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Summary 
The measurement of key process quality variables is important for the efficient and economical 
operation of many chemical and mineral processing systems, as these variables can be used in 
process monitoring and control systems to identify and maintain optimal process conditions. 
However, in many engineering processes the key quality variables cannot be measured directly with 
standard sensors. Inferential sensing is the real-time prediction of such variables from other, 
measurable process variables through some form of model.  

In vision-based inferential sensing, visual process data in the form of images or video frames are 
used as input variables to the inferential sensor. This is a suitable approach when the desired 
process quality variable is correlated with the visual appearance of the process. The inferential 
sensor model is then based on analysis of the image data. 

Texture feature extraction is an image analysis approach by which the texture or spatial 
organisation of pixels in an image can be described. Two texture feature extraction methods, 
namely the use of grey-level co-occurrence matrices (GLCMs) and wavelet analysis, have 
predominated in applications of texture analysis to engineering processes. While these two baseline 
methods are still widely considered to be the best available texture analysis methods, several newer 
and more advanced methods have since been developed, which have properties that should 
theoretically provide these methods with some advantages over the baseline methods. Specifically, 
three advanced texture analysis methods have received much attention in recent machine vision 
literature, but have not yet been applied extensively to process engineering applications: steerable 
pyramids, textons and local binary patterns (LBPs). 

The purpose of this study was to compare the use of advanced image texture analysis methods to 
baseline texture analysis methods for the prediction of key process quality variables in specific 
process engineering applications. Three case studies, in which texture is thought to play an 
important role, were considered: (i) the prediction of platinum grade classes from images of 
platinum flotation froths, (ii) the prediction of fines fraction classes from images of coal particles on 
a conveyor belt, and (iii) the prediction of mean particle size classes from images of hydrocyclone 
underflows. 

Each of the five texture feature sets were used as inputs to two different classifiers (K-nearest 
neighbours and discriminant analysis) to predict the output variable classes for each of the three 
case studies mentioned above. The quality of the features extracted with each method was assessed 
in a structured manner, based their classification performances after the optimisation of the 
hyperparameters associated with each method.  

In the platinum froth flotation case study, steerable pyramids and LBPs significantly outperformed 
the GLCM, wavelet and texton methods. In the case study of coal fines fractions, the GLCM method 
was significantly outperformed by all four other methods. Finally, in the hydrocyclone underflow 
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case study, steerable pyramids and LBPs significantly outperformed GLCM and wavelet methods, 
while the result for textons was inconclusive.  

Considering all of these results together, the overall conclusion was drawn that two of the three 
advanced texture feature extraction methods, namely steerable pyramids and LBPs, can extract 
feature sets of superior quality, when compared to the baseline GLCM and wavelet methods in these 
three case studies. The application of steerable pyramids and LBPs to further image analysis data 
sets is therefore recommended as a viable alternative to the traditional GLCM and wavelet texture 
analysis methods. 

 

  

  

Stellenbosch University  http://scholar.sun.ac.za



 

 v 
 

Opsomming 
Die meting van sleutelproseskwaliteitsveranderlikes is belangrik vir die doeltreffende en ekono-
miese werking van baie chemiese– en mineraalprosesseringsisteme, aangesien hierdie verander-
likes gebruik kan word in prosesmonitering– en beheerstelsels om die optimale prosestoestande te 
identifiseer en te handhaaf. In baie ingenieursprosesse kan die sleutelproseskwaliteits-veranderlikes 
egter nie direk met standaard sensors gemeet word nie. Inferensiële waarneming is die intydse 
voorspelling van sulke veranderlikes vanaf ander, meetbare prosesveranderlikes deur van ‘n model 
gebruik te maak. 

In beeldgebaseerde inferensiële waarneming word visuele prosesdata, in die vorm van beelde of 
videogrepe, gebruik as insetveranderlikes vir die inferensiële sensor. Hierdie is ‘n gepaste 
benadering wanneer die verlangde proseskwaliteitsveranderlike met die visuele voorkoms van die 
proses gekorreleer is. Die inferensiële sensormodel word dan gebaseer op die analise van die 
beelddata. 

Tekstuurkenmerkekstraksie is ‘n beeldanalisebenadering waarmee die tekstuur of ruimtelike 
organisering van die beeldelemente beskryf kan word. Twee tekstuurkenmerkekstraksiemetodes, 
naamlik die gebruik van grysskaalmede-aanwesigheidsmatrikse (GSMMs) en golfie-analise, is sterk 
verteenwoordig in ingenieursprosestoepassings van tekstuuranalise. Alhoewel hierdie twee 
grondlynmetodes steeds algemeen as die beste beskikbare tekstuuranalisemetodes beskou word, is 
daar sedertdien verskeie nuwer en meer gevorderde metodes ontwikkel, wat beskik oor eienskappe 
wat teoreties voordele vir hierdie metodes teenoor die grondlynmetodes behoort te verskaf. Meer 
spesifiek is daar drie gevorderde tekstuuranalisemetodes wat baie aandag in onlangse 
masjienvisieliteratuur geniet het, maar wat nog nie baie op ingenieursprosesse toegepas is nie: 
stuurbare piramiedes, tekstons en lokale binêre patrone (LBPs). 

Die doel van hierdie studie was om die gebruik van gevorderde tekstuuranalisemetodes te vergelyk 
met grondlyntekstuuranaliesemetodes vir die voorspelling van sleutelproseskwaliteits-
veranderlikes in spesifieke prosesingenieurstoepassings. Drie gevallestudies, waarin tekstuur ‘n 
belangrike rol behoort te speel, is ondersoek: (i) die voorspelling van platinumgraadklasse vanaf 
beelde van platinumflottasieskuime, (ii) die voorspelling van fynfraksieklasse vanaf beelde van 
steenkoolpartikels op ‘n vervoerband, en (iii) die voorspelling van gemiddelde partikelgrootteklasse 
vanaf beelde van hidrosikloon ondervloeie. 

Elk van die vyf tekstuurkenmerkstelle is as insette vir twee verskillende klassifiseerders (K-naaste 
bure en diskriminantanalise) gebruik om die klasse van die uitsetveranderlikes te voorspeel, vir elk 
van die drie gevallestudies hierbo genoem. Die kwaliteit van die kenmerke wat deur elke metode ge-
ekstraheer is, is op ‘n gestruktureerde manier bepaal, gebaseer op hul klassifikasieprestasie na die 
optimering van die hiperparameters wat verbonde is aan elke metode.   
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In die platinumskuimflottasiegevallestudie het stuurbare piramiedes en LBPs betekenisvol beter as 
die GSMM–, golfie– en tekstonmetodes presteer. In die steenkoolfynfraksiegevallestudie het die 
GSMM-metode betekenisvol slegter as al vier ander metodes presteer. Laastens, in die hidrosikloon 
ondervloeigevallestudie het stuurbare piramiedes en LBPs betekenisvol beter as die GSMM– en 
golfiemetodes presteer, terwyl die resultaat vir tekstons nie beslissend was nie. 

Deur al hierdie resultate gesamentlik te beskou, is die oorkoepelende gevolgtrekking gemaak dat 
twee van die drie gevorderde tekstuurkenmerkekstraksiemetodes, naamlik stuurbare piramiedes en 
LBPs, hoër kwaliteit kenmerkstelle kan ekstraheer in vergelyking met die GSMM– en golfiemetodes, 
vir hierdie drie gevallestudies. Die toepassing van stuurbare piramiedes en LBPs op verdere 
beeldanalise-datastelle word dus aanbeveel as ‘n lewensvatbare alternatief tot die tradisionele 
GSMM– en golfietekstuuranalisemetodes. 
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Chapter 1  
 
Introduction  

 

 

 

The measurement of key process quality variables is important for the efficient operation of 
many chemical and mineral processing systems. When quality variables cannot be measured 
directly, vision-based inferential sensing may be used to predict these variables based on the 
analysis of process image data.  

Texture feature extraction is an image analysis approach by which the spatial information of the 
pixels in an image can be described. The main objective of this study is to compare the use of 
advanced image texture analysis methods to baseline texture analysis methods for the 
prediction of key process quality variables in specific process engineering applications. 
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1.1 Inferential sensing in the process industries 
The measurement of key process quality variables is important for the efficient and profitable 
operation of many chemical and mineral processing systems. Since these variables are related to the 
quality of the process outputs, they can be used in process monitoring and control systems to 
identify and maintain optimal process conditions. When a process is properly monitored and 
controlled, it can operate at its full potential, maximising production and minimising waste and 
losses.  

Although most modern processing plants are equipped with a large number of sensors, there are 
many important process variables which cannot be measured directly with standard hardware 
sensors. Inferential sensing is the prediction of such process variables from other, measurable 
process variables through some form of a model.  

Inferential sensors offer the benefit of real-time variable prediction, whereas alternative 
measurement techniques often rely on some form of manual sampling and costly laboratory 
analyses, which do not provide data within a sufficient timeframe for control purposes. Also, 
inferential sensors do not interfere with the process at hand and may easily be incorporated in 
existing plant-wide control schemes. On the downside, the accuracy of predictions made by 
inferential sensors can be sensitive to undesirable effects that are commonly present in process 
data, such as measurement noise, missing values and outliers (Kadlec et al., 2009).  

In many engineering processes, the desired process variable can be predicted by using an inferential 
sensor with process variables measured by standard sensors (such as temperature or pH) as inputs. 
Examples of such applications include the modelling of metal quality in a blast furnace 
(Radhakrishnan & Mohamed, 2000), the prediction of gas concentrations in a distillation column 
(Fortuna et al., 2005) and the estimation of process quality variables in a cement kiln system (Lin et 
al., 2007). However, in some processes there are no causal relationships between the variables that 
are to be predicted and the available process measurements. For example, no variables related to 
the particle size distribution of the ore output by a grinding process are measured with standard 
hardware sensors. In such cases the desired information is often related to the visual appearance of 
the process. One solution is then to capture image data of the process and use these data as input 
variables to the inferential sensor, building a model for the desired variable based on analysis of the 
images. The use of machine vision in such a way is termed vision-based inferential sensing in this work. 

1.2 Vision-based inferential sensing 
Vision-based inferential sensing may be used to solve process variable prediction problems in cases 
where the desired process variable is correlated with the visual appearance of the process or 
product.  
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1.2.1 Framework 
The framework for vision-based inferential sensing considered in this work is shown in figure 1-1, 
which at the most basic level consists of two steps: dimensionality reduction and modelling. 

 

Figure 1-1: Basic vision-based inferential sensing workflow 

The sensor takes image data as inputs, which are very high-dimensional as each pixel amounts to a 
dimension. The first step is therefore to reduce the dimensionality of the data, because modelling 
techniques do not perform well when the dimensionality of the input data is too high. To this end, 
two major types of features are typically extracted from images: spectral and textural features. 
Spectral features are usually extracted with multivariate image analysis (MIA), which has been very 
popular in recent image analysis applications in the process industries. The extraction of textural 
features capture the spatial organisation of images, and it is this type of feature extraction that is a 
main focus in this work.  

The second step in vision-based inferential sensing is modelling, where the extracted features from 
a set of training images are used as input to train a regression or supervised classification model. 
Regression is used when a continuous dependent variable is to be predicted, while classification is 
used for the prediction of discrete dependent variable values or ranges. After the model has been 
trained, new, unseen images may be analysed by extracting their features and using these features 
as input to the trained model, allowing the model to predict the variables associated with each 
image. 

1.2.2 Image analysis in the process industries 
Research on image analysis in the process industries has been focused to a large extent on MIA, a 
technique that was originally proposed by Geladi and others (1989) for the extraction of spectral 
features from images. In MIA, the usual approach is to apply principal component analysis (PCA) to 
an unfolded multivariate image, after which spectral features can be extracted in a number of 
different ways.  

MIA has been applied to a diverse range of problems, such as the online grading of wood (Bharati et 
al., 2003), prediction of zinc grade in a sphalerite froth flotation process (Duchesne et al., 2003), 
estimation of the coating content of snack foods (Yu & MacGregor, 2003) and monitoring of flames 
in an industrial boiler (Yu & MacGregor, 2004). 

Image data Dimensionality reduction Modelling Predicted variable

MIA

Texture feature extraction

Feature selection

Regression

Classification
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The extraction of spectral features is appropriate when there is a strong correlation between the 
predicted variable and the colour, saturation or luminosity of the image data, as in the applications 
mentioned here. However, in many cases the spatial organisation of pixels process images, as 
captured by textural features, are more descriptive of the process.  

1.3 Texture analysis 
Texture is present in many natural images and can intuitively be interpreted by humans, but there 
does not yet exist a complete mathematical model that can explain the complex nature of this 
image property. For this reason, several types of texture analysis approaches have been developed 
that attempt to approximate textural properties in different ways. These approaches can be 
grouped into three main categories: statistical, structural and transform-based approaches. Each of 
these has their advantages and disadvantages, which is why most of the more recent and advanced 
texture analysis methods tend towards the unification of these approaches, combining their 
elements in various ways.  

Depending on the application, the end goals of texture analysis algorithms may vary considerably. 
The three main problem types are texture segmentation, texture synthesis and texture 
classification, of which the latter is the most applicable to vision-based inferential sensing.  

1.3.1 Texture feature extraction 
Texture classification follows the two-step procedure depicted in figure 1-1. For the texture feature 
extraction step, two methods have received much attention in process engineering literature: the 
use of grey-level co-occurrence matrices (GLCMs) and wavelet texture analysis. Even though many 
alternatives to these techniques exist, GLCMs and wavelets are considered as state-of-the-art 
texture analysis methods within the process industries (Duchesne et al., 2012). 

Introduced by Haralick and others (1973), a GLCM of an image is a concise summary of the 
frequencies at which grey levels (pixel intensities) in an image occur at a specified displacement 
from each other, thus summarising the spatial relationships between pixels in an image. Statistical 
texture features are extracted based on one or more GLCMs of an image. There have been many 
process applications of GLCMs, among others in the monitoring of froth flotation processes 
(Bartolacci et al., 2006; Gui et al., 2013), defect detection on wooden surfaces (Conners et al., 1983; 
Mäenpää et al., 2003a) and quality grading of steel surfaces (Bharati et al., 2004a). 

Wavelets are mathematical functions that can be convolved with images, transforming the images 
into representations that emphasise the frequency and spatial distribution of the image pixels, 
allowing for improved analysis of these properties (Mallat, 1989). Wavelet texture analysis typically 
involves the decomposition of images into horizontal, vertical and diagonal coefficient sets at 
multiple scales or levels. A feature set commonly extracted from this representation consists of the 
energies of all the coefficient sets. Wavelets have also seen many applications within the process 
industries, for example in the monitoring of flotation froth health (Liu et al., 2005; Liu & MacGregor, 
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2008), defect detection in textile products (Latif-Amet et al., 2000) and tiles (Ghazvini et al., 2009), 
and surface quality inspection of steel surfaces (Bharati et al., 2004a; Liu et al., 2007). 

While the GLCM and wavelet texture analysis methods both led to significant breakthroughs in the 
field of texture feature extraction when they were first popularised, newer texture analysis 
methods have since been developed. Specifically, three texture analysis methods have received 
much attention in recent texture classification literature, although they have not yet been applied 
extensively to process engineering applications: steerable pyramids, textons and local binary 
patterns (LBPs).  

Steerable pyramid transformations (Simoncelli et al., 1992) are similar to wavelet transformations 
in that they also result in multi-resolution image representations. Steerable pyramids have the 
advantage of being rotation and translation invariant, a very desirable property in most image 
analysis applications. Furthermore, the extraction of an advanced set of statistical measurements 
from steerable pyramid representations has been proposed by Portilla and Simoncelli (2000).  

Textons are conceptually perceived as local texture descriptors or textural “primitives” that occur 
frequently in images, such as blobs, edges, line terminators and line crossings (Julesz, 1981). Modern 
texton approaches involve image filtering and pixel clustering, with textons being defined as cluster 
centres in the filter response space (Leung & Malik, 2001; Varma & Zisserman, 2005). This method 
combines ideas from the statistical, structural and transform-based approaches in a unique way. 

Finally, the LBP is a texture analysis operator for local texture characterisation, initially proposed by 
Olaja, Pietikäinen and Harwood (1994). The operator is applied to greyscale images in a pixel-wise 
fashion by comparing each pixel to its local pixel neighbourhood and employs a simple 
thresholding function. A major improvement to the original LBP was made when Ojala and others 
(2002b) proposed several mapping types that allowed for rotational invariance and proper 
representation of so-called “uniform” textures. The underlying principles of LBP texture analysis is 
the same as that of the texton algorithm, but with the advantage of reduced computational 
complexity.   

The latter three methods described here will be referred to as advanced texture analysis methods in 
this work, as they combine texture analysis approaches in various ways and have some unique, 
desirable properties. The former two methods, GLCMs and wavelets, will be referred to as baseline 
methods, since their application within the process industries is already well established. There is 
reason to believe that the advanced texture analysis methods may be able to extract improved 
features when compared to the baseline methods, and this possibility is investigated in the current 
work. 

1.3.2 Classification 
In the vision-based inferential sensing framework, dimensionality reduction is followed by a 
modelling step. In this work, two well-known and popular classification methods were considered 
for this step: a K-nearest neighbour (K-NN) classifier and discriminant analysis (DA). In K-nearest 
neighbour (K-NN) classification, given a set of training data points with known labels, a new (test) 
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data point is assigned the most prevalent label among its 𝐾𝑁 closest neighbours in the feature 
space, with the number of neighbours 𝐾𝑁 being pre-specified.  

Discriminant analysis (DA) attempts to find a weighting matrix for the training feature set that the 
multiplication of each feature vector with the weighting matrix results in a feature projection 
where the classes are maximally separated. The data are then classified according to the maximum 
a-posteriori probability rule. 

1.4 Case studies 
Three vision-based inferential sensing case studies, in which textural features are expected to play a 
more important role than spectral features, were considered in this work: 

I. the classification of platinum flotation froth images into platinum grade categories, 
II. the classification of coal particle images into fines fraction categories, and 

III. the classification of hydrocyclone underflow images into particle size categories. 

1.4.1 Case study I: Platinum flotation froths 
Froth flotation is a popular method for the separation of valuable metal-containing minerals from 
gangue minerals. The metallurgical and economic performance of a froth flotation system is 
determined by the grade and recovery of the valuable mineral in the froth, and ideally these key 
process quality variables should be measured in real-time.  

Currently, the best way of measuring froth grade is with on-stream analysers (OSAs), which can 
provide chemical analyses of a process streams downstream of the flotation cells. However, these 
instruments are expensive to purchase and maintain (Liu & MacGregor, 2008), which often means 
that only one OSA is used to analyse the collective process stream from many flotation circuits 
(Holtham & Nguyen, 2002). Therefore, there could be a significant measurement delay of up to 20 
minutes, and any deviations within a particular flotation circuit would be difficult to detect. This is 
not desirable for control purposes. 

The performance of flotation systems has been linked to the visual characteristics of the froth phase 
(Moolman et al., 1994), and in most flotation plants the control decisions are made based on visual 
judgement of the appearance of the froth. For this reason, much research has been done on vision-
based inferential sensing for the monitoring of flotation systems (Bonifazi et al., 2000; Duchesne et 
al., 2003; Gui et al., 2013). 

In platinum froth flotation the colour of the froth and its grade does not appear to be correlated 
(Marais & Aldrich, 2011). This motivates the use of textural features as input to a classifier for 
platinum froth grade. 
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1.4.2 Case study II: Coal on a conveyor belt 
The performances of many process reactors and metallurgical furnaces are influenced to a great 
extent by the physical properties of the feed to these processes, such as its particle size distribution.  
In this case study, the online prediction of the fraction of fine particles in coal on a conveyor belt is 
considered. The fines fraction is an important quality variable to be measured in coal feeds to 
gasification reactors, since excessive amounts of fine particles in the feed can impair the gas 
permeability of the coal bed in the reactor. This would result in non-ideal conditions for the 
reacting phase and, subsequently, an adverse effect on the performance of the gasifier (Aldrich et 
al., 2010).  

Traditionally, particle size distributions or fines fractions of coal is analysed periodically via sieve 
analysis of belt cut samples. This method is not adequate for control purposes, due to the significant 
delay in the availability of information and the poor representativeness of samples, as the feed 
material properties can fluctuate rapidly.  

The alternative of vision-based inferential sensing has been investigated using GLCM features 
(Aldrich et al., 2010) or texton features (Jemwa & Aldrich, 2012) as input to classifiers for fines 
fraction categories. The prediction of fines fraction is clearly more of a texture analysis problem 
than a spectral analysis problem, since groups of particles with different sizes have very distinctive 
textures, but their colour remains the same. 

1.4.3 Case study III: Hydrocyclone underflows 
Hydrocyclones are used as separation devices in many engineering processes. In grinding circuits, 
for example, hydrocyclones take as input ore from mills and separate the particles that conform to 
size specifications from oversize particles. Most of the smaller, conforming particles separate into 
the overflow and are passed along to downstream processes, while the most of the oversize particles 
pass into the underflow and are returned to the mill for regrinding.  

When a hydrocyclone in a grinding circuit is properly controlled, the load that circulates through 
the process is minimised, leading to optimal energy usage and lower operating costs (Janse van 
Vuuren, 2011). The operating state of a hydrocyclone can be determined visually by assessing the 
spray angle of the underflow (Neesse et al., 2004), and is related to the particle size distribution of 
the particles in the underflow (Janse van Vuuren, 2011; Uahengo, 2013).  

In this work the classification of hydrocyclone underflow images into mean particle size categories 
is investigated. Again, particle size analysis is more suited to textural feature extraction than 
spectral feature extraction. In fact, colour features can be very misleading in this application, as the 
colour of ores can fluctuate considerably, with no relation to the mean particle size. 

Stellenbosch University  http://scholar.sun.ac.za



 

Chapter 1 – Introduction 8 
 

1.5 Objectives 
The main goal of this study is to compare the use of advanced image texture analysis methods to 
baseline texture analysis methods for the prediction of key process quality variables in specific 
process engineering applications. 

To achieve this goal, four secondary objectives are specified: 

1. Conduct a critical survey of literature on vision-based inferential sensing and texture 
analysis techniques, as well as their applications within the process industries.  

2. Identify and select texture analysis algorithms that, based on the literature review, have a 
reasonable chance of leading to the successful prediction of key process quality variables 
from process image data. Study and understand the theoretical concepts behind these 
algorithms.  

3. Implement baseline and advanced texture feature extraction algorithms. Use these 
algorithms to extract features from process image data from three case studies where clas-
ses of key process quality variables are to be predicted. Optimise the hyperparameters of all 
methods. 

4. Assess the quality of the features extracted with each texture analysis algorithm in a 
structured manner by comparing their abilities to predict key process quality variable 
classes. 

1.6 Scope 
The algorithms considered for implementation are limited to texture classification algorithms. That 
is, texture analysis algorithms are used to extract textural features from images, which are 
subsequently used for supervised classification of the data into two or more classes. This specifically 
excludes spectral feature extraction and regression from the scope of the project. The evaluation of 
classification performance is considered to be sufficient for the assessment of the quality of features 
extracted with different texture analysis algorithms, as performance trends observed from the 
results of classifying into ordinal classes should reasonably hold true when using regression. Since 
the focus is on texture feature extraction, a thorough investigation and optimisation of the 
classification step also falls beyond the scope of this project. 

The methods explored in this study do not constitute an end product that is ready for implementa-
tion in an industrial setup. Rather, this work contributes towards the long-term goal of developing 
effective vision-based inferential sensors for process engineering applications by assessing 
algorithms that may eventually be used by such sensors. An interpretation of the entire life cycle of 
a vision-based inferential sensing research program shows that it consists of many stages, as 
depicted in figure 1-2 (adapted from Wagstaff, 2012). Although all stages in such a vision-based 
inferential sensor research programme are discussed, the main contribution of this work is to the 
algorithm development or selection phase. 
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1.7 Layout 
This thesis is organised as follows. Chapter 2 presents a literature review on vision-based inferential 
sensing, which is followed by a theoretical overview of five texture analysis methods in chapter 3. In 
chapter 4 the methodology followed in implementing and assessing the texture analysis algorithms 
is detailed. The results for the three case studies are presented in chapters 5, 6 and 7. Chapter 8 
concludes this work with a final discussion, including the most important conclusions and 
recommendations for future research. 

The appendices include a nomenclature (appendix A), sample calculations (appendix B), all 
repetition results for two of the case studies (appendices C and D) and a list of publications based on 
this work (appendix E). 

 

Figure 1-2: The entire life cycle of a vision-based inferential sensor research 
programme. 

Problem identification

Algorithm development / selection

Data collection

Results interpretation Industrial implementation

Main contribution of this work
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Inferential sensing is the use of measured process variables to predict an unknown process 
variable through some form of a model. Vision-based inferential sensing refers to the use of 
image data as input to an inferential sensor. The development of a vision-based inferential 
sensor consists of two main steps: dimensionality reduction and modelling. In applications of 
this technology in the process industries, the focus has been on multivariate image analysis 
(MIA). Three application areas of vision-based inferential sensing are in the monitoring of froth 
flotation systems, the estimation of physical properties of particulate feed materials on 
conveyor belts and the monitoring of hydrocyclones. 
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2.1 Introduction 
Inferential sensors can be used for the online, real-time measurement of key process quality 
variables, which can be very useful for monitoring and control purposes. In section 2.2, inferential 
sensing is discussed in detail. 

In some process applications there are no causal relationships between the desired process 
information and the available process variables, but there is a strong relation between the desired 
information and the visual appearance of the process. In such cases, process images can be used as 
input variables to the inferential sensor and analysed to develop a model for the desired variable. 
The use of machine vision in this way is called vision-based inferential sensing. In applications of 
vision-based inferential sensing in the process industries, a strong focus has been placed on 
multivariate image analysis (MIA), a very well-known and efficient technique for the extraction of 
spectral information from images. Section 2.3 introduces image analysis and shows how this field 
has been applied to inferential sensing in the process industries. 

Three case studies that have received considerable attention in machine vision literature will be 
discussed in section 2.4: 

1. the monitoring of mineral froth flotation systems,  
2. the characterisation of the physical properties of rock particles on conveyor belts and 
3. the monitoring of hydrocyclones. 

This chapter ends with conclusions in section 2.5. 

2.2 Inferential sensing 
Inferential sensors can measure key process response or product quality variables online and in 
real-time, without interfering with the process at hand. In the process industries, the demand for 
this technology has grown over the last two decades, and there have been a large number of 
theoretical studies and industrial implementations. Inferential sensors are also widely known as 
soft sensors (Kadlec et al., 2009), virtual online analysers (Han & Lee, 2002) or observer-based 
sensors (Goodwin, 2000). 

In many applications the desired process information can be extracted by constructing a model 
using the many process measurements available from standard sensors (such as pressure, pH, 
temperature or flow rate) as inputs. Comprehensive reviews of inferential sensing in process 
applications may be found in Fortuna and others (2007) and Kadlec and others (2009).  

2.2.1 Inferential sensor tasks 

Online prediction 
Inferential sensors may be used to perform a variety of tasks in process systems, the most dominant 
application area being the real-time estimation of key process variables that cannot be measured 
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within a sufficient timeframe with traditional sensors (Kadlec et al., 2009). This task will henceforth 
be referred to as online prediction. 

Typically, the inferred variables are closely related to the efficiency of the process or quality of the 
product. The timeous availability of these variables can aid process operators in the accurate 
determination of the process state and the source of any deviations, leading to improved process 
control.  

An example of an online prediction application of inferential sensors is the estimation of key 
process response variables in mineral flotation processes, such as grade or recovery. Traditionally, 
the froth grade is indirectly measured with on-stream analysers (OSAs), but these devices are 
expensive and can have significant measurement delays. In general, even if the measuring time is in 
the order of minutes, for instance as is the case with many on-stream gas chromatographs, the 
delay would still be too long if it is in a range comparable to the time constant of the process 
(Fortuna et al., 2007). 

Automated process monitoring and control 
The effectiveness of manual monitoring depends largely on the experience and engineering 
judgement of the operator, whose task is becoming increasingly difficult as modern process plants 
grow in size and complexity (Venkatasubramanian et al., 2003). When the variables predicted by 
inferential sensors meet accuracy requirements for process control, it is relatively easy to 
incorporate the predicted variables into existing process monitoring and control systems. The 
difference between this soft sensor task and online prediction is that the variables predicted for 
process monitoring and control are not necessarily significant in their own regard, but rather could 
be any derived features that are useful inputs to a model that can determine the process state.  

In some cases, new automatic control systems can be built by using variables predicted by the soft 
sensors as inputs. When these automatic control systems replace manual control systems, operator 
man-hours are reduced and the possibility of erroneous manual control actions is alleviated. This 
can lead to significant economical savings. 

Sensor validation 
Another soft sensor task is sensor validation (Fortuna et al., 2007). Sensor validation is a particular 
type of process monitoring where the process to be monitored is another sensor. Let the sensor to 
be monitored be denoted by 𝜆ℎ and the inferential sensor by 𝜆𝑖. In sensor validation, the reliability 
of the variable measurement produced by 𝜆ℎ is determined by comparing it to the output predicted 
by 𝜆𝑖 (again, this task contains an online prediction component). If 𝜆ℎ is found to be defective, 𝜆𝑖 
may temporarily replace the defective sensor by providing an estimate of the measured variable. 
Sensor validation can be used to detect and diagnose any sensor faults before a model for online 
prediction or automated process monitoring is built, to prevent inaccuracies in the model (Kadlec et 
al., 2009). 
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What-if analysis 
Inferential sensors may also be used for what-if analysis. In this type of analysis, the sensor model is 
used to simulate system dynamics corresponding to interesting trends in the input variables. This 
can lead to improved control policies and a deeper understanding of the process (Fortuna et al., 
2007). 

2.2.2 Inferential sensor models 
Soft sensors use models to relate measured process variables to unknown process response 
variables or product properties. The models used can be categorised into two basic types: model-
driven and data-driven (Kadlec et al., 2009).  

Model-driven models rely on first principle models that are derived from fundamental chemical and 
physical principles, for instance by using energy balances or reaction kinetics. These analytical 
models often focus on steady process states, and it is sometimes necessary to make simplifying 
assumptions during their derivation. These factors can limit their success in predicting process 
variables under real-life conditions.  

On the other hand, data-driven models are based solely on historical process data. These models are 
derived empirically using statistical techniques such as regression. This is especially useful in cases 
where the first principle relationship between the input and output variables is not well-
established, or when the analytical model is too computationally expensive for real-time 
implementation. It is also possible to combine the model-driven and data-driven models to form a 
hybrid model. 

The data-based approach does have its drawbacks, particularly where low-quality input data is 
involved. Pre-processing of the input variables remains a difficult and time consuming task, as 
process data is often highly correlated, measured at different sampling rates and riddled with 
missing values and outliers (Kadlec et al., 2009). However, data-based models are more versatile and 
adaptable than their model-based counterparts. For instance, a data-based model can continue to 
grow and be recalibrated as more process data becomes available, so that new, unseen process states 
are eventually included in the model.  

2.2.3 Framework 
The development or “training” of a data-based (empirical) inferential sensor involves a number of 
steps, each of which may be performed using a range of methods, as shown in figure 2-1 (adapted 
from Kadlec et al., 2009; Duchesne et al., 2012).  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2 – Vision-based inferential sensing  14 
 

  

 

Figure 2-1: A general framework for the development of a data-based inferential sensor for online prediction. The 
blocks with solid frames represent required steps, while the blocks with dashed frames represent steps that may be 

omitted. 
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The first step in an inferential sensing framework is to select variables from historical process data, 
which are usually abundantly available in modern process plants. The collection of data for the 
process response variable that is to be predicted can be a challenging and costly task.  

The next step, pre-processing, typically includes normalisation of the variables to zero mean and 
unit variance, outlier detection and handling of missing data points.  

Although dimensionality reduction is technically not a required step, it becomes important when a 
large number of input variables are used, since many of these variables are expected to be 
redundant or correlated. Feature extraction is one way to reduce the dimensionality of a data set, 
and involves transformation of the input variables to a reduced representation, for example by 
calculating statistical properties of the data and using these properties as features instead of the 
original data. With feature selection, a minimal subset of the original features is determined. One of 
the most well-known tools for dimensionality reduction is principal component analysis (PCA) 
(Pearson, 1901), which finds the orthogonal axes of maximal variation in the data and projects the 
data onto these axes. This allows for the variables to be represented with a smaller, transformed 
feature set (principal component scores), without significant loss of information.  

After these data preparation steps, a regression or classification model can be trained. When the 
variable to be predicted is continuous, a regression model is appropriate, whereas discrete variables 
or categories are predicted with classification models. The various forms of regression, especially 
partial least squares (PLS) regression, are some of the most popular approaches for data-based 
inferential sensing (Wold et al., 2001).  

Once the desired process response or product quality variables have been determined, these may be 
used to aid process operators in the determination of the process state, or optionally be 
incorporated into automated monitoring and control systems. 

2.3 Image analysis 

2.3.1 Machine vision 
Digital image analysis is the extraction of useful information from images by using image 
processing algorithms. This falls within the field of computer vision, which includes all matters 
related to the development of an artificial system that can interpret visual information in a 
meaningful way. Thus, computer vision is the larger field that also includes subjects related to 
image acquisition, such as lighting and imaging devices (cameras). When computer vision is used in 
industrial applications, it is commonly referred to as machine vision, although no universally 
accepted terminology exists in these overlapping fields. Hereafter, the term machine vision and not 
computer vision will be used, since the applications of this work are in the process industries.  

Computers “see” images as data points, with each pixel in the image being a variable. In greyscale 
images each pixel is represented by one value called its lightness or intensity, which ranges from 0 
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to 255 in an 8-bit image. An example is shown in figure 2-2: the extreme intensities are black (0) and 
white (255), with all other intensities having values in between these two extremes. 

Since each pixel is a variable, image analysis algorithms sometimes require the “unfolding” of an 
image: the image matrix is reshaped either row-wise or column-wise into a one-dimensional array. 
In the example in figure 2-2, the 7 × 11 matrix would be unfolded into a vector of length 77. 

Unlike in greyscale images, pixels in multivariate images are represented by more than just one 
value. Colour images are often represented in the RGB colour space: each pixel is a three-
dimensional variable represented by a red, green and blue value. An alternative and perhaps more 
intuitive colour space is the HSL system, in which a hue, saturation and lightness (intensity) value is 
associated with each pixel.  

RGB images have three spectral bands (red, green and blue). Images represented by higher 
dimensional colour spaces are called multispectral images, and can include infrared spectra. These 
images contain additional information in the spectra that cannot be observed by the human eye, 
but which can be extracted with image analysis algorithms.  

The goal of a machine vision implementation is usually to obtain some of the same information that 
would be obtained with the human visual cortex (a biological vision system). For this reason, many 
image analysis methods are based on models of biological vision. Although much progress has been 
made in the last few decades with the ever-increasing computer processing power, in most cases 
machines have not been able to replace human analysts. However, in some applications computers 
can even outperform humans, especially when a large amount of pre-processing is required. 

  
(a) (b) 

Figure 2-2: (a) An example greyscale image of an “F” with size 7 x 11 pixels, and (b) its computer 
representation. 
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Machine vision may be used for a diverse range of tasks. The most common tasks in the process 
industries are: 

 Object recognition – determining whether an image contains a specified object, which can 
be used by autonomous robots in the handling of products (Felisberto et al., 2003) 

 Defect detection – finding regions in an image that do not conform to the norm, for 
instance detecting fabric faults in textiles (Kumar & Pang, 2002) 

 Classification – assigning one of several pre-defined classes to an image based on its 
content, for example classifying the quality of steel surfaces into excellent, good, medium 
and bad categories (Bharati et al., 2004a) 

 Regression – inferring a continuous variable from an image, for instance predicting the 
grade of the valuable material in a flotation froth (Bartolacci et al., 2006) 

2.3.2 Image analysis for inferential sensing 
In many inferential sensing applications in the process industries, the desired information can be 
predicted by using process measurements from sensors that are already installed in the plant as 
inputs to a model. However, this is not always the case, especially in the minerals processing 
industry where many of the process streams or products are solids or slurries (Duchesne, 2010). In 
these cases the process state can often be determined visually, and this means that image analysis 
can be used to assist in, or take over, the role of plant operators who interpret the appearance of the 
process.  

The key point to observe here is that the use of image analysis to extract desired information from a 
process is the same as the use of an inferential sensor with image data as its input variables. In this 
work, these synonymous procedures are referred to as vision-based inferential sensing. 

Framework used in this work 
All purely vision-based inferential sensors use data-driven models, since a first principle 
relationship between the input variables (image pixels) and an output process response variable 
does not exist. Figure 2-3 shows a framework for the development of a vision-based inferential 
sensor (adapted from Duchesne et al., 2012), which is very similar to the general framework for 
data-based inferential sensor development (see figure 2-1).  

The first step in this framework is to capture image data using some form of imaging device, such as 
a digital video camera. Many physical factors can influence the quality of images obtained, and the 
usual approach is to optimise the imaging conditions as far as possible. For instance many authors 
recognise the importance of keeping the lighting conditions as constant and uniform as possible 
(Swain & Ballard, 1991; Duchesne et al., 2012). Alternatively, all possible variable image conditions 
can be captured and then modelled for removal during pre-processing (Leung & Malik, 2001). 

The pre-processing step typically consists of normalisation of each image to zero mean and unit 
variance, and can also include the correction of uneven lighting. Pre-processing is not always 
critical in vision-based inferential sensing, as many of the problems associated with process data 
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from standard sensors (such as differing sampling rates and missing measurements) are not 
relevant here. 

 

 

Figure 2-3: A framework for the development of a vision-based inferential sensor. The blocks with solid frames represent 
required steps, while the blocks with dashed frames represent steps that may be omitted. 
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Image data is very high-dimensional; moreover, spectral bands are usually highly correlated. Since 
regression or classification models do not perform well when the dimensionality of the input data is 
too high, dimensionality reduction is extremely important in vision-based inferential sensing. 
Dimensionality reduction of image data usually involves the extraction of features from the images. 
The problem of deciding which features to extract is the most critical part of the framework, as the 
overall efficiency of the sensor depends on how informative and appropriate these features are for 
the prediction of the desired information (Duchesne et al., 2012). 

Two types of features are typically extracted: spectral and textural features. Spectral features 
contain information regarding the number of pixels in an image having specific colours, and do not 
take the spatial distribution of the colours into account. These features are commonly extracted 
with multivariate image analysis (MIA), which applies PCA to an unfolded multivariate image. A 
more detailed discussion of MIA follows in section 2.3.3. 

Textural features capture the spatial organisation or texture of the pixels, but only take one spectral 
dimension (usually intensity) into account. Since texture analysis is a major focus area of the 
current work, the larger part of chapter 3 (p. 27) is dedicated to this topic. 

The final step is to build a regression or classification model. Partial least squares (PLS) is a popular 
regression option, while common classifiers include the K-nearest neighbour (K-NN) classifier, 
discriminant analysis (DA) and support vector machines (SVMs). In this work, only classification 
case studies were considered, and the investigation of the classification step was moreover not a 
main focus. Therefore, only two basic and popular classifiers were considered: K-NN (detailed in 
chapter 3, section 3.8.1, p. 58) and DA (section 3.8.2, p. 59). 

Other image analysis frameworks 
It should be noted that the dimensionality reduction and modelling procedure described here is not 
the only possible framework for the extraction of desired information from process images. 
Segmentation techniques have frequently been used in commercial image analysis software. For 
example, to determine the particle size distribution of particulate matter, segmentation techniques 
such as edge detection would attempt to find the edges of each particle in an image. From the 
segmentation of the image, mathematical correlations are used to calculate the particle size 
distribution. Segmentation techniques have been found to be very sensitive to irregular light 
reflections and shadows, which limits their robustness in industrial applications (Aldrich et al., 
2012). 

2.3.3 Multivariate image analysis 
Image analysis in the process industries has been focused on multivariate image analysis (MIA), a 
technique that was originally proposed by Geladi and others (1989) for the extraction of spectral 
features from images. The use of MIA for prediction is often referred to as multivariate image 
regression (MIR), which is a form of vision-based inferential sensing.  

The earliest work on the application of MIA in the process industries was a conceptual study by 
Bharati and MacGregor (1998), who illustrated the potential of MIA for real-time process 
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monitoring and control by using a sequence of multispectral satellite images, since multispectral 
process image data were not available at the time. 

There are many variations of MIA, but most techniques involve PCA of unfolded images as a primary 
step: for each image a PCA representation is obtained by treating the pixels as variables and the 
spectral bands as dimensions. Thus, each image is associated with a set of component scores (also 
called score images) and a set of loading vectors (the weights by which the original pixels should be 
multiplied to obtain the component scores).  

There are several ways in which PCA results may be used to extract desired information. In the 
traditional approach MIA is used directly for process monitoring in a segmentation approach. Areas 
of interest (“masks”) are identified in the principal component space (typically a plot of the first 
principal component score versus the second principal component score). The pixels falling within 
the masks are then overlaid on the original image to assess the segmentation quality, and the 
procedure is repeated iteratively until a sufficient segmentation is obtained (Geladi & Grahn, 1996). 
This masking approach was used to detect various defects in softwood lumber, which enabled the 
online grading of the wood – an online prediction inferential sensor task (Bharati et al., 2003). In an 
application to a zinc froth flotation process, masks were used to detect clear windows on bubbles 
(corresponding to a deficiency in reagents) and brown spots (correlated with sphalerite grade). 
These were used to monitor the sphalerite grade (Duchesne et al., 2003) and to detect when the 
reagent dosage should be adjusted (Liu et al., 2005).   

MIA may be used for prediction by computing “overall” features (based on global representations of 
an image) or “distribution” features (based on local regions in images). One possible set of overall 
features is the first loading vector of each image (from its PCA representation). This was used by Yu 
and MacGregor (2003) to determine snack food coating content and by Bharati and others (2004b) to 
predict pulp properties. Additional loading vectors may also be used: in a flotation system the 
mineral grade in the froth was predicted by using the first two loading vectors as input spectral 
features (Yang et al., 2009).  

Distribution features are more appropriate when the desired information is related to local 
variations of spectral features within an image, and can also be more robust to variations in lighting 
conditions. Some successful MIA applications using distribution features include the monitoring of 
flames in an industrial boiler (Yu & MacGregor, 2004) and the prediction of nitrogen oxides 
emissions in the off-gas of a rotary cement kiln (Lin & Jørgensen, 2011).  

2.4 Applications in the process industries 
This section gives an overview of three important application areas in the minerals processing 
industry, where the desired information is related to the visual appearance of the process: froth 
flotation systems, rock particles on conveyor belts and hydrocyclone underflows.  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2 – Vision-based inferential sensing  21 
 

2.4.1 Froth flotation 
Flotation is a popular method for the separation of valuable metal-containing minerals from gangue 
material. Slurry consisting of liberated ore particles and water is conditioned through the addition 
of a surfactant to render the valuable mineral particles hydrophobic. The slurry is then fed to a 
series of flotation cells, which are aerated to introduce air bubbles. The hydrophobic particles 
attach to the air bubbles, which rise to the surface, forming froth. This froth then passes to the next 
cell and is removed from the final cell, yielding a mineral-rich concentrate.  

The metallurgical and economic performance of a froth flotation system is determined by the grade 
and recovery of the valuable material in the concentrate. Theoretically, grade and recovery are 
inversely related via the specific mineral’s grade-recovery curve.  

The grade (𝐺) is the ratio of the mass of valuable material reporting to the concentrate (𝑚𝐶) to the 
total mass of solids reporting to the concentrate (𝑀𝐶):  

Recovery (𝑅) is the ratio of the mass of valuable material reporting to the concentrate (𝑚𝐶) to the 
mass of valuable material that was fed to the process (𝑚𝐹):  

Recovery cannot be measured online, but rather has to be estimated from steady state mass 
balances after laboratory analysis of input ore and the final concentrate samples. Apart from the 
significant time delay incurred when calculating recovery in this way, some estimation error is 
inevitably introduced, as samples taken are not necessarily representative of entire process streams. 
Therefore, the usefulness of recovery as a controlled variable is limited, and most strategies focus 
on controlling the grade at the theoretical optimum point in the grade-recovery curve (Del Villar et 
al., 2010).  

The mineral grade can be measured periodically via laboratory analysis, but this does not provide 
real-time information, as is required for process monitoring. Another possibility is the use of OSAs 
to measure the grade downstream from the flotation circuits, but these devices are expensive and 
have limited accuracy. The use of machine vision to aid in process monitoring has become an 
attractive alternative solution (Duchesne, 2010).  

Commercial vision-based products for flotation monitoring 
Several commercial products have been developed for vision-based inferential sensing in flotation 
systems. With FrothMasterTM (developed by Outotec) properties related to the physical appearance 
and dynamic properties of a froth are calculated, among others the bubble size distribution, froth 
speed and direction, and froth stability. These measurements, together with statistical data related 
to these variables and grade predictions from an OSA, can be used for the automated control of the 

 
𝐺 =

𝑚𝐶
𝑀𝐶

 (2-1)   

 
𝑅 =

𝑚𝐶
𝑚𝐹

 (2-2)   
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froth speed, stability and colour. JK FrothCamTM (JK-Tech Pty. Ltd.) measures bubble size, froth 
structure and froth speed, which can be employed in a classification algorithm to determine 
variations in the process performance. VisioFroth (Metso Minerals Cisa) provides the means and 
standard deviations of froth speed, froth stability, bubble size distribution, colour and brightness. 
The product can be used to stabilise the froth speed by manipulating the level and air flow rate set 
points. Several other products have been developed, including PlantVisionTM (KnowledgeScape), 
WipFroth (WipWare), ACEFLOT (DICTUC SA) and SmartFroth (University of Cape Town).  

Although most of these products have been tested in industrial environments, very few results have 
been reported. Also, many of these commercial solutions have been developed for specific cases and 
are not guaranteed to have wide applicability (Liu & MacGregor, 2008). These products mostly share 
two characteristics: first, they have not been developed to directly infer concentrate grade or 
recovery (Del Villar et al., 2010), and second, physical froth features are extracted. Although such 
physical features have the advantage of being intuitively interpreted and understood, it is possible 
that advanced texture analysis methods can extract features that contain more information than 
the physical features, which may improve the prediction of froth grades. 

Applications of vision-based inferential sensing to flotation monitoring 
Several studies have shown that the concentrate grade of a froth flotation system is correlated with 
spectral and textural features extracted from froth images. As early as 1994, the Fast Fourier 
Transform (a multispectral texture analysis method) was applied to images of copper flotation 
froths in a study on the prediction the concentrate grade (Moolman et al., 1994). While the features 
extracted from froth images were discussed, quantitative predictions of concentrate grades were 
not made. In the same work the traditional physical features (average bubble size distribution, flow 
direction and bubble shape) were used to characterise different froth surface structures. A 
combination of colour and fractal texture features were used in a regression model to predict the 
grades of four different metals in a sulfide flotation system (Bonifazi et al., 2000). The grades of the 
four metals could be estimated with high R2 values ranging between 0.89 and 0.96. Duchesne and 
others (2003) used spectral features obtained with a MIA masking procedure to monitor sphalerite 
grade in a zinc flotation system. GLCM features were compared to spectral and physical froth 
features for the estimation of platinum grade in the froth (Marais & Aldrich, 2011), where an 
excellent R2 value of 0.99 was obtained with the best model. GLCM features combined with colour 
information were used to establish a qualitative relationship between the features and the grade of 
a bauxite flotation froth (Gui et al., 2013). 

Physical features have also been used to successfully predict key flotation performance variables. 
Kaartinen and others (2006) measured the froth colour, bubble size distribution, froth load, froth 
speed and bubble collapse rate, and used the features to predict both grade and recovery in a zinc 
flotation system. Subsequently, a feedback control strategy was designed, with the manipulated 
variable being the amount of copper sulfate added. An industrial implementation of this control 
system led to significant financial savings due to improved zinc recoveries.  

Another important task in visual flotation monitoring is termed froth health monitoring, and involves 
the characterisation of the quality of the froth structure. Liu and others (2005) applied multi-
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resolutional multivariate image analysis (MR-MIA) to images of a zinc froth cell at the LaRonde 
plant of Agnico-Eagle in Quebec. Their MR-MIA approach involved the extraction of colour and 
texture features with principal component analysis (PCA) followed by wavelet texture analysis. 
Using these features, they were able to estimate froth health by calculating bubble size histograms 
and quantifying the visible amount of clear windows and black holes on the froth surface. 
Monitoring charts were developed from the PCA score plots, providing an excellent description of 
froth health. It has also been shown that the estimation of zinc grade can be incorporated within 
the MR-MIA framework. In a later study on the same flotation system (Bartolacci et al., 2006), a 
control scheme based on the froth description was implemented at the LaRonde plant, which 
resulted in a significant decrease in the occurrence of froth collapse and hence a substantially 
increased zinc recovery rate. Another controller was designed using the same MR-MIA features 
combined with additional process data, which further improved the control performance (Liu & 
MacGregor, 2008). 

Although the merit of using physical froth features should not be discounted, it is clear from the 
studies described here that spectral and textural image analysis are viable alternative approaches 
for key performance variable prediction and froth health monitoring.  

2.4.2 Rock particles on a conveyor belt 
Many industrial processes have as their input some type of particulate material (for example ore or 
coal) which is transported on conveyor belts.  The physical properties of feed materials on conveyor 
belts are often of vital importance to the performance of downstream processes. As an example, the 
performance of process reactors and metallurgical furnaces can be influenced to a great extent by 
the particle size distribution (PSD) of the feed. Specifically, the presence of excessive amounts of 
fine particles (passing a 6 mm sieve mesh size) in the coal feed to fluidised bed gasification reactors 
can impair the gas permeability of the coal bed. This results in nonideal conditions for the reacting 
phases and, subsequently, an adverse effect on plant performance (Aldrich et al., 2010). The real-
time availability of both PSD and ore composition measurements would be useful in crusher or 
semi-autogenous grinding (SAG) mill circuits to optimise power consumption, circulating load and 
product PSD (Duchesne, 2010). 

Conventionally, PSD is analysed periodically via sieve analysis of belt cut samples, and ore 
composition is determined by performing laboratory analyses. These methods are not adequate for 
control purposes, due to the poor representativeness of samples, rapid fluctuations in feed material 
properties and significant measurement delays. The use of vision-based inferential sensors for 
online prediction of important rock feed properties is a widely investigated alternative solution.  

Commercial vision-based products for monitoring of particles on conveyor belts 
A few vision-based commercial products have been developed for PSD analysis. The focus has been 
on the troubleshooting and control of crushers and grinding mills, aiming to avoid mill overload 
and reduce power consumption (Duchesne, 2010). Two examples are WipFrag (Wipware) and 
VisioRock (Metso), both of which use segmentation techniques to compute PSDs from greyscale 
images.  
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However, segmentation techniques are known to be sensitive to varying and non-uniform lighting 
conditions, and are prone to difficulties resulting from irregular light reflections by heterogeneous 
particle surfaces (Aldrich et al., 2012). The possibility has to be considered that advanced textural 
and spectral features can improve the quality of prediction.  

Applications of vision-based inferential sensing to monitoring of particles on conveyor belts 
The fraction of fines in coal particles on a conveyor belt was estimated by use of GLCM texture 
features (Aldrich et al., 2010). The estimation of the fines fraction was treated as a classification 
problem by classifying images into categories of “fine”, “middling” and “coarse” using kernel-based 
discriminant analysis. More recently, advanced texture feature extraction methods were used to 
classify the same data into seven fines fraction categories (Jemwa & Aldrich, 2012).  

In a different study, PSD characteristics of natural and industrial bulk aggregates were determined 
with a texture analysis method called the angle measure technique (Dahl & Esbensen, 2007). Ore 
PSDs were measured with a neural network-based inferential sensor, using “uniformity” image 
features as input and PSDs from WipFrag (Wipware) as initialisation of the network. 

The estimation of run-of-mine ore compositions on conveyor belts is a very challenging machine 
vision problem, since minerals can be heterogeneous and different minerals in ores can have very 
similar spectral properties. Moreover, external factors such as the wetness of the ore can 
significantly impact the visual appearance of the ore. In a case study on a complex nickel mineral 
system at the Raglan Mine in Quebec, Tessier, Duchesne and Bartolacci (2007) extracted spectral 
features from ore images using PCA, and texture features via wavelet decomposition followed by 
GLCM feature extraction. It was found that excellent ore composition estimates could be made for 
dry ore, even though the minerals were very heterogeneous and had similar visual characteristics. 

2.4.3 Hydrocyclones 
Hydrocyclones are separation devices used in many engineering applications, such as liquid 
clarification, slurry thickening and solid particle classification (Svarovsky, 1984). In the minerals 
processing industry, one of the most important applications of hydrocyclones is in grinding circuits, 
where they are used to separate particles that conform to size specifications from oversize particles 
that should be returned to the milling section for regrinding. 

The monitoring and control of hydrocyclones in grinding circuits is important, since properly 
functioning hydrocyclones can significantly reduce the running costs of these circuits (Janse van 
Vuuren, 2011). The operating states of hydrocyclones can be determined by assessing the 
appearance of the underflow, and can be categorised into three types (Neesse et al., 2004):  

1. dilute flow separation, where the underflow has an umbrella-like shape with low solids 
content, 

2. dense flow separation, where the underflow has a rope-like shape with high solids content, 
and  

3. transition state, which is a combination of the two previously mentioned states. 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2 – Vision-based inferential sensing  25 
 

Although high solids content in the underflow is desired, as achieved with dense flow separation, 
this is not the most desirable operating state, since the conditions that lead to the rope-like shape of 
the underflow can cause instabilities and blocking of the hydrocyclone. The most desirable state is 
the transition state. 

Several approaches to the measurement of process variables related to the process state have been 
investigated in the past. For example, a mechanical device for the measurement of the spray angle, 
based on contact with the underflow, has been developed by Hulbert (1993). Various types of 
tomography have been used to measure variables such as the underflow shape (Williams et al., 1999) 
and internal density distribution of the underflow (Galvin & Smitham, 1994; Gutiérrez et al., 2000). 
As yet, none of these techniques have been widely implemented, usually due to limiting factors such 
as high installation and maintenance costs or significant measurement delays.  

The use of vision-based inferential sensing has also been proposed as a hydrocyclone monitoring 
technique. In this respect, the focus has been on extracting physical features from image data of 
hydrocyclone underflows, such as the: 

 air core size and shape (Castro et al., 1996),  
 underflow spray angle (Petersen et al., 1996; Van Deventer et al., 2003), and 
 underflow shape (Neesse et al., 2004; Janse van Vuuren, 2011). 

The operating state of a hydrocyclone is related to the particle size distribution of the particles in 
the underflow: in dilute flow separation there are many fine particles, in dense flow separation 
there are many coarse particles, and the particle size distribution of the transition state is in-
between these two extremes (Janse van Vuuren, 2011; Uahengo, 2013). Therefore, instead of 
attempting to use customised image analysis methods to measure features that are directly related 
to hydrocyclone operating states, a vision-based inferential sensor could be employed to predict the 
particle size distribution of the particles in the underflow. Textural features are proposed in this 
work as viable inputs to such a sensor, since at least to the human eye there is a strong correlation 
between the particle size distribution of hydrocyclone underflows and their textural properties. 

2.5 Conclusions 
This chapter gave an overview of inferential sensing, image analysis and the fusion of the two fields, 
namely vision-based inferential sensing. Vision-based inferential sensors offer many benefits, such 
as the ability to predict variables in real-time without interfering with the process at hand. These 
sensors may also be incorporated into existing process monitoring and control systems with 
relative ease. It is therefore easy to see why there is a great desire for this technology in the process 
industries. 

The focus of many machine vision applications in the process industries has largely been on MIA, 
and moreover on the extraction of spectral rather than textural image features. 

Two specific vision-based inferential sensing applications, namely the monitoring of froth flotation 
systems and the estimation of the physical properties of particulate matter on conveyor belts, have 
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received much attention in machine vision literature. It was found that for both of these 
applications, commercial solutions often extract physical, hand-crafted features, or rely on 
segmentation techniques. On the other hand, several studies (usually involving MIA) have shown 
that the extraction of spectral and textural features is a viable alternative. 

In the monitoring of hydrocyclones several vision-based monitoring approaches, using the 
underflow, have been proposed. As in the previous two case studies discussed, these solutions often 
involved the extraction of physical features that are unique to hydrocyclone underflows. The 
extraction of textural features is considered as a feasible alternative, since at least to the human eye 
there is a strong correlation between the particle size distribution of hydrocyclone underflows and 
their textural properties. 
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In this chapter a theoretical overview of five texture analysis approaches is given: grey-level co-
occurrence matrices (GLCMs), wavelets, steerable pyramids, textons and local binary patterns 
(LBPs). Two classification methods, namely K-nearest neighbours (K-NN) and discriminant 
analysis (DA), are also explained. The aim here is to provide the background that is necessary to 
understand the methods outlined in the methodology of this work (chapter 4, page 62). 
Additionally, the process applications of these techniques are reviewed. 
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3.1 Introduction 
Texture can be observed in many natural images, but it is difficult to find a mathematical definition 
of this intuitive image property. An extensive list of texture definitions was compiled by Coggins 
(1982), most of which are context-dependent. Rather than attempting a precise definition, in this 
work texture will be regarded conceptually as the spatial organisation of the pixels in an image 
(Rosenfeld & Kak, 1982).  

In the remainder of the introduction, various background aspects around texture analysis are 
introduced. This is followed by the detailed description of five texture analysis methods in sections 
3.2 to 3.6, with a comparison between these methods in section 3.8. The chapter ends with 
conclusions in section 3.9. 

3.1.1 Texture modelling approaches 
A significant amount of information can be contained in the texture of an image. As yet, there does 
not exist a mathematical model that can explain the complex nature of texture, but such a model 
can be approximated in various ways. Several sources in literature provide a taxonomy of texture 
modelling approaches (see for example Tuceryan & Jain, 1998; Prats-Montalbán et al., 2011), and 
although terminology differs considerably, most authors agree on three basic categories: 

1. statistical approaches, 
2. structural approaches and 
3. transform-based approaches. 

Statistical texture analysis is an umbrella term for methods that involve some form of statistical 
modelling or feature extraction. In image analysis, the “order” of the statistical features extracted 
refers to the number of pixels considered together (Larabi & Charrier, 2012). Some simple examples 
of statistical image features are the mean and variance of the intensity histogram of an image, 
which are called “first-order” statistics since these do not depend on the spatial distribution of the 
pixels. Since textural information is not explicitly captured with these statistics, these features are 
limited to the description of evenly spread textures (López, 2005). Second-order statistical texture 
analysis methods consider the spatial relationship between pairs of pixels (two pixels at a time). A 
popular second-order statistical texture analysis method is the use of grey-level co-occurrence 
matrices (GLCMs) (Haralick et al., 1973). Other statistical approaches include autocorrelation 
functions (Kaizer, 1955) and various model-based approaches, such as fractal models (Peleg et al., 
1984) or Markov random field models (Cohen et al., 1991).  

Structural approaches to texture analysis can be traced back to early texture modelling literature, 
where many approaches drew inspiration from simulations of texture interpretation in the human 
visual system. The most influential work in this regard is probably that of Julesz, which involves the 
principles of pre-cognitive human texture discrimination. Julesz (1981) proposed the basic idea 
behind structural texture modelling: textures can be characterised by local descriptors consisting of 
prominent features such as blobs, line terminators and line crossings. Such texture descriptors are 
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termed primitives or textons. A popular structural texture modelling approach is the use of 
mathematical morphology (Serra, 1982). 

In transform-based methods some form of transform is applied to images to make their textural 
properties more accessible. Many of these transforms result in multi-resolutional image 
representations, a fact that is thought to be advantageous based on empirical evidence that textures 
are visually interpreted at different scales (Campbell & Robson, 1968). Examples of transform-based 
methods include spatial domain filtering, Fourier transforms, wavelets and steerable pyramids. 

3.1.2 Tasks in texture analysis 
Depending on the application, the end goals of texture analysis algorithms may vary considerably. 
The three main problem types identified in literature are: 

1. texture segmentation,  
2. texture synthesis and 
3. texture classification. 

Texture segmentation is the partitioning of an image into regions that have homogeneous textures. 
Segmentation often uses feature detection methods, such as edge detection to find the separating 
line between the different regions. Supervised image segmentation means that some a priori 
information about the different segments expected in the image is available, in which case it 
becomes a pixel-wise classification problem. In terms of vision-based inferential sensing, the 
predicted variable for this task could be the percentage of the image covered by a specific region.  

Texture synthesis is the development of a model for a texture and the subsequent use of this model 
to generate the texture. The results obtained by texture synthesis can be important visual 
indicators of the quality of texture representations (Portilla & Simoncelli, 2000). For example, if a 
synthesised texture does not appear to be visually similar to the original texture from which the 
model was developed, then this indicates that the texture representation was insufficient. Texture 
synthesis is, however, not useful for the purpose of vision-based inferential sensing. 

Texture classification is the categorisation of textural images into predefined classes. This is the 
main focus of the current work, as it is the most useful task for vision-based inferential sensing. For 
example, texture classification may be used in a process monitoring application by classifying 
images into categories of “normal” and “deviation” process states. 

3.1.3 Texture feature extraction 
Texture classification involves two steps: texture feature extraction followed by classification. In 
this chapter five texture feature extraction methods are described: 

1. grey level co-occurrence matrices (GLCMs), 
2. wavelets, 
3. steerable pyramids, 
4. textons and 
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5. local binary patterns (LBPs). 

The first two of these methods, GLCMs and wavelets, are referred to as baseline methods in this 
work. The last three methods are referred to as advanced methods, since they satisfy the following 
three criteria: 

1. the method has unique characteristics and properties (see the following, section 3.1.4) that 
should theoretically provide some advantage over the traditional GLCMs and wavelets, 

2. the method has been implemented with considerable success in recent texture analysis 
literature, and 

3. the method has not yet been widely applied in industrial applications. 

3.1.4 Properties of texture analysis algorithms 

Combination of approaches 
The statistical, structural and transform-based approaches to texture analysis may be combined in 
various ways, incorporating the information obtained with each approach in a hybrid approach. It is 
plausible that the combination of texture analysis approaches could lead to advantages when 
compared to using only one approach. 

Pixel neighbourhood considered 
The local pixel neighbourhood considered when computing textural features can play an important 
role in the performance of texture analysis algorithms. Texture analysis methods that incorporate 
appropriately sized local pixel neighbourhoods are expected to yield improved performance over 
methods that extract textural features on a global level only (Tuceryan & Jain, 1998).  

Rotation and translation invariance 
When a texture analysis method is invariant to rotation and translation, it means that the features 
extracted from rotated or shifted versions of an image will be the same as features extracted from 
the original image. Although this is a highly desirable property for most applications, it is not easy 
to achieve (Simoncelli et al., 1992).  

Multiscale representation 
Most natural textures occur at various scales within an image, and for this reason multi-resolution 
texture analysis methods, representing the same image at multiple resolutions, have been 
developed (Tuceryan & Jain, 1998). Multiscale representation allows for the analysis of the texture 
at each scale, possibly revealing textural characteristics that would have been difficult to detect 
when considering only local texture neighbourhoods or only global statistics of an image. 
Transform-based texture analysis methods are usually designed with the specific aim of multiscale 
representation in mind, although several other methods can be extended to account for multiscale 
representation to some degree. 
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3.2 Grey-Level Co-occurrence Matrices 
A very well-known and established statistical method of examining texture is use of the Grey-Level 
Co-occurrence Matrix (GLCM), sometimes known as the grey-tone spatial-dependence matrix. 
Introduced by Haralick and others (1973), a GLCM of an image is a concise summary of the 
frequencies at which grey levels (pixel intensities) in an image occur at a specified displacement 
from each other, thus encapsulating the spatial relationships between pixels in an image. Statistical 
texture features are then extracted based on one or more GLCMs of an image.  

3.2.1 GLCM calculation 
Natural greyscale images usually contain many grey levels, the most common being 8-bit images 
with 28 = 256 pixel intensities or grey levels (each grey level 𝑔 is in the range 0 ≤ 𝑔 ≤ 255, 𝑔 ∈
ℕ). However, in GLCM calculation a fairly low number of grey levels (𝐺) is often used, which reduces 
computation time and acts as noise reduction. The greyscale image 𝐼𝐺  is therefore first scaled so 
that each grey level 𝑔 is scaled to lie between 0 and 1: 

where 𝑔max  and 𝑔min  are the maximum and minimum grey levels in the original image, 
respectively.  Then, the “image” from which the GLCM is calculated becomes: 

where ⌊∙⌋ denotes the flooring operator and 𝐽 is a matrix of ones with the same dimensionality as 
the image. 𝐼𝐺𝐿𝐶𝑀  will have grey levels 1 ≤ 𝑔 ≤ 𝐺, 𝑔 ∈ ℕ. A popular value for 𝐺  is 8, but the 
hyperparameter should ideally be optimised since a trade-off exists between the benefits of noise 
reduction and the loss of original image information (Clausi, 2002). 

Formally, the definition of the GLCM is as follows. Let us denote a GLCM of image 𝐼 as 𝑃𝐼(𝑑, 𝐺), 
where 𝑑 = (𝑑𝑥, 𝑑𝑦) is a chosen displacement between each pair of two pixels and 𝐺 is the number 
of grey levels in 𝐼𝐺𝐿𝐶𝑀. Then each entry 𝑝𝑖,𝑗 of the 𝐺 × 𝐺 sized GLCM is the number of times that the 
grey level pair (𝑔𝑖, 𝑔𝑗) occurs at a displacement of exactly 𝑑 apart in 𝐼𝐺𝐿𝐶𝑀. This method therefore 
uses pixel pairs as the pixel neighbourhood. 

Figure 3-1 (a) shows an example displacement, 𝑑 = (𝑑𝑥, 𝑑𝑦) = (3,2). Also indicated on this figure 
are the standard directions of the 𝑥-axis and 𝑦-axis in an image, which differs from the Cartesian 
convention.  

 
𝐼𝑆𝑐 =

𝐼𝐺 − 𝑔min
𝑔max − 𝑔min + 1

 (3-1)  

 𝐼𝐺𝐿𝐶𝑀 = ⌊𝐼𝑆𝑐 × 𝐺⌋ + 𝐽 (3-2)  
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As an example of GLCM calculation, figure 3-2 shows a 5 x 5 image (with 𝐺 = 4 grey levels) on the 
left, with its GLCM on the right. The displacement chosen in this example is (0, 1), which means that 
horizontally adjacent pixel pairs are considered. Entry (1, 1) of the GLCM has a value of 1 because 
there is only one instance of horizontally adjacent pixels with grey levels 1 and 1. Entry (2, 1) has a 
value of 2 because there are two instances of horizontally adjacent pixels with grey levels 2 and 1. In 
a similar fashion, the entire GLCM is calculated. 

 

Figure 3-2: [Left] A 5 x 5 image with four grey levels, and [right] its GLCM for 𝒅 = (𝟎, 𝟏) 

It should be noted that in this example the ordering of grey levels in the pixel pairs was taken into 
account, yielding a non-symmetric matrix. However, many implementations do not take order into 
account, for instance there would be no differentiation between grey level pair (1, 2) and (2, 1). This 
would result in a symmetric co-occurrence matrix. 

  

 

Figure 3-1: (a) Example of displacement 𝒅 = (𝟑, 𝟐). (b) The four directions for which 
GLCMs are commonly calculated. 

(a) (b)
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As a final step, the GLCM is normalised so that the sum of its elements is equal to 1, which means 
that the GLCM becomes a probability matrix of joint pixel occurrences. The normalised GLCM 𝑃̂𝐼 is 
given by: 

Since the GLCM obtained is a function of 𝐺 and 𝑑, it is possible to calculate more than one GLCM for 
each image. The most popular choice (originally proposed by Haralick et al., 1973 and subsequently 
used by most studies) seems to be to fix 𝐺 and calculate GLCMs for four different displacements: 
(0, 𝐷), (−𝐷,𝐷), (−𝐷, 0) and (−𝐷,−𝐷), corresponding to directions 0°, 45°, 90° and 135°. 𝐷 is a 
hyperparameter affecting the size of the displacement 𝑑, often fixed at 𝐷 = 1. The four directions 
in which the GLCMs are usually calculated are depicted in figure 3-1 (b).  

3.2.2 Feature extraction from GLCMs 
Once a set of GLCMs has been calculated, features may be extracted from them. A very well-known 
feature set has been proposed by Haralick and others (1973), which consists of 14 features that 
express the contrast, orderliness and other statistical properties of the image. However, many of 
these features are highly correlated among themselves (Haralick et al., 1973), which is why Haralick 
(1979) later reduced this set to only five features: energy (angular second moment), entropy, 
contrast, correlation and homogeneity (inverse difference moment). Maillard (2003) reviewed the 
work of many authors that have used GLCM features and concluded that these five features were 
overall the most popular, although all five were not always used together.  

Energy and entropy are both measures of the uniformity of the GLCM. In a thorough study of 
feature correlations, it was found that these two features are highly correlated and that there is no 
need to include both features (Clausi, 2002). Excluding entropy (since this feature seems to be less 
popular than energy), the four features left are energy, contrast, correlation and homogeneity. 
These features are summarised in table 3-1. In the formulas for the features: 

 𝑝̂𝑖,𝑗 represents the entry in row 𝑖 and column 𝑗 of the normalised GLCM 𝑃̂𝐼, 
 𝜇𝑖  and 𝜇𝑗  are the means of the row 𝑖 and column 𝑗 of the GLCM, respectively, and 
 𝜎𝑖 and 𝜎𝑗 are the standard deviations of row 𝑖 and column 𝑗 of the GLCM, respectively. 

After extracting these four features, each image is represented by 4 × 𝑁𝑑  features, where 𝑁𝑑  is the 
number of displacements considered. The standard procedure for producing a feature vector from 
these features is as follows. For each feature and GLCM calculated at a specified distance, the 
average and standard deviation across all orientations are calculated (Haralick, 1979). This ensures a 
degree of rotational invariance while still accounting for anisotropic effects (effects that differ 
according to the direction of the measurement). The length of the feature vector then becomes 
4 × 2 = 8. 

  

 
𝑃̂𝐼 =

𝑃𝐼
∑ 𝑝𝑖,𝑗𝑖,𝑗

 (3-3)  
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Table 3-1: Features extracted from a GLCM 

3.2.3 Applications in the process industries 
In the original work on GLCMs by Haralick (1973), different types of sandstone were classified, 
among others. This is related to the field of surface inspection in the process industries, for example 
the quality grading of steel surfaces using GLCM and various other textural features (Bharati et al., 
2004a).  

There are numerous applications of GLCMs in the fields of mining and minerals processing. 
Bartolacci and others (2006) used GLCM and wavelet features extracted from flotation froth image 
data to build PCA models for the monitoring of a zinc froth flotation system. No conclusion was 
drawn as to which feature set was more appropriate. In a platinum group metal flotation system, 
GLCM features were compared to spectral and physical froth features for the estimation of the 
platinum grade in the froth by using a neural network classifier (Marais & Aldrich, 2011). GLCMs 
have been extended to include colour information, and a qualitative relationship between colour 
GLCM features and the grades of bauxite flotation froths was established (Gui et al., 2013). Kernel-
based discriminant analysis with GLCM features as input was used by Aldrich and others (2010) to 
classify the fraction of particulate fines in coal on conveyor belts. Later, wavelet decomposition 
followed by GLCM feature extraction was used for the same coal fines fraction classification problem 
and also extended to fines estimation in iron ore (Amankwah & Aldrich, 2011).  

Description Formula 
1. Energy (also known as angular second moment or uniformity) is 
simply the sum of the squared elements in the GLCM. It is a 
measure of uniformity or pixel-pair repetitions. When all the pixel 
values in an image are similar, the energy of the GLCM is high (for 
a constant image, energy is equal to 1, its maximum). 

𝐸𝑁𝐸 =∑𝑝̂𝑖,𝑗
2

𝑖,𝑗

 

2. Contrast (also known as variance or inertia) measures the 
average grey level difference between pixel neighbours. 
A large value of GLCM contrast indicates a texture with large local 
variations. Contrast and homogeneity are somewhat correlated, 
but the use of both features remains popular. 

𝐶𝑂𝑁 =∑|𝑖 − 𝑗|2 𝑝̂𝑖,𝑗
𝑖,𝑗

 

3. Correlation is a measure of how related a pixel is to its 
neighbour over the whole image. The correlation measure here is 
slightly different to the original Haralick correlation (Haralick et 
al., 1973), since it has been normalised. 

𝐶𝑂𝑅 =∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝̂𝑖,𝑗

𝜎𝑖𝜎𝑗
𝑖,𝑗

 

4. Homogeneity (also called inverse difference moment) measures 
the closeness of the distribution of elements in the GLCM to the 
GLCM diagonal. High values of homogeneity mean that the 
differences between grey levels of pixel pairs are small. 

𝐻𝑂𝑀 =∑
𝑝̂𝑖,𝑗

1 + |𝑖 − 𝑗|
𝑖,𝑗
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In a very early application to defect detection for an automated lumber processing system, GLCM 
features combined with simple first-order statistics were used (Conners et al., 1983). Mäenpää and 
others (2003a) compared various texture analysis algorithms and found that GLCM features yielded 
the best results when applied to the detection and classification of defect types on wooden surfaces.  

In the food processing industry, GLCM and wavelet features were extracted from ultrasound images 
of live cattle. These features were used as combined input to a regression model predicting the 
intramuscular fat content, which is a strong indicator of the meat grade (Kim et al., 1998). In this 
case the wavelet features outperformed the GLCM features. In another meat grading application, 
very good results were achieved by Shiranita and others (1998) using GLCMs directly as features for 
classification (instead of extracting Haralick texture features). Several feature sets, including GLCM 
features, were tested by using regression models for the prediction of important variables in the 
syneresis of cheese curd (Fagan et al., 2008). In this case GLCMs were among the worst of the 
methods that were tested. 

GLCM and wavelet features are often combined or compared, and thus more studies that make use 
of GLCM features are discussed in the section on wavelet applications in the process industries 
(section 3.3.5, p. 43). 

From literature reviewed here it can be concluded that GLCMs are a very popular method for 
texture analysis within the process industries, considering how many diverse applications of this 
method has been found. In most of the studies where the extraction of GLCM features was the only 
approach considered, the authors concluded that GLCM features were well suited to their particular 
application (Shiranita et al., 1998; Aldrich et al., 2010; Gui et al., 2013). However, when other features 
were also considered, these features have often outperformed the GLCM features (Kim et al., 1998; 
Fagan et al., 2008; Marais & Aldrich, 2011). This suggests that, for many applications, GLCM features 
may not be the optimal texture analysis method. 

3.3 Wavelet analysis 
Research on biological vision revealed that the human visual cortex interprets visual information 
by performing frequency analysis, among others (Campbell & Robson, 1968). This led to the idea of 
applying signal processing methods, such as the well-known Fourier analysis, to images. Frequency 
analysis is especially suited to texture analysis, due to the spatially repetitive nature of texture, 
which is one of its defining properties.  

Wavelet analysis (popularised by Mallat, 1989) is a signal processing method that has been 
developed to overcome certain limitations of Fourier analysis. Wavelets are mathematical functions 
that, owing to certain mathematical constraints, have a “wave-like” form. An example of a wavelet 
(the Daubechies 4-tap wavelet) is shown in figure 3-3.  
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 A key task in wavelet analysis is image compression, the most notable implementation being the 
image compression standard JPEG 2000 (Schelkens et al., 2009). In machine vision applications in the 
process industries, wavelet texture analysis has become a standard method (Duchesne et al., 2012). 
An advantage of wavelet transforms is that the set of possible prototype functions is infinite (unlike 
with the Fourier transform, which employs only the sine and cosine functions). It is therefore 
possible to optimise the wavelet algorithm for a specific application by choosing the most 
appropriate analysing wavelet (Materka & Strzelecki, 1998), but on the other hand this adds a 
hyperparameter that has to be optimised. One of the main limitations of wavelet analysis is that the 
representation is not rotation and translation invariant. 

In section 3.3.1 the progression from the Fourier transform to the wavelet transform is explained 
and section 3.3.2 gives the mathematical framework for wavelet analysis. In these two sections, the 
various signal processing methods are explained in terms of their application to one-dimensional 
signals in the time-amplitude domain. However, the actual application in this work is to greyscale 
images, which can be seen as two-dimensional “signals” in a spatial-spatial-intensity domain. The 
application of wavelet analysis to images is detailed in section 0, and the features that may be 
extracted from the wavelet representation of an image are discussed in section 3.3.4. Section 3.3.5 
concludes with applications of wavelet analysis in the process industries. 

3.3.1 From Fourier transform to wavelet transform 

Fourier transform 
The Fourier transform (FT) is a mathematical transformation that is used to represent time-
amplitude domain signals in the frequency-amplitude domain. The FT is suitable for the analysis of 
stationary signals (in which the frequency components remain the same at all times), but its 
effectiveness is limited in the analysis of non-stationary signals, since all information regarding the 
times at which certain frequencies occur is lost. 

 
Figure 3-3: The Daubechies 4-tap wavelet computed with  

10 iterations 
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Short-time Fourier transform 
Most real-life signals (including most natural images) are non-stationary. In an attempt to overcome 
the limitation of the FT, the short-time Fourier transform (STFT) was developed (Gabor, 1946; Allen 
& Rabiner, 1977). The main principle behind the STFT is to divide the signal into segments or 
“windows” along the time axis and then determine the frequency components that exist within 
each window separately. For each window, this is done by multiplying the signal to be transformed 
with a compactly supported window function (which is zero-valued outside the window) before 
applying the FT. The window function is a function of translation (𝜏), which is directly related to 
time (𝑡), as it indicates where along the time axis the window function is located (where it has non-
zero values). 

The result after applying the STFT is a representation of the signal in three dimensions (time, 
frequency and amplitude). However, in this representation neither the time nor the frequency 
information is exact, a problem which is rooted in Heisenberg’s uncertainty principle. In the 
context of signal processing, Heisenberg’s principle states that it is not possible to determine the 
exact frequency components that exist at a given instant in time. This leads to the so-called 
“resolution problem” of signal processing: there exists a trade-off between the resolution (precision 
or exactness) of the time information and the resolution of the frequency information. One can 
obtain a very good time resolution by using very narrow window functions, so that the interval of 
time considered approaches an instant, but this will give poor frequency resolution (the exact 
frequency components will not be known). By using wider window functions, a better frequency 
resolution can be obtained, but the time resolution will become worse (only the frequency 
components occurring during a longer interval of time will be known). When increasing the width 
of the window to the entire duration of the signal, the normal FT is obtained, with perfect 
frequency resolution but zero time resolution.  

Wavelet transform 
The wavelet transform (WT) was developed to sidestep the resolution problem of the STFT by 
maintaining a high time resolution (and thus low frequency resolution) at high frequencies, and a 
high frequency resolution (but low time resolution) at low frequencies. This is done by altering the 
size of the wavelet, which is the “window function” used in wavelet analysis, through dilation or 
contraction. Varying the time-frequency resolution in this way is well-suited to the analysis of most 
natural signals, since high frequencies often occur for short periods of time, while low frequencies 
tend to be present for the entire duration of the signal. The concept of multi-resolution analysis is 
illustrated in figure 3-4. 
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Figure 3-4: The varying time-frequency resolutions used in the WT 

In figure 3-4, each rectangular shape corresponds to a single value (amplitude) of the WT in the 
time-frequency domain, and has a fixed non-zero area. At lower frequencies, the heights of the 
rectangular shapes are smaller, which corresponds to better frequency resolutions (since there is 
less uncertainty regarding the exact frequency values). In turn, the widths of the rectangular shapes 
are larger at lower frequencies, corresponding to poorer time resolutions. The exact opposite is 
seen at high frequencies: the larger heights indicate poorer frequency resolutions and the smaller 
widths indicate better time resolutions. If the STFT was to be illustrated in the same manner, the 
plot would have consisted of squares with the same area as the rectangles in figure 3-4, due to the 
constant width of the window function. 

Both the STFT and WT result in representations in the three-dimensional time-frequency-
amplitude domain, or equivalently translation-frequency-amplitude domain (time corresponds 
linearly to translation) However, the WT is usually shown in the translation-scale-amplitude 
domain, where scale (𝑠) is the reciprocal of frequency (𝑓):  

3.3.2 Continuous and discrete wavelet transform 

Continuous wavelet transform 
The continuous wavelet transform (popularised by Meyer, 1986) is formally given as: 

 
𝑠 =

1

𝑓
 (3-4)  

 
𝑊(𝑠, 𝜏) = ∫𝑥(𝑡)𝜓𝑠,𝜏

∗ (𝑡)𝑑𝑡 (3-5)  
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This equation shows how 𝑥(𝑡), a signal in the time domain, is transformed into function 𝑊(𝑠, 𝜏) by 
multiplying it with the wavelet 𝜓𝑠,𝜏(𝑡) and then integrating over all times. The asterisk in the term 
𝜓𝑠,𝜏
∗  means that conjugate transpose of 𝜓𝑠,𝜏 is used. By applying the transform, 𝑥(𝑡) is represented 

in the translation (𝜏)-scale (𝑠)-amplitude domain. To perform the multi-resolution analysis, 
different wavelets for this decomposition are generated from a single prototype function or 
“mother wavelet” (𝜓) by using different scales and translations: 

To allow for the computer computation of the continuous WT, the transformation has to be 
discretised. For the continuous WT this is done by sampling the translation-scale plane at a uniform 
sampling rate, but although the transformation then technically becomes discrete, this is still 
known as the continuous WT. 

Discrete wavelet transform 
If the wavelet used in the transform satisfies certain mathematical conditions, it is possible to 
decrease the sampling rate of the scale without losing any information. The discrete wavelet 
transform (Croisier et al., 1976) is obtained by sampling the scale at a non-uniform sampling rate. 
Formally, discrete dilated and contracted wavelets are generated according to: 

In (3-7), 𝑠0 is the constant scaling factor, and is typically chosen as 𝑠0 = 2. The constant translation 
factor is usually chosen as 𝜏0 = 1. The new scale and translation of the discrete wavelet are 𝑠0

𝑗 and 
𝑘𝜏0 , respectively. 𝑗 = {1, 2, 3,… , 𝐽max}  is the level of decomposition, where 𝐽max  is a certain 
maximum level at which the scale becomes too large (frequency becomes too small) to analyse. This 
means that for 𝑠0 = 2 the scale is discretised on a logarithmic grid with base 2, so that only the 
wavelets at scales {2, 4, 8, 16,… } are used for transformation. The translation is sampled according 
to the sampling rate of the scale axis, so in this case the translation sampling rate is reduced by a 
factor of 2 as scale increases, for example 𝑘 = {64, 32, 16, 8, … }. 

The discrete wavelet transform is defined in the same way as the continuous wavelet transform, but 
using discrete wavelets 𝜓𝑗,𝑘(𝑡) instead of continuous wavelets 𝜓𝑠,𝜏(𝑡): 

From the mother wavelet 𝜓(𝑡), a sequence of scaling coefficients 𝑤 for that wavelet can be 
calculated to allow for the efficient computation of the WT, which is explained in more detail in 
section 0. The scaling coefficient set 𝑤 is finite if the mother wavelet is compactly supported 
(exactly zero outside a small interval), and major breakthrough for wavelets came with the advent 

 
𝜓𝑠,𝜏(𝑡) =

1

√𝑠
𝜓 (
𝑡 − 𝜏

𝑠
) (3-6)  

 
𝜓𝑗,𝑘(𝑡) =

1

√𝑠0
𝑗

𝜓(
𝑡 − 𝑘𝜏0𝑠0

𝑗

𝑠0
𝑗

) (3-7)  

 
𝑊(𝑗, 𝑘) = ∫𝑥(𝑡)𝜓𝑗,𝑘

∗ (𝑡)𝑑𝑡 (3-8)  
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of such compactly supported wavelets (Daubechies, 1988). The scaling coefficient set may be 
thought of as a filter and is often called a scaling filter. 

3.3.3 Wavelet transform of two-dimensional images 
The signal processing methods in the previous two subsections were explained in terms of their 
application to one-dimensional signals in the time-amplitude domain. Wavelet analysis can easily 
be extended to two-dimensional signals, where the vertical and horizontal spatial positions in the 
image correspond to “time” in a conventional signal, and the greyscale intensity corresponds to 
“amplitude” in a conventional signal. Images are thus “signals” in the spatial-spatial-intensity 
domain.  

Due to the mathematical properties of the discrete wavelet transform it can be applied to an image 
at level 𝑗 by using only the scaling filter 𝑤 and the filter response at the previous level (𝑐𝐴𝑗−1). This 
leads to a considerable saving in computation time and complexity. The procedure for discrete 
wavelet decomposition as developed by Daubechies (1988), specifically as applied to two-
dimensional greyscale images, is described in this section. 

Figure 3-5 shows the 𝑗th level two-dimensional discrete wavelet decomposition of an image. The 
algorithm is initialised by setting 𝑐𝐴0 as the original image. From the scaling filter 𝑤 a lowpass 
filter 𝑤𝐿 and highpass filter 𝑤𝐻 is constructed.  

In the remainder of the algorithm, the image is convolved with the lowpass and highpass filters and 
downsampled. If an image 𝐼 is convolved with any filter 𝜔, the convolutional output 𝑐 has the same 
dimensions as 𝐼. An element in the convolutional output, 𝑐(𝑥𝑝, 𝑥𝑞), is defined as: 

 

 
𝑐(𝑥𝑝, 𝑥𝑞) = ∑ ∑ 𝐼(𝑖, 𝑗) × 𝜔(𝑥𝑝 − 𝑖,  𝑥𝑞 − 𝑗)

∞

𝑗=−∞

∞

𝑖=−∞

 (3-9)  
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Let us consider the calculation of the level 𝑗 horizontal approximation image or “coefficients” 𝑐𝐻𝑗 
to illustrate the procedure shown in figure 3-5. First, the approximation coefficients 𝑐𝐴𝑗−1 are 
convolved with the lowpass filter 𝑤𝐿 in a row-wise manner. The result is then downsampled by 
keeping the evenly indexed columns (as represented in  figure 3-5 by a circle containing a “2” and a 
downward arrow). Then, the downsampled result is convolved column-wise with the highpass filter 
𝑤𝐻, after which the rows are downsampled by retaining the evenly indexed rows. The result is the 
horizontal approximation coefficients 𝑐𝐻𝑗. 

At each level 𝑗 the approximation image 𝑐𝐴𝑗−1 is decomposed into four sets of coefficients: the 
approximation coefficients 𝑐𝐴𝑗 and the horizontal, vertical and diagonal detail coefficients (𝑐𝐻𝑗, 𝑐𝑉𝑗 
and 𝑐𝐷𝑗). To proceed with decomposition at level 𝑗 + 1, the same procedure is applied to 𝑐𝐴𝑗. It is 
also possible to proceed to the next level by further decomposing all four approximation and detail 
images, a method that is called wavelet packet analysis. However, this quickly leads to a very high 
dimensionality when 𝑗 > 2, so the former approach is usually preferred. An example of a wavelet 
representation is shown in figure 3-6. 

 

Figure 3-5: Discrete two-dimensional wavelet decomposition at level j. 𝒄𝑨, 𝒄𝑯, 𝒄𝑽 and 𝒄𝑫 refer to approximation and 
detail coefficients. 𝒘𝑳 and 𝒘𝑯 refer to the highpass and lowpass filters, respectively. The circles containing “2” and a 

downward arrow indicate downsampling of the coefficients by retaining only every other row or column. 
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extraction, the only difference being that the GLCM energy is normalised. Due to special 
mathematical properties, energy is conserved in wavelet decomposition. This means that the sum of 
the energies of all detail coefficient sets and the final approximation coefficient set is equal to the 
energy of the original image. 

The energy features are concatenated into a vector which is commonly called the wavelet energy 
signature. Some authors calculate the energy of all the detail images (each direction at each level) 
plus the final approximation image, giving a feature vector of length 3𝐽 +  1. However, the final 
approximation image often captures variations due to inconsistent lighting, and therefore it may be 
better to use only detail coefficients (Bharati et al., 2004a). 

Several authors have combined wavelets and GLCMs by calculating GLCMs of approximation and 
detail coefficients at different levels, and subsequently extracting subsets of the popular Haralick 
features. 

3.3.5 Applications in the process industries 
There have been several implementations of wavelets in the minerals processing and mining 
industries. Liu and others (2005) successfully monitored froth health in a zinc flotation system by 
using MR-MIA: first PCA was applied on images and then score images were decomposed using a 
wavelet transformation. In a follow-up article, even better results were achieved by sampling the 
wavelet transform at an even scale instead of a dyadic scale (Liu & MacGregor, 2008). GLCM and 
wavelet features were compared for the estimation of run-of-mine ore compositions (Tessier et al., 
2007); in this case the use of wavelet features yielded superior results. In another application to 
particulate matter on conveyor belts, wavelet decomposition followed by GLCM feature extraction 
was used to classify the fraction of fines in coal and iron ore (Amankwah & Aldrich, 2011). 

Wavelets have been widely used for defect detection. The presence of defects in textile products 
were determined using features extracted from the GLCMs of wavelet image representations (Latif-
Amet et al., 2000). Statistical features extracted from wavelet detail coefficients were used in a 
neural network classifier that could detect defects in tiles (Ghazvini et al., 2009). In another tile 
defect detection problem, Fathi and others (2012) applied a wavelet transformation followed by 
GLCM calculation to extract features for a neural network. Cord and others (2010) employed higher-
order types of wavelets called curvelets, as well as morphological feature extraction, to detect 
scratches on steel surfaces. 

In the microelectronics industry, Lin (2007) used wavelet texture analysis for the detection of ripple 
defects on surfaces of ceramic capacitors.  Wavelet features formed the basis of a hidden Markov 
tree model for the detection and classification of surface defects on memory device wafers (Chen et 
al., 2009). 

Surface quality inspection is another field where wavelets are popular. Rolled steel sheets were 
classified with discriminant analysis into various quality grades by using GLCM features, energies of 
wavelet approximation images and other statistical features (Bharati et al., 2004a). Wavelet texture 
analysis yielded the best results. In later work on the same steel quality grading problem, a 
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variation called the wavelet packet transform was used and the optimal decomposition level was 
determined. These changes improved the classification performance (Liu et al., 2007). By adding 
additional feature selection and feature reduction steps to the algorithm, even further improved 
classification results were obtained (Kim et al., 2009).  

Other surface grading applications include the grading of various fabrics according to the degree of 
pilling (Zhang et al., 2007) and paper quality grading for use in an online, real-time monitoring 
system for a paper formation process (Reis & Bauer, 2009). Wavelet texture analysis followed by PCA 
dimensionality reduction was used to build a latent variable space model for the grading and 
monitoring of the aesthetic quality of engineered stone countertops (Liu & MacGregor, 2006).  

Other miscellaneous process applications include: 

 categorisation of different corrosion types in various materials (Livens et al., 1996), 
 prediction of dispersion in the mixing of polymer powders, where GLCM and wavelet 

features were shown to outperform traditional measures used to characterise such mixing 
processes (Gosselin et al., 2008), 

 prediction of mechanical properties of polymer blend films, such as toughness and tensile 
strength, with MR-MIA applied to near-infrared (NIR) images (Gosselin et al., 2009), 

 determination of the permeability and quality of nanofiber membranes, where wavelet 
features produced much better results than GLCM features (Facco et al., 2010), 

 characterisation of solid product properties in the pharmaceutical industry (García-Muñoz 
& Carmody, 2010), and 

 monitoring of crystal growth rates (Zhang et al., 2012). 

In almost all of the studies reviewed here, the authors of the study concluded that the wavelet 
texture analysis approach had been successful for their particular application. Considering that 
such a large amount of applications in such a diverse range of fields have been found, the claim is 
supported that wavelets texture analysis is widely regarded as state-of-the-art in process 
applications of texture analysis (Bharati et al., 2004a; Duchesne et al., 2012).  

Although only a few studies have compared wavelets to GLCMs, wavelets seem to have 
outperformed GLCMs in most cases (for example Kim et al., 1998; Bharati et al., 2004a; Facco et al., 
2010)  

3.4 Steerable pyramids 
The main drawback of wavelet decomposition is that the representation is not translation and 
rotation invariant. This means that a translated or rotated version of an image can have very 
different wavelet decompositions, leading to dissimilar feature sets and probably classification into 
different groups. To circumvent this limitation, the steerable pyramid was introduced as an 
alternative transform in multi-resolution image analysis (Simoncelli et al., 1992).  

A steerable pyramid is a multiscale image representation that is obtained or “built” by convolving 
an image with several two-dimensional oriented band-pass filters, as well as high-pass and low-pass 
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filters (as opposed to the wavelet representation that is obtained by convolving the image 
horizontally and vertically with one-dimensional functions derived from a mother wavelet). The 
special design of the filter bank makes the steerable pyramid representation both translation- and 
rotation-invariant, which is highly desirable in most applications. 

The use of the steerable pyramid is a leading image processing method and has successfully been 
applied in a diverse range of problems, such as texture classification (Greenspan et al., 1994; Do & 
Vetterli, 2002; Li & Shawe-Taylor, 2005) and texture synthesis (Heeger & Bergen, 1995; Portilla & 
Simoncelli, 2000). In these applications, well-known publicly available texture collections such as 
the VisTex database (Pickard et al., 1995) and Brodatz database (scanned from a photographic book 
by Brodatz, 1966) have been used. Other applications include image denoising (Portilla et al., 2003) 
and, very recently, a novel approach to video movement amplification (Wadhwa et al., 2013), which 
may be useful for scientific analysis, visualisation and video enhancement. 

The main disadvantage of the steerable pyramid representation is its overcompleteness by a large 
factor of  4𝑆𝑖𝑛𝑐/3, where 𝑆𝑖𝑛𝑐 is the number of oriented subbands included in one level of the 
decomposition. Overcompleteness means that there is redundant information present in the 
representation. 

3.4.1 Filters for the steerable pyramid 
The filters used to build a steerable pyramid are standard two-dimensional high-pass and low-pass 
filters, as well as a basis set of oriented (“steerable”) band-pass filters. A set of filters forms a 
steerable basis when it satisfies two conditions: 

1. The filters in the set are rotated copies of each other (in the frequency domain). 
2. A rotated version of the filter at any arbitrary orientation is a linear combination of the filters 

in the basis set. 

The great advantage provided by a steerable basis set is that a version of an image filtered at any 
arbitrary orientation may also be obtained through linear combination of the images filtered with 
each filter in the basis set, which brings about a considerable saving in computational cost when 
representation across many orientations is required. 

A simple example of a steerable basis band-pass filter set is a set of 𝑆th order directional derivatives, 
which owing to mathematical constraints consists of 𝑆 + 1 filters. Figure 3-7 shows a 3rd order 
directional derivative filter set in both the space and frequency domains.  
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The high-pass and low-pass filters are shown in figure 3-8. 

 

    

    

Figure 3-7: A steerable basis set of four band-pass filters in the space domain (top) and the frequency domain (bottom). In 
these images black represents the lowest filter coefficients and white represents the highest filter coefficients. 

 

Figure 3-8: (a) A high-pass filter in the space and (b) frequency domains. 
(c) A low-pass filter in the space and (d) frequency domains. In these images black  

represents the lowest filter coefficients and white represents the highest filter coefficients. 
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3.4.2 Steerable pyramid decomposition 
The initialisation of the steerable pyramid algorithm and the subsequent procedure for 
decomposition at level 𝑗 are shown in figure 3-9 and figure 3-10, respectively. To begin with, the 
original input image is convolved with a high-pass and a low-pass filter (𝑓𝐻0 and 𝑓𝐿0) to obtain 
high-pass and low-pass images or “coefficients” ( 𝑐𝐻0  and 𝑐𝐿0 ). Subsequently, to obtain 
decomposition coefficients at level 𝑗, the low-pass coefficients (𝑐𝐿𝑗−1) are convolved with the low-
pass filter (𝑓𝐿𝑗), as well as with 𝑆 oriented band-pass filters (𝑓𝐵𝑗,0 to 𝑓𝐵𝑗,𝑆−1). The low-pass filter 
output is downsampled by a factor of two to obtain the low-pass coefficients 𝑐𝐿𝑗.  

 

Figure 3-9: Initialisation of steerable pyramid decomposition (level 𝒋 = 𝟎). 

 

 

Figure 3-10: Steerable pyramid decomposition at level 𝒋 ≥ 𝟏. The blocks correspond to standard  
two-dimensional convolution, while the circle indicates downsampling by a factor of two. 
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It should be noted that the filter responses are complex (consisting of real and imaginary 
components). For visualisation purposes, only the real components are shown. Figure 3-11 shows (a) 
an example input image, (b) its residual high-pass coefficients and (c) its steerable pyramid with 
𝐽 = 2 levels. The four images shown per level are the coefficients obtained through convolution 
with the four filters from figure 3-7. The smallest image in the steerable pyramid representation is 
the final (2nd level) low-pass image.  

In the final steerable pyramid with 𝐽 levels, the original image, high-pass coefficients 𝑐𝐻0, low-pass 
coefficients 𝑐𝐿𝑗  at each level 𝑗  and all of the band-pass coefficients 𝑐𝐵𝑗,𝑠  at each level and 
orientation 𝑠 are used for further analysis. Thanks to the steerability of the band-pass filter set, any 
chosen number of oriented band-pass images may be included in the final coefficient set without 
requiring any additional filtering – a band-pass image at an arbitrary new orientation may be 
obtained through linear combination of the current 𝑐𝐵𝑗,𝑠 in the steerable pyramid.  

3.4.3 Extracting features from the steerable pyramid 
In wavelet texture analysis the energies of each set of coefficients in the final decomposition are 
used as features. Although it would be possible to proceed in the same way with steerable pyramids, 
the inventors of this representation have suggested a different feature set (Portilla & Simoncelli, 
2000). Their goal was to establish a set of statistical measurements such that the visual appearance 

 

Figure 3-11: (a) An example of an original input image, (b) its residual high-pass coefficients, and (c) its two-level  
steerable pyramid. 
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of two textures is identical if and only if their statistical measurements are the same. To this end, 
four groups of statistical descriptors have been proposed: 

1. marginal statistics, 
2. coefficient correlation, 
3. magnitude correlation and 
4. cross-scale phase statistics. 

Since the filter responses or coefficients are complex, they have real and imaginary components, or 
alternatively magnitude and phase components. It is common practice to only include statistics of 
the real coefficient components. However, Portilla and Simoncelli (2000) have found that the 
incorporation of magnitude and phase components (groups 3 and 4) improves texture synthesis. 

The importance of each feature group was established by observing the effect that its omission had 
on the perceptual similarity between the original image and a synthesised image reconstructed 
using all other feature sets. Each group is described in more detail in the following sections. The 
dimensionality of the feature set is indicated in terms of the number of levels in the steerable 
pyramid (𝐽), number of orientations included (𝑆𝑖𝑛𝑐) and width of the square pixel neighbourhood 
used in the computation of local statistics (𝑊). 

Marginal statistics 
The statistics derived from the pixel intensity histogram of an image describe the relative amount 
of each intensity that is present in the image. The inclusion of the following marginal statistics has 
been proposed by Portilla and Simoncelli (2000): 

 Pixel statistics – minimum and maximum intensity values and the mean, variance, skewness 
and kurtosis (first to fourth order moments) of the original image [6 features] 

 The variance of the high-pass coefficients [1 feature] 
 The skewness and kurtosis of the low-pass coefficients at each level [2(𝐽 + 1) features] 

Coefficient correlation 
The coefficients of the steerable pyramid are usually correlated, in part due to the overcomplete-
ness of the representation, but more importantly as a result of periodic or global textural structures 
present in the image. To represent these characteristics, the local autocorrelation of the real 
lowpass coefficients at each level [(𝐽 + 1)(𝑊2 + 1)/2 features] is included in the overall feature 
set. 

Magnitude correlation 
In order to represent textural elements such as bars, corners and edges, various measures of 
correlation between the magnitudes of oriented band-pass coefficients are included: 

 the local autocorrelation of the band-pass magnitudes at each scale and orientation 
[𝐽𝑆𝑖𝑛𝑐(𝑊2 + 1)/2 features], 

 the cross-correlation of each band-pass image’s magnitudes with the band-pass magnitudes 
of all other orientations at the same scale [ 𝐽𝑆𝑖𝑛𝑐(𝑆𝑖𝑛𝑐 − 1)/2 features], and 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3 – Texture analysis 50 
 

 the cross-correlation of each band-pass image’s magnitudes with band-pass magnitudes of 
all orientations at the next coarser scale [𝑆𝑖𝑛𝑐2(𝐽 − 1) features]. 

Cross-scale phase statistics 
The phase of the band-pass coefficients contains information that helps to distinguish between 
similar elements such as edges and lines. It also represents illumination gradients due to diffuse 
lighting effects. For these reasons, the cross-correlations of the real parts of band-pass coefficients 
with both the real and imaginary components of the band-pass coefficients of all orientations at the 
next coarser scale [2𝑆𝑖𝑛𝑐2(𝐽 − 1) features] are included. 

The resultant feature set is very large: Portilla and Simoncelli (2000) have chosen 𝐽 = 4, 𝑆𝑖𝑛𝑐 = 4 
and 𝑊 = 7 in their original work, which results in a total of 710 features. However, dimensionality 
reduction methods (such as PCA) or feature selection techniques may be used to reduce the size of 
the feature set. 

3.4.4 Applications in the process industries 
Only one application of steerable pyramids was found in process industry related literature. Fagan 
and others (2008) used various texture analysis methods in the monitoring of a cheese production 
process. A 3-level steerable pyramid was constructed for each image, and at each level the band-
pass coefficients were calculated at four orientations. Instead of using the advanced statistical 
measurements proposed by Portilla and Simoncelli (2000), the traditional energies of the coefficient 
sets (high-pass, final low-pass and 12 band-pass coefficient sets) were used as features. A PLS 
regression model was built for the online prediction of two quality variables: curd moisture content 
and whey solids. The steerable pyramid technique and another multiscale image analysis method, 
fractal dimension, provided the best quality variable predictions. These methods were shown to 
outperform GLCM feature extraction and several other texture analysis algorithms. 

3.5 Textons 
In early texture modelling literature, many approaches drew inspiration from models of texture 
interpretation by the human visual system. This field has been greatly influenced by the work of 
Julesz, which involved the study human texture discrimination in the visual cortex. 

Julesz and Miller (1962) first hypothesized that texture discrimination in the human visual system 
occurs across the whole visual field, and that it is governed by higher-order statistical relationships. 
Later, this was followed by the conjecture that two textures with the same second-order statistics 
are indistinguishable to the human eye (Julesz et al., 1973). This conjecture was disproved for 
textures with identical second- and third-order statistics in further work (Caelli & Julesz, 1978). 

In 1981, Julesz coined the term “texton”, which remains popular even today, although it is being 
used in a rather different context. Textons are primitive, local texture descriptors, consisting of 
prominent features such as blobs, edges, line terminators and line crossings. The texton theory was 
originally developed and tested on binary images of synthetically generated textures, and therefore 
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textons were only defined in this context. The lack of an operational definition for greyscale images 
caused the theory to fall into disfavour at the time, while filtering approaches gained popularity. 

In the late 20th century, many texture analysis algorithms involved convolution with a bank of 
linear, two-dimensional filters as the first step (Knutsson et al., 1983; Koenderink & van Doorn, 1987; 
Perona & Malik, 1990). It is during this time that the Fourier transform, and eventually wavelets, 
found their applications in image analysis, while fundamental modelling approaches remained on 
the periphery. 

In a novel merging of filtering approaches with the fundamental texton theory, Leung and Malik 
(2001) redefined textons as cluster centres in a filter response space. Hereafter, several studies have 
focused on the optimisation of various aspects of the algorithm, such as the choice of filters or the 
choice of a classifier (Schmid, 2001; Cula & Dana, 2004; Varma & Zisserman, 2005).  

Since its redefinition the texton approach has seen a burst of applications in many fields, such as 
medical image analysis (Yang et al., 2007) and remote sensing (Zeki Yalniz & Aksoy, 2010). Popular 
texton tasks include segmentation (Malik et al., 2001), defect detection (Behravan et al., 2009) and 
classification. There have been several successful studies on texture classification using popular 
texture data sets such as the Brodatz (scanned from Brodatz, 1966) and VisTex (Pickard et al., 1995) 
databases (Zhang et al., 2007; Van der Maaten & Postma, 2007; Umarani et al., 2008). 

3.5.1 A texton algorithm 
Many adaptations have been made to the original texton algorithm proposed by Leung and Malik 
(2001). The algorithm described here follows the work of Varma and Zisserman (2005), as this 
version is still similar to the original algorithm, but achieves improved classification results (when 
tested on textures from popular databases). The algorithm consists of three main steps:  

1. multivariate representation, 
2. texton dictionary building and  
3. histogram computation.  

To obtain a multivariate representation, images are convolved with a filter bank containing 𝑁𝐹user 
specified filters, so that each pixel is represented by 𝑁𝐹 filter responses. The choice of a filter bank 
is important for the overall performance of the algorithm, and is discussed in section 3.5.2. 

Especially in textural images, one would expect many of the filter responses to be similar, and thus 
it is expected that the pixels can be grouped into clusters of similar pixels. Textons (𝒯) are then 
defined as the 𝑁𝐹 -dimensional centres of these clusters. The K-means clustering method 
(MacQueen, 1967) has originally been used for clustering (Leung & Malik, 2001), but alternative 
methods have been proposed (Georgescu et al., 2003; Gangeh et al., 2011). When K-means clustering 
is used, the number of textons is equal to 𝐾𝑁, the number of clusters specified in K-means clustering 
(unless some of the clusters have become empty during clustering).  
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Finally, once 𝒯 has been calculated, each pixel in each image is assigned to the cluster centre or 
texton in 𝒯 that is closest to it in the filter response space, usually based on a Euclidean distance 
metric. 

By counting the number of pixels in an image that were assigned to each texton, a texton count 
histogram for the image can be calculated. These 𝐾𝑁 texton counts in the texton histogram of an 
image become the features that are extracted. 

It should be noted that the K-means clustering step in the texton algorithm requires long computer 
running times, due to the computationally expensive and iterative operation of calculating 
distances between all pixels and their closest cluster centres. 

3.5.2 Filter bank for the texton algorithm 
The selection of an appropriate filter bank is vital to the overall performance of any filter-based 
texture analysis algorithm. The dimensionality of the filter set has to be balanced against its 
discriminative capacity and sensitivity to invariance, inconsistent image conditions and prominent 
features to be extracted.  

Typical filter banks include various filter types with different orientations and spatial frequencies, 
which ensures that a variety of features (such as edges or blobs), with any size and orientation, can 
be detected. The two-dimensional forms of Gabor transforms (Gabor, 1946), Laplacians of Gaussians 
and low-pass Gaussians are popular filter choices.  

The literature on selecting and designing filters is expansive, and researchers using the texton 
algorithm frequently adapted existing filter banks to suit their requirements. Three well-known 
filter banks are presented here. 

In their original texton algorithm, Leung and Malik (2001) used a filter bank abbreviated here as the 
“LM” filter bank. This set consists of 36 oriented filters (two types, edges and bars, each at six 
orientations and three scales), eight rotationally invariant filters (Laplacians of Gaussians), and four 
low-pass Gaussian filters. Due to the sensitivity of the various filters to frequency and rotation, this 
filter bank is highly discriminative, but lacks robustness in cases where textures are slightly 
distorted. 

Another well-known filter bank is that of Schmid (2001), which is referred to here as the “S” filter 
bank. These filters are similar to Gabor filters in some respects, but the entire set is rotationally 
invariant. Thirteen different scale and frequency combinations were chosen. The filters were 
normalised to have zero mean so that the filter responses would not be as adversely affected by 
varying lighting conditions. The rotational symmetry ensures a better representation of textures 
with slightly rotated features, but reduces selectivity for anisotropic textures. 

Varma and Zisserman (2005) proposed a filter bank design method that balances dimensionality, 
discriminative power and sensitivity to varying image conditions. The method starts with a root set 
of 38 filters: 36 oriented filters (as in the LM filter bank), a Laplacian of Gaussian and a low-pass 
Gaussian. A first subset called MR8 is derived by retaining only the maximum filter responses across 
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all orientations, as well as the rotationally symmetric filters. By retaining only the scaled filter with 
the maximum response for each of the two types (edge and bar) this subset is further reduced to 
MRS4, with only four responses. A different way to reduce the MR8 set is by only considering filters 
at a single, fixed scale, also resulting in four responses (MR4). 

3.5.3 Applications in the process industries 
The term “texton” has become commonplace in texture analysis parlance. Many studies describe 
the use of “textons”, but it was found that the term has been loosely applied to almost any texture 
analysis method that follows some form of structural approach.  

One application to online defect detection in textile products has been found, where LBPs were used 
to detect and localise defects and texton features used in a classifier for the types of defects 
(Behravan et al., 2009). In an application to particles on conveyor belts, Jemwa and Aldrich (2012) 
used the texton approach to determine the fraction fines (passing a 6 mm sieve mesh size) in coal. 
280 images were classified with 𝐾-NN and SVMs into seven fines fraction categories with up to 74% 
accuracy for the best hyperparameter combination. 

3.6 Local Binary Patterns 
The Local Binary Pattern (LBP) is a texture analysis operator for local texture characterisation, 
initially proposed by Olaja, Pietikäinen and Harwood (1994). The operator is applied to greyscale 
images in a pixel-wise fashion by comparing each pixel to its local pixel neighbourhood. 

LBP feature extraction has become increasingly popular in texture analysis literature. In a study by 
Pietikäinen and others  (2000) comparing rotationally invariant LBP, GLCM and several other feature 
sets, LBP features combined with image variance and covariance measures yielded the best 
classification results for images from the Brodatz database (scanned from a book by Brodatz, 1966). 
However, GLCM features outperformed rotationally invariant LBP features when the LBP features 
were used on their own. Ghita and others (2012) compared the use of LBP features to several 
filtering approaches, including a texton-like approach, and found that LBP features were superior in 
representing textures from the Outex texture database (Olaja et al., 2002a).  

LBP features have achieved considerable success in many fields, including remote sensing (Vatsavai 
et al., 2010; Song & Li, 2010), face recognition (Ahonen et al., 2006) and several medical image 
analysis problems (Nanni et al., 2012).  

3.6.1 Calculation of LBP features 
The LBP operator is applied to greyscale images in a pixel-wise fashion by comparing each pixel to 
its local pixel neighbourhood. In the original LBP methodology, the neighbourhood considered for 
each pixel is its 𝑃 = 8 nearest neighbouring pixels, as shown in figure 3-12 (a).  
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In the LBP methodology a binary thresholding function 𝑠 is applied to the eight neighbouring pixels 
by comparing their intensities 𝑔𝑝 (𝑝 = 0,1,… , 𝑃 − 1) to the intensity of the centre pixel (𝑔𝑐):  

The thresholded values are illustrated in figure 3-12 (b). The resultant LBP can then be computed as:  

For this example, LBP = 10111010, starting with 𝑝 = 0 in the upper left corner and proceeding in 
a counter-clockwise direction. Figure 3-12(c) shows the conversion weights in the circular 
neighbourhood of the centre pixel, and the result of the decimal LBP calculation in the place of the 
centre pixel, which is given by :  

By applying the LBP operator to each pixel in an image, the image is represented by decimal LBPs 
ranging from 0 to 255; this will be termed the “LBP image”. The histogram of the LBP image is then 
computed, which becomes the 256 features to be used in the subsequent classification step.  

Although the original version of LBP included a local contrast measure (the operator was actually 
called LBP/C), this is usually not included in modern applications, since in popular extensions of 
LBPs this measure is redundant.   

 

Figure 3-12: (a) An example of a centre pixel (shaded grey) with its eight neighbouring pixels 
(the numbers are the intensity values of the pixels), (b) the values obtained through 

thresholding and (c) the weights by which the thresholded values are multiplied to obtain the 
decimal LBP value (shown in place of the centre pixel). 

 
𝑠(𝑔𝑐 , 𝑔𝑝) = {

1, 𝑔𝑐 ≥ 𝑔𝑝 

0, 𝑔𝑐 < 𝑔𝑝 
 (3-11)  

 
LBP = ∑10𝑃−1−𝑝𝑠(𝑔𝑐 , 𝑔𝑝) 

𝑃−1

𝑝=0

 (3-12)  

 
LBP10 = ∑2𝑃−1−𝑝𝑠(𝑔𝑐 , 𝑔𝑝) 

𝑃−1

𝑝=0

 (3-13)  

8 3 7 1 0 1 128 1 2

2 6 5 0 0 64 186 4

6 8 9 1 1 1 32 16 8
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3.6.2 Alternative versions of the LBP operator 
Many alternative versions and extensions of the LBP operator have been developed, the most 
popular being those proposed by Ojala, Pietikäinen and Mäenpää (2002b): multi-scale representa-
tion, rotational invariance and proper representation of “uniform” patterns. 

Multi-scale representation 
Instead of using an eight-pixel neighbourhood, any circular neighbourhood of radius 𝑅 with 𝑃 
equally spaced pixels on its circumference can be defined, as shown in figure 3-13. The grey values 
of pixels in the neighbourhood that do not correspond to the centre of a pixel in the image are 
determined by interpolation.  

The formula to calculate LBP𝑃,𝑅 is the same as for the original LBP (3-13). The choices of 𝑃 = 8 and 
𝑅 = 1.0 yields LBP8,1, which is equivalent to the original LBP except for the slightly different 
(interpolated) grey values of the diagonal pixels. A multi-scale representation is obtained by 
choosing a number of different neighbourhoods, calculating the LBP image for each neighbourhood 
and concatenating the LBP histograms of all the LBP images into a single feature vector. 

Rotational invariance 
Achieving rotational invariance is simple in this technique, since it is “circular” to begin with. 
Conceptually, we do this by rotating each LBP to a reference position so that all rotated versions of a 
binary number are the same. More formally, the transformation is defined as: 

In this equation the function 𝑅𝑂𝑅(𝑛, 𝑖) takes the 𝑃-bit binary number 𝑛 and rolls it 𝑖 times to the 
right. The superscript 𝑟𝑖 indicates that this is the “rotation invariant” version of the LBP.  

From the LBP image, the feature vector is still obtained in the same way, but it has a reduced 
dimensionality. In the case of LBP8,1𝑟𝑖  there are only 36 rotation invariant patterns (whereas the 
normal version has 256 possible patterns). 

 

Figure 3-13: Three circular pixel neighbourhoods [Image credit: Xiawi on Wikimedia Commons (2010)] 

 LBP𝑃,𝑅
𝑟𝑖 = min{𝑅𝑂𝑅(LBP𝑃,𝑅 , 𝑖)  |  𝑖 = 0,1,… , 𝑃 − 1} (3-14)  

P = 8;  R = 1.0 P = 12;  R = 2.5 P = 16;  R = 4.0 
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Representation of uniform patterns 
Ojala, Pietikäinen and Mäenpää (2002b) observed that certain groups of closely related LBPs 
represent fundamental properties of texture. In their experiments, on average 70% of images were 
comprised of these fundamental patterns.  

To formally define “uniform” patterns, a uniformity measure 𝑈 was introduced as the number of 
0/1 and 1/0 transitions in a binary pattern:  

As indicated by the left-hand term of (3-16), the 1/0 and 0/1 transitions are circular, that is, if the 
first and last digits of a binary pattern differ, this counts as a transition.  

The binary patterns 11111111 and 00000000 are the only two patterns to have 𝑈 = 0, as there are no 
0/1 or 1/0 transitions. The seven patterns 11111110, 11111100, ..., 10000000 have 𝑈 = 2 as there is 
exactly one 0/1 transition and one 1/0 transition in each pattern. 𝑈 = 1 is not possible. Patterns are 
designated “uniform” when 𝑈 ≤ 2, which means that there are exactly 𝑃 + 1 uniform patterns in a 
circular neighbourhood of 𝑃 pixels. (In the example given here, 𝑃 = 8 and there are 2 + 7 = 9 
uniform patterns). 

The definition of the rotation invariant texture descriptor that includes a measure of uniformity is: 

In this equation, 𝑍 is a function that returns the number of zeros in a binary pattern, for example 
𝑍(11111000) = 3. The superscript 𝑟𝑖𝑢2 indicates the use of rotation invariant uniform patterns 
with 𝑈 ≤ 2.  

The feature vector is still obtained in the same way from the LBP image (it is the histogram counts 
of the LBPs present in the image), but now has 𝑃 + 2 dimensions since there are only 𝑃 + 2 
different LBP possibilities. 

3.6.3 Applications in the process industries 
Although there are many potential application areas for LBP texture analysis in the process 
industries, there have been few successful implementations. The first two industrial LBP case 
studies involved the prediction of grain mixture compositions and surface quality inspection of 
metal strips (Pietikaeinen et al., 1994).  

Combined LBP and colour features were used to detect and recognise defect types on wooden 
surfaces (Mäenpää et al., 2003a). In another study by Mäenpää and others (2003b), LBPs were used 
together with Self-Organising Map classification in a real-time paper inspection problem.  In an 
application to quality control of ceramic tile production lines, LBP feature extraction and two 

 
𝑈(LBP𝑃,𝑅) = |𝑠(𝑔𝑐 , 𝑔𝑃−1) − 𝑠(𝑔𝑐 , 𝑔0)| +∑|𝑠(𝑔𝑐 , 𝑔𝑝) − 𝑠(𝑔𝑐 , 𝑔𝑝−1)|

𝑃−1

𝑝=1

 (3-15)  

 
LBP𝑃,𝑅

𝑟𝑖𝑢2 = {
𝑍(LBP𝑃,𝑅)

𝑃 + 1        
    if  𝑈(LBP𝑃,𝑅) ≤ 2
 otherwise              

 (3-16)  
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colour texture analysis methods were compared (López et al., 2008). All of the approaches were able 
to predict surface grades with very high accuracy. 

A combined method consisting of LBP representation, followed by GLCM calculation, edge detection 
and Haralick feature extraction was used to classify different stone types (Ershad, 2011). The 
combined method achieved better results than either of the LBP or GLCM methods alone.  

The applications of LBP features in the process industries are more numerous than applications of 
textons and steerable pyramids. This could be due to the straightforward LBP algorithm and low 
computational requirements. However, the range of applications is not very diverse, as they mostly 
involve surface grading. It is concluded that the LBP method is worth investigating as an image 
analysis algorithm for the online prediction of process quality variables, since the approach appears 
to be promising, but has not yet been widely applied. 

3.7 Comparison between texture analysis methods 
In this section the five texture analysis methods discussed in sections 3.2 to 3.6 are compared in 
terms of important properties and characteristics. A summary of this comparison is shown in table 
3-2. 

Table 3-2: Comparison of properties and characteristics of five texture analysis methods 

It is expected that the steerable pyramid, LBP and texton approaches could offer some advantages 
over the traditional methods, due to their advanced properties. Steerable pyramids offer an 
advantage over wavelets, since the representation is rotation and translation invariant to some 
extent. Although it is a transform-based approach and therefore no texture neighbourhood is used, 
higher-order statistical features are extracted based on global representations of the image as well 
as local texture neighbourhoods, as proposed by Portilla and Simoncelli (2000). It is also inherently 
a multiscale approach, which is thought to be advantageous since textures typically contain both 
local and global characteristics (Campbell & Robson, 1968). 

In the texton approach ideas from statistical, structural and transform-based texture analysis 
methods are unified. The spatial domain filtering employed makes it a transform-based approach, 
but the underlying principle is that the texture consists of textural primitives (structural approach) 

Method Type Texture  
neighbourhood 

Rotation  
invariant? Multiscale? 

GLCMs Statistical Pixel pairs To some extent No 
Wavelets Transform-based None No Yes 
Steerable 
pyramids 

Statistical,  
transform-based 

None, but local 
statistics To some extent Yes 

Textons Statistical, structural, 
transform-based Local Yes To some extent 

LBPs Statistical, structural Local Can be No 
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that have a certain statistical probability of occurring in a given texture. The implementation in this 
work is also entirely rotation invariant due to the particular choice of filter set that was used. Since 
the various filters in the filter bank differ in size, the method also incorporates information at 
multiple scales to some extent. 

The LBP operator combines the statistical and structural models of texture (Mäenpää & Pietikäinen, 
2005). Since each model describes specific types of features, this combination can result in a more 
complete textural description. The original version of the LBP was not rotation invariant, but a 
simple extension remedies this fact (Ojala et al., 2002b). When applying the LBP operator on texture 
neighbourhoods with several radii, the feature vectors obtained for each neighbourhood can be 
concatenated to allow for a small degree of multiscale representation, although this was not 
implemented in this work. 

A downside of both the GLCM and LBP approaches is that these methods cannot be used to analyse 
images at multiple resolutions. The performance of these methods would be influenced by the 
resolution of the original image used, which can make the results case-specific. A solution that 
could alleviate this problem is to optimise the resolution of the image to be analysed as a 
hyperparameter for these two methods. 

3.8 Classification 
In supervised classification the data are split into training and testing sets, allowing the test data to 
be assigned the most probable class based on a model built using the training data. In the current 
work two supervised classifiers are considered: a K-nearest neighbours classifier (K-NN) and 
discriminant analysis (DA).  

Although several advanced classifiers exist, for instance neural networks or support vector 
machines (SVMs), the focus of this work is on texture feature extraction and not on classification. 
The above-mentioned two common classifiers were therefore chosen to illustrate the discriminative 
capabilities of the various texture feature sets, and not necessarily to build the most optimal 
classification model possible.  

3.8.1 K-nearest neighbours 
In K-nearest neighbour (K-NN) classification, given a set of training data points with known labels, a 
new data point is assigned the label of its closest neighbour in the feature space. The method is 
sensitive to irrelevant features, and it may therefore be necessary to specify 𝐾𝑁 > 1 nearest 
neighbours, from which the class label of a test data point is determined by majority rule. The 
optimal 𝐾𝑁 for a specific problem can be determined using cross-validation on the training set. 
Cross-validation will be described in detail in section 4.3.2 (p. 73). 

A Euclidean distance metric is commonly used to determine the distance between data points. For 
two points 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝐿)  and 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝐿)  in a 𝑀 -dimensional feature space, the 
Euclidean distance between them, 𝐷𝐸(𝒑, 𝒒), is given by: 
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The texture analysis approaches that extract histograms as features (LBPs and textons) are 
frequently followed by “histogram comparison” as a classification technique. This is identical to a 1-
nearest neighbour classifier, but with a 𝜒2 distance metric 𝐷𝜒2: 

It has been found that the specific choice of distance metric does not significantly affect 
classification accuracies in histogram comparison (Varma & Zisserman, 2004). 

K-NN was selected as a classifier in this work for its simplicity and its ability to learn complex 
decision surfaces. Another advantage of K-NN is that only one hyperparameter (𝐾𝑁) has to be 
optimised. 

3.8.2 Discriminant analysis 
In discriminant analysis (DA) the goal is to find a set of weights 𝒘 such that the linear combination 
of 𝒘  and the training data 𝒙𝑡𝑟𝑎𝑖𝑛  results in maximal separation between the classes. This 
“separation” is quantified in terms of the between-class scatter 𝑆𝐵 and the total within-class scatter 
𝑆𝑊. If 𝜇 is the overall mean and 𝜇𝑖  is the mean of class 𝑖, the between-class scatter is given by: 

for a 𝑘-class problem. For maximal separation, 𝑆𝐵 should be maximised. The within-class scatter is: 

where Σ𝑖  is the covariance matrix of class 𝑖. 𝑆𝑊 should be minimised. Both these criteria can be 
satisfied by maximising the Rayleigh quotient ℛ(𝒘), thus determining the optimal weights 𝒘: 

Each observation 𝑥 in the data set 𝒙 can be projected onto the subspace that results in maximal 
class separation:  

 

𝐷𝐸(𝒑, 𝒒) = √∑(𝑞𝑖 − 𝑝𝑖)
2

𝑀

𝑖=1

 (3-17)  

 
𝐷𝜒2(𝒑, 𝒒) =∑

(𝑞𝑖 − 𝑝𝑖)
2

2(𝑝𝑖 + 𝑞𝑖)

𝑀

𝑖=1

 (3-18)  

 
𝑆𝐵 =

1

𝑘
∑(𝜇𝑖 − 𝜇) ∙ (𝜇𝑖 − 𝜇)

𝑇

𝑘

𝑖=1

 (3-19)  

 
𝑆𝑊 =∑Σ𝑖

𝑘

𝑖=1

 (3-20)  

 
max
𝒘
ℛ(𝒘) =

𝒘𝑻𝑆𝐵𝒘

𝒘𝑻𝑆𝑊𝒘
 (3-21)  

 𝑥′ = 𝑥 × 𝒘 (3-22)  
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Here the projected version of 𝑥 is denoted by 𝑥′. Data points are then classified according to the 
maximum a-posteriori probability rule: 

In (3-23), 𝑦̂ is the predicted classification and 𝑘 is the number of classes. 𝑃̂(𝑗|𝑥′) is the posterior 
probability of class 𝑗 for observation 𝑥′, that is, the product of the prior probability that 𝑥′ belongs 
to class 𝑗 and the multivariate Gaussian density function. 𝐶(𝑦|𝑗) is the cost of classifying an 
observation of classifying an observation from class 𝑗 into class 𝑦. In this work, the cost function 
was set equal to 0 when 𝑗 = 𝑦 (when the observation is correctly classified), and 1 otherwise. 

In DA the assumption is made that all features of data points in a class 𝑖 are normally distributed. 
The constraints placed on the covariance matrices of the classes determine the type of classifier 
obtained. In the case of linear discriminant analysis (LDA), it is assumed that the covariance 
matrices of all classes are equal. If, in addition, the covariance matrix estimate is diagonal, a linear 
naïve Bayes classifier is obtained. Without the equal covariance matrix assumption the result is a 
quadratic discriminant analysis (QDA) problem, and if the covariance matrix is also diagonal, it 
becomes a quadratic naïve Bayes classifier. Note that the naïve Bayes classifiers obtained in this way 
are specific versions of naïve Bayes classifiers where the variables from each class are assumed to be 
normally distributed (this assumption is not generally required for naïve Bayes classifiers). A 
summary of the covariance matrix properties for the different classifiers is shown in table 3-3. 

Table 3-3: Covariance matrix properties for different discriminant analysis classifiers 

3.9 Conclusions 
This chapter has given an overview of several texture analysis methods and their applications in the 
process industries. GLCMs and wavelets have been applied successfully in many process 
applications, but applications of the more advanced steerable pyramids, textons and LBPs are 
scarce. Additionally, the different texture analysis methods have seldom been compared in a 
structured way, and thus it is difficult to draw any conclusions with regard to their relative 
performance in process applications. Although based on only a few case studies that compared 
GLCMs and wavelets, it does seem as though wavelets have outperformed GLCMs more often than 
not. 

A summary of the number of research papers in process engineering applications found for each 
method is shown in table 3-4. 

 
𝑦̂ = arg min⏟    

𝑦=1,2,…,𝑘

 ∑ 𝑃̂(𝑗|𝑥′)𝐶(𝑦|𝑗)

𝑘

𝑗=1

 (3-23)  

Covariance matrix property Covariance matrix of all 
classes equal 

Covariance matrix of all 
classes not equal 

Off-diagonal entries are not zero LDA QDA 
Off-diagonal entries are zero Linear naïve Bayes Quadratic naïve Bayes 
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Table 3-4: Number of research papers in process applications for 
each texture analysis method 

The GLCM and wavelet approaches are well established and have found their way into many process 
applications. The three other approaches considered (steerable pyramids, LBPs and textons) are 
seen as state-of-the-art in texture analysis literature, but have not extensively been applied in the 
process industries. Considering the attention that steerable pyramids, textons and LBPs have 
received in general texture analysis literature, it is concluded that it would be worthwhile to 
perform a quantitative investigation into the aptness of these methods for the development of 
vision-based inferential sensor algorithms in the process industries.  

Method K-NN DA Regression / other Total 
GLCM 5 7 6 18 
Wavelets 7 6 12 25 
Steerable pyramids 0 0 1 1 
Texton 1 0 1 2 
LBP 1 2 3 6 
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Materials and methods  

 

 

In this chapter the data sets and image classification framework used in this work are discussed. 
The image data sets obtained from three case studies are described and the implementation 
details for the five texture feature extraction methods and two classification algorithms are 
provided. 
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4.1 Introduction 
The primary objective of this study is to compare the use of advanced image texture analysis 
methods to baseline texture analysis methods for the prediction of key process quality variables in 
specific process engineering applications. Three specific process monitoring case studies were 
investigated: 

I. the classification of platinum flotation froths into platinum grade categories, 
II. the classification of coal particles into fines fraction categories, and 

III. the classification of hydrocyclone underflows into particle size categories. 

The use of inferential sensors involves two stages: a development stage and an implementation 
stage. The focus of this work is on the development of algorithms for vision-based inferential 
sensors using texture classification, for which a general framework has been presented in chapter 2 
(figure 2-3, page 18). The following details are specific to this work and were added to this general 
framework for vision-based inferential sensing: 

 the pre-processing step consists of cropping and resizing, conversion to greyscale and 
image normalisation, 

 the dimensionality reduction step consists of textural feature extraction (five methods), 
feature normalisation and optionally PCA, and 

 in the modelling step, classification (with two methods) is done. 

A framework showing these details is depicted in figure 4-1, indicating also the algorithm inputs 
and outputs. 

Five texture feature extraction algorithms were employed within this framework: 

1. grey-level co-occurrence matrices (GLCMs), 
2. wavelets, 
3. steerable pyramids, 
4. textons and 
5. local binary patterns (LBPs). 

The first two methods, GLCMs and wavelets, are considered as baseline methods, while the last 
three methods are more advanced and their uses in the process industries are not as well-
established.  

   

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 – Materials and methods  64 
 

The performances of all five texture analysis methods were evaluated by calculating the error when 
the textural features are classified using two classification algorithms (K-nearest neighbours and 
discriminant analysis). In order to be able to make a fair comparison between methods, the 
hyperparameters for each feature extraction and classification algorithm were systematically 
optimised using a grid search and cross-validation. Despite the fact that the hyperparameters 
selected may have a significant outcome on the results, no studies in which hyperparameters were 
optimised in such a structured fashion have been found in literature on texture analysis process 
applications.  

Sample code for the entire analysis of one case study (Case study II: Coal on a conveyor belt) is 
provided in appendix B. This code may be executed in MATLAB by copying all texture analysis code 
(as supplied on the CD accompanying this thesis) to a new folder in MATLAB and running the two 
files containing calls to all other functions, as specified.  

 

Figure 4-1: A framework for the development of a vision-based inferential sensor using textural feature extraction for 
the dimensionality reduction step and classification for the modelling step 

Process / product scene

Image acquisition

Dimensionality 
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Modelling

Key

             Input / output
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The remainder of this chapter is organised as follows. Section 4.2 gives an overview of the three case 
studies used, and also serves as a discussion of the image acquisition step. Section 4.3 further 
elaborates on the texture classification framework by providing data partitioning, cross-validation 
and testing details. The remainder of the framework is discussed in sections 4.4 (pre-processing), 4.5 
(dimensionality reduction) and 4.6 (modelling). The chapter ends with an explanation of the various 
performance evaluation methods used to analyse the results in section 4.7, and a summary in 
section 4.8. 

4.2 Case studies 
The first step in any vision-based algorithm is the acquisition of image data through some sort of 
imaging device. The imaging device is the “eyes” of the machine vision system and could be a 
standard digital camera, video camera, microscope, ultrasound scanner or any other specialised 
apparatus. 

In the supervised classification approach followed here, it is also required to collect data of the 
response variable – in the final data set each image should be labelled according to its class (the 
variable to be inferred). This section provides the details on the image acquisition and labelling 
procedure for each case study. 

4.2.1 Case study I: Platinum flotation froths 
Background on froth flotation has been provided in section 2.4.1, together with a review of vision-
based inferential sensing applications to froth flotation. 

Case study I involves a platinum group metal (PGM) froth flotation process at the Mogalakwena 
North concentrator of Anglo American Platinum. The data for this case study was collected by 
Marais (2010) in collaboration with graduates employed by Anglo American Platinum. Full details of 
the experimental procedure may be found in the MSc thesis of Marais (2010); a brief summary is 
provided here. 

A video camera was mounted above a primary cleaner flotation cell to record image data of the 
froth. Over a period of four hours, six step changes were made to the air flow rate of the 
concentrator cell, allowing the cell to stabilise between each step change. After each step, the point 
in time where steady state has been reached was visually determined by plant operators and noted. 
This resulted in a series of videos with image data for seven steady state periods. Froth samples 
were collected during each steady state period and analysed to determine the composition of the 
froth during each steady state period.  

It should be noted that all other process variables were kept constant during collection of the data. 
Variables such as reagent dosages and impeller speeds could affect the process conditions 
significantly, but the effect of these variables could not be tested in this experiment. As it stands, 
the froth grade is correlated with the input air flow rate, and therefore it is possible that any model 
that is built can actually only predict air flow rate and not grade. 
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Furthermore, another point of note is that the lighting conditions changed during the course of the 
experiment, despite reasonable effort being made to keep the lighting consistent (Marais, 2010). 
Therefore, in this particular case study the use of colour features is not recommended, as the colour 
may have changed simply due to varying lighting conditions.  

The relative platinum grades from the assay results are shown in the middle column of table 4-1.  

Table 4-1: Platinum assay results  
and regrouping into classes 

From all steady state sections in the videos, every 30th frame (corresponding to roughly every 
second) was extracted. For computational reasons it was not feasible to extract all frames, and no 
significant loss of data is expected when the data is subsampled in this manner, since consecutive 
frames are very similar. The images obtained were regrouped into four classes as shown in the last 
column of table 4-1. The 6th sample was omitted because its relative Pt grade (0.28) is close to the 
relative grades of class 4 (0.11 to 0.16) and class 3 (0.38 to 0.40). The goal here was to test 
classification on discrete classes, and it is suggested that the 6th sample may be too similar to class 3 
or 4 to be discerned. When performing regression, the inclusion of this data is more appropriate.  

The resulting image data set consisted of 2720 images in four platinum grade classes, as summarised 
in table 4-2. An example image from each class is shown in figure 4-2. The goal of the image 
classification algorithm was to predict these platinum grade classes from froth images. 

Table 4-2: Platinum grade classes 

Sample Relative Pt grade Class 
1 1.00 1 
2 0.59 2 
3 0.38 3 
4 0.11 4 
5 0.16 4 
6 0.28 None 
7 0.40 3 

Class Relative Pt grade Number of images 
1: Very high Pt grade 1.00 780 
2: High Pt grade 0.59 480 
3: Medium Pt grade 0.38 – 0.40 678 
4: Low Pt grade 0.11 – 0.16 782 
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Class 1 Class 2 

  

  
Class 3 Class 4 

Figure 4-2: Example platinum froth flotation images 

4.2.2 Case study II: Coal on a conveyor belt 
Background on processes where the conveyance of particulate matter is concerned has been 
provided in section 2.4.2, together with a review on appropriate inferential sensing studies. 

This second case study entails the estimation of the percentage fine particles in coal on a conveyor 
belt. In a laboratory experiment performed by Aldrich and others (2010), coal was sieved and 
separated into coarse (> 6 mm) and fine (< 6 mm) fractions. These fractions were mixed in varying 
quantities to prepare seven different blends containing 0%, 20%, 40%, 50%, 60%, 80% and 100% fines 
by mass. Ten samples of each blend were created. To simulate industrial conditions, the samples 
were placed on a pilot plant conveyor belt. Images of the samples were captured with a digital 
camera.  

It should be noted that this experimental setup was not very similar to what is found in an 
industrial plant. In an industrial process where coal is fed to gasifiers, the coal undergoes a wet 
screening process, is subject to layering (the coarse particles tend to be loaded on top of the fine 
particles) and the upper limit for the desired fines percentage is only 10% (Mans, 2013, personal 
communication, 11 July). On the contrary, in the laboratory experiment dry coal was used and the 
layering of coal particles was not simulated. Images of coal where the fines fractions were close to 
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the 10% upper limit would have been useful, but were not collected. As it is, this case study serves as 
a proof of concept only. 

Images of the seven blends were re-grouped into three categories “coarse”, “intermediate” and 
“fine”, and each of the 70 images were subdivided into four non-overlapping patches in to increase 
the size of the data set to 280 images. A summary of this data set is shown in table 4-3, and figure 4-3 
shows example images from each class. For this data set, the goal of the image classification 
algorithm was to predict the fines fraction classes from coal images. 

Table 4-3: Fines fraction in coal classes 

 

Class Fines (%) Number of images 
1: Coarse 0 – 20 80 
2: Intermediate 40 – 60 120 
3: Fine 80 – 100 80 

 
 
 

Class 1: Coarse 
 
 

Class 2: Intermediate 

 
 
 

Class 3: Fine 
 

Figure 4-3: Example coal particle images. The white circle present in each image is a South African five-rand coin with a 
diameter of 26 mm, which gives an indication of scale. 
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Class 1: Coarse Class 2: Intermediate Class 3: Fine 

Figure 4-5: Example images from the hydrocyclone underflow data set 

4.3 Data partitioning, cross-validation and testing 
In a typical machine learning setup, data is partitioned into training and test data. Training data is 
used to determine the model parameters (for example the coefficients in a PCA model), and then 
test data is used as input to the trained model to predict how well the algorithm will perform in a 
real application. For all experiments in this study, approximately 75% of the images in each class 
were used for training, with the remaining 25% being reserved for testing.  

When there are various hyperparameter settings for an algorithm (such as the type of wavelet used, 
or the number of nearest neighbours 𝐾𝑁  in the K-NN algorithm), validation may be used to 
determine the optimal hyperparameter set. This is done by keeping a portion of the training data 
aside as validation data, and testing with these data. The best hyperparameter setting is that which 
results in the lowest validation error.  

To reduce the effect that variability in the data may have on the validation error, a method called 
cross-validation may be used. In this work, five-fold cross-validation was used, which requires the 
training data to be split into five approximately equally sized folds. The data partitioning 
procedures for each of the case studies are detailed in section 4.3.1. More information regarding 
cross-validation and testing are given in sections 4.3.2 and 4.3.3, respectively. 

4.3.1 Data partitioning 

Case study I: Platinum flotation froth 
One of the most popular data partitioning methods is random subdivision into training, validation 
and test sets. However, although random partitioning has been used in previous work on the same 
data set (Marais, 2010; Marais & Aldrich, 2011), a different approach was followed in this work. This 
is motivated by the fact that the image data for this case study are a series of frames extracted from 
videos of flotation froths. As such, it is possible that sequential images can be correlated to one 
another, even when only every 30th frame is used (as in this case study).  
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Examples of two images that occur 30 frames apart in the original video footage are shown in figure 
4-6, and illustrate that there is indeed a high degree of similarity between sequential images in the 
data set. If such a data set is randomly partitioned, the training and test sets will be very similar, and 
the test error would not be a true estimation of out-of-sample performance. Therefore, instead of 
random partitioning, contiguous blocks of images were used as training and test data, and 40 images 
in between each pair of blocks (covering 20 seconds in the video) were removed from the data set to 
simulate an independent test set. Similarly, the training data were subdivided into five contiguous 
folds. A disadvantage of partitioning the data in this way is that the training data may not be truly 
representative, but this approach is necessary to guard against overfitting (overfitting is when the 
model learns to fit the peculiarities present in the training set, causing poor generalisation to any 
new data that is not part of the training set). 

The partitioning of the 2720 images in the data set is illustrated in figure 4-7, with the number of 
images per class in each set resulting from this partitioning in table 4-5. 

Table 4-5: Sizes of training and test  
sets in froth flotation data set 

 

  

Figure 4-6: Two images in the flotation froth data set occurring 30 frames apart in the original  
video footage. 

Class 
Number of images 

Training Test Total 
1 575 (115 per fold) 185 760 
2 350 (70 per fold) 110 460 
3 489 (98 per fold) 149 638 
4 567 (113 per fold) 175 742 

Totals: 1981 619 2600 
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Case study II: Coal on a conveyor belt 
The 280 images in the coal data set were randomly partitioned such that 75% of the images in each 
class were used for training, with the remaining 25% being reserved for testing. Here the contiguous 
block approach was not necessary, as there is not any correlation in time between sequential 
images. 

The training images were further randomly subdivided into five approximately equally sized folds 
for cross-validation. The number of images per class in each set is shown in table 4-6. 

 

Figure 4-7:  Partitioning of froth flotation data set 
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Table 4-6: Sizes of training and test sets  
in coal data set 

Case study III: Hydrocyclone underflows 
The 300 images in this case study were randomly partitioned into training and test sets and cross-
validation folds. The method of partitioning was exactly the same as for case study II, and again the 
contiguous block approach was not necessary. The number of images per class in each set is shown 
in table 4-7. 

Table 4-7: Sizes of training and test sets  
in hydrocyclone data set 

4.3.2 Cross-validation 
In 𝑍-fold cross-validation, the training data is split into 𝑍 approximately equally sized subsamples 
or “folds”, and the validation process is repeated 𝑍 times. During repetition 𝑧 (𝑧 = 1,2, … , 𝑍), the 
images in fold 𝑧 are used as validation data, with the images in the remaining 𝑍 − 1 folds being used 
as training data. The hyperparameter set with the lowest validation error, averaged across all folds, 
is selected as the best hyperparameter set for the algorithm and used during the final training and 
testing phase. The same data partitioning into folds were used for all hyperparameter sets tested. 

Pseudocode for the cross-validation procedure used in this work is given in figure 4-8. This 
information is also depicted visually in figures 4-9 and 4-10.  

  

Class 
Number of images 

Training Test Total 
1 60 (12 per fold) 20 80 
2 90 (18 per fold) 30 120 
3 60 (12 per fold) 20 80 

Totals: 210 70 280 

Class 
Number of images 

Training Test Total 
1 30 (6 per fold) 10 40 
2 116 (23 per fold) 38 154 
3 80 (16 per fold) 26 106 

Totals: 226 74 300 
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given number of folds Z; 
given all training images, partitioned into folds 1, 2, ..., Z; 
given feature extraction hyperparameter options H_F; 
given classification hyperparameters options H_C; 
given known class information (labels) of all training images; 

  
% do cross-validation 
for each cross-validation run z = 1, 2, ..., Z 
     

    training images = all training images not in fold z; 
    validation images = all training images in fold z; 

     
    for each feature extraction hyperparameter combination i in H_F 
        for each classification hyperparameter combination j in H_C 
            training features = features extracted from ... 

                training images using hyperparameter combination i; 
            classifier = model trained using training features ... 

                and hyperparameter combination j; 
            validation features = features extracted from validation ... 

                images using hyperparameter combination i; 
            predicted labels = classes of validation images ... 

                predicted by classifier; 
            error(z,i,j) = fraction incorrectly predicted labels ... 

                of validation images; 
        end 
    end 

 
end 
 

% calculate average errors to determine optimal hyperparameter set 
for each i 
    for each j 
        error(i,j) = average of error(z,i,j) across all z; 
    end 
end 

 
best hyperparameter combination = i and j with lowest error(i,j); 

Figure 4-8: Pseudocode for 𝒁-fold cross-validation on hyperparameter combinations (𝒊, 𝒋) 
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Figure 4-9: Detailed development of an inferential sensor showing the calculation of error rates 𝓔 ,𝒊,𝒋 for 𝒁-fold cross-
validation. 
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Figure 4-9 adds more detail to the diagram explaining the development of a visual-based inferential 
sensor, as shown in the beginning of this chapter (figure 4-1, p. 64). It includes the data partitioning 
step (as explained in section 4.3.1) and the procedure for calculating error rates ℰ𝑧,𝑖,𝑗 for cross-
validation. The subscript 𝑧 refers to the fold, 𝑖 indicates that the 𝑖th feature extraction hyperparame-
ter set was used and 𝑗 indicates that the 𝑗th classification hyperparameter set was used. 

An error rate for a specific combination of 𝑧, 𝑖 and 𝑗 is simply the fraction of incorrectly predicted 
labels of the validation data, and is calculated by comparing the predicted labels (class information) 
of the images with the known labels: 

If there are 𝑁𝑣𝑎𝑙 validation images, 𝒞𝑝 and 𝒞𝑘 are vectors of length 𝑁𝑣𝑎𝑙 containing the predicted 
and known class labels, respectively. The “==” is a logical equal operator, so that 𝐴 == 𝐵 returns 1 

 

Figure 4-10: The error rates 𝓔 ,𝒊,𝒋 are used to determine the optimal hyperparameter  
combination {𝓗 

 ,𝓗 
 }. Here 𝒉𝒇 is the number of feature extraction hyperparameters settings and 𝒉𝒄 

is the number of classification hyperparameters 

 
ℰ𝑧,𝑖,𝑗 = 1 −

∑ (𝒞𝑝,𝑛 == 𝒞𝑘,𝑛)
𝑁   
𝑛=1

𝑁𝑣𝑎𝑙
 (4-1)  
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when 𝐴 = 𝐵 and 0 when 𝐴 ≠ 𝐵. The operator is applied in a pairwise fashion to each entry 𝒞𝑝,𝑛 and 
𝒞𝑘,𝑛 of 𝒞𝑝 and 𝒞𝑘. 

The details regarding the dimensionality reduction and modelling steps in this diagram will be 
explained in sections 4.5 and 4.6, respectively. 

Figure 4-10 shows how the error rates ℰ𝑧,𝑖,𝑗 are used to determine the optimal hyperparameter 
combination. Let the set of possible feature extraction hyperparameters be 𝓗 = 
{ℋ𝐹,1,ℋ𝐹,2, … ,ℋ𝐹,ℎ𝑓}  and let the set of possible classification hyperparameters be 𝓗 =

{ℋ𝐶,1,ℋ𝐶,2, … ,ℋ𝐶,ℎ𝑐}, where ℎ𝑓 is the number of feature extraction hyperparameter settings and 
ℎ𝑐  is the number of classification hyperparameter settings. The error rate ℰ𝑖,𝑗  for each 
hyperparameter combination {ℋ𝐹,𝑖 , ℋ𝐶,𝑗} is calculated as the average error rate across all folds 
𝑧 = 1,2, … , 𝑍 for that hyperparameter combination: 

The minimum ℰ𝑖,𝑗  is then determined, and the hyperparameter combination that led to this 
minimum error rate is the optimal combination {ℋ𝐹 ,ℋ𝐶

 }. These optimal hyperparameters will be 
used during the final training and test phase.  

4.3.3 Testing 
Once the optimal hyperparameters have been determined, the final training and testing is 
performed, as shown in figure 4-11. The model is retrained using all training data, and tested to 
determine the predicted class labels for the test data (𝒞𝑝), and hence the final error rate: 

Here 𝑁𝑡𝑒𝑠𝑡 is the number of test images, and 𝒞𝑝 and 𝒞𝑘 are vectors of length 𝑁𝑡𝑒𝑠𝑡 containing the 
predicted and known class labels for the test images, respectively. 

  

 
ℰ𝑖,𝑗 =

∑ ℰ𝑧,𝑖,𝑗
𝑍
𝑧=1

𝑍
 (4-2)  

 
ℰ𝑡𝑒𝑠𝑡 = 1 −

∑ (𝒞𝑝,𝑛 == 𝒞𝑘,𝑛)
𝑁    
𝑛=1

𝑁𝑡𝑒𝑠𝑡
 (4-3)  
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Figure 4-11: Detailed framework for the development of an inferential sensor, showing training 
 and testing procedures. 
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4.4 Pre-processing 
Pre-processing involves all alterations that have to be made to get the original image data in the 
correct format for feature extraction. In this work, pre-processing consisted of cropping, resizing, 
conversion to greyscale and normalisation. 

4.4.1 Cropping and resizing 
In some cases images can be cropped to remove irrelevant information, such as the background.  

High-resolution images place a high demand on computer memory, and therefore it may be 
necessary to resize images to reduce the resolution. The final resolution of the images should be the 
maximum possible given the hardware limitations, since low quality images can affect the results 
adversely. In this work images were resized using bicubic interpolation with antialiasing (Keys, 
1981). With bicubic interpolation an output pixel value becomes a weighted average of the pixel 
values in its nearest 4-by-4 neighbourhood, while antialiasing smoothes edges to improve visual 
appearance. 

Another reason for changing the image size is due to a limitation of the steerable pyramid 
implementation used in this work (Portilla & Simoncelli, 2000). The algorithm was implemented in 
such a way that images are required to have a width and height that is divisible by 2𝐽, where 𝐽 is the 
number of levels in the decomposition. To achieve this, images can be resized horizontally or 
vertically, or if the original aspect ratio would be drastically affected by resizing, a small portion of 
the image may be cropped off. It is interesting to note that the execution times of several other 
texture analysis algorithms are increased when the image dimensions are odd. 

The cropping and resizing procedures for each case study are described in the remainder of this 
section. 

Case study I: Platinum flotation froths 
Images in the flotation data set were not cropped, but they were resized to reduce the resolution 
from 1280 × 720 pixels to 1024 × 576 pixels. 

Case study II: Coal particles on a conveyor belt 
Other studies that used this data set (Aldrich et al., 2010; Jemwa & Aldrich, 2012) cropped images to 
a central patch to minimise the effect of uneven lighting, and to remove the conveyor belt 
background and South African R5 coin that was used as a scale indicator. However, in this work 
images were not cropped, because: 

 a good inferential sensor should be robust to uneven lighting conditions and random 
artefacts (such as the R5 coin), making it desirable to retain these conditions,  

 the coal particle size distribution is not always uniform across an image, which means that 
cropping off large sections of the image skews the information available to the classification 
algorithm, potentially leading to worse results, and 
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 such cropping would require manual intervention, which would limit automated inferential 
sensing applications. 

The original coal images had a resolution of 2272 × 1704 pixels, but since these were subdivided 
into four non-overlapping patches, each subdivision had a resolution of 1136 × 852 pixels. These 
were resized to 1024 × 768 pixels. 

Case study III: Hydrocyclone underflows 
Images in the original hydrocyclone data set as obtained from Uahengo (2013) did not have identical 
resolutions. The first step in resizing these images was to crop each image to the minimum width 
(3000 pixels) and minimum height (2262 pixels) in the data set, retaining the central part of each 
image.  

The resultant images from the first cropping step still contained a large portion of black 
background, and could therefore be further cropped to remove this background to some extent. The 
size and position of a common cropping rectangle across all images were visually determined by 
overlaying all images on top of each other. Appropriate coordinates for the upper-left corner of the 
cropping rectangle (𝑥0, 𝑦0) were determined to be (0, 100), and the size of the cropping rectangle 
was 2560 (width) × 2048 (height) pixels. 

The final cropped images were resized from 2560 × 2048 pixels to 1280 × 1024 pixels. 

4.4.2 Conversion to greyscale 
Traditional texture analysis methods were developed for the analysis of greyscale images, but many 
methods of incorporating colour or spectral information exist, such as multi-resolution 
multivariate image analysis (MR-MIA). Although the choice of using only greyscale information is 
not to be made lightly, in this work it can be motivated by the fact that colour is not expected to 
play an important role in any of the three case studies considered.  

Image data for all three case studies were initially in RGB format. The standard formula for 
converting an RGB image to greyscale (4-4) was used:  the greyscale image 𝐼𝐺  is an average of the 
𝑹,𝑮,𝑩 components, weighted according to human perception of colours: 

4.4.3 Image normalisation 
A common problem in vision-based sensing is inconsistent lighting conditions. If illumination 
varies across images, the feature extraction algorithm may incorrectly recognise this variation as a 
key feature. However, a good texture analysis algorithm should be robust to non-optimal lighting 
conditions, as this would typically be encountered in a real plant environment. Therefore, only the 
most basic method of correcting for lighting inconsistencies, namely normalisation, was used. 

 𝐼𝐺 = 0.2989𝑹+ 0.5870𝑮 + 0.1140𝑩 (4-4)  
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To obtain a normalised image 𝐼𝑛𝑜𝑟𝑚 with zero mean and unit standard deviation from the original 
greyscale image 𝐼𝐺, its mean 𝜇𝐺  is subtracted and the result is divided by its standard deviation 𝜎𝐺: 

Here 𝐽𝑤,ℎ is a matrix of ones with dimensions ℎ and 𝑤, the height and width of the image (required 
for matrix subtraction). 

4.5 Dimensionality reduction 
In this work, the dimensionality reduction step consisted of texture feature extraction, feature 
normalisation and optionally PCA. The dimensionality reduction section from figure 4-11 (the 
detailed training and testing inferential sensor framework) is shown here as figure 4-12, which also 
includes the sub-steps within dimensionality reduction.  

 
𝐼𝑁 =

𝐼𝐺 − 𝜇𝐺 ⋅ 𝐽ℎ,𝑤
𝜎𝐺

 (4-5)  

 

Figure 4-12:  Dimensionality reduction allows for the images to be represented by a reduced, textural feature set instead of 
pixels. 
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The main step in dimensionality reduction is texture feature extraction. The implementation details 
of the five different feature extraction methods that were tested in this work are given in sections 0 
to 4.5.5. Section 4.5.6 details the feature normalisation method, while section 4.5.7 explains PCA. 

4.5.1 Grey-level co-occurrence matrices 

Description 
Introduced by Haralick and others (1973), the use of grey-level co-occurrence matrices (GLCMs) for 
textural feature extraction has become one of the most popular texture analysis methods in 
literature. A GLCM of an image is a concise summary of the frequencies at which grey levels occur at 
a specified displacement from each other. It is thus a representation of the local textural properties 
of an image, and several statistical features are commonly extracted from one or more GLCM to 
describe these textural properties. More details on GLCMs are given in section 3.2 (page 31). 

Hyperparameters considered 
The hyperparameters that may be varied in the calculation of GLCMs, with their values considered 
in this work, are given in table 4-8. The number of grey levels, 𝐺, is usually not optimised in GLCM 
applications. However, some sources suggest that this hyperparameter is important (Clausi, 2002), 
and its optimisation was therefore included to allow for this possibility. The choices for the other 
three hyperparameters were made in accordance with popularity in literature (Haralick, 1979). 

Table 4-8: GLCM hyperparameters and their considered values 

Since there were five options for 𝐺 and five options for 𝐷, a total of ℎ𝑓 = 25 feature extraction 
hyperparameter settings were tested. For each hyperparameter setting, the following steps were 
carried out: 

1. Given that the number of orientations was chosen as four, GLCMs were calculated at four 
equally spaced angles (0°, 45°, 90° and 135°). 

2. A popular subset of the original Haralick statistical features was extracted from each of the 
four GLCMs: contrast, correlation, energy and homogeneity.  

3. For each statistical feature, its average and standard deviation across all four orientations 
was calculated (as in Haralick, 1979).  

This procedure results in a GLCM feature vector of length 4 × 2 = 8; this implementation the order 
of the features is {𝐶𝑂𝑁𝐴𝑉𝐺 ,   𝐶𝑂𝑁𝑆𝑇𝐷 , 𝐶𝑂𝑅𝐴𝑉𝐺 , 𝐶𝑂𝑅𝑆𝑇𝐷 , 𝐸𝑁𝐸𝐴𝑉𝐺 , 𝐸𝑁𝐸𝑆𝑇𝐷 , 𝐻𝑂𝑀𝐴𝑉𝐺 , 𝐻𝑂𝑀𝑆𝑇𝐷}. 

Hyperparameter Values considered 
Number of grey levels (𝐺) 𝐺 = 2𝑔,   3 ≤ 𝑔 ≤ 7,   𝑔 ∈ ℕ 
Size of displacement between grey level pairs (𝐷) 1 ≤ 𝐷 ≤ 5,   𝐷 ∈ ℕ 
GLCM type Symmetric (not varied) 
Number of orientations 4 (not varied) 
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4.5.2 Wavelets 

Description 
Wavelets are mathematical functions that may be used for multi-resolution analysis of images 
(Mallat, 1989), offering several advantages over the well-known Fourier analysis. Wavelet texture 
analysis usually involves the decomposition of images into horizontal, vertical and diagonal 
coefficient sets at multiple scales or levels. A feature set commonly extracted from this 
representation consists of the energies of all the coefficient sets. Wavelets are described in more 
detail in section 3.3 (page 35). 

Hyperparameters considered 
In this work, three popular orthogonal wavelets were considered (table 4-9): the Haar wavelet (the 
same as the Daubechies wavelet with a 1-tap filter; abbreviated as ‘haar’), the Daubechies 3-tap 
wavelet (‘db3’) and the Symlet 4-tap wavelet (‘sym4’). Although some sources suggest that the type of 
wavelet used does not seem to have a large influence on the results (Chang & Kuo, 1993), these three 
popular wavelets were compared to allow for the possibility that the choice does affect the results 
significantly.   

Table 4-9: Wavelet hyperparameters and their  
considered values 

For each case study, wavelet decomposition was performed to the maximum level. The criteria for 
choosing the maximum level followed that of Ruttimann and others (1998) and depend on the type 
of wavelet and the resolution of the original image. For case studies I (flotation) and II (coal 
particles), the maximum level was 6, while images for case study III (hydrocyclones) could be 
decomposed up to the 7th level.  

The energies of all sets of vertical, horizontal and diagonal coefficients were calculated, resulting in 
feature vectors of length 3 × 6 = 18 for the 6-level wavelet decompositions and feature vectors of 
length 3 × 7 = 21 for the 7-level decompositions. For a 𝐽-level decomposition, the order of the 
features is given by {𝐸𝐻1, 𝐸𝐻2, … , 𝐸𝐻𝐽 , 𝐸𝑉1, 𝐸𝑉2, … , 𝐸𝑉𝐽, 𝐸𝐷1, 𝐸𝐷2, … , 𝐸𝐷𝐽} where 𝐸 denotes “energy” 
and the subscripts 𝐻 , 𝑉  and 𝐷  denote the horizontal, vertical and diagonal components, 
respectively. 

4.5.3 Steerable pyramids 

Description 
The steerable pyramid is a translation- and rotation-invariant transform in multi-resolution image 
analysis, developed by Simoncelli and others (1992). This state-of-the-art image analysis method 

Hyperparameter Values considered 
Wavelet type ‘haar’, ‘db3’, ‘sym4’ 
Decomposition level (𝐽) Maximum (not varied) 
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has achieved considerable success in many, diverse applications, but has not yet been extensively 
applied in the process industries.  

Portilla and Simoncelli (2000) proposed a set of visually meaningful statistical measurements, 
consisting of four groups, which may be extracted from the steerable pyramid representation to 
provide a complete textural description of an image: marginal statistics, coefficient correlations, 
magnitude correlations and cross-scale phase statistics. In this work, these four sets of statistics 
were calculated and used as features, with one exception: the means and standard deviations of the 
pixels in the original images, part of the “marginal statistics”, were not calculated. This is because 
images were normalised to have zero mean and unit variance. 

Hyperparameters considered 
In this work a 3rd order directional derivative filter set was used to decompose images to the 
maximal level. For case study I (flotation), the maximum level was 5, while the images from case 
studies II (coal particles) and III (hydrocyclones) could be decomposed to the 6th level. Two further 
hyperparameters influence the statistical feature set obtained: the number of orientations included 
(𝑆𝑖𝑛𝑐) and the width of the square pixel neighbourhood used in the computation of local statistics 
(𝑊). The values considered for all of these hyperparameters are given in table 4-10. 

Table 4-10: Steerable pyramid hyperparameters and their considered values 

Since there were two options for 𝑆𝑖𝑛𝑐 and two options for 𝑊, a total of four hyperparameter 
combinations were tested. The length of a steerable pyramid feature vector is a function of 𝐽, 𝑆𝑖𝑛𝑐 
and 𝑊, and ranged between 889 (𝐽 = 5, 𝑆𝑖𝑛𝑐 = 4, 𝑊 = 7) and 3272 (𝐽 = 6, 𝑆𝑖𝑛𝑐 = 6, 𝑊 = 11). 

4.5.4 Textons 

Description 
Conceptually, textons are local texture descriptors or textural “primitives”, such as blobs, edges, 
line terminators and line crossings (Julesz, 1981). Modern texton approaches involve image filtering 
and pixel clustering, with textons being defined as cluster centres in the filter response space. The 
features for each image are then a histogram of the textons occurring in the image (Varma & 
Zisserman, 2005).  

The texton algorithm differs from all four other feature extraction methods in two ways: 

1. The K-means clustering during training requires all images in the training images to be 
stored in memory at the same time, while all other methods can extract features from one 
image at a time. This makes the algorithm more memory intensive. 

Hyperparameter Values considered 
Filter bank 3rd order directional derivatives (not varied) 
Decomposition level (𝐽) Maximum (not varied) 
Number of orientations (𝑆𝑖𝑛𝑐) 4, 6 
Width of pixel neighbourhood (𝑊) 7, 11 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 – Materials and methods  85 
 

2. Information from the feature extraction step for training images is used in the feature 
extraction of test images: there is no clustering in the feature extraction of test images, but 
rather pixels are assigned to the cluster centres or textons that were determined during 
training.  

Computation time 
The computer running time required to run the texton algorithm is worth mentioning here. The 
texton algorithm is extremely slow when compared to the other datasets, taking about 18 hours in 
average to calculate the features for one hyperparameter combination.  

There are two reasons for this long computer running time. Firstly, the K-means clustering 
algorithm is very time-consuming, even when fully vectorised, due to the extremely large number 
of data points in the cluster space (each pixel in each training image becomes a 13-dimensional data 
point in the cluster space). Secondly, since the pixels of the training images are aggregated before 
clustering, the clustering step has to be repeated every time the training set changes. This means 
that new cluster centres 𝒯 are computed for each fold during the five-fold cross-validation, as well 
as for final testing (when the entire training set is used for training), which roughly multiplies the 
computation time that is required by six. In contrast, during the five-fold cross-validation and 
testing of the other feature sets, the features only have to be extracted once, and only the feature 
scaling and PCA (both of which are fast procedures) are repeated six times. This is also shown in 
figure 4-12 (p. 81), where for textons only, the parameter 𝒯 from the feature extraction step is used 
during the test phase.  

Hyperparameters considered 
Several filter banks have successfully been used together with the texton approach. In this work a 
filter bank consisting of thirteen rotationally invariant Gabor-like filters (Schmid, 2001) was used, 
since this filter bank is simple to compute, has low dimensionality and yielded the best texture 
classification results in a previous study on the coal data set (Jemwa & Aldrich, 2012).  

In the original work by Schmid (2001) and in a few subsequent studies (Varma & Zisserman, 2005; 
Jemwa & Aldrich, 2012), the spatial support of the largest filter in the filter bank was fixed at 
49 × 49 pixels. However, other authors have found that the size of the filter support is an important 
factor in the overall success of the algorithm. Since many filtering approaches in literature use a 
smaller rather than larger support, a smaller support size of 25 × 25 pixels was also tested. 

Clustering in the texton algorithm was done with the K-means algorithm. Although simple to 
implement, one drawback of this method is the need to pre-emptively specify the number of cluster 
centres or textons, 𝐾𝑇. Following Jemwa and Aldrich (2012), four values of 𝐾𝑇 were tested: 10, 20, 40 
and 80.  

Due to the large size of the flotation data set (case study I), only every 4th image in the training set 
(in chronological order) was used in the clustering step. This was necessary due to computer 
memory limitations, and was deemed acceptable since consecutive images are still very similar even 
though the original data set has already been sampled.  
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The hyperparameters that may be varied in the texton algorithm, as well as their values considered, 
are summarised in table 4-11. The two options for the filter support width and four options for 𝐾𝑇 
results in a total of eight hyperparameter combinations being tested. 

Table 4-11: Texton hyperparameters and their  
considered values 

The length of a texton feature vector is usually equal to the number of cluster centres chosen, 𝐾𝑇. 
However, during the K-means clustering step it is possible that some clusters become empty and are 
removed. Therefore, the number of textons is sometimes less than the specified amount of cluster 
centres. 

4.5.5 Local binary patterns 

Description 
The local binary pattern (LBP) is a texture analysis operator for local texture characterisation, 
initially proposed by Olaja and others (1994). The operator is applied to greyscale images in a pixel-
wise fashion by comparing each pixel to its local pixel neighbourhood. The final textural feature set 
of an image is a histogram of the LBPs in the image. The underlying principles of LBP texture 
analysis is the same as that of the texton algorithm, but with the advantage of reduced 
computational complexity.  

Hyperparameters considered 
The hyperparameters that may be varied in LBP texture analysis are the texture neighbourhood 
radius and sampling points pair (𝑅, 𝑃), and the mapping type, as shown in table 4-12. 

Table 4-12: LBP hyperparameters and their considered values 

For the hyperparameters (𝑅, 𝑃), the values (1, 8), (2.5, 12) and (4, 16) were considered, following 
Ojala and others (2002b). It is not feasible to increase number of sampling points to much higher 
than sixteen, due to the high dimensionality of the feature set that would be produced. The 
mapping types considered were ‘none’, rotational invariance mapping (‘ri’), uniform pattern 
mapping (‘u2’) and both rotational invariance and uniform pattern mapping (‘riu2’). 

Hyperparameter Values considered 
Filter bank Schmid (not varied) 
Support width of largest filter (𝐹𝑆) 25, 49 
Number of cluster centres (𝐾𝑇) 20, 40, 80 

Hyperparameter Values considered 
Texture neighbourhood radius and sampling points pair (𝑅, 𝑃) (1, 8), (2.5, 12), (4, 16) 
Mapping type ‘none’, ‘ri’, ‘u2’, ‘riu2’ 
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The three (𝑅, 𝑃)  options and four mapping type options led to twelve hyperparameter 
combinations being tested. The length of a LBP feature vector is initially 2𝑃, but can be reduced 
considerably depending on the mapping type used. 

4.5.6 Feature set normalisation 
Once the textural feature set has been obtained by using one of the texture feature extraction 
methods, it is common practice to normalise the features before proceeding with further 
dimensionality reduction or classification. One important reason for this is due to the fact that the 
ranges of the various features can vary considerably. Normalisation ensures that features with large 
values do not overpower features with small values during the classification step. 

In this work the features for the training samples were normalised to have zero mean and unit 
standard deviation. The normalisation for each feature 𝓕𝑡𝑟𝑛(𝑖) (column in the feature matrix 𝓕𝑡𝑟𝑛) 
is given by: 

where 𝜇𝑡𝑟𝑛 and 𝜎𝑡𝑟𝑛 are vectors of the feature means and standard deviations, respectively.  𝑱𝑁    is 
a vector of ones with length 𝑁𝑡𝑟𝑛, the number of training images. 

The means and standard deviations of the training features were used to standardise the test 
features, according to: 

4.5.7 Principal component analysis 
Principal component analysis (PCA) finds the orthogonal axes of maximal variation in a feature set 
and transforms the features onto these axes. The use of PCA results in dimensionality reduction 
when the first 𝐶𝑣𝑎𝑟 transformed features or principal component scores are used, where 𝐶𝑣𝑎𝑟 is the 
number of principal component scores that explain 𝑣𝑎𝑟 percent of the variance. Thus, PCA may be 
used to reduce the dimensionality of extracted texture feature sets that could possibly contain 
redundant features. As part of the hyperparameter optimisation process, the options considered for 
PCA were ‘none’ (no PCA), 𝑣𝑎𝑟 = 99% and 𝑣𝑎𝑟 = 95%.  

 
𝓕̂𝑡𝑟𝑛(𝑖)  =

𝓕𝑡𝑟𝑛(𝑖) − 𝜇𝑡𝑟𝑛(𝑖) ⋅ 𝑱𝑁   
𝜎𝑡𝑟𝑛(𝑖)

 (4-6)  

 
𝓕̂𝑡𝑒𝑠𝑡(𝑖)  =

𝓕𝑡𝑒𝑠𝑡(𝑖) − 𝜇𝑡𝑟𝑛(𝑖) ⋅ 𝑱𝑁    
𝜎𝑡𝑟𝑛(𝑖)

 (4-7)  
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4.6 Modelling 

4.6.1 K-nearest neighbours 
In K-nearest neighbour (K-NN) classification, given a set of training data points with known labels, a 
new (test) data point is assigned the majority rule label of its 𝐾𝑁 closest neighbours in the feature 
space. In this work the numbers of nearest neighbours considered were 1 ≤ 𝐾𝑁 ≤ 11,   𝐾𝑁 ∈ ℕ. 

4.6.2 Discriminant analysis 
Discriminant analysis (DA) finds a set of weights such that the linear combinations of the training 
data vectors and weights result in a maximal separation between the classes. The data are then 
classified according to the maximum a-posteriori rule. In this work the use of linear discriminant 
analysis (LDA) and quadratic discriminant analysis (QDA) were considered. 

4.7 Performance evaluation 
As discussed in section 4.3.3, the primary performance measure used to evaluate the performance of 
each feature extraction method and classifier combination was the error rates obtained by using the 
trained model to classify unseen test images: 

where 𝑁𝑡𝑒𝑠𝑡 is the number of test images, and 𝓒𝒑 and 𝓒𝒌 are vectors of length 𝑁𝑡𝑒𝑠𝑡 containing the 
predicted and known class labels for the test images, respectively. This performance measure can be 
augmented by performing further analyses of the results, specifically by considering confusion 
matrices and by performing sensitivity analyses to determine the significance of differences 
between error rates and the significance of the effect that hyperparameter choices have on the 
error rates. 

4.7.1 Confusion matrices 
A confusion matrix is a good way to visualise classification results, and shows the percentage of 
samples that were classified into each class. As an example, consider the sample confusion matrix 
for a 4-class classification problem, shown in figure 4-13.  

 
ℰ𝑡𝑒𝑠𝑡 = 1 −

∑ (𝓒𝒑(𝑛) == 𝓒𝒌(𝑛))
𝑁    
𝑛=1

𝑁𝑡𝑒𝑠𝑡
 (4-8)  
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Looking for example at the third row of the confusion matrix, showing classification results for all 
images that actually belong to class 3: 6.7% of the images were incorrectly classified into class 1, 
24.8% were incorrectly classified into class 2, 32.2% were correctly classified into class 3 and 36.2% 
were incorrectly classified into class 4. A perfect classifier would result in 100% (coloured black) 
along the diagonal and 0% (coloured white) everywhere else.  

4.7.2 Sensitivity analysis 

Analysis of variance 
Analysis of variance (ANOVA) is a statistical test that can be used to determine whether there are 
significant differences between means of several groups, and thus generalises the t-test to more 
than two groups. ANOVA was used in this work to test whether the error rates obtained with the 
different feature extraction methods and classifiers differed significantly from each other. A 95% 
confidence level (𝛼 = 0.05) was selected, so that for each effect a p-value of p ≤ 𝛼 = 0.05 was 
considered significant.  

ANOVA results can only show whether specific factors have a significant influence on the error rate, 
but does not provide any further information regarding which of the factor levels produce 
significantly different error rates. For example, if one factor is “feature set”, then its levels are the 
specific feature sets: GLCM, wavelet, steerable pyramid, texton and LBP. If the effect of the factor 
“feature set” is found to be significant, this only means that at least one of the feature sets produced 
a significantly different error rate than at least one other feature set.  

Post-hoc testing 
After an ANOVA test has been performed, post-hoc tests can be carried out to determine which 
levels in factors were significantly different from one another. Post-hoc testing involves performing 
a t-test between each pair of treatments (or between a pre-specified set of treatments), which 
means that multiple t-tests are carried out. When performing multiple t-tests, the overall 
confidence level is no longer 95%, as with each additional test performed the probability of a type I 
error (false positive) increases. Post-hoc tests therefore incorporate corrections for the 𝛼 of each 
individual t-test so that the overall confidence level remains at 95%. 

 

Figure 4-13: Sample confusion matrix 
for a 4-class classification problem 
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The Bonferroni post-hoc test (Dunn, 1961) was used to determine the significance between different 
levels in the “feature set” factor. This post-hoc test involves a simple correction for 𝛼: 

According to equation (4-9) the original 𝛼 is divided by the number of t-tests (𝑁) to yield the 
adjusted 𝛼𝑎𝑑𝑗 for each individual test. Equivalently, the Bonferroni post-hoc test employed in this 
work multiplies the p-value obtained in each individual t-test with 𝑁, so that this new p-value can 
be compared to the original 𝛼: 

Therefore, the Bonferroni post-hoc test shows that there is a significant difference between two 
factor levels tested when p𝑎𝑑𝑗 ≤ 𝛼 for that t-test. 

Regression for ANOVA 
During the cross-validation phase, many feature extraction and classification hyperparameters 
were optimised. It is important to know which of these hyperparameters actually had a significant 
effect on the error rate, since insignificant hyperparameters could be left out of the optimisation in 
future work, leading to lower computational requirements.  

In some cases, there were up to four hyperparameters optimised for a single feature extraction and 
classification combination. Since ANOVA with more than two factors is not a standard procedure, 
analysis of variance was instead carried out using regression models. The idea behind such a 
regression model is simple: if the hyperparameter settings instead of the features extracted are used as 
input variables to a regression model of the error rate, then the p-values of these input variables 
will show which of them had a significant influence on the error rate.  

One regression model was set up for each of the ten feature set and classification combinations, for 
each of the three case studies. Since all combinations of hyperparameter settings were tested 
during cross-validation, the validation error rates for each fold were used as dependent variables in 
these regression models. Apart from the hyperparameter settings, all pairwise interaction terms 
between hyperparameter settings were also included in the regression models. It is important to 
determine whether interaction effects are significant, the rationale being that if the interaction 
between two hyperparameters is not significant, these hyperparameters could be optimised 
independently, thereby reducing the computational requirements of the optimisation procedure. 

4.8 Summary 
In this chapter an overview of the three case studies used in this work was given. The texture 
classification framework was illustrated and explained by providing details on data partitioning, 

 
𝛼𝑎𝑑𝑗 =

𝛼

𝑁
 (4-9)   

 
p𝑎𝑑𝑗 = p × 𝑁 (4-10)   

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 – Materials and methods  91 
 

cross-validation and testing, as well as on each individual step in the framework: pre-processing, 
dimensionality reduction and modelling. 

The dimensionality reduction and modelling hyperparameters considered for optimisation are 
summarised in table 4-13. 

Table 4-13: Summary of hyperparameters considered for optimisation 

Method Hyperparameter Values considered 

GLCM 

Number of grey levels (𝐺) 𝐺 = 2𝑔,   3 ≤ 𝑔 ≤ 7,   𝑔 ∈ ℕ 
Size of displacement between grey 
level pairs (𝐷) 1 ≤ 𝐷 ≤ 5,   𝐷 ∈ ℕ  

GLCM type Symmetric (not varied) 
Number of orientations 4 (not varied) 

Wavelet 
Wavelet type ‘haar’, ‘db3’, ‘sym4’ 
Decomposition level (𝐽) Maximum (not varied) 

Steerable 
pyramid 

Filter bank 3rd order directional derivatives (not varied) 
Decomposition level (𝐽) Maximum (not varied) 
Number of orientations (𝑆𝑖𝑛𝑐) 4, 6 
Width of pixel neighbourhood (𝑊) 7, 11 

Texton 
Filter bank Schmid (not varied) 
Support width of largest filter (𝐹𝑆) 25, 49 
Number of cluster centres (𝐾𝑇) 20, 40, 80 

LBP 
Texture neighbourhood radius and 
sampling points pair (𝑅, 𝑃) (1, 8), (2.5, 12), (4, 16) 

Mapping type ‘none’, ‘ri’, ‘u2’, ‘riu2’ 
PCA Usage of PCA None,  𝑣𝑎𝑟 = 99%, 𝑣𝑎𝑟 = 95% 
K-NN Number of nearest neighbours (𝐾𝑁) 1 ≤ 𝐾𝑁 ≤ 11, 𝐾𝑁 ∈ ℕ  
DA Type DA Linear, Quadratic 
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Results and discussion: 
Platinum flotation froths  

 

 

The prediction of platinum grade classes from images of platinum flotation froths was 
considered in this case study. The results showed that the steerable pyramid and LBP methods 
significantly outperformed the GLCM, wavelet and texton methods. 
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5.1 Introduction 
The prediction of platinum content in the froth phase of an industrial platinum group metal (PGM) 
froth flotation cell is investigated in this case study. A total of 2600 images of platinum flotation 
froths, belonging to four grade classes, were collected as detailed in section 4.2.1 (p. 65). Features 
were extracted from the images using five texture analysis methods and the quality of each feature 
set was assessed by determining its classification performance with two classifiers. 

For each class, the first 75% of the images (chronologically) were used for training and five-fold 
cross-validation. The remaining 25% of the images were used to test the classification performance 
of the best feature sets obtained with each feature extraction algorithm. Table 5-1 summarises the 
number of images in the training and test sets for each class. 

Table 5-1: Sizes of training and test sets in froth  
flotation data set 

For the other two case studies that were analysed, the data were randomly partitioned into training 
and test sets. This means that, for those case studies, the entire analysis could be repeated more 
than once, with a different random partitioning of data each time, so that a sensitivity analysis on 
the test errors could be performed. However, since the data for this case study forms a time series 
and therefore could not be randomly subdivided, the analysis was performed only once and a 
sensitivity analysis on the test errors was not possible. 

The remainder of this chapter is organised as follows. In section 5.2 the classification results are 
reported and discussed. This is followed by a discussion on the optimal hyperparameters in section 
5.3. The features are visualised through projection onto linear discriminant axes in section 5.4. In 
section 5.5 the computer running times required to execute the algorithms are reported. The 
chapter ends with conclusions in section 5.6. 

5.2 Classification results 
The test error percentages for each feature set and classification method are given in table 5-2, with 
the respective confusion matrices in figure 5-1 (p. 95). These error rates were obtained upon 
classification of the 619 test images into four platinum grade classes. The averages and standard 
deviations of the validation error rates (across the five folds) are reported in table 5-3. 

Class 
Number of images 

Training Test Total 
1: Very high Pt grade 575 (115 per fold) 185 760 
2: High Pt grade 350 (70 per fold) 110 460 
3: Medium Pt grade 489 (98 per fold) 149 638 
4: Low Pt grade 567 (113 per fold) 175 742 

Totals: 1981 619 2600 
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Table 5-2: Test error percentages for all  
feature sets and classification methods 

Table 5-3: Averages and standard deviations  
of validation error rates during five-fold  

cross-validation 

5.2.1 Feature extraction methods 
From the results presented in table 5-2 it is clear that the steerable pyramid and LBP methods were 
superior to the other three feature extraction methods for this data set. No significant improvement 
over the baseline methods, GLCMs and wavelets, was observed for textons.  

The two best method combinations were steerable pyramids with a DA classifier (11.1% error) and 
LBPs with a DA classifier (14.5% error). The difference in performance between these two classifiers 
is probably not statistically significant, considering that the standard deviations of the respective 
validation errors were 2.1% and 2.5% (see table 5-3). However, when taking the confusion matrices 
(figure 5-1) into account, it can be seen that the LBP with DA method had very low sensitivity with 
respect to class 3: out of all the class 3 images, 59.1% were correctly classified into class 3, while 
40.9% were incorrectly classified into class 4. For steerable pyramids with DA, the class 3 sensitivity 
is much higher, with 73.2% of the images correctly classified. Taking this information into account, 
it is concluded that the steerable pyramid and DA combination is overall the best method for the 
flotation froth case study.  

A reason for the relatively poor performance of textons could be that the Schmid filter bank used by 
the algorithm is not necessarily optimal for this data set. Indeed, the choice of filter bank was based 
on results from previous work on a different data set (Jemwa & Aldrich, 2012). Due to the very slow 

Method K-NN DA 
GLCM 35.2% 36.0% 
Wavelet 36.3% 27.1% 
Steerable pyramid 28.3% 11.1% 
Texton 33.3% 25.7% 
LBP 22.8% 14.5% 

Method 
K-NN DA 

Avg. Std. Avg. Std. 
GLCM 19.2% 1.9% 16.5% 4.7% 
Wavelet 20.3% 6.7% 14.8% 9.0% 
Steerable pyramid 8.4% 6.7% 3.0% 2.1% 
Texton 14.9% 3.0% 13.9% 3.2% 
LBP 6.2% 4.9% 3.3% 2.5% 
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training time for the texton algorithm, it was not possible to optimise the filter bank choice during 
hyperparameter optimisation. 

 

Figure 5-1: Confusion matrices for all feature extraction and classification  
combinations 

 

1 2 3 4 1 2 3 4

1 98.4 1.6 0.0 0.0 1 77.8 11.9 10.3 0.0

2 80.9 19.1 0.0 0.0 2 56.4 41.8 1.8 0.0

3 6.7 24.8 32.2 36.2 3 5.4 12.1 52.3 30.2

4 0.0 0.6 13.7 85.7 4 0.0 0.0 26.9 73.1

1 2 3 4 1 2 3 4

1 100 0.0 0.0 0.0 1 85.4 13.5 1.1 0.0

2 91.8 7.3 0.9 0.0 2 18.2 81.8 0.0 0.0

3 3.4 32.2 36.9 27.5 3 0.0 14.1 52.3 33.6

4 0.0 0.6 16.0 83.4 4 0.0 0.6 28.0 71.4

1 2 3 4 1 2 3 4

1 96.8 3.2 0.0 0.0 1 98.4 1.1 0.5 0.0

2 56.4 36.4 7.3 0.0 2 1.8 94.5 3.6 0.0

3 0.7 7.4 69.1 22.8 3 0.0 2.0 73.2 24.8

4 0.0 1.1 29.1 69.7 4 0.0 0.0 11.4 88.6

1 2 3 4 1 2 3 4

1 94.1 5.9 0.0 0.0 1 96.2 2.7 1.1 0.0

2 70.9 29.1 0.0 0.0 2 20.0 80.0 0.0 0.0

3 0.0 13.4 55.0 31.5 3 0.0 14.1 53.0 32.9

4 0.0 2.3 26.3 71.4 4 0.0 0.0 34.3 65.7

1 2 3 4 1 2 3 4

1 96.8 0.0 3.2 0.0 1 96.8 3.2 0.0 0.0

2 25.5 74.5 0.0 0.0 2 1.8 98.2 0.0 0.0

3 0.0 4.0 76.5 19.5 3 0.0 0.0 59.1 40.9

4 0.0 0.6 40.6 58.9 4 0.0 0.0 12.0 88.0
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5.2.2 Classifiers 
It is interesting to note that DA outperforms K-NN for every feature set except GLCMs, where it 
performs only a marginally worse. On average, DA performs 8.3% better than K-NN for the test data. 
This is a rather unexpected result, as K-NN can handle a more complex decision surface than DA, 
but there are a number of possible explanations for this observation.  

The first and most likely explanation is that the number of samples in each class is not equal: out of 
the 619 test images, 30% are in class 1, 18% in class 2, 24% in class 3 and 28% in class 4. The 
difference in the sizes of class 1 and class 2 is the largest, which means that a data point that should 
be classified into class 2 can easily have more nearest neighbours in class 1, simply because class 1 
contains more data points. The fact that data points from class 1 are expected to lie in close 
proximity to those in class 2 only worsens this effect. Upon investigation of the confusion matrices 
for K-NN (figure 5-1), it can indeed be seen that many of the images in class 2 were classified into 
class 1. DA, on the other hand, takes the prior probabilities into account when training the 
classification model. 

Another possible reason for poor K-NN performance is that the curse of dimensionality has a large 
effect on this algorithm (Beyer et al., 1999). In the context of K-NN, the curse of dimensionality 
means that the distance metric becomes less meaningful the higher the dimensionality of the 
feature space, since the distance from a query point to its nearest neighbour approaches the 
distance to its farthest neighbour as dimensionality increases. The work of Beyer and others (1999) 
shows that even ten to fifteen dimensions may already be too high, although this is based on the 
assumption of a uniform distribution of features, and is therefore not directly applicable to the 
features used in this work (which are expected to be normally distributed). 

The distance metric used in the K-NN algorithm can have a large influence on the classification 
accuracy (Weinberger & Saul, 2009). In this work, only the Euclidean distance was considered, and it 
is possible that this distance metric is not optimal for this data set.  

Finally, DA is generally known to be more robust to outliers than K-NN (Yang et al., 2011). However, 
when using more than only one nearest neighbour (as was the case here) the effect of outliers is 
mitigated to some degree. 

5.2.3 Comparison between validation and test results 
The validation error rates reported in table 5-3 are the lowest average validation errors for each 
method, as obtained with the best hyperparameter combination. Owing to this, it is expected that 
the validation results would be slightly optimistic compared to test results on unseen data. 
However, comparing the validation results to the test results in table 5-2, it is found that the test 
results are significantly worse than the validation results – 15% worse on average. The discrepancy 
between validation and test results is rather consistent across all method combinations, generally 
varying between 11% worse and 20% worse, with the exception of the steerable pyramid and LDA 
combination, where the test result was 8.2% worse than the validation result.  
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Such a discrepancy between validation and test error is usually a tell-tale sign that overfitting has 
occurred, that is, the classifier has learnt to fit the random noise or error present in the training set, 
causing poor generalisation to unseen test data. Overfitting is highly undesirable in any machine 
learning application, as this makes the model unusable in practice.  

Another possible reason for the large difference between validation and test errors is that the 
training and test data could have significantly different distributions. In the remainder of this 
section, various reasons for the validation-test error discrepancy are discussed. 

Overfitting 
A classifier is likely to overfit when: 

 a too complex model is fitted to the data,  
 too many hyperparameters are optimised, or 
 the dimensionality of the feature set is too high.  

In terms of K-NN, a “complex” model is one with a low value for 𝐾𝑁 (the number of nearest 
neighbours) as this leads to a more complex decision boundary. However, there does not seem to be 
a trend between 𝐾𝑁 (ranging from 3 for the steerable pyramid features to 11 for the GLCM features) 
and the difference between training and test results. Non-regularised LDA and QDA (as used here) 
produce relatively simple models, and have no hyperparameters that affect model complexity. 
Therefore, it seems unlikely that model complexity could have been a major cause of overfitting.  

During the cross-validation process, a maximum of three feature extraction hyperparameters and 
one classification hyperparameter were optimised. Four hyperparameters is not considered to be 
too many, compared to the size of the data set (2600 images in total). Also, the fact that cross-
validation was used (as opposed to just validation) further reduces the chance of overfitting, since it 
reduces the probability that a specific hyperparameter set was selected only because it fitted the 
particular training set very well. Thus, hyperparameter optimisation probably did not contribute 
much to overfitting.  

The high dimensionality of some of the feature sets, especially the steerable pyramid feature set 
that was used together with LDA, can be a cause for concern. Theoretically, the 889 features 
obtained with steerable pyramids are too high-dimensional when there are 2600 data points, with 
the smallest class containing only 460 data points. However, the specific feature set with 889 
features actually resulted in the smallest difference between the training and test error (8.2% 
difference). Again, it seems as though high feature set dimensionality could not have been the main 
cause of overfitting. 

It is still possible that a degree of overfitting has occurred. However, the considerations mentioned 
here, as well as the fact that the validation-test result discrepancy occurs across the board, suggests 
that the observation might be explained by a different, underlying phenomenon. 
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Probability distribution estimate of features 
The data for this case study is a time series of images, and the data for each class supposedly 
represents a steady state, during which one would not expect the probability distribution of 
features to change drastically over time. For each class, the first 75% of the images were used for 
training, with the remainder constituting the test set. Therefore, if the probability distribution of 
the series did change with time, it is possible that the distribution of the training features could be 
significantly different from the distribution of the test features. This would result in poor test 
performance, as one of the chief assumptions made during classification is that the training and test 
data follow the same probability distribution. 

 
(a) 

 
(b) 

 

Figure 5-2: The probability distribution estimate of the first principal component score of the steerable pyramid features 
for (a) the training data without fold 3 and the validation data (fold 3), and (b) all the training data and the test data. The 

estimates were calculated with the MATLAB function ksdensity (default kernel type). 
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To compare the distributions of training and test features, let us consider the distribution of the 
features for the steerable pyramid and LDA combination. Figure 5-2 shows the probability density 
estimate of the first principal component score (explaining 52% variance) of this feature set. In 
figure 5-2 (a), the probability distribution of fold 3 in the training data is shown with the probability 
distribution of the remaining training data, while 5-2 (b) shows the distributions of the training and 
test sets. It is clear from these graphs that the test data distribution differs significantly from the 
training data distribution, while the distribution of fold 3 in the training data is not too dissimilar 
from that of the remainder of the training data. This observation holds for all other feature sets.  

The fact that the data distribution did change proves that either the steady state assumption was 
false, or a wide range of froth appearances can occur at a single steady state, or both. If steady state 
had not been reached, the problem may have been remedied by ensuring that steady state had been 
reached. However, if a wide range of froth appearances may occur at a single steady state, the issue 
is raised of whether the grade of flotation froth can be determined from the visual appearance of 
the froth alone. While there certainly seems to be a correlation between froth appearance and froth 
grade, results might be improved by using such a visual measurement in conjunction with other 
process data, as is suggested in literature (Bartolacci et al., 2006; Liu & MacGregor, 2008). The 
collection of more data would help identify the cause of the problem.  

5.3 Hyperparameters 
The hyperparameters that led to the best validation results, as well as the dimensionalities of the 
optimal feature sets, are shown in table 5-4.  

Table 5-4: Optimal hyperparameter settings and dimensionalities of feature sets 

In the results section it was concluded that the steerable pyramid and LBP feature sets, when 
combined with DA, result in the best classification performance. The optimal feature set for the 

Method 
K-NN DA 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size 𝐾𝑁 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size Type of DA 

GLCM 
𝐺 = 128 
𝐷 = 3 

PCA = 𝑛𝑜𝑛𝑒 
8 11 

𝐺 = 128 
𝐷 = 5 

PCA = 𝑛𝑜𝑛𝑒 
8 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 

Wavelet Type =  ‘ℎ𝑎𝑎𝑟’ 
PCA = 𝑛𝑜𝑛𝑒 18 10 Type = ′𝑠𝑦𝑚4′ 

PCA: 𝑣𝑎𝑟 = 99% 10 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 

Steerable 
pyramid 

𝑆𝑖𝑛𝑐 = 6 
𝑊 = 7 

PCA: 𝑣𝑎𝑟 = 95% 
48 3 

𝑆𝑖𝑛𝑐 = 4 
𝑊 = 7 

PCA = 𝑛𝑜𝑛𝑒 
889 𝐿𝑖𝑛𝑒𝑎𝑟 

Texton 
𝐾𝑇 = 80 
𝐹𝑆 = 49 

PCA = 𝑛𝑜𝑛𝑒 
68 10 

𝐾𝑇 = 80 
𝐹𝑆 = 49 

PCA: 𝑣𝑎𝑟 = 95% 
19 𝐿𝑖𝑛𝑒𝑎𝑟 

LBP 
𝑅 = 4 
𝑃 = 16 

Mapping =′ 𝑢2′ 
PCA: 𝑣𝑎𝑟 = 99% 

153 6 
𝑅 = 4 
𝑃 = 16 

Mapping = ′𝑢2′ 
PCA: 𝑣𝑎𝑟 = 99% 

153 𝐿𝑖𝑛𝑒𝑎𝑟 
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steerable pyramid and DA combination contained 889 features, as no PCA was used. It is surprising 
that the DA classifier performed well on such a high-dimensional feature set. The lesser number of 
orientations (𝑆𝑖𝑛𝑐 = 4 and not 6) was used, with a smaller local neighbourhood size (𝑊 = 7 and not 
11). 

For the GLCM features, the optimal grey level quantisation was 𝐺 = 128 grey levels. This is a 
significant result, since in practice this hyperparameter is usually not optimised, but rather fixed at 
𝐺 = 8 as originally proposed by Haralick (1979). 

The use of PCA did not always improve performance. For example, the lowest GLCM error rates were 
obtained when no PCA was used, but for the LBP features the principal component scores retaining 
99% of the variance showed the best performance.  

It is interesting to note that the use of QDA led to better results with the two baseline texture 
feature sets, while LDA was optimal for the three advanced methods. 

Two properties of texture analysis algorithms that are believed to play a large role in their 
performance are rotation and translation invariance as well as multiscale representation. In this 
case study, however, it seems as though rotation and translation invariance did not have a large 
impact. While LBP features showed good performance on this data set, the optimal mapping type 
was not rotation invariant. The best feature set, obtained with steerable pyramids, is translation 
invariant, but rotation invariant only to some extent (the number of orientations used is 𝑆𝑖𝑛𝑐 = 4 
or 6). On the other hand, textons are completely rotation invariant but did not perform well on this 
data set.  

Multiscale representation does not seem to be required for success in this case study. The LBP 
method does not provide a multiscale representation, but LBPs were among the best feature sets. 
Both wavelets and steerable pyramids are multiscale methods, but wavelets did not perform well. 
Since translation and rotation invariance and multiscale representation do not seem to guarantee 
good performance, it is suggested that the superior performance of the steerable pyramid method 
can be ascribed to the comprehensive set of descriptive statistics that were extracted from the 
steerable pyramid representation. 

5.4 LD projection 
As a visual indication of the separation achieved with each feature set, the optimal feature sets 
when using discriminant analysis were projected onto the first two linear discriminant (LD) axes. 
These projections are shown in figure 5-3 (a) to (e). 
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(a) 

Figure 5-3 (a): The LD projection of the optimal GLCM features 
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(b) 

 

(c) 

Figure 5-3 (cont’d): The LD projections of the optimal (b) wavelet and (c) steerable  
pyramid features 
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(d) 

 
(e) 

Figure 5-3 (cont’d): The LD projections of the optimal (d) texton and (e) LBP features. 
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From the LD projections it is clear that the GLCM, wavelet and texton feature sets show significantly 
more class overlap than the steerable pyramid and LBP feature sets. In both the steerable pyramid 
and LD feature projections, class 1 is especially well separated from the other three classes, which is 
not the case for GLCMs, wavelets and textons. This good separation of class 1 is to be expected, as its 
relative platinum grade (1.00) is much higher than those of the other three classes (0.59, 0.38 – 0.40 
and 0.11 – 0.16 respectively). 

It is interesting to note that the steerable pyramid and LBP projections contain some strong outliers 
which belong to the test sets of classes 3 and 4. Upon closer inspection, it was found that these 
outliers are the features extracted from sequences of images in which the lighting conditions were 
significantly different from the rest of the images. Figure 5-4 (b) shows two example images that are 
part of an image sequence during which lighting conditions are different, while 5-4 (a) and (c) are 
the images occurring directly before and after this sequence. Although texture analysis methods are 
generally more robust than spectral methods when faced with changes in lighting conditions, these 
plots show that lighting conditions can still have a large influence on the features extracted. 

 
(a) 

  
(b) 

 

(c) 

Figure 5-4: (a) The image directly before a sequence of images with different lighting conditions, (b) two example 
images with different lighting conditions, and (c) the image directly after this sequence. 
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5.5 Computer running times 

5.5.1 Training 
The computation times required to train and test the various image analysis methods are an 
important consideration. If the training of a model is very slow, it may not be feasible to use in cases 
where frequent recalibration is required. Additionally, with slow training it may not be possible to 
fully optimise the algorithm by testing all feasible hyperparameter combinations, or repetitions of 
the experiment will be limited. 

The running times required to train each feature set and classifier combination, on a computer with 
an Intel® Core™ i7-2600 CPU (quad-core @ 3.40 GHz frequency) and 16 GB RAM, are reported in table 
5-5. 

Table 5-5: Computation times for the training of each model 

For each feature extraction method, this table shows the number of hyperparameter combinations 
that were tested and the average time taken to extract a feature set for a single hyperparameter 
combination (ℋ𝐹), in minutes. The total training times for all hyperparameter combinations, 
including the time taken to train the classifiers and classify the validation data to optimise the 
classification hyperparameters for K-NN and DA, are shown in the last two columns.  

All feature extraction methods, with the exception of textons, have reasonable training times, 
requiring between 5 minutes (wavelets) and 77 minutes (steerable pyramids) to extract the features 
for one hyperparameter combination. The texton algorithm is by far the slowest, taking 1077 
minutes (18 hours) on average to compute the texton features for a single set of feature extraction 
hyperparameters. The reasons why texton features require long computer running times to be 
computed are explained in more detail in section 4.5.4 (p. 84) in the chapter on materials and 
methods. 

Despite the high computational complexity of the texton algorithm, the use of texton features 
would still be merited if they lead to exceptionally good classification performance. However, for 
this case study it was not clear if textons outperform any of the other methods significantly, as the 
classification error when using K-NN was very high, while the error when using DA was very low. 
The use of texton features is therefore not recommended for this case study.  

Method Number of  
ℋ𝐹 

Training time 
per ℋ𝐹 (min) 

Total training time for feature 
 extraction and classification (h) 

K-NN DA 
GLCM 15 27 6.8 6.8 
Wavelet 3 5 0.3 0.3 
Steerable pyramid 4 77 5.2 5.1 
Texton 6 1077 106 108 
LBP 12 11 2.3 2.3 
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5.5.2 Testing 
The time taken to test one image is equivalent to the measurement delay that would be expected 
when using the method in an inferential sensor for online prediction. If the measurement delay is 
comparable to the time constant of the system, the sensor would not be very useful, since the 
measured process variables could change as fast as they are being measured. 

The running times required to test each feature set and classifier combination, on the same 
computer as mentioned previously in this section, are reported in table 5-6. 

Table 5-6: Computation times for the testing of each  
method combination 

From this table it can be seen that the longest running time required to classify a single test image 
is 2.77 seconds for the steerable pyramid and K-NN method combination. This is deemed acceptable, 
since computation times in the order of seconds would certainly not be in a range comparable to 
the time constant of an industrial milling or grinding system with a hydrocyclone separator.  

Note that while the texton features were slow to compute during training, testing with texton 
features is fast. This is because the slow clustering step does not have to be repeated during testing. 

5.6 Conclusions 
Two of the three advanced texture analysis methods, namely steerable pyramids and LBPs, led to 
much improved classification results compared to the baseline methods (GLCMs and wavelets). 
However, the use of the texton feature set did not show any improvement.  

DA generally outperforms K-NN, and overall the best method combination was steerable pyramids 
with a LDA classifier leading to 11.1% classification error. This is a significant improvement over the 
best classifier with GLCM features (11-NN with an error rate of 35.2%) and the best classifier with 
wavelet features (QDA with an error rate of 27.1%). It can therefore be concluded that some 
advanced texture feature extraction methods can improve the performance of a vision-based 
inferential sensor for this froth flotation application. 

Poor test results when compared to validation results show that, while some of the feature 
extraction methods may perform well when the process conditions are similar to those of training 

Method 
Time to test one image by extracting 

features and classifying (s) 
K-NN DA 

GLCM 0.52 0.51 
Wavelet 0.20 0.19 
Steerable pyramid 2.77 2.01 
Texton 0.44 0.45 
LBP 0.36 0.37 
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data, there is a problem with extensibility to unseen data. Further investigation showed that the 
probability distribution estimate of the test set was very different from that of the training set, 
possibly indicating that the steady state assumption was false, or that a wide variety of froth 
appearances may occur at a single steady state. If the latter, it may be difficult to determine the 
grade of a platinum flotation froth from its visual appearance alone. While there certainly seems to 
be a correlation between froth appearance and froth grade, results might be improved by using such 
visual features in conjunction with other process data. 

To determine whether the prediction of the platinum grade in flotation froths from visual 
information is viable, it is recommended that a more extensive set of training data, covering a wide 
range of operating conditions and process states, is collected.   
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Results and discussion: 
Coal on a conveyor belt  

 

 

The prediction of fines fraction classes from images of coal on a conveyor belt was considered in 
this case study. The results showed that the wavelet, steerable pyramid, texton and LBP methods 
significantly outperformed GLCMs. 
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6.1 Introduction 
In this case study, the estimation of the fraction of fine particles in coal on a conveyor belt is 
considered. A total of 280 images of particulate coal on a laboratory scale conveyor belt, grouped 
into three fines fraction classes, were collected as described in section 0 (p. 67). Features were 
extracted from the images using five texture analysis methods and the quality of each feature set 
was assessed by determining its classification performance with two classifiers.  

A random 75% of the data in each class was used for training and cross-validation, with the 
remaining 25% being reserved to test the best feature set for each feature extraction method (as 
determined by cross-validation). The number of images in each class is shown in table 6-1. 

Table 6-1: Sizes of training and test sets in coal 
 data set 

Since images were randomly partitioned into training and test sets, it was possible to repeat the 
entire image analysis workflow with a different random partitioning each time. The entire 
experimental procedure, for all feature sets except texton features, was repeated ten times so that a 
sensitivity analysis on the error rates could be performed. The texton feature extraction could not 
be repeated ten times due to the exceptionally long computer running time that would be required 
to do so, the reasons for which are explained in more detail in section 4.5.4 (p. 84) in the chapter on 
materials and methods.  

The remainder of this chapter is organised as follows. In section 6.2 the average test results across 
all ten runs are reported, a sensitivity analysis is performed and the significance of the results is 
discussed. A more in-depth analysis is then performed in section 6.3, based mostly on one run only, 
by investigating several further aspects. This includes linear discriminant (LD) projections of the 
feature sets, a discussion on the optimal hyperparameters and computer running times for all 
algorithms. Final conclusions are drawn in section 6.4. 

6.2 Classification results 
The mean test error percentages for each feature set and classification method, averaged across all 
ten runs (except for textons, which had only one run), are given in table 6-2 and portrayed visually 
in figure 6-1. These error rates were obtained upon classification of the 70 test images into three 
fines fraction classes. The cross-validation error rates and standard deviations, averaged across all 

Class 
Number of images 

Training Test Total 
1: Coarse 60 (12 per fold) 20 80 
2: Intermediate 90 (18 per fold) 30 120 
3: Fine 60 (12 per fold) 20 80 

Totals: 210 70 280 
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ten runs, are reported in table 6-3. The full validation and test results for all ten runs may be found 
in Appendix C. 

Table 6-2: Averages and confidence intervals of test error percentages  
across all ten runs for all feature sets and classification methods 

Table 6-3: Averages and standard deviations of  
validation error rates during five-fold cross-validation,  

averaged across all ten runs 

Method 
K-NN DA 

Avg. 95% confidence Avg. 95% confidence 
GLCM 25.6% ±3.7% 17.0% ±3.2% 
Wavelet 14.7% ±2.6% 13.3% ±2.6% 
Steerable pyramid 13.0% ±3.1% 12.0% ±4.4% 
Texton (only 1 run) 8.6% N/A 10.0% N/A 
LBP 15.1% ±3.6% 10.3% ±2.3% 

Method 
K-NN DA 

Avg. Std. Avg. Std. 
GLCM 22.0% 4.8% 16.2% 5.3% 
Wavelet 12.9% 5.8% 12.8% 5.6% 
Steerable pyramid 11.7% 4.0% 9.4% 3.9% 
Texton (only 1 run) 3.8% 2.1% 5.7% 2.7% 
LBP 13.0% 4.8% 8.2% 3.7% 

 

Figure 6-1: Average error rates for each feature extraction and classification method. The error bars indicate 
95% confidence intervals for the error rates. 
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6.2.1 Sensitivity analysis 
Table 6-4 shows the results of a two-factor ANOVA that was performed to determine the significance 
of the effect that two factors, the feature set and the classifier, have on the error rate. The texton 
results were not used in this analysis, since there was only run using this feature set and this could 
seriously bias the results.  

Table 6-4: Two-factor ANOVA results for the factors “feature set” and “classifier” 

It can be deduced from these ANOVA results that all factors are significant at a 95% confidence level 
(𝛼 = 0.05): the choice of feature set, classifier and interaction between the two factors. For the 
feature sets, this means that the error rates obtained with at least two feature sets differ 
significantly. 

To determine which feature sets are significantly different from one another, a Bonferroni post-hoc 
test was performed. It was decided in advance that the test will only be done between all pairs of 
feature sets excluding textons (6 tests) and not between the eight feature set and classifier 
combinations (28 tests), since the focus of this work is on texture feature extraction. The results for 
the Bonferroni post-hoc test are reported in table 6-5, where the p-values that are significant at a 
95% confidence level are marked in green. 

Table 6-5: Bonferroni post-hoc test p-values for pair-wise comparisons  
between all feature sets 

6.2.2 Discussion 

Feature extraction methods 
The Bonferroni test results in table 6-5 indicate that the mean error rate obtained by using GLCM 
features differed significantly from the error rates obtained by all other feature extraction methods, 
as p = 0.0000 in all of these cases. No statistically significant distinction could be drawn between any 
of the other three feature extraction methods. This is in line with what would be expected when 
visually inspecting the mean error rates and 95% confidence intervals plotted in figure 6-1. It 

Effect SS DOF MS F p 
Feature set 0.104 3 0.035 16.65 0.000 
Classifier 0.031 1 0.031 15.12 0.000 
Feature set*Classifier 0.019 3 0.006 2.99 0.037 

  Feature set {1} 
(.21286) 

{2} 
(.14000) 

{3} 
(.12500) 

{5} 
(.12714) 

1 GLCM   0.0000 0.0000 0.0000 
2 Wavelet 0.0000   1.0000 1.0000 
3 Steerable pyramid 0.0000 1.0000   1.0000 
5 LBP 0.0000 1.0000 1.0000   
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appears as though the GLCM and K-NN combination led to a significantly higher error rate than all 
of the other methods, and that the GLCM and DA combination led to a significantly higher error rate 
than the LBP and DA combination.  

From the test results it is apparent that textons also significantly outperformed GLCMs, although 
the results are expected to be biased in favour of textons: textons had only one run, and this run 
had good results. Nonetheless, this is the best conclusion that can be made in the absence of more 
information. 

In summary, it can be concluded from these results that the advanced textural feature extraction 
methods (steerable pyramids, textons and LBPs) outperformed the baseline GLCM method, but not 
the wavelet method. The baseline wavelet method was on par with the advanced methods. 

Classifiers 
DA outperforms K-NN for every feature set except textons, and according to the ANOVA results in 
table 6-4, this outperformance is significant at a 95% confidence level. On average, DA outperforms 
K-NN by 2.9%, which is not as large a difference as the 8.3% outperformance that was observed for 
the flotation case study.  

A likely explanation for the better performance of DA is that the numbers of samples in each class 
are not equal: 29% of the images belong to class 1, 43% to class 2 and 29% to class 3. While K-NN is 
biased towards the classes containing more data points, DA takes the prior probabilities into 
account when training the classification model. The data distribution between classes is not as 
skewed as in the flotation case study, so for this case study DA is not expected to outperform K-NN 
by as large a margin as in the flotation case study, which is indeed the case. 

Comparison between validation and test results 
It is expected that validation results would be slightly optimistic compared to test results on unseen 
data, since the validation results reported in table 6-3 are the lowest error percentages for each 
method, as obtained with the best hyperparameter combination. A large discrepancy between the 
validation and test error rates could be an indication of overfitting.  

In this case, the average validation error rates were not drastically lower than the average test error 
rates – 2.0% lower on average. It can therefore be concluded that that overfitting has not occurred. 

6.3 Further analysis 
A more in-depth analysis of the experiment and its results was carried out by considering run 1 in 
more detail. The choice of run 1 is arbitrary, since the data was divided randomly into training and 
test sets for each run.  

Several aspects are investigated in this section. First, the discriminability of the feature sets are 
visually examined by projecting each feature set onto its linear discriminant (LD) axes. The 
classification results from run 1 are then reported and contrasted against the average results across 
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all ten runs, and the optimal hyperparameters for this run are discussed. Finally, the computer 
running times for training and testing are reported.  

6.3.1 LD projection 
As a visual indication of the separation achieved with each feature set, the optimal feature sets 
when using discriminant analysis, for run 1, were projected onto the first two linear discriminant 
(LD) axes. These projections are shown in figure 6-2 (a) to (e).  

 

 
 

(a) 

Figure 6-2 (a): The LD projection of the optimal GLCM features 
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(b) 

(c) 

Figure 6-2 (cont’d): The LD projections of the optimal (b) wavelet and (c) steerable  
pyramid features 
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(d) 

(e) 

Figure 6-2 (cont’d): The LD projections of the optimal (d) texton and (e) LBP features. 
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Out of all the LD projections, the steerable pyramid feature projection appears to have the best class 
separation. The GLCM and wavelet feature projections result in noticeably worse class separations. 
The LD projections will be compared to the test results for run 1 in the next section (6.3.2). 

6.3.2 Classification results 
The test error percentages for run 1, obtained upon classification of the 70 test images into three 
classes, using each feature set and classification method combination, are given in table 6-6. The 
confusion matrices for this run are shown in figure 6-3 (p. 117). 

Table 6-6: Run 1 test error percentages for  
all feature sets and classification methods 

Comparison to average test results 
Comparing the test results of run 1 (table 6-6) to the average test results across all ten runs (table 
6-2, p. 110), it is clear that the results of one run alone are not very reliable, as they can differ 
radically from the average results. For example, in run 1 the LBP and K-NN combination was one of 
the best methods with an 8.6% error rate, while the average error rate for this combination is much 
higher at 15.1%. There appears to be a large difference between the K-NN and DA results using 
steerable pyramids in run 1 (18.6% error for K-NN and 7.1% error for DA), but on average the error 
rates were 13.0% and 12.0%, which are very similar.  

The variation in results between runs shows that the size of the data set used in this experiment 
(280 images) is too small to be split into representative training and test sets. Whenever there is a 
random aspect to an experiment, as with the data division into training and test sets in this case 
study, it is strongly recommended that multiple runs of the experiment are performed. 

Method K-NN DA 
GLCM 30.0% 22.9% 
Wavelet 12.9% 14.3% 
Steerable pyramid 18.6% 7.1% 
Texton 8.6% 10.0% 
LBP 8.6% 7.1% 
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Figure 6-3: Run 1 confusion matrices for all feature extraction and classification combinations 

1 2 3 1 2 3

1 60.0 40.0 0.0 1 70.0 30.0 0.0

2 23.3 70.0 6.7 2 13.3 76.7 10.0

3 0.0 20.0 80.0 3 0.0 15.0 85.0

1 2 3 1 2 3

1 80.0 20.0 0.0 1 85.0 15.0 0.0

2 3.3 86.7 10.0 2 6.7 86.7 6.7

3 0.0 5.0 95.0 3 0.0 15.0 85.0

1 2 3 1 2 3

1 75.0 25.0 0.0 1 95.0 5.0 0.0

2 13.3 73.3 13.3 2 3.3 93.3 3.3

3 0.0 0.0 100 3 0.0 10.0 90.0

1 2 3 1 2 3

1 90.0 10.0 0.0 1 95.0 5.0 0.0

2 0.0 90.0 10.0 2 3.3 86.7 10.0

3 0.0 5.0 95.0 3 0.0 10.0 90.0

1 2 3 1 2 3

1 90.0 10.0 0.0 1 95.0 5.0 0.0

2 0.0 96.7 3.3 2 3.3 90.0 6.7

3 0.0 15.0 85.0 3 0.0 5.0 95.0
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Confusion matrices 
The test results for run 1 showed that GLCMs with both K-NN and DA classifiers, and steerable 
pyramids with a K-NN classifier, were the three worst methods. This is affirmed by looking at the 
confusion matrices for this run (figure 6-3), where the sensitivity and specificity of these three 
methods appear to be noticeably worse. For the remaining seven method combinations, all classes 
are relatively well classified, and there does not appear to be a bias towards a particular class. No 
images from class 1 were incorrectly classified into class 3, and no images from class 3 were 
incorrectly classified into class 1, for any of the ten method combinations. 

Comparison to LD projections 
The test results for DA in table 6-6 are in line with what would be expected upon investigation of the 
LD projections for each feature set (figure 6-2, p. 113). The most overlap between classes is found in 
the GLCM feature projection, followed by the wavelet feature projection, and these methods have 
the highest and second-highest error rates (22.9% and 14.3%, respectively). The steerable pyramid 
features result in especially well separated clusters, and this method did have the lowest error rate 
(along with LBPs). 

6.3.3 Hyperparameters 
The hyperparameters that led to the validation results for run 1 are reported in table 6-7. The 
optimal hyperparameters found for all ten runs are included in Appendix C. 

Table 6-7: Optimal hyperparameter settings and dimensionalities of feature sets for run 1 

For the GLCM features, the optimal number of grey levels when using K-NN and DA classifiers were 
𝐺 = 32 and 𝐺 = 64, respectively. This is a significant result, since in practice this hyperparameter 
is usually not optimised, but rather fixed at 𝐺 = 8 as originally proposed by Haralick (1979). 

Method 
K-NN DA 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size 𝐾𝑁 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size 

Type 

GLCM 
𝐺 = 32 
𝐷 = 3 

PCA: 𝑣𝑎𝑟 = 99% 
4 11 

𝐺 = 64 
𝐷 = 3 

PCA = 𝑛𝑜𝑛𝑒 
8 𝐿𝑖𝑛𝑒𝑎𝑟 

Wavelet Type =  ‘ℎ𝑎𝑎𝑟’ 
PCA = 𝑛𝑜𝑛𝑒 18 6 Type =′ ℎ𝑎𝑎𝑟′ 

PCA: 𝑣𝑎𝑟 = 99% 9 𝐿𝑖𝑛𝑒𝑎𝑟 

Steerable 
pyramid 

𝑆𝑖𝑛𝑐 = 6 
𝑊 = 7 

PCA: 𝑣𝑎𝑟 = 95% 
29 4 

𝑆𝑖𝑛𝑐 = 4 
𝑊 = 11 

PCA: 𝑣𝑎𝑟 = 95% 
37 𝐿𝑖𝑛𝑒𝑎𝑟 

Texton 
𝐾𝑇 = 40 
𝐹𝑆 = 25 

PCA = 𝑛𝑜𝑛𝑒 
40 5 

𝐾𝑇 = 40 
𝐹𝑆 = 25 

PCA: 𝑣𝑎𝑟 = 95% 
10 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 

LBP 
𝑅 = 4 
𝑃 = 16 

Mapping = ′𝑟𝑖𝑢2′ 
PCA: 𝑣𝑎𝑟 = 99% 

7 8 
𝑅 = 2.5 
𝑃 = 12 

Mapping = ′𝑟𝑖𝑢2′ 
PCA = 𝑛𝑜𝑛𝑒 

14 𝐿𝑖𝑛𝑒𝑎𝑟 
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In the computation of the texton feature set, a smaller filter support size of 𝐹𝑆 = 25 was optimal, 
instead of the 𝐹𝑆 = 49 that was originally proposed by Schmid (2001) and used in all subsequent 
studies that were found in literature (see for example Varma & Zisserman, 2005; Jemwa & Aldrich, 
2012). 

It is interesting to note that the best type of DA was LDA for four out of the five texture feature sets, 
with only textons performing better when using a QDA classifier.  

Two properties of texture analysis algorithms that are believed to play a large role in their 
performance are rotation and translation invariance as well as multiscale representation. In this 
case study it seems as though rotation invariance were important algorithm properties: the optimal 
mapping type for LBPs was rotation invariant and this feature set was overall one of the best feature 
sets. Textons, which are also entirely rotation invariant in this implementation, also showed good 
performance.   

Multiscale representation also seems to have been important in this case study. The only advanced 
property of the wavelet texture analysis algorithm is that it results in a multiscale representation, 
and the wavelet feature set performed surprisingly well in this case study. Steerable pyramids are 
also multiscale representations, and features extracted from these representations also led to very 
low error rates.  

6.3.4 Computer running times 

Training 
The computation times required to train and test the various image analysis methods are an 
important consideration. If the training of a model is very slow, it may not be feasible to use in cases 
where frequent recalibration is required. Additionally, with slow training it may not be possible to 
fully optimise the algorithm by testing all feasible hyperparameter combinations, or repetitions of 
the experiment will be limited. 

The running times required to train each feature set and classifier combination, on a computer with 
an Intel® Core™ i7-2600 CPU (quad-core @ 3.40 GHz frequency) and 16 GB RAM, are reported in table 
6-8.  

Table 6-8: Computation times for the training of each model 

Method Number of  
ℋ𝐹 

Training time 
per ℋ𝐹 (min) 

Total training time for feature 
 extraction and classification (h) 

K-NN DA 
GLCM 15 2.1 0.64 0.61 
Wavelet 3 0.4 0.05 0.04 
Steerable pyramid 4 7.4 0.53 0.52 
Texton 6 1008 103 99 
LBP 12 1.3 0.37 0.34 
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For each feature extraction method, this table shows the number of hyperparameter combinations 
that were tested and the average time taken to extract a feature set for a single hyperparameter 
combination (ℋ𝐹), in minutes. The total training times for all hyperparameter combinations, 
including the time taken to train the classifiers and classify the validation data to optimise the 
classification hyperparameters for K-NN and DA, are shown in the last two columns.  

All feature extraction methods, with the exception of textons, have reasonable training times, 
requiring between 0.4 minutes (wavelets) and 7.4 minutes (steerable pyramids) to extract the 
features for one hyperparameter combination. The texton algorithm is by far the slowest, taking 
1008 minutes (17 hours) on average to compute the texton features for a single set of feature 
extraction hyperparameters. The reasons why texton feature extraction is slow are explained in 
more detail in section 4.5.4 (p. 84) in the chapter on materials and methods. 

Despite the high computational complexity of the texton algorithm, the use of texton features 
would still be merited if they lead to exceptionally good classification performance. However, in this 
case study texton features did not perform well, and are therefore not recommended for this case 
study.  

Testing 
The time taken to test one image is equivalent to the measurement delay that would be expected 
when using the method in an inferential sensor for online prediction. If the measurement delay is 
comparable to the time constant of the system, the sensor would not be very useful, since the 
measured process variables could change as fast as they are being measured. 

The running times required to test each feature set and classifier combination, on the same 
computer as mentioned previously in this section, are reported in table 6-9. 

Table 6-9: Computation times for the testing of each  
method combination 

From table 6-9 it can be seen that the longest running time required to classify a single test image is 
2.12 seconds for steerable pyramids. This is deemed acceptable, since computation times in the 
order of seconds would certainly not be in a range comparable to the time constant of an industrial 
system fed with coal from a conveyor belt.  

Method 
Time to test one image by extracting 

features and classifying (s) 
K-NN DA 

GLCM 0.36 0.35 
Wavelet 0.12 0.12 
Steerable pyramid 2.12 2.12 
Texton 0.30 0.30 
LBP 0.40 0.37 
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Note that while the texton features were slow to compute during training, testing with texton 
features is fast. This is because the slow clustering step does not have to be repeated during testing. 

6.4 Conclusions 
In this case study the three advanced texture analysis methods, as well as wavelets, led to 
significantly better classification results than the baseline GLCM method. A statistically significant 
distinction between the performance of each of the three advanced texture analysis methods and 
wavelets could not be made. DA slightly outperformed K-NN for all feature sets except textons.  

It is unlikely that the four better methods truly have the same performance on this data set, and it 
is therefore concluded that more data would be needed to be able to determine the best feature 
extraction method. 

The best test result obtained was with the texton and K-NN combination, which gave an 8.1% error. 
In general, the error rates were around 10%. Although this may seem like relatively good 
performance, one has to remember that this error rate was obtained upon classification into three 
very broad classes. In practise, the fines fractions of interest is in a much narrower range of 0 – 10% 
fines, which means that much more precise discrimination is required. The textural features used in 
this work could be used as input to a regression model to determine if such precise prediction is 
possible. Based on the results obtained in this work, it is not expected that the approach would be 
able to discriminate between fines fractions that are in the narrow range of 0 – 10%.  
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Results and discussion: 
Hydrocyclone underflows  

 

 

The prediction of mean particle size classes from images of hydrocyclone underflows was 
considered in this case study. The results showed that the steerable pyramid and LBP methods 
significantly outperformed the GLCM and wavelet methods. The result for textons was 
inconclusive. 
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7.1 Introduction 
The third case study involves the prediction of particle sizes in the underflow of a hydrocyclone. A 
total of 300 images of hydrocyclone images, grouped into three particle size categories, were 
collected as described in section 4.2.3 (p. 69). Features were extracted from the images using five 
texture analysis methods and the quality of each feature set was assessed by determining its 
classification performance with two classifiers.  

A random 75% of the data in each class was used for training and cross-validation, with the 
remaining 25% being reserved to test the best feature set for each feature extraction method (as 
determined by cross-validation). The number of images in each class is shown in table 7-1.  

Table 7-1: Sizes of training and test sets in coal 
 data set 

Since images were randomly partitioned into training and test sets, it was possible to repeat the 
entire image analysis workflow with a different random partitioning each time. As with the 
previous case study (coal on a conveyor belt), the entire analysis was repeated ten times for all 
feature sets except textons, so that a sensitivity analysis on the error rates could be performed. The 
texton feature extraction could not be repeated ten times due to the exceptionally long computer 
running time that would be required to do so. The reasons for this are explained in more detail in 
section 4.5.4 (p. 84) in the chapter on materials and methods.  

The remainder of this chapter is organised as follows. In section 7.2 the average test results across 
all ten runs are reported, a sensitivity analysis is performed and the significance of the results is 
discussed. A more in-depth analysis is then performed in section 7.3, based mostly on one run only, 
by investigating several further aspects. This includes linear discriminant (LD) projections of the 
feature sets, a discussion on the optimal hyperparameters and computer running times for all 
algorithms. Final conclusions are drawn in section 7.4.  

7.2 Classification results 
The mean test error percentages for each feature set and classification method, averaged across all 
ten runs (except for textons, which had only one run), are reported in table 7-2 and portrayed 
visually in figure 7-1. These error rates were obtained upon classification of the 74 test images into 
three mean particle size (MPS) classes. The averages and standard deviations of the validation 
errors for each method combination, averaged across all ten runs, are given in table 7-3. 

Class 
Number of images 

Training Test Total 
1: Coarse 30 (6 per fold) 10 40 
2: Intermediate 116 (23 per fold) 38 154 
3: Fine 80 (16 per fold) 26 106 

Totals: 226 74 300 
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 The full validation and test results for all ten runs may be found in Appendix D. 

Table 7-2: Average and standard deviation test error percentages across all  
ten runs for all feature sets and classification methods 

Method 
K-NN DA 

Avg. 95% confidence Avg. 95% confidence 
GLCM 14.2% 2.8% 13.5% 2.2% 
Wavelet 13.0% 1.8% 12.3% 3.2% 
Steerable pyramid 10.7% 2.8% 7.8% 1.9% 
Texton (only 1 run) 16.2% N/A 6.8% N/A 
LBP 10.4% 1.8% 9.3% 1.9% 

 

Table 7-3: Averages and standard deviations of  
validation error rates during five-fold cross-validation,  

averaged across all ten runs 

Method 
K-NN DA 

Avg. Std. Avg. Std. 
GLCM 13.2% 4.9% 10.5% 4.7% 
Wavelet 11.7% 4.4% 10.9% 4.8% 
Steerable pyramid 8.5% 4.8% 6.9% 3.7% 
Texton (only 1 run) 9.3% 4.8% 8.4% 3.5% 
LBP 11.0% 4.8% 8.3% 3.5% 

 

 

Figure 7-1: Average error rates for each feature extraction and classification method.  
The error bars indicate 95% confidence intervals for the error rates. 
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7.2.1 Sensitivity analysis 
Table 7-4 shows the results of a two-factor ANOVA that was performed to determine the significance 
of the effect that two factors, the feature set and the classifier, have on the error rate. The texton 
results were not used in this analysis, since there was only run using this feature set and this could 
seriously bias the results. 

Table 7-4: Two-factor ANOVA results for the factors “feature set” and “classifier” 

These ANOVA results show that only the choice of feature set is significant at a 95% confidence level 
(𝛼 = 0.05). While the choice of classifier is not significant at this confidence level, its p-value is still 
below the 90% confidence level threshold. Given that this ANOVA was based on only ten repetitions 
factor combination, the significance of the choice of classifier should not be entirely disregarded. 
The interaction between the two factors is not significant, which means that the error rates 
obtained with both K-NN and DA follow the same trend across the various feature sets (this is also 
apparent from figure 7-1 when disregarding the texton results). 

To determine which feature sets are significantly different from one another, a Bonferroni post-hoc 
test was performed. It was decided in advance that the test will only be done between all pairs of 
feature sets excluding textons (6 tests) and not between the eight feature set and classifier 
combinations (28 tests), since the focus of this work is on texture feature extraction. The results for 
the Bonferroni post-hoc test are reported in table 7-5, where the p-values that are significant at a 
95% confidence level are marked in green. 

Table 7-5: Bonferroni post-hoc test p-values for pair-wise comparisons between  
all feature sets 

7.2.2 Discussion 

Feature extraction methods 
The Bonferroni test results in table 7-5 show that the steerable pyramid feature set significantly 
outperformed both of the baseline methods, GLCMs and wavelets. The LBP features also 

Effect SS DOF MS F p 
Feature set 0.029 3 0.010 8.869 0.000 
Classifier 0.003 1 0.003 3.189 0.078 
Feature set*Classifier 0.002 3 0.001 0.488 0.691 

  Feature extraction {1} 
(.13851) 

{2} 
(.12635) 

{3} 
(.09257) 

{5} 
(.09865) 

1 GLCM   1.0000 0.0002 0.0017 
2 Wavelet 1.0000   0.0109 0.0586 
3 Steerable pyramid 0.0002 0.0109   1.0000 
5 LBP 0.0017 0.0586 1.0000   
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outperformed the GLCM features, but not the wavelet features at a 95% confidence level. However, 
as the p-value for the LBP-wavelet test is p = 0.0586, the difference in performance is still significant 
with 90% confidence, so the possibility of a significant difference between these two methods 
should not be discounted. 

These post-hoc test results are in line with what would be expected when visually inspecting the 
mean error rates and 95% confidence intervals plotted in figure 7-1. It appears as though two of the 
method combinations were significantly better than three others: steerable pyramids with a DA 
classifier were better than GLCMs with any classifier, and better than wavelets with a K-NN 
classifier. LBPs with a DA classifier also appear to be significantly better than those three method 
combinations. 

Texton features combined with a K-NN classifier resulted in the highest error rate of all methods 
(16.2%), but with a DA classifier led to the lowest error rate of all methods (6.8%). It is therefore not 
clear whether textons showed better or worse performance than the other feature sets, especially 
when taking into account that only one texton run was performed.  

In summary, it can be concluded that two of the three advanced textural feature extraction 
methods, steerable pyramids and LBPs, outperformed the baseline GLCM and wavelet methods.  

Classifiers 
DA outperforms K-NN for every feature set, although not significantly so at a 95% confidence level 
(according the ANOVA results). It should be noted here that the texton results were not used in the 
ANOVA, and for textons the DA classifier was much better than the K-NN classifier. However, it is 
quite possible that the average test result for textons over ten runs would not show such a large 
discrepancy between classification with K-NN and DA.  

On average, DA outperforms K-NN by 2.9%, although this includes the texton result, which has a 
large influence on this average outperformance. A possible explanation for the improved 
performance of DA is that the numbers of images in each class are very different: only 14% of the 
images belong to class 1, while 51% are in class 2 and 35% in class 3. While K-NN is biased towards 
the classes containing more data points, DA takes the prior probabilities into account when training 
the classification model.  

Comparison between validation and test results 
It is expected that validation results would be slightly optimistic compared to test results on unseen 
data, since the validation results reported in Table 7-3 are the lowest error percentages for each 
method, as obtained with the best hyperparameter combination. A large discrepancy between the 
validation and test error rates could be an indication of overfitting. 

The average validation error rates for each method, across all ten runs, were very close to the test 
error rates. The validation errors were only 0.9% lower on average. It can therefore be concluded 
that overfitting has not occurred. 
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7.3 Further analysis 
A more in-depth analysis of the experiment and its results was carried out by considering run 1 in 
more detail. The choice of run 1 is arbitrary, since the data was divided randomly into training and 
test sets for each run. 

Several aspects are investigated in this section. First, the discriminability of the feature sets are 
visually examined by projecting each feature set onto its linear discriminant (LD) axes. The 
classification results from run 1 are then reported and contrasted against the average results across 
all ten runs, and the optimal hyperparameters for this run are discussed. Finally, the computer 
running times for training and testing are reported. 

7.3.1 LD projection 
As a visual indication of the separation achieved with each feature set, the optimal feature sets 
when using discriminant analysis, for run 1, were projected onto the first two linear discriminant 
(LD) axes. These projections are shown in figure 7-2 (a) to (e).  
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(a) 

Figure 7-2 (a): The LD projection of the optimal GLCM features 
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(b) 

(c) 

Figure 7-2 (cont’d): The LD projections of the optimal (b) wavelet and (c) steerable  
pyramid features 
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(d) 

(e) 

Figure 7-2 (cont’d): The LD projections of the optimal (d) texton and (e) LBP features. 
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The projections of the three advanced textural feature sets point towards better class separation 
than the GLCM and wavelet projections, and that of steerable pyramids in particular seems to be the 
best. In both the GLCM and wavelet projections, the clusters for class 1 and 3 are close to each other, 
which may lead to an undesirable classification of data points in class 1 into class 3, and vice versa. 
The LD projections will be compared to the test results for run 1 in the next section (7.3.2). 

7.3.2 Classification results 
The test error percentages for run 1, obtained upon classification of the 74 test images into three 
classes, using each feature set and classification method combination, are given in table 7-6, with 
the respective confusion matrices in figure 7-3 (p. 132). 

Table 7-6: Run 1 test error percentages for  
all feature sets and classification methods 

Comparison to average test results 
Comparing the test results of run 1 (table 7-6) to the average test results across all ten runs (table 
6-2, p. 110), it is clear that the results of one run alone are not very reliable, as they can differ 
radically from the average results. For example, from the run 1 results one would conclude that 
steerable pyramid features lead to relatively high error rates, but the average test results for 
steerable pyramids were 10.7% with a K-NN classifier and 7.8% with a DA classifier, placing steerable 
pyramids among the best methods. The wavelet and DA combination led to one of the lowest error 
rates during run 1 (only 6.8% error), but on average the error rate for this combination was 12.3%, 
making it one of the worst methods. As was seen in case study II, it is clear that conclusions 
regarding the best feature sets cannot be drawn based on the results of run 1 only.  

Method K-NN DA 
GLCM 13.5% 13.5% 
Wavelet 12.2% 6.8% 
Steerable pyramid 14.9% 13.5% 
Texton 16.2% 6.8% 
LBP 13.5% 9.5% 
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Figure 7-3: Run 1 confusion matrices for all feature extraction and  
classification combinations 

1 2 3 1 2 3

1 80.0 20.0 0.0 1 70.0 20.0 10.0

2 0.0 94.7 5.3 2 2.6 92.1 5.3

3 11.5 11.5 76.9 3 3.8 11.5 84.6

1 2 3 1 2 3

1 90.0 10.0 0.0 1 60.0 40.0 0.0

2 10.5 84.2 5.3 2 2.6 97.4 0.0

3 0.0 7.7 92.3 3 0.0 0.0 100

1 2 3 1 2 3

1 70.0 10.0 20.0 1 60.0 40.0 0.0

2 7.9 86.8 5.3 2 0.0 97.4 2.6

3 0.0 11.5 88.5 3 0.0 19.2 80.8

1 2 3 1 2 3

1 30.0 70.0 0.0 1 80.0 20.0 0.0

2 0.0 97.4 2.6 2 0.0 100 0.0

3 0.0 15.4 84.6 3 3.8 7.7 88.5

1 2 3 1 2 3

1 70.0 20.0 10.0 1 80.0 20.0 0.0

2 0.0 94.7 5.3 2 2.6 97.4 0.0

3 3.8 15.4 80.8 3 0.0 15.4 84.6

LBP

Predicted classes Predicted classes

A
ct

u
al

 c
la

ss
es

A
ct

u
al

 c
la

ss
es

Texton

Predicted classes Predicted classes

A
ct

u
al

 c
la

ss
es

A
ct

u
al

 c
la

ss
es

Steerable 

pyramid

Predicted classes Predicted classes

A
ct

u
al

 c
la

ss
es

A
ct

u
al

 c
la

ss
es

Wavelet

Predicted classes Predicted classes

A
ct

u
al

 c
la

ss
es

A
ct

u
al

 c
la

ss
es

K-NN DA

GLCM

Predicted classes Predicted classes

A
ct

u
al

 c
la

ss
es

A
ct

u
al

 c
la

ss
es

Stellenbosch University  http://scholar.sun.ac.za



Chapter 7 – Results and discussion: Hydrocyclone underflows  133 
 

Confusion matrices 
Looking at the top row in each confusion matrix, it can be seen that most of the methods were not 
able to classify class 1 correctly. This is probably because there were only ten test images in this 
class (13.5% of the test images). Most notably, with the texton and K-NN combination 30% of the 
images in class 1 were correctly classified into class 1, with 70% of the images being incorrectly 
classified into class 2. With several of the other method combinations, some of the class 1 images 
were even classified into class 3, and some class 3 images into class 1.  

The challenges associated with the small size of class 1 is an indication that the data set is not very 
suited to classification, especially when using K-NN, which is biased towards classes that contain 
more data points. It would also not be sensible to redefine class 1 to contain some data from class 2, 
since there is a very large difference between the mean particle sizes of images in class 1 and those 
of images in class 2 (refer to the data discretisation as described in section 4.2.3, p. 69, in the chapter 
on materials and methods). In future work, regression instead of classification could be performed 
on the textural features to predict mean particle sizes.  

Comparison to LD projections 
The test errors when using DA for run 1 were the lowest for the wavelet and texton feature sets 
(both 6.8%), followed by that of the LBP feature set (9.5%). Comparing these results to the LD 
projections from figure 7-2, the outcomes for wavelets and steerable pyramids are surprising. From 
the projections shown in figure 7-2 (b) and (c), it appears as though the classes obtained with 
steerable pyramid features would be more separable than those obtained with wavelet features. 
However, the test results for these feature sets with DA show the opposite. 

Upon inspection of the confusion matrices of the wavelet features classified with DA and steerable 
pyramid features classified with DA, the major difference between the two is that 19.2% of the 
images in class 3 were incorrectly classified into class 2 (this amounts to five images) when using 
steerable pyramid features, while for wavelets all of the class 3 images were correctly classified. A 
possible reason for this unexpected result is that the separating line between two classes, as found 
by DA using training data, does not necessarily lie at the optimal separation between two classes 
when test data is included. The five images from class 3 that were incorrectly classified into class 
two are indicated in black on the LD projection in figure 7-4. 
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Figure 7-4: LD projection of steerable pyramid features, where incorrectly  
classified test data points from class 3 marked with black stars 

7.3.3 Optimal hyperparameters 
The hyperparameters that led to the validation results for run 1 are reported in table 7-7. The full 
validation and test results and optimal hyperparameter settings for all ten runs may be found in 
Appendix D. 
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Table 7-7: Optimal hyperparameter settings and dimensionalities of feature sets for run 1 

For the GLCM features, the optimal number of grey levels when using K-NN and DA classifiers were 
𝐺 = 32 and 𝐺 = 64, respectively. This is a significant result, since in practice this hyperparameter 
is usually not optimised, but rather fixed at 𝐺 = 8 as originally proposed by Haralick (1979). 

Another important result is that in computation of the texton feature set, a smaller filter support 
size of 𝐹𝑆 = 25 was optimal. In contrast, 𝐹𝑆 = 49 was originally proposed by Schmid (2001) and has 
been used in all subsequent studies that were found in literature (see for example Varma & 
Zisserman, 2005; Jemwa & Aldrich, 2012). 

It is interesting to note that the best type of DA was LDA for four out of the five texture feature sets, 
with only GLCMs performing better with a QDA classifier.  

Two properties of texture analysis algorithms that are believed to play a large role in their 
performance are rotation and translation invariance as well as multiscale representation. However, 
in this case study it seems as though rotation invariance was not an important indicator of 
performance. While the LBP feature set performed well, the optimal mapping type for this feature 
set was not rotation invariant. Also, steerable pyramids are rotation invariant only to some extent 
and also showed excellent performance.  

Multiscale representation alone did not guarantee success in this case study: both the wavelet and 
steerable pyramid feature sets were extracted from multiscale representations, but only steerable 
pyramids performed well. It is suggested that the improved performance of the steerable pyramid 
feature set might instead be ascribed to the aptness of the advanced statistical features that are 
extracted from the representation. 

Method 

K-NN DA 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size 𝐾𝑁 

Feature extraction 
hyperparameters ℋ𝐹

  
Feature 
set size Type 

GLCM 
𝐺 = 32 
𝐷 = 5 

PCA = 𝑛𝑜𝑛𝑒 
8 4 

𝐺 = 64 
𝐷 = 5 

PCA = 𝑛𝑜𝑛𝑒 
8 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 

Wavelet Type =  ‘𝑑𝑏3’ 
PCA = 𝑛𝑜𝑛𝑒 21 1 Type =  ‘𝑠𝑦𝑚4’ 

PCA = 𝑛𝑜𝑛𝑒 21 𝐿𝑖𝑛𝑒𝑎𝑟 

Steerable 
pyramid 

𝑆𝑖𝑛𝑐 = 6 
𝑊 = 11 

PCA: 𝑣𝑎𝑟 = 95% 
23 1 

𝑆𝑖𝑛𝑐 = 4 
𝑊 = 11 

PCA: 𝑣𝑎𝑟 = 95% 
15 𝐿𝑖𝑛𝑒𝑎𝑟 

Texton 
𝐾𝑇 = 80 
𝐹𝑆 = 25 

PCA = 𝑛𝑜𝑛𝑒 
80 4 

𝐾𝑇 = 80 
𝐹𝑆 = 25 

PCA: 𝑣𝑎𝑟 = 99% 
49 𝐿𝑖𝑛𝑒𝑎𝑟 

LBP 
𝑅 = 4 
𝑃 = 16 

Mapping = ′𝑢2′ 
PCA = 𝑛𝑜𝑛𝑒 

243 6 
𝑅 = 1 
𝑃 = 8 

Mapping = ′𝑢2′ 
PCA: 𝑣𝑎𝑟 = 99% 

13 𝐿𝑖𝑛𝑒𝑎𝑟 
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7.3.4 Computer running times 

Training 
The computation times required to train and test the various image analysis methods are an 
important consideration. If the training of a model is very slow, it may not be feasible to use in cases 
where frequent recalibration is required. Additionally, with slow training it may not be possible to 
fully optimise the algorithm by testing all feasible hyperparameter combinations, or repetitions of 
the experiment will be limited. 

The running times required to train each feature set and classifier combination, on a computer with 
an Intel® Core™ i7-2600 CPU (quad-core @ 3.40 GHz frequency) and 16 GB RAM, are reported in table 
7-8. 

Table 7-8: Computation times for the training of each model 

For each feature extraction method, this table shows the number of hyperparameter combinations 
that were tested and the average time taken to extract a feature set for a single hyperparameter 
combination (ℋ𝐹), in minutes. The total training times for all hyperparameter combinations, 
including the time taken to train the classifiers and classify the validation data to optimise the 
classification hyperparameters for K-NN and DA, are shown in the last two columns.  

All feature extraction methods, with the exception of textons, have reasonable training times, 
requiring between 0.7 minutes (wavelets) and 13.6 minutes (steerable pyramids) to extract the 
features for one hyperparameter combination. The texton algorithm is by far the slowest, taking 
987 minutes (16.5 hours) on average to compute the texton features for a single set of feature 
extraction hyperparameters. The reasons why texton features require long computer running times 
to be computed are explained in more detail in section 4.5.4 (p. 84) in the chapter on materials and 
methods. 

Despite the high computational complexity of the texton algorithm, the use of texton features 
would still be merited if they lead to exceptionally good classification performance. However, for 
this case study it was not clear if textons outperform any of the other methods significantly, as the 
classification error when using K-NN was very high, while the error when using DA was very low. 
The use of texton features is therefore not recommended for this case study.  

Method Number of  
ℋ𝐹 

Training time 
per ℋ𝐹 (min) 

Total training time for feature 
 extraction and classification (h) 

K-NN DA 
GLCM 15 3.6 1.02 0.98 
Wavelet 3 0.7 0.06 0.05 
Steerable pyramid 4 13.6 0.94 0.93 
Texton 6 987 100 96 
LBP 12 1.8 0.46 0.43 
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Testing 
The time taken to test one image is equivalent to the measurement delay that would be expected 
when using the method in an inferential sensor for online prediction. If the measurement delay is 
comparable to the time constant of the system, the sensor would not be very useful, since the 
measured process variables could change as fast as they are being measured. 

The running times required to test each feature set and classifier combination, on the same 
computer as mentioned previously in this section, are reported in table 7-9. 

Table 7-9: Computation times for the testing of each  
method combination 

From this table it can be seen that the longest running time required to classify a single test image 
is 3.63 seconds for steerable pyramids. This is deemed acceptable, since computation times in the 
order of seconds would certainly not be in a range comparable to the time constant of an industrial 
milling or grinding system with a hydrocyclone separator.  

Note that while the texton features were slow to compute during training, testing with texton 
features is fast. This is because the slow clustering step does not have to be repeated during testing. 

7.4 Conclusions 
In this case study the three advanced texture analysis methods led to significantly better 
classification results than GLCMs and wavelets. A statistically significant distinction between the 
performances of each of the three advanced texture analysis methods could not be made. DA 
slightly outperformed K-NN with most feature sets, but not significantly so. 

It was found that the extremely small size of the coarse class had an adverse effect on the results. It 
is suggested that this data is not very suited to classification, but that regression should be 
performed instead. 

  

Method 
Time to test one image by extracting 

features and classifying (s) 
K-NN DA 

GLCM 0.58 0.57 
Wavelet 0.18 0.18 
Steerable pyramid 3.63 3.63 
Texton 0.59 0.57 
LBP 0.36 0.61 
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In this chapter the results reported and discussed in chapters 5, 6 and 7 are considered together, 
drawing overall conclusions based on all three case studies. A sensitivity analysis of the 
hyperparameter optimisation shows most of the hyperparameters did have a significant effect 
on the error rate, that the approach used was therefore appropriate and effective. The research 
contributions of this work are discussed in the context of the entire life cycle of a vision-based 
inferential sensing research programme, and recommendations for future work are made in this 
regard. 

The overall conclusion is that two of the advanced texture analysis methods, steerable pyramids 
and LBPs, could extract improved feature sets when compared to the baseline methods. The 
further application of these two advanced methods is recommended as a viable alternative to 
the traditional GLCM and wavelet texture analysis methods. 
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8.1 Introduction 
The main goal of this study has been to compare the use of advanced image texture analysis 
methods to baseline texture analysis methods for the prediction of key process quality variables in 
specific process engineering applications. To this end, several secondary goals have been attained 
(as specified in chapter 1, section 1.5, p. 8).  

A critical survey of the literature on vision-based inferential sensing and texture analysis 
techniques has been conducted. It was found that studies on process applications of machine vision 
have been focused to a large extent on multivariate image analysis (MIA), and within this field the 
extraction of spectral information has predominated. In applications where textural features were 
considered, GLCMs and wavelets have received much attention and are considered to be state-of-
the-art methods. On the other hand, several newer, more advanced texture analysis methods have 
been developed that theoretically should provide some advantage over the baseline GLCM and 
wavelet approaches. 

Based on the literature review, two baseline texture analysis methods (GLCMs and wavelets) and 
three advanced texture analysis methods (steerable pyramids, textons and LBPs) have been 
identified as having a reasonable chance for successful application to online prediction problems 
within the process industries. These five texture analysis algorithms were studied and 
implemented, and used to extract features from process image data from three online prediction 
case studies. 

The quality of features extracted with each texture analysis algorithm was assessed and compared 
in a structured manner. Each combination of the five feature extraction methods and two classifiers 
was tested on all three case studies. Moreover, ten repetitions of the same experiment (using a 
different random data subdivision each time) were performed where possible, so that a sensitivity 
analysis on the error rates could be performed. A final discussion on the texture classification 
experiments, looking at the results from all three case studies together, is presented in section 8.2. 

Prior to the classification with test data, hyperparameters for all feature extraction and 
classification method combinations were optimised through cross-validation, in order to be able to 
make a fair comparison between all methods. A sensitivity analysis on the importance of the 
hyperparameters that were optimised was done and is discussed in section 8.3.  

In section 8.4 the research contributions made by this study are discussed by placing them in the 
context of the entire life cycle of a vision-based inferential sensing research programme, and 
recommendations for future work are made. Finally, this chapter ends in section 8.5 with a 
reiteration of the most important conclusions. 

8.2 Texture classification discussion and conclusions 
The results obtained with all feature extraction algorithm and classifier combinations, for all three 
case studies, are reported in table 8-1. 
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Table 8-1: Comparison of average test error rates for all method 
 combinations and all case studies 

It should be noted that since the results obtained with textons and the platinum froth flotation 
results are based on only one run, these are not as reliable as the remainder of the results. It was 
found that for the coal and hydrocyclone data sets, results varied significantly between repetitions 
of the same experiment, and conclusions could not be drawn based on the results of one run only. 
However, even though only one run could be performed with the flotation data set, this data set 
contains many more images than the coal and hydrocyclone data sets (2600 versus 280 and 300, 
respectively). It is therefore expected that the results based on one run with the flotation data set 
would be more reliable than results based on one run with the other two data sets. 

8.2.1 Feature extraction methods 
From table 8-1 it can be seen that the average test error rates across all three case studies were the 
lowest for the steerable pyramid and LBP feature sets, followed by textons and then wavelets. The 
GLCM feature set resulted in the highest error rates. This is in line with what would be expected 
when considering the properties of the different methods. The steerable pyramid, LBP and texton 
methods have advanced properties and combine texture analysis approaches in ways that should 
theoretically provide advantages over the baseline GLCM and wavelet methods.  

The poorer performance of textons when compared to steerable pyramids and LBPs could be 
ascribed to two factors. First, only one texton run was performed for each case study, which means 
that the poorer performance could be coincidental. Second, it was not possible to optimise the filter 
set hyperparameter used in the texton algorithm, due to the long computer running times that 
would be required to do so. It is possible that other filter sets would yield better results. 

It is important to consider which feature extraction methods outperformed which other methods to 
a degree that is statistically significant. This is depicted in figure 8-1. 

Feature set Classifier 
Case study 

Avg. 
Flotation* Coal Hydrocyclone 

GLCM 
K-NN 35.2% 25.6% 14.2% 25.0% 
DA 36.0% 17.0% 13.5% 22.2% 

Wavelet 
K-NN 36.3% 14.7% 13.0% 21.3% 
DA 27.1% 13.3% 12.3% 17.6% 

Steerable pyramid 
K-NN 28.3% 13.0% 10.7% 17.3% 
DA 11.1% 12.0% 7.8% 10.3% 

Texton* 
K-NN 33.3% 8.6% 16.2% 19.4% 
DA 25.7% 10.0% 6.8% 14.2% 

LBP 
K-NN 22.8% 15.1% 10.4% 16.1% 
DA 14.5% 10.3% 9.3% 11.4% 

* Error rates based on only one run (these cells are shaded grey). 
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In the platinum froth flotation case study the steerable pyramid and LBP feature sets outperformed 
the GLCM, wavelet and texton feature sets. Although only one run was performed, and thus a 
statistical significance test could not be carried out, the differences in error rates between the 
better methods and the worse methods were large. On average across both classifiers, the error 
rates obtained with steerable pyramid and LBP features were 19.7% and 18.7%, respectively. The 
error rates for the other three methods were much higher at 29.5% (textons), 31.7% (wavelets) and 
35.6% (GLCMs). The conclusion that steerable pyramids and LBPs significantly outperformed the 
other three methods for this data set therefore seems reasonable. 

With the data set of coal on a conveyor belt, the GLCM feature set was significantly outperformed by 
all four of the other methods, although the good result for textons is not as reliable, as only one run 
was performed.  

In the case study where hydrocyclone underflow particle size was investigated, the steerable 
pyramid and LBP feature sets significantly outperformed the GLCM and wavelet feature sets. No 
conclusion could be drawn for textons, since the result obtained with a K-NN classifier led to the 
highest error rate of all methods for this case study (16.2%), while the texton and DA combination 
had the lowest error rate (6.8%).  

Based on these results, the overall conclusion can be drawn that the steerable pyramid and LBP 
methods showed the best performance and can thus extract the most descriptive feature sets. These 
two feature extraction methods were among the better methods for all three case studies, and are 
therefore also the most likely to give good results on other texture analysis case studies. Both 
steerable pyramid and LBP feature extraction would therefore be good methods to employ, should 
further experiments be carried out.  

 
 
 

 
 
 

  
 

  Better methods    Worse methods  

 
Flotation 

Steerable pyramid 

LBP 
 

GLCM 

Wavelet 

Texton 

 

 
Coal 

Wavelet 

Steerable pyramid 

Texton 

LBP 

 GLCM 

 

 Hydrocyclone 
Steerable pyramid 

LBP 
 

GLCM 

Wavelet 
 

   

Figure 8-1: Statistically significant differences in performances of feature extraction methods. On the 
left are shown the better methods for each case study, and on the right are shown the methods that 

they have outperformed. 
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The texton feature set appears once among the better methods and once among the worse methods 
(figure 8-1), and had one inconclusive result. While texton feature extraction was the second-best 
option after steerable pyramids and LBPs, this algorithm has a high computational complexity and 
requires extremely long computer running times for the training phase. This makes hyperparame-
ter optimisation difficult, and if the algorithm were to be implemented in an industrial vision-based 
inferential sensor, the slow training time reduces the capacity for fast online recalibration. It is 
recommended that this method is further tested before a final conclusion regarding its 
performance is made. This further testing should include the optimisation of the choice of filter 
bank and the execution of ten repetitions of the experiment instead of only one. Additionally, the 
use of alternative clustering methods in the texton algorithm may reduce the computational 
workload required by this algorithm. 

The wavelet and GLCM methods had the worst performance. Wavelets appear once among the 
better methods and twice among the worse methods, while GLCMs are always among the worse 
methods (figure 8-1). Therefore, even though these two methods have enjoyed widespread use in 
vision-based inferential sensing applications in the process industries, their status of being “state-
of-the-art” (Duchesne et al., 2012) should be reconsidered. The results from this study show that 
alternative textural feature sets (steerable pyramids and LBPs) are likely to improve the 
performance when used as input to online prediction algorithms, compared to the GLCM and 
wavelet methods. 

8.2.2 Classifiers 
Considering the overall results reported in table 8-1, DA outperforms K-NN for almost every feature 
set and case study. On average, the use of DA results in a 4.7% lower error rate than K-NN. Also, from 
the ANOVAs performed for the coal and hydrocyclone case studies, it was shown that the choice of 
classifier is significant. The evidence is therefore overwhelming that DA significantly outperformed 
K-NN in the classification experiments performed in this study.  

If a choice has to be made between K-NN and DA in future work, DA would be the better option. 
However, there could be many reasons for the difference in performance between these two 
classifiers that would cause the result not to hold true in every case. For example, the unequal 
distribution of data points into classes had impacted K-NN negatively in this work, and the choice of 
distance metric (Euclidean) may not have been optimal for these particular case studies.  

8.3 Hyperparameter sensitivity analysis 
The methodology followed in this work included the optimisation of hyperparameters using cross-
validation, so that a fair comparison could be made between all methods. For each feature 
extraction and classification combination, the following were considered for optimisation: 

 the hyperparameters specific to the feature extraction method in question, 
 the use of PCA, and 
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 the number of nearest neighbours (𝐾𝑁) in the case of the K-NN classifier, or the type of DA 
(linear or quadratic) in the case of the DA classifier. 

A sensitivity analysis on the hyperparameter settings was done to determine which of the 
hyperparameters made a significant difference to the error rate. This was accomplished by setting 
up a regression model with the cross-validation error rate as dependent variable and the 
hyperparameter settings (and their interactions) as predictors. For each case study, ten regression 
models were constructed in accordance with the ten feature extraction method and classifier 
combinations. The p-values for the predictors in each model are reported in tables 8-2 to 8-6. 

8.3.1 GLCM hyperparameters 

Table 8-2: P-values for GLCM hyperparameters in regression model 

The GLCM hyperparameters considered for optimisation were the number of grey levels (𝐺) and the 
size of the displacement between grey level pairs (𝐷) (refer to section 0, p. 82 for more information). 
log2 𝐺  was used in the model instead of 𝐺 , since the parameter options for 𝐺  increased 
exponentially. Looking at the p-values in table 8-2, it is apparent that both 𝐺 and 𝐷 has a significant 
effect on the error rate when using a K-NN classifier, although 𝐺 was apparently less important in 
the hydrocyclone case study. When using a K-NN classifier, the p-values for the interaction term 
between 𝐺 and 𝐷 are low enough to indicate that there is probably significant interaction between 
the two hyperparameters, and thus they cannot be optimised independently.  

Effect 
K-NN DA 

Flotation Coal Hydrocyclone Flotation Coal Hydrocyclone 
log2 𝐺 0.001 0.000 0.719 0.549 1.000 0.332 
(log2 𝐺)

2 0.000 0.040 0.732 0.836 0.892 0.543 
𝐷 0.188 0.000 0.000 0.618 0.050 0.066 
𝐷2 0.000 0.000 0.000 0.434 0.006 0.000 

𝐷 × log2 𝐺 0.298 0.004 0.054 0.811 0.886 0.407 
PCA 0.000 0.021 0.000 0.000 0.086 0.099 

PCA × log2 𝐺 0.057 0.589 0.000 0.283 0.755 0.838 
PCA × 𝐷 0.000 0.001 0.004 0.000 0.000 0.064 
𝐾𝑁 0.000 0.000 0.065    
𝐾𝑁

2 0.000 0.000 0.383    
𝐾𝑁 × PCA 0.000 0.324 0.000    
𝐾𝑁 × log2 𝐺 0.491 0.406 0.091    
𝐾𝑁 × 𝐷 0.000 0.081 0.000    
Type  A    0.902 0.977 0.077 

Type  A × PCA    0.001 0.000 0.387 
Type  A × log2 𝐺    0.983 0.556 0.733 
Type  A × 𝐷    0.616 0.806 0.009 
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It is interesting to note that the feature extraction hyperparameter choices are generally not very 
significant when using DA as a classifier. The only hyperparameter that made a significant 
difference to the error rate was the choice of 𝐷 for the coal and hydrocyclone case studies.  

The hyperparameter 𝐺 had a significant effect on the error rate when using K-NN in the flotation 
and coal case studies. Also, when using K-NN in the hydrocyclone case study, 𝐺 showed significant 
interaction with some of the other hyperparameters. This is an important result, since other 
authors rarely even consider this hyperparameter for optimisation. In literature on process 
applications of GLCMs, no studies that attempt to optimise 𝐺 have been found.  

The use of PCA also played an important role with both the K-NN and DA classifiers. PCA had a 
significant interaction with 𝐷 across all case studies and classifiers, but did not always interact 
significantly with 𝐺.  

The choice of 𝐾𝑁 (the number of nearest neighbours in the K-NN algorithm), and its interaction 
with other hyperparameters, was generally significant. For the flotation and coal case studies, the 
type of DA chosen did not make a significant difference to the error rate by itself, but its interaction 
with the use of PCA was significant. For hydrocyclones, the type of DA used and its interaction with 
𝐷 was significant.  

In conclusion, the optimisation of feature extraction hyperparameters was important for the GLCM 
and K-NN combination, but not so important when using DA. 𝐾𝑁 and the type of DA also had a 
significant impact on the error rate. Most of the interaction terms were significant in at least one 
case study, suggesting that no hyperparameters could have been optimised independently. 

8.3.2 Wavelet hyperparameters 

Table 8-3: P-values for wavelet hyperparameters in regression model 

Only one wavelet hyperparameter was considered for optimisation in this work: the type of wavelet 
(see section 4.5.2, p. 83). From the p-values in table 8-3 it can be deduced that the choice of wavelet 

Effect 
K-NN 

DA 

Effect 

DA 
Flotation Coal Hydrocyclone Flotation Coal Hydrocyclone 

Type wa elet 0.000 0.000 0.000 0.102 0.000 0.123 
PCA 0.000 0.681 0.001 0.000 0.229 0.026 

Type wa elet × PCA 0.178 0.610 0.130 0.410 0.731 0.691 
𝐾𝑁 0.002 0.000 0.328    
𝐾𝑁

2 0.048 0.000 0.145    
𝐾𝑁 × Type wa elet 0.228 0.027 0.316    

𝐾𝑁 × PCA 0.228 0.903 0.011    
Type  A    0.095 0.464 0.057 

Type  A × Type wa elet    0.924 0.249 0.116 
Type  A × PCA    0.705 0.103 0.020 
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had a very significant effect on the error rate. Wavelets did usually not show very significant 
interaction with any of the other hyperparameters, and might therefore be independently 
optimised. The significance of the wavelet choice stands in contrast to the general practice in 
wavelet process application literature, where usually only one type of wavelet is pre-selected and 
used (see for example Bharati et al., 2004a; Zhang et al., 2007). Due to the relative ease with which 
one can test wavelet types, it is suggested that even more than the three wavelet families 
considered in this work is tested in future work.  

For the flotation and hydrocyclone case studies, the choice of whether to of apply PCA to wavelet 
features had a significant influence on the error rate, while for the coal case study PCA was less 
important. Generally, the choice of 𝐾𝑁 was significant, while the difference between choosing LDA 
or QDA (type of DA) was not always as important.  

8.3.3 Steerable pyramid hyperparameters 

Table 8-4: P-values for steerable pyramid hyperparameters in regression model 

The steerable pyramid hyperparameters that were optimised are the number of orientations 
included in the final representation (𝑆𝑖𝑛𝑐) and the width of the square pixel neighbourhood used in 
the computation of local statistics (𝑊) (see section 4.5.3, p. 83). It appears as though the importance 
of these feature extraction hyperparameters is not very consistent across case studies, and usually 
the hyperparameters do not affect the error rate significantly. This points towards the robustness of 
the steerable pyramid technique. 

Effect K-NN 

DA 

Effect 

DA 

DA 

Effect 

Flotation Coal Hydrocyclone Flotation Coal Hydrocyclone 
𝑆𝑖𝑛𝑐  0.863 0.280 0.019 0.144 0.009 0.452 
𝑊 0.073 0.000 0.160 0.062 0.299 0.928 

𝑆𝑖𝑛𝑐 ×𝑊 0.421 0.234 0.034 0.381 0.290 0.926 
PCA 0.977 0.911 0.884 0.455 0.000 0.000 

𝑆𝑖𝑛𝑐 × PCA 0.999 0.712 0.532 0.150 0.000 0.880 
𝑊 × PCA 0.957 0.996 0.987 0.058 0.056 0.444 
𝐾𝑁 0.581 0.393 0.290    
𝐾𝑁

2 0.249 0.334 0.834    
𝐾𝑁 × PCA 1.000 0.444 0.878    
𝐾𝑁 × 𝑆𝑖𝑛𝑐  0.902 0.779 0.292    
𝐾𝑁 ×𝑊 0.598 0.636 0.489    
Type  A    0.309 0.076 0.000 

Type  A × PCA    0.000 0.000 0.000 
Type  A × 𝑆𝑖𝑛𝑐     0.002 0.000 0.118 
Type  A ×𝑊    0.087 0.405 0.202 
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Interestingly, the usage of PCA or not makes no significant difference when K-NN is used as 
classifier. This is a rather surprising result, seeing as the steerable pyramid feature sets have high 
dimensionality and should therefore logically benefit from further dimensionality reduction. It is 
possible that the advantages of lower dimensionality are mitigated by the disadvantages of PCA; for 
instance, a linear transform may not be optimal for dimensionality reduction of this particular 
feature set, or important information could be contained in the dimensions with low variance that 
are excluded when only the first few principal component scores are used. With a DA classifier, the 
choice of using PCA or not is significant for two of the case studies. 

Neither the choice of 𝐾𝑁 nor its interaction with any of the other hyperparameters was significant 
for any of the case studies. This strongly suggests that the value of 𝐾𝑁 does not have to be optimised 
when steerable pyramid features are used. On the other hand, the type of DA had a more significant 
effect on the error rates, especially when interacting with the other hyperparameters.  

8.3.4 Texton hyperparameters 

Table 8-5: P-values for texton hyperparameters in regression model 

In the texton algorithm the number of cluster centres (𝐾𝑇) and width of the largest filter in the 
filter bank 𝐹𝑆  were optimised (see section 4.5.4, p. 84). log2𝐾𝑇  and not 𝐾𝑇  was used in the 
regression model, because this hyperparameter increased exponentially. Since the extraction of 
texton feature sets requires long computer running times, it would be of much consequence of 
some hyperparameters are found to have insignificant effects on the error rates – the computation 
time would be greatly reduced if some of the hyperparameters could be removed from the 

Effect 
K-NN 

DA 

Effect 
DA 

Effect 

DA 
Flotation Coal Hydrocyclone Flotation Coal Hydrocyclone 

log2 𝐾𝑇 0.141 0.037 0.000 0.330 0.041 0.000 
(log2 𝐾𝑇)

2 0.038 0.978 0.016 0.074 0.967 0.000 
𝐹𝑆 0.000 0.000 0.192 0.236 0.044 0.916 

𝐹𝑆 × log2 𝐾𝑇  0.000 0.389 0.005 0.097 0.048 0.692 
PCA 0.930 0.824 0.919 0.669 0.155 0.002 

PCA × log2 𝐾𝑇 0.215 0.272 0.749 0.000 0.000 0.000 
PCA × 𝐹𝑆 0.108 0.523 0.716 0.045 0.328 0.877 
𝐾𝑁 0.003 0.001 0.305    
𝐾𝑁

2 0.000 0.037 0.050    
𝐾𝑁 × PCA 0.667 0.993 0.929    
𝐾𝑁 × log2 𝐾𝑇  0.474 0.000 0.004    
𝐾𝑁 × 𝐹𝑆 0.127 0.481 0.006    
Type  A    0.772 0.061 0.000 

Type  A × PCA    0.000 0.000 0.000 
Type  A × log2 𝐾𝑇    0.000 0.000 0.000 
Type  A × 𝐹𝑆    0.052 0.582 0.869 
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optimisation procedure. Looking at table 8-5, however, both 𝐾𝑇 and 𝐹𝑆 seem to be significant to the 
degree that they cannot be excluded from the optimisation process. Moreover, these hyperparame-
ters show significant interaction, so that they cannot be optimised independently. A notable 
exception is the hydrocyclone case study when a DA classifier is used, where neither 𝐹𝑆 nor any of 
its interactions with other hyperparameters seems to be significant. The fact that the choice of  𝐹𝑆 
is significant is an important result, since in literature only the original 𝐹𝑆 = 49 as proposed by 
Schmid (2001) has been used in subsequent studies (see for example Varma & Zisserman, 2005; 
Jemwa & Aldrich, 2012). 

As was observed for steerable pyramid features, the PCA hyperparameter is not significant when 
using a K-NN classifier, but when using DA the usage of PCA becomes significant. For all three case 
studies, either 𝐾𝑁 or its interaction with other terms is important. The type of DA, and all its 
interaction terms, was also a significant predictor of the error rate (except in the flotation case 
study, where the type of DA alone does not have a significant effect).  

It can be concluded from these results that all hyperparameter combinations were important in the 
optimisation problem, perhaps with the exception of the PCA hyperparameter when using a K-NN 
classifier. 

8.3.5 LBP hyperparameters 

Table 8-6: P-values for LBP hyperparameters in regression model 

Effect 
K-NN 

DA 

Effect 
DA 

Effect 

DA 

Effect 

DA 
Flotation Coal Hydrocyclone Flotation Coal Hydrocyclone 

𝑅 0.000 0.243 0.000 0.323 0.452 0.000 
𝑅2 0.000 0.097 0.000 0.000 0.520 0.216 

Mapping 0.000 0.001 0.000 0.000 0.000 0.000 
Mapping × 𝑅 0.000 0.000 0.000 0.000 0.000 0.000 

PCA 0.353 0.000 0.000 0.057 0.202 0.523 
Mapping × PCA 0.000 0.001 0.067 0.000 0.000 0.000 

𝑅 × PCA 0.603 0.963 0.051 0.000 0.001 0.089 
𝐾𝑁 0.006 0.000 0.000    
𝐾𝑁

2 0.042 0.000 0.000    
𝐾𝑁 ×Mapping 0.541 0.000 0.444    
𝐾𝑁 × PCA 0.958 0.035 0.014    
𝐾𝑁 × 𝑅 0.397 0.000 0.000    
Type  A    0.174 0.000 0.000 

Type  A × Mapping    0.000 0.000 0.000 
Type  A × PCA    0.000 0.000 0.000 
Type  A × 𝑅    0.000 0.070 0.000 
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The LBP hyperparameters considered were the radius of and number of pixels in the local pixel 
neighbourhood (𝑅, 𝑃) and the mapping type (see section 4.5.5, p. 86). Only 𝑅  and not 𝑃  was 
included in the regression model, since 𝑅  and 𝑃  are perfectly correlated. From the p-values 
reported in table 8-6 it can be seen that the choice of 𝑅 influences the error rate significantly for 
the flotation and hydrocyclone case studies, but not for the coal case study. The choice of mapping 
type is clearly extremely important, with p = 0.000 in all cases. The interaction between the 
mapping type and each of the other hyperparameters is also almost always significant. Both (𝑅, 𝑃) 
and the mapping type should therefore be optimised, and cannot be optimised independently due 
to their significant interaction. 

For each case study, at least one of the effects containing the PCA hyperparameter was highly 
significant. The PCA hyperparameter should therefore also be optimised. The value of 𝐾𝑁 was 
significant, as well as its interaction with other hyperparameters in most cases. Similarly, the type 
of DA and its interaction effects were significant predictors of the error rate.  

In conclusion, all of the hyperparameters considered in for LBPs were important to optimise for at 
least one of the case studies. The most important hyperparameter seems to be the mapping type. 

8.3.6 Conclusion 
In general, the hyperparameters selected for optimisation had significant effects on the error rates. 
Also, the interaction between hyperparameters was usually important, indicating that the 
hyperparameters could not have been optimised independently. The steerable pyramid 
hyperparameters were a notable exception, where the hyperparameters usually did not have a 
significant effect on the error rates obtained. It is concluded that the hyperparameter optimisation 
approach used in this work was effective, and this approach is recommended for any similar 
experiments that may be carried out in future work. 

8.4 Research contributions and recommendations 

8.4.1 Contributions of this work 
The entire life cycle of a vision-based inferential sensing research programme was presented in 
chapter 1 and is repeated here as figure 8-2 (adapted from Wagstaff, 2012). 
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The main purpose of this work, within the context of such a research programme life cycle, was to 
add to the knowledge in the domain of algorithms that are suitable for vision-based inferential 
sensing in the process industries. Specifically, five texture feature extraction methods were 
systematically compared, and conclusive evidence was found that steerable pyramids and LBPs 
outperformed the widely used GLCM and wavelet methods. The structured manner in which the 
experiments in this work were performed stands in contrast to many research projects found in 
literature, where quite often only one texture feature extraction method and one case study is 
considered, sensitivity analysis is not performed, and hyperparameters are not properly optimised.  

8.4.2 Algorithm development 

Dimensionality reduction 
The results presented in this work form a firm basis for further work, specifically in the 
investigation of the steerable pyramid and LBP texture feature extraction methods.  

Further optimisation of the dimensionality reduction step is possible by employing feature 
selection to select the most appropriate features. This is expected to be particularly useful for the 
reduction of feature sets with high dimensionality, such as the steerable pyramid feature set. 
Various feature selection approaches could be investigated in future work. Furthermore, the 
individual steps in the five texture analysis algorithms may be combined in various ways. It is 
suggested that future work could explore the development of a hybrid texture analysis method that 
combines the aspects from the individual methods in a sensible way. 

Modelling 
The classification step was not the focus of this work, and was therefore not as thoroughly 
investigated as the feature extraction step. Other classifiers, most notably support vector machines 
(SVMs) have been used extensively for inferential sensing applications (Kadlec et al., 2009) and 
could also be considered. It is likely that results would improve when more advanced classifiers are 
used. 

 

Figure 8-2: The entire life cycle of a vision-based inferential sensor research 
programme. 

Problem identification

Algorithm development / selection

Data collection

Results interpretation Industrial implementation

Main contribution of this work
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A key extension of this work could be to use regression instead of classification. While classification 
has its place in cases where intrinsically discrete variables are to be predicted (for example the 
classification of a process state as “normal” or “abnormal”), the majority of process applications 
require the prediction of a continuous quality variable. In all three of the case studies considered in 
this work, the predicted variable was actually a discretised continuous variable (grade of platinum 
flotation froths, fines percentage of coal on a conveyor belt and mean particle size in hydrocyclone 
underflows). Using the same feature extraction methods on these case studies but considering 
regression instead could lead to interesting further conclusions regarding the accuracy of these 
approaches.  

8.4.3 Problem identification and data collection 
Whenever possible, industrial data rather than laboratory data should be collected, as the data 
should be as similar as possible to actual scenario where the solution is to be implemented, even 
when the goal is only to perform an initial feasibility study. However, it must be recognised that 
industrial data collection is not always possible. In such cases, industrial conditions should be 
simulated in laboratory experiments as accurately as possible. It is also of vital importance to fully 
and accurately specify the industrial problem at hand before any experiments are carried out. 

Even when industrial data can be collected, the labelling of the data is often a problem, as this can 
require time-consuming and expensive laboratory analyses or expert opinions. A possible solution 
to the labelling problem is the use of semi-supervised classification methods, which require only a 
small amount of labelled data (Chapelle et al., 2006). 

The collection or procurement of additional data is recommended for all three case studies 
considered in this work. 

Case study I: Platinum froth flotation 
In the analysis of features extracted from the froth flotation data set (collected by Marais, 2010), it 
was found that the distribution of the features and hence appearance of the froth changed 
significantly during each steady state period. In order to fully capture the variability that may be 
present during a single steady state, it is recommended that further data should be collected over a 
longer period. As it stands, the froth grade is correlated with the input air flow rate, and therefore it 
is possible that the model that built can actually only predict air flow rate and not grade. 

To be able to build a vision-based solution that works for a wide range of process states, data 
covering a wider range of operating conditions should be collected.   

In the experiment during which the data set for this case study was collected, step changes were 
made to the air flow rate. It should be recognised that it may not be possible to perform many step 
changes in an industrial environment where any disruption to the process leads to financial losses, 
and further experiments of this kind should not be absolutely necessary if normal plant data, in 
conjunction with image data, is collected over a long period of operation. More process variables 
should be measured along with the image data and air flow rates, such as reagent dosages and 
impeller speeds. It would be useful to see how the appearance of the froth is influenced by these 
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process variables, and the process variable measurements could also be used as additional inputs to 
a model for the froth grade.  

Case study II: Coal on a conveyor belt 
The coal data set used in this work (collected by Aldrich et al., 2010) originally consisted of 70 
images in seven fines fraction classes. Even when subdividing these images into 280 sub-images and 
re-grouping the seven fines fraction classes into three classes, as was done in this work, the size of 
the data set is still too small to draw significant conclusions based on test results. If 25% of the data 
are kept aside for testing, the test results are based on 70 images, with only 20 images in the 
smallest class. The small data set size also limits the complexity of the model that can be fitted. It is 
recommended that more images are collected if further experiments are carried out. This can easily 
be done by taking a video recording of the coal on the conveyor belt instead of capturing still 
images. 

The conditions in the coal data set were not very similar to industrial conditions. In an industrial 
process where coal is fed to gasifiers, the coal undergoes a wet screening process, layering is 
predominant (the coarse particles tend to be loaded on top of the fine particles) and the upper limit 
for the desired fines percentage is 10% (Mans, 2013, personal communication, 11 July). On the 
contrary, in the laboratory experiment dry coal was used, the layering of coal particles was not 
accounted for, and image data of coal blends containing 0%, 20%, 40%, 50%, 60%, 80% and 100% fine 
particles were captured. Images of coal where the fines fractions were close to the 10% upper limit 
would have been useful, but were not collected. In future experiments, the conditions should be 
controlled to imitate industrial conditions as far as possible.  

Case study III: Hydrocyclone underflows 
As with the coal case study, the hydrocyclone data set of 300 images belonging to three classes 
(collected by Uahengo, 2013) is too small to draw significant conclusions based on test results. If 
approximately 25% of the data are kept aside for testing, the test results are based on 74 images, 
with only 10 images in the smallest class. It is recommended that more images are collected if 
further experiments are carried out. Again, this can easily be done by taking a video recording of 
the hydrocyclone underflows instead of capturing still images. 

8.4.4 Results interpretation 
While the results reported in this work (and in many similar research studies) are largely concerned 
with classification error rates, in practice these numbers have little significance if they are not 
placed in context (Wagstaff, 2012). For example, if a certain method leads to an improvement of 10% 
when compared to other methods, this result may seem to be significant, but is of no consequence if 
the required accuracy for the specific application is still not attained. Performance goals can vary 
considerably depending on the application, and collaboration with industrial specialists on a 
particular process can help to identify the performance goals for that process.  

Another way of measuring the impact that vision-based inferential sensors can have on a process is 
by using more meaningful performance metrics, such as Rands saved or man-hours conserved. 
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8.4.5 Industrial implementation 
Theoretical studies are often not followed through to industrial implementation, which limits their 
real world impact. This lack of follow-through can occur due to insufficient completion of all other 
stages of the research programme, for example by not identifying the real problem in the industry 
accurately and instead solving a slightly different problem of little consequence. If all four other 
stages of the research programme have been properly executed, then it should not be difficult to 
raise awareness, interest and buy-in from relevant process engineering companies. It can also be 
beneficial to partner with the industry from the beginning of the research programme, so that there 
is a clear pathway towards industrial implementation of the work. 

8.5 Conclusions 
The main goal of this study has been to compare the use of advanced image texture analysis 
methods to baseline texture analysis methods for the prediction of key process quality variables in 
specific process engineering applications. This goal has been achieved by first optimising the 
hyperparameters for each method, and then comparing the two baseline and three advanced 
texture analysis methods in a structured manner. 

8.5.1 Hyperparameter optimisation 
In general, the hyperparameters selected for optimisation had significant effects on the error rates. 
Also, the interaction between hyperparameters was usually important, indicating that the 
hyperparameters could not have been optimised independently. The structured hyperparameter 
optimisation approach followed in this work stands in contrast to most studies in literature, where 
hyperparameters are seldom optimised. It is concluded that the hyperparameter optimisation was 
appropriate and effective, and this approach is recommended for any similar experiments that may 
be carried out in future work.  

For the GLCM feature set, the choice of the number of grey levels (𝐺) has been shown to be 
significant when using a K-NN classifier, in all three case studies. This suggests that it is important 
to optimise this hyperparameter; in contrast it is rarely considered for optimisation in literature. 

Another important observation was made for the wavelet feature set: in almost all cases the type of 
wavelet family had a very significant effect on the error rate. On the other hand, in process 
applications using wavelet texture analysis, usually only one type of wavelet is pre-selected and 
implemented. It is recommended that even more than the three wavelet families considered in this 
work is tested in future work.  

8.5.2 Texture classification 
In the case study on the prediction of platinum grade classes in flotation froths, the steerable 
pyramid and LBP texture analysis methods significantly outperformed the GLCM, wavelet and 
texton methods. The lowest classification error rates for this case study were achieved with 
steerable pyramid features (LDA: 11.1% error) and LBP features (LDA: 14.5% error). 
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In the prediction of fines fraction categories of coal on a conveyor belt, the steerable pyramid, 
texton, LBP and wavelet texture analysis methods significantly outperformed GLCMs. The 
classification error rates for the four better methods ranged between 8.6% (textons with a 5-NN 
classifier) and 13.3% (wavelets with a LDA classifier). 

Finally, in the prediction of mean particle size categories of hydrocyclone underflows, the steerable 
pyramid and LBP texture analysis methods significantly outperformed the GLCM and wavelet 
methods. The lowest classification error rates for this case study were achieved with steerable 
pyramid features (LDA: 7.8% error) and LBP features (LDA: 9.3% error). 

For all three case studies in this work, and across all feature sets, the use of DA as a classifier 
generally led to improved results when compared to K-NN.  

Considering the results of all three case studies together, the overall conclusion can be drawn that 
two of the three advanced texture analysis methods, steerable pyramids and LBPs, can extract 
improved feature sets when compared to the baseline methods (GLCMs and wavelets). Further 
investigation is required to be able to draw a firm conclusion regarding the performance of the 
texton algorithm. The application of steerable pyramids and LBPs to further image analysis data 
sets is recommended as a viable alternative to the traditional GLCM and wavelet texture analysis 
methods. 
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Appendix A  
Nomenclature  

General 
𝑩 The blue spectral band of an image 
𝒞𝑝 Vector of predicted classes 
𝒞𝑘 Vector of known classes 
𝐶 Cost function 
𝐶𝑛 Predicted class for image 𝑛 
𝐷𝐸 Euclidean distance metric 
𝐷𝜒2 Chi-square distance metric 
ℰ Error rate 
𝓕 Feature set 
𝐹𝑛𝑚 The 𝑚th feature in the feature set for image 𝑛 
𝑮 The green spectral band of an image 
𝐺 Grade (flotation) 
𝓗  Set of possible classification hyperparameter settings 
ℋ𝐶
  Optimal classification hyperparameter settings 

𝓗  Set of possible feature extraction hyperparameter settings 
ℋ𝐹
  Optimal feature extraction hyperparameter settings 
ℎ Height of an image 
ℎ𝑐 Number of classification hyperparameter settings 
ℎ𝑓 Number of feature extraction hyperparameter settings 
𝐼 Image 
𝐼𝑛 𝑛th image 

𝐼𝑛𝑜𝑟𝑚 Normalised image 

𝐼𝐺  Greyscale image 
𝐼𝑆𝑐 Scaled image 
ℐ Image set 
𝑖 General counter 
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𝑗 General counter 
𝐽 Matrix of ones 
𝐾𝑁 Number of nearest neighbours in K-nearest neighbour algorithm 
𝑘 Number of classes 
𝑁 Number of images 
𝑁 Number of statistical tests 
𝑀𝐶 Total mass of solids in concentrate 
𝑀 Dimensionality of feature set (number of features) 
𝑚𝐶 Mass of valuable material in concentrate 
𝑃̂ Posterior probability 
𝑹 The red spectral band of an image 
𝑅 Recovery (flotation) 
ℛ Rayleigh quotient 
𝑆𝐵 Between-class scatter 
𝑆𝑊 Within-class scatter 
𝑡𝑒𝑠𝑡 Subscript indicating that a test set is used 
𝑡𝑟𝑛 Subscript indicating that a training set is used 
𝑣𝑎𝑙 Subscript indicating that a validation set is used 
𝒘 Weights used in discriminant analysis 
𝑤 Width of an image 
𝒙 Set of observations 
𝑥 Observation 
𝑥′ Transformed observation 
𝑦 Predicted class 
𝑦̂ Classification obtained with maximum a-posteriori probability rule 
𝑍 Number of folds in cross-validation 
𝑧 A fold 
𝛼 Level of significance in statistical test 
𝛼𝑎𝑑𝑗 Adjusted level of significance for post-hoc testing 
Σ Covariance matrix 
𝜆ℎ Hardware sensor 
𝜆𝑖 Inferential sensor 
𝜇 Mean 
𝜎  Standard deviation 
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Feature extraction: GLCM 
𝐶𝑂𝑁 Contrast 
𝐶𝑂𝑅 Correlation 
𝐷 Hyperparameter affecting the size of displacement 𝑑 
𝑑 Total displacement between two pixels in an image 
𝑑𝑥 Displacement in 𝑥 direction of image 
𝑑𝑦 Displacement in 𝑦 direction of image 
𝐸𝑁𝐸 Energy (normalised) 
𝐺 Number of grey levels 
𝑔 A grey level in an image 
𝑔max Maximum grey level in an image 
𝑔min Minimum grey level in an image 
𝐼𝐺𝐿𝐶𝑀 Image from which GLCM is calculated 
𝐻𝑂𝑀 Homogeneity 
𝑁𝑑 Number of displacements considered 
𝑃𝐼 Non-normalised GLCM of image 𝐼 
𝑃̂𝐼 Normalised GLCM of image 𝐼 
𝑝𝑖,𝑗 Entry (𝑖, 𝑗) in an unnormalised GLCM 
𝑝̂𝑖,𝑗 Entry (𝑖, 𝑗) in a normalised GLCM 
𝜇𝑖  Mean of row 𝑖 in GLCM 
𝜇𝑗 Mean of column 𝑗 in GLCM 
𝜎𝑖 Standard deviation of row 𝑖 in GLCM 
𝜎𝑗 Standard deviation of column 𝑗 in GLCM 
  

Feature extraction: Wavelet 
𝑐𝐴 Approximation coefficients 
𝑐𝐷 Diagonal detail coefficients 
𝑐𝐻 Horizontal detail coefficients 
𝑐𝑉 Vertical detail coefficients 
𝐸 Energy 
𝐽 Number of levels in decomposition 
𝑗 A level in wavelet decomposition 
𝑘 Translation parameter in discrete wavelet decomposition 
𝑠 Scale of continuous wavelet 
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𝑠0 Constant scaling factor 
𝑡 Time 
𝑊 Function as transformed by wavelet transform 
𝑤 Sequence of wavelet coefficients / scaling filter 
𝑤𝐻 High-pass filter coefficients 
𝑤𝐿 Low-pass filter coefficients 
𝑥 Signal 
𝑥𝑝,𝑞 A pixel in a decomposed wavelet image 
𝜓 Mother wavelet 
𝜏 Translation of continuous wavelet 
𝜏0 Translation factor 
𝜔 Filter 
  

Feature extraction: Steerable pyramid 
𝐽 Number of levels in decomposition 
𝑗 A level in steerable decomposition 
𝑆 Number of oriented band-pass filters 
𝑆𝑖𝑛𝑐 Number of orientations included in final representation 
𝑠 An orientation of decomposition coefficients 
𝑊 Width of square pixel neighbourhood used in computation of local statistics 

  
Feature extraction: Texton 
𝑁𝐹 Number of filters in filter bank 
𝐹𝑆 Support width of the largest filter in a filter bank 
𝐾𝑇 Number of cluster centres in K-means algorithm 
𝒯 Set of textons (cluster centres) 
  

Feature extraction: LBP 
𝑅 Radius of circular neighbourhood 
𝑃 Number of pixels in circular neighbourhood 
𝑟𝑖 Rotation invariant 
𝑢2 Representation of uniform textures 
𝑟𝑖𝑢2 Both rotation invariant and representation of uniform textures 
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Appendix B  
Sample calculations  

 

 

% This is the main M-file that calls all functions in the texture analysis 
% toolbox in a logical order to read image data, extract features, classify 
% images and determine results.  

  
% example is set up to analyse the coal data set 
% all feature sets except textons can be extracted 

  
% format dataset 
% specify the folder in which the formatted data is to be stored 
tic 
new_folder = 'coal_data';   
% specify a custimised function that converts the original image data to 
% the required format of equally sized RGB images 
format_function = @format_coal; 
% save the formatted data in the new folder and get the list of images 
image_list = tex_formatdata(format_function, new_folder); 
fprintf(1, 'Time taken to format data is %.1fs.\n', toc); 
% in this case the algorithm will say that the image data is already in the 
% correct format, since the correctly formatted data (and not the raw data) 
% was included with this toolbox 

  
% define the labels for this data set using a custom function 
label_function = @label_coal; 
labels = tex_labeldata(label_function); 

  
% partition the dataset into training and test data using the partitioning 
% method for the specific data set 
partition_function = @partition_coal; 
load_partition = true; 
save_partition = false; 
% train, test and partition are logical vectors indicating which images 
% belong to which sets 
[train, test, partition] = partition_function(load_partition, labels, ... 
    save_partition); 

  

Figure B-1: Main MATLAB file for the extraction of GLCM, wavelet, steerable pyramid and LBP features 
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% extract features 
% decide which feature sets should be extracted 
% hyperparameter options to be tested are passed to the function as  
% optional name-value pairs  
feature_sets = {'glcm', 'wavelet', 'steerpyr', 'lbp'}; 
tic 
features = tex_feature_extraction(image_list, feature_sets, ... 
    'glcm_num_levels', [8 16 32 64 128], 'glcm_D', [1 2 3 4 5], ... 
    'wavelet_fun', {'haar', 'db3', 'sym4'}, ... 
    'steerpyr_L', 5, 'steerpyr_orientations', [4 6], ... 
    'steerpyr_nbsize', [7 11], 'lbp_r_p', [1 8; 2.5 12; 4 16], ... 
    'lbp_maptype', {0, 'ri', 'u2', 'riu2'}); %UI 
fprintf(1, 'Time taken to extract features is %.1fs.\n', toc); 

  
% scale features and apply PCA 
var = [99 95]; % (use var = 0 to skip PCA step) 
scaled_features = tex_scaling_pca(features, train(:,1), test(:,1), var); 

  
% classification with cross-validation for hyperparameter optimisation 
% classification hyperparameter options to be tested are passed to the 
% function as optional name-value pairs 
folds = 5; 
classif_methods = {'knn', 'da'}; 
tic 
% the best validation results are returned in best_val_results, which will 
% be used in the final classification function when testing 
[val_results, best_val_results] = ... 
    tex_classification(scaled_features, labels, partition(:,1), folds, ... 
    train(:,1), classif_methods, ... 
    'knn_k', 1:11, 'da_discrim_type', ... 
    {'pseudoLinear', 'pseudoQuadratic'}); 
fprintf(1, 'Time taken to calculate validation errors is %.1fs.\n', toc); 

  
% get the final results on test data! 
results = tex_final_classification(scaled_features, ... 
    best_val_results, labels, train(:,1), test(:,1)); 

  
% results are in the form of a struct 

 

Figure B-1 (cont’d): Main MATLAB file for the extraction of GLCM, wavelet, steerable pyramid and LBP features 
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% This is the main M-file that calls all functions in the texture analysis 
% toolbox in a logical order to read image data, extract features, classify 
% images and determine results. 

  
% example is set up to analyse the coal data set 
% texton feature set is extracted 

  
% format dataset 
% specify the folder in which the formatted data is to be stored 
tic 
new_folder = 'coal_data'; 
% specify a custimised function that converts the original image data to 
% the required format of equally sized RGB images 
format_function = @format_coal; 
% save the formatted data in the new folder and get the list of images 
image_list = tex_formatdata(format_function, new_folder); 
fprintf(1, 'Time taken to format data is %.1fs.\n', toc); 
% in this case the algorithm will say that the image data is already in the 
% correct format, since the correctly formatted data (and not the raw data) 
% was included with this toolbox 

  
% define the labels for this data set using a custom function 
label_function = @label_coal; 
labels = tex_labeldata(label_function); 

  
% partition the dataset into training and test data using the partitioning 
% method for the specific data set 
partition_function = @partition_coal; 
load_partition = false; 
save_partition = false; 
% train, test and partition are logical vectors indicating which images 
% belong to which sets 
[train, test, partition] = partition_function(load_partition, labels, ... 
    save_partition); 

  
% extract texton features 
tic 
% specify hyperparameters to be optimised 
texton_K = [20, 40, 80]; 
texton_fsize = [25, 49]; 

  
% Texton_frac_means is the fraction of the pixels that are used in the 
% clustering step. When performing the real analysis, this value was set to 
% 1, so all pixels were used. However, setting this fraction to a very low 
% number allows for the debugging of the texton algorithm without having to 
% wait days for it to execute. 
texton_frac_kmeans = 0.0000001; % fraction of pixels used in clustering 
% features are extracted 
features_texton = tex_texton_feature_extraction(image_list, train, ... 

    partition, texton_K, texton_fsize, texton_frac_kmeans); 
fprintf(1, 'Time taken to extract features is %.1fs.\n', toc); 

  

Figure B-2: Main MATLAB file for the extraction of texton features 
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% scale features and apply PCA 
var = [95 99]; % (use var = 0 to skip PCA step) 
scaled_features_texton = tex_texton_scaling_pca(features_texton, ... 

    train(:,1), test(:,1), var); 

  
% classification with cross-validation for hyperparameter optimisation 
% classification hyperparameter options to be tested are passed to the 
% function as optional name-value pairs 
folds = 5; 
classif_methods = {'knn', 'da'}; 
tic 
% the best validation results are returned in best_val_results, which will 
% be used in the final classification function when testing 
[val_results, best_val_results] = ... 
    tex_texton_classification(scaled_features_texton, labels, ...  

    partition(:,1), folds, train(:,1), classif_methods, ... 
    'knn_k', 1:11, 'da_discrim_type', {'pseudoLinear', 'pseudoQuadratic'}); 
fprintf(1, 'Time taken to calculate validation errors is %.1fs.\n', toc); 

  
% get the final results! 

  
% extract features by using all training data 
% coal best_val_results: k40fsize25 (for both knn and da) 
partition_final = ones(size(partition)); 
% specify optimal hyperparameters as obtained during cross-validation step 
texton_K = 40; 
texton_fsize = 25; 
texton_frac_kmeans = 0.0000001; % again, set to 1 to obtain actual results 
tic 
features_texton_final = tex_texton_feature_extraction_final(image_list, ... 

    train, partition_final, ... 
    texton_K, texton_fsize, texton_frac_kmeans); 
toc 

  
% scale these final features 
var = [95 99]; 
scaled_features_texton_final = tex_scaling_pca(features_texton_final, ... 

    train, test, var); 

  
% get the final results on the test data! 
results_texton = tex_final_classification(scaled_features_texton_final, ... 
    best_val_results, labels, train, test); 

  
% results are in the form of a struct 

 

Figure B-2 (cont’d): Main MATLAB file for the extraction of texton features 
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Appendix C  
All repetition results: 
Coal on a conveyor belt  

GLCM & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝐺 𝐷 PCA 

1 30.0% 20.5% 5.5% 32 3 99% 11 
2 24.3% 21.4% 2.9% 128 2 None 9 
3 14.3% 24.8% 5.5% 8 5 None 9 
4 31.4% 20.0% 3.6% 64 1 None 10 
5 24.3% 24.3% 3.1% 8 5 99% 9 
6 24.3% 20.0% 4.0% 8 2 None 4 
7 28.6% 23.8% 6.7% 32 5 95% 6 
8 21.4% 23.3% 5.9% 8 5 None 11 
9 25.7% 21.0% 5.7% 16 2 None 8 

10 31.4% 21.4% 2.9% 128 3 None 1 
Avg. error 25.6% 22.0% 

 Std. error 5.2% 4.8% 
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GLCM & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝐺 𝐷 PCA 

1 22.9% 16.7% 4.8% 64 3 None Linear 
2 8.6% 17.6% 8.0% 8 3 None Linear 
3 18.6% 15.2% 4.9% 128 5 None Linear 
4 22.9% 16.2% 3.5% 16 3 None Quadratic 
5 15.7% 16.2% 4.6% 8 5 None Linear 
6 12.9% 14.8% 4.6% 8 5 None Linear 
7 18.6% 14.8% 3.5% 64 5 None Linear 
8 18.6% 16.7% 2.4% 16 5 None Linear 
9 18.6% 17.1% 1.1% 32 3 None Linear 

10 12.9% 17.1% 9.7% 8 5 None Linear 
Avg. error 17.0% 16.2% 

 Std. error 4.5% 5.3% 
 

Wavelet & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 

Type wavelet PCA 
1 12.9% 12.4% 6.4% ‘haar’ None 6 
2 11.4% 16.2% 8.5% ‘haar’ None 9 
3 11.4% 12.4% 3.9% ‘db3’ 95% 9 
4 14.3% 13.3% 5.5% ‘haar’ None 10 
5 15.7% 11.9% 5.3% ‘haar’ None 11 
6 18.6% 11.9% 5.8% ‘db3’ 95% 3 
7 17.1% 8.6% 4.0% ‘haar’ 99% 4 
8 20.0% 13.8% 3.5% ‘haar’ 95% 6 
9 17.1% 14.3% 7.3% ‘sym4’ 95% 3 

10 8.6% 14.3% 5.3% ‘db3’ 99% 9 
Avg. error 14.7% 12.9% 

 Std. error 3.6% 5.8% 
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Wavelet & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 

Type wavelet PCA 
1 14.3% 11.4% 4.6% ‘haar’ 99% Linear 
2 8.6% 15.2% 2.1% ‘haar’ None Linear 
3 10.0% 12.4% 3.9% ‘haar’ None Linear 
4 11.4% 15.7% 3.2% ‘haar’ None Linear 
5 20.0% 11.9% 7.3% ‘haar’ None Linear 
6 15.7% 12.4% 8.1% ‘haar’ 99% Quadratic 
7 10.0% 12.4% 5.4% ‘haar’ 99% Linear 
8 15.7% 10.5% 4.9% ‘haar’ None Linear 
9 15.7% 12.4% 6.8% ‘haar’ 99% Linear 

10 11.4% 13.8% 6.8% ‘haar’ 99% Linear 
Avg. error 13.3% 12.8% 

 Std. error 3.6% 5.6% 
 

Steerable pyramid & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝑆𝑖𝑛𝑐  𝑊 PCA 

1 18.6% 10.0% 5.2% 4 7 95% 4 
2 15.7% 12.4% 3.9% 4 7 None 1 
3 10.0% 12.9% 3.6% 4 7 None 7 
4 12.9% 10.0% 5.2% 4 7 95% 6 
5 11.4% 10.0% 5.4% 4 7 95% 6 
6 11.4% 12.4% 2.6% 6 7 95% 10 
7 21.4% 12.9% 4.9% 4 7 95% 10 
8 11.4% 11.9% 3.4% 4 7 None 4 
9 7.1% 11.9% 1.7% 4 7 95% 4 

10 10.0% 12.9% 2.7% 6 7 None 4 
Avg. error 13.0% 11.7%  
Std. error 4.3% 4.0% 
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Steerable pyramid & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝑆𝑖𝑛𝑐  𝑊 PCA 

1 7.1% 11.0% 3.2% 4 11 95% Linear 
2 4.3% 10.5% 4.6% 6 7 95% Linear 
3 7.1% 9.5% 1.7% 6 7 95% Linear 
4 22.9% 9.5% 2.9% 6 7 None Linear 
5 12.9% 7.6% 3.1% 6 7 95% Linear 
6 21.4% 9.0% 4.3% 4 11 None Linear 
7 14.3% 9.0% 5.4% 6 7 None Linear 
8 11.4% 9.0% 2.6% 6 7 95% Linear 
9 11.4% 8.1% 3.2% 6 7 95% Linear 

10 7.1% 11.0% 6.0% 4 7 95% Linear 
Avg. error 12.0% 9.4%  
Std. error 6.2% 3.9% 

 

Texton & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝐾𝑇 𝐹𝑆 PCA 

1 8.6% 3.8% 2.1% 40 25 None 5 
 

Texton & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝐾𝑇 𝐹𝑆 PCA 

1 10.0% 5.7% 2.7% 40 25 95% Quadratic 
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LBP & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 

(𝑅, 𝑃) Mapping type PCA 
1 8.6% 14.3% 5.3% (4, 16) ‘riu2’ 99% 8 
2 18.6% 13.3% 4.0% (4, 16) ‘riu2’ None 11 
3 10.0% 12.9% 6.4% (4, 16) ‘riu2’ 99% 6 
4 14.3% 12.4% 4.9% (4, 16) ‘riu2’ None 6 
5 15.7% 10.0% 3.1% (4, 16) ‘riu2’ 99% 5 
6 20.0% 11.9% 5.1% (4, 16) ‘riu2’ 99% 3 
7 21.4% 11.4% 4.3% (4, 16) ‘riu2’ 95% 3 
8 21.4% 12.4% 4.3% (4, 16) ‘riu2’ 95% 4 
9 10.0% 15.2% 6.4% (4, 16) ‘riu2’ None 10 

10 11.4% 15.7% 3.2% (4, 16) ‘riu2’ None 8 
Avg. error 15.1% 13.0%  
Std. error 5.0% 4.8% 

 

LBP & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 

(𝑅, 𝑃) Mapping type PCA 
1 7.1% 9.0% 4.3% (2.5, 12) ‘riu2’ None Linear 
2 10.0% 8.1% 4.9% (2.5, 12) ‘riu2’ 99% Linear 
3 12.9% 9.0% 2.6% (4, 16) ‘riu2’ None Linear 
4 11.4% 7.1% 3.8% (2.5, 12) ‘riu2’ None Linear 
5 10.0% 6.7% 3.5% (2.5, 12) ‘riu2’ 99% Linear 
6 12.9% 8.1% 2.1% (4, 16) ‘riu2’ 99% Linear 
7 14.3% 9.0% 3.9% (2.5, 12) ‘riu2’ 99% Linear 
8 12.9% 8.6% 2.7% (2.5, 12) ‘riu2’ 99% Linear 
9 7.1% 8.1% 5.2% (2.5, 12) ‘riu2’ None Linear 

10 4.3% 8.6% 2.1% (4, 16) ‘riu2’ 99% Linear 
Avg. error 10.3% 8.2%  
Std. error 3.2% 3.7% 
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Appendix D  
All repetition results: 
Hydrocyclone underflows  

GLCM & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝐺 𝐷 PCA 

1 13.5% 12.0% 2.0% 32 5 None 4 
2 12.2% 15.0% 1.8% 128 5 99% 3 
3 18.9% 11.1% 5.0% 32 5 None 4 
4 10.8% 15.9% 1.0% 64 5 None 8 
5 20.3% 10.2% 2.4% 32 5 None 4 
6 18.9% 12.9% 9.0% 8 5 99% 1 
7 10.8% 14.6% 4.6% 64 5 None 5 
8 14.9% 14.6% 3.6% 16 5 None 5 
9 9.5% 13.3% 6.5% 128 5 99% 4 

10 12.2% 12.4% 6.7% 64 5 None 4 
Avg. error 14.2% 13.2% 

 
Std. error 3.9% 4.9% 
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GLCM & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝐺 𝐷 PCA 

1 13.5% 8.9% 4.2% 64 5 None Quadratic 
2 13.5% 11.5% 1.8% 16 5 99% Quadratic 
3 14.9% 8.4% 3.3% 64 4 99% Linear 
4 9.5% 13.3% 4.6% 64 5 None Linear 
5 16.2% 9.7% 3.0% 8 5 None Quadratic 
6 17.6% 8.9% 6.3% 32 5 None Quadratic 
7 10.8% 11.1% 7.9% 16 5 None Quadratic 
8 14.9% 11.1% 4.4% 128 5 None Linear 
9 16.2% 11.0% 4.3% 8 3 99% Quadratic 

10 8.1% 11.0% 4.6% 32 5 None Quadratic 
Avg. error 13.5% 10.5% 

 Std. error 3.1% 4.7% 
 

Wavelet & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 

Type wavelet PCA 
1 12.2% 11.1% 4.5% ‘db3’ None 1 
2 9.5% 12.4% 4.4% ‘db3’ 99% 4 
3 13.5% 13.3% 3.4% ‘db3’ 99% 3 
4 12.2% 11.5% 2.8% ‘db3’ 99% 4 
5 13.5% 11.1% 5.4% ‘db3’ None 4 
6 18.9% 11.1% 4.5% ‘db3’ None 7 
7 12.2% 13.7% 4.9% ‘db3’ None 4 
8 10.8% 9.3% 3.2% ‘db3’ 99% 4 
9 13.5% 11.9% 6.7% ‘db3’ None 1 

10 13.5% 11.5% 2.9% ‘db3’ None 1 
Avg. error 13.0% 11.7% 

 Std. error 2.5% 4.4% 
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Wavelet & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 

Type wavelet PCA 
1 6.8% 11.1% 4.5% ‘sym4’ None Linear 
2 5.4% 11.5% 1.8% ‘sym4’ None Linear 
3 18.9% 10.6% 4.7% ‘haar’ None Linear 
4 12.2% 10.2% 2.5% ‘sym4’ None Linear 
5 10.8% 10.6% 3.3% ‘sym4’ None Linear 
6 14.9% 10.2% 5.8% ‘sym4’ None Linear 
7 18.9% 12.4% 8.0% ‘haar’ None Linear 
8 12.2% 11.0% 4.4% ‘sym4’ None Linear 
9 9.5% 10.6% 3.5% ‘sym4’ None Linear 

10 13.5% 11.1% 6.1% ‘sym4’ None Linear 
Avg. error 12.3% 10.9% 

 Std. error 4.5% 4.8% 
 

Steerable pyramid & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝑆𝑖𝑛𝑐  𝑊 PCA 

1 14.9% 7.9% 6.1% 6 11 95% 1 
2 9.5% 8.4% 4.3% 4 11 None 1 
3 16.2% 8.8% 3.4% 4 11 None 1 
4 5.4% 7.5% 4.5% 6 11 None 1 
5 14.9% 8.8% 3.4% 6 11 95% 3 
6 12.2% 9.3% 6.6% 6 11 99% 1 
7 6.8% 8.8% 4.1% 6 11 None 1 
8 5.4% 8.0% 5.3% 4 11 99% 1 
9 10.8% 8.8% 6.1% 6 11 95% 4 

10 10.8% 8.4% 2.9% 6 11 None 1 
Avg. error 10.7% 8.5%  
Std. error 4.0% 4.8% 
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Steerable pyramid & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝑆𝑖𝑛𝑐  𝑊 PCA 

1 13.5% 9.7% 5.0% 4 11 95% Linear 
2 5.4% 5.3% 2.0% 4 11 99% Linear 
3 6.8% 6.6% 3.4% 4 11 99% Linear 
4 6.8% 5.7% 4.2% 6 7 95% Linear 
5 6.8% 8.0% 3.0% 6 11 95% Linear 
6 9.5% 8.0% 1.3% 4 11 None Linear 
7 6.8% 4.9% 4.3% 4 11 99% Linear 
8 10.8% 6.6% 2.2% 4 11 None Linear 
9 6.8% 7.5% 3.2% 6 7 95% Linear 

10 5.4% 6.2% 5.5% 6 7 95% Linear 
Avg. error 7.8% 6.9%  
Std. error 2.6% 3.7% 

 

Texton & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 
𝐾𝑇 𝐹𝑆 PCA 

1 16.2% 9.3% 4.8% 80 25 None 4 
 

Texton & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 
𝐾𝑇 𝐹𝑆 PCA 

1 6.8% 8.4% 3.5% 80 25 99% Linear 
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LBP & K-NN 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters K 

(𝑅, 𝑃) Mapping type PCA 
1 13.5% 11.1% 5.4% (4, 16) ‘u2’ None 6 
2 12.2% 12.4% 6.9% (4, 16) ‘u2’ 99% 5 
3 8.1% 9.7% 2.9% (4, 16) ‘u2’ None 4 
4 8.1% 11.0% 4.8% (4, 16) ‘u2’ None 4 
5 8.1% 12.0% 4.6% (4, 16) ‘u2’ None 8 
6 10.8% 10.2% 6.0% (4, 16) ‘u2’ None 10 
7 14.9% 8.4% 3.3% (4, 16) ‘u2’ 99% 6 
8 9.5% 12.0% 5.6% (4, 16) ‘u2’ None 9 
9 10.8% 11.1% 1.6% (4, 16) ‘u2’ 99% 4 

10 8.1% 12.0% 4.4% (4, 16) ‘u2’ None 4 
Avg. error 10.4% 11.0%  
Std. error 2.5% 4.8% 

 

LBP & DA 

Repetition Test  
error 

Avg. validation  
error 

Std. validation  
error 

Feature extraction  
hyperparameters Type DA 

(𝑅, 𝑃) Mapping type PCA 
1 9.5% 8.9% 3.1% (1, 8) ‘u2’ 99% Linear 
2 10.8% 7.1% 1.8% (1, 8) ‘u2’ None Linear 
3 13.5% 7.5% 3.3% (1, 8) ‘u2’ None Linear 
4 9.5% 8.8% 2.6% (4, 16) ‘u2’ 99% Linear 
5 8.1% 8.0% 4.6% (4, 16) ‘riu2’ None Linear 
6 6.8% 8.0% 4.3% (1, 8) ‘u2’ 99% Linear 
7 9.5% 7.1% 2.4% (4, 16) ‘riu2’ None Linear 
8 4.1% 9.7% 5.6% (4, 16) ‘riu2’ None Linear 
9 12.2% 8.4% 1.8% (1, 8) ‘u2’ 99% Linear 

10 9.5% 9.3% 3.6% (1, 8) ‘u2’ 99% Linear 
Avg. error 10.3% 8.2%  
Std. error 3.2% 3.7% 
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Appendix E  
Publications based on this work  

E-1 International peer-reviewed journal paper 
Kistner, M., Jemwa, G. & Aldrich, C., 2013. Monitoring of mineral processing systems by using 
textural image analysis. Minerals Engineering, 52, p. 169–177. 

E-2 Peer-reviewed conference proceedings paper 
Aldrich, C., Jemwa, G. & Munnik, M., 2012. Image textural features and semi-supervised learning: An 
application to classification of coal particles. 3rd International Congress on Automation in the Mining 
Industry, Automining 2012. Chile, Gecamin. 

E-3 Non-peer-reviewed presentation at conference 
Kistner, M., Auret, L. & Aldrich, C., 2013. A structured image texture analysis approach to inferential 
sensing in mineral processes. [Mineral Processing 2013, Cape Town, South Africa, 7–8 August 2013] 
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“Learn from yesterday, live for today, hope for tomorrow. The important thing is to not stop 
questioning.” – Albert Einstein 

Stellenbosch University  http://scholar.sun.ac.za
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