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Abstract

BIVARIATE BOX SPLINES AND SURFACE SUBDIVISION

Abey Sherif Kelil

Department of Mathematics,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc(Mathematics)

March 2013

The main purpose of this thesis is to construct subdivision surfaces by using bivariate
subdivision rules, in particular the Butterfly subdivision scheme, which is an interpolatory
subdivision rule, by which we preserve initial control points at all steps of the iterative
process until we get the limit surface as a good approximant for a refined control net.

Taking the existence of bivariate refinable functions as given, our study focuses on the
classical 2I,-refinable bivariate box splines, which are 2-dimensional extensions of the uni-
variate cardinal B-splines, which can be used as basis functions for bivariate subdivision.

The first two chapters are concerned with the analytical definition of box splines, as well
as their properties, as studied in Sections 1.7 - 1.8. In the second Chapter, in particular,
in Section 2.1, the refinability of bivariate box splines is studied by means of Fourier
transforms. Also, tensor products are used to construct bivariate box splines. In Sections
2.3 - 2.6, the notion of bivariate subdivision and the issue of subdivision convergence,
in particular a necessary condition for such convergence, namely the sum rule condition,
are presented. The link between subdivision and the cascade algorithm is introduced in
Section 2.4, in order to generate a bivariate refinable function, which in turn plays a key
role in subdivision surface construction.

Having dealt with the bivariate box splines, we subsequently, in Chapter 3, focus our
attention on an algebraic approach for the construction of bivariate subdivision schemes.
In particular, we algebraically construct the interpolatory Butterfly subdivision symbol,
from the bivariate box spline basis of an ideal Z or its power Z¥, in the ring of polynomials
II, characterised by a vanishing condition at three of the corners of the box [—1,1]>.
It is shown, in Section 3.4, that the Butterfly subdivision symbol can be expressed as

Cl[2f, 25°']- combinations of normalised box spline symbols.

In Chapter 4, we give the convergence and smoothness analysis of the interpolatory But-
terfly subdivision scheme by using the contractivity of subdivision operators. We also give
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the convergence analysis of a new interpolatory scheme, as obtained by using the Courant
hat function factorization of the Laurent polynomial identity satisfying the interpola-
tory condition, and for which a limiting function is obtained from cascade convergence.
Furthermore, a suitable interval range for the tension parameter w, that preserves the
agreement between the refined control net and the C* limit surface for this subdivision
scheme, is also investigated.

The thesis is concluded, in Chapter 5, with meaningful results obtained from the study
and also by a discussion on unresolved issues that are left for future research.
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(“ Bivariate box splines and Surface Subdivision ”)

Abey Sherif Kelil

Departement Wiskunde,
Unaversiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc(Wiskunde)
Maart 2013

OPSOMMING

Die hoofdoel van hierdie tesis is die konstruksie van subdivisie-oppervlakke met behulp
van tweeveranderlike subdivisiereéls, in die besonder die Butterfly subdivisieskema , wat
'n interpolerende subdivisiereél is , waarin die aanvanklike kontrolepunte by elke stap van
die iteratiewe proses gepreserveer word totdat die limietoppervlak as 'n goeie benadering
van die verfynde kontrolenet verkry word.

Deur die bestaan van tweeveranderlike verfynbare funksies as gegewe te aanvaar, fokus ons
studie op die klassieke 2I,-verfynbare tweeveranderlike bokslatfunksies , wat 2-dimensionele
ekstensies van die eenveranderlike kardinale B-latfunksies is, en wat gebruik kan word as
basisfunksies vir tweeveranderlike subdivisie.

Die eerste twee hoofstukke het te doen met die analitiese definisie van bokslatfunksies,
waarvan die eienskappe bestudeer word in Afdelings 1.7 - 1.8. In die tweede hoofstuk, in
Afdeling 2.1, word die verfynbaarheid van tweeveranderlike bokslatfunksies bestudeer met
behulp van Fourier transforms. Verder word tensorprodukte gebruik vir die konstruksie
van tweeveranderlike bokslatfunksies. In Afdelings 2.3 -2.6 word die begrip van twee-

verandelike subdivisie en die kwessie van subdivisiekonvergensie , en in die besonder 'n
nodige voorwaarde vir subdivisieckonvergensie , naamlik die somreél voorwaarde , gegee.

Na afhandeling van die tweeveranderlike bokslatfunksies , fokus ons vervolgens , in Hoof-
stuk 3, ons aandag op 'n algebraiese benadering tot die konstruksie van tweeveranderlike
subdivisieskemas. In die besonder konstrueer ons algebrazes die interpolerende Butterfly
subdivisiesimbool , vanuit die tweeveranderlike bokslatfunksiebasis van 'n ideaal Z , of die
produk Z* daarvan , in die ring van polinome II , gekarakteriseer deur n nulvoorwaarde

iv



Stellenbosch University http://scholar.sun.ac.za

UITTREKSEL v

by drie van die hoekpunte van die boks [—1,1]>. Daar word aangetoon , in Afdeling 3.4,
dat die Butterfly subdivisiesimbool uitgedruk kan word as C[z;™, 25°!]- kombinasies van

genormaliseerde bokslatfunksiesimbole.

In Hoofstuk 4 gee ons die konvergensie - en gladheidsanalise van die interpolerende Butter-
fly subdivisieskema deur gebruik te maak van die kontraktiwiteit van subdivisie-operatore.
Ons gee ook die konvergensie - analise van 'n nuwe interpolerende skema , soos verkry deur
gebruik te maak van die Courant hoedfunksiefaktorisering van die Laurent polinoomiden-
titeit wat die interpolerende voorwaarde bevredig , en waarvoor 'n limietfunksie verkry
word vanuit kaskade-algoritmekonvergensie. Daarby word’n geskikte intervalgebried vir
die spanningparameter w , wat die ooreenkoms tussen die verfynde kontrolenet en die
C*'-limietoppervlak preserveer, ondersoek.

Die tesis word afgesluit , in Hooftuk 5, met betekenisvolle resultate verkry in die studie,
asook deur 'n bespreking van onopgeloste kwessies wat vir verdere navorsing gelaat word.
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Chapter 1

Interpolatory bivariate refinable
functions

1.1 Introduction

Refinement equations play an essential role in numerous application areas of science and
engineering, in particular in wavelet analysis and geometric modelling. In this thesis, we
study bivariate refinable functions which are functions that can be expressed as a linear
combination of their dilation by a dilation matrix.

Refinable functions can be characterized by their refinement masks, and these masks play
a key role in the analysis of refinable functions, which are useful as basis functions in
subdivision schemes for the construction of a curve or surface from the initial set of data
(control) points.

The mask symbol corresponding to a given refinement mask is the Laurent polynomial
whose coefficients are given by the mask. This Laurent polynomials serve as a useful tool
in subdivision analysis.

We shall give particular attention to specifically interpolatory bivariate refinable functions.
These are refinable functions that assume the value 1 at the origin and vanish at all other
integer pairs.

We study characterizations of refinement masks of these refinable functions with their
associated mask symbols by taking into consideration integer dilation matrix A. We give
a particular attention to the dilation matrix A = 2I5.

Following the work in [FdV11], well-known polynomial identities are studied based on
results from [CCJZ11| to characterize the masks in terms of box spline symbols. An
algebraic approach for studying mask symbols for constructing subdivision schemes will
be given.

We proceed to introduce interpolatory subdivision schemes, which are schemes that pre-
serve initial data points at all steps of the iterative process.

By taking the existence of interpolatory bivariate refinable functions as given, we fur-
ther investigate the refinable box splines as basis functions for subdivision analysis, since
subdivision of box splines is the cornerstone of many popular multivariate subdivision
schemes.
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The concepts of a subdivision algorithm and a cascade algorithm will be introduced. Fur-
thermore, by using tensor products of univariate refinable functions, the interlink between
the subdivision algorithm and numerical experimentation of the cascade algorithm will
be implemented to generate a bivariate refinable function, which in turn plays a key role
in the construction of the desirable smooth surface. Also, we note that the convergence
of the cascade algorithm implies convergence of a subdivision scheme, which in turn is
strongly bonded to the existence of interpolatory bivariate refinable function.

After that, as the major part of our work, interpolatory surface subdivision schemes come
into play as they are basic tools for generating 3D objects by starting from control meshes
and implementing the subdivision process until a fine smooth surface is obtained from
the coarser ones. The control points in the control mesh define the shape of the surface
and hence the control mesh plays a key role in the description of the surface.

The objective of this study is to implement the refinable box splines for constructing
bivariate subdivision schemes, especially the Butterfly interpolatory subdivision scheme.
A special focus will be given to an algebraic verification of the Butterfly subdivision scheme
from the normalized box spline symbols which act as generators of some polynomial ideal
Z and its power ZF. That is, the Laurent mask symbol of the Butterfly subdivision
scheme can be expressed as C[zi, z5!]-combinations of normalised box spline polynomial
symbols, {Bp(z1, 22) : (21, 22) € C?\(0,0)}. Furthermore, the convergence analysis of this
subdivision scheme as well as a newly obtained interpolatory subdivision scheme, will be

further shown, by using the contractivity property of subdivision operators.

1.2 Notations and general concepts

We shall denote the set of integers by Z, the set of natural numbers by N, the set of non-
negative integers by Z_, the set of real numbers by R, and the set of complex numbers by
C. Also, for d € N, the symbols Z¢, R? and C? will denote the set of ordered d-tuples with
respect to the integers, real numbers and complex numbers, respectively. In particular,
our study concentrates on the case d = 2, so that the symbols Z2, R? and C? denote
the set of ordered pairs with respect to integers, real numbers and complex numbers,
respectively. Note that Z! = Z, R! = R and C! = C.

We use £(Z%) to denote the linear space of all real-valued sequences, ¢ = {Cj eER:je€ Zd} ,
whereas (y(Z%) is used to represent the subspace of finitely supported sequences, with
support given by supp ¢ := {J €74 ¢; # 0}.

Analogously, for the linear space M (R?) of all real valued d-variate functions f on RY, the
set of finitely supported functions constitute a linear subspace denoted by My(R?), with
support supp (f), which is the smallest closed set containing {x : f(x) # 0}.

The symbol C(R?) denotes the subspace of continuous functions in M (R?), whereas
Co(R?) denotes the subspace of continuous functions in My(R?). Also, we shall denote

by C1(R?) the subspace of piecewise continuous functions in M (R?). We shall write Z
J
for Z
jeZd

To begin our discussion, it is important to start by introducing the concept of a refinable
function, which is a cornerstone for the study of subdivision and wavelet analysis.
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1.3. Interpolatory refinement masks 3

Definition 1.2.1. For any invertible d x d-matriz A with entries in N, if ¢ € My(R?)
and {p;} € €o(Z?) are such that

o(z) = ij o(Ax—j), zeR% (1.2.1)

we say that ¢ is A-refinable with refinement mask {p;}, and we call equation (1.2.1) the
refinement (or dilation) equation. The matriz A is known as the dilation matriz.

Note that an A-refinable function ¢ is a self-similar function in the sense that ¢ can be
expressed as a linear combination of the shifts of its own dilation (scaling) with dilation
factor A. There is a unique bijective relation between a refinable function ¢ and its
corresponding refinement mask {p;}, as was established in [CMD91|. This means that if
¢ and {p;} are as in (1.2.1), and the function ¢ satisfies

6(x) = 3 qé(Ax —j), xR’ (1.2.2)

for some sequence {g;} € ¢o(Z?), then {g;} = {p;}-

Definition 1.2.2. For a refinement mask {p;} € lo(Z?) as in Definition 1.2.1, the Laurent
polynomial

P(z):=) pid, zeC\{0}, (1.2.3)

where 2 .= z' 2} ... Z)¢, is called the corresponding refinement mask symbol.

Definition 1.2.3. An A-refinable function ¢ € My(R?), as in Definition 1.2.1, and sat-
isfying, moreover, the condition

o) =05, jeZ, (1.2.4)

with {6;} denoting the Kronecker delta sequence given by

L il
5; ::{ o ZZ jj# 0 (1.2.5)

15 called an wnterpolatory refinable function.

In other words, an interpolatory refinable function assumes the value 1 at the origin and
vanishes at all other integer d-tuples.

We proceed to study refinement masks associated with interpolatory refinable functions.

1.3 Interpolatory refinement masks

The refinement mask of an interpolatory refinable function satisfies the following necessary
condition.
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Proposition 1.3.1. Let ¢ € My(R?) denote an interpolatory refinable function with
refinement mask {p;} € lo(Z?). Then

par = 05 JeZ. (1.3.1)
Proof. From (1.2.1) and (1.2.4), we have that, for j € Z4,

0 =0(G) = ped(Aj" — k")

kezd

— Z pk 6AjT_kT — ijT

kezd

[]

We proceed to establish the following necessary condition on refinement masks with non-
zero integral over R%, by extending the proof in [Rab10], where the dilation matrix A = 21,
was considered.

Proposition 1.3.2. Let ¢ € My(R?) denote an integrable A-refinable function with non-
zero integral over RY, and with refinement mask {p;} € lo(Z?). Then

> pj=|det Al. (1.3.2)
J

Proof. Suppose that the dilation matrix is given by

ai;pr a1 ... Qiqg
a9, A92 ... Agq

A=| 7 . (1.3.3)
Qg1 Qg2 ... Q44

Then, by writing p; = pj, j»...j.» Where j := (j1,72,...,Ja) € Z%, we can integrate the
refinement equation (1.2.1) to obtain

) o(x1, 29, ..., xq) dryde,y ... dag
R

Z pj17j2,~~-jd / ¢ [A(Il, e ,.C(,’d)T — (jl;jQ; e ,jd)T] d]}ldxg e d.%d. (134)

jl"“?jd ]Rd
Since, for j € Z%, the variable transformation
(517527 S 7§d) = A(xla T, ... 7xd>T - (.jl?j?a s 7jd)T

has, according to (1.3.3), the Jacobian

IS ICIST 96

dry Ora ' Ozgq 11 Q2 ... Aiq
% % oz Q21 Q22 Q24
3 3 3 ..
J(wy,.. . mg) =] T dol =1 ] | =det A,
98 0% [}

Q Q ... Q
971 Oy " Owg dl d2 dd
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we have

/d ¢ [A($17$2, v a)t = (J1s Gy - Jd)T] |det A| dzidzsy . . . dag
R

= /Rd o(&, .-, &) d6dés ... déa (1.3.5)
We deduce from (1.3.4) and (1.3.5) that
» O(x1, 29, ..., 2q) dryda, ... day
1
_ [;dpjl,jg,..,jdm [ Olana ) dodas . dag, - (130)

after having noted also from the invertibility of A that det A # 0, and thereby completing
our proof of (1.3.2), after having noted the fact that the integral of ¢ is non-zero over
RY. O

In view of Propositions 1.3.1 and 1.3.2, the existence of an interpolatory refinable function
¢ with non-zero integral over R? necessitates for the corresponding refinement mask {p;}
to satisfy the conditions

Pajr = 6j’ .] € Zd;

J

For the case d = 2, according to (1.2.3) in Definition 1.2.2, the refinement mask symbol
P corresponding to a refinement mask {p;} € £o(Z?) is given by

P(z1,23) = ij,k 22k (21, 2) € C\{(0,0)}. (1.3.8)
Jk

Observe from (1.3.8) that, for d = 2, the necessary conditions (1.3.7) on a refinement
mask {p;} has the equivalent mask symbol formulation

The constant term in P(zy, z9) is 1;
P has no term in z]'2)? such that (v, v2) := A(4,5)" # (0,0) for some (i, j) € Z* ;
P(1,1) =) pi;=|det A|.
ijEz
(1.3.9)
Observe that, for the dilation matrix A = 2I,, the conditions (1.3.7) on the refinement
mask {p;} is given by
Paigj = gy (i,]) € 7%
Z pij =4, (1.3.10)
ijer
whereas the condition (1.3.9) on an interpolatory mask symbol P is given by

The constant term in P(z1, z3) is 1;

P has no term in 2.7 237 for any (y1,72) € Z*\{(0,0)}; (1.3.11)
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1.4 Cardinal B-splines
Cardinal B-splines constitute a class of univariate refinable functions that can be defined
recursively as follows.
Definition 1.4.1. Let A C R. The characteristic function x4 on a set A is defined by
1, if ze€A;
Xa(z) = f (1.4.1)
0, if zeR\A
Definition 1.4.2. The cardinal B-splines {B,, : m € N} are defined recursively by

By = X[0,1]5

! (1.4.2)
Bm(:p):/ B 1(zr—t)dt, zeR, m=2.3,....
0

For any m € N, we call B,, the cardinal B-spline of order m.

In general, cardinal splines are defined as follows.

Definition 1.4.3. For any m € N, a cardinal spline of order m s a piecewise polynomial
of degree at most m, which is in C™ 2(R), and with break points, or knots on Z. The
space of all cardinal splines of order m is denoted by S,,, that s,

Smi={f €M) : fljjr) €Mpr, j€Z; f€C"?*(R)}. (1.4.3)

The following properties of cardinal B-splines B,,, are proved in [dVC10].

Theorem 1.4.4. For m € N, the m'-order cardinal B-spline B,, satisfies the following
properties:

(i)

supp B,, = [0, m]; (1.4.4)

(i)
Bp(z) >0, x€(0,m); (1.4.5)

(iii)
Bo(-—j) € Sm, jEI (1.4.6)

(iv)
B (x) = ;' > (—1y (m) (=), zeR, (1.4.7)

where
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(v)
Bia(2) = £ By(a) + ii “ T Ba(r—1), zeR: (1.4.8)

(vi)
B (z) = Bp_1(z) = Bp_i(z —1), z € R if m>3; (1.4.9)

(vii)
Bn(m—1x) = B,(z), z€eR, (1.4.10)

(viii)
/ Bp(z) dz = 1; (1.4.11)

(ix)
d Bulz—j)=1, zeR; (1.4.12)

()
By (z) = Qn}_l > (7;) Bu(2e—j), z€R, (1.4.13)

that is, B, is 2-refinable with refinement mask p™ = {p;ﬂ :J] € Z} given by

m 1 [(m _
Pj' = G (j)’ J € L. (1.4.14)

(zi) The sequence {By,(- —j):j € Z} is a basis for Sy, in the sense that, for f € S,
there exists a unique sequence {c;} € ((Z) such that

flz) = ch Bn(-—1j), -€R. (1.4.15)

According to (1.4.3),(1.4.4) and (1.4.6), the m*"-order cardinal B-spline B, is a piecewise
polynomial of degree m — 1 on its support interval [0, m], with breakpoints at the integers
{1,...,m — 1}, if m > 2. By applying the formula (1.4.7), we obtain, for m = 2,3, 4, the
explicit formulations

z, x€]0,1);
By(z) =h(z) =<2—2, z€]l,2); (1.4.16)
0, ze€R\[0,2),
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l+z, x€[-1,0);
By(z) =h(z) = By(z +1) =< 1—z, =z€[0,1); (1.4.17)
0, ze€R\[-1,1),

;2% 2 e0,1);

—22+3r -2, x€ell,2);
Ba(z) = 27 T 1.4.18
() ?—3x+3, zel2,3) ( )

1
2
0, z€R\[0,3),

(%xS, z € 0,1);
—3®+22% =20+ 2, xel,2);

a® — 42t + 100 — 2, z € [2,3); (1.4.19)
(4—x)3 x€]3,4);

z € R\[0,4).

1
2
1
6
0

\ 7’

Graphs of B,, B3 and B, are given in Figures 1.1-1.3.

1 0.8
0.8
0.6
0.6
04
0.4
0.2
0.2
00 0:5 ’i 1:5 2 00 0:5 ’i 1:5 é 2:5 3
Figure 1.1: Hat function Bo = h Figure 1.2: Quadratic B-spline Bs
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
U(l 1 2 3 4 00 1 2 3 4 5
Figure 1.3: Cubic B-spline By Figure 1.4: Quintic B- spline Bs

We proceed in Section 1.5 to introduce a bivariate version of cardinal B-splines, namely
box splines.
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1.5 Box splines

An important class of bivariate refinable functions are provided by box splines which we
proceed to introduce in this section. We shall rely on the Haar function (or roof function)
1, xel0,1)%

0, xeR\[0,1) (15.1)

By (x) := xp,12(x) = {

from which we will generate higher order box splines.

To this end, let {e; : j =1,...,4} C R? be the set of direction vectors defined by
e = (170), €9 = (O, 1), e :=e; +ey = (]_, ].), €4 .= €1 — €y = (1, —1) (152)
We introduce the notion of a direction set
D = €1,...,€1,€2,...,€9,€3,...,€3,€4,...,€4 ¢, (153)

v
~ ~ ~~ N

k V4 m P

where k and ¢ are positive integers, m and p are non-negative integers, in terms of which
we then define the integer

n:=k+/¢+m+p. (1.5.4)

To facilitate our discussion, we relabel the direction vectors in (1.5.3), and define the
direction set sequence {D, C D:r =2,...,n} by

D, :={e',e*....e"}, r=2,...,n (1.5.5)
Observe that then Dy = {e, e2}.
With the definition

D,] := {thej: 0<t;<1,j=1,2,...,m r=2,...,n}, (1.5.6)

=1
it then follows that [Dy] = [0,1)2.

Definition 1.5.1. For a given sequence {D, :r =2,3,...} of direction sets, the corre-
sponding boz splines {B,.(x) := B(x|D,), r = 2,3,...} are defined recursively
by means of
B(x|D;) := B (x), xR
1 , (1.5.7)
B, (x) = B(x|D,) = / Bx—te’|D, 1) dt, xeR:r=34,. ..
0
where By, the Haar function is given by (1.5.1).
For a given direction set D as in (1.5.3), we shall write
Bk,ﬂ,mm = IB%(”))7
B¢ = Br.r0,0; (1.5.8)

Bt = Br .m0,
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with, in particular, B1, = By. Also, By := By 1, the Courant hat function, for the
choices e' := e1; € := ey; € := e3; whereas By := By 14, for the choices €' := e;; €* :=

e; € :=e3; and By := By 111, the Zwart-Powell function, for the choices €' := ey; €% :=

ey e =e3; et = —e,.

Observe from the function (1.5.7) that permuting the direction vectors {e',e? ... e"}
does not change the box splines B,.

1.6 Examples

We proceed to explicitly compute specific box splines.

1.6.1 The Haar box spline B,
The Haar box spline is defined, according to (1.5.1), (1.5.7) and (1.5.8), by

L if (z,y) €[0,1)%

0, if (z,y) € R?\[0,1)% (16.1)

By (2, y) = Bi1(z,y) = {

from which we see that B; is a piecewise constant polynomial function which is discon-
tinuous around the boundary of its support whereas B; assumes the value one in the
interior (0,1)? of its support. We proceed to show that B, is a refinable function with its

y

Figure 1.5: The support of By Figure 1.6: The Haar box spline By

refinement mask {p} } given by

(1.6.2)

Poo =Dii =Ph1 =Dlo=1;
pi; =0, (i,5) & Z*\{(0,0),(0,1),(1,0), (1,1)},
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where the values of the refinement mask {pjl} are graphically illustrated in Figure 1.7
below. To this end, we first observe from (1.6.1) that

e = {y (A
iy (O
e R R
B1<2x—1,2y—1>={;: L e (163

Figure 1.7: The refinement mask {pjl}

Since the support [0,1]? of the Haar box spline B; can be partitioned into four disjoint

regions [0,1)%,[3,1] x [0,3),[0,3] x [3,1) and [3,1]?, it follows from (1.6.1) and (1.6.3)
that, for x,y € R,

Bi(z,y) = By(22,2y) + By (220 — 1,2y) + B (22,2y — 1) + By (22 — 1,2y — 1).  (1.6.4)

Hence, B, is 2Iy-refinable with refinement mask {p;; : 7,5 € Z} given by (1.6.2). It then
follows from (1.3.8) and (1.6.2) that the corresponding refinement mask symbol is given
by

Pl(Zl, 22) = (1 + 21+ 29 + 2122) = (1 -+ Zl)(l + 22), 21,22 € C. (165)
Therefore, Pj(z1,22) = (1 + 21)(1 + 22) is the refinement symbol for the box spline B;.

1.6.2 The Courant hat function B,

As defined in (1.5.8) of Definition 1.5.1, the Courant hat function B, is given by

1
Bo(z,y) :=B111(z,y) = / Bi(z —t,y—t)dt, (z,y)c R (1.6.6)
0
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—1 0 1 2 3
Figure 1.8: The support of Bo

As illustrated graphically in Figure 1.8, let the regions A, ..., F be defined by

A= {(z,y) € [0,1)2 tx > y},
B:={(z,y) €[0,1)* 1w < y};
C:.= ,y) € 1,2 0,1):z—1<y};
(e €02 x 0.1z - 1<) e
D:={(z,y) € [1,2)" 12 > y};
E:={(r,y) € [1,2)" 1w <y};
F:={(z,y) €[0,1) x [1,2): x4+ 1>y},
according to which the regions A, ..., F are disjoint and form a partition of the hexagonal
region [Dj3)], as defined by
3
[Ds] := {th ¢ 0<t; <1, j= 1,2,3}, (1.6.8)
j=1
that is, [Ds) = AUBUCUDUEUF.
We claim that
(‘/E —ty— t) S [07 1)2a te [07 1) A (fE,y) S [D3] (169)

To prove (1.6.9), suppose first that (z,y) € [Ds], that is, there exist ¢1,ts,t3 € [0,1) such
that
(:U7y) = tl(L O) + t2<07 1) + t3<17 1)7

T =1 +13; T —t3 = tq;
PPl e P (1.6.10)
y:t2+t37 y_t3:t27

and it follows that, with ¢ := ¢3 € [0,1), we have (x — t,y —t) € [0,1)2. Conversely,
suppose (z —t,y —t) € [0,1)? for some t € [0, 1), that is,

or equivalently,

0<z—-t<1;
(1.6.11)

0<y—t <1,
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so that

T —t=u;
y—t—u (1.6.12)

for u,v € [0,1). The definitions ¢; := u; ty := v; t3:=t, then yields (1.6.10), and it
follows that (z,y) € [Ds], thereby completing our proof of (1.6.9).

It follows from (1.6.9) and (1.6.1) that
By(z—t,y—1t)=0, (x,y)¢[Ds], tel0,1), (1.6.13)
and thus, by using also (1.6.6), we obtain
By(z,y) =0, (x,y) ¢ [Ds]. (1.6.14)

We proceed, by using (1.6.6) and (1.6.1), to calculate By(x,y) on each of the disjoint
regions A, ..., F in Figure 1.8, as follows:

y
(x,y)eA:EQ(x,y)z/ Ldt = y;
0
(m,y)GB#Bg(x,y):/ 1 dt = x;
0
y
(x,y)EC:>B2(q:,y):/ ldt=14+y—ux;
x—1
2
(w,y)ED:IB%Z(:c,y):/ 1dt =2 —ux;
1
(@) €B=Bawy) = [ 1dt=2-y
y—1
(x,y)eFéBg(x,y):/ ldt =142 —y,
y—1

and thus

y,  (z,y) €A

x, (x,y) € B;

l+y—=x, (z,y)€C;

Bo(x,y) =42 —x, (x,y) € D; (1.6.15)
2—y, (vy) ek

l+z—y, (x,y)€F;

0, (z,y) € R?\[Ds].

Observe from (1.6.15) that the Courant hat function B, is a piecewise linear bivariate
polynomial, with also

N L (Zvj) = (17 1)?
Bo(i, 5) = {0’ (.)€ Z2\((1.1)). (1.6.16)

A graph of By is shown in Figure 1.9. Moreover, we see from (1.6.15) that

B, € C(R?) \ C'(R?). (1.6.17)
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0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0

Figure 1.9: The Courant hat function, Bo

We proceed to show that By is a 2Is-refinable function.

To this end, we use (1.6.6) and (1.6.4) to obtain, for any (z,y) € R?

BQ(x7y) = /OBl(x_t,y_t)dt:/O Zp%7j]B1(2(x—t,y—t)—(i,j))dt

i,jEZ

1 1
:/ B1(2x—2t,2y—2t)dt+/ By (2x — 2t — 1,2y — 2¢t) dt
0 0

1 1
+/ IB%l(Zx—2t,2y—2t—1)dt+/ By (22 — 2t — 1,2y — 2t — 1) dt
0 0

1

1
= {/2 B (22 — 2t,2y — 2t) dt+/ B (22 — 2t,2y — 2t) dt}
0 3
1
Jr

2

/2 By (22 — 2t — 1,2y — 21) dt+/ By (22 — 2t — 1,2y — 21) dt}
0 1

1 1
/2 By (22 — 2t,2y — 2t — 1) dt+/ By (22 — 2t,2y — 2t — 1) dt}
1

2

2

1 1
1
/ Bl(2x—t72y—t)dt+§/ B1(2x—t—1,2y—t—1)dt}
0 0
1

1t
]B%1(2m—t—1,2y—t)dt+§/ IB%l(Zx—t—Q,Zy—t—l)dt}
0

J

1 1t
/]B%l(2m—t72y—t—1)dt+§/ IB%l(Zx—t—l,2y—t—2)dt}
0 0

J

N = N = N =

2

2

1 1
+{/ B1(2x—2t—1,2y—2t—1)dt+/ B1(2x—2t—1,2y—2t—1)dt}
0 1
1
2

1 1
1
B1(2x—t—1,2y—t—1)dt+f/ IB%l(Qx—t—Q,Qy—t—Q)dt}
1

1
Bo(2z,2y) + 2B2 (22 — 1,2y — 1)} + 3 {Ba2(22 — 1,2y) + Ba(22 — 2,2y — 1)}

1
{B2(2x,2y — 1) + B (2%, 2y — 2)} + 3 {Ba(22 — 1,2y — 1) + Bo(22 — 2,2y — 2)},
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and thus,

1
Ba(,y) = 5 [Ba(22, 2y) + By(22, 2y — 1) + By(22 — 1, 2y) + 2B»(22 — 1,2y - 1)

+By(22 — 1,2y — 2) + By(27 — 2,2y — 1) + By(22 — 2,2y — 2)], (7,y) € R?,
(1.6.18)

which in turn implies that the box spline B, is 2Is-refinable with refinement mask {pjz}
given by

1
2 2 2 2 2 2 2
=1 _ _ _ _ _ _ .
P1a1 =4, Poo =Po1=Pio=P21=P12=P22~ 9 } (1.6.19)

pi; =0, (i,5) ¢ {(0,0),(0,1),(1,0), (1, 1), (1,2),(2,1), (2,2)},

where the values of the refinement mask {pi} are graphically illustrated in Figure 1.10.

3
2
1
1 2,
0 T
2
1 0 1 9 3

Figure 1.10: The refinement mask {p?}

Observe from (1.6.15) and (1.6.19) that the support of B, and its refinement mask {p;}

agree, in the sense that

By = |Dsl;

Supp g [ 3]? (1620)
supp pj = [Ds]|zz.

It follows from (1.3.8) and (1.6.19) that the corresponding mask symbol is given by

1 1 1 1 1 1
PQ(ZI, 22) = (5 + 521 + 522 + 2120 + 52%22 + 521222 + 52323)
1 1+ 22
=5+ 2)(1+ 2)(1+ 212) = ( o 2) Pi(21, 22), (1.6.21)

with P; denoting the symbol of the Haar box spline By, as given in (1.6.5).

1+ Z1%9
2

Therefore, Py(z1,2) = ( ) Pi(z1, z3) is the symbol for the Courant hat function

Bs.
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1.6.3 The shifted Courant hat function B,

The shifted Courant hat function is defined by
Bo(z,y) ==Bo(z+ Ly +1), (z,y) €R?,
with By denoting the Courant hat function, according to which, together with (1.6.15)

and (1.6.7) we have the explicit formulation

1+uy,

BQ(xay) = 1—56',

—_

_l’_

NS

|

8
S
ooy W )
22

o

H
_|_
8

|
=

0

s
M
)

2
1

1
0 2
—1 T

2
-2
-2 -1

Figure 1.11: The support of the shifted Courant hat function B,

where
[Ds]:=AUBU

]
with the disjoint regions K e ,? defined by

A= {(z,y) € [-1,0)?
B:={(zx,y) € [~1,0)?
Ci={(z,y) €01 >
D= {(z,y) € [0,1)
E = {(z,y) € [0,1)?
Fi={(z,y) € [-1,0) x

as graphically illustrated in Figure 1.12.

0 1 2

CUDUEUF,

x>y}
:x<y};
[-1,0) 2 — 1 < y};
y<x}

ty>ah;

[0,1):$+12y},,

16

(1.6.22)

(1.6.23)

(1.6.24)

(1.6.25)
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0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Figure 1.12: The shifted Courant hat function B,

Analogous to B, in Section 1.6.2, we find that @2 satisfies the following properties:

o By(x) =0, xe&R\{Ds};
o Baj) =05, jez
e B, is 2L,-refinable function with refinement mask {pj}jezz given by

1
2 s s RS, B, B T
Doo =1, DPi1 =001 =Po1=Dip=DP10=P11= 9’
)

pzz,j =0, <Z7J) ¢ {(07 0)? (07 1)7 (170)7 <_170>7 (07 _1)7( 1)7 (_17 _1)}'

Hence ]@2 is an interpolatory refinable function. The function @2 is graphically
illustrated in Figure 1.12.

(1.6.26)

The values of the refinement mask {ﬁ?}, as given in (1.6.26), are graphically illus-
trated in Figure 1.11.

e The continuity order of the shifted Courant hat function:

B, € C(R?)\ C(R?). (1.6.27)

We note from (1.3.8) and (1.6.26) that the corresponding refinement mask symbol is given
by

~ 1
Py(z1,29) = 5(1 +21) (14 22) (1 + 2122) 27 125 Y, (1.6.28)
and thus,
~ 1+ 272!
PQ(Zl,ZQ) = (#) Pl(Zl, 2’2), (1629)

where Pj(z1, 22) is the symbol for the box spline By, as given in (1.6.5). The refinement

~

symbol P, will be used as a basic factor for generating the Butterfly subdivision mask
symbol, which will be discussed in Chapters 4 and 5.
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1.7 Bivariate box spline properties with respect to
meshes

In this section, we derive some properties of bivariate box splines.

First, we introduce the concept of a k-directional mesh.

Definition 1.7.1. For any integer k > 2, a k-directional mesh is a set of vectors

Gr:=<d',. .. d\,....d* ..., d"}, (1.7.1)

—
ma myg

where d' = (a;,3;) € Z*, o € R, B > 0, with a;; # «;B; for i # j, and with
k

multiplicities m; > 1 fori=1,... k. Also, n := ZmZ
i=1

We proceed to provide examples for k = 2,3, 4.

The 2-directional mesh G,

For k = 2, the choices d! := e;; d? := ey, yield the 2-directional grid G, which in fact
corresponds to the rectangular Z? grid in R? as illustrated in Figure 1.13. Note that here
n=2.

The 3-directional mesh G3

For k = 3, the choices d! := e;; d? := e, ; d? := ey, yield the 3-directional grid G5 which
in fact corresponds to the type-1 triangular Z? grid in R? as illustrated in Figure 1.14.
Note that here n = 3.

The 4-directional mesh G,

For k = 4, the choices d!' := e;; d? := e, ; d® := e and d* := —e4 as in (1.5.2), yield the
3-directional grid Gs which in fact corresponds to the type-II triangular Z? grid in R? as
illustrated in Figure 1.15. Note that here n = 4.

The following bivariate box spline result holds with respect to the 3-directional mesh Gs.

Theorem 1.7.2. [Han00] For k.0 € N and m € Z, the box spline By o, is a piecewise
bivariate polynomial of total degree at most v := k+{+m — 2 relative to the 3-directional
mesh Gs. Furthermore, By, is (v — k) times continuously differentiable across each
horizontal line in the mesh; (v — {) times continuously differentiable across each verti-
cal line and (v — m) times continuously differentiable across each diagonal line of the
corresponding type-I triangular Z2 grid.
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Figure 1.13: The 2-directional mesh ~ Figure 1.14: The 3-directional mesh
G2 Gs (type I-triangular grid)

Figure 1.15: The 4-directional mesh
G (type II-triangular grid)

Examples

(a)

According to the results of Section 1.6.2, the Courant hat function By := B 11, with
direction set {e1, €2, e3} asin (1.5.2), is a linear bivariate polynomial in each triangle
of its support. Furthermore, it is continuous across each vertical line, horizontal line
grid, and diagonal grid line.

Observe that these results are consistent with Theorem 1.7.2, in the notation of
which we have here y=1+1+1—-2=1.

According to Theorem 1.7.2, the bivariate box spline B3 := B, ; o, with direction set
{e1, ey, €3, €3}, is a quadratic bivariate polynomial in each triangle as in Figure 1.14.
Also, since here y =141+ 2 — 2 = 2, B3 is continuously differentiable once across
each vertical line and horizontal line grid, but only continuous across the diagonal
grid lines. As illustrated graphically in Figure 1.16, let the regions Qy, ..., be

1 2 3 4

Figure 1.16: The support of By 12 Figure 1.17: The box spline By 12
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defined by
Q= {(x,y)€[0,1)2:x2y}, )
Q= {(z,9) € [0,1)*: 2 <y},
Q3 :={(z,y) €[0,1) x [1,2) : 2+ 1 >y},
Q={(x,y) €[1,2) x[0,1) : 2z — 1 <y},
Qs = {(0.9) € 1,27 10>y}, -
QG::{(x,y)€[1,2)2:x<y}, o
Q7 ={(z,y) € [1,2) x [2,3) :y <z + 1},
Qs :={(x,y) € 2,3) x [1,2) :y >z — 1},
Qg = {(a:,y) €2,3):y< a:},
Qo = {(x,y)€[2,3)2:y2x}, J
according to which the regions §2;, 7 € {1,2,...,10} are disjoint, and form a partition
of the region
4
[Dy] = {thej, ogtj<1,j=o,...,4}, (1.7.3)
j=0

that is, [Dy] := U;2, Q. By using equation (1.5.7), we calculate the formula

(3v2,  (z.y) € Qi

sa?, (z,y) € Qq;

et — iyt 4y — 3, (z,y) € Qs;

—%x2+%y2+x—%, (z,y) € Q;

—%x2—5y2+x+2y—%, (x,y) € Qs;
Bs(z,y) == Biya(z,y) = { —22° — 39> + 20 +y — %, (x,y) € Qg;

—lx2+%y2+2x—3y+g, (x,y) € Qp

st — 2y — 3w+ 2y + 2, (z,y) € Qs;

%x2—3$+%, (x,y) € Qo;

%?JQ -3y + %> (z,y) € o;

0, (x,y) € R*\[D,].

\

We proceed to show that B3 := By ;2 is a 2Iy-refinable function. To this end, we
use (1.6.6) and (1.6.18), to obtain, for any (z,y) € R?,

1 1
B3($7y) :/0 BQ(:U—tvy_t) dt:/ Zp'LQ,] B2(2($—t,y—t)—(l,])) di
1,]EZL
1

|
=

1 1
2(2$—2t—1,2y—2t—1)dt+2/ Bo(2x — 2t,2y — 2t) dt
0

[e=]
—_

_l’_

1 1
Bo(22 — 2,2y — 2t — 1) dt + 2/ Bo(22 — 2t — 1,2y — 2t) dt
0

_l’_

1 1
B2(2x—2t—2,2y—2t—l)dt—l—2/ Bo(2x — 2t — 1,2y — 2t — 2) dt
0

—_

+
N~ NI~ N

Bo(2x — 2t — 2,2y — 2t — 2) dt

S~~~
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1 1
Bg(fﬂ,y):/2B2(2$—2t—1,2y—2t—1)dt+ﬁ Bo(2x — 2t — 1,2y — 2t — 1) dt
0 =

2
1

1
{/21832(2m—2t,2y—2t) dt—i—ﬁ Bo (22 — 2t,2y — 2t) dt}
0 =

2

_l’_

N

1
Bo(2x — 2t,2y — 2t — 1) dt—l—/ Bo(2x — 2t,2y — 2t — 1) dt}
1

>—

2

i 1
/21832(2m—2t— 1,2y — 2t) dt—l—/ Bo(2x — 2t — 1,2y — 2t) dt}
1

2

e=]

z 1
/21832(256—275—2,23/—215—1)dt—|—/ BQ(Q:U—2t—2,2y—2t—1)dt}
1

o

2

_l_
=]

2

1
/1832(256—2t—2,2y—2t—2)dt—|—/ Bo(2x — 2t — 2,2y — 2t — 2) dt

1

N

+

1 1
/21832(256—225—1,2y—2t—2)dt—|—/ Bg(2x—2t—1,2y—2t—2)dt}
1

[e=]

2

A~~~ ——

N

1 /1
B2(2x—t—1,2y—t—1)dt+2/ Bo(2x —t —2,2y —t —2)dt
0

1

_l’_

1
E2(2x—t,2y—t)dt—|—/ B2(2az—t—1,2y—t—1)dt}
0 0
1

_l’_

1 /1
B2(2m—t,2y—t—1)dt+4/ Bo(2x —t— 1,2y —t—2)dt
0

_l’_

1 1
B2(2m—t—1,2y—t)dt+4/ Bo(2x —t—2,2y —t—1)dt
0

_l’_

1 1
B2(2x—t—2,2y—t—1)dt+2/ Bo(2x —t — 3,2y —t —2)dt
0

_l’_

1 1
Bg(2x—t—1,2y—t—2)dt+4/ Bo(2x —t — 2,2y —t — 3) dt
0

—_

By(2w —t — 2,2y — t — 2) dt,

e e N N L N B e .-Jk\r—lo\ NN

o\;hﬁﬁhr—’&x

Sl

1
Bs(2x — 1,2y — 1) + B3(2z — 2,2y — 2)] + 5 Bs(2x — 1,2y — 2)

1
+B3(2z — 1,2y — 2)] + 1 [Bs(2z,2y) + B3 (2z — 1,2y) + B3 (2x — 1,2y — 2)

+B3(2z — 2,2y — 1) + B3(2z — 3,2y — 2) + B3(22 — 2,2y — 3) + B3(2z — 3,2y — 3)],
(1.7.4)

It follows from (1.7.4) that the box spline Bj is 2Iy-refinable with refinement mask
{p}} given by
3 1
pi1 = pg,z = Z; pg,l = p§,1 = 55

I

,2),(2,1),(2,2),(2,3),(3,2),(3,3)}-
(1.7.5)

A,

3 _ .3 _ .3 _ .3 _ .3 _ .3 _
Po1 = P10 = Poo = P32 = P23 = P33 =

p?,j =0, (i,7) ¢{(0,0),(1,0),(0,1),(

—_
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According to (1.3.8) and (1.7.5), the corresponding refinement mask symbol is given
by

1 1 1 1 1 1 1
Pg(Zl, ZQ) = (Z + 121 + 122 + 52%22 + 52125 + ZZ%ZS + ZZ%ZS + ZZ%ZS

3 1 3
+szz§ + szzg + Zzlzg)
1+ 2179

= i(l +20) (1 + 20) (1 + 2129)? = (T) Py(21, 22),

from (1.6.21), with P, denoting the symbol of Bs.

1
Hence, P3(z1, 22) = <¥

Observe from (1.7.5) that {p;; : i,j € Z} is not interpolatory but symmetric, that
iS, Dij = Pji for Z,j € 7.

) Py(z1, z3) is the symbol for the box spline Bs.

Next, we quote a result from [Han00| for box splines with respect to the 4-directional
mesh

Ga.

Theorem 1.7.3. [Han00] For k,¢ € N and m,p € Z, the boz spline By, 4, is a piecewise
bivariate polynomial of total degree at most v := k+{+m-+p—2 relative to the 4-directional
mesh (Gy-mesh). Furthermore, By ;. is (v — k) times continuously differentiable across
each horizontal line in the mesh; (v — £) times continuously differentiable across each
vertical line ; (v —m) times continuously differentiable across each of the positively sloped
diagonal lines; and (v — p) times continuously differentiable across each of the negatively
sloped diagonal lines of the corresponding type-1I triangular Z2 grid.

Examples

(a) The well-known prototype example for the 4-directional mesh G, is the box spline
B, := By 1,11 associated with Dy = {e1, e, €3, —€4}.

As illustrated graphically in Figure 1.18, the regions €y, ..., {2y, are disjoint, and
form a partition of the octagonal region [D,], as defined by

4
[Dy] := {Zej t:0<t;<1,j= 1,2,3,4}, (1.7.6)

j=1

that is, [Da] = 22, Q, as illustrated in Figure 1.18. Similar to the above examples,
the graph of B, is shown in Figure 1.19.

Next, we demonstrate the 2Is-refinability of B4 by first noting that

1
By(x,y) := / Bo(x +t,y —t) dt, (1.7.7)
0

and then using (1.7.7) and (1.6.18), to obtain, for any (z,y) € R?,
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(%7

[N

Figure 1.18: The support of By

Figure 1.19: Graph of the box spline By from [vdB0S8|/

1
By(x,y) := Bi(z,y) = / Bo(x +t,y—1t)dt
0

:/Olngyj By(2(x + t,y — 1) — (i.4)) dt

1 1
1
Bo(2x + 2t,2y — 2t) dt +§/ Bo(2x + 2t — 1,2y — 2t) dt
0

1 1
Bo(2x + 2t,2y — 2t — 1) dt +§/ Bo(22 + 2t — 1,2y — 2t — 1) dt
0

N | —

S~

+

1

1 1
+ B2(2x+2t—2,2y—2t—1)dt—|—§/ By (2% 4 2 — 1,2y — 2t — 2) dt
0

1
By (27 + 2t — 2,2y — 2t — 2) dt

N | —

DN | =
S— —

+
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1 1
Bu(r.y) = ; /
0

&=

1
2(2x+t,2y—t)dt—|—1/ Bo(2x +1+¢,2y —1—1t)dt
0

+

1 1
B2(2x+t,2y—1—t)dt+§/Bg(?$—1+t,2y—2—t)dt
0

_I_

O\HO\

1 1
BQ(zx+1+t,2y—2—t)dt+Z/ By(2x+t—1,2y—1—¢)dt
0

+

1 1
32(2x+t,2y—2—t)dt+§/ Bo(2x —2+t,2y — 1 —t)dt
0

+

1 1
0

[y

+
N N R Y G SN OV

c\(ﬁc\

By(22 — 1 +¢,2y —3 —t)dt

1
=1 [Ba(22,2y) + Ba(22 + 1,2y — 1) + By (22 — 1,2y) + B4 (22 — 1,2y — 1)
+B4(22,2y — 2) + By(2x — 2,2y — 1) + By(22,2y — 3) + B4(22 — 2,2y — 2)
3
+B4(22 — 1,2y — 3)] + 1 [By(22,2y — 1) + By(2z — 1,2y — 2)]

1
+ 5Ba(22 + 1,2y - 2). (1.7.8)

Thus, the box spline B, as given in (1.7.8) is 2Iy-refinable with refinement mask
{pi} given by

p§1,2 = %5 pé,l = pi2 = %; )
pé,o = pg,l = p4f,o = pg,Z = pé,Q = pé,?, = p4f,1 = pﬁu = pg,z = i; 3
piy =0, (i,5) € {(1,1),(0,0),(~1,1),(1,0),(2,1),(0,1),(0,2), (~1,2),
(1,3),(0,3),(1,2),(2,2)}. )
(1.7.9)

It then follows from (1.3.8) and (1.7.9) that the corresponding refinement mask
symbol in its factorised form is given by

1+212’2_1

2

P4(21, 22) = i (1 + Zl)(l + 22)(1 + 2122)(1 + 2122_1) = (

) Py(z1, 29),

from (1.6.21), with P, denoting the refinement symbol of Bs.

1+2122_1
2

Observe from (1.7.9) that {p}; : 4, j € Z} is not interpolatory, but symmetric, that
is, pij = pj,; for i, 5 € Z.

As stated in, e.g., [{IBHR93, EU10, CK02], the box spline By is known as the Zwart-
Powell element. As graphically illustrated in Figure 1.18, the Zwart-Powell element
is supported on an octagonal support [—1,2] x [0, 3]. We also note that here, in the
notation of Theorem 1.7.3, that v =14+1+1+1—2 = 2, and thus, B, is a piecewise
quadratic bivariate polynomial and once continuously differentiable, that is, it is in
C1(R?) across the grid lines according to Theorem 1.7.3. Tt is therefore smoother

Therefore, Py(z1, 29) = ( ) Py(21, z2) is the symbol for the box spline B,.
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than the piecewise quadratic bivariate box spline B3 := B ;2 but its support is
considerably larger. It has also a nice symmetric property.

(b) The box spline By ;1 associated with D5 = {e;, e, e, e3,e4} with {e;, ez, e3,e4}
as in (1.5.2), is a piecewise cubic bivariate polynomial according to Theorem 1.7.3,
and is again continuously differentiable on R.

1.8 Properties of bivariate box splines

In this section, we investigate further properties of the bivariate box splines of Section 1.5.
All of the properties given here are from [dVC10|, where the proofs are left as exercises.
We shall provide the full derivations below. We introduce the following preliminaries.

For integers kK > 0, £ > 0, m > 0, p > 0 in the box spline notation introduced in the first
line of (1.5.8), we define the integer

n* :=min{k+l+m,k+L+pk+m+p l+m+p}—2, (1.8.1)
from which together with (1.5.4), it then follows that
n*=(k+{+m+p)—max{k,{,m,p} —2=n—max {k,{,m,p} — 2. (1.8.2)

For any k € N, we shall write C*(R?) for the space of real-valued functions f such that f
and all its partial derivatives up to order k are continuous on R2. We need the following
lemma for proving the continuity order of box splines as in Theorem 1.8.2 below.

Lemma 1.8.1. Let f be a function of two variables. If the partial derivatives f, € C™(R?)
and f, € C™(R?), then f € C™(R?).

The following properties are satisfied by bivariate box splines.

Theorem 1.8.2. For d € {2,3,4}, let G, denote the d-directional mesh with vertices in
72 as described in Section 1.7. Then the boz spline By.tmp = B(.|Dy), as obtained from
(1.5.7), where the positive integer n is defined in (1.5.3), satisfies the following properties:

(a) The positivity property
B(x|D,) >0, x € Int[D,] (1.8.3)
holds.

(b) (i) The restriction of By, to each square of the Go-mesh is a polynomial in 113 ,_,;

(it) The restriction of Byem to each triangle of the Gs-mesh is a polynomial in
I1

(iii) The restriction of By pm,p, to each triangle of the Gy-mesh is a polynomial in
2 where n:=k+{+m-+p asin (1.5.4).

2 .
k+0+m—27

(c) The continuity condition
B(.|D,) € C™ (R?), (1.8.4)

where n* is as given in (1.8.1), holds.
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(d) The support property

supp B(x|D,,) = [Dy), (1.8.5)
where [D,] is defined as in (1.5.6), holds.
(e) The partition of unity property
Y B(x—jD.) =1 xeR’ (1.8.6)
jez?
holds.

(f) The unit integral condition

/ B(x|D,)dx =1 (1.8.7)
R2
holds.

Proof. Our proofs of (a) — (f) are all by induction.
(a) The positivity of box splines

To show the positivity of box splines, we apply induction with respect to n. First, observe
from (1.5.1) that the positivity condition (1.8.3) holds for n = 1. Suppose now that (1.8.3)
holds for a fixed integer n € N. Our inductive proof of (a) will be complete if we can
show that B(x|D,41) > 0, x € Int[D,,41]. To this end, let x € Int(D,,11), from which it
follows from (1.5.6) that

x —te" € Int(D,), t € (0,1),

and thus, from the inductive hypothesis (1.8.3),

1
B(x]Dn+1):/ B(x — t "D, dt > 0.
0

(b)(i) The restriction of box splines to G- directional meshes with d=2,3,4.

Case 1 In order to show that By,|g, € II7,, ,, we employ induction on both k and ¢
respectively.

First, let £k = 1 and apply the inductive argument with respect to £.
Observe that the box spline By ; asin (1.5.1) is a constant function with degree zero

(and is parallel to the xy-plane). The restriction of B ; to Ga-mesh gives polynomials
in 115, ,_, = II3, that is, the linear space of bivariate constant polynomials.

Suppose it holds true, by induction hypothesis, that By g, € I12_, for some fixed
non-negative integers k& and ¢. Then by using (1.5.7) together with (1.5.2), for
x € R2, we have

1 1 Yy
By ror(x) / Bro(x — t e3) df — / By (. — £) dt — / Byy(z,t) dt, € 0,1]
0 0 y—1
(1.8.8)
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Then, by applying the Fundamental Theorem of Calculus on equation (1.8.8), we

get
OBy 041
a—’+ = Bro(z,y) —Bre(z,y —1).
) —_—
ST S
OBy 141 ) . . . .
Hence, ————— € Il ,_, and up on integration with respect to y, we get an incre-

0y

ment in the degree of piecewise polynomial By ¢41|g, by one, that is,

8Bk,£+l 2 2
y €Iy py—2 = Wiyos-

Case 2 Let ¢ be arbitrary but fixed. Then we proceed by induction on k. First, observe from
(1.5.1) that the restriction of By, to Go-mesh gives polynomials in II5,, , = II3.
Suppose now that, by induction hypothesis, that By, restricted to Go-mesh is in
I oos
Now, by using (1.5.7) and (1.5.2) same way as in Case 1, we get

1 T
Bl = [ Budo—ty)dt= [ Butw)dt tepl.  (189)
0 r—1
which, after implementing the Fundamental Theorem of Calculus on equation (1.8.9),
becomes 9B
—ELE = By, y) — Bre(r — 1,y).
ay —_——— —
€I, o €,

0B . . . .
Thus, 5;1’6 el +¢_ and upon integration with respect to x, we get an increment

for the degree of piecewise polynomial By |g, by one, that is,

OBjt1,0 2 2
Oz € I pr1)—2 = Wiyos-

A similar proof using induction argument is implemented for proving the remaining cases,
including the case with triangulations, Gz and G,.

(c) The continuity condition

Now, in order to prove the continuity condition, that is, B(.|D,) € C™ (R?) with n* given
in (1.8.2), we use induction on each of the multiplicities: k, ¢, m,p .

Observe, from (1.7.7) and Theorem 1.7.3, that the Zwart-Powell element B, is C*-quadratic
function on 4-directional mesh, that is, non-zero on an octagonal support contained in
[—1,2] x [0,3]. So using (1.8.2) with k = ¢ =m = p = 1, we see that it holds for n* = 1.

Suppose now, by inductive argument, that (1.8.4) holds for a fixed integer n* € N where
n* is as in (1.8.1).

Then it remains to show 4-possible cases of induction: k, ¢, m and p by using (1.5.7) on
each of the cases together with the Fundamental Theorem of Calculus, that is, By ¢, €

O (R2).
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(i) Induction on k
1
Bk—l—l,@,m,p(X) - / Bk,f,m,p(x —1 el) dta X = (ZL’, y) S R2
0

1 x
= / Bitmp(z —t,y) dt = / By.o.mp(t,y) dt. (1.8.10)
0 r—1

Using the Fundamental Theorem of Calculus on equation (1.8.10), we get

OBy i1.0mp

5 %) = Butmp(@,y) = Bromp(e —1,9). (1.8.11)
con* (R2) con* (R2)

: . o oB . o
Equation (1.8.11) in turn implies that w € C"" (R?). Next, by using similar
x
argument, we make induction on the remaining multiplicities, namely, ¢, m, p and it
is shown as follows.

(ii) Induction on ¢

1 1
Bk,éJrl,m,p(X) = / Bk,é,m,p(x —t 82) dt = / Bk,@,m,p(x> y—= t) dt
0 0

Y
= / Bk747m7p($,t) dt. (1812)
y—1

Applying the Fundamental Theorem of Calculus on equation (1.8.12) yields

OBy p+1,m.p

oy (x,y) = EB%kyam’p(x, yZ—EB%k,gymyp(x, y— 12. (1.8.13)
con (&2) eon* (&2)

0B m . T .
Equation (1.8.13) in turn implies that % € C™ (R?). A similar inductive
)

approach can be implemented to show that it also holds for m and p. In other
words, it can be, by induction on m and p, shown that

aIB3k€m+1p * 2 aEkém—i—lp * 2
[ae) ), C’n R d [he) ) CTL R .
9y € (R7) an —o € (R7)

0B . 0B \
Now, since the box spline B := By 4, With 57 © C™ (R?) and 30 € C™ (R?), we
Z Y

apply Lemma 1.8.1 together with

n*+1=|k+¢+m+p —max{k,{,mp}—1

* a]B *
in order to check that B € C™ ™!(R?). That is, since a5 © C™ (R?) with k =
T
0,1,2,...,n* we have that

oB 0 (618%) 0*B o (818%

A 4o | & —_— - - @ | = 0/m2
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]B *
and also if OBty € C™ (R?), then

dy
OB 0 (0B\ 0°B o OB oy
— V=)=, | = 1.8.1

with £k =0,1,2,...,n* holds. Thus, from (1.8.14) and (1.8.15), we get

B B Ky’
B 0 (8 ),.. 88 e’ where k=0,1,2,....,n" +1.

"oz’ O \ Oy T Qxkoyn—k

Hence, By ¢, € C™ T1(R?). This completes the induction argument.

(d) The support property

We proceed by induction on n. From the definition of the box spline By ; in (1.5.1), we
have that
1, x€l0,1)%

0, otherwise .

By.1(x) := xj0,12(x) = {

From the definition of support, that is, supp® B(z|Dy) = {x € R?: B(z|D,) # 0}, it is
obvious that B(x|D;) # 0 only when x € [0, 1)2 = 10,1 = {t;e' +t2 €% t; € [0,1]}.
Hence, the base case

2
supp® B(x|Dy) = {x x=) tie0<t; < 1} = [Dy]
i=1
trivially holds.

Assume, by induction argument, that it holds true for n, that is, equivalently:
supp® B(x|D,,) = [D,].

We need to show that
n+1
supp® B(x|Dp11) = [Dp11] = {th e, 0<1¢ < 1}-

That is,

supp® B(x|Dy41) = [Dy+1] < supp® B(x|Dny1) C [Dyy1] ﬂ [Dp11] € supp” B(x|Dyp1).
(1.8.16)
The first part of (1.8.16) proceeds as follows.

We let

1
X € SuppCB("DnJrl)a = / B<X - tn+1 en+l’Dn) dtn+1 7é 0
0
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and this implies that there exists ¢, € (0,1) where B(x — t,,,1€""}|D,) # 0, that is,

x € supp® B(:|Dy+1) = x € supp® B(+[Dny1)
= x —t,1 e"" € supp° B(:|D,)

n
=X —t, e = Zti e’, for somet; € [0, 1]
=1
n
:X:Ztiez%—tnﬂenﬂ, 0<t; <1
=1
n+1
?X:Ztiel, 0<¢ <1
=1

=X E [Dn-l—l}'
Thus,
supp’ B(x|Dy41) C [Dpa]- (1.8.17)

The other part of (1.8.16) proceeds as follows. We also let

n+1
XE[Dn+1]:>X:Ztiei, 0<¢ <1
=1

n
:>X—tn+1e”+1 :Ztiei, 0<¢ <1
1=1

= X —t,11 " € supp® B(-|D,)
= B(x —t,1 " D,) #0 (1.8.18)

Since B(-|D,,) is continuous and B(x|D,,) > 0 for all x, then there exists a neighbourhood
N := (tp41 — €, tny1 + €) such that B(x — ke"|D,) > 0 for k € N.

Hence, equation (1.8.18) is equivalent to
1
/ B(x — ke"™|D,) dk # 0 < B(x|D,y1) # 0 = x € supp® B(-|Dyy1).
0

Thus,
[Dys1] C supp® B(x|Dys1)- (1.8.19)
From (1.8.17) and (1.8.19), we deduce that supp® B(x|D,41) = [Dnt1)-
Thus, supp® B(x|D,,+1) = [Dy+1] and this completes the proof.
(e) The partition of unity property
The inductive proof for the partition of unity property proceeds as follows.

Observe, from the definition of By as in (1.5.1), that

Y B(x—j|D;) =1, x€R’ holds.

jez2
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Suppose it holds true for n, that is, Z B(x — j|D,) = 1 for all x € R2. We need to show
jez?
that it holds for n + 1.

Since D,y 1 = D, J{e" ™}, with e"™! € {e;, e, e3,e4}, as in (1.5.2), we apply induction
to each of the possible cases.

If "™ = ey, and by setting # := xz — t € R with ¢ € [0, 1], we have

S B((@,y) — (L)) = Y / (i]) — (£.0)|Dy) dt
(i,j)€Z? (i,5)€Z?
-y /B(az—t—z,y—m)dt
(3,5)€Z2 0
1
= > /B(w—@y—j\%)dt
(i,5)€Z2 0
/ S B — i,y - §Da) dt
(i,5)€Z2

:/ ldat=1.
0

If e"*! = e,, and by setting ¢ :=y —t € R with ¢ € [0, 1], we have

> B((@y) — (,0)Pap) = > / i,7) — (0,8)|Dy,) dt

(i,4)€Z? (4,5)€22
- 5[5 t-ima
(4,5)€2?
-y /B«c—z,y jIDy) dt
(i.d)ez? 7
/ > Bz —i,y—j|Dy)dt
(3,5)€Z?

1
— [ra-1
0

ntl = ¢, is shown in a similar fashion.

n+1

The case with e"™ = ez and e

(f) The unit integral property

/ B(x|D,) dx — //B(x,yﬂ)n) do dy = 1
R2 R JR
Proof. We begin with the base case. For n = 2, it holds from (1.5.1) that

/ (x|D7) dx—/ / X[Ol)zdxdy—/ / ldxdy =1.
R2
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By induction argument, assume that it holds true for n, that is,

/ IB%(X]Dn)dx:/ / B(z,y|D,) de dy = 1.
R2 —o00 J —00

Then, we need to check whether it is true for n + 1.

If et = e;, and applying the induction argument by setting # := x — ¢t € R, we have

/RQIB%(X|DTL+1)dX:/R2 [/OIB(X_teﬂDn) dt] dx
:/"O /00 </1B((w,y)te1|pn) dt) de dy
/[/ / ((z,y) —t e1|Dy) dxdy] dt
/ </ / “"ty’D)dﬂﬁdy) dt:/olldtzl,

If e"*! = e,, and applying the induction argument by setting 4 := y — t € R, we have

[ B ax= [ | [ o tep)a] ax

/OIIB%((x,y) —tes|D,) dt) da dy

:/o1 U /ZB((:” y)—teﬂD)dxdy] dt
/(/ / @y - t|D>dwdy) dt = /1dt:1.

n+1

The case with e"™! = e3 and e = e4 can be shown in a similar fashion. O

The following result in [dVC10] is a special case of Theorem 1.8.2 (d), which is about the
support of a box spline in the bivariate case.

Corollary 1.8.3. Forn € N withn :=k+ {4+ m+p as in (1.5.4), the support of a box
spline B(x|D,,) is in general a closed polygonal region k,€ > 0, m,p > 0 with the following
restrictions.

(a) The box spline By, is supported on the rectangle [0, k] x [0,¢] with m =p = 0.

(b) The box spline By ;. is supported on a closed hexagonal region with ¢ > 0 and
m > 0.

(¢) The box spline By, y ., is supported on a closed octagonal region if m,p > 0.
Proof. The proof is immediate from the proof of Theorem 1.8.2 (d). O

Remark

The support of bivariate box splines in general are built from the union of smaller trian-
gular pieces in Z2-grid. If we denote the set @ C Z? on the grid in which the support
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encompasses, then () is bounded, polygonal and convex set with its boundary along a
3/4-directional grid itself. The following result in [dVC10| relates univariate B-splines
with box splines.

Proposition 1.8.4. Given k,m € N, then the box spline

]ma(X) = B(X|{?1, ce 7e£7 €2,. .. 762}) = Bk<x> Bm(y>

k m

where x := (z,y) € R? and By, and B,, are cardinal B-splines.

Proof. We use inductive argument on both k and m respectively. For fixed k, we first
apply the inductive argument on m. For m = 1 and k£ = 1 and from the definition of B,
in (1.5.1), we have that

Bi(z,y) = B(x|D2) = Xp0,12(@, ¥) = Xo,1)(%) X[o,1)(y) = Bi(z) Bi(y). (1.8.20)

Suppose it holds true for an arbitrary m. Then, for fixed k and from the definition of B;
in (1.5.1), we have that

1 1
B mt1(x) = / Bim(x —tes|D,)dt = / Bi(x)B,(y —t) dt
0 0

_ Bk(x)/o Bun(y — 1) dt = Bu(x) Byooa (1). (1.8.21)

Similarly, for fixed m and from the definition of B; in (1.5.1), we have that
1 1
Broin(®) = [ Bun(c—telDy)dt = [ Bulo—0)Bnly) de
0 0

— B,.(y) / Byl — 1) dt = Bess () Bu(y). (1.8.22)

From (1.8.21) and (1.8.22), we deduce that By, (z,y) = Bk(z) B (y). O

1.8.1 The general setting of box splines

The following results are some generalized facts about multivariate box splines. More
information with greater detail is given in [{BHR93, CK02, Jia00|.

Let D = {e!,e? ...,e"} C Z¥\{0} be a multi-set of non-zero vectors in R

(a) A box spline Bp := B(:|D) associated with direction matrix D € Z¥*" is a distribu-
tion in the space of all continuous functions on R¢, that is,

Bp : C(RY) — R satisfies the following condition:
(Bp, f) : = / Bp(x) f(x) dx = / f(D.t) dt
R [0,1)"

— fle'ti+...+e"t,) dtidty...dt, for f € C°(RY),
[071)n

d _ T
9 —_— 17 g yln . O,
x €RY t=(t1,ta,...,1tn) (1.8.23)

The value of the box spline is Bp(x), x € R%.
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(b) The restriction of box splines B(-|D) to their regional support pieces results in a
piecewise polynomial of total order m = n —d + 1 (exact total degree n — d) where
their compact support is given by

suppCBD:{Zejtj:Ogtjgl,j:17...,n}.
j=1

(¢) The centre of the support of a box spline B(x|D) is the sum of the column vectors

in D, that is, xp := 5 Zek. The box splines in general are symmetric about the
k=1
center of their support.

(d) The linear space of all box splines are built from the shifts of the box spline Bp on
7% that is,

Sg,, := span [Bp(- —j)] for j€ Z% (1.8.24)

(e) The sequence {Bp(. —j)}czq is linearly independent if and only if the direction
matrix D is uni-modular which means that all square sub-matrices of D have deter-
minant +1, that is, det C' = {+1,—-1},VC € D.

(f) Bp satisfies refinement equation (1.2.1) with dilation matrix 21,, d € Z, that is,

Bp(x) = > pi Bp(2x—j), x€R’, (1.8.25)

jezd

where pP € {y(Z?) is obtained from the coefficients of the symbol PP (z) given by

PP(z) = 2] [1 i zv} (1.8.26)

2

forz .= (21,...,24), 2 € C,i=1,...,d, and v runs through all the columns of the
d x n matrix with rank d, D € Z¥", with n > d.

In the following section, the role of direction sets (or matrices) associated with box splines
will be introduced, for instance, to study the continuity exponent, to know the degree of
polynomial pieces and to construct the subdivision algorithm as given in [Pra85, She96].

1.9 Direction matrices and box splines

The following linear algebraic notions are used to study box splines with associated direc-
tion matrices D. We denote by Z4*" the class of matrices with integer entries of d-rows
and n-columns, and #D denotes the number of columns of the matrix D € Z4*™,

We write Z C D =[e!,...,e"]if Z = [e",...,e*] for some 1 <i; <iy <...<ip < #D,
and D\ Z € R>™=%) j5 a matrix where the columns of Z have been removed from D up
to the multiplicity in which they occur in Z.

For the matrix D = [e!, ..., e"] € Z4", the following are important concepts associated
with direction matrices.

Remark: Let X = (z1,...,2,)" be a real column vector.



Stellenbosch University http://scholar.sun.ac.za

1.9. Direction matrices and box splines 35

(a) The column span (the range) of the matrix D is defined to be
ran(D) = span(D) := {x € R? : x = Dv, for somev € R"}. (1.9.1)

(b) The kernel of the matrix D is defined to be
kerD:={x€R':Dx=0, 0:=(0,0,...,0)" e R"}. (1.9.2)

(c) A matrix Z C D is said to be a spanning matriz if ran(Z) = ran(D).
(d) x(D) is defined as the set consisting of all bases that span D.
(e) The rank of matrix D is defined to be

k := k(D) = dim(ran(D)). (1.9.3)

(f) The set A(D) is defined to be
A(D) :={Z C D:span(D\Z) # R"}. (1.9.4)

(g) The continuity integer r of D is defined by
r=r(D):=min{#Z:Z2c AD)}-2:=k—2 (1.9.5)
where k is the rank of D as in (1.9.3).

We proceed to study the smoothness order of box splines based on direction matrices.

Proposition 1.9.1. According to [IBHR93/, the box spline Bp := B(-|D), with associated
direction matriz D, satisfies Bp € C"(ran(D)), where r := r(D) is as in (1.9.5) and the
range of D, ran(D), is usually either R? or a subspace of R2.

Example

Consider the box spline By 5 ; with direction matrix

1 1 0 0 1
D= {0 01 1 1]:: [V1VaV3Vyvs]

in which case ran(D) = R2. Then, using Proposition 1.9.1, together with equation (1.9.1)
and (1.9.3), we get

@={[s 1] Lo 1] [1 o] [T 1]}
= {[viva], [vivs], [vavs], [vava], [vavs], [vavs]}}.
Furthermore, using (1.9.4), we have that
A(D) = {[v1vavs)], [Va3vavs], [Vivavavs], [Vivavavs], [Vavavavs], [vivavsvy], D} .

Thus, as in (1.9.5), the continuity exponent r is given by

r=r(D):=min{#Z:2Z € A(D)} —2
—3-2=1. (1.9.6)
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Hence, the box spline By, is of continuity order C*(R?).

Remark: The way of computing the smoothness class using Proposition 1.9.1 only holds
for box splines, and more details are given in [EU10, dBHR93, Pra85|. Getting the
smoothness exponent by using this approach is more beneficial than using the direct ap-
proach via calculus, which involves integrating box splines in their appropriate directions
to enhance the smoothness exponent. Hence, the approach based on Proposition 1.9.1 is
a more efficient method since it thoroughly relies on direction matrices associated with
box splines.

We finalize this chapter by introducing our objective as follows. As our main work,
we give attention to the structure of the refinement mask of an interpolatory Butterfly
subdivision polynomial, which is expressed in terms of box spline symbols. We recall that
the symbol of a d-variate box spline B(:|D) with its associated direction matrix D as given
in (1.8.26). Then we basically focus on the interpolatory Butterfly subdivision scheme
with its algebraic verification, according to which, the mask symbol of this subdivision
scheme is expressed in terms of its box spline constituents, by using (1.8.26) as follows:

Pu(z1,20) = 427° 2572 [T21 20 Booa(21, 20) — 221 By aa(21, 22) — 220 B3 13(21, 22)
—221 29 B3 31(21, 22)] (1.9.7)

where B, (21, 22), with a,b,c¢ € N, are normalised box spline symbols which are given

by
1 arq b c
Babe(z1,22) := ( —221) ( —;ZQ> ( +22122> , (1.9.8)

with (21, 22) € C*\{(0,0)}.
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Chapter 2

Box splines and subdivision

In this chapter, we study subdivision (refinement) of bivariate box splines by using Fourier
analogy as discussed in [dVC10]. We provide study tensor product B-splines as a simple
way of constructing bivariate box splines and we give their illustrative graphs. In Section
2.3, bivariate subdivision schemes, especially the interpolatory ones will be discussed. We
also study the link between the subdivision algorithm and the cascade algorithms, with the
view to establish the existence of interpolatory bivariate refinable functions. Refinement
rules for constructing surfaces will be introduced at the end of this section.

2.1 The refinability of box splines

In this section, we apply results from Fourier analysis to investigate the refinability of
bivariate box splines.

Definition 2.1.1. For any piecewise continuous compactly supported function

F :R% — C, its Fourier transform F : R?2 — C is defined by

F(w) = / e *VER(x)dx, weER? (2.1.1)
RQ

where X := (1, xs), W := (w1, wq) and X - W = T wy + Tg Wo.

For our result in Theorem 2.1.4 below, we shall require the following lemma from [dVC10]
that provides an alternative formulation of bivariate box splines.
Lemma 2.1.2. For B(x|D,,) as in (1.5.7),(1.5.5) and n > 2, the following holds:

/IB%(X|Dn)f(x) dx—/ f(itid) dtr...dt, forall feC(RY). (2.12)
R2 i\

Proof. The proof is by induction.

37
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For n = 2, by applying (1.5.1) and the definition in (1.5.7), we have that, for any f €
C(R?),

/RQIEB(X|D2) f(x)dx = (x) dx = F(t1, 1) diy dy

[0,1]2 [0,1]2

= f(tl el + t2 62) dtl dtg, (213)
[0,1]2

where the e-vectors in this case are as in (1.5.2).

For m > 3, since D,,, = D,,_1 U {€™}, it follows from definition as in (1.5.7) that

1
B(x|D,,) = / B(x — ty, €| Dp—1) dty.
0

Hence, applying a simple change of variables of integration and the induction hypothesis
consecutively, we obtain

[z s ax= [ [ Bx e 1D s dx)

1
:/ {/ B(x|Dy—1) f(x 4+t e™) dx} dt,,
0 R2
1 m—1
= f tie' Ft,e™| dty...dt,_y pdty,
[t (o)
:/ f (Zt ei> dty ... dtp. (2.1.4)
[0,1]™ i—1

]

Theorem 2.1.3. The Fourier transform of the box spline B(x|D,,) is given explicitly by

. 1 — e—iw1 1 — e—iw2 1— —i(w1+w2) 1 — —i(w1—w2) \ P
st = (1) (L) (e ety
1w, 1wo i(wy + wy) i(wy — we)
with k, ¢, m,p denoting the multiplicities of {(1,0), (0,1), (1,1), (1,—1)}, respectively, that
constitute D,,, with n given in (1.5.4).

Proof. The formula (2.1.5) follows directly by choosing f(x) = e”™*¥ in (2.1.2) of Lemma
2.1.2, so that

/ erihiertottnen)way o qp = / e XAV HZAWIW gy e,
[071]"7' [0,1]"

1 k 1 ¢ 1 m 1 p
— (/ e—it’wldt> (/ e—it’wzdt> (/ e—it(’wl-‘r’wz)dt) </ 6—’it(u}1—w2)dt>
0 0 0 0
1 — e—fwn k 1 — e—iw2 £ 1 — e~ iwitw2)\™ /1 _ pg=i(wi—wz) \ P
a ( iw; ) ( iws ) ( i(wr + wo) ) ( (w1 — wa) ) ’
k+¢ k+L4+m n

k
where X := Zt] (S Y = Z tj €9, Z = Z tj €3, W .= Z tj e, U

j=1 j=k+1 j=k+e+1 j=k+l+m—+1
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The following result represents a useful property of Fourier transform, which is a key tool
for proving refinability of refinable functions, in particularity, box splines. We provide the
general proof for d-variate refinable functions. The case d = 2 is given in [dVC10].

Theorem 2.1.4. For any d € N, let A be an invertible d X d matriz and denote by
A~T the transpose of the inverse of A. Then, for any b € R%, the Fourier transform of
G(x) := g(Ax — b), where g is any piecewise continuous function with compact support in
R?, is given by

R e—ib~A*TW

_ 5( A-T d
G(w) = et 4] g(A"w), weR. (2.1.6)

Proof. Since the Jacobian determinant corresponding to the transformation

y = Ax — b is given by det A, we have that

G(w) = /Rd e ™ Wo(Ax — b) dx

1 i A-1 -1
_ —i(A 7 ly+A b)) w d
Aot A o g(y) dy
—i(A71b)w
(& rA—1
— —i(A7 y)w d
et A /Rde g(y) dy
o—ib (A~ Tw) .
— . 5(ATw), 2.1.7

where we have used the fact that
(A'y) - w=y-ATw, for w,y€R%
O

Now, in our case, for d = 2, the result (2.1.6) of Theorem 2.1.4 can be applied to the
refinement equation

o(x) = pid(Ax—j), xR (2.1.8)
jez?
to yield
. 1 P NN
Hlw) = (m zj:pj e A W) p(ATw), weR? (2.1.9)

which is therefore the Fourier transform formulation of the refinement equation (2.1.8).

Since any box spline B(-|D,,) with n > 2, is a compactly supported piecewise continuous
function according to Theorem 1.8.2 [(a), (c), (d)], we can apply the formula in (2.1.1)
and Theorem 2.1.3 to determine the dilation matrix A that satisfies the lattice refinement
property Z* C A~'7Z? for which the box spline B(:|D,) is refinable with respect to the
dilation matrix A, and with refinement mask {p;}, provided that

B(w|D.)

1 T
- E iAW . AW )
|det A e B(A-Tw|D,) (2.1.10)
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—iwy /2 —iwga /2

is a Laurent polynomial in z; and zy, with 2; := ¢ and 29 := ¢ , where w :=
(w1, wy), so that equation (2.1.10) is a necessary and sufficient condition for the refinability
of box splines B(:|D,,) with dilation matrix A and a finitely supported refinement mask
{pj}jezz. Next, we mention a result that holds for box splines, B(-|D,,) in general.

Proposition 2.1.5. The boz spline B(:|D,,) = By rmyp is 2lo-refinable with associated
two-scale Laurent mask symbol given by

- T4\ 1+ 2\ [1+22%\" 1+ 22, 1\"
s = _ 2.1.11

jez2

where z = (21, 29) = (e71/2 e7™2/2) " with w := (wy, ws).

Proof. The proof proceeds by letting zd := 2J'2J?, where z := (21, z5) € C2\{(0,0)} and
j = (j1,J2) € Z*. Applying (2.1.3), together with Theorem 2.1.4, we get

1 .

P(z|21,,D,) = ———— i Z)

(Z’ 2 ) |dejC 2I2| .EZZ:QPJZ
J

1 o
_ J1 J2
- 4_1 § : Pj1,52 21 %2

J1,J2€7Z

- 411 Y oppe i

jez2
From equation (2.1.3) and (1.5.4), we have that
. k . ¢ . m . p
1 — e~ w1 1 — g—tw2 1— —i(w1+w2) 1— —i(w1—w2)
P(z|21,,D,) = 27" - - - -
1 — e—tw1/2 1 — e—tw2/2 1 — e—i(witw2)/2 1 — e—i(wi—w2)/2
. k . J4 . . m . )
— 2—n (1 4 e—Zw1/2> (1 4 e—lwz/z) (1 4 e—Zw1/26—1w2/2> (1 _ e—lw1/26—1w2/2>p
1A\ (1t a\ (1tan\" (1+an")
B 2 2 2 2

EEEEQOEE s e

S ig
11=012=0143=014=0

—wy /2 —iwsz /2

which is a Laurent polynomial in z; := e and 2o == ¢ . Hence, according to
(2.1.10), the box spline B(:|D,,) := By ¢, is 2Io-refinable. O

The refinement mask {p;}jezz = {pj, j»} of the box spline By ¢, ,(-) with dilating factor
215, namely

B tmp(X) = ij B oymp(2x — J), (2.1.13)
jez?
is determined by multiplying (2.1.12) by det (2I5) = 4 and then changing i1 + i3 + iy, i +
13 — 14 tO J1, J2, respectively, to arrive at

> P (2.1.14)

J1,J2€%Z
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The explicit formulation of refinement rules (subdivision) now becomes easy once the

refinement masks {p;, ;,} are known, that is, we multiply (2.1.14) by oy HETmAR/2]

zQ_L(Hm_p)/2J to get the centered positive masks:
~ 1 _7J —|(k+m 2 —| (l+m—p)/2 ] i
ijl,]é 2{12%2 = 2 [ (k4+m+p)/2) X 2 [ (£+m—p)/2] ijl,jz Z{l Z%Z. (2.1.15)
J1,J2 91,72

By applying (2.1.15), we extract the refinement masks for box splines. For instance,
using (2.1.11) with dilation matrix A = 2I,, the box spline By 55 acts as basis function
for generating the Loop subdivision scheme and its Laurent polynomial representation for
subdivision, as given by

1 > /1 > /1 2
P(ZLZQ):( J;'Zl> ( 7;22) ( +2Z122) . (2.1.16)

Equation (2.1.16) can be centered by z; 2z, > to give a refinement (subdivision) mask,
which is given as the matrix

00 1 21
1026 62

{Pinje: =1 <2 <3}=c7 | 1 6 10 6 1 (2.1.17)
26 6 2 0
12 1 00

This mask is used for triangulation of control meshes via the Loop subdivision scheme.
As it is fully based on the box spline B 5 5, it is sometimes known as a box spline scheme.

In the previous chapter, we have seen that the ZP element B, is 2Is-refinable. In the
next result, we further check that the box spline B, is refinable with respect to Quincunx

dilation Q := { !

1 _1 } by using the Fourier result as in (2.1.10).

Proposition 2.1.6. The ZP element By is Q-refinable, which is also known as Quincunz-
refinable.

Proof. Using (2.1.1),(2.1.5) and (2.1.10), the proof proceeds as follows.

~

R G.K) 1 1 wy
B(w|Dy) 1 i W -
5O TwiDy ~ 2 2Pk e "
BQTwDy) 24

1 i .
— 5 ij,k 6—5[(—]+k)w1+(1+k)w2]
i,k

J
1 o o
= 5 2 Pk [ E e B i e
g,k

1 o
=3 > piw A (2.1.18)
7.k
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where z; 1= e72%1 and 2z, := e’%w2, respectively. But, according to (2.1.5), with the case
n = 4, we have that

R 1 — efiw1 1— efiwg 1 — efi(lerwg) 1 — efi(wlfwg)
B D,) = .
(w1, w2|Ds) ( iwy ) ( iwy ) ( i(wr + ws) ) ( i(wy — wo) )
(2.1.19)

Applying (2.1.19), we obtain
s[(71 1) ()] =27 ms)
w9 2 2
1— e*iwl 1— efiUJQ 1— efi(w1+w2)/2 1— e*i(w17w2)/2
- < w1 > ( W9 > i(wl + 'U)Q) z'(wl — ’IUQ) '

(2.1.20)

DI —
DN | DO =

Now, taking the ratio between (2.1.19) and (2.1.20), we obtain

B(W|D4) o ]_ —|— 6—%(’11}1-"-’11}2) 1 + 6—%(’11}1—11}2)
B(Q-Tw|D,) 2 2 )

1 1 -
:( +221'Z2)( +;122 ) (2.1.21)

which is indeed a Laurent polynomial in z; := e~2%' and 2, := e~2"2, respectively. Hence,
according to (2.1.10), the box spline B, is Quincunx refinable with its refinement mask
obtained by multiplying (2.1.18) by |det A| = 2 and from the coefficients of the symbol in
(2.1.21), we get

1 1
Poo = P11 = P20 = 5; PL,-1 = —5- (2.1.22)

2’ 2
[l

The refinability of 4-directional box splines in a general sense is described by the following
result.

Theorem 2.1.7. The 4-directional box spline By ¢, ,, with the conditions k = m and

(= p, is Q-refinable where () = { 1 _} 1 .
Proof. Applying (2.1.10) and Theorem 2.1.4, we obtain the Laurent polynomial
P(|Q, D,) = ;ZP' S — lzpkzj i
y En ’det Q| - J 2 m” 7 172
B 1 — et Lo +wy\" 1 — e w2 L W ws ¢
-\ 1 — emilwitws)/2 2w 1 — e—ilwi—w2)/2 2wy
1 — e iwrtw2) wy "1 — emiwimw) Wo b
, X . X . (2.1.23
( 1 —emn wy + wg) < 1 —e w2 wy — w2> ( )

Now, observe from (2.1.23) that P is a Laurent polynomial in z; = e~2** and
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2z = e 22 if and only if k = m and £ = p. This is satisfied when (2.1.23) becomes

T4+ 22 \* /14 2250\"
e (152 (5

Hence, the refinement mask p = {p; ; : 4,j € Z} can be computed by multiplying (2.1.23)
by |det Q| = 2, or

ko0
Zpykzlzz =2P(z|Q,D,) =2~ (k+€+1zz( )() i ;._j7
i,k

=0 j=

so that

k 14
. o (k+0)+1 )
T (1 +72)/2) \ (1 — j2) /2
where (;) :=0for k<0, k>rork¢Z, according to which

9—(k+0)+1 (l:) (f)’ ji=Q [ Z ] € QZ?,
J

s = (2.1.24)

0, j¢&Qz
Thus, from (2.1.8), (2.1.9) and (2.1.10), the box spline By ¢, is Q-refinable with its
refinement mask as in (2.1.24) for k = m and ¢ = p. O

2.1.1 Box spline subdivision in terms of refinement mask
symbols

In this subsection, we only give the intuitive notion of subdivision of box splines in terms
of refinement mask symbols. (For details, see the next chapter.)

Given a set of control coefficients ¢~ on the coarse grid le =72, the following algorithm
computes a set of control coefficients ¢* on the refined grid 5 +72 as follows:

k—1

e Construct the generating function C*~![x,y] from c Up-sample C*![x,y] to

yield C*71[x2, y?]. Set C¥[x,y] = 4 C*1[x2, y?].
e For each direction vector {(a,b)} € D, update C¥[x,y| via the recurrence

1+X£"y]O

cHxy) = (FE55) ¢ i),

1+Xa b

Each multiplication by ( 3

> corresponds to midpoint averaging on c* in the
direction (a, b).

e Extract the coefficients c* of the generating function C¥[x,y].
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2.2 Tensor products

Tensor products could be regarded as means of constructing bivariate refinable functions,
especially the bivariate tensor product box splines from the univariate B splines discussed
in Section 1.4.

Definition 2.2.1. Let ¢, cmd ¢ be univariate reﬁnable functions with corresponding
refinement mask symbols Py(z Zp] 2 and Py(z Zpk , 2z € C\{0} respectively.

Then the the tensor product ® s deﬁned as
q)(X7 Y> = ¢1(X) ¢2(y>: (X7 Y) S R2- (221)

Theorem 2.2.2. Let ¢1 and ¢y be two univariate refinable functions with respective mask
sequences {p;} and {p?}. Then the tensor product

(2, y) = ¢1(z) Pa2(y)

satisfies the following :

(i) Refinability property :

® is a bivariate 21y-refinable function with refinement equation
Z p; @ . x € R?,

where
1 . o
pi=py b di= (o) € 22 (2.2.2)

(ii) Normalization (scaling) property :

/RQCID(x)dx:l.

(iv) Interpolatory property:

If the refinable functions ¢1 and ¢o are both interpolatory as in (1.2.3), then so is
the tensor product P.

(iv) Partition of unity property:
If ¢1 and ¢y satisfy the partition of unity condition, then so does ®, that s,

Y d(x—g =1, for zcR.

Proof. (i) From (2.2.1) and the refinability of ¢; and ¢, together with (2.2.2), we obtain
for any x =: (z,y) € R?

STpox—j)=> > Pl pl 6122 — j1)da(2y — jo)
j

Jji J2

- [Tl oo | Sl oo

= ¢1(7) P2(y) = (%),
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which completes the proof of (i).

(ii) Since ¢;(x) and ¢o(y) are scaling functions!, it is immediate from (2.2.1) that
/ dx—// (x,y dxdy—[/qﬁl dx} |:/¢2 dy}—l
(iii)

Preservation of the interpolatory property of the tensor product refinable function ® is
given as follows. We let j := (k, /) € Z?, then

®(j) = (k, £) := d1(k) ¢2({) = 0k 6, = by = 0,
so that ® is interpolatory.
(iv)

To check the partition of unity property of @, set x := (x,y) € R? and j := (k, /) € Z*.
Then we have

> Px—j)= ZZpIJ (x— k) —i,2(y — £) - j)
—ZZPI P 61(2(x — K) — 1) a(2(y — ) )

:2<Zp£”¢2<2<x— —1) <ij 622 —e>—j>>
=Y oix—K) gy —0) =) dix—k) Y oy —0) =1,

which shows that ® satisfies the partition of unity property. O

Next, we give the Laurent polynomial representation for a refinement mask of tensor
product refinable function in terms of its constituents.

Remark: Let P, P, and P be the mask symbols corresponding to the masks pi],p[ Vand

Pre in Theorem 2.2.2. Then it follows from (2.2.2), for any 21, 2o € C\{0}, that

P(z1, 29) Zpkg 2X 2 = (Zpk Z1> (pr 22> = Py(2) - Py(2). (2.2.3)

Examples

(a) Consider the shifted hat function h € Co(R) as given (1.4.17), which is interpolatory,
2Iy-refinable function supported on [—1, 1] with refinement mask p; = {%, 1, %}, and

corresponding mask symbol P; given by Pj(z) = 1271(1 + 2)% It follows from
Theorem 2.2.2 that ® = h.h € Co(R?) is interpolatory with associated refinement
mask symbol given by

Pi(21,2) = izflzgl(l +20)2(1+ %)%, (21, 22) € Z*\{(0,0)}. (2.2.4)

LTf the refinable function ¢(z) satisfies / ¢(x) dz = 1, then it is known as a scaling function.
R
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(b) Another prominent interplatory refinable function is the Deslauriers-Dubuc (DD

)
function with refinement mask given by {p; : j € [-3,3]} = {—%6, 0, 1%, 1, 1%, 0, —1—16} ,
and its corresponding mask symbol given by

1 9 9 1
P2)=—-=23+ =z +1+ —2z—-=7° : 2.2.
(2) T +16Z + +16z T z € C\{0} (2.2.5)
By using tensor products and (2.2.5), we generate the bivariate version of DD-
function, the tensored Deslauriers-Dubuc function, with graph shown in Figure 2.4.
Also, the graphs of the linear, quadratic and cubic tensored spline functions are

given in Figures 3.2 and 3.10.

Figure 2.2: The bilinear quadratic

Figure 2.1: The tensored hat func- function

tion

Figure 2.3: The tensored Deslauriers-
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015 015
0.10 0.10

0.05

° I
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g 8 2 g ¢

0.05

0.00 0.00

0.0
151093
520

2.
1.0 05 35 30

Figure 2.4: The tensored cubic spline func-
tion

Dubuc function

2.3 Bivariate subdivision schemes

In this section, we study bivariate subdivision schemes and their properties.

Definition 2.3.1. Given p = {pj}jczz € €o(Z?) and an invertible 2 x 2 dilation matriz A,
the subdivision operator Sy, : ((Z*) — U(Z?) is defined for any sequence ¢ € ((Z?) by

k
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Let ¢ = {¢; : j € Z*} C R® denote a finitely supported control point sequence. Then
repeated application of the subdivision operator Sy yields the algorithm

= c‘]7
2.3.2
¢ = (Spc" "); = (She);, jeZPr=1,2,... ,} (2:32)
which is equivalent to
¢ =Spe; Sple=Sp(Spe), r=1,2,..., (2.3.3)

with the convention that S} is the identity operator on ¢(Z?), and S, = Sp.

For a given control point sequence ¢ = {c; € R?: j € Z?}, we define the generating func-
tion

C(z1,22) == Z cij 2t 2, (2.3.4)

1,JEZL

with z := (21, 29) € C*\{(0,0)}, and let A = 2I,. Applying equation (2.3.1) and using
(2.3.4), as well as (1.3.8), we deduce that, for any z = (21, z3) € C?,

(Spe) (21, 20) = C(27,23) P(21,2), with 2% := (27, 23), (2.3.5)

where C(2%, 23) is the up-sampled version of the control data ¢ and P(zy, 22) is the sub-
division polynomial as in (1.3.8). We provide a proof for equation (2.3.5) in the following
result.

Theorem 2.3.2. The bivariate subdivision formula in terms of mask symbols is as given

n (2.3.5).
Proof.

($50) () = 3 (8p0),

-3 (S ) ;

-5 (S ) o
ij Zj”IQkT) Ci

- (o] |5l

=[]

- 2k1 2k2 J1 2
= CyT 2y ][E pjzl ZQ]

| k1,k2
=C Z%,Zg) P(’Zla 22) )
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that is, we proceed to rewrite equation (2.3.5) in terms of sub-masks of the mask p.

To this end, we let
£:=1{0,1}*={0,1} x {0,1} = {(0,0), (0,1),(1,0), (1,1)} = Z3, (2.3.6)

which is a complete set of representatives of the distinct cosets of Z?/2Z?, with

7’ = [v+ (2n)z*]

ye&

for v,8 € &, so that also [y + (21,)Z%] N [8 + (212)Z% = 0. Note that & is the set of
extreme points given by vertices of the unit square [0, 1]* containing 0 := (0,0) and 1 :=
(1,1). Then, the four sub-masks {pe : € € £}, with associated symbols {P.(z) : e € £},
are defined by

P.(z) = Zpe+2j z, ecé&, (2.3.7)
jez?
where 7 1= 2J' 2J*_ with jy, j, € Z.

Using the standard decomposition result

P(z) =) _z° Po(2”), (2.3.8)

we can rewrite equation (2.3.5) as

(Spe)(z1, 22) = C(21, 23) Plooy (21, 23) + 22 C(1, 23) P (21, 23)
+ 21 C(27, 25) Puoy(23,23) + 21 20 C(21, 23) Papy(21, 23). (2.3.9)

Equivalently, (2.3.9) is given compactly as

(Spe)(z) = > _z° C(z°) Pe(2), (2.3.10)

ecf
where z := (21, z3) € C*\{(0,0)}.

Equation (2.3.9) shows that a subdivision step is the result of convolution of the input
initial data ¢ by its sub-mask p. followed by up-sampling and multiplication by z¢, to
produce Spc.

A natural question one might ask with respect to the algorithm (2.3.3) is whether, after
making repeated iterations of subdivision operator, these sets of control points will con-
verge to a curve or a surface, and will there be a condition that assures such convergence.

In order to facilitate this convergence analysis in the norm ||c || := sup |c;|, we introduce
jez?
the following criterion for subdivision convergence.

Definition 2.3.3. The subdivision operator S, defined in (2.3.1) by a non-trivial sequence
p = {pi;} € L(Z?) is said to provide a convergent subdivision scheme for ¢ == { ¢} €
R| j € Z?} € U(Z?), if there exists a non-trivial function ¢, € C(R?) such that

lim |¢p(279) — ;| =0, 7 — o0, (2.3.11)

r—00
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wherer =1,2,..., and
b= (S59);, (2.3.12)

with & := {8;: j € Z*} denoting the Kronecker delta sequence as in (1.2.5). We call ¢y
the limit function corresponding to Sp, or basis function associated with the subdivision

operator Sp, and we shall sometimes write Sy’ ¢ := ¢,. Also, S, is said to be a convergent
subdivision scheme of order m, or in short, Sy is C™SS, if Sy’c € C™(R?).

The following result introduces a simple necessary condition for S, to be convergent. Our
proof uses a similar argument as in [KLYO07].

Theorem 2.3.4. Suppose S, is a convergent subdivision scheme with mask {p;} and
dilation matriz A = 21y. Then for every v € € as in (2.3.6), we have that

D =1 (2.3.13)

jez?

Proof. Let c® be the initial control data, and let v € £ as in (2.3.6) be arbitrarily fixed.
Then, from the definition of subdivision convergence as in (2.3.11), then there exists
¢ € C(R?) such that

lim sup |(Ske”); — dp[(212)7*j]| =0
k_K)O‘]EZQ
& lim sup  |(SEe)ar a0 — @p(2 Far, 2% an)| = 0. (2.3.14)

k—oc0 a1,02€7

Let xo := (20, yo) € R? such that ¢p(x0) # 0. Since ¢y, is continuous, there exists an open
neighbourhood K of x¢ such that ¢,(K) # 0. Since also

Q:={(27"a1,27"ay) : (u,a2) € Z°, m € L}

is dense in R?, we have that Q N K # (), that is, there exists m € Z and (3y, 52) € Z? such
that ¢, (27™51,27™052) # 0. For sufficiently large k, we therefore have that

k .0 _ k—1 0
(Spc )2’“*’"&1-#71,2’“*"1&2-&-72 - E :ka*mal—I—%—2/31,2’“*"1&2-&-72—2/32 (S )51 B2
B1,82

k—1_0
= Z DPo(2k—m—1ay —B1)+v1,2(2k—m Loy —Ba)+72 (Sp c )51,/32
B1,B2

_ E k—1_.0
- p251+717262+72 (Sp C )2k—m—1a1_5172k—m—1a2_52.
B1,B2

Referring to equation (2.3.14), we deduce that

Gp(27 Mo + 271,27 ag + 27 M) — Z P28y 282470 Pp(27 M — 2753y 27y — 27RH )
B1,82

- ¢p(2_ma1 + 2_krylv 2—ma2 + 2_k72> - (SISCO)Qk*mcu-‘r%,?k*mcm-i-w +

Z p251+7172/52+»}/2 [(Sf’ilCO)Qk—m—lal,IBl,Qk—m—lo@,BQ - ¢p(2im061 - 2ik+161, 2im062 + 2ik+152>] .
B1,82
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By taking k — oo, and using the uniform convergence of S, as well as the continuity of
¢p, We obtain

¢p(27m041’ 2ima2) = Z D281 +41,282+72 ¢p(2ima1> 27m042)'

B1,82
Since also ¢p(2 ™y, 2 ™ag) # 0, we deduce that
> Dapimamin =1, for (y1,72) € £asin (2.3.11), (2.3.15)
B1.82
and thereby completing our proof. O

Theorem 2.3.5. For a given sequence p = {p; : j € Z*} € Ly, with supp {p;} = [u,v] X
[, B][z2, let the sequence {pj;}, 7 =1,2,... be defined by (2.3.12).

Then:

(a) The recursive formulation

P =pig Dl = Zp Iy R (2.3.16)

is satisfied forr =2,3,....

(b) For any sequence ¢ = {¢; : j € Z*} € U(Z?) of control points and r = 1,2,...,
the subdivision process in (2.3.3) can be formulated as the up-sampling convolution
operation

(She)ig = D Porpjoorg Chts 024 € L. (2.3.17)
k,l

(¢) If, moreover, {p; : j € Z*} satisfies the sum rule condition as in (2.3.13), the
condition

Zpi—m:,j—w =1, (i,j) € (2.3.18)

15 satisfied forr=1,2,....

Proof. The inductive proof is a direct extension of the one given for the univariate case
in [dVC10], Theorem 4.2.1. O

2.4 Cascade operators

Definition 2.4.1. For a given dilation matriz A and a sequence p € {o(Z?), where d € N,
the cascade operator Cp : M(RY) — M (R?) is given by

ijg (Ax —7), x€R? ge M(RY. (2.4.1)

jezd
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We note that Cpg = ¢ if and only if g satisfies the refinement equation

9(x) =D _piglx—J), xeR" (2.4.2)

As in the univariate case in [dVC10], the resulting cascade algorithm C}, then generates
a sequence of functional iterates {h, : r = 1,2,...} obtained by means of the following
recursion relation:

ho:=h; hyi=Cphyy=CLh, r=12,..., (2.4.3)

where the function h € M(R?) is an initializer of the algorithm. Equation (2.4.3) is
equivalently expressed as h, := Cph,—1 = C’;h, hy41 = Cph,, where

Coh=h; Ci"'h=Cy(Chh), r=12,.... (2.4.4)

Here, for the case d = 2, one can take the initial function h(x) as the tensor product of
the symmetric hat function in R? with itself, that is,

2

h(x) = ho(x) := HBQ(@), X 1= (z1, 1) € R? (2.4.5)

i=1
where B, is the B-spline of degree 1 with ¢ € R as in (1.4.16).

Definition 2.4.2. The cascade operator Cp in (2.4.1) converges on a set X C Co(R?) if,
for any initial function h € X, for instance as in (2.4.5), there exists a function g € C(R?)
such that

lim [|[Coh—gl| =0, r=12,.... (2.4.6)

T—00

The limil function g will be denoted by Cph.

The following result provides a key relationship between subdivision schemes and the
cascade algorithm. It is an extension of the result for the case d = 2 given in [FdV11].

Proposition 2.4.3. Suppose that p' = {pj} 1 an interpolatory mask and let A be any
arbitrary integer dilation matriz. Then, for any sequence ¢ € ((Z%), and for any g €

C(RY), we have that
> Shie)gAx—g) =Y ¢ (Crg)(x—3) for xe€R%and r=12,.... (247
J J
In particular, if the delta sequence 8, as given in (1.2.5), is chosen as the sequence ¢, then
we get, for any g € M(R?),
(Chrg)(x) = Z(S;ICS)J- g(A™x —3) for xeRY r=1,2.... (2.4.8)

3

Proof. Let g € M(R?) and ¢ € ¢(Z%). We observe, using (2.3.3) and (2.4.4), that (2.4.7)
trivially holds for r = 0.
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Now, apply (2.3.3) together with (2.3.1) and (2.4.1), to obtain, for any x € R% and
r e N,

> (Shie)j g(A™x — Z [Z e (Shrtok| g(A™x - j)
J
= Z S;,lc kij_AkT g(A™x —j)
k J
=D (Sl Y pf g(ATx — AT —j)
k J
=Y Shte Yy pf g(A(A T x = KT) —j)
k J

= DS OK(Cpr) (AT x — K
k

= ch Ig X — kT)
= ch (Chrg)(x =), (2.4.9)
J
by virtue of (2.3.3), thereby showing that (2.4.7) holds. Replacing ¢ by 4 in (2.4.7) yields
> (Spi6); 9(A Z & (C —0) = (Chi9)(x), (2.4.10)
J
and thereby completing our proof of (2.4.8). O

Next, we state the following result which will be used to prove subdivision convergence.

Lemma 2.4.4. For a mask sequence p = {p; ;} € lo(Z*) supported on some rectangular
region R := [, v] X [a, B]|z2, the sequence {h, : r =0,1,2 ...} generated by the cascade
algorithm satisfies the following:

(i) Forr=1,2 ...,

Zp” h2'z —i, 27y — j). (2.4.11)
(ii)) Forr=1,2,...,

h, (i i) — pl'l. (2.4.12)

Proof. (i) First, observe from (2.4.1),(2.4.3) and (2.3.16) that, for x € R?,
,y) = Zpi,j ho(2x — i, 2y — j)

= Zpﬂ h(2w — i, 2y — ), (2.4.13)
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and hence (2.4.11) holds for r = 1.

Proceeding inductively, we use (2.3.16), the induction hypothesis, (2.4.1) and (2.4.3),
to obtain, for x € R?,

Zpgf;rl] h(2r+1x _ i, 2r+1y _ j) — Z Zpk7€ pyf]2rk,j72% h(zr—i—lx _ ’i, 2r+1y _ ])]
i,J ] k.t

= Zpk,f Zpgi]grk,j,QW h(2r+1$ - ia 2r+1y - ])]
k.0

| i

= Zpk,z ZPLTJ] h(27 2 — (i +27k), 2"y — (j + 270))
kol X

= Dre pr] h(2"(2z — k) —4,2"(2y — £) — j)
k0

= Pre hr 21 — k, 2y — ) = (Cphy)(x) = hyyr(z), (2.4.14)
k.0

which completes the induction proof of (2.4.11).

k¢
(ii) For k,¢ € Z, and r € N, by setting (z,y) = §,§> in (2.4.11), and using

k¢ r .
h(i,j) = 0, j, i,j € Z; we obtain h, (2 2T> — pl[cjll and thereby completing the
proof of (2.4.12).
O
Next, we show that convergence of the cascade algorithm implies subdivision convergence
for the bivariate case.

Theorem 2.4.5. Let p = {p; ;} € lo(Z?) be a mask sequence supported in a finite rectan-
gular region R = [u, V] X [a, f]|z2 satisfying the sum rule condition as in (2.3.13). If the
corresponding cascade algorithm Cp in (2.4.3) is convergent with limit function hy, then
the subdivision scheme Sp is convergent with limit function ¢, := hy, with, moreover,

i
¢p (27” 2r) pl,]

Proof. Since the point (%, %) € R? for a fixed r and Z? C R?, we have that, for
r=12,...,

< |lhp — holl (2.4.15)

sup
i?j

forr=1,2,....

sup
(i,9)€2?

hp (;, 5) — h, (?7 5)‘ < sup |hp(x,y) - hr<x7y)‘ ) (2416)

(z,y)ER?

and thus, by applying also (2.4.12), we get

(] [r]
hp | —, =
(27”27“) pl]

From cascade convergence, the right hand side of equation (2.4.17) tends to 0 as r — oc.
Hence the subdivision algorithm converges to the non-trivial function ¢, := hp. This
completes the proof. O

sup
7]

< |hp = hell . - (2.4.17)
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Remark

For d € N, convergence of the cascade algorithm on Cy(R?) therefore implies the associated
subdivision scheme to be convergent.

2.5 Sum rules-in terms of symbols

In this section, we obtain a necessary condition for subdivision convergence, namely the
sum rule of order 1, as given by

Pe(1) = ) pessj, Ve €&, (2.5.1)

jez?

with P, and £ given as in, respectively, (2.3.7) and (2.3.6). According to [CCJZ11],
the convergence of a bivariate subdivision scheme is determined by the properties of the

o
1 .
infinite product H ZP(Z2 "), with z restricted to the torus
=0

T :={(e",e"):z,y € R}. (2.5.2)

In order to switch to real variables € := (£1,&), we set z; := e ™% with j = 1,2, so that
the set £ = {0,1}* as in (2.3.6) transforms to the set

Z=Zs={e=e"™:ec&}={-1,1} (2.5.3)

of vertices of the square [—1, 1], and the necessary condition (2.5.1) takes the equivalent
form

P(1,1) =4; P(ey,e0) =0 for (e1,8) € Z :=7Z\{(1,1)}. (2.5.4)

For this reason, we call Z' the zero set, and the condition in (2.5.4) is known as the sum
rule condition of order one, to be denoted by Z;.

2.6 Interpolatory subdivision

Recall from Definition 1.2.4 that ¢ is a 2I,-interpolatory bivariate refinable function if it
satisfies the refinement equation (1.2.1), together with the condition

JO.0=1; ¢l()=0, (.)€ Z\{(0,0)} (2.6.1)
whereas, according to (1.3.10), its corresponding interpolatory mask {pJI} must satisfy
pé,o =1 ; pgi,Qj =0, 4,j€ Z\{O}- (2-6-2)

If, moreover, ¢’ is continuous, we shall call ¢! a fundamental refinable function, as in
[Jia95, HJ9S|.

By considering the dilation matrix A = 2I,, we observe that the interpolatory condition
as in (1.3.7) together with (2.3.1) takes the form

Cj = (SpiC)yy, v = (Spi)aiz;, = (i,j) € Z°. (2.6.3)



Stellenbosch University http://scholar.sun.ac.za

2.6. Interpolatory subdivision 55

In this case, using (2.3.1), together with (2.3.3), and by induction on r = 1,2,..., we also
have that
¢ = c;;; =chly, je?? (2.6.4)

which means that, at each level of iteration, the subdivision scheme keeps all points at
the previous iteration step and hence it is interpolatory.

Theorem 2.6.1. Suppose that a refinement mask p = {p;;} satisfies
> pij=4. (2.6.5)
2
Then p' is interpolatory if and only if the corresponding mask symbol P!, as in (1.2.3),
satisfies
PI(Zl, ZQ) + PI(—Zl, 22) —+ P1(217 —ZQ) + PI(—Zl, —ZQ) = 4, (266)
for any (21, 22) € C*\{(0,0)}.

Proof. For any (z1,22) € C*\{(0,0)}, we have from (1.2.3) that

PI(Zlv z2) + PI(_Zh 22) Zp2zj Z%ZZ% + Zp2z+1 J 2Z+1Z;

2 _j 2z+1
+ ZPQz] Rl % — ZPQH—I j 2]
_ E ' 2iJ
=2 p2z] 21 %2
_ 20,27 1 2i 2j+1
=2 E P21,2J 21 zy + 22P2i,2j+1 22y, (2.6.7)
,J 4,J

and similarly,
Pl(z1, —29) + P'(=21, —22) 2 Zp% 2 4 22— 9 me 9i+1 21 z§‘7+1] . (2.6.8)

By adding (2.6.7) and (2.6.8), we get

Pl(21,2) + P'(—21,20) + P (21, —2) + P (—21, —2%) = 4 Z p; 2 22 zgj, (2.6.9)

1,JEL
for any (z1, 29) € C*\{(0,0)}. O
According to Theorem 2.6.1, for a bivariate refinable function ¢! to satisfy the interpola-
tory condition ¢ (j) = d;, j € Z?, we have
Pl(z1,20) + P (=21, 2) + Pl (21, —22) + P'(—21, —22) = 4. (2.6.10)

This is the necessary condition for existence of an interpolatory bivariate refinable func-
tion.

Also, observe that the necessary condition for convergence of interpolatory subdivision
schemes is closely related to equation 2.5.1, according to the following result.
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Proposition 2.6.2. Assuming that an interpolatory refinable function ¢! erists and sat-
isfies the refinement equation (1.2.1), with a finitely supported refinement mask p' and
dilation matriz A = 21y, then the refinement mask p' must satisfy

ZPJ =4 szz 2j = Zpéi-&-lﬁj-i-l = Zpgi,Zj—i-l = Zpgiﬂ,zj =1, (2.6.11)
1] 1] 0,J

jez?

and equation (2.6.2) holds as well.

The condition in (2.6.11) is equivalent to the one in (2.5.1), which is the sum rule condition.
It is a known fact that (2.6.11) is a necessary condition for the convergence of a subdivision
scheme associated with refinement mask p, that is, subdivision scheme convergence implies
that (2.6.11) holds. Moreover, if the subdivision scheme converges, then the interpolatory
mask given in (2.6.2) is equivalent to the interpolatory property that ¢’(0,0) = 1 and
®'(i,5) = 0 for 4, j € Z\{0} as pointed in Proposition 1.3.1.

Remark: In this study, we did not focus on how to construct interpolatory bivariate
refinable functions from refinement masks. In this regard, one can consult [HJ97|, [HJ98|,
[Jia00] and |[RS96| for more details. In the next section, we give some results on the
convergence of bivariate subdivision schemes.

2.7 Subdivision scheme convergence

Assuming that an interpolatory refinable function exists, we concentrate our focus next
on the convergence of the corresponding interpolatory subdivision scheme. Here, we recall
the fact that a dilation matrix A is a linear map that defines a bijection from the set of
rational pairs Q? into itself, so that the dyadic set =, which is defined by

== {AT§" :j€Z2,r:1,2,...}:{(%,%),rzl,Q,...,i,jeZ}, (2.7.1)

is dense in R?. Using the Laurent polynomial formulation for the control sequence c*,

which is
"(21, 22) Z ci 2t 2, (2.7.2)

we again apply (2.3.5) inductively, as was done in [DHL11], to obtain, in the notation of
(2.7.2),

C*™(2) = P(z) P(2°) ... P(z") C*(z”") := PI"(2) C*(2”")
& CF (2, 29) = P21, 20) P(22,228) .. . P(22" 22 OF (22", 22"
= PM(2y,2) CH(2¥",22Y), 2= (21,2) € CQ\{(O,O)}, (2.7.3)
where P(z1, 25) is as in (1.2.3). Comparing the coefficients of equal powers of z on both
sides of (2.7.3), yields 22" different rules mapping C* to C**" which are determined by
the coefficients of

n—1
pl (z) = H Zp[n]
j=0 JEZ
& PM(z) = P(z) P(z) ... P(z*") Z ', (2.7.4)
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and thus,
k+n n k n 2
A=Y Pk 5 ye{o 12" -1} (2.7.5)
BEZ?

The norm of the operator S is therefore given by

[n]

Poang|> v €1{0,1,...,2" —1}% 5. (2.7.6)

5] 3= max § 3

BeZ?

This equation will help us to study the contractivity condition for subdivision convergence.

Our next result extends a convergence result in univariate interpolatory subdivision, as
proved in [Olo10], to the bivariate case.

We give the equivalent bivariate analogue based on the univariate approach, as follows.

Theorem 2.7.1. Let ¢! denote an interpolatory 2l,-refinable function with refinement
mask {p;; € R: 1,57 € Z}. The interpolatory subdivision scheme given in (2.6.3) and
(2.6.1) then satisfies, for any control point sequence ¢ := {¢;;} € UZ?), with ¢;; €
R3 i,j € Z,

o (] .
ciJ = Pe (?7 ?) ’ 1,] S Za (277)
with
polz,y) =D cijd'(x—iy—j), r=012. . (2.7.8)
,J

Also, . : R? — R3? is a continuous function on R?, and . represents the limit surface
of interpolatory subdivision scheme (2.6.3), in the sense that, for any (z,y) € R?, and a
sequence {(i,,j,), r =0,1,2,...} C Z? such that

(z,y) — Z—Tfy—r —0, r— o0, (2.7.9)
202 )|
we have
ez, y) — ¢ ;| 0, r— oo (2.7.10)

Proof. First, we use (2.7.8), together with the refinement equation for ¢., and eventually
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(2.6.1), to obtain
g\ 0o J
Pe (?7?) = ch,m (; —k?;? —5)
.t
J
=zcsz,gzpq,s¢f(2 —a g -2 s)
j
_ZCMZP(; 2k,5— 2w @' ( _ _3)
i J
= [Peza2e ] ¢I< O S)
q,s
_ o8 '
_Zcq,5¢ (F_q’ﬁ_“s)
q,S

- ch,s ¢I (Z - Q7] - S)
q,s
= Z cg,s 61‘7(],]‘75

—C,J’

which proves (2.7.7). Since ¢ is compactly supported, the summation in (2.7.8) is over a
finite number of indices i, j for any fixed x := (x,7) € R2. Since ¢’ is continuous on each
x € R?, it follows that ¢, is continuous on R2.

Let x := (z,y) € R? be fixed. Since the dyadic set = as in (2.7.1), is dense in R?, there
exists a sequence of points {(i,,7.), r =0,1,2,...} such that (2.7.10) is satisfied.

By using (2.7.7), we get, for any r =0,1,2,.. .,

|g0c x,y) — Cli | = |@e(T,Y) — ¢e <%, %)‘ — 0, r— o0, (2.7.11)
and thereby completing our proof. O
As an example, we choose ¢(x H Bz x;), where B, is defined as in (1.4.17), and it

follows that, for any k := (k, () € 22 we have

Pe(k) = go(k, ) ch —i,l—j)= Zci,j Ok—i—j = Ck.

That is, if the control point sequence ¢ := {¢; ;} € ¢(Z?), then ¢, is the bilinear interpolant
of the sequence {c;; € R® : (i,j) € Z?}, and according to (2.7.8),(2.7.9),(2.7.10), the

sequences {CEZ)}T:071727.._ fills up the limit surface.

Corollary 2.7.2. Suppose that Bp is an interpolatory box spline with its interpolatory
mask p' € (o(Z?), and with dilation matriz A = 2Iy. Then, for any initial sequence
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c € U(Z?), the corresponding interpolatory subdivision scheme is convergent, with the
limit function ¢ defined by

pe(x) = ¢jBp(x—j), xeR’ jeZ’ (2.7.12)
i

Example

Consider the bivariate shifted box spline By given in (1.6.22), with corresponding inter-
polatory mask p’, given by, as in (1.6.26)

_ _ . _ _ _ _ 1
pg,o =1, p%,l = pg,fl = pg,l = p%,o = P31,0 = pzl,fl Ty (2.7.13)
1

1512,]' =0, <Z7j) gé {(0, 0>7 (07 1)7 (170)7 (_LO)? (07 _1)7( 71)? (_L _1)}'

Implementing Corollary 2.7.2, the subdivision scheme SS,) is convergent. Therefore, we
can see that, for any initial sequence ¢ € £(Z?), the limit function ¢ = S3c exists.

2.8 Surface refinement rules

In order to construct a subdivision surface, we take grid indexing points from Z? and
control points from R3, and then apply the subdivision operator (2.3.1). Since we con-
sider schemes where each component of the surface is a scalar function generated by the
same subdivision scheme, it is sufficient to analyse control points in R, as pointed out in
[DHL11].

The set of control vectors {cf}jezz € R generated by the binary subdivision scheme as in
(2.3.1) is given by
= pact, jEZ k=12, ... (2.8.1)
icz?
For surface construction based on (2.8.1), we have four different refinement rules depend-

ing on the parity of each component of the vector j € Z2. The surface refinement rules,
according to equation (2.3.1) and (2.3.3), are given by

k+1 k k
C’yi2a = Z Py+2a-28 Cg = Z Dy+28 Co—ps V€ &, (2'8'2)
Bez? BeZ?

where £ is as in (2.3.6). Equation (2.8.2) is given explicitly by

kel koo )
Cont 200 = g D201 —p1,200—82 €y 8,5
B1,52
k+1 _ ko
Coay,200+1 — Z D201 —p1,2024+1-82 €, 85>
B1,82
(2.8.3)
k+1 _ ko
C201+1,200 = P2a1+1-51,202—52 By, 82>
51752
k+1 _ § : k
Coni 4120041 — D201 +1-1,202+1-52 €, B,
B1,82 /

We shall implement equation (2.8.3) to study the Butterfly subdivision scheme in the
next chapter.
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Chapter 3

Algebraic study of subdivision schemes

In this chapter, we study bivariate subdivision schemes by mainly focusing on the well
known interpolatory Butterfly surface subdivision scheme. In particular, we employ an
alternative algebraic approach, following the work of [CCJZ11], to construct subdivision
polynomials for a class of bivariate subdivision schemes, including the Butterfly subdivi-
sion scheme, from bivariate box splines.

The motive of introducing algebraic concepts is to systematically study and construct
bivariate subdivision schemes from the box splines of Chapter 1. These box splines act
as generators for surface subdivision schemes.

3.1 Algebraic preliminaries

3.1.1 Preliminary definitions

We begin with basic definitions and we quote some important results.

Definition 3.1.1. Let R be a commutative ring. A Laurent polynomial over a ring R is
a finite linear combination of Laurent monomials with coefficients in R. The collection

of all Laurent polynomials in the variables zq, ..., z, with coefficients in R is denoted by
Rzt ..., 28, and is a commutative ring.
Definition 3.1.2. Let A := K|z1, ..., z,] be a polynomial ring in n variables. A subset

T C A 1s said to be an ideal if it satisfies

(a) 0 €Z;
(b) If f,g €L, then f+g€L;
(c) If f €T and h € A, then fh =hf € L.

We also introduce the following for our purpose.

e Let K be a field, and let fi,..., f. € A. We define the affine variety V(fi,..., f,) C
K" by

a:.= (al,...,an) EV(fl,...,fr)@fi(ﬁ):fi(al,...,an) :0,

60
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fori=1,2,...,7r.
e We define the set of polynomials that vanishes in a given set S C C? by,
I(S) :={f € Clz1, 2] : f(21,22) =0, V(a,az2) € S}.
We note that I(S) is an ideal.

e The ideal generated by a finite set of polynomials {fi,..., fs}, defined as

(Froeeifo) = {f!f = gifiigic C[zl,zg]} . (3.11)
1=1

We note that an ideal Z is said to be finitely generated if it can be expressed as in (3.1.1)
for some finite set of polynomials {fi,..., fs}.

The following important results for our discussion are proved in [CLOO07], and will be
used later in this Chapter.

Proposition 3.1.3. [CLO07]
Given fi,....fr €A and g1,...,9s € A. If {f1,.... fr) = {g1,...,9s), then

V(f17"'7f7n): V(gl7""gs)' (3'1'2)
Lemma 3.1.4. [CLO07]
LetV = V(f1,.... f.) and W := W(q1,...,gx) be affine varieties. Then

VOW=V(fi,o s friG1,- -5 Gk), (3.1.3)
and thus the vanishing ideal is given IV NOW) = (f1,..., fry 91, -, k)-
Also,
VUW= V(fig;, i=1,....r, j=1,...,k), (3.1.4)
and thus the vanishing ideal is given I(V UW) = ({ fig; ‘ 1<i<r;1<j<k}).
Lemma 3.1.5. [CLO07]

Given two ideals T and J with respective affine varieties Vi and Vo given by 1(Vy) =
(fi,-. fr) and I(Va) = (g1, ..., gm), it holds that

MUV = ({figll i< 1<) <m)). (3.1.5)

Definition 3.1.6. A ring R is Noetherian if it satisfies the ascending chain condition
(ACC) on ideals, that is, given any chain Ty C Ty C ... C Iy C ..., there exists a positive
integer p such that Z, = I, for all p > n.

Theorem 3.1.7. (Hilbert Basis Theorem) [CLO07]

FEvery ideal T in A has a finite generating set, that is, T = (hy, ..., hs) for some hy,... hg €
T.
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Definition 3.1.8. Let f1,..., fs be polynomials in Clz1, z5]. Let the set 'V be given by
V(fi,..., fs) = {(a1,a2) € C?: fi(a1,a2) =0, 1 <i < s}. Wecall V(fi1,...,[s) the affine
(algebraic) variety defined by fi, ..., fs.

Next, we introduce the notion of monomial orderings.

Definition 3.1.9. Let K be a field, and let X be the set of monomials in A. A monomial
ordering is a total ordering = on X which satisfies

(i) a>=b=ac>bc, foral ab,ceX.

(ii)) a>=1 foral acX.

That is, for any a := 2{"25% ... 28" € A, there is an associated n-tuple (o, ..., o), that
helps us to compare and order monomaials in the sense that z* € X < o € N". In other
words, an admissible ordering establishes a one-to-one correspondence between N™ and the

monomials z* 1= 2" ... 20" in A, that is, [aq <> 207, ... ap <> 207

We also note that a total ordering > on N" is admissible if Vo, 3,7 € N", a >~ 3 =
o+~ > B+~ with a, 3, v n-tuples in N".

The following definition introduces different types of orderings for monomials.
Definition 3.1.10. Let o and 3 be in N%2. The following orderings are valid for mono-
mials:

(a) Lexicographic order: o ., [ if the left-most non-zero entry in o — 3 is positive.

(b) Graded Lex order (degree lexicographic ordering): o >y [ if |of = |5
or (la] = 18] and a = B). We use the singular command dp for the degree
lezicographical ordering as it is computationally preferable to other orderings.

(¢) Graded reverse Lex order: o >geves 0 if || = |5] and the right-most non-zero
entry in o — [ is negative.

Definition 3.1.11. Assume that an arbitrary admissible ordering > is fized on K2. Given
a non-zero polynomial f(z) := Zaaz“ € K[z1, 2] with 2% 1= 20" 252, a := (a, ) € K2,

«
we define

(a) The multi-degree of [ as multideg(f) = max{t € N?: ay # 0} (the mazimum is
taken with respect to > );

(b) The leading monomial of f as :

LM(f) — wmultideg(f),

(c) The leading coefficient of f as :

LC(f) = Qpultideg(f)>
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(d) The leading term of f as :

LT(f) = LC(f) - LM(f);

(e) The leading ideal is defined by

L(Z) = {LT()If € I}).

We also note that L(Z) carries plenty of information on Z. For instance, it is needed
to get an ideal bases.

3.1.1.1 Gro6bner basis and Buchberger’s algorithm

In this subsection, we introduce the concept of a Grébner Basis of an ideal Z in A.

Definition 3.1.12. A set {q1,...,gs} in an ideal I of polynomials is said to be a Grébner
basis for I if the leading terms LT (g;) generate L(T).

Definition 3.1.13. Let f,g € A be non-zero polynomials.

(1) If multideg f = « and multideg g = 5, then let v = (y,...,7), where v; =
max(«;, ;) for each i. We find x7 as follows:

27 = LCM (z*,2%) = LCM (LM(f), LM(g)) .

(i1) The S-polynomial of f and g is the combination

2 Y
Spoly(1,9) = T~ T

;o (3.1.6)

Next, we give a characterization of a Grobner basis. The following proposition helps to
check whether a given family G is a Grébner basis or not.

Proposition 3.1.14. Let I be a polynomial ideal of A. A given basis G := {g1,...,9s}
of Iis a Grébner basis if and only if, for all i # j, the remainder S|g;, gj}G of the division

of Slgi, g;] by G is zero.

Next, we present Buchberger’s algorithm to compute a Grobner basis of an ideal. We
used a singular program, the code with its output of which is given in Appendix A. We
will show that, for a given ideal I = Z(f,..., f.), one can always find a Grébner basis

G:=(g1,...,95) of L
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Algorithm 1 Buchberger’s algorithm
Input: A family F := (f1,..., fm) C K[21, 22]\{0} of polynomials
Output: A Grébner basis G := (fi1,. .., fm, fmt1, .- -, fr) of the ideal
Z:=(f1,- s fm)-

(a) Compute all S-polynomials Spoly(f;, f;) for fi, f; € F.

(b) Compute the remainders of these S-polynomials when divided by F.

(c) If there are non-zero remainders, set
F := F U{ non-zero remainders},

and continue with step 1.

(d) If all the S-polynomials reduce to zero, then we set G := F. This process will be
stationary because of the fact that K[z, z5] is Noetherian.

In Section 3.2, following the work in |[CCJZ11, Sau07|, we study bivariate subdivision
schemes with their associated mask symbols. A special focus is given on the verification
of the Butterfly subdivision scheme in Section 3.4.

3.2 Algebraic approach to bivariate subdivision

First, we consider the ring of bivariate Laurent polynomials, say, R := C[z{', z5°!] and an

ideal Z in ‘R in such a way that Z contains a set of certain Laurent polynomial symbols with
some special properties. By multiplying each element in R by an appropriate monomial
factor z® := 2{" 25?%; a := (a1, ) € N2, which is a unit in R, we obtain an element in
the ring of polynomials in 2-variables, that is, IT := C|z1, z5]. This results in a shift of the
support of a mask with the advantage that such a shift does not influence properties of a
bivariate subdivision scheme such as smoothness, regularity, approximation order and the
sum rule condition. Using this advantage, we study the structure of the mask symbols
of bivariate subdivision schemes by showing that they are C[z;, z5]-linear combinations of
shifted box spline generators of some polynomial ideal Z with the associated direction set
of vectors as columns of certain uni-modular matrices.t

Before we proceed, we need to recall the necessary condition for subdivision convergence
given by the sum rule condition of order k (where the case with k = 1 is given in (2.6.11),
that is, the sum rule of order 1).

As a preliminary, we recall that the necessary condition for subdivision convergence, that
is, the sum rule condition of order k.

In the univariate case, the sum rule condition of order k € N for a mask sequence {p;} €
ly(Z) is given by

Be = Z(Qj)emy' = Z(Qj +1) pojyrs £=0,. k=1
- - (3.2.1)

! Uni-modular matrices are matrices having square sub-matrices with determinant +1.
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The following result was proved in [dVC10]:

A sequence {p;} € {y(Z) satisfies the sum rule condition of order k € N if and only if the
Laurent polynomial symbol P(z) := %Z pj 2/ is given by the formulation
J

P(z) = (1'2”)1( R(2), (3.2.2)

for some Laurent polynomial R such that R(1) = 1.
Now observe that (3.2.2) implies

(D’P)(=1)=0,j=0,...,k—1, (3.2.3)

where D’ P is the j'-derivative of P. Based on (3.2.3), the extension from the univariate
to the bivariate case of the sum rule condition of order k € N is as follows.

Definition 3.2.1. Let £ := {0,1}?, the complete set of representatives of Z2 272, given
by vertices of the unit square containing 0 := (0,0) and 1 := (1,1) as in (2.3.6). We
construct the set Z = Zg = {ej:= 7™ : (y,72) € €, j=1,2} = {-1,1}? as in (2.5.3).
The mask symbol P(z1, z2) is said to satisfy the sum rule condition of order k, or condition
Zi, keN, if

P(1) =4, and (D'P)(e1,69) =0, (e1,82) € Z :=7\{1}, |4 <k,
where (DIP)(e1, &) is the §"-directional derivative of P at (e1,¢2), that is,

Hlitiz)p

alel (9Z2j2 ’

DP = j1,j2 € N, (3.2.4)

As in (2.5.1), the sum rule of order 1 is obtained by setting 3= 0 in (3.2.4), that is,

P(1)=4, and Ple1,60) =0, for (c1,8)€Z. (3.2.5)

It is a known fact that a sum rule condition as in (3.2.4) and (3.2.5) must be satisfied for
some k € N by the subdivision polynomial of a convergent subdivision scheme, and we
further study the structure of the mask symbols of such a subdivision scheme, since the
mask symbol of a convergent subdivision scheme gives important information about the
limit function of a subdivision scheme.

Since all convergent bivariate subdivision schemes must satisfy Z;, we begin with a char-
acterization of the polynomial ideal

7:= {f €ll: f(e,e9) =0, for (e1,89) € Z/}. (3.2.6)
Hence, the ideal Z is the set of all polynomials satisfying
P(e1,80) =0 forall (e1,e9) € 7
that is,

/

P(z) € T < P(ey,e9) =0 forall (e1,60) €7Z. (3.2.7)
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We recall the fact that the product Z; - Zy of two ideals Z; = <{a]~ i =1,... ,n}> and

I, = <{br r=1,... ,m}> in a commutative ring is generated by the point-wise products
of the corresponding generating sets, that is, ,
Ty - Iy = ({ajb,: j=1,...,n; r=1...,m}). (3.2.8)

Using (3.2.8), it follows that the power ideal Z¥ of Z equivalently given by
Tk = {f €1l: (Dif(c,e0) =0 for (e1,6) €Z, |j| < k:} . (3.2.9)

In order to compute the ideal Z in (3.2.6), we proceed as follows:

By using Lemma 3.1.5, and since the ideal Z comprises Laurent polynomials which vanish

on Z' := 7Z\{1}, we write the vanishing set Z" as a union of the irreducible affine varieties
Vi={(1,-1)}, Vo :={(—-1,1)}, V5 :={(—1,—1)}, where
7 ={(1,-D)}U{(=1,D}U{(~1, =D} =V UV, U Vs (3.2.10)

where V;’s are irreducible. The vanishing ideals for each of the irreducible affine varieties
are given by

IV1) = (1 + 1,20 = 1) = (f1, f2);
IVe) = (21 — 1, 20 + 1) = (g1, 92);
I(Vy) = (21 + 1,20 + 1) = (hy, ho). (3.2.11)

Then, applying Lemma 3.1.4, we get
IVIUWUY;) = (figih1<i<2,1<5<2,1<t<2)
= <(Z? — (22 + 1), (55 = 1)(21 + 1),

(z1+ D)%z = 1), (21 + 1)* (22 + 1),
(27 = 1) (22 — 1), (22 + 1)%(22 — 1),

(z1+ (2 4+ 1)% (25 — 1)(21 — 1)>. (3.2.12)

Equation (3.2.12) can be simplified to minimal generators, that is, a minimal set of poly-
nomials which generate the same ideal, using a Grobner basis with grlex ordering (dp)
to yield

=TV UV, UVs) = (2] — 1,25 — 1, (21 + 1)(22 + 1)). (3.2.13)
According to [CCJZ11], the polynomial ideal
J={f€ll: f(e1,e2) =0, for (e1,80) € Z} (3.2.14)
has set of generators (27 — 1,22 — 1); i.e.,
J={z—1,23-1). (3.2.15)

It can be checked by using the fact that for any two varieties, V; and Vs,
ViC V= I(Vz) C I(Vl)
or alternatively, applying Groebner basis computation also leads to equation (3.2.15).

Our next result is a particular case of the one mentioned in [MS04| for the multivariate
case.
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Proposition 3.2.2. The ideal I consisting of the mask symbol of a bivariate convergent
subdivision scheme S, can be generated by the polynomials

1+2114 2 1421214+ 2 1+ 2921+ 29
2 2 ’ 2 2 ’ 2 2 ’

I_<]_+le+22 1+2121+22 1+2221+22>
N2 2 72 2 2 2/

that s,

(3.2.16)

Proof. Let us denote (3.2.16) by

j_<1+z11—|—22 1+ 2121+ 29 1—|—z221+22>
N 2 2 72 2 72 2/

Then one can show that the generators of Z are contained in Z, and the generators of 7
are also contained in Z. We rewrite, for 21,2, € C\{0}, 2§ — 1,25 — L and (21 + 1)(z + 1)
in terms of elements of generators in Z, that is,

1—|—Zl 1+22 1-'-2’1 21+ 29 )
2_1=-4 4 -
4 2 5 )T 2 A
1 1 1
S Y (e + 2) g2 (a2, (3.2.17)
2 2 2
1+ 1+
(214 1) (2 + 1) = ( "'1) ( 22)
Vs

Tt follows from equation (3.2.17) that Z C T

Conversely, we write

(1+z1) <1+22) 111(1+Zl)<1+22); \
(1+21) (zl+z2> _ i(zg_ 1)+i(1+z1)(1+zz); (3.2.18)
(1—1—21) (21+Z2> _ i<z§_1)+i(1+21)(1+z2),

which yields T C 7. This shows that 7 = 7. O

/

Next, we establish an ideal Z that is related to set of mask symbols of a convergent
bivariate subdivision scheme.

Proposition 3.2.3. The ideal T in (3.2.6) is generated by (1 — 22), (1 — 23) and

<1J;Zl) (1J;ZQ>, that is,
I:<(1—zf),(1—z§),(1zzl) (1EZ2> > (3.2.19)

Proof. The proof is straightforward as is direct consequence of (3.2.13). O
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Remark

The bivariate subdivision polynomials (or mask symbols) can be represented as a special
class of Laurent polynomials in R with the property of the sum rule condition. Each
element L of the class of Laurent polynomials associated to a well defined subdivision
scheme must be spanned by the generators of the ideal Z in (3.2.19). A well defined
bivariate subdivision scheme P(zy, z2) can be written as C[zq, z5)-linear combination of
the polynomials 1 — 23,1 — 23, 1(1 + 21)(1 + 22), with

1 14211429 14+2121+29 1 +2921 + 2
P(Zl,ZQ)E<1_Z%,1_Z§7Z(1+Zl)(1+22)>:< 5 ! 5 2, 5 ! 12 2, 5 2 12 2>.

3.3 Box splines and bivariate subdivision schemes

Consider the box spline Bp with direction matrix D := [e1, e, e3] where e, eq, €3 are
as in (1.5.5), which correspond to the non-zero elements of £ as in (2.3.6). Recall that
a matrix D is called uni-modular if its square sub-matrix ¢ have determinant +1. For
technical use, we define the normalised Laurent polynomials,

1 1
ra(z) = 5(1 +2z%), and s,(z):= 5(1 —z?), (3.3.1)
where z® := 2028 a := (a;,a2) € Z?. Observe that r,(z) + sa(z) = 1, a € Z?, and the
following useful identity also holds;
Sp(Z) Ta(2) + 5a(2) 1p(2) = Sayp(2) = 1 —rayp(z), for a,beZ> (3.3.2)

The identity (3.3.2) shows that the polynomials r,, 1y, rayp generate the ring of Laurent
polynomials R, since they generate a unit, that is, R = (ra(z),r5(2), ratn(2)). For any
sub-matrix 1 of D, we define the normalized polynomial

qo(z) = Hre(Z), (3.3.3)
e
where 0 runs through all columns of .

Observe that if 9 is uni-modular, then the polynomial 4qy(z) is the symbol of the corre-
sponding degree zero box spline, with mask symbols

4 1+ 1+ 2 4 1+ 2% 1+21z2_1 4 1+25 1+21z2_1
2 2 ’ 2 2 ’ 2 2 '

Using the columns of ¥, and from (3.3.1), we have

1 1 1
I'(l,o) (Z) = 5(1 + Zl), r(o’l)(Z) = 5(1 + 22), and I'(Ll)(Z) = 5(1 + 2’122). (334)

The following lemma, introduces a useful property of normalized box spline symbols 2.

Lemma 3.3.1. For any given triple (a,b,c) € N3, we have that

<Ba+1,b,ca Ba,b—i—l,e» Ba,b,c-l—l) = <Ba,b7c>7 (335)

where IE%&b,C(zl, 29) 1s given in (1.9.8).

2A box spline symbol P(z1, 22) is said to be normalised if it satisfies P(1,1) = 1.
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Proof. Let Ba7b7c be the 3-directional box spline given by B, := 4IEBa7b,C.
The identity (3.3.2) can be written equivalently as

1 ~ 1 - .
5(1 — 29) B1oo(21,22) + 5(1 — 21) Boao(21, 22) + Boo1(21,22) = 1.

Multiplying both sides by I@a,b,c then leads to the required result. O]

Remark 3.3.2. The family of 3-directional normalized box spline symbols is a partially
ordered set with respect to inclusion relation, and it is closed under multiplication, since

Ba,b,c : @d,e,f = Ba+d,b+e,c+f-
The following result is the bivariate version of the one given in [CCJZ11| for the multi-
variate case.

Theorem 3.3.3. The mask symbol of a convergent bivariate subdivision scheme Sy, can
be written in the form

P(z) =4) X 19(2) - qu(2), (3.3.6)
9

where 19(2) is a Laurent polynomial satisfying vy(1) = 1, where 1 := (1,1) and \y € R,
with Z Ay = 1. The sum runs over all uni-modular 2 X 2 sub-matrices ¥ of D.
9

Our next result from |[CCJZ11], introduces generators for the power ideal Z¥, which are
the mask symbols of certain normalised three-directional box splines.

Theorem 3.3.4. The k'™ -power {Z* : k € N} of an ideal T is generated by the set of
three directional box spline symbols given by

- - ~ 1
Ty = {Bb,b,a,Eb,a,baBa,b,b ra=0,1,2,..., Lékj, and b=k— a} ) (3.3.7)

where Bay.o(21, 22) is given in (1.9.8).
Proof. The proof is by induction on k and is given in [CCJZ11]. H

We note that, for the set Z, as in (3.3.7), the set of generators for Z* is the minimal set
that generates every element in Z*.

For instance, fixing k = 1,2, 3,4 and applying (3.3.7), we get the following set of generators
of Ikl

5 ~ - A
1, = {1531,1,0,]31,0,171307171}?
IQ = {BO,Q,Qa Bl,l,h BZQ,O’BZO’Q} )
] j ) ] ) i (3.3.8)
T = {B0,3,3,Bz,zl;B271,27B172,2’B3»370’B3’0’3} ;
7, = {B1,3,3, Bo22, Baa0, Baoa, Boaa, Bssa, 183’1’3} "/
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where I@a,b7c(zl, 29), with a,b,c € Z,, are as in (1.9.8).
We mention the following remarks based on the above discussion.
Remarks

(a) The set T, of generators for the power ideal Z* is symmetric in the sense that it is
invariant under permutation of two variables, and that the indices of the generators can
be interchanged cyclically.

(b) The order of polynomial reproduction of a bivariate subdivision scheme perfectly
matches with smoothness of the constituent box splines corresponding to the generators
in 7, that make up the subdivision scheme.

We proceed to quote a key result from [CCJZ11].

Theorem 3.3.5. (Decomposition) A bivariate subdivision scheme S, satisfies the sum
rule condition if and only if its mask symbol can be written in the form

P(ZhZQ Z /\abc Qabc(zlyzQ) Babc(ZhZQ) (339)

]Ba,b,c EIk

with > Aapc = 1, where I@ab& is the 3-directional normalised box spline as in (1.9.8), and
where dqp.c(21,22) are normalised Laurent polynomials, that is, qapc(1) = 1.

In (3.3.9), ‘k’ refers to the order of polynomial reproduction of the subdivision operator S,
and the set 7y has the advantage of classifying as well as constructing bivariate subdivision
schemes.

From the discussion up to now, we observe that any bivariate subdivision symbol can be
decomposed into 3-directional box splines, I@Ba,b@. For instance, we consider 4-directional
box splines, which can be decomposed into pieces of 3-directional ones, that is, the mask
symbol associated to a 4-directional box spline can be rewritten as a convex combination
of shifts of 3-directional normalised box spline symbols, as given below:

a c _ d
1+ 2z 14 2 b 14 2129 1+21221
Ba c ) =4
bed(21, 22) ( 5 ) ( 5 ) 5 5

1 . dN d £~
2d (1+Z—2> Babc<21722 27 dZ( ) ( ) ab,0(21722>

=0

d
= e 2 Bape(z1, 22), (3.3.10)
=0

where \q :=279(¢). By using the identity
(z1+20) = (14 21)(1 + 22) — (1 + 2129),

we write

IE30,0,0,1(21, 22) = — { — [2]]?31,1,0(21, 22) - IB30,0,1(217 2’2)
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Thus, for 4-directional box splines, we have that

1 - d
Bab,ea(21, 22) = Bape(21, 22) —3 o <21331 10(21,22) — Boo,1(21, Zz))
2

d
22 d l d\ -~
= Z ( )Ba+€,b+2,c+d—l(zla 22)-
=0

3.4 The Butterfly subdivision scheme

The above mentioned algebraic results are key tools to verify the interpolatory Butterfly
subdivision scheme on regular triangulations. This subdivision scheme is derived sys-
tematically by using Theorem 3.3.5 with set of generators of box spline symbols, and by
taking their convex combination, and finally doing appropriate normalizations. According
to [DLG90, KLY07, DHL11], the Laurent polynomial of the Butterfly subdivision scheme
is given by

3 3
w(21, 22) Z Z pij 22 = (1 +21) (14 22) (1 + 2129) (1 — wr(21, 22)) (2122) 7,
B (3.4.1)
where
r(21,20) = 22722y V4 227 g 2 — Aoyt eyt — At — A2yt 4 227 2
+ 22125t 12 — 42y — dzy — 4220 + 2202 + 22123, (3.4.2)

with r(z1, 22) = 7(20, 21) = 7(27 ', 2, 1), and (1) = 0, 7(¢) = 16, Ve € Z\{1}, as in (2.5.4).

Equation (3.4.1), together with (3.4.2), can be expressed in terms of its box spline con-
stituents by

1 . -
—Z?ZS Pw<zla 22) = {7212’2 IB32,2,2(2’17 22) — 2z IB31,3,3(2’1, 22)

4
—222 B371’3(21, 22) — 22122 ]]%3’371(21, 22)} s (343)

where I@&b,c is as in (1.9.8). To verify this result, we choose the set of generators from Z,
for the power ideal Z* as given, according to (3.3.8), by

{1@2,2,2(217 Z2)> IE33,1,3(Z1> 22)7 I@3,3,1(217 22), IEB1,3,3(«21, 22)} .

Now, by choosing the appropriate normalised g-symbols:

7+ 62129 1421+ 2
- 1 ) 227217 - 5 )
13 3

and by keeping the convex combination of the coefficients, we get

7+ 62129

2025 Pu(z1,20) = 4 [26 : ( 13

) IB333 1(21,22) — 229 IB3313(21, 29)

- 142+ 2
—22’1 B173,3<21, 22) — 21 (%) BQ ,2 2(21, ZQ):| . (344)
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In order to rewrite equation (3.4.4), a simplified expression that preserves both convexity
of coefficients and normalization of the symbols is established.

To attain this, we expand equation (3.4.4) to a more simplified form, that is,

T+ 62122\ = L+z1+20) 3
26 (1—312) Bss1(21,22) — 21 <%> B2,2(21, 22)

= 2(7 + 62122) Iﬁg3’371(21, 22) — 7(1 -+ 21 + ZQ) ]EQ,ZQ(Zl, ZQ)
=2 [7(1 -+ leg) — 212’2] 337371(2’1, ZQ) — 7(1 -+ 21 -+ ZQ)BQQQ(Zl, 2’2)

14 22 ~ -
=2 (14 (%) IB33,3,1(2’1, 2’2)) — 22129 IB33,3,1(2’1, 22)

—T7(1+ 21 + 29) @2,2,2(2’1, 22)
=71+ 2 + 22+ 2129) I@2,2,2(21, 29) — T(1+ 21 + 29) IE32,2,2(Z1, 22)
—22125 By 3,1 (21, 22)
= T2129 1@272’2(21, 29) — 22129 1@3’371(751, 29). (3.4.5)

Substituting (3.4.5) into (3.4.4), we get

Zi’ 2’3 Pw(»Zl, 22) = 4 [7212’2 IB32,2,2(2’1, 22) — 22129 IE33,:’,,1(21, 2’2) — 229 IB33,1,3(21, 2’2)

—221 1@17373(2’1, 22)] . (346)
Now, simplifying the expression in (3.4.6), by using (1.9.8), to its equivalence form:
Pu(z1,22) = 4 [72’122 Booo(z1,22) — 221 Bisa(z1, 22) — 220 By1s(21, 22)

—22129 @373,1(21, 22)]
1

=1 (2325 + 2125 + 220 + 2128 + 2120 + 27 25 + 21 ' 25
t2125 0+ 2 e 2 0 4 2 2 e 4 2
+%[zf22 +zze + 22yt 2 e 4 2 e R+ 272
+%[z;1 + 2t szt 2+ 2 2y ] 4 (3.4.7)

which is the Butterfly subdivision scheme with tension parameter w = 1—16, and with its
refinement mask given below in (3.4.9). The grid points in the set M for which the

refinement mask p’ will be non-zero are given by

M = (0,0) UM UM?* U M?,

where
Ml = {( )a( ) )7(1 1)7( 1 O) (O 1)’(_1’_1)};
M? = {( ) )7( ) ) (1 2) ( L 2)7(_171)(_27_1)};
M? = {<372)7( ) )7( )7(173>7(2v_1)7(_27_?))7(_172)7(17_2)7
(—2,1),(=3,-1),(—1,-3),(=3,-2)}. (3.4.8)

Thus, in terms of the subdivision polynomial, the mask symbol representation of this
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—1/16 1/8 -1/16

_1/16 1/ —1/16

Figure 3.1: Stencil of the Butterfly subdivision scheme

subdivision scheme is given by

P(z1, 22) = Z Pk 21 25,

(J,k)eM
where
P(0,0) 1, as it is interpolatory;
ok % ! <‘7 k)< M:; (3.4.9)
por =3 i (J,k) € M%
PGk = —15. if (5, k) € M.

as shown in Figure 3.1.

Note that (3.4.7), together with (3.4.9), gives the matrix representation of mask coeffi-
cients {p;; : =3 <,7 < 3} as

i L -
00 0 0 -5 -5 0
o 0 -+ 0 L+ 0 -
o -1 1 1 I 1 1
16 8 2 2 8 16
o o0 5 1 5 0 0 (3.4.10)
e O
16 8 % 2 81 16
% 0 5 0 -5 0 0
0 -+ -~ 0 0 o0 0 |

Thus, one can view the Butterfly subdivision symbol algebraically as

Puw(z1,22) € <{B2,2,2(21722)7 IE31,3,3(21,2’2)7 I@3,1,3(Z1,22),]@3,3,1(21,22)} > (3.4.11)

By applying Remark 3.3.2 and (3.4.7), we observe that each of the generating box splines
can be factored in terms of the normalised Courant hat function, that is,

Pu(z1,22) € (Iﬁ%l,m% and hence, we can write
Pu(z1,20) = B1,1,1(Z1, 29) b(21, 22). (3.4.12)
Consequently,
b(z1,20) = 273252 |28 27 25 Braa (21, 22) — 8272252 Boga(21, 22)

—821_322_2 I@Q’O’Q(Zl, 22) — 821_122_1 B27270(Zl7 ZQ)] . (3413)
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Writing (3.4.13) in a more usable way, we have that

Q(zl, 29) 1= zfzg b(z1,20) = 282%2% I@l,l’l(zl, 29) — 821 1@07272(21, 29)

—822 1@21072(21, 2,’2) — 82%22 I@27270(21, ZQ). (3414)

Omne can observe that the symbol Q(z1,2) in equation (3.4.14) does not define a con-
vergent subdivision scheme according to Theorem 3.3.5, although each of the summands
in Q(zl, 2z9) does correspond to a convergent subdivision scheme. Besides, the Butterfly
subdivision scheme P, obtained using the algebraic approach is an interpolatory subdi-
vision scheme defined on a triangular grid with a single tension parameter w, but none of
the summands in the affine combination satisfy this property. Details of computational
analysis of smoothness and convergence of this subdivision scheme is given in the next
chapter.

3.4.1 Some features
We mention the following basic features of the Butterfly subdivision scheme:

e The mask plots of the Butterfly subdivision scheme as in [KLY07] on the integer
grid Z? are displayed in Figures 3.2 -3.4.

Figure 3.3: Even-Odd mask

Figure 3.4: Odd-Odd mask
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e The matrix version of subdivision polynomial of the Butterfly subdivision scheme

as in (3.4.7) with w = & is given by

P(z1,29) = % R B S - § B
O 0 0 0 -1 -1 0 P
0 0 -1 0 2 0 —1]|/[=?
0 -1 2 8 8 2 —1|]|=!
-1 0 8 16 8 0 0 23
-1 2 8 8 2 -1 0 2
-1 0 2 0 -1 0 0 22
0 -1 -1 0 0 0 0 23

(3.4.15)

e From (2.3.3), (2.8.2) together with (3.4.10), we note that the subdivision formulation

of the Butterfly subdivision scheme is given explicitly by

k1 k k k k
Coit12f = B (ci,j + Ci—i—l,j) + 2w (Ci,j—l + ci+1,j+1)
k

—w (el oy ey it o)

(e +efipr) +2w (e +cfhyjp)
—w (cik—l,j—l + C?—l,jﬂ + cik+1,j + C?+1,j+2) ;

Coioi = % (e + efirger) + 2w (cfiyj +cijp)
—w (Cik,j—l + C?—Lj + C?+2,j+1 + Cf+1,j+2) ;

k+1 _ Lk
Caioj = Cij-

\

Vs

(3.4.16)

e The corresponding basic limit function for the Butterfly subdivision mask as in

(3.4.9) is displayed below in Figure 3.5.

Figure 3.5: The Butterfly basis function [w = %]

From equation (3.4.10), we observe that the stencil satisfies the conditions that for

any k € Z,

Z(—l)j Dik = Z(—l)j Prj = Z(—l)j Pjj+k = 0.

J J J

(3.4.17)

Equation (3.4.17) means that the stencil of the Butterfly subdivision scheme satisfies
the the sum of even and odd masks along every vertical or horizontal line are the
same. This fact induces a factorization of the corresponding Laurent polynomial of

the Butterfly subdivision scheme.
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e The following is an example of Butterfly surface obtained from control nets in R3.
The Matlab source code for the following figures have been done by Thomas Yu.

Example 3.4.1. Tetrahedron

Figure 3.6: 1st iteration

Figure 3.8: 3rd iteration

Example 3.4.2. Torus

Figure 3.10: 1st iteration

Figure 3.12: 4th iteration

Figure 3.7: 2nd iteration

Figure 3.9: Last iteration

Figure 3.11: 2nd iteration

Figure 3.13: Last iteration
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3.4.2 The polynomial reproduction property

In this subsection, we will show that the Butterfly subdivision scheme reproduces poly-
nomials of up to degree 3 for the tension parameter w = %. The following result proves
the polynomial reproducibility of the Butterfly subdivision scheme.

Theorem 3.4.3. The Butterfly subdivision scheme (3.4.1) with w = 1—16 reproduces cubic
bivariate polynomials, in the sense that

i ..
Z Pi—2k,j—2¢ f(k, g) =f (57 %) , 1L,]€ Z, fe Hi (3418)
(k,0)€Z2

where the sequence {p;} is defined by (3.4.1), with w = 1.

Proof. Tt will suffice to prove that (3.4.18) is satisfied by the monomial f(x,y) = x%y*,
where o and [ are non-negative integers, with o + § < 3.

Since i,j € {—3,-2,...,2,3} and i — 2k,j — 20 € {—3,-2,...,2,3}, we have that

ke {(%(1—3)1,[%(1—3)1+1,...,L%(i+3)J}
and - - .
eE{@@—3ﬂﬁ50—3ﬂ+1w~450+3u}

It follows that the possible integer pairs are given by

xcd = {15631 T50- 3. (5631, 156+ 3)),

(156 =3)]+1T56 -3, (5~ 31+ 1, 15G+3)
1

(g 63 (563 56+ 3D | Ba0)

Consider the following cases:

e Case I: Counsider the monomial f(x,y) =x* with a =0, or a =1, or a =2 or
a=3.

(a) Fori =2m+ 1 and j = 2n + 1, we have to show that

(2m—|—1 2n+1)

3.4.20
mEge (34.20)

Z P(em+1)—2k,(2n+1)—2¢ £k, £) = f

(k,0)€72
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Z Pemt1)—2k,@2nt)—20 £, 0) = p3gf(m—1,n—1)+ps; f(m —1,n)

(k,0)eZ?
+ps 1 fm—1,n+1)+ps_sf(m—1,n+ 2)
+p1sf(m,n—1) +prg f(m,n) +py—; f(m,n+ 1)
+p1 s f(m,n+2)+p_3f(m+1,n—1)
+p_1afm+1,n) +py 3f(m+1,n+2)
+p_ssf(m+2,n—1)+p_3; f(m+2,n)
+p_s 1 f(m+2,n+1)+ps3f(m+2,n+2)
1
= 15 [(m—1)%+m*+m* + (m + 2)°]
1 1
+-m® + - [m® +m*°|. (3.4.21)
2 8
For fixed values a € {0,1,2,3} and from (3.4.21), we now obtain :
For a = 0,
2m+1 2n+1
D Pnsn-aenen 2 £k, £) = 1 = f ( 5 )
(k)
For a =1,
1 m+1 n+1
Zp(2m+1)f2k,(2n+1)f2é fk,0) = m+ - | =f|——, .
2 2 2
(k,0)
For a = 2,
1\? m-+1 n+1
ZP(2m+1)—2k,(2n+1)—2é f(k7 5) = m+ o) =f{——, .
2 2 2
(k)
For a = 3,
1\* m+1 n+1
ma)—2kon_o¢ Lk, 0) = = ) =f(—:r, .
(kzz)p@ +1)—2k,2n—2¢ £(k, £) (m+2) ( 5 5 )

(b) For i =2m + 1 and j = 2n, with f(x,y) = x* with « =0, 1, 2, 3,
ZP(2m+1)—2k,2n—2z f(k,0) = ps2 (m —1)* 4+ pgo (m — 1)* 4+ p3 o (m — 1)*
(k.€)
+piom® 4+ prom® 4+ p;_om®* +p_g, (m+ 2)°
+p_3o (Mm+2)*+p_3_o(m+2)*

:_%[(m_1)a+m“+(m+1)“+(m+2)“]

—l—%[ma—f—(m—i-l)a]—i—é[ma—i—(m—kl)a]

For a = 0,

ZP(2m+1)—2k,2n—2z f(k, ) = 1.
(k,©)
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For a =1,

1
Zp(2m+1)72k,2n72€ f(k,¢) = (m + 5)

(k,0)
For a = 2,
1 1\° m + 1
Zp(2m+1)72k,2n72€ f(k, 6) = (m2 +m + Z) = (In + 5) =1 ( B ,n) .
(k,0)
For a = 3,
3 3 1
Zp(2m+1)—2k,2n—2€ f(k,0) = (m®+ émz +qm+ é)
(k)

_ (m+%)3_f<m;—1,n>. (3.4.22)

(c) For i =2m, and j = 2n with f(x,y) =x*, a=0,ora=1ora=2or a =3.

ZPQm—%,zn_% f(k,£) = poo(m—1)"+pao(m—1)%+py 5 (m—1)% +po2 m®

(k0)
+poo M* + po, o M + p_gp (M + 1)
+P-2,0 (m + 1)a + P2 o (Hl + 1)a
1
=16 [(m—1%+m*+ (m+1)*+ (m+2)°
1 1
+5 M+ (m+ D+ 2 [+ (m+ 1) (3.4.23)
For a = 0,
Z Pomi1-2kon2 f(k, ) = 1.
(k0)eZ?
For a =1,
Z Pom—2k2n—2¢ f(k, () = m.
(k,0)ez?
For a = 2,
Z Pom—ak2n—2e f(k, €) = m?*.
(k,0)€Z2
For a = 3,

2m 2
Z Pom—2kon—2¢ f(k,0) = m® :f(—m _n)

(k,0)€Z?

Thus, from the above, we conclude that

Y Do s f(k () = f(%%) for every 1i,j € Z.
(k,0)€Z2
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Case II: For the monomial f(x,y) = x*y? with (o, 8) € {(1,2),(1,1)}.
(d) For i =2m + 1 and j = 2n, we have that

Zp(2m+1)72k,2n72£ f(k> f) = P32 f(m —1,n— 1) + P30 f(m -1, n)
(k,€)

+ps _of(m—1,n+ 1)+ pr2f(m,n— 1)+ p;of(m,n)
+p1, 2 f(m,n+1) +p 32 f(m +2,n 1)
+P-3,0 f<m + 2, H) + P32 f(m +2.,n+ 1)

1 1 1
= —1—6f(m—1,n—l)+§f(m,n—1)+§f(m,n)
1 1 1
—1—6f(m,n—i—1)—Ef(m+1,n—1)+§f(m+1,n)
1 1
+§ flm+1,n+1) —Ef(m+2,n+1). (3.4.24)

With (o, 8) € {(1,2)} and by using (3.4.24), we have f(x,y) = xy?, so that

1 1
D Pemen-zman-z £ £) = mn® + on® =f (m Ty n)'
(k,0)

1 1
Zp(2m+1)—2k,2n—2e f(kl) = _1_6(m —1)(n— 1>2 + gm(n - 1)2
(k,0)
+ i~ 2 (ﬁ&f—l( +1)(n—1)2
S — gem(n (m n
1 1
—|—§(m + 1)n? + g(m +1)(n+1)?
1 2
—1—6(m +2)(n+1)
, 1, 1
=mn* + g =fm + 3" (3.4.25)

By symmetry of the monomials, it also holds true with f(x,y) = x*y.
)

With («, 8) € {(1,1)}, and by using (3.4.24), we have f(x,y) = xy that

1 1 1
Zp@mﬂ),%,gn,% f(k,€) = —E(m —1(n—1)+ §m(n —1)+ gmn
(k)
L+ ) = Lt D= 1) + Sm+ 10
16 16 2
1 1
+§(m +1)(n+1)— 1—6(m +2)(n+1)

:(m+%)n:f(m+%m) (3.4.26)
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(e) For i = 2m, and j = 2n, with f(x,y) = x°y?, (o, 8) € {(1,2), (1,1)}:
Zp2m—2k,2n—2z f(k, 5) = P22 f(m —1,n— 1) + P20 f(m -1, 11)
(kL)
+p2 o f(m—1,n+ 1)+ po2 f(m,n — 1)
+po,o f(m, n) + po,—2 f(m,n + 1)
+p_oof(m+1,n—1)+p_oof(m+1,n)
+p—22f(m+1n+1)
2m 2n
- f —f = == 4.2
) =t (55, (3.4.27)
which holds true for any f € Ils.
(f) For i = 2m, and j = 2n + 1 with f(z,y) = 2%9°, (o, 8) € {(1,2),(1,1)}:
Zpi—2k,j—2€ f(k,6) = posf(m—1,n—1)+ps:f(m—1n)
(k)
+po 1 fm—1,n+ 1)+ py_sf(m—1,n+ 2)
+pos f(m,n — 1) + po1 f(m, n) + po,—1 f(m,n + 1)
+po—sf(m,n+2) +p_o3f(m+1,n—1)
+porfm+1,n)+p o 1 f(m+1,n+1)
P23 f(m+1,n+2)
_ —% fm — 1n— 1)+ f(m — 1,0+ 1)
+f(m+1,n) + f(m + 1,n + 2)]

+< [f(m — 1,n) + f(m + 1,n + 1)]

+§ [f(m,n) + f(m,n + 1)]. (3.4.28)
Now by using (3.4.28) with f(x,y) = xy, we have
1 1
Zpl okjoe f(k,¢) = m <n—|——) :f<1rn,nJr ),
2 2
(k,0)
and for (o, 8) € {(1,2)}, and using (3.4.28) with f(x,y) = x y?, we have

Zpi—zk,j—% fk,6) = _1_16 [(m —1)(n—=1)*+(m—1)(n+1)° + (m+1)n’
(0

1
+§ [mn +m n—l—l

m(n—l—%)Q:f(m,n;—l). (3.4.29)

Thus, combining all the cases, we have established the polynomial filling property

Zpl ok j—20 f(k, 5)—f(2 2) i,j €z, fell.

(k0)

+(m+1)(n+2) } +é [(m— Dn?+ (m+1)(n+ 1)2]
)*]
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In the next section, we derive a new interpolatory subdivision scheme, as was obtained in
[vdB10], before attempting to similarly derive the Butterfly subdivision scheme directly
from equation (2.6.6).

3.5 Derivation of a new interpolatory scheme

The Laurent polynomial equation (2.6.6), after normalisation,
,PI(Zl, 22) + 7)[(—21, 22) + Pl(zl, —22) + 7)](_217 —22) =1. (351)

may be used to construct interpolatory bivariate subdivision schemes in a direct manner.

In order to solve equation (3.5.1), we use the normalized symbol of the Courant hat

function ®
1 1 1
P(Zl,ZQ) = ( _;ZI) ( —;ZQ) ( +22122) , (352)

which is used to define the interpolatory symbol P(z;, z) as

Pl(21, 20) = P(z1,22) A(21, 22), (3.5.3)

where A(z1, z5) is an arbitrary Laurent polynomial.

Now, substituting (3.5.3) into (3.5.1) yields

PI(Zl, ZQ) + 7)](—21, ZQ) + 7)[(217 —ZQ) + 73[(_21’ —22) =1«

(1+221> <1+2z2) (1 +2z122)A(Z1722)+ (1—2Z1) <1222) (1—22122>A(_W2)+
(1+2z1> <1—222> (1_;122) A1) + <1—221> (1—22’2) (1_22122>A(_Z1’_Z2):1’

(3.5.4)

Letting A(z1, 22) := f(z122), u = 2129, where f is a univariate Laurent polynomial, and
substituting into equation (3.5.4), we get a particular solution to the identity (3.5.4), as

1
given by A(z1, 22) 1= P
122

k
Assuming that the general solution G(z1, 22) := A(21, 22) + Z «; Hi(21, 29) exists, then a
i—1

3A Laurent polynomial symbol P(z1, 22) is said to be normalised if P satisfies P(1,1) = 1.
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set of homogeneous solutions H; are given, according to [vdB10], by

(1 —21) (14 22) (1 — 2129) )

H1<Zl, 2'2) =
2122
1 1-— 1-—
Ha(21, 20) := Uta)d-=2)0-a)
2129
1— 1— 1—
Hy(s, ) o= L) L2 0 = 52)
172 3.5.5)
(1= 2) (14 29) (1 2129) (° (3.5.
H4<21,2’2> = 33
2172
1 1— 1—
H5(z1, 22) := (1+20) 3Z§) ( )
2179
(1 — Zl) (1 — ZQ) (1 — 2122)
H6<Zla ZQ) =
2323 J
that is, the functions H :=H;, + = 1,2, ..., 6, satisfy the equation
P(Zl, 22) H(Zl, ZQ) + P(—Zl, 22) H(-Zl, 22)
+ P(z1,—22) H(z1, —22) + P(—21, —22) H(—21, —22) = 0, (3.5.6)
where P(zy, z2) is the symbol as in (3.5.2).
It follows that a Laurent polynomial solution to equation (3.5.1) is given by
G(z1, 22) == A(21, 22) + a Hi(21, 22) + f Ha(21, 22) + v H3(21, 22) (3.5.7)
+ a Hy(z1, 22) + B Hs(21, 22) — v He(21, 22) 7 -

for (21, 29) € C*\{(0,0)}, and with «, 8 and ~ denoting arbitrary constants. Hence the
polynomial

Pz, 2) = <“;Zl) (“;Z?) (H;‘ZQ) Gla ) (21,2) € C\{(0,0)} (3.5.8)

satisfies equation (3.5.1), that is, P! is an interpolatory mask symbol.

1
Observe from (3.5.8), (3.5.7), (3.5.6), together with A(z1,20) = ——, that the Laurent
2129

polynomial P! satisfies the symmetric condition P!(21,20) = PL(2,21) for (21,20) €
C\{(0,0)}.

Simplifying the Laurent polynomial P! | we get
P21, 20) := (1 + zl> (1 +zz) (1 + 2122> [ 1 N a(l—2z)(1+22)(1— 2129)

2 2 2 2129 2129

+ﬁ (14 21) (1 — 22) (1 — 2z122) n v (1—21) (14 22) (1 — z122)

2172 2172
+a (1—21) (14 29)+ (1 — 2z122) N B (1+21)(1—29)(1— 2129)

22 223
Y (1 — Z1) (1 — 2’2) (1 — 212’2)

N 3,3 : (3.5.9)

142
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Under the preference of a refinement mask with smallest support, we set v = o + 3, and
it follows that

1+ 2 1+ =z 14 2750
p():( 2)( 2)( . )

14+2(1 —z129)(a+ B — az; — Bz2)

1 a p

Under the preference of a symmetric mask, we need that P! must satisfy PI(z,2,) =
Pl(29,21), (21, 22) € C*\{(0,0)}, so that, from (3.5.10), we impose the further restriction
that o = 3, after which (3.5.10) becomes

-1 -1
PI(ZI,ZQ) — (1—;2«/1) (1-;22) (1+Z1 ZQ ) [1+2a<1_2122)<2_21_22)

2

_ (14;1) <1+222) (1—1—25_122_1) 1= wK(z, )],

where K is the Laurent polynomial

K(z1,20) i= 27 25 2 4+ 272251 — 227 gt — 27t — 25t (3.5.11)

2 2
+4 =2 — 20— 22120 + 2720 + 2125,

for (21, 22) € C*\{(0,0)}.

The subdivision scheme corresponding to the mask P! is similar to the Butterfly subdi-
vision scheme, as given in [DLG90, KLY07, DHL11].

We have as yet not succeeded in deriving the Butterfly subdivision scheme using the
above approach . This is because (3.5.5) does not represent a full basis for the solution
space of the homogeneous equation (3.5.6). This unresolved problem represents a good
research project for the future. However, we have successfully verified, in Section 3.4, the
interpolatory Butterfly subdivision scheme by using the algebraic approach.
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Chapter 4

Convergence and smoothness analysis

In this chapter, we analyze the convergence and smoothness of the interpolatory Butterfly
subdivision scheme as well as the new interpolatory scheme of Section 3.5, with some
graphical illustrations of limit functions.

As was done for the univariate case in [dVC10, WWO02|, our approach to analyse the
behaviour of a bivariate subdivision scheme is to associate a piecewise bilinear function

fx (21, 20) with the entries of the vector ¢* plotted on the grid %Z? In essence, the value

of this function fi(z1,22) at the grid point (5, 2J—k) is simply the (i,7)""
vector c”, that is,

coeflicient of the

i |
Ji (Q_k’ ?> =cf;. (4.0.1)

We pursue our study of convergence and smoothness of the bivariate ones by asking
ourselves the following core questions, as was done for the univariate case in [dVC10].

Given a sequence of functions fi(z1, 29) satisfying (4.0.1),

e Does this sequence of functions f(z1, 22) converge to a limit?

e If so, does the limit function satisfy a smoothness condition?

4.1 Analysis of convergence and smoothness

The following definitions are basic about boundedness and contractivity of operators in
normed linear spaces.

Definition 4.1.1. Let (B, ||-||) be a normed linear space and suppose L is a linear operator
mapping B into itself. We say that L is bounded if

|L|| := sup {% cfeB, f# O} < 00. (4.1.1)

Moreover, if it holds ||L|| < 1, then we say that L is contractive.

85
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Observe in particular from (4.1.1) that
LA < ILAlAL - feB (4.1.2)

for any bounded linear operator . mapping a normed linear space B into itself.

The following results in [KLY07, DLM89| are on the smoothness and convergence of a
bivariate subdivision scheme.

Theorem 4.1.2. Let S be a bivariate subdivision scheme with associated mask symbol
P(z1,22). Then S is convergent if and only if the subdivision scheme with symbols

P(Zl, 22)

a,b’ (a>b) < {(071)7(1’())’(171)}7 (4-1-3)

Pa,b(ZbZQ) = 11222
172

are contractive.

For univariate subdivision, we have the following result from [DLMS89].
Theorem 4.1.3. [DLM89] Suppose that, for some m € N,
P(z):=2"" (1 + 2" )" r(2), (4.1.4)
for some Laurent polynomial
r(z) = er 2, 2€eC,
J
satisfying r(1) = 1, and that, for some n € N,
IS¢ oo = sup {[IS;efloo = [lefloe <1} <1, (4.1.5)
where
lelloo := sup {le;| - 5 € Z},
and S is the n'"-iterate of the linear operator S,. Then the subdivision scheme S, is a

convergent subdivision scheme of order m, that is, [C™SS] as in (2.3.3).

Equation (4.1.5) is a condition for the contractivity on r which is equivalent to
1i oo = 4.1.
Jim |87 = 0. (4.1.6)

with S, denoting the subdivision scheme associated with the mask {r; : j € Z}.

Definition 4.1.4. The Laurent polynomial r(z) is said to be strictly stable if (4.1.6)
holds.

The extension of the contractivity property of subdivision operators to the bivariate case
is given in the following remark.

Remark 4.1.5. According to [DLM89], the contractivity condition for assuring conver-
gence of bivariate subdivision schemes is given by ||S}||« < 1, where

ISPl := sup >

0<it 4022 —1 ri[:l_}an‘ ) 1:= (il, 22) < RQ. (417)
11,12 <2 — .
- jEZ2
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More precisely, the relevant two results from |[DLM89| are as follows.

Theorem 4.1.6. Suppose that
Pz, 20) =27 (1 + 27 (1T + 2 (1 + 27 25 ) (21, 22), (4.1.8)

where v is a Laurent polynomial satisfying r(1) = 1, and the polynomials

(14 27N r(21, 22) and (1 + 2z, 1) 7(21, 22) are strictly stable. Then the subdivision scheme

S, is C1SS.

Theorem 4.1.7. If the mask symbol r(z2) is strictly stable, then {z™r(z):m € Z} is
strictly stable.

By applying Theorems 4.1.6 and 4.1.7, we can now prove the following convergence result
for the Butterfly subdivision scheme.

Theorem 4.1.8. The interpolatory Butterfly subdivision scheme as given in Section 3.4,
with mask symbol as in (3.4.1), converges to C'(R?).

Proof. Using (4.1.5), together with Theorem 4.1.2, we need to check that the subdivision
scheme with symbol P, (z1, 29) as in (3.4.1) is C?, that is, it suffices to show (|[DLG90,
DHL11, DLM89|) that any two of the schemes

273111(217 29) 273w(21, 23) 2Pw(217 29)

, , are in C°.
14+ 2 14 29 1+ 2129

We shall use the notation

P1o(z1,29) := 2%1’;2); Po1(z1,29) := 2%122); P11(21, 290) := Q%ZZ).
We shall show that
Pou (21, 2) = %(1 + ) (14 2120) (1 — 1w (21, 7)) (21 20) " (4.1.9)
and
P1o(z1,22) = %(1 + 2)(1 4+ 2120) (1 — w (21, 22) ) (2122) ! (4.1.10)

where 7(z1, z2) is as given in (3.4.2), are contractive.

By Theorem 4.1.7, it suffices to prove that (1+ z1)(z122)(1 —wr(z1, 22)) is strictly stable,
or, equivalently, say, Q(z1, z2), which is obtained by applying Theorem 4.1.7 on Py 1 (21, 22)
to get

Q(z1,22) == (1 + 21)(1 — wr(z, 22)), (4.1.11)

is strictly stable. The other two polynomials in Theorem 4.1.6 are strictly stable by the
symmetries of r(zy, z3), that is, 7(21, 20) = r(22, 21) = 7(2; ", 25 1).



Stellenbosch University http://scholar.sun.ac.za

4.1. Analysis of convergence and smoothness 88

Observe that, for n =1,

[Sqlles : = = max (Z |Q2¢+k,2j+f|>
17]
= max (Z |Q2i 25 Z |Qait1,25] Z |Q2i2j+1 Z |Q2i+1,2j+1|> . (4.1.12)
1,7 .7 %, %]

From the strict stability property as in Theorem 4.1.7, it is sufficient to show Q(z1, 22) is
strictly stable.

Now, from (3.4.2) together with (4.1.11), we get

Q(21,22) = —2w2izg — 2wzizy + 2waizg — 2wz 25 + dw2; + 8wz 2y
—2w2tzyt — 8wz + 2wz + 2wz zy b — 2wz Tz — 8w
21+ 4wzt 8wzy t + 2wey eyt — 2wyt — 2wy 2y
—2wz %zt 4+ 1+ O(w?). (4.1.13)
Looking at the necessary coefficients of Q(z1, z3), we see that
Qoo = —2w; Qoo = 4w; 00 =1—-8w; Qo2 =—2w,
and thus
Z |Qai2j] = | — 2w| + [4w| + |1 — 8w| + | — 2w
0,
= |1 — 8w| + |8w]. (4.1.14)

Hence, ||Sq||s > 1 for all values of w.
Considering Sg, we proceed to find an interval (0,wo) such that [|S( < 1, w € (0,wo).

Since it is very difficult to compute the exact value of wy, we only consider the linear
terms in w.

From (4.1.13), we obtain the expansion

Q¥(21, z) = Q(z, 22) Q(23,23) = (1 + 21 + 27 + Zl) (1 —wr(zy, 22) —wr(z, 23) + O(w?))
= 2wzl 22 2wzl zy — 2wzbzs — 2wzl 2y +2wzb2s — 2wz, — 2wz1 29
— 2wtz —I— 4wz + 2wz1 2z + 6wz s + Swzy + 6wzl zy + 6wzizs
—2wzi 2yt — 2wzizy ? — 16w2P + dwzizy — 2watzy 4 2wzizy — 12wz}
+ 6wz 20 + 2wzs + 28+ 2wedzy? + 6wz, b — 12wz — 2waazy 4 2wz
+ 27 Fdwzzyt — 2wzt — 2wz 22 — 16w + 21 + 6wz 25 2 + Swzy
+ 6wy b4 2wy tay 4 dwa 4 Bwey t — 2w zy t — 2way tey 4 2wy Ry 2

— 2wzt — 2wty = 2w Pyt — 2wa Pyt — 2wty 4 14 O(w?).
(4.1.15)

By looking at the necessary coefficients of Q?l(z, z5), we find that QEQJ} = O(w) for j # 0,
while Q%) = 1+ O(w), for i = 0,1,2,3.
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Thus, it is sufficient to show that, for w sufficiently small, it holds that

> Q<1 6=01,23
2%

For the case ¢ = 0, all the non-zero coefficients are given by
Q070 = 1 — 16w —f- O(wQ), Q4’4 = Q07_4 = —2w + O(wQ), Q4’0 = 811) + O(U)Q)

Hence Z |Q5]74j| = |1 — 16w| + 12|w| + O(w?) < 1, for w > 0 sufficiently small.
'7j

For the case ¢ = 1, all the relevant coefficients are
[121) =1 — 12w + O(w?); [52]0 = 4w + O(w?); [52]4 = [127}_4 = —2w + O(w?).

Hence, Z |Q5]+174j| = |1 — 12w| + 8|w| + O(w?) < 1, for w > 0 sufficiently small.
'Mj

For the case ¢ = 2, all the relevant coefficients are

[22]0 =1-12w+ O(w2); ?]4 = 4w + O(w2); Q[2214 = 2w+ O(w2).

Thus, Z |Q5]+2’4j| = |1 — 12w| + 8Jw| + O(w?) < 1
2
for sufficiently small w > 0. That is, the case ¢ = 2 is the same as ¢ = 1.
For the case ¢ = 3, we get Z |Q£‘2i]+374j| = |1 — 16w| + 12|w| + O(w?) < 1,
4,3
which is the same as the case for ¢ = 0 for sufficiently small w > 0.

Hence the interval for which the tension parameter w provides the shape of the limit
function of the Butterfly subdivision scheme lies in (0,-5). The best value of w that

12
makes the Butterfly subdivision scheme to reproduce cubic polynomials is attained when
1

4.2 Convergence of the new interpolatory scheme

As mentioned in Section 3.5, we consider next the new interpolatory subdivision scheme,
as obtained in [vdB10|. Tt exhibits similar features to the Butterfly subdivision scheme,
and its interpolatory mask is given by

P-3-1=pP-3-2=P-2-3=P-1-3=P32=DP23=P1,3=DP31= —w/2;‘
Pi2 =Do1 =P-1,-2 = D91 =W/2;

Poo = 1;

P-1,-1 = P11 = Po—1 = P-1,0 = Po,1 = P1o = 1/2;

P1,-1 =P-11 = W,

pi; = 0, otherwise.

(4.2.1)
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Writing equation (4.2.1) for the mask sequence {p; ; : —3 <, 7 < 3} as a matrix leads to

0 0 0 0 -% -2 0]

o 0 0 0 — 0 -—%

00w by o4 %

o 0 4+ 1 5 0 0 (4.2.2)
T A00 0

2 2
0 -2 -2 0 0 0 0 |

In Figure 4.1, the graph of the corresponding basis function ¢, for this subdivision scheme
was obtained by means of the cascade algorithm.

71.571_0

-0.5 ” > B
00 o y -1.0

Figure 4.1: The basis function ¢, for the new interpolatory scheme [w = %]

This subdivision scheme exhibits similar behaviour to the Butterfly subdivision scheme
with respect to symmetry, convergence and smoothness, with, in particular:

e The new interpolatory subdivision scheme is symmetric, that is, p; ; = p;,; for any
1,7 € 2.

e The new scheme seemingly shares the same structural pattern with the Butterfly
subdivision scheme;

e The subdivision polynomial P(21, z3) has (1+2;), (14 22) and (1+2125) as factors.

The corresponding bivariate Laurent polynomial is given by

Pl 2) = 2(14 20)(1 + 22)(1 4+ 200251 [1— wx(z1, 2)]

2
=27 (14 27D 4+ 2D+ 27 2 ) [(122) (1 — w21, 2))] (4.2.3)
where
r(21,20) = 27 22+t =22 eyt — gy A — 2 — 2
222 + 2 + zlzg, (4.2.4)

with 1(21, 22) = 1(22,21) = 1(27 1, 25 1).

By applying Theorem 4.1.6 and 4.1.7, we now prove the following convergence result.



Stellenbosch University http://scholar.sun.ac.za
4.2. Convergence of the new interpolatory scheme 91

Theorem 4.2.1. The new interpolatory subdivision scheme, with subdivision symbol as
in (4.2.3), converges to a C'-limit surface.

Proof. According to Theorem 4.1.6, to show that the subdivision scheme converges to
C1(R?) surface, it suffices to show that (1 + 21)(z122)(1 — wr(z1, 29)) is strictly stable, or
equivalently, that

Q(z1,22) == (1 + 21)(1 —wr(zy, 22)) (4.2.5)

is strictly stable. The other two polynomials in Theorem 4.1.6 are strictly stable by the
symmetries of r(zy, z2). Observe that, for n = 1,

1Sqlles = = oglcfae); (Z |Q2i+k,2j+€’>
ij
= max (Z |Qai,25]» Z | Q241,251 Z |Qai2j+1 Z ’Q2i+1,2j+1|> - (4.2.6)
. 4. .J i,J

From the strict stability property as in Theroem 4.1.7, it is sufficient to show Q(z1, z2) is
strictly stable.

Now, applying (4.2.4) to equation (4.2.5), we get

Qz1,22) =1+ 2)(1 —wr(zy,22)) + O(w?)
= —wlzy — w2P2E + w2l — wezs + 3wz ze — 3wz
twzy +wzizyt — 3w+ 2 + w4+ 3wzy  +we eyt
—wzy 2 —wzy eyt —we %zt + 1+ O(w?). (4.2.7)
Looking at the necessary coefficients of Q(z1, 22), we see that
Qoo =—w; Quo=w; Qoo=1-3w; Qo-2=—w.
and thus,
D 1Qaizl = | = w| + [w] + 1 = 3w| + | — w| + O(w?)
2%
= |1 — 3w| + 3|w| + O(w?) (4.2.8)

Thus, [|Sqllee > 1 for all values of w. Considering S%, we proceed to find an interval
(0,wo) such that [|S|[o < 1, w € (0, wp).

Since it is very difficult to compute the exact value of wgy, we only consider linear terms
in w.

From (4.2.7), we obtain the expansion

Qp](zl, 2) = Q(z1,22) Q(2, 25) = [(1 o+ +2) (1 —wr(z,2) —wr(zd, 239) + O(w2)]

= —wzfz% - wzi’zg‘ - wzfzg - wzfzg + wzi’z% — wzfzé — wzfzz - wz%zg + wzi’

+wzizy + 2wz 25 + 2wal 4+ 2wt zg + 2w2izs — 6wz + 2waiz +wzizy !
— bw2? + 3wz 2y + was + 27 + w2zt + 3wzizy ' — bwzy + wzy

+ 22+ 2wzizyt — 6w + 2 + 2wz zy 2+ 2we 4 2wyt

+wzy oyt wey? 4 2way? — w2yt — wey?

P we Pt —we et —we ey 1+ O(w?). (4.2.9)

2_-2 4

-1 -2 —
Zo Tt Wzy 29T — W2y

—1 -
— w2y 2y
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By 1ooking at the necessary coefficients of Q?(zy, 2;), we find that QEQJ} = O(w) for j # 0,

while Q o= 14+0(w), fori = 0,1,2,3. Thus, it is sufficient to show that, for w sufficiently
small,

ZQ4I+€4J <1 620717273-

For the case ¢ = 0, all the non-zero coefficients are given by

Qoo =1— 6w + O(w?); Qa4 =—w+ O(w?); Qo,—14 = —w + O(w?);
Qa0 = 2w + O(w2).

Hence,
Z QI = 11— 6w| + | —w| + | — w| + |2w] + O(w?)

= 4|w| + |1 — 6w| + O(w?).
For the case ¢ = 1, all the relevant coefficients are

QLO =1- 5w + O(w2), Q5,0 = —w + O(wz), Q574 = —w + O(wz),
Q17_4 = —w + O(wQ)

Hence, Z |Q4z+1 4l = |1 = 5w| + 3|w| + O(w?) < 1 for w > 0 sufficiently small.

For the case ¢ = 2, all the relevant coefficients are
Q20 =1-5w+O0w?); Qga= Q0= Qo—a =0+ O(w?).

Hence,

Z ‘QZLH-I 4l =11 —bw|+ O(w?) <1

for w > 0 sufficiently small.
For the case ¢ = 3, all the relevant coefficients are

Qs0 = |1 —6w| +O(w?); Qza=|—w|+O0w?); Qz_4=]—w|+O0w?;
Qru=|—wl+ O(w?).

Hence, Q = |1 — 6w| + 2|w| + O(w*) < 1 for w > 0 sufficiently small.
47,45

Thus, we have shown, according to Theorem 4.1.6, that Q is strictly stable.

Hence, the new interpolatory subdivision scheme is C*SS for w > 0 sufficiently small and

the interval range for the tension parameter w to get C* lies in (0, £).

As shown in Figure 4.1, as obtained by means of the cascade algorithm, the tension
parameter values w € (0, ) seems to produce a C' limit surface. ]

Further analysis of this subdivision scheme would be an interesting research project for
the future.
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Chapter 5

Conclusions

This study deals with interpolatory bivariate refinable functions, which are refinable
functions that assume the value 1 at the origin and vanish at all other integer pairs
|Jia95, HJ98, HJ97|. We studied characterizations of refinement masks of these refin-
able functions with their associated mask symbols, by taking the integer dilation matrix
A = 2I, into consideration.

We focused on interpolatory subdivision schemes, which are schemes that preserve initial
control points at all steps of the iterative process to construct subdivision surfaces, by
giving special attention to the Butterfly interpolatory subdivision scheme.

Taking the existence of interpolatory bivariate refinable functions as given, we focused on
the classical 2Is-refinable box splines, which are basis functions for subdivision analysis,
as subdivision of box splines is the cornerstone of many popular multivariate subdivision
schemes.

Besides using tensor products of univariate refinable functions, the link between the sub-
division algorithm and the cascade algorithm was implemented to generate a non-tensor
product refinable bivariate function, which in turn plays a key role in the construction
of smooth surface. It is good to note that convergence of the cascade algorithm implies
convergence of the corresponding subdivision scheme, which in turn is strongly bonded
to the existence of the corresponding interpolatory bivariate refinable function.

We have used bivariate box splines as helpful tools for constructing subdivision surfaces
in R3. Following the work of [CCJZ11], the mask symbol characterization of the Butterfly
subdivision scheme was found to be of an algebraic nature. Using the algebraic approach
to systematically construct bivariate subdivision schemes, we verified that the Butterfly
interpolatory subdivision scheme emanates from the normalized box spline generators of
some polynomial ideal Z and its power Z¥. That is, the mask symbol of the Butterfly
subdivision scheme can be expressed as C[z!, z5!]-combinations of normalised box spline
symbols {Bp(z1, 22) : (21, 2) € C?\(0,0)}. The convergence analysis of this subdivision
scheme was also shown by using contractivity of subdivision operators.

We attempted to verify the Butterfly subdivision scheme from a bivariate Laurent polyno-
mial equation as in (3.5.1), which remains as yet unsuccessful, though we have successfully
verified the Butterfly Scheme using an algebraic approach.

In particular, any attempt to obtain the Butterfly scheme as in Section 3.5 will depend on
obtaining a full basis for the homogeneous equation (3.5.6) . Hence, deriving the Butterfly
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subdivision scheme as a general solution of the non-homogeneous bivariate equation as in
(3.5.4) is an interesting open problem which will be considered in future research.

The symmetric new interpolatory subdivision scheme, as in (4.2.3) and (4.2.4), satis-
fies much of the same properties, like smoothness, convergence and interpolation of the
Butterfly subdivision scheme. Furthermore, we have proved the convergence of this new
interpolatory subdivision scheme by using contractivity property of subdivision operators.
Further properties are to be studied in the future.
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Appendix A

Grobner basis computation

> ring R = 0, (x,y),dp;

//Ring of characteristic O over field C.

> ideal I= (x2-1)*(x+1),(x2-1)*(y+1),(x+1)*x(y+1)*(x+1),
(x+D)*(y+1)*(y+1) , (x2-1)*(y-1) , (y2-1) *(y-1) , (x+1) *(y2-1) , (y2-1) *(y+1) ;
// The ideal generated by the given polynomials

> std(I);//gives Gr\"{o}bner basis.

_[1]1=y2-1

_[2]=xy+x+y+1

_[31=x2-1

Ideal membership

poly £ = (7/16)*xxy*((1+x)~2)*((1+y)~2)*(1+xy) "2 -(1/16)*x* (1+x)*((1+y)~3)*((1+xy)~3)
-(1/16) *y* ((1+x) ~3) * (1+y) * (1+xy) ~3-(1/16) * ((1+x) "3) * ((1+y) ~3) * (1+xy) ;
> NF(f, std(I));//normal form of an ideal I
0
//This shows that the polynomial f is contained in I if and only if NF(f, std(I));
evaluates to O.

> ring r = 0, (x,y), dp;//Ring of characteristic O over field C.

> ideal I= 1-x"2, 1-y~2, (1+x)*(1l+y)/4;

> poly P= (7/16)*xy*((1+x)~2)*((1+y)~2)*(1+xy) "2

-(1/16) *x* (1+x) * ((1+y) ~3) * ((L+xy)~3) -(1/16)*y*x((1+x)~3)*((1+y)~3)*(1+xy) ;//Polynomial f
> I=std(I);

> I;

I[1]=y2-1

I[2]=xy+x+y+1

I[3]=x2-1

> matrix C = lift (I,P);

> C;
C[1,1]=-1/16x5y4+1/4xb5y3-1/16x4y4+5/8x5y2+7/16x4y3+5/8x5y+13/8x4y2+1/16x3y3
+5/8x5+9/4x4y+5/4x3y2-3/16x2y3+9/4x4+41/16x3y-1/16x2y2-1/16xy3+11/4x3+11/16x2y
-3/8xy2+17/16x2-7/16xy-1/16y2-5/16x-3/16y-1/4

c[2,1]=3

C[3,1]1=5/8x3y+5/8x3+9/4x2y+9/4x2+27/8xy+27/8x+13/4y+13/4

> poly k=C[1,11*I[1]+ C[2,1]1*I[2] + C[3,11*I[3];
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> k;
-1/16x5y6+1/4x5y5-1/16x4y6+11/16x5y4+7/16x4y5+3/8x5y3+27/16x4y4+1/16x3y5+29/16x4y3
+5/4x3y4-3/16x2y5+5/8x4y2+5/2x3y3-1/16x2y4-1/16xy5+3/2x3y2+7/8x2y3-3/8xy4+3/16x3y
+9/8x2y2-3/8xy3-1/16y4+5/16x2y+1/16xy2-3/16y3-1/16x2+1/16xy-3/16y2-1/16x-1/16y

>k =P;

>k - P;

0// This assures the coefficient polynomials are the right ones

to decompose the original poly P.
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