
BIVARIATE BOX SPLINES AND SURFACE

SUBDIVISION

by

Abey Sherif Kelil

Thesis presented in partial ful�lment of the requirements for

the degree of Master of Science at the University of

Stellenbosch

Department of Mathematics,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Supervisor: Prof. J.M. de Villiers

March 2013



Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent
explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have not previously in its
entirety or in part submitted it for obtaining any quali�cation.

12/10/2012
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright© 2013 Stellenbosch University
All rights reserved.

i

Stellenbosch University  http://scholar.sun.ac.za



Abstract

BIVARIATE BOX SPLINES AND SURFACE SUBDIVISION

Abey Sherif Kelil

Department of Mathematics,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc(Mathematics)

March 2013

The main purpose of this thesis is to construct subdivision surfaces by using bivariate
subdivision rules, in particular the Butter�y subdivision scheme, which is an interpolatory
subdivision rule, by which we preserve initial control points at all steps of the iterative
process until we get the limit surface as a good approximant for a re�ned control net.

Taking the existence of bivariate re�nable functions as given, our study focuses on the
classical 2I2-re�nable bivariate box splines, which are 2-dimensional extensions of the uni-
variate cardinal B-splines, which can be used as basis functions for bivariate subdivision.

The �rst two chapters are concerned with the analytical de�nition of box splines, as well
as their properties, as studied in Sections 1.7 - 1.8. In the second Chapter, in particular,
in Section 2.1, the re�nability of bivariate box splines is studied by means of Fourier
transforms. Also, tensor products are used to construct bivariate box splines. In Sections
2.3 - 2.6, the notion of bivariate subdivision and the issue of subdivision convergence,
in particular a necessary condition for such convergence, namely the sum rule condition,
are presented. The link between subdivision and the cascade algorithm is introduced in
Section 2.4, in order to generate a bivariate re�nable function, which in turn plays a key
role in subdivision surface construction.

Having dealt with the bivariate box splines, we subsequently, in Chapter 3, focus our
attention on an algebraic approach for the construction of bivariate subdivision schemes.
In particular, we algebraically construct the interpolatory Butter�y subdivision symbol,
from the bivariate box spline basis of an ideal I or its power Ik, in the ring of polynomials
Π, characterised by a vanishing condition at three of the corners of the box [−1, 1]2.
It is shown, in Section 3.4, that the Butter�y subdivision symbol can be expressed as
C[z±1

1 , z±1
2 ]- combinations of normalised box spline symbols.

In Chapter 4, we give the convergence and smoothness analysis of the interpolatory But-
ter�y subdivision scheme by using the contractivity of subdivision operators. We also give

ii
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ABSTRACT iii

the convergence analysis of a new interpolatory scheme, as obtained by using the Courant
hat function factorization of the Laurent polynomial identity satisfying the interpola-
tory condition, and for which a limiting function is obtained from cascade convergence.
Furthermore, a suitable interval range for the tension parameter w, that preserves the
agreement between the re�ned control net and the C1 limit surface for this subdivision
scheme, is also investigated.

The thesis is concluded, in Chapter 5, with meaningful results obtained from the study
and also by a discussion on unresolved issues that are left for future research.
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Uittreksel
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(� Bivariate box splines and Surface Subdivision �)

Abey Sherif Kelil

Departement Wiskunde,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc(Wiskunde)

Maart 2013

OPSOMMING

Die hoofdoel van hierdie tesis is die konstruksie van subdivisie-oppervlakke met behulp
van tweeveranderlike subdivisiereëls, in die besonder die Butter�y subdivisieskema , wat
'n interpolerende subdivisiereël is , waarin die aanvanklike kontrolepunte by elke stap van
die iteratiewe proses gepreserveer word totdat die limietoppervlak as 'n goeie benadering
van die verfynde kontrolenet verkry word.

Deur die bestaan van tweeveranderlike verfynbare funksies as gegewe te aanvaar, fokus ons
studie op die klassieke 2I2-verfynbare tweeveranderlike bokslatfunksies , wat 2-dimensionele
ekstensies van die eenveranderlike kardinale B-latfunksies is, en wat gebruik kan word as
basisfunksies vir tweeveranderlike subdivisie.

Die eerste twee hoofstukke het te doen met die analitiese de�nisie van bokslatfunksies,
waarvan die eienskappe bestudeer word in Afdelings 1.7 - 1.8. In die tweede hoofstuk, in
Afdeling 2.1, word die verfynbaarheid van tweeveranderlike bokslatfunksies bestudeer met
behulp van Fourier transforms. Verder word tensorprodukte gebruik vir die konstruksie
van tweeveranderlike bokslatfunksies. In Afdelings 2.3 -2.6 word die begrip van twee-
verandelike subdivisie en die kwessie van subdivisiekonvergensie , en in die besonder 'n
nodige voorwaarde vir subdivisiekonvergensie , naamlik die somreël voorwaarde , gegee.

Na afhandeling van die tweeveranderlike bokslatfunksies , fokus ons vervolgens , in Hoof-
stuk 3, ons aandag op 'n algebräiese benadering tot die konstruksie van tweeveranderlike
subdivisieskemas. In die besonder konstrueer ons algebräies die interpolerende Butter�y
subdivisiesimbool , vanuit die tweeveranderlike bokslatfunksiebasis van 'n ideaal I , of die
produk Ik daarvan , in die ring van polinome Π , gekarakteriseer deur 'n nulvoorwaarde

iv
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by drie van die hoekpunte van die boks [−1, 1]2. Daar word aangetoon , in Afdeling 3.4,
dat die Butter�y subdivisiesimbool uitgedruk kan word as C[z±1

1 , z±1
2 ]- kombinasies van

genormaliseerde bokslatfunksiesimbole.

In Hoofstuk 4 gee ons die konvergensie - en gladheidsanalise van die interpolerende Butter-
�y subdivisieskema deur gebruik te maak van die kontraktiwiteit van subdivisie-operatore.
Ons gee ook die konvergensie - analise van 'n nuwe interpolerende skema , soos verkry deur
gebruik te maak van die Courant hoedfunksiefaktorisering van die Laurent polinoomiden-
titeit wat die interpolerende voorwaarde bevredig , en waarvoor 'n limietfunksie verkry
word vanuit kaskade-algoritmekonvergensie. Daarby word'n geskikte intervalgebried vir
die spanningparameter w , wat die ooreenkoms tussen die verfynde kontrolenet en die
C1-limietoppervlak preserveer, ondersoek.

Die tesis word afgesluit , in Hooftuk 5, met betekenisvolle resultate verkry in die studie,
asook deur 'n bespreking van onopgeloste kwessies wat vir verdere navorsing gelaat word.
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Nomenclature

Symbols

Z Set of integers.

C Set of complex numbers.

R Set of real numbers.

N Set of natural numbers.

Z+ Set of non-negative integers.

N3 Set of natural numbers in 3-tuples.

N3
0 N3 ∪ {(0, 0, 0)}

Rd The set {x = (x1, . . . , xd) : xj ∈ R, j = 1, . . . , d}.

Zd, Cd Set of integer, complex d-tuples with d ∈ N respectively.

Zm×n The set of all matrices of order m× n with entries from Z.

`(Z) The linear space of bi-in�nite real-valued sequences in Z, that is,

c ∈ `(Z)⇔ c = {cj}j∈Z ⊆ R.

`0(Z) The linear space of �nitely supported bi-in�nite real-valued sequences in `(Z).

`(Zd) The linear space of bi-in�nite real-valued sequences in Zd, that is,

c ∈ `(Zd)⇔ c = {cj}j∈Zd ⊆ Rd with d ∈ N.

`0(Zd) The subspace of �nitely supported sequences in `(Zd) with d ∈ N.

M(R) The linear space of real-valued functions in R with d ∈ N , that is, f : R→ R.

M0(R) The subspace of �nitely supported functions in M(R).

M(Rd) The linear space of real-valued functions in Rd, that is, f : Rd → R.

M0(Rd) The subspace of �nitely supported functions in M(Rd) with d ∈ N.

supp (c) The support of a sequence c ∈ `0(Z2), that is, supp(c) = {j ∈ Z2 : cj 6= 0}

suppc (c) The support of a compactly supported sequence c ∈ `0(Z2).

xii
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xiii

A The closure of a set A, that is, A consists of A together with all limit points of
A. In other words, A is an intersection of all closed sets containing A.

supp (f) The support of a function f ∈ M0(R2), that is, the smallest closed set

containing {x ∈ R2 : f(x) 6= 0}, in other words,
(
supp (f) = {x : f(x) 6= 0}

)
.

C(R) The subspace of continuous real-valued functions in M(R), that is,

f : R→ R is continuous.

C0(R) The subspace of �nitely supported functions in C(R).

C(Rd) The subspace of continuous functions in M(Rd) for d = 2, 3, . . . .

C−1(Rd) The subspace of piecewise continuous functions in M(Rd) with d ∈ N.

Cu(R2) The linear space of uniformly bounded functions in C(R2).

C0(Rd) The subspace of �nitely supported continuous functions in M0(Rd) for d =
2, 3, . . . .

C∞0 (Rd) The linear space of in�nitely di�erentiable functions in C(Rd) with d =
2, 3, . . . .

Cα(Rd) The subset of α times di�erentiable functions in C(Rd) with α ∈ N0 and
d = 1, 2, 3, . . ..

Cα
0 (R) The subset of �nitely supported functions in C0(R) with α ∈ N0.

Cα
0 (Rd) The subset of �nitely supported functions in C0(Rd) with d = 2, 3, . . . .

`∞(Zd) The linear subspace of bounded sequences in `(Zd) with d = 2, 3, . . . , that is,

the set

{
cj ∈ `(Zd) ⊆ R : sup

j

|cj| <∞
}

of bounded sequences.

|| · ||∞ The sup-norm for the linear space `∞(Z2) [or Cu(R2)], that is,

||c||∞ := sup
j∈Z2

|cj|, c ∈ `∞(Z2), or

(
||f ||∞ := sup

x∈R2

||f(x)||, f ∈ Cu(R2).

)
∑
j

and
∑
j

The summations
∑
j∈Z

and
∑
j∈Zd

with d ∈ N respectively.

∑
i,j

The summation
∑
i,j∈Z

.

sup
j

and sup
x

The suprema over all j ∈ Zd and x ∈ Rd with d = 2, 3, . . . respectively.

φ The re�nable function, that is, function satisfying the dilation equation given by

φ(·) =
∑
j

pj φ(A · −j), for j ∈ Zd, d ∈ N.

φI The interpolatory re�nable function, that is, a re�nable function satisfying φI(0) =
1 for 0 ∈ Zd and φI(j) = 0, for j ∈ Zd\{0}.
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xiv

Bm The cardinal B-spline of order m.

δ The delta sequence de�ned by δ0 = 1 and δj = 0 for j 6= 0 ∈ Zd with d = 2, 3, . . . .

c The scalar control points cj ∈ R with j ∈ Z.

c The control points in ci,j ∈ R3 with grid indexing points (i, j) ∈ Z2.

ϕ The limiting function after subdivision, that is, φp = S∞p c.

jT The transpose of j := (j1, j2, . . . , jd) ∈ Zd for d ∈ N.

A The dilation matrix A, that is, a d× d invertible matrix with integer entries.

p The re�nement mask in `0(Z2) .

pI The interpolatory re�nement mask in `0(Z2), that is, pI = {pIi,j ∈ R : i, j ∈ R}.

z z := (z1, . . . , zd), with d = 2, 3, . . . .

P The mask symbol associated with re�nement mask p ∈ `0(Zd), that is, the

Laurent polynomial
∑
j∈Zd

pj z
j.

P I The interpolatory mask symbol associated with the interpolatory re�nement
mask p ∈ `0(Zd) with d = 2, 3, . . . . .

D Direction matrix, which is a matrix of non-zero arbitrary direction vectors.

Dn The direction matrix that is de�ned by Dn := { e1, e2, . . . , en} where ei, i =
1, 2, . . . , n are possibly either one of e1 = (1, 0), e2 = (0, 1), e3 = (1, 1), or
e4 = (1,−1).

BD The corresponding box spline associated with D.

BDn The corresponding box spline associated with direction set Dn.

B̃D(z1, z2) The normalised box spline symbols associated with D.

j ∈ Zd The d-tuple j := (j1, . . . , jd) ∈ Zd.

Gk The k-directional mesh.

bxc The largest integer ≤ x.

dxe The smallest integer ≥ x.

Sp The subdivision operator associated with the mask p ∈ `0(Z2) .

Srp The subdivision operator associated with the mask p, applied r times .

c(r) The resulting sequence after applying Srp to a sequence c ∈ `(Z2).

I2 The dilation matrix

[
1 0
0 1

]
.

Id The d× d square identity matrix.
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xv

Z
′

The vanishing set, that is, {(1,−1), (−1,−1), (−1, 1)}

Π2
k The space of bivariate polynomials of total degree k, that is, the linear space of

functions of the form f(x, y) =
∑

0≤i+j≤k

ai,j x
i yj.

I The polynomial ideal I :=
{
f ∈ Π : f(ε1, ε2) = 0, for (ε1, ε2) ∈ Z

′}
.

Ik The kth power ideal of an ideal I = 〈f1, . . . , fs〉.

Ik The set of generators for the power ideal Ik.

A The ring of polynomials over �eld K, that is, A := K[x1, . . . , xn].

R The ring of Laurent polynomials over �eld K, that is, R := K[x±1
1 , . . . , x±1

n ].

(B, || · ||) A normed linear space B with norm ‖ · ‖.
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Chapter 1

Interpolatory bivariate re�nable

functions

1.1 Introduction

Re�nement equations play an essential role in numerous application areas of science and
engineering, in particular in wavelet analysis and geometric modelling. In this thesis, we
study bivariate re�nable functions which are functions that can be expressed as a linear
combination of their dilation by a dilation matrix.

Re�nable functions can be characterized by their re�nement masks, and these masks play
a key role in the analysis of re�nable functions, which are useful as basis functions in
subdivision schemes for the construction of a curve or surface from the initial set of data
(control) points.

The mask symbol corresponding to a given re�nement mask is the Laurent polynomial
whose coe�cients are given by the mask. This Laurent polynomials serve as a useful tool
in subdivision analysis.

We shall give particular attention to speci�cally interpolatory bivariate re�nable functions.
These are re�nable functions that assume the value 1 at the origin and vanish at all other
integer pairs.

We study characterizations of re�nement masks of these re�nable functions with their
associated mask symbols by taking into consideration integer dilation matrix A. We give
a particular attention to the dilation matrix A = 2I2.

Following the work in [FdV11], well-known polynomial identities are studied based on
results from [CCJZ11] to characterize the masks in terms of box spline symbols. An
algebraic approach for studying mask symbols for constructing subdivision schemes will
be given.

We proceed to introduce interpolatory subdivision schemes, which are schemes that pre-
serve initial data points at all steps of the iterative process.

By taking the existence of interpolatory bivariate re�nable functions as given, we fur-
ther investigate the re�nable box splines as basis functions for subdivision analysis, since
subdivision of box splines is the cornerstone of many popular multivariate subdivision
schemes.

1

Stellenbosch University  http://scholar.sun.ac.za



1.2. Notations and general concepts 2

The concepts of a subdivision algorithm and a cascade algorithm will be introduced. Fur-
thermore, by using tensor products of univariate re�nable functions, the interlink between
the subdivision algorithm and numerical experimentation of the cascade algorithm will
be implemented to generate a bivariate re�nable function, which in turn plays a key role
in the construction of the desirable smooth surface. Also, we note that the convergence
of the cascade algorithm implies convergence of a subdivision scheme, which in turn is
strongly bonded to the existence of interpolatory bivariate re�nable function.

After that, as the major part of our work, interpolatory surface subdivision schemes come
into play as they are basic tools for generating 3D objects by starting from control meshes
and implementing the subdivision process until a �ne smooth surface is obtained from
the coarser ones. The control points in the control mesh de�ne the shape of the surface
and hence the control mesh plays a key role in the description of the surface.

The objective of this study is to implement the re�nable box splines for constructing
bivariate subdivision schemes, especially the Butter�y interpolatory subdivision scheme.
A special focus will be given to an algebraic veri�cation of the Butter�y subdivision scheme
from the normalized box spline symbols which act as generators of some polynomial ideal
I and its power Ik. That is, the Laurent mask symbol of the Butter�y subdivision
scheme can be expressed as C[z±1

1 , z±1
2 ]-combinations of normalised box spline polynomial

symbols, {BD(z1, z2) : (z1, z2) ∈ C2\(0, 0)}. Furthermore, the convergence analysis of this
subdivision scheme as well as a newly obtained interpolatory subdivision scheme, will be
further shown, by using the contractivity property of subdivision operators.

1.2 Notations and general concepts

We shall denote the set of integers by Z, the set of natural numbers by N, the set of non-
negative integers by Z+, the set of real numbers by R, and the set of complex numbers by
C. Also, for d ∈ N, the symbols Zd, Rd and Cd will denote the set of ordered d-tuples with
respect to the integers, real numbers and complex numbers, respectively. In particular,
our study concentrates on the case d = 2, so that the symbols Z2, R2 and C2 denote
the set of ordered pairs with respect to integers, real numbers and complex numbers,
respectively. Note that Z1 = Z, R1 = R and C1 = C.

We use `(Zd) to denote the linear space of all real-valued sequences, c =
{
cj ∈ R : j ∈ Zd

}
,

whereas `0(Zd) is used to represent the subspace of �nitely supported sequences, with
support given by supp c :=

{
j ∈ Zd : cj 6= 0

}
.

Analogously, for the linear spaceM(Rd) of all real valued d-variate functions f on Rd, the
set of �nitely supported functions constitute a linear subspace denoted by M0(Rd), with
support supp (f), which is the smallest closed set containing {x : f(x) 6= 0}.

The symbol C(Rd) denotes the subspace of continuous functions in M(Rd), whereas
C0(Rd) denotes the subspace of continuous functions in M0(Rd). Also, we shall denote

by C−1(Rd) the subspace of piecewise continuous functions in M(Rd). We shall write
∑
j

for
∑
j∈Zd

.

To begin our discussion, it is important to start by introducing the concept of a re�nable
function, which is a cornerstone for the study of subdivision and wavelet analysis.
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1.3. Interpolatory re�nement masks 3

De�nition 1.2.1. For any invertible d × d-matrix A with entries in N, if φ ∈ M0(Rd)
and {pj} ∈ `0(Zd) are such that

φ(x) =
∑
j

pj φ(Ax− j), x ∈ Rd, (1.2.1)

we say that φ is A-re�nable with re�nement mask {pj}, and we call equation (1.2.1) the
re�nement (or dilation) equation. The matrix A is known as the dilation matrix.

Note that an A-re�nable function φ is a self-similar function in the sense that φ can be
expressed as a linear combination of the shifts of its own dilation (scaling) with dilation
factor A. There is a unique bijective relation between a re�nable function φ and its
corresponding re�nement mask {pj}, as was established in [CMD91]. This means that if
φ and {pj} are as in (1.2.1), and the function φ satis�es

φ(x) =
∑
j

qj φ(Ax− j), x ∈ Rd (1.2.2)

for some sequence {qj} ∈ `0(Zd), then {qj} = {pj}.

De�nition 1.2.2. For a re�nement mask {pj} ∈ `0(Zd) as in De�nition 1.2.1, the Laurent
polynomial

P (z) :=
∑
j

pj z
j , z ∈ Cd\{0}, (1.2.3)

where zj := zj11 z
j2
2 . . . zjdd , is called the corresponding re�nement mask symbol.

De�nition 1.2.3. An A-re�nable function φ ∈ M0(Rd), as in De�nition 1.2.1, and sat-
isfying, moreover, the condition

φ(j) = δj , j ∈ Zd, (1.2.4)

with {δj} denoting the Kronecker delta sequence given by

δj :=

{
1, if j = 0;
0, if j 6= 0,

(1.2.5)

is called an interpolatory re�nable function.

In other words, an interpolatory re�nable function assumes the value 1 at the origin and
vanishes at all other integer d-tuples.

We proceed to study re�nement masks associated with interpolatory re�nable functions.

1.3 Interpolatory re�nement masks

The re�nement mask of an interpolatory re�nable function satis�es the following necessary
condition.
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1.3. Interpolatory re�nement masks 4

Proposition 1.3.1. Let φ ∈ M0(Rd) denote an interpolatory re�nable function with
re�nement mask {pj} ∈ `0(Zd). Then

pAjT = δj, j ∈ Zd. (1.3.1)

Proof. From (1.2.1) and (1.2.4), we have that, for j ∈ Zd,

δj = φ(j) =
∑
k∈Zd

pk φ(AjT − kT )

=
∑
k∈Zd

pk δAjT−kT = pAjT .

We proceed to establish the following necessary condition on re�nement masks with non-
zero integral over Rd, by extending the proof in [Rab10], where the dilation matrix A = 2I2

was considered.

Proposition 1.3.2. Let φ ∈M0(Rd) denote an integrable A-re�nable function with non-
zero integral over Rd, and with re�nement mask {pj} ∈ `0(Zd). Then∑

j

pj = | det A|. (1.3.2)

Proof. Suppose that the dilation matrix is given by

A =


a11 a12 . . . a1d

a21 a22 . . . a2d
...

... . . .
...

ad1 ad2 . . . add

 . (1.3.3)

Then, by writing pj = pj1,j2,...,jd , where j := (j1, j2, . . . , jd) ∈ Zd, we can integrate the
re�nement equation (1.2.1) to obtain∫

Rd

φ(x1, x2, . . . , xd) dx1dx2 . . . dxd

=
∑
j1,...,jd

pj1,j2,...jd

∫
Rd

φ
[
A(x1, . . . , xd)

T − (j1, j2, . . . , jd)
T
]

dx1dx2 . . . dxd. (1.3.4)

Since, for j ∈ Zd, the variable transformation

(ξ1, ξ2, . . . , ξd) := A(x1, x2, . . . , xd)
T − (j1, j2, . . . , jd)

T

has, according to (1.3.3), the Jacobian

J(x1, . . . , xd) :=

∣∣∣∣∣∣∣∣∣
∂ξ1
∂x1

∂ξ1
∂x2

. . . ∂ξ1
∂xd

∂ξ2
∂x1

∂ξ2
∂x2

. . . ∂ξ2
∂xd

...
... . . .

...
∂ξd
∂x1

∂ξd
∂x2

. . . ∂ξd
∂xd

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1d

a21 a22 . . . a2d
...

... . . .
...

ad1 ad2 . . . add

∣∣∣∣∣∣∣∣∣ = det A,
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1.3. Interpolatory re�nement masks 5

we have ∫
Rd

φ
[
A(x1, x2, . . . , xd)

T − (j1, j2, . . . , jd)
T
]
| detA| dx1dx2 . . . dxd

=

∫
Rd

φ(ξ1, . . . , ξd) dξ1dξ2 . . . dξd. (1.3.5)

We deduce from (1.3.4) and (1.3.5) that∫
Rd

φ(x1, x2, . . . , xd) dx1dx2 . . . dxd

=

[∑
j1...jd

pj1,j2,...jd
1

| detA|

]∫
Rd

φ(x1, x2, . . . , xd) dx1dx2 . . . dxd, (1.3.6)

after having noted also from the invertibility of A that detA 6= 0, and thereby completing
our proof of (1.3.2), after having noted the fact that the integral of φ is non-zero over
Rd.

In view of Propositions 1.3.1 and 1.3.2, the existence of an interpolatory re�nable function
φ with non-zero integral over Rd necessitates for the corresponding re�nement mask {pj}
to satisfy the conditions

pAjT = δj, j ∈ Zd;∑
j

pj = | detA|.

 (1.3.7)

For the case d = 2, according to (1.2.3) in De�nition 1.2.2, the re�nement mask symbol
P corresponding to a re�nement mask {pj} ∈ `0(Z2) is given by

P (z1, z2) =
∑
j,k

pj,k z
j
1 z

k
2 , (z1, z2) ∈ C2\{(0, 0)}. (1.3.8)

Observe from (1.3.8) that, for d = 2, the necessary conditions (1.3.7) on a re�nement
mask {pj} has the equivalent mask symbol formulation

The constant term in P (z1, z2) is 1;

P has no term in zγ11 z
γ2
2 such that (γ1, γ2) := A(i, j)T 6= (0, 0) for some (i, j) ∈ Z2 ;

P (1, 1) =
∑
i,j∈Z

pi,j = | detA|.


(1.3.9)

Observe that, for the dilation matrix A = 2I2, the conditions (1.3.7) on the re�nement
mask {pj} is given by

p2i,2j = δi,j, (i, j) ∈ Z2;∑
i,j∈Z

pi,j = 4,

 (1.3.10)

whereas the condition (1.3.9) on an interpolatory mask symbol P is given by

The constant term in P (z1, z2) is 1;

P has no term in z2γ1
1 z2γ2

2 for any (γ1, γ2) ∈ Z2\{(0, 0)};∑
i,j∈Z

pi,j = 4.

 (1.3.11)
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1.4. Cardinal B-splines 6

1.4 Cardinal B-splines

Cardinal B-splines constitute a class of univariate re�nable functions that can be de�ned
recursively as follows.

De�nition 1.4.1. Let A ⊆ R. The characteristic function χA on a set A is de�ned by

χA(x) :=

{
1, if x ∈ A;

0, if x ∈ R\A.
(1.4.1)

De�nition 1.4.2. The cardinal B-splines {Bm : m ∈ N} are de�ned recursively by

B1 := χ[0,1];

Bm(x) =

∫ 1

0

Bm−1(x− t) dt, x ∈ R, m = 2, 3, . . . .

 (1.4.2)

For any m ∈ N, we call Bm the cardinal B-spline of order m.

In general, cardinal splines are de�ned as follows.

De�nition 1.4.3. For any m ∈ N, a cardinal spline of order m is a piecewise polynomial
of degree at most m, which is in Cm−2(R), and with break points, or knots on Z. The
space of all cardinal splines of order m is denoted by Sm, that is,

Sm :=
{
f ∈M(R) : f |[j,j+1] ∈ Πm−1, j ∈ Z ; f ∈ Cm−2(R)

}
. (1.4.3)

The following properties of cardinal B-splines Bm are proved in [dVC10].

Theorem 1.4.4. For m ∈ N, the mth-order cardinal B-spline Bm satis�es the following
properties:

(i)

suppBm = [0,m]; (1.4.4)

(ii)

Bm(x) > 0, x ∈ (0,m); (1.4.5)

(iii)

Bm(· − j) ∈ Sm, j ∈ Z; (1.4.6)

(iv)

Bm(x) =
1

(m− 1)!

m∑
j=0

(−1)j
(
m

j

)
(x− j)m−1

+ , x ∈ R, (1.4.7)

where

xk+ :=

{
xk, if x ≥ 0;
0, if x < 0;
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(v)

Bm+1(x) =
x

m
Bm(x) +

m+ 1− x
m

Bm(x− 1), x ∈ R; (1.4.8)

(vi)

B
′

m(x) = Bm−1(x)−Bm−1(x− 1), x ∈ R if m ≥ 3; (1.4.9)

(vii)

Bm(m− x) = Bm(x), x ∈ R; (1.4.10)

(viii) ∫
R
Bm(x) dx = 1; (1.4.11)

(ix) ∑
j

Bm(x− j) = 1, x ∈ R; (1.4.12)

(x)

Bm(x) =
1

2m−1

m∑
j=0

(
m

j

)
Bm(2x− j), x ∈ R, (1.4.13)

that is, Bm is 2-re�nable with re�nement mask pm = {pmj : j ∈ Z} given by

pmj :=
1

2m−1

(
m

j

)
, j ∈ Z. (1.4.14)

(xi) The sequence {Bm(· − j) : j ∈ Z} is a basis for Sm, in the sense that, for f ∈ Sm,
there exists a unique sequence {cj} ∈ `(Z) such that

f(x) =
∑
j

cj Bm(· − j), · ∈ R. (1.4.15)

According to (1.4.3),(1.4.4) and (1.4.6), the mth-order cardinal B-spline Bm is a piecewise
polynomial of degree m−1 on its support interval [0,m], with breakpoints at the integers
{1, . . . ,m− 1}, if m ≥ 2. By applying the formula (1.4.7), we obtain, for m = 2, 3, 4, the
explicit formulations

�

B2(x) = h(x) :=


x, x ∈ [0, 1);

2− x, x ∈ [1, 2);

0, x ∈ R\[0, 2),

(1.4.16)
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�

B̃2(x) = h̃(x) := B2(x+ 1) =


1 + x, x ∈ [−1, 0);

1− x, x ∈ [0, 1);

0, x ∈ R\[−1, 1),

(1.4.17)

�

B3(x) =


1
2
x2, x ∈ [0, 1);

−x2 + 3x− 3
2
, x ∈ [1, 2);

1
2
x2 − 3x+ 9

2
, x ∈ [2, 3);

0, x ∈ R\[0, 3),

(1.4.18)

�

B4(x) =



1
6
x3, x ∈ [0, 1);

−1
2
x3 + 2x2 − 2x+ 2

3
, x ∈ [1, 2);

1
2
x3 − 4x2 + 10x− 22

3
, x ∈ [2, 3);

1
6
(4− x)3, x ∈ [3, 4);

0, x ∈ R\[0, 4).

(1.4.19)

Graphs of B2, B3 and B4 are given in Figures 1.1-1.3.

Figure 1.1: Hat function B2 = h Figure 1.2: Quadratic B-spline B3

Figure 1.3: Cubic B-spline B4 Figure 1.4: Quintic B- spline B5

We proceed in Section 1.5 to introduce a bivariate version of cardinal B-splines, namely
box splines.
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1.5. Box splines 9

1.5 Box splines

An important class of bivariate re�nable functions are provided by box splines which we
proceed to introduce in this section. We shall rely on the Haar function (or roof function)

B1(x) := χ[0,1)2(x) =

{
1, x ∈ [0, 1)2;

0, x ∈ R2\[0, 1)2,
(1.5.1)

from which we will generate higher order box splines.

To this end, let {ej : j = 1, . . . , 4} ⊂ R2 be the set of direction vectors de�ned by

e1 := (1, 0); e2 := (0, 1); e3 := e1 + e2 = (1, 1); e4 := e1 − e2 = (1,−1). (1.5.2)

We introduce the notion of a direction set

D =

e1, . . . , e1︸ ︷︷ ︸
k

, e2, . . . , e2︸ ︷︷ ︸
`

, e3, . . . , e3︸ ︷︷ ︸
m

, e4, . . . , e4︸ ︷︷ ︸
p

 , (1.5.3)

where k and ` are positive integers, m and p are non-negative integers, in terms of which
we then de�ne the integer

n := k + `+ m + p. (1.5.4)

To facilitate our discussion, we relabel the direction vectors in (1.5.3), and de�ne the
direction set sequence {Dr ⊂ D : r = 2, . . . , n} by

Dr :=
{
e1, e2, . . . , er

}
, r = 2, . . . , n. (1.5.5)

Observe that then D2 = {e1, e2}.

With the de�nition

[Dr] :=

{
r∑
j=1

tj e
j : 0 ≤ tj < 1, j = 1, 2, . . . , r, r = 2, . . . , n

}
, (1.5.6)

it then follows that [D2] = [0, 1)2.

De�nition 1.5.1. For a given sequence {Dr : r = 2, 3, . . .} of direction sets, the corre-
sponding box splines {Br(x) := B(x|Dr), r = 2, 3, . . .} are de�ned recursively
by means of

B(x|D2) := B1(x), x ∈ R2;

Br(x) = B(x|Dr) :=

∫ 1

0

B(x− t er|Dr−1) dt, x ∈ R2, r = 3, 4, . . . ,

 (1.5.7)

where B1, the Haar function is given by (1.5.1).

For a given direction set D as in (1.5.3), we shall write

Bk,`,m,p := B(·|D);

Bk,` := Bk,`,0,0;

Bk,`,m := Bk,`,m,0,

 (1.5.8)
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with, in particular, B1,1 := B1. Also, B2 := B1,1,1, the Courant hat function, for the
choices e1 := e1; e2 := e2; e3 := e3; whereas B3 := B1,1,2, for the choices e1 := e1; e2 :=
e2; e3 := e3; and B4 := B1,1,1,1, the Zwart-Powell function, for the choices e

1 := e1; e2 :=
e2; e3 := e3; e4 := −e4.

Observe from the function (1.5.7) that permuting the direction vectors {e1, e2, . . . , er}
does not change the box splines Br.

1.6 Examples

We proceed to explicitly compute speci�c box splines.

1.6.1 The Haar box spline B1

The Haar box spline is de�ned, according to (1.5.1), (1.5.7) and (1.5.8), by

B1(x, y) := B1,1(x, y) =

{
1, if (x, y) ∈ [0, 1)2;

0, if (x, y) ∈ R2\[0, 1)2,
(1.6.1)

from which we see that B1 is a piecewise constant polynomial function which is discon-
tinuous around the boundary of its support whereas B1 assumes the value one in the
interior (0, 1)2 of its support. We proceed to show that B1 is a re�nable function with its

Figure 1.5: The support of B1 Figure 1.6: The Haar box spline B1

re�nement mask
{
p1
j

}
given by

p1
0,0 = p1

1,1 = p1
0,1 = p1

1,0 = 1;

p1
i,j = 0, (i, j) /∈ Z2\{(0, 0), (0, 1), (1, 0), (1, 1)},

}
(1.6.2)
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where the values of the re�nement mask {p1
j} are graphically illustrated in Figure 1.7

below. To this end, we �rst observe from (1.6.1) that

B1(2x, 2y) =

{
1, (x, y) ∈ [0, 1

2
)2;

0, (x, y) /∈ [0, 1
2
)2,

;

B1(2x− 1, 2y) =

{
1, (x, y) ∈ [1

2
, 1)× [0, 1

2
);

0, (x, y) /∈ [1
2
, 1)× [0, 1

2
),

;

B1(2x, 2y − 1) =

{
1, (x, y) ∈ [0, 1

2
)× [1

2
, 1);

0, (x, y) /∈ [0, 1
2
)× [1

2
, 1),

;

B1(2x− 1, 2y − 1) =

{
1, (x, y) ∈ [1

2
, 1)2;

0, (x, y) /∈ [1
2
, 1)2.

(1.6.3)

Figure 1.7: The re�nement mask {p1
j }

Since the support [0, 1]2 of the Haar box spline B1 can be partitioned into four disjoint
regions [0, 1

2
)2, [1

2
, 1] × [0, 1

2
), [0, 1

2
] × [1

2
, 1) and [1

2
, 1]2, it follows from (1.6.1) and (1.6.3)

that, for x, y ∈ R,

B1(x, y) = B1(2x, 2y) + B1(2x− 1, 2y) + B1(2x, 2y − 1) + B1(2x− 1, 2y − 1). (1.6.4)

Hence, B1 is 2I2-re�nable with re�nement mask {pi,j : i, j ∈ Z} given by (1.6.2). It then
follows from (1.3.8) and (1.6.2) that the corresponding re�nement mask symbol is given
by

P1(z1, z2) = (1 + z1 + z2 + z1z2) = (1 + z1)(1 + z2), z1, z2 ∈ C. (1.6.5)

Therefore, P1(z1, z2) = (1 + z1)(1 + z2) is the re�nement symbol for the box spline B1.

1.6.2 The Courant hat function B2

As de�ned in (1.5.8) of De�nition 1.5.1, the Courant hat function B2 is given by

B2(x, y) := B1,1,1(x, y) =

∫ 1

0

B1(x− t, y − t) dt, (x, y) ∈ R2. (1.6.6)
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A

F

B C

D

E

−1 0 1 2 3
−1

0

1

2

3

Figure 1.8: The support of B2

As illustrated graphically in Figure 1.8, let the regions A, . . . ,F be de�ned by

A :=
{
(x, y) ∈ [0, 1)2 : x ≥ y

}
;

B :=
{
(x, y) ∈ [0, 1)2 : x ≤ y

}
;

C := {(x, y) ∈ [1, 2)× [0, 1) : x− 1 ≤ y} ;
D :=

{
(x, y) ∈ [1, 2)2 : x ≥ y

}
;

E :=
{
(x, y) ∈ [1, 2)2 : x < y

}
;

F := {(x, y) ∈ [0, 1)× [1, 2) : x+ 1 ≥ y} ,


(1.6.7)

according to which the regions A, . . . ,F are disjoint and form a partition of the hexagonal
region [D3], as de�ned by

[D3] :=

{
3∑
j=1

tj e
j : 0 ≤ tj < 1, j = 1, 2, 3

}
, (1.6.8)

that is, [D3] = A ∪ B ∪ C ∪D ∪ E ∪ F.

We claim that

(x− t, y − t) ∈ [0, 1)2, t ∈ [0, 1)⇔ (x, y) ∈ [D3]. (1.6.9)

To prove (1.6.9), suppose �rst that (x, y) ∈ [D3], that is, there exist t1, t2, t3 ∈ [0, 1) such
that

(x, y) = t1(1, 0) + t2(0, 1) + t3(1, 1),

or equivalently, {
x = t1 + t3;

y = t2 + t3,

}
⇔

{
x− t3 = t1;

y − t3 = t2,

}
(1.6.10)

and it follows that, with t := t3 ∈ [0, 1), we have (x − t, y − t) ∈ [0, 1)2. Conversely,
suppose (x− t, y − t) ∈ [0, 1)2 for some t ∈ [0, 1), that is,

0 ≤ x− t < 1;

0 ≤ y − t < 1,

}
(1.6.11)
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so that
x− t = u;

y − t = v,

}
(1.6.12)

for u, v ∈ [0, 1). The de�nitions t1 := u; t2 := v; t3 := t, then yields (1.6.10), and it
follows that (x, y) ∈ [D3], thereby completing our proof of (1.6.9).

It follows from (1.6.9) and (1.6.1) that

B1(x− t, y − t) = 0, (x, y) /∈ [D3], t ∈ [0, 1), (1.6.13)

and thus, by using also (1.6.6), we obtain

B2(x, y) = 0, (x, y) /∈ [D3]. (1.6.14)

We proceed, by using (1.6.6) and (1.6.1), to calculate B2(x, y) on each of the disjoint
regions A, . . . ,F in Figure 1.8, as follows:

(x, y) ∈ A⇒ B2(x, y) =

∫ y

0

1 dt = y;

(x, y) ∈ B⇒ B2(x, y) =

∫ x

0

1 dt = x;

(x, y) ∈ C⇒ B2(x, y) =

∫ y

x−1

1 dt = 1 + y − x;

(x, y) ∈ D⇒ B2(x, y) =

∫ 2

x

1 dt = 2− x;

(x, y) ∈ E⇒ B2(x, y) =

∫ 1

y−1

1 dt = 2− y;

(x, y) ∈ F⇒ B2(x, y) =

∫ x

y−1

1 dt = 1 + x− y,

and thus

B2(x, y) =



y, (x, y) ∈ A;

x, (x, y) ∈ B;

1 + y − x, (x, y) ∈ C;

2− x, (x, y) ∈ D;

2− y, (x, y) ∈ E;

1 + x− y, (x, y) ∈ F;

0, (x, y) ∈ R2\[D3].

(1.6.15)

Observe from (1.6.15) that the Courant hat function B2 is a piecewise linear bivariate
polynomial, with also

B2(i, j) =

{
1, (i, j) = (1, 1);

0, (i, j) ∈ Z2\{(1, 1)}.
(1.6.16)

A graph of B2 is shown in Figure 1.9. Moreover, we see from (1.6.15) that

B2 ∈ C(R2) \ C1(R2). (1.6.17)
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Figure 1.9: The Courant hat function, B2

We proceed to show that B2 is a 2I2-re�nable function.

To this end, we use (1.6.6) and (1.6.4) to obtain, for any (x, y) ∈ R2,

B2(x, y) =

∫ 1

0

B1(x− t, y − t) dt =
∫ 1

0

∑
i,j∈Z

p1i,j B1(2(x− t, y − t)− (i, j)) dt

=

∫ 1

0

B1(2x− 2t, 2y − 2t) dt+

∫ 1

0

B1(2x− 2t− 1, 2y − 2t) dt

+

∫ 1

0

B1(2x− 2t, 2y − 2t− 1) dt+

∫ 1

0

B1(2x− 2t− 1, 2y − 2t− 1) dt

=

{∫ 1
2

0

B1(2x− 2t, 2y − 2t) dt+

∫ 1

1
2

B1(2x− 2t, 2y − 2t) dt

}

+

{∫ 1
2

0

B1(2x− 2t− 1, 2y − 2t) dt+

∫ 1

1
2

B1(2x− 2t− 1, 2y − 2t) dt

}

+

{∫ 1
2

0

B1(2x− 2t, 2y − 2t− 1) dt+

∫ 1

1
2

B1(2x− 2t, 2y − 2t− 1) dt

}

+

{∫ 1
2

0

B1(2x− 2t− 1, 2y − 2t− 1) dt+

∫ 1

1
2

B1(2x− 2t− 1, 2y − 2t− 1) dt

}

=

{
1

2

∫ 1

0

B1(2x− t, 2y − t) dt+
1

2

∫ 1

0

B1(2x− t− 1, 2y − t− 1) dt

}
+

{
1

2

∫ 1

0

B1(2x− t− 1, 2y − t) dt+ 1

2

∫ 1

0

B1(2x− t− 2, 2y − t− 1) dt

}
+

{
1

2

∫ 1

0

B1(2x− t, 2y − t− 1) dt+
1

2

∫ 1

0

B1(2x− t− 1, 2y − t− 2) dt

}
+

{
1

2

∫ 1

0

B1(2x− t− 1, 2y − t− 1) dt+
1

2

∫ 1

1
2

B1(2x− t− 2, 2y − t− 2) dt

}

=
1

2
{B2(2x, 2y) + 2B2(2x− 1, 2y − 1)}+ 1

2
{B2(2x− 1, 2y) + B2(2x− 2, 2y − 1)}

+
1

2
{B2(2x, 2y − 1) + B2(2x, 2y − 2)}+ 1

2
{B2(2x− 1, 2y − 1) + B2(2x− 2, 2y − 2)} ,
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and thus,

B2(x, y) =
1

2
[B2(2x, 2y) + B2(2x, 2y − 1) + B2(2x− 1, 2y) + 2B2(2x− 1, 2y − 1)

+B2(2x− 1, 2y − 2) + B2(2x− 2, 2y − 1) + B2(2x− 2, 2y − 2)] , (x, y) ∈ R2,
(1.6.18)

which in turn implies that the box spline B2 is 2I2-re�nable with re�nement mask {p2
j}

given by

p2
1,1 = 1, p2

0,0 = p2
0,1 = p2

1,0 = p2
2,1 = p2

1,2 = p2
2,2 =

1

2
;

p2
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)},

 (1.6.19)

where the values of the re�nement mask {p2
j} are graphically illustrated in Figure 1.10.

A

F

B C

D

E

−1 0 1 2 3
−1

0

1

2

3

1
2

1
2

1
2

1

1
2

1
2

1
2

Figure 1.10: The re�nement mask {p2
j }

Observe from (1.6.15) and (1.6.19) that the support of B2 and its re�nement mask {p2
j}

agree, in the sense that

supp B2 = [D3];

supp pj = [D3]|Z2 .

}
(1.6.20)

It follows from (1.3.8) and (1.6.19) that the corresponding mask symbol is given by

P2(z1, z2) =

(
1

2
+

1

2
z1 +

1

2
z2 + z1z2 +

1

2
z2

1z2 +
1

2
z1z

2
2 +

1

2
z2

1z
2
2

)
=

1

2
(1 + z1)(1 + z2)(1 + z1z2) =

(
1 + z1z2

2

)
P1(z1, z2), (1.6.21)

with P1 denoting the symbol of the Haar box spline B1, as given in (1.6.5).

Therefore, P2(z1, z2) =

(
1 + z1z2

2

)
P1(z1, z2) is the symbol for the Courant hat function

B2.

Stellenbosch University  http://scholar.sun.ac.za



1.6. Examples 16

1.6.3 The shifted Courant hat function B̂2

The shifted Courant hat function is de�ned by

B̂2(x, y) := B2(x+ 1, y + 1), (x, y) ∈ R2, (1.6.22)

with B2 denoting the Courant hat function, according to which, together with (1.6.15)
and (1.6.7) we have the explicit formulation

B̂2(x, y) =



1 + y, (x, y) ∈ Â;

1 + x, (x, y) ∈ B̂;

1 + y − x, (x, y) ∈ Ĉ;

1− x, (x, y) ∈ D̂;

1− y, (x, y) ∈ Ê;

1 + x− y, (x, y) ∈ F̂;

0, (x, y) ∈ R2\[D̂3],

(1.6.23)

Â

F̂

B̂ Ĉ

D̂

Ê

−2 −1 0 1 2
−2

−1

0

1

2

1
2

1
2

1
2

1

1
2

1
2

1
2

Figure 1.11: The support of the shifted Courant hat function B̂2

where

[D̂3] := Â ∪ B̂ ∪ Ĉ ∪ D̂ ∪ Ê ∪ F̂, (1.6.24)

with the disjoint regions Â, . . . , F̂ de�ned by

Â :=
{

(x, y) ∈ [−1, 0)2 : x ≥ y
}

;

B̂ :=
{

(x, y) ∈ [−1, 0)2 : x ≤ y
}

;

Ĉ := {(x, y) ∈ [0, 1)× [−1, 0) : x− 1 ≤ y} ;

D̂ :=
{

(x, y) ∈ [0, 1)2 : y ≤ x
}

;

Ê :=
{

(x, y) ∈ [0, 1)2 : y ≥ x
}

;

F̂ := {(x, y) ∈ [−1, 0)× [0, 1) : x+ 1 ≥ y} ,


(1.6.25)

as graphically illustrated in Figure 1.12.
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Figure 1.12: The shifted Courant hat function B̂2

Analogous to B2 in Section 1.6.2, we �nd that B̂2 satis�es the following properties:

� B̂2(x) = 0, x ∈ R2\{D̂3};

� B̂2(j) = δj, j ∈ Z2;

� B̂2 is 2I2-re�nable function with re�nement mask {pj}j∈Z2 given by

p̂2
0,0 = 1, p̂2

1,1 = p̂2
0,−1 = p̂2

0,1 = p̂2
1,0 = p̂2

−1,0 = p̂2
−1,−1 =

1

2
;

p̂2
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)}.

 (1.6.26)

Hence B̂2 is an interpolatory re�nable function. The function B̂2 is graphically
illustrated in Figure 1.12.

The values of the re�nement mask {p̂2
j}, as given in (1.6.26), are graphically illus-

trated in Figure 1.11.

� The continuity order of the shifted Courant hat function:

B̂2 ∈ C(R2) \ C1(R2). (1.6.27)

We note from (1.3.8) and (1.6.26) that the corresponding re�nement mask symbol is given
by

P̂2(z1, z2) =
1

2
(1 + z1) (1 + z2) (1 + z1z2) z

−1
1 z−1

2 , (1.6.28)

and thus,

P̂2(z1, z2) =

(
1 + z−1

1 z−1
2

2

)
P1(z1, z2), (1.6.29)

where P1(z1, z2) is the symbol for the box spline B1, as given in (1.6.5). The re�nement
symbol P̂2 will be used as a basic factor for generating the Butter�y subdivision mask
symbol, which will be discussed in Chapters 4 and 5.
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1.7 Bivariate box spline properties with respect to

meshes

In this section, we derive some properties of bivariate box splines.

First, we introduce the concept of a k-directional mesh.

De�nition 1.7.1. For any integer k ≥ 2, a k-directional mesh is a set of vectors

Gk :=

d1, . . . ,d1︸ ︷︷ ︸
m1

, . . . ,dk, . . . ,dk︸ ︷︷ ︸
mk

 , (1.7.1)

where di := (αi, βi) ∈ Z2, αi ∈ R, βi ≥ 0, with αiβj 6= αjβi for i 6= j, and with

multiplicities mi ≥ 1 for i = 1, . . . , k. Also, n :=
k∑
i=1

mi.

We proceed to provide examples for k = 2, 3, 4.

The 2-directional mesh G2

For k = 2, the choices d1 := e1; d
2 := e2, yield the 2-directional grid G2, which in fact

corresponds to the rectangular Z2 grid in R2 as illustrated in Figure 1.13. Note that here
n = 2.

The 3-directional mesh G3

For k = 3, the choices d1 := e1; d
2 := e2 ; d3 := e3, yield the 3-directional grid G3 which

in fact corresponds to the type-I triangular Z2 grid in R2 as illustrated in Figure 1.14.
Note that here n = 3.

The 4-directional mesh G4

For k = 4, the choices d1 := e1; d
2 := e2 ; d

3 := e3 and d4 := −e4 as in (1.5.2), yield the
3-directional grid G3 which in fact corresponds to the type-II triangular Z2 grid in R2 as
illustrated in Figure 1.15. Note that here n = 4.

The following bivariate box spline result holds with respect to the 3-directional mesh G3.

Theorem 1.7.2. [Han00] For k, ` ∈ N and m ∈ Z+, the box spline Bk,`,m is a piecewise
bivariate polynomial of total degree at most γ := k+ `+m−2 relative to the 3-directional
mesh G3. Furthermore, Bk,`,m is (γ − k) times continuously di�erentiable across each
horizontal line in the mesh; (γ − `) times continuously di�erentiable across each verti-
cal line and (γ − m) times continuously di�erentiable across each diagonal line of the
corresponding type-I triangular Z2 grid.
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Figure 1.13: The 2-directional mesh
G2

Figure 1.14: The 3-directional mesh
G3 (type I-triangular grid)

Figure 1.15: The 4-directional mesh
G4(type II-triangular grid)

Examples

(a) According to the results of Section 1.6.2, the Courant hat function B2 := B1,1,1, with
direction set {e1, e2, e3} as in (1.5.2), is a linear bivariate polynomial in each triangle
of its support. Furthermore, it is continuous across each vertical line, horizontal line
grid, and diagonal grid line.

Observe that these results are consistent with Theorem 1.7.2, in the notation of
which we have here γ = 1 + 1 + 1− 2 = 1.

(b) According to Theorem 1.7.2, the bivariate box spline B3 := B1,1,2, with direction set
{e1, e2, e3, e3}, is a quadratic bivariate polynomial in each triangle as in Figure 1.14.
Also, since here γ = 1 + 1 + 2− 2 = 2, B3 is continuously di�erentiable once across
each vertical line and horizontal line grid, but only continuous across the diagonal
grid lines. As illustrated graphically in Figure 1.16, let the regions Ω1, . . . ,Ω10 be

Figure 1.16: The support of B1,1,2 Figure 1.17: The box spline B1,1,2
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de�ned by
Ω1 :=

{
(x, y) ∈ [0, 1)2 : x ≥ y

}
,

Ω2 :=
{

(x, y) ∈ [0, 1)2 : x ≤ y
}
,

Ω3 := {(x, y) ∈ [0, 1)× [1, 2) : x+ 1 ≥ y} ,
Ω4 := {(x, y) ∈ [1, 2)× [0, 1) : x− 1 ≤ y} ,
Ω5 :=

{
(x, y) ∈ [1, 2)2 : x ≥ y

}
,

Ω6 :=
{

(x, y) ∈ [1, 2)2 : x < y
}
,

Ω7 := {(x, y) ∈ [1, 2)× [2, 3) : y ≤ x+ 1} ,
Ω8 := {(x, y) ∈ [2, 3)× [1, 2) : y ≥ x− 1} ,
Ω9 :=

{
(x, y) ∈ [2, 3)2 : y ≤ x

}
,

Ω10 :=
{

(x, y) ∈ [2, 3)2 : y ≥ x
}
,



(1.7.2)

according to which the regions Ωi, i ∈ {1, 2, . . . , 10} are disjoint, and form a partition
of the region

[D4] :=

{
4∑
j=0

tj e
j, 0 ≤ tj < 1, j = 0, . . . , 4

}
, (1.7.3)

that is, [D4] :=
⋃10
i=1 Ωi. By using equation (1.5.7), we calculate the formula

B3(x, y) := B1,1,2(x, y) =



1
2
y2, (x, y) ∈ Ω1;

1
2
x2, (x, y) ∈ Ω2;

1
2
x2 − 1

2
y2 + y − 1

2
, (x, y) ∈ Ω3;

−1
2
x2 + 1

2
y2 + x− 1

2
, (x, y) ∈ Ω4;

−1
2
x2 − 1

2
y2 + x+ 2y − 3

2
, (x, y) ∈ Ω5;

−1
2
x2 − 1

2
y2 + 2x+ y − 3

2
, (x, y) ∈ Ω6;

−1
2
x2 + 1

2
y2 + 2x− 3y + 5

2
, (x, y) ∈ Ω7;

1
2
x2 − 1

2
y2 − 3x+ 2y + 5

2
, (x, y) ∈ Ω8;

1
2
x2 − 3x+ 9

2
, (x, y) ∈ Ω9;

1
2
y2 − 3y + 9

2
, (x, y) ∈ Ω10;

0, (x, y) ∈ R2\[D4].

We proceed to show that B3 := B1,1,2 is a 2I2-re�nable function. To this end, we
use (1.6.6) and (1.6.18), to obtain, for any (x, y) ∈ R2,

B3(x, y) :=

∫ 1

0
B2(x− t, y − t) dt =

∫ 1

0

∑
i,j∈Z

p2
i,j B2(2(x− t, y − t)− (i, j)) dt

=

∫ 1

0
B2(2x− 2t− 1, 2y − 2t− 1) dt+

1

2

∫ 1

0
B2(2x− 2t, 2y − 2t) dt

+
1

2

∫ 1

0
B2(2x− 2t, 2y − 2t− 1) dt+

1

2

∫ 1

0
B2(2x− 2t− 1, 2y − 2t) dt

+
1

2

∫ 1

0
B2(2x− 2t− 2, 2y − 2t− 1) dt+

1

2

∫ 1

0
B2(2x− 2t− 1, 2y − 2t− 2) dt

+
1

2

∫ 1

0
B2(2x− 2t− 2, 2y − 2t− 2) dt
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B3(x, y) =

∫ 1
2

0
B2(2x− 2t− 1, 2y − 2t− 1) dt+

∫ 1

1
2

B2(2x− 2t− 1, 2y − 2t− 1) dt

+
1

2

{∫ 1
2

0
B2(2x− 2t, 2y − 2t) dt+

∫ 1

1
2

B2(2x− 2t, 2y − 2t) dt

}

+
1

2

{∫ 1
2

0
B2(2x− 2t, 2y − 2t− 1) dt+

∫ 1

1
2

B2(2x− 2t, 2y − 2t− 1) dt

}

+
1

2

{∫ 1
2

0
B2(2x− 2t− 1, 2y − 2t) dt+

∫ 1

1
2

B2(2x− 2t− 1, 2y − 2t) dt

}

+
1

2

{∫ 1
2

0
B2(2x− 2t− 2, 2y − 2t− 1) dt+

∫ 1

1
2

B2(2x− 2t− 2, 2y − 2t− 1) dt

}

+
1

2

{∫ 1
2

0
B2(2x− 2t− 1, 2y − 2t− 2) dt+

∫ 1

1
2

B2(2x− 2t− 1, 2y − 2t− 2) dt

}

+
1

2

{∫ 1
2

0
B2(2x− 2t− 2, 2y − 2t− 2) dt+

∫ 1

1
2

B2(2x− 2t− 2, 2y − 2t− 2) dt

}

=
1

2

∫ 1

0
B2(2x− t− 1, 2y − t− 1) dt+

1

2

∫ 1

0
B2(2x− t− 2, 2y − t− 2) dt

+
1

4

{∫ 1

0
B2(2x− t, 2y − t) dt+

∫ 1

0
B2(2x− t− 1, 2y − t− 1) dt

}
+

1

4

∫ 1

0
B2(2x− t, 2y − t− 1) dt+

1

4

∫ 1

0
B2(2x− t− 1, 2y − t− 2) dt

+
1

4

∫ 1

0
B2(2x− t− 1, 2y − t) dt+ 1

4

∫ 1

0
B2(2x− t− 2, 2y − t− 1) dt

+
1

4

∫ 1

0
B2(2x− t− 2, 2y − t− 1) dt+

1

2

∫ 1

0
B2(2x− t− 3, 2y − t− 2) dt

+
1

4

∫ 1

0
B2(2x− t− 1, 2y − t− 2) dt+

1

4

∫ 1

0
B2(2x− t− 2, 2y − t− 3) dt

+
1

4

∫ 1

0
B2(2x− t− 2, 2y − t− 2) dt,

=
3

4
[B3(2x− 1, 2y − 1) + B3(2x− 2, 2y − 2)] +

1

2
[B3(2x− 1, 2y − 2)

+B3(2x− 1, 2y − 2)] +
1

4
[B3(2x, 2y) + B3(2x− 1, 2y) + B3(2x− 1, 2y − 2)

+B3(2x− 2, 2y − 1) + B3(2x− 3, 2y − 2) + B3(2x− 2, 2y − 3) + B3(2x− 3, 2y − 3)] ,
(1.7.4)

It follows from (1.7.4) that the box spline B3 is 2I2-re�nable with re�nement mask
{p3

j} given by

p3
1,1 = p3

2,2 =
3

4
; p3

2,1 = p3
2,1 =

1

2
;

p3
0,1 = p3

1,0 = p3
0,0 = p3

3,2 = p3
2,3 = p3

3,3 =
1

4
;

p3
i,j = 0, (i, j) /∈ {(0, 0), (1, 0), (0, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.


(1.7.5)
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According to (1.3.8) and (1.7.5), the corresponding re�nement mask symbol is given
by

P3(z1, z2) =

(
1

4
+

1

4
z1 +

1

4
z2 +

1

2
z2

1z2 +
1

2
z1z

2
2 +

1

4
z3

1z
2
2 +

1

4
z2

1z
3
2 +

1

4
z2

1z
3
2

+
3

4
z2

1z
2
2 +

1

4
z3

1z
3
2 +

3

4
z1z2

)
=

1

4
(1 + z1)(1 + z2)(1 + z1z2)2 =

(
1 + z1z2

2

)
P2(z1, z2),

from (1.6.21), with P2 denoting the symbol of B2.

Hence, P3(z1, z2) =

(
1 + z1z2

2

)
P2(z1, z2) is the symbol for the box spline B2.

Observe from (1.7.5) that {pi,j : i, j ∈ Z} is not interpolatory but symmetric, that
is, pi,j = pj,i for i, j ∈ Z.

Next, we quote a result from [Han00] for box splines with respect to the 4-directional
mesh

G4.

Theorem 1.7.3. [Han00] For k, ` ∈ N and m, p ∈ Z+, the box spline Bk,`,m,p is a piecewise
bivariate polynomial of total degree at most γ := k+`+m+p−2 relative to the 4-directional
mesh (G4-mesh). Furthermore, Bk,`,m,p is (γ − k) times continuously di�erentiable across
each horizontal line in the mesh; (γ − `) times continuously di�erentiable across each
vertical line ; (γ−m) times continuously di�erentiable across each of the positively sloped
diagonal lines; and (γ − p) times continuously di�erentiable across each of the negatively
sloped diagonal lines of the corresponding type-II triangular Z2 grid.

Examples

(a) The well-known prototype example for the 4-directional mesh G4 is the box spline
B4 := B1,1,1,1 associated with D4 = {e1, e2, e3,−e4}.
As illustrated graphically in Figure 1.18, the regions Ω1, . . . ,Ω24 are disjoint, and
form a partition of the octagonal region [D4], as de�ned by

[D4] :=

{
4∑
j=1

ej tj : 0 ≤ tj < 1, j = 1, 2, 3, 4

}
, (1.7.6)

that is, [D4] =
⋃24
i=1 Ωi, as illustrated in Figure 1.18. Similar to the above examples,

the graph of B4 is shown in Figure 1.19.

Next, we demonstrate the 2I2-re�nability of B4 by �rst noting that

B4(x, y) :=

∫ 1

0

B2(x+ t, y − t) dt, (1.7.7)

and then using (1.7.7) and (1.6.18), to obtain, for any (x, y) ∈ R2,
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Figure 1.18: The support of B4

Figure 1.19: Graph of the box spline B4 from [vdB08]

B4(x, y) := B1111(x, y) =

∫ 1

0

B2(x+ t, y − t) dt

=

∫ 1

0

∑
i,j

p2
i,j B2(2(x+ t, y − t)− (i, j)) dt

=
1

2

∫ 1

0

B2(2x+ 2t, 2y − 2t) dt +
1

2

∫ 1

0

B2(2x+ 2t− 1, 2y − 2t) dt

+

∫ 1

0

B2(2x+ 2t, 2y − 2t− 1) dt +
1

2

∫ 1

0

B2(2x+ 2t− 1, 2y − 2t− 1) dt

+
1

2

∫ 1

0

B2(2x+ 2t− 2, 2y − 2t− 1) dt+
1

2

∫ 1

0

B2(2x+ 2t− 1, 2y − 2t− 2) dt

+
1

2

∫ 1

0

B2(2x+ 2t− 2, 2y − 2t− 2) dt
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B4(x, y) =
1

4

∫ 1

0

B2(2x+ t, 2y − t) dt+
1

4

∫ 1

0

B2(2x+ 1 + t, 2y − 1− t) dt

+
3

4

∫ 1

0

B2(2x+ t, 2y − 1− t) dt+
1

2

∫ 1

0

B2(2x− 1 + t, 2y − 2− t) dt

+
1

2

∫ 1

0

B2(2x+ 1 + t, 2y − 2− t) dt+
1

4

∫ 1

0

B2(2x+ t− 1, 2y − 1− t) dt

+
1

4

∫ 1

0

B2(2x+ t, 2y − 2− t) dt+
1

2

∫ 1

0

B2(2x− 2 + t, 2y − 1− t) dt

+
1

4

∫ 1

0

B2(2x+ t, 2y − 3− t) dt+
1

4

∫ 1

0

B2(2x− 2 + t, 2y − 2− t) dt

+
1

4

∫ 1

0

B2(2x− 1 + t, 2y − 3− t) dt

=
1

4
[B4(2x, 2y) + B4(2x+ 1, 2y − 1) + B4(2x− 1, 2y) + B4(2x− 1, 2y − 1)

+B4(2x, 2y − 2) + B4(2x− 2, 2y − 1) + B4(2x, 2y − 3) + B4(2x− 2, 2y − 2)

+B4(2x− 1, 2y − 3)] +
3

4
[B4(2x, 2y − 1) + B4(2x− 1, 2y − 2)]

+
1

2
B4(2x+ 1, 2y − 2). (1.7.8)

Thus, the box spline B4 as given in (1.7.8) is 2I2-re�nable with re�nement mask
{p4

j} given by

p4
−1,2 =

1

2
; p4

0,1 = p4
1,2 =

3

4
;

p4
0,0 = p4

2,1 = p4
1,0 = p4

2,2 = p4
0,2 = p4

0,3 = p4
1,1 = p4

−1,1 = p4
2,2 =

1

4
;

p4
i,j = 0, (i, j) /∈ {(1, 1), (0, 0), (−1, 1), (1, 0), (2, 1), (0, 1), (0, 2), (−1, 2),

(1, 3), (0, 3), (1, 2), (2, 2)}.


(1.7.9)

It then follows from (1.3.8) and (1.7.9) that the corresponding re�nement mask
symbol in its factorised form is given by

P4(z1, z2) =
1

4
(1 + z1)(1 + z2)(1 + z1z2)(1 + z1z

−1
2 ) =

(
1 + z1z

−1
2

2

)
P2(z1, z2),

from (1.6.21), with P2 denoting the re�nement symbol of B2.

Therefore, P4(z1, z2) =

(
1 + z1z

−1
2

2

)
P2(z1, z2) is the symbol for the box spline B4.

Observe from (1.7.9) that {p4
i,j : i, j ∈ Z} is not interpolatory, but symmetric, that

is, pi,j = pj,i for i, j ∈ Z.
As stated in, e.g., [dBHR93, EU10, CK02], the box spline B4 is known as the Zwart-
Powell element. As graphically illustrated in Figure 1.18, the Zwart-Powell element
is supported on an octagonal support [−1, 2]× [0, 3]. We also note that here, in the
notation of Theorem 1.7.3, that γ = 1+1+1+1−2 = 2, and thus, B4 is a piecewise
quadratic bivariate polynomial and once continuously di�erentiable, that is, it is in
C1(R2) across the grid lines according to Theorem 1.7.3. It is therefore smoother
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than the piecewise quadratic bivariate box spline B3 := B1,1,2 but its support is
considerably larger. It has also a nice symmetric property.

(b) The box spline B2,1,1,1 associated with D5 = {e1, e1, e2, e3, e4} with {e1, e2, e3, e4}
as in (1.5.2), is a piecewise cubic bivariate polynomial according to Theorem 1.7.3,
and is again continuously di�erentiable on R.

1.8 Properties of bivariate box splines

In this section, we investigate further properties of the bivariate box splines of Section 1.5.
All of the properties given here are from [dVC10], where the proofs are left as exercises.
We shall provide the full derivations below. We introduce the following preliminaries.

For integers k > 0, ` > 0, m ≥ 0, p ≥ 0 in the box spline notation introduced in the �rst
line of (1.5.8), we de�ne the integer

n∗ := min {k + `+m, k + `+ p, k +m+ p, `+m+ p} − 2, (1.8.1)

from which together with (1.5.4), it then follows that

n∗ = (k + `+m+ p)−max {k, `,m, p} − 2 = n−max {k, `,m, p} − 2. (1.8.2)

For any k ∈ N, we shall write Ck(R2) for the space of real-valued functions f such that f
and all its partial derivatives up to order k are continuous on R2. We need the following
lemma for proving the continuity order of box splines as in Theorem 1.8.2 below.

Lemma 1.8.1. Let f be a function of two variables. If the partial derivatives fx ∈ Cm(R2)
and fy ∈ Cm(R2), then f ∈ Cm+1(R2).

The following properties are satis�ed by bivariate box splines.

Theorem 1.8.2. For d ∈ {2, 3, 4}, let Gd denote the d-directional mesh with vertices in
Z2 as described in Section 1.7. Then the box spline Bk,`,m,p := B(.|Dn), as obtained from
(1.5.7), where the positive integer n is de�ned in (1.5.3), satis�es the following properties:

(a) The positivity property

B(x|Dn) > 0, x ∈ Int[Dn] (1.8.3)

holds.

(b) (i) The restriction of Bk,` to each square of the G2-mesh is a polynomial in Π2
k+`−2;

(ii) The restriction of Bk,`,m to each triangle of the G3-mesh is a polynomial in
Π2
k+`+m−2;

(iii) The restriction of Bk,`,m,p to each triangle of the G4-mesh is a polynomial in
Π2
n where n := k + `+m+ p as in (1.5.4).

(c) The continuity condition

B(.|Dn) ∈ Cn∗(R2), (1.8.4)

where n∗ is as given in (1.8.1), holds.

Stellenbosch University  http://scholar.sun.ac.za



1.8. Properties of bivariate box splines 26

(d) The support property

supp B(x|Dn) = [Dn], (1.8.5)

where [Dn] is de�ned as in (1.5.6), holds.

(e) The partition of unity property∑
j∈Z2

B(x− j|Dn) = 1, x ∈ R2, (1.8.6)

holds.

(f) The unit integral condition ∫
R2

B(x|Dn) dx = 1 (1.8.7)

holds.

Proof. Our proofs of (a)− (f) are all by induction.

(a) The positivity of box splines

To show the positivity of box splines, we apply induction with respect to n. First, observe
from (1.5.1) that the positivity condition (1.8.3) holds for n = 1. Suppose now that (1.8.3)
holds for a �xed integer n ∈ N. Our inductive proof of (a) will be complete if we can
show that B(x|Dn+1) > 0, x ∈ Int[Dn+1]. To this end, let x ∈ Int(Dn+1), from which it
follows from (1.5.6) that

x− t en+1 ∈ Int(Dn), t ∈ (0, 1),

and thus, from the inductive hypothesis (1.8.3),

B(x|Dn+1) =

∫ 1

0

B(x− t en+1|Dn) dt > 0.

(b)(i) The restriction of box splines to Gd- directional meshes with d=2,3,4.

Case 1 In order to show that Bk,`|G2 ∈ Π2
k+`−2, we employ induction on both k and `

respectively.

First, let k = 1 and apply the inductive argument with respect to `.

Observe that the box spline B1,1 as in (1.5.1) is a constant function with degree zero

(and is parallel to the xy-plane). The restriction of B1,1 to G2-mesh gives polynomials
in Π2

1+1−2 = Π2
0, that is, the linear space of bivariate constant polynomials.

Suppose it holds true, by induction hypothesis, that Bk,`|G2 ∈ Π2
`−1 for some �xed

non-negative integers k and `. Then by using (1.5.7) together with (1.5.2), for
x ∈ R2, we have

Bk,`+1(x) =

∫ 1

0

Bk,`(x− t e2) dt =

∫ 1

0

Bk,`(x, y − t) dt =

∫ y

y−1

Bk,`(x, t) dt, t ∈ [0, 1].

(1.8.8)

Stellenbosch University  http://scholar.sun.ac.za



1.8. Properties of bivariate box splines 27

Then, by applying the Fundamental Theorem of Calculus on equation (1.8.8), we
get

∂Bk,`+1

∂y
= Bk,`(x, y)︸ ︷︷ ︸

∈Π2
k+`−2

−Bk,`(x, y − 1)︸ ︷︷ ︸
∈Π2

k+`−2

.

Hence,
∂Bk,`+1

∂y
∈ Π2

k+`−2 and up on integration with respect to y, we get an incre-

ment in the degree of piecewise polynomial Bk,`+1|G2 by one, that is,

∂Bk,`+1

∂y
∈ Π2

k+(`+1)−2 = Π2
k+`−1.

Case 2 Let ` be arbitrary but �xed. Then we proceed by induction on k. First, observe from
(1.5.1) that the restriction of B1,1 to G2-mesh gives polynomials in Π2

1+1−2 = Π2
0.

Suppose now that, by induction hypothesis, that Bk,` restricted to G2-mesh is in
Π2
k+`−2.

Now, by using (1.5.7) and (1.5.2) same way as in Case 1, we get

Bk+1,`(x) =

∫ 1

0

Bk,`(x− t, y) dt =

∫ x

x−1

Bk,`(t, y) dt, t ∈ [0, 1]. (1.8.9)

which, after implementing the Fundamental Theorem of Calculus on equation (1.8.9),
becomes

∂Bk+1,`

∂y
= Bk,`(x, y)︸ ︷︷ ︸

∈Π2
k+`−2

−Bk,`(x− 1, y)︸ ︷︷ ︸
∈Π2

k+`−2

.

Thus,
∂Bk+1,`

∂y
∈ Π2

k+`−2 and upon integration with respect to x, we get an increment

for the degree of piecewise polynomial Bk+1,`|G2 by one, that is,

∂Bk+1,`

∂x
∈ Π2

k+(`+1)−2 = Π2
k+`−1.

A similar proof using induction argument is implemented for proving the remaining cases,
including the case with triangulations, G3 and G4.

(c) The continuity condition

Now, in order to prove the continuity condition, that is, B(.|Dn) ∈ Cn∗(R2) with n∗ given
in (1.8.2), we use induction on each of the multiplicities: k, `,m, p .

Observe, from (1.7.7) and Theorem 1.7.3, that the Zwart-Powell element B4 is C
2-quadratic

function on 4-directional mesh, that is, non-zero on an octagonal support contained in
[−1, 2]× [0, 3]. So using (1.8.2) with k = ` = m = p = 1, we see that it holds for n∗ = 1.

Suppose now, by inductive argument, that (1.8.4) holds for a �xed integer n∗ ∈ N where
n∗ is as in (1.8.1).

Then it remains to show 4-possible cases of induction: k, `,m and p by using (1.5.7) on
each of the cases together with the Fundamental Theorem of Calculus, that is, Bk,`,m,p ∈
Cn∗(R2).
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(i) Induction on k

Bk+1,`,m,p(x) =

∫ 1

0

Bk,`,m,p(x− t e1) dt, x := (x, y) ∈ R2

=

∫ 1

0

Bk,`,m,p(x− t, y) dt =

∫ x

x−1

Bk,`,m,p(t, y) dt. (1.8.10)

Using the Fundamental Theorem of Calculus on equation (1.8.10), we get

∂Bk+1,`,m,p

∂x
(x) = Bk,`,m,p(x, y)︸ ︷︷ ︸

∈Cn∗ (R2)

−Bk,`,m,p(x− 1, y)︸ ︷︷ ︸
∈Cn∗ (R2)

. (1.8.11)

Equation (1.8.11) in turn implies that
∂Bk+1,`,m,p

∂x
∈ Cn∗(R2). Next, by using similar

argument, we make induction on the remaining multiplicities, namely, `,m, p and it
is shown as follows.

(ii) Induction on `

Bk,`+1,m,p(x) =

∫ 1

0

Bk,`,m,p(x− t e2) dt =

∫ 1

0

Bk,`,m,p(x, y − t) dt

=

∫ y

y−1

Bk,`,m,p(x, t) dt. (1.8.12)

Applying the Fundamental Theorem of Calculus on equation (1.8.12) yields

∂Bk,`+1,m,p

∂y
(x, y) = Bk,`,m,p(x, y)︸ ︷︷ ︸

∈Cn∗ (R2)

−Bk,`,m,p(x, y − 1)︸ ︷︷ ︸
∈Cn∗ (R2)

. (1.8.13)

Equation (1.8.13) in turn implies that
∂Bk,`+1,m,p

∂y
∈ Cn∗(R2). A similar inductive

approach can be implemented to show that it also holds for m and p. In other
words, it can be, by induction on m and p, shown that

∂Bk,`,m+1,p

∂x
∈ Cn∗(R2) and

∂Bk,`,m+1,p

∂y
∈ Cn∗(R2).

Now, since the box spline B := Bk,`,m,p with
∂B
∂x
∈ Cn∗(R2) and

∂B
∂y
∈ Cn∗(R2), we

apply Lemma 1.8.1 together with

n∗ + 1 = |k + `+m+ p| −max{k, `,m, p} − 1

in order to check that B ∈ Cn∗+1(R2). That is, since
∂B
∂x
∈ Cn∗(R2) with k =

0, 1, 2, . . . , n∗, we have that

B,
∂B
∂x

,
∂

∂y

(
∂B
∂x

)
,
∂2B
∂x2

, . . . ,
∂n
∗

∂xk∂yn∗−k

(
∂B
∂x

)
∈ C0(R2), (1.8.14)
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and also if
∂Bk`mp
∂y

∈ Cn∗(R2), then

B,
∂B
∂y
,
∂

∂x

(
∂B
∂y

)
,
∂2B
∂y2

, . . . ,
∂n
∗

∂xk∂yn∗−k

(
∂B
∂y

)
∈ C0(R2) (1.8.15)

with k = 0, 1, 2, . . . , n∗ holds. Thus, from (1.8.14) and (1.8.15), we get

B,
∂B
∂x

,
∂

∂x

(
∂B
∂y

)
, . . . ,

∂n
∗+1B

∂xk∂yn∗−k
∈ C0 where k = 0, 1, 2, . . . , n∗ + 1.

Hence, Bk,`,m,p ∈ Cn∗+1(R2). This completes the induction argument.

(d) The support property

We proceed by induction on n. From the de�nition of the box spline B1,1 in (1.5.1), we
have that

B1,1(x) := χ[0,1)2(x) =

{
1, x ∈ [0, 1)2;

0, otherwise .

From the de�nition of support, that is, suppc B(x|D2) = {x ∈ R2 : B(x|D2) 6= 0}, it is
obvious that B(x|D2) 6= 0 only when x ∈ [0, 1)

2
= [0, 1]2 = {t1 e1 + t2 e

2, tj ∈ [0, 1]} .
Hence, the base case

suppc B(x|D2) =

{
x : x =

2∑
i=1

ti e
i; 0 ≤ ti ≤ 1

}
= [D2]

trivially holds.

Assume, by induction argument, that it holds true for n, that is, equivalently:

suppc B(x|Dn) = [Dn].

We need to show that

suppc B(x|Dn+1) = [Dn+1] =

{
n+1∑
i=1

ti e
i, 0 ≤ ti ≤ 1

}
.

That is,

suppc B(x|Dn+1) = [Dn+1]⇔ suppc B(x|Dn+1) ⊆ [Dn+1]
⋂

[Dn+1] ⊆ suppc B(x|Dn+1).

(1.8.16)
The �rst part of (1.8.16) proceeds as follows.

We let

x ∈ suppc B(·|Dn+1),⇒
∫ 1

0

B(x− tn+1 e
n+1|Dn) dtn+1 6= 0
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and this implies that there exists tn+1 ∈ (0, 1) where B(x− tn+1e
n+1|Dn) 6= 0, that is,

x ∈ suppc B(·|Dn+1)⇒ x ∈ suppc B(·|Dn+1)

⇒ x− tn+1 e
n+1 ∈ suppc B(·|Dn)

⇒ x− tn+1e
n+1 =

n∑
i=1

ti e
i, for some ti ∈ [0, 1]

⇒ x =
n∑
i=1

ti e
i + tn+1 e

n+1, 0 ≤ ti ≤ 1

⇒ x =
n+1∑
i=1

ti e
i, 0 ≤ ti ≤ 1

⇒ x ∈ [Dn+1].

Thus,

suppc B(x|Dn+1) ⊆ [Dn+1]. (1.8.17)

The other part of (1.8.16) proceeds as follows. We also let

x ∈ [Dn+1]⇒ x =
n+1∑
i=1

ti e
i, 0 ≤ ti ≤ 1

⇒ x− tn+1 e
n+1 =

n∑
i=1

ti e
i, 0 ≤ ti ≤ 1

⇒ x− tn+1 e
n+1 ∈ suppc B(·|Dn)

⇒ B(x− tn+1 e
n+1|Dn) 6= 0 (1.8.18)

Since B(·|Dn) is continuous and B(x|Dn) > 0 for all x, then there exists a neighbourhood
N := (tn+1 − ε, tn+1 + ε) such that B(x− k en+1|Dn) > 0 for k ∈ N.

Hence, equation (1.8.18) is equivalent to∫ 1

0

B(x− k en+1|Dn) dk 6= 0⇔ B(x|Dn+1) 6= 0⇒ x ∈ suppc B(·|Dn+1).

Thus,

[Dn+1] ⊆ suppc B(x|Dn+1). (1.8.19)

From (1.8.17) and (1.8.19), we deduce that suppc B(x|Dn+1) = [Dn+1].

Thus, suppc B(x|Dn+1) = [Dn+1] and this completes the proof.

(e) The partition of unity property

The inductive proof for the partition of unity property proceeds as follows.

Observe, from the de�nition of B1 as in (1.5.1), that∑
j∈Z2

B(x− j|D2) = 1, x ∈ R2 holds.
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Suppose it holds true for n, that is,
∑
j∈Z2

B(x− j|Dn) = 1 for all x ∈ R2. We need to show

that it holds for n+ 1.

Since Dn+1 = Dn
⋃
{en+1}, with en+1 ∈ {e1, e2, e3, e4} , as in (1.5.2), we apply induction

to each of the possible cases.

If en+1 = e1, and by setting x́ := x− t ∈ R with t ∈ [0, 1], we have

∑
(i,j)∈Z2

B ((x, y)− (i, j)|Dn+1) =
∑

(i,j)∈Z2

∫ 1

0
B ((x, y)− (i, j)− (t, 0)|Dn) dt

=
∑

(i,j)∈Z2

∫ 1

0
B(x− t− i, y − j|Dn) dt

=
∑

(i,j)∈Z2

∫ 1

0
B(x− i, y − j|Dn) dt

=

∫ 1

0

∑
(i,j)∈Z2

B(x− i, y − j|Dn) dt

=

∫ 1

0
1 dt = 1.

If en+1 = e2, and by setting ý := y − t ∈ R with t ∈ [0, 1], we have

∑
(i,j)∈Z2

B ((x, y)− (i, j)|Dn+1) =
∑

(i,j)∈Z2

∫ 1

0
B ((x, y)− (i, j)− (0, t)|Dn) dt

=
∑

(i,j)∈Z2

∫ 1

0
B (x− i, y − t− j|Dn) dt

=
∑

(i,j)∈Z2

∫ 1

0
B(x− i, y − j|Dn) dt

=

∫ 1

0

∑
(i,j)∈Z2

B(x− i, y − j|Dn) dt

=

∫ 1

0
1 dt = 1.

The case with en+1 = e3 and en+1 = e4 is shown in a similar fashion.

(f) The unit integral property∫
R2

B(x|Dn) dx =

∫
R

∫
R
B(x, y|Dn) dx dy = 1

.

Proof. We begin with the base case. For n = 2, it holds from (1.5.1) that∫
R2

B(x|D2) dx =

∫ ∞
−∞

∫ ∞
−∞

χ[0,1)2 dx dy =

∫ 1

0

∫ 1

0

1 dx dy = 1.
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By induction argument, assume that it holds true for n, that is,∫
R2

B(x|Dn)dx =

∫ ∞
−∞

∫ ∞
−∞

B(x, y|Dn) dx dy = 1.

Then, we need to check whether it is true for n+ 1.

If en+1 = e1, and applying the induction argument by setting x́ := x− t ∈ R, we have∫
R2

B(x|Dn+1) dx =

∫
R2

[∫ 1

0
B(x− t e1|Dn) dt

]
dx

=

∫ ∞
−∞

∫ ∞
−∞

(∫ 1

0
B((x, y)− t e1|Dn) dt

)
dx dy

=

∫ 1

0

[∫ ∞
−∞

∫ ∞
−∞

B((x, y)− t e1|Dn) dx dy

]
dt

=

∫ 1

0

(∫ ∞
−∞

∫ ∞
−∞

B((x− t, y)|Dn) dx dy

)
dt =

∫ 1

0
1 dt = 1.

If en+1 = e2, and applying the induction argument by setting ý := y − t ∈ R, we have∫
R2

B(x|Dn+1) dx =

∫
R2

[∫ 1

0

B(x− t e2|Dn) dt

]
dx

=

∫ ∞
−∞

∫ ∞
−∞

(∫ 1

0

B((x, y)− t e2|Dn) dt

)
dx dy

=

∫ 1

0

[∫ ∞
−∞

∫ ∞
−∞

B((x, y)− t e2|Dn) dx dy

]
dt

=

∫ 1

0

(∫ ∞
−∞

∫ ∞
−∞

B(x, y − t|Dn) dx dy

)
dt =

∫ 1

0

1 dt = 1.

The case with en+1 = e3 and en+1 = e4 can be shown in a similar fashion.

The following result in [dVC10] is a special case of Theorem 1.8.2 (d), which is about the
support of a box spline in the bivariate case.

Corollary 1.8.3. For n ∈ N with n := k + ` + m + p as in (1.5.4), the support of a box
spline B(x|Dn) is in general a closed polygonal region k, ` > 0, m, p ≥ 0 with the following
restrictions.

(a) The box spline Bk,` is supported on the rectangle [0, k]× [0, `] with m = p = 0.

(b) The box spline Bk,`,m is supported on a closed hexagonal region with ` > 0 and
m > 0.

(c) The box spline Bk,`,m,p is supported on a closed octagonal region if m, p > 0.

Proof. The proof is immediate from the proof of Theorem 1.8.2 (d).

Remark

The support of bivariate box splines in general are built from the union of smaller trian-
gular pieces in Z2-grid. If we denote the set Ω ⊆ Z2 on the grid in which the support
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encompasses, then Ω is bounded, polygonal and convex set with its boundary along a
3/4-directional grid itself. The following result in [dVC10] relates univariate B-splines
with box splines.

Proposition 1.8.4. Given k,m ∈ N, then the box spline

Bk,m(x) = B(x|{e1, . . . , e1︸ ︷︷ ︸
k

, e2, . . . , e2︸ ︷︷ ︸
m

}) = Bk(x)Bm(y)

where x := (x, y) ∈ R2 and Bk and Bm are cardinal B-splines.

Proof. We use inductive argument on both k and m respectively. For �xed k, we �rst
apply the inductive argument on m. For m = 1 and k = 1 and from the de�nition of B1

in (1.5.1), we have that

B1(x, y) = B(x|D2) = χ[0,1)2(x, y) = χ[0,1)(x) χ[0,1)(y) = B1(x)B1(y). (1.8.20)

Suppose it holds true for an arbitrary m. Then, for �xed k and from the de�nition of B1

in (1.5.1), we have that

Bk,m+1(x) =

∫ 1

0

Bk,m(x− t e2|Dn) dt =

∫ 1

0

Bk(x)Bm(y − t) dt

= Bk(x)

∫ 1

0

Bm(y − t) dt = Bk(x)Bm+1(y). (1.8.21)

Similarly, for �xed m and from the de�nition of B1 in (1.5.1), we have that

Bk+1,m(x) =

∫ 1

0

Bk,m(x− t e1|Dn) dt =

∫ 1

0

Bk(x− t)Bm(y) dt

= Bm(y)

∫ 1

0

Bk(x− t) dt = Bk+1(x)Bm(y). (1.8.22)

From (1.8.21) and (1.8.22), we deduce that Bk,m(x, y) = Bk(x)Bm(y).

1.8.1 The general setting of box splines

The following results are some generalized facts about multivariate box splines. More
information with greater detail is given in [dBHR93, CK02, Jia00].

Let D = {e1, e2, . . . , en} ⊂ Zd\{0} be a multi-set of non-zero vectors in Rd.

(a) A box spline BD := B(·|D) associated with direction matrix D ∈ Zd×n is a distribu-
tion in the space of all continuous functions on Rd, that is,

BD : C(Rd)→ R satis�es the following condition:

〈BD, f〉 : =

∫
Rd

BD(x) f(x) dx =

∫
[0,1)n

f(D.t) dt

=

∫
[0,1)n

f(e1 t1 + . . .+ en tn) dt1dt2 . . . dtn for f ∈ C∞0 (Rd),

x ∈ Rd, t = (t1, t2, . . . , tn)T . (1.8.23)

The value of the box spline is BD(x), x ∈ Rd.
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(b) The restriction of box splines B(·|D) to their regional support pieces results in a
piecewise polynomial of total order m = n− d+ 1 (exact total degree n− d) where
their compact support is given by

suppc BD =

{
n∑
j=1

ej tj : 0 ≤ tj ≤ 1, j = 1, . . . , n

}
.

(c) The centre of the support of a box spline B(x|D) is the sum of the column vectors

in D, that is, xD :=
1

2

n∑
k=1

ek. The box splines in general are symmetric about the

center of their support.

(d) The linear space of all box splines are built from the shifts of the box spline BD on
Zd, that is,

SBD := span [BD(· − j)] for j ∈ Zd. (1.8.24)

(e) The sequence {BD(.− j)}j∈Zd is linearly independent if and only if the direction
matrix D is uni-modular which means that all square sub-matrices of D have deter-
minant ±1, that is, det C = {+1,−1},∀ C ∈ D.

(f) BD satis�es re�nement equation (1.2.1) with dilation matrix 2Id, d ∈ Z+, that is,

BD(x) =
∑
j∈Zd

pDj BD(2x− j), x ∈ Rd, (1.8.25)

where pDj ∈ `0(Zd) is obtained from the coe�cients of the symbol PD(z) given by

PD(z) = 2d
∏
v∈D

[
1 + zv

2

]
(1.8.26)

for z := (z1, . . . , zd), zi ∈ C, i = 1, . . . , d, and v runs through all the columns of the
d× n matrix with rank d, D ∈ Zd×n, with n ≥ d.

In the following section, the role of direction sets (or matrices) associated with box splines
will be introduced, for instance, to study the continuity exponent, to know the degree of
polynomial pieces and to construct the subdivision algorithm as given in [Pra85, She96].

1.9 Direction matrices and box splines

The following linear algebraic notions are used to study box splines with associated direc-
tion matrices D. We denote by Zd×n the class of matrices with integer entries of d-rows
and n-columns, and #D denotes the number of columns of the matrix D ∈ Zd×n.

We write Z ⊂ D = [e1, . . . , en] if Z = [ei1 , . . . , eik ] for some 1 ≤ i1 ≤ i2 < . . . < ik ≤ #D,
and D\Z ∈ Rd×(n−k) is a matrix where the columns of Z have been removed from D up
to the multiplicity in which they occur in Z.

For the matrix D = [e1, . . . , en] ∈ Zd×n, the following are important concepts associated
with direction matrices.

Remark: Let X = (x1, . . . , xn)T be a real column vector.
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(a) The column span (the range) of the matrix D is de�ned to be

ran(D) = span(D) :=
{
x ∈ Rd : x = Dv, for some v ∈ Rn

}
. (1.9.1)

(b) The kernel of the matrix D is de�ned to be

kerD :=
{
x ∈ Rd : Dx = 0, 0 := (0, 0, . . . , 0)T ∈ Rd

}
. (1.9.2)

(c) A matrix Z ⊂ D is said to be a spanning matrix if ran(Z) = ran(D).

(d) χ(D) is de�ned as the set consisting of all bases that span D.

(e) The rank of matrix D is de�ned to be

k := k(D) = dim(ran(D)). (1.9.3)

(f) The set A(D) is de�ned to be

A(D) :=
{
Z ⊂ D : span(D\Z) 6= Rd

}
. (1.9.4)

(g) The continuity integer r of D is de�ned by

r = r(D) := min {#Z : Z ∈ A(D)} − 2 := k − 2 (1.9.5)

where k is the rank of D as in (1.9.3).

We proceed to study the smoothness order of box splines based on direction matrices.

Proposition 1.9.1. According to [dBHR93], the box spline BD := B(·|D), with associated
direction matrix D, satis�es BD ∈ Cr(ran(D)), where r := r(D) is as in (1.9.5) and the
range of D, ran(D), is usually either R2 or a subspace of R2.

Example

Consider the box spline B2,2,1 with direction matrix

D =

[
1 1 0 0 1
0 0 1 1 1

]
:= [v1v2v3v4v5]

in which case ran(D) = R2. Then, using Proposition 1.9.1, together with equation (1.9.1)
and (1.9.3), we get

χ(D) =

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
0 1
1 0

]
,

[
0 1
1 1

]}
= {[v1v4], [v1v5], [v2v3], [v2v4], [v2v5], [v3v5]}}.

Furthermore, using (1.9.4), we have that

A(D) = {[v1v2v5], [v3v4v5], [v1v3v4v5], [v1v2v4v5], [v2v3v4v5], [v1v2v3v4],D} .

Thus, as in (1.9.5), the continuity exponent r is given by

r = r(D) := min {#Z : Z ∈ A(D)} − 2

= 3− 2 = 1. (1.9.6)
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Hence, the box spline B2,2,1 is of continuity order C1(R2).

Remark: The way of computing the smoothness class using Proposition 1.9.1 only holds
for box splines, and more details are given in [EU10, dBHR93, Pra85]. Getting the
smoothness exponent by using this approach is more bene�cial than using the direct ap-
proach via calculus, which involves integrating box splines in their appropriate directions
to enhance the smoothness exponent. Hence, the approach based on Proposition 1.9.1 is
a more e�cient method since it thoroughly relies on direction matrices associated with
box splines.

We �nalize this chapter by introducing our objective as follows. As our main work,
we give attention to the structure of the re�nement mask of an interpolatory Butter�y
subdivision polynomial, which is expressed in terms of box spline symbols. We recall that
the symbol of a d-variate box spline B(·|D) with its associated direction matrix D as given
in (1.8.26). Then we basically focus on the interpolatory Butter�y subdivision scheme
with its algebraic veri�cation, according to which, the mask symbol of this subdivision
scheme is expressed in terms of its box spline constituents, by using (1.8.26) as follows:

Pw(z1, z2) = 4z−3
1 z−3

2 [7z1 z2 B2,2,2(z1, z2)− 2z1 B1,3,3(z1, z2)− 2z2 B3,1,3(z1, z2)

−2z1 z2 B3,3,1(z1, z2)] , (1.9.7)

where Ba,b,c(z1, z2), with a, b, c ∈ N, are normalised box spline symbols which are given
by

Ba,b,c(z1, z2) :=

(
1 + z1

2

)a(
1 + z2

2

)b(
1 + z1z2

2

)c

, (1.9.8)

with (z1, z2) ∈ C2\{(0, 0)}.
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Chapter 2

Box splines and subdivision

In this chapter, we study subdivision (re�nement) of bivariate box splines by using Fourier
analogy as discussed in [dVC10]. We provide study tensor product B-splines as a simple
way of constructing bivariate box splines and we give their illustrative graphs. In Section
2.3, bivariate subdivision schemes, especially the interpolatory ones will be discussed. We
also study the link between the subdivision algorithm and the cascade algorithms, with the
view to establish the existence of interpolatory bivariate re�nable functions. Re�nement
rules for constructing surfaces will be introduced at the end of this section.

2.1 The re�nability of box splines

In this section, we apply results from Fourier analysis to investigate the re�nability of
bivariate box splines.

De�nition 2.1.1. For any piecewise continuous compactly supported function

F : R2 → C, its Fourier transform F̂ : R2 → C is de�ned by

F̂ (w) :=

∫
R2

e−ix·wF (x) dx, w ∈ R2, (2.1.1)

where x := (x1, x2), w := (w1, w2) and x ·w = x1 w1 + x2 w2.

For our result in Theorem 2.1.4 below, we shall require the following lemma from [dVC10]
that provides an alternative formulation of bivariate box splines.

Lemma 2.1.2. For B(x|Dn) as in (1.5.7),(1.5.5) and n ≥ 2, the following holds:∫
R2

B(x|Dn) f (x) dx =

∫
[0,1]n

f

(
n∑
i=1

ti e
i

)
dt1 . . . dtn for all f ∈ C(R2). (2.1.2)

Proof. The proof is by induction.

37
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For n = 2, by applying (1.5.1) and the de�nition in (1.5.7), we have that, for any f ∈
C(R2), ∫

R2

B(x|D2) f(x) dx =

∫
[0,1]2

f(x) dx =

∫
[0,1]2

f(t1, t2) dt1 dt2

=

∫
[0,1]2

f(t1 e
1 + t2 e

2) dt1 dt2, (2.1.3)

where the e-vectors in this case are as in (1.5.2).

For m ≥ 3, since Dm = Dm−1 ∪ {em}, it follows from de�nition as in (1.5.7) that

B(x|Dm) =

∫ 1

0

B(x− tm em|Dm−1) dtm.

Hence, applying a simple change of variables of integration and the induction hypothesis
consecutively, we obtain∫

R2

B(x|Dm) f(x) dx =

∫ 1

0

{∫
R2

B(x− tmem|Dm−1) f(x) dx

}
dtm

=

∫ 1

0

{∫
R2

B(x|Dm−1) f(x + tm em) dx

}
dtm

=

∫ 1

0

{∫
[0,1]m−1

f

(
m−1∑
i=1

ti e
i + tm em

)
dt1 . . . dtm−1

}
dtm

=

∫
[0,1]m

f

(
m∑
i=1

ti e
i

)
dt1 . . . dtm. (2.1.4)

Theorem 2.1.3. The Fourier transform of the box spline B(x|Dn) is given explicitly by

B̂(w|Dn) =

(
1− e−iw1

iw1

)k (
1− e−iw2

iw2

)`(
1− e−i(w1+w2)

i(w1 + w2)

)m(
1− e−i(w1−w2)

i(w1 − w2)

)p
, (2.1.5)

with k, `,m, p denoting the multiplicities of {(1, 0), (0, 1), (1, 1), (1,−1)}, respectively, that
constitute Dn, with n given in (1.5.4).

Proof. The formula (2.1.5) follows directly by choosing f(x) = e−ix.w in (2.1.2) of Lemma
2.1.2, so that∫

[0,1]n
e−i(t1 e1+...+tn en)·wdt1 . . . dtn =

∫
[0,1]n

e−i(X+Y+Z+W )·wdt1 . . . dtn

=

(∫ 1

0

e−itw1dt

)k (∫ 1

0

e−itw2dt

)`(∫ 1

0

e−it(w1+w2)dt

)m(∫ 1

0

e−it(w1−w2)dt

)p
=

(
1− e−iw1

iw1

)k (
1− e−iw2

iw2

)`(
1− e−i(w1+w2)

i(w1 + w2)

)m(
1− e−i(w1−w2)

i(w1 − w2)

)p
,

where X :=
k∑
j=1

tj e1, Y :=
k+∑̀

j=k+1

tj e2, Z :=
k+`+m∑
j=k+`+1

tj e3, W :=
n∑

j=k+`+m+1

tj e4.
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The following result represents a useful property of Fourier transform, which is a key tool
for proving re�nability of re�nable functions, in particularity, box splines. We provide the
general proof for d-variate re�nable functions. The case d = 2 is given in [dVC10].

Theorem 2.1.4. For any d ∈ N, let A be an invertible d × d matrix and denote by
A−T the transpose of the inverse of A. Then, for any b ∈ Rd, the Fourier transform of
G(x) := g(Ax−b), where g is any piecewise continuous function with compact support in
Rd, is given by

Ĝ(w) =
e−ib·A

−Tw

| det A|
ĝ(A−Tw), w ∈ Rd. (2.1.6)

Proof. Since the Jacobian determinant corresponding to the transformation

y = Ax− b is given by det A, we have that

Ĝ(w) =

∫
Rd

e−ix·wg(Ax− b) dx

=
1

|det A|

∫
Rd

e−i(A
−1y+A−1b)·wg(y) dy

=
e−i(A

−1b)·w

|det A|

∫
Rd

e−i(A
−1y)·wg(y) dy

=
e−ib·(A

−Tw)

|det A|
ĝ(A−Tw), (2.1.7)

where we have used the fact that

(A−1y) ·w = y · A−Tw, for w,y ∈ Rd.

Now, in our case, for d = 2, the result (2.1.6) of Theorem 2.1.4 can be applied to the
re�nement equation

φ(x) =
∑
j∈Z2

pj φ(Ax− j), x ∈ R2, (2.1.8)

to yield

φ̂(w) =

(
1

|det A|
∑
j

pj e
−ij·A−Tw

)
φ̂(A−Tw), w ∈ R2, (2.1.9)

which is therefore the Fourier transform formulation of the re�nement equation (2.1.8).

Since any box spline B(·|Dn) with n ≥ 2, is a compactly supported piecewise continuous
function according to Theorem 1.8.2 [(a), (c), (d)], we can apply the formula in (2.1.1)
and Theorem 2.1.3 to determine the dilation matrix A that satis�es the lattice re�nement
property Z2 ⊆ A−1Z2 for which the box spline B(·|Dn) is re�nable with respect to the
dilation matrix A, and with re�nement mask {pj}, provided that

1

|det A|
∑
j

pj e
−ij·A−Tw =

B̂(w|Dn)

B̂(A−Tw|Dn)
(2.1.10)
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is a Laurent polynomial in z1 and z2, with z1 := e−iw1/2 and z2 := e−iw2/2, where w :=
(w1, w2), so that equation (2.1.10) is a necessary and su�cient condition for the re�nability
of box splines B(·|Dn) with dilation matrix A and a �nitely supported re�nement mask
{pj}j∈Z2 . Next, we mention a result that holds for box splines, B(·|Dn) in general.

Proposition 2.1.5. The box spline B(·|Dn) := Bk,`,m,p is 2I2-re�nable with associated
two-scale Laurent mask symbol given by

∑
j∈Z2

pj z
j =

(
1 + z1

2

)k (
1 + z2

2

)`(
1 + z1z2

2

)m(
1 + z1z

−1
2

2

)p
, (2.1.11)

where z := (z1, z2) = (e−iw1/2, e−iw2/2), with w := (w1, w2).

Proof. The proof proceeds by letting zj := zj11 z
j2
2 , where z := (z1, z2) ∈ C2\{(0, 0)} and

j := (j1, j2) ∈ Z2. Applying (2.1.3), together with Theorem 2.1.4, we get

P (z|2I2,Dn) :=
1

| det 2I2|
∑
j∈Z2

pj z
j

=
1

4

∑
j1,j2∈Z

pj1,j2 z
j1
1 z

j2
2

=
1

4

∑
j∈Z2

pj e
−ij·A−1w.

From equation (2.1.3) and (1.5.4), we have that

P (z|2I2,Dn) = 2−n
(

1− e−iw1

1− e−iw1/2

)k (
1− e−iw2

1− e−iw2/2

)`(
1− e−i(w1+w2)

1− e−i(w1+w2)/2

)m(
1− e−i(w1−w2)

1− e−i(w1−w2)/2

)p
= 2−n

(
1 + e−iw1/2

)k (
1 + e−iw2/2

)` (
1 + e−iw1/2e−iw2/2

)m (
1− e−iw1/2e−iw2/2

)p
=

(
1 + z1

2

)k (1 + z2

2

)`(1 + z1z2

2

)m(1 + z1z
−1
2

2

)p
= 2−n

k∑
i1=0

∑̀
i2=0

m∑
i3=0

p∑
i4=0

(
k

i1

)(
`

i2

)(
m

i3

)(
p

i4

)
zi1+i3+i4

1 zi2+i3−i4
2 , (2.1.12)

which is a Laurent polynomial in z1 := e−iw1/2 and z2 := e−iw2/2. Hence, according to
(2.1.10), the box spline B(·|Dn) := Bk,`,m,p is 2I2-re�nable.

The re�nement mask {pj}j∈Z2 = {pj1,j2} of the box spline Bk,`,m,p(·) with dilating factor
2I2, namely

Bk,`,m,p(x) =
∑
j∈Z2

pj Bk,`,m,p(2x− j), (2.1.13)

is determined by multiplying (2.1.12) by det (2I2) = 4 and then changing i1 + i3 + i4, i2 +
i3 − i4 to j1, j2, respectively, to arrive at∑

j1,j2∈Z

pj1,j2z
j1
1 z

j2
2 . (2.1.14)
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The explicit formulation of re�nement rules (subdivision) now becomes easy once the

re�nement masks {pj1,j2} are known, that is, we multiply (2.1.14) by z
−b(k+m+p)/2c
1 ×

z
−b(`+m−p)/2c
2 to get the centered positive masks:∑

j1,j2

p̃j1,j2 z
j1
1 z

j2
2 = z

−b(k+m+p)/2c
1 × z−b(`+m−p)/2c2

∑
j1,j2

pj1,j2 z
j1
1 zj22 . (2.1.15)

By applying (2.1.15), we extract the re�nement masks for box splines. For instance,
using (2.1.11) with dilation matrix A = 2I2, the box spline B2,2,2 acts as basis function
for generating the Loop subdivision scheme and its Laurent polynomial representation for
subdivision, as given by

P (z1, z2) =

(
1 + z1

2

)2(
1 + z2

2

)2(
1 + z1z2

2

)2

. (2.1.16)

Equation (2.1.16) can be centered by z−2
1 z−2

2 to give a re�nement (subdivision) mask,
which is given as the matrix

{p̃j1,j2 : −1 ≤ j1, j2 ≤ 3} =
1

64


0 0 1 2 1
0 2 6 6 2
1 6 10 6 1
2 6 6 2 0
1 2 1 0 0

 . (2.1.17)

This mask is used for triangulation of control meshes via the Loop subdivision scheme.
As it is fully based on the box spline B2,2,2, it is sometimes known as a box spline scheme.

In the previous chapter, we have seen that the ZP element B4 is 2I2-re�nable. In the
next result, we further check that the box spline B4 is re�nable with respect to Quincunx

dilation Q :=

[
1 1
1 −1

]
by using the Fourier result as in (2.1.10).

Proposition 2.1.6. The ZP element B4 is Q-re�nable, which is also known as Quincunx-
re�nable.

Proof. Using (2.1.1),(2.1.5) and (2.1.10), the proof proceeds as follows.

B̂(w|D4)

B̂(Q−Tw|D4)
=

1

2

∑
j,k

pj,k e
−i(j,k)

 1 1
1 −1

−T w1

w2



=
1

2

∑
j,k

pj,k e
− i

2
[(−j+k)w1+(j+k)w2]

=
1

2

∑
j,k

pj,k [e−
i
2
w1 ]−j[e−

i
2
w1 ]k[e−

i
2
w2 ]j[e−

i
2
w2 ]k

=
1

2

∑
j,k

pj,k z
−j+k
1 zj+k2 , (2.1.18)
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where z1 := e−
i
2
w1 and z2 := e−

i
2
w2 , respectively. But, according to (2.1.5), with the case

n = 4, we have that

B̂(w1, w2|D4) =

(
1− e−iw1

iw1

)(
1− e−iw2

iw2

)(
1− e−i(w1+w2)

i(w1 + w2)

)(
1− e−i(w1−w2)

i(w1 − w2)

)
.

(2.1.19)

Applying (2.1.19), we obtain

B̂
[(
−1

2
1
2

1
2

1
2

)(
w1

w2

)]
= B̂

(
−w1 + w2

2
,
w1 + w2

2

)
=

(
1− e−iw1

iw1

)(
1− e−iw2

iw2

)(
1− e−i(w1+w2)/2

i(w1 + w2)

)(
1− e−i(w1−w2)/2

i(w1 − w2)

)
.

(2.1.20)

Now, taking the ratio between (2.1.19) and (2.1.20), we obtain

B̂(w|D4)

B̂(Q−Tw|D4)
=

(
1 + e−

i
2

(w1+w2)

2

)(
1 + e−

i
2

(w1−w2)

2

)
,

=

(
1 + z1z2

2

)(
1 + z1z

−1
2

2

)
. (2.1.21)

which is indeed a Laurent polynomial in z1 := e−
i
2
w1 and z2 := e−

i
2
w2 , respectively. Hence,

according to (2.1.10), the box spline B4 is Quincunx re�nable with its re�nement mask
obtained by multiplying (2.1.18) by |detA| = 2 and from the coe�cients of the symbol in
(2.1.21), we get

p00 = p1,1 = p2,0 =
1

2
; p1,−1 = −1

2
. (2.1.22)

The re�nability of 4-directional box splines in a general sense is described by the following
result.

Theorem 2.1.7. The 4-directional box spline Bk,`,m,p, with the conditions k = m and

` = p, is Q-re�nable where Q :=

[
1 1
1 −1

]
.

Proof. Applying (2.1.10) and Theorem 2.1.4, we obtain the Laurent polynomial

P (z|Q,Dn) =
1

|detQ|
∑
j

pj z
j =

1

2

∑
j,k

pj,k z
j
1 z

k
2

=

(
1− e−iw1

1− e−i(w1+w2)/2
× w1 + w2

2w1

)k (
1− e−iw2

1− e−i(w1−w2)/2
× w1 − w2

2w2

)`
(

1− e−i(w1+w2)

1− e−iw1
× w1

w1 + w2

)m(
1− e−i(w1−w2)

1− e−iw2
× w2

w1 − w2

)p
. (2.1.23)

Now, observe from (2.1.23) that P is a Laurent polynomial in z1 = e−
i
2
w1 and
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z2 = e−
i
2
w2 if and only if k = m and ` = p. This is satis�ed when (2.1.23) becomes

P (z|Q,Dn) =

(
1 + z1z2

2

)k (
1 + z1z

−1
2

2

)`
.

Hence, the re�nement mask p = {pi,j : i, j ∈ Z} can be computed by multiplying (2.1.23)
by |detQ| = 2, or

∑
j,k

pj,k z
j
1z
k
2 = 2P (z|Q,Dn) = 2−(k+`)+1

k∑
i=0

∑̀
j=0

(
k

i

)(
`

j

)
zi+j1 zi−j2 ,

so that

pj := pj1,j2 = 2−(k+`)+1

(
k

(j1 + j2)/2

)(
`

(j1 − j2)/2

)
, ;

where
(
r
k

)
:= 0 for k < 0, k > r or k /∈ Z, according to which

pj =

2−(k+`)+1
(
k
i

)(
`
j

)
; j := Q

[
i

j

]
∈ QZ2,

0, j /∈ QZ2.

(2.1.24)

Thus, from (2.1.8), (2.1.9) and (2.1.10), the box spline Bk,`,m,p is Q-re�nable with its
re�nement mask as in (2.1.24) for k = m and ` = p.

2.1.1 Box spline subdivision in terms of re�nement mask

symbols

In this subsection, we only give the intuitive notion of subdivision of box splines in terms
of re�nement mask symbols. (For details, see the next chapter.)

Given a set of control coe�cients ck−1 on the coarse grid 1
2k−1Z2, the following algorithm

computes a set of control coe�cients ck on the re�ned grid 1
2k
Z2 as follows:

� Construct the generating function Ck−1[x, y] from ck−1. Up-sample Ck−1[x, y] to
yield Ck−1[x2, y2]. Set Ck[x, y] = 4 Ck−1[x2, y2].

� For each direction vector {(a, b)} ∈ D, update Ck[x, y] via the recurrence

Ck(x, y) =

(
1 + xa yb

2

)
Ck−1(x, y).

Each multiplication by

(
1 + xa yb

2

)
corresponds to midpoint averaging on ck in the

direction (a, b).

� Extract the coe�cients ck of the generating function Ck[x, y].
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2.2 Tensor products

Tensor products could be regarded as means of constructing bivariate re�nable functions,
especially the bivariate tensor product box splines from the univariate B splines discussed
in Section 1.4.

De�nition 2.2.1. Let φ1 and φ2 be univariate re�nable functions with corresponding

re�nement mask symbols P1(z) =
∑
j

p
[1]
j z

j and P2(z) =
∑
k

p
[2]
k z

k, z ∈ C\{0} respectively.

Then the the tensor product Φ is de�ned as

Φ(x, y) := φ1(x) φ2(y), (x, y) ∈ R2. (2.2.1)

Theorem 2.2.2. Let φ1 and φ2 be two univariate re�nable functions with respective mask
sequences {p1

j} and {p2
j}. Then the tensor product

Φ(x, y) = φ1(x) φ2(y)

satis�es the following :

(i) Re�nability property :

Φ is a bivariate 2I2-re�nable function with re�nement equation

Φ(x) =
∑
j

pj Φ(2x− j),x ∈ R2,

where

pj := p
[1]
j1
p

[2]
j2
, j := (j1, j2) ∈ Z2. (2.2.2)

(ii) Normalization (scaling) property :∫
R2

Φ(x) dx = 1.

(iv) Interpolatory property:

If the re�nable functions φ1 and φ2 are both interpolatory as in (1.2.3), then so is
the tensor product Φ.

(iv) Partition of unity property:

If φ1 and φ2 satisfy the partition of unity condition, then so does Φ, that is,∑
j

Φ(x− j) = 1, for x ∈ R2.

Proof. (i) From (2.2.1) and the re�nability of φ1 and φ2 together with (2.2.2), we obtain
for any x =: (x, y) ∈ R2∑

j

pj Φ(2x− j) =
∑
j1

∑
j2

p
[1]
j1
p

[2]
j2
φ1(2x− j1)φ2(2y − j2)

=

[∑
j1

p
[1]
j1
φ1(2x− j1)

] [∑
j2

p
[2]
j2
φ2(2x− j2)

]
= φ1(x) φ2(y) = Φ(x),
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which completes the proof of (i).

(ii) Since φ1(x) and φ2(y) are scaling functions1, it is immediate from (2.2.1) that∫
R2

Φ(x) dx =

∫
R

∫
R

Φ(x, y) dx dy =

[∫
R
φ1(x) dx

] [∫
R
φ2(y) dy

]
= 1.

(iii)

Preservation of the interpolatory property of the tensor product re�nable function Φ is
given as follows. We let j := (k, `) ∈ Z2, then

Φ(j) = Φ(k, `) := φ1(k) φ2(`) = δk δ` = δk,` = δj,

so that Φ is interpolatory.

(iv)

To check the partition of unity property of Φ, set x := (x, y) ∈ R2 and j := (k, `) ∈ Z2.
Then we have∑

j

Φ(x− j) =
∑
k,`

∑
i,j

pi,j Φ (2(x− k)− i, 2(y − `)− j)

=
∑
k,`

∑
i,j

p
[1]
i p

[2]
j φ1(2(x− k)− i) φ2(2(y − `)− j)

=
∑
k,`

(∑
i

p
[1]
i φ2(2(x− k)− i)

) (∑
j

p
[2]
j φ2(2(y − `)− j)

)
=
∑
k,`

φ1(x− k) φ2(y − `) =
∑

k

φ1(x− k)
∑
`

φ2(y − `) = 1,

which shows that Φ satis�es the partition of unity property.

Next, we give the Laurent polynomial representation for a re�nement mask of tensor
product re�nable function in terms of its constituents.

Remark: Let P̃1, P̃2 and P be the mask symbols corresponding to the masks p
[1]
k , p

[2]
` and

pk,` in Theorem 2.2.2. Then it follows from (2.2.2), for any z1, z2 ∈ C\{0}, that

P (z1, z2) =
∑
k,`

pk,` z
k
1 z

`
2 =

(∑
k

p
[1]
k zk

1

)(∑
`

p
[2]
` z`2

)
:= P̃1(z1) · P̃2(z2). (2.2.3)

Examples

(a) Consider the shifted hat function h̃ ∈ C0(R) as given (1.4.17), which is interpolatory,
2I2-re�nable function supported on [−1, 1] with re�nement mask pj = {1

2
, 1, 1

2
}, and

corresponding mask symbol P̃h̃ given by P̃h̃(z) = 1
2
z−1(1 + z)2. It follows from

Theorem 2.2.2 that Φ = h̃.h̃ ∈ C0(R2) is interpolatory with associated re�nement
mask symbol given by

P̃h̃(z1, z2) =
1

4
z−1

1 z−1
2 (1 + z1)2(1 + z2)2, (z1, z2) ∈ Z2\{(0, 0)}. (2.2.4)

1If the re�nable function φ(x) satis�es

∫
R
φ(x) dx = 1, then it is known as a scaling function.
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(b) Another prominent interplatory re�nable function is the Deslauriers-Dubuc (DD)
function with re�nement mask given by {pj : j ∈ [−3, 3]} =

{
− 1

16
, 0, 9

16
, 1, 9

16
, 0,− 1

16

}
,

and its corresponding mask symbol given by

P (z) = − 1

16
z−3 +

9

16
z−1 + 1 +

9

16
z − 1

16
z3, z ∈ C\{0}. (2.2.5)

By using tensor products and (2.2.5), we generate the bivariate version of DD-
function, the tensored Deslauriers-Dubuc function, with graph shown in Figure 2.4.
Also, the graphs of the linear, quadratic and cubic tensored spline functions are
given in Figures 3.2 and 3.10.

Figure 2.1: The tensored hat func-
tion

Figure 2.2: The bilinear quadratic
function

Figure 2.3: The tensored Deslauriers-
Dubuc function

Figure 2.4: The tensored cubic spline func-
tion

2.3 Bivariate subdivision schemes

In this section, we study bivariate subdivision schemes and their properties.

De�nition 2.3.1. Given p = {pj}j∈Z2 ∈ `0(Z2) and an invertible 2× 2 dilation matrix A,
the subdivision operator Sp : `(Z2)→ `(Z2) is de�ned for any sequence c ∈ `(Z2) by

(Spc)j =
∑
k

pj−AkT ckT , j ∈ Z2. (2.3.1)
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Let c = {cj : j ∈ Z2} ⊂ R3 denote a �nitely supported control point sequence. Then
repeated application of the subdivision operator Sp yields the algorithm

c0
j := cj;

crj := (Spcr−1)j = (Srpc)j, j ∈ Z2, r = 1, 2, . . . ,

}
(2.3.2)

which is equivalent to

cr = Srpc ; Sr+1
p c = Sp(Srpc), r = 1, 2, . . . , (2.3.3)

with the convention that S0
p is the identity operator on `(Z2), and S1

p = Sp.

For a given control point sequence c = {cj ∈ R3 : j ∈ Z2}, we de�ne the generating func-
tion

C(z1, z2) :=
∑
i,j∈Z

ci,j z
i
1 z

j
2, (2.3.4)

with z := (z1, z2) ∈ C2\{(0, 0)}, and let A = 2I2. Applying equation (2.3.1) and using
(2.3.4), as well as (1.3.8), we deduce that, for any z = (z1, z2) ∈ C2,

(Spc)(z1, z2) = C(z2
1 , z

2
2) P (z1, z2), with z2 := (z2

1 , z
2
2), (2.3.5)

where C(z2
1 , z

2
2) is the up-sampled version of the control data c and P (z1, z2) is the sub-

division polynomial as in (1.3.8). We provide a proof for equation (2.3.5) in the following
result.

Theorem 2.3.2. The bivariate subdivision formula in terms of mask symbols is as given
in (2.3.5).

Proof.

(Spc) (z) =
∑
j

(Spc)
j
zj

=
∑
j

(∑
k

pj−2I2k
T ckT

)
zj

=
∑
k

(∑
j

pj−2I2k
T zj

)
ckT

=
∑
k

(∑
j

pj z
j+2I2k

T

)
ckT

=

[∑
k

ckT z2I2k
T

][∑
j

pj z
j

]

=

[∑
k1,k2

ckT z2k1
1 z2k2

2

][∑
j

pj z
j1
1 zj22

]
= C

(
z2

1 , z
2
2

)
P (z1, z2) ,
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that is, we proceed to rewrite equation (2.3.5) in terms of sub-masks of the mask p.

To this end, we let

E := {0, 1}2 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)} = Z2
2, (2.3.6)

which is a complete set of representatives of the distinct cosets of Z2/2Z2, with

Z2 =
⋃
γ∈E

[
γ + (2I2)Z2

]
for γ, β ∈ E , so that also [γ + (2I2)Z2] ∩ [β + (2I2)Z2] = ∅. Note that E is the set of
extreme points given by vertices of the unit square [0, 1]2 containing 0 := (0, 0) and 1 :=
(1, 1). Then, the four sub-masks {pe : e ∈ E} , with associated symbols {Pe(z) : e ∈ E} ,
are de�ned by

Pe(z) =
∑
j∈Z2

pe+2j z
j, e ∈ E , (2.3.7)

where zj := zj11 zj22 , with j1, j2 ∈ Z.

Using the standard decomposition result

P (z) =
∑
e∈E

ze Pe(z
2), (2.3.8)

we can rewrite equation (2.3.5) as

(Spc)(z1, z2) = C(z2
1 , z

2
2) P(0,0)(z

2
1 , z

2
2) + z2 C(z2

1 , z
2
2) P(0,1)(z

2
1 , z

2
2)

+ z1 C(z2
1 , z

2
2) P(1,0)(z

2
1 , z

2
2) + z1 z2 C(z2

1 , z
2
2) P(1,1)(z

2
1 , z

2
2). (2.3.9)

Equivalently, (2.3.9) is given compactly as

(Spc)(z) =
∑
e∈E

ze C(z2) Pe(z
2), (2.3.10)

where z := (z1, z2) ∈ C2\{(0, 0)}.

Equation (2.3.9) shows that a subdivision step is the result of convolution of the input
initial data c by its sub-mask pe followed by up-sampling and multiplication by ze, to
produce Spc.

A natural question one might ask with respect to the algorithm (2.3.3) is whether, after
making repeated iterations of subdivision operator, these sets of control points will con-
verge to a curve or a surface, and will there be a condition that assures such convergence.
In order to facilitate this convergence analysis in the norm ‖c ‖∞ := sup

j∈Z2

|cj|, we introduce

the following criterion for subdivision convergence.

De�nition 2.3.3. The subdivision operator Sp de�ned in (2.3.1) by a non-trivial sequence
p := {pi,j} ∈ `0(Z2) is said to provide a convergent subdivision scheme for c := { c0

j ∈
R| j ∈ Z2} ∈ `∞(Z2), if there exists a non-trivial function φp ∈ C(R2) such that

lim
r→∞

∣∣∣φp(2−rj)− p[r]
j

∣∣∣ = 0, r →∞, (2.3.11)
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where r = 1, 2, . . . , and

p
[r]
j := (Srpδ)j, (2.3.12)

with δ := {δj : j ∈ Z2} denoting the Kronecker delta sequence as in (1.2.5). We call φp
the limit function corresponding to Sp, or basis function associated with the subdivision
operator Sp, and we shall sometimes write S∞p c0 := φp. Also, Sp is said to be a convergent
subdivision scheme of order m, or in short, Sp is CmSS, if S∞p c ∈ Cm(R2).

The following result introduces a simple necessary condition for Sp to be convergent. Our
proof uses a similar argument as in [KLY07].

Theorem 2.3.4. Suppose Sp is a convergent subdivision scheme with mask {pj} and
dilation matrix A = 2I2. Then for every γ ∈ E as in (2.3.6), we have that∑

j∈Z2

pγ−2j = 1. (2.3.13)

Proof. Let c0 be the initial control data, and let γ ∈ E as in (2.3.6) be arbitrarily �xed.
Then, from the de�nition of subdivision convergence as in (2.3.11), then there exists
φ ∈ C(R2) such that

lim
k→∞

sup
j∈Z2

∣∣(Skpc0)j − φp[(2I2)−kj]
∣∣ = 0

⇔ lim
k→∞

sup
α1,α2∈Z

∣∣(Skpc0)α1,α2 − φp(2−kα1, 2
−kα2)

∣∣ = 0. (2.3.14)

Let x0 := (x0, y0) ∈ R2 such that φp(x0) 6= 0. Since φp is continuous, there exists an open
neighbourhood K of x0 such that φp(K) 6= 0. Since also

Q :=
{

(2−mα1, 2
−mα2) : (α1, α2) ∈ Z2, m ∈ Z

}
is dense in R2, we have that Q ∩K 6= ∅, that is, there exists m ∈ Z and (β1, β2) ∈ Z2 such
that φp(2−mβ1, 2

−mβ2) 6= ∅. For su�ciently large k, we therefore have that

(Skpc0)2k−mα1+γ1,2k−mα2+γ2 =
∑
β1,β2

p2k−mα1+γ1−2β1,2k−mα2+γ2−2β2 (Sk−1
p c0)β1,β2

=
∑
β1,β2

p2(2k−m−1α1−β1)+γ1,2(2k−m−1α2−β2)+γ2 (Sk−1
p c0)β1,β2

=
∑
β1,β2

p2β1+γ1,2β2+γ2 (Sk−1
p c0)2k−m−1α1−β1,2k−m−1α2−β2 .

Referring to equation (2.3.14), we deduce that

φp(2−mα1 + 2−kγ1, 2
−mα2 + 2−kγ2)−

∑
β1,β2

p2β1+γ1,2β2+γ2 φp(2−mα1 − 2−k+1β1, 2
−mα2 − 2−k+1β2)

= φp(2−mα1 + 2−kγ1, 2
−mα2 + 2−kγ2)− (Skpc0)2k−mα1+γ1,2k−mα2+γ2 +∑

β1,β2

p2β1+γ1,2β2+γ2

[
(Sk−1

p c0)2k−m−1α1−β1,2k−m−1α2−β2 − φp(2−mα1 − 2−k+1β1, 2
−mα2 + 2−k+1β2)

]
.
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By taking k → ∞, and using the uniform convergence of S, as well as the continuity of
φp, we obtain

φp(2−mα1, 2
−mα2) =

∑
β1,β2

p2β1+γ1,2β2+γ2 φp(2−mα1, 2
−mα2).

Since also φp(2−mα1, 2
−mα2) 6= 0, we deduce that∑

β1,β2

p2β1+γ1,2β2+γ2 = 1, for (γ1, γ2) ∈ E as in (2.3.11), (2.3.15)

and thereby completing our proof.

Theorem 2.3.5. For a given sequence p = {pj : j ∈ Z2} ∈ `0, with supp {pj} = [µ, ν] ×
[α, β]|Z2, let the sequence {pri,j}, r = 1, 2, . . . be de�ned by (2.3.12).

Then:

(a) The recursive formulation

p
[1]
i,j = pi,j, p

[r]
i,j =

∑
k,`

pk,` p
[r−1]

i−2r−1k,j−2r−1` (2.3.16)

is satis�ed for r = 2, 3, . . ..

(b) For any sequence c = {cj : j ∈ Z2} ∈ `(Z2) of control points and r = 1, 2, . . .,
the subdivision process in (2.3.3) can be formulated as the up-sampling convolution
operation

(Srpc)i,j =
∑
k,`

p
[r]
i−2rk,j−2r` ck,`, i, j ∈ Z. (2.3.17)

(c) If, moreover, {pj : j ∈ Z2} satis�es the sum rule condition as in (2.3.13), the
condition ∑

k,`

pi−2rk,j−2r` = 1, (i, j) ∈ Z2, (2.3.18)

is satis�ed for r = 1, 2, . . . .

Proof. The inductive proof is a direct extension of the one given for the univariate case
in [dVC10], Theorem 4.2.1.

2.4 Cascade operators

De�nition 2.4.1. For a given dilation matrix A and a sequence p ∈ `0(Zd), where d ∈ N,
the cascade operator Cp : M(Rd)→M(Rd) is given by

(Cpg)(x) :=
∑
j∈Zd

pj g(Ax− j), x ∈ Rd, g ∈M(Rd). (2.4.1)
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We note that Cpg = g if and only if g satis�es the re�nement equation

g(x) =
∑
j

pj g(x− j), x ∈ Rd. (2.4.2)

As in the univariate case in [dVC10], the resulting cascade algorithm Cp then generates
a sequence of functional iterates {hr : r = 1, 2, . . .} obtained by means of the following
recursion relation:

h0 := h ; hr := Cphr−1 = Cr
ph , r = 1, 2, . . . , (2.4.3)

where the function h ∈ M(Rd) is an initializer of the algorithm. Equation (2.4.3) is
equivalently expressed as hr := Cphr−1 = Cr

ph, hr+1 := Cphr, where

C0
ph = h ; Cr+1

p h = Cp

(
Cr
ph
)
, r = 1, 2, . . . . (2.4.4)

Here, for the case d = 2, one can take the initial function h(x) as the tensor product of
the symmetric hat function in R2 with itself, that is,

h(x) = h0(x) :=
2∏
i=1

B̃2(xi), x := (x1, x2) ∈ R2, (2.4.5)

where B̃2 is the B-spline of degree 1 with t ∈ R as in (1.4.16).

De�nition 2.4.2. The cascade operator Cp in (2.4.1) converges on a set X ⊂ C0(Rd) if,
for any initial function h ∈ X, for instance as in (2.4.5), there exists a function g ∈ C(Rd)
such that

lim
r→∞

∥∥Cr
ph− g

∥∥
∞ = 0, r = 1, 2, . . . . (2.4.6)

The limit function g will be denoted by C∞p h.

The following result provides a key relationship between subdivision schemes and the
cascade algorithm. It is an extension of the result for the case d = 2 given in [FdV11].

Proposition 2.4.3. Suppose that pI = {pIj} is an interpolatory mask and let A be any

arbitrary integer dilation matrix. Then, for any sequence c ∈ `(Zd), and for any g ∈
C(Rd), we have that∑

j

(SrpIc)j g(Arx− j) =
∑
j

cj (Cr
pIg)(x− j) for x ∈ Rd and r = 1, 2, . . . . (2.4.7)

In particular, if the delta sequence δ, as given in (1.2.5), is chosen as the sequence c, then
we get, for any g ∈M(Rd),

(CrpIg)(x) =
∑
j

(SrpIδ)j g(Arx− j) for x ∈ Rd, r = 1, 2, . . . . (2.4.8)

Proof. Let g ∈ M(Rd) and c ∈ `(Zd). We observe, using (2.3.3) and (2.4.4), that (2.4.7)
trivially holds for r = 0.
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Now, apply (2.3.3) together with (2.3.1) and (2.4.1), to obtain, for any x ∈ Rd, and
r ∈ N, ∑

j

(SrpIc)j g(A
rx− j) =

∑
j

[∑
k

pI
j−AkT (Sr−1

pI c)k

]
g(Arx− j)

=
∑
k

(Sr−1
pI c)k

∑
j

pIj−AkT g(A
rx− j)

=
∑
k

(Sr−1
pI c)k

∑
j

pIj g(A
rx−AkT − j)

=
∑
k

(Sr−1
pI c)k

∑
j

pIj g(A(A
r−1x− kT )− j)

=
∑
k

(Sr−1
pI c)k(CpIg)(Ar−1x− kT )

...

=
∑
k

(S0
pIc)kT (CrpIg)(x− kT )

=
∑
kT

ck (CrpIg)(x− kT )

=
∑
j

cj (C
r
pIg)(x− j), (2.4.9)

by virtue of (2.3.3), thereby showing that (2.4.7) holds. Replacing c by δ in (2.4.7) yields∑
j

(SrpIδ)j g(Ar.− j) =
∑
`

δ` (Cr
pIg)(.− `) = (Cr

pIg)(x), (2.4.10)

and thereby completing our proof of (2.4.8).

Next, we state the following result which will be used to prove subdivision convergence.

Lemma 2.4.4. For a mask sequence p = {pi,j} ∈ `0(Z2) supported on some rectangular
region R := [µ, ν] × [α, β]|Z2, the sequence {hr : r = 0, 1, 2, . . .} generated by the cascade
algorithm satis�es the following:

(i) For r = 1, 2, . . . ,

hr(x, y) =
∑
i,j

p
[r]
i,j h(2rx− i, 2ry − j). (2.4.11)

(ii) For r = 1, 2, . . . ,

hr

(
i

2r
,
j

2r

)
= p

[r]
i,j. (2.4.12)

Proof. (i) First, observe from (2.4.1),(2.4.3) and (2.3.16) that, for x ∈ R2,

h1(x, y) =
∑
i,j

pi,j h0(2x− i, 2y − j)

=
∑
i,j

p
[1]
i,j h(2x− i, 2y − j), (2.4.13)
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and hence (2.4.11) holds for r = 1.

Proceeding inductively, we use (2.3.16), the induction hypothesis, (2.4.1) and (2.4.3),
to obtain, for x ∈ R2,

∑
i,j

p
[r+1]
i,j h(2r+1x− i, 2r+1y − j) =

∑
i,j

∑
k,`

pk,` p
[r]
i−2rk,j−2r` h(2

r+1x− i, 2r+1y − j)


=
∑
k,`

pk,`

∑
i,j

p
[r]
i−2rk,j−2r` h(2

r+1x− i, 2r+1y − j)


=
∑
k,`

pk,`
∑
i,j

p
[r]
i,j h

(
2r+1x− (i+ 2rk), 2r+1y − (j + 2r`)

)

=
∑
k,`

pk,`

∑
i,j

p
[r]
i,j h(2

r(2x− k)− i, 2r(2y − `)− j)


=
∑
k,`

pk,` hr(2x− k, 2y − `) = (Cphr)(x) = hr+1(x), (2.4.14)

which completes the induction proof of (2.4.11).

(ii) For k, ` ∈ Z, and r ∈ N, by setting (x, y) =

(
k

2r
,
`

2r

)
in (2.4.11), and using

h(i, j) = δi,j, i, j ∈ Z; we obtain hr
(
k

2r
,
`

2r

)
= p

[r+1]
k,` , and thereby completing the

proof of (2.4.12).

Next, we show that convergence of the cascade algorithm implies subdivision convergence
for the bivariate case.

Theorem 2.4.5. Let p = {pi,j} ∈ `0(Z2) be a mask sequence supported in a �nite rectan-
gular region R = [µ, ν] × [α, β]|Z2 satisfying the sum rule condition as in (2.3.13). If the
corresponding cascade algorithm Cp in (2.4.3) is convergent with limit function hp, then
the subdivision scheme Sp is convergent with limit function φp := hp, with, moreover,

sup
i,j

∣∣∣∣φp( i

2r
,
j

2r

)
− p[r]

i,j

∣∣∣∣ ≤ ‖hp − hr‖∞ , (2.4.15)

for r = 1, 2, . . . .

Proof. Since the point

(
i

2r
,
j

2r

)
∈ R2 for a �xed r and Z2 ⊆ R2, we have that, for

r = 1, 2, . . . ,

sup
(i,j)∈Z2

∣∣∣∣hp( i

2r
,
j

2r

)
− hr

(
i

2r
,
j

2r

)∣∣∣∣ ≤ sup
(x,y)∈R2

|hp(x, y)− hr(x, y)| , (2.4.16)

and thus, by applying also (2.4.12), we get

sup
i,j

∣∣∣∣hp( i

2r
,
j

2r

)
− p[r]

i,j

∣∣∣∣ ≤ ‖hp − hr‖∞ . (2.4.17)

From cascade convergence, the right hand side of equation (2.4.17) tends to 0 as r →∞.
Hence the subdivision algorithm converges to the non-trivial function φp := hp. This
completes the proof.
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Remark

For d ∈ N, convergence of the cascade algorithm on C0(Rd) therefore implies the associated
subdivision scheme to be convergent.

2.5 Sum rules-in terms of symbols

In this section, we obtain a necessary condition for subdivision convergence, namely the
sum rule of order 1, as given by

Pe(1) =
∑
j∈Z2

pe+2j, ∀e ∈ E , (2.5.1)

with Pe and E given as in, respectively, (2.3.7) and (2.3.6). According to [CCJZ11],
the convergence of a bivariate subdivision scheme is determined by the properties of the

in�nite product
∞∏
j=0

1

4
P (z2−j

), with z restricted to the torus

T :=
{

(eix, eiy) : x, y ∈ R
}
. (2.5.2)

In order to switch to real variables ξ := (ξ1, ξ2), we set zj := e−iπξj , with j = 1, 2, so that
the set E = {0, 1}2 as in (2.3.6) transforms to the set

Z = ZE =
{
ε = e−iπe : e ∈ E

}
= {−1, 1}2 (2.5.3)

of vertices of the square [−1, 1]2, and the necessary condition (2.5.1) takes the equivalent
form

P (1, 1) = 4 ; P (ε1, ε2) = 0 for (ε1, ε2) ∈ Z
′
:= Z\{(1, 1)}. (2.5.4)

For this reason, we call Z
′
the zero set, and the condition in (2.5.4) is known as the sum

rule condition of order one, to be denoted by Z1.

2.6 Interpolatory subdivision

Recall from De�nition 1.2.4 that φI is a 2I2-interpolatory bivariate re�nable function if it
satis�es the re�nement equation (1.2.1), together with the condition

φI(0, 0) = 1 ; φI(i, j) = 0, (i, j) ∈ Z2\{(0, 0)}, (2.6.1)

whereas, according to (1.3.10), its corresponding interpolatory mask {pIj } must satisfy

pI0,0 = 1 ; pI2i,2j = 0, i, j ∈ Z\{0}. (2.6.2)

If, moreover, φI is continuous, we shall call φI a fundamental re�nable function, as in
[Jia95, HJ98].

By considering the dilation matrix A = 2I2, we observe that the interpolatory condition
as in (1.3.7) together with (2.3.1) takes the form

cj := (SpIc)2I2 j
T = (SpIc)2i,2j, j = (i, j) ∈ Z2. (2.6.3)
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In this case, using (2.3.1), together with (2.3.3), and by induction on r = 1, 2, . . . , we also
have that

crj := cr+1
2I2 j

T = cr+1
2i,2j, j ∈ Z2, (2.6.4)

which means that, at each level of iteration, the subdivision scheme keeps all points at
the previous iteration step and hence it is interpolatory.

Theorem 2.6.1. Suppose that a re�nement mask p = {pi,j} satis�es∑
i,j

pi,j = 4. (2.6.5)

Then pI is interpolatory if and only if the corresponding mask symbol P I , as in (1.2.3),
satis�es

P I(z1, z2) + P I(−z1, z2) + P I(z1,−z2) + P I(−z1,−z2) = 4, (2.6.6)

for any (z1, z2) ∈ C2\{(0, 0)}.

Proof. For any (z1, z2) ∈ C2\{(0, 0)}, we have from (1.2.3) that

P I(z1, z2) + P I(−z1, z2) =

∑
i,j

pI2i,j z
2i
1 z

j
2 +

∑
i,j

pI2i+1,j z
2i+1
1 zj2

+
∑
i,j

pI2i,j z
2i
1 z

j
2 −

∑
i,j

pI2i+1,j z
2i+1
1 zj2


= 2

∑
i,j

pI2i,j z
2i
1 z

j
2

= 2
∑
i,j

pI2i,2j z
2i
1 z

2j
2 + 2

∑
i,j

pI2i,2j+1 z
2i
1 z

2j+1
2 , (2.6.7)

and similarly,

P I(z1,−z2) + P I(−z1,−z2) =

[
2
∑
i,j

pI2i,2j z
2i
1 z

2j
2 − 2

∑
i,j

pI2i,2j+1 z
2i
1 z

2j+1
2

]
. (2.6.8)

By adding (2.6.7) and (2.6.8), we get

P I(z1, z2) + P I(−z1, z2) + P I(z1,−z2) + P I(−z1,−z2) = 4
∑
i,j∈Z

pI2i,2j z
2i
1 z2j

2 , (2.6.9)

for any (z1, z2) ∈ C2\{(0, 0)}.

According to Theorem 2.6.1, for a bivariate re�nable function φI to satisfy the interpola-
tory condition φI(j) = δj, j ∈ Z2, we have

P I(z1, z2) + P I(−z1, z2) + P I(z1,−z2) + P I(−z1,−z2) = 4. (2.6.10)

This is the necessary condition for existence of an interpolatory bivariate re�nable func-
tion.

Also, observe that the necessary condition for convergence of interpolatory subdivision
schemes is closely related to equation 2.5.1, according to the following result.
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Proposition 2.6.2. Assuming that an interpolatory re�nable function φI exists and sat-
is�es the re�nement equation (1.2.1), with a �nitely supported re�nement mask pI and
dilation matrix A = 2I2, then the re�nement mask pI must satisfy∑

j∈Z2

pj = 4⇔
∑
i,j

pI2i,2j =
∑
i,j

pI2i+1,2j+1 =
∑
i,j

pI2i,2j+1 =
∑
i,j

pI2i+1,2j = 1, (2.6.11)

and equation (2.6.2) holds as well.

The condition in (2.6.11) is equivalent to the one in (2.5.1), which is the sum rule condition.
It is a known fact that (2.6.11) is a necessary condition for the convergence of a subdivision
scheme associated with re�nement mask p, that is, subdivision scheme convergence implies
that (2.6.11) holds. Moreover, if the subdivision scheme converges, then the interpolatory
mask given in (2.6.2) is equivalent to the interpolatory property that φI(0, 0) = 1 and
φI(i, j) = 0 for i, j ∈ Z\{0} as pointed in Proposition 1.3.1.

Remark: In this study, we did not focus on how to construct interpolatory bivariate
re�nable functions from re�nement masks. In this regard, one can consult [HJ97], [HJ98],
[Jia00] and [RS96] for more details. In the next section, we give some results on the
convergence of bivariate subdivision schemes.

2.7 Subdivision scheme convergence

Assuming that an interpolatory re�nable function exists, we concentrate our focus next
on the convergence of the corresponding interpolatory subdivision scheme. Here, we recall
the fact that a dilation matrix A is a linear map that de�nes a bijection from the set of
rational pairs Q2 into itself, so that the dyadic set Ξ, which is de�ned by

Ξ :=
{
A−rjT : j ∈ Z2, r = 1, 2, . . .

}
=

{(
i

2r
,
j

2r

)
, r = 1, 2, . . . , i, j ∈ Z

}
, (2.7.1)

is dense in R2. Using the Laurent polynomial formulation for the control sequence ck,
which is

Cr(z1, z2) =
∑
i,j

ci,jz
i
1 z

j
2, (2.7.2)

we again apply (2.3.5) inductively, as was done in [DHL11], to obtain, in the notation of
(2.7.2),

Ck+n(z) = P (z) P (z2) . . . P (z2n−1

) Ck(z2n) := P [n](z) Ck(z2n)

⇔ Ck+n(z1, z2) = P (z1, z2) P (z2
1 , z

2
2) . . . P (z2n−1

1 , z2n−1

2 ) Ck(z2n

1 , z2n

2 )

:= P [n](z1, z2) Ck(z2n

1 , z2n

2 ), z := (z1, z2) ∈ C2\{(0, 0)}, (2.7.3)

where P (z1, z2) is as in (1.2.3). Comparing the coe�cients of equal powers of z on both
sides of (2.7.3), yields 22n di�erent rules mapping Ck to Ck+n, which are determined by
the coe�cients of

P [n](z) =
n−1∏
j=0

P (z2j) =
∑
j∈Z

p
[n]
j zj,

⇔ P [n](z) = P (z) P (z2) . . . P (z2n−1

) =
∑
j∈Z2

p
[n]
j zj, (2.7.4)
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and thus,

ck+n
γ+2nα =

∑
β∈Z2

p
[n]
γ+2nβ c

k
α−β, γ ∈ {0, 1, . . . , 2n − 1}2 . (2.7.5)

The norm of the operator Snp is therefore given by

∥∥Snp∥∥∞ := max

∑
β∈Z2

∣∣∣p[n]
γ+2nβ

∣∣∣ , γ ∈ {0, 1, . . . , 2n − 1}2

 . (2.7.6)

This equation will help us to study the contractivity condition for subdivision convergence.

Our next result extends a convergence result in univariate interpolatory subdivision, as
proved in [Olo10], to the bivariate case.

We give the equivalent bivariate analogue based on the univariate approach, as follows.

Theorem 2.7.1. Let φI denote an interpolatory 2I2-re�nable function with re�nement
mask {pi,j ∈ R : i, j ∈ Z}. The interpolatory subdivision scheme given in (2.6.3) and
(2.6.4) then satis�es, for any control point sequence c := {ci,j} ∈ `(Z2), with ci,j ∈
R3, i, j ∈ Z,

cri,j = ϕc

(
i

2r
,
j

2r

)
, i, j ∈ Z, (2.7.7)

with

ϕc(x, y) :=
∑
i,j

ci,j φ
I(x− i, y − j), r = 0, 1, 2, . . . . (2.7.8)

Also, ϕc : R2 → R3 is a continuous function on R2, and ϕc represents the limit surface
of interpolatory subdivision scheme (2.6.3), in the sense that, for any (x, y) ∈ R2, and a
sequence {(ir, jr), r = 0, 1, 2, . . .} ⊆ Z2 such that

∥∥∥∥(x, y)−
(
ir
2r
,
jr
2r

)∥∥∥∥
∞
→ 0 , r →∞, (2.7.9)

we have ∣∣ϕc(x, y)− cri,j
∣∣→ 0, r →∞. (2.7.10)

Proof. First, we use (2.7.8), together with the re�nement equation for φc, and eventually
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(2.6.1), to obtain

ϕc

(
i

2r
,
j

2r

)
=
∑
k,`

c0
k,` φ

I

(
i

2r
− k, j

2r
− `
)

=
∑
k,`

c0
k,`

∑
q,s

pq,s φ
I

(
i

2r−1
− 2k − q, j

2r−1
− 2`− s

)
=
∑
k,`

c0
k,`

∑
q,s

pq−2k,s−2` φ
I

(
i

2r−1
− q, j

2r−1
− s
)

=
∑
q,s

[
pq−2k,s−2` c

0
k,`

]
φI
(

i

2r−1
− q, j

2r−1
− s
)

=
∑
q,s

c1
q,s φ

I

(
i

2r−1
− q, j

2r−1
− s
)

...

=
∑
q,s

crq,s φ
I (i− q, j − s)

=
∑
q,s

crq,s δi−q,j−s

= cri,j,

which proves (2.7.7). Since φI is compactly supported, the summation in (2.7.8) is over a
�nite number of indices i, j for any �xed x := (x, y) ∈ R2. Since φI is continuous on each
x ∈ R2, it follows that ϕc is continuous on R2.

Let x := (x, y) ∈ R2 be �xed. Since the dyadic set Ξ as in (2.7.1), is dense in R2, there
exists a sequence of points {(ir, jr) , r = 0, 1, 2, . . .} such that (2.7.10) is satis�ed.

By using (2.7.7), we get, for any r = 0, 1, 2, . . .,

∣∣ϕc(x, y)− cr(i,j)
∣∣ =

∣∣∣∣ϕc(x, y)− ϕc

(
i

2r
,
i

2r

)∣∣∣∣→ 0, r →∞, (2.7.11)

and thereby completing our proof.

As an example, we choose φ(x) :=
2∏
i=1

B̃2(xi), where B̃2 is de�ned as in (1.4.17), and it

follows that, for any k := (k, `) ∈ Z2, we have

ϕc(k) = ϕc(k, `) =
∑
i,j

ci,j h(k − i, `− j) =
∑
i,j

ci,j δk−i,`−j = ck.

That is, if the control point sequence c := {ci,j} ∈ `(Z2), then ϕc is the bilinear interpolant
of the sequence {ci,j ∈ R3 : (i, j) ∈ Z2}, and according to (2.7.8),(2.7.9),(2.7.10), the

sequences {c(r)
i,j }r=0,1,2,... �lls up the limit surface.

Corollary 2.7.2. Suppose that BD is an interpolatory box spline with its interpolatory
mask pI ∈ `0(Z2), and with dilation matrix A = 2I2. Then, for any initial sequence
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c ∈ `(Z2), the corresponding interpolatory subdivision scheme is convergent, with the
limit function ϕ de�ned by

ϕc(x) =
∑
j

cj BD(x− j), x ∈ R2, j ∈ Z2. (2.7.12)

Example

Consider the bivariate shifted box spline B̂2 given in (1.6.22), with corresponding inter-
polatory mask p̃I , given by, as in (1.6.26)

p̃2
0,0 = 1, p̃2

1,1 = p̃2
0,−1 = p̃2

0,1 = p̃2
1,0 = p̃2

−1,0 = p̃2
−1,−1 =

1

2
;

p̃2
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)}.

 (2.7.13)

Implementing Corollary 2.7.2, the subdivision scheme S(2)

p̃I is convergent. Therefore, we

can see that, for any initial sequence c ∈ `(Z2), the limit function ϕ = S∞p̃ c exists.

2.8 Surface re�nement rules

In order to construct a subdivision surface, we take grid indexing points from Z2 and
control points from R3, and then apply the subdivision operator (2.3.1). Since we con-
sider schemes where each component of the surface is a scalar function generated by the
same subdivision scheme, it is su�cient to analyse control points in R, as pointed out in
[DHL11].

The set of control vectors {ckj }j∈Z2 ∈ R generated by the binary subdivision scheme as in
(2.3.1) is given by

ckj =
∑
i∈Z2

pj−2i c
k−1
i , j ∈ Z2, k = 1, 2, . . . . (2.8.1)

For surface construction based on (2.8.1), we have four di�erent re�nement rules depend-
ing on the parity of each component of the vector j ∈ Z2. The surface re�nement rules,
according to equation (2.3.1) and (2.3.3), are given by

ck+1
γ+2α =

∑
β∈Z2

pγ+2α−2β c
k
β =

∑
β∈Z2

pγ+2β c
k
α−β, γ ∈ E , (2.8.2)

where E is as in (2.3.6). Equation (2.8.2) is given explicitly by

ck+1
2α1,2α2

=
∑
β1,β2

p2α1−β1,2α2−β2 ckβ1,β2 ;

ck+1
2α1,2α2+1 =

∑
β1,β2

p2α1−β1,2α2+1−β2 c
k
β1,β2

;

ck+1
2α1+1,2α2

=
∑
β1,β2

p2α1+1−β1,2α2−β2 c
k
β1,β2

;

ck+1
2α1+1,2α2+1 =

∑
β1,β2

p2α1+1−β1,2α2+1−β2 c
k
β1,β2

.


(2.8.3)

We shall implement equation (2.8.3) to study the Butter�y subdivision scheme in the
next chapter.
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Chapter 3

Algebraic study of subdivision schemes

In this chapter, we study bivariate subdivision schemes by mainly focusing on the well
known interpolatory Butter�y surface subdivision scheme. In particular, we employ an
alternative algebraic approach, following the work of [CCJZ11], to construct subdivision
polynomials for a class of bivariate subdivision schemes, including the Butter�y subdivi-
sion scheme, from bivariate box splines.

The motive of introducing algebraic concepts is to systematically study and construct
bivariate subdivision schemes from the box splines of Chapter 1. These box splines act
as generators for surface subdivision schemes.

3.1 Algebraic preliminaries

3.1.1 Preliminary de�nitions

We begin with basic de�nitions and we quote some important results.

De�nition 3.1.1. Let R be a commutative ring. A Laurent polynomial over a ring R is
a �nite linear combination of Laurent monomials with coe�cients in R. The collection
of all Laurent polynomials in the variables z1, . . . , zn with coe�cients in R is denoted by
R[z±1

1 , . . . , z±1
n ], and is a commutative ring.

De�nition 3.1.2. Let A := K[z1, . . . , zn] be a polynomial ring in n variables. A subset
I ⊆ A is said to be an ideal if it satis�es

(a) 0 ∈ I;

(b) If f, g ∈ I, then f + g ∈ I;

(c) If f ∈ I and h ∈ A, then fh = hf ∈ I.

We also introduce the following for our purpose.

� Let K be a �eld, and let f1, . . . , fr ∈ A. We de�ne the a�ne variety V(f1, . . . , fr) ⊂
Kn by

a := (a1, . . . , an) ∈ V(f1, . . . , fr)⇔ fi(a) = fi(a1, . . . , an) = 0,

60
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for i = 1, 2, . . . , r.

� We de�ne the set of polynomials that vanishes in a given set S ⊂ C2 by,

I(S) := {f ∈ C[z1, z2] : f(z1, z2) = 0, ∀(a1, a2) ∈ S} .

We note that I(S) is an ideal.

� The ideal generated by a �nite set of polynomials {f1, . . . , fs}, de�ned as

〈
f1, . . . , fs

〉
:=

{
f
∣∣f =

s∑
i=1

gi fi , gi ∈ C[z1, z2]

}
. (3.1.1)

We note that an ideal I is said to be �nitely generated if it can be expressed as in (3.1.1)
for some �nite set of polynomials {f1, . . . , fs}.

The following important results for our discussion are proved in [CLO07], and will be
used later in this Chapter.

Proposition 3.1.3. [CLO07]

Given f1, . . . , fr ∈ A and g1, . . . , gs ∈ A. If 〈f1, . . . , fr〉 = 〈g1, . . . , gs〉, then

V(f1, . . . , fr) = V(g1, . . . , gs). (3.1.2)

Lemma 3.1.4. [CLO07]

Let V := V(f1, . . . , fr) and W := W(g1, . . . , gk) be a�ne varieties. Then

V ∩W = V(f1, . . . , fr, g1, . . . , gk), (3.1.3)

and thus the vanishing ideal is given I(V ∩W) = 〈f1, . . . , fr, g1, . . . , gk〉.

Also,

V ∪W = V(figj, i = 1, . . . , r, j = 1, . . . , k), (3.1.4)

and thus the vanishing ideal is given I(V ∪W) = 〈
{
figj

∣∣ 1 ≤ i ≤ r; 1 ≤ j ≤ k
}
〉.

Lemma 3.1.5. [CLO07]

Given two ideals I and J with respective a�ne varieties V1 and V2 given by I(V1) =
〈f1, . . . , fr〉 and I(V2) = 〈g1, . . . , gm〉, it holds that

I(V1 ∪ V2) = 〈{figj|1 ≤ i ≤ r; 1 ≤ j ≤ m}〉. (3.1.5)

De�nition 3.1.6. A ring R is Noetherian if it satis�es the ascending chain condition
(ACC) on ideals, that is, given any chain I1 ⊆ I2 ⊆ . . . ⊆ Ik ⊆ . . ., there exists a positive
integer p such that Ip = In for all p ≥ n.

Theorem 3.1.7. (Hilbert Basis Theorem) [CLO07]

Every ideal I in A has a �nite generating set, that is, I = 〈h1, . . . , hs〉 for some h1, . . . , hs ∈
I.
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De�nition 3.1.8. Let f1, . . . , fs be polynomials in C[z1, z2]. Let the set V be given by

V(f1, . . . , fs) := {(a1, a2) ∈ C2 : fi(a1, a2) = 0, 1 ≤ i ≤ s} .We callV(f1, . . . , fs) the a�ne
(algebraic) variety de�ned by f1, . . . , fs.

Next, we introduce the notion of monomial orderings.

De�nition 3.1.9. Let K be a �eld, and let X be the set of monomials in A. A monomial
ordering is a total ordering � on X which satis�es

(i) a � b⇒ ac � bc, for all a,b, c ∈ X.

(ii) a � 1 for all a ∈ X.

That is, for any a := zα1
1 zα2

2 . . . zαn
n ∈ A, there is an associated n-tuple (α1, . . . , αn), that

helps us to compare and order monomials in the sense that zα ∈ X ⇔ α ∈ Nn. In other
words, an admissible ordering establishes a one-to-one correspondence between Nn and the
monomials zα := zα1

1 . . . zαn
n in A, that is, [α1 ↔ zα1

1 , . . . , αn ↔ zαn
n ].

We also note that a total ordering � on Nn is admissible if ∀α,β,γ ∈ Nn, α � β ⇒
α + γ � β + γ with α, β, γ n-tuples in Nn.

The following de�nition introduces di�erent types of orderings for monomials.

De�nition 3.1.10. Let α and β be in N2. The following orderings are valid for mono-
mials:

(a) Lexicographic order: α �lex β if the left-most non-zero entry in α−β is positive.

(b) Graded Lex order (degree lexicographic ordering): α �grlex β if |α| � |β|
or (|α| = |β| and α �lex β). We use the singular command dp for the degree
lexicographical ordering as it is computationally preferable to other orderings.

(c) Graded reverse Lex order: α �grevlex β if |α| � |β| and the right-most non-zero
entry in α− β is negative.

De�nition 3.1.11. Assume that an arbitrary admissible ordering � is �xed on K2. Given

a non-zero polynomial f(z) :=
∑
α

aαz
α ∈ K[z1, z2] with zα := zα1

1 zα2
2 , α := (α1, α2) ∈ K2,

we de�ne

(a) The multi-degree of f as multideg(f) = max {t ∈ N2 : at 6= 0} (the maximum is
taken with respect to �);

(b) The leading monomial of f as :

LM(f) = xmultideg(f);

(c) The leading coe�cient of f as :

LC(f) = amultideg(f);
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(d) The leading term of f as :

LT (f) = LC(f) · LM(f);

(e) The leading ideal is de�ned by

L(I) := 〈{LT (f)|f ∈ I}〉.

We also note that L(I) carries plenty of information on I. For instance, it is needed
to get an ideal bases.

3.1.1.1 Gröbner basis and Buchberger's algorithm

In this subsection, we introduce the concept of a Gröbner Basis of an ideal I in A.

De�nition 3.1.12. A set {g1, . . . , gs} in an ideal I of polynomials is said to be a Gröbner
basis for I if the leading terms LT (gi) generate L(I).

De�nition 3.1.13. Let f, g ∈ A be non-zero polynomials.

(i) If multideg f = α and multideg g = β, then let γ = (γ1, . . . , γn), where γi =
max(αi, βi) for each i. We �nd xγ as follows:

xγ = LCM(xα, xβ) = LCM (LM(f), LM(g)) .

(ii) The S-polynomial of f and g is the combination

Spoly(f, g) :=
xγ

LT (f)
· f − xγ

LT (g)
· g. (3.1.6)

Next, we give a characterization of a Gröbner basis. The following proposition helps to
check whether a given family G is a Gröbner basis or not.

Proposition 3.1.14. Let I be a polynomial ideal of A. A given basis G := {g1, . . . , gs}
of I is a Gröbner basis if and only if, for all i 6= j, the remainder S[gi, gj]

G
of the division

of S[gi, gj] by G is zero.

Next, we present Buchberger's algorithm to compute a Gröbner basis of an ideal. We
used a singular program, the code with its output of which is given in Appendix A. We
will show that, for a given ideal I = I(f1, . . . , fr), one can always �nd a Gröbner basis
G := (g1, . . . , gs) of I.
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Algorithm 1 Buchberger's algorithm

Input: A family F := (f1, . . . , fm) ⊂ K[z1, z2]\{0} of polynomials
Output: A Gröbner basis G := (f1, . . . , fm, fm+1, . . . , fr) of the ideal
I := 〈f1, . . . , fm〉.

(a) Compute all S-polynomials Spoly(fi, fj) for fi, fj ∈ F .

(b) Compute the remainders of these S-polynomials when divided by F .

(c) If there are non-zero remainders, set

F := F ∪ { non-zero remainders},

and continue with step 1.

(d) If all the S-polynomials reduce to zero, then we set G := F . This process will be
stationary because of the fact that K[z1, z2] is Noetherian.

In Section 3.2, following the work in [CCJZ11, Sau07], we study bivariate subdivision
schemes with their associated mask symbols. A special focus is given on the veri�cation
of the Butter�y subdivision scheme in Section 3.4.

3.2 Algebraic approach to bivariate subdivision

First, we consider the ring of bivariate Laurent polynomials, say, R := C[z±1
1 , z±1

2 ] and an
ideal I inR in such a way that I contains a set of certain Laurent polynomial symbols with
some special properties. By multiplying each element in R by an appropriate monomial
factor zα := zα1

1 zα2
2 ; α := (α1, α2) ∈ N2

0, which is a unit in R, we obtain an element in
the ring of polynomials in 2-variables, that is, Π := C[z1, z2]. This results in a shift of the
support of a mask with the advantage that such a shift does not in�uence properties of a
bivariate subdivision scheme such as smoothness, regularity, approximation order and the
sum rule condition. Using this advantage, we study the structure of the mask symbols
of bivariate subdivision schemes by showing that they are C[z1, z2]-linear combinations of
shifted box spline generators of some polynomial ideal I with the associated direction set
of vectors as columns of certain uni-modular matrices.1

Before we proceed, we need to recall the necessary condition for subdivision convergence
given by the sum rule condition of order k (where the case with k = 1 is given in (2.6.11),
that is, the sum rule of order 1).

As a preliminary, we recall that the necessary condition for subdivision convergence, that
is, the sum rule condition of order k.

In the univariate case, the sum rule condition of order k ∈ N for a mask sequence {pj} ∈
`0(Z) is given by

β` :=
∑
j

(2j)` p2j =
∑
j

(2j + 1)` p2j+1, ` = 0, . . . , k− 1;

with β0 = 1.

 (3.2.1)

1Uni-modular matrices are matrices having square sub-matrices with determinant ±1.
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The following result was proved in [dVC10]:

A sequence {pj} ∈ `0(Z) satis�es the sum rule condition of order k ∈ N if and only if the

Laurent polynomial symbol P(z) := 1
2

∑
j

pj z
j is given by the formulation

P(z) =

(
1 + z

2

)k

R(z), (3.2.2)

for some Laurent polynomial R such that R(1) = 1.

Now observe that (3.2.2) implies

(DjP)(−1) = 0, j = 0, . . . , k− 1, (3.2.3)

where DjP is the jth-derivative of P. Based on (3.2.3), the extension from the univariate
to the bivariate case of the sum rule condition of order k ∈ N is as follows.

De�nition 3.2.1. Let E := {0, 1}2, the complete set of representatives of Z2/2Z2, given
by vertices of the unit square containing 0 := (0, 0) and 1 := (1, 1) as in (2.3.6). We
construct the set Z = ZE :=

{
εj := e−iπγj : (γ1, γ2) ∈ E , j = 1, 2

}
= {−1, 1}2 as in (2.5.3).

The mask symbol P(z1, z2) is said to satisfy the sum rule condition of order k, or condition
Zk, k ∈ N, if

P(1) = 4, and (DjP)(ε1, ε2) = 0, (ε1, ε2) ∈ Z
′
:= Z\{1}, |j| < k,

where (DjP)(ε1, ε2) is the jth-directional derivative of P at (ε1, ε2), that is,

DjP =
∂(j1+j2)P

∂z1
j1 ∂z2

j2
, j1, j2 ∈ N. (3.2.4)

As in (2.5.1), the sum rule of order 1 is obtained by setting j = 0 in (3.2.4), that is,

P(1) = 4 , and P(ε1, ε2) = 0, for (ε1, ε2) ∈ Z
′
. (3.2.5)

It is a known fact that a sum rule condition as in (3.2.4) and (3.2.5) must be satis�ed for
some k ∈ N by the subdivision polynomial of a convergent subdivision scheme, and we
further study the structure of the mask symbols of such a subdivision scheme, since the
mask symbol of a convergent subdivision scheme gives important information about the
limit function of a subdivision scheme.

Since all convergent bivariate subdivision schemes must satisfy Z1, we begin with a char-
acterization of the polynomial ideal

I :=
{
f ∈ Π : f(ε1, ε2) = 0, for (ε1, ε2) ∈ Z

′
}
. (3.2.6)

Hence, the ideal I is the set of all polynomials satisfying

P (ε1, ε2) = 0 for all (ε1, ε2) ∈ Z
′
,

that is,

P (z) ∈ I ⇔ P (ε1, ε2) = 0 for all (ε1, ε2) ∈ Z
′
. (3.2.7)
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We recall the fact that the product I1 · I2 of two ideals I1 =
〈
{aj : j = 1, . . . , n}

〉
and

I2 =
〈
{br : r = 1, . . . ,m}

〉
in a commutative ring is generated by the point-wise products

of the corresponding generating sets, that is, ,

I1 · I2 := 〈{ajbr : j = 1, . . . , n; r = 1 . . . ,m}〉. (3.2.8)

Using (3.2.8), it follows that the power ideal Ik of I equivalently given by

Ik =
{
f ∈ Π : (Djf(ε1, ε2) = 0 for (ε1, ε2) ∈ Z′ , |j| ≤ k

}
. (3.2.9)

In order to compute the ideal I in (3.2.6), we proceed as follows:

By using Lemma 3.1.5, and since the ideal I comprises Laurent polynomials which vanish
on Z

′
:= Z\{1}, we write the vanishing set Z

′
as a union of the irreducible a�ne varieties

V1 := {(1,−1)}, V2 := {(−1, 1)}, V3 := {(−1,−1)}, where

Z
′
= {(1,−1)} ∪ {(−1, 1)} ∪ {(−1,−1)} := V1 ∪ V2 ∪ V3 (3.2.10)

where Vi's are irreducible. The vanishing ideals for each of the irreducible a�ne varieties
are given by

I(V1) = 〈z1 + 1, z2 − 1〉 = 〈f1, f2〉;
I(V2) = 〈z1 − 1, z2 + 1〉 = 〈g1, g2〉;
I(V3) = 〈z1 + 1, z2 + 1〉 = 〈h1, h2〉. (3.2.11)

Then, applying Lemma 3.1.4, we get

I (V1 ∪ V2 ∪ V3) =
〈
figjht

∣∣1 ≤ i ≤ 2, 1 ≤ j ≤ 2, 1 ≤ t ≤ 2
〉

=

〈
(z2

1 − 1)(z2 + 1), (z2
2 − 1)(z1 + 1),

(z1 + 1)2(z1 − 1), (z1 + 1)2(z2 + 1),

(z2
1 − 1)(z2 − 1), (z2 + 1)2(z2 − 1),

(z1 + 1)(z2 + 1)2, (z2
2 − 1)(z1 − 1)

〉
. (3.2.12)

Equation (3.2.12) can be simpli�ed to minimal generators, that is, a minimal set of poly-
nomials which generate the same ideal, using a Gröbner basis with grlex ordering (dp)
to yield

I := I (V1 ∪ V2 ∪ V3) =
〈
z2

1 − 1, z2
2 − 1, (z1 + 1)(z2 + 1)

〉
. (3.2.13)

According to [CCJZ11], the polynomial ideal

J = {f ∈ Π : f(ε1, ε2) = 0, for (ε1, ε2) ∈ Z} (3.2.14)

has set of generators 〈z2
1 − 1, z2

2 − 1〉; i.e.,

J = 〈z2
1 − 1, z2

2 − 1〉. (3.2.15)

It can be checked by using the fact that for any two varieties, V1 and V2,

V1 ⊂ V2 ⇒ I(V2) ⊂ I(V1)

or alternatively, applying Groebner basis computation also leads to equation (3.2.15).

Our next result is a particular case of the one mentioned in [MS04] for the multivariate
case.
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Proposition 3.2.2. The ideal I consisting of the mask symbol of a bivariate convergent
subdivision scheme Sp can be generated by the polynomials(

1 + z1

2

1 + z2

2

)
,

(
1 + z1

2

z1 + z2

2

)
,

(
1 + z2

2

z1 + z2

2

)
,

that is,

I =
〈1 + z1

2

1 + z2

2
,

1 + z1

2

z1 + z2

2
,

1 + z2

2

z1 + z2

2

〉
. (3.2.16)

Proof. Let us denote (3.2.16) by

Ĩ =
〈1 + z1

2

1 + z2

2
,

1 + z1

2

z1 + z2

2
,

1 + z2

2

z1 + z2

2

〉
.

Then one can show that the generators of I are contained in Ĩ, and the generators of Ĩ
are also contained in I. We rewrite, for z1, z2 ∈ C\{0}, z2

1 − 1, z2
2 − 1 and (z1 + 1)(z2 + 1)

in terms of elements of generators in Ĩ, that is,

z2
1 − 1 = −4

(
1 + z1

2

)(
1 + z2

2

)
+ 4

(
1 + z1

2

)(
z1 + z2

2

)
;

z2
2 − 1 = −4

(
1 + z1

2

)(
1 + z2

2

)
+ 4

(
1 + z2

2

)(
z1 + z2

2

)
;

(z1 + 1)(z2 + 1) = 4

(
1 + z1

2

)(
1 + z2

2

)
.


(3.2.17)

It follows from equation (3.2.17) that I ⊆ Ĩ.

Conversely, we write(
1 + z1

2

)(
1 + z2

2

)
=

1

4
(1 + z1)(1 + z2);(

1 + z1

2

)(
z1 + z2

2

)
=

1

4
(z2

2 − 1) +
1

4
(1 + z1)(1 + z2);(

1 + z1

2

)(
z1 + z2

2

)
=

1

4
(z2

1 − 1) +
1

4
(1 + z1)(1 + z2),


(3.2.18)

which yields Ĩ ⊆ I. This shows that I = Ĩ.

Next, we establish an ideal I that is related to set of mask symbols of a convergent
bivariate subdivision scheme.

Proposition 3.2.3. The ideal I in (3.2.6) is generated by (1− z2
1), (1− z2

2) and(
1 + z1

2

)(
1 + z2

2

)
, that is,

I =
〈

(1− z2
1), (1− z2

2),

(
1 + z1

2

)(
1 + z2

2

)〉
. (3.2.19)

Proof. The proof is straightforward as is direct consequence of (3.2.13).
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Remark

The bivariate subdivision polynomials (or mask symbols) can be represented as a special
class of Laurent polynomials in R with the property of the sum rule condition. Each
element L of the class of Laurent polynomials associated to a well de�ned subdivision
scheme must be spanned by the generators of the ideal I in (3.2.19). A well de�ned
bivariate subdivision scheme P(z1, z2) can be written as C[z1, z2]-linear combination of
the polynomials 1− z2

1 , 1− z2
2 ,

1
4
(1 + z1)(1 + z2), with

P(z1, z2) ∈
〈

1−z2
1 , 1−z2

2 ,
1

4
(1+z1)(1+z2)

〉
=
〈1 + z1

2

1 + z2

2
,
1 + z1

2

z1 + z2

2
,
1 + z2

2

z1 + z2

2

〉
.

3.3 Box splines and bivariate subdivision schemes

Consider the box spline BD with direction matrix D := [e1, e2, e3] where e1, e2, e3 are
as in (1.5.5), which correspond to the non-zero elements of E as in (2.3.6). Recall that
a matrix D is called uni-modular if its square sub-matrix ϑ have determinant ±1. For
technical use, we de�ne the normalised Laurent polynomials,

ra(z) :=
1

2
(1 + za), and sa(z) :=

1

2
(1− za), (3.3.1)

where za := za11 z
a2
2 , a := (a1, a2) ∈ Z2. Observe that ra(z) + sa(z) = 1, a ∈ Z2, and the

following useful identity also holds;

sb(z) ra(z) + sa(z) rb(z) = sa+b(z) = 1− ra+b(z), for a,b ∈ Z2. (3.3.2)

The identity (3.3.2) shows that the polynomials ra, rb, ra+b generate the ring of Laurent
polynomials R, since they generate a unit, that is, R = 〈ra(z), rb(z), ra+b(z)〉. For any
sub-matrix ϑ of D, we de�ne the normalized polynomial

qϑ(z) :=
∏
θ∈ϑ

rθ(z), (3.3.3)

where θ runs through all columns of ϑ.

Observe that if ϑ is uni-modular, then the polynomial 4qϑ(z) is the symbol of the corre-
sponding degree zero box spline, with mask symbols(

4 · 1 + z1

2
· 1 + z2

2

)
,

(
4 · 1 + z1

2
· 1 + z1z

−1
2

2

)
,

(
4 · 1 + z1

2
· 1 + z1z

−1
2

2

)
.

Using the columns of ϑ, and from (3.3.1), we have

r(1,0)(z) =
1

2
(1 + z1), r(0,1)(z) =

1

2
(1 + z2), and r(1,1)(z) =

1

2
(1 + z1z2). (3.3.4)

The following lemma introduces a useful property of normalized box spline symbols 2.

Lemma 3.3.1. For any given triple (a, b, c) ∈ N3
0, we have that

〈B̃a+1,b,c, B̃a,b+1,c, B̃a,b,c+1〉 = 〈B̃a,b,c〉, (3.3.5)

where B̃a,b,c(z1, z2) is given in (1.9.8).

2A box spline symbol P(z1, z2) is said to be normalised if it satis�es P(1, 1) = 1.
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Proof. Let B̃a,b,c be the 3-directional box spline given by Ba,b,c := 4B̃a,b,c.

The identity (3.3.2) can be written equivalently as

1

2
(1− z2) B̃1,0,0(z1, z2) +

1

2
(1− z1) B̃0,1,0(z1, z2) + B̃0,0,1(z1, z2) = 1.

Multiplying both sides by B̃a,b,c then leads to the required result.

Remark 3.3.2. The family of 3-directional normalized box spline symbols is a partially
ordered set with respect to inclusion relation, and it is closed under multiplication, since

B̃a,b,c · B̃d,e,f = B̃a+d,b+e,c+f .

The following result is the bivariate version of the one given in [CCJZ11] for the multi-
variate case.

Theorem 3.3.3. The mask symbol of a convergent bivariate subdivision scheme Sp can
be written in the form

P(z) = 4
∑
ϑ

λϑ · rϑ(z) · qϑ(z), (3.3.6)

where rϑ(z) is a Laurent polynomial satisfying rϑ(1) = 1, where 1 := (1, 1) and λϑ ∈ R,
with

∑
ϑ

λϑ = 1. The sum runs over all uni-modular 2× 2 sub-matrices ϑ of D.

Our next result from [CCJZ11], introduces generators for the power ideal Ik, which are
the mask symbols of certain normalised three-directional box splines.

Theorem 3.3.4. The kth -power {Ik : k ∈ N} of an ideal I is generated by the set of
three directional box spline symbols given by

Ik :=

{
B̃b,b,a, B̃b,a,b, B̃a,b,b : a = 0, 1, 2, . . . , b1

2
kc, and b = k− a

}
, (3.3.7)

where B̃a,b,c(z1, z2) is given in (1.9.8).

Proof. The proof is by induction on k and is given in [CCJZ11].

We note that, for the set Ik as in (3.3.7), the set of generators for Ik is the minimal set
that generates every element in Ik.

For instance, �xing k = 1, 2, 3, 4 and applying (3.3.7), we get the following set of generators
of Ik:

I1 :=
{
B̃1,1,0, B̃1,0,1, B̃0,1,1

}
;

I2 :=
{
B̃0,2,2, B̃1,1,1, B̃2,2,0, B̃2,0,2

}
;

I3 :=
{
B̃0,3,3, B̃2,2,1, B̃2,1,2, B̃1,2,2, B̃3,3,0, B̃3,0,3

}
;

I4 :=
{
B̃1,3,3, B̃2,2,2, B̃4,4,0, B̃4,0,4, B̃0,4,4, B̃3,3,1, B̃3,1,3

}
,


(3.3.8)
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where B̃a,b,c(z1, z2), with a, b, c ∈ Z+, are as in (1.9.8).

We mention the following remarks based on the above discussion.

Remarks

(a) The set Ik of generators for the power ideal Ik is symmetric in the sense that it is
invariant under permutation of two variables, and that the indices of the generators can
be interchanged cyclically.

(b) The order of polynomial reproduction of a bivariate subdivision scheme perfectly
matches with smoothness of the constituent box splines corresponding to the generators
in Ik that make up the subdivision scheme.

We proceed to quote a key result from [CCJZ11].

Theorem 3.3.5. (Decomposition) A bivariate subdivision scheme Sp satis�es the sum
rule condition if and only if its mask symbol can be written in the form

P(z1, z2) =
∑

B̃a,b,c∈Ik

λa,b,c qa,b,c(z1, z2) B̃a,b,c(z1, z2), (3.3.9)

with
∑
λa,b,c = 1, where B̃a,b,c is the 3-directional normalised box spline as in (1.9.8), and

where qa,b,c(z1, z2) are normalised Laurent polynomials, that is, qa,b,c(1) = 1.

In (3.3.9), `k' refers to the order of polynomial reproduction of the subdivision operator Sp
and the set Ik has the advantage of classifying as well as constructing bivariate subdivision
schemes.

From the discussion up to now, we observe that any bivariate subdivision symbol can be
decomposed into 3-directional box splines, B̃a,b,c. For instance, we consider 4-directional
box splines, which can be decomposed into pieces of 3-directional ones, that is, the mask
symbol associated to a 4-directional box spline can be rewritten as a convex combination
of shifts of 3-directional normalised box spline symbols, as given below:

Ba,b,c,d(z1, z2) = 4

(
1 + z1

2

)a(
1 + z2

2

)b(
1 + z1z2

2

)c(
1 + z1z

−1
2

2

)d

=
1

2d

(
1 +

z1

z2

)d

B̃a,b,c(z1, z2) = 2−d

d∑
`=0

(
d

`

)(
z1

z2

)`
B̃a,b,c(z1, z2)

=
d∑
`=0

λd,` z
`
1 z
−`
2 B̃a,b,c(z1, z2), (3.3.10)

where λd,` := 2−d
(

d
`

)
. By using the identity

(z1 + z2) = (1 + z1)(1 + z2)− (1 + z1z2),

we write

B̃0,0,0,1(z1, z2) =
1

z2

[
z1 + z2

2

]
=

1

z2

[
2B̃1,1,0(z1, z2)− B̃0,0,1(z1, z2)

]
.
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Thus, for 4-directional box splines, we have that

Ba,b,c,d(z1, z2) = Ba,b,c(z1, z2)
1

zd
2

(
2B̃1,1,0(z1, z2)− B̃0,0,1(z1, z2)

)d

=
d∑
`=0

2`(−1)d−`

zd
2

(
d

`

)
B̃a+`,b+`,c+d−`(z1, z2).

3.4 The Butter�y subdivision scheme

The above mentioned algebraic results are key tools to verify the interpolatory Butter�y
subdivision scheme on regular triangulations. This subdivision scheme is derived sys-
tematically by using Theorem 3.3.5 with set of generators of box spline symbols, and by
taking their convex combination, and �nally doing appropriate normalizations. According
to [DLG90, KLY07, DHL11], the Laurent polynomial of the Butter�y subdivision scheme
is given by

Pw(z1, z2) =
3∑

i=−3

3∑
j=−3

pi,j z
i
1 z

j
2 =

1

2
(1 + z1)(1 + z2)(1 + z1z2)(1− w r(z1, z2))(z1z2)−1,

(3.4.1)

where

r(z1, z2) = 2z−2
1 z−1

2 + 2z−1
1 z−2

2 − 4z−1
1 z−1

2 − 4z−1
1 − 4z−1

2 + 2z−1
1 z2

+ 2z1z
−1
2 + 12− 4z1 − 4z2 − 4z1z2 + 2z2

1z2 + 2z1z
2
2 , (3.4.2)

with r(z1, z2) = r(z2, z1) = r(z−1
1 , z−1

2 ), and r(1) = 0, r(ε) = 16, ∀ε ∈ Z\{1}, as in (2.5.4).

Equation (3.4.1), together with (3.4.2), can be expressed in terms of its box spline con-
stituents by

1

4
z3

1z
3
2 Pw(z1, z2) =

{
7z1z2 B̃2,2,2(z1, z2)− 2z1 B̃1,3,3(z1, z2)

−2z2 B̃3,1,3(z1, z2)− 2z1z2 B̃3,3,1(z1, z2)
}
, (3.4.3)

where B̃a,b,c is as in (1.9.8). To verify this result, we choose the set of generators from I4

for the power ideal I4 as given, according to (3.3.8), by{
B̃2,2,2(z1, z2), B̃3,1,3(z1, z2), B̃3,3,1(z1, z2), B̃1,3,3(z1, z2)

}
.

Now, by choosing the appropriate normalised q-symbols:(
7 + 6z1z2

13

)
, z2, z1,

(
1 + z1 + z2

3

)
,

and by keeping the convex combination of the coe�cients, we get

z3
1z

3
2 Pw(z1, z2) = 4

[
26 ·

(
7 + 6z1z2

13

)
B̃3,3,1(z1, z2)− 2z2 B̃3,1,3(z1, z2)

−2z1 B̃1,3,3(z1, z2)− 21

(
1 + z1 + z2

3

)
B̃2,2,2(z1, z2)

]
. (3.4.4)
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In order to rewrite equation (3.4.4), a simpli�ed expression that preserves both convexity
of coe�cients and normalization of the symbols is established.

To attain this, we expand equation (3.4.4) to a more simpli�ed form, that is,

26

(
7 + 6z1z2

13

)
B̃3,3,1(z1, z2)− 21

(
1 + z1 + z2

3

)
B̃2,2,2(z1, z2)

= 2(7 + 6z1z2) B̃3,3,1(z1, z2)− 7(1 + z1 + z2) B̃2,2,2(z1, z2)

= 2 [7(1 + z1z2)− z1z2] B̃3,3,1(z1, z2)− 7(1 + z1 + z2)B̃2,2,2(z1, z2)

= 2

(
14

(
1 + z1z2

2

)
B̃3,3,1(z1, z2)

)
− 2z1z2 B̃3,3,1(z1, z2)

−7(1 + z1 + z2) B̃2,2,2(z1, z2)

= 7(1 + z1 + z2 + z1z2) B̃2,2,2(z1, z2)− 7(1 + z1 + z2) B̃2,2,2(z1, z2)

−2z1z2 B̃3,3,1(z1, z2)

= 7z1z2 B̃2,2,2(z1, z2)− 2z1z2 B̃3,3,1(z1, z2). (3.4.5)

Substituting (3.4.5) into (3.4.4), we get

z3
1 z

3
2 Pw(z1, z2) = 4

[
7z1z2 B̃2,2,2(z1, z2)− 2z1z2 B̃3,3,1(z1, z2)− 2z2 B̃3,1,3(z1, z2)

−2z1 B̃1,3,3(z1, z2)
]
. (3.4.6)

Now, simplifying the expression in (3.4.6), by using (1.9.8), to its equivalence form:

Pw(z1, z2) = 4
[
7z1z2 B̃2,2,2(z1, z2)− 2z1 B̃1,3,3(z1, z2)− 2z2 B̃3,1,3(z1, z2)

−2z1z2 B̃3,3,1(z1, z2)
]

= − 1

16

[
z3

1z
2
2 + z2

1z
3
2 + z3

1z2 + z1z
3
2 + z2

1z
−1
2 + z−1

1 z2
2 + z−1

1 z2
2

+z1z
−2
2 + z−2

1 z2 + z−3
1 z−1

2 + z−1
1 z−3

2 + z−2
1 z−3

2 + z−3
1 z−2

2

]
+

1

8
[z2

1z2 + z1z
2
2 + z1z

−1
2 + z−1

1 z2 + z−1
1 z−2

2 + z−2
1 z−1

2 ]

+
1

2
[z−1

1 + z−1
2 + z1z2 + z1 + z2 + z−1

1 z−1
2 ] + 1, (3.4.7)

which is the Butter�y subdivision scheme with tension parameter w = 1
16
, and with its

re�nement mask given below in (3.4.9). The grid points in the set M for which the
re�nement mask pI will be non-zero are given by

M = (0, 0) ∪M1 ∪M2 ∪M3,

where

M1 := {(1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), (−1,−1)} ;

M2 := {(1,−1), (2, 1), (1, 2), (−1,−2), (−1, 1)(−2,−1)} ;

M3 := {(3, 2), (2, 3), (3, 1), (1, 3), (2,−1), (−2,−3), (−1, 2), (1,−2),

(−2, 1), (−3,−1), (−1,−3), (−3,−2)} . (3.4.8)

Thus, in terms of the subdivision polynomial, the mask symbol representation of this
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Figure 3.1: Stencil of the Butter�y subdivision scheme

subdivision scheme is given by

P(z1, z2) =
∑

(j,k)∈M

p(j,k) z
j
1 z

k
2 ,

where 
p(0,0) = 1, as it is interpolatory;

p(j,k) = 1
2
, if (j, k) ∈ M1;

p(j,k) = 1
8
, if (j, k) ∈ M2;

p(j,k) = − 1
16
, if (j, k) ∈ M3.

(3.4.9)

as shown in Figure 3.1.

Note that (3.4.7), together with (3.4.9), gives the matrix representation of mask coe�-
cients {pi,j : −3 ≤ i, j ≤ 3} as

0 0 0 0 − 1
16
− 1

16
0

0 0 − 1
16

0 1
8

0 − 1
16

0 − 1
16

1
8

1
2

1
2

1
8
− 1

16

0 0 1
2

1 1
2

0 0
− 1

16
1
8

1
2

1
2

1
8
− 1

16
0

− 1
16

0 1
8

0 − 1
16

0 0
0 − 1

16
− 1

16
0 0 0 0


. (3.4.10)

Thus, one can view the Butter�y subdivision symbol algebraically as

Pw(z1, z2) ∈
〈{

B̃2,2,2(z1, z2), B̃1,3,3(z1, z2), B̃3,1,3(z1, z2), B̃3,3,1(z1, z2)
}〉

. (3.4.11)

By applying Remark 3.3.2 and (3.4.7), we observe that each of the generating box splines
can be factored in terms of the normalised Courant hat function, that is,

Pw(z1, z2) ∈ 〈B̃1,1,1〉, and hence, we can write

Pw(z1, z2) = B̃1,1,1(z1, z2) b(z1, z2). (3.4.12)

Consequently,

b(z1, z2) = z−3
1 z−2

2

[
28 z−1

1 z−1
2 B̃1,1,1(z1, z2)− 8z−2

1 z−2
2 B̃0,2,2(z1, z2)

−8z−3
1 z−2

2 B̃2,0,2(z1, z2)− 8z−1
1 z−1

2 B̃2,2,0(z1, z2)
]
. (3.4.13)
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Writing (3.4.13) in a more usable way, we have that

Q̃(z1, z2) := z3
1z

2
2 b(z1, z2) = 28z2

1z
2
2 B̃1,1,1(z1, z2)− 8z1 B̃0,2,2(z1, z2)

−8z2 B̃2,0,2(z1, z2)− 8z2
1z2 B̃2,2,0(z1, z2). (3.4.14)

One can observe that the symbol Q̃(z1, z2) in equation (3.4.14) does not de�ne a con-
vergent subdivision scheme according to Theorem 3.3.5, although each of the summands
in Q̃(z1, z2) does correspond to a convergent subdivision scheme. Besides, the Butter�y
subdivision scheme Pw obtained using the algebraic approach is an interpolatory subdi-
vision scheme de�ned on a triangular grid with a single tension parameter w, but none of
the summands in the a�ne combination satisfy this property. Details of computational
analysis of smoothness and convergence of this subdivision scheme is given in the next
chapter.

3.4.1 Some features

We mention the following basic features of the Butter�y subdivision scheme:

� The mask plots of the Butter�y subdivision scheme as in [KLY07] on the integer
grid Z2 are displayed in Figures 3.2 -3.4.

Figure 3.2: Odd-Even mask Figure 3.3: Even-Odd mask

Figure 3.4: Odd-Odd mask
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� The matrix version of subdivision polynomial of the Butter�y subdivision scheme
as in (3.4.7) with w = 1

16
is given by

P (z1, z2) =
1

16

(
z−3

1 z−2
1 z−1

1 z0
1 z1

1 z2
1 z3

1

)
×

0 0 0 0 −1 −1 0
0 0 −1 0 2 0 −1
0 −1 2 8 8 2 −1
−1 0 8 16 8 0 0
−1 2 8 8 2 −1 0
−1 0 2 0 −1 0 0
0 −1 −1 0 0 0 0





z−3
2

z−2
2

z−1
2

z0
2

z1
2

z2
2

z3
2


. (3.4.15)

� From (2.3.3), (2.8.2) together with (3.4.10), we note that the subdivision formulation
of the Butter�y subdivision scheme is given explicitly by

ck+1
2i+1,2j =

1

2

(
cki,j + cki+1,j

)
+ 2w

(
cki,j−1 + cki+1,j+1

)
− w

(
cki−1,j−1 + cki+1,j−1 + cki,j+1 + cki+2,j+1

)
;

ck+1
2i,2j+1 =

1

2

(
cki,j + cki,j+1

)
+ 2w

(
cki−1,j + cki+1,j+1

)
− w

(
cki−1,j−1 + cki−1,j+1 + cki+1,j + cki+1,j+2

)
;

ck+1
2i+1,2j+1 =

1

2

(
cki,j + cki+1,j+1

)
+ 2w

(
cki+1,j + cki,j+1

)
− w

(
cki,j−1 + cki−1,j + cki+2,j+1 + cki+1,j+2

)
;

ck+1
2i,2j = cki,j.



(3.4.16)

� The corresponding basic limit function for the Butter�y subdivision mask as in
(3.4.9) is displayed below in Figure 3.5.

Figure 3.5: The Butter�y basis function [w = 1
16 ].

From equation (3.4.10), we observe that the stencil satis�es the conditions that for
any k ∈ Z, ∑

j

(−1)j pj,k =
∑
j

(−1)j pk,j =
∑
j

(−1)j pj,j+k = 0. (3.4.17)

Equation (3.4.17) means that the stencil of the Butter�y subdivision scheme satis�es
the the sum of even and odd masks along every vertical or horizontal line are the
same. This fact induces a factorization of the corresponding Laurent polynomial of
the Butter�y subdivision scheme.
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� The following is an example of Butter�y surface obtained from control nets in R3.
The Matlab source code for the following �gures have been done by Thomas Yu.

Example 3.4.1. Tetrahedron

Figure 3.6: 1st iteration Figure 3.7: 2nd iteration

Figure 3.8: 3rd iteration Figure 3.9: Last iteration

Example 3.4.2. Torus

Figure 3.10: 1st iteration Figure 3.11: 2nd iteration

Figure 3.12: 4th iteration Figure 3.13: Last iteration
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3.4.2 The polynomial reproduction property

In this subsection, we will show that the Butter�y subdivision scheme reproduces poly-
nomials of up to degree 3 for the tension parameter w = 1

16
. The following result proves

the polynomial reproducibility of the Butter�y subdivision scheme.

Theorem 3.4.3. The Butter�y subdivision scheme (3.4.1) with w = 1
16

reproduces cubic
bivariate polynomials, in the sense that∑

(k,`)∈Z2

pi−2k,j−2` f(k, `) = f

(
i

2
,

j

2

)
, i, j ∈ Z, f ∈ Π2

3, (3.4.18)

where the sequence {pi,j} is de�ned by (3.4.1), with w = 1
16
.

Proof. It will su�ce to prove that (3.4.18) is satis�ed by the monomial f(x, y) = xαyβ,
where α and β are non-negative integers, with α + β ≤ 3.

Since i, j ∈ {−3,−2, . . . , 2, 3} and i− 2k, j− 2` ∈ {−3,−2, . . . , 2, 3}, we have that

k ∈
{
d1

2
(i− 3)e, d1

2
(i− 3)e+ 1, . . . , b1

2
(i + 3)c

}
and

` ∈
{
d1

2
(j− 3)e, d1

2
(j− 3)e+ 1, . . . , b1

2
(j + 3)c

}
.

It follows that the possible integer pairs are given by

[k× `] =

{
(d1

2
(i− 3)e, d1

2
(j− 3)e), . . . , (d1

2
(i− 3)e, b1

2
(j + 3)c),

(d1
2

(i− 3)e+ 1, d1
2

(j− 3)e), . . . , (d1
2

(i− 3)e+ 1, b1
2

(j + 3)c)

. . . , (b1
2

(i + 3)c, d1
2

(j− 3)e), . . . , (b1
2

(i + 3)c, b1
2

(j + 3)c)
}
. (3.4.19)

Consider the following cases:

� Case I: Consider the monomial f(x, y) = xα with α = 0, or α = 1, or α = 2 or
α = 3.

(a) For i = 2m + 1 and j = 2n + 1, we have to show that∑
(k,`)∈Z2

p(2m+1)−2k,(2n+1)−2` f(k, `) = f

(
2m + 1

2
,
2n + 1

2

)
. (3.4.20)
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∑
(k,`)∈Z2

p(2m+1)−2k,(2n+1)−2` f(k, `) = p3,3 f(m− 1, n− 1) + p3,1 f(m− 1, n)

+p3,−1 f(m− 1, n + 1) + p3,−3 f(m− 1, n + 2)

+p1,3 f(m, n− 1) + p1,1 f(m, n) + p1,−1 f(m, n + 1)

+p1,−3 f(m, n + 2) + p−1,3 f(m + 1, n− 1)

+p−1,1 f(m + 1, n) + p−1,−3 f(m + 1, n + 2)

+p−3,3 f(m + 2, n− 1) + p−3,1 f(m + 2, n)

+p−3,−1 f(m + 2, n + 1) + p−3,3 f(m + 2, n + 2)

= − 1

16
[(m− 1)α + mα + mα + (m + 2)α]

+
1

2
mα +

1

8
[mα + mα]. (3.4.21)

For �xed values α ∈ {0, 1, 2, 3} and from (3.4.21), we now obtain :

For α = 0, ∑
(k,`)

p(2m+1)−2k,(2n+1)−2` f(k, `) = 1 = f

(
2m + 1

2
,
2n + 1

2

)
.

For α = 1,∑
(k,`)

p(2m+1)−2k,(2n+1)−2` f(k, `) =

(
m +

1

2

)
= f

(
m + 1

2
,
n + 1

2

)
.

For α = 2,∑
(k,`)

p(2m+1)−2k,(2n+1)−2` f(k, `) =

(
m +

1

2

)2

= f

(
m + 1

2
,
n + 1

2

)
.

For α = 3,∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = =

(
m +

1

2

)3

= f

(
m + 1

2
,
n + 1

2

)
.

(b) For i = 2m + 1 and j = 2n, with f(x, y) = xα with α = 0, 1, 2, 3,∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = p3,2 (m− 1)α + p3,0 (m− 1)α + p3,−2 (m− 1)α

+ p1,2 mα + p1,0 mα + p1,−2 mα + p−3,2 (m + 2)α

+ p−3,0 (m + 2)α + p−3,−2 (m + 2)α

= − 1

16
[(m− 1)α + mα + (m + 1)α + (m + 2)α]

+
1

2
[mα + (m + 1)α] +

1

8
[mα + (m + 1)α]

For α = 0, ∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = 1.
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For α = 1, ∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) =

(
m +

1

2

)
.

For α = 2,∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) =

(
m2 + m +

1

4

)
=

(
m +

1

2

)2

= f

(
m + 1

2
, n

)
.

For α = 3, ∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = (m3 +
3

2
m2 +

3

4
m+

1

8
)

=

(
m +

1

2

)3

= f

(
m + 1

2
, n

)
. (3.4.22)

(c) For i = 2m, and j = 2n with f(x, y) = xα, α = 0, or α = 1 or α = 2 or α = 3.∑
(k,`)

p2m−2k,2n−2` f(k, `) = p2,2 (m− 1)α + p2,0 (m− 1)α + p2,−2 (m− 1)α + p0,2 mα

+p0,0 mα + p0,−2 mα + p−2,2 (m + 1)α

+p−2,0 (m + 1)α + p−2,−2 (m + 1)α

= − 1

16
[(m− 1)α +mα + (m+ 1)α + (m+ 2)α]

+
1

2
[mα + (m + 1)α] +

1

8
[mα + (m + 1)α] . (3.4.23)

For α = 0, ∑
(k,`)∈Z2

p2m+1−2k,2n−2` f(k, `) = 1.

For α = 1, ∑
(k,`)∈Z2

p2m−2k,2n−2` f(k, `) = m.

For α = 2, ∑
(k,`)∈Z2

p2m−2k,2n−2` f(k, `) = m2.

For α = 3, ∑
(k,`)∈Z2

p2m−2k,2n−2` f(k, `) = m3 = f

(
2m

2
,
2n

2

)
.

Thus, from the above, we conclude that∑
(k,`)∈Z2

p2m−2k,2n−2` f(k, `) = f

(
i

2
,

j

2

)
for every i, j ∈ Z.
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Case II: For the monomial f(x, y) = xαyβ with (α, β) ∈ {(1, 2), (1, 1)}.

(d) For i = 2m + 1 and j = 2n, we have that∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = p3,2 f(m− 1, n− 1) + p3,0 f(m− 1, n)

+p3,−2 f(m− 1, n + 1) + p1,2 f(m, n− 1) + p1,0 f(m, n)

+p1,−2 f(m, n + 1) + p−3,2 f(m + 2, n− 1)

+p−3,0 f(m + 2, n) + p−3,−2 f(m + 2, n + 1)

= − 1

16
f(m− 1, n− 1) +

1

8
f(m, n− 1) +

1

2
f(m, n)

− 1

16
f(m, n + 1)− 1

16
f(m + 1, n− 1) +

1

2
f(m + 1, n)

+
1

8
f(m + 1, n + 1)− 1

16
f(m + 2, n + 1). (3.4.24)

With (α, β) ∈ {(1, 2)} and by using (3.4.24), we have f(x, y) = xy2, so that∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = mn2 +
1

2
n2 = f

(
m +

1

2
, n

)
.

∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = − 1

16
(m− 1)(n− 1)2 +

1

8
m(n− 1)2

+
1

2
mn2 − 1

16
m(n+ 1)2 − 1

16
(m+ 1)(n− 1)2

+
1

2
(m+ 1)n2 +

1

8
(m+ 1)(n+ 1)2

− 1

16
(m+ 2)(n+ 1)2

= mn2 +
1

2
n2 = f

(
m+

1

2
, n

)
(3.4.25)

By symmetry of the monomials, it also holds true with f(x, y) = x2 y.

With (α, β) ∈ {(1, 1)}, and by using (3.4.24), we have f(x, y) = xy that∑
(k,`)

p(2m+1)−2k,2n−2` f(k, `) = − 1

16
(m− 1)(n− 1) +

1

8
m(n− 1) +

1

2
mn

− 1

16
m(n+ 1)− 1

16
(m+ 1)(n− 1) +

1

2
(m+ 1)n

+
1

8
(m+ 1)(n+ 1)− 1

16
(m+ 2)(n+ 1)

=

(
m+

1

2

)
n = f

(
m+

1

2
, n

)
(3.4.26)
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(e) For i = 2m, and j = 2n, with f(x, y) = xαyβ, (α, β) ∈ {(1, 2), (1, 1)}:∑
(k,`)

p2m−2k,2n−2` f(k, `) = p2,2 f(m− 1, n− 1) + p2,0 f(m− 1, n)

+p2,−2 f(m− 1, n + 1) + p0,2 f(m, n− 1)

+p0,0 f(m, n) + p0,−2 f(m, n + 1)

+p−2,2 f(m + 1, n− 1) + p−2,0 f(m + 1, n)

+p−2,−2 f(m + 1, n + 1)

= f (m, n) = f

(
2m

2
,
2n

2

)
, (3.4.27)

which holds true for any f ∈ Π3.

(f) For i = 2m, and j = 2n+ 1 with f(x, y) = xαyβ, (α, β) ∈ {(1, 2), (1, 1)}:∑
(k,`)

pi−2k,j−2` f(k, `) = p2,3 f(m− 1, n− 1) + p2,1 f(m− 1, n)

+p2,−1 f(m− 1, n + 1) + p2,−3 f(m− 1, n + 2)

+p0,3 f(m, n− 1) + p0,1 f(m, n) + p0,−1 f(m, n + 1)

+p0,−3 f(m, n + 2) + p−2,3 f(m + 1, n− 1)

+p−2,1 f(m + 1, n) + p−2,−1 f(m + 1, n + 1)

+p−2,−3 f(m + 1, n + 2)

= − 1

16
[f(m− 1, n− 1) + f(m− 1, n + 1)

+f(m + 1, n) + f(m + 1, n + 2)]

+
1

8
[f(m− 1, n) + f(m + 1, n + 1)]

+
1

2
[f(m, n) + f(m, n + 1)]. (3.4.28)

Now by using (3.4.28) with f(x, y) = x y, we have∑
(k,`)

pi−2k,j−2` f(k, `) = m

(
n +

1

2

)
= f

(
m,

n + 1

2

)
,

and for (α, β) ∈ {(1, 2)}, and using (3.4.28) with f(x, y) = x y2, we have∑
(k,`)

pi−2k,j−2` f(k, `) = − 1

16

[
(m− 1)(n− 1)2 + (m− 1)(n+ 1)2 + (m+ 1)n2

+(m+ 1)(n+ 2)2
]

+
1

8

[
(m− 1)n2 + (m+ 1)(n+ 1)2

]
+

1

2

[
mn2 +m(n+ 1)2

]
m

(
n +

1

2

)2

= f

(
m,

n + 1

2

)
. (3.4.29)

Thus, combining all the cases, we have established the polynomial �lling property∑
(k,`)

pi−2k,j−2` f(k, `) = f

(
i

2
,

j

2

)
, i, j ∈ Z, f ∈ Π2

3.
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In the next section, we derive a new interpolatory subdivision scheme, as was obtained in
[vdB10], before attempting to similarly derive the Butter�y subdivision scheme directly
from equation (2.6.6).

3.5 Derivation of a new interpolatory scheme

The Laurent polynomial equation (2.6.6), after normalisation,

PI(z1, z2) + PI(−z1, z2) + PI(z1,−z2) + PI(−z1,−z2) = 1. (3.5.1)

may be used to construct interpolatory bivariate subdivision schemes in a direct manner.

In order to solve equation (3.5.1), we use the normalized symbol of the Courant hat
function 3

P (z1, z2) :=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z1z2

2

)
, (3.5.2)

which is used to de�ne the interpolatory symbol PI(z1, z2) as

PI(z1, z2) := P (z1, z2)A(z1, z2), (3.5.3)

where A(z1, z2) is an arbitrary Laurent polynomial.

Now, substituting (3.5.3) into (3.5.1) yields

PI(z1, z2) + PI(−z1, z2) + PI(z1,−z2) + PI(−z1,−z2) = 1⇔(
1 + z1

2

)(
1 + z2

2

)(
1 + z1z2

2

)
A(z1, z2) +

(
1− z1

2

)(
1 + z2

2

)(
1− z1z2

2

)
A(−z1, z2)+(

1 + z1

2

)(
1− z2

2

)(
1− z1z2

2

)
A(z1,−z2) +

(
1− z1

2

)(
1− z2

2

)(
1− z1z2

2

)
A(−z1,−z2) = 1.

(3.5.4)

Letting A(z1, z2) := f(z1z2), u = z1z2, where f is a univariate Laurent polynomial, and
substituting into equation (3.5.4), we get a particular solution to the identity (3.5.4), as

given by A(z1, z2) :=
1

z1z2

.

Assuming that the general solution G(z1, z2) := A(z1, z2) +
k∑
i=1

αi Hi(z1, z2) exists, then a

3A Laurent polynomial symbol P(z1, z2) is said to be normalised if P satis�es P(1, 1) = 1.

Stellenbosch University  http://scholar.sun.ac.za



3.5. Derivation of a new interpolatory scheme 83

set of homogeneous solutions Hi are given, according to [vdB10], by

H1(z1, z2) :=
(1− z1) (1 + z2) (1− z1z2)

z1z2

H2(z1, z2) :=
(1 + z1) (1− z2) (1− z1z2)

z1z2

H3(z1, z2) :=
(1− z1) (1− z2) (1− z1z2)

z1z2

H4(z1, z2) :=
(1− z1) (1 + z2) (1− z1z2)

z3
1z

3
2

H5(z1, z2) :=
(1 + z1) (1− z2) (1− z1z2)

z3
1z

3
2

H6(z1, z2) :=
(1− z1) (1− z2) (1− z1z2)

z3
1z

3
2



, (3.5.5)

that is, the functions H := Hi, i = 1, 2, . . . , 6, satisfy the equation

P (z1, z2) H(z1, z2) + P (−z1, z2) H(−z1, z2)

+ P (z1,−z2) H(z1,−z2) + P (−z1,−z2) H(−z1,−z2) = 0, (3.5.6)

where P (z1, z2) is the symbol as in (3.5.2).

It follows that a Laurent polynomial solution to equation (3.5.1) is given by

G(z1, z2) := A(z1, z2) + α H1(z1, z2) + β H2(z1, z2) + γ H3(z1, z2)

+ α H4(z1, z2) + β H5(z1, z2)− γ H6(z1, z2)

}
, (3.5.7)

for (z1, z2) ∈ C2\{(0, 0)}, and with α, β and γ denoting arbitrary constants. Hence the
polynomial

PI(z1, z2) :=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z1z2

2

)
G(z1, z2); (z1, z2) ∈ C2\{(0, 0)} (3.5.8)

satis�es equation (3.5.1), that is, PI is an interpolatory mask symbol.

Observe from (3.5.8), (3.5.7), (3.5.6), together with A(z1, z2) =
1

z1z2

, that the Laurent

polynomial PI satis�es the symmetric condition PI(z1, z2) = PI(z2, z1) for (z1, z2) ∈
C2\{(0, 0)}.

Simplifying the Laurent polynomial PI , we get

PI(z1, z2) :=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z1z2

2

)[
1

z1z2
+
α (1− z1) (1 + z2) (1− z1z2)

z1z2

+
β (1 + z1) (1− z2) (1− z1z2)

z1z2
+
γ (1− z1) (1 + z2) (1− z1z2)

z1z2

+
α (1− z1) (1 + z2) + (1− z1z2)

z3
1z

3
2

+
β (1 + z1) (1− z2) (1− z1z2)

z3
1z

3
2

−γ (1− z1) (1− z2) (1− z1z2)

z3
1z

3
2

]
. (3.5.9)
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Under the preference of a re�nement mask with smallest support, we set γ = α+ β, and
it follows that

P (z1, z2) :=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z−1

1 z−1
2

2

)[
1 + 2(1− z1z2)(α+ β − αz1 − βz2)

+2(1− 1

z1z2
)(α+ β − α

z1
− β

z2
)

]
. (3.5.10)

Under the preference of a symmetric mask, we need that PI must satisfy PI(z1, z2) =
PI(z2, z1), (z1, z2) ∈ C2\{(0, 0)}, so that, from (3.5.10), we impose the further restriction
that α = β, after which (3.5.10) becomes

PI(z1, z2) :=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z−1

1 z−1
2

2

)
· [1 + 2α(1− z1z2)(2− z1 − z2)

+2α(1− 1

z1z2

)(2− 1

z1

− 1

z2

)]

=

(
1 + z1

2

)(
1 + z2

2

)(
1 + z−1

1 z−1
2

2

)
[1− w K(z1, z2)] ,

where K is the Laurent polynomial

K(z1, z2) := z−1
1 z−2

2 + z−2
1 z−1

2 − 2z−1
1 z−1

2 − z−1
1 − z−1

2 (3.5.11)

+ 4− z1 − z2 − 2z1z2 + z2
1z2 + z1z

2
2 ,

for (z1, z2) ∈ C2\{(0, 0)}.

The subdivision scheme corresponding to the mask PI is similar to the Butter�y subdi-
vision scheme, as given in [DLG90, KLY07, DHL11].

We have as yet not succeeded in deriving the Butter�y subdivision scheme using the
above approach . This is because (3.5.5) does not represent a full basis for the solution
space of the homogeneous equation (3.5.6). This unresolved problem represents a good
research project for the future. However, we have successfully veri�ed, in Section 3.4, the
interpolatory Butter�y subdivision scheme by using the algebraic approach.
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Chapter 4

Convergence and smoothness analysis

In this chapter, we analyze the convergence and smoothness of the interpolatory Butter�y
subdivision scheme as well as the new interpolatory scheme of Section 3.5, with some
graphical illustrations of limit functions.

As was done for the univariate case in [dVC10, WW02], our approach to analyse the
behaviour of a bivariate subdivision scheme is to associate a piecewise bilinear function
fk (z1, z2) with the entries of the vector ck plotted on the grid 1

2k
Z2. In essence, the value

of this function fk(z1, z2) at the grid point
(
i

2k
, j

2k

)
is simply the (i, j)th coe�cient of the

vector ck, that is,

fk

(
i

2k
,
j

2k

)
= cki,j. (4.0.1)

We pursue our study of convergence and smoothness of the bivariate ones by asking
ourselves the following core questions, as was done for the univariate case in [dVC10].

Given a sequence of functions fk(z1, z2) satisfying (4.0.1),

� Does this sequence of functions fk(z1, z2) converge to a limit?

� If so, does the limit function satisfy a smoothness condition?

4.1 Analysis of convergence and smoothness

The following de�nitions are basic about boundedness and contractivity of operators in
normed linear spaces.

De�nition 4.1.1. Let (B, ‖·‖) be a normed linear space and suppose L is a linear operator
mapping B into itself. We say that L is bounded if

‖L‖ := sup

{
‖Lf‖
‖f‖

: f ∈ B, f 6= 0

}
<∞. (4.1.1)

Moreover, if it holds ‖L‖ < 1, then we say that L is contractive.

85
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4.1. Analysis of convergence and smoothness 86

Observe in particular from (4.1.1) that

‖Lf‖ ≤ ‖L‖‖f‖, f ∈ B, (4.1.2)

for any bounded linear operator L mapping a normed linear space B into itself.

The following results in [KLY07, DLM89] are on the smoothness and convergence of a
bivariate subdivision scheme.

Theorem 4.1.2. Let S be a bivariate subdivision scheme with associated mask symbol
P(z1, z2). Then S is convergent if and only if the subdivision scheme with symbols

Pa,b(z1, z2) = 2
P(z1, z2)

1 + za
1z

b
2

, (a, b) ∈ {(0, 1), (1, 0), (1, 1)} , (4.1.3)

are contractive.

For univariate subdivision, we have the following result from [DLM89].

Theorem 4.1.3. [DLM89] Suppose that, for some m ∈ N,

P(z) := 2−m (1 + z−1)m+1 r(z), (4.1.4)

for some Laurent polynomial

r(z) :=
∑
j

rj z
j, z ∈ C,

satisfying r(1) = 1, and that, for some n ∈ N,

‖Snr ‖∞ := sup {‖Snr c‖∞ : ‖c‖∞ ≤ 1} < 1, (4.1.5)

where
‖c‖∞ := sup {|cj| : j ∈ Z} ,

and Snr is the nth-iterate of the linear operator Sr. Then the subdivision scheme Sp is a
convergent subdivision scheme of order m, that is, [CmSS] as in (2.3.3).

Equation (4.1.5) is a condition for the contractivity on r which is equivalent to

lim
n→∞

‖Snr ‖∞ = 0, (4.1.6)

with Sr denoting the subdivision scheme associated with the mask {rj : j ∈ Z} .

De�nition 4.1.4. The Laurent polynomial r(z) is said to be strictly stable if (4.1.6)
holds.

The extension of the contractivity property of subdivision operators to the bivariate case
is given in the following remark.

Remark 4.1.5. According to [DLM89], the contractivity condition for assuring conver-
gence of bivariate subdivision schemes is given by ‖Snr‖∞ < 1, where

‖Snr ‖∞ := sup
0≤i1,i2≤2n−1

∑
j∈Z2

∣∣r[n]
i+2nj

∣∣ , i := (i1, i2) ∈ R2. (4.1.7)
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More precisely, the relevant two results from [DLM89] are as follows.

Theorem 4.1.6. Suppose that

P(z1, z2) = 2−1(1 + z−1
1 )(1 + z−1

2 )(1 + z−1
1 z−1

2 ) r(z1, z2), (4.1.8)

where r is a Laurent polynomial satisfying r(1) = 1, and the polynomials

(1 + z−1
1 ) r(z1, z2) and (1 + z−1

2 ) r(z1, z2) are strictly stable. Then the subdivision scheme
Sp is C1SS.

Theorem 4.1.7. If the mask symbol r(z) is strictly stable, then {zm r(z) : m ∈ Z} is
strictly stable.

By applying Theorems 4.1.6 and 4.1.7, we can now prove the following convergence result
for the Butter�y subdivision scheme.

Theorem 4.1.8. The interpolatory Butter�y subdivision scheme as given in Section 3.4,
with mask symbol as in (3.4.1), converges to C1(R2).

Proof. Using (4.1.5), together with Theorem 4.1.2, we need to check that the subdivision
scheme with symbol Pw(z1, z2) as in (3.4.1) is C1, that is, it su�ces to show ([DLG90,
DHL11, DLM89]) that any two of the schemes

2
Pw(z1, z2)

1 + z1

, 2
Pw(z1, z2)

1 + z2

, 2
Pw(z1, z2)

1 + z1z2

are in C0.

We shall use the notation

P1,0(z1, z2) := 2
Pw(z1, z2)

1 + z1

; P0,1(z1, z2) := 2
Pw(z1, z2)

1 + z2

; P1,1(z1, z2) := 2
Pw(z1, z2)

1 + z1z2

.

We shall show that

P0,1(z1, z2) =
1

2
(1 + z1)(1 + z1z2)(1− w r(z1, z2))(z1z2)−1 (4.1.9)

and

P1,0(z1, z2) =
1

2
(1 + z2)(1 + z1z2)(1− w r(z1, z2))(z1z2)−1 (4.1.10)

where r(z1, z2) is as given in (3.4.2), are contractive.

By Theorem 4.1.7, it su�ces to prove that (1 + z1)(z1z2)(1−w r(z1, z2)) is strictly stable,
or, equivalently, say, Q(z1, z2), which is obtained by applying Theorem 4.1.7 on P0,1(z1, z2)
to get

Q(z1, z2) := (1 + z1)(1− w r(z1, z2)), (4.1.11)

is strictly stable. The other two polynomials in Theorem 4.1.6 are strictly stable by the
symmetries of r(z1, z2), that is, r(z1, z2) = r(z2, z1) = r(z−1

1 , z−1
2 ).
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Observe that, for n = 1,

‖SQ‖∞ : = max
0≤k,`≤1

(∑
i,j

|Q2i+k,2j+`|

)

= max

(∑
i,j

|Q2i,2j|,
∑
i,j

|Q2i+1,2j|,
∑
i,j

|Q2i,2j+1|,
∑
i,j

|Q2i+1,2j+1|

)
. (4.1.12)

From the strict stability property as in Theorem 4.1.7, it is su�cient to show Q(z1, z2) is
strictly stable.

Now, from (3.4.2) together with (4.1.11), we get

Q(z1, z2) = −2wz3
1z2 − 2wz2

1z
2
2 + 2wz2

1z2 − 2wz1z
2
2 + 4wz2

1 + 8wz1z2

−2wz2
1z
−1
2 − 8wz1 + 2wz2 + 2wz1z

−1
2 − 2wz−1

1 z2 − 8w

+z1 + 4wz−1
1 + 8wz−1

2 + 2wz−1
1 z−1

2 − 2wz−2
2 − 2wz−1

1 z−2
2

−2wz−2
1 z−1

2 + 1 +O(w2). (4.1.13)

Looking at the necessary coe�cients of Q(z1, z2), we see that

Q2,2 = −2w; Q2,0 = 4w; Q0,0 = 1− 8w; Q0,−2 = −2w,

and thus ∑
i,j

|Q2i,2j| = | − 2w|+ |4w|+ |1− 8w|+ | − 2w|

= |1− 8w|+ |8w|. (4.1.14)

Hence, ‖SQ‖∞ ≥ 1 for all values of w.

Considering S2
Q, we proceed to �nd an interval (0, w0) such that ‖S2

Q‖∞ < 1, w ∈ (0, w0).

Since it is very di�cult to compute the exact value of w0, we only consider the linear
terms in w.

From (4.1.13), we obtain the expansion

Q[2](z1, z2) = Q(z1, z2) Q(z2
1 , z

2
2) = (1 + z1 + z2

1 + z3
1) (1− w r(z1, z2)− w r(z2

1 , z
2
2) +O(w2))

= −2wz7
1z

2
2 − 2wz5

1z
4
2 − 2wz6

1z
2
2 − 2wz4

1z
4
2 + 2wz5

1z
2
2 − 2wz3

1z
4
2 − 2wz5

1z2

− 2wz2
1z

4
2 + 4wz5

1 + 2wz4
1z2 + 6wz3

1z
2
2 + 8wz4

1 + 6wz3
1z2 + 6wz2

1z
2
2

− 2wz5
1z
−2
2 − 2wz4

1z
−2
2 − 16wz3

1 + 4wz2
1z2 − 2wz4

1z
−2
2 + 2wz3

1z2 − 12wz2
1

+ 6wz1z2 + 2wz2
2 + z3

1 + 2wz3
1z
−2
2 + 6wz2

1z
−1
2 − 12wz1 − 2wz2

2z
−1
1 + 2wz2

+ z2
1 + 4wz1z

−1
2 − 2wz2z

−1
1 − 2wz−2

1 z2
2 − 16w + z1 + 6wz1z

−2
2 + 8wz−1

1

+ 6wz−1
2 + 2wz−1

1 z−1
2 + 4wz−2

1 + 6wz−2
2 − 2wz1z

−4
2 − 2wz−2

1 z−1
2 + 2wz−2

1 z−2
2

− 2wz−4
2 − 2wz−1

1 z−4
2 − 2wz−3

1 z−2
2 − 2wz−2

1 z−4
2 − 2wz−4

1 z−2
2 + 1 +O(w2).

(4.1.15)

By looking at the necessary coe�cients of Q[2](z1, z2), we �nd that Q
[2]
i,j = O(w) for j 6= 0,

while Q
[2]
i,0 = 1 +O(w), for i = 0, 1, 2, 3.
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Thus, it is su�cient to show that, for w su�ciently small, it holds that∑
i,j

Q
[2]
4i+`,4j < 1, ` = 0, 1, 2, 3.

For the case ` = 0, all the non-zero coe�cients are given by

Q0,0 = 1− 16w +O(w2); Q4,4 = Q0,−4 = −2w +O(w2); Q4,0 = 8w +O(w2).

Hence
∑
i,j

|Q[2]
4i,4j| = |1− 16w|+ 12|w|+O(w2) < 1, for w > 0 su�ciently small.

For the case ` = 1, all the relevant coe�cients are

Q
[2]
1,0 = 1− 12w +O(w2); Q

[2]
5,0 = 4w +O(w2); Q

[2]
5,4 = Q

[2]
1,−4 = −2w +O(w2).

Hence,
∑
i,j

|Q[2]
4i+1,4j| = |1− 12w|+ 8|w|+O(w2) < 1, for w > 0 su�ciently small.

For the case ` = 2, all the relevant coe�cients are

Q
[2]
2,0 = 1− 12w +O(w2); Q

[2]
5,4 = 4w +O(w2); Q

[2]
2,4 = −2w +O(w2).

Thus,
∑
i,j

|Q[2]
4i+2,4j| = |1− 12w|+ 8|w|+O(w2) < 1

for su�ciently small w > 0. That is, the case ` = 2 is the same as ` = 1.

For the case ` = 3, we get
∑
i,j

|Q[2]
4i+3,4j| = |1− 16w|+ 12|w|+O(w2) < 1,

which is the same as the case for ` = 0 for su�ciently small w > 0.

Hence the interval for which the tension parameter w provides the shape of the limit
function of the Butter�y subdivision scheme lies in (0, 1

12
). The best value of w that

makes the Butter�y subdivision scheme to reproduce cubic polynomials is attained when
w = 1

16
.

4.2 Convergence of the new interpolatory scheme

As mentioned in Section 3.5, we consider next the new interpolatory subdivision scheme,
as obtained in [vdB10]. It exhibits similar features to the Butter�y subdivision scheme,
and its interpolatory mask is given by

p−3,−1 = p−3,−2 = p−2,−3 = p−1,−3 = p3,2 = p2,3 = p1,3 = p3,1 = −w/2;

p1,2 = p2,1 = p−1,−2 = p−2,−1 = w/2;

p0,0 = 1;

p−1,−1 = p1,1 = p0,−1 = p−1,0 = p0,1 = p1,0 = 1/2;

p1,−1 = p−1,1 = w;

pi,j = 0, otherwise.


(4.2.1)
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Writing equation (4.2.1) for the mask sequence {pi,j : −3 ≤ i, j ≤ 3} as a matrix leads to

0 0 0 0 −w
2
−w

2
0

0 0 0 0 −1
2

0 −w
2

0 0 w 1
2

1
2
−1

2
−w

2

0 0 1
2

1 1
2

0 0
−w

2
−1

2
1
2

1
2

w 0 0
−w

2
0 −1

2
0 0 0 0

0 −w
2
−w

2
0 0 0 0


. (4.2.2)

In Figure 4.1, the graph of the corresponding basis function φp for this subdivision scheme
was obtained by means of the cascade algorithm.

Figure 4.1: The basis function φp for the new interpolatory scheme [w = 1
16 ].

This subdivision scheme exhibits similar behaviour to the Butter�y subdivision scheme
with respect to symmetry, convergence and smoothness, with, in particular:

� The new interpolatory subdivision scheme is symmetric, that is, pi,j = pj,i for any
i, j ∈ Z.

� The new scheme seemingly shares the same structural pattern with the Butter�y
subdivision scheme;

� The subdivision polynomial PI(z1, z2) has (1+z1), (1+z2) and (1+z1z2) as factors.

The corresponding bivariate Laurent polynomial is given by

PI(z1, z2) =
1

2
(1 + z1)(1 + z2)(1 + z−1

1 z−1
2 ) [1− w r(z1, z2)]

= 2−1(1 + z−1
1 )(1 + z−1

2 )(1 + z−1
1 z−1

2 ) [(z1z2) (1− w r(z1, z2))] , (4.2.3)

where

r(z1, z2) = z−1
1 z−2

2 + z−2
1 z−1

2 − 2z−1
1 z−1

2 − z−1
1 − z−1

2 + 4− z1 − z2

−2z1z2 + z2
1z2 + z1z

2
2 , (4.2.4)

with r(z1, z2) = r(z2, z1) = r(z−1
1 , z−1

2 ).

By applying Theorem 4.1.6 and 4.1.7, we now prove the following convergence result.
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Theorem 4.2.1. The new interpolatory subdivision scheme, with subdivision symbol as
in (4.2.3), converges to a C1-limit surface.

Proof. According to Theorem 4.1.6, to show that the subdivision scheme converges to
C1(R2) surface, it su�ces to show that (1 + z1)(z1z2)(1−w r(z1, z2)) is strictly stable, or
equivalently, that

Q(z1, z2) := (1 + z1)(1− w r(z1, z2)) (4.2.5)

is strictly stable. The other two polynomials in Theorem 4.1.6 are strictly stable by the
symmetries of r(z1, z2). Observe that, for n = 1,

‖SQ‖∞ : = max
0≤k,`≤1

(∑
i,j

|Q2i+k,2j+`|

)

= max

(∑
i,j

|Q2i,2j|,
∑
i,j

|Q2i+1,2j|,
∑
i,j

|Q2i,2j+1|,
∑
i,j

|Q2i+1,2j+1|

)
. (4.2.6)

From the strict stability property as in Theroem 4.1.7, it is su�cient to show Q(z1, z2) is
strictly stable.

Now, applying (4.2.4) to equation (4.2.5), we get

Q(z1, z2) = (1 + z1)(1− w r(z1, z2)) +O(w2)

= −wz3
1z2 − wz2

1z
2
2 + wz2

1z2 − wz1z
2
2 + 3wz1z2 − 3wz1

+wz2 + wz1z
−1
2 − 3w + z1 + wz−1

1 + 3wz−1
2 + wz−1

1 z−1
2

−wz−2
2 − wz−1

1 z−2
2 − wz−2

1 z−1
2 + 1 +O(w2). (4.2.7)

Looking at the necessary coe�cients of Q(z1, z2), we see that

Q2,2 = −w; Q2,0 = w; Q0,0 = 1− 3w; Q0,−2 = −w.

and thus, ∑
i,j

|Q2i,2j| = | − w|+ |w|+ |1− 3w|+ | − w|+O(w2)

= |1− 3w|+ 3|w|+O(w2) (4.2.8)

Thus, ‖SQ‖∞ ≥ 1 for all values of w. Considering S2
Q, we proceed to �nd an interval

(0, w0) such that ‖S2
Q‖∞ < 1, w ∈ (0, w0).

Since it is very di�cult to compute the exact value of w0, we only consider linear terms
in w.

From (4.2.7), we obtain the expansion

Q[2](z1, z2) = Q(z1, z2) Q(z2
1 , z

2
2) =

[
(1 + z1 + z2

1 + z3
1) (1− w r(z1, z2)− w r(z2

1 , z
2
2) +O(w2)

]
= −wz7

1z
2
2 − wz5

1z
4
2 − wz6

1z
2
2 − wz4

1z
4
2 + wz5

1z
2
2 − wz3

1z
4
2 − wz5

1z2 − wz2
1z

4
2 + wz5

1

+ wz4
1z2 + 2wz3

1z
2
2 + 2wz4

1 + 2wz3
1z2 + 2wz2

1z
2
2 − 6wz3

1 + 2wz2
1z2 + wz3

1z
−1
2

− 5wz2
1 + 3wz1z2 + wz2

2 + z3
1 + wz3

1z
−2
2 + 3wz2

1z
−1
2 − 5wz1 + wz2

+ z2
1 + 2wz1z

−1
2 − 6w + z1 + 2wz1z

−2
2 + 2wz−1

1 + 2wz−1
2

+ wz−1
1 z−1

2 + wz−2
1 + 2wz−2

2 − wz1z
−4
2 − wz−2

1 z−1
2 + wz−2

1 z−2
2 − wz−4

2

− wz−1
1 z−4

2 − wz−3
1 z−2

2 − wz−2
1 z−4

2 − wz−4
1 z−2

2 + 1 +O(w2). (4.2.9)

Stellenbosch University  http://scholar.sun.ac.za



4.2. Convergence of the new interpolatory scheme 92

By looking at the necessary coe�cients of Q[2](z1, z2), we �nd that Q
[2]
i,j = O(w) for j 6= 0,

while Q
[2]
i,0 = 1+O(w), for i = 0, 1, 2, 3. Thus, it is su�cient to show that, for w su�ciently

small, ∑
i,j

Q
[2]
4i+`,4j < 1, ` = 0, 1, 2, 3.

For the case ` = 0, all the non-zero coe�cients are given by

Q0,0 = 1− 6w +O(w2); Q4,4 = −w +O(w2); Q0,−4 = −w +O(w2);

Q4,0 = 2w +O(w2).

Hence, ∑
i,j

|Q[2]
4i,4j| = |1− 6w|+ | − w|+ | − w|+ |2w|+O(w2)

= 4|w|+ |1− 6w|+O(w2).

For the case ` = 1, all the relevant coe�cients are

Q1,0 = 1− 5w +O(w2); Q5,0 = −w +O(w2); Q5,4 = −w +O(w2);

Q1,−4 = −w +O(w2).

Hence,
∑
i,j

|Q[2]
4i+1,4j| = |1− 5w|+ 3|w|+O(w2) < 1 for w > 0 su�ciently small.

For the case ` = 2, all the relevant coe�cients are

Q2,0 = 1− 5w +O(w2); Q6,4 = Q6,0 = Q2,−4 = 0 +O(w2).

Hence, ∑
i,j

|Q[2]
4i+1,4j| = |1− 5w|+O(w2) < 1

for w > 0 su�ciently small.

For the case ` = 3, all the relevant coe�cients are

Q3,0 = |1− 6w|+O(w2); Q3,4 = | − w|+O(w2); Q3,−4 = | − w|+O(w2);

Q1,−4 = | − w|+O(w2).

Hence,
∑
i,j

|Q[2]
4i,4j| = |1− 6w|+ 2|w|+O(w2) < 1 for w > 0 su�ciently small.

Thus, we have shown, according to Theorem 4.1.6, that Q is strictly stable.

Hence, the new interpolatory subdivision scheme is C1SS for w > 0 su�ciently small and
the interval range for the tension parameter w to get C1 lies in (0, 1

6
).

As shown in Figure 4.1, as obtained by means of the cascade algorithm, the tension
parameter values w ∈ (0, 1

6
) seems to produce a C1 limit surface.

Further analysis of this subdivision scheme would be an interesting research project for
the future.
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Chapter 5

Conclusions

This study deals with interpolatory bivariate re�nable functions, which are re�nable
functions that assume the value 1 at the origin and vanish at all other integer pairs
[Jia95, HJ98, HJ97]. We studied characterizations of re�nement masks of these re�n-
able functions with their associated mask symbols, by taking the integer dilation matrix
A = 2I2 into consideration.

We focused on interpolatory subdivision schemes, which are schemes that preserve initial
control points at all steps of the iterative process to construct subdivision surfaces, by
giving special attention to the Butter�y interpolatory subdivision scheme.

Taking the existence of interpolatory bivariate re�nable functions as given, we focused on
the classical 2I2-re�nable box splines, which are basis functions for subdivision analysis,
as subdivision of box splines is the cornerstone of many popular multivariate subdivision
schemes.

Besides using tensor products of univariate re�nable functions, the link between the sub-
division algorithm and the cascade algorithm was implemented to generate a non-tensor
product re�nable bivariate function, which in turn plays a key role in the construction
of smooth surface. It is good to note that convergence of the cascade algorithm implies
convergence of the corresponding subdivision scheme, which in turn is strongly bonded
to the existence of the corresponding interpolatory bivariate re�nable function.

We have used bivariate box splines as helpful tools for constructing subdivision surfaces
in R3. Following the work of [CCJZ11], the mask symbol characterization of the Butter�y
subdivision scheme was found to be of an algebraic nature. Using the algebraic approach
to systematically construct bivariate subdivision schemes, we veri�ed that the Butter�y
interpolatory subdivision scheme emanates from the normalized box spline generators of
some polynomial ideal I and its power Ik. That is, the mask symbol of the Butter�y
subdivision scheme can be expressed as C[z±1

1 , z±1
2 ]-combinations of normalised box spline

symbols {B̃D(z1, z2) : (z1, z2) ∈ C2\(0, 0)}. The convergence analysis of this subdivision
scheme was also shown by using contractivity of subdivision operators.

We attempted to verify the Butter�y subdivision scheme from a bivariate Laurent polyno-
mial equation as in (3.5.1), which remains as yet unsuccessful, though we have successfully
veri�ed the Butter�y Scheme using an algebraic approach.

In particular, any attempt to obtain the Butter�y scheme as in Section 3.5 will depend on
obtaining a full basis for the homogeneous equation (3.5.6) . Hence, deriving the Butter�y

93

Stellenbosch University  http://scholar.sun.ac.za



94

subdivision scheme as a general solution of the non-homogeneous bivariate equation as in
(3.5.4) is an interesting open problem which will be considered in future research.

The symmetric new interpolatory subdivision scheme, as in (4.2.3) and (4.2.4), satis-
�es much of the same properties, like smoothness, convergence and interpolation of the
Butter�y subdivision scheme. Furthermore, we have proved the convergence of this new
interpolatory subdivision scheme by using contractivity property of subdivision operators.
Further properties are to be studied in the future.
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Appendix A

Gröbner basis computation

> ring R = 0, (x,y),dp;

//Ring of characteristic 0 over field C.

> ideal I= (x2-1)*(x+1),(x2-1)*(y+1),(x+1)*(y+1)*(x+1),

(x+1)*(y+1)*(y+1),(x2-1)*(y-1),(y2-1)*(y-1),(x+1)*(y2-1),(y2-1)*(y+1);

// The ideal generated by the given polynomials

> std(I);//gives Gr\"{o}bner basis.

_[1]=y2-1

_[2]=xy+x+y+1

_[3]=x2-1

Ideal membership

poly f = (7/16)*xy*((1+x)^2)*((1+y)^2)*(1+xy)^2 -(1/16)*x*(1+x)*((1+y)^3)*((1+xy)^3)

-(1/16)*y*((1+x)^3)*(1+y)*(1+xy)^3-(1/16)*((1+x)^3)*((1+y)^3)*(1+xy);

> NF(f, std(I));//normal form of an ideal I

0

//This shows that the polynomial f is contained in I if and only if NF(f, std(I));

evaluates to 0.

> ring r = 0, (x,y), dp;//Ring of characteristic 0 over field C.

> ideal I= 1-x^2, 1-y^2, (1+x)*(1+y)/4;

> poly P= (7/16)*xy*((1+x)^2)*((1+y)^2)*(1+xy)^2

-(1/16)*x*(1+x)*((1+y)^3)*((1+xy)^3) -(1/16)*y*((1+x)^3)*((1+y)^3)*(1+xy);//Polynomial f

> I=std(I);

> I;

I[1]=y2-1

I[2]=xy+x+y+1

I[3]=x2-1

> matrix C = lift (I,P);

> C;

C[1,1]=-1/16x5y4+1/4x5y3-1/16x4y4+5/8x5y2+7/16x4y3+5/8x5y+13/8x4y2+1/16x3y3

+5/8x5+9/4x4y+5/4x3y2-3/16x2y3+9/4x4+41/16x3y-1/16x2y2-1/16xy3+11/4x3+11/16x2y

-3/8xy2+17/16x2-7/16xy-1/16y2-5/16x-3/16y-1/4

C[2,1]=3

C[3,1]=5/8x3y+5/8x3+9/4x2y+9/4x2+27/8xy+27/8x+13/4y+13/4

> poly k=C[1,1]*I[1]+ C[2,1]*I[2] + C[3,1]*I[3];
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> k;

-1/16x5y6+1/4x5y5-1/16x4y6+11/16x5y4+7/16x4y5+3/8x5y3+27/16x4y4+1/16x3y5+29/16x4y3

+5/4x3y4-3/16x2y5+5/8x4y2+5/2x3y3-1/16x2y4-1/16xy5+3/2x3y2+7/8x2y3-3/8xy4+3/16x3y

+9/8x2y2-3/8xy3-1/16y4+5/16x2y+1/16xy2-3/16y3-1/16x2+1/16xy-3/16y2-1/16x-1/16y

> k = P;

> k - P;

0// This assures the coefficient polynomials are the right ones

to decompose the original poly P.
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