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Abstract—Injection molding is widely used to produce plastic components with large lot size.
However, guaranteeing consistency and quality of parts in injection molding is challenging.
Failures occur due to variation during injection cycles. Thus, real-time detection of failures will
have a high impact on quality and productivity. This paper is focused on SHION, a cloud based
Digital Twin supported by AI based control of process parameters. Process parameters and their
interrelationship with quality failure were studied and used to generate models for real-time
prediction of part quality. Two injection manufacturing lines in industry were chosen for data
acquisition, implementation, and validation of the Digital Twin. While SHION successfully
predicted faulty products in real time, adoption of traditional Cloud-centric IoT approaches
poses unforeseen practical challenges such as exposure to risk of losing data due to network
issues and prohibitive cost of regularly transferring a large amount data to Cloud services.
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1. Introduction
The plastic industry in Europe provided employ-
ment to more than 1.6 million and contributed
e 28.8 billion to the economy in 2018. Injection
molding is the most used manufacturing process
to produce plastic components. It includes four
main stages: plasticization, injection, cooling, and
ejection. Plastic material is fed by gravity from a
hopper into a heated barrel. The plastic material
melts as it moves forward in the heated barrel
and then injected under high pressure into the
molding. The melt is cooled in the molding
to ensure dimensional stability and the part is
ejected once it is cooled.

Part quality and dimensional integrity define
injection moulding productivity. The quality of
molded products depends on the complex inter-
action of multiple factors such as accuracy of an
injection molding machine, quality or grades of
plastic material, and process parameters . It is
challenging to guarantee consistency and quality
of produced parts in injection molding since
quality failures may occur due to the variation
of aforementioned factors during molding cycles.
Therefore, process monitoring and anomaly de-
tection of the produced parts are essential to
ensure that the quality of the delivered products
meet customers specifications. Shop-floor work-
ers usually conduct quality check on each piece
and quality department periodically check on
some sample parts. Automatizing this process will
spare material and time. Thus, ability to detect a
production failure in real-time will have a high
impact on production quality and productivity.

A Digital Twin (DT) plays an important role
in enabling companies to gain insight on the
actual processes at the shop floor. It is defined as
a high-fidelity digital representation of the oper-
ational dynamics of its physical counterpart and
requires near real-time synchronisation between
the physical and digital counterparts [1]. The data
flow between the physical and digital counterparts
is the key characteristic of a DT. The adoption
of DT by companies is expected to bring higher
efficiency and accuracy as well as economics
benefit. Current implementation of DT is largely
still limited to conceptual work. Lu’s et al. [1]
only found a small number of DT application
scenarios and none of them reported the imple-

mentation of DT related to process monitoring in
injection molding. This paper aims to fill this gap
by reporting an actual implementation of a DT, so
called SHION – Smart tHermoplastic injectION
[2], in an industrial setting which allows capturing
of real implementation issues, challenges, and
benefits of a DT.

The remainder of the paper starts with section
2 which reports a literature review of DT. This is
then followed by a context overview of SHION
implementation and detailed description of SH-
ION architecture in section 3. Section 4 explains
the implementation results. Section 5 provides
discussion and reflection of SHION implemen-
tation whereas section 6 concludes the research
work.

2. Literature Review

2.1 Definition of DTs
[3] reviewed existing DT definitions based on an
industrial use case and defined a DT as a vir-
tual dynamic representation of a physical system,
which is connected to it over the entire life cycle
for bidirectional (and automated) data exchange.
They identified two aspects. First, physical twin
transfers data and information from the real space
to a virtual digital space when needed. Second,
a DT identifies product or process oriented im-
provements, control demands based on the current
situation, or predictions of the near future and
sends them back to the real space so the phys-
ical product adapts accordingly. DTs are still in
their infancy and many researchers are currently
starting to derive appropriate concepts as a first
step towards applying DTs in practice [4]. A
DT can be seen as a collection of use cases
contributing to an overall product life cycle man-
agement (PLM) strategy[3]. They are intended to
be used through all the phases of the PLM [5]:
requirements capture, product design, project /
production planning, reliability of an engineering
project, training or real-time decision-making [5]
and customer support [6].

[5] identified tree types of DT based on
product life cycle phases: Production (monitor-
ing manufacturing/quality, forecast cycle times,
etc.); Engineering (replace physical test, optimize
product features through simulation, etc.); and
Operation twins (monitoring use phase, product
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improvement, etc.).
A DT requires a bidirectional automated in-

tegration of data between physical and virtual
worlds[7]. This is the feature that differentiates
the DT concept from digital model (in which data
integration is performed manually) and digital
shadow (in which, data integration from physical
world is automated but data from virtual world to
physical world must be manually integrated).

2.2 Architectures for implementing DT
According to the definition of DT, any system
architecture must be able to represent the physical
product, the virtual product and the communica-
tion between them. However, the most important
element is data. The elements of a DT and their
interactions are reflected in Figure 1 adapted from
[5].

Figure 1 also describes the requirements of
the architecture of a DT: it must allow the high
frequency of real-virtual data synchronization for
fidelity guarantee; it must be possible to present
a holistic view of available real data, synthetic
data and knowledge of experts to a user; it must
be able to automatically evaluate its behaviour,
and enable real data feed to virtual models and
continuous improvement of models by comparing
their results with the physical space. Although DT
community agrees on these features, the creation
of a reference models for DT is still a challenge
[8].

Figure 2 summarizes different proposals of
DT Reference Architectures (RA) [9] [10] [11].
According to [9], the modules of a RA must
offer their functionalities as services both to other
components and external systems. It allows a
distributed deployment of the architecture and,
so it is possible a DT takes advantage of edge
computing capacities [10]. Finally, this RA allows
to implement the Reference Architectural Model
Industrie (RAMI) 4.0 model[11].

Horizontal components of the proposed RA
are related with: the bidirectional exchange of
data between physical and virtual worlds (IoT
Stack); storage of raw physical data, data gener-
ated by AI and simulation models and the models
themselves (Data); interaction with existing sys-
tems such as ERPS, MESs, PLMs or CAD sys-
tems (Systems of Record); management of simu-
lation models (Simulation Modelling); Big Data

and ML and Deep Learning algorithms which
can be used for real time monitoring, detecting
abnormal patterns or recommending solutions to
problems (Analytics and AI); interacting with
users of the Digital Twin (Visualization); and
orchestration and management of the services im-
plementing the given DT (Process Management).

Vertical components are perpendicular to hori-
zontal ones providing access to services that must
be used by the other to simplify the interaction
between a DT components and of this with exter-
nal systems (Integration); to make this integration
secure (Security) and guaranteeing that the rules
and policies of the company and laws of the
place where the DT is located are complied with
(Governance).

2.3 Data driven DT
Data driven modeling as the base of DT is be-
coming very popular[12]. These approaches apply
IoT, Big Data and artificial intelligence, such
as ML, technologies and methods for capturing,
exchanging and transforming data between the
virtual and physical parts of the twin.

In particular, ML models are used for monitor-
ing and detect undesired behaviours such as faults
in production. Faults prediction takes advantage
of the fact that (appropriate) data obtained from
physical twin can be a manifestation of both
known and unknown physics, so ML models
can account for the full physics and use it for
predicting the errors[12].

While ML can be applied to predict be-
haviours it is also used to understand the structure
of time series, reduce the number of variables
to be considered, classify images, and create
synthetic data that increases available training
data sets and addresses a lack of data[12].

An advantage of Data-driven models is that
they will improve with new data. Although train-
ing of data-driven modeling might have issues
associated with instabilities, they are quite stable
for making predictions[12] once models are fully
trained.

3. SHION Concepts

3.1 Context of SHION
SHION was implemented within the scope of
CloudiFacturing research project [13]. The mis-
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Figure 1. Digital Twin Data Workflows adapted from [5].

Figure 2. Digital Twin Reference Architecture.

sion of CloudiFacturing is to use Cloud/HPC-
based modelling and simulation to foster the im-
plementation of I4.0 in manufacturing Small and
Medium Enterprises (SMEs). CloudiFacturing in-
vited participation of third-party consortia to seek
innovative use cases that fitted with the project’s
mission; and SHION was one of them. SHION
consortium composed of: 1) a research centre,
the Technological Institute of Aragón (ITAIN-
NOVA), with expertise in big data and artificial
intelligence services, 2) an independent software
provider, BMS Vision (BMS), with expertise in
offering a wide variety of industrial sensors, and
3) an end user, Thermolympic which specializes
in manufacturing thermal injection plastics prod-

ucts and provides the industrial problem to be
solved.

3.1.1 Industrial Problems at Thermolympic
Maximizing production quality is crucial for
Thermolympic. A machine operator visually re-
viewed all the produced parts, looked for general
deviations and reported the defects. Addition-
ally, a quality staff conducted statistical process
control on some sample parts every four hours.
While current quality rate was at 98.8%, a fur-
ther quality increase was important. Automated
failure detection would spare material and time
by avoiding reworking and reducing customer
penalties because of delays and delivery of non-
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detected rejected parts to customer. The proposed
approach was to take an advantage of cogni-
tive technologies, in particular Machine Learn-
ing (ML)), to extract knowledge and generate a
predictive model to detect when a defect in the
production was going to happen. Constant evo-
lution of the cognitive models generated would
also be important. To realise SHION, information
from the injection molding process itself as well
as the context information such as environmental
conditions, operators’ reviews, quality laboratory
inspections and piece weight were required. All
data was collected via automatic and real-time
devices using both IoT devices provided by BMS
which was installed at Thermolympic. Instead of
visually reviewing every part, an operator would
only review the parts when SHION anticipated
the presence of a possible fault. Consequently,
the operator could perform additional tasks in
between the possible fault notifications that they
received. Thus, SHION would change the work
nature of a machine operator, a team leader and
and/or quality staff from corrective/contention to
preventive/predictive flow.

3.1.2 CloudiFacturing Platform
CloudiFacturing integrates several existing soft-
ware and hardware platforms for Cloud-based
engineering and manufacturing. One of them is
CloudBroker application. CloudBroker applica-
tion uses the CloudBroker Platform which is a
backend tool for the deployment, management
and running of compute-intensive software on
various Cloud infrastructures. For SHION imple-
mentation, persistent instance storage is required.
If the connection to the instance was lost unex-
pectedly or a new instance had to be launched, the
part of previous data stored on the initial instance
had to be present on the new machine. Thus,
a functionality to attach an Amazon S3storage
to an instance as a disk was implemented in
CloudBroker application to persist the changes
kept in the mounted area.

3.2 Architecture of SHION
Figure 3 shows the final systems architecture of
SHION which consists of two subsystems. The
left box shows that the IoT and MES infrastruc-
ture are deployed on Thermolympic facilities and
supported by BMS. This subsystem monitors ma-

chine parameters and environmental conditions.
It sends the parameters to the Cloud with a
minimum injection cycle of 14 sc. It also interacts
with machines operators both through the DU11
terminal of BMS and through a traffic light alarm
system which allows operators to easily view the
state of the machine and its products.

The right box shows the SHION intelligent
modules which is deployed on a CloudBroker
instance. SHION is powered by Argon, a Docker
supported system supporting the customization
of ITAINNOVA deployments. The Kong con-
tainer controls the access to the REST interface
of the predictive monitoring system, and to the
Mosquitto messages queues. The Influxdb con-
tainer stores time series of data processing from
machine and environmental sensors and operators
interactions with machines (e.g. declaring parts
with defect and the cause of it). The MongoDB
container stores Moriarty workflows that train
predictive models (grey arrows) and supports
predictions in real time (green arrows). These
workflows record data received in the Influxdb
repository. The Voilà container implements the
interface supporting real time monitoring of the
machine, displaying the prediction results as well
as, allowing the creation of new models and the
retraining of the new ones. This interface is used
by team leaders and quality staff.

Real time monitoring system is fed through
a REST API. Received parameters launch next
workflow:

• The data is stored in an Influxdb database
and prepared for predicting defects in the in-
jected part. The parameters are identified by
the machine identifier, the part identifier and
the timestamp when parameters are taken.

• The predictions are performed using a model
selected dynamically using the machine and
the part identifiers. Firts machine and part
model is search, if not found a machine model
is search and, in the case no machine model is
found, a general model is applied. The Acuracy
of the models is related with the matching
of machine and part with existin model being
the general model the less accurate. SHION
allows experts users (teams leaders and qual-
ity staff) to modify this default behaviour by
manually assigning an already existing model
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to a machine-part pair or to a machine: existing
know-how can be incorporated on production
monitoring and failure prediction (i.e. when
a part injection is moved from a machine to
another machine).

• The results are communicated to workers to-
gether with the expected probability of the
prediction using MQTT using the Mosquitto
container. This messages are show using BMS
Vision DU11 devices: it turns on required light
(green, yellow, red) and a message is shown to
operator requesting operator him/her feedback
about the existence or not of a real failure and
the cause of it. Figure 5)

While Figure 3 shows a monolitic architec-
ture, the architecture is highly flexible. The ver-
satility of Docker containers and the implementa-
tion of replicating data services allow the deploy-
ment in a scenario in which, modules in green
dotted line is deployed on the Cloud and used
on demand while the monitoring modules can be
deployed on Thermolympic facilities. This can
reduce the cost of the computational resources
because high performance computing can be used
on demand for training the models.

3.3 ML prediction models creation and
retraining
The first step was to normalize and to create dif-
ferentiated variables from the raw data setsc. For
each variable and its successive measurements,
the variation between the couple of values were
calculated. A second transformation was applied
to these derived measurements: moving averages,
maximum dispersion in a time window and min-
imum value were calculated to obtain a sum-
marizing set of statistical descriptive variables
which was then normalized. The third step was
to reduce the number of variables by employing
Principal Component Analysis algorithm. In step
four, a final variable selection process was carried
out using Random Forest algorithms with cross-
validation.

Once main injection features were selected,
we trained different algorithms such as Artificial
Neural Networks, Support Vector Machine and
Tree-based models (Random Forest and Extra
Random Forest). With the algorithms providing
best results, optimal hyper-parameters sets were

searched and used to train the prediction models
for manufacturing lines.

4. Implementation of SHION
The findings showed that prediction models

accuracy varies depending on the quality of the
data given to the system. While SHION obtained
lower precision rates in general models (<75%),
it achieved higher scores in models that were
related to products (>75%). These limitations
were caused by the fact that the data collected
from operators were not always precise or well
timed.

SHION offers to the quality staff or to team
leaders the possibilities of creating new models
and of retraining existing models with new avail-
able data. The left side of Figure 4 show the
screen where these actions can be performed. The
user can set the following training parameters in
oder to determine the data set use for training:
Start date/end date; Machine/part; kind of algo-
rithm to be used. These parameters are combined
and they are sent to the cloud for obtaining new
prediction models or newer versions of existing
ones.

Once the new models or new versions of
already existing models are available, the qual-
ified users can check and compare them based
on their quality (accuracy, retention, etc.). They
can modify default model selection and they can
also check in real time the current status of the
machines (to see the parameters used in previous
injections) together with the results of the failure
predictions (see right side of Figure 4).

Some network issues were experienced dur-
ing implementation. Synchronisation problems
between the machines and the Cloud resources
appeared due to the use and availability of Cloud-
Broker resources and persistence instances. An
alternative solution to provide optimal use of re-
sources and functionality was adopted by setting
up a two server model at Thermolympic. The
prediction monitor service was deployed locally
(running in persistence at 7 days 24 hours) and
reserving the use of Cloud only for training pur-
poses at selected periods. This alternative solution
significantly reduced the use of bandwidth and
risk of losing manufacturing data.

An iterative usability evaluation was also per-
formed to ensure that SHION could be used
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Figure 3. SHION architecture deployed in Cloud Broker.

Figure 4. Left - Screen shots of the model management application (left) and of the real time monitoring
application (right).

Figure 5. Left - Digital envelope received at human-machine interface at the shop floor; Right - Colour coded
visual signals at the shop floor.
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effectively by users. A usability expert observed a
quality manager and an injection molding opera-
tor while interacting and using SHION. Usability
issues were identified and recommendations to
resolve them were proposed and communicated
to be acted on.

5. Discussion
SHION implementation demonstrated the ca-

pability to integrate real-time production intelli-
gence data analytic on the shop-floor by providing
feedback to both machine operator and to quality
monitoring staff. Although many studies have
demonstrated this capability in closed condition
at labs, it is very rare to see its application in
real industrial setting. During the K-Messe 2019,
SHION was the only solution which showed a
functioning solution that worked on actual pro-
duction environments.

Nowadays, most of the new (injection) ma-
chines can provide smart (proprietary) modules
(both on Cloud and on board). However, this may
not be the case in most SMEs, which commonly
utilise older type machines (between 15 and 30
years old), and thus limits their ability to adopt
I4.0 solutions. Fortunately it is possible to send
data to the Cloud for older machines by using
standard interfaces (such as Euromap 83) which
then allow additional solutions such as SHION to
generate intelligent models to monitor the produc-
tion line in real time and upgrade or improve the
models by taking advantage of new data captured
from the production line. SHION implementation
required companies that already had an I4.0 basic
setup like Thermolympic. For companies with-
out I4.0 basic setup, SHION solution could be
costly to be implemented as most of the cost of
the solution was related to IoT readiness [14],
which required purchasing hardware and software
costing around 250000e, to provide data for the
solution.

Collecting and analyzing information in real
time while avoiding excessive data transfer and
data processing delays is the core principle of
I4.0. Cloud have traditionally been used to pro-
cess IoT data since they provide cheaper and vir-
tually unlimited computing power. However, the
burden of uploading data to remote Cloud could
lead to inefficient uses of bandwidth and energy,
exposure to risk of losing data and/or services due

to network issues and prohibitive cost of regularly
transferring so much data over the Cloud. As
we have experienced during SHION implemen-
tation, the traditional Cloud-centric IoT approach
was required to shift toward a distributed model
so we could take advantage of smart and pro-
grammable Cloud services at the network edge.
These Cloud services on the network offered
computing and storage capabilities on a smaller
scale and provided benefits such as saving energy
and network bandwidth consumption by avoiding
continuously upload data to the Cloud. This also
means reduction in communication delays and
the overall size of the data that needs to be
migrated across the Internet. As in the case of
SHION, we employed a set of mechanisms to
process data on behalf of the IoT device and
effectively sending data to the Cloud only when
more complex analysis is required. Thus, edge
computing, fog computing and Cloud computing
offer ideal technical solutions for different-level
of DT requirements [15].

In SHION implementation, the created models
were supervised models. While their accuracy is
acceptable, it is highly dependent on machine op-
erator availability to provide feedback on quality
issues reporting data. The presence of unbalanced
data can bias the results models, especially in the
case where there is a lack of labelled data or data
labelling is insufficient [12]. This could provide
a barrier for improving the accuracy of models.
However, the analysis we performed on data for
creating the models showed us possible measures
which could be implemented in the future to
mitigate this risk, they are as follows:

• To include automatic detection of unexpected
stoppage of machines: stop events are auto-
matically logged and their causes should be
declared by operators before restarting the ma-
chine.

• To detect undesired behaviour trends of ma-
chine parameters: use past events (part faults,
machine stops, etc.) for detecting trends in
parameters which conducted to them.

• To use previous (success) machine settings
for a given part for recommending parameters
when setting a new production bath or a new
part (never injected before) is being setting up.

• To use operator feedback to model generated
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alarms for retraining the models and to support
decisions of the quality manager about activat-
ing, deleting, retraining of a given model.

• To consider the use of unsupervised algo-
rithms, such as self organized map, or clus-
tering analysis algorithms, such as K-mean o
t-SNE[12].

• To improve the capabilities of the virtual twin
by including interaction with physical plastic
injection models for supporting Hybrid Anal-
ysis and Modeling.

To successfully implement a DT solutions,
artificial model results must be presented in such
a way that they are understandable [16] by users.
Data presentation has to allow users perceiving
the presented facts in the context they happen,
easing taking decisions [17].

Understanding the ML models is also impor-
tant to demonstrate they are not biased [12]. Ex-
plainable AI (XAI) is a very state-of-the-art trend
and aims to explain models in an understandable
way and trustworthy to users. XAI aims to answer
questions about how and why certain results are
obtained, allowing users to justify and explain
their data-driven decisions [18] and, in some
scenarios, assess legislation compliance [17].

Conclusion
SHION was aimed to provide real time de-

tection of production failure in injection molding.
It has successfully included human involvement
in DT and built a functioning DT architecture
which can be deployed both in server -based and
edge based. SHION implementation has shown
Cloud computing was more suitable for train-
ing/retraining and local installations for real-time
solutions suit better because they were cheaper
and less risky. Our implementation also showed
that easily scale on resources and the processes
were not required to run continuously (24hx7d).
The implementation also showed the feasibility of
utilising sensors available in market to implement
DT.
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Francisco J. Lacueva-Pérez has a MSc. Degree
in Computer Engineering from the University of
Zaragoza (Unizar). He works at ITAINNOVA since
2004 and he is currently working in the Big Data
and Cognitive Systems team. He has experience
in the planning, development and management of
R&D projects both in the field of public (FP7, H2020,
EUREKA, AVANZA, RETOS, CDTI, FET, etc.) and
in private financing ones such asFACTS4WORKERS
(H2020 6366778) and Experiment 10 of Cloudifac-
turing (H2020 768892 or agribusiness (Grapevine-
INEA/CEF/ICT/A2018/1837816). Nowadays, he does
a doctorate to apply Big Data and Artificial In-
telligence to improve the efficiency and sus-
tainability of wine farms. Contact Francisco at
fjlacueva@itainnova.es

Setia Hermawati is as a Research Fellow at
Human Factors Research Group at the Univer-
sity of Nottingham. She obtained her PhD at De-
sign School at Loughborough University. She has
been involved in the conception, implementation
and evaluation of new technologies for manufac-
turing systems. Her research Interest is in the ap-

plication of user-centred design in novel technolo-
gies of manufacturing systems. Contact her at se-
tia.hermawati@nottingham.ac.uk.

Pedro Amoraga is Computer Engineer and has
worked at different positions related with quality
(Quality Engineer and Quality Manager) at automo-
tive sector, working directly for Tier 1 companies
related to Ford, Mercedes, PSA, VolksWagen Contact
Pedro at pedro@thermolympic.com.

icardo Salillas is a Physicist from the Unizar since
2016 and a master’s degree in Mathematics, Statis-
tics and Computing from the universities of the
Basque Country and Zaragoza. He currently works
as a data scientist in the Big Data and Cognitive
Systems group at ITAINNOVA. Contar Ricardo at
rsalillas@itainnova.es

Rafael del Hoyo , received the MSc. Degree in
Physics and the Ph.D. degree in Artificial Intelligence
at the Unizar. Currently, he is a project manager
and responsible of Big Data and Cognitive Systems
research line at ITAINNOVA. He participated in sev-
eral projects related to Information Management and
Artificial Intelligence for R&D funded by the European
Union in FP5, FP6, FP7, H2020 and Eureka-Celtic
and National programs like Avanza. He was also a
lecture of Software Engineering at Unizar and he
is currently lecturer of the University of San Jorge
about Intelligent Systems and information processing.
Contact Rafa at rdelhoyo@itainnova.es.

Glyn Lawson is an Associate Professor within
the Faculty of Engineering at the University of
Nottingham, and member of the Human Factors
Research Group. His research expertise includes
human-centred development of new technologies.
He is a Chartered Fellow of the Institute of Er-
gonomics and Human Factors and sits on the edi-
torial board of Applied Ergonomics. Contact him at
glyn.lawson@nottingham.ac.uk.

10 IT Professional

http://w3devlabs.net/wp/wp-content/uploads/2017/05/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://www.cloudifacturing.eu/
https://doi.org/10.1002/eap.2025
https://doi.org/10.1002/eap.2025

	1. Introduction
	2. Literature Review
	2.1 Definition of DTs
	2.2 Architectures for implementing DT
	2.3 Data driven DT

	3. SHION Concepts
	3.1 Context of SHION
	3.1.1 Industrial Problems at Thermolympic
	3.1.2 CloudiFacturing Platform
	3.2 Architecture of SHION
	3.3 ML prediction models creation and retraining

	4. Implementation of SHION
	5. Discussion
	Conclusion
	Acknowledgment
	REFERENCES
	Biographies
	Francisco J. Lacueva-Pérez
	Setia Hermawati
	Pedro Amoraga
	icardo Salillas
	Rafael del Hoyo
	Glyn Lawson


