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ABSTRACT 

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed 

gene transcription. In this study, exome sequencing (ES) detected biallelic putative disease-

causing variants in MED27, encoding Mediator Complex Subunit 27, in sixteen patients from 

eleven families with a novel neurodevelopmental syndrome. Patient phenotypes are highly 

homogeneous including global developmental delay, intellectual disability, axial hypotonia with 

distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were 

noted in severely affected individuals. Identification of multiple patients with biallelic MED27 

variants supports the critical role of MED27 in normal human neural development, particularly 

for the cerebellum.  

 

 

  



INTRODUCTION 

The Mediator complex acts as a bridge between transcription factors at enhancers and the 

basal transcriptional machinery at specific promoters, thereby stabilizing the preinitiation 

complex and stimulating promoter release 1, 2. It is also involved in additional aspects of 

transcriptional regulation, including mRNA and noncoding RNA processing, chromatin 

remodeling and epigenetic regulation3. MED12 was the first human disease gene discovered in 

the Mediator complex, associated with Opitz-Kaveggia syndrome (MIM: 305450) and Lujan-

Fryns syndrome (MIM: 309520) 4, 5. Since then, a total of six genes in the complex have been 

reported as disease genes mostly in association with neurodevelopmental disorders. However, 

the majority of the Mediator genes remain without disease associations.  

 

Here, we report a novel neurodevelopmental syndrome with a unique phenotype of global 

developmental delay, axial hypotonia with appendicular spasticity, dystonic movements, 

cerebellar hypoplasia, epilepsy, and cataracts. Exome sequencing detected biallelic disease-

causing variants in MED27 (MIM: 605044), a eukaryotic specific subunit thought to represent an 

ortholog of budding yeast Med3 6, 7. 

 

PATIENTS AND METHODS 

Patients were identified through GeneMatcher and all subjects were examined by the referring 

physicians8. Clinical information including medical notes, facial photos, and MRI images were 

collected, critically reviewed and compared. Informed consents were obtained from the legal 

guardians of all subjects. The study was performed in accordance with the guidelines specified 

by the Institutional Review Boards and Ethics Committees at each institution. 

 

Exome sequencing (ES) on each patient was performed in commercial or academic laboratories 

per each laboratory’s protocol. Targeted Sanger sequencing was performed in probands and 



available relatives to validate variant segregation. Variant filtering and prioritization were 

performed by assessing variant characteristics including general population frequency, variant 

severity, in silico prediction, inheritance modeling, pathway analysis, and family segregation 

analysis. MED27 variants were annotated on reference sequence NM_004269.3. 

 

RESULTS 

Prior to ES analysis, most reported patients had extensive clinical, metabolic, and genetic 

investigations, yet had not received a molecular diagnosis. ES analysis followed by targeted 

Sanger sequencing revealed biallelic variants, either compound heterozygous or homozygous 

alleles, in MED27 in sixteen affected individuals (Supplementary Table 1). A total of eleven 

unique MED27 variants were identified, including frameshift (3/11), canonical splice-site (1/11), 

and missense variants (7/11) (Fig 1, Supplementary Table 2). Three recurrent variants 

[c.776C>T (p.Pro259Leu), c.839C>T (p.Pro280Leu), and c.871G>A (p.Gly291Ser)] affecting 

CpG sites were identified in multiple families with different ethnic backgrounds. All MED27 

variants are either absent or rare in the Genome Aggregation Database (gnomAD v2). The 

variants occurred at residues that are extremely conserved from human to drosophila with 

GERP++ RS score greater than 5.0 9. Multiple in silico programs including PolyPhen2, SIFT1, 

Mutation Taster and CADD (Combined Annotation Dependent Depletion) support the 

deleterious effect of these variants (Supplementary Table 2). 10,11,12,13 Notably, six out of seven 

missense variants are located in close proximity near the C-terminal end of the protein (Fig 1).  

 

The clinical phenotypes of each subject are summarized in Table 1 and Supplementary Table 3. 

The reported cohort consists of 13 pediatric patients (ages 2 to 13 years) and three adult 

patients (ages 26, 36, and 42 years). Consanguinity was noted by historical report in five of the 

eleven families. Except for one subject born preterm (11-2), all were born full term with no 

perinatal complications. Patient 10-2, who was previously published in a large arthrogryposis 



cohort study,  had a dual molecular diagnosis with homozygous pathogenic variants in both 

MED27 and COG6, the latter of which is associated with a congenital disorder of glycosylation 

type IIl (MIM: 614576).14 The severe clinical symptoms and early death of this individual were 

most likely attributable to the COG6 variant and may have masked the MED27-related 

phenotype. Therefore, this individual was excluded from clinical analysis. 

 

Global developmental delay, ranging from mild to profound, and intellectual disability were 

observed in all patients. Eight patients were severely affected and were non-verbal and unable 

to sit or walk independently. Among them, two patients (2, 3-2) also had motor regression. Five 

patients were moderately delayed developmentally but achieved ambulation and some 

expressive language. Two siblings (6-1, 6-2) were reported to have normal development until 8-

9 years old when both demonstrated progressive difficulties with ambulation, speech 

articulation, writing, and school performance. Motor and cognitive symptoms progressed until 

the late teenage years and recent neurocognitive testing demonstrated moderate intellectual 

disability.  

 

Axial hypotonia was noted in 93.3% (14/15) of patients. Appendicular spasticity and dystonic 

movements were seen in 86.7% (13/15). These symptoms were especially prominent in two 

siblings (6-1, 6-2) who experienced generalized dystonia and moderate dysarthria due to 

involvement of the oromandibular muscles.  

 

Brain MRI demonstrated cerebellar hypoplasia involving the vermis more than the cerebellar 

hemispheres in 86.7% of patients (Fig 2). Multiple severely affected patients (3-1, 3-2, 4, 5) had 

strikingly severe vermian hypoplasia. In some patients, additional brain abnormalities were 

observed, including hypomyelination (5), cerebral atrophy (3-1, 3-2), thin corpus callosum (3-1, 

3-2, 5), and enlarged ventricles (5, 7). Progressive atrophy involving the cerebrum, cerebellum 



and/or basal ganglia was seen in four patients (2, 3-1, 4 and 5). Microcephaly was present in 

28.6% of patients (4/14, 2, 3-1, 3-2, 5). 

 

Epilepsy was present in 60.0% (9/15) of patients with an age of onset ranging from 20 days to 5 

years. Reported seizure types were varied and included focal motor seizures (3/7; 43%), 

generalized tonic-clonic seizures (2/7; 29%), hemifacial clonic seizures (2/7; 29%), generalized 

myoclonic seizures (1/7; 14%), epileptic (infantile) spasms (1/7; 14%), atonic seizures (1/7; 

14%) and atypical absence seizures (1/7; 14%). Epilepsy was drug-resistant in 3/9 (33%) and 

drug-responsive in 5/9 (56%). One patient with seizures was not treated with anti-epileptic drugs 

(AEDs). Two of the subjects with drug-resistant epilepsy experienced multiple seizures daily. 

AEDs that were trialed included valproate (5/9), levetiracetam (3/9), clobazam (2/9), gabapentin 

(1/9), carbamazepine (1/9), phenobarbital (1/9), topiramate (1/9), and vigabatrin (1/9). The 

combination of valproate and levetiracetam or clobazam was reported to be effective in three 

patients (8-1, 8-2, 11-1).  

 

Cataracts were present in 66.7% (10/15) of patients. Four reported mature cataracts and two 

had posterior cataracts. Feeding difficulties were present in seven patients, with one individual 

(2) requiring G-tube placement. Dysmorphic features were reported in some patients 

(Supplementary Table 1 and 3), though no recognizable facial gestalt or pattern was 

appreciated. 

 

DISCUSSION 

We report sixteen patients with a novel autosomal recessive disease due to pathogenic variants 

in MED27 consisting of global developmental delay, axial hypotonia, spastic tetraplegia, 

dystonia, cerebellar hypoplasia, seizures, and cataracts (Table 1). Missense variants were more 

commonly identified than frameshift and splicing variants. Three missense variants associated 



with milder phenotypes [c.188T>G (p.Val63Gly), c.776C>T (p.Pro259Leu), and c.878C>T 

(p.Pro293Leu)]. The c.188T>G variant is distinct as it is the only missense variant located 

outside the C-terminal region where all other missense variants clustered (Fig 1).  

 

The Mediator complex is composed of 25 (yeast) or 30 (human) subunits that form four 

modules: head, middle, tail, and CDK8 kinase 2, 15. MED27 is a metazoan-specific Mediator 

subunit sitting at the junction of the head and tail modules of the complex15. Med27/Crsp34 loss-

of-function in zebrafish disrupts dopaminergic amacrine cells and serotonergic neurons at 2.5 

dpf (days post-fertilization) 16. Mutant embryos had a reduction of head, eye, and jaw size, and 

died around 6 dpf. In flies, Med27 knockout caused lethality at the pupal stage 17, 18. Similarly, 

chickens carrying homozygous MED27 insertional truncating mutations were born at less than 

expected Mendelian ratios, suggesting partial embryonic lethality in homozygotes19. Although 

the specific biological function of MED27 remains unknown, it clearly plays an essential role in 

early embryonic and neuronal development.  

 

Similar to the effect of knockout mutations, homozygous C-terminal Flag-tagged Med27 

mutations were also lethal in fruit flies, suggesting a critical role of the MED27 C-terminal 

domain.18 In the patients reported here, 6/7 missense variants clustered near the C-terminus of 

the MED27 protein. One study indicated MED27 C-terminal domain has a C2-H2 zinc finger 

motif 6.  MED27 interacts extensively with multiple subunits in the head module, including 

MED17 20. Cryo-electron microscopy of the S. pombe head module reveals that Med27 

connects Med18/20 with Med17 15. Interestingly, compared with other Mediator complex-

associated diseases, MED27 and MED17-related diseases are most similar. Both are 

autosomal recessive and characterized by psychomotor developmental delay, spasticity, 

seizures, progressive microcephaly and cerebellar atrophy (Supplementary Table 4). One 

intriguing hypothesis would be that variants in MED27 disrupt its interaction with other Mediator 



complex subunits, such as MED17, leading to similar disease phenotypes. Additional studies on 

the functional consequence of MED27 variants are needed to further address the molecular 

mechanisms underlying the disease. 
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FIGURE LEGENDS 

Figure 1 Nucleotide and amino acid changes in patients with MED27 biallelic variants. 

(A) Schematic representation of MED27 gene structure (not drawn to scale) and nucleotide 

position of eleven variants identified in eleven families. (B) Alignment of human MED27 protein 

sequence with other model organisms including mouse, rat, pig, bovine, Xenopus, zebrafish and 

Drosophila.  

 

Figure 2 Brain imaging of patients with MED27 biallelic variants. 

Brain imaging from ten patients. Sagittal T1 +/- coronal T2 brain MRI imaging of nine patients 

(A-K, M).  Sagittal brain computed tomography (CT) imaging is provided for patient 9 (L). (A) 

Patient 1 (2 years) showing mild cerebellar vermian hypoplasia (ARROW). (B) Patient 2 (2 

years 11 months) showing normal-appearing corpus callosum and cerebellar vermian 

hypoplasia (ARROW). (C) Patient 3-1 (1 year) showing thin corpus callosum (ARROWHEAD) 

and severe cerebellar hypoplasia (ARROW). (D) Patient 3-1 (2 years 5 months), showing thin 

corpus callosum (ARROWHEAD) and progressive cerebellar atrophy (ARROW). (E) Patient 3-2 

(11 years 9 months) showing thin corpus callosum (ARROWHEAD) and cerebellar vermian 

hypoplasia (ARROW) (F) Patient 4 (1 year), showing cerebellar vermian hypoplasia (ARROW). 

(G) Patient 4 (2 years 5 months) showing progressive cerebellar atrophy (ARROW) and cortical 

gyral simplification. (H) Patient 5 (1 year 2 months), showing thin corpus callosum 

(ARROWHEAD), severe cerebellar hypoplasia (ARROW) with flattening of the pons and 

hypomyelination. (I) Patient 6-1 (34 years) showing mild cerebellar  vermian hypoplasia 

(ARROW). (J) Patient 7 (1 year) showing cerebellar vermis hypoplasia (ARROW). (K) Patient 8-

1 (6 years 3 months) showing cerebellar vermian hypoplasia (ARROW). (L) Patient 9 showing 

cerebellar hypoplasia (ARROW) (M) Patient 11-1 showing cerebral atrophy and normal 

cerebellum.   
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