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A QUANTITATIVE EVOLVED GAS ANALYSIS FOR LUNAR AND METEORITIC MATERIALS.  A. 

B. Verchovsky, M. Anand and S. J. Barber, School of Physical Sciences, The Open University, Walton Hall, 

Milton Keynes MK7 6AA, UK, sasha.verchovsky@open.ac.uk 

 

 

Introduction:  Evolved gas analysis (EGA) is a 

powerful tool widely used in different fields of re-

search from investigations of chemical compounds in 

chemistry (polymers, complexes, catalysts, compo-

site materials etc.) to technology (coating, food pro-

duction, batteries etc.) to environment and Earth Sci-

ences [1].  It consists of linear heating of a material 

with registration of the released volatile compounds 

by different methods such as gas chromatography, 

infrared spectroscopy and mass spectrometry (MS). 

The latter seems to be the most popular and effective 

method of volatiles registration since it provides a 

quick scan for a wide range of masses if quadrupole 

mass spectrometer (QMS) is used.  

This method was successfully applied to Apollo 

lunar samples in the early 1970s [2, 3]. Gases from 

solar wind, inclusions and chemical reactions be-

tween different phases have been identified. Differ-

ent lunar samples can be compared with each other in 

terms of the release patterns of different gas species. 

But quantitative comparison of the amount of gases 

present in different samples was not possible. By 

developing Quantitative EGA (QEGA), we enable 

new insights into laboratory analyses of extraterres-

trial samples. QEGA also informs the design and 

operation of spaceflight instruments being developed 

to perform analogous experiments in situ on the lunar 

surface such as within the European Space Agency’s 

PROSPECT package [4]. The quantitative determi-

nation of volatiles within lunar regolith is also im-

portant for in situ resource utilization (ISRU). 

In this study we developed a QEGA just for QMS 

system without a carrier gas by calibration of the 

measuring instrument with reference gases, for which 

flow rate is determined independently in order to 

convert the signals from different gas species from 

samples into their flow rates, ultimately leading to 

their quantification and comparison with different 

samples. The method has been applied for analyses 

of the Murchison reference sample and lunar soils. 

Experimental technique:  We used our custom-

built Finesse mass-spectrometer system [5, 6], which 

contains a Hiden Analytical quadrupole mass spec-

trometer (QMS) equipped with an electron multiplier 

and evacuated by turbomolecular and ion pumps.  

The sample is wrapped in Pt foil and heated linearly 

within a furnace capable of reaching 1500 °C.  

 Several reference gases for calibration (single 

gas or gas mixtures) at 5-10 bar pressure were placed 

into a vessel connected to the vacuum system via a 

capillary leak or piezo-electric (PZT) metering valve. 

The (mostly viscous) flow rate was regulated either 

manually with a crimp (in the case of capillary) or 

automatically through software control of the voltage 

applied to the PZT valve. The flow rate was deter-

mined using a high sensitivity and precision MKS 

Baratron® capacitance manometer.  

     In addition we used a number of pure chemical 

compounds such as CaCO3, NaHCO3, CaC2O4*H2O 

etc., which are decomposed according to their stoi-

chiometry into gaseous components upon heating.  

Calibration procedures:  For calibration, we 

used pure gases or a gas mixture with 11 gas species 

(H2, He, CH4, Ne, N2, CO, O2, Ar, CO2, Kr and Xe 

with the following relative abundances: 56.78, 15.91, 

1.452, 0.1011, 15.42, 1.03, 2.98, 1.002, 5.288, 

0.02022, 0.01516 vol %, resp.) with well determined 

relative abundances (~1% rel.) resembling those ob-

served in lunar soils. First, the gas flow rate was de-

termined. For that, the reference gas was accumulat-

ed during a certain time in the volume of Baratron 

and the pressure was recorded after equilibration. 

The procedure was repeated several times with dif-

ferent accumulation time, which gives flow rate ex-

pressed in mbar/s. Subsequently, the reference gas 

was directed to the QMS and signals for a number of 

masses in the range from 2 to 132 (2, 4, 12, 14, 16, 

18, 20, 22, 28, 29, 30, 32, 36, 40, 44, 84, and 132) 

were recorded in the continuous flow, using peak 

jumping mode and ion counting. For the same refer-

ence gas the procedure was repeated several times 

for different flow rates in the range from 10-8 to 10-4 

mbar/s. Flow rate in mbar/s can be converted into 

ml/s, if the volume in which the gas is accumulated 

during Baratron measurement is determined. By in-

tegrating the release curves the gas concentrations in 

ml/g can then be obtained. 

For calibration with chemical compounds we 

used the same heating rate as for the sample. In this 

case direct comparison of the areas under corre-

sponding peaks for the reference material and sample 

gives concentration of gases. 

Calibration results:  The dependence of the sig-

nal intensities at different masses on the gas flow rate 

are in general non-linear but can be well approximat-

ed by a power law (Fig. 2). Although the calibration 

gas mixture contains 15% of N2 and 1% of CO, we 

do not see a contribution of CO on mass 28, since 

calibrations with pure N2 and the gas mixture yield 

the same line within scatter of the experimental 

points. For this reason the mass 12 has been used for 

calibration of CO, since pure CO also gives signal at 

that mass, which is about only 30 times less strong 

comparewd to that at mass 28. 

   The use of pure gases for calibration enables the 

characterization of second order signals produced by 
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some molecular gases as a result of their dissociation 

in the QMS. The second order mass for N2 is 14, for 

CO is 12, for O2 is 16, and CO2 gives masses 28 and 

16 in nearly equal amounts. Knowing the ratios be-

tween the main and second order signals for these 

gases allows us to calculate contribution of different 

gas species when they are present in a mixture and 

therefore, may contribute towards similar isobaric 

interferences, e.g. for N2, CO and CO2 at mass 28. 
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Figure 1. Representative QMS calibration curves for 

various gases. 

Analysis of the PROSPECT reference Mur-

chison meteorite sample:  As part of ESA’s 

PROSPECT lunar exploration activity, a reference 

sample of Murchison (CM2) meteorite has been de-

veloped as a standard for volatile species investiga-

tions. A 3 mg powdered sample was heated at a rate 

of 6°/min from 200 to 1400 °C with recording of 

signals at 17 masses mentioned above, every second, 

such that about 10 scans were made at each tempera-

ture. A blank correction was applied through subtrac-

tion of the signal produced through a ‘blank analysis’ 

of an empty furnace. 
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Figure 2. Release pattern of the major gas compo-

nents from Murchison meteorite standard. 

The release pattern for each gas has been recalcu-

lated into flow rate variations using corresponding 

calibration curves (Fig. 3). As can be seen, water is 

the major component and this is only a lower limit 

for its amount since a part of it was condensed in the 

vacuum line between the furnace and the QMS. 

However, the release pattern of water seems not to be 

affected by its condensation in the pipes. Mass 28 is 

represented essentially by CO because it shows iden-

tical spectrum with mass 12. Therefore, for calcula-

tions of N2 amounts, we used signal at mass 14. Re-

lease pattern of CO2 is almost identical to that for 

mass 16, suggesting the presence of a small amount 

of methane. Mass 20 is almost exclusively associated 

with water (H2
18O). Among the minor components, 

we observe 4He, oxygen, Ar and Kr (Fig. 4).  

Water, hydrogen and nitrogen are released mostly 

at lower temperatures (200-600 °C), whereas CO2 

and especially CO are released at higher tempera-

tures. For most gases, except for water and CO, a 

spike at ~700 °C is observed reflecting probably 

chemical reactions or structural transformation of the 

heated material. 
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Figure 3. Release pattern of minor components from 

Murchison  

The results for gas concentrations in ml/g in the 

Murchison standard obtaind by EGA and their com-

parison with those obtained by combustion [7] will 

be presented at the conference. 

Conclusion:   For the first time a quantitative 

method for EGA has been developed and successful-

ly applied for the analysis of Murchison meteorite. 

We plan to improve calibration of the system for 

water and apply the method for the analyses of lunar 

samples. The method will also be implemented in 

situ on the Moon within the PROSPECT project. 
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