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ABSTRACT

In Drosophila, Polycomb group (PcG) and trithorax group (trxG) genes are part 

of a cell memory system that prevents changes in cell identity by maintaining transcrip­

tion patterns starting from the developing embryo throughout adult stages. PcG and trxG 

control epigenetically repressed and active transcriptional states of Hox genes and devel- 

opmentally regulated genes. Both PcGs and trxGs exert their functions by binding to spe­

cific DNA element called Polycomb/Trithorax Response Elements (PREs/TREs). Many 

PREs were identified and characterized in the BX-C of D.melanogaster. Since no human 

PREs/TREs have been identified, we decided to map PcG/trxG protein distribution in 

human HOX loci.

Sequence comparisons “m silico” revealed that HOX clusters present a unique 

redistribution of the Repetitive Elements (REs) which localize in the flanking regions 

and are absent from the inner part of the cluster. Mapping of PREs/TREs by chromatin 

immunoprécipitation (X-ChIP), revealed that PcGs/trxG proteins associate with RE-con- 

taining fragments at the boundaries of the human HOXA cluster. We discuss the possi­

bility that REs could modulate Hox gene expression by working as epigenetic elements 

able to nucleate the formation of heterochromatin-like structures.

PRE/TRE characterization in D.melanogaster showed that PcG and trxG proteins 

could interact with the same DNA element, implying that these elements could work 

both as a PRE and as a TRE. Recently it has been hypothesized that the switch from PRE 

to TRE involves the transcription of these intergenic modules. As for other genetic phe­

nomena (X-chromosome inactivation, dosage compensation, genomic imprinting), these 

non-coding RNAs play a role in epigenetic control of gene expression, suggesting that 

non-coding transcripts may undescore the position of cw-regulatory elements. I then 

investigate about 400 genomic loci for the presence of non-coding intergenic RNAs. 

Among the others, I have identified and characterized these non-coding transcripts in 

intergenic regions of human and mouse homeotic loci.
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Chapter I: 
INTRODUCTION

Part I:

Common aspects of epigenetic phenomena

a



“Genetic” and “Epigenetic” regulation of gene expression.

Genetics can be defined as the study of the inheritance of specific traits. More 

specifically, genetics deals with the analysis of genes, the carriers of heredity. For many 

years, it was thought that genes carry all the information, in the shape of DNA 

sequences, necessary to define phenotypes (the sum of all the traits we can observe). 

Many developmental biologists, indeed, thought that different phenotypes (i.e. different 

cell types in a multi-cellular organism) were just the result of gene loss during develop­

ment (reviewed by Pennisi F., 2001). They propose, for instance, that muscle cells 

became muscle cells by loosing unnecessary genes, such as those involved in making 

liver or epithelial cells. This “genetic” view of development and cellular differentiation 

was accepted until the middle of last century, when it became clear that all the cells of a 

multi-cellular organism have the same sets of genes and none of them was lost during 

development or differentiation. These observations lead to the hypothesis that there 

should be other mechanisms, in addition to the genetic one, to explain the generation of 

different phenotypes from the same genotype. This mechanism was called “epigenetic”, 

that literally, from Greek, means “in addition to genetics”. With this meaning, the term 

“epigenetics” was coined by Conrad Waddington more than sixty years ago to describe: 

“the study o f the processes by which genotype give rise to phenotype”.

As the complement of genes remains constant during differentiation, the epigenetic 

hypothesis propose that genes are “switched on and off” differently to make various cells 

in the body. In particular, different cellular phenotypes can be ascribed to different pat­

terns of gene expression more than to genes themselves. To go back to the previous 

example, a muscle cell could be “epigenetically” defined by the expression of muscle- 

specific genes and by the silencing of liver- and epithelial-specific genes. In 1987, R. 

Holliday included this concept his definition of epigenetics:

“The changes in gene activity during development are generally 

referred to as epigenetic.”

(Holliday R., 1987).

He also added two supplementary definitions of epigenetics to include the stable trans­

mission of these expression patterns from one cell to the daughter cells:



“study o f the changes in gene expression, which occur in organisms 

with differentiated cells, and the mitotic inheritance o f given patterns o f 

gene expression”

“transmission o f information from one generation to the next, other 

than the DNA sequence itself... Nuclear inheritance which is not based 

on differences in DNA sequence ”

(Holliday R., 1994).

C. Wu and J.R. Morris summarized recently all these findings looking at epigenetics as: 

“the study o f changes in gene function that are mitotically and/or mei- 

otically heritable and that do not entail a change in DNA sequence ”

(Wu C , 2001).

As argued by the last two definitions, the DNA sequence itself could not represent the 

sole target for the epigenetic regulation of gene expression. As all the cells posses the 

same sets of genes, a “labeling system” should exist to mark differently genes that should 

be turned on, from those that should be silenced. Moreover, these epigenetic modifica­

tions, in order to be functional during development and cellular differentiation, should 

possess two main characteristics. They need to be maintained during cell divisions and 

to be erased when required. Recent studied revealed that these epigenetic marks are rep­

resented by covalent and reversible modification of both DNA and histone proteins asso­

ciated with DNA. In particular these modifications are due to DNA méthylation and his­

tone tail modifications (such as acétylation, méthylation, phosphorylation, ubiquitina- 

tion, ADP-ribosylation, glycosylation (Jenuwein T , 2001).

The first associations between these types of modification and particular herita­

ble states of gene expression derived from the observation that decondensed, transcrip­

tionally active chromatin fractions (termed euchromatin) were enriched in acetylated his- 

tones, while highly-condensed and transcriptionally silent chromosomal domains (the so 

called heterochromatin) were found to be deacetylated (reviewed by Spotwood H.T.,

2002). Moreover, it was shown that when an expressed (euchromatic) gene was place 

near or within heterochromatic domains, this gene could undergo to stochastic silencing
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that could be stably propagated through multiple cell divisions (reviewed by Karpen 

G.H., 1997). These evidences suggested that the link between epigenetic modifications 

and heritable gene expression pattern could be represented by dynamic changes in the 

chromatin structure. A general model hypothesizes that the same DNA element can be 

“labeled” in different ways in diverse tissues or during different developmental stages. 

These labels, maintained through different cell divisions, could be “read” by proteins and 

multi-protein complexes that promote in cis stable modifications in chromatin architec­

ture at target loci. Long-term maintenance of gene expression could be due to the pres­

ence of a chromatin fiber more accessible to transcription factors and activators, while 

heritable gene silencing is thought to be the result of the establishment of a more closed, 

heterochromatin-like, configuration.

DNA and histone proteins modifications represent common aspects of many epige­

netic mechanisms of gene regulation.

The chromosomal DNA associates with proteins and undergoes hierarchical 

packaging. The minimal structural unit of the chromosome, ubiquitous for all eukary­

otes, is the nucleosome. It consists of a protein ‘core’ formed by two molecules of each 

of the histone proteins H2A, H2B, H3, H4 (histone octamer), and about 150 bp of DNA 

being wrapped around the histone octamer (Fig. 1.1). Two adjacent nucleosome core par­

ticles are connected by 15-55 bp of “linker” DNA (Luger K., 1997). This nucleosome 

array forms the “11 nm” chromatin fiber that could be folded, with the addition of anoth­

er histone protein, HI, into the “30 nm” chromatin fiber. Moreover this fiber structure 

could be packed into large chromatin domains and chromosome territories (Belmont

A.S., 1999). The comparative analyses of epigenetic phenomena (such as dosage com­

pensation in fly, chromosome X inactivation in mammals; genomic imprinting; mainte­

nance of Hox gene expression by Poly comb/trithorax proteins families; heterochromatin 

formation at centromeres and telomeres in yeast) lead to the identification that common 

epigenetic marks involve the two components of the chromatin fiber, namely DNA and 

histone proteins.
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DNA méthylation.

In vertebrate genomes, methyl group usually modifies the 5’ carbon of cytosine 

in CpG dinucleotides and about 70% of these CpG sequences are methylated (Robertson 

K.D., 2000; Jones RA., 2001). Interestingly, the CpG dinucleotide distribution in our 

genome is not random. In fact, CpGs are under-represented throughout the genome, a 

phenomenon termed “CpG suppression” which is probably due to the conversion of 

methylated cytosine into thymidine (Robertson K., 2000). CpG dinucleotides are clus­

tered in CpG rich sequences called “CpG islands” mainly associated with promoters and 

other regulatory DNA as well as the first exon of many genes (Robertson K., 2000; Jones 

RA., 2001).

Méthylation of DNA is established and maintained by DNA methyltransferases 

(DNMTs). In mammals three different DNMT families have been identified: DNMTl, 

DNMT2 and DNMT3a/b (Bird A., 1999). DNMTl, in particular, possesses an important 

“epigenetic” characteristic. It has a 10/40-fold preference for hemimethylated DNA 

(Pradhan S., 1999) and, for this reason, is believed to be the enzyme responsible for 

copying méthylation patterns after DNA replication. In proliferating cells this “mainte­

nance” methyltransferase has been localized to replication foci (Leonhardt H., 1992), 

ensuring méthylation of the daughter strand during replication. In addition to this func­

tion, DNMTl as well as the DNMT3 family, possesses also the capability of inducing de 

novo méthylation.

Although there are evidences of genes remaining active in methylated regions 

(Walsh C.P., 1999), DNA méthylation is generally associated with silencing. Indeed a 

large number of tumor suppressor genes that are silenced by aberrant DNA méthylations 

have been described (Tsou J.A., 2002). Generally this abnormal epigenetic modification 

takes place in CpG islands near or inside the promoter regions (reviewed by Momparler 

R., 2003). Many mechanisms have been proposed to explain the silencing induced by 

DNA méthylation. The most “direct” mechanism suggests that CpG méthylation could 

interfere with the local binding of transcriptional machinery or of general transcription 

factors. Indeed many transcription factors cannot bind DNA when their recognition 

sequences are methylated (Tate P., 1993). Nevertheless, this interference could not easi­
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ly account for more wide-ranging gene silencing phenomena, such as, the chromosome 

X-inactivation. A more common feature in methylation-dependent regulation of gene 

expression is the recruitment of methylation-specific DNA binding proteins (reviewed 

by Bird A., 1999). The characterization of these methyl-binding proteins has given the 

key to understanding the connection between DNA méthylation and transcriptional 

silencing. The “founder” of this family is the protein MeCP2, which contains both a 

methyl-CpG-binding domain (MDB) and a transcriptional repression domain (TRD). 

Interestingly, the TRD domain could recruit (through the interaction with the co-repres­

sor Sin3 A) histone deacetylase (HDAC) activities, which are known, as discussed below, 

to establish a repressive chromatin environment. Also others MBD-containing proteins 

present HDAC-dependent repression of gene expression (Bird A., 1999).

Histone modifications and the “histone code”.

Another set of epigenetic modifications that regulates gene transcription involves 

histone proteins. Histones are small basic proteins that consist of a globular domain and 

a more flexible, charged NH2-terminus (the “histone tail”; Luger K., 1997). The N-ter- 

minal ‘tails’ contain high amounts of basic amino acids such as lysine and arginine; these 

terminal tails are external to the nucleosome core structure (Fig. 1.1) and are therefore 

accessible for protein-protein interaction (reviewed by Sims R., 2003). Histone tails can 

be subjected to a number of post-translational modifications, such as acétylation, méthy­

lation (both discussed below) and phosphorylation, ubiquitination or ADP-ribosylation 

(reviewed by Spencer V.A., 1999; Fig. 1.1). These epigenetic modifications play an 

important role in the regulation of gene transcription as they can influence the chromatin 

architecture and by that DNA accessibility to transcription factors (reviewed by Strahi

B., 2000).

Histones can be acetylated at specific lysine residues of histone H3 (K9/K14/ 

K18/K23), of H4 (K5/K8/K12/K16/K20), as well as of H2A and H2B (Fig. 1.1). The 

association of acetylated histones with transcriptionally active chromatin was proposed 

soon after the recognition of this modification (Allfrey V., 1964) and is now well docu­

mented (Spencer V.A., 1999 and reference therein). Indeed several studies in various
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organisms show a positive correlation between acétylation of H3 and H4, in promoter 

regions, and transcriptional activity (reviewed by Grunstein M., 1997; Struhl K., 1998). 

This is consistent with other studies showing that histones corresponding to heterochro­

matin, transcriptionally inactive, are hypoacetylated (Spotwood H.T., 2002); in mam­

mals, for example, the inactivated X chromosome is largely free of acetylated histones 

(Jeppesen P., 1993).

Histone acétylation is a dynamic process and two main factors are responsible for 

the maintenance of the acétylation status: histone acetyl transferases (HATs) and histone 

deacetylases (HDACs; reviewed by Kouzarides T., 1999). So far many transcriptional co­

activators (i.e.: GCN5, TAFII250, pCAF, p300/CBP), have been isolated in different 

organism for their HAT activities (Spencer V.A., 1999). It has been suggested that the 

recruitment of HAT co-activators acetylates histone proteins leading to the destabiliza­

tion of higher order chromatin structures (Roth S.Y., 2001). This is probably due to a 

decrease of the net positive charge of histone tails resulting in less condensed chromatin 

structure and increased accessibility of regulatory factors to DNA (Roth S.Y., 2001). 

HATs can be grouped into two classes: the “type A” HATs, localized in nuclei, probably 

acetylate nucleosomal histones in reactions linked to transcriptional activation, while 

“type B” HATs (represented solely by the yeast Hat Ip protein) are purified from the 

cytoplasm where they are responsible for acetylating newly synthesized histones before 

chromatin assembly (Roth S.Y, 2001).

HAT proteins are generally found as component of large multiprotein complexes 

(i.e.: SAGA, NuA4, NuA3, Ada) whose composition is generally conserved among dif­

ferent species (Roth S.Y, 2001). Interestingly, some of the HAT complexes work in con­

cert with chromatin remodeling complexes that promote gene expression by increasing 

promoter accessibility to the transcriptional machinery (Hassan A.H., 2001). In yeast, for 

example, histone acétylation could increase the binding of ATP-dependent SWI/SNF 

chromatin remodeling complexes at promoters (Hassan A.H., 2001).

Also the HDAC is a widespread protein family with various orthologs described 

in different species (Kou M., 1998). HDAC proteins are generally divided into two class­

es: the class I is made of HDACs that are components of large multiprotein complexes
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(such as yeast Rpd3, Hosl/2 or mammals HDAC 1/2/3 found in the Sin3A and NuRD 

complexes), while the class II is made of those HDACs not found in multiprotein com­

plexes (i.e.: the mammalian HDAC4/5/6 protein; Spencer V.A., 1999). Interestingly, both 

HDAC complexes and single HDAC proteins can be recruited to specific genomic loci 

by direct interaction with DNA-binding transcription factors; this recruitment leads gen­

erally to gene silencing (Davie J.R., 1998). Indeed the targeting of HDAC 1/2/3 to a pro­

moter by fusing HDAC to a DNA-binding domain (Gal4 DNA-binding domain) results 

in transcriptional repression of a Gal4-dependent reporter in transient transfection assays 

(Davie J.R., 1998). Moreover, as already mentioned, also MeCP2, via Sin3, could recruit 

the HDAC 1/2 complex (Bird A., 1999), suggesting that DNA méthylation and histone 

deacetylation are coupled events in the formation of repressive chromatin structures and 

gene silencing.

Another epigenetic modification concerns the méthylation of histone tails by 

Histone Methyl-Transferases (HMTs). Histone méthylation involves both arginine 

(R2/R17/R26 of H3, and R3 of H4) and lysine residues (K4/K9/K27/K36/K79 of H3, 

and K20/K79 of H4; Spencer V.A., 1999; Fig. 1.1). As more that one methyl group can 

be added to the same residue, mono- or dimethylated arginines and mono-, di-, or 

trimethylated lysines have been reported (reviewed by Bannister A.I., 2002). While argi­

nine méthylation is largely connected with transcriptional activation (Zhang Y., 2001), 

lysine méthylation could correlate with both gene activation and gene silencing. Indeed, 

methylated K4 H3 was found at transcriptionally active chromatin in yeast (Noma K., 

2001; Bernstein B.E., 2002) and chicken (Litt M.D., 2001), while high amounts of 

methylated K9 H3 were first detected in transcriptionally silenced domains of yeast 

(Noma K., 2001; Nakayama J., 2001). The trimethylation of K4 H3 defines a transcrip­

tionally active state, whereas méthylation of K9 H3 defines a repressed state of a chro­

mosomal region. High amount of methylated K9 H3 have been found in heterochromat­

ic domains of both D.melanogaster (Schotta G., 2002) and mammals (Peters A., 2001). 

These findings suggested that heterochromatin formation could involve the méthylation 

of K9 H3. Indeed, in yeast, it has been show that this epigenetic modification of histone 

tails is essential for the assembly of heterochromatin at mat and cenl loci (Nakayama J.,
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2001). Moreover, K9 H3 methylated histones represent the binding site for the chromatin 

organization modifier (chromo)domain of the heterochromatic HPl protein (Lachner M.,

2001). This is a well-known protein characterized by its association with heterochro­

matic foci, such as centromeres, where it plays a fundamental role in gene silencing 

(Bannister A.J., 2001).

A model proposed to explain heterochromatin formation suggests that HDACs 

and HMTs (as well as other histone modifying enzymes) could cooperate to establish a 

silenced chromatin fiber. Recent findings (Nakayama J., 2001) show that HDACs could 

deacetylate K9/K14 H3 before K9 H3 méthylation by HMTs. This modification is then 

responsible for the binding of HPl proteins (Nakayama J., 2001). As HPl could also 

interact directly with HMTs (Ekwall K., 1996), its binding to methylated K9 H3 could 

promote a “self-propagating” heterochromatin assembly (Fig. 1.1).

The high diversity of histone modifications, as well as the high number of 

residues that can be modified within histone tails, lead to the hypothesis that specific 

combinations of histone modifications provide a “histone or epigenetic code”, which 

after “translation” by downstream factors determines specific chromatin functions 

(Strahl B., 2000; Turner B., 2000; Turner B., 2002). Similarly to the binding of tran­

scriptions factors to specific DNA sequences, different epigenetic modifications of his­

tone tails could regulate gene transcription through the interaction of chromatin-associ­

ated proteins with nucleosomes (Strahl B., 2000; Turner B., 2000; Turner B., 2002). 

Referring to Bryan Turner words:

“These modifications are not just a means o f reorganizing nucleosome 

structure, but provide a rich source o f epigenetic information. It has 

been suggested that specific tail modifications, or combinations there­

of, constitute a code that defines actual or potential transcriptional 

states”

(Turner B., 2002).

“This [epigenetic code] may be used both to mediate transient changes 

in transcription, through modification o f promoter-proximal nucleo-
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somes, and for the longer-term maintenance and modulation o f pat­

terns o f gene expression. The latter may be achieved by setting specific 

patterns o f histone acétylation [...] across relatively large chromatin 

domains. [...] The code may be read (i.e. exert a functional effect) 

either through non-histone proteins that bind in an acetylation-depend- 

ent manner, or through direct effects on chromatin structure.”

(Turner B., 2000)

Non-coding RNAs: a novel epigenetic mark contributing to gene regulation.

In addition to DNA and histone covalent modifications, many epigenetic process­

es are characterized by the involvement of non-coding RNAs (ncRNA; Andersen A.A.,

2003). Phenomena such as chromosome X-inactivation (Plath K., 2002), dosage com­

pensation in D.melanogaster (Franke A., 2000) or genomic imprinting in mammals 

(Reik W., 2001), require ncRNAs to regulate monoallelic gene expression. Other such 

examples come from S.pombe, where the formation of heterochromatin-like structures at 

mating type \oci and centromeres is based on RNA-dependent mechanisms (Volpe T.A., 

2002; Volpe T.A., 2003). Many evidences (reviewed by Andersen A.A., 2003) suggest 

that these ncRNAs could be seen as a new element of the “labeling system” that regu­

lates gene expression promoting epigenetic chromatin modifications at target loci. These 

modifications could lead both to the assembly of heterochromatin-like configurations (as 

in chromosome X inactivation or genomic imprinting) with the consequent gene silenc­

ing, or vice-versa could sustain a more accessible chromatin structure (i.e. in Drosophila 

dosage compensation), thereby promoting gene activation.

X chromosome inactivation and D.melanovaster dosage compensation.

In mammals, despite the different X chromosome copy number between males 

and females, the level of expression of X-linked genes is maintained equal between the 

sexes as a result of a dosage compensation mechanism. This is achieved by selectively 

silencing most of the genes present on one of the two X chromosome, a process called 

X-inactivation (reviewed by Plath K., 2002). The inactivated X (Xi) exhibits a condensed
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A) Sites of post-translational modifications on the histone tails.
Adapted from Zhang Y., 2001; Richards E.J., 2002. K9 o f  histone H3 can he either acetylated or m ethy­
lated. Additionally, within the globular domain o f H3 K79 can be methylated (Feng Q.. 2002).

B) Heterochromatin assembly leading to epigenetic silencing.
Adapted from Nakayama J., 2001. Green Hags and red lollipops represent acetyl and methyl m odifica­
tions, respectively. A nucleosom e is com posed o f  D N A  (black line) wrapped around a histone octam er 
(blue). Orange or green protrusion represent the N-ter tails o f histones with or without acetyl m odifica­
tions, respectively.
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heterochromatin structure, characterized by methylated K9 H3 and hypomethylation at 

K4 H3 (Boggs B.A., 2002; Heard E., 2001) as well as a diffused hypoacethylation of his­

tone proteins (Jeppesen P., 1993; Belyaev N., 1997). Xi is also replicated late in S phase 

(Takagi N., 1974) and presents a high level of CpG island méthylation (Wolf S.R, 1984). 

Interestingly, the initiation and propagation of the X inactivation is tightly linked to the 

presence of a specialized DNA elements, called the X inactivation center (Xic), which 

include the Xist gene (Heard E., 1997). Xist stays for “X inactivation specific transcripts” 

as it is transcribed only from the Xic of the Xi. This gene encode a 15-17 kb transcripts, 

that could be alternatively spliced and polyadenylated (Brown C.J., 1992). The Xist RNA 

posses two other main characteristics: is a non-coding RNA that has the capability to 

spread in cis from its site of synthesis to coat the Xi. Transgenic translocations of the Xic 

into autosomes revealed that the cis spreading of the Xist transcript was sufficient alone 

to induce the silencing of autosomal genes (Wutz A., 2000). This, unequivocally, proves 

that this ncRNA molecule is capable to induce chromosome-wide silencing. 

Interestingly, Xist is involved only in the initial establishment of X inactivation, that later 

on becomes Xwf-independent (Plath K., 2002). This observation suggests also that the 

“silencing factors” working in concert with Xist should be developmentally regulated. 

Recently, these “silencing factors” have been identified and correspond to the protein 

complex EED/EZH2 (Silva J., 2003). As it will be discussed extensively in next sections, 

EED/EZH2 are two proteins both belonging to the Polycomb family. These proteins 

form a complex that contains HMT activity (specific for K9 and K27 of histone H3 and 

due to the SET domain of EZH2) and could interact with HDACs. The epigenetic mod­

ifications induced by the recruitment of HDAC and HMT activities are then responsible 

for the early establishing and subsequent spreading in cis of heterochromatic structures 

associated with a chromosome-wide silencing (summarized in Fig. 1.2). Additionally, it 

seems very likely that maintenance of the association between the Xi and HDAC- 

EED/EZH2 is Xist RNA-dependent (Silva J., 2003).

As we have seen, the transcription of the ncRNA Xist from the Xic of the Xi is 

the key event leading (i) to the recruitment of chromatin modifying complexes; (ii) to X 

inactivation and gene silencing. Thus we might consider the transcription through the
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Xist gene as the first step of the epigenetic process resulting in X-inactivation. But, how 

can the cell discriminate between the Xa Xic and the Xic on the future Xi? The answer, 

once again, derives from the different transcription pattern of these DNA elements: a 

second ncRNA was identified in the Xic regions. The corresponding gene was called 

Tsix as it is transcribed (compared to Xist) with an antisense orientation. The expression 

of Tsix is able to promote in cis the choice of an X chromosome to become Xa, indeed 

the main function ascribed to Tsix is to lower Xist RNA steady state levels (Plath K.,

2002) and various molecular mechanisms could be responsible for this Tsix regulation of 

Xist. It has been proposed, for example, that antisense transcription could decrease Xist 

gene transcription; alternatively duplex Tsix/Xist RNA molecules could interfere with the 

Xist RNA folding or be degraded by RNAi resulting in a deficit of both transcripts (Plath 

K., 2002). In mice, the asymmetrical persistence of Tsix expression is under the control 

of a cis regulatory element called Xite (X-inactivation intergenic transcription element, 

Ogawa Y., 2003). A deletion of this elements leads to a down regulation of Tsix expres­

sion, rendering the linked X chromosome more likely to be silenced (Ogawa Y., 2003). 

Interestingly, the Xite element itself can be transcribed, although intact intergenic RNAs 

are not required for its activity (Ogawa Y, 2003). It has been suggested that Xite could 

function as an enhancer element regulating Tsix transcription (Ogawa Y , 2003).

D.melanogaster has developed another epigenetic dosage compensation mecha­

nism to ensure the equal expression of X-linked genes in males and females. In fly males, 

the transcription rate of all genes in the single X chromosome has been doubled (Franke 

A., 2000). Noteworthy, also the male dosage-compensated chromosome is “labeled” by 

the presence of ncRNAs transcribed from genes located on the X chromosome itself 

(Meller V.H., 1997). The hypertranscription of male X-linked genes results from the 

association to the X chromosome of a particular ribonucleoprotein complex called 

dosage compensation complex (DCC) or male specific lethal complex (MSL) consisting 

of six proteins (MSL 1-2-3; MLE; MOF; JIL-1) and two non coding RNAs called roXl- 

roX2 (reviewed by Andersen A. A., 2003). To promote the hyperactivation of the male X 

chromosome, DCC complexes coat the X chromosome and introduce epigenetic modifi­

cations of the chromatin fiber (Akhtar A., 2000). Indeed MOF contain a HAT activity
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specific for K l6 H4 (Akhtar A., 2000), while JIL-1 is a protein kinase, which displays 

H3 kinase activity in vitro (Jin Y., 2000). These epigenetic modifications are thought to 

“open” the chromatin structure allowing an easier interaction between general transcrip­

tion factors and regulatory regions of X-linked genes (Amrein H., 2000) The first asso­

ciation between DCC complexes and the X chromosome take place in correspondence 

of 30-40 genomic loci called “chromatin entry sites”; interestingly two of these sites cor­

respond to the roXl and roX2 loci themselves (Kelley R.L., 1999). Transgenic assays 

have shown that roXl and roX2 genes are sufficient to attract DCC complexes to ectopic 

sites on autosomes (Kelley R.L., 1999; Meller V.H., 2002); these complexes could then 

spread in cis acetylating (K16) H4 in the flanking chromatin regions (Kelley R.L., 1999). 

This ectopic spreading correlates also with increased transcription in the flanking regions 

(Park Y, 2000). Recently it has been shown that DCC binding at roX chromatin entry 

sites is dependent on the presence of one of the roX ncRNAs (Park Y, 2003). As roX tran­

scripts are unstable in the absence of Mis proteins (Meller V.H., 2000), it seems likely 

that roX ncRNAs should be quickly assemble into complexes locally, at their sites of 

transcription (Park Y, 2003). Moreover, Mis proteins become competent to bind roX 

chromatin entry sites only after their association with roX ncRNAs (Park Y, 2003). 

Although these evidences do not explain how the DCC complexes interact with the other 

chromatin entry sites, they imply that roX transcription, like for the Xist/Tsix locus, 

should be considered the first event leading to the Drosophila epigenetic dosage com­

pensation.

Genomic imprinting.

Tsix was the first example of a presumably ncRNA whose transcription is criti­

cal to negatively regulate the product of another gene. Recently, transcription of other 

antisense RNAs has been shown to be required for the regulation of imprinted genes. 

These genes represent a small group of genes, which are epigenetically “imprinted” so 

that only one of the parental alleles is expressed. In this case, the epigenetic modifica­

tion coupled with silencing of imprinted genes is represented by DNA méthylation. In 

fact endogenous imprinted genes are associated with cw-acting DNA elements (called
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imprinting centers, ICs) that are differentially methylated either on the maternal or the 

paternal allele (Ferguson-Smith A.C., 2001). ICs then could influence epigenetic modi­

fication of other cw-regulatory elements that regulate the expression of imprinted genes 

in allele-, tissue- or temporal-specific ways (Ferguson-Smith A.C., 2001).

Many imprinted regions are characterized by the presence of sense and antisense 

RNAs (Reik W., 2001). Recent findings suggest that these antisense RNA molecules reg­

ulate gene expression, as shown for the antisense ncRNA “A/r” in the Igf2r locus. 

(Sleutels F , 2002). This RNA is a 108 kb, unspliced, repeat-rich ncRNA expressed only 

from the paternal allele (Fig. 1.2). Its promoter lies within the intron 2 of the Igf2r gene 

(another imprinted gene, maternally expressed), in a region genetically defined as 

“imprinting control element” (ICE). Interestingly, the paternal repression of Igf2r is due 

to the méthylation of its promoter region. Thus the expression of the ncRNA correlates 

with the silencing of Igf2r on the paternal allele, a situation resembling the Xist/Tsix one. 

To test whether imprinted expression of Air ncRNA is required for silencing of Igf2r, 

truncated forms (Air-T) of the ncRNA were generated by the insertion of a polyadenyla- 

tion cassette (Sleutels F , 2002). This Air-T allele retained a normal imprinted expression 

(namely, was correctly transcribed on the paternal allele), but the normal paternal repres­

sion of Igfir  was lost (Sleutels F , 2002). Interestingly, the bi-allelic expression of lgf2r 

correlates with a complete déméthylation of his promoter. Thus the proper expression of 

Air is the first step leading to the epigenetic modification of the Igf2r promoter. Similarly 

to Xist, it has been suggested that also this ncRNA could mediate the recruitment in cis 

of repressor proteins that could induce a silent chromatin state. Interestingly, the same 

Polycomb proteins involved in the X inactivation seem to play a role also in the mainte­

nance of the silencing of some imprinted alleles. Indeed, eed'^~ mice (as discussed 

below) show the loss of imprinting with the subsequent bi-allelic expression of a subset 

of imprinted genes (Mager J., 2003).

Heterochromatin assembly requires repetitive DNA, ncRNAs and epigenetic modi­

fications.

In addition to smaller heterochromatin domains found interspersed throughout

22



A )
PcG c o m p le x  
recru itm en t

D ifferen tia tion M éth ylation M a in ten a n ce

E p ig en etic
s ig n a tu re

D ea ce ty la tio nXist a sso c ia tio n

X inactivation

=  P cG =  E E D

=  E N X 1=  N u c le o so m e :

=  H D A CA c e ty la te d

M e th y la te d = X is t

B)
Mas 1 A ir Slc22a2 Slc22a3

-5 0  kb

(a) W ild  type

CH.

(b ) ICE

CH.

(c) A ir-T

CH;

■ imprint C ontrol E le m e n t (ICE) @  P o iy a d e n iia tio n  c a s s e t t e

Fig 1 .2 : A )  Chromosome X  inactivation pathway. X w /expression  and cis association with the 
future Xi recruits the E ed-E nxl-containing PcG com plex to the Xi chromatin. A histone deacetylase  
(HDAC) rem oves acetyl groups from the lysine residues in the N-terminal tails o f  nucleosom al histone H 3, 
exposing K9 and/or K27 for méthylation by the SET domain o f  E n x l. The methylated Xi nucleosom es  
contribute to the signal to adopt a heterochromatic state and consequently underlie gene silencing on the 
Xi. Subsequently, heterochromatin o f  the Xi is stably inherited (adapted from C hadwick B.P., 2002).

Fig 1.2: B) Igf2r imprinted gene cluster, in wild-type mice(a), the imprinted genes Igl2r, 
Slc22a2 and Slc22a3 are expressed exclusively from the maternal a llele (green arrows) and Air is 
expressed exclusively from the paternal allele (red arrow). The M as 1 gene is upstream o f  lgl'2r and is not 
imprinted, (b) M ice that inherit a deletion in the ICE on the paternal allele are not able to repress IglTr, 
Slc22a2 and S lc22a3 expression on this allele. Due to deletion o f the Air promoter, the defect in imprint­
ing might result from the loss o f  Air expression on the paternal allele, (c) M ice that inherit a paternal Air- 
T allele express a truncated version o f  Air ow ing to the insertion o f  a polyadenylation cassette. These m ice  
display the same phenotype as m ice inheriting a paternal ICE deletion, ow ing to de-repression o f  Igf2r, 
Slc22a2 and Slc22a3 on the paternal allele. -CH3: D N A  méthylation.

23



chromosomes, large blocks of heterochromatin are generally located in both centromer- 

ic and telomeric regions. As centromeres and telomeres are made up of tandem array of 

simple DNA repeats, it was supposed that the highly packed heterochromatin fiber could 

work as a stabilizer of these chromosomal structures, i.e. preventing translocation and 

fusion of the chromosome ends. Apart from this “structural” role, pericentromeric hete­

rochromatin posseses also the ability to silence gene expression: numerous evidences 

(reviewed by Karpen G.H., 1997) have shown that genes placed within fission yeast cen­

tromeres are transcriptionally inactivated. Interestingly mutants that erase centromere- 

induced gene silencing also interfere with chromosome segregation, suggesting a critical 

link between chromatin structure and centromere functions (Karpen G.H., 1997). 

Recently, it has been shown that the normal chromatin assembly, as well as gene silenc­

ing (Volpe T.A., 2002; Volpe T.A., 2003), at centromeres depends on a RNA based mech­

anism resembling those described for Xi silencing and imprinted loci.

The involvement of RNA molecules in heterochromatin assembly at centromeres 

was firstly deduced from the analysis of RNAi mutant from yeast (Volpe T.A., 2002; 

Volpe T.A., 2003). The “RNA interference” (RNAi) is a widespread process by which 

short double stranded RNAs inhibit the accumulation of homologous transcripts from 

cognate genes (reviewed by Hannon G.J., 2002). It is a typical example of a posttran- 

scriptional gene silencing (PTGS) mechanism based on the sequence specific pairing of 

RNA molecules. Even if many aspects of this model are still unclear, analysis of S.pombe 

mutants has revealed that the disruption of the RNAi machinery results (i) in the tran­

scriptional derepression of transgenes integrated in the pericentromeric repeats; (ii) loss 

of the typical epigenetic imprint for hetrerochromatin: H3-K9 méthylation and, conse­

quently, (iii) loss of the heterochromatin-associated Swi6 {S.pombe HPl homolog) from 

the pericentromeric loci (Volpe T.A., 2002). Moreover, RNAi mutants lead to the abnor­

mal accumulation of complementary ncRNAs transcribed from the DNA elements found 

at centromeres (Volpe T.A., 2002). Interestingly, double stranded RNAs have been iden­

tified also in assembly of mouse centromeric DNA (Rudert K, 1995). Additionally, H3- 

K9 méthylation and HPl binding to centromeres are abrogated in permeabilized mouse 

cells after ribonuclease treatment (Maison C., 2002).
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As for other epigenetic phenomena, the starting point of this heterochromatiniza- 

tion process is the transcription of both DNA strands in the target locus with the pro­

duction of complementary RNA molecules. As described in the model presented in Fig. 

1.3, these double stranded RNAs (dsRNAs) could recruit the RNAi silencing machinery 

with the consequent degradation of dsRNAs into short, single strand RNAs that can pair 

to the target locus in a sequence specific manner. Based on different sets of evidences 

(reviewed by Jenuwein T., 2002 and Grewal S., 2003) the proposed “pairing hypothesis” 

might involve chromo domain proteins followed by the recruitment of histone modify­

ing enzymes. Indeed: (i) the chromodomain is a RNA binding domain; (ii) in yeast the 

chromodomain of Clr4 is required for méthylation of H3-K9; (iii) in Tetrahymena 

mutants of the chromodomain protein pddl abrogate H3-K9 méthylation. Like for the 

model proposed in Fig. 1.1, HPl may bind the methylated histones stabilizing and pro­

moting the spreading of the heterochromatin fiber (Fig. 1.3).

Centromeric DNA is not the only repetitive DNA that is able to direct the assem­

bly of a heterochromatin structure. Also transposable elements (TEs) could work as 

nucléation centers for the formation and subsequent spread of heterochromatin, in inter­

spersed chromosomal domains. Recent evidence indeed suggests that the full repression 

of meiotically induced genes, in S.pombe, requires the presence of nearby TEs 

(Schramke V., 2003). Yeast strains mutated in the components of the RNAi machinery 

present a de-repression of meiotically induced genes, an accumulation of TE transcripts 

as well as a loss of dimethyl-K9 H3 and Swi6 from these elements (Schramke V., 2003). 

Moreover, targeted deletions of TEs revealed that they play a direct role in this repres­

sion (Schramke V., 2003). All these data lead to the hypothesis that interspersed TEs 

could direct gene silencing through the recruitment of the RNAi pathway and the subse­

quent formation of a silent heterochromatin (Fig. 1.3). Other evidences suggest that TEs 

from higher eukaryotes could utilize a similar silencing mechanism. Indeed, SINE and 

LINE elements contain promoters that can be transcribed from both RNA pol II and (pre­

dominantly) pol III (Weiner A.M., 2002). The mechanism of TE retrotransposition is 

itself based on the transcription of these interspersed DNA elements (Orstentag E.M., 

2001). Interestingly, the close proximity of two TEs having a “tail to tail” orientation,
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could generate two complementary transcripts from these internal promoters that could 

give rise to a double stranded RNA molecule (Fig. 1.3). Additionally, the same results 

can be achieved with the simultaneous transcription of SINEs and LINEs from external 

promoters (Fig. 1.3). The production of double stranded RNAs from transposons has 

been described in different organisms and it is thought to promote transposons silencing 

(Sijen T., 2003; Weiner A.M., 2002; Aravin A.A., 2001; Jensen S., 1999) thus playing a 

protective or defensive role against TEs spreading. RNAi seems also to be involved in 

the protection of human cells from the infection of different types of retroviruses (Gitlin 

L., 2002; Jacque J., 2002).

As for pericentromeric repeats, the double stranded RNAs could be processed by 

the RNAi machinery inducing the subsequent recruitment of histone and DNA modifi­

cation enzymes in the TEs-containing regions. Many observations seem to support this 

hypothesis. Chromatin immunoprécipitation experiments, with antibodies against H3 K9 

méthylation, revealed that Alus and LINEs are the major genomic target for this epige­

netic modification (Kondo Y., 2003). The same experiments showed also that Alu flank­

ing regions present H3-K9 méthylation, suggesting that this modification could spread 

from these repetitive elements into surrounding regions (Kondo Y, 2003). Additionally, 

TEs correspond to hypermethylated DNA; this DNA modification has been correlated 

with the inhibition of their mobility or the silencing of their promoters (Robertson, K.D., 

2000; Jones RA., 1999).

The heterochromatinization of TEs (as for the centromeric and telomeric repeats) 

was seen as mechanisms, developed by evolution, to protect the genome from the dele­

terious effects of TEs transposition. Nevertheless, this RNA-based mechanism could 

have been used also to regulate (silence) genes flanking the TEs (Schramke V., 2003). As 

this phenomenon involves stable epigenetic modification of the surrounding chromatin, 

TEs as well as centromeric repeats could be seen as

“epigenetic elements'’ that control the stability o f gene expression pro­

grams and organize heterochromatic domains [...]”

(Jenuwein T., 2002).
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Fig. 1.3: DNA repeats might work as nucléation center for heterochromatin for­
mation.
Many evidences suggest that pericentromeric repeats could promoter the formation o f  heterochromatin  
through a mechanism based on their transcription. One o f  the first steps o f  this process is the transcription 
on both strands o f  the pericentromeric repeats to generate double stranded R N A s (dsR N A s). Sim ilar RNA  
m olecules can also be obtained from the transcription o f  other repeats, such as Transposable E lem ents (i.e.: 
LIN Es/SIN Es) from external or internal promoters. Short heterochromatic R N A s (shR N A s) are then gen ­
erated by the RNAi machinery that cleaves dsRNA. These shR NA s could drive the form ation o f  hete­
rochromatin through sequence specific m echanism s involving the recognition o f  D N A  or nascent RNA. 
These com plexes are then able to recruit HM Tase activities that, m odifying epigenetically the histone tails, 
induce the binding o f heterochromatic proteins (i.e. H Pl ) and the spreading in cis  o f  the heterochromatin  
fiber. The maintenance o f  the hetrerochromatin structures could also be enhanced by the subsequent 
recruitment o f D N A  methyltransferase (D NM T). (Figure adapted from Jenuwein T., 2002; Grewal S., 
2003).
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Hox genes: an evolutionary conserved family of master control genes.

The metameric organization of the Drosophila embryo requires the proper spatial 

expression of a particular family of genes, the homeotic genes. These genes can be con­

sidered as master control genes that regulate the expression of many other genes and pro­

gram specific developmental pathways. As a general class, the homeotic mutations result 

in the apparent expression of altered states of determination. For example, in the domi­

nant mutation Antennapedia shown in Fig. 1.4, the antennae of the adult fly are trans­

formed into legs that extend from the head of the fly. The correct pattern of homeotic 

genes expression is the result of a cascade that begins with the presence in the unfertil­

ized egg of the products of the “maternal genes” and subsequently involves other genes 

families such as “gap” genes, “pair-rule” genes, “segment polarity” genes (Fig. 1.4). The 

analyses of D.melanogaster mutants revealed that homeotic genes are not required to 

form a specific part of the segmentation pattern but rather they assign a specific identity 

to these regions. Indeed, mutations in homeotic genes do not eliminate body structures 

but rather cause these elements to develop with inappropriate identities. Following W. 

Bateson definition of “homoeosis”- Fig. 1.4- these kind of transformations were named 

“homeotic phenotypes”. Thus, we can compare the homeotic genes to genetic switches 

that turn on or off different programs of cellular differentiation.

Based both on chromosomal clustering and on HD sequence comparisons, the 

homeobox genes can be divided into three hierarchical levels: superclass, class and fam­

ily (reviewed by Burglin T.R., 1994; Gehring W.J., 1994). In particular, referring to their 

chromosomal locations, the homeobox genes can be divided into two superclasses: the 

Dispersed Superclass and the Complex Superclass. The first Superclass collects all 

homeobox genes dispersed throughout the D.melanogaster genome, while the Complex 

Superclass comprises homeobox genes clustered in homeotic gene complexes (Fig. 1.5). 

In D.melanogaster, these genes are organized into two complexes, the Antennapedia 

complex (ANT-C) and the Bithorax complex (BX-Q; together these two complexes form 

the so-called homeotic gene complex or HOM-C. Interestingly, gene complexes evolu- 

tionarily related to the HOM-C have been found in all the species analysed, including

H. sapiens where four complexes (called HOXA-D complexes) have been identified
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m e m b e r  o f  a  m e r i s t ic  s e r ie s , o f  th e  fo rm  o r  c h a r a c te r s  p r o p e r  to  o th e r  m e m b e r s  o f  th e  s e r ie s ,  
s h o u ld  b e  r e c o g n iz e d  a s  c o n s t i tu t in g  a  d is t in c t  g r o u p  o f  p h e n o m e n a .. .

I  th e r e fo r e  p r o p o s e . . .  th e  te rm  H o m o e o s is . . .  th e  e s s e n t ia l  p h e n o m e n o n  is  n o t  th a t th e r e  h a s  m e r e ly  

a  c h a n g e , b u t th a t  s o m e th in g  h a s  b e e n  c h a n g e d  in to  th e  lik e n e s s  o f  s o m e th in g  e lse . "

B a te so n  W ., M aterial for the study o f  Variation, 1 8 9 4 .

Maternal
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Maintenance

trxG PcG

Fig. 1.4:
A) A homeotic mutation.
An A fiteniiapedia  (right) mutant head is compared to a wild type D .m ela tiogaster  (left). In the mutant, 
antennae are converted into leg structures by a mutation in the A iitennapedia  gene that causes its expres­
sion in the head. Fly im ages are from the “Interactive F ly” (http://sdb.bio.purdue.edu/fly).

B) Establishment and maintenance of homeotic gene expression in D.melanogaster.
See text for details.
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Fig.1.5: homeodomain protein families.

Phylogenetic relationships between members o f  the hom eodom ain protein fam ilies. A  dashed line 
schem atically divides homeodom ain fam ilies in C om plex  and D isp ersed  Superclasses  (adapted from  
Banerjee-Basu S., 2001).

(Fig. 1.6; Boncinelli E., 1991). The genes in the four vertebrate clusters can be aligned 

and subdivided into 13 groups on the basis of their HD sequences. These groups were 

named paralog groups (PGl to PG13, Fig. 1.6).

One remarkable feature of the homeotic genes organized into clusters is that the 

order in which they are expressed along the antero-posterior axis of the D.melanogaster 

embryo reflects their physical disposition along the HOM-C complex (Fig. 1.6). Indeed, 

Hox genes located at the 3’ extremity (corresponding to the first PG groups) of the clus­

ter are activated in anterior embryonic domains whereas 5’ located genes (the latest PG
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DROSOPHILA EMBRYO
HEAD
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h y p o th e tica l 
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m o u se  HoxA

m o u se  HoxB

m o u se  HoxC

m o u se  HoxD
d - lO  I d -11

Paralog g ro u p PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PGIO P G ll  PG l 2 PG13

MOUSE EMBRYO

Fig. 1.6: HOM-C/Hox clusters organisation.
The evolutionary relationship between D rosophila, am phioxus, m ouse H ox  clusters, and the deduced com ­
plement o f  Hox genes in the presumed com m on ancestor o f  arthropods and chordates. The D rosoph ila  
H O M -C, the four murine H ox  gene clusters {HoxA -H oxD ) and the A m phioxus H ox  com plex are shown  
with their inferred phylogenetic relationship. A coloured box represents each D rosoph ila  hom eotic gene  
with its corresponding vertebrate paralog.group (PG 1 -PG 13) Colours also indicate the expression dom ains 
in D rosophila  as w ell as in m ouse embryos. The anterior-posterior domains o f  D rosophila  and vertebrate 
Hox  gene expression correspond to the order o f  the genes within the com plex.
H O M  gene abbreviations: Lab=labial', P b=proboscipedia; D fd=D eform ed; S cr-S ex  com bs reduced', 
A ntp-A ntennapedia', Ubx=Ultrabithorax', abd-A ^A bdom bial-A ; A bd-B =A bdom iiial-B  
(Adapted from http://www.press.uchicago.edu/books/gee/carroll 1 .html).

groups) are transcribed subsequently and in more caudal areas. This phenomenon, called 

“spatial colinearity”, was originally described in Drosophila (Lewis E., 1978) and fur­

ther extended to all animals exhibiting an anterior-posterior axial polarity (reviewed by 

Duboule D., 1998), including mammals (Gaunt S.J., 1988; Duboule D., 1988; Graham 

A., 1989). In vertebrates, there is also a “temporal colinearity”, such that the most 3’
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genes have the earliest onsets of expression with a sequential activation of adjacent more 

5’ Hox genes. Interestingly, in mouse, Hox genes expression follows the colinearity rule 

not only in the trunk axis but also in limb development (Kmita M., 2002). In these sec­

ondary axes, genes located at the 5’ end of the HoxA and HoxD clusters are expressed in 

distal regions (the future hands and feet), whereas genes located in the middle of these 

clusters (i.e. Hoxd9) are expressed in more proximal areas. The developing limb is also 

characterized by a “quantitative colinearity”, namely a decrease in transcription effi­

ciency going from the HoxdlS to the Hoxd9 genes (Kmita M., 2002).

Maintenance of Hox genes expression through development: the Polycomb and 

trithorax genes families.

Once the expression patterns of the homeotic genes have been established, they 

should be maintained throughout the late developmental stages and entire life of the 

organism. As the segmentation genes, involved in the early establishment of homeotic 

gene expression, are expressed transiently in the developing embryo, the maintenance 

mechanisms should rely on the products of other genes. Indeed, in Drosophila, mutants 

have been described showing an ectopic expression in anterior segments of homeotic 

genes normally expressed only in more posterior segments (Lewis E., 1978). This mis- 

expression results in a change of identity of an anterior segment into a more posterior 

one. Molecular analysis revealed that the initial pattern of homeotic gene expression was 

normal in these mutants and only late did this pattern degenerate to yield anterior expres­

sion (Kuziora M.A, 1988). These mutants led to the identification of a large protein fam­

ily involved in the maintenance of homeotic gene repression: the Polycomb group (PcG). 

Its name derives from one of his members, the Polycomb -Pc- gene. One of the features 

of Pc null mutations is to transform the second and third leg of adult flies into the first 

one. In males the first legs present the sex combs, thus this transformation gave rise to 

the name of the gene. Later on all the mutants with a phenotype resembling the Polycomb 

one, were grouped together into the Polycomb group. PcG proteins are required to keep 

the homeotic genes silenced outside their normal expression domains. Once established, 

silencing by the PcG proteins is mitotically stable and maintained over many cell divi­
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sions. Whereas maintenance of repression involves the PcG proteins, another group of 

proteins is required to ensure continued expression of homeotic genes. This is the so- 

called trithorax group (trxG) since the trithorax gene is one of his members. trxG genes 

have been identified by several approaches. Some trxG mutants were recognized as they 

showed an anterior transformation of the abdominal segments, while most of the trxG 

genes were identified in genetic screens for dominant suppressor of Polycomb or 

Antennapedia mutations (Kennison J.A., 1988; Kennison J.A., 1995). PcG and trxG 

code for proteins that form multiprotein complexes and play an antagonistic role on the 

maintenance of Hox genes expression. The PcG proteins are required to keep silenced 

homeotic genes in those domain where they should be turned off; vice-versa the trxG 

maintains the “on state” of the homeotic genes. For these features, the PcG and trxG pro­

teins are considered an integral part of the cellular memory system: they are able to 

transmit epigenetically repressed or active transcriptional state in a stable and hereditable 

manner.

Since these first mutant screenings, many PcG and trxG genes have been identi­

fied in Drosophila. Using data from two public databases (“the interactive fly” and the 

“flybase”) I have collected the known PcG genes in Table 1.1 and the trxG genes in Table

1.2. However, the subdivision in PcG/trxG families is an oversimplification as there are 

genes having both PcG and trxG phenotypes (Brock H.W., 2001; LaJeunesse D., 1996; 

Milne T.A., 1999; Bajusz I., 2001). Due to these characteristics, these genes are sug­

gested to form a third group of maintenance genes, called Enhancer o f trithorax and 

Polycomb (ETP; Gildea J.J., 2000).

The PcG and trxG cell memory system is maintained through evolution.

The identification of PcG and trxG orthologs in as many different organisms as

C.elegans (Ross J.M., 2003), vertebrates (summarized in Table 1.1 and Table 1.2;) and 

plants (Schumacher A., 1997; Alvarez-Venegas R., 2003), reveals that this memory sys­

tem has been conserved through evolution. Mutations in C.elegans PcG orthologs pres­

ent a deregulation of Hox genes expression leading to anteroposterior transformations 

(Ross J.M., 2003). Also PcG and trxG knock out mice show deregulation of Hox gene
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expression patterns with the consequent onset of homeotic phenotypes (van Lohuizen 

M., 1998; Hanson R.D., 1999).

Bmil and Mell8 are two mouse gene othologs to PsclSu(z)2. mice exhib­

it postnatal lethality due to neurological abnormalities and transformation along the 

entire axial skeleton (Hanson R.D., 1999). In these mice, many Hox genes expression 

boundaries were shifted anteriorly, inducing posterior transformations of vertebral iden­

tities (Fig. 1.7; Hanson R.D., 1999). Vertebral transformations were also found in 

Mell8~^~ mice. Interestingly, Bmil'^'; Mell8'^^' and Bmil^^'\ Mell8~^' showed 

increased in posterior transformations of axial skeleton and rib cage compared to single 

knock-outs, with double mutants Bmir^~\ Mel 18'̂ ' presenting even more severe trans­

formations. These evidences suggest dosage compensation effects of Bmil and M ell8 on 

survival of embryos, regulation of Hox gene repression and skeletal development (van 

Lohuizen M., 1998). Additionally, in these mutants, the early expression pattern of Hox 

genes was comparable to the wild type, while it was derepressed only in late develop­

ment (van Lohuizen M., 1998). Thus, also in vertebrate, PcG proteins play a role in the 

maintenance and not in the initial establishment of Hox gene repression.

A ^
B m il  - / -

If

Fig. 1.7: Axial skeletal transformations in Bmil"^" mutant mice.

The picture show s transformations in the cervical and thoracic vertebrae o f  B m il mutant m ice. E l 8 fetus­
es o f  the indicated genotypes were stained with alizarin red; arrowheads mark the first, second, and sev ­
enth cervical vertebrae in wild type (A) and B m il-/-  (B) m ice. In B m il mutant m ice, the second cervical 
vertebra is transformed into the third one and the last cervical into the first thoracic vertebra. Adapted from  
Hanson R .D ., 1999.
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M33 is considered a mouse ortholog of Pc, as it is able to partially rescue the Pc 

mutant phenotype (Muller J., 1995). M33'^' mice die soon after birth. Also these knock­

outs present severe alteration in the axial skeleton, including exoccipital/atlas malforma­

tions, vertebral fusions and posteriorisation of thoracic vertebrae (Core N., 1997). RNA 

in situ hybridizations revealed an anterior shift in Hoxa3 and Hoxc8 expression domains, 

while the expression of many other Hox genes {Hoxd4, Hoxa5, Hoxc5, Hoxa6, and 

Hoxc6)) was unaffected. The de-repression of specific subset of Hox genes (reviewed by 

Bel S., 1998) lead to the hypothesis that distinct PcG proteins (or different PcG multi­

protein complexes) could regulate restricted groups of Hox genes. Double PcG knock­

outs confirmed this hypothesis. Bmir^~ M33'^~ mice present an anterior limit of expres­

sion for Hoxc8 and Hoxc9 more severely affected than the single mutants, while other 

Hox genes were not affected (Bel S., 1998).

Embryonic ectoderm development (eed) is a PcG member (ortholog to 

Drosophila esc) with very peculiar functions. Its null phenotype is the more severe than 

any other murine PcG mutant analyzed. Eed'^~ mice died at mid-gastrulation failing to 

develop a node, notochord and somites and without neural induction (Schumacher A., 

1997). As this phenotype is manifested before Hox gene expression, PcG proteins may 

be involved in the control of other developmental processes that do not require Hox gene 

expression. Indeed recent data show that eed has a role in X inactivation both in extra- 

embryonic and in embryonic lineages (Wang J., 2001; Silva J., 2003). Moreover, eed has 

been identified as a trans-acting factor regulating autosomal imprinted genes during 

early development (Mager J., 2003: Ferguson-Smith A., 2003). Regulation of X-chro- 

mosome as well as autosomal genes silencing could represent new function for the PcG 

proteins acquired during evolution; their deregulation may also explain the lethal gas­

trulation defects presented by Eed'^~ mice.

Mammalian orthologs of trxG genes have been also identified. M ill (also called 

Alll, Hrx) resembles trx of D.melanogaster and was identified originally as a gene com­

monly involved in chromosomal translocations leading to acute leukemias. M ill gene 

targeting results in abnormal development of the skeletron and of hematopoietic cells 

(Yu B.D., 1998). Segment abnormalities were present in MIW^^' mice with both anteri-

36



orization and posteriorization shifts of cervical, thoracic and lumbar regions identities 

(Yu B.D., 1995). Hoxa? and Hoxc9 analyses revealed a caudal shift of their expression 

domains (Yu B.D., 1995). In particular, Hoxa? early expression pattern was not different 

between wild type and mice, while no substantial Hoxa? expression was detected 

in mutant mice later (Yu B.D., 1998). Thus the loss of late Hox gene expression in 

mice, indicates that Mil works as a maintenance factor.

In D.melanogaster trxG and PcG genes play an antagonistic role, indeed double 

mutants of trxG and PcG were described to restore a wild type-like phenotype (Ingham 

P., 1983). This feature seems to be conserved also in mammals, as axial skeleton trans­

formation and altered Hox genes expression of both and BmH~^' mice were nor­

malized when both genes were simultaneously deleted (Hanson, R.D., 1999). The nor­

malization of axial defects in the double mutant was not complete, suggesting that these 

proteins do not universally co-regulate the same homeotic genes at all segmental level. 

The same study demonstrates that Mill and Bmil reciprocally regulate the expressions 

of many (but not all) Hox genes.

In addition to skeletal malformations and Hox genes deregulation, many PcG and 

trxG knockout mice develop different types of tumors, especially in the haematopoietic 

cell lineage (reviewed by Jacobs J.J.L., 2002).

Bmil, Mell8, M33 mutant mice display a strong reduction in overall T and B cell 

numbers as well as hypoplasia of spleen and thymus. These reductions suggest that there 

is a decrease in proliferation capabilities of T and B cell in these mice, rather than a block 

in their differentiation (Lessard J., 2003). This hypothesis is confirmed by the impaired 

proliferative response of these cells to several mitogens (Jacobs J.J.L., 2002). Notably, 

Bmil plays a fundamental role not only in maintenance of proliferation capacities of 

hematopoietic stem cells but also for the self-renewal of stem cells in the peripheral and 

central nervous system (Molofsky A.V., 2003). Overexpression of Bmil in hematopoiet­

ic cells results in a high predisposition to develop B and T cell lymphomas, thus con­

firming the role of this PcG protein as a positive regulator of hematopoietic cell prolif­

eration (Haupt Y, 1993). Indeed, Bmil was originally identified as an oncogene activat­

ed in B cell lymphomas (Alkema M.J., 1997). Vice versa, Eed mutant mice exhibit
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hypoproliferation of bone marrow cells and an increased susceptibility to develop 

hematopoietic tumors (Lessard J., 1999). These phenotypes suggest that eed could work 

as a tumor suppressor gene.

The accumulating data connecting PcG proteins to the control of cellular identi­

ty and proliferation stimulated the search for alterations of PcG expression in human 

malignancies. In four cases of mantle cell lymphomas an overexpression of BMIl, due 

to BMIl gene amplification, was observed (Beà S., 2001). The overexpression of this 

gene correlates also with human high-grade osteosarcoma and resectable non-small cell 

lung cancer (Jacobs J.J.L., 2002). Recently, EZH2 overexpression was observed in hor­

mone-refractory, metastatic prostate cancer (Varambally S., 2002). Both mRNA and 

EZH2 protein levels are increased in metastatic prostate tumors relative to localized or 

benign cancers suggesting that a deregulation in EZH2 expression may be involved in 

cancer progression. The authors report that when EZH2 is activated in tumor cells, a sub­

stantial number of other genes are shut down. If some of these genes code for tumor sup­

pressors, their repression by EZH2 could accelerate the cancer progression towards 

metastasis.

The strongest connection between PcG/trxG members and human malignancies 

concerns the mixed-lineage leukemia gene (MLLl/ALLl/HRX/Htrx). More than 30 dif­

ferent translocations involving MLLl were described both in acute lymphoblastic (ALL) 

and acute myeloid leukemias (AML; Cimino G., 1998). As the fusion partners are unre­

lated, the current model proposes that the translocation products could interfere in a 

dominant manner with the MLLl normal function. Tandem duplication of M ill gene por­

tions have been also reported in AML patients with normal karyotype, suggesting that 

also MLLl self-fusion could results in leukemogenesis (Caslini C., 2000).

PcG and trxG proteins act in large multiprotein complexes.

Two distinct observations led to the hypothesis that PcG and trxG proteins could 

exert their functions forming large multiprotein complexes. First, the synergistic effects 

of double PcG mutants on the homeotic phenotype suggest the existence of dosage inter­

action between the PcG proteins (as for the double mutant BmH~^' M33'^' discussed
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above). Second, different studies (Franke A., 1992; Rastelli L, 1993) revealed that many 

Drosophila PcG (such as Pc, Ph and Psc) proteins bind polytenic chromosomes in an 

overlapping pattern. Interestingly, only Psc was found at some of these loci, while at 

other loci only Ph and Pc were present (Rastelli L, 1993). These data suggests also that 

various complexes may exist with different PcG protein compositions. Further biochem­

ical evidences and genetic (yeast two hybrid) screenings demonstrated the association of 

PcG and trxG into multiprotein complexes (reviewed by Francis N.J., 2001; Otte A.P., 

2003). Mammalian PcG proteins BMIl, HPC2, HPC3, RINGl, HPHl, HPH2 are recip­

rocally co-immunoprecipitated (Satijn D., 1997; Gunster M.J., 1997; Bardos J., 2000), 

colocalize in discrete nuclear bodies (Saurin A.J., 1998; Satijn D., 1997) and interact in 

a two hybrid system (Satijn D., 1999), suggesting that they are part of a large multipro­

tein complex. This complex was recently purified from HeLa cell extracts and called 

“Polycomb Repressive Complex from HeLa cells” (hPRC-H, Levine S.S., 2002). The 

same kinds of protein-protein interactions were also described in D.melanogaster, where 

an equivalent complex was similarly identified and named “Polycomb Repressive 

Complex 1” (PRCl, Shao Z., 1999). Biochemical analyses revealed that the “core” of 

this large (2-6 MDa) multiprotein complex, is made of Ph, Psc, Pc and dRingl proteins 

(Francis N.J., 2001). In addition to PRCl/hPCR-H a second PcG complex has been iden­

tified both in flies and humans: PRC2. The PcG proteins forming the “core” PCR2 are 

conserved in both species: FFD, EZH2, SU(z)12 (for the human complex); as exten­

sively proven by co-immunoprecitation, colocalization and two hydrid experiments 

(Satijn D., 1999; Satijn D., 2001).

Genetic and phenotypic analysis of PcG mutants in Drosophila suggests differ­

ent functions for these complexes. In particular, the complex consisting of Esc and F(z) 

(PRC2) appear to be crucial only early in development, soon after the Hox genes silenc­

ing has been established by gap and segment polarity genes. The second complex con­

taining Pc, Ph, Psc (PRCl) vice versa is required in later stages to ensure that heritable 

silencing is maintained (van Lohuizen M., 1999). For these reasons, the two complexes 

were named PcGi (for PcG initiating) and PcGm (for PcG maintaining). Nevertheless, 

this schematic subdivision of PcG proteins into two complexes seems to be clearly over­
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simplified. The PcG protein Pho/YYl, for example, is found as a constituent of both 

PRCl and PRC2 complexes in flies and vertebrates. Moreover, Pho/YY1 is part of the 

PRC2 complex from both young and older Drosophila embryo extracts, while is associ­

ated with the PRCl only in extract from young embryos (Poux S., 2001). Thus the pro­

tein composition of the complex could vary in different developmental stages. Another 

source of variability is the tissue specific expression of many mammalian PcG proteins. 

When human fetal kidney was stained with antibodies against PcG factors, separate cell 

layers express different members of the PRCl complex (Gunster M.J., 2001). Also 

human cell lines express completely different sets of PcG proteins (Gunster M.J., 2001). 

The fact that there are cell type-specific PcG target genes and cell type-specific PcG 

complexes led to the hypothesis that a specific Polycomb complex could regulate distinct 

target loci (Satijn D., 1999).

Genetic data suggest that also trxG proteins physically interact. Indeed, at least 

three trxG multiprotein complexes were identified from Drosophila embryonic extracts. 

The analysis of one of these complexes, called BRM, revealed the presence of the trxG 

protein brahma (BRM; Dingwall A.K., 1995). Another trxG protein, Moira (Mor) was 

found in this complex (Crosby M.A., 1999) while the majority of BRM associated pro­

teins are not encoded by trxG genes (Papoulas O., 1998). The two further complexes 

were characterized for the presence of other trxG proteins, such as ASHl and ASH2 

(Papoulas O., 1998). As expected, related complexes (BRGl and hBRM) were also iden­

tified in humans (Wang W., 1996).

PcG/trxG multiprotein complexes modify chromatin structure.

How can different PcG/trxG multiprotein complexes maintain the repressed/acti- 

vated state of developmental regulated genes? The identification of enzymatic activities 

associated with components of PRC 1/PRC2/BRM complexes start to give (still incom­

plete) answers to this question.

When the first trxG gene was analyzed, its sequences revealed an elevated simi­

larity to the yeast SWI2/SNF2 (Tamkun J.W, 1992), that functions as the ATPase sub­

unit of a 2 MDa chromatin remodeling complex, the SWI/SNF complex. Genetic and
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biochemical studies suggest that SWI/SNF activates transcription by remodeling nucle- 

osome positions (reviewed by Sudarsanam P., 2000). These complexes can slide nucleo- 

somes along DNA; transfer histone octamers to naked DNA and alter the topology of 

closed circular nucleosomal templates (Langst G., 2001). As a consequence of this chro­

matin remodeling, activators and transcription factors are probably helped in binding 

their target sites by the work of SWI/SNF complexes. This also suggested that the main­

tenance of Hox and other developmentally regulated genes mediated by trxG complexes 

could involve the formation of an “open” chromatin structure, more accessible to tran­

scription machineries. Concordantly, many other studies have highlighted the interaction 

of trxG proteins with Histone Acetyl Transferases (HATs). Histone acétylation is an epi­

genetic mark associated with the transcriptionally active euchromatin, while inactive 

heterochromatin domains are consistently hypoacetylated (Jenuwein T., 2001). A “tritho­

rax acétylation complex” (TACl), containing trx and the HAT CBP/p300 proteins has 

been recently identified (Petruk S., 2001). TACl characterizations revealed that this 

complex is able to acetylate histone tails and is required for the maintenance (but not for 

the proper initiation) of the homeotic Ubx gene expression (Petruk S., 2001). Indeed, 

mutations either in trx or dCBP genes reduce the expression of Ubx, indicating a direct 

role for TACl (and consequently, histone acétylation) in the Hox genes expression. 

Additionally, the trx and CBP/p300 have been shown to interact with the cis regulatory 

regions of Ubx (Petruk S., 2001). These data lead to the hypothesis that trx complexes 

might maintain transcriptional activation promoting an epigenetic modification (acétyla­

tion of histone tails) in correspondence of specific cis regulatory elements.

On the other hand, accumulating evidence suggests that PcG complexes may 

promote the formation of highly packed, transcriptionally repressed chromatin fiber. A 

first indication derived from the sequence analysis of the Pc protein. Its amino terminus 

presents a chromo domain homologous to HPl (Paro R., 1991). This protein is encoded 

by Su(var)2-5, a gene identified as a modifier of heterochromatin-induced position effect 

variegation (PEV). Mutations in the HPl chromo domain result in a reduction of its 

silencing ability; while for Pc it seems to mediate protein-protein interaction (with other 

members of the multiprotein complex; Cavalli G., 1998a) as well as binding to methy­
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lated chromatin (Cao R., 2002; Czermin B., 2002; Müller J., 2002). Due to this similar­

ity, it was proposed that Pc, together with other proteins, could use heterochromatin-like 

structures to keep genes repressed (Paro R., 1991). The same conclusions can be deduced 

from different studies showing that histone deacetylases (HDACs) could play a role in 

PcG function. As already mentioned, deacetylation of lysines, in the N-terminal tails of 

histone H3 and H4, is an important indicator of chromatin repression (Jenuwein T.,

2001). EED and EZH2 indeed co-immunoprecipitate with HDACl and HDAC2 proteins 

from human cell line extracts (van der Vlag J., 1999). Additionally, EED-mediated 

repression was dependent on HDAC2 activity (van der Vlag J., 1999). The same kind of 

interaction was seen in D.melanogaster, where HD AC RPD3 is found in the PRC2 com­

plex (Tie F., 2003). In human cancer line, EZH2-mediated transcriptional repression is 

dependent on HDAC activity, as the commonly used HDAC inhibitor (tricostatin A) 

could abrogate the silencing effects of EZH2 (Varambally S., 2002).

Interestingly, as shown for single trxG and PcG genes, the large multiprotein trxG 

and PcG complexes maintain antagonistic behaviors: PRCl and SWI/SNF can compete 

each other for interaction with the nucleosomal template. PRCl is capable of stabilizing 

in vitro a nucleosomal array to the effect of ATP-dependent remodeling by SWI/SNF 

complex (Shao Z., 1999). Despite the changes in the primary sequence and composition 

of the complex, also the hPRC-H is able to inhibit SWI/SNF-dependent remodeling of 

nucleosomal templates (Levine S.S., 2002).

Several evidences tightly link PcG/trxG complexes to regulation of the Hox gene 

expression based on epigenetic mechanisms. Among them, the similarity found between 

PcG/trxG and protein involved in the remodeling of the chromatin structure and, most 

important, the association of enzymatic activities, like histone acetylation/deacetylation 

and histone méthylation, with PcG/trxG complexes. These enzymatic activities, as we 

have seen, are due to the interaction between PcG/trxG proteins with HDACs/HATs but 

may be also carried by PcG proteins themselves. For example, E(Z) posses a Histone 

Methyl Transferase (HMT) activity (Czermin B., 2002; Müller J., 2002). It has been 

shown that the E(Z)/ESC (PRC2) complex possesses HMT activity for both lysines K9 

and (preferred) K27 on H3 (Cao R., 2002; Kuzmichev A.,2002). The E(Z) SET domain
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tri-methylates K9 and (probably) K27 (Czermin B., 2002; Müller J., 2002; Kuzmichev 

A.,2002). With the exception of DOT Ip (van Leeuwen K, 2002), all reported HMTs that 

methylate lysine residues contain a SET domain, which includes the amino acids impor­

tant for MTase function. This is true also for E(Z), as SET domain mutations impair 

HMT activity in vitro and in vivo (Müller J., 2002). In addition, PRC2 complexes con­

taining these mutant forms of E(Z) fail to maintain the repressed state of Hox genes. 

(Müller J., 2002). Other evidences linking MTase activity to the SET domain derived 

from metastatic prostate cancer (Varambally S., 2002). The overexpression of EZH2 

resulted in the repression of several genes as detected by DNA microarray analysis, and 

this repression was dependent on an intact SET domain (Varambally S., 2002). 

Interestingly, Pc, a member of the PRCl complex, has a preferential binding for H3 

methylated at K27, probably through its chromo domain (Cao R., 2002; Czermin B., 

2002; Müller J., 2002). It is postulated that the E(Z)/ESC complex makes a methyl mark 

on the K27 of histone H3 and this mark is recognized by PRCl. This fits very well with 

the PcGi-PcGm complexes model where the E(Z)/ESC complex initiates the silencing 

and a subsequent interaction between the two complexes is needed for PRCl to be able 

to maintain the silenced state (Cao R., 2002; Czermin B., 2002; Müller J., 2002).

Histone méthylation and acétylation also correlate with trx-G mediated activa­

tion. TRX, found in the TACl complex (Petruk S., 2001), has HMTase activity specific 

for K4 of histone H3 in D.melanogaster (Czermin B., 2002). The SET domain of the 

human ortholog, MLLl, retains the same méthylation activity over K4 H3 in vitro (Milne 

T.A., 2002). In vivo this correlation was described for the Hoxc8 gene, a Hox gene direct­

ly regulated by MLLL In wild type mice, the expression of the Hoxc8 correlates with a 

hypermethylation of K4 H3 at its locus, while in Mlll~^~ mice the Hoxc8 locus is 

hypomethylated and the gene unexpressed (Milne T.A., 2002). In addition, Mlll~^' cells 

transfected with a vector expressing MLLl showed an enrichment of K4 H3 at the Hoxc8 

locus compared with cells expressing MLLl lacking the SET domain (Milne T.A.,

2002). Interestingly, also histone acétylation seems to play an important role in regulat­

ing Hoxc8 expression. Indeed, Mlll~^' mice show a hypoacetylated Hoxc8 locus, while 

wild type mice expressing Hoxc8 present a hyperacetylated locus. MLLl transfected in
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M lir^' cells is able to re-establish the acétylation pattern at different positions of the 

HoxcS locus (Milne T.A., 2002). A similar situation was described also for the Hoxa9 

locus, another gene positively regulated by MLLl. In particular MLLl, as a member of 

a big multiprotein complex, binds the Hoxa9 promoter and induces K4 H3 méthylation, 

histone H3 and histone H4 acétylation at the promoter region (Nakamura T., 2002).

ASHl is another trxG protein that possesses HMTase activity specific for K4 H3, 

K9 H3 and K20 H4 (Beisel C., 2002). Again, this methylase activity is due to the pres­

ence in this protein of a SET domain (Beisel C., 2002). Chromatin immunoprécipitation 

(X-ChIP) experiments indicate that ASHl is able to mediate Ubx gene (a natural target 

gene of ASHl) activation promoting méthylation of K4 and K9 in H3 and K20 in H4. 

This trivalent méthylation pattern was also able to prevent the binding of HPl, a hete­

rochromatin-associated protein that generally binds methylated K9 H3, as well as of PcG 

proteins (Beisel C., 2002). Vice-versa the trivalent méthylation patter mediates the 

recruitment of SWI/SNF-like chromatin remodeling complex through the binding of 

BRM and MOR, both trxG proteins (Beisel C., 2002).

Taken together all these results exemplify how the histone code could be read: 

ASHl labels the chromatin methylating H3 at K4/K9 and H4 at K20. This méthylation 

pattern facilitates binding of trxG complexes and inhibits binding of epigenetic repres­

sor such as Pc and HPL This implies that, while methylated K9 H3 alone could mediate 

the recruitment of the heterochromatic protein HPl leading to transcriptional repression, 

the simultaneous presence also of methylated K4 H3 and K20 H4 brings the recruitment 

of remodeling complexes that maintain a transcriptional active state.

The integration of genetic and epigenetic data, suggests that the products of gap, 

pair-rule, segment polarity genes could mediate the interaction of early developmental 

multiprotein complexes (ESC-E(Z), ASHl) with their target loci. These complexes 

establish a specific pattern of histone tail modifications that is recognized by other mul­

tiprotein complexes (PRCl, SWI/SNF, TACl) that promote the maintenance of repressed 

or activated states of target gene (Fig. 1.8).
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Fig 1.8: An epigenetic model for the action of PcG/trxG complexes.
On the left, a PcG/trxG target locus is schem atically depicted. During developm ent transient transcription 
factors, such as the products o f  the segm entation genes, interact w ith target genes prom oting their activa­
tion or repression. In the first case, A S H l marks the transcriptionally active promoter by m ethylating K 20  
o f  histone H4 plus K4 and K9 o f  H3. This, in turn, led to the recruitment o f  rem odeling m achines and h is­
tone acetyl transferase that are part o f  trxG com plexes. These m odifications prevent further interaction o f  
the promoter w ith gene silencing activities (i.e. the PR C l com plex). In the second case, the ESC -E(Z) 
com plex marks the transcriptionally repressed state by methylating K9 and K 27 o f  H3 in the PRE, thus 
stably recruiting PcG com plexes, such as P R C l. The association o f  both P R C l and E SC -E (Z ) could be 
concom itant with the recruitment o f  HDACs. Adapted from Breiling A ., 2002.

PcG and trxG complexes bind specialized DNA elements.

PcG and trxG complexes exert their epigenetic regulation on gene expression by 

binding to the chromatin fiber. Different DNA elements were described as the in vivo 

binding sites for PcG and trxG complexes and for this reason were named Polycomb 

Response Element (PRE) and Trithorax Response Element (TRE).

Using immunostaining techniques more than 100 PcG/trxG binding site have 

been described on polytene chromosomes from salivary glands. This distribution implies 

that homeotic complexes represent only a subset of PcG target genes. An important 

aspect deduced from these profiles, is that many trx and Pc binding sites overlap 

(Chinwalla V., 1995). These were the first evidences suggesting that PcG and trxG bind­

ing sites could coincide at the same DNA element. Consequently, it was proposed to 

change the name of PREs and TREs into Maintenance Elements (MEs; Brock H.W.,

2001) or Cellular Memory Modules (CMM; Cavalli G., 1998b). I will use generically the 

term PRE or CMM for both TREs and PREs.
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PREs were identified and characterized at five genomic loci in the

D.melanogaster {BX-C, ANTP-C, engrailed, polyhomeotic and hedgehog) by means of 

functional assays (i.e. transgene analysis) and chromatin immunoprécipitation. These 

analyses (reviewed by Pirrotta V., 1997; Brock H.W., 2001) revealed that (i) PREs are cis 

regulatory elements, whose length can range from several hundred base pair to some 

kilobases; (ii) the distance between the PREs and the target genes can vary up to 20 kb 

or even more; (iii) they can mediate the repression of a reporter gene in transgenic flies; 

(iv) transposon-mediated insertion of a PRE randomly in the genome is able to create an 

ectopic PRE that recruits PcG proteins; (v) PREs exhibit “homing” and “pairing” effects, 

namely transposons containing a PRE integrate near endogenous PRE sites.

The PREs belonging to the BX-C complex have been mapped by X-ChIP 

(Orlando V., 1993; Strutt H., 1997; Orlando V., 1998). A first analysis, done in a 

Drosophila cell line (Orlando V., 1993), revealed that Pc covered most of the BX-C 

including known PREs and promoters. Interestingly, no Pc binding sites were detected 

in the region corresponding to Ahd-B, the only gene of the BX-C expressed in this cell 

line. The distribution of Pc over large BX-C fragments suggested that PcG protein could 

promote their own binding according to cooperative mechanisms that facilitate the 

spreading of these proteins along the chromatin fiber (Orlando V., 1993). An improved 

X-ChIP approach (Strutt H., 1997) confirmed the absence of Pc from the Abd-B region 

and revealed, by defining better the Pc distribution, that Pc binding sites correspond 

mainly to intergenic sequences previously identified as having PRE activities. In addi­

tion to intergenic sites, PcG and TrxG proteins were also mapped at core promoters, in 

embryos (Orlando V., 1998). An important consequence of this picture is that promoters 

themselves become key target regions for the mechanism(s) by which PcG complexes 

regulate transcription. PcG complexes/core promoter association was further analyzed in 

our lab (Breiling A., 2001). Surprisingly, many general transcription factors (GTE) were 

detected at the promoters of silenced genes regulated by PcG complexes (Breiling A.,

2001). A confirmation of PcG complexes/GTFs interaction derived both from co- 

immunoprecipitation experiments (Breiling A., 2001) and biochemical purification of 

PcG complexes (Saurin A., 2001; Nakamura T., 2002). Thus, it was proposed that PcG

46



complexes could maintain gene silencing through development by inhibiting GTF-medi- 

ated activation of transcription.

An important aspect of X-ChIP analyses was the confirmation that PcGs and trxG 

proteins could interact with the same DNA element (Strut H., 1997; Orlando V., 1998). 

Thus PcG and trxG proteins could act through common chromosomal element to direct 

the adjacent chromatin structure into either a heritable closed or open conformation. This 

leads to the possibility that the same DNA fragment could present a “double personali­

ty” possessing both a PRE and a TRE soul. Such a feature was demonstrated for the 

Frontabdominal 7 {Fab-7) element, a DNA fragment containing both a boundary ele­

ment and a PRE that are in vivo binding sites both for Pc and GAGA factor (Cavalli G., 

1998b). The authors used transgenic fly lines with a heat shock-inducible GAL4 gene as 

a driver construct and a reporter construct with Fab-7 linked to a GAL4 UAS-inducible 

lacZ gene and white as a transformation marker. In the absence of heat shock, silencing 

imposed by Fab-7 on the flanking reporter genes was dependent on PcG proteins, as het­

erozygous mutant PcG genes showed a release of white gene repression. A heat 

shock-induced burst of GAL4 strongly derepressed lacZ in all embryonic tissues. 

Strikingly, when embryos that had received a GAL4 burst were returned to normal tem­

perature and allowed to develop, more than 70% of the resulting adult flies had red eyes. 

Thus the GAL4 pulse during embryogenesis can impose a mitotically stable reprogram­

ming of the Fab-7 CMM, from a silenced to an open chromatin state. This “switch” can 

be also meiotically transmitted (Cavalli G., 1998b). To interpret these sets of data, the 

authors propose that the transcription could drive the CMM from a silenced state (due to 

the presence of PcG factors) to a trxG-dependent open chromatin structure. The same 

authors later on demonstrated that different PcG proteins were tightly bound to the trans­

gene even in the presence of trxG-mediated transcription (Cavalli G., 1999). The idea 

that PcG and trxG complexes might compete in a mutually exclusive way for the bind­

ing to the same DNA element seems to be oversimplified and probably the maintenance 

of the transgene transcription relies also on some other epigenetic marks. Indeed mitot­

ically stable hyperacetylation of histone H4 was found at the activated Fab-7 transgene 

(Cavalli G., 1999).
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Promoters share similar sequence motifs with intergenic PREs and are “in vivo” 

binding sites for PcG complexes both in D.melanogaster and mammals.

The X-ChIP analyses of the PcG/trxG binding sites had the remarkable advantage 

of improving the resolution of PRE mapping from several hundreds of kb (immunolo- 

calization on polytenic chromosomes) to several hundreds of bp (X-ChIP). This, in turn, 

favored the alignment of PRE sequences by looking for the presence of a common “bind­

ing consensus”. Such a search was complicated by the fact that all, except three, PcG and 

trxG proteins don’t have any known DNA binding domain. The exceptional proteins are 

PHO/Y Y1 (Pleiohomeotic, PcG), GAGA factor (GAP, PcG/trxG) and Z (Zeste, trxG). 

All three have sequence specific DNA binding motifs (reviewed by Ringrose L., 2003), 

that are present at least once in all the known PRE sequences. Unfortunately these con­

sensuses are very short (GAP) or highly degenerate (PHO, Z) and cannot be used singu­

larly as PRE/TRE-specific consensus. Nevertheless, these consensuses were used to 

develop a bioinformatic tool able to predict PRE elements in the Drosophila genome. 

The program, named “PREdictor” (http://www.techfak.uni-bielefeld.de/marc/pre; 

Ringrose L., 2003) is based on the evidence that known PREs contain multiple, clustered 

copies of GAF-PHO-Z binding motives. When used to scan the entire Drosophila 

genome, PREdictor identified 167 putative PREs (Ringrose L., 2003). The cytological 

positions of the predicted PREs are in excellent agreement (50%) with immunological 

mapping of PcG and trxG binding sites. Putative PREs were found in the genomic loci 

of different types of genes, such as transcription factors (including homeobox genes), 

genes linked to embryonic patterning or cell fate specification and genes having tumor 

suppressor activities. A major point emerged from this study is that all genes examined 

are characterized by the presence of a putative PRE in their promoter regions. Thus the 

presence of common DNA motifs both at intergenic PREs and promoters could explain 

the binding of PcG and trxG proteins at these regions and suggests that PcG/trxG com­

plexes could directly bind promoters. Finally, in vivo binding of PcG and trxG proteins 

to putative PREs was confirmed with X-ChIP assay (Ringrose L., 2003).

Core promoters seem to represent PcG/trxG binding sites also in mammalian 

genomes (Milne T., 2002; Nakamura T., 2002). Genetic analyses revealed that the
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expression patters of many Hox genes were severely affected in PcG and trxG mutant 

mice, suggesting that these genes represent direct targets for the PcG/trxG activities (as 

discussed in previous sections). Indeed X-ChIP experiments showed that MLLl binds 

directly the proximal promoter of HoxcS (Milne T., 2002). This promoter and known 5’ 

and 3’ HoxcS enhancers show MLLl-dependent acétylation of both histone H3 and H4 

(Milne T., 2002). The same genomic regions were found to be K4 H3 methylated in wild 

type but not in mice (Milne T., 2002). Another Hox gene that is positively regu­

lated by MLLl is Hoxa9 (Hanson R.D., 1999). X-ChIP experiments in HeLa cells 

expressing HOXA9 clearly demonstrated the association of MLLl as well as other pro­

teins found in its complexes (such as BRM, Mi2, TBP, TAFII80) with the core promot­

er of H0XA9 (Nakamura T., 2002). Abolishment of MLLl expression by small interfer­

ing RNA resulted in a loose of these proteins from the promoter, demonstrating that 

MLLl is necessary for the association of the complex to this region (Nakamura T.,

2002). MLLl is also able to induce K4 H3 dimethylation and H3 acétylation at the 

H0XA9 promoter (Nakamura T., 2002).

Apart from these two Hox gene promoters, PcG complexes were also found asso­

ciated with pericentromeric heterochromatin (Saurin J., 1998). Immuno-FISH experi­

ments demonstrated that HPC2, RINGl and BMIl form discrete nuclear structures 

(termed “PcG bodies”) stably associated with human pericentromeric regions of autoso­

mal chromosomes (Saurin J., 1998). In particular, PcG bodies were found at the peri­

centromeric heterochromatin of chromosome 1 in a variety of cell lines (Saurin J., 1998).

Transcription through PREs correlates with epigenetic switches.

Many evidences suggest that PREs could work as epigenetic elements promoting 

either a silenced or activated chromatin state throughout development. As we have seen, 

this feature was largely investigated for the Fab-7 PRE (Cavalli G., 1998b; Cavalli G., 

1999). Nevertheless, other epigenetic elements from the BX-C (namely, Mcp and bxd 

PREs) present identical characteristics. Like for the Fab-7 recombinant constructs, Mcp 

and bxd PREs were cloned upstream to GAL4 UAS controlling the expression of both 

lacZ and white genes (Rank G., 2002). Due to the association of PcG proteins to these
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PREs, transgenic flies express neither LacZ nor white reporter genes (Rank G., 2002). 

Upon GAL4 induction during embryogenesis, LacZ was homogenously expressed in 

embryos and 90% of the corresponding adult flies have red eyes (Rank G., 2002). 

Together these results prove that (i) different CMMs posses both PRE/TRE activities; (ii) 

transcription through the target gene(s) could mediate a switch from the PRE to the TRE 

activity of the CMM; (iii) once this switch takes place, it will be stably maintained and 

transmitted through mitoses. Surprisingly, RNA in situ hybridizations revealed that the 

GAL4 pulse was able to induce not only the transcription of the two reporter genes but 

also of the PRE element itself (Rank G., 2002). The authors then looked for the presence 

of such transcripts also in transgenic flies having a truncated Fab-7 element and that 

were not able to switch on the reporter genes upon GAL4 activation. “CMM transcripts” 

were not detected in such flies, suggesting the idea that transcription through these epi­

genetic elements is involved in switching a silent CMM into an activated one. If this last 

hypothesis is correct, we should expect to find CMM transcripts in those regions where 

CMM should be in an open chromatin conformation to promote the maintenance of 

homeotic genes transcription. Indeed RNA in situ hybridizations confirmed that tran­

scription of CMMs coincides in Drosophila embryos with the transcription of homeotic 

genes they control (Rank G., 2002).

Other papers were concomitantly published describing the identification of inter- 

genic non-coding RNAs in the BX-C (Bae E., 2002; Drewell R., 2002). These transcripts 

colocalized with peculiar cis regulatory elements, called infraabdominal (lab). At least 

seven iab elements have been mapped in the 100 kb intergenic region between abd-A and 

Abd-B in the BX-C and each iab region controls the expression pattern of the correspon­

ding abdominal gene in a specific segment. Systematic RNA in situ hybridizations high­

lighted the presence of non-coding transcripts in each of these elements, including 

regions corresponding to known PREs (Bae E., 2002). Interestingly, the expression 

domains of iab non-coding RNAs overlap precisely with the segmental domains that are 

affected by mutations in each particular iab region. The intergenic transcription seems 

also to precede the transcription of those two homeotic genes in early embryogenesis 

(Bae E., 2002). It was then proposed that this early intergenic transcription could define
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the domains of activity for cis regulatory elements within each iab element. This hypoth­

esis is reinforced from the analysis of Map mutants (Drewell R., 2002). Map is a domi­

nant mutation due to a 3 kb deletion in the intergenic region between iab4 and iab5. The 

corresponding phenotype (a posterior transformation of the fourth abdominal segment 

into the fifth) is due to the expression of Abd-B driven by iab5 in the fourth abdominal 

segment, anterior to its normal expression domain. In the wild type embryo, the regula­

tory region iab4 drives the correct expression of abd-A in the fourth abdominal segment. 

Deletion of the Map element results in the absence of intergenic iab4 but not of the inter­

genic iab5 and Abd-B transcription (Drewell R., 2002). These evidences suggest that 

Map could contain part of the promoter or initiation elements required for the intergenic 

transcription of iab4. If this transcription is required for the correct activation of abd-A 

cis regulatory elements present in the iab4 region, then the loss of intergenic transcrip­

tion may result in a failure to produce the fourth abdominal segment (Drewell R., 2002).

A general model can be drawn from these experimental evidences. The inactive 

state of a hypothetical gene could correspond to a situation where the gene itself and its 

cis-regulatory elements (i.e. enhancers) are embedded in a highly packed chromatin 

structure. This “close” structure prevents the interaction of trans-activator proteins with 

the enhancer. Thus we can suppose that intergenic transcription could represent a mech­

anism to “open” the chromatin structure allowing the interaction between cis regulatory 

DNA elements and regulatory proteins. In addition, we can even suppose that transcrip­

tion through these DNA elements could modify epigenetically the chromatin structure.

ncRNA in eukariotic genomes.

Genome sequencing projects have revealed an unexpected feature of eukaryotes 

evolution: the developmental complexity of higher eukaryotes, more than the result of an 

increase of the total amount of protein coding genes, could be mainly due to variation in 

gene expression patterns (Mattick I., 2001a-b). Humans, for example, have only twice as 

many protein coding genes as D.melanogaster or C.elegans (International Human 

Genome Sequencing Consortium, 2001; Venter J.C., 2001) and share 99% of their pro­

tein coding genes with mice (Mattick I., 2001a-b). These analyses revealed also a sec­
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ond striking feature: the transcription of ncRNA is significantly increased during the 

evolution of higher eukaryotes (Mattick J., 2001a-b). About 98% of all the transcrip­

tional output (or “transcriptome”) in humans is represented by ncRNAs and half to three 

quarters of the transcriptome consists of antisense and intergenic transcripts (Mattick J., 

2001; Yelin R., 2003). A similar situation was found also in the mouse transcriptome, 

where about 50% of RIKEN full-length cDNAs appear to be non-coding (Okazaki Y.,

2002). Moreover, whole-chromosome analysis using oligonucleotide microarrays in 

humans has revealed that the level of transcription from both chromosome 21 and 22 is 

an order of magnitude higher than expected (Kapranov R, 2002). Many of these tran­

scripts correspond to ncRNAs that could be polyadenylated, alternatively spliced and 

transported to the cytoplasm (Kapranov P., 2002; Cawley S., 2004). A high resolution co­

mapping of these non-coding transcripts and transcription factor binding sites, revealed 

that the same transcriptional regulatory machinery could drive the transcription of both 

non-coding and protein-coding genes (Cawley S., 2004).

These findings suggest that RNA-mediated gene regulation could be a more com­

mon event than had been thought (Mattick J., 2001 a-b). In addition to ncRNA molecules 

such as Xist/Tsix, wXHroXl, Air, a new class of ncRNAs, called microRNAs (miRNAs), 

supports this hypothesis. Firstly discovered in C.elegans (Lee R.C., 1993; Wightman B., 

1993; Reinhart B.J., 2000), miRNAs are 21-24 nucleotide-long RNAs cut from longer 

(60-80 nucleotides) hairpin-shaped RNAs that bind to specific mRNA targets, blocking 

“in trans” their translation into proteins (reviewed by Bartel D.P., 2004). Interestingly, 

the miRNAs-based gene silencing is due to the recruitment of the RNAi machinery that 

could either promote the degradation of target mRNAs or the block of their translation 

(Bartel D.P, 2004). Computational and cloning approaches have led to the identification 

of orthologous miRNAs in different eukaryotic genomes, suggesting that this class of 

ncRNA has been conserved during the evolution of eukaryotes (Lim L.P, 2003). 

Noteworthy, miRNA genes should correspond to -1% of the predicted human genes, a 

fraction similar to that seen for genes coding for transcription factors (Lim L.P, 2003).

The presence and the functional characterization in our transcriptome of such a 

large amount of ncRNAs lead to the hypothesis that ncRNAs could represent an unex­
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plored layer of gene regulation. Nowadays ncRNAs seem to be involved in the onset of 

networks regulating gene expression with almost infinite potential complexity (Mattick 

J., 2001 a-b). Referring to John Mattick's words:

“Complexity is hidden in the non-coding output o f the genome”

(Dennis C., 2002).
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RESULTS
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Identification of PREs in the human HOXA cluster.

A major goal of this study was the identification of PREs in the human genome. 

As many PREs have been mapped in the BX-C of D.melanogaster (Orlando V., 1993; 

Orlando V., 1998), I looked for the distribution of Poly comb and trithorax proteins in the 

human loci that are orthologous to the BX-C, namely the HOX clusters. In particular, I 

focused my attention on the HOXA cluster that was the only fully sequenced among the 

four human HOX clusters at that time. Following the experimental approaches used for 

the D.melanogaster, we decide to investigate PRE distribution by means of Chromatin 

Immunoprécipitation assay, using the immunoprecipitated DNA (I-DNA) as a probe for 

Southern analyses. Therefore, I started defining the genomic organisation and assem­

bling a cosmid contig of this target region.

HOXA cluster: from in silica cloning to cosmid contig.

The HOXA cluster is made of 11 genes that localize in the short arm of chromo­

some 7 (7pl5; Apiou R, 1996). We deduced its genomic organization in silico via both 

the Non Redundant (nr) and the Unfinished High Throughput Genomic Sequences (htgs) 

BLAST databases. These databases were screened with cDNA sequences from different 

human HOXA genes (see Table 2.1 for their accession numbers) and three PAC/BAC and 

eight cosmid clones spanning the entire cluster were identified (Kim M.H., 1998). 

Different DNA markers (Table 2.2) belonging to this region were used to define the cos­

mid contig by PCRs, restriction analyses and Southern blots. This cosmid contig is 

shown schematically in Fig. 2.1. The DNA sequence of the entire HOXA locus (more 

than 300 kb) was inferred from the sequences of the PAC/BAC clones. The EcoRI 

restriction pattern from the cosmid contig was compared with the restriction map 

obtained in silico, confirming that the entire HOXA cluster was cloned without any gaps.

Repeatmasker Web Server (http://repeatmasker.genome.washington.edu/cgi- 

bin/RepeatMasker) was used to identify and localize all the Repetitive Elements (REs) 

in the HOXA genomic sequence. The analysis includes repetitive DNA families such as 

LINEs, SINEs, LTRs, MERs and satellite DNAs (i.e. simple repeats and low complexi­

ty DNAs). CpG islands were mapped using the PipMaker (http://bio.cse.psu.edu/pip-
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maker) and NIX programs (http://www.hgmp.mrc.ac.uk). The detailed genomic organi­

zation of the human HOXA locus is shown in Fig. 2.2.
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Fig. 2.1: Cosmid contig spanning the human HOXA cluster.

A) Schem atic representation o f  D N A  markers and HOXA genes used to assem ble the cosm id contig. The 
order o f  genes and markers reflects their relative positions along the HO XA locus. Table 2 .2  and Table 2 .20  
summarises PCR conditions specific for each D N A  marker/HOXA gene, respectively. G enes/D N A  mark­
ers belonging to different clones are shown as black dots.
B) Physical map o f the human HOXA cluster. On the genom ic line, genes are shown as black rectangles, 
w hile D N A  markers as black circles. PAC, BAC and cosm id clones are shown as black lines below  the 
genom ic line.
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Fig. 2.2: genomic organisation of the human HOXA cluster.
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Polycomb, trithorax and HOXA gene expression in human cell lines.

After having adapted the X-ChIP analysis to human cell lines (as described in 

Chapter IV), we started the analysis of the expression of different PcG and trxG proteins 

in HeLa and U937 cells. The expression pattern was investigated by Western Blot analy­

sis using affinity-purified a-hPC2, a-BM Il, a-RINGl, a-EZH2, a-HPHl, cx-MLLl, a- 

YY1 and a-TBP. All proteins are expressed in both human cell lines (Fig. 2.3); MLLl is 

also expressed in HeLa cells (C. Caslini, personal communication).

I investigated the expression patterns of HOXA genes in HeLa cells by RT-PCR. 

Table 20 summarised both primers and PCR conditions. From this analysis, HOXAl, 

H0XA2, H0XA3, H0XA4 and H0XA13 seem to be not expressed, vice versa H0XA5, 

H0XA6, H0XA7, H0XA9, HOXAl0 and HOXAl 1 are expressed in HeLa cells (data not 

shown).
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Fig. 2.3: Western blot analysis.

Western blot experim ents were performed with total nuclear extracts from HeLa and U 937 cell lines. 
Protein showed approximately the expected molecular weights: B M Il (44-47 kDa); hPC2 (82 kDa); 
R ING l (54 kDa); HPHl (124 kDa); EZH2 (90 kDa); TBP (36kDa); Y Y l (65 kDa).
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PcGs and MLLl distributions in the HOXA cluster and pericentromeric repeats by 

X-ChlP/Southern blots.

The cosmid contig covering the entire HOXA cluster was digested with EcoRI 

(Fig. 2.4A), blotted and hybridized with DNA immunoprecipitated with anti-hPC2 anti­

bodies (Fig. 2.4B). DNA aspecifically immunoprecipitated (mock, Fig. 2.4C) was used 

as control. With this approach, putative PcGs binding site could be identified quantify­

ing the hybridisation signals in the two Southern blots. The restriction fragments show­

ing a higher signal in the hybridisation with I-DNA, versus the mock, might be consid­

ered as the in vivo binding site for the investigated proteins. Thus, we have quantified all 

the hybridisation signals with the “Quantity One Quantification Software”, Bio-Rad 

(Fig. 2.4D and E), identifying fourteen enriched EcoRI fragments in the a-hPC2 

Southern blot. Knowing the EcoRI restriction pattern of the HOXA locus, it was possi­

ble to precisely localize these enriched fragments. This mapping revealed that they are 

localized mainly in the surrounding regions of the HOXA cluster, where only REs have 

been mapped (compare Fig. 2.5 and Fig. 2.2). The presence of REs and low complexity 

DNA was also confirmed hybridising the same cosmid contig with labelled CoTl DNA 

(Roche, Fig. 2.4D). Indeed, CoTl DNA is a fraction of the human genome composed 

essentially by LINEs, SINEs and other repeats, generally used to compete REs in 

Southern blots.

These results represent the first attempt to map the distribution of PcG/TrxG pro­

teins in large human genomic regions using X-ChIP approach. Other groups have tried 

to analyse the genomic distribution of these proteins by mean of immunohistochemistry 

(Saurin A.I., 1998). Their analyses revealed that Polycomb complexes or PcG bodies 

were found in the pericentromeric regions, in particular of chromosome 1 (Saurin A.I.,

1998). To investigate better these associations, we repeated the X-ChlP/Southern blot 

assay with three different families of human centromeric repeats, looking for the bind­

ing of hPC2, BMIl (two PcGs proteins) and MLLl. Although the latter is a TrxG mem­

ber, it has been recently shown to interact both with hPC2 and BMIl (Xia Z.B., 2003). 

As target regions, we choose the Sau3A, the EcoRI (or alphoid) and the Long Sau3A 

satellite families known, by FISH analysis, to map to the pericentromeric region of chro-
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Fig. 2.4: X-ChlP/Southern blots.
Human HOXA cosm id clones were digested with EcoRI (A ). G els were blotted and hybridised with a -  
hPC2 I-D N A  (B), M ock D N A  (C ) or C o T l-D N A  (D). Restriction fragments representing enriched bands 
are numbered in D (1 to 5; 7 to 9; 12 to 17). Eragments 6, 10, 11 were taken as internal controls. E) 
Quantitative analysis. Hybridization signals from B and C were quantified and plotted with Quantity One 
Quantification Software” (Bio-Rad). Intensity values were normalized to an arbitrary 1 kb fragment after 
the subtraction o f the background. The x-axis represents the restriction fragments analyzed; numbers as in 
D. The y-axis represents the ratio hPC2/M ock after normalization and subtraction o f  the background.
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Fig. 2.5: hPC2 distribution in tbe human HOXA locus.
Small black vertical lines represent EcoRI restriction sites. The cosm id contig is drawn below  the genom ­
ic line. Black rectangles indicate HOXA  genes and o f  the flanking E V X l  gene positions. Numbers below  
the genom ic line identify enriched bands as in Eig. 2 .4  and represent putative binding sites for hPC2. 
Fragments 3 and 4 correspond to the terminal fragments o f  the cos 248G 5 and their relative position was 
not determined.

hPC2

BM Il

TBP

B

D

Mock

E

Fig. 2.6: X-CblP/Southern blots.
D N A  fragments corresponding to Sau3A , EcoRI (alphoid) and Long Sau3A  (Lsau3A ) fam ilies o f  peri­
centromeric repeats were run on an agarose gel (A). G els were blotted and hybridized with a -hP C 2 I-D N A  
(B), a -B M Il I-D N A  (C), a-T B P  I-DN A  (D) and M ock D N A  (E). Quantitative analysis o f  hybridization  
signals for the alphoid monom er is shown (F). Signals were quantified and plotted with Quantity One 
Quantification Software” (B io-Rad) after the subtraction o f the background. The x-axis represents the X- 
ChlP/southern blot analyzed; the y-axis represents the ratio I-D N A s/M ock after subtraction o f  the back­
ground.

mosome 1 (Agresti A 1987; Agresti A., 1989; Meneveri R., 1985). Our results (Fig. 2.6) 

confirmed the association of the PcG proteins to the pericentromeric region of chromo­

some 1. Additionally we clearly demonstrate that these proteins bind preferentially the 

alphoid repeats while no significant interaction was observed with both the SaSuA and 

Long Sau3A families.
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X-ChIP and “genome complexity”.

Repeating the X-ChlP/Southern blot approach with other a-PcGs immunopre­

cipitated DNAs, we always get the same result: the “inner core” of the HOXA cluster 

seems to be devoid of PcGs proteins that vice-versa seem to be bound to flanking regions 

containing REs.

These distributions could represent only partially the in vivo PcGs distribution. 

The analysis of these hybridisation results should be done keeping in mind some aspects 

of the hybridisation kinetics specific for the human genome. When we started our analy­

sis we followed the X-ChlP/Southem blot approach applied for Drosophila cells and 

embryos (Orlando V., 1997). Nevertheless D.melanogaster is an organism having a lower 

“genome complexity” than the human one (the complexity of a genome can be defined 

as the total length of all different sequences present in it) and I-DNA from 

D.melanogaster and H.sapiens genome could have hybridisation kinetics completely dif­

ferent. While “single sequence” DNAs, in the D.melanogaster I-DNA, could hybridise 

their complementary sequence on the filter, this could not be true for human I-DNA. The 

main feature of the human genome responsible of this different behaviour is the fact that 

50% of our genome is made of highly repeated DNA. This DNA will correspond to the 

major fraction in a human I-DNA, while “unique” DNAs will represent the minor por­

tion. This means that a specific “single sequence” DNA present in the human I-DNA 

could be insufficiently labelled and therefore will give an undetectable hybridisation sig­

nal on the filter. Thus, in our X-ChlP/Southem blot experiments we could have detected 

only the PcG binding sites located in regions containing REs. We could have lost the 

binding sites in the inner core of the HOXA cluster, composed exclusively of unique 

sequences. To test this hypothesis, we carried out three different kinds of hybridisations. 

First we used total genomic DNA as probe on the cosmid contig obtaining hybridisation 

signals perfectly identical to the one shown in Fig. 2.4C-D. These experiments confirmed 

that fragments corresponding to “single sequence” DNAs could not be detected even 

using human genomic DNA. We then cloned the entire human HOXA clusters into plas­

mid vectors (summarised in Table 2.3), separating the “unique sequence” clones (corre­

sponding to the H0XA1-H0XA13 region) from clones containing repetitive DNA
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{HOXA surrounding regions). We prepared two different sets of filters using these clones 

and repeated the X-ChlP/Southern hybridisations with I-DNAs against different PcG 

proteins. As shown in Fig. 2.7B-C, I-DNA hybridises mostly with clones containing REs 

but only with three “single sequence” clones. Sequence analysis of these three clones

A) HOXA  plasmid clones:

1)24&7 9)77.4 17) 230.2 25) 1635.11
2) 24&2 10)83.37 18) 230.81 26) 986.41
3) 2^8.776 11)83.24 19)2631 27) 64.34
4) 24&62 12) 7234.7 20) 230.12 28) 3572.31
5) 24&35 13) 248.16 21)230.9 29) 5000.11
6) 24&32 14) 248.101 22) 230.114 30) 11.31
7) 7M9 15) 230.91 23) 64.22 31)4353.21
8) 230.93 16) 230.89 24)6180 32) 83.23

B) X-ChlP/Southern blots: "Repetitive DNA" clones.
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

3 5 7 9 11 1 3  5 7 9 11 1 3  5 7 9 11 1 3 5 7 9 11

MOCK hPC2 BMIl

C) X-ChlF/Southern blots: "Single Sequence DNA" clones.
14 16 18 20  22 24  26 28 30  32 14 16 18 20  22 24 26 28 30  32 14 16 18 20  22 24 26 28 30 32

13 15 17 19 21 23 25 27 29 31 13 15 17 19 21 23 25 27 29 31 13 15 17 19 21 23 25 27 29 31

MOCK hPC2

Fig 2.7: X-ChlP/Southern blots.
Plasm id clones corresponding to the entire HOXA cluster are schem atically shown in (A ) and sum m arized  
in Table 3; clones containing REs are in italics. (B) Plasm id clones containing REs were digested with  
EcoRI, run in agarose gels and blotted. Filters were hybridized with M ock D N A , a-hP C 2 I-D N A  and a -  
B M Il I-DN A. (C) Plasmid clones containing single sequence D N A s were digested with EcoRI, run in 
agarose gels and blotted. Filters were hybridized with M ock D N A , and a-hP C 2 I-D N A . See text for 
details.
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revealed that they contain stretches of low complexity DNA, probably responsible for the 

hybridisation signals. Moreover, we obtained the same hybridisation patterns with 

human genomic DNA.

These results indicate that the X-ChIP/ Southern approach could be useful to 

investigate the binding sites of proteins that associate with repetitive DNAs but could not 

be sensitive enough for the analysis of “single sequence” regions. The distribution of 

protein binding sites in such regions should be performed analysing the I-DNA with 

more sensitive techniques, such as PCR or microarray assay. To investigate this hypoth­

esis, we focused our attention on the HOXA5-HOXA6 intergenic region. The EcoRI frag­

ments spanning this portion of the cluster were never detected in the X-ChlP/Southern 

analysis. This region, arbitrary chosen, was subdivided into fourteen amplifiable PCR 

fragments (Table 2.4). I-DNA with antibodies against different PcG and TrxG proteins 

was utilized as template for PCR reactions (Fig. 2.8). Different primer pairs specifically

A) H O X A S
2*

_ E l p2

T

p3

H 0 X A 5
2* r

p9
p8 p 10

p7 p l l
p4 p6 p 12

p5
pl4

pl3

B) 1 2 3 4 5 6
1) I-DNA a-hPC2

2) I-DNA a -B M Il

3) I-DNA a-M L L l

4) Mock

5) Positive Control

6) Negative Control

Fig. 2.8: X-ChlP/PCRs.
The HOXA5-HOXA6  locus is schem atically represented in (A). Black rectangles and numbers indicate 
coding exons and exon order, respectively. The position o f  amplified fragments ( p i - p i4) are indicated 
below the genom ic line. (B) X-ChlP/PCR  analyses. I-D N A s with antibodies against hPC2, B M Il, M L Ll 
and a M ock control, were am plified follow ing PCR conditions given in Table 2.4. Human genom ic D N A  
and water were amplified as positive and negative controls, respectively.
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amplified only I-DNAs, while no amplifications were detectable in the mock. The dis­

tribution of these binding sites revealed that PcGs and MLLl associate both with regions 

containing HOXA5-HOXA6 exons (primers p3 and p8) and with promoters (primers pl3 

and pl4). Such results clearly show that the X-ChlP/PCR is more sensitive than the X- 

ChlP/Southem blot analysis and allows a more detailed investigation of human I-DNAs. 

Nevertheless, the survey of large genomic regions (such as the HOX cluster loci) would 

require hundreds of primer pairs and could be hardly investigated by this approach. To 

this aim, the X-ChIP should be associated with another sensitive method that allows 

rapid analyses of big genomic loci. Recent publications (Weinmann A.S., 2002) have 

shown that the microarray technology could be coupled to the X-ChIP to investigate the 

genomic distribution of target proteins, an approach called “ChIP to CHIP”. We then 

decided to study the association of PcG and TrxG proteins to the human HOXA cluster 

by means of the “ChIP to CHIP” strategy. We created a microarray containing the entire 

human HOXA cluster, one of the first examples of “locus specific genomic microarray”. 

Taking advantage both of the plasmid clones and the full sequence of the HOXA cluster, 

the entire human HOXA locus was subcloned into 137 PCR fragments (0.5-2.3 kb. Table 

2.5) and the corresponding DNAs were quantified, checked by restriction analysis and at 

the end spotted on a glass slide. The resulting “HOXA genomic microarray” was then 

hybridized with human genomic DNA. Using this approach, the sensitivity of the 

hybridization on the “HOX microarray” is clearly increased: both the “unique 

sequences” clones and the ones containing REs can be efficiently detected even by a 

genomic DNA probe (Fig. 2.9). In the new future, we will hybridize the “HOX microar­

ray” with I-DNAs against different PcG and TrxG proteins, following the scheme shown 

in Fig. 2.9.

PcGs and MLLl distributions in the HOXA locus by X-ChlP/PCRs.

To confirm the PcG proteins distribution in the surrounding regions of the HOXA 

cluster, we decided to utilize the X-ChlP/PCR approach. To this end, the fourteen EcoRI 

fragments containing putative PcG proteins binding sites were divided into amplifiable 

segments (Table 2.6 summarised both primer sequences and PCR conditions). The chro-
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Spotting

I-DNA Mock DNA

reverse 
tran sc rip tio n

label w ith 
fluor dyes

ajV a, Labelling

Hybridization

B)

Fig. 2.9: Chip to CHIP.
(A) The Chip to CHIP approach is schem atically presented.
(B) Total genom ic D N A  was used as a probe on a microarray containing a portion o f  the HOXA  locus. The 
first 12 colum ns spots correspond to unique sequence D N A  fragments, w hile the colum ns 13-24 corre­
spond to D N A  fragments containing REs. Many o f  the unique sequence D N A  were positively hybridized.

matin immunoprécipitation was repeated and the I-DNA used as template for PCR reac­

tions with these sets of primers (Fig 2.10). These X-ChlP/PCR experiments confirmed 

the association between PcG proteins to regions containing REs both upstream and 

downstream the human HOXA cluster (Fig. 2.10). We included in this analysis also the 

protein MLLl, observing a similar distribution between MLLl and the PcG proteins, in 

particular with BMIl (Fig. 2.10).

The in silico analysis of the human sequence, reveals that many different LINE 

and SINE families localize in the flanking regions of the HOXA cluster. A more detailed
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Fig. 2.10: X-Chip/PCRs.

A ) Schem atic organization o f  the HOXA locus. Small black vertical lines represent EcoRI restriction sites; 
black rectangles indicate HOXA and EVX l  genes. Numbers below  the genom ic line identify putative PcG  
binding sites as in Fig. 2.4. The corresponding plasmid clones are drawn below the genom ic line.
B) X -ChlP/PCRs analyses. EcoRI restriction fragments corresponding to putative PcG binding sites were 
subdivided into 60 amplifiable fragments (see Table 6). I-D N A  with antibodies against hPC2, B M Il, 
M L Ll and a M ock control were amplified with this set o f  primers. Human genom ic D N A  and water were 
used as positive and negative controls, respectively. See text for discussion o f  informative results.
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mapping of the REs present in the X-ChlP/PCR amplified fragments indicates that these 

segments contain different LINE and SINE elements, as depicted in Table 2.7. 

Furthermore, some of these binding sites do not contain any REs. Thus we could exclude 

that PcG and TrxG proteins associate preferentially with specific REs subfamilies.

HOX clusters show a peculiar and unique distribution of REs among the human 

genome.

The striking co-localization of the PcGs and trxGs binding sites with the in the 

flanking regions of the HOXA cluster prompted us to define the genomic organization of 

the other three human HOX clusters. In particular, we want to address the question about 

the distribution of REs in the HOXB-D cluster.

The genomic organization of the human HOXB-D clusters was deduced applying 

the same in silico approach described for the human HOXA cluster. Non-Redundant (nr) 

and the Unfinished High Throughput Genomic Sequences (htgs) BLAST databases were 

screened with cDNA sequences from human HOXB-D genes (cDNA accession numbers 

corresponding to the HOXB, HOXC and HOXD genes are listed in Table 2.8, Table 2.9 

and Table 2.10, respectively). In this way we identified several PAC/BAC clones, whose 

sequences were assembled into contigs covering the entire human HOXB-C-D loci. As 

for the human HOXA cluster, Repeatmasker Web Server 

(http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker) was used to identi­

fy and localize all the REs in these genomic sequences. The genomic organization of 

these three loci is shown in Fig. 2.11, Fig. 2.12. Fig. 2.13. This analysis confirmed also 

in the other human HOX clusters the peculiar localization of REs. The intergenic regions 

are devoid of repetitive elements (with some exception discussed below), while they are 

grouped in broad domains upstream and downstream the coding part of the clusters. The 

internal part of each cluster is particularly rich of CpG islands, simple repeats and low 

complexity DNAs.

According to the data provided by the human genome project, around 50% of our 

genome contains repetitive sequences, while the coding sequences comprise less than 

5%. Thus, it is quite surprising that the HOX loci are virtually devoid of REs. The den-
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Fig. 2.11: genomic organisation of the human HOXB cluster.
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in the next page. Black arrows indicate the direction o f  the transcription o f  the corresponding genes. Genes 
presenting different alternative sp lice forms (see Table 8) are indicated with “# ”. Only one (#1 ) alternative 
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sity of different REs families varies a lot among the human genome and it has been pos­

sible to calculate the percentage of REs present in each human isochore (Smit A.F., 

1999). From the output of RepeatMasker we deduce that the percentage of REs in the 

intergenic portions of the human clusters is less than 1-2%. This value is dramatically 

lower than expected 41-42%, based on the GC content of these regions. Conversely, the 

percentage of REs in the flanking regions approaches the expected values. These data 

underline that the absence of REs in the intergenic portions of HOX cluster should have 

some functional meanings and could not be due just to the base composition of the clus­

ters themselves. As controls we have analyzed the genomic organization of other gene 

clusters (such as the beta-globin cluster, the major histocompatibility complex (MHC) 

class I and class II clusters, histone gene cluster) at the UCSC Genome Browser 

(www.genome.ucsc.edu). These clusters show a rather uniform intergenic distribution of 

REs with no large blocks of REs in the flanking portions (Schwartz S., 1991; Shiina 

T. 1999). Thus, the distribution of REs in the four HOX loci seems to be peculiar and spe­

cific, as other gene clusters do not share it. In collaboration with Diego Di Bernardo, we 

investigated how this “RE-distribution” represents a unique situation in the human

genome. We developed a bio-informatic algorithm able to scan the entire human genome
74
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looking for any region containing less than 5 REs and at least 3 transcribed cDNA. 

Surprising this programme identifies only other 6 genomic regions satisfying starting 

parameters (Table 2.11). Nevertheless, none of these regions is as long as the HOX clus­

ters and does not contain as many genes. These data clearly demonstrate that the pecu­

liar REs distribution of the HOX clusters represents also a unique characteristic of these 

loci among the entire human genome.

Alu insertion inside human HOX  clusters was negatively selected.

We hypothesized that the absence of REs was due to negative selective pressure, 

to investigate this hypothesis, we analyzed the Alu sequences distribution in the human 

HOX clusters.

Different Alu subfamilies can be identified on the basis of their putative age, 

A/mTbeing the most recent dispersed subfamily, AluS the intermediate and AluJ the old­

est (Mighell A.J, 1997). Analysis of random sequences from Genbank showed a global 

{AluS + AluY)!AluJ x?iiio =3 (Jurka J., 1988). This value represents a random integration 

of the Alu subfamilies in the absence of any selection and it has been used to analyse the 

accessibility of genomic regions for Alu insertions (Beck S., 1999). Only one AluS ele­

ment was identified in the intergenic regions of both HOXA (between H0XA3 and 

H0XA4, Fig. 2.2) and HOXC (between H0XC12 and H0XC13) clusters (Fig. 2.12). The 

complete absence of “old” AluJ elements and the presence of a “young” Alu mean that 

the insertion of REs may have not been tolerated during HOX cluster evolution. Vice 

versa both the HOXB and HOXD clusters contain Alu elements belonging to different 

subfamilies. As shown in Fig. 2.11 and Fig. 2.13, these A/w elements are mainly grouped 

into specific portions of the clusters, rather than being uniformly distributed. In particu­

lar they are localized in the regions between HOXB13-HOXB9, H0XB2-H0XB1 and 

H0XD3-H0XD1, where the A/m ratio is 1.48, 1.28 and 3, respectively. Except for the lat­

est region, these ratios indicate these regions initially accepted Alu elements but became 

later sensitive to further insertions. In the rest of the HOXB and HOXD clusters, only two 

Alu elements {AluS, AluY) were identified in each of the remaining HOXB9-HOXB2 and 

HOXD13-HOXD3 portions. This scenario is quite similar to the one observed for the
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HOXA and HOXC clusters, suggesting again that the Alu insertion was negatively select­

ed. As controls we have analyzed the human beta-globin and MHC classll clusters. Beta- 

globin shows a very high ratio (AluS + AluY)!AluJ = 7) and seems to have tolerated Alu 

insertion during evolution. On the other hand, MHCII has a 1.42 ratio, perhaps initially 

tolerating Alu sequences and later becoming refractory to further insertions (Beck S.,

1999).

We have further completed the Alu insertion analysis of HOXA, HOXC and 

HOXD clusters, spanning 60-70 kb of upstream and/or downstream regions. Regions 

with REs surrounding upstream and downstream the HOXA cluster show a ratio of 2.70 

and 2.95 respectively, which is comparable to the expected value. A similar situation was 

observed for the upstream region of the HOXD cluster, where the ratio value was 2.2. 

Conversely, the ratio obtained for the HOXC flanking region was much lower (=1.5). 

This could indicate that, at least for HOXC, some negative selection prevented further 

insertions of Alu subfamilies in the upstream flanking region.

Exceptions to the rule and gene regulation.

As already underlined in the previous paragraph, we noticed some exceptions 

featuring the presence of REs in intergenic regions. In the human HOXB cluster (Fig. 

2.11), HOXB 13 is separated from the previous paralog gene by more than 100 kb made 

uniquely of repetitive DNA and a pseudogene of ribosomal protein L9 (Fig. 2.11). Other 

REs were identified between the HOXBl and H0XB2 genes. The same situation was 

detected in the HOXD clusters, in the region separating HOXDl and H0XD3 (Fig. 2.13). 

Moreover, in the HOXA cluster a region containing REs separates EVXl from H0XA13 

(Fig. 2.2) whereas its paralog EVX2 in the HOXD cluster remains linked to the HOXDl3 

gene (Fig. 2.13). Notably, the four mouse Hox loci present the same genomic organiza­

tion.

Strikingly, all these exceptions correspond to cases in which the gene placed next 

to the REs presents specific expression profiles, unshared with neighbouring Hox genes 

(see discussion).
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Comparison between human and mouse clusters.

The precise and co-ordinate expression of Hox genes requires an intricate net of 

cis-regulatory elements. A way to identify regulatory elements, conserved during evolu­

tion, is to compare genomic DNA from orthologous loci (Hardison R.C., 1997). For this 

reason we deduced from the public databases the sequences corresponding to the four 

mouse Hox clusters. All mouse Hox clusters show the same genomic organization as the 

human ones, confirming the striking distribution of the REs. Fig. 2.14 - Fig. 2.17 repre­

sent the genomic maps of the mouse HoxA-D clusters. The accessions numbers of cDNA 

sequences used for HoxA-D genes mapping are listed from Table 2.12 to Table 2.15, 

respectively.

Using PipMaker, the sequences from human and mouse were compared. As con­

trol, we performed the same analysis using human and mouse beta-globin loci (acces­

sion numbers: human U01317.1, mouse X14061). As summarized in Fig. 2.18, this 

approach revealed a strikingly high sequence identity in the Hox clusters maintained 

between the orthologous loci both in coding and intergenic regions (Fig. 2.18A-D). 

Cluster segments with the highest identities (more than 80-90%) correspond both to 

exons and to several other intergenic fragments, particularly CpG islands. Vice-versa 

when the sequences of two paralogous HOX loci were compared (both in human and 

mouse), no sequence similarities were identified except for the genomic portions coding 

for homeodomains (Fig. 2.19A). In beta-globin loci high identity values are restricted to 

coding regions (Fig. 2.19B; Bulger M., 1999). This high sequence similarity between 

human and mouse Hox loci didn’t help us in identifying putative cis regulatory elements. 

On the other hand, this approach revealed that all human and mouse Hox clusters pres­

ent the same genomic organization with the REs confined in regions surrounding Hox 

clusters. This seems to be a new major common characteristic shared by all Hox clusters, 

in addition to the spatial and temporal colinearity.
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Fig. 2.17: genomic organisation of the mouse HoxD cluster.
Repetitive elem ents, genes and CpG islands are represented by different sym bols and colours as 
described in the next page. Black arrows indicate the direction o f  the transcription o f  the corresponding  
genes. Human H 0 X D 8  gene was used to map the position o f  m ouse HoxdS. Com parisons o f  nucleotide  
sequence between m ouse HoxD  and human HOXD  clusters are shown in rectangles below  the genom ic  
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Non-coding intergenic transcripts coordinate Hox gene expression.

More than fifteen years ago non-coding RNAs were identified in the BX-C of the 

D.melanogaster (Lipshitz H.D., 1987); recently others intergenic transcripts have been 

extensively characterized (Bae E., 2002; Drewell R.A.; 2002; Rank G., 2003). These 

RNAs result from the transcription of large portions of regulative regions controlling 

Hox gene expressions. Interestingly, BX-C intergenic transcription precedes the tran­

scription of the neighbouring Hox gene and seems to be necessary for appropriate Hox 

expression. As for Hox genes in the BX-C, the expression of these non-coding RNAs is 

also regulated according to their relative position along the cluster. Namely, both the cod­

ing and non-coding transcripts located at the 3’ end of the cluster are transcribed before 

and in more anterior embryonic territories than their 5’ counterparts. These observations 

lead to the hypothesis that the transcription of the intergenic regions may play an essen­

tial role in coordinating Hox genes expression. Moreover, non-coding RNAs appear to 

be implicated in several unexpected aspects of chromatin reprogramming and control of 

gene expression (i.e., X chromosome inactivation, dosage compensation, co-suppression 

and position effect variegation), suggesting that non-coding transcription may under­

score the position of “non canonical” regulatory cis elements. Thus, we performed a sys­

tematic search for this kind of transcripts firstly inside the four human HOX clusters.

AntiHunter: searching BLASTN output for EST antisense (AS) transcripts.

The genomic sequences corresponding to the four human HOX loci represented 

the starting point for the identification of intergenic RNAs by a bionformatic approach. 

To this aim, in collaboration with Giovanni Lavorgna, I developed the “AntiHunter” soft­

ware tool (available at http://bio.ifom.firc.it/ANTIHUNTER, Lavorgna G., 2003) capa­

ble of identify in-silico potential AS EST transcripts within a given genomic region of 

interest from BLASTN output.

AntiHunter takes as input a genomic sequence and a list of annotated transcripts 

of the genomic region. This list includes transcript names, their beginning and ending 

positions plus their strand occurrence. Then, it will perform the following tasks:

1) Run the RepeatMasker (http://repeatmasker.genome.washington.edu/cgi-
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bin/RepeatMasker) program on the genomic sequence in order to filter out repeated 

sequences.

2) Perform a BLASTN search of the resulting sequence vs. the EST database.

3) Scan the BLASTN output looking for AS EST respect to the annotated genes.

4) Report the results to the user by Email.

The program gains independent information on EST strand source by looking (i) 

at the splice junctions of the genomic region matching a spliced EST and (ii) to the pres­

ence of a Poly A tail in “3”’ annotated ESTs. Only EST showing at least one of these 

independent evidences for strand source are further considered for potential sense-anti- 

sense pairing. Moreover, since Gligo(dT)-priming can also take place on internal PolyA 

stretches within an unspliced transcript, the algorithm identifies such genomic PolyA 

stretches and disregards the relative PolyA information obtained from the EST sequence. 

AntiHunter can be used, in principle, to analyze genomic regions from any species for 

which there are EST and genomic data available. Moreover, it was also able to identify, 

despite the fact that it was using as query a human sequence, the presence of EST anti­

sense transcripts from other species than human, unravelling the possible evolutionary 

conservation of the phenomenon. Also, AntiHunter can tolerate a variable number of 

bases between an annotated gene and an antisense transcript. This can be useful in 

detecting AS transcripts to genes with only partially characterized 5’ and/or 3’ ends. It 

can also facilitate the detection of transcribed gene regulatory regions that originate from 

intergenic regions and that contribute to regulation of their neighbour genes. The accu­

racy of AntiHunter was tested using genes that possess AS transcripts and many exam­

ples can be found at the web page: http://bio.ifom.firc.it/ANTIHUNTER.

Tfz silico” identification of intergenic “Opposite Strand” (OS) RNAs in human 

HOX  clusters.

As all human HOX genes are transcribed on the same strand (“sense strand”), we 

used “AntiHunter” to identify intergenic OS-ESTs transcribed from the opposite DNA 

strand (“antisense strand”). Indeed we found this kind of transcripts inside the four 

human HOX clusters. Their mapping revealed an overlap between some AS-ESTs with
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HOX sense transcripts, as well as an intergenic localization, with no overlap with the 

HOX genes, for other AS-ESTs. As the latter transcripts cannot be formally considered 

as “true” antisenses, we decided to refer generically to all the identified ESTs as 

“Opposite Strand (OS) ESTs”.

All the spliced intergenic OS-EST clones identified in the human HOX cluster 

loci are schematically grouped in Tables 2.16-2.19. We decided to focus our analysis 

only on the spliced OS-ESTs because the sequences corresponding to the acceptor and 

donor splicing sites are highly conserved (99.24% of introns have GT-AG at their 5’-3’ 

ends, respectively) and can be used to confirm the DNA strand that has been transcribed. 

Those spliced OS-EST clones that do not follow the GT-AG rule, probably result from 

misleading annotations of the EST sequences and were not further investigated. As 

shown in Tables 2.16-2.19, “opposite-strand” transcripts derived from many different tis­

sues (both normal and malignant), from adult and foetal samples and from different cell 

lines. Thus their expression is not confined to particular tissues or specific developmen­

tal stages. OS-ESTs mapping in the human HOX loci, revealed that some of them pres­

ent very large introns. In the HOXB cluster, for example, in the OS-ESTs AI685673 and 

AI 125255 there are introns bigger than 13 or 50 kb, respectively. In the human HOXA 

cluster, we identified a spliced OS transcript having an intron larger than 25 kb (see 

below).

We look for the presence of ORFs in OS-ESTs belonging to the human HOXA 

cluster. The vast majority of these OS-ESTs contain only very small ORFs (14-80 

aminoacids). In some other cases, computational analysis using gene prediction methods 

identified hypothetical proteins with no similarity to any known protein (i.e. OS-EST 

AK022839, hypothetical protein XP_168220; OS-EST BC035889, hypothetical protein 

XP_212093; OS-EST AK091933, hypothetical protein XP_212080). Therefore we con­

cluded that these OS-ESTs most probably represent non-coding transcripts. 

Nevertheless, we should keep in mind that these ESTs could correspond to fragments of 

cDNAs and could not represent full-length transcripts. Thus, the complete ORFs analy­

sis should be repeated with full-length cDNAs.
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“7/z vivo” identification of intergenic OS RNAs inside the HOXA cluster.

Moving from the “in silico” to the “in vivo” approach, the existence of OS tran­

scripts was investigated in different human tissues. The analysis was done in the HOXA 

cluster by RT-PCR using both foetal and adult tissue samples. Table 2.20 presents the 

primer pairs used to amplify both HOXA genes and OS-EST transcripts. These OS-ESTs 

are distributed along the entire HOXA cluster and localized between H0XA1-A2 (OS- 

ESTs: BG325728, AA489505); between HOXA3-A4 (OS-ESTs: BI823151, 

BE8733499); between HOXA6-A7 (OS-EST: BF510786); between H0XA11-A13 (OS- 

EST: BE305073). First of all, specific “single strand RT-PCRs” were performed to prove 

that OS-ESTs derive from the transcription of the “antisense strand”. We confirmed the 

strand specificity of all OS-ESTs investigated. Then, RT-PCRs were repeated with 

cDNAs from seven adult and seven foetal human tissues. These cDNAs were obtained 

from total RNAs of different tissues retrotranscribed with an oligo(dT). As shown in Fig. 

2.20 and Fig 2.21, the vast majority of OS-ESTs transcripts were detectable in many dif­

ferent tissues. One striking feature is represented by the expression of OS-ESTs that 

seems to correlate with the expression of the neighbour HOX genes. Due to this charac­

teristic, it seems more likely that OS-ESTs transcription plays a role in promoting or sus­

taining HOX gene expression, rather than counteracting it.

Analysing the AntiHunter output, we realised that different OS-ESTs could cor­

respond to alternative spliced forms of the same transcripts. In particular, we focus our 

attention in the region between HOXAl and H0XA2. We investigated the existence of 

these alternative splice OS transcripts by mean of RT-PCRs, both in adult and foetal 

human tissues. Using a specific primer pair, we identified four different PCR products 

(Fig. 2.22). These amplified fragments were cloned and their sequences confirmed that 

they are alternative spliced OS transcripts belonging to this intergenic region. All these 

antisenses are correctly spliced, none of them present a significative ORF. Interestingly, 

this analysis revealed that some of these alternative forms are tissue specific, especially 

in foetal samples (Fig. 2.22).

We then started the characterization of long intergenic OS transcripts in the 

HOXA cluster (Fig. 2.23). Although not predicted by AntiHunter, we supposed that dif-
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Fig. 2.20: Adult tissues RT-PCRs.

The figure is continued in the next page.
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Fig. 2.20: Adult tissues RT-PCRs.

Intergenic regions o f  the HOXA  locus are schem atically shown (A -D ). Kilobase markings refer to our 
genom ic contig. Black rectangles correspond to coding exons w hile gray rectangles correspond to 5 ’ and 
3 ’ UTR HOXA  regions. Long black arrows indicate the transcriptional orientation o f  HOXA  genes; long  
white arrows indicate both exon positions and transcriptional orientation o f  OS-ESTs; short black arrows 
specify position and orientation o f  primer pairs used for OS-EST RT-PCRs. RT-PCRs for both HOXA  
genes and O S-ESTs are shown below  the genom ic maps (A -D ); RT-PCR normalization with a house­
keeping gene is shown in (E). Tissues are indicated above the RT-PCR im agines. See Table 2 .20  for PCR  
details.
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The figure is continued in the next page.
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Fig. 2.21: Foetal tissues RT-PCRs.

Intergenic régions o f  the HOXA  locus are schem atically shown (A -C ). Kilobase markings refer to our 
genom ic contig. Black rectangles correspond to coding exons w hile gray rectangles correspond to 5 ’ and 
3 ’ UTR HOXA  regions. Long black arrows indicate the transcriptional orientation o f  HOXA  genes; long  
white arrows indicate both exon positions and transcriptional orientation o f  OS-ESTs; short black arrows 
specify position and orientation o f  primer pairs used for OS-EST RT-PCRs.
RT-PCRs for both HOXA  genes and OS-ESTs are shown below  the genom ic maps (A -C ); RT-PCR nor­
malization with a housekeeping gene is shown in (D). Tissues are indicated above the RT-PCR im agines. 
See Table 2 .20  for PCR details.
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Fig. 2.22: OS-EST alternative spliced forms.
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refer to our genom ic contig. Black rectangles correspond to HOXA  exons. Thin black arrows indicate the 
transcriptional orientation o f  HOXA  genes; long black arrows indicate both exon positions and transcrip­
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indicated on the left. Am plification patters obtain with human fetal and adult tissues are shown in the 
lower part o f  the figure.
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Fig. 2.23: long intergenic OS transcripts.
A ) Long intergenic OS transcripts detected with B G 325728.U  and B I823151.L  primers (see Table 2 .20  
for PCR details). K ilobase markings refer to our genom ic contig. Black rectangle corresponds to HOXA  
first exon. Long black arrows indicate both exon positions and transcriptional orientation o f  alternatively 
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(in bp) are indicated on the left. A m plification patters obtain with human adult and fetal tissues are 
shown in the lower part o f  the figure.
B) Long intergenic OS transcripts detected with B C 325728.U  and B E873349.L  primers (see Table 2 .20  
for PCR details). K ilobase markings refer to our genom ic contig. Black rectangle corresponds to HOXA  
first exon. Long black arrows indicate both exon positions and transcriptional orientation o f  OS tran­
scripts. Short gray arrows schem atically represent PCR primers. RT-PCR product lengths (in bp) are 
indicated on the left. A m plification patters obtain with human adult and fetal tissues are shown in the 
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ferent OS-EST could be part of the same transcript and analysed their existence by RT- 

PCRs. In this way we were able to identify three different long intergenic OS transcripts 

(Fig. 2.23). From their sequence analyses, we confirmed that these transcripts map in the 

HOXA cluster and are correctly spliced. We identified alternative spliced and tissue spe­

cific forms also in this kind of transcripts.

Intergenic OS RNAs are transcribed before HOX genes.

The intergenic non-coding RNAs in the D.melanogatser present two major fea­

tures. In early embryos, they are expressed before and in the same territories as the flank­

ing sense genes. Our characterisation clearly demonstrated that the expression of both 

intergenic OS- FSTs and HOXA genes takes place in the same tissues. To investigate the 

expression timing of these OS transcripts, we used the NT2 cell line. This teratocarcino- 

ma cell line has been extensively used to study the collinear expression profile of the

A) Fig. 2.24: HOXA expres­
sion patterns in NT2 cell 
line treated with RA.
A ) Profiles o f  HOXA  gene  
expression in N T2 cell line 
treated with R A  as published in 
the PRO HOX database 
(http://ww w.evol.nw.ru/labs/lab3  
8/spirov/hox_pro/hox-proOO). 
HOXA  gene colors are as in B).
B) HOXA  RT-PCR am plifica­
tions. N T2 cells were treated

with RA ( 10"^ M ) for 24, 48,
96 hours. Total R N A  was retro- 
trancribed with O ligo(T ) and 
am plified with specific HOXA  
primers as described in Table 
2.20. There is a good correlation  
betw een these HOXA  expression  
profiles (A ) and the expected  
ones (B).
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HOX genes after treatment with retinoic acid (RA, Fig. 2.24 and Mavilio F., 1993). The 

RA adbministration induces the expression of HOX genes from the 3’ to the 5’ regions 

of the cluster (in the HOXA cluster, H0XA7 is generally the most 5’ gene activated with 

RA). Thus we decide to repeat the RA treatment analysing, by RT-PCR, the expression 

of both of HOXA genes and OS-FSTs. We choose different OS-FST transcripts distrib-
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uted along the entire HOXA cluster and localized between H0XA1-A2, between H0XA3- 

A4, between HOXA6-A7, between H0XA11-A13. Total RNA was extracted from NT2 

cells after 0, 1,2, 4, days of RA treatment and retrotranscribed with an oligo dT. Our 

analysis revealed that OS ESTs are transcribed contemporary (OS EST BG325728; OS 

EST AA489505; OS EST B1823151) or even before (OS EST BE873349; OS EST 

BF510786) the corresponding HOX senses (Fig. 2.25). Interestingly, also the OS-EST 

expression follows the spatial and the temporal colinearity, the most 3’ OS-ESTs being 

transcribed before the 5’ ones. Looking at the 5’ regions of the HOXA cluster, neither 

HOXAll nor the OS transcripts localized between H0XA11-A13 were expressed after 

RA treatment.

‘In  silico^  ̂identification of intergenic OS RNAs in “dispersed” homeotic loci.

As discussed in the introduction, the homeotic genes can be divided into two big 

Superclasses: the Complex and the Dispersed Superclass. The Complex Superclass is 

made of those homeobox genes that are organized into gene clusters, while the Dispersed 

one groups all the homeobox gene classes that are dispersed throughout the genome. By 

mean of AntiHunter, we were able to identify intergenic non-coding OS-ESTs in both 

human and mouse Hox loci belonging to the Complex Superclass. We then used both 

AntiHunter and the Santa Cruz Genome Browser (UCSC Genome Bionformatics: 

http://genome.ucsc.edu) to verify the existence of these kinds of OS transcripts also in 

human and mouse loci containing the “dispersed” homeobox genes.

As starting point for this in silico analysis, we used a phylogenetic tree recently 

published (Banerjee-Basu S., 2001) containing 91 homeobox genes belonging to the 

Dispersed Superclass. Other four known homeobox genes were added to this set, for a 

total of 95 dispersed loci. Using this approach we found OS-EST transcripts in the cor­

responding loci both in human and mouse. In particular we identified OS-ESTs in 34 

human and 38 mouse dispersed loci (Fig. 2.26; Tables 2.21 and 2.22). Interestingly, both 

human and mouse show a common organization of OS-ESTs in 19 orthologous dis­

persed loci (Fig. 2.26). As for the HOX clusters, 1 focused my research only on correct­

ly spliced OS-ESTs (Table 2.21 and Table 2.22). 1 also look for the presence of the com-
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Fig. 2.25: Expression timing of both HOXA genes and OS transcripts in NT2 cells 
treated with RA.

Intergenic regions o f  the HOXA  locus are schem atically shown (A -C ). K ilobase markings refer to our 
genom ic contig. Black rectangles correspond to coding exons w hile gray rectangles correspond to 5 ’ and 
3 ’ UTR HOXA  regions. Long black arrows indicate the transcriptional orientation o f HOXA  genes; long 
white arrows indicate both exon positions and transcriptional orientation o f  OS-ESTs; short black arrows 
specify position and orientation o f  primer pairs used for OS-EST RT-PCRs. (A -C ) RT-PCRs for both 
HOXA  genes and O S-ESTs after RA treatment are shown below the genom ic maps. Total R N A  from NT2  
cells, treated with RA for 0, 24, 48 and 96 hours, was retrotranscribed with o ligo(T ).cD N A s were am pli­
fied with primer pairs specific (see Table 2 .20) for HOXA  genes and OS-EST. RT-PCR norm alization with 
the housekeeping gene Mic-2  is shown in (C).
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Fig. 2.26: Identification of OS transcripts in dispersed homeobox loci.
Human (yellow ) and m ouse (blue) dispersed hom eobox loci presenting O S-ESTs. Loci characterized by 
the presence o f  OS transcripts in both species (green) are listed in the central part o f  the figure.

mon polyadenylation signal (AATAAA) in the OS-ESTs sequences that, indeed, was 

identified at the 3’ end of many OS-ESTs (Table 2.21 and Table 2.22).

Keeping in mind that the in silico identified OS-ESTs could correspond to frag­

ments of the full-length transcript, we analysed in detail the distribution of OS transcripts 

in the positive loci. In nearly all cases (97% in human and 71% in mouse), the dispersed 

loci present OS transcripts in the 5’ regions of dispersed homeobox genes. The distance 

between the first exon of the OS-EST transcript and the homeobox gene can vary. The 

EMX2 and the TGIFl loci (Table 2.21) represent two opposite situations. The first exon
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of EMX2 overlaps with the first exon of an OS-EST transcript (AY 117413; Noonan EC., 

2003), while the first exon of TGIEl is more than 10 kb away from the in silico mapped 

first exon of the OS-EST BG490809. Also the relative position between the first exon of 

OS EST transcripts and the homeobox gene can be different. There are five human 

{EMX2, PAX3, HNEIA, PITXl, IPEl) and eight mouse {Hnfla, TcfS, Pax6, Pitxl, Ipfl, 

Dlx4, Evxl, Rax) loci where the first exon of OS transcripts maps in intronic regions of 

the homeobox genes, while the other(s) exon(s) map in the 5’ upstream regions. Other 

OS ESTs map completely in intronic regions {ME0X2 locus in human; Pbx3, Pw xl, 

Lhx2, Pmxl, Cutll, Meisl, Meis2, Meoxl in mouse). OS EST transcripts having their 

first exons in the 3’ regions of the dispersed homeobox genes represent the last situation 

(POU2E2, P0U4E1 in human; Hnfla, Tlxl, Poulfl, Dlxl, M sxl, Nkx6.2 in mouse). 

Among them, in human P0U4F1, POU4F3, DLX6 and TCL3 loci and mouse Dlx6, 

Dlxl, Nkx2.2 loci, there are OS-ESTs that “surround” completely the homeobox gene 

having the first exon in its 3’ region and the other exons in the 5’ upstream region of the 

homeobox gene. The human TLXl locus is used to exemplify many of these different 

OS transcripts (Fig 2.27). Thus, as revealed by this in silico analysis, the presence of OS 

transcripts seems to be a common characteristic also for the homeobox genes belonging
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B C 0 1 » (7 4  ■ ------------------------------------------------------------------------------------------------------- 1---------1
V I 1 6 0 8  I  V I 161 6 H  V I 1 6 0 9  I  M 62626 g ------ 1-------*
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Fig. 2. 27: OS transcripts in the human TLXl locus.

Different kinds o f  O S-ESTs characterize the TLX I locus, as deduced from the UCSC G enom e Browser. 
The TLXl  gene (in blue) maps at chrom osom e 10q24.31. Red ESTs: OS spliced transcripts that map com ­
pletely in the 5 ’ region o f  the TLXl  gene. Orange EST: OS spliced transcript having the first exon in the 
3 ’ region and the second exon in the 5 ’ region o f  TLXL  Brown EST: OS spliced transcript having the first 
exon in the 3 ’ region and the second exon in the intronic region o f  TLXL  B lack ESTs: sense transcripts. 
Arrows indicate transcriptional orientations o f  EST clones. CpG islands are shown in green. B ase p osi­
tions o f the TLXl locus refer to the UCSC Genom e Contig.
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to the Dispersed Superclass.

We decided to further investigate the genomic organization of those 19 pairs of 

orthologous loci (Fig. 2.26) presenting OS-ESTs both in human and mouse. These loci 

can be extremely useful in order to define common features of the OS transcripts. The 

mapping of OS-ESTs and homeobox genes revealed that 16 pairs of human/mouse loci 

present OS transcripts in similar positions; we will use the term “related” for these OS- 

ESTs. For example, related OS-ESTs have been mapped at the 5’ regions of both human 

and mouse OTX2/Otx2 loci. Using BLAST (http://www.ncbi.nlm.nih.gov/blast/) we then 

looked for sequence similarities between related OS-ESTs. Surprisingly, no significant 

similarities were found between OS-ESTs that map in similar position in orthologous 

loci. Even if the sequences analysed could represent partial portions of the full-length OS 

transcripts, this scenario strongly suggests that OS-ESTs correspond to non-coding tran­

scripts. A virtual translation of related OS-ESTs confirmed the absence of significative 

ORFs.

Recently, the presence of OS-ESTs in a dispersed locus has been described in 

vivo. Indeed OS transcripts have been identified in the 5’ upstream region of 

Emx2/EMX2 loci (Noonan F.C., 2003). The mouse transcript, named Emx2os for ''Emx2 

opposite strand", presents four alternative transcripts that overlap with their 5’ ends the 

Emx2 5’UTR by 271 nucleotides. Also the human EMX20S presents at least two alter­

native spliced forms, EMX20S_vl and EMX20S_v2. Only EM X20S_vI overlaps with 

the 5’UTR end of EMX2, while the 5’ end of EMX20S_v2 is localized in the first intron 

of the EMX2 gene. As for many other related OS-ESTs, EMX20S and Emx2os show no 

detectable homology other than those regions that overlap the EMX2/Emx2 transcripts. 

Virtually translated, both these transcripts present several ORFs but none of the predict­

ed peptides are conserved between the two species nor they share similarity with proteins 

in the databases. The overall picture described in vivo for the EMX2/Emx2 loci resem­

bles the transcriptional map deduced by our in silico approach for many other dispersed 

loci. In particular, the localization of divergent transcripts in the 5’ regions of different 

dispersed homeotic loci, underlines the possibility that these loci are characterized by the 

presence of bi-directional transcripts. A recent study revealed that a common feature of
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bi-directional genes is the presence of a CpG island that overlaps with the first exon of 

both genes (Adachi N., 2002). Interestingly, the analysis of both EMX2/Emx2 loci 

revealed the presence of such a CpG island (Table 2.21 and Table 2.22) and the in vivo 

mapping of the 5’ end of both sense and OS transcripts showed that some OS-ESTs could 

originate from this common region. Additionally, using the program “First Exon Finder” 

(http://rulai.cshl.org/tools/FirstEF/) I predicted the presence of two overlapping and 

divergent promoters in this common CpG island driving, respectively, OS and sense tran­

scription. I decided then to look for the presence of such “common” CpG islands in the 

dispersed homeobox genes. In particular I focus my attention at those loci where the first 

exon of the OS-EST map in close proximity (less than 3 kb) with the first exon of the 

homeobox gene. Even if we cannot exclude the presence of others 5’ exons in the OS 

transcripts, this approach revealed that 11 (HLXB9, ISLl, LBXl, PAX3, TCF2IHNF1B, 

TCF8, EMX2, LIMHLHX1, LMXIB, TlTFl, POU3F3) human and 9 {Emx2, Liml/Lhxl, 

Lmxlb, Pou3f3, Evxl, Gbx2, Hmxl, Tlx3, Lhx5) mouse dispersed loci present a CpG 

island overlapping the putative first exon of both OS and homeobox gene transcripts 

(Table 2.21 and Table 2.22). In many of these regions “First Exon Finder” predicted the 

existence of divergent promoters, suggesting that some dispersed homeobox loci could 

be characterized by the presence of bi-directional, CpG-related, promoters. On the other 

hand, the mapping of OS-ESTs in intronic and 3’ regions of the homeobox genes implies 

that other OS transcripts could also originate from different CpG islands and promoters.
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Chapter III: 
DISCUSSION
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Large blocks of Repetitive Elements (REs) could contribute to regulation of Hox 

loci by promoting high order chromatin domains.

According to the data provided by the human genome project, only 2-5% of our 

genome encodes for exons, with the remainder corresponding predominantly to inter­

genic regions and introns. Interspersed REs occupy up to 50% (or even more) of our 

genome while the other half is made of “unique” DNA. Since their identification, REs 

functions were the subject of a heated and controversial debate. Many researchers con­

sider these elements as unnecessary and compare them to parasites, selfish DNAs 

exploiting eukaryotic genomes (Hickey D.A., 1982), while, many other biologists look 

at them as genomic symbionts that could interact with the surrounding genomic envi­

ronments thus increasing the host genome plasticity and its capacity to evolve (for a 

review: Deininger RL., 2002).

REs could have had a main role in genome evolution by promoting chromosome 

reshuffling through unequal homologous recombination. Due to their sequence similar­

ity, REs enable pairing and exchange between unrelated fragments of chromatin, leading 

to deletions, duplications and inversion (Hughes J., 2001). Additionally, as different type 

of transposons carry promoter and enhancer motifs, they could even influence directly 

host “native” genes by interfering with or modifying their expression profiles (Brosius 

J., 1999a). An updated list of vertebrate regulatory elements and genes (or single exons) 

generated by retrosequences can be found at http://www-ifi.uni-muenster.de/exapted-ret- 

rogenes/tables.html (Brosius J., 1999b).

REs have been also identified as the genetic elements responsible for the onset of 

many genetic diseases. Many studies suggest that repetitive DNAs contribute to diseases 

through insertional mutagenesis associated with retrotransposition or through recombi­

nation processes involving unequal crossing-overs (Kazazian H.H. Jr, 1998; Kidwell 

M.G., 2001). Consequently, it has been proposed that organisms should have developed 

a “genome defense” mechanism in order to counteract the spreading of transposons and 

to suppress recombination between REs (Henikoff S., 2000). As the silencing of many 

duplicated or repetitive sequences, as well as of many viruses and transposons, was 

linked to DNA méthylation, it was proposed that the host-defense system would involve
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heterochromatin formation at these loci (reviewed by Yoder J.A., 1997; Henikoff S., 

2000). Since then, further evidence suggested that REs could be embedded in a chro­

matin structure characterized by those epigenetic modifications typical of the silent het­

erochromatin (Kondo Y, 2003). Moreover, in a recent paper (Schramke V., 2003) trans­

posons have been shown to directly drive the heterochromatinization process of a yeast 

locus and by that gene silencing in cis. These findings suggest that during host evolution 

the heterochromatin assembling at REs might have evolved also as an epigenetic mech­

anism controlling gene expression.

We then decided to include in our investigation the distribution of REs in the 

mouse and human Hox loci, considering them as potential “epigenetic elements” play­

ing a role in Hox gene regulation. Interestingly, our bioinformatic analysis has revealed 

a distinctive distribution of REs in the Hox loci, namely the presence of large blocks (up 

to 100 kb) of SlNEs, LlNEs and other types of repeats in the regions surrounding the 

clusters, while “the core” of mouse and human clusters (with some exceptions discussed 

below) are devoid of REs. In agreement with a previous model designed to explain both 

“spatial” and “temporal” colinearity of mouse Hox genes (Kondo T., 1998; Kondo T., 

1999), we hypothesize that these blocks of REs flanking the Hox clusters might repre­

sent nucléation centers for the assembly of a heterochromatin-like structure that, by 

spreading in cis, is responsible for Hox clusters silencing. This model, called “higher- 

order regulatory mechanism” (Fig. 3.1), is based on many transgenic analyses (Kondo T, 

1998; Kondo T., 1999) and suggests a multi-step mechanism for the activation of Hox 

genes.

The model foresees that early in development, the entire cluster would be in a 

transcriptionally inactive configuration and all Hox genes would be repressed as the 

result of a closed chromatin conformation. Starting from the 3’ end of each cluster, Hox 

genes and their cw-acting elements are sequentially released from this “heterochromatin­

like” environment, becoming accessible to transcriptional activating factors (Kondo T., 

1999; Kmita M., 2000). Based on their unique distribution at the Hox loci, we suggest 

that the REs could play a fundamental role in Hox gene silencing by their ability to 

nucleate heterochromatin structures.
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= Trans-activating fac to rs 

O O O O  = H eteroch rom atic  p ro te in s

(2 )  (2 )  (2 )  = C /s-regulatory e lem en ts

Fig. 3.1; Hox genes colinearity: the “high order” chromatin model.
The m olecular mechanism driving collinear activation o f  three H ox  genes (white, gray and black rectan­
gles) derive from the gradual accessibility o f  genes to the transcription machinery. Early in developm ent, 
the entire cluster is embedded in a heterochrom atin-like structure (i) and H ox  genes are silenced . Starting 
from the 3 ’ end, a progressive rem odeling o f  the chromatin fiber (ii-iv) allow s the interaction betw een  
fra//5-activating factors (colored ovals) and c/^-regulatory elem ents (colored hexagons). T hese elem ents  
could be both gene-specific (green hexagon) or shared am ong different Hox  genes (blue hexagon). Trans- 
activating com plexes then could recruit the transcriptional machinery promoting the proper gene expres­
sion (green arrows).
Moreover, when this “w ave” has passed through the entire cluster, also D N A  elem ents located outside (i.e.: 
global enhancer; pink hexagonal) could play a role in the activation o f  H ox  genes expression, as for the 
vertebrate limb developm ent (Kmita M ., 2002).
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Polycomb and trithorax proteins associate with REs at the HOXA locus.

As discussed in the first chapter, Polycomb and trithorax protein families regu­

late epigenetically Hox genes expression. In D.melanogaster, in order to exert this func­

tion, PcG and trxG proteins bind both particular cis regulatory elements (the so called 

PREs/TREs/CMMs), as well as core promoters (Breiling A., 2001). Although a recent 

bioinformatic approach has shown that in flies these binding sites share similar sequence 

motifs (Ringrose L., 2003), in mammals no PREs have been identified yet. The only 

characterized binding sites for human and mouse PcG/trxG proteins were the Hoxc8 

(Milne T., 2002) and H0XA9 (Nakamura T., 2002) promoters, in addition to pericen- 

tromeric heterochromatin (Saurin J., 1998).

In agreement with the hypothesized role of REs as epigenetic elements involved 

in Hox gene silencing, X-ChIP experiments revealed that PcG and trxG proteins bind to 

regions surrounding the HOXA clusters and that contain repetitive DNAs (Fig 2.10). The 

comparative analyses of the sequences of X-ChlP/PCR amplified fragments revealed 

that these segments contain REs belonging to different families (as summarized in Table 

2.7), thus we exclude a sequence-specific binding of PcG and TrxG proteins to REs. Vice 

versa, we suggest that this association could reflect the organization of a heterochromatin 

structure in correspondence of REs and its subsequent spread in cis. In agreement with 

this hypothesis, at both ends of the HOXA cluster the distribution of PcG/trxG proteins 

co-map with silenced HOXA genes. Indeed, PcG/trxG proteins have been localized both 

downstream HOXAl and in the intergenic region between HOXA3-A4, thus surrounding 

the HOXAl-A4 genes that are all silenced in HeLa cells. A similar situation was found 

also in correspondence of the repressed HOXAl3 gene.

PcG/trxG proteins could map at both active and repressed regions.

We have presented the Polycomb and the trithorax groups as antagonistic protein 

families that regulate the expression of Hox genes in an opposite way. The Pc and trx 

families are responsible for the maintenance of a repressed and activated state of Hox 

gene expression, respectively. Thus, our X-ChIP mapping of the PcG and trxG proteins 

revealed an apparent contradiction: the MLLl protein (a trxG member) and HPC2 and
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BMIl proteins (PcG members) have been co-mapped both in regions containing REs as 

well as active HOXA5-A6 genes (see Fig 2.10 and Fig. 2.6, respectively).

The simultaneous presence of PcG and trxG proteins at both silenced and active 

regions is a well-documented phenomenon (reviewed by Orlando V., 2003). Like our 

findings (Fig 2.6), in D.melanogaster Pc repressor has been mapped at active promoters 

(Breiling A., 2001) and PcG proteins were found at transgenes even in the presence of 

trxG-mediated transcription (Cavalli G., 1999). Although no direct proofs have been col­

lected to explain this associations, a recent study seems to give an explanation for the 

presence of trxG proteins at silenced loci. Indeed it has been shown that MLLl could 

interact directly with both HPC2 and BMIl proteins (Xia Z.B., 2003). Pull-down and co- 

immunoprecipitation assays clearly demonstrated a direct binding of HPC2 and BMIl 

protein to a specific portion of the MLLl repression domain. Using a reporter gene sys­

tem, this domain has been shown to possess repression activity (Zeleznik-Le N., 1994) 

due to its interaction with HDACl and HDAC2 (Xia Z.B., 2003). In agreement with 

these biochemical interactions, our X-ChlP/PCR co-mapping of MLL1/HPC2/BMI1 

suggest that these protein could be part of a multiprotein complex linked with gene 

repression more that with gene activation. Nevertheless, the analysis of double Mir^~

knockouts revealed that these proteins regulate in an opposed way the expres­

sions of many Hox genes. This suggests also the presence of MLLl and BMIl proteins 

in separated multiprotein complexes with distinct activities on gene expression.

RE might insulate Hox genes from the surrounding environment.

Our data show that practically no REs are found in the inner part of all eight Hox 

gene clusters. Remarkably, the only “exceptions” map in the vicinity of Hox genes that 

seem to be not coordinated with the rest of the cluster, in particular in the developing 

brain (Keynes R., 1994). This situation involves HOXBl, H0XB13, HOXDl that are sur­

rounded by LINEs and SINEs, both in human and mouse. Hoxdl is the only Hox gene 

not expressed in the central nervous system. Hoxbl is expressed more posteriorly than 

the paralogous group 2 genes (Keynes R., 1994). Another example is Hoxbl3. This gene 

is situated more than 70 kb away from the other members of the HoxB cluster. As shown
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in Fig. 2.15, this spacing region is almost made up of repetitive DNA. Despite the far 

location, Hoxbl3 expression seems to follow the colinearity pattern (Zeltser L., 1996). 

Nevertheless, in mice where all the other members of the HoxB cluster were deleted, no 

differences in the Hoxbl3 expression pattern were found compared to the wild type sit­

uation (Medina-Mendez O., 2000). These data suggest that the regulation of Hoxbl3 

expression is independent from the rest of the cluster and due to cis elements not includ­

ed in the deleted Hoxbl-Hoxb9 region.

We propose that REs may act as insulators or boundary elements separating spe­

cific Hox genes from the other transcription units in the cluster, perhaps restricting the 

activity of cw-regulatory elements. This idea is reinforced by the recent identification in 

human (no mouse orthologs have been identified) of PRAC and PRAC2 genes (Liu X.F., 

2001; Olsson R, 2003). These genes code for small nuclear proteins specifically 

expressed in prostate, colon and rectum (Liu X.F., 2001; Olsson P., 2003). As shown in 

Fig. 2.11, PRAC and PRAC2 are localized upstream the large block of REs separating 

H0XB13 from the other members of the cluster. These are the only examples of non- 

homeobox gene located between two Hox genes in human clusters. Similarly to PRAC 

and PRAC2, also HOXB13/Hoxbl3 are expressed in the prostate, colon and rectum (Liu 

X.F., 2001; Sreenath T., 1999). Both the location of the PRAC genes and H0XB13 

upstream to the REs and their expression profiles, suggest that these genes might share 

some specific cw-regulatory elements. A stronger case can be made for the Evxl and 

Evx2 genes, linked respectively to the HoxA and HoxD clusters. As shown in Fig. 2.2 and 

Fig. 2.13, several REs were found between HOXAl3 and EVXl but none between 

H0XD13 and EVX2. The analysis of these genes has shown that, while Evx2 follows the 

colinearity of the HoxD cluster, Evxl is expressed independently from HoxA genes 

(Hérault Y., 1996; Dolle P., 1994).

Absence of REs: “spatial”, “quantitative” colinearity and regulation of Hox genes.

The bioinformatic analysis on the Alus subfamilies distribution in the HOX clus­

ters let us suppose that absence of REs is probably the result of a negative selection play­

ing against REs insertion in these loci. As discussed in the Chapter I phenomena such as
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Digit enhancer HoxD

B
Digit enhancer Evx2 RXII Hoxd13 d12 d11 d10

Fig 3.2: A mechanism underlying collinearity in mouse limbs.
A) Red oval represents the digit enhancer able to drive (blue arrows) the expression o f  different transcrip­
tion units including som e H oxD  genes.
B) Once a contact has been established with the H oxD  cluster, a sequence-specific m echanism , driven by 
other regulatory elem ents (RXII green oval) and sequences o f  the H o x d l3 locus (green bar), targets m ost 
o f the enhancer activity to the 5 ’ extremity o f  the com plex (thick red arrow), leading to a preferential acti­
vation o f  the most 5 ’ gene (H oxd l3 ; black arrow). A ccordingly, the enhancer becom es gradually less e ffi­
cient (orange to yellow  arrows) in controlling promoters located further apart in the 3 ’ direction (grey 
arrows), thus accounting for quantitative collinearity. Figure adapted from Kmita M., 2002.

“spatial” and “quantitative” colinearity rely on the precise expression, both in time and 

space, of Hox genes during embryo development and adulthood. Indeed, many homeot­

ic phenotypes could be due just to the misexpression of one of these master control genes 

(i.e. single mutants of the HoxA and HoxD PG9-13 genes presents many different limb 

and digit malformations; Zakany J., 1999). Although the mechanisms involved in these 

coordinated expressions are still mysterious, the clustered organization of Hox loci may 

play a main rule in explaining colinearity phenomena. Many transgenic approaches in 

mouse have clearly shown that adjacent Hox genes can share and/or compete for cis-reg­

ulatory elements (Duboule D., 1998). In limbs, for example, the expression of the 

Hoxdl3-d9 genes is under the control of a “digit enhancer”, located more than 200 kb 

upstream the Hoxdl3 gene (Kmita M., 2002). Systematic deletion and duplication in the 

Hoxd genes have clearly shown that the activity of the digit enhancer is mostly related to 

the position of the target Hoxd promoter than on their identity. The presence of SINEs 

and LINEs could have had deleterious effects in many aspects of this Hox gene regula­

tion. First, the presence of extra enhancers or promoters (i.e. those carried by REs) could 

have interfered with “digit enhancer-//ov promoter” associations. Additionally, the 

development of these interactions can be obtained only with the co-evolution of an
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“uninterrupted” HoxD cluster (Fig. 3.2; Kmita M., 2002). The presence of REs could 

have also dangerous effects on the physical integrity of Hox clusters. RE-induced non- 

homologous recombinations could result in Hox gene duplications, inversions or dele­

tions. The limb homeotic phenotypes shown by transgenic mice carrying these kinds of 

genomic alterations undoubtedly demonstrate that appropriate Hox gene expressions 

require an intact and correctly organized Hox cluster (Zakany J., 1999; Kmita M., 2000).

Could PcG/trxG proteins promote sub-nuclear re-localization of Hox genes?

Sub-nuclear re-localization events represent a strategy used by various cell types 

to “turn off’ many different genes. This kind of transcriptional regulation foresees that 

the silencing of a genomic locus could be achieved through its dynamic recruitment into 

constitutive heterochromatic compartments of the nucleus. We have already discussed 

the capability of the pericentromeric regions to nucleate a repressed chromatin structure 

“m cA”; several examples have demonstrated that constitutive heterochromatin could 

also modify gene expression “m trans'\ by moving target loci in close spatial proximity 

to pericentromeric loci (Francastel C., 2000).

Many pieces of evidence suggest that the sequence-specific transcription factor 

Ikaros plays a fundamental role in this type of gene silencing. First, immuno-FlSH 

approaches demonstrated that Ikaros complexes co-localized in B cell nuclei with con­

stitutive heterochromatin, while many different silenced loci showed a selective associ­

ation with Ikaros foci (Brown K.E., 1997). This kind of nuclear re-localization concerns 

not only single transcription units (i.e.: CD2, CD4, CD8a, CD19, CD45; Brown K.E., 

1997), but also may involve gene clusters, as the p globin cluster (Brown K.E., 2001) or 

the mouse HoxB cluster (Brown K.E., 1999). Indeed, following mitogenic stimulation of 

B cell nuclei, one or both alleles of the silenced Hoxb4-Hoxb9 region were found asso­

ciated with centromeric mouse y-satellite domains. It is not know if the HoxB nuclear re­

localization is mediated by Ikaros complexes or by other factors. Yet, the peculiar asso­

ciation of PcG/trxG proteins with both human pericentromeric a-satellite repeats and 

REs at the Hox loci, as well as other characteristics (i.e. the homing phenotype) of the 

PcG proteins, lead us to suppose an involvement of PcG proteins in this nuclear re-local-
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Fig. 3.3: Nuclear compartments and gene regulation.
A) Sub-nuclear re-localization o f  three genes (white, gray and black rectangles) is schem atically shown in 
two hypothetical cell types/developm ental stages. The association o f  different genes (X, Z) with pericen­
tromeric heterochromatin (Sat A /B ) induces their silencing in a cell/developm ental stage -sp e c if ic  m an­
ner. This nuclear re-localization could be due to protein-protein interactions (red and purple dots). Green 
arrows represented expressed genes.

B) The sub-nuclear re-localization o f Hox  cluster could be due to the interaction o f  PcG (orange dots) pro­
teins with both pericentromeric D N A  repeats (a-satellite) and repetitive elem ents (REs, red ovals) flank­
ing the cluster.

ization. Following the model proposed in Fig. 3.3, we speculate that the interaction 

between the PcG complexes, both at the Hox loci and at the pericentromeric regions, 

could drive the nuclear relocation of the target loci.

Mapping of epigenetic elements by ncRNA.

Nevertheless, the observed association of PcG/trxG proteins with REs could rep­

resent only partially the in vivo PcG/trxG distribution in the HOXA cluster. In the second 

chapter, we argued that in our X-ChlP/Southern blot experiments we could have failed 

to identify PREs/CMMs in the inner core of the HOXA cluster, due to the human genome 

complexity and to hybridization kinetics of the X-ChlP/Southern approach. Indeed the
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analysis of I-DNA with more sensitive techniques (Fig 2.8) revealed the presence of 

PcG/trxG binding sites in HOXA intergenic regions, that were undetected with previous 

X-ChlP/Southern blots. To investigate the presence of epigenetic elements also in the 

core portion of the Hox clusters, we then decided to set up two strategies.

The first one consists of combining the X-ChIP assay with a more powerful 

detection method based on microarray hybridizations. We generated a “locus specific 

genomic microarray” containing the entire human HOXA cluster and the flanking 

regions. Following an approach called “ChIP to CHIP”, I-DNAs will be hybridized to 

this “HOXA specific microarray”(Fig 2.9). As shown by our first experiments with 

human total genomic DNA, the use of very small amounts of hybridization buffers (50- 

100 pi) modifies the hybridization kinetics on the microarray (as compared to a normal 

Southern blot), thus favoring the pairing and the detection also of single copy DNA (Fig

2.9).

The second approach we developed to identify putative epigenetic elements is 

based on the recent findings that these kinds of elements could be transcribed. We have 

already discussed evidence suggesting that transcription through centromeric satellites, 

LTRs and (retro)transposons could represent the first event leading to the assembling of 

a heterochromatin structure embedding these elements. We have also shown that non­

coding transcripts could correlate with an epigenetic maintenance of the expression of 

homeotic genes. Experimental evidence suggested that, in the BX-C, many non-coding 

transcripts take place in correspondence with particular cw-regulatory elements (i.e. iab 

regions; Bae E., 2002; Drewell R., 2002) or known epigenetic elements, such as CMMs 

(Rank G., 2002). Moreover many other different epigenetic phenomena (i.e. X-chromo- 

some inactivation, genomic imprinting, dosage compensation in flies) are all character­

ized by the presence of ncRNAs. Thus we decided to systematically map ncRNAs in the 

human and mouse Hox clusters as putative landmarks for the presence of epigenetic ele­

ments. To this end we specifically developed “AntiHunter”, a bioinformatic program 

capable to identify antisense EST transcripts in any given genomic locus. We focused our 

attention on antisense RNAs for to two main reasons: i) antisense RNA molecules play 

a fundamental role in many different epigenetic phenomena (RNAi-based gene silenc­
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ing, X-inactivation, genomic imprinting); ii) as Hox genes possess different alternative 

splice forms that are all transcribed from the same DNA strand (the “sense strand”), it is 

easier to detect antisense transcripts coming from the transcription of the “opposite 

strand”. By the use of this approach we have identified many different “opposite strand” 

ESTs (OS-ESTs) in all four human and mouse intergenic regions of Hox clusters. The 

OS-ESTs mapping revealed two major characteristics shared by these RNA molecules: 

they are scattered through all human and mouse clusters and overlap both with intergenic 

regions and Hox coding exons. This latter evidence leads to the possibility that Hox gene 

regulation could involve epigenetic mechanisms based on the RNAi machinery. 

Although this possibility could not be excluded and should be investigated in more 

detail, our RT-PCRs from both adult and fetal human tissues seems not to argue in favor 

of this hypothesis. In RNAi-based gene silencing, the accumulation of both sense and 

antisense molecules takes place only in the presence of RNAi mutants, while our RT- 

PCRs revealed the simultaneously presence of both antisense and sense transcripts in 

wild type tissues. Moreover, I have identified spliced OS-ESTs that correspond to pri­

mary transcripts longer that 25 kb and that overlap more than one Hox sense transcript. 

If these transcripts were to drive the silencing of Hox genes by RNAi, then these long 

transcripts should be rapidly degraded and it should be quite unlikely to identify their 

spliced forms.

Further evidence suggests that the presence of OS-ESTs is not a peculiar charac­

teristic only of the Hox genes, but could also be found at other loci. As described in the 

introduction the homeotic genes can be divided into two main superclasses: the Complex 

and the Dispersed Superclass. The first superclass is made of homeotic genes organized 

into clusters, while the second groups all the homeotic genes found dispersed through the 

genome. Our analysis of 95 dispersed homeotic loci revealed that 34 human and 38 

mouse dispersed loci are characterized by the presence of OS-ESTs, suggesting that 

these ncRNAs could play a role also in the regulation of dispersed homeotic loci.

As a control, I further investigated 90 genomic loci, randomly chosen both in 

mouse and human, for the presence of correctly spliced OS-ESTs (Table 3.1 and Table 

3.2). This bioinformatic analysis revealed that the presence of OS-EST is a common fea­
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ture also of many other non-homeotic loci. Indeed 40 human and 36 mouse genomic loci 

present sense-antisense transcripts and among them, 23 orthologous loci present “relat­

ed” OS-ESTs. Like for the homeotic loci, the OS-ESTs could map at the 5’, 3’ or intron­

ic regions of the sense transcripts (Table 3.1 and Table 3.2). These bioinformatic analy­

ses agree perfectly with recent studies (Cawley S., 2004; Yelin R., 2003) showing that 

large portions of human and mouse genomes are characterized by the presence of sense- 

antisense transcripts. Although ncRNAs at various loci could have different biological 

functions (Storz G., 2002), our in silico and in vivo characterization of the homeotic OS- 

ncRNA lead us to suppose that they could play a fundamental role in the transcriptional 

activation of homeotic genes.

ncRNAs could promote the expression of Hox genes.

Like for the intergenic transcripts mapped at cA-regulatory elements of the BX- 

C, we speculate that the transcription of OS-ESTs could represent one of the first steps 

leading to the stable expression of Hox genes. The experimental evidence obtained from 

the D.melanogaster proposes that the inactive state of a homeotic gene could correspond 

to a situation where the gene itself and its cw-regulatory elements (i.e. its enhancers or 

CMMs) are embedded in a highly packed chromatin structure. This “close” structure pre­

vents the interaction of trans-activator proteins with the cw-regulatory elements and sta­

bly maintained the silencing of target genes. Thus it was supposed that intergenic tran­

scription could represent a mechanism to “open” the chromatin structure allowing the 

interaction between cw-regulatory DNA elements and regulatory proteins. In addition, 

we can even suppose that transcription could increase the accessibility of these DNA ele­

ments modifying epigenetically their chromatin structure. The intergenic transcripts that 

could mediate this opening should possess three main characteristics: i) they should be 

produced in the same tissue or embryonic territories where the cis elements regulate the 

expression of the target gene; ii) they should be produced in correspondence with cis- 

regulatory elements; iii) they should be transcribed before target genes.

Although the direct involvement of OS RNAs in the epigenetic regulation of 

HOX expression requires further investigations, our analyses revealed that OS transcripts
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present all features characterizing the BX-C intergenic ncRNAs. Indeed, they are main­

ly co-expressed in the same adult and fetal tissues expressing also neighbor HOXA 

genes. Moreover, the simultaneous mapping of known cw-regulatory elements (as 

deduced by a PubMed search) and OS-ESTs, revealed that the many enhancer and 

RAREs map in introns of the OS-ESTs. Yet, the primary (unspliced) OS transcripts 

include also these elements. Nevertheless, I found three direct links between the map­

ping of cA-regulatory elements and the position of OS-EST exons. First, in the intergenic 

region between Hoxal and Hoxa2 a rhombomere 2-specific enhancer has been mapped, 

driving the expression of Hoxa2 (Frasch M., 1995). As shown in the Fig. 3.4, this 

enhancer co-localizes with one exon of 7 different OS-ESTs; concordantly all the OS- 

ESTs derive from mouse brain cDNA libraries. I detected a similar situation also in the 

intergenic regions of the dispersed Dlxl-Dlx2 and Dlx5-Dlx6 genes. Two enhancers driv­

ing Dix genes expression in different regions of the developing brain were identified and 

characterized in vivo in each of the two intergenic regions (Fig 3.4; Ghanem N., 2003). 

Mapping of the enhancers and OS-ESTs revealed that the OS transcription passes 

through these enhancers. Also in these cases, OS-ESTs derived from tissues expressing 

the four Dix genes. Finally we investigated the expression of both OS-ESTs and sense 

transcripts in NT2 cells treated with retinoic acids (RA). This cell line has been particu­

larly useful to study the kinetics of the Hox gene activation. Without any RA treatment 

all HOX genes are silenced and upon addition of RA they start to be expressed follow­

ing their physical order from the 3’ end the HOX locus, in a way that resembles the 

embryonic colinearity. Our RT-PCR analysis revealed that OS-EST transcription pre­

cedes the transcription of the surrounding HOXA genes. Moreover, also the transcription 

of OS-ESTs follows the colinearity rule, being 3’ OS-ESTs transcribed before the 5’ 

ones.

Taking all this evidence together, we propose a model (shown in Fig 3.5) where 

the “antisense transcription” might induce an opening of the chromatin structure of 

homeotic loci, allowing the subsequent interaction between cA-regulatory elements (i.e.: 

enhancers, RAREs, CMMs) and specific transcription factors (i.e.: segment polarity pro­

teins, RARs). The transcriptional machinery, due to its interaction with histone modifi-
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cation enzymes (mainly HATs), could induce specific histone tail modifications in the 

regions corresponding to cA-regulatory (or epigenetic) elements, increasing their local 

accessibility to transcriptional factors (Fig 3.5). Our observations reveal that this “anti­

sense transcription” goes from the 3’ to the 5’ end of the HOXA cluster (Fig 2.25). The 

identification of long OS transcripts has shown that different OS RNAs present the same 

5’ exon (Fig 2.23), suggesting that they may share the same transcriptional starting point. 

Moreover, the in silico identification of 5’-alternatively spliced OS-ESTs may imply the 

existence of independent transcriptional starting points, as shown for the human EMX2 

locus (Noonan EC., 2003). The characterization of the full-length OS transcripts will 

probably help us to discriminate between these two possibilities. Although the model 

presents the “opening” by antisense transcription of an hypothetical Hox cluster, the 

identification of ncRNAs in dispersed loci suggests that a similar mechanism could be 

responsible also for the transcriptional activation of many other genes.
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Fig. 3.4: OS transcripts colocalized with m-regulatory elements.
The genom ic organization o f  three m ouse hom eotic loci is represented as in the U CSC  G enone Browser. 
Genes are in blue and EST clones are in black. Big rectangles indicate exon positions and small rectangles 
the 5 7 3 ’UTR regions. Arrows indicate the transcriptional direction o f  genes and ESTs. Known cA -regu­
latory elem ents in the intergenic region between D lx l-D lx2  (A ), D lx5-l)lx6  (B) and H oxaJ-H oxa2  (C ) 
genes, are shown schem atically as red rectangles. Both primary as w ell as spliced OS transcripts co lo ca l­
ize with these regulatory elem ents.
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Fig. 3.5: Breaking the silence.
The collinear activation (i-iv) o f  three different Hox  genes (colored rectangles) is schem atically shown. 
Early in developm ent the entire cluster is embedded in a hetrerochromatin-like structure (i) and H ox  genes  
are silenced. Starting from the 3 ’ end, a progressive rem odeling o f the chromatin fiber (ii-iv) takes place. 
The first step o f  this process is based on the antisense (or opposite strand, OS) transcription o f  the 3 ’ por­
tions o f the cluster (dashed line). The OS transcripts could have different starting point both inside and/or 
outside the cluster (ii). A s far as the OS transcription goes in the 5 ’ portion o f  the cluster, r/.v-regulatory 
elem ents (colored hexagonals) and promoters are released from the heterochromatic structure and trans- 

activating factors (colored ovals) could promote the proper H ox  genes expression (green arrows). 
Alternatively, the OS transcripts could mediate directly the recruitment o f  r/r/z/x-activating factors on the 
m -elem en ts. A s discussed in the text, the OS transcription could also induce an epigenetic m odification  
o f histone tail in the correspondence o f  c/x-regulatory elem ents, promoting a stable m aintenance o f  the 
Hox  expression pattern. Only unspliced OS transcripts are shown.
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Future plans.

The results discussed in this Thesis could represent the starting point for future 

experiments aimed at further investigation of epigenetic mechanisms controlling HOX 

gene expression.

In particular, the human '"HOXA microarray” will be used for “ChIP on CHIP” 

analyses. This locus-specific genomic microarray will be hybridized with different 

immunoprecipitated DNAs against PcG/trxG proteins. This approach (described in Fig.

2.9) should enhance the mapping resolution of PcG/trxG proteins binding sites in the 

human HOXA cluster and complete the identification of mammalian PREs or Cellular 

Memory Modules (CMM). As the hybridization sensitivity of the “ChIP on CHIP” 

approach is clearly increased compare to the classical “ ChlP/Southern blot” (Fig. 2.9), 

“Chip on CHIP” experiments will be used to investigate PcG/trxG proteins distribution 

both in the “core” as well as in the flanking regions of the human HOXA cluster. This 

association will be analyzed in the NT2D1 cell line upon induction of HOX gene expres­

sion with Retinoic Acid (RA).

It will be interesting to see if intergenic transcription is accompanied by chro­

matin modifications. “ChIP on CHIP” experiments will be used also to investigate 

changes in histone tail modifications and in particular the putative deposition of histone 

H3.3 variant along with transcription opening of the cluster. Moreover, epigenetic marks 

such as H3 K9/K27 or H3 K4 méthylation will be analyzed in NT2D1 cells treated with 

RA.

The in silico identification of OS transcripts in mouse homeotic loci belonging 

both to the Dispersed as well as Complex Superclasses represents the starting point for 

further analysis of these transcripts in vivo. The expression of OS transcripts as com­

pared to the Hox sense transcripts will be investigated by RNA in situ hybridizations on 

mouse embryo sections. The in situ analysis will be useful to validate in the context of 

the developing embryo, the findings obtained in human adult and fetal tissues (Fig. 2.20; 

Fig. 2.21). Indeed, as for the NT2D1 cell line treated with RA (Fig. 2.25), I expect that 

the expression of OS transcripts will precede the expression of homeotic genes. Finally, 

to test the model presented in Fig. 3.5, loss of function experiments will be performed to
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knock-down (RNAi) OS transcripts in NT2D1 cells. This set of experiments should tell 

if the OS RNA has any direct role in HOXA gene activation.
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Chapter IV: 
MATERIAL AND METHODS
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Reagents and standard procedures.

All basic DNA standard methods as well as bacterial transformation and cultures, 

media and buffer preparations were performed according to a Laboratory Manual 

(Maniatis T., 1982). DNA fragments and PCR amplifications were purified from agarose 

gel by the Qiaquick DNA purification system (Qiagen). DNAs were cloned into 

pBluescript or pGem-TEasy (Promega) vectors using T4 DNA Ligase from Promega. 

Ligations were performed according to manufacture’s protocols. Ligation products were 

transformed in the E.co/i DH5a or XL-1 Blue strains. Small-scale plasmid preparations 

(mini-preps) were made by the alkaline lysis method (Maniatis T., 1982). Large scale 

and midi-scale preparations (maxi and midi-preps) were done by purification with 

Qiagen MAXI-MIDI kits. Restriction and modification enzymes were obtained from 

Roche or Promega and used according to manufacture’s outlines.

PCRs were performed with Promega or Qiagen PCR reaction kits, following manufac­

ture’s indications. Specific PCR conditions are summarized in different Tables (see text 

for details). PCR primers were designed with the OLIGO 4 program for Macintosh and 

synthesized by Roche, Primm or MWG Companies.

FAC, BAC, cosmid and plasmid clones.

PAC (DJ0170019; DJ0167F23) and BAC (CTD-2536K9) clones were identified 

in silico (see Charter II), and ordered to the UK HMGP Resource Centre, Cambridge. 

PAC/BAC DNA preparations were carried out with Qiagen MIDI kits. PAC/BAC clones 

were grown overnight (ON), shaking, in 10 ml of LB medium + 25 mg/ml Kanamycin 

at 37°C. Next morning, 2.5 ml of bacterial clones were add to 97.5 ml of fresh LB + 25 

mg/ml Kanamycin. After 1.5 hours at 37°C, IPTG was added to the final concentration 

of 0.5 mM; cells were collected by centrifugation after further 6-8 hours at 37°C.

Cosmid contig spanning the HOXA cluster (Kim M.H., 1998) were request to the 

MRC Genome Resource Facility, Dept of genetics. The Hospital for Sick Children, 

Toronto, Ontario. Cosmid clones were grown in 50 ml of LB medium + Kanamycin at 

37°C ON. Cells were collected by centrifugation and DNA extracted with Qiagen MIDI 

kits.
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The PAC/BAC/Cosmid contig was assembled by PCRs, restriction analyses and 

Southern blots using different DNA markers (Table 2.2 and Fig.2.1).

Plasmid clones were produced by sub-cloning FcoRI restriction fragments from 

cosmid clones into pBluescript vectors. Large FcoRI fragments were subdivided into 

amplifiable PCR fragments and subsequently cloned into pGem-TFasy (Promega) vec­

tors.

Plasmid clone corresponding to three different families of pericentromeric 

repeats were kindly provided by A, Agresti, DIBIT Milan. These clones were digested 

with FcoRI (Sau3A and FcoRI families) or FcoRI + Notl (Long Sau3A family) and 

Southern blots were performed as described below.

Southern blots.

About 5-10 pg of total human DNA, 1-3 pg of PAC/BAC DNA, 1-2 pg of cosmid 

DNA were completely digested with different restriction enzymes (Promega).

Different amount of plasmid clones were digested with various restriction enzyme to get 

about Ipg of insert DNA. Samples were run on 0.6-1 % agarose gels in IX TBF gener­

ally ON at 4°C. Gels were treated with 0.25 N HCl for 10’ (shaking), 0.4 N NaOH for 

30’ (shaking). DNA was transferred to nylon membranes (GeneScreen & 

GeneScreen Plus®, Du Pont). Membranes were pre-wet with water and equilibrate in 

NaOH 0.4 N for 10’-15’. A capillary blot was set up using 0.4 N NaOH as transfer buffer. 

After transfer, the membrane was washed with 2X SSC for l ’-2’ and DNA was fixed fur­

ther on by baking at 80°C for 1 hour. Pre-hybridisation and hybridisation were done at 

65°C in 7% SDS, 1 mM Na-FDTA, 1% BSA, 0.25M Na2HP0^ pH 7.2. Filters were 

washed at 65°C once for 10’ with 5% SDS, ImM Na-FDTA, 0.5% BSA, 20 mM 

Na2HP0^ pH 7.2; five times at 65°C for 5’each with 1% SDS, ImM Na-FDTA, 0.5% 

BSA, 20 mM Na2HP0z^ pH 7.2.

Western blots.

Protein extraction from human cell lines, electrophoresis and blotting were done 

according to a Laboratory Manual (Maniatis T., 1982). Rabbit affinity-purified antibod­
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ies against hPC2, BMIl, RINGl, EZH2, HPHl were kindly provided by A. Otte, 

Amsterdam. C. Caslini, Milan, kindly provided rabbit affinity-purified antibodies against 

MLLl. Affinity-purified antibodies against YYl and TBP were ordered from Santa Cruz. 

Antibodies were diluted as follows: BMI-1: 1/10000; hPC-2: 1/4000; RING-1: 1/500; 

HPH-1: 1/1000; EZH-2: 1/1000; TBP: 1/5000, YYl: 1/2000.

RNA purification and RT-PCRs.

Total RNA was extracted from human cell lines by means of TRIzol“ reagent 

(Life technologies), following manufacture’s instructions. Cells were collected by cen­

trifugation and TRIzol“ reagent was added directly to the pellet (1-2 ml TRIzol“ / 10^ 

cells). Total RNA was dissolved in RNase-free water and store at -20/-80 °C. RNA quan­

tification was done measuring the ^^ îo with a spectrophotometer. About 10

pg of total RNA was digested with 2U of DNase (Promega) at 37°C for 30’-60’. DNase 

was then inactivated at 70°C for 10’.

“Specific strand RT-PCRs”. To define the DNA strand transcribed, we used the “One- 

Step” RT-PCR system by Promega. About 200 ng-1 pg of total RNA (DNase treated) 

was retrotranscribed with specific primers for 45’-60’ at 48°C. The RT enzyme (AMV) 

wad inactivated by heating 2’ at 94°C. The second primer was added and PCRs per­

formed as described in Table 20.

“Oligo-dT RT-PCRs”. About 3-4 mg of total RNA (DNase treated) was retrotranscribed 

with oligo-(dT)jg RevertAid^^ H Minus First Strand cDNA Synthesis Kit (Fermentas). 

PCRs were performed using 200 ng of cDNA as described in Table 20.

A. Banfi and M.Cocchia (Tigem, Naples) kindly provided total RNA from human 

adult tissues. Total RNA from foetal tissues was request to L. Nitsch (Telethon, Naples).

Chromatin immunoprécipitation from human cell line.

In order to prepare fixed chromatin from HeLa cells, I have adapted the protocol 

originally used for the D.melanogaster (Orlando V., 1997). Schematically:

1). Grow 6  X 10^ HeLa cells at 37°C in DMFM medium/100 U/ml penicillin/100 mg/ml 

streptomycin) in cell culture dishes.
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2). Add fixing solution directly into the dishes and mix. The final formaldehyde concen­

tration should be 1%. Leave the dishes at 37°C for 20’.

3). To stop HCHO fixation, add solid glycine to 125 mM and mix well. Leave at room 

temperature for 10’. Discard the fixing solution and wash twice the dishes with cold 1% 

PBS. Discard the last wash and add 2-4 ml of 1% cold PBS. Using a cell scraper, remove 

and collect the cells in two 50 ml Falcon tubes. Pellet cells at 1000 rpm, 5’ (Hereaus 

Minifuge or equivalent) and wash once with cold PBS. Pellet cells at 1000 rpm, 5’.

4). Take up cell pellet into 15 ml of wash solution A and shake/rotate slowly for 10 min. 

at RT. Spin down cells and take up pellet into 15 ml wash solution B and shake/rotate 

slowly for 10 min. at RT. Spin down again and resuspend cells into 3-4 ml TFF (solu­

tion C). Transfer the solution into a 15 ml Falcon tube that has been cut off at the 11 ml 

mark.

5). Add ca. 1 ml glass beads, acid washed. Store on ice.

6). Sonicate each aliquot, 6x 30 sec. in 30 sec. intervals using a high power sonicator. 

Fach tube is cooled in a beaker with an ice/water mix. Avoid foaming.

7). Transfer the suspension in a new 15 ml Falcon tube and add sodium lauryl sarcosine 

(Sarkosyl) to 0.5% from a 10% stock. Rotate at RT for 10 min. on a wheel.

8). Distribute the suspension into 1.5 ml microfuge tubes and spin for 5 min. at max- 

speed in a tabletop centrifuge at 4°C. Unite supernatants into a 15 ml Falcon tube and 

add 2.84g of CsCl to each tube. Mix gently until the salt has dissolved and fill up with 

TFF/0.5% Sarkosyl to 5 ml (final density should be 1.42 g/cm^). Transfer the solution 

into a 5 ml polyallomere Beckman tube (for Beckman SW55 rotor). Spin at 40000 rpm 

(Beckman L7-65 ultracentrifuge, SW55 rotor, 20 °C) for 24-48 hours.

9). Flute 10 X  500 pi fractions per gradient with a peristaltic pump or a similar device. 

Check the density profile of fractions with a refractometer. The peak-fraction of cross- 

linked chromatin should have a density of 1.39 g/cm^. Routinely, chromatin is found at 

gradient fractions spanning density values between 1.350 and 1.450 g/ cm^, transfer the 

fractions into dialysis bags.

10). Dialyse fractions in dialysis bags at least 2 h against 300 volumes of dialysis buffer. 

After 2 hours, in order to estimate the average size of the DNA and trace it along the gra­
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dient, we remove about 1/10 volume (50 pi) of each fraction to a microfuge tube. Change 

the buffer and continue dialysis overnight with remaining chromatin.

11). Add to the 50pl of chromatin one volume of TE and incubate tubes ON at 65ooC. 

Add Proteinase K to 500 mg/pl and SDS to 0.5%. Incubate at 50ooC for ca. 3h. Extract 

once with phenol-chloroform, once with chloroform. Precipitate with ethanol in the pres­

ence 0.3 M Na-acetate.

12). Spin 20 min, wash in 70% ethanol.

13). Take up pellets in 10 pi of TE. Add RNase A to 10 pg/ml and incubate 30 min at 

37°C. Load and run the samples in 0.8% agarose gel in Ix TBE.

For chromatin-IPs, fractions that contain the cross-linked chromatin are pooled and 

stored in 500 pi aliquots at -80 °C or used directly for IP. For this purpose one aliquot of 

chromatin suspension is adjusted to RIPA buffer by sequentially adding appropriate 

amounts of NaCl, Triton-XlOO, SDS and deoxycholate and used for the preclearing. 

Chromatin immunoprécipitation.

14). For each IP and the mock-control take 400 pi of chromatin and add the same vol­

ume of RIPA buffer. Add 20 pi of Protein A/G agarose beads (Santa Cruz 

Biotechnology). Incubate for 1-2 hour at 4°C for pre-clearing and spin for 10’ in a table- 

top centrifuge (14000 rpm, 4°C).

15). Transfer supernatant to a new tube and add the appropriate amount of antibody (usu­

ally dilutions of 1:100 - 500 pi). The same amount of precleared chromatin is used as 

negative control, without the addition of antibody (mock-control). Incubate the samples 

overnight at 4°C on a wheel. Spin samples 10’ in a tabletop centrifuge (14000 rpm, 4°C). 

Transfer the IPs to new tubes. Then add 20 pi of Protein A/G agarose beads. After incu­

bation for further 2-4 hours, pellet and wash the beads 5 times with 600 pi of RIPA 

buffer, ix with 600 pi LiCl-buffer and Ix with 600 pi TE (pH 8), always pelleting the 

beads with short spins (15” at max speed) with a tabletop centrifuge. At the end, take up 

beads in 100 pi of TE.

16). Add 10 pg/ml of RNAse (DNAse-free) and incubate samples 30’ at 37 °C. Adjust 

samples to 0,5% SDS and 0.5 mg/ml Proteinase K and incubate ON at 37°C. Next day, 

spin down the beads and transfer the supernatant to a new tube. Incubate for 6 hours at
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65°C to complete the reversal of cross-link. Phenol-Chloroform extract the samples. 

Back-extract the phenol phase by adding an equal volume of TE (pH 8). Combine the 

aqueous phases and chloroform extract. Precipitate DNA by adding Glycogen to 100 

pg/ml as carrier, 1/10 volume of 3M sodium acetate pH 5.2 and 3 volumes of 100% 

ethanol. Incubate at -20 °C for some hours up to ON.

X-ChlP/PCR.

17a). Spin down DNA and wash pellet in 70% ethanol, air dry briefly and resuspend the 

precipitated DNA in 30-60 pi of TE. I have used 1 pi of the I-DNA for each PCR reac­

tion.

X-ChlP-Southern blot.

17b). Spin down DNA and wash pellet in 70% ethanol, air dry briefly and resuspend the 

precipitated DNA in 21 pi of TE.

18). A ligation reaction is set up with 7 pi of I-DNA, 1 pM of linker (Strutt H., 1997), 

4U of T4 DNA Ligase (Promega) in a total volume of 10 pi of ligase IX buffer 

(Promega). Ligation was carried out ON at 4°C.

19). 5 pi of the ligated I-DNA was used as a template for a PCR reaction with linker-spe­

cific primers (Strutt H., 1997). PCR conditions: 94°C x 2’; 30-35 cycles: 94°C x 1’, 55°C 

X 1% 72°C X 3’; 94°C x 1% 55°C x 1% 72°C 10\

20) Amplified DNA was purified with Qiaquick PCR Purification System (Qiagen), 

quantified with a spectrophotometer; 1/10 of the amplified DNA was checked on an 

agarose gel.

21) About 50-100 ng of amplified DNA was labelled with M egaprime^^ DNA labelling 

systems (Amersham). Labelled DNA, at the concentration of 10^ counts / ml of hybridi­

sation buffer, was used as a probe in Southern hybridisation (Orlando V., 1997). Signals 

quantification was done with “Quantity One Quantification Software” (Bio-Rad).

22) X-ChIP solutions:

Fixing solution: 11% HCHO (from a 37% stock equilibrated with methanol), lOOmM 

NaCl, ImM EDTA, 0.5mM EGTA, 50 mM Hepes pH 8.

Solution A: 10 mM Tris-HCl pH 8, 10 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.25%
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Triton XlOO.

Solution B: 10 mM Tris-HCl pH 8, 200 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA 

pH 8.0, 0.01% Triton XlOO.

Solution C (TEE): 10 mM Tris-HCl pH 8, 1 mM EDTA pH 8.0, 0.5 mM EGTA, pH 8.0. 

Dialysis buffer: lOmM Tris pH 8, ImM EDTA, O.lmM EGTA, 5% glycerol.

TE: (lOmM Tris pH 8, ImM EDTA)

RIPA Buffer: (10 mM Tris-HCl pH 8, 1 mM EDTA pH 8.0, 0.5 mM EGTA, 1% Triton 

X-100, 0.1% Na-Deoxycholate, 0.1% SDS, 140mM NaCl, ImM PMSF)

LiCl-buffer: (0.25M LiCl, 0.5% NP 40,0.5% Na-Deoxycholate, ImM Na-EDTA, lOmM 

Tris-HCl, pH 8).

HOXA genomic microarray.

The entire human HOXA locus was subcloned into 137 PCR fragments (0.5-2.3 

kb. Table 2.5). After amplification, the corresponding DNAs were purified, quantified 

and checked by proper restriction analysis.

Spotting, hybridization and quantification of signals were done by M.Cocchia at the 

Telethon Institute for Genetics and Medicine (Tigem, Naples).

NT2 cell line treatment with Retinoic Acid.

The human embryonic carcinoma cell line NT2/D1 was maintained in 

Dulbecco’s modified minimal essential medium supplemented with 10% foetal bovine 

serum, 20 mM Hepes Buffer, 2 mM Glutamine, 200 U/ml Penicillin and 200 mg/ml 

Streptomycin (all from Invitrogen) in a humidified atmosphere of 5% C02 in air. 

NT2/D1 cells were induced to differentiate with 10 pM all-trans Retinoic Acid (RA, 

Sigma). Cells were seeded at a density of 10^ cells / 75 cm^ tissue culture flask and re­

fed every 24 h with fresh medium containing RA.
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TABLE 1.1: PcG protein family.

D  m ela n o g a ster Vertebrates Protein characteristic

additional sex  com bs -ads/A sx
glutam ine-rich regions; 

A lanine-rich regions

cramped -crm C RA M P IL
PE ST  sequences; N uclear  

L ocalization Signals; A lanine- 
rich regions

enhancer o f  zeste  -E (z) Ezh 1 /E Z H 1 ; Ezh2/E Z H 2
SET domain; C ystein-rich  

regions; H istone-m etyl- 
transferase

Enhancer o f  P oly  com b -E (P c) E p c l/E P C l; E pc2/EPC2
N uclear L ocalization S ignals 

putative leucine zipper

extra sex  com b -esc eed/E ed W D  dom ains

pleiohom eotic -pho m Y Y l/h Y Y l;  M phl
D N A  binding zinc finger; 
acid ic dom ains ; g lycin e- 

alanine-rich dom ain

P olycom b -P c
M 33/h P C l(C B X 2); 
M Pc2/hPC 2; hPC3

chrom o domain; N uclear  
L ocalization Signals; C- 

terminal dom ain

P olycom blike -P ci M 96 C ystein-rich zinc finger

polyhom eotic -ph
mph 1 (rae28)/hPH  1 ; 
m ph2/hPH 2; hPH3

glutam ine-rich regions; 
putative C ys2-C ys2  zinc  

fingers

Posterior sex com b -psc  
Suppressor o f  zeste  2 -Su(z)2  

Suppressor o f  zeste 2D  -
b m il/B M Il;  m el 18/M EL 18

cysteine-rich sequence; RING- 
finger m otif; C 3H C 4 zinc  

finger

Sex com b on m idleg -Scm SC M L 1;SC M L 2
N uclear L ocalization  Signal; 
A lanine-rich regions; SPM  

domain; SA M  dom ain

R ing R IN G l/R IN G 2 R IN G  (zinc) finger m otif

dM i-2 -dM i2 hZFH (hM i-2)

H M G  box-like region  
P H D  fingers 

chrom odom ains SN F 2- 
type A T Pase dom ain

Sex com b extra -See
Sex com b reduced -S cr

super sex com b -sxc
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TABLE 1.2: trxG protein family. Part I.

D  m ela n o g a ster Vertebrates Protein characteristic

absent, sm all or hom eotic dise; 
1 and 2 -a s h l, asfi2

ASXL1.ASXL2 SET domain 
PHD finger

Brahma -brm BRG1; hbrm

DNA-dependent ATPase;
bromodomain; ATP- 

dependent nucieosome 
remodellinq

eyelid -osa Bright putative DNA-binding 
domain

ISWI hSNF2L DNA-dependent ATPase 
domain

modifier of mdg4 
mod(mdp4) ? BTB domain 

DSD domain

moira -mer BAF170; BAF155; 
SRG3; SWI3

SANT domain 
leucine zipper motif

trithorax -trx MLL1 (ALL1 ; HRX; Htrx)

C4HG3 zinc finger motif; 
cys-rich zinc finger 
(PHD); SET domain; 

atypical bromodomain; 
DNA binding domain

trithoraxiike -tri 
GAGA

zinc finger domain 
POZ domain 

DNA-binding domain 
glutamine (Q) domain

zeste -z DNA binding domain 
leucine zipper

Snf5-reiated1 -snri hSNF5/IN!1

member of the SWI/SNF 
chromatin ATP- 

dependent remodeling 
complex,

Bekka -Bka
qraooa -pop

kismet -kis
Chd1;

chromodomain helicase 
DNA binding protein 2

Chromo domain 
DNA binding domain, 

DEAD/DEAH Helicase 0- 
terminal domain

kohtalo -kto
leg arista wing complex 

-lawc
skuld -skd

sallimus -sis
Suppressor ofPolycomb 

at 37D -Su(Pc)37D

taranis -tara TRIP-Br1/p34(SEI-1); 
TRIP-Br2/Y127; RBT1

tonalli -tna
urdur -urd

verthandi -vtd
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TABLE 1.2: trxG protein family. Part II.

D .melanogaster Vertebrates Protein characteristic

little immaginal dise -lid RBP2
PH domains 

leucine zipper 
Nuclear localization Signal
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TABLE 2.1: H.sapiens HOXA genes.

Gene
mRNA

Accession
Number

cDNA Position (bp) Coding (bp)

HOXAl #1 NM 005522 75388-77190; 77656-78370 76835-77190; 77656-78306
HOXAl #2 NM_153620 75388-77193; 77656-77750;

77954-78370 77691-77750; 77954-78292

H 0X A 2 NM 006735 82497-83860: 84505-85170 83121-83860: 84505-84895

H0XA3 #1 NM_030661 88585-91115; 92510-93155;
101911-101990

90310-91115:92510-93035

H0XA3 #2 NM_153631 88585-91115; 92510-93155;
104954-105037; 109281-109415 90310-91115; 92510-93035

H0XA3 #3 NM_153632 88585-91115; 92510-92672; 
96314-96392 90310-91115:92510-92561

H 0X A 4 NM_002141
110786-111302;111363-111968; 
112513-113175 111620-111968 112513-113128

H 0XA5 NM 019102 123772-124480: 125441-126063 124230-124480 125441-126002
H 0XA6 NM 024014 127892-128312: 129703-130144 128053-128312 129703-130144
H0XA7 NM 006896 137066-137616: 139072-138562 137304-137616 138562-138940

HOXA9 #1 NM 152739 144833-146236: 147273-147925 145998-146236 147273-147852

H 0X A 9 #2 NM_002142
144833-146236; 147273-147368; 
147536-147925 147359-147368 147536-147820

HOXAl 0#1 NM 018951 152986-154568: 155744-156698 154294-154569 155743-156649
HOXAIO #2 NM 153715 152986-154568:162039-162618 154294-154568 162039-162049

HOXAl 1 AF039307 165190-165442: 166830-167538 165190-165442 166830-167538
HOXAl 3 NM 000522 179274-180836: 181550-182471 180592-180836 181550-182471

EVXl NM_001989 225196-225851; 227442-227698; 
228280-228967

225425-225851
228280-228819

227442-227698;

TABLE 2.1:
Alternative spliced forms of the human HOXA genes are indicated with “#” fol­
lowed by a number. Nucleotide positions of all genes refer to our DNA contig.
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TABLE 2.2: DNA markers.

DNA Marker Primer Sequences (5-3')
Amplification 

size (bp)
Tm (°C)

D7S2243
D7S2243.1: GCCACCCTCAAATTGCTTCC  
D7S2243.2: GAATAGAGCTGCTGACTTCC

391 62

SW SS3140
SW SS3140.1: ACTTTGTAAGCACACTGG  
SW SS3140.2: TTGAAAGAGAAACAGAGG

280 54

SW SS2757
SW SS2757.1: CTTAAAGACTGGAATCTCTG  
SW SS2757.2: AGAGAAGGCTGAACTTTG

326 54

D7S2834
D7S2834.1: TGCCTTAATGGGGGAAGAG  
D7S2834.2: ACCAGTTTCTATCCCTTACCTGC

394 63

SW SS2109
SW SS2109.1: GCGGGATAATTGATGGGCTC  
SW SS2109.2: TTCAAGGGGTTTTACAAG

358 55

D7S2774
D7S2774.1: AGACACCTCAGCGGCCAAC  
D7S2774.2: GGAACTCGCACCTGTGCT

339 60

D7S1903
D7S 1903.1 .GAATGGGTGGCTTCAGCTC 
D7S1903.2: TGACAGAAGACATTTCAG

499 55

SW SS646
SW SS646.1: CAGTGAAAGGACATGGACTG  
SW SS646.2: GGGAAGTAAATGCCAACTGC

267 60

TABLE 2.2
DNA markers used to assemble the HOXA cluster cosmid contig. 
PCR conditions:
1 cycle: 
30 cycles:

1 cycle:

94°C X 2’ 
94°Cx r  
tm°C X  1 ’ 
72°Cx r  
72°c X 5’
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TABLE 2.3: HOXA cluster plasmid clones. Part I.

Plasmid
Clone

Insert 
lenght (bp)

PAC Clone Map position Restriction Pattern Vector

248.16 4800 ' DJ0170019 118590-123946 Notl pBluescript
248.101 2694 DJ0170019 115896-118590 HincII pBluescript

248.1 10330 DJ0170019 105566-115896 Notl pBluescript
248.2 5966 DJ0170019 99600-105566 Sacl pBluescript

248.116 803 DJ0170019 98797-99600 SacII; Rsal pBluescript
248.62 3223 DJ0170019 95575-98797 Sacl pBluescript
248.35 5054 DJ0170019 90520-95575 Notl pBluescript
248.32 7330 DJ0170019 83190-90520 Notl pBluescript
1589.1 1589 DJ0170019 81601-83190 BamHI pTEasv
230.93 2607 DJ0170019 78992-81601 BglII pBluescript
341.1 341 DJ0170019 78651-78992 Sacl pBluescript

230.91 1899 DJ0170019 76752-78651 HincII pBluescript
230.89 640 DJ0170019 76112-76752 Sacl pBluescript
230.2 5364 DJ0170019 70748-76112 BamHI pBluescript

230.81 760 DJ0170019 69988-70748 BglII pBluescript
2631.1 2631 DJ0170019 67357-69988 EcoRV/BamHI pBluescript
230.12 4325 DJ0170019 63032-67357 Notl pBluescript
230.9 1523 DJ0170019 61509-63032 H indi pBluescript

230.14 13322 DJ0170019 48187-63032 Notl pBluescript
64.22 5576 DJ0170019 42611-48187 EcoRV; BamHI pBluescript

6180.1 6180 DJ0170019 36431-42611 Notl pBluescript
1635.11 1635 DJ0170019 34796-36431 HindIII;PvuII pTEasv
P1-P2 1552 DJ0170019 34796- Apal pTEasy
P3-P4 2009 DJ0170019 EcoRI pTEasy
P5-P6 2098 DJ0170019 EcoRl pTEasv
P7-P8 1517 DJ0170019 Kpnl pTEasv

P8rev-P19 1156 DJ0170019 PstI pTEasv
P20-P9rev 1172 DJ0170019 PstI pTEasy

P9-P10 1923 DJ0170019 Smal pTEasy
P11-P12 1752 DJ0170019 PvuII pTEasv
P13-P14 715 DJ0170019 EcoRl pTEasy
P15-P16 1133 DJ0170019 PvuII pTEasy
P17-P18 905 DJ0170019 -24994 EcoRI pTEasv
1865.17 1865 DJ0170019 23079-24944 EcoRI ;PstI pTEasy

P3/4 3172 DJ0170019 19907-23079 EcoRI pTEasy
P l/2 3172 DJ0170019 19907-23079 Apal pTEasy

3172.30 3172 DJ0170019 19907-23079 EcoRI;ApaI pTEasy
3172.30 218 DJ0170019 19689-19907 EcoRI;ApaI pTEasy

64.34 6347 DJ0170019 13342-19689 BamHI; HindIII pBluescript
986.41 986 DJ0170019 12356-13342 BamHI pBluescript

3572.31 3527 DJ0170019 8829-12356 BamHI; Kpnl pBluescript
4355.21 4355 DJ0170019 4474-8829 BssHII; Hpal pBluescript
5000.11 4474 DJ0170019 1-4474 Hpal; Notl pBluescript

11.4 6017 DJ0167F23 96701-102718 BamHI pBluescript
11.25/11.26 4300 DJ0167F23 92401-96701 BamHI; PstI pBluescript

11.31 2062 DJ0167F23 90339-92401 PstI pBluescript
1085.11 643 DJ0167F23 89696-90339 EcoRI pTEasy
1085.11 345 DJ0167F23 89351-89696 EcoRI pTEasy
1085.11 97 DJ0167F23 89254-89351 EcoRl pTEasy

11.21/11.22 4172 DJ0167F23 85082-89254 BamHI; PstI pBluescript
83.23 1024 DJ0167F23 84058-85082 Notl pBluescript
11.11 7488 DJ0167F23 76570-84058 BamHI pBluescript
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TABLE 2.3; HOXA cluster plasmid clones. Part II.

Plasmid
Clone

Insert 
lenght (bp) PAC Clone Map position Restriction Pattern Vector

1915.6 1915 DJ0167F23 74655-76570 BamHI pTEasy
83.57 11976 DJ0167F23 62679-74655 Notl pBluescript

8324:83.30 16079 DJ0167F23 46600-62679 EcoRV;BamHI pBluescript
1254.1 1254 DJ0167F23 45346-46600 Sacl pTEasy

TABLE 2.3.
Cosmid clones were digested with EcoRI and the restriction fragments were 
cloned in the indicated vectors. Map position of EcoRI sites refer to FAC 
sequences. The EcoRI fragment 34796-24994 (PACDJ0170019) was subdivided 
into amplifiable PCR fragments (PI-PI8) that were cloned independently. The 
identity of all clones was checked by restriction analyses with the indicated 
enzymes.

139



TABLE 2.4: HOXA5-HOXA6 intergenic region.

PCR Fragment Oligo Sequence (5'-3') Tm (°C)
Amplification 
product (bp)

p i
lU TTGAAGTGGAACTCCTTCTCCAGC

66 535
IL AAACAGGCTCCCCAACCCTGC

P2
2U GCCGCCTCCCGTTTCCAGCC

66 5792L TGCGCAAGCTGCACATAAGTCATG

p3
3U CATGACTTATGTGCAGCTTGC

60 474
3L TGAGCGAGAATTCAGGGACTC

p4 4U GAGTCCCTGAATTGCTCGCTC
60 510

4L TTTGCCATAATGGGTGTAACC

p5 5U GCCCGCCGCCAGTTGCCG
60 553

5L GTGTATGGAATTTGACCTGCGC

p6 6U GGCGAGGTCAAATTCCATACAC
66 668

6L CCAACAGAGCCCAGTCTCTCG

p7
7U CGAGAGACTGGGCTCTGTTGG

66 530
7L ACTTTTCTCCCCGCCTGCTCC

p8 8U GGAGCAGGCGGGGAGAAAAG
60 546

8L TAGGTGGAAAACATCTCGCTTG

p9 9U ACCAAGCGAGATGTTTTCCACC
60 627

9L GAGCTTCATACACCTGTCTTG

plO lOU CAAGCAAGGTGTATGAAGCTC
60 619

lO L GCGGGTAAGACATATCCCAAGAC

p l l IIU GTCTTGGGATATGTCTTACCCGC
60 511

IIL GCCAGATGTACTAATACACAAC

p l2 12U GTTGTGTATTAGTACATCTGGC
60 377

12L AAAAGGGGAGGAGGAAGGAGG

p l3 13U CCTCCTTCCTCCTCCCCAAAAA
60 548

13L TCGGTCCTTTCTTGTTGAAACC

p l4 14U GGTTTCAACAAGAAGGACCG
60 66814L CAGAAATCCATCCAAATCACG

TABLE 2.4
The intergenic region between the HOXA5-HOXA6 genes has been divided into 
14 amplifiable fragments (pi to p i4). 
PCR conditions:
1 cycle: 94°C x 2’
35 cycles: 94°C x 1’

Tm°Cx r  
72°Cx r  

1 cycle: 72°C x 5’
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TABLE 2.5: HOXA genomic microarray. Part I.

Fragmen Plasmid
Clone Oligo Sequence (5'-3')

PCR
Programme/
MgC12(mM)

Amplification 
Product (bp)

Restriction
Pattern

DNA
Content

1 248.16 248.161owI: ATGCTGTGTAGTCGAGGC C/1 5
1865 Smal UG248.16up: ATTGCGCGGCTGGAGAAG

2- 248.16 248.16 uni: TGGATGGCAACATACCAG F/1 5
1874 Hindill U248.16 lowll: TGGCATTAAGGCAACATGC ■

3 248.16 248.16upll: TCCTGAGTGCCAAATCCTG I /I 5 1950 Stul RG248.1610W: ATGACACCCTGAAGAGTGG ■

4 248.1G1 N248.1G1 low: AGTCCAGGACTTGCATCC T 1255 Smal CT7: TAATACGACTCACTATAGGG
5 248.1G1 248.101 up: TGATCTTGCCCTCGCCTC F/1 5 1625 Smal UT3: ATTAACCCTCACTAAAGGGA ■

6 248.1 10366.1U: GTCTGAGACTGATTCTTGTC F/1 1216 ApaLl R10363.1L: AGATAGATTTCATTTCCAAAGG
7 248.1 10366.2U: AGATCCACGGTAGTCACAGG 1035 PstI R10366.2L: TGCTCCTTCCACCTTATCAC
8 248.1 10366.3U: GGTGATAAGGTGGAAAGGAGC 1500 BamHI R10366.3L: CGGGAGCCAGGTGAGGTTG
9 248.1 10366.4U: CAACCTCACCTGGCTCCCG P/1 1507 Apal R10366.4L: AGGCAGTTTTAACCTCTTAGG
10 248.1 10366.5U: TGGTGAGTCCTGCTC TTTCC F/1 1655 PstI R10366.5L: CGCTTCCCCCTTCTGCCTTG

11 248.1 10366.6U: CAAGGCAGAAGGGGGAAGCG 1351 Xhol U10366.6L: GGAGTGAGAGATCAAGGAGTG
12 248.1 10366.7U: CTCCTTACTCGGCTTTCATCTC 1160 Apal U10366.7L: AGTGGATGGCGTTTGAGGTAG
13 248.1 10366.8U: CGACTTCACTCTCTTCTACCTC E/l 915 Xbal C10366.L: GCAGGGGCAGCGGGACTC

14 248.2 5966.1U: ACTCCAGTCTTCTTCAATTCCC E/l 1250 Sphl c5966.1 L: GGTGGTAATTTCATACAGAGTG
15 248.2 5966.2U: CCACCCCATTTTAATAAAGTCC E/l 1307 Stul R5966.2L: GAATGAAGCAACAACTCCTTAC

16 248.2 5966.3U: GCTTCATTCCTCTTCCTTTCAG E/l 1433 Stul R5966.3L: ACTGTCCTTCCCTCATAACCC
17 248.2 5966.4U: TCATAGAGAAAGTGGATTCATG E/l 1092 Bglll R5966.4L: GGAGTTTACCTTACTATTCTTAG
18 248.2 5966.5U: CTAAGAATAGTAAGGTAAACTC H/l 1132 Smal R5966.5L: GCCTGGAAATACTGATAGATGC
19 248.16 T3: ATTAACCCTCACTAAAGGGA A/2 973 PstI RT7: TAATACGACTCACTATAGGG

20A 248.62 248.6210W: GAGCTTGGCAACATGGTC 0/1.5 1782 Hindin RT7: TAATACGACTCACTATAGGG
2GB 248.62 T3: ATTAACCCTCACTAAAGGGA 0 /2 1691 HindIII R248.62UP: GTATGAACTGAGCTCACG
21 248.35 5054.1 U: GGGCTGTTCTTGATCTCCTTAC E/l 1235 Stul R

5054.1 L: TAGGGGTCACATAACTTAACC
22 248.35 5054.2U: TAGAACACAAATGAAGGATGG E/l 1204 Stul R

5054.2L: GTGGTGACAGGTTGATGACTC
23 248.35 5054.3U: GGAACAGAAATCAGTGGCAGC E/l 1449 Stul R

5054.3L: AAGAGGGTGGATCACGGTTTG
24 248.35 5054.4U: AAACCGTGATCCACCCTCTTC E/l 1391 Stul R

5054.4L: GAGAACTTTTAACCCCCTTGG
25 248.32 248.321owI: AATCCAAGGCTGGTATGATG F/l 1971 Xbal U

T7: TAATACGACTCACTATAGGG
26 248.32 248.32upl: GTATGTATTAGCTATTGAGG F/l 1899 Stul R

248.321owII: AACCTGGAGCAGCTTCGG
27 248.32 248.32upll: ATFGTTCGAAGTATCTAT F/l 2147 Xhol U

248.321owlll: AACACTGGATTGCTGTGAG

28 248 32 248.32uplll: TGTAGATATCCAGGATCAG F/l 2044 Xbal R■ T3: ATTAACCCTCACTAAAGGGA
29 1589 1 1589.1: CCTTCTGCCCATAGAGAGTCC C/l 1662 BamHI R■ 1589.2: CCCACCAGCACCTCCTAACC

30A 23G 93 T3: ATTAACCCTCACTAAAGGGA 0/1.5 1469 Sacl R■ 230.931OW: GACACACTAAGGACTGAGG
3GB 23G 93 230.93UP: TACCTCAGTCCTTAGTGTG L/l 1329 Sacl R■ T7: TAATACGACTCACTATAGGG

31 341 1 T7: TAATACGACTCACTATAGGG F/2 689 Apal U■ SF6: GATTTAGGTGACACTATA

32 23G 93 T3: ATTAACCCTCACTAAAGGGA C/l 2065 Sacl U■ T7: TAATACGACTCACTATAGGG
33 23G 89 T3: ATTAACCCTCACTAAAGGGA B/1 806 Sphl C■ T7: TAATACGACTCACTATAGGG

34 230-2
N230.21owl: TTCTTCTCCGCTCGCACC L/l 1814 PstI u
T3: ATTAACCCTCACTAAAGGGA

35 N230.2upl: AGAAGCTGGAGCAGAGCC I/l 975 PstI c
1230.21OW: ATGACAGCCTCCGTGCTC
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TABLE 2.5: HOXA genomic microarray. Part II.

Fragment Plasmid
Clone Oligo Sequence (5-3')

PCR
Programme/
MgC12(mM)

Amplification 
Product (bp)

Restriction
Pattern

DNA
Content

36 230.2 1230.2u d : CACGGAGGCTGTCATAGC 901 PstI
N230.2!owll; TACCAGGTCAGAGCAAGG

37 230.2 230.2upll: TTGCTCTGACCTGGTAAC 1876 BamHI U
T7: TAATACGACTCACTATAGGG

38 230.81 T3: ATTAACCCTCACTAAAGGGA 926 PstI U
T7: TAATACGACTCACTATAGGG

39 2631.1 12631.11ow; AATGGTCATTGATAGTGTCG N/1 818 PstISP6: GATTTAGGTGACACTATA
40 2631.1 12631 .lup: GATCGACACTATCAATGACC 599 Xhol UN2631.11ow: AACCTCTCCTGAGGACTC
41 2631.1 2631.lup: AAGAAGTTGTGAGTCCTCAG 1506 Xbal p

T7: TAATACGACTCACTATAGGG
42 230.12 230.121OW: TAGGAACATAGGGCCGACTTG 2310 Hindin

T3: ATTAACCCTCACTAAAGGGA

43 230.12 N230.12UP: AAGTCGGCCGTATGTTCC 1091 Apal u1230.121OW: TCTTGGCAGCGTGGAAGG
44 230.12 I230.12UP: AACCACCTTCCACGCTGC 1134 PstI p

T7: TAATACGACTCACTATAGGG

45 230.9 T3: ATTAACCCTCACTAAAGGGA 1689 Xhol uT7: TAATACGACTCACTATAGGG
46 230.14-1 230.141owl: ACGGTTCATTATCCTTGAG r/1 1917 HindillT3: ATTAACCCTCACTAAAGGGA

47 230.14-1 230.14upl: GCTTTGCTCTTCAGCACTG C/l 2004 PstI u
230.141owll: TCCAGTTCTAAGGCCAGAG

48 230.14-1 230.14upll: TGAATCTATCAGGTGCAATC C/l 1984 Notl p
230.141owlll: CAGACACGCAGACATGAAC

49 230.14-1 230.14uplll: CAGTCCTCCTGGCTAGAC 1/1.5 1855 Xbal p
230.141owlV: ACACAGAGTGGACTGTTCC

50 230.14-1 230.14uplV: AACTGCCACACTCCACAG c/l 1890 Apal p
230.141owV: CTTCTGCCCAACTGCATG

51 230.14-1 230.14upV: TAGGCCTTCGCTGAGCAC N/l .5 2153 PstI p
230.141owVI: TGAGAGCTCAACTCTCGTC

52 230.14-1 230.14upVl: TGAGAGCTCAACTCTCGTC C/l 1925 Stul u230.141owVII: TGCCTTGTTGGTCACTGC

53 230.14-1 230.14upVll: ACTGTGGCTTGTCCAGAG C/l 873 Xbal u
T7: TAATACGACTCACTATAGGG

54 64.22 164.221owl: CCACAGCGCATCTCTAGC C/l 1026 Notl p
6180-64.22up: AGGCTCAGGATGGAAGCG

55 64.22 164.22upl: GCTAGAGATGCGCTGTGG N/l 852 Hindill uN64.221owl: ACTGGTAACATGTGACAAG

56 64.22 64.22upl: AATTGTGGTGTGCTTGTCAC F/2 1948 Stul u64.221owII: ATAGCGCGGATGTTTGTAAG

57 64.22 N64.22upll: ACATCCGCGCTATCTGCG C/l .5 1096 PstI p
I64.221ow2: GCAAGCGCAATGAGGCAG

58 64.22 164.22up2: TGCCTCATTGCGCTTGCC P/l .5 871 Apal p
T3: ATTAACCCTCACTAAAGGGA

59 6180.1 6180.11owl: TACATGCGCTCCTGGCTG C/l 2164 HindIII uT3: ATTAACCCTCACTAAAGGGA

60 6180.1 6180.1upl: ACAGCGGTTCAGGTTTAATG F/2 2175 Apal u6180.11owll: TACTGGAACTGCTGGTGAG

61 6180.1 6180.1upll: TGTGCCTGCAACAGTGTGT F/2 2219 HindIII p
T7: TAATACGACTCACTATAGGG

62 1635.11 T7: TAATACGACTCACTATAGGG C/l 1795 HindIII uSP6: GATTTAGGTGACACTATA

63 P1-P2 T7: TAATACGACTCACTATAGGG C/l 1729 PstI p
SP6: GATTTAGGTGACACTATA

64 P3-P4 T7: TAATACGACTCACTATAGGG C/l 2187 PstI p
SP6: GATTTAGGTGACACTATA

65 P5-P6 T7: TAATACGACTCACTATAGGG c/l 2276 Sacl p
SP6: GATTTAGGTGACACTATA

66 p p„ T7: TAATACGACTCACTATAGGG c/l 1695 PstI p
SP6: GATTTAGGTGACACTATA

67 T7: TAATACGACTCACTATAGGG B/1 1334 HindIII p
SP6: GATTTAGGTGACACTATA

68 T7: TAATACGACTCACTATAGGG B/1 1370 PstI p
SP6: GATTTAGGTGACACTATA

69 PQ Pin T7: TAATACGACTCACTATAGGG C/l 2101 BamHI u
SP6: GATTTAGGTGACACTATA

70A P li P12 PI 1 : TTCCAGGCTTCCTTCTCCCC H/2 805 Smal p
NPI2: TCGCAGATCCGTGGATGC

70B PII P12 NPl 1 : CTGCATCCACGGATCTGC Q/1.5 966 Smal p
PI 2: CCCCCGAAACCTGCGACCTG

71 P13 P14 PI3: GAGCGGTGAGGGTCGGGC D/l 712 Smal uPI4: CTTCCCCCACTCCACGAC
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TABLE 2.5: HOXA genomic microarra. Part III.

Fragment Plasmid
Clone Oligo Sequence (5-3')

PCR
Programme/
MgC12(mM)

Amplification 
Product (bp)

Restriction
Pattern

DNA
Content

72 P15-P16 T7: TAATACGACTCACTATAGGG 1311 Xhol U
SP6: GATTTAGGTGACACTATA

73 P17-P18 T7: TAATACGACTCACTATAGGG 1086 Stul U
SP6: GATTTAGGTGACACTATA

74 1865.17 T7: TAATACGACTCACTATAGGG 2025 PstI CSP6: GATTTAGGTGACACTATA

75 3172.30 T7: TAATACGACTCACTATAGGG 1691 PstI C
SP6: GATTTAGGTGACACTATA

76 64.34 N64.341owl: TACACGCGCTACCAGACC M/1 5 2148 Smal C
T7: TAATACGACTCACTATAGGG ■

77 64.34 64.34upl: GTCTGGTAGCGCGTGTAG F/1 5 2282 Xhol c
64.341owll: TTGTAGCTGCTGCTGCTG

78 64.34 64.34upll; GAGGATGCAGAGGATTGG 2327 Xhol c
T3: ATTAACCCTCACTAAAGGGA

79 986.41 986.41UP: TTGGGCACTGAAGACACC 1152 BamHI c
986.411ow: TTCAATAACTCAGGCTGCC

80A 3572.31 T3: ATTAACCCTCACTAAAGGGA n /1 5 1962 HindIII uN3572.311ow; GGTCACACTTACTTAGTGG
80B 3572.31 3572.31upl: GGCAAGCCATGGACAGAC 0/1 5 2049 HindIII u

T7: TAATACGACTCACTATAGGG ■

81 4355.21 4355.21 low: TCTTGGATATTGTGTAAAGGC r /2 2313 HindIII c
T7: TAATACGACTCACTATAGGG

82 4355.21 4355.2lup: TCTGAACCTTCCTCAATCTC c /2 2315 HindIII uT3: ATTAACCCTCACTAAAGGGA

83 5000.11 5000.1 llow: TTGAGATGGCTACAGTCAG c/l 2388 PstI cT3: ATTAACCCTCACTAAAGGGA

84 5000.11 N5000.1 lup: AGCTAGCTGACTGTAGCC N/l 1077 Xbal c
15000.1 llow: GTGAGATGTGGGTATGTG

85 5000.11 15000.1 lup: ACATACCCACATCTCACCG G /l.5 558 PstI c
15000.1 llow2: CACTGCCTCCTACTACGC

86 5000.11 15000.1 lup2: GTAGTAGGAGGCAGTGGG 0/1.5 871 EcoRI c
4355-50001OW: CTGACACGCAAGGAGCAG

87 11.4 11.4-lU: GAAACTTCGTATTCCTCTGCC D/l 1531 Xbal c
11.4-IL: ACGCTGGACCTTCATCTTGAG

88 11.4 11.4-2U: CAAGATGAAGGTCCAGCGTCC E/l 1573 Hindill c
11.4-2L: CTAACATTCGGGAGAGAGAGG

89 11.4 11.4-3U: CCGAATGTTAGAATAAGGAGC E/l 1448 Xbal c
11.4-3L: ATACAATGGCAGGCTGTGAGG

90 11.4 11.4-4U: GAGTTTGCTAACACCCACACC E/l 1413 PstI R
11.4-4L: GGCTTTAAGAGTTTTCATTTGC

91 11.4 11.4-5U: GAGCAAATGAAAACTCTTAAAGC E/l 1747 Stul R
11.4-5L: ATCATCGGTTCTTCCTACGG

92 11.4 11.4-6U: AGCCCTGATGAAAGAAGGAAG E/l 1498 PstI U
11.4-6L: GCTCGGTGACCATTTGCTGG

93 11.4 11.4-7U: CTTTCTGGGAGTGGGAGATG E/l 1503 BamHI u
11.4-7L: GCTCAGACAGGTGGACTGGC

94 11.4 11.4-8U: CTATGACTAGGGTGGCTTGG E/l 1039 Xbal R
11.4-8L: TAGATAGATGGGGGAGGAGGG

95 11.25 11.2510W: AGAGGGACTAAGATTCTGAGTGTG F/l .5 2283 Apal C
T7: TAATACGACTCACTATAGGG

96 11.25 NI 1.25up: ACACTCAGAATCTTAGTCC N/l 1066 BamHI U
111.2510W: TCCAGAGAGACAATAGGGC

97 11.25 111.25up: TCTCTCTGGAAGATGTGCC N/l 504 PstI u
111.251ow2: TCTCGGCTGATGCTGAGG

98 11.25 111.25up2: AGCATCAGCCGAGATGGC N/l 598 Sacl c
11.4-lUrevlow: AGAGGAATACGAAGTTTCTC

99 11.31 T3: ATTAACCCTCACTAAAGGGA C/l 2228 Bgll u
T7: TAATACGACTCACTATAGGG

100 1085 11 T7: TAATACGACTCACTATAGGG C/l 1468 EcoRl c■ SP6: GATTTAGGTGACACTATA

lOlA 11 21 11.2llow 1 : GGGAGCACTCGCTGTATC Q/1.5 1398 PstI c■ T7: TAATACGACTCACTATAGGG
lOlB 11 21 11.21 low: AAAGCTGCCATCCCAGGGTTC H/2 910 PstI c■ 11.21upl: TACAGCGAGTGCTCCCTG

102A 11 21 11.211ow2: AGAAGCAGGCACTGGAGC G/2 1024 Xhol u■ 11.2lup: AGAGGAGAGCAGGAAATGCAAG

102B 11 21 11.21UP2: AATGGCTCCAGTGCCTGC 0/1.5 1169 Xhol u■ T3: ATTAACCCTCACTAAAGGGA

103 T3: ATTAACCCTCACTAAAGGGA A /1.5 1190 BamHI c
T7: TAATACGACTCACTATAGGG

104 1 l.lllow l: AACGGTGATCCATCACTGC C/l 2031 PstI c
T7: TAATACGACTCACTATAGGG

105 11.1 lupl: ACGGTGTCAGCCAATGGC C/l 1755 Xbal u
11.11 lowll: ACTTCGGTACGTGGACAAC
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TABLE 2.5: HOXA genomic microarray. Part IV.

Fragment Plasmid
Clone Oligo Sequence (5'-3')

PCR
Programme/
MgC12(mM)

Amplification 
Product (bp)

Restriction
Pattern

DNA
Content

106 11.11 11.1 lupll: GTGTACAATGTTGGAATCAG r /1 2062 PstI U11.1 llowlll: TCTGGTTCAGTCACTCTAG
107 11.11 11.11 uplll; TGCTAACCTGACTTCGAAG r /1 2180 PstI CT3: ATTAACCCTCACTAAAGGGA

108 1915.6 T7; TAATACGACTCACTATAGGG r /1 2165 BamHI uSP6; GATTTAGGTGACACTATA
109 pD T7: TAATACGACTCACTATAGGG 1 1591 Smal RSP6: GATTTAGGTGACACTATA
110 pE 11976.2U2: CCCTCCCTTGCCCCAAAATG 842 Sau3AI R11976.2L2: TATAGTATAGATGAAACATTAGTC
111 pH T7: TAATACGACTCACTATAGGG 1 1736 Hindlll R

SP6: GATTTAGGTGACACTATA
112 83.57 11976.4U: GTGTTTTCTTGGTGGGTAAAG E/l 1405 Hindlll R

11976.4L; ACATTTATATTTTAGAAGCCTGG
113 pX T7: TAATACGACTCACTATAGGG N/2 1896 PstI R

SP6: GATTTAGGTGACACTATA
114 PY 11976.6U: CCCAAGTCCTTGTTCACTTATG E/1.5 1492 PstI R11976.6L: CCCCAACCCCCGAAATATCAGC
115 pS 11976.7U: CGTGTTGCTGATATTTCGGGG E/l 1454 Xbal R11976.7L: GGATCAGAAAAAGGCACCCAG
116 83.57 11976.8U: CTGGGTGCCTTTTTCTGATCC E/l 1172 Hindlll R11976.8L; GGGTCACTTTAGAATGAGTCC
117 pAB T7: TAATACGACTCACTATAGGG N/1 1115 Seal USP6: GATTTAGGTGACACTATA
118 pU 16079.1 U: GAAAACAATCATGTTGAAATCCC E/l 1426 Xbal R160791 .L: GCTACCTCTACCAAGAAGATAC
119 pV 16079.2U: CACAGTATCTTCTTGGTAGAGG E/l 1521 Sphl R

16079.2L: GTCTTCTTCCATCTTCTCTTCC
120 pZ 16079.3U: AGAAATAAATGGGAGTCAGTGG E/l 1574 Xbal R

16079.3L: ATCTGTGGCTAAGGGAAGAGC
121 83.24 16079.4U; CCACACTTTTCAGAGAAGAAC E/l 1360 Smal R

16079.4L: GGGAATAGACATTTAGAGGAAC
122A 83.24 J-16079.5U3:CCAGTTGGAAAGATGTGAGAAAG T/1.5 1282 Smal RJ-16079.5L3: TGACCTAAGAATGACCCTGAGC
122B 83.24 J-16079.5L2; TTTCTCACATCTTTCCAACTGG S/1.5 561 Smal R16079.5U: GTTCCTCTAAATGTCTATTCCC
123 83.24 16079.6U: CGTTTGTATCGCTGTTTATCAG E/l 1555 BamHI R

16079.6L: TCTCATCCCTCCTGTTCATCTG
124 83.24 16079.7U: GATGAGAGGACTATGGTAACAG E/l 1704 Seal R16079.7L: TCTCATCCCTCCTGTTCATCTG
125 83 24 16079.8U: GATGAGAGGACTATGGTAACAG E/l 1475 PstI R■ 16079.8L; CCTGTATTTGATGTGTATCTCG
126 83 23 16079.9U: GAGATACACATCAAATACAGGT E/l 997 Smal R■ 16079.9L: TCGCTTGAACTGGAATTGAAC

127 A T7; TAATACGACTCACTATAGGG N/1 1234 Smal RSP6: GATTTAGGTGACACTATA
127B 16079.1 OU: TCATTTGATAATAAAGAAGTAGC R/1 925 Smal RBlow: GATTCTCCTGCCTCAGCC
128 83 24 16079.1 lU: GGCATACCATCTACCCCTTCC E/l 880 PstI R■ 16079.1 IL: ATATTGCTTGAATTAACATACTGC
129 1254 1 T7: TAATACGACTCACTATAGGG B/1 1536 Sael R■ SP6: GATTTAGGTGACACTATA

TABLE 2.5
The entire HOXA locus was subcloned into 137 amplifiable fragments that were 
spotted on a glass slide.
The sequences of each oligo pairs as well as the PCR condition, including 
MgC12 concentration, are specified.
The identities of all amplified fragments were verified by restriction analyses 
with the indicated enzymes.
“DNA content” refers to the presence of repetitive elements (R), low complexity 
DNA (C) or unique DNA (U) in the corresponding amplified fragments. 
Repetitive elements and low complexity DNA were identified with Repeatmasker 
(http://repeatmasker.genome.washington.edu/cgin/RepeatMasker).
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TABLE 2.5: HOXA genomic microarray. Part V.

P C R  p rogram m es

A B C D

Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’

30x: 94°C 3 0 ” 35x: 94°C 3 0 ” 35x: 94°C 4 5 ” 35x: 94°C 45

50°C 3 0 ” 55°C 3 0 ” 55°C 4 5 ” 60°C 45

72°C r 72°C l ’4 0 ” 72°C T 72°C 2 ’

Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’

E F G H
Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’

35x: 94°C r 35x: 94°C 4 5 ” 35x: 94°C r 35x: 94°C 45

60°C r 50°C 4 5 ” 56°C r 58°C 45

72°C 2 ’ 72°C 2 ’ 72°C 2 ’ 72°C 2 ’

Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’

I L M N
Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’

35x: 94°C r 35x: 94°C r 35x: 94°C r 35x: 94°C r
58°C r 55°C 4 5 ” 54°C r 55°C r
72°C 2 ’ 72°C 2 ’ 72°C 2 ’ 72°C 2 ’

Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’

O P Q R
Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’ Ix: 94°C 5 ’

35x: 94°C r 35x; 94°C 4 5 ” 35x: 94°C r 35x: 94°C r
53°C r 52°C 4 5 ” 5 T C r 55°C r
72°C 2 ’ 72°C l ’4 0 ” 72°C r 72°C r

Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’ Ix: 72°C 5 ’

S T
Ix: 94°C 2 ’ Ix: 94°C 2 ’
35x: 94°C r 35x: 94°C 1’

65°C r 60°C r
72°C l ’2 0 ” 72°C l ’2 0 ”

Ix: 72°C 5 ’ Ix: 72°C 5 ’
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TABLE 2.6: X-ChIP/PCRs. Part I.

PCR
Fragment

O ligo Sequence 5 -3 '
A m plification  
product (bp)

Plasm id
C lone

p l5
1254.1U CATTTTCCTCTTATGGCACTT

IISO 1254.1
1254.1L TGAGTTTCAATACAGGCAACC

p l6
5054.1U GGGCTGTCTTGATCTCCTTAC

1235 248 .35
5054.1L TAGGGGTCACATAACTTAACC

p l7
5054 .2U TAGAACACAAATGAAGGATGG

1204 248 .35
5054.2L GTGGTGACAGGTTGATGACTC

pis 5 054 .3U GGAACAGAAATCAGTGGCAGC
1449 248 .35

5054 .3L AAGAGGGTGGATCACGGTTTG

p l9
5054 .4U AAACCGTGATCCACCCTCTTC

1391 248 .35
5054.4L GAGAACTTTTAACCCCCTTGG

p20
5966 .1U ACTCCAGTCTTCTCAATTCCC

1250 2 48 .2
5966.1L GGTGGTAATTTCATACAGAGTG

p21
5966 .2U CCACCCCATTTTAATAAAGTCC

1307 248 .2
5966 .2L GAATGAAGCAACAACTCCTTAC

p22
5966.3U GCTTCATTCCTCTTCCTTTCAG

1433 248 .2
5966 .3L ACTGTCCTTCCCTCATAACCC

p23
5966 .4U TCATAGAGAAAGTGGATTCATG

1092 248 .2
5966 .4L GGAGTTTACCTTACTATTCTTAG

p24
5966 .5U CTAAGAATAGTAAGGTAAACTC

1132 248 .2
5966 .5L GCCTGGAAATACTGATAGATGC

p25
10366.1U GTCTGAGACTGATTCTTGTC

1216 248.1
10366.1L AGATAGATTTCATTTCCAAAGG

p26
10366.2U AGATCACACGGTAGTCACAGG

1035 248.1
10366.2L TGCTCCTTCCACCTTATCAC

p27
1 0366 .3U GGTGATAAGGTGGAAGGAGC

1500 248.1
10366.3L CGGGAGCCAGGTGAGGTTG

p28
10366.4U CAACCTCACCTGGCTCCCG

1507 248.1
10366.4L AGGCAGTTTTAACCTCTTAGG

p29
10366.5U TGGTGAGTCCTGCTCCTTTCC

1655 248.1
10366.5L CGCTTCCCCCTTCTGCCTTG

p30
10366.6U CAAGGCAGAAGGGGGAAGCG

1351 248.1
10366.6L GGAGTGAGAGATCAAGGAGTG

p31
10366.7U CTCCTACTCGGCTTTCATCTC

1160 248.1
10366.7L AGTGGATGGCGTTTGAGGTAG

p32
10366.su CGACTTCACTCTCTTCTACCTC

915 248.1
10366.SL GCAGGGGCAGCGGGACTC

p33
16079.1U GAAAACAATCATGTTGAAATCCC

1426 83 .24
16079.1L GCTACCTCTACCAAGAAGATAC

p34
16079.2U CACAGTATCTTCTTGGTAGAGG

1521 83 .24
16079.2L GTCTTCTTCCATCTTCTCTTCC

p35
16079.3U AGAAATAAATGGGAGTCAGTGG

1574 83 .24
16079.3L ATCTGTGGCTAAGGGAAGAGC

p36
16079.4U CCACACTTTTCAGAGAAGAAC

1360 8 3 .24
16079.4L GGGAATAGACATTTAGAGGAAC

p37
16079.5U GTTCCTCTAAATGTCTATTCCC

1634 83 .24
16079.5L AAATAAGCAGAGTTGTGAGTGG

p38
16079.6U CGTTTGTATCGCTGTTTATCAC

1555 83 .24
16079.6L TCTCATCCCTCCTGTTCATCTG

p39
16079.7U GATGAGAGGACTATGGTAACAG

1704 83 .24
16079.7L GGATTGGTTGGTGAGGACTGC
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TABLE 2.6: X-ChIP/PCRs. Part II.

PCR
Fragment

O ligo Sequence 5 -3 '
A m plification  
product (bp)

Plasm id
C lone

p40
16079.8U CAGTCCTCACCAACCAATCCC

83.24
16079.8L CCTGTATTTGATGTGTATCTCG

1475

p41
16079 .9U GAGATACACATCAAATACAGGT

83.24
16079.9L TCGCTTGAACTGGAATTGAAC

998

p42
16079.10U TCATTTGATAATAAAGAAGTAGC

83.24
16079.10L AATAGAGGCTGTCATAATCTG

1965

p43
16079.1 lU GGCATACCATCTACCCCTTCC

83.24
16079.1 IL ATATTGCTTGAATTAACATACTGC

861

p44
11976.1U CAACTACACTTTGTATTCCTAGTC

83.57
11976.1L ACATTTTGGGGCAAGGGAGGG

1431

p45
11976 .2U TCTTTAACCCTCCCTTGCCC

83.57
11976.2L TATAGTATAGATGAAACATTAGTC

849

p46
11976.3U TCTTGACTAATGTTTCATCTATAC

1558 83.57
11976.3L CCCTTTTCTTTACCCACCAAG

p47
11976.4U GTGTTTTCTTGGTGGGTAAAG

1405 83.57
11976.4L ACATTTATATTTTAGAAGCCTGG

p48
11976.5L AACAACCTAACACCAGGCTTC

1720 83.57
11976.5U CATAAGTGAACAAGGACTTGGG

p49
11976 .6U CCCAAGTCCTTGTTCACTTATG

1492 83.57
11976.6L CCCCAACCCCCGAAATATCAGC

p50
11976.7U CGTGTTGCTGATATTTCGGGG

1406 83.57
11976.7L GGATCAGAAAAAGGCACCCAG

p51
11976.8U CTGGGTGCCTTTTTCTGATCC

1172 83.57
11976.8L GGGTCACTTTAGAATGAGTCC

p52
11976.9U TCATCTCTTCTTGAACTTTCGG

937 83.57
11976.9L TGCTGGGTTCTGAGGTTGCC

p53
1 1 .4 -lU GAAACTTCGTATTCCTCTGCC

1531 11.4
1 1 .4 -lL ACGCTGGACCTTCATCTTGAG

p54
11.4-2U CAAGATGAAGGTCCAGCGTCC

1573 11.4
11.4-2L CTAACATTCGGGAGACAGAGG

p55
11 .4-3U CCGAATGTTAGAATAAGGAGC

1448 11.4
11.4-3L ATACAATGGCAGGCTGTGAGG
11.4-4U GAGTTTGCTAACACCCACACC

1413 11.4p56
11.4-4L GGCTTTAAGAGTTTTCATTTGC
11.4-5U GAGCAAATGAAAACTCTTAAAGC

1747 11.4p57
11.4-5L ATCATCGGTTCTTCCTACGG
11.4-6U AGCCCTGATGAAAGAAGGAAG

1498 11.4pJo
11.4-6L GCTCGGTGACCATTTGCTGG
11.4-7U CTTTCTGGGAGTGGGAGATG

1503 11.4p59
11.4-7L GCTCAGACAGGTGGACTGGC
11.4-8U CTATGACTAGGGTGGCTTGG

1039 11.4p60
11.4-8L TAGATAGATGGGGGAGGAGGG

TABLE 2.6: X-ChIP/PCRs.
The EcoRI enriched fragments were divided into 60 amplifiable subfragments. 
Plasmid clones used as positive controls in the PCR reactions are shown. 
All primer pairs work at the same PCR conditions:
1 cycle: 94°C  x T  
35 cycles; 94°C  x 1 ’

6 0 ° C x  r  

72 ° C x  r  30”
1 cycle: 72°C  x 1 ’

147



TABLE 2.7: the X-ChIP/PCR amplified fragments contain different REs

PC R
Fragm ent

L IN E SIN E L TR
E lem ent

D N A
E lem ent

L ow
C om p lex ity

S im p le
repeat

pl5 LINE2
AluSq
AluSg

pl6 AluSg CT-rich (TCCC)n

p20 MIR
MIR

p21 AluSx MLTIJ
MLTIJ

p22
MIR
MIR
MIR

p26 MIR
AluSx

p28 MIR
p31 GA-rich
p32 AT-rich

p36 AluJ
AluY

p43 AluJb
p47 AluSq LTR67 MER46B
p51 A-rich

p53 (CA)n
(TA)n

p56
p57 AluSg (TG)n

TABLE 2.7
The X-ChlP/PCR positive fragments were analyzed for the presence of REs, low 
complexity DNA and simple repeats with Repeatmasker. Fragments p31, p32, p51, 
p53 contain only low complexity DNA or simple repeats. Neither REs nor low 
complexity DNA and simple repeats were identified in the fragment p56.
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TABLE 2.8: H.sapiens HOXB cluster genes.

Gene
mRNA

Accession
number

cDNA position (bp) Coding (bp)

HOXB] NM 002144 223968-224550; 225003-225426 223974-224550; 225003-225331
H 0X B2 NM 002145 209697-210207; 210980-212072 209757-210207; 210980-211659

H0XB3 NM_002146 180269-180880; 199107-199197 
202093-202699; 203544-204840

202252-202699; 203544-204392

H0X B4 NM_024015 176326-176854; 177696-178259 176398-176854; 177696-177994
H0XB5 NM 002147 160960-161595; 162260-163458 161034-161595; 162260-162507

H 0X B6 #1 NM 156037 156261-156978; 158042-158963 156564-156978; 158042-158301

H 0X B6 #2 NM _018952 149741-149851; 1500098-150233 
156486-156978; 158042-158963

156564-156978; 158042-158301

H 0X B6 #3 NM_156036 156261-158963 156564-156986
H0X B7 NM 004502 143694-144192; 146618-147481 143793-144192; 146618-146871
H0XB8 NM 024016 139760-140418; 141202-142365 139995-140418; 141202-141509
H 0X B9 NM 024017 128355-128957; 131575-133554 128441-128957; 131575-131809

HOXB 13 NM 006361 26007-26737; 27683-28224 26137-26737; 27683-27940
PRAC NM 032391 32210-32412; 32831-33008 32338-32412;32831 -32929

Pseudo rpL9 63023-63618

TABLE 2.8.
Alternative spliced forms of the human HOXB genes are indicated with “#” fol­
lowed by a number. Nucleotide positions of all genes refer to our DNA contig.
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TABLE 2.9: H.sapiens HOXC duster genes.

Gene
mRNA

Accession
Number

cD N A  Position (bp) Coding (bp)

H 0X C 13 NM _017410 76396-77246; 82601-84148 76511-77246; 82601-82860
HOXC 12 N M _173860 92534-93143; 93932-94170
H O C ll N M _014212 110749-111527; 112785-113489 110846-111527; 112785-113489

HOXCIO N M _017409 122774-123614; 126773-127883 122864-123614; 126773-127048
H 0X C 9 NM _006897 137697-138330; 140034- 140941 137793-138330; 140034-140278
H 0X C 8 NM _022658 146706-147324; 148693-148985 146889-147324; 148693-148985

H 0X C 6 #1 N M _004503 166014-166525; 167259-168418 166126-166525; 167259-167566

H 0X C 6 #2 N M _153693 154656-155018; 166180-166525  
167259-168418 166372-166525; 167259-167566

H 0X C 5 N M _018953 170652-171180; 171882-172965 170727-171180; 171882-172096

H 0X C 4#1 N M _014620 154493-155018; 190767-190883  
191524-191968; 192457-193186

191530-191968; 192457-192812

H 0X C 4 #2 N M _153633 191484-191986; 192457- 193186 191530-191968: 192457-192812

TABLE 2.9
Alternative spliced forms of the human HOXC genes are indicated with “#” fol­
lowed by a number. Nucleotide positions of all genes refer to our DNA contig.
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TABLE 2.10: H.sapiens HOXD cluster genes.

Gene
mRNA

Accession
Number

cD N A  Position (bp) Coding (bp)

H O X D l NM  024501 172568-173442; 173797-174896 172792-173442; 173797-174131

H 0X D 3 N M _006898
148066-148157; 153020-153644

155506-157087
153104-153644; 155506-156263

H 0X D 4 N M  014621 135374-136066; 136597-137212 135623-136066; 136597-136931
H 0X D 8 NM  019558 113738-114930; 115305-115989 114356-114930; 115305-115601
H 0X D 9 NM  014213 106349-107574; 107923-108785 106788-107574; 107923-108164

HOXD 10 N M  002148 100761-101567; 102943-103687 100823-101567; 102943-103220
H O X D l 1 NM  021192 91345-92125; 92896-93577 91345-92125; 92896-93131
HOXD 12 NM  021193 83791-84392; 84511-84749 83791-84392; 84511-84749
H O X D l 3 NM  000523 76793-77660; 78469-79061 76904-77660; 78469-78719

Evx2 M 93128 64096-64827; 66167-66438 67338  
67765

64096-64827; 66167-66438 67338  
67765

TABLE 2.10
Alternative spliced forms of the human HOXD genes are indicated with “#” fol­
lowed by a number. Nucleotide positions of all genes refer to our DNA contig.
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TABLE 2.11: “REs-distribution” in the human genome.

Chromosome Position Cbo) Lenght (pb) Genes Cluster (Y/N)

1 146631104-146634561 3458 HIST2H2BE-HIST2H2AC-
HIST2H2AB

Y

2 176928553-176981971 53418 HOXD cluster Y

6 27837795-27845806 8011 HIST1H2BL-HIST1H2AI-
HISTH3H-H1STH2AJ-HISTH2BM

Y

7 26840887-26947968 107081 HOXA cluster Y
11 877937-891072 13135 IFITM3-IFITM1-IFITM2 Y
11 2113242-2141711 28469 IGF2-IGF2AS-INS N
12 10854479-10862941 8463 TAS2R7-TAS2R8-TAS2R9 Y
12 54049322-54166110 116788 HOXC cluster Y
17 46962099-47045796 83697 HOXB2-HOXB9 Y
17 80517099-80531381 14283 MGC230806 -RAC3-DCXR N

TABLE 2.11
Ten human genomic loci are characterized by the presence of less than 5 REs 
and at least 3 transcribed cDNA. Genes and genomic coordinates of these loci 
derive from the Ensembl Genome Browser (www.ensembl.org). Putative genes 
are in italics. Eight of these loci (Y) correspond to gene clusters.
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TABLE 2.12: M.musculus Hoxa cluster genes.

G ene
m R N A

A ccession
Num ber

C oding (bp)

H oxa l N M _ 0 10449 154033-154673; 155150-155505
H oxa2 N M _ 0 10451 147595-147973; 148614-149353
H oxa3 Y 11717 139590-140118; 141497-142299
H oxa4 S70444 120550-121060; 121550-121896
H oxa5 N M _ 0 10453 107902-108463; 109421-109671
H oxa6 A F247663 103628-104068; 105628-105887
HoxaV N M _010455 94847-95222; 96222-96535
H oxa9 N M _010456 86148-86724; 87770-88008

H o x a l 0 N M _008263 77369-78294; 79472 -79746
H o x a l 1 N M _ 0 10450 66533-67241; 68660 -68892
H oxa l 3 N M _008264 51745-52388; 53104-53348

TABLE 2.12
Nucleotide positions of all genes refer to our DNA contig.

153



TABLE 2.13: M.musculus Hoxb cluster genes.

G ene
m R N A

A ccession
Num ber

C oding (bp)

H oxb l N M  008266 161610-162174; 162592-162922
H oxb2 N M _002145 147494-147976; 148733-149412
H oxb3 N M  010458 140032-140479; 141329-142182
H oxb4 N M  010459 114552-115004; 115811-116109
H oxb5 N M  008268 99396-99957; 100672-100919
H oxb6 N M  008269 94959-95375; 96451 -96710
H oxb? N M  010460 82506-82905; 85157-85412
HoxbS N M  010461 78741-79164; 79941 -80248
H oxb9 X M  147563 67320-67836; 70402 -70637

H oxb 13 N M  008267

TABLE 2.13

Nucleotide positions of all genes refer to our DNA contig.
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TABLE 2.14: M.musculus Hoxc cluster genes.

G ene
m R N A

A ccession
Num ber

C oding (bp)

H oxc4 N M  013553 137540-137978; 138453-138809
H oxc5 N M  008271 116905-117358; 118053-118265
H oxc6 X M  181367 112675-112829; 113556-113864
H oxc8 N M  010466 93606-94038; 95386-95678
H oxc9 N M  008272 84476-85013; 86718 -86962

HOXCIO N M  017409 69684-70434; 73623-73901
H O XC  11 N M  014212 57352-58033; 59295 -59527
H oxc 12 X M  111599 39679-40282; 41105 -41343
H oxc 13 X M _203647 24015-24744; 29996 -30252

TABLE 2.14.

Nucleotide positions of all genes refer to our DNA contig. HoxclO and H oxcll 
coding regions were mapped using the corresponding mRNA from H.sapiens.
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TABLE 2.15: M.musculus Hoxd cluster genes.

G ene
m R M A

A ccession
Num ber

C oding (bp)

H oxd l N M  010467 199978-200629: 200931-201265
H oxdS N M  010468 180932-181427 183194-183897
H oxd4 N M  010469 164151-164577 165134-165459

H O XD S N M  019558 142475-142989 143385-143668
H oxd9 N M  013555 134927-135704 136051-136292

H oxd 10 N M  0 13554 128851-129595 130962-131239
H o x d l 1 N M  008273 119264-120038 120774-121009
H oxd l 2 N M  0 08274 111958-112554 112685-112923
h o x d l3 N M  008275 105181-105949 106757-107007

E vx2 N M _007967
92495-93214; 94646 -94926  
95871-96298

TABLE 2.15.

Nucleotide positions of all genes refer to our DNA contig. 
HoxdS coding regions were mapped using the H.sapiens mRNA.
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Z : ’1 2 t o t o 3

X )
> § s t o 2 2 t o 1 ' S VO

I
.s .s E

B ë ë c 04
c 2 O

04
c M ë g B C4

C 3 1 § § § 1 4 )
s 2 2 S 2

T3 2 7 2 § 3 § 7 2
c
§ § §

c
o 7 2 2 2 2 2 o 3 3 3 o X

C2 ffi m PQ CO PL, X X PQ X b U b X b b b b X b b X PQ u u u u U CO

0 0

I
i n
i n
o o

§

CO i n o o OO o 0 0
VO 0 0 Ov Ov Ov o o i n
o o O O o VO
i n i n i n i n VO Tj-

o o o o CO CO CO CO i n
VO

"EZ CN i n 0 \ à \ Ov a s CO
o o VO a s o o o o 0 0 o o o
C l. R

o o
o o i n VO VO VO VO C "
TO o Ty­ Ty­ Ty­ CO

TO o CO c o c o c o i n
7 2 T)-
-t; r - CO
H) 0 0 ON t O CO VO VO VO o o VO VO VO 0 0 Ov CO Tj- o o o

(N VO m o 0 4 CO t ' ' 0 " t ' ' Ov C '' a s Ov VO i n Ov C '' i n Tj- VO 9 2" o o o i n i n i n T^ o TO 0 0 o o o o o o O C" CN CN VO CO VO
Tf- TO o o TO VO Ov VO TO TO Ty­ i n Ty­ CN CN CO CN a s o v a s OV

i n m Tj- o o m o o o m m CO CO c o CO c o i n i n i n i n VO VO VO VO C '' f '- t ' '
VO VO i n CO VO TO a s TO TO
r - CO VO CO 4 4 o 4 i n o o CD Ô Ô Ov Ô CN R 4 4 4 4 4 4 4
0 0 0 0 OO 0 0 o o o o ? i n O ' O ' C" o o C " o o o o r - t ' ' r ' C r Ov 2 7 o v

CO CO TO CO o o TO TO o v Ov Ov VO Ov f " r " t " r ' o o o o 2 7 a s
cfs T f T f Tj- -4" T)- TO o TO i n CO CO CO Tj- CO CO o v a s o v q v o p p
VO O ' O ' O ' O ' o - o o CO CO o o CO CO CO CO CO c o CO i n m i n i n VO VO VO VO C ''
TT TO TO TO TO

0 4 04 0 4 0 4 CN o 04 o o
2 70 0 OO OO o o o o 0 0 0 0 0 0 OV o o VO f" o o o o 0 0 o o t ' ' C '' l> C" Tj- F'

0 0 0 0 o o VO 0 0 0 0 0 0 r - ' o o o o o o o o o i n i n i n m m T j
c n m CO CO i n i n o o TO m o 0 0 VO Ov Ov o v o o o CO CO CO CO VO VO VO VO 3 ; VO VO
0 0 VO 0 0 o o VO o o CO CO o o VO CO m 0 0 VO Ov Ov Ov Ty­ Ov o o OO 0 0 OO o o o p

O ' O ' O ' O ' O ' o o CO ON o o CO Ov CN CN CN c o CN i n i n i n m VO VO VO VO f ' ' VO C "
0 0 0 0 0 0 o o VO O VO O '
T 0 0 O ' O ' OO I - 0 4 Ô OV ? 0 4 3 o v Ov

Ô 0 0 4 o o o o 4 CN 4 CO 4 i n 4 4 CO a s Ty-
0 0 "4- CO VO ON CN VO CN CN O ' O ' Ô TO 0 " o v CO i n a s CN r " CO i n CO o o ÇN
0 4 O ' O ' 0 4 a s i n CO i n C" m Ov CO o a s o o o o o i n CN CO o CO Ov Tj- Ty­ i n
VO Tj- O ' O ' O ' i n CO CO CO CO TO CO o o a s Ov Ov Ty­ o v r ' o o OO p o o o o p
0 0 0 0 o o o o o o VO o o o VO r - CN CN CN c o CN m m i n i n VO VO VO VO t-'- VO t ' '
o 0 0 O ' O ' OO O ' a s a s o v Ov

o o lO VO O ' O O ' VO 0 0 o o a s VO r ~ CO 0 0 i n o t T R VO C "

. 2  Ü  

| 1

CN
O '

Ü

§

1

s
m
OV

b

i n
CO
O '
m
0 0
b 1

1
CO

<

TT
CO

I

VO

O '

VO
CO

w

1

b

i n

R

TO
CO
CO
O '

b I

£
i n
Ov

OV
C ''
0 0

g

o o

§

b

T j-

I
CN

I
g

Ov

X

o

VO
i n

b

Tl-
o o
CN

S

5
o o
VO

5
1

a

Ov
r '
CO

a

t ' '
CO

o

§
0 0

1

o v
0 0
o o

s

F '

1< m < PQ PQ < < PQ < PQ PQ PQ PQ < < < PQ < < < PQ PQ < PQ PQ PQ < < PQ PQ <

04 04 04 04 CN CN Tj- TO TO TO TO TO TO TO f " r - r - t ' ' C-' o o o o CO CO CO CO CO CO CO

o < < < < < < < < < < < < < < < < < < < < < < < < < <
ÛX) X X X X X X X X X X X X X X X X X X X

g g I ë

X X X X X X Xo o o o o o o o o o o o o o o o o o O o o o O o o o
. 2 K K K K K ? ? K K K ? K K

1 1 X ?
c CO CO CO CO CO CO m VO VO VO VO VO

? ?

4 4 4 4 4 4

f

< < < < < < < < < < < < < < < < < < <

iX X X X X X X X X X X X X X X X X X X ë ë ë ë go o o o o o o o o O O o o o o O o o o IX ffi ffi ffi ffi ffi œ f f i X X X X X X X X X X X X œ X ffi X X
o
X X s

157



W)
I
Ü

I
I

c/5a
I
i
I

I
I
I
I
O

I
fN

I

I

1
.2

1
Ü

1

Î
PQ

ox
1

1

cd
E

1

1

1
0

1
ox I 1

X
i
X i

s

1 1
- ë
X Ï

1
PQ
é

2
ox
i

Ï

"S

1

1
PQ

Îox
§

1

■S

1

1
Ea

'S

1

3
CN

1

1

1

1
2  
cn

I
3

1

i

1

1

u I

1
E
a

1

1

3

1 1 g

I

1 i

I

1

I

1

I
1

Ia

1

4 CO m
in ov
CO CO o
VO VO m
o o q

CN
VO VO F^
VO VO F-
CN CN CD
VO VO m
o o CD
CN CN CN

VO VO Ov F'- Ov 00 VO Tt m H in VO
CO CO VO Ov o OV cn (N ov ov Ov F ' Ov cn
00 oo CN CN CN cn cn m cn Tt oo
T t Tj- Tt t F t F t F Tt CN CN 00 CN nx CN Tt
o o VO VO VO VO VO VO VO VO in m VO VO q
CN CN CN
ô Ô F^ F^ F^ F^ F^ F^ CN CN F^ V—4 CN CN CD
00 00 CN CN CN CN CN CN in in cn 00 in in OO
F ' F ' cn cn Tt cn cn F '
t F Tj- ”d- t F Tt Td- CN CN 00 CN CN CN Tt
O o VO VO VO VO VO vo VO VO in in VO VO q
CN (N T" T TT CN
VO VO VO VO VO VO VO VO VO VO VO VO o (X) CX3 CN ■d- cn CN ov oo'
00 00 00 OO oo OO 00 oo OO OO OO 00 o VO VO F ' oo cn Tt VO VO
CO CO F ' F-' t-- F-' F ' F" F ' F ' F ' F ' F" CN CN CN CN CN
Tt t F o O o O o o O O O O o Tt Tt cn cn cn cn Tt T t
o o in in in m in in m m m in in in in in in in in m in VO CN F t CN F ' d -
CN CN

R
00

4 tF F^ F^ F^ F^ F^ F^ F^ F^ F^ F^ F^ Ô Ô Ô o CD Ô CD CD Tt Tt
oCN CN VO VO VO VO VO VO VO VO VO VO VO t " in m in in F ' F ' cn cn cn cn cn cnCO CO VO VO VO VO VO VO VO VO VO VO VO o o CD CDTj- Tt o o o O o o o o O o o Tt T t cn cn cn cn Tt d" F^ F^ F^ F^ F^ (Ov

o o m in in in in m in in in in in in in in m m in in in m
CN (N Tt Tt Tt Tt Tt o \

o
CN Tt 00 00 oo oo oo oo 00 oo cn cn cn cn cn cn
O O 00 00 oo 00 00 oo oo 00 oo 00 oo cn cn VO cn cn cn cn cn
F~ r ' in in in in in in m m in in m VO VO cn VO VO VO VO VO CN CN CN CN CN
O CO 00 00 oo 00 00 oo oo oo oo 00 oo CN CN CN CN CN CN CN CN O CD O o q q
CO o Tt t F Tt Tt Tt ■d- Tt Tt Tt Tt Tt m m in in in in in in Tt d- d - d ; d -
CN CN o O CD O o o1 cn00 Ov F" 00 o Tt Ov Ov Ov Ov VO 00 oo in in 00 oo
F ' 00 CN CN o F ' F '' F ' in C'­ C'­ C'­ 00 CN CN CN CN CN cn
Tj- Tt CO CO co cn cn cn cn cn cn cn cn cn cn cn cn en en en cn F ' F ' F ' F ' F'- F :
co CO OO oo oo 00 00 oo oo oo oo 00 oo CN CN CN CN CN CN CN CN Ov OV Ov Ov <Ov 27o o Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt in in in in in in in in q q q q q q
CN CN CN CN CN CN CN CN

ov VO CO F ' CN 00 VO CN o VO cn Tt F^ r—4
in cn OV VO VO

o in F" in F-' cn in o Tt cn Ov in Tt Ov Tt F ' ooCO 00 VO ov cn CN oo oo CN CN ov F ' CN xp F ' 00 00 F'- m
VO CN in in cn in Tt o m VO cn Ov Ov in VO F ' CN CD F'- CN

00 VO fSj in Tt p CN oo CN cn VO CN
g

Tt CN F t F ' CD VO
vq CO VO F ' »n F~ Tt VO CN cn oo VO Ov d - d" OV Tt 00 F'-
W 1—1 1—1 1—1 b HH b 1—j 1-4 w 1-4 1-4 1-4 t-4 < b b l-H 4-4 4-4 4^
PQ < PQ < < < PQ < < PQ < < < < < < < < < < < PQ PQ < < < <

CO CO F" F ' F ' F ' F ' F ' F" F ' F" F" F ' F-' F ' F ' F ' F ' F ' F ' F ' cn cn cn cn cn cn

PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ
X X X X X X X X X X X X X X X X X X X X X X X X X Xo o o O o o o o o o o O o o o o o o o o o o o o o o o
K K ? ? ? ? ? K K ? ? ? ? ? % K K ? ? ? ? X X X X X X
CN CN in in in m in in m in m m in in in in in in m in m <3s cf\ Os Ov OsPQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ
X X X X X X X X X X X X X X X X X X X X X X X X Xp p O o o o o o O o o o o O o o o O O o O o o o o o o

X X X X X X X X X X X X X X X X X X X X X X X X X

2II

§

I

158



î0
1
g

I
a
I
■î

is
I
I
f
H
«CZ5
O

I
QO
ri

I

a
-ë

I
3

H
g>

a

PQ

1

a
m

ien
in
en
en

4
R
en
en

R
mm

s
2b
PQ

I

i
é
gvo

00
F '
un
g
vô
00
CN

g

i

II
159



bû
10
1b
§

c/3
O(b
’S

1
;ziI
Ij
pC

.1

I
H

«
o

I
a srH
ri

I

a
721
1

i

1

1
PQ

1

1
z
1

1
0

1

1
13
1

1

1

1
1 1

1

1

1

i

! 1 i

i
3

§

1
O

1
PQ

1

î
b î

1

1

1
b

ON00 d
O Oen enSD NO

co oô

o Oen en
vo NO

T—'

un en un NO oo
en O F - o

oo un un d 00 F ' oo
CN CN CN CN

NO F " F ' F ' NO NO NO NO

(3 oô oô oô Ô ô (3 (3
o O o o en o 3 O
F ' d d d o \ F ' FT- F '

CN CN CN
NO F '' F ' F ' NO NO NO NO
T -' T—' tT
en en en en b en en F ' en NOoo oo oo oo CN oo 00 OO oo OO
d d d d 00 d d d d d
NO NO NO NO NO NO NO NO NO NO

Ô
CN CN CN CN O CN CN CN CN CN
en en en en F ' en en en en en
NO NO NO NO NO NO NO NO NO NO
T -' T-4 TT tT t T TT TT

en
OO 00 OO oo 00 OO 00 OO OO 00
NO NO NO NO d NO NO NO NO NO
O O O o O O 3 O 3
NO NO NO NO NO NO NO NO NO NO

CTN F^ F^ oô un NO ON à\ 3 F^
NO en d d ON F " NO NO F " F td CN en d d d d d
o O O O O 3 o O 3
NO NO NO NO NO NO NO NO NO NO

un un O ON 00 CN CN o en
F ' NO d ON un NO

ON F ' F '- CN un 3 NO Roo d O un oo NO CN ON
CN (N CN CN o t ' ' 3 F r 00
O en d d en d NO d Co Ü ü b < W < § <
PQ PQ PQ < < PQ < < < <

en en en en en en en en en cn
Q Q Q Q Q Q Q Q Q
X X X X X X X X X

O O O o O O O O O o
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
X X X X X X X X X Xo o o o o o o o o o
ffi œ ffi œ K X X X

PQ

I
OFI
1
I

I
I
.2
i
!

PQ

1
I
I
72

I
CN

I
3
I
1
3
I î

I
3

I
72
3
Ê

n

I
I
I

§
I
'S
I

0
g
VO

1
vo

F 'unoo
8

8

vo ON ON

F ~
un
oo

8

8

m
CN
OO

R

VD
m
oo
00

I ü 
1

■l

Ic
i

i I ONI
<

ON

enF"
OOen
ON

§

ON

160



TABLE 2.20: RT-PCR conditions.

Transcript Oligo Sequence (5-3')
cD N A  

amplification 
size (bp)

Genomic 
amplification 

size (bp)

Tm
CC)

OS-EST
BG325728

BG 325728.U CCTCCCCACCGTTCAATG
211 2897 60

BG 325728.L TGCTCCCTACCTTCCCTC

OS-EST
A A489505

A A 489505.U AAACCAGCCATAGTCCCCACACTC
281 691 60

A A489505.L TTCAACCCCCTCCCCCATAAATCC

OS-EST  
BI823151 ^

B I823151.U GAAACGCCAAGACATAGAAAAC
236 675 60

BI823151.L GTTGGAGACAATTCCTGGTTC

OS-EST
BE873349

B E873349.U GGCGAAGAGTTTAGGAGCAG
240 1030 60

BE873349.L GCAGAACTTCTCCAAGCCAG

OS-EST  
B F 510786

BF510786.U GCTTTGCAACTCGCAACC
222 816 60

BF510786.L CCACGCACCTATTCCCCC

OS-EST
BE305073

BE305073.U TTCTTTCGCTTCCTCCAAAC
126 544 60

BE305073.L TCTTCTGGAGCTGAGGACTC

H O X A l
H O X A IU GCCGTACTCTCCAACTTTC

221 673 60
HOXA IL CTCGCCTCAATACATTCACC

H 0X A 2
H 0X A 2U CACTTGTCTCTCAGTCAAATCC

252 892 60
H 0X A 2L AGAAAACCGCACTTCTGCC

H 0X A 3
HOXA3RA3.1 GCGATCTACGGTGGCTACC

770' 2100 60
HO XA3RA3.2 GCTGCGACTTGGAGACTGG

H 0X A 4
H 0X A 4U CATGCGAGCCACGTCCTG

375 920 60
H 0X A 4L AGACAAACAGAGCGTGTGGG

H 0X A 5
H 0X A 5A TTGAAGTGGAACTCCTTCTCCAGC

112 1072 60
H 0X A 5S TGCGCAAGCTGCACATAAGTCATG

H 0X A 6
H 0X A 6U TGAAGTGGAACTCCTTCTCCAG

199 1589 60
H 0X A 6L TACAAACCCGACAGCAGCAG

H 0X A 7
H 0X A 7U GCCAATTTCCGCATCTACC

351 1296 60
H 0X A 7L TCATTCCTCCTCGTCTTCC

H 0X A 9
H 0X A 9A CACTCGTCTTTTGCTCGGTC

229 229 55
H 0X A 9S CAGCCAACTGGCTTCATGCG

HOXAIO
HOXAIOA GGACGCTGCGGCTAATCTCTAGGCG

198 1318 65
H O X A l OS AGAGCAGCAAAGCCTCGCCGGAGAAG

HOXA 11
H O X A l lU AACCAGATTTTGACTTGACGATCAGTG

444 1900 60
H O X A l IL ATTTCTATAGCACCGTGGGCAG

H O X A l 3
H O X A l 3 A CGTCGTGGCTGATATCCG

114 114 55
H O X A l 3S GGGAGAAAGAAGCGCGTG

TABLE 2.20

RT reactions: see Chapter IV. 
PCR conditions:
1 cycle: 
35 cycles:

1 cycle:

94°C X 2'
94°Cx r  
Tm°Cx r  
72°Cx r  
72°C X 5'
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TABLE 2,21: OS-ESTs mapping in the H.sapiens dispersed homeotic loci.
Part I.

Gene OS-EST Spliced PolyA signal Position CpG Distance
DLX2 AA625909 y n 5' - d
DLX3 W60102 y n 5' s c
PBXl AKl 24128 y n 5' - e

PREPl AA621062 y y 5' - d
A A812731 y y 5' - d
A ll38243 y y 5' - d

AW269528 y y 5' - d
BX095448 y y 5' - d

SIX3 BM663835 y y 5' - a
BM681783 y y 5' - ■ a
BM690547 y y 5' - a
BM692614 y y 5' - a
BM727566 y y 5' - a
BQl 88468 y y 5' - a
BU726060 y y 5' - a
BXl 16389 y y 5' - a

TGIF BG490809 y y 5' - e
AA469958 y n 5' - e
BX282843 y n 5' - e

HLXB9 AI761375 y n i s
BC022831 y n 5' c b
BC033117 y n 5' c b
BU506764 y n 5' c b
BG470747 y n 5' c b
BE257756 y n 5' c b

M E0X2 BX538274 y n i -
BG184437 y n i -
AI417984 y n i -

ISLl BE792152 y n 5' c a
AL524737 y n 5' c a
BE798355 y n 5' c a
BE798361 y n 5' c a
BX394889 y n 5' c a
BX345045 y n 5' c a
BX490971 y n 5' c a

LBXl AKl 23344 y n 5' c b
AK096698 y y 5' s d
BG208726 y n 5' - d
B Xl 15274 y y 5' - d
AIO16804 y y 5' - d

OTXl BC047612 y y 5' c d
R25812 y y 5' - d

BM925861 y y 5' c d
PAX3 AK057009 y y i/5' c a

BC008048 y n 5' s e
BC033986 y n 5' s e

POU2F2 AK027895 y y 3' s
BC001184 y y 3' s
BG285118 y n 3' s
BI459577 y n 3' s
BG751692 y n 3' s
BI820816 y n 3' s
CB043897 y n 3' s
AL602303 y n 3' s
B1227004 y n 3' s
AL524763 y n 3' s
AL560857 y n 3' s
AL542363 y n 3' s
BU153121 y n 3' s
BX387879 y n 3' s
BE797935 y n y s
BG715073 y n y s
BUI 55902 y n y s

162



TABLE 2.21: OS-ESTs mapping in the H.sapiens dispersed homeotic loci.
Part II.

Gene OS-EST Spliced PolyA signal Position CpG Distance
CB961738 y n 3' S
BM128274 y n 3' S
BM128670 y n 3' s
BG749041 y n 3' s
BQ896500 y n 3' s
BF689676 y n . 3' s
BG764613 y n 3' s
BG764265 y n 3' s
BG760880 y n 3' s
BG766980 y n 3' s
BG762733 y n 3' s
BG764249 y n 3’ s
BG761130 y n 3' s
BE794366 y n 3' s
BE513293 y n 3' s
BE513290 y n 3' s
BU173019 y n 3' s
BE559733 y n 3' s
AL535748 y n 3' s
BM549479 y n 3' s
CD557618 y n 3' s
BE297663 y n 3' s
BE887124 y n 3' s
BE294828 y n 3' s
BE729379 y n 3' s
BE296231 y n 3' s
AL558191 y n 3' s
BF315779 y n 3' s
BG771866 y n 3' s
BCO15776 y y i -
BC042152 y y i -
AA310711 y n i -
BG397451 y y i -
BG759321 y y i -
AA829777 y y i -
AI802162 y y i -
AU 120278 y n 5' - d
AK024119 y y 5’ - d

P0U4F1 BX647243 y y 3' -
AK095779 y y 375' -
AV723850 y n 3'/5' -
AV723416 y n 3'/5' -
AL706733 y n 3'/5' -

POU4F3 AA843559 y n 3'/5' -
BX l 15732 y n 3'/5' -
A ll25723 y n 3'/5' -

TCFI-HNFIA AW451008 y y i/5' -
BE293343 y n i/5' -
BG433970 y n i/5' -

TCF2-HNF1B BG419303 y n 5' s a
IRX2A-IRX5 AF275804 y y 5' c d

A1245732 y y 5' - d
AW 117234 y y 5' - d
BM696001 y y 5' - d
BM974647 y y 5' - d
BU729242 y y 5' - d
BX096724 y y 5' - d
AA954994 y y 5' - e
BU569024 y y 5' c d
AI342725 y y 5' - e
AI004004 y y 5' - d

AW023444 y y 5' - d
BG720116 y y 5' - d
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TABLE 2.21: OS-ESTs mapping in the H.sapiens dispersed homeotic loci.
Part III.

Gene OS-EST Spliced PolyA signal Position CpG Distance
BU590179 y y 5' - e
BU160166 y y 5' C d
AA825162 y y 5' - e
AA829347 y y 5' - e
AI242819 y y 5' - e
AI923595 y y 5' - d
AI804090 y y 5' - d
BUI 65662 y y 5' C d
BUI 65627 y y 5' c d
BF672570 y n 5' c d
CB854553 y n 5' - d
W35547 y n 5' d

BE504515 y n 5' - d
BF692451 y n 5' c d
AI204177 y n 5' - d
BQ011371 y n 5' - d
AA928654 y n 5' - d
BUI 80741 y n 5' - d
BU625145 y n 5' - e
AI827680 y n 5' - d

BM150438 y n 5' - e
BM150430 y n 5' - e
BI561324 y n 5' c d

BM 150433 y n 5' - e
BQ431041 y n 5' - d
BQ638202 y n 5' c d

PBX3 AA421133 y n 5' s c
BX095101 y n 5' s c

PROXl BE179719 y n 5' s b
AV681804 y n 5' - c
AK092251 y n 5' - e

TCF8 AK094743 y n i -
CD674797 y n 5' c a
BM703926 y n 5' c a
AI474070 y n 5' c a
BX446976 y n 5' c a
BI518871 y n 5' c a
AI808408 y n 5' c a

DLX6 AK091367 y n 5' s c
AX746939 y n 5' s c
AK095619 y n 375’ -
BE263812 y y 375' -

AW245528 y n 3'/5' -
CA865377 y n 3'/5' -
BX643287 y n 3'/5' -

EMX2 AYl 17413 y y 5' c a
AY 117034 y y i/5' c
BG699095 y n 5' c a
BM661903 y n 5' c a
BM687813 y n 5' c a
BF939629 y n 5' c a
AI471863 y n 5' c a
AI912812 y n 5' c a
AI493115 y n 5' c a

AW510874 y n 5' - e
AW470861 y n 5' c b
AW 135979 y n 5' c b
AI636020 y n 5' c a
BF592111 y n 5' c a
AI435896 y n 5' c b
CB049839 y n 5' c a
BXl 13843 y n 5' c a

LIMl-LHXl AI492288 y y 5' c b
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TABLE 2.21: OS-ESTs mapping in the H.sapiens dispersed homeotic loci.
Part IV.

G en e O S -E S T S p lic e d P o ly A  s ig n a l P o s itio n C pG D is ta n c e
B X l  1 2 2 3 2 y y 5' C b
B X l  1 5 7 4 0 y n 5' C b
C B 0 4 7 4 0 5 y n 5' C b
B U 5 5 2 6 8 0 y n 5' C b
A W 2 4 3 4 3 6 y y 5' - e

L H X 2 B M 7 2 6 6 5 1 y n 5' S c
B M 6 8 1 2 9 5 y n 5' s c

L M X I B A A 9 3 6 4 7 0 y n 5' c b
A I 6 9 4 7 7 5 y n 5' c c

A W 4 5 1 3 2 3 y n 5' c b
B E 5 0 2 7 6 9 y n 5' c b
B E 6 7 0 2 1 9 y n 5' c b

T C L 3 -T L X 1 B I 7 6 7 6 1 6  
B X l  1 7 3 3 7

y
y

n
n

37 i
375'

s

BCO 1 9 6 7 4 y n 5' s a
B G 9 1 3 6 5 2 y n 5' s a

T IT F l B X 1 6 1 4 9 6 y n 5' c a

B X 3 8 3 5 7 9 y n 5' c a
B X 3 6 7 7 0 9 y n 5' c a

O T X 2 B C 0 4 1 4 8 6 y y 5' - c
B U 7 3 9 9 0 6 y y 5' - c
B U 7 4 0 3 5 8 y y 5' - c

P A X 6 B X 6 4 8 9 6 2 y y 5' c d

P I T X l A K 0 2 6 9 6 5 y n i/5' c
I P F l B X 3 8 3 0 5 8 y n i/5 ' c

P 0 U 2 F 1 B U 1 7 3 1 2 5 y n 5' - e
B E 2 5 1 1 2 3 y n 5' - e
B G 3 9 6 1 9 8 y n 5' - e
B U 1 8 2 3 5 6 y n 5' - e

P O U 3 F 3 A K 0 9 6 4 9 8 y n 5' c c
A I7 6 9 3 6 3 y y 5' - e
A I4 3 3 8 6 4 y y 5' - e
A I 6 5 2 6 2 9 y y 5' - d

A W 2 3 7 8 0 1 y y 5' - e
A 1 9 3 4 5 2 5 y y 5' - e
A L 0 3 6 7 9 8 y y 5' - d

A I8 7 9 5 6 1 y y 5' - e
A 1 4 1 8 9 6 9 y y 5' - e
A 1 7 6 9 7 3 0 y y 5' - e
A I9 3 5 6 6 4 y y 5' - e
C A 4 12541 y y 5' c c
A A 4 3 6 6 2 3 y y 5' - e
A I5 2 2 1 6 0 y y 5' - e
A I7 6 3 1 9 0 y y 5' c c
B F l  9 5 9 7 6 y y 5' - e

A W 1 6 2 1 1 7 y y 5' - e
C K 0 0 4 1 9 3 y y 5' c c
B F 7 0 0 9 3 8 y n 5' - d
A I 8 9 1 7 8 y n 5' - d

A L 0 3 6 7 5 8 y n 5' - d
A W  1 6 0 5 0 0 y n 5' - d
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TABLE 2.21: OS-ESTs mapping in the H.sapiens dispersed homeotic loci.
Part V.

Gene. Investigated locus
OS-EST. Accession numbers of OS transcripts mapped in the corresponding 
locus.
Slpiced. “y” indicates correct splicing of the corresponding OS-EST.
PolyA signal, “y” indicates the presence of the polyadenilation consensus 
AATAAA in the 3’ region of OS-ESTs; “n” denotes absence of this consensus 
sequence.
Position. The position of the OS transcript refers to the transcriptional orienta­
tion of the homeobox gene.
5’: the OS-EST maps in the 5’ region of the homeobox gene.
i/5’: the first exon of the OS-EST maps in intronic region of the homeobox gene,
while the other(s) exon(s) in its 5’ region.
i: the OS-EST maps in intronic regions of the homeobox gene.
3’/i: the first exon of OS-EST maps in the 3’ regions of the homeobox gene, 
while the other(s) exon(s) in its intronic regions.
3’: the OS-EST maps in the 3’ region of the homeobox gene.
CpG. We investigate the presence of a CpG island containing both the first exon 
of OS-EST and the first exon of the homeobox gene.

the first exon of the OS-EST is not in a CpG island.
“C”: the first exons of the OS transcript and the homeobox gene are both in the 
same CpG island.
“S”: the first exons of the OS transcript and the homeobox gene are in separated 
CpG island
Distance. I calculate the distance between the first exon of the OS-EST and the 
first exon of the homeobox gene.
“a”: < 0.3 kb 
“b”: 0.3-1 kb 
“c”: 1-3 kb 
“d”: 3-10 kb 
“e”: >10 kb

166



TABLE 2.22: OS-ESTs mapping in the M.musculus dispersed homeobox
loci. Part I

G ene O S-E ST Sp liced P o lyA  signal Position CpG D istance
T c f l /H n f la B C 03 1 1 6 2 y y 3' S

A K 0 0 8 7 4 0 y n 3' S
A A 2 5 4 8 1 5 y n i/5' -
A I4 6 4 8 0 6 y n i/5' -

A W 2 2 6 7 7 2 y n i/5' -
C B 950971 y n i/5' -
C F 620880 y y i/5' -

T cf2 /H n flb B B 6 5 0 3 6 7 y n 5' - c
A K 0 8 2 7 1 6 y n 5' - c
B G 963365 y n 5' - b

Irx2 B F l 62870 y n 5' - d
Pbx3 B B 6 3 3 6 1 4 y n i -

B Y 7 2 4 3 7 8 y n i -
P roxl B F 4 6 9 0 0 0 y n i -

B F 471703 y n 5' - a
B Y 7 3 0 2 1 4 y n 5' - a

T cf8 /Z fh x la A K 046967 y n i/5' C
B Y 7 1 8 6 8 3 y n i/5' c
B Y 7 2 3 8 4 0 y n i/5' c
B B 632161 y n i/5' c
B B 6 4 6 3 7 3 y n i/5' c
B Y 7 2 7 3 7 8 y n i/5' c
B E 646958 y n i/5' -

D lx 6 A K 0 3 8 6 9 4 y n 5' - c
A K 0 3 2 5 3 7 y y 3'/5' -
A K 03 2 1 8 0 y y 5' - c
A K 0 4 4 0 3 4 y y 5' - c
B B 6 4 1 0 7 8 y n 5' - c
C A 3 1 8 2 1 6 y n 3'/5' -
C A 4 5 1 0 8 2 y n 5' - c
B B 6 3 1 9 6 6 y n 5' - c
A U 0 3 5 9 5 4 y n 3'/5' -
B B 6 2 2 9 2 0 y n 3'/5' -
B Y 0 0 3 7 4 4 y n 5' - c
B Y 279781 y n 3'/5' -

E m x2 A Y l 17414 y y 5 ' c a
A K 033011 y y 5 ' c a
B Y 0 0 2 7 4 6 y n 5 ' c a

L im l/L h x l AKO18772 y y 5 ' c a
W 6 2 8 7 0 y n 5 ' c a

B U 5 6 0 0 0 4 y y 5 ' c a
C A 3 18627 y y 5 ' c a
BB860096 y n 5 ' c a
B Y 7 0 5 4 5 0 y y 5 ' c a
B E 653895 y n 5 ' c a

W 9 8 7 3 4 y n 5 ' c a
A I848463 y y 5 ' c a

L im 2/L hx2 B U 9 3 7 2 5 5 y n i -
L m x lb A K 08 1 4 9 7 y y 5 ' c b

B Y 1 3 5 8 0 0 y n 5 ' c b
B Y 7 4 0 9 2 5 y n 5 ' c b
B Y 3 4 6 3 9 8 y n 5 ' c b
B Y 3 4 6 6 9 0 y n 5 ' c b
B Y 3 4 5 7 5 5 y n 5 ' c b
B Y 3 4 6 6 3 6 y n 5' c b
B Y 3 4 4 9 8 7 y n 5' c b
B Y 345311 y n 5' c b
B Y 7 2 8 3 8 9 y n 5' c b
B Y 141711 y n 5' c b
B Y 3 17324 y n 5' c b
B Y 151591 y n 5' c b

T lx l* B B 5 7 3 6 2 7 y n 3'/i s
T itfl B Y l 17165 Y n 5' - b
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TABLE 2.22: OS-ESTs mapping in the M.musculus dispersed homeohox
loci. Part II.

G ene O S-E S T Sp liced P o lyA  signal Position C pG D istance

B Y  120663 y n 5' - b

O tx2 A K 042665 y n 5' - c

B B 6 3 9 8 2 2 y n 5' - c

B B 2 4 6 3 7 0 y n 5' - c

B U 5 0 4 6 8 0 y n 5' - c

B E 860198 y n 5' S d

Pax6 A K 029183 y y i/5' -
A K 04 4 3 5 4 y n i/5' -
B B 6 4 2 2 8 5 y n i/5' -
B B 6 1 3 7 0 4 y n i/5' -
B G 802265 y n i/5' -

P itx l* A K 043531 y y i/5' -
B Y 2 9 9 8 8 2 y n i/5' -

P m x l/P rrx l B B 6 4 8 4 8 8 y n i -
Ip fl A K 008755 y y i/5' -

B Y 7 0 8 6 5 7 y n i/5' -
B G 085011 y n i/5' -

P o u 2 fl AKO 16078 y n 3'/i -
B Y 7 15679 y n 3'/i -

P ou3f3 A K 011437 y y 5' S c

A K 0 1 9 1 5 4 y y 5' s c

B C 049671 y y 5' - e

B C 058417 y y 5' - d

B C 0 5 9 8 9 2 y y 5' - d

C A 3 19029 y y 5 ’ - d

C F 750962 y y 5' s c

A W 04 5 6 7 9 y y 5 ' - e

B Q 7 4 7 4 5 6 y y 5 ' - d

B U 5 6 2 2 8 8 y y 5 ' s c

B B 6 5 0 3 6 7 y y 5 ' - d

B Q 748271 y y 5 ' - e

13X515333 y y 5 ' - d

C A 5 16666 y y 5 ' - d
A A 0 2 8 6 8 8 y y 5 ' - d
B M l 14333 y y 5 ' - d
B Q 554853 y y 5 ' - d
B U 8 4 2 1 3 7 y y 5 ' - e

C B 205150 y y 5 ' - d
B U 961251 y y 5 ' - e

A V 1 4 9 6 9 6 y y 5 ' - e

B E 864528 y y 5' - e

A W 244777 y y 5' s c

B Q 043769 y y 5' - d

C F 216586 y y 5' - e

B Q 554854 y y 5' - d

A A 0 4 1 8 1 3 y y 5' - d

B Y 0 0 3 9 9 7 y y 5' s c

B Y 2 5 5 2 7 7 y n 5' - d

A K 048630 y n 5' s c

B Y 2 8 9 7 0 4 y n 5' - d

C utll A K 016175 ■ y n i s
B Y 7 1 5 7 7 9 y n i s

M eis l C F 739522 y n -
B I693346 y n i -
B B 8 6 9 2 8 6 y n -
B X 634601 y n i -
A A 182163 y n -
A A 8 6 6 9 7 0 y n i -
13X513192 y n i -

M eis2 B B 8 7 3 2 2 9 y n - c

B B 8 7 2 3 2 4 y n i - c

B B 869881 y n - c

B Y 7 3 3 7 5 9 y n i - c
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TABLE 2.22: OS-ESTs mapping in the M.musculus dispersed homeobox
loci. Part III.

G ene O S-E S T Sp liced P o ly A  signal P osition CpG D istance

B B 8 0 2 0 7 9 y n i - e

D lx l B B 6 4 2 0 4 6 y n 5' - c

B B 6 4 7 8 0 3 y n 5' - c

B F 4 6 9 5 7 6 y n 375' -
B Y 7 1 3 8 5 3 y n 3' -
B Y 2 5 7 6 8 4 y n 3' -
B Y 2 6 3 5 7 6 y n 3' -
B Y 2 6 3 8 1 7 y n 3' -

D lx 4 A K 0 8 0 5 6 2 y n i/5' C

A K 0 7 6 5 1 0 y n i/5' C

B B 640871 y n i/5' c
B B 6 1 4 2 4 2 y n i/5' c
A I0 9 8 5 0 7 y n i/5' c

M sx l A A 0 3 2 8 7 8 y n 3' -

E v x l A K 031498 y n i/5' s
A K 017671 y n 5' c a

B Y 7 17450 y n 5' c a

B B 6 1 8 9 4 2 y n 5' c a

B B 6 2 0 9 5 8 y n i/5' s
B Y 0 0 9 0 5 8 y n 5' c a

B B 8 7 3 6 8 9 y n 5' c a

G bx2 A K 0 3 6 4 2 2 y n 5' c a

B B 6 2 9 3 1 0 y n 5' c a

M eo x l A A 184243 y n i -
A I5 9 1 9 6 6 y n i -
A I66 2 5 2 5 y n i -

N kx 2 .6 AK007038 y n 5' - a

B Y 7 0 7 1 0 6 y n 5' - a

N k x 6 .2 B C 056341 y y 3' -

N kx 2 .2 A K 045921 y y 3'/5' c
A K 020097 y n 5 ’ - c

B Y 7 18829 y n 5' - c

H m x l A K 053452 y n 5' c b

B B 6 6 5 0 1 3 y n 5' c b

T lx3 A K 02 9 1 8 2 y n 5' c b

B B 6 1 3 7 0 2 y n 5' c b

Crx A U 0 4 5 2 9 4 y n 5' - e

A U 021231 y n 5' - e

A U 0 1 8 6 1 5 y n 5' - e

A U 0 4 3 2 5 9 y n 5' - e

B G 071513 y n 5' - e

A U 019481 y n 5' - e

A U 0 4 4 4 6 7 y n 5' - e

C A 3 19029 y n 5' - e

C 88456 y n 5' - e

A A 549101 y n 5' - e

A A 5 7 4 8 3 5 y n 5' - e

A A 6 3 8 8 3 4 y n 5' - e

A A 6 6 6 9 0 4 y n 5' - e

A A 5 9 0 3 9 6 y n 5' - e

A A 4 4 6 7 5 6 y n 5' - e

A A 6 0 6 8 6 9 y n 5' - e

A A 6 0 7 8 4 6 y n 5' - e

A A 6 0 8 0 3 8 y n 5' - e

A A 6 0 8 2 2 2 y n 5' - e

A A 6 7 1 4 3 3 y n 5' - e

A A 6 8 3 7 4 9 y n 5' - e

A A 4 7 4 7 4 3 y n 5' - e

A A 575061 y n 5' - e

A A 4 7 3 1 9 4 y n 5' - e

B Y 7 3 6 4 4 5 y n 5' - e

A A 5 7 1 4 2 7 y n 5' - e

B X 5 2 6 3 0 6 y n 5' - e
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TABLE 2.22: OS-ESTs mapping in the M.musculus dispersed homeohox
loci. Part IV.

G ene O S-E ST Sp liced P olyA  signal P osition C pG D istance
A A 6 3 6 3 2 4 y n 5' - e
A A 6 4 7 7 2 2 y n 5' - e
B Y 732031 y n 5' - e
B Y 742111 y n 5' - e

C 89532 y n 5' - e
B B 6 4 2 1 5 9 y n 5' - e
A A 5 9 1 0 7 8 y n 5' - e
B Y 0 3 2 2 5 5 y n 5' - e
B F 469102 y n 5' - e
C B 845701 y n 5' - e

Rax A K 0 3 3 0 4 4 y y i/5' -

B B 6 2 3 9 8 3 y n i/5' -

Lhx5 A I430373 y n 5' C a
W 89644 y n 5' C a

B X 5 1 8 5 4 8 y n 5' c a
Lhx8 B Y 7 3 0 1 5 6 V n 5' - c

TABLE 2.22

Gene. Investigated locus
OS-EST. Accession numbers of OS transcripts mapped in the corresponding 
locus.
Slpiced. “y” indicates correct splicing of the corresponding OS-EST.
PolyA signal, “y’’ indicates the presence of the polyadenilation consensus 
AATAAA in the 3’ region of OS-ESTs; “n” denotes absence of this consensus 
sequence.
Position. The position of the OS transcript refers to the transcriptional orienta­
tion of the homeobox gene.
5’: the OS-EST maps in the 5’ region of the homeobox gene.
i/5’: the first exon of the OS-EST maps in intronic region of the homeobox gene,
while the other(s) exon(s) in its 5’ region.
i: the OS-EST maps in intronic regions of the homeobox gene.
3’/i: the first exon of OS-EST maps in the 3’ regions of the homeobox gene, 
while the other(s) exon(s) in its intronic regions.
3’: the OS-EST maps in the 3’ region of the homeobox gene.
CpG. We investigate the presence of a CpG island containing both the first exon 
of OS-EST and the first exon of the homeobox gene.

the first exon of the OS-EST is not in a CpG island.
“C”: the first exons of the OS transcript and the homeobox gene are both in the 
same CpG island.
“S”: the first exons of the OS transcript and the homeobox gene are in separated 
CpG island
Distance. I calculate the distance between the first exon of the OS-EST and the 
first exon of the homeobox gene.
“a”: < 0.3 kb 
“b”: 0.3-1 kb 
“c”: 1-3 kb 
“d”: 3-10 kb 
“e”: >10 kb
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TABLE 3.1: OS-ESTs mapping in 90 H.sapiens genomic loci. Part I.

Gene OS EST Spliced Position Known Gene

aggrecan 1 - - - -
aminolevulinic acid synthase 1 - - - -
amisyn - - - -
angiogenin - - - -
aryl-hydrocarbon receptor y - - -
Bardet-Biedl syndrome 4 homolog y y 5' -
beta-glucuronidase - -
BING4 protein y y 5' H2-KE2
bone morphogenetic protein 5 - -
Bcl6 interacting corepressor - - - -
cadherin 11 - - - -
calcineurin binding protein 1 y y 5' -
calpain 3 - -
calponin 2 y y 5’ -
choroidermia - -
claudin 12 - - - -
cullin 3 y y 3' -
decorin - -
dipeptidase 1 (renal) - - - -
dipeptidylpeptidase 6 y y i -
dual specificity phosphatase 1 y y 375’ -
endothelial differentiation, sphingolipid G-protein­
coupled receptor, 3 - - -

endothelial differentiation-related factor 1 - - - -
Eph receptor A3 - - - -
epsin 2 y y i -
fatty acid desaturase 3 - -
fem-1 homolog c (C.elegans) - - - -
Fgfrl oncogene partner y y 5' -
fibroblast growth factor 7 y y 375' -
fibromodulin - -
G protein coupled receptor 24 - - - -

G protein-coupled receptor 64 y y 3'/5' -

glucose phosphate isomerase 1 - -
guanine deaminase - - - -
guanylate cyclase 1, soluble, alpha 3 - - - -
histone deacetylase 10 - - - -
HMG-box protein S0X 21 y y 5' -
HRDl protein y y 3' MRPL49
H Sl binding protein - -
insulin induced gene 1 y y 5' -

integrin alpha 4 y y 3' -

interleukin 1 receptor-like 2 y y 5' -

intestinal cell kinase V y 5' FBX09
jagged 1 y y 3' -

karyopherin (importin) alpha 1 y y 3' -

Kruppel-like factor 4 - -

latrophilin 1 y y 3/i;i -

legumain - -

leprecan 1 y y 5' -

leptin receptor - - -

L-fucose kinase y y 3' C 0G 4
ligatin y y 3' RASSF5
lipoic acid synthetase y y 5' RPL9
Ly6/neurotoxin 1 - -

lysosomal apyrase-like 1 y y 5' -

mab-21-like 1 (C.elegans) y y 3'/5' -
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TABLE 3.1: OS-ESTs mapping in 90 H.sapiens genomic loci. Part II.

Gene OS EST Spliced Position Known Gene

mahogunin, ring finger 1 y y 5';i; 3' -

Mak3p homolog (S. cerevisiae) y y 5' ATP6V1A
makorin, ring finger protein, 1 - -

mannosidase 1, beta - - - -

Mblk 1 -related protein-1 y y 3' HCAP-G
metallothionein 2 - -

methyl CpG binding protein 2 - - - -

microfibrillar-associated protein 1 y y 3'; 5' HYPK
mitochondrial ribosomal protein L I9 y y 3' -

monoamine oxidase A - -

mucolipin 2 y y 5' NYD-SP29
multimerin - -

myomesin 2 - - - -

myosin X - - - -

neurexin II y y i -

neuritin 1 y y 3' -

neuropilin - -

ninjurin 1 - - - -

pallidin - - - -

parvin, beta y y 5’ -

pellino 2 - -

pericentrin 2 y y 5' -

peroxiredoxin 2 - -

phospholipase C, gamma 1 - - - -

plexin B 1 y y 3’ -

polyamine oxidase - - - -

reticulon 4 y y 3' -

retinitis pigmentosa 2 homolog (human) y y 3' -

scinderin y y 5’;i -

Seel 5A - -

SEC22L1 - - - -

sequestosome 1 y y 5':3' MGAT4B
syntaxin 12 - -

talin 2 y y 5' -

TABLE 3.1

Gene. Investigated locus
OS-EST. “y” indicates the presence of OS-ESTs; indicates the absence of 
OS-ESTs
Slpiced. “y” indicates correct splicing of the corresponding OS-EST.
Position. The position of the OS transcript refers to the transcriptional orienta­
tion of the sense gene.
5’: the OS-EST maps in the 5’ region of the target gene.
i/5’: the first exon of the OS-EST maps in intronic region of the target gene,
while other exons in its 5’ region.
i: the OS-EST maps in intronic regions of the target gene.
3’/i: the first exon of OS-EST maps in the 3’ regions of the target gene, while 
other exons in its intronic regions.
3’: the OS-EST maps in the 3’ region of the target gene.
Know gene. Known genes corresponding to OS transcripts.

172



TABLE 3.2: OS-ESTs mapping in 90 M.musculus genomic loci. Part I.

G ene OS EST Sp liced Position K now n gene

aggrecan 1 - - - -

am inolevulinic acid synthase 1 y y - -

am isyn - - - -

angiogenin - - - -

aryl-hydrocarbon receptor - - - -

Bardet-Biedl syndrom e 4  hom olog y y 3’ -

beta-glucuronidase - - . - -

B IN G 4 protein y y 5' H 2-K e2

bone m orphogenetic protein 5 - - - -

B cl6  interacting corepressor - - - -

cadherin 11 - - - -

calcineurin binding protein 1 - - - -

calpain 3 y y 5' -

calponin 2 - - - -

choroiderm ia - - - -

claudin 12 - - - -

cullin 3 - - - -

decorin - - - -

dipeptidase 1 (renal) - - - -

dipeptidylpeptidase 6 - - - -

dual specificity  phosphatase 1 - - - -

endothelial differentiation, sphingolipid G -protein-coupled  
receptor, 3 y y i/5' -

endothelial differentiation-related factor 1 - - - -

Eph receptor A 3 - - - -

epsin 2 - - - -

fatty acid desaturase 3 - - - -

fem -1 hom olog c (C .elegans) - - - -

Fgfrl oncogene partner - - - -

fibroblast growth factor 7 y y 3'/5' -

fibrom odulin - -

G protein coupled receptor 24 - - - -

G protein-coupled receptor 64 y y 3' -

g lucose phosphate isom erase 1 - - - -

guanine deam inase y y 5' -

guanylate cyclase  1, soluble, alpha 3 - -

histone deacetylase 10 y y 5' -

H M G -box protein S 0 X 2 1 y y 5' -

H R D l protein - - - -

H S l binding protein y y 5' -

insulin induced gene 1 - - - -

integrin alpha 4 - - - -

interleukin 1 receptor-like 2 - - - -

intestinal cell kinase y y 5' Fbxo9

jagged 1 - - -

karyopherin (importin) alpha 1 y y 5' -

Kruppel-like factor 4 - -

latrophilin 1 y y 3'/i -

legum ain - - - -

leprecan 1 y y 5';3' -

leptin receptor - -

L -fucose kinase y y 3' C og4

ligatin y y 3' RassfS

lipoic acid synthetase y y 5' R pl9

Ly6/neurotoxin 1 - - - -

lysosom al apyrase-like 1 y y 5';3' -

m ab-21-like 1 (C .e leg a n s) y y 3'/5' -
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TABLE 3.2: OS-ESTs mapping in 90 M.musculus genomic loci. Part II.

G ene OS EST Spliced Position K now n gene

m ahogunin, ring finger 1 y y 5';3' -

M ak3p hom olog (S . cerevisiae) y y 5' A tp ô v la

makorin, ring finger protein, 1 y y 5' -

m annosidase 1, beta - - - -

M blk 1-related protein-1 y y 3' -

m etallothionein 2 - -

m ethyl CpG binding protein 2 - - - -

m icrofibrillar-associated protein 1 - - - -

mitochondrial ribosom al protein L19 y y 3' -

m onoam ine oxidase A - - - -

m ucolipin 2 - - - -

multimerin - - - -

m yom esin 2 y y i -

m yosin X y y 5' -

neurexin II y y 3' -

neuritin I y y 3' -

neuropilin y y i -

ninjurin 1 - - - -

pallidin y y 5' -

parvin, beta - -

pellino 2 - - - -

pericentrin 2 y y 5' -

peroxiredoxin 2 y y 3' -

phospholipase C , gam m a I - - - -

plexin B1 - - - -

polyam ine oxidase - - - -

reticulon 4 y y 3' -

retinitis pigm entosa 2  hom olog (human) - - - -

scinderin - - - -

S e c l5 A - - - -

SEC 22LI y y 5' -

sequestosom e 1 y y 5';3' -

syntaxin 12 - - - -

talin 2 y y i -

TABLE 3.2

Gene. Investigated locus
OS-EST. “y” indicates the presence of OS-ESTs; indicates the absence of 
OS-ESTs
Slpiced. “y” indicates correct splicing of the corresponding OS-EST.
Position. The position of the OS transcript refers to the transcriptional orienta­
tion of the sense gene.
5’: the OS-EST maps in the 5’ region of the target gene.
i/5’: the first exon of the OS-EST maps in intronic region of the target gene,
while other exons in its 5’ region.
i: the OS-EST maps in intronic regions of the target gene.
3’/i: the first exon of OS-EST maps in the 3’ regions of the target gene, while 
other exons in its intronic regions.
3’: the OS-EST maps in the 3’ region of the target gene.
Know gene. Known genes corresponding to OS transcripts.
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