
Annals of Pure and Applied Logic 172 (2021) 102903
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Intuitionistic fixed point logic ✩

Ulrich Berger a,∗, Hideki Tsuiki b

a Department of Computer Science, Swansea University, Swansea, United Kingdom
b Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu, Kyoto, 
Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2019
Received in revised form 22 
September 2020
Accepted 4 October 2020
Available online 9 October 2020

MSC:
03B70
03D70
03D78
03F03
03F60
06B35

Keywords:
Proof theory
Realizability
Program extraction
Induction
Coinduction
Exact real number computation

We study the system IFP of intuitionistic fixed point logic, an extension of intu-
itionistic first-order logic by strictly positive inductive and coinductive definitions. 
We define a realizability interpretation of IFP and use it to extract computational 
content from proofs about abstract structures specified by arbitrary classically true 
disjunction free formulas. The interpretation is shown to be sound with respect 
to a domain-theoretic denotational semantics and a corresponding lazy operational 
semantics of a functional language for extracted programs. We also show how ex-
tracted programs can be translated into Haskell. As an application we extract a 
program converting the signed digit representation of real numbers to infinite Gray 
code from a proof of inclusion of the corresponding coinductive predicates.

© 2020 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Intuitionistic fixed point logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. The formal system IFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Wellfounded induction and Brouwer’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Example: real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. The language of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

✩ This work was supported by the International Research Staff Exchange Scheme (IRSES) No. 612638 CORCON and No. 294962 
COMPUTAL of the European Commission, the JSPS Core-to-Core Program (A. Advanced research Networks) and JSPS KAKENHI 
Grant Number 15K00015 as well as the European Union’s Horizon 2020 research and innovation programme under the Marie 
Sklodowska-Curie grant agreement No. 731143.
* Corresponding author.

E-mail addresses: u.berger@swansea.ac.uk (U. Berger), tsuiki.hideki.8e@kyoto-u.ac.jp (H. Tsuiki).
https://doi.org/10.1016/j.apal.2020.102903
0168-0072/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.apal.2020.102903
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2020.102903&domain=pdf
mailto:u.berger@swansea.ac.uk
mailto:tsuiki.hideki.8e@kyoto-u.ac.jp
https://doi.org/10.1016/j.apal.2020.102903


2 U. Berger, H. Tsuiki / Annals of Pure and Applied Logic 172 (2021) 102903
2.3.2. The axioms of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3. Natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4. Infinite numbers and the Archimedean property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.5. Archimedean induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1. The domain of realizers and its subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3. Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4. The formal system RIFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Translation to Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6. Types of IFP expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7. Realizers of expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. Proof of the soundness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. Program extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. Realizing natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4. Realizing wellfounded induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. Stream representations of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1. Cauchy representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2. Signed digit representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3. Infinite Gray code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4. Extracting conversion from signed digit representation to Gray code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1. Inductive and coinductive definitions of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2. Inductively and coinductively defined reduction relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3. Computational adequacy theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4. Computation of infinite data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5. Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1. Introduction

According to the Brouwer-Heyting-Kolmogorov interpretation of constructive logic, formulas correspond 
to data types and proofs to constructions of objects of these data types [69,50,23,71,70,64]. Moreover, by the 
Curry-Howard correspondence constructive proofs can be directly represented in a typed λ-calculus such 
that proof normalization is modelled by β-reduction. This tight connection between logic and computation 
has led to a number of implementations of proof systems that support the extraction of programs from 
constructive proofs, e.g. PX [38], Nuprl [23], Coq [24], Minlog [63,15], Isabelle/HOL [18], Agda [4]. In 
general, program extraction is restricted to proofs about structures that are constructively given. This can 
be considered a drawback since it excludes abstract mathematics done on a purely axiomatic basis. This 
paper introduces the formal system IFP of Intuitionistic Fixed Point Logic as a basis for program extraction 
from proofs that does not suffer from this limitation. Preliminary versions of the system were presented in 
[7–9,12,11].

IFP is an extension of first-order logic by inductive and coinductive definitions, i.e., predicates defined as 
least and greatest fixed points of strictly positive operators. Program extraction is performed via a ‘uniform’ 
realizability interpretation. Uniformity concerns the interpretation of quantifiers: A formula ∀x A(x) is 
realized uniformly by one object a that realizes A(x) for all x, so a may not depend on x. Dually, a 
formula ∃x A(x) is realized uniformly by one object a that realizes A(x) for some x, so a does not contain 
a witness for x. The usual interpretations of quantifiers may be recovered by relativization, ∀x (D(x) →
A(x)) and ∃x (D(x) ∧A(x)), for a predicate D that specifies that x has some concrete representation. The 
uniform interpretation of quantifiers makes IFP classically inconsistent with the scheme ‘realizability implies 
truth’ (see the remark after Lemma 15 in Sect. 3). The Minlog system [63], which also supports program 
extraction based on realizability, does permit a uniform interpretation of quantifiers as well but differs from 
IFP in other respects, for example the treatment of inductive and coinductive definitions.
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Besides the support of proofs about abstract structures on an axiomatic basis, IFP has further features 
that distinguishes it from other approaches to program extraction. Classical logic: Although IFP is based 
on intuitionistic logic a fair amount of classical logic is available. For example, soundness of realizability 
holds in the presence of any disjunction-free axioms that are classically true. Typical example is stability 
of equality, ∀x, y (¬¬x = y → x = y). Partial computation: Like the majority of programming languages, 
IFP’s language of extracted programs admits general recursion and therefore partial, i.e., nonterminating 
computation. This makes it possible to extract data representations that are inherently partial, such as 
infinite Gray code [28,72] (see also Sect. 5). Infinite computation: Infinite data, as they naturally occur 
in exact real number computation, can be represented by infinite computations. This is achieved by an 
operational semantics where computations may continue forever outputting arbitrary close approximations 
to the complete (infinite) result at their finite stages (Sect. 6). Haskell output: Extracted programs are 
typable and can be translated into executable Haskell code in a straightforward way.

Related work: Minlog. The motivation for this article mainly stems from recent developments in the Min-
log proof system [63]. Minlog implements a formal system which, from its very conception, is a constructive 
theory of computable objects and functionals with an effective domain-theoretic semantics [64]. In order 
to increase the expressiveness of the logic and the flexibility of program extraction this system has been 
extended by an elaborate ‘decoration’ mechanism for the logical operations that allows for a fine control 
of computational content (this extension is also described in [64]). For example, an existential quantifier 
can be decorated as ‘computational’ or ‘non-computational’ which causes the extracted program to include 
the witnessing term or not. Since in the non-computational case no witness is required, the range of the 
quantified variable no longer needs to be effectively (i.e. domain-theoretically) given but may be an abstract 
mathematical structure. This new possibility of including abstract structures in Minlog formalizations trig-
gered the present article which studies the implications and the potential of a computationally meaningful 
theory of abstract structures in isolation. Minlog’s ‘non-computational’ decoration corresponds to the uni-
form realizability interpretation of IFP mentioned earlier. There are some differences between Minlog and 
IFP though. For example, regarding the logical system, in Minlog all logical operations except implication 
and universal quantification are defined in terms of clausal inductive definitions while in IFP they are prim-
itive and inductive definitions are not in the format of clauses. Regarding computational content, Minlog’s 
realizers are typed and realizability is defined in the style of Kreisel’s modified realizability [44] whereas in 
IFP realizers are untyped and realizability is closer to Kleene [40] (albeit IFP realizers are not numbers but 
domain elements denoted by functional programs).

PX . Another related system is PX [38] which is based on Feferman’s system T0 of explicit mathematics [32]
and uses a version of realizability with truth to extract untyped programs from proofs. The main differences 
to IFP are that PX has a fixed, constructively given, model similar to LISP expressions and treats quantifiers 
in the usual ‘non-uniform’ way. PX supports positive inductive definitions, however, restricted to operators 
without computational content.

Further related work. Theories of inductive and coinductive definitions have been studied extensively in 
the past. The proof-theoretic strength of classical iterated inductive definitions has been determined in [21]. 
A proof-theoretic analysis of a stronger system that is close to IFP, but based on classical logic, has been 
given in [54]. In [74] it was shown that the proof-theoretic strength does not change if the base system is 
changed to intuitionistic logic. Inductive definitions have also been studied in the context of constructive 
set theory [3,61], type theory [29,55] and explicit mathematics [36]. In [5] and [78], Inductive definitions 
are related to theories of finite type in the framework of Gödel’s Functional Interpretation. Propositional 
logics for inductive and coinductive definitions interpreted on (finite) labelled transition are known as modal 
μ-calculi [43,20]. These systems are based on classical logic and are mainly concerned with determining the 
computational complexity of definable properties aiming at applications in automatic program verification 
systems. Computational aspects of induction and coinduction (coiteration and corecursion), in particular 
questions regarding termination, are studied widely in the context of inductive and coinductive types. The 
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strongest and most far reaching normalization can be found in [52] and [51]. A programming language for real 
numbers extending PCF has been studied in [31]. It has a small step operational semantics that permits the 
incremental computation of digits, similar to our semantics in Sect. 6. Logical, computational, semantical and 
category-theoretical aspects of coinduction are studied in the context of coalgebra [39,47]. The representation 
of coinductive types in dependent type theories and the associated problems are an intensive object of 
study [34,25,37,1,13]. The computational complexity of corecursion has been studied in [60]. Realizability 
interpretation related to the one for IFP were also studied in [38,68,53,6] (see the introduction of [8] for 
a discussion of similarities and differences). In Constructive Analysis [19] and Computable Analysis [76]
one works with represented structures and explicitly manipulates and reasons about these representations. 
In contrast, in IFP representations remain implicit and are made explicit only through realizability. Proof 
Mining [42] treats real numbers as a represented space but one can extract effective bounds from ineffective 
proofs about abstract spaces without a constructive representation (see e.g. [41,33]).

Overview of the paper . Section 2 introduces the system IFP. Among other things, the usual principle of 
wellfounded induction is exhibited as an instance of strictly positive induction and shown to be strengthened 
by an abstract form of Brouwer’s Thesis. The definitions are illustrated by an axiomatic specification of the 
real numbers and a definition of the natural numbers as an inductively defined subset of the reals. Special 
attention is paid to a formulation of the Archimedean property as an induction principle.

Section 3 begins with a definition of a Scott domain D that serves as the semantic domain of simple 
untyped functional programming language with constructors and unrestricted recursion. Then we introduce 
simple recursive types denoting sub domains of D that serve as spaces of potential realizers of formulas and 
show that the expected typing rules are valid. We extend IFP to a system RIFP that contains new sorts δ
and Δ for elements and subdomains of D as well as new terms, called programs and types, for denoting them. 
This is followed by a formal realizability interpretation of IFP in RIFP. The interpretation is optimized by 
exploiting the fact that Harrop formulas, which are formulas that do not contain a disjunction at a strictly 
positive position, have trivial realizers (similar optimizations are available in the Minlog system).

In Section 4 we prove the Soundness Theorem (Theorem 2) which shows that from an IFP proof of 
a formula A from nc axioms one can extract a program provably realizing A. For the proof we use an 
intermediate system IFP′ which in the rules for induction and coinduction for the least and greatest fixed 
point of an operator Φ requires in addition a proof of monotonicity of Φ. We provide a recursive definition 
of the program extracted from an IFP derivation and give explicit constructions of realizers for derived 
principles such as wellfounded induction and its variants introduced in Sect. 2.

Section 5 is devoted to a case study on exact real number computation that utilizes all the concepts 
introduced so far. It is shown that the well-known signed digit representation and also the infinite (and 
partial!) Gray code representation can be obtained through realizability from simple coinductively defined 
predicates S and G. A detailed IFP proof that S is contained in G is given and from it a program is 
extracted that converts the signed digit representation into infinite Gray code. The equivalence of the 
extracted program with the one given in [72] is also proved, which guarantees the correctness of the original 
program.

Section 6 introduces an operational semantics of programs that is able to capture infinite computation. 
While the First Adequacy Theorem (Theorem 5) states that an inductively defined bigstep reduction relation 
μ=⇒ captures the semantics of programs M with a finite total denotation, i.e., M μ=⇒ a iff a = �M�, the 

Second Adequacy Theorem (Theorem 6) establishes an equivalence of programs that have a possibly infinite
and partial denotational semantics with a small step reduction relation. This means that it is possible to 
incrementally compute arbitrary close approximations to a program that has an infinite value. Sect. 6 closes 
with a concrete example of infinite computation using a concrete instance of the results of Sect. 5.

Section 7 concludes the paper with a summary and a discussion of open problems and directions for 
further work.
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2. Intuitionistic fixed point logic

We introduce the logical system IFP of intuitionistic fixed point logic as a basis for the formalization 
of proofs which can be subject to program extraction. IFP can be viewed as a subsystem of second-order 
logic with its standard classical set-theoretic semantics. We first define the language and the proof rules of 
IFP and then draw some simple consequences demonstrating that IFP includes common principles such as 
wellfounded induction and permits a natural formalization of real numbers as a real closed Archimedean 
field.

2.1. The formal system IFP

IFP is an extension of intuitionistic first-order predicate logic by least and greatest fixed points of strictly 
positive operators. Rather than a fixed system IFP is a schema for a family of systems suitable to formalize 
different mathematical fields. An instance of IFP is given by a many-sorted first-order language L and a set 
of axioms A described below. Hence L consists of

(1) Sorts ι, ι1, . . . as names for spaces of abstract mathematical objects.
(2) Terms s, t, . . . with a notion of free variables and a notion of substitution. First order terms are the 

main example but we will also consider term languages with binding mechanism (Sect. 3).
(3) Predicate constants, each of fixed arity (�ι).

Relative to a language L we define simultaneously

Formulas A, B: Equations s = t (s, t terms of the same sort), P (�t) (P a predicate which is not an abstraction, 
�t a tuple of terms whose sorts fit the arity of P ), conjunction A ∧B, disjunction A ∨B, implication
A → B, universal and existential quantification ∀x A, ∃x A.

Predicates P, Q: Predicate variables X, Y, . . . (each of fixed arity), predicate constants, abstraction λ�xA

(arity given by the sorts of the variable tuple �x), μ(Φ), ν(Φ) (arities = arity of Φ).
Operators Φ: λX P where P must be strictly positive in X (see below) and the arities of X and P must 

coincide. The arity of λX P is this common arity.

Falsity is defined as False Def= μ(λX X)() where X is a predicate variable of arity ().
By an expression we mean a formula, predicate, or operator. When considering an expression it is tacitly 

assumed that the arity of a predicate and the sorts of terms it is applied to fit. The set of free object 
variables and the set of free predicate variables of an expression are defined as expected.

An occurrence of an expression E is strictly positive (s.p.) in an expression F if that occurrence is not 
within the premise of an implication. A predicate P is strictly positive in a predicate variable X if every 
occurrence of X in P is strictly positive. The requirement of strict positivity could be easily relaxed to mere 
positivity. However, since non-strict positivity will not be required at any point, but would come at the 
cost of more complicated proofs, we refrain from this generalization. A similar remark applies to the strict 
positivity condition for fixed point types in Sect. 3.3.

We adopt the following notational conventions. Application of an abstraction to terms, (λ�xA)(�t), is 
defined as A[�t/�x] (therefore P (�t) is now defined for all predicates P and terms �t of fitting arity). Application 
of an operator Φ = λX P to a predicate Q, Φ(Q), is defined as P [Q/X]. Instead of P (�t) we also write 
�t ∈ P and a definition P

Def= μ(Φ) will also be written P
μ= Φ(P ). The notation P

ν= Φ(P ) has a similar 
meaning. If Φ = λXλ�xA, then we also write P (�x) μ= A[P/X] and P (�x) ν= A[P/X] instead of P Def= μ(Φ) and 

P
Def= ν(Φ). Inclusion of predicates (of the same arity), P ⊆ Q, is defined as ∀�x (P (�x) → Q(�x)), intersection, 
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P ∩Q, as λ�x (P (�x) ∧Q(�x)), and union, P ∪Q, as λ�x (P (�x) ∨Q(�x)). Pointwise implication, P ⇒ Q, is defined 
as λ�x (P (�x) → Q(�x)). Hence P ⊆ Q is the same as ∀�x (P ⇒ Q)(�x). Equivalence, A ↔ B, is defined as 
(A → B) ∧ (B → A), and extensional equality of predicates, P ≡ Q, as P ⊆ Q ∧Q ⊆ P .

Negation, ¬A, is defined as A → False and inequality, t �= s, as ¬(t = s). Bounded quantification, 
∀x ∈ A B(x) and ∃x ∈ A B(x), is defined, as usual, as ∀x (A(x) → B(x)) and ∃x (A(x) ∧ B(x)). Exclusive 

‘or’ and unique existence are defined as A ⊕B
Def= (A ∨B) ∧ ¬(A ∧B), ∃1x A(x) Def= ∃x ∀y (A(y) ↔ x = y). 

If we write E = E′ for expressions that are not terms, we mean that E and E′ are syntactically equal up 
to renaming of bound variables.

An expression is called non-computational (nc) if it is disjunction-free and contains no free predicate 
variables. Our realizability interpretation (Sect. 3) will be defined such that nc formulas do not carry 
computational content and are interpreted by themselves. The reader may wonder why existential quantifiers 
aren’t banned from nc formulas as well. The reason is that quantifiers are interpreted uniformly, in particular, 
existential quantifiers are not witnessed. The existential quantifier in intuitionistic arithmetic, which is
witnessed, can be expressed in IFP by ∃x (N(x) ∧ A(x)), where N(x) means ‘x is a natural number’ and 
the predicate N is defined using disjunction (see Sect. 2.3.3).

The set of axioms A of an L-instance of IFP can be any set of closed L-formulas. We denote that 
instance by IFP(A) leaving the language implicit since it is usually determined by the axioms. In order for 
IFP(A) to admit a sound realizability interpretation (Sects. 3 and 4), the axioms in A are required to be 
non-computational. The reason is that this guarantees that they have trivial computational content and are 
equivalent to their realizability interpretations, as will be explained in Sect. 3. Therefore, it suffices that 
the axioms are true in the intended structure where “true” can be interpreted in the sense of classical logic. 
For example, if one is willing to accept a certain amount of classical logic (as we do in this paper) one may 
include in A the stability axiom

∀�x(¬¬A → A)

for every nc formula A with free variables �x.
The proof rules of IFP include the usual natural deduction rules for intuitionistic first-order logic with 

equality (see below or e.g. [64]). In addition there are the following rules for strictly positive induction and 
coinduction:

Φ(μ(Φ)) ⊆ μ(Φ)
CL(Φ)

Φ(P ) ⊆ P

μ(Φ) ⊆ P
IND(Φ, P )

ν(Φ) ⊆ Φ(ν(Φ))
COCL(Φ)

P ⊆ Φ(P )
P ⊆ ν(Φ)

COIND(Φ, P )

These rules can be applied in any context, that is, in the presence of free object and predicate variables as 
well as assumptions.

Intuitively, μ(Φ) is the predicate defined inductively by the rules encoded by the operator Φ. For example 

natural numbers (viewed as a subset of the real numbers) can be defined as N 
Def= μ(λX λx (x = 0 ∨X(x −1)))

corresponding to the rules ‘N(0)’ and ‘if N(x −1), then N(x)’. The closure axiom CL(Φ) expresses that μ(Φ)
is closed under the rules, the induction rule IND(Φ, P ) says that μ(Φ) is the smallest predicate closed under 
the rules (see also Sect. 2.3.3). Dually, ν(Φ) is a coinductive predicate defined by ‘co-rules’. For example, 
the elements of a partial order which start an infinite descending path can be characterized by the predicate 
Path = ν(λX λx ∃y (y < x ∧X(y))) (see also Sect. 2.2). Hence if Path(x), then Path(y) for some y < x

(COCL(Φ)), and Path is the largest predicate with that property (COIND(Φ, P )).
The existence of μ(Φ) and ν(Φ) is guaranteed, essentially, by Tarski’s fixed point theorem applied to 

the complete lattice of predicates (of appropriate arity) ordered by inclusion and the operator Φ, which 
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is monotone due to its strict positivity. A simple but important observation is that μ(Φ) and ν(Φ) are 
(provably in IFP) least and greatest fixed points of Φ, respectively. For example, μ(Φ) ⊆ Φ(μ(Φ)) follows 
by induction: One has to show Φ(Φ(μ(Φ))) ⊆ Φ(μ(Φ)), which, by monotonicity, follows from the closure 
axiom Φ(μ(Φ)) ⊆ μ(Φ).

Induction and coinduction can be strengthened to the derivable principles of strong and half-strong 
induction and coinduction (which will be used in Sect. 5).

Φ(P ∩ μ(Φ)) ⊆ P

μ(Φ) ⊆ P
SI(Φ, P )

P ⊆ Φ(P ∪ ν(Φ))
P ⊆ ν(Φ)

SCI(Φ, P )

Φ(P ) ∩ μ(Φ) ⊆ P

μ(Φ) ⊆ P
HSI(Φ, P )

P ⊆ Φ(P ) ∪ ν(Φ)
P ⊆ ν(Φ)

HSCI(Φ, P )

It is clear that these proof rules are indeed strengthenings of ordinary s.p. induction since their premises 
are weaker due to the inclusions

Φ(P ∩ μ(Φ)) ⊆ Φ(P ) ∩ μ(Φ) ⊆ Φ(P )
Φ(P ∪ ν(Φ)) ⊇ Φ(P ) ∪ ν(Φ) ⊇ Φ(P )

which follow from the monotonicity of Φ. The derivations of these principles in IFP are straightforward. 
For example, assuming the premise of SI(Φ, P ), Φ(P ∩ μ(Φ)) ⊆ P , one defines another operator Ψ =
λX Φ(X ∩ μ(Φ)) so that Ψ(P ) ⊆ P . Then, μ(Ψ) ⊆ P by induction. Hence it suffices to show μ(Φ) ⊆ μ(Ψ). 
The converse inclusion, μ(Ψ) ⊆ μ(Φ), follows by induction since Ψ(μ(Φ)) ≡ Φ(μ(Φ)) ⊆ μ(Φ). But now 
μ(Φ) ⊆ μ(Ψ) follows by induction since Φ(μ(Ψ)) ⊆ Φ(μ(Ψ) ∩ μ(Φ)) = Ψ(μ(Ψ)) ⊆ μ(Ψ). The other proofs 
are similar. Despite their derivability we will adopt these strengthenings of induction and coinduction as 
genuine rules of IFP since we can realize them by programs that are simpler than those that would be 
extracted from their derivations (see Theorem 2).

When defining the syntax of IFP we deliberately left open the exact structure of terms. This will give 
us greater flexibility regarding different instantiations of IFP. All we need to require of terms, in order to 
guarantee that the theorems of IFP are true with respect to the usual Tarskian semantics, is that their 
semantics satisfies a ‘substitution lemma’, that is

�t[r/x]�η = �t�η[x �→ �r�η].

The rest follows from the Tarskian soundness of the rules of intuitionistic predicate logic and the existence 
of least and greatest fixed points of monotone predicate transformers as explained above.

Note that, since False is defined as μ(λX X)(), the schema ex-falso-quodlibet, False → A, follows from 
A → A by induction.

For the proof of the Soundness Theorem and the description of the program extraction procedure (Sect. 4) 
it will be convenient to denote IFP derivations by derivation terms and describe the proof calculus through 
an inductive definition of a set of derivation judgements Γ � d : A where Γ is a context of assumptions, d is 
a derivation term in that context, and A is the formula proved by the derivation. Derivations are defined 
relative to a given set A of axioms consisting of pairs (o, A) where A is any closed formula and o is the 
name of the axiom, though the soundness theorem holds only under nc axioms.

Γ, u : A � u : A Γ � o : A ((o, A) ∈ A)

Γ � Reflt : t = t
Γ � d : A[s/x] Γ � e : s = t

Γ � CongλxA(d, e) : A[t/x]
Γ � d : A Γ � e : B

+
Γ � d : A ∧B

−
Γ � d : A ∧B

−
Γ � ∧ (d, e) : A ∧B Γ � ∧l (d) : A Γ � ∧r (d) : B
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Γ � d : A
Γ � ∨+

l,B(d) : A ∨B

Γ � d : B
Γ � ∨+

r,A(d) : A ∨B

Γ � d : A ∨B Γ � e : A → C Γ � f : B → C

Γ � ∨−(d, e, f) : C
Γ, u : A � d : B

Γ �→+
u:A (d) : A → B

Γ � d : A → B Γ � e : A
Γ �→− (d, e) : B

Γ � d : A
Γ � ∀+

x (d) : ∀xA (x not free in Γ) Γ � d : ∀xA
Γ � ∀−t (d) : A[t/x]

Γ � d : A[t/x]
Γ � ∃+

λxA,t(d) : ∃xA
Γ � d : ∃xA Γ � e : ∀x (A → B)

Γ � ∃−(d, e) : B
(x not free in B)

Γ � ClΦ : Φ(μ(Φ)) ⊆ μ(Φ) Γ � d : Φ(P ) ⊆ P

Γ � IndΦ,P (d) : μ(Φ) ⊆ P

Γ � CoClΦ : ν(Φ) ⊆ Φ(ν(Φ)) Γ � d : P ⊆ Φ(P )
Γ � CoIndΦ,P (d) : P ⊆ ν(Φ)

Γ � d : Φ(P ) ∩ μ(Φ) ⊆ P

Γ � HSIndΦ,P (d) : μ(Φ) ⊆ P

Γ � d : Φ(P ∩ μ(Φ)) ⊆ P

Γ � SIndΦ,P (d) : μ(Φ) ⊆ P

Γ � d : P ⊆ Φ(P ) ∪ ν(Φ)
Γ � HSCoIndΦ,P (d) : P ⊆ ν(Φ)

Γ � d : P ⊆ Φ(P ∪ ν(Φ))
Γ � SCoIndΦ,P (d) : P ⊆ ν(Φ)

Note that symmetry and transitivity of equality can be derived from reflexivity and the congruence rule.

2.2. Wellfounded induction and Brouwer’s thesis

The principle of wellfounded induction is an induction principle for elements in the accessible or well-
founded part of a binary relation ≺ (definable in the language of the given instance of IFP). We show that 
it is an instance of strictly positive induction: The accessible part of ≺ is defined inductively by

Acc≺(x) μ= ∀y ≺ xAcc≺(y)

that is, Acc≺ = μ(Φ) where Φ 
Def= λX λx ∀y ≺ x X(y). A predicate P is called progressive if Φ(P ) ⊆ P , 

that is, Prog≺(P ) holds where

Prog≺(P ) Def= ∀x (∀y ≺ xP (y) → P (x)) .

Therefore, the principle of wellfounded induction, which states that a progressive predicate holds on the 
accessible part of ≺, is a direct instance of the rule of strictly positive induction:

Prog≺(P )
Acc≺ ⊆ P

WfI≺(P )

In most applications P is of the form A ⇒ P . The progressivity of A ⇒ P can be equivalently written as 
progressivity of P relativized to A,

Prog≺,A(P ) Def= ∀x ∈ A (∀y ∈ A (y ≺ x → P (y)) → P (x))

and the conclusion becomes Acc≺ ⊆ A ⇒ P , equivalently, Acc≺ ∩A ⊆ P .
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Prog≺,A(P )
Acc≺ ∩A ⊆ P

WfI≺,A(P )

Dually to the accessibility predicate one can define for a binary relation a path predicate

Path≺(x) ν= ∃y ≺ xPath≺(y)

that is, Path≺ = ν(Φ) where Φ 
Def= λX λx ∃y ≺ x X(y). Intuitively, Path≺(x) states that there is an infinite 

descending path . . . x2 ≺ x1 ≺ x.
With the axiom of choice and classical logic one can show that ¬Path≺(x) implies Acc≺(x) (the converse 

holds even intuitionistically), which can be viewed as an abstract form of Brouwer’s Thesis:

BT≺ ∀x (¬Path≺(x) → Acc≺(x))

In conjunction with wellfounded induction, BT≺ says that ≺-induction is valid for all elements without 
infinite ≺-descending path.

If ≺ is defined in a disjunction-free way, then BT≺ is a true nc formula which can be postulated as an 
nc axiom. By BTnc we denote the schema BT≺ for any binary nc predicate ≺. In Sect. 2.3.5 we will use 
BTnc to justify a principle called ‘Archimedean Induction’ which in turn will be needed in Sect. 5.

Remark. Brouwer’s original thesis which he used to justify Bar Induction is obtained from BT≺ by 

defining for a ‘bar predicate’ P on finite sequences of natural numbers the relation y ≺ x 
Def= ¬P (x) ∧∃a (y =

ax), where ax denotes the sequence x prefixed with a (see e.g. [75]). Bar Induction on a predicate Q is then 
equivalent to WfI≺(Q).

2.3. Example: real numbers

We illustrate the concepts introduced so far by an instance of IFP providing an abstract specification of 
real numbers. This will be the basis for the program extraction case study in Sect. 5. Hence we will take 
care to postulate only non-computational axioms.

2.3.1. The language of real numbers
The language of the real numbers is given by

(1) Sorts: One sort ι as a name for the set of real numbers.
(2) Terms: First-order terms built from the constants and function symbols 0, 1, +, −, ∗, /,

2(·)(exponentiation), max. Further function symbols may be added on demand. We set |x| Def=
max(x, −x).

(3) Predicate constants: <, ≤.

2.3.2. The axioms of real numbers
As axioms we may choose any disjunction-free formulas that are true in the real numbers. As such, we 

define AR that consists of a disjunction-free formulation of the axioms of real-closed fields, equations for 
exponentiation, the defining axiom for max

max(x, y) ≤ z ↔ y ≤ z ∧ x ≤ z,

stability of =, ≤, <, as well as AP (Archimedean property) that will be defined in Sect. 2.3.4 and Brouwer’s 
Thesis for nc predicates (BTnc) introduced in Sect. 2.2. In the remainder of Sect. 2 and also in Sect. 5 all 
proofs take place in IFP(AR).
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2.3.3. Natural numbers
The natural numbers, considered as a subset of the real numbers, can be defined inductively by

N(x) μ= x = 0 ∨ N(x− 1)

which is shorthand for N 
Def= μ(ΦN) where ΦN

Def= λX λx (x = 0 ∨X(x −1)). Equivalently, one could define 
N(x) μ= x = 0 ∨ ∃y (N(y) ∧ x = y + 1). The closure and induction rules for N are literally

∀x ((x = 0 ∨ N(x− 1)) → N(x))
∀x ((x = 0 ∨ P (x− 1)) → P (x))

∀x ∈ NP (x)

equivalently (using equality reasoning and axioms for real numbers),

0 ∈ N ∀x ∈ N (x + 1 ∈ N)
P (0) ∧ ∀x (P (x) → P (x + 1))

∀x ∈ NP (x)

The missing Peano axiom, ∀x (N(x) → x + 1 �= 0), follows from the formula ∀x (N(x) → 0 ≤ x) which can 
be proven by induction.

Strong induction on natural numbers is equivalent to

P (0) ∧ ∀x ∈ N (P (x) → P (x + 1))
∀x ∈ NP (x)

The rational numbers Q can be defined from the natural numbers as usual, for example Q(q) Def= ∃x, y, z ∈
N (z �= 0 ∧ q · z = x − y).

Example 1. We prove that the sum of two natural numbers is a natural number, which is expressed as 
∀x, y (N(x) → N(y) → N(x + y)). An addition program for natural numbers will be extracted from this 
proof in Example 2. Suppose that x satisfies N(x). We prove ∀y(N(y) → N(x + y)) by induction. Thus, we 
need to prove ∀y (y = 0 ∨ N(x + (y − 1)) → N(x + y)). If y = 0, then N(x + y) holds by the assumption 
and x + 0 = x. If N(x + (y − 1)), then y = 0 ∨ N((x + y) − 1) since x + (y − 1) = (x + y) − 1. Therefore, 
N(x + y) holds by the closure rule.

2.3.4. Infinite numbers and the Archimedean property
As an example of a coinductive definition we define infinite numbers by

∞(x) ν= x ≥ 0 ∧∞(x− 1) .

Hence a real number is infinite iff by repeatedly subtracting 1 one always stays non-negative (and hence 
positive).

The Archimedean property of real numbers can be expressed by stating that there are no infinite numbers:

AP ∀x¬∞(x)

Since this is a true nc formula we include it as an axiom for the real numbers.
To give simple examples of proofs by induction and coinduction we show

Lemma 1. ∀x (∞(x) ↔ ∀y ∈ N y ≤ x).
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Proof. For the implication from left to right we show

∀y ∈ N ∀x (∞(x) → y ≤ x)

by induction on y ∈ N. ∀x (∞(x) → 0 ≤ x) holds by the coclosure axiom for ∞. In the step, the induction 
hypothesis is ∀x (∞(x) → y ≤ x). We have to show ∀x (∞(x) → y + 1 ≤ x). Hence assume ∞(x). By 
coclosure, ∞(x − 1). Therefore y ≤ x − 1, by the induction hypothesis. It follows y + 1 ≤ x.

The implication from right to left can be shown by coinduction. Setting P (x) Def= ∀y ∈ N y ≤ x we have 
to show that P (x) implies x ≥ 0 and P (x − 1). Hence assume P (x). x ≥ 0 holds since 0 ∈ N. To show 
P (x − 1) let y ∈ N. Then y + 1 ∈ N and therefore, since P (x), y + 1 ≤ x. It follows y ≤ x − 1. �
2.3.5. Archimedean induction

Now we study a formulation of the Archimedean property as an induction principle. This principle will 
be needed to prove the conversion of the signed digit representation into Gray code (Theorem 4).

If we set y ≺ x 
Def= x ≥ 0 ∧ y = x − 1, then clearly ∞(x) is equivalent to Path≺(x). Therefore, by the 

Archimedean property, Path≺ is empty, and by Brouwer’s Thesis, BT (Sect. 2.2), it follows that Acc≺(x)
holds for all x. Hence, wellfounded induction on ≺, WfI≺(P ), is equivalent to the rule

∀x ((x ≥ 0 → P (x− 1)) → P (x))
∀xP (x)

AI(P )

since clearly its premise is equivalent to Prog≺(P ).
A useful variant of AI is obtained by defining

y ≺q x
Def= |x| ≤ q ∧ y = 2x

where here and in the following we assume q > 0. Then, as we will prove in Lemma 3, Acc≺q
(x) is equivalent 

to x �= 0. Therefore, half strong induction, HSI(Φ, P ), for Φ = λX λx (∀y ≺q x X(y)), yields the rule

∀x �= 0 ((|x| ≤ q → P (2x)) → P (x))
∀x �= 0 P (x)

AIq(P )

since its premise is equivalent to Prog≺q
(P ). We call the principles AI(P ) and AIq(P ) Archimedean 

induction. Therefore, we have shown:

Lemma 2. Archimedean induction is derivable in IFP(AR).

Lemma 3. Acc≺q
(x) iff x �= 0.

Proof. The ‘only if’ part follows by induction on Acc≺q
(x): Since Acc≺q

(x) μ= ∀y (|x| ≤ q ∧ y = 2x →
Acc≺q

(y)) is equivalent to Acc≺q
(x) μ= (|x| ≤ q → Acc≺q

(2x)) it suffices to show that (|x| ≤ q → 2x �= 0)
implies x �= 0, which is immediate (using 2 · 0 = 0).

The ‘if’ part reduces, by BTnc, to the implication x �= 0 → ¬Path≺q
(x). Therefore, we assume x �= 0

and Path≺q
(x) with the aim to arrive at a contradiction. Recall that Path≺q

(x) ν= ∃y (|x| ≤ q ∧ y =
2x ∧ Path≺q

(y)), which is equivalent to Path≺q
(x) ν= (|x| ≤ q ∧ Path≺q

(2x)). By induction on N we can 
prove

∀n ∈ N ∀x(Path≺q
(x) → |x| ≤ q2−n) .

Therefore, if Path≺q
(x), then for all n ∈ N, q/|x| ≥ 2n ≥ n, which, by Lemma 1 and AP, is impossible. �
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In most applications Archimedean induction is used with a predicate of the form B ⇒ P , and its premise 
is stated in an intuitionistically slightly stronger (though classically equivalent) form.

∀x ∈ B (P (x) ∨ (x ≥ 0 ∧B(x− 1) ∧ (P (x− 1) → P (x))))
∀x ∈ B P (x)

AIB(B,P )

∀x ∈ B \ {0} (P (x) ∨ (|x| ≤ q ∧B(2x) ∧ (P (2x) → P (x))))
∀x ∈ B \ {0}P (x)

AIBq(B,P )

Lemma 4. AI implies AIB. AIq implies AIBq.

Proof. The premise of AIB(B, P ) implies the premise of AI(B ⇒ P ). The premise of AIBq(B, P ) implies 
the premise of AIq(B ⇒ P ). �
3. Realizability

In this section we define a realizability interpretation of IFP. The interpretation will be formalized in a 
system RIFP defined in Sect. 3.4 which is another instance of IFP with extra sorts and terms for extracted 
programs and their types (Sect. 3.2 and Sect. 3.3) as well as axioms describing them (Sect. 3.4).

Our programming language is an untyped language with a type assignment system. It is similar to the 
language studied in [49], but simpler in that recursive types are restricted to strictly positive ones.

Programs will be interpreted in a Scott domain D satisfying a recursive domain equation, types will be 
interpreted as subdomains of D (Sect. 3.1).

A lazy operational semantics of this language will be studied in Sect. 6 and shown to be equivalent to the 
denotational semantics. Our domain-theoretic model of untyped programs originates in work by Scott [65]. 
An overview and comparison of different models of untyped λ-calculi can be found in [59]

To define the realizability interpretation, we first assign types to IFP expressions (Sect. 3.6) and then 
define the set of realizers of an expression as a subset of the subdomain defined by its type (Sect. 3.7). We 
also show that typable RIFP programs can be translated into Haskell programs (Sect. 3.5) and explain how 
Haskell programs can be directly extracted from IFP proofs in Section 4.

3.1. The domain of realizers and its subdomains

Extracted programs will be interpreted in a Scott domain D defined by the recursive domain equation

D = (Nil + Left(D) + Right(D) + Pair(D ×D) + Fun(D → D))⊥

where D → D is the domain of continuous functions from D to D, + denotes the disjoint sum of partial 
orders and (·)⊥ adds a new bottom element. Nil, Left, Right, Pair, Fun denote the injections of the various 
components of the sum into D. Nil, Left, Right, Pair (but not Fun) are called constructors. D carries a 
natural partial order � with respect to which D is a countably based Scott domain (domain for short), that 
is, a bounded complete algebraic dcpo with least element ⊥ and countably many compact elements. The 
theory of Scott domains and recursive domain equations is standard and can be found e.g. in [2,35].

Since domains are closed under suprema of increasing chains, D contains not only finite but also infinite 
combinations of the constructors. For example, writing a : b for Pair(a, b), an infinite sequence of domain 
elements (di)i∈N is represented in D as the stream

d0 : d1 : . . . Def= sup Pair(d0,Pair(d1, . . .Pair(dn,⊥) . . .)) .

n∈N
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Since Scott domains and continuous functions form a cartesian closed category, D can be equipped with the 
structure of a partial combinatory algebra (PCA, [35]) by defining a continuous application operation a b

such that Fun(f) b Def= f(b) and otherwise a b 
Def= ⊥, as well as combinators K and S satisfying K a b = b and 

S a b c = a c (b c) (where application associates to the left). In particular D has a continuous least fixed point 
operator which can be defined by Curry’s Y -combinator or as the mapping (D → D) � f �→ supn f

n(⊥) ∈ D.
Besides the PCA structure we will use the algebraicity of D, that is, the fact that every element of D is the 

directed supremum of compact elements. Compact elements have a strongly finite character which will be 
exploited in the proof of uniqueness of certain fixed points (Sect. 3.3) and in the proof of the Computational 
Adequacy Theorem (Theorem 5). The finiteness of compact element is captured by their defining property 
(d ∈ D is compact iff for every directed set A ⊆ D, if d � �A, then d � a for some a ∈ A) and the 
existence of a function assigning to every compact element a a rank, rk(a) ∈ N, satisfying

rk1 If a has the form C(a1, . . . , ak) for a constructor C, then a1, . . . , ak are compact and rk(a) > rk(ai)
(i ≤ k).

rk2 If a has the form Fun(f), then for every b ∈ D, f(b) is compact with rk(a) > rk(f(b)) and there 
exists a compact b0 � b such that rk(a) > rk(b0) and f(b0) = f(b). Moreover, there are finitely many 
compacts b1, . . . bn with rk(bi) < rk(a) such that f(b) = �{f(bi)|i = 1, . . . n, bi � b}.

In Sect. 3.3 we will model types as subdomains of D, that is, subsets of D that are downwards closed 
and closed under suprema of bounded subsets. We write X � D if X is a subdomain of D and denote by 
�D the set of all subdomains of D. It is easy to see that a subdomain X is a domain with respect to the 
partial order inherited from D and the notions of supremum and compact element in X are the same as 
taken with respect to D. The following is easy to see.

Lemma 5.

(a) �D is a complete lattice. The meet operation is intersection.
(b) �D is closed under the following operations.

(X + Y )⊥
Def= {Left(a) | a ∈ X} ∪ {Right(b) | b ∈ Y } ∪ {⊥},

(X × Y )⊥
Def= {Pair(a, b) | a ∈ X, b ∈ Y } ∪ {⊥},

(X ⇒ Y )⊥
Def= {Fun(f) | f : D → D cont., ∀a ∈ X(f(a) ∈ Y )} ∪ {⊥}.

By Lemma 5 (a), for every set S ⊆ D there is a smallest subdomain X containing S, called the subdomain 
generated by S. Hence for any subdomain Y , S ⊆ Y iff X ⊆ Y . Furthermore, any subdomain is generated 
by the set of its compact elements.

3.2. Programs

In order to formally denote elements of D we introduce terms M, N, . . . of a new sort δ, called programs.

Programs � M,N ::= a, b (program variables, i.e. variables of sort δ)

| Nil | Left(M) | Right(M) | Pair(M,N)

| caseM of {Cl1; . . . ;Cln}
| λa.M

| M N

| recM
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| ⊥

In the case-construct each Cli is a clause of the form C(�a) → N where C is a constructor and �a is a 
tuple of different variables whose free occurrences in N are bound by the clause. Furthermore, for different 
clauses C(�a) → M and C ′(�a′) → M ′, the constructors C and C ′ must be different. The intuitive meaning 
of a case-expression, say caseM of {. . . ; Left(a) → L; . . .}, is that if M evaluates to a term matching 
the pattern Left(a), say Left(M ′), then the whole case-expression evaluates to L[M ′/a]. The recursion 
construct recM defines the least fixed point of M . It could be defined as Y M where Y is the well-known 
combinator λf . (λa . f (a a)) (λa . f (a a)), however, we prefer an explicit construct for general recursion since 
it better matches programming practice (Sect. 3.5) and it can be naturally assigned a type (Sect. 3.3) while 
Y involves self-application which is not typable in our system (see the remark after Lemma 13). The constant 
⊥ represents the ‘undefined’ domain element ⊥. It could be defined as a non-terminating recursion but it is 
more convenient to have it as a constant. Overall, our goal is to have a programming language that enables 
us to naturally express the computational contents of IFP expressions and proofs.

Substitution of programs, M [N/a], is defined as usual in term languages with binders so that a substi-
tution lemma holds (Lemma 6). We also identify α-equal programs, that is, programs that are equal up to 
renaming of bound variables. Composition, sum, pairing, and projections are defined as

M ◦N Def= λa.M(N a)

[M + N ] Def= λc. case cof {Left(a) → M a;Right(b) → N b}

〈M,N〉 Def= λc.Pair(M c,N c)

πLeft M
Def= caseM of {Pair(a, b) → a}

πRight M
Def= caseM of {Pair(a, b) → b}

We write a 
rec= M for a 

Def= rec(λa. M), and a b 
rec= M for a 

rec= λb. M . Occasionally we will use generalized 
clauses such as Right(Pair(a, b)) → M as an abbreviation for Right(c) → case c of {Pair(a, b) → M}.

Since D is a combinatory algebra every program M denotes an element �M�η ∈ D depending continuously 
(w.r.t. the Scott topology) on the environment η that maps program variables to elements of D.

�a�η = η(a)

�C(M1, . . . ,Mk)�η = C(�M1�η, . . . , �Mk�η)

�caseM of {Cl1; . . . ;Cln}�η = �K�η[�a �→ �d] if �M�η = C(�d)

and some Cli is of the form C(�a) → K

�λa.M�η = Fun(f) where f(d) = �M�η[a �→ d]

�M N�η = f(�N�η) if �M�η = Fun(f)

�recM�η = the least fixed point of f

if �M�η = Fun(f)

�M�η = ⊥ in all other cases, in particular �⊥�η = ⊥

For closed terms the environment is redundant and may therefore be omitted. The following lemma is 
standard.

Lemma 6 (Substitution). �M [N/a]�η = �M�η[a �→ �N�η].
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3.3. Types

We introduce simple recursive types which are interpreted as subdomains of the domain D defined in 
Sect. 3.1.

Types are expressions defined by the grammar

Types � ρ, σ ::= α (type variables) | 1 | ρ + σ | ρ× σ | ρ ⇒ σ | fixα . ρ.

where in fixα . ρ the type ρ must be strictly positive in α.
Given an environment ζ that assigns to each type variable a subdomain of D, every type ρ denotes a 

subdomain Dζ
ρ of D:

Dζ
α = ζ(α),

Dζ
1 = {Nil,⊥},

Dζ
ρ�σ = (Dζ

ρ �Dζ
σ)⊥ (� ∈ {+,×,⇒}),

Dζ
fixα . ρ =

⋂
{X � D | Dζ[α �→X]

ρ ⊆ X}

Lemma 7.

Dζ
fixα . ρ = D

ζ[α �→Dζ
fixα . ρ]

ρ = Dζ
ρ[fixα . ρ/α].

Proof. By strict positivity, Dζ[α �→X]
ρ is monotone in X. Therefore, the left equation holds by Tarski’s fixed 

point theorem. The right equation is an instance of the usual substitution lemma. �
As an example, we consider the type of natural numbers,

nat Def= fixα . 1 + α.

By Lemma 7, Dnat = (D1 + Dnat)⊥. It is easy to see that

Dnat = {Rightn(d) | n ∈ N, d ∈ {⊥,Left(⊥),Left(Nil)}} ∪ {�n∈NRightn(⊥)}.

By identifying Left(⊥) with Left(Nil), one obtains an isomorphic copy of the domain of lazy natural 
numbers where Left(Nil) represents 0 and Right represents the successor operation. See Remark 1 at the 
end of this section for a discussion on the relation between these domains.

Lemma 7 says that Dζ
fixα . ρ is a fixed point of the type operator α �→ ρ. We show that it is the unique

fixed point under a regularity condition. The regularity conditions exclude type operators of the form α �→
fix β1 . . . .fix βn . α (where the βi are all different from α) which, obviously, have every subdomain of D as 
fixed point. It turns out that if fixed points of such type operators are excluded then uniqueness of fixed points 
holds. Therefore, we call a type regular if it contains no sub-expression of the form fixα . fix β1 . . . .fix βn . α.

Lemma 8.

(a) Regular types are closed under substitutions.
(b) Every regular type is semantically equal to a non-fixed-point type, that is, a type which is not of the 

form fixα . ρ.
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Proof. (a) is easy.
(b) can be proved by induction on the fixed point height of a type which is the unique number n such 

that the type is of the form fixα1 . . . .fixαn . ρ0 and ρ0 is not a fixed point type. Let ρ be a regular type. 
If the fixed point height of ρ is 0 we are done. If the fixed point height of ρ is n + 1, then ρ is of the form 
fixα . σ where σ has fixed point height n. By Lemma 7, ρ is semantically equal to σ[ρ/α] which has fixed 
point height n as well since ρ is regular. Moreover, by (a), σ[ρ/α] is regular. Hence the induction hypothesis 
can be applied. �

Let X, Y range over �D and set X � n 
Def= {a ∈ X | a compact, rk(a) ≤ n}.

Lemma 9. If X � n ⊆ Y for all n, then X ⊆ Y .

Proof. This is clear since a domain is the completion of the subset of its compact elements, and with 
increasing n, X � n exhausts all compact elements of X. �

Define depthα(ρ) ∈ N ∪{∞} by recursion on ρ as follows. depthα(ρ) = ∞ if α is not free in ρ. Otherwise 
(using the expected order on N ∪ {∞} and setting 1 + ∞ = ∞)

depthα(α) = 0

depthα(ρ1 � ρ2) = 1 + min
i

depthα(ρi) � ∈ {+,×}

depthα(ρ1 ⇒ ρ2) = depthα(ρ2)

depthα(fix β . ρ) = depthα(ρ)

The following lemma exploits regularity in an essential way and is key to proving uniqueness of fixed 
points (Theorem 1).

Lemma 10. Let ρ be regular and s.p. in α.
If X � n ⊆ Y , then Dζ[α �→X]

ρ � (n + depthα(ρ)) ⊆ D
ζ[α �→Y ]
ρ .

Proof. Suppose that X � n ⊆ Y . We write ρ(X) for Dζ[α �→X]
ρ and show that for all compact elements 

a ∈ ρ(X) � (n + depthα(ρ)), we have a ∈ ρ(Y ). The proof is by induction on rk(a). We do a case analysis 
on ρ. Thanks to Lemma 8 (b) we may skip fixed point types.

Let a ∈ ρ(X) � (n + depthα(ρ)). If a = ⊥ then the assertion holds since all subdomains contain ⊥. 
Therefore in the following we assume a �= ⊥.

Case α is not free in ρ. Then ρ(X) = ρ(Y ) and therefore the assertion holds trivially.
Case ρ = α. Then ρ(X) = X, ρ(Y ) = Y and depthα(ρ) = 0. Therefore, the assertion is again trivial.
Case ρ = ρ1+ρ2. W.l.o.g. a = Left(b) with b ∈ ρ1(X). Since rk(a) ≤ n +depthα(ρ) ≤ n +1 +depthα(ρ1)

and rk(a) = 1 +rk(b) it follows rk(b) ≤ n +depthα(ρ1), that is, b ∈ ρ1(X) � (n +depthα(ρ1)). By induction 
hypothesis b ∈ ρ1(Y ), hence a ∈ ρ(Y ).

Case ρ = ρ1 × ρ2. Then a = Pair(a1, a2) with ai ∈ ρi(X) (i = 1, 2). Since rk(a) ≤ n + depthα(ρ) ≤
1 + n + depthα(ρi) and rk(a) ≥ 1 + rk(ai) it follows rk(ai) ≤ n + depthα(ρi), that is, ai ∈ ρi(X) �
(n + depthα(ρi)). By induction hypothesis ai ∈ ρi(Y ), hence a ∈ ρ(Y ).

Case ρ = ρ1 ⇒ ρ2. Then a = Fun(f) with f ∈ D → D such that f [ρ1(X)] ⊆ ρ2(X) and rk(f(a1)) <
rk(a) for all a1 ∈ D. We have to show a ∈ ρ(Y ), that is f [ρ1(Y )] ⊆ ρ2(Y ). Hence we assume a1 ∈ ρ1(Y ) and 
show f(a1) ∈ ρ2(Y ). Since ρ is s.p. in α, α is not free in ρ1. Therefore ρ1(X) = ρ1(Y ) and we have a1 ∈ ρ1(X). 
Since rk(f(a1)) < rk(a) ≤ n + depthα(ρ) = n + depthα(ρ2) it follows rk(f(a1)) ≤ n + depthα(ρ2), i.e. 
f(a1) ∈ ρ2(X) � (n + depthα(ρ2)). By induction hypothesis f(a1) ∈ ρ2(Y ). �
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Lemma 11. Let ρ be regular and s.p. in α with depthα(ρ) > 0. Assume X ⊆ D
ζ[α �→X]
ρ and Dζ[α �→Y ]

ρ ⊆ Y . 
Then X ⊆ Y .

Proof. By Lemma 9 it suffices to show that X � n ⊆ Y for all n ∈ N. We induct on n.
n = 0: X � 0 = {⊥} ⊆ Y .
n + 1: By induction hypothesis, X � n ⊆ Y . Since depthα(ρ) > 0 it follows with Lemma 10 that 

D
ζ[α �→X]
ρ � (n + 1) ⊆ D

ζ[α �→Y ]
ρ . Therefore,

X � (n + 1) ⊆ Dζ[α �→X]
ρ � (n + 1) ⊆ Dζ[α �→Y ]

ρ ⊆ Y �
Theorem 1 (Uniqueness of fixed points). Let fixα . ρ be regular. If X ⊆ D

ζ[α �→X]
ρ then X ⊆ Dζ

fixα . ρ, and if 
X ⊇ D

ζ[α �→X]
ρ then X ⊇ Dζ

fixα . ρ. Hence X = D
ζ[α �→X]
ρ iff X = Dζ

fixα . ρ,

Proof. For the first implication use Lemma 11 with Y
Def= Dζ

fixα . ρ, noting that Dζ[α �→Y ]
ρ = Y by Lemma 7, 

and depthα(ρ) > 0 since fixα . ρ is regular. For the second implication the argument is similar. �
Remark. In [49] a similar result is obtained for a larger type system that includes universal and ex-

istential type quantification as well as union and intersection types, and permitting fixed point types 
without positivity condition. Types are interpreted as ideals, which are similar to subdomains but are 
only closed under directed suprema. Subdomains are called strong ideals in [49]. The existence of fixed 
points is proven using the Banach Fixed Point Theorem w.r.t. a metric d such that for X �= Y as 
d(X, Y ) Def= min{2−n | X � n �= Y � n}. We added strict positivity since this provides stronger infor-
mation about extracted programs (see e.g. Lemma 37 and Theorem 7, and the remark after Lemma 13) 
and the definition of fixed points is more direct.

3.4. The formal system RIFP

We introduce an extension RIFP of IFP suitable for a formal definition of realizability and a formal proof 
of its soundness. In addition to the sorts of IFP, RIFP contains the sorts δ denoting the domain D, and Δ
denoting the set of subdomains of D. Programs are terms of sort δ, types are terms of sort Δ. We also add 
a new relation symbol : of arity (δ, Δ) where a : α means that a is an element of the subdomain α. We write 
∀a : ρ A for ∀a (a : ρ → A) and ∃a : ρ A for ∃a (a : ρ ∧A). We identify a type ρ with the predicate λa. a : ρ, 
so that ρ(a) stands for a : ρ and, for example, ρ ⊆ σ means ∀a (a : ρ → a : σ).

In addition to the axioms and rules of IFP, which are extended to the language of RIFP in the obvious 
way (and which include stability of equations), RIFP contains (universally quantified) axioms that reflect 
the denotational semantics of programs and types as well as those that express injectivity, range disjointness 
and compactness of constructors. Since we will not apply a realizability interpretation to RIFP we do not 
need to restrict axioms to nc formulas. We use the abbreviation IsFun(a) Def= ∃b (a = λc . (b c)).

Axioms for programs

(i) caseCi(�b)of{C1(�a1) → M1; . . . ;Cn(�an) → Mn} = Mi[�b/�ai]

(ii)
∧
i

∀�b a �= Ci(�b) → case aof{C1(�a1) → M1; . . . ;Cn(�an) → Mn} = ⊥

(iii) (λb.M) a = M [a/b]

(iv) ¬IsFun(a) → a b = ⊥
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(v) IsFun(a) ∧ IsFun(b) ∧ ∀c (a c = b c) → a = b

(vi)
⊕

C constructor
∃1�b (a = C(�b)) ⊕ IsFun(a) ⊕ a = ⊥

(vii) rec a = a (rec a)

(viii) P (⊥) ∧ ∀b (P (b) → P (a b)) → P (rec a) (P admissible)

where an RIFP predicate of arity (δ) is called admissible if it contains neither free predicate variables nor 
existential quantifiers nor inductive definitions.

Axioms for types

(ix) ⊥ : α

(x) ρ[fixα . ρ/α] ≡ fixα . ρ

(xi) β � ρ[β/α] → β � fixα . ρ (� ∈ {⊆,⊇}, fixα . ρ regular)

(xii) c : 1 ↔ (c = Nil ∨ c = ⊥)

(xiii) c : α× β ↔ (∃a : α, b : β (c = Pair(a, b)) ∨ c = ⊥)

(xiv) c : α + β ↔ (∃a : α (c = Left(a)) ∨ ∃b : β (c = Right(b)) ∨ c = ⊥)

(xv) c : α ⇒ β ↔ ((IsFun(c) ∧ ∀a : α (c a : β)) ∨ c = ⊥)

(xvi) ∃α ∀β (P ⊆ β ↔ α ⊆ β) (P an RIFP predicate of arity (Δ))

Clearly, axioms (i-vii) and (xii-xv) are correct in D respectively in �D. Axiom (viii) is a restricted form of 
Scott-induction, a.k.a. fixed point induction. It is a way of expressing that reca is the least fixed point of 
a, that is, the supremum of the chain ⊥ � a ⊥ � a (a ⊥) � . . .. Scott-induction holds more generally for 
predicates that are closed under suprema of chains (such predicates are called inclusive in [77]). It is easy 
to see that admissible predicates have this property. As an example of Scott-induction, we show that every 
type is closed under least fixed points of endofunctions, that is,

a : α ⇒ α → rec a : α.

Indeed, assuming a : α ⇒ α, the admissible predicate P
Def= (λb . b : α) satisfies the premises of (viii) since 

⊥ : α by axiom (ix) (which is valid since all subdomains of D contain ⊥). Obviously, Scott-induction is also 
valid for admissible predicates of more than one argument, e.g.

P (⊥,⊥) ∧ ∀b1, b2 (P (b1, b2) → P (a1 b1, a2 b2)) → P (rec a1, rec a2)

and Axiom (viii) should be understood in this more general form. Axioms (x) and (xi) hold by Lemmas 7
and 1. Axiom (xvi) expresses the existence of the subdomain generated by P and can be viewed as a form 
of comprehension.

We set RIFP(A) Def= IFP(A ∪ A′) where A′ consist of the axioms (i-xvi) for programs and types above. 
We write RIFP for RIFP(A) if the set of axioms is not important.

The following lemma will be used later to simplify extracted programs.

Lemma 12. RIFP(∅) proves: If f is strict, that is, f ⊥ = ⊥, then

f(caseM of {C1(�a1) → L1; . . . ;Cn(�an) → Ln})
= caseM of {C1(�a1) → f L1; . . . ;Cn(�an) → f Ln} .
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Proof. Let f be strict. We have to prove the equation f K = K ′ where K
Def= caseM of {C1(�a1) →

L1; . . . ; Cn(�an) → Ln} and K ′ Def= caseM of {C1(�a1) → f L1; . . . ; Cn(�an) → f Ln}. Since we have to prove 
an equation and we assume equations to be ¬¬-stable, we may use classical logic. If M = Ci(�b) for some i
and �b, then K = Li[�b/�ai] and K ′ = f Li[�b/�ai], by axiom (i), and the equation holds. Otherwise, K = K ′ = ⊥
by axiom (ii), and the equation holds since f is strict. �
Lemma 13. The following typing rules are derivable in RIFP(∅) (where Γ is a typing context, that is, a list 
of assumptions a1 : ρ1, . . . an : ρn).

Γ, a : ρ � a : ρ Γ � Nil : 1 Γ � ⊥ : ρ
Γ � M : ρ

Γ � Left(M) : ρ + σ

Γ � M : σ
Γ � Right(M) : ρ + σ

Γ � M : ρ Γ � N : σ
Γ � Pair(M,N) : ρ× σ

Γ � M : ρ× σ Γ, a : ρ, b : σ � N : τ
Γ � caseM of {Pair(a, b) → N} : τ

Γ � M : ρ + σ Γ, a : ρ � L : τ Γ, b : σ � R : τ
Γ � caseM of {Left(a) → L ; Right(b) → R} : τ

Γ, a : ρ � M : σ
Γ � λa.M : ρ ⇒ σ

Γ � M : ρ ⇒ σ Γ � N : ρ
Γ � M N : σ

Γ � M : ρ[fixα . ρ/α]
ROLLΓ � M : fixα . ρ

Γ � M : fixα . ρ
UNROLLΓ � M : ρ[fixα . ρ/α]

Γ, a : ρ � M a : ρ
Γ � recM : ρ

(a not free in M)

Proof. Immediate from the axioms for types. �
Remark. Only terms typable with these rules will be extracted in Sect. 4.2. Note that the Y -

combinator (Sect. 3.2) is not typable by these rules since its type must be of the form (ρ ⇒ ρ) ⇒ ρ, 
and in order to type the self application (a a) occurring in Y one needs a type σ satisfying σ ≡ σ ⇒ ρ, that 
is, a fixed point of a non-positive type operator.

3.5. Translation to Haskell

We sketch how to translate typable RIFP programs into Haskell. First we define a Haskell type H(ρ) for 
each type ρ and a sequence of Haskell algebraic data type declarations. We begin with the declaration

data One = Nil,

and then define

(i) H(1) = One
(ii) H(α) = α

(iii) H(ρ + σ) = Either H(ρ) H(σ)
(iv) H(ρ × σ) = (H(ρ), H(σ))
(v) H(ρ ⇒ σ) = H(ρ) → H(σ)
(vi) H(fixα . ρ) = Cα,ρ

�β

In case (v), → is Haskell’s function type constructor, in case (vi), Cα,ρ is a new name generated from α and 
ρ, and �β is a list of the free type variables in fixα . ρ. The list of Haskell data type declarations is extended 
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by the following recursive and possibly polymorphic data type Cα,ρ with one constructor which we again 
call Cα,ρ.

data Cα,ρ
�β = Cα,ρ H(ρ)[Cα,ρ

�β/α]

To accommodate the typing rules ROLL and UNROLL we need Haskell programs

rollCα,ρ
:: H(ρ)[Cα,ρ

�β/α] → Cα,ρ
�β rollCα,ρ

x = Cα,ρ x

unrollCα,ρ
:: Cα,ρ

�β → H(ρ)[Cα,ρ
�β/α] unrollCα,ρ

(Cα,ρ x) = x

and for recursive programs a fixed point combinator

rec :: (α → α) → α rec f = f (rec f)

Now suppose that d is a type derivation of M : ρ built from the typing rules in Lemma 13. We define a 
Haskell program H(d) of type H(ρ) as follows. By considering Pair(M, N) as the Haskell term (M, N), our 
program is an untyped Haskell program. H(d) is obtained by inserting appropriate roll and unroll to M
following the type derivation d. We do not modify M for rules other than ROLL and UNROLL. If d ends with
ROLL with ρ = fixα . ρ′, we define H(d) = rollCα,ρ′ H(d′). If d ends with UNROLL and ρ = ρ[fixα . ρ′/α], 
we define H(d) = unrollCα,ρ′ H(d′). Here, d′ is the derivation of the premise of ROLL and UNROLL. With 
the Haskell program H(d) obtained in this way, we have a sound derivation of the typing H(d) :: H(ρ) in 
Haskell.

One can optimize this translation in several ways. For example, one can treat a type of the form fixα . ρ1+
. . . + ρk so that it is translated to a data type with k constructors. One can also use Haskell’s list type for 
fixα . (τ × α + 1) (i.e., finite/infinite list type) and fixα . (τ × α) (i.e., infinite list type).

3.6. Types of IFP expressions

We inductively assign to every IFP-expression (i.e., formula or predicate) E a type τ(E). The idea is 
that τ(A), for a formula A, is the type of potential realizers of A. We call an expression Harrop if it contains 
neither disjunctions nor free predicate variables at strictly positive positions. This deviates from the usual 
definition of the Harrop property [70] since existential quantifiers at strictly positive positions are permitted. 
The reason for this is that quantifiers are interpreted uniformly, that is, not witnessed by realizers. Like nc 
formulas, Harrop formulas have no computational content, however, they differ from nc formulas in that 
they need not coincide with their own realizability interpretation (see Remark 3 at the end of this section).

We define τ(E) so that the type 1 is assigned to an expression iff it is Harrop. In the following definition, 
we say that a predicate P is X-Harrop if λX P is Harrop, that is, if P is strictly positive in X and P [X̂/X]
is Harrop where X̂ is a predicate constant associated with X.

τ(P (�t)) = τ(P )

τ(A ∨B) = τ(A) + τ(B)

τ(A ∧B) = τ(A) × τ(B) (A,B non-Harrop)

= τ(A) (B Harrop, A non-Harrop)

= τ(B) (A Harrop, B non-Harrop)

= 1 (A,B Harrop)

τ(A → B) = τ(A) ⇒ τ(B) (A,B non-Harrop)
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= τ(B) (otherwise)

τ(�xA) = τ(A) (� ∈ {∀,∃})

τ(X) = αX (X a predicate variable, αX a fresh type variable)

τ(P ) = 1 (P a predicate constant)

τ(λ�xA) = τ(A)

τ(�(λX P )) = fixαX . τ(P ) (� ∈ {μ, ν}, P not X-Harrop)

= 1 (� ∈ {μ, ν}, P X-Harrop)

Remark. Though the semantics Dζ
1 of the type 1 is {Nil, ⊥}, we will stipulate in Section 3.7 that only 

Nil is a possible realizer of a Harrop expression. We will also define simplified realizers for products and 
implications if some of their components are Harrop and therefore have corresponding simplified definitions 
of τ(A) for these cases. Note that we define the type of a (co)inductively defined Harrop predicate �(λX P )
to be 1. Without this simplified type assignment a non-regular type may be assigned to a predicate, for 
example, τ(False) = τ(μ(λX X)) would become fixαX . αX .

Lemma 14. For every expression E (formula or predicate) and predicate P ,

(a) E is Harrop if and only if τ(E) = 1,
(b) τ(E) is regular,
(c) if P is non-Harrop, then τ(E[P/X]) = τ(E)[τ(P )/αX ],
(d) If P is Harrop, then τ(E[P/X]) = τ(E[X̂/X]).

Proof. Straightforward structural induction on E. �
3.7. Realizers of expressions

In this section, we define the notion that a : τ(A) is a realizer of a formula A, written a r A. This 
intuitively means that a is a computational content of the formula A. In intuitionistic logic, a proof of 
A ∨ B provides evidence that A is true or B is true, together with an indicator of which of the two cases 
holds. We construct our notion of realizer by treating this as the primitive source of computational content. 
Therefore, we defined an expression non-computational (nc) if it contains neither disjunctions nor free 
predicate variables (Sect. 2.1). A more general notion of an expression with trivial computational content is 
provided by the Harrop property which forbids the occurrence of disjunctions and free predicate variables 
only at strictly positive positions (Sect. 3.6).

In order to formalize realizability in RIFP we define for every IFP formula A an RIFP predicate R(A)
of arity (δ) that specifies the set of domain elements a such that a r A holds. For defining R(A), we si-
multaneously define H(B) for Harrop formulas B which expresses that B is realizable, however with trivial 
computational content Nil. We define for every IFP-expression an RIFP-expression, more precisely we define 
for a

formula A a predicate R(A) of arity (δ);
non-Harrop predicate P of arity (�ι) a predicate R(P ) of arity (�ι, δ);
non-Harrop operator Φ of arity (�ι) an operator R(Φ) of arity (�ι, δ);
Harrop formula A a formula H(A);
Harrop predicate P a predicate H(P ) of the same arity;
Harrop operator Φ an operator H(Φ) of the same arity.



22 U. Berger, H. Tsuiki / Annals of Pure and Applied Logic 172 (2021) 102903
In the definition of realizability below we assume that to every IFP predicate variable X of arity (�ι) there 
are assigned, in a one-to-one fashion, an RIFP predicate variable X̃ of arity (�ι, δ) and a type variable αX . 
Furthermore, we write a r A for R(A)(a) and rA for ∃a a r A. Recall that a predicate P is X-Harrop if it 
is strictly positive in X and P [X̂/X] is Harrop where X̂ is a fresh predicate constant associated with X. 
In this situation we write HX(P ) for H(P [X̂/X])[X/X̂]. The idea is that HX(P ) is the same as H(P ) but 
considering X as a (non-computational) predicate constant.

a rA = (a = Nil ∧ H(A)) (A Harrop)

a rP (�t) = R(P )(�t, a) (P non-H.)

c r (A ∨B) = ∃a (c = Left(a) ∧ a rA) ∨ ∃b (c = Right(b) ∧ b rB)

c r (A ∧B) = ∃a, b (c = Pair(a, b) ∧ a rA ∧ b rB) (A,B non-H.)

a r (A ∧B) = a rA ∧ H(B) (B Harrop, A non-H.)

b r (A ∧B) = H(A) ∧ b rB (A Harrop, B non-H.)

c r (A → B) = c : τ(A) ⇒ τ(B) ∧ ∀a (a rA → (c a) rB) (A,B non-H.)

b r (A → B) = b : τ(B) ∧ (H(A) → b rB) (A Harrop, B non-H.)

a r�xA = �x (a rA) (� ∈ {∀,∃}, A non-H.)

R(X) = X̃

R(λ�xA) = λ(�x, a) (a rA) (A non-H.)

R(�(Φ)) = �(R(Φ)) (� ∈ {μ, ν}, Φ non-H.)

R(λX P ) = λX̃ R(P ) (P non-H.)

H(P (�t)) = H(P )(�t) (P Harrop)

H(A ∧B) = H(A) ∧ H(B) (A,B Harrop)

H(A → B) = rA → H(B) (B Harrop)

H(�xA) = �xH(A) (� ∈ {∀,∃}, A Harrop)

H(P ) = P (P a predicate constant)

H(λ�xA) = λ�xH(A) (A Harrop)

H(�(Φ)) = �(H(Φ)) (� ∈ {μ, ν}, Φ Harrop)

H(λX P ) = λX HX(P ) (P X-Harrop)

In order to see that R(�(Φ)) and H(�(Φ)) are wellformed one needs to prove simultaneously that if an 
expression E is s.p. in X, then R(E) is s.p. in X̃, and if E is X-Harrop, then HX(E) (= H(E[X̂/X])) is 
s.p. in X̂.

Lemma 15.

(a) If P is non-Harrop, then R(A[P/X]) = R(A)[R(P )/X̃][τ(P )/αX ].
(b) If P is Harrop, then R(A[P/X]) = R(A[X̂/X])[H(P )/X̂].
(c) If A is Harrop, then H(A) ↔ rA.
(d) If E is an nc expression, then H(E) = E, in particular, H(False) = False.
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(e) R(A) ⊆ τ(A) under the assumptions ∀�x (R(X̃(�x)) ⊆ αX), that is, ∀�x, b (X̃(�x, b) → b : αX), for all free 
predicate variables X in A.

Proof. The statements are proven by induction on the size of expressions suitably generalizing the statements 
to formulas or predicates. Parts (a-d) are easy.

For (e) one proves, simultaneously with the statement for formulas, that for predicates P , a r P (�x) implies 
a : τ(P ) assuming ∀�x, b (Ỹ (�x, b) → b : αY ) for all free predicate variables Y in P . The only difficult case 
is a non-Harrop predicate P of the form �(λX Q) (� ∈ {μ, ν}). In that case τ(P ) = fixαX . τ(Q) and 
by Lemma 14 (b) this is a regular type. Furthermore, R(P ) = �(λX̃ R(Q)) ≡ R(Q)[R(P )/X̃]. By the 
induction hypothesis, ∀a, �x (a r Q(�x) → a : τ(Q)) under the extra assumption ∀�x, b (X̃(�x, b) → b : αX). 
Let α be the subdomain generated by the set {a ∈ D | ∃�x (a r P (�x))} whose existence is guaranteed by 
Axiom (xvi). It suffices to show α ⊆ τ(Q)[α/αX ] since then, by Axiom (xi), α ⊆ fixαX . τ(Q) = τ(P )
and consequently if a r P (�x), then a : α and therefore a : τ(P ). For the proof of α ⊆ τ(Q)[α/αX ] it 
suffices to show that if a r P (�x), then a : τ(Q)[α/αX ]. Assume a r P (�x). Then (a r Q(�x))[R(P )/X̃] since 

R(P ) ≡ R(Q)[R(P )/X̃]. Using the induction hypothesis with X̃
Def= R(P ) and αX

Def= α and we get 
a : τ(Q)[α/αX ] as required. �

Remarks. 1. Since Nil is the only possible realizer of a Harrop formula, one could as well define 1 as 
{⊥} and use ⊥ as the realizer of a realizable Harrop formula. Then, the domain Dnat for nat Def= τ(N) (see 

Sect. 4.3) would be isomorphic to the domain of lazy natural numbers, and the domain D2 for 2 
Def= 1 + 1

would be isomorphic to the domain of truth values {true, false, ⊥} (see Sect. 5.3). However, using ⊥ as 
a realizer of Harrop formulas contradicts our intuitive understanding that ⊥ means non-termination. One 
could as well obtain these isomorphisms without modifying the realizer of a Harrop formula by adding nullary 
constructors Left0 (representing Left(Nil)) and Right0 (representing Right(Nil)) to D and corresponding 
constructors to type expressions. However, we refrain from these additions since their comparably small 
benefits would not match the considerable complications they would create.

2. While a r (∀x A) ≡ ∀x (a r A) holds, r(∀x A) ≡ ∀x r A does not hold in general since r(∀x A) =
∃a a r (∀x A) = ∃a ∀x a r A whereas ∀x r A = ∀x ∃a a r A.

3. Regarding (c) vs. (d) we note that for Harrop formulas A, H(A) need not be equivalent to A. In fact, 
A and H(A) may even contradict each other. For example, if A is the Harrop formula ¬∀x (x = 0 ∨ x �= 0), 
then H(A) is ¬∃a ∀x (a = Left(Nil) ∧ x = 0 ∨ a = Right(Nil) ∧ x �= 0) which is intuitionistically provable 
from 0 �= 1. On the other hand ¬A is provable in classical logic. Hence, rA → A is classically contradictory 
and therefore unprovable in RIFP. The reason for this difference between A and rA is logical, more precisely 
it lies in the uniform interpretation of the universal quantifier which forbids a realizer of a formula ∀x B to 
depend on x. In contrast, in Kleene realizability the main source of discrepancy between realizability and 
truth is computational and follows from the existence of undecidable predicates. For example, the formula 

C
Def= ∀x ∈ N(Halt(x) ∨ ¬Halt(x)) is classically true but not realizable since any realizer, which in Kleene 

realizability has to be computable, would solve the halting problem (and hence ¬C is classically false but 
realizable). In our setting C is realizable since the domain D admits non-computable functions.

4. A crucial property of our realizability interpretation is that ⊥ can be a realizer of a formula. For 
example, a r (False → A) for any a : τ(A). In particular, ⊥ r (False → A) for any non-Harrop formula A. 
This enables us to manipulate non-terminating computation in logic and extract non-terminating programs 
from logical proofs. On the other hand, ⊥ r A does not hold if A is a Harrop formula.

5. Although, by Lemma 15 (e), realizers are typable, they may be partial as remarked above. Therefore 
our realizability is closer to Kleene’s realizability by (codes of) partial recursive functions [40], rather than 
Kreisel’s modified realizability [44] whose characteristic feature is that realizers are typed and total. For 
example, it is easy to see that the schema Independence of Premise, (A → ∃x ∈ N B) → ∃x ∈ N (A → B)
where A is a Harrop formula, which is realizable in modified realizability, is not realizable in our system.
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6. Despite the availability of classical logic through disjunction-free axioms our interpretation is very 
different from Krivine’s classical realizability [45,46]. While our interpretation fundamentally rests on the 
intuitionistic interpretation of disjunction as a problem whose solution requires a decision between two alter-
natives, Krivine’s classical realizability is formulated in the negative fragment of logic given with implication, 
conjunction and universal quantification as the only logical connectives. In [56] it is shown that Krivine’s 
realizability (roughly) corresponds to Gödel’s negative translation followed by intuitionistic realizability.

4. Soundness

The Soundness Theorem stating that provable formulas are realizable is the theoretical foundation for 
program extraction.

Theorem 2 (Soundness). Let A be a set of nc axioms. From an IFP(A) proof of a formula A one can extract 
a closed program M : τ(A) such that M r A is provable in RIFP(A).

More generally, let Γ be a set of Harrop formulas and Δ a set of non-Harrop formulas. Then, from an 
IFP(A) proof of a formula A from the assumptions Γ, Δ one can extract a program M with FV(M) ⊆ �u

such that �u : τ(Δ) � M : τ(A) and M r A are provable in RIFP(A) from the assumptions H(Γ) and �u r Δ.
Moreover, all typing judgements above are derivable by the rules of Lemma 13.

In this Section we prove this theorem (Sect. 4.1) and read off from it a program extraction procedure for 
IFP-proofs (Sect. 4.2). We also study the realizers of natural numbers (Sect. 4.3) and wellfounded induction 
(Sect. 4.4).

Remarks. 1. From the general version of the Soundness Theorem one sees that Harrop formulas B can be 
freely used as assumptions (or axioms) as long as their Harrop interpretations H(B) are true. For example, 
BT≺ (Brouwer’s Thesis, defined in Sect. 2.2) is a Harrop formula (for an arbitrary relation ≺) and one 
can show that H(BT≺) is equivalent to BTr≺ and hence true. Therefore, BT≺ (without restriction on the 
relation ≺) can be used as an axiom in a proof without spoiling program extraction.

2. Since RIFP(A) is an instance of IFP it follows from the Tarskian soundness of IFP (see Sect. 2.1) that 
the statements M : τ(A) and M r A in the Soundness Theorem are true, in particular M denotes indeed a 
realizer of A.

4.1. Proof of the soundness theorem

The expected proof of the Soundness Theorem by structural induction on IFP derivations faces the 
obstacle that in order to prove realizability of s.p. induction and coinduction one needs realizers for the 
monotonicity of the operators in question, and this, in turn, requires the realizability of s.p. induction and 
coinduction. We escape this circularity by introducing an equivalent system IFP′ for which soundness can be 
proven by induction on the length of derivations. The only difference between the two systems is that IFP′

requires a monotonicity proof for the operator as an additional premise of s.p. induction and coinduction.
Let Mon(Φ) be the following formula expressing the monotonicity of Φ:

Mon(Φ) Def= X ⊆ Y → Φ(X) ⊆ Φ(Y )

where X and Y are fresh predicate variables. The system IFP′ is obtained from IFP by replacing the rules 
IND(Φ, P ) and COIND(Φ, P ) by

Φ(P ) ⊆ P Mon(Φ)
μ(Φ) ⊆ P

IND′(Φ, P ) (∗)
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P ⊆ Φ(P ) Mon(Φ)
P ⊆ ν(Φ) COIND′(Φ, P ) (∗)

(∗) is the side condition that the free assumptions in the proof of Mon(Φ) must not contain X or Y free.
The modified rules SI′(Φ, P ), HSI′(Φ, P ), SCI′(Φ, P ), HSCI′(Φ, P ), are defined similarly.
By the length of a derivation we mean the number of occurrences of derivation rules.

Lemma 16. If IFP, IFP′, or RIFP proves Γ � A, then the same system proves Γ[P/X] � A[P/X], Γ[P/X̂] �
A[P/X̂] and, if applicable, Γ[ρ/α] � A[ρ/α], with the same derivation length, where A, P , X, ρ, α are 
arbitrary formulas, predicates, predicate variables, types, type variables respectively, and X̂ is an arbitrary 
predicate constant that does not appear in any axiom.

Proof. Easy structural induction on derivations. �
Remark. Important instances of Lemma 16 are derivations of Mon(Φ), which occur as premises of the rules 

IND′ and COIND′. If we replace in Mon(Φ) one or both of the predicate variables X and Y by different 
fresh predicate constants, say X̂ and Ŷ , then, by Lemma 16, the resulting formulas have derivations of the 
same length. This fact will be used in the soundness proof for IFP′ (Theorem 3).

Lemma 17.

(a) If RIFP proves a r A from assumptions that do not contain the predicate variable X and if P is a non-
Harrop predicate of the same arity as X, then RIFP proves a r (A[P/X]) from the same assumptions.

(b) If RIFP proves a r (A[X̂/X]) from assumptions that do not contain the predicate constant X̂ and if P is 
a Harrop predicate of the same arity as X, then RIFP proves a r (A[P/X]) from the same assumptions.

Proof. From a r A we get, by Lemma 16, (a r A)[R(P )/X̃][τ(P )/αX ] which, by Lemma 15 (a), is the same 
as a r (A[P/X]) provided P is non-Harrop.

From a r (A[X̂/X]) we get, by Lemma 16, (a r (A[X̂/X]))[H(P )/X̂] which, by Lemma 15 (b), is the same 
as a r (A[P/X]) provided P is Harrop. �

In Theorem 3 we will use the following monotone predicate transformers:

(f−1 ◦Q)(�x, a) Def= Q(�x, f a) (f ◦Q)(�x, b) Def= ∃a (f a = b ∧Q(�x, a))
(a−1 ∗Q)(�x) Def= Q(�x, a) (a ∗ P )(�x, b) Def= a = b ∧ P (�x)
Δ(P )(�x, b) Def= P (�x) ∃(Q)(�x) Def= ∃aQ(�x, a)

The next lemma states their relevant properties. We omit the easy proofs.

Lemma 18. Equivalences.

f−1 ◦ (g−1 ◦Q) ≡ (g ◦ f)− ◦Q f ◦ (g ◦Q) ≡ (f ◦ g) ◦Q
a−1 ∗ (f−1 ◦Q) ≡ (f a)−1 ∗Q f ◦ (a ∗ P ) ≡ (f a) ∗ P
f−1 ◦ Δ(P ) ≡ Δ(P ) ∃(f ◦Q) ≡ ∃(Q)

f−1 ◦ P ∩ g−1 ◦Q ≡ 〈f, g〉−1 ◦ (πLeft
−1 ◦ P ∩ πRight

−1 ◦Q)

f ◦ P ∪ g ◦Q ≡ [f + g] ◦ (Left ◦ P ∪ Right ◦Q)
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Adjunctions.

Q ⊆ f−1 ◦Q′ ↔ f ◦Q ⊆ Q′

P ⊆ a−1 ∗Q ↔ a ∗ P ⊆ Q

Q ⊆ Δ(P ) ↔ ∃(Q) ⊆ P

Realizability. Below let Q, Q′ be non-Harrop predicates, P, P ′ Harrop predicates, f : τ(Q) ⇒ τ(Q′) and 
a : τ(Q):

f r (Q ⊆ Q′) ↔ R(Q) ⊆ f−1 ◦ R(Q′) ↔ f ◦ R(Q) ⊆ R(Q′)
a r (P ⊆ Q) ↔ H(P ) ⊆ a−1 ∗ R(Q) ↔ a ∗ H(P ) ⊆ R(Q)
H(Q ⊆ P ) ↔ R(Q) ⊆ Δ(H(P )) ↔ ∃(R(Q)) ⊆ H(P )
H(P ⊆ P ′) ↔ H(P ) ⊆ H(P ′)

R(Q ∩Q′) ≡ πLeft
−1 ◦ R(Q) ∩ πRight

−1 ◦ R(Q′)

R(Q ∪Q′) ≡ Left ◦ R(Q) ∪ Right ◦ R(Q′)

Theorem 3 (IFP′ version of Soundness). Let A be a set of nc axioms. From an IFP′(A) proof of a formula 
A one can extract a closed program M : τ(A) such that M r A is provable in RIFP(A).

More generally, let Γ be a set of Harrop formulas and Δ a set of non-Harrop formulas. Then, from an 
IFP′(A) proof of a formula A from the assumptions Γ, Δ one can extract a program M with FV(M) ⊆ �u

such that �u : τ(Δ) � M : τ(A) and M r A are provable in RIFP(A) from the assumptions H(Γ) and �u r Δ.
Moreover, all typing judgements above are derivable by the rules of Lemma 13.

Proof. By induction on the length of IFP′ derivations.
In the following we mean by ‘induction hypothesis’ always an induction hypothesis of the induction on 

the length of derivations. In order to avoid confusion with IFP′ induction on a strictly positive inductive 
predicate μ(Φ), we will refer to the latter always as ‘s.p. induction’.

The logical rules are straightforward. We only look at one case, to highlight the difference to other forms 
of realizability. In Sect. 4.2 the extracted programs for all logical rules are shown.

Existence elimination. Assume we have derivations of ∃x A and ∀x (A → B) where x is not free in B. We 
need a realizer of B. By the first induction hypothesis we have realizers d of ∃x A, that is, d realizes A[y/x]
for some y (in the case that A is Harrop, this means that d = Nil and H(A[y/x]) holds). Consider the case 
that B is non-Harrop. Then the second induction hypothesis yields a realizer e of ∀x (A → B), that is, e
realizes A[z/x] → B for all z. If A is Harrop, the latter means that e realizes B provided H(A[z/x]) holds 
for some z. But H(A[y/x]) holds. Hence e realizes B. If A is non-Harrop then e f realizes B for all f that 
realize A[z/x] for some z. Since d realizes A[y/x], it follows that e d realizes B. If B is Harrop, then the 
second induction hypothesis means that H(B) holds provided A[z/x] is realizable for some z. Since A[y/x]
is realizable, it follows H(B) which means that Nil realizes B.

For s.p. induction and s.p. coinduction we consider an operator Φ = λX Q, hence Φ(P ) = Q[P/X].
IND′(Φ, P ). Assume we have derived μ(Φ) ⊆ P by s.p. induction from Φ(P ) ⊆ P , that is, Q[P/X] ⊆ P , 

and Mon(Φ), that is, X ⊆ Y → Q ⊆ Q[Y/X]. It is our goal to find a realizer of μ(Φ) ⊆ P .
(a) Case Φ and P are both non-Harrop. We want f̃ : (fixαX . τ(Q)) ⇒ τ(P ) realizing μ(Φ) ⊆ P , that 

is, by Lemma 18, μ(λX̃ R(Q)) ⊆ f̃−1 ◦R(P ). We attempt to prove this by s.p. induction, so our goal is to 
prove

R(Q)[f̃−1 ◦ R(P )/X̃] ⊆ f̃−1 ◦ R(P ) .

By the induction hypothesis we have s : τ(Φ(P )) ⇒ τ(P ) such that s r (Φ(P ) ⊆ P ), that is, by Lemma 18,
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R(Q[P/X]) ⊆ s−1 ◦ R(P ), (1)

and also some m : (αX ⇒ αY ) ⇒ τ(Q) ⇒ τ(Q)[αY /αX ] such that m r (Mon(Φ)) and hence also 
m r (Mon(Φ)[P/Y ]), by Lemma 17 (a). Therefore, ∀f (X̃ ⊆ f−1 ◦R(P ) → R(Q) ⊆ (m f)−1 ◦R(Q[P/X])). 
Using this with f

Def= f̃ , where f̃ is yet unknown, and X̃
Def= f̃−1 ◦ R(P ) we obtain, using Lemma 16 for 

RIFP′,

R(Q)[f̃−1 ◦ R(P )/X̃] ⊆ (mf̃)−1 ◦ R(Q[P/X]) (2)

Now,

R(Q)[f̃−1 ◦ R(P )/X̃]
(2)
⊆ (mf̃)−1 ◦ R(Q[P/X])
(1)
⊆ (mf̃)−1 ◦ (s−1 ◦ R(P ))

= (s ◦mf̃)−1 ◦ R(P )

Therefore we define recursively f̃
rec= s ◦m f̃ and are done. Clearly, f̃ has the right type.

(b) Case Φ and P are both Harrop (then μ(Φ) and Q[P/X] are Harrop). We aim to prove H(μ(Φ) ⊆ P ), 
that is, μ(λX HX(Q)) ⊆ H(P ). We try s.p. induction, so our goal is to prove

HX(Q)[H(P )/X] ⊆ H(P ).

By the induction hypothesis we have H(Φ(P ) ⊆ P ), that is,

H(Q[P/X]) ⊆ H(P ), (3)

and H(Mon(Φ)[X̂/X][Ŷ /Y ]) (see the remark after Lemma 16). The latter yields, by Lemma 17 (b), the 
derivability of H(Mon(Φ)[X̂/X][P/Y ]), that is, X̂ ⊆ H(P ) → H(Q[X̂/X]) ⊆ H(Q[P/X]). Using Lemma 16
for RIFP with X̂

Def= H(P ) we obtain H(Q[X̂/X])[H(P )/X̂] ⊆ H(Q[P/X]) which is the same as

HX(Q)[H(P )/X] ⊆ H(Q[P/X]) (4)

since H(Q[X̂/X])[H(P )/X̂] = HX(Q)[H(P )/X]. (4) and (3) yield the desired inclusion HX(Q)[H(P )/X] ⊆
H(P ).

(c) Case Φ is non-Harrop, P is Harrop (then μ(Φ) and Q[P/X] are non-Harrop). We aim to prove 
H(μ(Φ) ⊆ P ), which, by Lemma 18, is equivalent to μ(λX̃ R(Q)) ⊆ Δ(H(P )). Trying s.p. induction, our 
goal is to prove

R(Q)[Δ(H(P ))/X̃] ⊆ Δ(H(P )).

By the induction hypothesis we have H(Φ(P ) ⊆ P ), that is,

R(Q[P/X]) ⊆ Δ(H(P ))), (5)

and m : τ(Q) ⇒ τ(Q[Ŷ /Y ]) s.t. m r (Mon(Φ)[Ŷ /Y ]). Hence by Lemma 17 (b), m r (Mon(Φ)[P/Y ]) that is, 
X̃ ⊆ Δ(H(P )) → R(Q) ⊆ m−1 ◦ R(Q[P/X]). Using this with X̃

Def= Δ(H(P )) we obtain

R(Q)[Δ(H(P ))/X̃] ⊆ m−1 ◦ R(Q[P/X]). (6)
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Now,

R(Q)[Δ(H(P ))/X̃]
(6)
⊆ m−1 ◦ R(Q[P/X])
(5)
⊆ m−1 ◦ Δ(H(P ))

= Δ(H(P ))

(d) Case Φ is Harrop, P is non-Harrop.
Subcase X is not free in Q. The goal to find a realizer ã : τ(P ) of μ(Φ) ⊆ P can be written as 

μ(λX H(Q)) ⊆ ã−1◦R(P ) whose s.p. inductive proof, in this case, boils down to proving H(Q) ⊆ ã−1◦R(P ). 
But such an ã is provided by the induction hypothesis as a realizer of Φ(P ) ⊆ P .

Subcase X is free in Q (then Q, Q[P/X] and Mon(Φ)[X̂/X][P/Y ] are non-Harrop). We need to find 
ã : τ(P ) such that ã r (μ(Φ) ⊆ P ), which is equivalent to μ(λX HX(Q)) ⊆ ã−1 ∗R(P ). A proof attempt by 
s.p. induction leads to the goal

HX(Q)[ã−1 ∗ R(P )/X] ⊆ ã−1 ∗ R(P ).

By the induction hypothesis we have s : τ(Φ(P )) ⇒ τ(P ) such that s r (Φ(P ) ⊆ P ), equivalently,

R(Q[P/X]) ⊆ s−1 ◦ R(P ), (7)

and some m : αY ⇒ τ(Q[X̂/X]) such that m r (Mon(Φ)[X̂/X]) and hence, by Lemma 17 (a), also 
m r (Mon(Φ)[X̂/X][P/Y ]), that is, by Lemma 18,

∀a (X̂ ⊆ a−1 ∗ R(P ) → HX(Q)[X̂/X] ⊆ (ma)−1 ∗ R(Q[P/X]).

Using this with a 
Def= ã (yet unknown) and X̂

Def= ã−1 ∗ R(P ) we obtain

HX(Q)[ã−1 ∗ R(P )/X] ⊆ (ma)−1 ∗ R(Q[P/X]) (8)

Now,

HX(Q)[ã−1 ∗ R(P )/X]
(8)
⊆ (mã)−1 ∗ R(Q[P/X])
(7)
⊆ (mã)−1 ∗ (s−1 ◦ R(P ))

= (s (mã))−1 ∗ R(P )

Hence, the recursive definition ã
rec= s (m ̃a) provides a solution. Clearly, ã has the right type τ(P ).

COIND′(Φ, P ). Assume we have derived P ⊆ ν(Φ) by s.p. coinduction from P ⊆ Φ(P ), i.e. P ⊆ Q[P/X], 
and Mon(Φ). It is our goal to find a realizer of P ⊆ ν(Φ).

(a) Case Φ and P are both non-Harrop. Dual to case (a) for IND′.
(b) Case Φ and P are both Harrop. Dual to case (b) for IND′.
(c) Case Φ is non-Harrop, P is Harrop (then ν(Φ), Q[P/X] and Q[Y/X] are non-Harrop). We aim to 

prove ã r (P ⊆ ν(Φ)), for suitable ã : fixαX . τ(Q), which is equivalent to ã ∗H(P ) ⊆ ν(λX̃ R(Q)). Thanks 
to s.p. coinduction, this reduces to the goal

ã ∗ H(P ) ⊆ R(Q)[ã ∗ H(P )/X̃].
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The induction hypothesis yields s : τ(Φ(P )) such that s r (P ⊆ Φ(P )), that is,

s ∗ H(P ) ⊆ R(Q[P/X]), (9)

and some m : αY ⇒ τ(Q[X̂/X]) ⇒ τ(Q[Y/X]) such that m r (Mon(Φ)[X̂/X]). By Lemma 17 (b), this entails 
that m r (Mon(Φ)[P/X]), that is, by Lemma 18, ∀a (a ∗ H(P ) ⊆ Ỹ → (m a) ◦ R(Q[P/X]) ⊆ R(Q[Y/X])). 
Using this with a 

Def= ã and Ỹ
Def= ã ∗ H(P ) we arrive at

(mã) ◦ R(Q[P/X]) ⊆ R(Q)[ã ∗ H(P )/X̃]. (10)

Now,

R(Q)[ã ∗ H(P )/X̃]
(10)
⊇ (mã) ◦ R(Q[P/X])
(9)
⊇ (mã) ◦ (s ∗ H(P ))

= (mã s) ∗ H(P )

Therefore, we set ã rec= m ̃a s which clearly is of the right type fixαX . τ(Q).
(d) Case Φ is Harrop, P is non-Harrop.
Subcase X is not free in Q. We have to show H(P ⊆ ν(Φ)), equivalently, ∃(R(P )) ⊆ ν(λX H(Q)). 

By s.p. coinduction, this reduces to ∃(R(P )) ⊆ H(Q) which is equivalent to the induction hypothesis, 
H(P ⊆ Q).

Subcase X is free in Q (then Q, Q[P/X] and Mon(Φ)[P/X][X̂/Y ] are non-Harrop). We need to prove 
H(P ⊆ ν(Φ)), that is, ∃(R(P )) ⊆ ν(λX HX(Q)). S.p. coinduction reduces this to the goal

∃(R(P )) ⊆ HX(Q)[∃(R(P ))/X].

By the induction hypothesis we have s r (P ⊆ Φ(P )), equivalently,

s ◦ R(P ) ⊆ R(Q[P/X]), (11)

and H(Mon(Φ)[P/X][X̂/Y ]), that is,

∃(R(P )) ⊆ X̂ → ∃(R(Q[P/X])) ⊆ H(Q[X̂/X]).

Using Lemma 16 for RIFP′ with X̂
Def= ∃(R(P )) yields

∃(R(Q[P/X])) ⊆ H(Q[X̂/X])[∃(R(P ))/X̂] = HX(Q)[∃(R(P ))/X]. (12)

Now,

HX(Q)[∃(R(P ))/X]
(12)
⊇ ∃(R(Q[P/X]))

(11)
⊇ ∃(s ◦ R(P ))

≡ ∃(R(P )).

We conclude the proof with the strong and half strong variants of s.p. induction and coinduction. Since, 
as remarked in Sect. 2.1, these variants are derivable from ordinary s.p. induction and coinduction, they do 
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not need to be treated separately. We will do this nevertheless in order to obtain simpler realizers. We only 
derive these simplified realizers for those instances that will be used later although simplified realizers can 
be given in all cases where the conclusion of a rule is a non-Harrop formula.

HSCI′(Φ, P ). Assume we have derived P ⊆ Φ(P ) ∪ν(Φ), that is, P ⊆ Q[P/X] ∪ν(Φ), as well as Mon(Φ), 
that is, X ⊆ Y → Q ⊆ Q[Y/X].

Case Φ and P are both non-Harrop. We are looking for f̃ : τ(P ) ⇒ fixαX . τ(Q), realizing P ⊆ ν(Φ), 
that is, f̃ ◦ R(P ) ⊆ ν(R(Φ)). We will attempt to prove this by half strong coinduction, so our goal is to 
prove (since R(Φ) = λX̃ R(Q))

f̃ ◦ R(P ) ⊆ R(Q)[f̃ ◦ R(P )/X̃] ∪ ν(R(Φ)) .

By the induction hypothesis we have s : τ(P ) ⇒ (τ(Q)[τ(P )/αX ] + fixαX . τ(Q)) such that s r (P ⊆
Φ(P ) ∪ ν(Φ)), that is, by Lemma 18 for IFP′,

s ◦ R(P ) ⊆ Left ◦ R(Q[P/X]) ∪ Right ◦ ν(R(Φ)) (13)

and, using Lemma 14 (c), some m : (αX ⇒ αY ) ⇒ τ(Q) ⇒ τ(Q)[αY /αX ]) such that m r (Mon(Φ)) and 
hence also m r (Mon(Φ[P/X])), by Lemma 17 (a). Therefore, ∀f (f ◦ R(P ) ⊆ Ỹ → m f ◦ R(Q[P/X]) ⊆
R(Q[Y/X])). Using this with f

Def= f̃ , where f̃ is yet unknown, and Ỹ
Def= f̃ ◦ R(P ) we obtain, using again 

Lemma 16

mf̃ ◦ R(Q[P/X]) ⊆ R(Q)[f̃ ◦ R(P )/X̃] . (14)

Now,

R(Q)[f̃ ◦ R(P )/X̃] ∪ ν(R(Φ))
(14)
⊇ (mf̃ ◦ R(Q[P/X])) ∪ ν(R(Φ))

Lemma 18≡ [(mf̃) + id] ◦ (Left ◦ R(Q[P/X]) ∪ Right ◦ ν(R(Φ)))
(13)
⊇ [(mf̃) + id] ◦ (s ◦ R(P ))

Lemma 18≡ ([(mf̃) + id] ◦ s) ◦ R(P )

Therefore we define recursively f̃
rec= [(m f̃) + id] ◦ s and are done. Clearly, f̃ has the right type.

SCI′(Φ, P ), case Φ and P are both non-Harrop. Using the induction hypothesis with realizers s of 
P ⊆ Φ(P ∪ ν(Φ)), and m of Mon(Φ[P/X]), one sees, with a similar reasoning as above, that the recursive 
definition f̃

rec= (m [f̃ + id]) ◦ s provides a realizer of P ⊆ ν(Φ).
HSI′(Φ, P ), case Φ is Harrop but not constant, P is non-Harrop. Using the induction hypothesis with 

realizers s of Φ(P ) ∩ μ(Φ) ⊆ P , and m of Mon(Φ[P/X]), one sees that the recursive definition ã
rec= s (m ̃a)

provides a realizer of μ(Φ) ⊆ P (which is the same as the realizer for the corresponding instance of s.p. 
induction). �
Lemma 19. Mon(Φ) is provable in IFP’.

Proof. We define MonX(P ) Def= X ⊆ X ′ → P ⊆ P [X ′/X] where X ′ is a fresh variable accompanied with 
X. Then, for Φ = λX P , Mon(Φ) is equivalent to MonX(P ). Therefore, we prove MonX(P ) by induction 
on P . That is, prove MonX(P ) assuming that MonY (Q) holds for every operator λY Q such that Q is a 
subexpression of P .
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For the case that P has the form μ(λY Q) we assume X ⊆ X ′ and show μ(λY Q) ⊆ μ(λY Q[X ′/X]). 
Here, we may assume that Y /∈ {X, X ′}. We use IFP’-induction on μ(λY Q) and hence have to show

Q[μ(λY Q[X ′/X])/Y ] ⊆ μ(λY Q[X ′/X]) (15)

and Mon(λY Q), that is, MonY (Q). The latter holds by the induction hypothesis. But MonX(Q) also holds. 
Therefore, Q ⊆ Q[X ′/X]. Thus, by Lemma 16, Q[μ(λY Q[X ′/X])/Y ] ⊆ Q[X ′/X][μ(λY Q[X ′/X])/Y ]
holds. Furthermore, by closure, Q[X ′/X][μ(λY Q[X ′/X])/Y ] ⊆ μ(λY Q[X ′/X]). Thus, we have (15).

For the case that P has the form ν(λY Q), the argument is completely dual if we replace MonX(P ) by 
the equivalent formula X ′ ⊆ X → P [X ′/X] ⊆ P .

The remaining cases are easy using the extracted programs in Sect. 4.2 as a guide. �
Proof of the Soundness Theorem for IFP (Theorem 2). From an IFP proof one can obtain an IFP’ proof 
of the same formula by Lemma 19. Therefore we obtain the result by Theorem 3. �
4.2. Program extraction

The proof of the Soundness Theorem contains an algorithm for computing the realizing program M which 
we now describe. We also note how to produce a Haskell program at the end of this section. For brevity we 
write a derivation judgement Γ � d : A as dA, suppressing the context.

For an IFP derivation dA the extracted program ep(dA) is defined as

ep(dA) Def= ep′(pt(dA))

where pt(·) is the transformation of IFP proofs into IFP′ proofs based on Lemma 19, and ep′(·) is the 
program extraction procedure based on Theorem 3.

The transformation pt(dA) simply replaces recursively every subderivation of the form Ind(eΦ(P )⊆P )
by Ind′(pt(eΦ(P )⊆P ), MonMon(Φ)

Φ ) where MonMon(Φ)
Φ is the proof described in Lemma 19. Similarly, 

CoInd(eΦ(P )⊆P ) is replaced by CoInd′(pt(eΦ(P )⊆P ), MonMon(Φ)
Φ ), and so on.

The extraction procedure ep′(dA) is defined by recursion on derivations as follows:
If A is Harrop then ep′(dA) Def= Nil. Hence, in the following we assume that the proven formula is 

non-Harrop.
Closure and coclosure are realized by the identity:

ep′(ClΦ(μ(Φ))⊆μ(Φ)
Φ ) = ep′(CoClν(Φ)⊆Φ(ν(Φ))

Φ ) = λa . a (16)

For induction, in the case where P is non-Harrop, the extracted program is

ep′(Ind′(dΦ(P )⊆P , eMon(Φ))μ(Φ)⊆P ) =
{

rec (λa . ep′(d) ◦ ep′(e) a) if Φ is non-Harrop
rec (λa . ep′(d) (ep′(e[X̂/X]) a)) otherwise.

(17)

For coinduction in the case where Φ is non-Harrop, the extracted program is

ep′(CoInd′(dP⊆Φ(P ), eMon(Φ))P⊆ν(Φ)) =
{

rec (λa . ep′(e) a ◦ ep′(d)) if P is non-Harrop
rec (λa . (ep′(e[X̂/X]) a ep′(d))) otherwise.

(18)
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For the strong and half-strong versions of induction and coinduction we only present a few cases that will 
be used later. For half strong induction in the case where Φ is Harrop but not constant and P is non-Harrop, 
the extracted program is the same as for induction, namely

ep′(HSInd(dΦ(P )∩μ(Φ)⊆P , eMon(Φ))μ(Φ)⊆P ) = rec (λa . ep′(d)(ep′(e[X̂/X]) a)).

For half strong coinduction in the case where both Φ and P are non-Harrop, the extracted program is

ep′(HSCoInd(dP⊆Φ(P )∪ν(Φ), eMon(Φ))P⊆ν(Φ)) = rec (λa . [ep′(e) a + id] ◦ ep′(d)). (19)

For strong coinduction in the case where both Φ and P are non-Harrop, the extracted program is

ep′(SCoInd(dP⊆Φ(P∪ν(Φ)), eMon(Φ))P⊆ν(Φ)) = rec (λa . (ep′(e)[a + id]) ◦ ep′(d)).

Assumptions are realized by variables, and the congruence rule does not change the realizer:

ep′(uAi
i ) = ui

ep′(CongP (dP (s), es=t)P (t)) = ep′(d)

The logical rules are realized as follows:

ep′(∨+
l,B(dA)A∨B) = Left(ep′(d))

ep′(∨+
r,A(dB)A∨B) = Right(ep′(d))

ep′(∨−(dA∨B , eA→C , fB→C)C) = case ep′(d)of

{Left(a) → ep′(e) ∗ a ;

Right(b) → ep′(f) ∗ b}

where ep′(e) ∗ a means ep′(e) a if A in non-Harrop and ep′(e) if A is Harrop. Similarly for ep′(f) ∗ b.

ep′(∧+(dA, eB)A∧B) =

⎧⎪⎨
⎪⎩

ep′(d) if B is Harrop
ep′(e) if A is Harrop
Pair(ep′(d), ep′(e)) otherwise

ep′(∧−
l (dA∧B)A) =

{
ep′(d) if B is Harrop
πLeft(ep′(d)) otherwise

ep′(∧−
r (dA∧B)B) =

{
ep′(d) if A is Harrop
πRight(ep′(d)) otherwise

ep′((→+
uA (dB))A→B) =

{
ep′(d) if A is Harrop
λu. ep′(d) otherwise

ep′((→− (dA→B , eA))B) =
{

ep′(d) if A is Harrop
ep′(d) ep′(e) otherwise

ep′(∀+
x (dA)∀xA) = ep′(d)

ep′(∀−t (d∀xA)A[t/x]) = ep′(d)

ep′(∃+ (dA[t/x])∃xA) = ep′(d)
λxA,t
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ep′(∃−(d∃xA, e∀x (A→B))B) =
{

ep′(e) if A is Harrop
ep′(e) ep′(d) otherwise

Extraction into Haskell By the Soundness Theorem (Theorem 2) one can extract from a proof of a formula 
A a realizing program M such that the typing M : τ(A) can be derived using the rules given in Lemma 13. 
The extraction procedure ep′(·) implicitly computes not only M but a typing derivation for M : τ(A). 
Composing this with the translation of RIFP programs into Haskell one obtains an extraction procedure 
directly into Haskell. It is easy to see that the composed procedure can be obtained by the following small 
modifications of ep′(·) which we call eph′(·). In addition to replacing Pair(M, N) by (M, N), the definition 
of ep′(·) is changed for closure and coclosure derivation rules with Φ = λXP , α = αX , and ρ = τ(P ) from 
(16) to

eph′(ClΦ(μ(Φ))⊆μ(Φ)
Φ ) = rollCα,ρ

eph′(CoClν(Φ)⊆Φ(ν(Φ))
Φ ) = unrollCα,ρ

For induction and coinduction with Φ = λXQ, α = αX and ρ = τ(Q), we use the following definitions 
instead of (17) and (18).

eph′(Ind′(dΦ(P )⊆P , eMon(Φ))μ(Φ)⊆P ) =
{

rec (λa . eph′(d) ◦ (eph′(e) a) ◦ unrollCα,ρ
) if Φ is non-Harrop

rec (λa . eph′(d) (eph′(e[X̂/X]) a)) otherwise.

eph′(CoInd′(dP⊆Φ(P ), eMon(Φ))P⊆ν(Φ)) =
{

rec (λa. rollCα,ρ
◦ (eph′(e) a) ◦ eph′(d)) if P is non-Harrop

rec (λa . (eph′(e[X̂/X]) a eph′(d))) otherwise.

Similar modifications need to be carried out for the other induction and coinduction schemes.

4.3. Realizing natural numbers

In Sect. 2.3.3 we defined natural numbers as a subset of the real numbers through the inductive predicate 
N(x) μ= x = 0 ∨ N(x − 1). This view of natural numbers is abstract since no concrete representation 
is associated with it. A concrete representation of natural numbers is provided through the realizability 
interpretation of the predicate N. Note that the formula N(x) is not Harrop since it contains a disjunction 
at a strictly positive position. We have τ(N) = nat = fixα . 1 +α, the type of natural numbers (see Sect. 3.3). 
Realizability for N works out as

a rN(x) μ= a = Left(Nil) ∧ x = 0 ∨ ∃b (a = Right(b) ∧ b rN(x− 1)) .

Therefore, a r N(x) means that a is the unary representation of the natural number x.

Lemma 20.

(a) (r N(x)) ↔ N(x)
(b) (r ∃x ∈ N A(x)) ↔ (∃x ∈ N r A(x)).
(c) H(∀x ∈ N A(x)) ↔ ∀x ∈ N H(A(x)) if A(x) is a Harrop formula.
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(d) a r N(x) ∧ b r N(y) → (a = b ↔ x = y).

Proof. Both implications of part (a) are easily proven by induction.
Parts (b) and (c) follow immediately from (a).
To prove part (d) one can use that natural numbers are non-negative and subtraction is an injective 

function in its first argument. �
Remark. In the parts (a-c) of Lemma 20, N may be replaced by any predicate that contains neither 

implications nor universal quantifiers nor free predicate variables. However, (d) depends on the concrete 
definition of N and specific properties of the theory of real numbers.

By Lemma 20 it is safe to identify natural numbers with their realizers. Henceforth we will use the vari-
ables n, m, k, l, . . . for both. Hence, in an IFP proof a natural number is a special real number while in an 
extracted program it is a special domain element. Recall from Sect. 2.3.3 that rational numbers are defined 

by the predicate Q(q) Def= ∃x, y, z ∈ N (z �= 0 ∧ q · z = x − y) which corresponds to a representation of 
rational numbers by triples of natural numbers (n, m, k) (k �= 0) denoting (n −m)/k. Although the corre-
sponding statement of Lemma 20 (d) (i.e. uniqueness of realizers) does not hold for Q, the generalizations 
of Lemma 20 (a–c) do apply to Q. Therefore, one can use realizers to express rational numbers.

Example 2. In Example 1, we proved A 
Def= ∀x, y (N(x) → N(y) → N(x + y)). We have τ(A) = nat ⇒

nat ⇒ nat. According to Lemma 19, the formula Mon(ΦN) Def= X ⊆ Y → ΦN(X) ⊆ ΦN(Y ) expressing 
the monotonicity of the operator ΦN is provable in IFP’ and the following program monN : (αX ⇒ αY ) ⇒
1 + αX ⇒ 1 + αY is extracted from the proof.

monN = λf.λm. case m of{Left(a) → Left(a);Right(b) → Right(f(b))}

Furthermore, from the proof of the induction premise we extract the following program of type (1 +nat) ⇒
nat.

s = (λm.casemof {Left(c) → n;Right(c) → Right(c)})

Here, n is the realizer of N(x). Therefore, by (17) of Sect. 4.2, the realizer extracted from the proof of A is 
the following program of type nat ⇒ nat ⇒ nat

plus = λn. rec λf. s ◦ (monN f)

= λn. rec λf. λm. s((monN f)m) .

By program axiom (ii), s is strict. Therefore, by Lemma 12, we can rewrite

plusnm
rec= case m of{Left(a) → s(Left(a));Right(b) → s(Right(plus n b))}
rec= case m of{Left(a) → n;Right(b) → Right(plus n b)}.

4.4. Realizing wellfounded induction

In this section we work out in detail the realizers of wellfounded induction and its specializations 
(Sect. 2.2) as provided by the Soundness Theorem (Theorem 2). This will be important for understanding 
the programs extracted in Sect. 5.

Lemma 21 (Realizer of wellfounded induction). The schema of wellfounded induction, WfI≺,A(P ), is realized 
as follows. If s realizes Prog≺,A(P ) where P is non-Harrop, then Acc≺ ∩A ⊆ P is realized by
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- f̃
rec= λa. (s a (λa′. λb. f̃ a′)) if ≺ and A are both non-Harrop,

- f̃
rec= λa. (s a f̃) if ≺ is Harrop and A is non-Harrop,

- c̃
rec= s (λb. ̃c) if ≺ is non-Harrop and A is Harrop,

- rec s if ≺ and A are both Harrop.

Proof. Since WfI≺,A(P ) follows from WfI≺(A ⇒ P ) and the latter is an instance of induction, the extracted 
programs shown in the lemma can be obtained from Theorem 2. However, it is instructive to give some 
details of their derivations.

Recall that Acc≺ = μ(Φ) where Φ(X) = λx ∀y ≺ x X(y) and Prog≺(Q) = Φ(Q) ⊆ Q. Since Φ is a 
Harrop operator, Acc≺ is a Harrop predicate.

According to Theorem 2 and the program extraction procedure described in Sect. 4.2 the extracted 
realizer of Acc≺ ⊆ A ⇒ P is

f̃
rec= s′ (mf̃)

provided s′ r Prog≺(A ⇒ P ) and m r (Mon(Φ)[X̂/X]). Because s realizes Prog≺,A(P ), that is,

∀x (x ∈ A → ∀y (y ∈ A → y ≺ x → y ∈ P ) → x ∈ P )

and Prog≺(A ⇒ P ) expands to

∀x (∀y(y ≺ x → y ∈ A → y ∈ P ) → x ∈ A → x ∈ P )

it is clear that we can define

- s′
Def= λg.λa. (s a (λa′. λb. g b a′)) if ≺ and A are both non-Harrop,

- s′
Def= λf.λa. (s a f) if ≺ is Harrop and A is non-Harrop,

- s′
Def= s if A is Harrop.

The realizer m of Mon(Φ)[X̂/X], which expands to

X̂ ⊆ Y → ∀x (∀y ≺ x X̂(y)) → ∀y ≺ xY (y)

is easily extracted as

- λa. λb. a if ≺ is non-Harrop,
- λa. a if ≺ is Harrop.

From this, one can easily see that the extracted realizer of Acc≺ ⊆ A ⇒ P is as stated in the lemma. Since 
Acc≺ is Harrop it follows that the same program realizes the inclusion Acc≺ ∩A ⊆ P . �

Finally, we exhibit the realizers of Archimedean induction. We only look at the forms AIq and AIBq

since the principles AI and AIB have the same realizers and will not be used in the following.

Lemma 22 (Realizers of Archimedean induction).

AIq If s realizes ∀x �= 0 ((|x| ≤ q → P (2x)) → P (x)), where P is non-Harrop, then rec s realizes 
∀x �= 0 P (x).
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AIBq If s realizes ∀x ∈ B \ {0} (P (x) ∨ (|x| ≤ q ∧ B(2x) ∧ (P (2x) → P (x)))), where B and P are 
non-Harrop, then

a b
rec= case s bof {Left(c) → c;Right(b′, d) → d (a b′)} (20)

realizes ∀x ∈ B \ {0} P (x).

Proof. AIq is derived from half strong induction HSI as is shown in Lemma 2, and the realizer of the 
monotonicity of the operator in questions clearly is the identity. Therefore, as we studied in Section 4.2, it 
has the realizer a 

rec= s a, that is, rec s.
Clearly, the premise of AIBq(B, P ) implies the premise of AIq(B ⇒ P ). From a realizer s of the premise 

of the former one obtains the realizer

s′ = λa.λb. case s bof {Left(c) → c;Right(b′, d) → d (a b′)}

of the premise of the latter. Therefore, a 
rec= s′ a, that is,

a b
rec= case s bof {Left(c) → c;Right(b′, d) → d (a b′)}

realizes the conclusion ∀x ∈ P \ {0} B(x). �
5. Stream representations of real numbers

As a first serious application of IFP we present a case study about the specification and extraction of 
exact representations of real numbers. This will highlight many features of our system such as the use of 
classical axioms as well as partial and infinite realizers. We will continue the development of the system IFP
in Sect. 6 with the operational semantics of programs.

We study three representations of real numbers as infinite streams of discrete data: Cauchy representation, 
signed digit representation, and infinite Gray code [28,72]. We first recall each representation informally in 
the style of computable analysis [76]. Then we show how it can be obtained as the realizability interpretation 
of a suitable predicate built on the formalization of real numbers in IFP in Sect. 2.3. Hence, in this section 
all formal definitions and proofs take place in IFP(AR) where AR is the non computational axiom system 
for the real numbers introduced in Sect. 2.3 which includes the Archimedean property (AP) and Brouwer’s 
Thesis for nc relations (BTnc). In particular, in this instance of IFP the various versions of Archimedean 
Induction (Sect. 2.3.5) are valid.

For our purpose it is most convenient to work in the interval [−1, 1]. Everything could be easily transferred 
to the unit interval [0, 1] which is used in [72].

We will use the notation a0 : a1 : . . . to denote infinite streams, mostly in an informal setting but 
occasionally also for elements of the domain D that represent streams (as we did in Sect. 3.1).

5.1. Cauchy representation

Informal definition An infinite sequence a = (ai)i∈N of rational numbers that converges quickly to a real 
number x is called a Cauchy representation of x:

C(a, x) Def= ∀n ∈ N |x− an| ≤ 2−n .

We consider the Cauchy representation as the standard representation and call any other representation R
of real numbers (in [−1, 1]) computable if it is computably equivalent to the Cauchy representation restricted 
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to [−1, 1], i.e. R-representations can be effectively transformed into Cauchy representations and vice-versa. 
More precisely, if R(r, x) expresses that r is a R-representation of x we say that R is computable if there 
exist (possibly partial) computable functions ϕ, ψ such that for all a, r and x ∈ [−1, 1]

R(r, x) → C(ϕ(r), x) and C(a, x) → R(ψ(a), x) .

Note that all representations we will consider are functions or infinite sequences of discrete objects (ratio-
nal numbers or digits) possibly extended with undefinedness. There exist natural notions of computable 
functions between such representations (see [62], [76], [72]).

Formalization in IFP The Cauchy representation can be obtained through the realizability interpretation 
of the predicate

C(x) Def= ∀n ∈ N ∃q ∈ Q |x− q| ≤ 2−n .

By unfolding the definition of realizability one obtains a r C(x) ↔

∀n (a : nat ⇒ rat ∧ ∀b (b rN(n) → ∃q ((a b) rQ(q) ∧ |x− q| ≤ 2−n)))

where rat Def= τ(Q) = nat × nat × nat. By identifying natural numbers with their realizers, this simplifies 
to

a rC(x) ↔ a : nat ⇒ rat ∧ ∀n ∈ N ∃q ((an) rQ(q) ∧ |x− q| ≤ 2−n)

and by further expressing rational numbers through their realizers, it becomes

a rC(x) ↔ a : nat ⇒ rat ∧ ∀n ∈ N |x− an| ≤ 2−n .

Therefore a r C(x) ↔ C(a, x) where the infinite sequence a is given as a function on the natural numbers.
Alternatively, one can formalize the Cauchy representation coinductively by

C′(x) ν= ∃n ∈ N (|x− n| ≤ 1 ∧ C′(2x)).

Defining the type of streams of type ρ as

ρω
Def= fixα . ρ× α

the predicate C′ has the type τ(C′) = natω and we obtain the realizability interpretation

a rC′(x) ν= ∃n ∈ N, a′ (a = Pair(n, a′) ∧ |x− n| ≤ 1 ∧ a′ rC′(2x))

by identifying natural numbers with their realizers. Therefore, the two formalizations lead to different 
‘implementations’ of the Cauchy representation. However, they are equivalent in the sense that one can prove 
C(x) ↔ C′(x) and extract from the proof mutually inverse translations between the representations. The 
stream representation has the advantage that it permits ‘memoized’ computation due to a lazy operational 
semantics (see Sect. 6).
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5.2. Signed digit representation

Informal definition For an infinite sequence p = (pi)i<ω of signed digits pi ∈ {−1, 0, 1} set

�p�
Def=

∑
i<ω

pi2−i ∈ [−1, 1] . (21)

If x = �p�, then p is called a signed digit representation of x ∈ [−1, 1]. We set

S(p, x) Def= �p� = x .

The digit 0 is redundant since every x ∈ [−1, 1] has a binary representation, that is, a signed digit representa-
tion p ∈ {−1, 1}ω. However, the redundancy is needed to render the signed digit representation computable, 
in particular to be able to compute from a Cauchy representation of x a signed digit representation of x.

One easily sees that for d ∈ {−1, 0, 1}, p ∈ {−1, 0, 1}ω and x ∈ [−1, 1]

S(d : p, x) ↔ |2x− d| ≤ 1 ∧ S(p, 2x− d) (22)

where d : p denotes the sequence beginning with d and continuing with p.

Formalization in IFP We define a predicate S(x) expressing that x has a signed digit representation. First, 
we define the property of being a signed digit,

SD(x) Def= (x = −1 ∨ x = 1) ∨ x = 0 .

We define 3 
Def= (1 + 1) + 1. Then, τ(SD) = 3 and

d r SD(x) = (d = Left(Left(Nil)) ∧ x = −1) ∨
(d = Left(Right(Nil)) ∧ x = 1) ∨
(d = Right(Nil) ∧ x = 0) .

Thus, the three digits −1, 1, 0 are realized by the three elements Left(Left(Nil)), Left(Right(Nil)),
Right(Nil) of 3. We identify these natural numbers and their realizers and use variables d, e for both 
of them.

Next we define a predicate expressing that d ∈ {−1, 0, 1} is the first digit of a signed digit representation 
of x

I(d, x) Def= |2x− d| ≤ 1 .

Finally, in view of (22), we set

S(x) ν= ∃d ∈ SD (I(d, x) ∧ S(2x− d)) .

We have τ(S) = 3ω and

p r S(x) ν= ∃d ∈ SD, p′ (p = Pair(d, p′) ∧ I(d, x) ∧ p′ r S(2x− d)) .

Because of (22) one easily sees that p r S(x) holds iff p is an infinite stream of signed digits that represents 
x, i.e. S(p, x) holds.
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5.3. Infinite Gray code

Informal definition Gray code of a real number x in [−1, 1] is defined using the digits L and R and an 
‘undefined’ digit, ⊥. We first define total Gray code of x which is a variant of the binary representation 
and which does not use ⊥. For an infinite sequence q ∈ {L, R}ω, we say that q is a total Gray code of x if 
x = �q�G where, identifying L with −1 and R with 1,

�q�G =
∑
i<ω

(−
∏
j≤i

(−qj))2−i ∈ [−1, 1]. (23)

There are simple conversion algorithms between binary representation and total Gray code. Comparing (23)
with (21), one can see that if (qi)i<ω is a Gray code, then p = (pi)i<ω is a binary representation of the same 
number for pi = − 

∏
j≤i(−qj). This equation means that pi is 1 iff q0, . . . , qj contains an odd number of R. 

Conversely, if p = (pi)i<ω is a binary representation, then (qi)i<ω for

qi =
{

L if pi−1 = pi
R if pi−1 �= pi

is a total Gray code of the same number. Here, we temporarily define p−1 = −1. Defining the ‘tent function’ 
t : [−1, 1] → [−1, 1] as

t(x) = 1 − 2|x|,

one can show

�a : q�G = x ↔ ((x ≤ 0 ∧ a = L) ∨ (x ≥ 0 ∧ a = R)) ∧ �q�G = t(x)

for a ∈ {L, R}, q ∈ {L, R}ω and x ∈ [−1, 1]. This means that q is an itinerary of x along the tent function, 
i.e. qn equals L or R depending on whether tn(x) is negative or positive. If tn(x) = 0, then qn may be 
either.

Total Gray code is non-unique for the dyadic rationals in (−1, 1), that is, numbers of the form k/2l where 
l ∈ N and k ∈ Z and with |k| < 2l. Such numbers have two binary codes of the form t(−1)1ω and t1(−1)ω
for some finite sequence t ∈ {−1, 1}∗, and therefore have exactly two total Gray codes, namely,1

sLRLω and sRRLω

for some finite sequence s ∈ {L, R}∗. These two codes only differ in the first digit after s, so it is natural to 
allow this digit to be ⊥ since it carries no information. Therefore, we define the set of Gray codes as

GC Def= {L,R}ω ∪ {s⊥RLω | s ∈ {L,R}∗}
= {q ∈ {L,R,⊥}ω | ∀n (qn = ⊥ → (qk)k>n = RLω)}

and define �·�G : GC → [−1, 1] as the extension of total Gray code �·�G : {L, R}ω → [−1, 1] by setting

�s⊥RLω�G
Def= �sLRLω�G(= �sRRLω�G) .

For example �⊥RLω�G = 0 and �R⊥RLω�G = 1/2. We set

1 If s = a0, . . . , an−1, then sLRLω = a0 : . . . : an−1 : L : R : L : L : L : . . .
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G(q, x) Def= q ∈ GC ∧ �q�G = x .

One can see that

G(a : q, x) ↔ ((x ≤ 0 ∧ a = L) ∨ (x ≥ 0 ∧ a = R) ∨ (x = 0 ∧ a = ⊥))

∧G(q, t(x)) (24)

for a ∈ {⊥, L, R}, q ∈ {⊥, L, R}ω and x ∈ [−1, 1]. Note that t(x) in the right conjunction of (24) does not 
depend on the first digit a whereas for the signed digit case 2x − d in the right conjunction of (22) depends 
on d.

While it can be shown that total Gray code is not computable, Gray code is, thanks to the possibility of 
having an undefined digit. In [72] one finds programs translating between Gray code and the signed digit 
representation.

Formalization in IFP We define a predicate G(x) expressing that x has a Gray code. We first define a 
predicate for the digits of Gray code:

D(x) Def= x �= 0 → (x ≤ 0 ∨ x ≥ 0) .

We have τ(D) = 2 for 2 
Def= 1 + 1. Note that D2 = {Left(Nil), Right(Nil), ⊥, Left(⊥), Right(⊥)} (see

Remark 1 of Sect. 3.7). Setting L 
Def= Left(Nil) and R Def= Right(Nil), we have

a rD(x) = a : 2 ∧ (x �= 0 → (a = L ∧ x ≤ 0) ∨ (a = R ∧ x ≥ 0)) .

Thus, all elements of 2 realize D(0). By considering not only ⊥ but also Left(⊥) and Right(⊥) as deno-
tations of the Gray code digit ⊥, a r D(x) means that a is the first digit of a Gray code of x. Therefore, we 
define

G(x) ν= (−1 ≤ x ≤ 1) ∧ D(x) ∧ G(t(x)) .

We have τ(G) = 2ω and

q rG(x) ν= (−1 ≤ x ≤ 1) ∧ ∃a, q′ (q = Pair(a, q′) ∧ a rD(x) ∧ q′ rG(t(x)))

and hence q r G(x) means that q is a Gray code of x, i.e. G(q, x) by (24).

5.4. Extracting conversion from signed digit representation to Gray code

We show S ⊆ G and extract from the proof a program that converts signed digit representation to 
Gray code. Proofs are presented in an informal style but are formalizable in the system IFP(AR) and 
simplifications of programs are proven in RIFP(∅). We write x ∈ Id for I(d, x) and allow combinations of 
patterns in case expressions. For example,

caseM of {−1 → N1; 1 → N2; 0 → N3; } Def=

caseM of {Left(a) → (case aof {Left(b) → N1;Right(b) → N2});
Right(a) → N3} .

Recall that S = ν(ΦS) and G = ν(ΦG) for
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ΦS
Def= λX λx ∃d ∈ SD (x ∈ Id ∧X(2x− d)) ,

ΦG
Def= λX λx (−1 ≤ x ≤ 1) ∧ D(x) ∧X(t(x)) .

According to Lemma 19, the formula Mon(ΦS) Def= X ⊆ Y → ΦS(X) ⊆ ΦS(Y ) expressing the monotonicity 
of the operator ΦS is proved in IFP’ and the following program mon : (αX ⇒ αY ) ⇒ 3 × αX ⇒ 3 × αY is 
extracted from the proof.

mon f p
Def= Pair(πLeft p, f(πRight p)). (25)

It is also the case for Mon(ΦG) and the same program mon with the type obtained by replacing 3 with 2
is realizing Mon(ΦG).

Lemma 23. ∀x (S(−x) → S(x)).

Proof. By coinduction. Therefore, we show P ⊆ ΦS(P ) for P (x) Def= S(−x), that is,

∀x (S(−x) → ∃d ∈ SD (x ∈ Id ∧ S(−(2x− d)))). (26)

Suppose that S(−x) holds. By coclosure, for some e ∈ SD, we have −x ∈ Ie∧S(−2x −e). Since −x ∈ Ie, we 
have x ∈ I−e. Since S(−2x − e), we have S(−(2x − d)) for d = −e, and therefore x ∈ Id ∧S(−(2x − d)). �

The program step1 : 3ω ⇒ 3 × 3ω extracted from the proof of (26) is

step1 Def= λp.Pair(case (πLeft p)of {−1 → 1; 0 → 0; 1 → −1}, πRight p) .

Therefore, by (18) of Sect. 4.2, the realizer extracted from the proof of P ⊆ S is the following program 
minus : 3ω ⇒ 3ω

minus rec= (mon minus) ◦ step1.

After some simplification using Lemma 12 we have

minus p rec= Pair(case (πLeft p)of {−1 → 1; 0 → 0; 1 → −1},minus (πRight p)). (27)

Theorem 4. S ⊆ G.

Proof. By coinduction. Hence we show ∀x(S(x) → (−1 ≤ x ≤ 1) ∧D(x) ∧S(t(x))). Since ∀x(S(x) → −1 ≤
x ≤ 1) is immediate, we need to show the following two claims.
Claim 1. ∀x (S(x) → D(x)), that is, ∀x ∈ S \{0} B(x) where B(x) Def= x ≤ 0 ∨x ≥ 0. We use AIB1/2(S, B). 
Therefore, we show

∀x ∈ S \ {0} (B(x) ∨ (|x| ≤ 1/2 ∧ S(2x) ∧ (B(2x) → B(x)))). (28)

Since S(x) ν= ∃d ∈ SD (x ∈ Id ∧ S(2x − d)), we have the following cases.
Case d = −1. We have −1 ≤ x ≤ 0 ∧ S(2x + 1) and thus x ≤ 0.
Case d = 1. We have 0 ≤ x ≤ 1 ∧ S(2x − 1) and thus x ≥ 0.
Case d = 0. We have |x| ≤ 1/2 ∧S(2x). In addition, we always have B(2x) → B(x) (realized by id). This 

completes the proof of Claim 1.
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Claim 2. ∀x(S(x) → S(t(x))).
We set S′(y) Def= ∃x ∈ S y = t(x) and show S′ ⊆ S by half-strong coinduction. Therefore, we show

S′(y) → ∃d ∈ SD(y ∈ Id ∧ S′(2y − d)) ∨ S(y). (29)

Assume S′(y), i.e., y = t(x) for an x that satisfies S(x).
Case −1 ≤ x ≤ 0 ∧ S(2x + 1). Then 2x + 1 = t(x) = y. Hence we have S(y).
Case 0 ≤ x ≤ 1 ∧ S(2x − 1). Then 2x − 1 = −t(x) = −y and hence S(−y). Therefore, by Lemma 23, we 

have S(y).
Case |x| ≤ 1/2 ∧S(2x). Then y = t(x) ≥ 0 and thus y ∈ I1. Hence it suffices to show S′(2y−1). We have 

2y − 1 = 1 − 4|x| = t(2x) and therefore S′(2y − 1) holds. This completes the proof of Claim 2 and hence 
the proof of the theorem. �

We extract a program from this proof.
Program from Claim 1. The program step2 : 3ω ⇒ (2 +3ω × (2 ⇒ 2)) extracted from the proof of (28) is

step2 p Def= case (πLeft p)of { − 1 → Left(LeftNil);

1 → Left(RightNil);

0 → Right(Pair(πRight p, id))}.

Therefore, by (20) of Lemma 22, the extracted realizer of S(x) → D(x) is sgh : 3ω ⇒ 2,

sgh p rec= case (step2 p)of {Left(b) → b;Right(q, g) → g(sgh q)} .

By rewriting a nested case expression using Lemma 12, we have

sgh p rec= case (πLeft p)of {−1 → L; 1 → R; 0 → sgh(πRight p)} . (30)

Note that sgh(0 : 0 : . . .) = ⊥. This can be seen by applying Scott induction (Axiom (viii)) to the predicate 

P
Def= λb (b (0 : 0 : . . .) = ⊥) and a 

Def= λb. λp. case (πLeft p) of {−1 → L; 1 → R; 0 → b(πRight p)}.
Program from Claim 2. The program extracted from the proof of (29) is step3 : 3ω ⇒ 3 × 3ω + 3ω,

step3 p
Def= case (πLeft p)of {−1 → Right(πRight p);

1 → Right(minus(πRight p));

0 → Left (Pair(1, πRight p))} .

Therefore, according to equation (19) of Sect. 4.2, the program extracted from the proof of S(x) → S(t(x))
is sgt : 3ω ⇒ 3ω,

sgt p rec= [(mon sgt) + id](step3 p) .

This definition can be simplified to (using again Lemma 12),

sgt p rec= case(πLeft p)of{ − 1 → πRight p; 1 → minus(πRight p);

0 → Pair(1, sgt(πRight p))} .
(31)

Now, by equation (18) of Sect. 4.2, the extracted program stog : 3ω ⇒ 2ω from the proof of S ⊆ G is 
stog rec= (mon stog) ◦ step4 with step4 : 3ω ⇒ 2ω × 3ω, step4 p = Pair(sgh p, sgt p). This simplifies to
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stog p rec= Pair(sgh p, stog(sgt p)). (32)

Note that since sgh(0 : 0 : . . .) = ⊥ the first digit of stog(0 : 0 : . . .) is ⊥ and therefore stog(0 : 0 : . . .)
evaluates to ⊥ : R : L : L : . . .. We will study this evaluation in Example 3, at the end of this paper.

Thus, we have obtained a program that consists of four recursions. In the rest of this section, we transform 
this program into a program with one recursion. We use the list notation a : p for Pair(a, p) and write head
for πLeft and tail for πRight.

First, by Scott-induction it is easy to see the equivalence of (32) to the following program provided p is 
restricted to total elements of 3ω, that is, elements of 3ω

t where 3ω
t (a) ν= head a ∈ {−1, 0, 1} ∧ 3ω

t (tail a).

stog p 
rec= case (head p) of {

−1 → L : stog (tail p) ;
1 → R : stog(minus (tail p)) ;
0 → sgh (tail p) : stog (1 : sgt (tail p))
}

Note that the two programs are not equal for p = ⊥ since stog⊥ is equal to ⊥ : stog⊥ with the old definition 
(32) of stog, whereas stog⊥ = ⊥ with the new definition of stog. However, since all realizers of S are total 
(easy proof by coinduction), both programs realize S ⊆ G. Therefore we use the same name stog for both.

We now show that the new definition of stog can be simplified.
By strong coinduction (Sect. 2) one can easily prove G(−x) → G(x). The extracted program nh : 2ω ⇒ 2ω

inverts the first digit of a Gray code.

inv a = case a of {L → R ; R → L }

nh q = (inv (head q)) : (tail q)

One can also show, using Scott-induction, that sgh(minus p) = inv (sgh p) and sgt(minus p) = sgt p. There-
fore, for total p,

stog (minus p) = sgh (minus p) : stog (sgt (minus p))

= inv (sgh p) : stog (sgt p)

= nh (stog p) .

With this equation, we can simplify stog as follows.

stog p = case (head p) of {
−1 → L : stog (tail p) ;

1 → R : nh (stog (tail p)) ;
0 → sgh (tail p) : stog (1 : sgt (tail p))
}

The last case further simplifies to 0 → sgh (tail p) : R : nh (stog (sgt (tail p))) by expanding stog. Since 
stog p = sgh p : stog (sgt p), one can further rewrite the definition of stog using the let notation let q =
M in N for (λq. N) M .
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stog p = case (head p) of {
−1 → L : stog (tail p) ;

1 → R : nh (stog (tail p)) ;
0 → let q = stog (tail p) in (head q) : R : nh (tail q)
}

The above equation holds for total p. Viewing it as recursive definition (replacing ‘=’ by ‘rec=’) one obtains
a program which coincides with the previous one on total arguments (proof by Scott-induction) and hence 
realizes S ⊆ G. It is precisely the Haskell program of signed digit to Gray code conversion in [72] if we view 
:, head and tail as ordinary list operations.

6. Operational semantics

The Soundness Theorem (Theorem 2) shows that from an IFP-proof of a formula one can extract a 
program realizing it, provably in RIFP. Because the program axioms of RIFP are correct w.r.t. the domain-
theoretic semantics, this theorem shows that the denotational semantics of a program extracted from an 
IFP proof is a correct realizer of the formula. However, so far we have no means to run the extracted 
programs in order to compute data that realize the formula. In this section we address this issue by defining 
an operational semantics and showing that it fits the denotational semantics through two Computational 
Adequacy Theorems (Theorems 5, 6). The first is essentially an untyped version of Plotkin’s Adequacy 
Theorem for the simply typed language PCF [58]. Its proof uses compact elements of the untyped domain 
model as a replacement for types, a technique introduced by Coquand and Spiwack [26], and follows roughly 
the lines of [8]. The second Adequacy Theorem concerns the computation of infinite data. A related result 
for an extension of PCF by real numbers was obtained by Escardo [31]. While Escardo works in a typed 
setting and concerns incremental computation on the interval domain, our result is untyped and computes 
arbitrary infinite data built from constructors. There exists a rich literature on computational adequacy 
covering, for example, typed lambda calculi with various effects [57,48], denotational semantics based on 
games or categories [27,66], and axiomatic approaches [22,30].

In the following we work with our untyped programming language that includes programs not typable 
with our type system, and consider types only in Section 6.5. This shows that the operational properties of 
our programs are independent of the type system.

6.1. Inductive and coinductive definitions of data

First we make precise what we mean by data. Recall from Sect. 3.1 that programs are interpreted in the 
domain D defined by the recursive domain equation

D = (Nil + Left(D) + Right(D) + Pair(D ×D) + Fun(D → D))⊥ .

We consider the sub-domain E of D built from constructors only

E = (Nil + Left(E) + Right(E) + Pair(E ×E))⊥

and call its elements data. We also define various predicates on D as least or greatest fixed points of 
the following operators Φ and Φ⊥ of arity (δ). The definitions and proofs below take place in informal 
mathematics although we take advantage of the notations and proof rules provided by the formal system 
IFP regarding inductive and coinductive definitions.
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Φ(X)(a) Def=
∨
C

constructor

⎛
⎝∃a1, . . . , ak a = C(a1, . . . , ak) ∧

∧
i≤k

X(ai)

⎞
⎠

and its variant Φ⊥ obtained by adding ⊥ as an option

Φ⊥(X)(a) Def= a = ⊥ ∨ Φ(X)(a) .

We have

E = ν(Φ⊥) (arbitrary data)

and we define

Ef
Def= μ(Φ⊥) (finite data)

Et
Def= ν(Φ) (total data)

Eft
Def= μ(Φ) (finite total data)

It is easy to see that Ef consists of the compact data, Et of the data containing no ⊥, and Eft = Ef ∩ Et, 
hence our choice of names.

Using binary versions of the operators Φ and Φ⊥,

Φ2(X)(a, b) Def=
∨
C

(
∃a1, . . . , ak, b1, . . . , bk a = C(a1, . . . , ak)∧

b = C(b1, . . . , bk) ∧
∧

i≤k X(ai, bi)

)

Φ2
⊥(X)(a, b) Def= a = ⊥ ∨ Φ2(X)(a, b)

Φ2
⊥,⊥(X)(a, b) Def= a = b = ⊥ ∨ Φ2(X)(a, b)

we define the relations

a �E b
Def= ν(Φ2

⊥)(a, b) (domain ordering on E)

appr(a, b) Def= μ(Φ2
⊥)(a, b) (finite approximation)

eq(a, b) Def= ν(Φ2
⊥,⊥)(a, b) (bisimilarity)

teq(a, b) Def= ν(Φ2)(a, b) (total bisimilarity)

Note that �E coincides with the domain order � on E but not with that on D. a �E b implies a ∈ E, 
by coinduction, therefore �E is not reflexive on D \ E. Clearly, appr(a, b) holds iff a �E b and Ef(a), and 
teq(a, b) holds iff eq(a, b) and a, b ∈ Et. If we replace in the definition of eq(a, b) the largest fixed point ν
by the least fixed point μ, we obtain the relation μ(Φ2

⊥,⊥)(a, b) which clearly implies that a and b are equal 
elements of Ef (easy inductive argument). However,

∀a, b (eq(a, b) → a = b) (33)

is a non-trivial assertion expressing that the elements of E are completely determined by their constructors, 
which we use in this section. From (33) one can derive the equivalence (a = b ∧ a, b ∈ E) ↔ (a �E b ∧b �E a)
and the maximality of the elements in Et, (a �E b ∧Et(a)) → a = b. We prove the following lemma to give 
typical examples of inductive and coinductive proofs on data.
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Lemma 24.

(a) appr(a, b) iff Ef(a) ∧ a �E b.
(b) a �E b iff E(a) ∧ ∀d(appr(d, a) → appr(d, b)).

Proof. (a) Left to right is by induction on appr(a, b). Right to left is induction on Ef(a) to prove that 
Ef(a) → ∀b(a �E b → appr(a, b)). We show ∀a (Φ⊥(P )(a) → P (a)) for P (a) = ∀b(a �E b → appr(a, b)). 
Suppose that Φ⊥(P )(a). If a = ⊥, then P (⊥). If a = C(a1, . . . , ak) ∧

∧
i≤k P (ai) and a �E b, let b =

C(b1, . . . , bk). We have ai �E bi and thus appr(ai, bi) by P (ai).
(b) Left to right is immediate by (a). Right to left is by coinduction on a �E b. Let P (a, b) Def= E(a) ∧

∀d(appr(d, a) → appr(d, b)). We need to show ∀a, b (P (a, b) → Φ2
⊥(P )(a, b)). Because E(a), a = ⊥ or a has 

the form C(a1, . . . , ak) with a1, . . . , ak ∈ E. If a = ⊥, then Φ2
⊥(P )(a, b) holds. If a has the form C(a1, . . . , ak), 

we have appr(C(⊥k), a) and thus appr(C(⊥k), b) by P (a, b). Therefore, b = C(b1, . . . , bk) for some bi. We 
need to show that P (ai, bi). If appr(d, ai), then appr(C(⊥i, d, ⊥k−i−1), a). Hence, appr(C(⊥i, d, ⊥k−i−1), b), 
and thus appr(d, bi). �
6.2. Inductively and coinductively defined reduction relations

We define four reduction relations between closed programs and data through induction and coinduction. 
These relations are related to computational procedures in Sect. 6.4. In order to treat programs as syntactic 
objects, we introduce a new sort π of programs and use M, N, K, . . . for variables of sort π. When a program 
is considered as an element of π, we use x, y, . . . as names for program variables while we use a, b, . . . to 
denote elements of D.

A value is a closed program M that begins with a constructor or has the form λx. M . Following [8], we 
first define inductively a bigstep reduction relation M ⇓ V between closed programs M and values V as 
follows:

(i) V ⇓ V

(ii) M ⇓ C( �M) N [ �M/�y] ⇓ V

caseM of {. . . ;C(�y) → N ; . . .} ⇓ V

(iii) M ⇓ λx.M ′ M ′[N/x] ⇓ V

M N ⇓ V

(iv) M (recM) ⇓ V

recM ⇓ V

Lemma 25. For a closed program M , there is at most one value V such that M ⇓ V .

Proof. There is at most one ⇓ reduction rule applicable to a closed program. �
Since bigstep reduction stops at constructors (due to rule (i)), in order to obtain a data, we need to 

continue computation under constructors. We define four reduction relations M μ=⇒ a, M μ⊥=⇒ a, M ν=⇒ a, 
M

ν⊥=⇒ a, all of arity (π, δ), as least and greatest fixed points of the operators

Φop(X)(M,a) Def=
∨
C

(
∃M1, . . . ,Mk, a1, . . . , ak (M ⇓ C(M1, . . . ,Mk)

∧ a = C(a1, . . . , ak) ∧
∧

i≤k X(Mi, ai))

)

Φop(X)(M,a) Def= a = ⊥ ∨ Φop(X)(M,a) .
⊥
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Here again, C ranges over constructors. Now we define

μ=⇒ Def= μ(Φop)
ν=⇒ Def= ν(Φop)
μ⊥=⇒ Def= μ(Φop

⊥ )
ν⊥=⇒ Def= ν(Φop

⊥ ) .

Note that the definition of M μ=⇒ a is equivalent to an inductive definition by the following reduction 
rules.

M ⇓ Nil
M

μ=⇒ Nil
M ⇓ Pair(M1,M2) M1

μ=⇒ a1 M2
μ=⇒ a2

M
μ=⇒ Pair(a1, a2)

M ⇓ Left(M) M
μ=⇒ a

M
μ=⇒ Left(a)

M ⇓ Right(M) M
μ=⇒ a

M
μ=⇒ Right(a)

ν=⇒ can be defined by replacing in the rules above μ with ν and interpreting the rules coinductively, that 
is, permitting infinite derivations. μ⊥=⇒ and 

ν⊥=⇒ are obtained by adding the axioms M μ⊥=⇒ ⊥ and M
ν⊥=⇒ ⊥

respectively.
M

μ=⇒ a is the finite reduction to a finite total data and M
ν=⇒ a is the (possibly) infinite reduction to 

a (possibly) infinite total data. M μ⊥=⇒ a and M
ν⊥=⇒ a are reductions that may leave some part unreduced 

by assigning ⊥, and are used to obtain observations of infinite data through finite approximations. For 
example, for M = rec(λx.Pair(Nil, x)), no a ∈ D satisfies M μ=⇒ a but

M
ν=⇒ Nil : Nil : Nil : . . .

M
ν⊥=⇒ ⊥ : Nil : Nil : . . .

M
μ⊥=⇒ ⊥ : Nil : ⊥ (= Pair(Pair(⊥,Nil),⊥)).

Lemma 26.

(a) M
μ=⇒ a iff M

μ⊥=⇒ a ∧Eft(a).
(b) M

ν=⇒ a iff M
ν⊥=⇒ a ∧Et(a).

(c) M
μ⊥=⇒ a iff M

ν⊥=⇒ a ∧Ef(a).
(d) M

ν⊥=⇒ a iff ∀d (appr(d, a) → M
μ⊥=⇒ d) ∧ E(a).

Proof. (a) By induction on 
μ=⇒ and 

μ⊥=⇒.
(b) By coinduction on 

ν=⇒ and 
ν⊥=⇒.

(c) Left to right is immediate induction on 
μ⊥=⇒. Right to left is by induction on Ef(a).

(d) Right to left by coinduction on 
ν⊥=⇒. For P (M, a) Def= ∀d (appr(d, a) → M

μ⊥=⇒ d) ∧ E(a), we prove 
P (M, a) → Φop

⊥ (P )(M, a). Suppose that P (M, a). Since a ∈ E, a = ⊥ or a has the form C(a1, . . . , ak)
for ai ∈ E. If a = ⊥, then we have Φop

⊥ (P )(M, a). If a = C(a1, . . . , ak), then appr(C(⊥k), a) and therefore 

M
μ⊥=⇒ C(⊥k). Hence, M ⇓ C(M1, . . . , Mk) for some M1, . . . , Mk. We need to show P (Mi, ai) for each i ≤ k. 

Suppose that appr(d′, ai) and let d = C(⊥i−1, d′, ⊥k−i). Since appr(d, a), we have M
μ⊥=⇒ d. Therefore, 

Mi
μ⊥=⇒ d′.
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Left to right: Suppose M
ν⊥=⇒ a. We have E(a) by coinduction on E. We show that appr(d, a) implies 

M
μ⊥=⇒ d. appr(d, a) implies Ef(d) by Lemma 24 (a). On the other hand, M ν⊥=⇒ a and appr(d, a) imply 

M
ν⊥=⇒ d by coinduction. Therefore, by part (c), M μ⊥=⇒ d. �

6.3. Computational adequacy theorem

Now we prove our first result linking the denotational with the operational semantics.

Theorem 5 (Computational Adequacy I). Let M be a closed program.

(a) M
μ=⇒ a iff a = �M� ∧Eft(a).

(b) M
μ⊥=⇒ a iff a �E �M� ∧Ef(a).

(c) M
ν=⇒ a iff a = �M� ∧Et(a).

(d) M
ν⊥=⇒ a iff a �E �M�.

Note in (d) that a �E �M� implies E(a). The proof of the theorem will be given through the following 
Lemmas 27-33. Computational adequacy usually means (a), and (c) is its generalization to infinite total 
data. As we will see in Lemma 27, (b) and (d) are proved as lemmas for (a) and (c). They are also foundations 
for the second adequacy theorem (Theorem 6).

Lemma 27. In Theorem 5, part (b) implies part (a), and part (d) implies part (c).

(b) implies (a). : M μ=⇒ a implies Eft(a) by Lemma 26 (a). In addition, if Eft(a) holds, then M
μ=⇒ a and 

M
μ⊥=⇒ a are equivalent by Lemma 26 (a), and a �E b and a = b are equivalent as we mentioned before 

Lemma 24.
[(d) implies (c)]: Similar. Note that, by (33), = on E is the bisimulation relation. �
Due to this lemma, we only need to prove (b) and (d). The ‘only if’ parts of (b) and (d) are obtained by 

the following lemma.

Lemma 28 (Correctness).

(a) If M ⇓ V , then �M� = �V �.
(b) If M μ⊥=⇒ a, then appr(a, �M�).
(c) If M ν⊥=⇒ a, then a �E �M�.

Proof. (a) is proven by induction along the definition of M ⇓ V .
(b) We define P (M, a) Def= appr(a, �M�) and prove M

μ⊥=⇒ a → P (M, a) by induction. Therefore, 
we prove Φop

⊥ (P )(M, a) → P (M, a). Suppose that Φop
⊥ (P )(M, a). If a = ⊥, then we have P (M, a). If 

Φop(P )(M, a), then M ⇓ C(M1, . . . , Mk), a = C(a1, . . . , ak), and P (Mi, ai) for every i ≤ k. Hence, by 
(a), �M� = �C(M1, . . . , Mk)� = C(�M1�, . . . , �Mk�). Since P (Mi, ai), we have appr(ai, �Mi�) and therefore 
appr(a, �M�)).

(c) By Lemma 24 (b), we need to show that M ν⊥=⇒ a and appr(d, a) implies appr(d, �M�). First, we can 

easily show that M ν⊥=⇒ a and appr(d, a) implies M ν⊥=⇒ d. Since M
ν⊥=⇒ d and Ef(d), we have M

μ⊥=⇒ d by 
Lemma 26 (a). Therefore, appr(d, �M�) by (b). �
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We prove the ‘if’ part of Theorem 5 (b) following [8], which uses ideas from [58] and [26]. Let D0 be the 
set of compact elements of D. To every a ∈ D0 we assign a set of closed programs Pr(a) by induction on 
rk(a) (Sect. 3.1).

Pr(⊥) = the set of all closed programs

Pr(C(a1, . . . , ak)) = {M | ∃M1, . . . ,Mk, M ⇓ C(M1, . . . ,Mk) ∧∧
i≤k

Mi ∈ Pr(ai))}

Pr(Fun(f)) = {M | ∃x,M ′, (M ⇓ λx.M ′ ∧
∀b ∈ D0 (rk(b) < rk(Fun(f)) →
∀N ∈ Pr(b) (M ′[N/x] ∈ Pr(f(b)))))}

Note that for a ∈ D0 ∩ E (= Ef(a)), M ∈ Pr(a) is equivalent to M
μ⊥=⇒ a.

Lemma 29. For a, b ∈ D0, if a � b, then Pr(a) ⊇ Pr(b).

Proof. As the proof of Lemma 12 in [8]. �
Lemma 30. Suppose that a ∈ D0 \ {⊥}. M ∈ Pr(a) iff M ⇓ V for some V ∈ Pr(a).

Proof. Immediate from the definition of Pr(a). �
Lemma 31. If M ∈ Pr(Fun(f)), then recM ∈ Pr(fn(⊥)) for every n ∈ N.

Proof. Induction on n. It is trivial for n = 0 because Pr(⊥) contains every closed program. Suppose 
that recM ∈ Pr(fn(⊥)). According rk2, for b = fn(⊥), f(b) = f(b0) for some compact b0 � b with 
rk(Fun(f)) > rk(b0). Since recM ∈ Pr(b), we have recM ∈ Pr(b0) by Lemma 29. Since M ∈ Pr(Fun(f)), 
M ⇓ λx.K for some x and K and ∀c ∈ D0(rk(c) < rk(Fun(f)) → ∀N ∈ Pr(c)(K[N/x] ∈ Pr(f(c))). We 
apply this to the case c = b0 and N = rec M and get K[rec M/x] ∈ Pr(f(b0)) = Pr(fn+1(⊥)). Therefore, 
K[rec M/x] ⇓ V and V ∈ Pr(fn+1(⊥)). Thus, we also have rec M ⇓ V and therefore rec M ∈ Pr(fn+1(⊥)), 
by Lemma 30. �
Lemma 32 (Approximation). For a closed program M and a ∈ D0, if a � �M�, then M ∈ Pr(a).

Proof. We show a more general statement about arbitrary programs involving substitutions and environ-
ments to take care of free variables. A substitution is a finite mapping from variables to the set of closed 
programs. An environment is a finite mapping from variables to D. For a substitution θ and an environment 
η, we write θ ∈ Pr(η) if η(x) is compact and θ(x) ∈ Pr(η(x)) for each x ∈ dom(θ). We prove by induction 
on M :

For an environment η, a substitution θ such that θ ∈ Pr(η), a program M such that FV (M) ⊆ dom(θ)
and a ∈ D0, if a � �M�η then Mθ ∈ Pr(a).

Since the statement is clear for a = ⊥, we assume a �= ⊥. We may also assume M �= ⊥ since otherwise 
the condition a � �M�η is not satisfied. The cases that M is x, C(N1, . . . , Nk), caseM ′ of {. . . ; C(�y) →
K; . . .}, λx. M ′, M ′ N are similar to the corresponding cases of Lemma 15 in [8]. We only consider the case 
M = recN . Suppose that a � �M�η. Since a �= ⊥, �N�η = Fun(g) for some continuous function g : D → D
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such that �M�η is the least fixed point of g. Therefore, a � gn(⊥) for some n. By continuity, there is a 
compact f ∈ D → D such that f � g and a � fn(⊥). Since Fun(f) � �N�η, by induction hypothesis, 
Nθ ∈ Pr(Fun(f)). By Lemma 31, rec (Nθ) ∈ Pr(fn(⊥)). By Lemma 29, Pr(a) ⊇ Pr(fn(⊥)). Therefore, 
Mθ = rec (Nθ) ∈ Pr(a). �
Proof of the if part of Theorem 5 (b). Suppose that d �E �M� for a finite data d. Then, M ∈ Pr(d) by the 

Approximation Lemma. Therefore, by the remark after the definition of Pr(a), we have M
μ⊥=⇒ d. �

Lemma 33. If �M� has the form C(a1, . . . , ak), then M ⇓ C(M1, . . . , Mk) for some M1, . . . , Mk.

Proof. Let a = C(⊥, . . . , ⊥). If �M� has the form C(a1, . . . , ak), then a �E �M�. By applying Theorem 5 (b), 
we obtain M

μ⊥=⇒ a. Thus, M ⇓ C(M1, . . . , Mk) for some M1, . . . , Mk. �
Completing the proof of the first Adequacy Theorem. Finally, we prove the ‘if’ part of (d) of Theorem 5. 
We prove by coinduction that a �E �M� implies M ν⊥=⇒ a. Therefore, for a ∈ D and a closed program M , 
we show

a �E �M� → a = ⊥ ∨
∨
C

(
∃M1, . . . ,Mk, a1, . . . , ak (M ⇓ C(M1, . . . ,Mk)

∧a = C(a1, . . . , ak) ∧
∧

i≤k ai �E �Mi�)

)
.

Suppose that a �E �M�. Since this implies a ∈ E, it follows that a = ⊥ or a has the form C(a1, . . . , ak)
for ai ∈ E. If a = ⊥ we are done. If a = C(a1, . . . , ak), then �M� also has the form C(a′1, . . . , a′k) for some 
a′i "E ai. Therefore, we can apply Lemma 33 and obtain M ⇓ C(M1, . . . , Mk) for some M1, . . . , Mk. By 
Lemma 28 (a), we have �M� = �C(M1, . . . , Mk)� = C(�M1�, . . . , �Mk�). Therefore, ai �E a′i = �Mi�. �
6.4. Computation of infinite data

Theorem 5 (c) and (d) characterize the denotational semantics of a program M in terms of the relations 
M

ν=⇒ a and M
ν⊥=⇒ a which have a more proof-theoretic rather than operational character since they are 

defined by (possibly infinite) derivations. In this section we define a notion of possibly infinite step-by-step 
computation that continues under data constructor and prove a second adequacy theorem (Theorem 6) 
which provides a truly operational characterization of the denotational semantics of a program.

As one can see from Theorem 5 (d), the reduction relation M
ν⊥=⇒ a is not functional and a program M

is related to a set of data whose upper bound is the denotational semantics of M . To obtain a more precise 
operational notion, we use the following inductively defined smallstep leftmost-outermost reduction relation 
� on closed programs that corresponds to bigstep reduction.

(i) caseC( �M) of {. . . ; C(�y) → N ; . . .} � N [ �M/�y]
(ii) (λx. M) N � M [N/x]
(iii) recM � M (recM)

(iv) M � M ′

caseM of { �Cl} � caseM ′ of { �Cl}
(v) M � M ′

M N � M ′ N

Since we are only concerned with reducing closed terms the substitutions in (i) and (ii) do not need α-
conversions.
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Lemma 34. If M ⇓ V , then M �∗ V .

Proof. The proof is by induction on the definition of M ⇓ V .
If M = V , then the assertion is trivial.
If M = caseM ′ of {. . . ; C(�y) → N ; . . .}, then M ′ ⇓ C( �M) and N [ �M/�y]) ⇓ V . By the induction hypoth-

esis, M ′ �∗ C( �M) and N [ �M/�y] �∗ V . We have

M = caseM ′ of {. . . ;C(�y) → N ; . . .}
�∗ caseC( �M)of {. . . ;C(�y) → N ; . . .}
� N [ �M/�y] �∗ V .

If M = M1 N , then M1 ⇓ λx. M ′ and M ′[N/x] ⇓ V . By the induction hypothesis, M1 �∗ λx. M ′ and 
M ′[N/x] �∗ V . Therefore, M = M1 N �∗ (λx. M ′) N � M ′[N/x] �∗ V .

If M = recM ′, then M ′ (recM ′) ⇓ V . We have

M = recM ′ � M ′ (recM ′) �∗ V,

by the induction hypothesis. �
In order to approximate the denotational semantics operationally, we need to continue computation under 

constructors. Since a constructor may have more than one argument and some computations of arguments 
may diverge, we need to compute all the arguments in parallel. For this purpose, we extend the smallstep 
reduction � to a relation 

p� by the following inductive rules:

M � M ′

M
p� M ′

Mi
p� M ′

i (i = 1, . . . , k)

C(M1, . . . ,Mk)
p� C(M ′

1, . . . ,M
′
k)

M
p� M otherwise.

Clearly there is exactly one applicable rule for each closed program M . We denote by M (n) the unique 
program M ′ such that M( p�)nM ′.

For a closed program M , we define M⊥ ∈ E as follows.

C(M1, . . . ,Mk)⊥ = C(M1⊥, . . . ,Mk⊥)

M⊥ = ⊥ if M is not a constructor term

Lemma 35 (Accumulation). If M p� M ′, then M⊥ �E M ′⊥. Therefore, M (n)⊥ �E M (m)⊥ for n ≤ m.

Proof. Immediate by the definition of p�. �
For a closed program M , M (n)

⊥ can be viewed as the finite approximation of the value of M obtained after 
n consecutive parallel computation steps. The following lemma shows that this computation is complete, 
that is, every finite approximation is obtained eventually.

Lemma 36 (Adequacy for finite values). If M μ⊥=⇒ a, then ∃n a �E M (n)⊥.

Proof. Let P (M, a) Def= ∃n a �E M (n)⊥. We prove by induction that M μ⊥=⇒ a implies P (M, a). That is, we 
show
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Φop
⊥ (P )(M,a) → P (M,a).

If a = ⊥, then we have P (M, a). If we have

(M ⇓ C(M1, . . . ,Mk)) ∧ a = C(a1, . . . , ak) ∧
∧
i≤k

(∃ni ai �E Mi
(ni)

⊥)

for a constructor C, then, for n the maximum of ni (i ≤ k), a = C(a1, . . . , ak) �E C(M1
(n)

⊥, . . . , Mk
(n)

⊥) =
C(M1, . . . ,Mk)(n)

⊥ by Lemma 35. On the other hand, by Lemma 34, we have M (m) = C(M1, . . . , Mk) for 
some m. Therefore, a �E M (m+n)

⊥. �
Since M (n)

⊥ is an increasing sequence by Lemma 35, we can define

M (∞) =�
n

M (n)
⊥.

We say that the program M infinitely computes the data M (∞).
For d ∈ D we define the data-part dE ∈ E as follows.

⊥E = ⊥

C(d1, . . . , dk)E = C((d1)E , . . . , (dk)E)

Fun(f)E = ⊥

Clearly, the function d �→ dE is a projection of D onto E.

Theorem 6 (Computational Adequacy II). M (∞) = �M�E for every closed program M .

Proof. It is easy to show the following.

(a) If M p� M ′ then �M�E = �M ′�E .
(b) M⊥ �E �M�E .

Therefore, M (n)
⊥ �E �M�E . Since this holds for every n, we have M (∞) �E �M�E .

By Theorem 5 (d), M
ν⊥=⇒ �M�E because �M�E �E �M�. Therefore, by Lemma 26 (d),

∀d (appr(d, �M�E) → M
μ⊥=⇒ d), and consequently, by Lemma 36, ∀d (appr(d, �M�E) → ∃n d �E M (n)

⊥). 
Since d �E M (n)

⊥ → appr(d, M (∞)), we have ∀d (appr(d, �M�E) → appr(d, M (∞))). Therefore, 
�M�E �E M (∞) by Lemma 24 (b). �

Note that if �M� ∈ E, then we have �M�E = �M�. Therefore, the second Adequacy Theorem says 
M (∞) = �M� in this case.

6.5. Data extraction

Using types we are able to identify criteria under which an extracted program denotes an observable 
data, i.e. an element of E.

Lemma 37. If ρ is a type that contains no function type and ζ is a type environment such that ζ(α) ⊆ E for 
all type variables α in the domain of ζ, then Dζ

ρ ⊆ E.
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Proof. Structural induction on ρ. The only non-obvious case is fixα . ρ. By the definition of Dζ
fixα . ρ, and 

since E is a subdomain of D, it suffices to show Dζ[α �→E]
ρ ⊆ E. But this holds by the induction hypothesis. �

We call an IFP-formula a data formula if it contains no free predicate variable and no strictly positive 
subformula of the form A → B where A and B are non-Harrop.

Theorem 7 (Data Extraction). From a proof in IFP of a data formula A from Harrop assumptions Γ one 
can extract a closed program M realizing A, provably in RIFP from H(Γ). Moreover, M is a data that can 
hence be infinitely computed, that is, M (∞) = �M�.

Proof. By the Soundness Theorem (Theorem 2) we can extract a closed program M : τ(A) such that RIFP
proves H(Γ) � M r A. Clearly, since A is a data formula, τ(A) contains no function type. Therefore, by 
Lemma 37, M denotes a data. By the second Adequacy Theorem (Theorem 6), M (∞) = �M�. �
Example 3. In Theorem 4, we proved S ⊆ G and obtained a program stog as its realizer. On the other 
hand, one can prove S(1) by showing {1} ⊆ S by coinduction. From the proof, we can extract the realizer 
a 

rec= Pair(1, a) (i.e., a = 1 : 1 : . . .) of S(1). From S ⊆ G and S(1), we can trivially prove G(1) and from 
these proofs we can extract a realizer M1 = stog (1 :1 : . . .) of G(1). With the small-step reduction rule, one 
can compute

M1
p�∗ R :N1

p�∗ R :L :N2
p�∗ R :L :L :N3

p�∗ . . .

for some Ni(i ≥ 1). Taking ( )⊥ of these terms, we have an increasing sequence

⊥, R :⊥, R :L :⊥, R :L :L :⊥, . . .

Taking the limit of these terms, one can see that M1 infinitely computes the data M1
(∞) = R : L : L : . . ., 

which is a realizer of G(1) by Theorem 7.
While for S(1) there was only one canonical proof and one realizer, we now look at S(1/2) which has more 

than one canonical proof and realizer and will give rise to three Gray codes, one with an undefined digit. By 
the coclosure axiom, S(1/2) unfolds to ∃d ∈ SD (1/2 ∈ Id ∧ S(2 · 1/2 − d)). Therefore, we can choose d = 0
and use the above proof of S(1). This yields a realizer 0 : 1 : 1 : . . . of S(1/2), and M1/2 = stog (0 : 1 : 1 : . . .) is 
a realizer of G(1/2). One can see that

M1/2
p�∗ N1 :R :N2

p�∗ R :R :N3
p�∗ R :R :R :N4

p�∗

for some Ni(i ≥ 1). Therefore, the result of finite-time computation proceeds

⊥, ⊥ :R :⊥, R :R :⊥, R :R :R :⊥, R :R :R :L :⊥, . . .

and in the limit, we have M1/2
(∞) = R :R :R :L, L : . . ..

Since 1 : 0 : 0 : . . . is another realizer of S(1/2), M′
1/2 = stog(1 : 0 : 0 : . . .) is also a realizer of G(1/2). One 

can see that

M′
1/2

p�∗ R :N1
p�∗ R :N2 :R :N3

p�∗ R :N4 :R :L :N5
p�∗ . . .

for some Ni(i ≥ 1). Therefore, one can observe the finite approximations

⊥, R :⊥, R :⊥ :R :⊥, R :⊥ :R :L :⊥, . . .

hence M′ computes the partial infinite data M′ (∞) = R :⊥ :R :L :L : . . ..
1/2 1/2
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7. Conclusion

We presented IFP, a formal system supporting program extraction from proofs in abstract mathematics. 
IFP is plain many-sorted first-order logic extended with two extra constructs for strictly positive inductive 
and coinductive definitions that are dual to each other. Sorts in IFP represent abstract structures specified 
by (classically true) disjunction free closed axioms. Hence full classical logic is available. Computational con-
tent is extracted through a realizability interpretation that treats quantifiers uniformly in order to permit 
the interpretation of sorts as abstract spaces. The target language of the interpretation is a functional pro-
gramming language in which extracted programs are typable and therefore easily translatable into Haskell 
and executed there. The exact fit of the denotational and operational semantics of the target language is 
proven by two computational adequacy theorems. The first (Theorem 5) states that all compact approxi-
mations of the denotational value of a program can be computed, the second (Theorem 6) states that the 
full (possibly infinite) denotation value can be computed through successive computation steps. It should 
be stressed that axioms used in a proof do not show up as non-executable constants in extracted programs 
and therefore do not spoil the computation of programs into canonical form. Besides the natural numbers 
as a primary example of a strictly positive inductive definition we studied wellfounded induction and useful 
variations thereof such as Archimedean induction.

In an extended case study we formalized in IFP the real numbers as an Archimedean real closed field 
and introduced various exact real number representations (Cauchy and signed digit representation as well 
as infinite Gray code) as the realizability interpretations of simple coinductive predicates (C, S, and G). 
From a proof that S is a subset of G we extracted a program converting the signed digit representation 
into infinite Gray code. There is an experimental Haskell implementation of IFP and its program extraction 
called Prawf [17] where this is carried out.

This case study highlights some crucial features of IFP:

• The real numbers are given axiomatically as an abstract structure;
• signed digit representation and infinite Gray code are obtained as realizers of coinductive predicates S

and G;
• Archimedean induction is used to prove that the sign of non-zero reals in S can be decided (first part 

of the proof of Theorem 4);
• the definition of G permits partial realizers (which are inevitable for infinite Gray code);
• the second adequacy Theorem is applied to compute full infinite Gray code in the limit.

This case study not only puts to test the practical usability of IFP but also leads to the study of possible 
extensions of it. Having extracted a program realizing the inclusion S ⊆ G it is natural to ask about the 
reverse inclusion. In [72] a parallel and nondeterministic program converting infinite Gray code into signed 
digit representation is given which is necessarily parallel and nondeterministic [73]. Since the programming 
language of RIFP doesn’t have these features such conversion cannot be extracted. We leave it for further 
work to develop a suitable extension of our system improving and extending previous work in this direc-
tion [16,10]. A further interesting line of study will be the extraction of algorithms that operate on compact 
sets of real numbers as studied in [14,67].

References

[1] A. Abel, B. Pientka, A. Setzer, Copatterns: programming infinite structures by observations, in: 40th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’13), 2013, pp. 27–38.

[2] S. Abramsky, A. Jung, Domain theory, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in 
Computer Science, vol. 3, Clarendon Press, 1994, pp. 1–168.

[3] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.), Handbook of Mathematical Logic, vol. 2, North-
Holland, Amsterdam, 1977, pp. 739–782.

http://refhub.elsevier.com/S0168-0072(20)30127-5/bib285332573E54AD8853C3D4EF9919795Bs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib285332573E54AD8853C3D4EF9919795Bs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1E576172229C01256CDDDFD096511D74s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1E576172229C01256CDDDFD096511D74s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE3E1136A25309709FFBF969AAEFAC598s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE3E1136A25309709FFBF969AAEFAC598s1


U. Berger, H. Tsuiki / Annals of Pure and Applied Logic 172 (2021) 102903 55
[4] Agda, Agda official website, http://wiki .portal .chalmers .se /agda/.
[5] J. Avigad, H. Towsner, Functional interpretation and inductive definitions, J. Symb. Log. 74 (4) (2009) 1100–1120.
[6] A. Bauer, J. Blanck, Canonical effective subalgebras of classical algebras as constructive metric completions, in: A. Bauer, 

P. Hertling, K.I. Ko (Eds.), 6th Int’l Conf. on Computability and Complexity in Analysis, Dagstuhl, Germany, Schloss 
Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009.

[7] U. Berger, From coinductive proofs to exact real arithmetic, in: E. Grädel, R. Kahle (Eds.), Computer Science Logic, in: 
Lecture Notes in Computer Science, vol. 5771, Springer, 2009, pp. 132–146.

[8] U. Berger, Realisability for induction and coinduction with applications to constructive analysis, J. Univers. Comput. Sci. 
16 (18) (2010) 2535–2555.

[9] U. Berger, From coinductive proofs to exact real arithmetic: theory and applications, Log. Methods Comput. Sci. 7 (1) 
(2011) 1–24.

[10] U. Berger, Extracting non-deterministic concurrent programs, in: J.-M. Talbot, L. Regnier (Eds.), 25th EACSL Annual 
Conference on Computer Science Logic (CSL 2016), Dagstuhl, Germany, in: Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 62, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 26:1–26:21.

[11] U. Berger, O. Petrovska, Optimized program extraction for induction and coinduction, in: CiE 2018: Sailing Routes in the 
World of Computation, in: LNCS, vol. 10936, Springer Verlag, Berlin, Heidelberg, New York, 2018, pp. 70–80.

[12] U. Berger, M. Seisenberger, Proofs, programs, processes, Theory Comput. Syst. 51 (3) (2012) 213–329.
[13] U. Berger, A. Setzer, Undecidability of equality for codata types, in: Coalgebraic Methods in Computer Science, in: Lecture 

Notes in Computer Science, vol. 11202, Springer, 2018, pp. 34–55.
[14] U. Berger, D. Spreen, A coinductive approach to computing with compact sets, J. Log. Anal. 8 (2016).
[15] U. Berger, K. Miyamoto, H. Schwichtenberg, M. Seisenberger, Minlog - a tool for program extraction for supporting algebra 

and coalgebra, in: CALCO-Tools, in: Lecture Notes in Computer Science, vol. 6859, Springer, 2011, pp. 393–399.
[16] U. Berger, K. Miyamoto, H. Schwichtenberg, H. Tsuiki, Logic for Gray-code computation, in: Concepts of Proof in Math-

ematics, Philosophy, and Computer Science, in: Ontos Mathematical Logic, vol. 6, de Gruyter, 2016.
[17] U. Berger, O. Petrovska, H. Tsuiki Prawf, An interactive proof system for program extraction, in: CiE 2020: Beyond the 

Horizon of Computability, in: LNCS, vol. 12098, Springer Verlag, Berlin, Heidelberg, New York, 2020, pp. 137–148.
[18] S. Berghofer, Program extraction in simply-typed higher order logic, in: Types for Proofs and Programs (TYPES’02), in: 

Lecture Notes in Computer Science, vol. 2646, Springer, 2003, pp. 21–38.
[19] E. Bishop, D. Bridges, Constructive Analysis, Grundlehren der mathematischen Wissenschaften, vol. 279, Springer, 1985.
[20] J. Bradfield, C. Stirling, Modal mu-calculi, in: P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, 

in: Studies in Logic and Practical Reasoning, vol. 3, Elsevier, 2007, pp. 721–756.
[21] W. Buchholz, F. Feferman, W. Pohlers, W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent 

Proof–Theoretical Studies, Lecture Notes in Mathematics, vol. 897, Springer, Berlin, 1981.
[22] M.D. Campos, P.B. Levy, A syntactic view of computational adequacy, in: FOSSACS 2018, in: LNCS, vol. 10803, Springer 

Verlag, Berlin, Heidelberg, New York, 2018, pp. 71–87.
[23] R.L. Constable, Implementing Mathematics with the Nuprl Proof Development System, Prentice–Hall, New Jersey, 1986.
[24] Coq, The Coq Proof Assistant, https://coq .inria .fr.
[25] T. Coquand, Infinite objects in type theory, in: H. Barendregt, T. Nipkow (Eds.), Types for Proofs and Programs, in: 

Lecture Notes in Computer Science, vol. 806, 1994, pp. 62–78.
[26] T. Coquand, A. Spiwack, A proof of strong normalisation using domain theory, in: Proceedings of the 21st Annual IEEE 

Symposium on Logic in Computer Science (LICS’06), IEEE Computer Society Press, 2006, pp. 307–316.
[27] R. Crole, A. Pitts, New foundations for fixpoint computations: fix-hyperdoctrines and the fix-logic, Inf. Comput. 98 (1992) 

171–210.
[28] P. Di Gianantonio, An abstract data type for real numbers, Theor. Comput. Sci. 221 (1–2) (1999) 295–326.
[29] P. Dybjer, A. Setzer, Induction-recursion and initial algebras, Ann. Pure Appl. Log. 124 (2003) 1–47.
[30] A. Edalat, J.P. Potts, M. Escardo, An axiomatisation of computationally adequate domain theoretic models of fpc, in: 

Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1994.
[31] M.H. Escardo, PCF extended with real numbers, Theor. Comput. Sci. 162 (1996) 79–115.
[32] S. Feferman, Constructive theories of functions and classes, in: M. Boffa, D. van Dalen, K. McAloon (Eds.), Logic Collo-

quium ’78, North–Holland, Amsterdam, 1979, pp. 159–224.
[33] P. Gerhardy, U. Kohlenbach, General logical metatheorems for functional analysis, Trans. Am. Math. Soc. 360 (2008) 

2615–2660.
[34] H. Geuvers, Inductive and coinductive types with iteration and recursion, in: B. Nordström, K. Pettersson, G. Plotkin 

(Eds.), Informal Proceedings Workshop on Types for Proofs and Programs, Båstad, Sweden, 8–12 June 1992, Dept. of 
Computing Science, Chalmers Univ. of Technology and Göteborg Univ., 1992, pp. 193–217.

[35] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia 
of Mathematics and Its Applications, vol. 93, Cambridge University Press, 2003.

[36] T. Glaß, M. Rathjen, A. Schlüter, On the proof-theoretic strength of monotone induction in explicit mathematics, Ann. 
Pure Appl. Log. 85 (1) (1997) 1–46.

[37] P. Hancock, A. Setzer, Guarded induction and weakly final coalgebras in dependent type theory, in: L. Crosilla, P. Schuster 
(Eds.), From Sets and Types to Topology and Analysis. Towards Practicable Foundations for Constructive Mathematics, 
Clarendon Press, Oxford, 2005, pp. 115–134.

[38] S. Hayashi, H. Nakano, PX: A Computational Logic, MIT Press, Cambridge, MA, USA, 1988.
[39] B. Jacobs, J. Rutten, A tutorial on (co)algebras and (co)induction, Bull. Eur. Assoc. Theor. Comput. Sci. 62 (1997) 

222–259.
[40] S.C. Kleene, On the interpretation of intuitionistic number theory, J. Symb. Log. 10 (1945) 109–124.
[41] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357 (2005) 

89–129.

http://wiki.portal.chalmers.se/agda/
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA3B3B38932640F02B505A20B68EA6A5Ds1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib338C057707EE85D033603BF84BA13367s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib338C057707EE85D033603BF84BA13367s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib338C057707EE85D033603BF84BA13367s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9ACD7D3EAF70827BAB33911C66BE1A0Es1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9ACD7D3EAF70827BAB33911C66BE1A0Es1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib26CBCF4EE02603449DB7E9B85578D0E1s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib26CBCF4EE02603449DB7E9B85578D0E1s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib19BDBA7A9885F713BEAEC91215A68398s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib19BDBA7A9885F713BEAEC91215A68398s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9F71E2C114D1FBDDDA644207283B87FBs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9F71E2C114D1FBDDDA644207283B87FBs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9F71E2C114D1FBDDDA644207283B87FBs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2775BDC058C6D56CC6CB7B7C1B2B039As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2775BDC058C6D56CC6CB7B7C1B2B039As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE6A478D8A0032F2F01EA0701F2E2552As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib760A7B08DACE9EF02D8CF6232D415D66s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib760A7B08DACE9EF02D8CF6232D415D66s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib4EE3007ADB810BF322134232DD1AA7EEs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5568EE77A76DAE00744B9629FAD123C3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5568EE77A76DAE00744B9629FAD123C3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE397410A5F557FF65EF1E0F79EC2646As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE397410A5F557FF65EF1E0F79EC2646As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibEE06C30B27D78F43C0337826D96875F4s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibEE06C30B27D78F43C0337826D96875F4s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1B8CD80CD20A1EE8BDFB9580DF25CB93s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1B8CD80CD20A1EE8BDFB9580DF25CB93s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib88762C0F600CD8C872CC0602A731B49Ds1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib97E26623355FACD05836ECC261CB2BA5s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib97E26623355FACD05836ECC261CB2BA5s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib0F885A0071C5C5118A947303ABF9E0CCs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib0F885A0071C5C5118A947303ABF9E0CCs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2549753403DFD9205E791E92F3CE5216s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2549753403DFD9205E791E92F3CE5216s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5E30657C9DEE1DD6193278DDA370B129s1
https://coq.inria.fr
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5E0A3E42F0FD0C01C60CE88495DAD0ECs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5E0A3E42F0FD0C01C60CE88495DAD0ECs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1FECDF456989F2A564C958D206F3EA46s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1FECDF456989F2A564C958D206F3EA46s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib458B0FA1D271348D57F6E4CC334641CEs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib458B0FA1D271348D57F6E4CC334641CEs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib4F4188DA45F4DF467C4AC2102553CCB3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib7CA0DCF4C31D91FAA64BE9C6C0755750s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib8BB7A93D7818D13A0E934E000D2C8390s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib8BB7A93D7818D13A0E934E000D2C8390s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib912A37A4B3BFA8533F2F1693FDC8D982s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF50878128A49ABE772345CF3CC8D20B6s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF50878128A49ABE772345CF3CC8D20B6s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1FFC3E63CBE6DCD0BD79FA0C2392A474s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1FFC3E63CBE6DCD0BD79FA0C2392A474s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF4AE75BFA60C2C11BA4BDEF096C9BB88s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF4AE75BFA60C2C11BA4BDEF096C9BB88s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF4AE75BFA60C2C11BA4BDEF096C9BB88s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE3BE232CC6714B05AD2AB08222886431s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE3BE232CC6714B05AD2AB08222886431s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib02F05D50E25F9C15693E5872859B7144s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib02F05D50E25F9C15693E5872859B7144s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib921A23E63212ED7E82DC755D717E70CDs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib921A23E63212ED7E82DC755D717E70CDs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib921A23E63212ED7E82DC755D717E70CDs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib3F6D4B0B61F9878603F69C92C034C6ECs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2591BA2F3EA7E5DB00EA7673B96060DDs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2591BA2F3EA7E5DB00EA7673B96060DDs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib665A562C51D357EB1C24C3F243B18E45s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2C0F92807F73D252BFBDBF7B1982B6AAs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2C0F92807F73D252BFBDBF7B1982B6AAs1


56 U. Berger, H. Tsuiki / Annals of Pure and Applied Logic 172 (2021) 102903
[42] U. Kohlenbach, Proof Interpretations and Their Use in Mathematics, Springer Monographs in Mathematics, Springer, 
2008.

[43] D. Kozen, Results on the propositional μ-calculus, Theor. Comput. Sci. 27 (1983) 333–354.
[44] G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, in: Constructivity in Mathematics, 

1959, pp. 101–128.
[45] J-L. Krivine, Typed lambda-calculus in classical Zermelo-Fraenkel set theory, Ann. Math. Log. 40 (2001) 189–205.
[46] J-L. Krivine, Dependent choice, ‘quote’ and the clock, Theor. Comput. Sci. 308 (2003) 259–276.
[47] C. Kupke, A. Kurz, D. Pattinson, Algebraic semantics for coalgebraic logics, Electron. Notes Theor. Comput. Sci. 106 

(2004) 35–47.
[48] J. Laird, G. Manzonetto, G. McCusker, M. Pagani, Weighted relational models of typed lambda-calculi, in: Proceedings 

of the 28th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 2013, pp. 301–310.
[49] D. MacQueen, G. Plotkin, R. Sethi, An ideal model for recursive polymorphic types, Inf. Control 71 (1986) 95–130.
[50] P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis, 1984.
[51] R. Matthes, Monotone inductive and coinductive constructors of rank 2, in: L. Fribourg (Ed.), Computer Science Logic 

(Proceedings of the Fifteenth CSL Conference), in: Lecture Notes in Computer Science, vol. number 2142, Springer, 2001, 
pp. 600–615.

[52] N.P. Mendler, Inductive types and type constraints in the second-order lambda calculus, Ann. Pure Appl. Log. 51 (1991) 
159–172.

[53] F. Miranda-Perea, Realizability for monotone clausular (co)inductive definitions, Electron. Notes Theor. Comput. Sci. 123 
(2005) 179–193.

[54] M. Möllerfeld, Generalized inductive definitions, PhD thesis, Westfälische Wilhelms-Universität Münster, 2003.
[55] F. Nordvall Forsberg, A. Setzer, Inductive-inductive definitions, in: D. Anuj, V. Helmut (Eds.), Computer Science Logic, 

in: Lecture Notes in Computer Science, vol. 6247, Springer, 2010, pp. 454–468.
[56] P. Oliva, T. Streicher, On Krivine’s realizability interpretation of classical second-order arithmetic, Fundam. Inform. 84 (2) 

(2008) 207–220.
[57] G. Plotkin, J. Power, Adequacy for algebraic effects, in: M. Miculan, F. Honsell (Eds.), Foundations of Software Science 

and Computation Structures. FoSSaCS 2001, in: LNCS, vol. 2030, 2001.
[58] G.D. Plotkin, LCF considered as a programming language, Theor. Comput. Sci. 5 (1977) 223–255.
[59] G.D. Plotkin, Set-theoretical and other elementary models of the lambda-calculus, Theor. Comput. Sci. 121 (1993) 351–409.
[60] D. Ramyaa, R. Leivant, Ramified corecurrence and logspace, Electron. Notes Theor. Comput. Sci. 276 (2011) 247–261.
[61] M. Rathjen, Generalized inductive definitions in constructive set theory, in: From Sets and Types to Topology and Analysis, 

in: Oxford Logic Guides, vol. 48, Oxford University Press, Oxford, 2005, pp. 23–40.
[62] H. Rogers, Theory of Recursive Functions and Effective Computability, Mc Graw Hill, 1967.
[63] H. Schwichtenberg, Minlog, in: F. Wiedijk (Ed.), The Seventeen Provers of the World, in: Lecture Notes in Artificial Intell., 

vol. 3600, 2006, pp. 151–157.
[64] H. Schwichtenberg, S.S. Wainer, Proofs and Computations, Cambridge University Press, 2012.
[65] D.S. Scott, Domains for denotational semantics, in: Automata, Languages and Programming, 9th Colloquium, Aarhus, 

Denmark, 1982, pp. 577–610.
[66] A. Simpson, Computational adequacy for recursive types in models of intuitionistic set theory, Ann. Pure Appl. Log. 130 

(2004) 207–275.
[67] D. Spreen, Computing with continuous objects: a uniform co-inductive approach, arXiv :2004 .05392, 2020.
[68] M. Tatsuta, Realizability of monotone coinductive definitions and its application to program synthesis, in: R. Parikh (Ed.), 

Mathematics of Program Construction, in: Lecture Notes in Mathematics, vol. 1422, Springer, 1998, pp. 338–364.
[69] A.S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, 

vol. 344, Springer, 1973.
[70] A.S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, 1996.
[71] A.S. Troelstra, D. van Dalen, Constructivism in Mathematics. An Introduction, vol. 121, 123, North–Holland, Amsterdam, 

1988.
[72] H. Tsuiki, Real number computation through Gray code embedding, Theor. Comput. Sci. 284 (2) (2002) 467–485.
[73] H. Tsuiki, Real number computation with committed choice logic programming languages, J. Log. Algebraic Program. 

64 (1) (2005) 61–84.
[74] S. Tupailo, On the intuitionistic strength of monotone inductive definitions, J. Symb. Log. 69 (3) (2004) 790–798.
[75] V. Veldman, Brouwer’s real thesis on bars, Philos. Sci. 6 (2001) 21–42.
[76] K. Weihrauch, Computable Analysis, Springer, 2000.
[77] G. Winskel, The Formal Semantics of Programming Languages, Foundations of Computing Series, The MIT Press, Cam-

bridge, Massachusetts, 1993.
[78] J. Zucker, Iterated inductive definitions, trees and ordinals, in: A.S. Troelstra (Ed.), Metamathematical Investigation of 

Intuitionistic Arithmetic and Analysis, in: Lecture Notes in Mathematics, vol. 344, Springer Verlag, Berlin, Heidelberg, 
New York, 1973, pp. 392–461, chapter VI.

http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2E419118A91F4AB95243AF3D74A163F3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2E419118A91F4AB95243AF3D74A163F3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib10BE76D4C0F61AF6CEAA9E308F684648s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibAC5B0DE6DCF7EDBC428E0EB2FC6BB568s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibAC5B0DE6DCF7EDBC428E0EB2FC6BB568s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib74673BDE86FC8FC83A82E8B68A699A78s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib295AD33F730FDACF5CF28417D4AAED78s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibC758965E9EE5954698CD041918459E29s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibC758965E9EE5954698CD041918459E29s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib4C47DDA1F384EC884240B411A3D81253s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib4C47DDA1F384EC884240B411A3D81253s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib4AF3C5E25DF01ECE7AC046D418BBE7D3s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib30206A26E196C951EB0F5C846E9411EFs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA85243595803233F699C1A60935D107Cs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA85243595803233F699C1A60935D107Cs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA85243595803233F699C1A60935D107Cs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1CC01DCE4C596C5CA39A086FEC01DD52s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1CC01DCE4C596C5CA39A086FEC01DD52s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2A23FE7E9EA145B3E9292E14C1939E06s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2A23FE7E9EA145B3E9292E14C1939E06s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE1B35059384CBB5F2ACD3CD875504A3Bs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibAA828C49EA70252DB3917C1E93E9AD66s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibAA828C49EA70252DB3917C1E93E9AD66s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib031A3142DD9D572B1EC034A316FC9AC1s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib031A3142DD9D572B1EC034A316FC9AC1s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF355719058E24E1328B14FC5901CE784s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF355719058E24E1328B14FC5901CE784s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib1919B9947590A7B9F8CF385BF26CF74Ds1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE5DCC6E67BD7CC07D53C092E80ACB6FCs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib430EF4D5E6A6800BC48601E811529FC0s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibEA793756D85AF45B6315CAC086B45219s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibEA793756D85AF45B6315CAC086B45219s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib47AA1814F5FA2C159603ECC6E0E0A599s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9066B2C58F58D90926083BFA129E1B76s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib9066B2C58F58D90926083BFA129E1B76s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib2B21C8084759AC4E0F7A8287ADEC7EFBs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib82A3456C3EA92480B61677B8E40F8245s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib82A3456C3EA92480B61677B8E40F8245s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib22B1CA975DFABF64E18315D74CFECBFCs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib22B1CA975DFABF64E18315D74CFECBFCs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib6ABB5DED4701645F33919CF260F3FE3As1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibB68DFDFDE5BF59A03A40F34F3FD2CA52s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibB68DFDFDE5BF59A03A40F34F3FD2CA52s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA46304CAA5C4E2D5A6DEE30BC73662ACs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibA46304CAA5C4E2D5A6DEE30BC73662ACs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib91376799E4BD6C4DF83B7F42D4779D59s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib68E04EED8F83637642BA1D95A8435CD8s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib68E04EED8F83637642BA1D95A8435CD8s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib0C61375A69856B5686AC614FFAD1A5EBs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE65668E797009C3CB8CF0AC76640A966s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibE65668E797009C3CB8CF0AC76640A966s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib91DF3EF5B9015A1905307CA473F4B20Es1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib0AB35DFF9CEFDF59D42287129BD2CC67s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibC006B19E2CB7D77FC5F2BF371FA37A3Cs1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF43D408D26EE682B800F4575EDAB0892s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bibF43D408D26EE682B800F4575EDAB0892s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5B922F4D753A7DD4C8F4AB47DB7B8AF0s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5B922F4D753A7DD4C8F4AB47DB7B8AF0s1
http://refhub.elsevier.com/S0168-0072(20)30127-5/bib5B922F4D753A7DD4C8F4AB47DB7B8AF0s1

	Intuitionistic fixed point logic
	1 Introduction
	2 Intuitionistic fixed point logic
	2.1 The formal system IFP
	2.2 Wellfounded induction and Brouwer’s thesis
	2.3 Example: real numbers
	2.3.1 The language of real numbers
	2.3.2 The axioms of real numbers
	2.3.3 Natural numbers
	2.3.4 Infinite numbers and the Archimedean property
	2.3.5 Archimedean induction


	3 Realizability
	3.1 The domain of realizers and its subdomains
	3.2 Programs
	3.3 Types
	3.4 The formal system RIFP
	3.5 Translation to Haskell
	3.6 Types of IFP expressions
	3.7 Realizers of expressions

	4 Soundness
	4.1 Proof of the soundness theorem
	4.2 Program extraction
	4.3 Realizing natural numbers
	4.4 Realizing wellfounded induction

	5 Stream representations of real numbers
	5.1 Cauchy representation
	5.2 Signed digit representation
	5.3 Infinite Gray code
	5.4 Extracting conversion from signed digit representation to Gray code

	6 Operational semantics
	6.1 Inductive and coinductive definitions of data
	6.2 Inductively and coinductively defined reduction relations
	6.3 Computational adequacy theorem
	6.4 Computation of infinite data
	6.5 Data extraction

	7 Conclusion
	References


