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A B S T R A C T   

A pathological characteristic of repetitive traumatic brain injury (TBI) is the deposition of hyperphosphorylated 
and aggregated tau species in the brain and increased levels of extracellular monomeric tau are believed to play a 
role in the pathogenesis of neurodegenerative tauopathies. The pathways by which extracellular tau is eliminated 
from the brain, however, remains elusive. The purpose of this study was to examine tau uptake by cerebro-
vascular cells and the effect of TBI on these processes. We found monomeric tau interacts with brain vascular 
mural cells (pericytes and smooth muscle cells) to a greater extent than other cerebrovascular cells, indicating 
mural cells may contribute to the elimination of extracellular tau, as previously described for other solutes such 
as beta-amyloid. Consistent with other neurodegenerative disorders, we observed a progressive decline in ce-
rebrovascular mural cell markers up to 12 months post-injury in a mouse model of repetitive mild TBI (r-mTBI) 
and human TBI brain specimens, when compared to control. These changes appear to reflect mural cell 
degeneration and not cellular loss as no difference in the mural cell population was observed between r-mTBI and 
r-sham animals as determined through flow cytometry. Moreover, freshly isolated r-mTBI cerebrovessels showed 
reduced tau uptake at 6 and 12 months post-injury compared to r-sham animals, which may be the result of 
diminished cerebrovascular endocytosis, as caveolin-1 levels were significantly decreased in mouse r-mTBI and 
human TBI cerebrovessels compared to their respective controls. Further emphasizing the interaction between 
mural cells and tau, similar reductions in mural cell markers, tau uptake, and caveolin-1 were observed in 
cerebrovessels from transgenic mural cell-depleted animals. In conclusion, our studies indicate repeated injuries 
to the brain causes chronic mural cell degeneration, reducing the caveolar-mediated uptake of tau by these cells. 
Alterations in tau uptake by vascular mural cells may contribute to tau deposition in the brain following head 
trauma and could represent a novel therapeutic target for TBI or other neurodegenerative disorders.   

1. Introduction 

Traumatic brain injury (TBI) is the result of a sudden trauma to the 
brain that significantly disrupts brain function (Blyth and Bazarian, 
2010). One of the long-term consequences of repetitive head trauma is 
the accumulation of hyperphosphorylated tau (Stern et al., 2011) and 
the presence of tau-reactive neurofibrillary tangles (Blaylock and 
Maroon, 2011) and neuropil threads (Omalu et al., 2011). Elevated 
levels of phosphorylated tau have also been observed in various animal 

models of TBI by our group (Ojo et al., 2013; Ojo et al., 2016) and others 
(Goldstein et al., 2012; Huber et al., 2013; Petraglia et al., 2014; Zhang 
et al., 2014). Tau is a cytoplasmic protein which is believed to be 
restricted to the intracellular compartment of neurons, except when 
released from dead or degenerating cells. However, more recent work 
has shown that tau is constitutively released into the extracellular 
environment under normal conditions (Chai et al., 2012; Karch et al., 
2012), indicating tau secretion may be a common biological function 
(Medina and Avila, 2014). Furthermore, several studies have indicated 
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tau pathology is propagated through extracellular tau spreading and it is 
believed that increased levels of monomeric tau in the extracellular 
environment play a major role in the pathogenesis of neurodegenerative 
tauopathies (Le et al., 2012; Michel et al., 2013). In fact, tau elevations 
in the brain extracellular space can be used to predict adverse clinical 
outcomes following TBI (Magnoni et al., 2012; Ost et al., 2006). 

Despite the prevalence and importance of extracellular tau in normal 
and disease conditions, there is little understanding of how extracellular 
tau is processed and eliminated from the brain. A study recently 
demonstrated that extracellular tau is eliminated from the brain through 
paravascular pathways (Iliff et al., 2014). A common paravascular 
pathway for removing solutes from the brain involves uptake and 
degradation by brain vascular mural cells (pericytes and smooth muscle 
cells). Prior studies have shown mural cells contribute to the elimination 
of beta-amyloid (Aβ) from the brain, (Alcendor, 2020; Kanekiyo et al., 
2012; Kirabali et al., 2019; Ma et al., 2018), which accumulates in the 
brains of Alzheimer’s disease (AD) patients (and to a lesser extent in TBI 
subjects) (Tsitsopoulos and Marklund, 2013). Studying the role of brain 
vascular mural cells in tau uptake may be particularly relevant in head 
trauma as a prominent feature of TBI is the presence of perivascular tau 
tangles (Stern et al., 2011; McKee et al., 2009). Moreover, recent work 
found that paravascular tau clearance was reduced by approximately 
60% following TBI and was associated with phospho-tau pathology and 
neurodegeneration (Iliff et al., 2014). 

Mural cell loss in the brain vasculature is a common feature of many 
neurodegenerative disorders including AD (Bourassa et al., 2020; Sagare 
et al., 2013; Sengillo et al., 2013) and Amyotrophic Lateral Sclerosis 
(ALS) (Winkler et al., 2013), with more modest reductions also occur-
ring in the course of normal aging (Bell et al., 2010). With respect to TBI, 
pericyte loss has been observed acutely following a single controlled 
cortical impact (Choi et al., 2016; Zehendner et al., 2015) and, more 
recently, several pericyte markers were found to be significantly 
reduced after fluid percussion injury in mice (Bhowmick et al., 2019), 
though more chronic time points have yet to be examined. The degen-
eration of mural cells in the brain may explain the progressive solute 
accumulation that is prevalent in neurodegenerative disorders (e.g., Aβ 
in AD, transactive response DNA binding protein 43 (TDP43) in ALS, and 
pathologic tau in repetitive TBI). Furthermore, as changes in brain 
caveolin-1 levels have recently been shown to correlate with tau 
disposition in the brain (Bonds et al., 2019; Head et al., 2010), we 
examined caveolin-1 expression alongside tau uptake in isolated cere-
brovessels. At this stage, the role of mural cells in tau uptake is poorly 
understood, and the long-term effects of repetitive head trauma on 
mural cells in the brain has yet to be fully investigated. Since these cells 
can be important mediators of solute disposition and accumulation in 
the brain, the purpose of the present study was to evaluate the inter-
action between tau and brain vascular mural cells and determine the 
status of these cells chronically following repetitive brain injury. 

2. Materials and methods 

2.1. Materials 

Brain vascular pericytes (cat#1200), brain vascular smooth muscle 
cells (SMC) (cat#1100), brain microvascular endothelial cells (HBMEC) 
(cat#1000), astrocytes (cat#1800), and microglia (cat#1900) (all of 
human origin) and associated culture reagents were purchased from 
Sciencell Research Laboratories (Carlsbad, CA, USA). Fibronectin solu-
tion (cat#F1141), poly-L-lysine solution (cat#P4707), collagenase/dis-
pase (cat#11097113001), and Hanks’ balanced salt solution (HBSS) 
(cat#H8264) were purchased from MilliporeSigma (St. Louis, MO, 
USA). Recombinant human tau-441 (rhtau) (cat#T-1001) and 
fluorescein-labeled Aβ(1–42) (cat#A-1119) was purchased from rPep-
tide (Watkinsville, GA, USA). Lucifer yellow dextran (10 kD) 
(cat#D1825) and the human tau enzyme linked immunosorbent assay 
(ELISA) (cat#KHB0041) were purchased from Invitrogen Corp. 

(Carlsbad, CA, USA). The ELISA kits for human (cat#LS-F13051) and 
mouse (cat#LS-F21849) alpha smooth muscle cell actin (αSMC-actin) 
were purchased from LifeSpan BioSciences, Inc. (Seattle, WA, USA). The 
ELISA kits for human (cat#EHPDGFRB) and mouse (cat#MBS919047) 
PDGFRβ (platelet-derived growth factor receptor beta) were purchased 
from ThermoFisher Scientific (Waltham, MA, USA) and MyBioSource, 
Inc. (San Diego, CA, USA), respectively. Antibodies for N-aminopepti-
dase, CD13 (cat#558744), and the brain endothelial cell marker, CD31 
(cat#561410), were purchased from BD Biosciences (San Jose, CA, 
USA). Mammalian protein extraction reagent (M-PER) (cat#78505), 
Halt enzyme inhibitor cocktails (cat#78442), and the bicinchoninic acid 
(BCA) protein assay (cat#23225) were purchased from ThermoFisher 
Scientific (Waltham, MA, USA). 

2.2. Animals 

Human tau (hTau) mice (cat#005491) were purchased from the 
Jackson Laboratory (Bar Harbor, ME, USA). The hTau mice express six 
isoforms of human tau on a C57BL/6 background, but do not express 
murine tau, as previously described (Andorfer et al., 2003). Transgenic 
PS1/APPsw (PSAPP) mice overexpressing the “Swedish” mutation 
(APP695) and mutant presenilin-1 (M146L) were used as a mouse model 
of Alzheimer’s disease (Holcomb et al., 1998). The mural cell-depleted 
animals, PDGFRβ(+/− ), were kindly provided by Dr. Richard Dane-
man (University of California, San Diego, La Jolla, CA) and were 
generated by disrupting PDGFRβ signaling, which leads to progressive 
reductions in the vascular expression of smooth muscle cells and peri-
cytes (Bell et al., 2010; Tallquist et al., 2003). All studies used male and 
female mice, housed under standard laboratory conditions (23 ± 1 ◦C, 
50 ± 5% humidity, and a 12-h light/dark cycle) with free access to food 
and water throughout the study. All experiments using animals were 
performed under protocols approved by the Institutional Animal Care 
and Use Committee (IACUC) of the Roskamp Institute. 

2.3. Brain injury protocol 

To investigate the effects of repetitive mild traumatic brain injury (r- 
mTBI), we used a mouse model of closed head injury as previously 
characterized by our group (Mouzon et al., 2012; Mouzon et al., 2014). 
Briefly, animals were secured in a mouse stereotaxic apparatus (Stoelt-
ing) mounted with an electromagnetic controlled impact device (Leica) 
and anesthetized with 1.5 l/min of oxygen and 3% isoflurane. Prior to 
impact, a 5 mm blunt metal impactor tip was retracted and positioned 
midway in relation to the sagittal suture. The injury was triggered using 
the myNeuroLab controller (Leica) at a strike velocity of 5 m/s, strike 
depth of 1.0 mm, and a dwell time of 200 milliseconds. Mice (3 months 
of age) received 2 injuries per week for 3 months. In this closed head 
injury model, there are no incisions and no craniotomy. The mouse head 
is shaved and the skin is retracted on either side of the brain. The impact 
is delivered directly to the skin on the midline of the skull. As a control, 
sham animals did not receive the brain injury, but were exposed to 
anesthesia for the same length of time as the injured mice and under the 
same paradigm (2 exposures per week for 3 months). Mice were 
euthanatized at 24 h, 3 months, 6 months, and 12 months after the final 
brain injury or anesthesia exposure. A timeline of the injury paradigm 
and the timepoints for tissue collection are depicted in (Fig. 1). 

2.4. Peptide preparation 

Using a standard process to limit aggregation, as we previously 
described (Bachmeier et al., 2013), lyophilized Aβ peptides were solu-
bilized in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to acquire a mono-
meric/dimeric sample and minimize the formation of β-sheet structures. 
Briefly, 1 mg of each lyophilized peptide was dissolved in 1 ml of ice cold 
HFIP. The peptides were allowed to air dry in a chemical fume hood for 
one hour followed by further drying in a speed-vac centrifuge for 30 
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min. The resulting clear film was re-suspended in 100% dimethylsulf-
oxide to a concentration of 1 mM and stored in aliquots at − 80 ◦C. 
Recombinant human tau-441 (50 μg) was dissolved in 1 ml of HBSS and 
stored in aliquots at − 80 ◦C. 

2.5. Tau uptake in vitro 

All cells (pericytes, SMC, HBMEC, astrocytes, and microglia) were 
individually seeded at 50,000 cells per cm2 onto fibronectin-coated or 
poly-L-lysine-coated 24-well plates. Upon confluency, cells were treated 
with rhtau (0.5, 5, and 50 ng/ml) for 1 h at 37 ◦C. Following the 
treatment period, the extracellular media was removed, and the cell 
monolayer washed with ice-cold HBSS. Cell lysates were collected using 
lysis buffer (M-PER) supplemented with phenylmethanesulfonyl fluo-
ride (1 mM) and Halt protease and phosphatase inhibitor cocktail. The 
cell lysates were analyzed for total tau content by ELISA and normalized 
to total protein content using the BCA protein assay. It should be noted 
that significant tau degradation is not expected to occur within the time 
frame of the tau uptake studies. That said, a limitation of this approach is 
that any tau fragments that may be produced would not be distinguished 
and any disruptions to the tau epitope could prevent tau detection by the 
ELISA antibody altogether. 

2.6. Isolation of brain fractions 

Various brain fractions, including the cerebrovasculature, were iso-
lated from mouse brain tissue as characterized and described by our 
group previously (Bachmeier et al., 2014). Briefly, the entire mouse 
brain (minus the cerebellum and brain stem) was freshly collected (300 
mg) and ground in ice-cold HBSS with 6–8 passes of a Teflon pestle in a 
glass Dounce homogenizer. An equal volume of 40% dextran solution 
was added to the brain homogenate for a final concentration of 20% 
dextran and immediately centrifuged at 6000g for 15 min at 4 ◦C. This 
procedure results in a pellet at the bottom of the container (cere-
brovasculature) and a compact mass at the top of the solution (paren-
chyma) separated by a clear dextran interface (soluble fraction, i.e., non- 
cell associated). As we are interested in the response of both pericytes 
and smooth muscle cells, we used whole vascular preparations, con-
taining vessels of a variety of sizes (microvessels, arterioles, etc.). As a 
result, in addition to mural cells, these preparations likely contain brain 
endothelia and potentially astrocytes. The freshly isolated cere-
brovessels were collected and immediately used for the ex vivo studies 
described below. 

2.7. Tau uptake, mural cell marker and caveolin-1 expression ex vivo 

In line with the in vitro studies above, tau uptake was evaluated in 
cerebrovessels isolated from 1) r-mTBI (24 h, 3 months, 6 months, and 
12 months post-last injury), 2) PDGFRβ(+/− ) (12 months of age), and 3) 
PSAPP (18 months of age) mice. The PDGFRβ(+/− ) and PSAPP animals 
were examined at 12 months and 18 months of age, respectively, as prior 
reporting has shown mural cell disruption at these ages or younger 
(Sagare et al., 2013; Bell et al., 2010). Additionally, these ages match the 
respective ages of the r-mTBI animals at 6 and 12 months post-last 
injury, which allows for comparisons of mural-cell dysfunction be-
tween the mouse models while excluding age as a confounding factor. 
The sample sizes for the r-sham and r-mTBI groups were the same for 
each timepoint: 24 h (n = 5), 3 months (n = 4), 6 months (n = 6), and 12 
months (n = 4). The sample sizes for the PDGFRβ(+/− ) and wild-type 
littermate groups were n = 4 each, while the PSAPP and wild-type 
littermate groups were n = 6 each. Freshly isolated cerebrovessels 
were treated with 5 ng/ml rhtau for 1 h at 37 ◦C, which is the reported 
concentration of tau in human ISF (Magnoni et al., 2012; Marklund 
et al., 2009). In addition, cerebrovessels isolated from a separate cohort 
of r-mTBI animals at 12 months post-injury were treated with either 2 
μM fluorescein-labeled Aβ(1–42) or 10 μM lucifer yellow dextran for 1 h 
at 37 ◦C. For this study, the sample sizes for the r-sham and r-mTBI 
groups were the same for each probe: lucifer yellow dextran (n = 4), 
fluorescein-labeled Aβ1-42 (n = 5). Following the treatment period, the 
extracellular media was removed, and the cerebrovessels were washed 
with ice-cold HBSS. Cell lysates were collected using lysis buffer (M- 
PER) supplemented with phenylmethanesulfonyl fluoride (1 mM) and 
Halt protease and phosphatase inhibitor cocktail. The cell lysates were 
analyzed for total tau content, αSMC-actin, PDGFRβ, and caveolin-1 by 
ELISA, while the fluorescein-labeled Aβ(1–42) and lucifer yellow 
dextran were analyzed using a microplate fluorescence reader. All 
samples were normalized to total protein content using the BCA protein 
assay. 

2.8. Mural cell marker and caveolin-1 expression in human brain 
specimens 

Human brain specimens were acquired from Dr. Thomas Beach, Di-
rector of the Brain and Body Donation Program at the Sun Health 
Research Institute (Sun City, AZ). Frozen human cortex samples from the 
inferior frontal gyrus (500 mg) were obtained from the autopsied brains 
of 1) non-demented control subjects (no history of TBI or AD diagnosis), 
2) TBI, 3) AD, and 4) TBI and AD. For the TBI specimens, donors re-
ported 1 or 2 brain injuries in which loss of consciousness occurred and 
each incident lasted less than 30 min. Moreover, as we are primarily 

Fig. 1. Timeline of the brain injury paradigm and tissue collection for the mouse studies. Human tau (hTau) mice at 3 months of age received 2 injuries per week for 
3 months. As a control, sham animals did not receive any brain injuries, but were exposed to anesthesia for the same length of time as the injured mice and under the 
same paradigm (2 exposures per week for 3 months). Mice were euthanatized and tissue was collected at 24 h, 3 months, 6 months, and 12 months after the final 
brain injury or anesthesia exposure (blue boxes). Moreover, transgenic mural cell-depleted animals, PDGFRβ(+/− ) (green box), and a mouse model of Alzheimer’s 
disease, PSAPP (red box), were euthanatized and tissue collected at 12 months and 18 months of age, respectively. Of note, neither the PDGFRβ(+/− ) nor PSAPP 
animals were administered any brain injuries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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interested in the chronic phase post-injury, samples with a longer post- 
last injury period were prioritized (mean, ~40 years post-last injury). A 
summary of the human brain specimens is displayed in Table 1. In the 
same manner as the mouse ex vivo studies above, the cerebrovasculature 
was isolated from each human brain specimen and collected using lysis 
buffer (M-PER) supplemented with phenylmethanesulfonyl fluoride (1 
mM) and Halt protease and phosphatase inhibitor cocktail. The cell ly-
sates were analyzed for αSMC-actin, PDGFRβ, and caveolin-1 by ELISA 
and normalized to total protein content using the BCA protein assay. 

2.9. Flow cytometry 

Fresh cerebrovascular tissue was isolated from the brains of r-sham 
and r-mTBI mice at 6 months post-last injury and processed as previ-
ously described (Crouch and Doetsch, 2018). Briefly, the cerebrovas-
cular pellet (obtained as described above) was resuspended in a 
collagenase/dispase solution (1 mg/ml) and incubated for 1 h at 37 ◦C 
with gentle agitation. Following enzymatic digestion, the tissue was 
pelleted by centrifugation at 6000 rpm for 3 min and resuspended in a 
DNAse solution (1 mg/ml, Worthington Biochemical) and subjected to 
further mechanical digestion via trituration with a pipette to achieve a 
single cell suspension. The tissue was centrifuged at 6000 rpm for 3 min, 
the supernatant discarded, and the resulting pellet was resuspended and 
stained with antibodies against the mural cell-specific N-aminopepti-
dase (CD13) using anti-CD13-FITC at 1:200 (BD Biosciences), and the 
brain endothelial cell marker (CD31) using anti-CD31-PE-CY7 at 1:500 
(BD Biosciences). For live/dead cell discrimination, the viability dye 
propidium iodide (Sigma Aldrich) was added to the antibody cocktail. 
Cells were stained on ice for 30 min in the dark and resuspended in 1% 
BSA in HBSS. Data were acquired and analyzed using the Attune® NxT 
Acoustic Focusing Flow Cytometer and Attune® NxT software version 
2.7 (Thermo Fisher Scientific, Waltham, MA, USA). 

2.10. Statistical analyses 

Quantitative data were plotted as mean ± standard error of the 
mean. Statistical analysis was performed using InStat 3.0 or GraphPad 
Prism 8.0 (GraphPad Software, Inc). The Brown-Forsythe and Bartlett’s 
tests were performed to ensure homogeneity of variance and the 
Shapiro-Wilk test was completed to assess normality. Statistical signifi-
cance was evaluated using a two-way ANOVA with Bonferroni’s multi-
ple comparisons testing as indicated in the figure legends. For data that 
did not reflect a normal/Gaussian distribution, the Kruskal-Wallis test 
was utilized followed by Dunn’s multiple comparisons test. Correlation 
analyses were evaluated using Pearson’s correlation coefficient. For all 
analyses, a p value ≤0.05 was considered statistically significant. 

3. Results 

3.1. Tau uptake in vitro 

The microglia cultures showed the strongest interaction with tau at 
all 3 concentration (0.5, 5 and 50 ng/ml), while both the pericytes and 
smooth muscle cells demonstrated a dose-dependent capacity for tau 
uptake (Fig. 2). At the highest tau treatment concentration (50 ng/ml), 
the smooth muscle cells had essentially the same levels of intracellular 

tau as the microglia. In contrast, the astrocytes and brain endothelial 
cells showed a lower degree of tau uptake (at any concentration) as the 
tau levels in these cells were 3-times lower than that observed in the 
other cell types (pericytes, smooth muscle cells, and microglia) at 5 and 
50 ng/ml and near the background level of detection. The rank order for 
the in vitro uptake of tau was microglia > smooth muscle cells > peri-
cytes ≫ brain endothelia = astrocytes. 

3.2. Cerebrovascular tau uptake ex vivo 

Freshly isolated cerebrovessels from r-mTBI mice showed a pro-
gressive decline in tau uptake post-last injury, resulting in a statistically 
significant decrease at 6 (25%) and 12 months (30%) post-last injury 
compared to each respective r-sham cohort (Fig. 3A). Similarly, tau 
uptake was also significantly diminished (30% decrease) in cere-
brovessels from mural cell-depleted PDGFRβ(+/− ) animals compared to 
age-matched wild-type littermates (Fig. 3B). Lastly, cerebrovessels from 
PSAPP animals demonstrated substantially less tau uptake (40% 
decrease) than age-matched wild-type littermates (Fig. 3C). Addition-
ally, fluorescein-labeled Aβ(1–42) uptake was decreased (20%) in cer-
ebrovessels from r-mTBI animals at 12 months post-last injury compared 
to r-sham mice (Fig. 4). Lastly, no difference in the cerebrovascular 
uptake of lucifer yellow dextran was observed between r-mTBI and r- 
sham animals at 12 months post-last injury (Fig. 4). 

3.3. Mural cell marker expression in r-mTBI and transgenic animals 

In the brain-injured animals, expression of the mural cell markers, 
αSMC-actin and PDGFRβ, progressively decreased post-last injury in 
isolated r-mTBI cerebrovessels compared to r-sham animals. For αSMC- 
actin (Fig. 5A), a significant decrease was observed at both 6 and 12 
months after the final injury (approximately 25% decrease for both 
compared to respective r-sham animals). For PDGFRβ, expressions levels 
were significantly lower (approximately 30% decrease) at 12 months 
post-last injury compared to r-sham animals (Fig. 6A). Similarly, in the 
PDGFRβ(+/− ) animals (12 months of age), αSMC-actin in isolated cer-
ebrovasculature was diminished (approximately 30%) compared to age- 
matched wild-type littermates, but this effect did not reach statistical 
significance (Fig. 5B). As anticipated, a substantial decrease in PDGFRβ 

Table 1 
Characteristics of human brain specimens.  

Group Sample 
size 

Age ± SEM 
(years) 

Sex (M/ 
F) 

Years post-last injury ±
SEM 

Control 15 79.4 ± 1.9 8/7  
TBI 12 85.2 ± 1.9 6/6 38.1 ± 9.2 
AD 15 82.5 ± 1.7 7/8  
AD-TBI 14 79.6 ± 2.3 7/7 41.5 ± 7.9  

Fig. 2. Tau uptake in human non-neuronal brain cells. Cells were exposed to 
various concentrations (0.5, 5, and 50 ng/ml) of full length recombinant human 
tau (rhtau-441) for 1 h at 37 ◦C. Lysates were analyzed for tau content by ELISA 
and normalized to total protein using the BCA assay. Values represent mean ±
SEM (n = 3) and are expressed as ng of tau per mg of total protein. *P < 0.05 
compared to brain endothelia as determined by two-way ANOVA and Bonfer-
roni’s multiple comparisons test. 
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levels (approximately 40% reduction) was observed in the PDGFRβ 
(+/− ) animals compared to age-matched wild-type littermates (Fig. 6B). 
Lastly, in the PSAPP mouse AD model (18 months of age), both αSMC- 
actin and PDGFRβ were significantly reduced (approximately 30% 
decrease) in isolated cerebrovessels compared to age-matched wild-type 
littermates (Figs. 5C and 6C). In combining the tau uptake and mural cell 
expression datasets, we observed a strong correlation between cere-
brovascular tau uptake and mural cell marker expression (αSMC-actin, P 
= 0.0195; PDGFRβ, P = 0.0335) following repetitive trauma to the brain 
(Fig. 7). 

3.4. Mural cell marker expression in human brain specimens 

In isolated cerebrovasculature from human brain cortex, αSMC-actin 
levels in AD specimens were approximately half that observed in control 
specimens (Fig. 8A), and in the TBI specimens a reduction in αSMC-actin 
was also observed (approximately 25% compared to control brains), but 
this comparison was not statistically significant. While not quite as 
diminished as the AD group, αSMC-actin expression in the cere-
brovasculature from the TBI-AD group was significantly lower than that 
found in control brains (Fig. 8A). For PDGFRβ expression in isolated 
cerebrovessels, the levels in AD specimens were less than half that 
observed in control brains (Fig. 8B). In the TBI specimens, a reduction in 
PDGFRβ expression was apparent (approximately 15% compared to 
control), but was not statistically significant. Lastly, in the AD-TBI 
group, PDGFRβ levels were significantly reduced by 35% compared to 
control specimens (Fig. 8B). 

3.5. Flow cytometry and immunophenotypic analysis of cerebrovascular 
mural cells and endothelia 

The number of CD31 + ve endothelial cells and CD13 + ve mural 
cells in freshly isolated cerebrovasculature from r-sham and r-mTBI 
animals (6 months post-injury) were quantified and expressed as a 
percentage of the total number of gated events (Fig. 9). No significant 
difference was identified in the percentage of CD31 + ve endothelial 
cells (Fig. 9F) or CD13 + ve mural cells (Fig. 9G) when comparing r- 
sham and r-mTBI cerebrovessels. 

3.6. Caveolin-1 expression in animal and human cerebrovasculature 

Caveolin-1 expression was significantly decreased in isolated r-mTBI 
cerebrovessels compared to r-sham animals (35%) at 12 months post- 
last injury (Fig. 10). Similar reductions in cerebrovascular caveolin-1 
expression were observed in both the PSAPP and PDGFRβ(+/− ) ani-
mals compared to their respective wild-type littermates (Fig. 10). With 
respect to the human brain specimens, cerebrovascular caveolin-1 levels 
were significantly reduced in the TBI brain specimens (40%), while 
nearly 2-times less caveolin-1 was detected in the AD cerebrovessels in 
relation to the control brain specimens (Fig. 11). The combination of TBI 
and AD had the lowest levels of cerebrovascular caveolin-1 demon-
strating a 4-fold decrease when compared to the control brains (Fig. 11). 

Fig. 3. Tau uptake in freshly isolated cerebrovasculature from (A) r-mTBI mice (24 h, 3 months, 6 months, and 12 months post-last injury), and (B) PDGFRβ(+/− ) 
mice, PSAPP mice, and respective wild-type littermates. Cerebrovessels were exposed to 5 ng/ml recombinant human tau (rhtau-441) for 1 h at 37 ◦C. Lysates were 
analyzed for tau content by ELISA and normalized to total protein using the BCA assay. Values represent mean ± SEM and are expressed as a percentage of each 
respective r-sham or wild-type littermate. The sample sizes for the r-sham and r-mTBI groups were the same for each timepoint: 24 h (n = 5), 3 months (n = 4), 6 
months (n = 6), and 12 months (n = 4). PDGFRβ(+/− ) and wild-type littermates (n = 4 each) and PSAPP and wild-type littermates (n = 6 each). *P < 0.05 compared 
to each respective r-sham or wild-type littermate as determined by two-way ANOVA and Bonferroni’s multiple comparisons test. 

Fig. 4. Solute uptake in freshly isolated cerebrovasculature from r-mTBI mice 
at 12 months post-last injury. Cerebrovessels were exposed to lucifer yellow 
dextran (10 μM) or fluorescein-labeled Aβ1-42 (2 μM) for 1 h at 37 ◦C. Lysates 
were analyzed for fluorescence and normalized to total protein using the BCA 
assay. Values represent mean ± SEM and are expressed as a percentage of each 
respective r-sham group. The sample sizes for the r-sham and r-mTBI groups 
were the same for each probe: lucifer yellow dextran (n = 4), fluorescein- 
labeled Aβ1-42 (n = 5). *P < 0.05 compared to each respective r-sham as 
determined by two-way ANOVA and Bonferroni’s multiple comparisons test. 
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4. Discussion 

Brain vascular mural cells are an essential component of the neuro-
vascular unit, which couples neuronal activity to vascular function 
(ElAli et al., 2014) in regulating brain homeostasis (Hill et al., 2014). 
Specifically, mural cells perform a number of diverse functions 
including: cerebral blood flow regulation, blood–brain barrier (BBB) 
maintenance, endothelial cell regulation and angiogenesis, and phago-
cytosis of extracellular solutes (Dalkara et al., 2011; Kolinko et al., 
2018). As a result of their broad function and importance to cerebro-
vascular health, brain mural cells have been implicated in a variety of 
neurological pathologies (Hill et al., 2014; Dalkara et al., 2011). In the 
current studies, isolated cerebrovessels from human AD brain specimens 
and an AD mouse model (PSAPP) showed significant reductions in mural 

cell markers (PDGFRβ and αSMC-actin) compared to age-matched 
human control brains and wild-type animals, respectively, consistent 
with prior reports of vascular mural cell disruptions in AD brains 
(Bourassa et al., 2020; Sagare et al., 2013; Sengillo et al., 2013). 

As vascular mural cell perturbations are evident in AD and other 
neurodegenerative disorders (Winkler et al., 2013), we sought to 
interrogate the state of the mural cell population following trauma to the 
brain, particularly at more chronic timepoints post-injury, as such 
studies are currently lacking. In the acute phase post-injury, prior 
reporting showed numerous mural cell markers (including PDGFRβ) 
were diminished in mouse cortical tissue up to 48 h following fluid 
percussion injury (Bhowmick et al., 2019). In this same post-injury 
window (48 h), at the ultrastructural level, it was found that a subset 
of pericytes associated with the microvasculature underwent a form of 

Fig. 5. Mural cell marker expression (αSMC-actin) in freshly isolated cerebrovasculature from (A) r-mTBI mice (24 h, 3 months, 6 months, and 12 months post-last 
injury), and (B) PDGFRβ(+/− ) mice, PSAPP mice, and respective wild-type littermates. Lysates were analyzed for αSMC-actin by ELISA and normalized to total 
protein using the BCA assay. Values represent mean ± SEM and are expressed as a percentage of each respective r-sham or wild-type littermate. The sample sizes for 
the r-sham and r-mTBI groups were the same for each timepoint: 24 h (n = 5), 3 months (n = 4), 6 months (n = 6), and 12 months (n = 4). PDGFRβ(+/− ) and wild- 
type littermates (n = 4 each) and PSAPP and wild-type littermates (n = 6 each). *P < 0.05 compared to each respective r-sham or wild-type littermate as determined 
by two-way ANOVA and Bonferroni’s multiple comparisons test. 

Fig. 6. Mural cell marker expression (PDGFRβ) in freshly isolated cerebrovasculature from (A) r-mTBI mice (24 h, 3 months, 6 months, and 12 months post-last 
injury), and (B) PDGFRβ(+/− ) mice, PSAPP mice, and respective wild-type littermates. Lysates were analyzed for PDGFRβ by ELISA and normalized to total pro-
tein using the BCA assay. Values represent mean ± SEM and are expressed as a percentage of each respective r-sham or wild-type littermate. The sample sizes for the 
r-sham and r-mTBI groups were the same for each timepoint: 24 h (n = 5), 3 months (n = 4), 6 months (n = 6), and 12 months (n = 4). PDGFRβ(+/− ) and wild-type 
littermates (n = 4 each) and PSAPP and wild-type littermates (n = 6 each). *P < 0.05 compared to each respective r-sham or wild-type littermate as determined by 
two-way ANOVA and Bonferroni’s multiple comparisons test. 
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cellular degeneration, while another group of pericytes migrated from 
the endothelium in response to traumatic injury (Dore-Duffy et al., 
2000). Thal and colleagues observed a rapid decline in PDGFRβ within 
the first 12h after injury, however by day 5 post-TBI, not only did these 
levels resolve but several mural cell markers were significantly elevated 
compared to control conditions (Zehendner et al., 2015). In our mouse 
model of r-mTBI, we observed an initial increase in αSMC-actin 
compared to r-sham animals (24 h post-injury), akin to that reported 
after TBI in prior studies (Dore-Duffy et al., 2011). However, as the post- 
injury time increased in our studies, both mural cell markers (PDGFRβ 
and αSMC-actin) progressively devolved to levels comparable to that 
observed in the AD animal model. These findings were consistent with 
our previous observations using the same r-mTBI paradigm in an aged 
wild-type cohort (12 months of age) in which both PDGFRβ and αSMC- 
actin were significantly decreased at 7 months post-injury, as deter-
mined through immunoblotting (Lynch et al., 2016). Furthermore, we 
interrogated these same markers in cerebrovessels isolated from human 
brain specimens and observed a decrease in both mural cell markers in 
the TBI brains compared to control specimens, though these analyses did 
not reach statistical significance. It is worth noting that only 1 of the 12 
TBI specimens had at least one apolipoprotein E4 (apoE4) allele, which 
is a genetic risk factor for AD (Kim et al., 2009), while 11 of the 14 AD- 

TBI specimens were apoE4 positive, and is a likely reason the AD-TBI 
individuals converted to AD versus the TBI-only subjects. Additionally, 
a glaring difference between the human TBI specimens and the r-mTBI 
animal model is the number of brain injury exposures (1–2 TBI in the 
human specimens vs. 24 TBI in the mouse cohort). The r-mTBI paradigm 
intends to model the frequency of injuries experienced over the course of 
an entire career, such as contact sports athletes or military personnel. 
The more pronounced mural cell marker changes in the r-mTBI animal 
cohort versus the human TBI specimens could be the result of a higher 
injury frequency, though further investigation is certainly warranted. 

While our findings revealed changes in key mural cell markers 
following head trauma, particularly in the chronic phase post-injury, 
what remains unclear is whether these alterations are indicative of 
cellular degeneration or cellular loss. In human AD brains, PDGFRβ 
levels were significantly reduced in the cortex and hippocampus (Sen-
gillo et al., 2013), and both the mural cell number and vessel coverage 
was found to be reduced in mouse and human AD brains compared to 
control, using the mural cell-specific marker CD13 (Bourassa et al., 
2020; Sagare et al., 2013; Sengillo et al., 2013). With respect to TBI, 
controlled cortical impact induced mural cell loss by 3 days after TBI in 
the perilesional cortex and ipsilateral hippocampal areas, as PDGFRβ 
was found to be colocalized with several indicators of cell death (Choi 

Fig. 7. Correlation between mural cell expression and tau uptake in cerebrovessels isolated from r-mTBI (24 h, 3 months, 6 months, and 12 months post-last injury) 
and PSAPP mice. Cerebrovascular expression of (A) αSMC-actin, and (B) PDGFRβ was plotted versus tau uptake (αSMC-actin, r = 0.93; PDGFRβ, r = 0.91). Values 
represent the mean % change from each respective control (r-sham or wild-type littermates). αSMC-actin (P = 0.0195) and PDGFRβ (P = 0.0335) as determined by a 
two-tailed Pearson correlation. 

Fig. 8. Mural cell marker expression in cerebrovasculature isolated from human brain cortex derived from, 1) non-demented control subjects (no history of TBI or AD 
diagnosis), 2) TBI, 3) AD, and 4) TBI and AD. Lysates were analyzed for (A) αSMC-actin, and (B) PDGFRβ by ELISA and normalized to total protein using the BCA 
assay. Values represent mean ± SEM and are expressed as ng per mg of total protein. Control (n = 15), TBI (n = 12), AD (n = 15), TBI-AD (n = 14). *P < 0.05 
compared to control as determined by the Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 
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et al., 2016), while a separate report showed CD13 levels were signifi-
cantly diminished 48 h after fluid percussion injury (Bhowmick et al., 
2019). In our studies, we performed flow cytometry to assess the state of 
the mural cell population after r-mTBI and found no change in the of 

number of CD13+ cells between r-sham and r-mTBI cerebrovessels at 6 
months post-injury. Furthermore, we recently reported no difference in 
mural cell vessel density between r-sham and r-mTBI animals (up to 9 
months post-injury) based on CD13 vessel coverage using confocal 

Fig. 9. Flow cytometry analysis of brain endothelia and mural cells in freshly isolated cerebrovasculature from r-sham and r-mTBI mice at 6 months post-last injury. 
The scatter plot diagrams represent the gating strategy used during the identification and analysis of CD31 + ve endothelial cells and CD13 + ve mural cells. Cellular 
debris was excluded through gating based on (A) particle size (forward scatter area FSC-A) and particle complexity (side scatter area SSC-A). Gating based on (B) FSC- 
H (H- height) and FSC-A (A- area scaling) selected for single cell populations, while live cells were identified through (C) negative propidium iodide staining. The 
resulting sample populations were gated based on (D) positive expression of PE-Cy7 indicating CD31 + ve endothelial cells, and (E) positive expression of fluorescein 
isothiocyanate (FITC) indicating CD13 + ve mural cells. The percentages refer to the proportion of endothelia or mural cells in relation to the previous parent gate. 
Figs. F and G represent the percentage of CD31 + ve endothelial cells and CD13 + ve mural cells, respectively, in relation to the total number of gated events in r- 
sham and r-mTBI cerebrovessels. Values represent mean ± SEM (n = 4). *P < 0.05 compared to r-sham as determined by a one-way ANOVA followed by post-hoc test 
correction for false discovery rate using the Bonferroni correction. 
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microscopy (Lynch et al., 2020). Thus, while mural cell loss may occur 
acutely following brain trauma (Choi et al., 2016; Bhowmick et al., 
2019), there does not appear to be an overt reduction in the number of 
mural cells in the chronic phase post-injury, but rather a progressive 

decline in key mural cell proteins (i.e., PDGFRβ and αSMC-actin), which 
are expressed in both pericytes and smooth muscle cells (Alarcon-Mar-
tinez et al., 2018; Hellstrom et al., 1999; Skalli et al., 1989). It has been 
demonstrated that the PDGF pathway is tightly regulated and mainte-
nance of the PDGFRβ receptor is necessary for mural cell function and 
survival (Bell et al., 2010; Winkler et al., 2014). Similarly, alterations in 
smooth muscle-actin expression have been associated with changes in 
mural cell phenotype including cell contraction, migration, and survival 
(Ahmed and Warren, 2018). Smooth muscle-actin is an important 
component of mural cell contractility (Ahmed and Warren, 2018; 
Hamilton et al., 2010) and it has been suggested that the vasomotion 
wave initiated by contractile smooth muscle cells of cerebral arteries 
contributes to the clearance of fluid and solutes from the brain (Aldea 
et al., 2019). In fact, it was shown that reductions in arterial pulsatility 
decrease both the paravascular (Iliff et al., 2013) and perivascular 
(Carare et al., 2008) movement of solutes in the brain. As such, the 
chronic disruptions in PDGFRβ and SMA we observed following repeti-
tive head trauma may impact vasomotion during neurovascular 
coupling and the perivascular elimination of tau from the brain. 

As described above, vascular mural cells contribute to the phago-
cytosis and clearance of a variety of extracellular molecules and are 
important mediators of solute disposition and accumulation in the brain 
(Winkler et al., 2014). Several studies have demonstrated the role of 
mural cells in the elimination of Aβ from the brain (Wildsmith et al., 
2013; Alcendor, 2020; Kanekiyo et al., 2012; Kirabali et al., 2019; Ma 
et al., 2018), and we found Aβ uptake was diminished in r-mTBI cere-
brovessels compared to the r-sham group. Comparatively, there has been 
little investigation into the interaction of tau with non-neuronal cells, 
particularly cells associated with the cerebrovasculature. We examined 
the association of tau with a panel of non-neuronal cells of the brain in 
vitro and found that brain vascular mural cells (pericytes and smooth 
muscle cells) interact with tau at a level near that observed with 
microglia cells, which are prominent phagocytic mediators of the brain 
and have been shown to degrade tau species (Majerova et al., 2014). 
Thus, vascular brain mural cells may be involved in the uptake of tau, 
not unlike their role in the elimination of Aβ and other molecules from 
the brain. Moreover, disruption of these cells post-injury may lead to the 
presence of perivascular tau tangles, which is a pathological hallmark of 
human repetitive brain trauma (Stern et al., 2011; McKee et al., 2009). 
Similar to the Aβ study above, we investigated tau uptake in isolated 
cerebrovessels from r-mTBI mice and observed a progressive decline 
post-injury compared to r-sham cerebrovessels. The diminished cere-
brovascular tau uptake at 12 months post-injury was similar to that 
observed in age-matched AD animals, both of which demonstrated a 
significantly reduced expression of cerebrovascular mural cell markers, 
as indicated above. As depicted in Fig. 7, we show a strong correlation 
between the expression of cerebrovascular mural cell markers and tau 
uptake following repetitive trauma to the brain. Moreover, the reduced 
cerebrovascular tau uptake in the current studies coincides with our 
prior work (using the same hTau mouse model and r-mTBI paradigm) 
where a significant increase in phosphorylated, oligomeric, and total tau 
levels was observed in the brain cortex post-injury compared to r-sham 
animals (Ojo et al., 2016). The general lack of perivascular tau in mouse 
TBI models compared to human TBI may be due to differences in brain 
anatomy (gyrencephalic vs lissencephalic) or the ratio of tau isoforms 
(3R vs 4R), but further investigation is needed to identify the nature of 
these species-related differences. Further evidence of a potential link 
between mural cell degeneration and tau disposition in the brain has 
been reported previously where an AD mouse model (which does not 
display tau pathology on its own) was crossed with transgenic mural 
cell-deficient mice and a significant elevation in tau pathology became 
evident in the cortex and hippocampus of the AD x mural cell-deficient 
crossed animals (Sagare et al., 2013). While our studies clearly show a 
progressive decline in markers for pericytes and smooth muscle cells 
following brain injury, our approaches do not identify the individual 
contributions of each cell type to tau uptake, outside of the in vitro tau 

Fig. 10. Caveolin-1 expression in freshly isolated cerebrovasculature from 1) r- 
mTBI mice (12 months post-last injury), 2) PDGFRβ(+/− ) mice and wild-type 
littermates, and 3) PSAPP mice and wild-type littermates. Lysates were 
analyzed for caveolin-1 by ELISA and normalized to total protein using the BCA 
assay. Values represent mean ± SEM and are expressed as a percentage of each 
respective r-sham or wild-type littermate. The sample sizes for the r-sham and r- 
mTBI groups were the same for the 12 month timepoint (n = 4 each). PDGFRβ 
(+/− ) and wild-type littermates (n = 4 each) and PSAPP and wild-type litter-
mates (n = 6 each). *P < 0.05 compared to each respective r-sham or wild-type 
littermate as determined by two-way ANOVA and Bonferroni’s multiple com-
parisons test. 

Fig. 11. Caveolin-1 expression in cerebrovasculature isolated from human 
brain cortex derived from, 1) non-demented control subjects (no history of TBI 
or AD diagnosis), 2) TBI, 3) AD, and 4) TBI and AD. Lysates were analyzed for 
caveolin-1 by ELISA and normalized to total protein using the BCA assay. 
Values represent mean ± SEM and are expressed as ng per mg of total protein. 
Control (n = 9), TBI (n = 10), AD (n = 8), TBI-AD (n = 9). *P < 0.05 compared 
to control as determined by the Kruskal-Wallis test followed by Dunn’s multiple 
comparisons test. 
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uptake studies, nor do they differentiate the response of each cell type to 
head trauma. Despite these limitations, collectively the above studies 
suggest a role for vascular mural cells in the uptake of extracellular tau, 
and that disruption of these cells could potentiate tau pathology in the 
brain. 

To understand the mechanics of tau internalization by vascular 
mural cells and the influence of brain trauma on these processes, we 
interrogated caveolin, an endocytic component found in mural cells that 
has been associated with the PDGF pathway (Sundberg et al., 2009). 
Coinciding with the reductions in cerebrovascular mural cell markers 
and tau uptake following r-mTBI, we observed a significant decrease in 
caveolin expression in the brain vasculature of the r-mTBI animals at 12 
months post-injury, on par with that observed in mouse AD cere-
brovessels. Moreover, similar reductions in caveolin-1 were observed in 
the human TBI and human AD cerebrovasculature. Interestingly, it has 
been shown that a loss of caveolin-1 accelerates aging and contributes to 
neurodegeneration (Head et al., 2010). In particular, mice with reduced 
caveolin-1 brain expression exhibit a number of TBI and AD pathological 
features including: increased beta-amyloid (Head et al., 2010), phos-
phorylated tau (Bonds et al., 2019; Head et al., 2010), and astrogliosis 
(Head et al., 2010), alongside decreased cerebrovascular volume (Head 
et al., 2010) and cognitive impairment (Bonds et al., 2019) compared to 
wild-type animals. Correspondingly, it was observed that caveolin-1 
overexpression can reduce the extent of injury and enhance functional 
recovery after TBI (Kellerhals et al., 2013). It is important to note that 
our cerebrovascular preparations likely contain brain endothelia and 
potentially astrocytes, which also express caveolin-1, and could 
contribute to the alterations in caveolin-1 we observed after r-mTBI and 
AD. However, any potential changes occurring in brain endothelia after 
TBI may not necessarily translate to tau uptake, as our in vitro findings 
suggest the interaction between tau and brain endothelia/astrocytes is 
minimal compared to vascular mural cells. Altogether, these findings 
suggest irregular PDGF signaling could impact the endocytic uptake of 
solutes via caveolin-1 and may explain the diminished tau uptake by the 
cerebrovasculature we observed in r-mTBI and AD mice. 

Lastly, to more directly identify the link between mural cell disrup-
tion and tau internalization in brain vascular mural cells, we interro-
gated transgenic PDGFRβ animals, which display reduced vascular 
mural cell coverage with age, as a result of genetic modifications to the 
PDGF receptor (Bell et al., 2010; Tallquist et al., 2003). Cerebrovessels 
isolated from 12 month-old PDGFRβ(+/− ) mice (same age as the 6 
months post-last r-mTBI mice) showed significant reductions in PDGFRβ 
and caveolin-1, in addition to diminished tau uptake compared to wild- 
type littermates, in line with our observations in the chronic phase 
following r-mTBI and the AD animals. Based on these findings, changes 
in the PDGF receptor causes the mural cell population in the brain to 
devolve post-injury, potentially reducing the elimination of extracellular 
tau by these cells, which may contribute to the elevation of tau species in 
the brain that occurs following head trauma. In addition to the elimi-
nation of extracellular solutes, mural cell degeneration may be an 
important factor in TBI etiology overall. The most compelling evidence 
for this concept may be the extensive overlap in pathophysiology be-
tween the r-mTBI mice and the transgenic mural cell-depleted PDGFRβ 
animals. Both the r-mTBI and mural-cell depleted animals exhibit ce-
rebrovascular abnormalities (Bell et al., 2010; DeWitt and Prough, 
2003), neuroinflammation (Bell et al., 2010; Mouzon et al., 2014), white 
matter regression (Donovan et al., 2014; Montagne et al., 2018), and 
cognitive impairment (Bell et al., 2010; Mouzon et al., 2014). Impor-
tantly, it has been shown that mural cell degeneration precedes the 
neuroinflammatory response, neuronal decline, and cognitive dysfunc-
tion in transgenic PDGFRβ animals (Bell et al., 2010). Similarly, in 
human AD microvessel extracts, it was found that reduced brain mural 
cell levels correlated with cognitive impairment and AD diagnosis 
(Bourassa et al., 2020). In our prior work using this r-mTBI mouse 
model, we observed a decline in cognitive performance at 1 month post- 
injury which progressively deteriorated at 3 and 6 months post-injury 

(Lynch et al., 2016; Lynch et al., 2020), in line with the mural cell 
degeneration we observed at these time points following r-mTBI in the 
current studies, though further work is needed to understand the po-
tential correlation between brain mural cell changes and cognitive 
function. Collectively, these studies point toward mural cell disruption 
as a contributing factor in TBI pathogenesis and cognitive impairment. 

5. Conclusion 

A prominent pathological feature of repetitive head trauma in 
humans is the accumulation of hyperphosphorylated tau and the pres-
ence of neurofibrillary and perivascular tau tangles. Our findings indi-
cate brain vascular mural cells interact with tau and may serve as a 
pathway for eliminating tau from extracellular brain fluids. Further-
more, human TBI brain specimens and a mouse model of r-mTBI 
demonstrate a degeneration of mural cell markers in the chronic phase 
post-injury, coinciding with reduced cerebrovascular caveolin-1 
expression and tau uptake, features consistent with those identified in 
transgenic mural cell-depleted PDGFRβ(+/− ) animals and an AD mouse 
model. Hence, as the mural cell population devolves in the aftermath of 
brain trauma or disease, cerebrovascular tau elimination is diminished, 
which may contribute to the brain deposition of tau species in TBI and 
other neurodegenerative diseases. Vascular mural cells have a promi-
nent role in regulating brain function and their disruption following 
head trauma may be a critical driver of TBI pathophysiology and 
neurodegeneration. 
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