ImageJ respectively. 

Stellenbosch University  http://scholar.sun.ac.za



70 

 

 

 

Figure 4.14: Images from the CT –scanner in ImageJ 

 

Figure 4.15: Results on average grey value in ImageJ 
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Linear equations of the form “r0 = a + b (grey value)” with an R
2
 between 0.74 and 0.96 were 

obtained during the calibration process and used as calibration function to estimate the true 

density from the grey values. Figure 4.16 shows an example of a linear equation for 

calibration samples. 

y = 10.614x - 816.78
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Figure 4.16: Example of a calibration linear equation for wood density based on grey values 

The comparison of density from the CT-scanner among the three species (E. gomphocephala, 

E. cladocalyx and E. grandis x camaldulensis) showed that E. cladocalyx had the highest 

mean density of 856.53 kg/m
3
, E. gomphocephala had 830.63 kg/m

3
 and the lowest mean 

density was found for E. grandis x camaldulensis of 797.08 kg/m
3
. Figure 4.17 shows the 

density classes of the three tree species.
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Figure 4.17: CT –scanning density classes for the three Eucalyptus species 

4.3. BIOMASS MODELS 

4.3.1. Pooled biomass models 

The mean stem biomass on pooled data was 234.6 kg; bark biomass had 26.502 kg as the 

mean while foliage had the lowest mean biomass of 17.6 kg. Stem biomass had the highest 

maximum biomass of 466.3 kg while foliage had the lowest maximum biomass as compared 

to other components (stem, bark and branches). 
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Figure 4.18: Percentage of different biomass components for the pooled data with standard deviation in 

error bars 

 A nonlinear relationship was found between dbh and all four components (Figure 4.19). 

Pearson’s moment correlation indicated smaller p-values (p < 0.05) for all the components. 

The relationship between total biomass and dbh was the strongest with a high value of r of 

0.94 while that for foliage was relatively weak (r = 0.63).  
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Figure 4.19: Development of different biomass components over the dbh for a pooled model 

Four models were parameterised to predict biomass for the components (foliage, bark, 

branches and stem wood) for the pooled data set and an additional model for predicting total 

biomass was parameterised with an aim of attaining additivity
8
 (Table 4.7). Separate models 

were parameterised on different components from which the best fitting model was selected. 

The selection of the best model combination considered the significant (p-value < 0.05) of the 

estimate parameter, R
2
, MSE and RMSE of the models. The system of equations showed that 

the stem biomass model (Model 4.38) fitted the data better than the other component models. 

Model 4.38 had the highest R
2
 of 0.96 with the lowest MSE and RMSE of 0.009 and 0.094 

respectively. The foliage model was the least well-fitting model because of its largest MSE 

and RMSE of 0.234 and 0.484 respectively. Furthermore, the foliage model (Model 4.40) had 

the lowest value of R
2
 (R

2
 = 0.05). All estimated parameters were significant for all models 

Table 4.7 

Table 4.7: SUR systems of equations for Pooled data 

                                                 

 

 

8
 Additivity is attained when biomass predicted for the four components (bark, foliage, branches and stem 

wood) is the same as for the biomass predicted by total model. 
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The results from Shapiro-Wilk test on normality showed large p-values (p > 0.05) indicating 

that the residuals were normally distributed for all the models. The homoscedasticity 

assumption was assessed by plotting the predicted values against the residuals. Figure 4.19 

shows the residuals plots from different biomass components models. Generally, all the plots 

did not show a clear noticeable pattern thus satisfying the assumption of homoscedasticity. 

M 

o 

d 

e 

l 

Dependent 

variable 

Independent 

variable 

Parameter estimate and their  

p-values 

 

R
2
 

 

RMSE 

b0 b1 b2 

 

4.38  In(Total) ln(dbh), ln(h) -3.35 

(2.2e-2) 

2.16 

(2.2e-2) 

0.80 

(1.8e-5) 

0.96 0.094 

4.39 ln(Bark) ln(d
2
h) -3.49 

(4.5e-10) 

 

0.73 

(2.2e-2) 

 0.91 0.248 

4.40 ln(Foliage) ln(dbh) -2.36 

(0.0026) 

1.58 

(1.7e-8) 

 0.64 0.484 

4.41 ln(Branch) ln(d
2
h), ln(h) -3.62 

(3.2e-05) 

1.47 

(6.9e-2) 

-2.07 

(0.064) 

0.88 0.412 

4.42 ln(Stem) ln(dbh), ln(h) -5.59 

(2.22e-4) 

2.16 

(2.2e-3) 

1.45 

(4.7e-8) 

0.98 0.155 
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Figure 4.20: Pooled systems of equations predicted vs. residual plots 

4.3.2.  E. cladocalyx biomass models 

E. cladocalyx stem biomass contributed 61%, branches 28%, bark 6% while foliage 

contributed 5% towards the total biomass (Figure 4.21). 
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Figure 4.21: Percentage of biomass components towards total biomass 

Five models were formulated as a system of equations to predict the biomass of each 

component of E. cladocalyx while achieving additivity of the total biomass (Table 4.8). 

Model 4.43, Model 4.44 and Model 4.47 had two predictor variables, which were all 

significant (p-values < 0.05). Model 4.60 had R
2
 of 0.50; Model 4.62 had R

2
 value of 0.75 

while Model 4.43 had R
2
 of 0.96. The model predicting total biomass (Model 4.43) had 

RMSE of 0.094 while Model 4.44 had the highest RMSE of 0.886. In this system of 

equations for E. cladocalyx, stem model (Model 4.47) fitted the data better than the other 

component models as indicated by the high values of R
2
 and lower RMSE. 
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Table 4.8: Systems of equations for E.cladocalyx biomass models 

M 

o 

d 

e 

l 

Dependent 

variable 

Independent 

variable 

Parameter estimate and their  

p-values 

 

R
2
 

 

RMSE 

b0 b1 b2 

 

4.43  In(Total) ln(dbh), ln(h) -4.014 

(0.003) 

2.33 

(4.2e-5) 

0.82 

(0.001) 

0.96 0.094 

4.44 ln(Bark) ln(d
2
h), ln(h) 2.81 

(0.021) 

 

0.23 

(0.05) 

-0.59 

(0.047) 

0.50 0.886 

4.45 ln(Foliage) ln(dbh) -8.58 

(0.0026) 

3.45 

(0.002) 

 0.77 0.326 

4.46 ln(Branches) ln(d
2
h) -14.96 

(0.009) 

2.07 

(0.002) 

 0.75 0.447 

4.47 ln(Stem) ln(dbh), ln(h) -4.73 

(0.002) 

1.802 

(5.5e-4) 

1.57 

(0.004) 

0.95 0.085 

The Shapiro-Wilk normality test on the residuals resulted in a large p-values (p > 0.05) 

indicating that the normality assumption is satisfied on all the models. The plots for the 

residual against predicted values had no visible pattern indicating that the homoscedasticity 

assumption was satisfied (Figure 4.22). 
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Figure 4.22: E.cladocalyx systems of equations predicted vs. residual plots 

4.3.3. E. gomphocephala biomass models 

Figure 4.23 shows the proportions of the different biomass components of the total biomass 

for E. gomphocephala. Stem biomass was 48% of the total biomass, bark was 5%, and 

foliage was 4% while the branches were 43%. Prior to model formulations, the relationship 

between the independent parameters and biomass was accessed. The value of r between total 

biomass and dbh was 0.94 while that between total biomass and height was 0.73. These 

relationships were significant with smaller p-values (p < 0.05). 
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Figure 4.23: Percentage aboveground biomass components for E. gomphocephala 

A system of five models was parameterised for the biomass components of 

E. gomphocephala. Model 4.48 was formulated to predict the total biomass directly while the 

other four models (Model 4.49, 4.50, 4.51 and 4.52) were parameterised to predict biomass 

for the components. Model 4.48 had two predictor variables while the other four models had 

only one predictor variable. All the estimated parameters shown in Table 4.9 were significant 

(p < 0.05). Model 4.50 had the lowest R
2
 of 0.60 while Model 4.48 had the highest R

2
 of 

0.98. The lowest value of RMSE was 0.07 for Model 4.48 while the largest RMSE value was 

for Model 4.51 which was 0.34 (Table 4.9). 
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Table 4.9: Systems of equations for E. gomphocephala 

M 

o 

d 

e 

l 

Dependent 

variable 

Independent 

variable 

Parameter estimate and their  

p-values 

 

R
2
 

 

RMSE 

b0 b1 b2 

 

4.48  In(Total) ln(dbh), ln(h) -1.156 

(1.07e-6) 

1.89 

(4.2e-5) 

0.75 

(0.001) 

0.98 0.070 

4.49 ln(Bark) ln(d
2
h) -1.21 

(0.037) 

 

1.99 

(0.002) 

 

 

0.78 0.26 

4.50 ln(Foliage) ln(dbh) -0.68 

(00.027) 

1.44 

(0.016) 

 0.60 0.27 

4.51 ln(Branch) ln(d
2
h) -4.40 

(0.0001) 

5.85 

(4.5e-6) 

 0.84 0.34 

4.52 ln(Stem) ln(dbh) -0.91 

(0.0034) 

1.902 

(4.5e-4) 

 

 

0.85 0.19 

The assumption of normality far all the models was tested using the Shapiro-Wilk test on the 

residuals, the result showed larger p-values (p < 0.05) indicating that the data was not 

different from the normal distribution. Furthermore, homoscedasticity was assessed by 

plotting the residuals against the predicted values. Figure 4.24 had no visible pattern 

indicating that the residuals were almost the same across the data. 
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Figure 4.24: E. gomphocephala system of equations predicted vs. residual plots 

4.3.4. E. grandis x camaldulensis biomass models 

Figure 4.25 shows the biomass components of E. grandis x camaldulensis. Branch biomass 

had the highest mean biomass followed by stem biomass while foliage had the lowest mean 

biomass. The relationship between total biomass and dbh was evaluated by the value of r 

which was 0.96 and significant (p-value < 0.05) indicating that there is a strong positive 

correlation between total biomass and dbh. 
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Figure 4.25: Percentage of biomass components for E. grandis x camaldulensis with standard deviation in 

error bars 

Five models were formulated to predict the biomass of the components for 

E. grandis x camaldulensis as shown in Table 4.10. Model 4.53 and 4.57 had two predicting 

variables while the other models (Model 4.54, 4.55 and 4.56) had only one predicting 

variable. Model 4.53 had the highest value of R
2
 of 0.98 while Model 4.55 (foliage model) 

had the lowest value of R
2
 of 0.79. The RMSE of Model 4.53 was 0.038 which was the 

lowest while Model 4.55 had the highest RMSE value of 0.33. 
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Table 4.10: Systems of equations for E. grandis x camaldulensis 

M 

o 

d 

e 

l 

 

Dependent 

variable 

Independent 

variable 

Parameter estimate and their  

p-values 

 

R
2
 

 

RMSE 

b0 b1 b2 

 

4.53  In(Total) ln(dbh), ln(h) -3.49 

 (2.9e-5) 

2.22 

(2.19e-7) 

0.79 

(1.3e-4) 

0.98 0.038 

4.54 ln(Bark) ln(d
2
h) -3.41 

(0.0006) 

 

0.72 

(0.002) 

 

 

0.93 0.12 

4.55 ln(Foliage) ln(dbh) -0.68 

(00.027) 

1.44 

(0.016) 

 0.79 0.33 

4.56 ln(Branch) ln(d
2
h) -8.94 

(3.1e-6) 

1.45 

(1.3e-6) 

 0.95 0.20 

4.57 ln(Stem) ln(dbh), ln(h) -3.86 

(0.0034) 

1.73 

(4.5e-4) 

1.33 

(0.008) 

 

0.97 0.097 

The normality assumption was tested on the residuals of the models using Shapiro-Wilk test 

which indicated large p-values (p > 0.05) indicating that the normality assumption was 

satisfied. Homoscedasticity for all the models was verified by plotting the residuals against 

predicted values. There was no clear pattern indicating that the homoscedasticity assumption 

was attained (Figure 4.26). 
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Figure 4.26: E. grandis x camaldulensis systems of equations predicted vs. residual plots 

4.4. PROPAGATED ERROR 

Two sources of error in the biomass upscaling procedure were considered in the study; (1) 

sampling error, and (2) error due to regression. The results indicated that the Upscaling 1 

which involved the building up of the different components to a tree level had a slightly 

larger contribution to the total error. Upscaling 1 contributed 51% of the total error while the 

error due to regression (Upscaling 2) contributed 49% of the error. Figure 4.27 shows the 

contribution by the two upscaling stages to the total error propagated. 
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Figure 4.27: Distribution of Error propagated during sampling and regression 

The mean percentage error propagated was 2.63% per tree. Upscaling 1 contributed 1.34% of 

the total error while Upscaling 2 which was as a result of error due to regressions amounted 

to 1.29%. This implies that, Upscaling 1 and Upscaling 2 contributed 51% and 49% of the 

total error as indicated in Figure 4.27 and Table 4.11.  

Table 4.11: Component of error propagation in biomass modelling 

Source of Error Components Regression Total 

All tree in kg 163.87 158.37 322.24 

Per Tree in kg 4.965 4.79 9.76 

Percentage (%) 1.34 1.29 2.63 
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4.5. DRYING SERIES 

4.5.1. Discs 

During the drying series, changes were detected on weight of all the species. On average, 

weight for discs reduced to 94% when the temperature was raised from 60 to 105 ºC. 

E. cladocalyx and E. gomphocephala weight reduced to 94% while 

E. grandis x camaldulensis had the highest percentage reduction as the final biomass was 

93%. The drying trend showed that, the highest percentage change (4%) on weight occurred 

when the temperature was raised from 65 to 80 ºC. The drying pattern showed a gradual 

increase on percentage change for all the species and a steady drop after temperature was 

increased further than 90 ºC (Figure 4.28). 
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Figure 4.28: Disc biomass percentage change trends 

4.5.1.1. Discs Model for biomass change 

There was a strong negative linear relationship between drying temperature and discs weight 

percentage change (r = -0.94). As a result of this strong relationship between temperature and 

biomass change, a model was established to predict the biomass at a specific drying 

temperature. The model was statistically significant in its intercept and predictor variable (p-

value < 0.05) and had R² value of 0.89. A Shapiro-Wilk test (test value of 0.074) indicated 
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that the biomass values were not significantly different from normal hence being normally 

distributed. The formulated model (Model 4.58) is shown in Table 4.12. 

Table 4.12: Parameter and model statistics for the biomass drying model at different temperatures. 

Further analysis was carried out on variation on weight change between species using 

ANOVA with species and temperature as factors. The results indicated a significant 

difference of temperature on a 0.05 significance level (p-value = 0.0463) while species 

interaction was not significant. Bonferroni post-hoc analysis was conducted to check which 

pairs of temperature gave a different weight change. The results from pairwise comparison 

indicated that 90 ºC and 105 ºC did not differ while 60 ºC and 80 ºC were different from the 

rest (Figure 4.29). 

 

Figure 4.29: Disc biomass percentage change at different drying temperatures 

 

M 

o 

d 

e 

l 

Dependable 

variable 

Independent 

variable 

Parameter estimate  

 

Parameter 

 

R
2
 

 

Model 

p-value 

b0 b1 

4.58 Biomass 

Percentage 

(Bm %) 

Drying 

Temperature 

(dt) 

105.441 

 

(4.05e-16 ) 

-0.114 

 

(4.65e-06) 

0.89 0.0018 
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4.5.2. BARK 

Bark weight on average changed to 96% for all the species with the largest percentage change 

of (3%) when drying from 60 to 80 ºC. E. gomphocephala had the highest percentage drop on 

biomass to 94.33% followed by E. grandis x camaldulensis to 95.51% while E. cladocalyx 

had the lowest drop on biomass to 97.2%. Figure 4.30 shows the percentage weight at 

different drying temperatures for each species. 
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Figure 4.30: Bark biomass change and standard deviation as error bars 

The ANOVA results showed that the weight change was not different at any particular 

temperature. Table 4.13 indicated a large p-value of 0.979 on the different drying 

temperature. The result on the different species showed similar results as the p-value for the 

species was also large (p-value = 0.65). Figure 4.31 shows the mean different changes in 

weight with temperature and species. 
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Figure 4.31: Bark biomass percentage change on different drying temperatures 

4.5.3. Branches 

The average absolute weight change for all the species after drying from 60 to 105 ºC was 

97.84%. E. grandis x camaldulensis had the highest change in which weight dropped to 

96.49%, E. gomphocephala to 97.94% and E. cladocalyx to only 99.07%. The highest change 

of 1.07% occurred between 60 and 65 ºC. The profiles on the changes of weight with 

temperature are as shown in Figure 4.32. 
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Figure 4.32: Branch biomass percentage change trends 

When weight at different drying temperature was compared statistically, ANOVA results 

indicated a p-value of 0.033 while when the weight change was compared among the species, 

a p-value of 0.0212 was calculated. These values where all smaller than the significance level 

of 0.05 showing that there is a significant difference when biomass is dried at different 

temperature on the branches. 

4.5.4. Foliage biomass change 

Mean foliage biomass for all the species after drying from 60 to 105 ºC was 98.63%. This 

translates to less than 2% reduction in the amount of biomass on all the species. E. grandis x 

camaldulensis had the highest change of weight reducing to 97.9%. The highest weight 

change occurred when the temperature was increased from 60 to 65 ºC. Figure 4.33 shows the 

changes in foliage weight at different drying temperatures. 
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Figure 4.33: Foliage biomass change with change in temperature 

When weights under different drying temperatures were statistically compared, the results 

from the ANOVA (Table 4.13) indicated a p-value of 0.3667. This result showed that there is 

no significant difference on weight for the leaves with an increase on drying temperature. 

Table 4.13 summarises the results from ANOVA on the four biomass components. 
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Table 4.13: Anova Table for drying series of the four biomass components 

Component Parameter Sum Sq Mean Sq. F-value p-value 

Disc Temperature 1.57262 1.57262 5.5694 0.04631* 

Species 0.11435 0.05718 0.2025 0.82205 

Temperature*Species 0.18211 0.09106 0.3225 0.73617 

Bark Temperature 7.73 7.73 7.6948 0.97923 

Species 0.2687 0.1344 0.1338 0.87734 

Temperature*Species 0.8827 0.4413 0.4393 0.66365 

Branches Temperature 0.02905 0.02905 0.3172 0.0333* 

Species 0.84073 0.42037 4.5908 0.0212* 

Temperature*Species 0.10466 0.05233 0.5715 0.59266 

Leaves Temperature 0.8221 0.82207 0.9526 0.3667 

Species 0.8998 0.4499 0.5214 0.6183 

Temperature*Species 0.2669 0.13343 0.1546 0.8601 
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Chapter 5 : DISCUSSION OF RESULTS 

5.1. DISTRIBUTION OF SAMPLED TREE 

Tree sampling in the present study was carried out following an even distribution of diameter 

classes. The diameter distribution in Figure 4.1 indicates that most of the trees were between 

the diameters of 20 and 35 cm. Saint-André et al. (2004) and Samalca (2007) recommended 

an even distribution of diameter classes where small and big diameter trees should be 

included in biomass studies in order to maximise the representation of models. Thus, smaller 

trees with diameters of less than 10 cm were integrated in the study so as to achieve an even 

spread in diameter classes; however, this was only possible for E. gomphocephala. An 

indication that the desired representative distribution in the data was not fully attained as the 

height was not significant in most of the models as indicated in Section 4.3. This means the 

spread of height might have been not large enough, showing the need to extend the data for 

larger and smaller trees in the future. 

5.1.1. Diameter height Model  

Height prediction models were formulated in order to assist in future biomass assessment. 

During future biomass inventories, diameters will be the principle variable to be measured 

and used to predict other parameters such as height, hence saving time and reducing on costs 

during forest biomass assessment (Philip, 1994; Champion et al., 2005; Brandeis et al., 

2006). 

From the two parameterised models for predicting height, Model 4.2 was the best fitting 

model (R
2 

= 0.72). Literature shows that similar models are used in growth and yield studies 

to predict heights of trees. However, in most growth and yield studies, age is included as a 

predictor variable (van Laar & Akça, 2007). For instance van Wyk et al. (2001) reported a 

model in form of h = -22.45 + 1215.419(age) – 9.013(age²) for height prediction on 

Eucalyptus growing on the dry west coast of South Africa. In this study, age was not included 

since sampling was done on two species (E. cladocalyx and E. grandis x camaldulensis) 

having almost the same age and only E. gomphocephala had a third age class. 
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5.1.2. Volume Models 

Volume was multiplied with basic density to determine biomass of the stem wood and bark. 

However, the upscaling procedure in this study employed volumes of one meter stem 

sections, which were summed to make a total stem biomass. In studies where average density 

is used to calculate the entire stem biomass; this model can be used to determine the total 

stem volume. Moreover, it was for this reason that models directly predicting stem volume 

were considered equally important as recommended in van Laar and Akça (2007). The 

formulated models in Table 4.2 showed that Model 4.4 was the best fitting model. The 

predicted values and residuals plots for this model did not show a clear pattern denoting that 

the model had achieved the assumption of homoscedasticity when dbh and h were 

transformed and used as predictor variables as suggested by Parresol (1999) and Ackerman et 

al. (2012). Furthermore, Lowore and Warren (1997) explained that dbh was a better predictor 

variable for volume as compared to h, which did not fit well in their study on the Miombo 

woodlands in Zimbabwe. In most cases volume models are formulated based on transformed 

dbh, d
2
h and ba while h is included to improve the model fit. 

5.2. UPSCALING MODELS 

The upscaling procedure involved two stages; Upscaling 1 and Upscaling 2. In Upscaling 1, 

the samples were reconstructed to the tree level while in Upscaling 2 the tree components 

were scaled up to the stand level. During this exercise, different models were constructed for 

the three species and a pooled model (general model for all the species) was also fitted. While 

the species specific models have to be considered very preliminary due to a lack of samples, 

the pooled model stabilised better. However, the data pooling came at the cost of species 

specificity. 

5. 2.1. Pooled crown model 

Separate models were selected for predicting branch wood and foliage biomass for the pooled 

data. Model 4.8 in Table 4.3 was selected as the best model for predicting pooled foliage 

biomass. This model explained 70% of biomass variation and all its parameters were 

significant (p < 0.05). Furthermore, Model 4.8 satisfied the assumptions of normality and 

homoscedasticity, which were tested based on the residuals and the predicted values. The 

good fit of the model can be attributed to the basal area used as a predictor variable in 
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parameterising the model. Salmaca (2007) reported that models formulated based on basal 

area had a good fit as compared to models based on diameters. 

Model 4.13 [ln (Bbm) = 2.05 + 1.96ln (d)] was selected as the best fitting model for the pooled 

branch biomass. This model explained 78% of the biomass variation and was significant with 

a smaller p-value (p < 0.05). The plots for the predicted value against residuals showed 

clearly that a noticeable pattern did not exist hence the assumption of homoscedasticity being 

satisfied. In addition to homoscedasticity, a Shapiro-Wilk test for normality indicated that the 

normality assumption was satisfied. 

5. 2.2. Eucalypts species crown biomass model 

The models chosen to predict separate foliage biomass for the three eucalypt species were all 

significant and had high R
2 

values between 0.65 and 0.77. The R
2 

values indicate that the 

models explained more than 65% of the variation on biomass. The model of E. cladocalyx 

explained the highest percentage of 77% on foliage biomass while the models of E. grandis x 

camaldulensis had the lowest percentage explaining biomass variation. These variations on 

foliage biomass model for the species can be attributed to the number of branches involved in 

each model. In this case the E. cladocalyx model had the largest number of branches in the 

sample which correlated well with the diameters hence having a better fit. Furthermore, in 

order to confirm the validity of the model, Seifert and Seifert (2013) recommended plotting 

predicted values against residuals. There was no clear pattern on all the foliage model plots 

hence the validity of the models, and homoscedasticity of the residuals being satisfied. 

The selected branch wood models for the three eucalypt species were all significant 

(p < 0.05). The selected models explained 71 to 81% of the variation on branch biomass by 

using ba and d as predictor variables. Homoscedasticity was achieved by ln-transformation. 

Seifert and Seifert (2013) and Ackerman et al. (2012) explained that when ln-transformation 

is performed on the model, the chances of achieving uniformity on the variance increase. The 

normality assumption for the models was tested using a Shapiro-Wilk test, which showed that 

the residuals were normally distributed (p > 0.05). Besides normality, homoscedasticity was 

tested by plotting the predicted values against the residuals, which did not indicate any clear 

noticeable pattern.  
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5.3. DENSITY DETERMINATION 

Density determination was important for this study because it is part of the definition of 

biomass of the stem (Seifert & Seifert, 2013). As stated earlier in Section 4.2.5, two methods 

were used to determine density; (1) water displacement, and (2) CT-scanning method. The 

two methods revealed that the densities found from CT-scanning method were substantially 

higher than those from the displacement method. The mean density according to the 

displacement method was 620.65 kg/m
3
 while that for the CT-scanning was 810.24 kg/m

3
. 

The results from displacement method are in line with Botman (2010) who reported mean 

densities for E. camaldulensis and E. cladocalyx as 588 kg/m
3
 and 650 kg/m

3
 respectively. 

However, McMahon et al. (2010) reported higher density values of 800 kg/m
3
 and 700 kg/m

3
 

for E. gomphocephala and E. cladocalyx respectively, which are in the same range with the 

densities obtained from CT-scanning. So it was decided that the CT-based densities were 

used, since CT-scanning has previously been shown to provide reliable results for density 

measurements (du Plessis & Seifert, 2012; du Plessis, Meincken & Seifert, 2013). The 

differences were attributed to wrong application of the water displacement measurement, 

which occurs if the sample touches the ground of the water basin. This was for sure a 

problem since, while soaked, several samples were sinking and not in the equilibrium, which 

is necessary for a correct application of the water displacement measurement (Seifert, 

personal communication). 

The comparison of the wood density across the three tree species indicated that the densities 

were not statistically different among the three species. However, in most studies it has been 

revealed that E. cladocalyx has high density, followed by E. gomphocephala while 

E. grandis x camaldulensis has the lowest density as compared to the other two species 

(Botman, 2010). In view of the arid growing conditions in which these trees are growing, the 

mean densities for these eucalypt species are expected to be higher as compared to the trees 

growing in the high rainfall area (Poynton, 1979; Botman, 2010; McMahon et al., 2010). 

5.4. BIOMASS MODELS  

5.4.1. Pooled biomass Model 

The pooled model predicting stem biomass was better as compared to the other component 

(stem, foliage, bark and branches) models with regards to its explained variance. The stem 
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model explained 98% of the variation on the biomass when dbh and h were used as predictor 

variables. The goodness of fit can be attributed to the logarithm transformation and accurate 

CT-scanning method used in the determination of stem density (Kalender, 2011; du Plessis & 

Seifert, 2012). The foliage model did not show a similarly high explanation value as shown 

by the larger MSE and lower value of R
2 

(0.64). Saint-André et al. (2004) reported that 

foliage biomass is expected to have a lower fit because of the variation on the amount of 

leaves on the branches, which depends to some extent on the season, diseases and defoliating 

events. Branch biomass model explained 88% of the variation while the bark biomass 

explained 91% of the variation on biomass. Saint-André et al. (2004) reported a similar range 

of 0.77 to 0.98 on
 
R

2 
on the biomass study in Democratic Republic of Congo (DRC) on 

eucalypts hybrids. 

The total biomass model had a higher MSE and a lower R
2
 as compared to the stem model for 

the pooled data, the latter model having the best fit on the system of equations. The total 

pooled model explained 96% of the variation of the total biomass by using dbh and h as 

predictor variables. The relative goodness of fit for the total biomass model can be explained 

by taking into account the variation and errors in all the four biomass components models. 

This is because the total biomass model incorporated all the four component biomass data 

(Saint-André et al., 2004) and is therefore also a compound function of the single model 

accuracies. 

5.4.2. Individual eucalypt species biomass models 

Foliage biomass models for the three eucalypt species were the least fitting model on all the 

systems of equations as indicated by 60 to 79% explanation of the variation in the foliage 

biomass. Stem biomass models were the best fitting model with lower MSE and RMSE as 

compared to the other components models. Thus stem biomass model explained above 95% 

of the variation on stem biomass. Bark biomass and branch biomass models also fitted well, 

explaining above 60% of the biomass variation. All the components models clearly satisfied 

the assumptions of normality and homoscedasticity as shown in Section 4.3 of Chapter 4. 

Saint-André et al. (2004) parameterised biomass models for eucalypt in which stem biomass 

model had the highest R
2
 of 0.97 while the foliage and dead branches had the lowest R

2 
of 

0.51, which is similar with the results in the present study. 
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The total biomass models for the three eucalypt models explained over 98% of the variation 

on the total biomass. These models had the lowest MSE and RMSE as compared to the 

component models on all the systems of equation confirming the good fit. The results were 

similar to the models formulated in Israel in which the total models had the best fit. For 

instance, a model of the form ln(y) = -0.990+0.830ln (d
2
h) was parameterised for predicting 

total eucalypt biomass, which explained 97% of the variation on total biomass 

(Zahar & Karschon, 1984). The best parameterised biomass models are summarised 

according to species in Equation 18 to 37. 

i. Pooled biomass Models 

Stem: ln (Stem) = -5.59+2.16 ln (dbh) + 1.45 ln (h)   (18) 

Foliage: ln (Foliage) = -2.36 + 1.58 ln (dbh)    (19) 

Bark: ln (Bark) = -3.49 +0.73ln (d
2
h)     (20) 

Branches: ln (Branch) = -3.62 + 1.47ln (d
2
h) -2.07ln (h)  (21) 

Total: ln (Total) = -3.35 +2.16ln (dbh) + 0.80ln (h)   (22) 

 

ii. E.cladocalyx biomass models 

Stem: ln (Stem) = -4.73 +1.802ln (dbh) + 1.57ln (h)   (23) 

Bark: ln (Bark) = 2.81 + 0.23ln (d
2
h) - 0.59ln (h)   (24) 

Foliage: ln (Foliage) = -8.58 + 3.45 ln (dbh)    (25) 

Branches: ln (Branches) = -14.96 +2.07 ln (d
2
h)    (26) 

Total: ln (Total) = -4.014 + 2.33ln (dbh) + 0.82ln (h)   (27) 

 

iii. E.gomphocephala biomass models  

Stem: ln (Stem) = -0.91 + 1.902ln (dbh)     (28) 

Bark: ln (Bark) = -1.21 + 1.99ln (d
2
h)     (29) 

Foliage: ln (Foliage) = -0.68 + 1.44ln (dbh)     (30) 

Branches: ln (Branches) = -4.40 + 5.85ln (dbh)    (31) 

Total: ln (Total) = -1.156 + 1.89ln (dbh) + 0.75ln (h)   (32) 
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iv. E.grandis x camaldulensis biomass models 

Stem: ln (Stem) = -3.86 +1.73ln (dbh)     (33) 

Bark: ln (Bark) = -3.41 + 0.72 ln (d
2
h) + 1.33ln (h)   (34) 

Foliage: ln (Foliage) = -0.68 + 1.44 ln (dbh)    (35) 

Branches: ln (Branch) = -8.94 + 1.45ln (d
2
h)    (36) 

Total: ln (Total) = -3.49 +2.22ln (dbh) +0.79ln (h)   (37) 

5.5. PROPAGATED ERROR 

Samalca (2007) reviewed different biomass models and reported that regression errors 

contribute significantly to the overall precision of the mean aboveground biomass. About 

65% of the total variation in the review was attributed to the regression error. Such variation 

indicates that ignoring such errors can yield flawed biomass quantities. Propagated error in 

the present study was 2.63% per tree, which is substantially lower than the variation reported 

on tropical forest biomass in Chave et al. (2004) of 10%. The difference between the reported 

propagated error in the present study and in Chave et al. (2004) can be attributed to method in 

which the data was collected and the higher homogeneity of the trees in a plantation. On the 

other hand, Chave et al. (2004) report about models derived from pooled data on multiple 

species in the tropics, which had higher variability hence having a bigger value of error 

propagated.  

Other contributing sources of error such as measurement errors increase the total propagated 

error hence resulting in incorrect biomass quantities. Böhringer (1999) and Samalca (2007) 

explained that the need for a precise quantification procedure of errors by taking into account 

all possible sources is important in biomass studies and relevant to the objectives of 

UNFCCC and Kyoto Protocol. Unfortunately, measurement errors were not included in the 

study because of the complexity in their quantification. Furthermore, Chave et al. (2004) 

reported that using a small number of trees in the biomass studies contributes to the 

magnitude of the error, and recommended to use 50 trees in order to have an error of less than 

10%. Therefore, more work should be dedicated to improving the predictive accuracy of the 

biomass model by having a larger sample numbers. 

 

Stellenbosch University  http://scholar.sun.ac.za



101 

 

 

5.6. DRYING SERIES 

5.6.1. Discs 

The average weight change on the discs when the samples were dried from 60 to 105 ºC was 

6%. Forrest (1968) reported a lower weight loss of 3% when drying from 65 to 103 ºC. 

However, the latter study was based on Picea mariana and Pinus radiata. For the eucalypt 

species in the present study, weight changed drastically between 65 ºC and 80 ºC as shown in 

Figure 4.28. The drastic weight change can be attributed to the large amount of moisture lost 

during this temperature range and sample density. E. grandis x camaldulensis had the highest 

change of 7% while E. cladocalyx and E. gomphocephala reduced by 5.5% on average. The 

high weight change in E. grandis x camaldulensis can be attributed to its lower density which 

allows high moisture loss as compared to the other two species. Botman (2010) reported that 

density for E. cladocalyx and E. gomphocephala was higher than that of both E. grandis and 

E. camaldulensis.  

It was evident from the correlation between drying temperature and weight change that a 

linear relationship exists. Table 4.4 shows Model 4.58 which explained 89% of the variation 

in the biomass percentage using drying temperature as a predictor variable. This model was 

parameterised with temperature between 60 to 105 ºC hence it can only be used efficiently 

with temperatures between this same range otherwise extrapolation
9
 can yield incorrect 

predictions. 

5.6.2. Bark 

The outcomes on the bark sub samples showed the amount of weight change when drying 

from 60 to 105 ºC. On average bark weight dropped by 4% for all the Eucalyptus species. 

E. gomphocephala had the highest change in weight of 5% which can be largely attributed to 

the thickness and high density of its bark as compared to E. cladocalyx and 

E. grandis x camaldulensis. The larger bark thickness is directly related to the moisture 

content that a bark can hold hence losing a larger amount of water during the drying process 

                                                 

 

 

9
 Extrapolation is the process of estimating, beyond the original observation interval, the value of a variable on 

the basis of its relationship with another variable. 
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(Saint-André et al., 2004). The drastic bark weight change of 3% occurred between 65 ºC and 

80 ºC showing that when the bark is dried to 80 ºC, a small variation exist as compared to 

drying at standard temperature of 105 ºC. 

5.6.3. Branches 

Branch weight reduced to 97.8% for all the species. Van Laar and Akça (2007) reported a 

similar weight change for the Pinus radiata when temperature was increased from 70 to 

103 ºC. Although van Laar and Akça (2007) reported total weight change, branch biomass 

can be within the same range as they are considered to have similar amounts of moisture 

content as compared to the stem wood while having high moisture content as compared to the 

leaves (Saint-André et al., 2004). E. grandis x camaldulensis had the highest weight change 

of 3.5% while E. cladocalyx had the lowest weight change of 1%. The variation in the 

amount of branches weight change can be associated with a number of physical factors such 

as density and initial moisture content of the branches (Forrest, 1968). 

5.6.4. Foliage 

Seifert and Müller-Starck (2009) reported weight variation on the study of biomass of cones 

on Picea abies (Norway spruce). By drying at 38 ºC, the weight of the total cones including 

winged seeds was reduced to 84%; at drying temperature of 60 ºC the dry weight reduced to 

80% and a reduction to 78% was attained when temperature was dried at the standard drying 

temperature of 105 ºC. It is evident from the study on spruce that weight only reduced by 

2.5% when dried from 60 to 105 ºC. Foliage biomass for the eucalypt species had similar 

results with weight reduced by less than 2.5%. The low decrease in foliage biomass can be 

attributed to the rate at which foliage dry and the amount of moisture content in the foliage.  

The results obtained within this drying study demonstrate clearly the importance of a 

reporting of drying temperatures in biomass studies. With further drying series on further tree 

species, a better picture on the feasibility of transfer functions as the ones developed in this 

study could be gained in the future. Transfer function could be used to make results of 

different authors that worked on different drying temperatures comparable. This is an 

identified lack of knowledge (Seifert & Seifert, 2013) and should be receiving more attention 

in the future.  
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Chapter 6 : CONCLUSION AND 

RECOMMENDATIONS 

6.1. CONCLUSION 

The intent of this study was to develop a set of biomass models that could be used in 

determining total aboveground biomass for the three eucalypt species in typically arid 

conditions. It was shown that E. cladocalyx, E. gomphocephala and E. grandis  x  

camaldulensis have been grown in South African plantations for a number of years, however, 

limited models exists for predicting biomass especially under arid growing condition. Most of 

the models, which exist on these species were developed based on small sample sizes, and 

samples dried at temperatures less than the standard drying temperature of 105 ºC leading to a 

proportional over-estimation of biomass. Besides biomass models, the present study 

determined the changes in weight when the samples are dried at different temperatures. Thus, 

correction on estimation of biomass in cases when biomass samples are dried at temperatures 

other than the standard drying temperature can be accomplished using transfer functions 

similar to those developed here. 

Four sets of additive logarithms transformed models were parameterised for the biomass 

components (stem wood, bark, branches and foliage) using simultaneous equations developed 

in “systemsfit” R statistical package based on each species and pooled data. There was a 

strong positive relationship between biomass and dbh while biomass and h were weakly 

correlated because of the limited spread in height which was as a result of a small sample size 

used in the study (33 trees). Above average values of R
2
 were obtained on the formulated 

biomass model, which were all significant, providing a first biomass model for drought 

tolerant eucalypts in South African west coast.  

Changes were noted for all the components when biomass samples were dried under different 

temperatures. Stem wood had the highest weight percentage reduction bark weight reduced 

followed by branches and the bark. Furthermore, foliage weight had the lowest weight 

change as compared to the other components. The three eucalypt tree species did not show 

any difference in their drying pattern. Nonetheless, these changes are affected by different 

physical properties such as density, moistures content and bark thickness. Consequently, 

biomass variation between species is expected. In order to obtain more uniform results close 
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to the standard biomass drying temperature, biomass samples except for stem wood must be 

dried at least at 80 ºC to save energy. 

The total propagated error as a result of sampling and regression procedure was small. 

Upscaling 1 (Sampling) contributed large percentage of the error as compared to Upscaling 2 

(regression). Therefore, these errors can either underestimate or overestimate the biomass by 

the magnitude of the error. 

These pooled biomass models developed in this study will offer a realistic option for carrying 

out an extensive inventory of total stand aboveground biomass for the selected eucalypt 

species growing under arid condition in the area of sampling. The species-specific models are 

certainly limited in their application to the stands where the sampling took place but provide 

a first orientation on species-specific differences.  

Furthermore, the models will act as the baseline for harvesting, growth and yield, and in 

further biomass studies. Generally, these models could be used as tools for monitoring and 

long term management planning but should be parameterised with at least 30 to 50 trees per 

species from a wider variety of sites to grant a higher accuracy. 
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6.2. RECOMMENDATIONS 

The model established in this study will serve as a baseline for further biomass studies as 

motioned in Section 6.1. Practically, these models will be useful in the biomass monitoring 

for eucalypt species growing on the dry west coast of South Africa and other regions 

experiencing similar climatic conditions. The following recommendations have been 

proposed for effective utilisation of these models, and further research.  

Recommendation 1: Limited sampled trees 

The study was carried out with a limited number of trees in which certain parameters such as 

height did not fit well because of uneven representation. In future research, additional sample 

trees we be needed to increase the precision and range of biomass estimation. Therefore, 

sampling should be carried out carefully so that clustering of the data is avoided. Smaller and 

bigger trees have to be well represented in the data in order for the parameters to have a good 

fit. 

Recommendation 2: Extrapolation and prediction 

The formulated models in this study can be applied on the three selected eucalypt species 

within the diameter range (7.2 to 37.1 cm) for the sampled trees. Extrapolation beyond the 

limits of diameters range is not recommended because inaccurate biomass quantities can be 

obtained. Thus, the predictions should be made within the specific diameter range. In 

addition, model validation should be done prior to using these models in order to ascertain the 

prediction precision. The pooled model for all three species is an improvement on the single 

species models developed, considering the limited tree numbers. Despite losing specificity; it 

has a more stable fit through pooling all sample trees. 

Recommendation 3: Drying temperatures 

This study clearly indicated that biomass should be reported on samples dried at 105 ºC in 

order to avoid overestimation of biomass, especially for stem wood. In cases where lower 

biomass sample drying temperatures are required, correction of biomass overestimation 

should be carried out using additional samples dried at the standard temperature and 

developing transfer functions similar to those developed in this study. 
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APPENDIX I 

FIELD DATA COLLECTION SHEETS 

GENERAL INFORMATION 

Name of recorder:………………………….. …..Site:…………….………………………….... 

Date:…………………………………………….Species:……….……………………………..

Sample tree number:……………………............Size:………….………………………............ 

TREE SAMPLING MEASUREMENTS 

 DBH[cm]: Total Height [m]: Height Crown Base [m]: 

Stump height [cm]: Stump diameter[cm]:  

Diameter for discs collection                                    

Height [m] d1 [cm] d2 [cm] 

1 (dbh).   

2 (0.25).   

       3 (0.6).   

     4 (3 cm o.b.)   

 

Heights for the tip      

Ø [cm] Height [m] 

5cm  

3cm  

 

 

 

 

 

No Height [m] Ø [cm] 

1   

2   

3   

4   

5   

6   

7   

8   

9   

Sampled branches 
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Stem diameters 

h [m] d1 [cm] d2 [cm] 

0.3   

1   

1.3   

2   

3   

4   

5   

6   

7   

8   

9   

10   

11   

12   

……..   

……..   

3cm(Ø)   

 

 

No h [m] Ø [cm] 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

11   

12   

13   

All Branches 
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APPENDIX II 

BIOMASS DATA SET 

TREE _NO. SPECIES DBH(cm) H(m) D2H STEM 
VOLUME(m3) 

STEM(kg) BARK(kg) BRANCHES(kg) FOLIAGE(kg) TOTAL(kg) 

1 E.gxc 30.20 14.80 13498.19 0.46 287.83 37.59 155.22 23.55 504.19 

2 E.gxc 34.40 17.70 20945.47 0.76 433.09 36.83 182.20 25.17 677.28 

3 E.gxc 25.40 15.70 10129.01 0.38 255.04 24.20 73.68 14.51 367.43 

4 E.gxc 16.10 12.30 3188.28 0.13 75.26 9.30 13.79 5.50 103.85 

5 E.gxc 25.10 15.00 9450.15 0.34 211.19 21.43 68.11 12.01 312.74 

6 E.gomphocephala 25.90 13.90 9324.26 0.31 181.07 26.19 64.18 13.49 284.94 

8 E.gomphocephala 21.40 12.60 5770.30 0.20 127.39 15.44 17.74 6.59 167.16 

9 E.gomphocephala 24.40 11.50 6846.64 0.22 110.19 17.41 50.41 8.69 186.70 

10 E.cladocalyx 32.60 13.00 13815.88 0.33 165.93 24.47 220.80 33.10 444.36 

11 E.cladocalyx 25.10 13.85 8725.64 0.32 197.55 20.22 36.88 8.69 263.35 

12 E.cladocalyx 25.00 14.30 8937.50 0.27 192.49 23.60 59.51 7.71 283.31 

13 E.cladocalyx 33.50 13.00 14589.25 0.46 253.57 35.33 241.25 42.73 572.88 
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TREE _NO. SPECIES DBH(cm) H(m) D2H STEM 
VOLUME(m3) 

STEM(kg) BARK(kg) BRANCHES(kg) FOLIAGE(kg) TOTAL(kg) 

14 E.cladocalyx 29.50 17.60 15316.40 0.59 372.04 36.21 151.80 28.37 588.42 

15 E.cladocalyx 21.50 16.15 7465.34 0.30 187.05 25.13 23.33 10.84 246.35 

16 E.cladocalyx 29.60 18.05 15814.69 0.52 183.61 34.83 95.32 21.10 334.86 

17 E.cladocalyx 30.40 15.75 14555.52 0.57 407.25 49.71 94.08 19.89 570.94 

18 E.cladocalyx 37.10 16.00 22022.56 0.69 413.96 44.90 234.57 39.21 732.64 

19 E.gomphocephala 31.70 12.74 12802.30 0.57 421.23 37.06 123.83 20.64 602.76 

20 E.gomphocephala 27.60 19.40 14778.14 0.50 416.89 29.34 95.60 24.87 566.70 

21 E.gomphocephala 32.60 18.00 19129.68 0.61 403.20 49.76 146.88 22.16 622.00 

22 E.gomphocephala 20.40 16.00 6658.56 0.22 124.36 17.74 17.24 3.45 162.79 

23 E.gomphocephala 25.50 16.20 10534.05 0.38 207.72 30.59 50.53 6.62 295.46 

24 E.gxc 36.50 17.50 23314.38 0.73 562.47 51.36 296.09 52.04 961.96 

25 E.gxc 24.10 14.10 8189.42 0.30 166.39 25.09 82.14 6.47 280.08 

26 E.gxc 21.60 14.00 6531.84 0.23 162.54 18.91 53.85 13.62 248.91 

27 E.gxc 26.80 16.98 12195.72 0.40 244.64 23.53 117.24 18.28 403.69 
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TREE _NO. SPECIES DBH(cm) H(m) D2H STEM 
VOLUME(m3) 

STEM(kg) BARK(kg) BRANCHES(kg) FOLIAGE(kg) TOTAL(kg) 

29 E.gomphocephala 15.25 10.20 2372.14 0.06 37.90 9.58 28.23 17.89 93.60 

30 E.gomphocephala 8.00 7.90 505.60 0.01 6.58 2.30 3.94 3.60 16.42 

31 E.gomphocephala 10.70 8.70 996.06 0.02 13.95 4.71 6.81 5.38 30.85 

32 E.gomphocephala 7.20 7.80 404.35 0.05 4.70 2.71 5.16 2.00 14.57 

33 E.gomphocephala 11.90 9.55 1352.38 0.04 16.82 4.11 14.80 8.91 44.64 
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