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Abstract 

 

INTRODUCTION: The mechanism behind obesity-related cardiomyopathies is at present 

not completely known, however, cardiac insulin resistance has been implicated as one of 

the main arbitrators of obesity-related cardiovascular disease. A few studies have 

associated perturbations in the insulin-mediated PI3K/PKB/Akt pathway in mediating this 

insulin resistance. Moreover, this pathway has been shown to regulate myocardial 

apoptosis, which in turn has been implicated in a number of cardiovascular diseases. 

Currently, few studies have compared the early onset and advanced effects of obesity on 

the heart. 

 

AIMS: To compare the early and advanced stages of obesity in terms of myocardial (i) 

PI3K/PKB/Akt signalling, (ii) apoptotic signalling and (iii) mitochondrial integrity. 

Furthermore, we aim to assess the cardiac mitochondrial (i) PI3K/PKB/Akt signalling, (ii) 

apoptotic signalling and (iii) integrity during the advanced stages of obesity. 

 

METHODS: Male Wistar rats were randomly assigned to either a control or diet-induced 

obesity (DIO) group. Controls were fed a standard rat chow diet and the DIO group fed a 

high caloric diet (standard rat chow supplemented with sucrose and condensed milk). The 

diets were implemented for either 8 or 20 weeks and thereafter, the body weight, intra-

peritoneal fat mass, and fasting blood glucose and insulin levels (including intra-peritoneal 

glucose tolerance tests (IPGTTs)) were determined. Freeze-clamped hearts from both 

groups were subjected to cytosolic western blot analysis for PI3K p85 subunit, PKB/Akt, 

GSK-3α/β, Bad, Bax and Bcl-2. A fraction of each heart was also subjected to WB analysis 
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of the mitochondrial electron transport chain (ETC) complexes (I-V). Thereafter, the above 

mentioned proteins were also probed for in mitochondria isolated from the 20 weeks group 

after administering insulin and exposing the hearts to ischemia. Oxidative phosphorylation 

(OXPHOS) capacity analysis was then conducted on mitochondria isolated from 20 weeks 

DIO and control groups and thereafter a citrate synthase (CS) activity assay was 

performed on these mitochondria. 

 

RESULTS: After the 8 and 20 weeks diet, the DIOs had significantly increased intra-

peritoneal fat mass, fasting plasma glucose and insulin levels, compared to their controls. 

Cytosolic WB analysis: The tp85, pp85 and pPKB/Akt levels were significantly higher in the 

DIOs in comparison to the controls after 8 weeks of diet. Furthermore, pBad and Bax 

expression were significantly elevated in these animals. After 20 weeks of diet, the DIOs 

had significantly decreased pp85, tPKB/Akt and pPKB/Akt levels. The tBad was 

significantly elevated, while the Bad phosphorylated over total expression (P/T) ratio was 

significantly decreased, in these animals. CS activity assay: CS activity was significantly 

decreased in the DIOs, versus the controls, at 20 weeks. Mitochondrial ETC WB analysis: 

The subunit expression in complexes I-III and V did not differ significantly after 8 weeks 

however, the expression was significantly lower in complexes I and II after 20 weeks. 

Interestingly, the complexes III and V expression was significantly elevated. Mitochondrial 

OXPHOS analysis: The ADP/O ratio with (1) glutamate or (2) palmitoyl-L- carnitine as 

substrate, showed a significant decrease in the DIOs at 20 weeks. Mitochondrial WB 

analysis: The pp85 subunit was significantly elevated in the control and DIO groups, 

exposed to insulin and ischemia, in comparison to the untreated controls. The Bcl-2 levels 

were significantly decreased in the insulin and ischemia DIOs, when matched against the 

untreated DIOs. The tBad expression did not differ significantly between the insulin and 
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untreated controls, while the tBad was significantly augmented in the ischemia controls 

versus untreated controls. All significant differences were taken as p<0.05. 

CONCLUSION: The results indicate that the initial stage of diet-induced obesity is 

associated with cardioprotection as there is augmented PI3K/PKB/Akt pathway signalling 

and a decrease in apoptotic markers. In contrast, during the advanced stages of obesity a 

decreased activity in PI3K/PKB/Akt pathway is associated with myocardial apoptosis and 

decreased mitochondrial function and integrity. 
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Abstrak 

 

INLEIDING: Die meganisme verantwoordelik vir vetsug-verwante kardiomiopatieë is 

huidiglik nie bekend nie maar kardiale insulienweerstandigheid word geïmpliseer as een 

van die hoof bemiddelaars van vetsug-verwante hartsiektes.  Verskeie studies het 

versteurings in die insulien-gemediëerde PI3K/PKB/Akt pad geassosieer met die 

bevordering van hierdie insulienweerstandigheid. Daarbenewens is dit getoon dat hierdie 

pad betrokke is in die regulering van miokardiale apoptose, wat op sy beurt geïmpliseer is 

in 'n aantal kardiovaskulêre siektes. Daar is tans min studies beskikbaar wat die vroeë en 

laat gevolge van obesiteit op die hart vergelyk. 

DOELWITTE: Om die vroeë en gevorderde stadiums van vetsug te vergelyk in terme van 

miokardiale (i) PI3K/PKB/Akt seintransduksie, (ii) apoptotiese seintransduksie en (iii) 

mitokondriale integriteit. Verder, het die studie ten doel om die kardiale mitokondriale (i) 

PI3K/PKB/Akt en (ii) apoptotiese seintransduksie en (iii) integriteit in die gevorderde 

stadiums van vetsug te bepaal. 

METODES: Manlike Wistar rotte is ewekansig toegewys aan óf 'n kontrole of dieet-

geïnduseerde vetsug (DIO) groep. Kontroles is met 'n normale rotkos dieet en die DIO 

groep met 'n hoë kalorie dieet (normale rotkos aangevul met sukrose en kondensmelk) 

gevoed. Die dieet is vir 8 of 20 weke volgehou en daarna was die liggaamsgewig, intra-

peritoneale vet massa, en vastende bloed glukose en insulien vlakke (insluitende intra-

peritoneale glukose toleransie toets (IPGTT`s)) bepaal. Gevriesklampte harte van beide 

groepe is onderwerp aan sitosoliese WB-analise vir die PI3K p85 subeenheid, PKB / Akt, 

GSK-3α/β, Bad, Bax en Bcl-2. `n Fraksie van hierdie harte is ook onderwerp aan westerse 

klad analise (WK-analise) van die mitokondriale elektron vervoer ketting (EVK) komplekse 
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(I-V). Daarna is bogenoemde proteïene ondersoek in mitokondrieë geïsoleer uit die 20 

weke groep ná die toediening van insulien en die blootstelling van die harte aan iskemie. 

Die oksigraaf mitokondriale oksidatiewe fosforilering (OXPHOS) kapasiteit analise is dan 

op mitokondrieë van 20 weke DIO en kontrole groepe uitgevoer en daarna is 'n 

sitraatsintase (SS) aktiwiteitstoets  gedoen. 

RESULTATE: Na die 8 en 20 weke dieet, het die intra-peritoneale vet massa, vastende 

plasma glukose en insulien vlakke in die DIOs aansienlik toegeneem, in vergelyking met 

hul kontroles. Sitosoliese WK-analise: Die tp85, pp85 en pPKB/Akt vlakke was beduidend 

hoër in die DIOs in vergelyking met die kontroles, na 8 weke van die dieet. Verder is die 

pBad en Bax vlakke beduidend verhoog in hierdie diere. Na 20 weke van die dieet, het die 

pp85, tPKB/Akt en pPKB/Akt vlakke beduidend afgeneem in die DIOs, in vergelyking met 

die kontroles. Die tBad was beduidend verhoog, terwyl die Bad verhouding van 

gefosforileerde oor die totale proteïen uitdrukking (P/T)-verhouding) beduidend verminder 

het in hierdie diere. SS aktiwiteitstoets: SS aktiwiteit is beduidend verminder in die DIOs, 

teenoor die kontroles, op 20 weke. Mitokondriale EVK WK-analise: Die subeenheid 

uitdrukking in komplekse I-III en V was nie beduidend verskillend na 8 weke nie. Na 20 

weke egter, was die uitdrukking aansienlik laer in komplekse I en II. Interessant genoeg, is 

die uitdrukking aansienlik verhoog in komplekse III en V. Mitokondriale OXPHOS analise: 

Die ADP/O verhouding met (1) glutamaat of (2) palmitiel-L-karnitien as substraat, het 

beduidend afgeneem in die DIOs teen 20 weke. Mitokondriale WK-analise: Die pp85 

subeenheid was beduidend verhoog in die kontrole en DIO groepe, blootgestel aan 

insulien en iskemie, in vergelyking met die onbehandelde kontroles. Die Bcl-2 vlakke was 

beduidend verminder in die insulien en isgemie DIOs, in vergelyking met onbehandelde 

DIOs. Die tBad uitdrukking het nie beduidend verskil tussen die insulien en onbehandelde 
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kontroles nie, terwyl die tBad beduidend verhoog was in die isgemie kontroles versus 

onbehandelde kontroles. Alle beduidende verskille is geneem as p<0.05. 

GEVOLGTREKKING: Die resultate dui daarop dat die eerste fase van dieet-geïnduseerde 

obesiteit geassosieer is met kardiale beskerming want `n toename in PI3K/PKB/Akt 

seintransduksie en 'n afname in apoptotiese merkers is waargeneem. In teenstelling, in die 

gevorderde stadium van vetsug is daar 'n afname in aktiwiteit in die PI3K/PKB/Akt pad wat 

verband hou met verhoogde miokardiale apoptose en verminderde mitokondriale funksie 

en integriteit. 
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Chapter 1: Introduction 

 

1.1 The Obesity Pandemic 

1.1.1 Global Statistics for Obesity 

Obesity is termed as a surplus amount of body fat in relation to lean mass (body mass 

index (BMI) >30 kg/m2), such that the obese individual’s health is compromised, whereas 

overweight (BMI between 25 and 30 kg/m2) is defined as an elevation in body weight in 

relation to height [Lopaschuk et al. 2007, Nguyen et al. 2010]. 

Historically thought of as being restricted to wealthy individuals of developed nations, the 

incidence of obesity has currently reached epidemic proportions right across the world, for 

both adults and children alike. With the present global economic crises and the increasing 

urbanization of developing countries, the number of obese individuals’ are only expected 

to surge. In 2005, around 1.6 billion people were overweight and at least 400 million 

people were obese across the globe, as indicated by World Health Organization (WHO) 

estimates. This organization predicts that by the year 2015, 2.3 billion individuals will be 

overweight and 700 million will be obese worldwide. [Nguyen et al. 2010] 

 

1.1.2 Repercussions of Obesity 

The effects of obesity are far reaching as it not only affects the individual but also have 

implications for the rest of society.  

1.1.2.1 The Economic Impacts of Obesity 

In terms of the societal impact, an immense financial burden is placed on the global 

economy on an annual basis as billions are spent on the treatment of obesity-related 
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physical disabilities and secondary diseases, the so called direct costs of obesity. The 

indirect economic cost to the global community is estimated to perhaps be more costly 

than the obesity-related conditions themselves. These indirect costs can be manifested in 

various ways, for example, additional financial strain is placed on the welfare system as a 

result of early retirement and unemployment due to obesity-related morbidities. [Yach et al. 

2006] 

 

1.1.2.2 The Health Impacts of Obesity 

From an individualistic point of view, obesity can severely affect an individual’s quality of 

life as this disease can give rise to an array of other chronic diseases such as cancer, type 

2 diabetes mellitus (T2DM) and cardiovascular disease.  

In fact, cardiovascular disease is viewed as one of the leading co morbidities of obesity, 

owing to the large variety of cardiovascular dysfunctions excess weight gain can induce. 

Obese individuals are at significantly higher risk of developing cardiomyopathies such as 

congestive heart failure, ischemic heart disease, myocardial infarction and sudden cardiac 

death, than their leaner counterparts. These disorders are initiated by obesity, and are 

independent of cardiovascular risk factors or syndromes such as hypertension, 

dyslipidemia, atherosclerosis and type 2 diabetes mellitus. [Hall et al. 2002, Van Gaal et al. 

2006] 

 

Cardiovascular disease-related deaths, a leading mode of death in obese and T2DM 

individuals across the globe [Coort et al. 2007], has increased from less than 10%, at the 

start of the 20th century, to 50% at the end of the 20th century [Trivedi et al. 2008]. The 

existence of a strong correlation between obesity, insulin resistance and myocardial 
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disease has been duly noted. However, the precise relationship between these three 

diseases has not been completely elucidated [Bergman et al. 2007]. Thus, the ensuing 

chapter serves to review this association between obesity, insulin resistance and 

cardiovascular disease in order to improve our understanding of their complex 

relationships.  
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Chapter 2: Literature Review 

 

2.1 Insulin Signalling and the Heart 

2.1.1 Overview of the polypeptide hormone insulin 

The beta cells of the pancreas are responsible for insulin production, which plays a pivotal 

role in regulating carbohydrate and fat metabolism by mediating the translocation of 

transporter proteins to the myocardial sarcolemma. In doing so it facilitates the uptake of 

glucose and free fatty acids from the blood, which are subsequently stored as energy 

reserves [Waselle et al. 2005, Bertrand et al. 2008]. The liver, skeletal muscle, adipocytes 

and the heart are all target organs of insulin action; and in the adipose tissue glucose is 

metabolized to and stored as triglycerides. On the other hand, glycogen is metabolized 

from the pre-cursor glucose and stored in the liver and skeletal muscle [Luiken et al. 2004].  

The release of insulin from the pancreas is dependent on the concentration of glucose, 

amino acids as well as fatty acids in the blood [Waselle et al. 2005]. Furthermore, the 

measure of insulin released by the beta cells will differ depending on the type and intensity 

of the stimulus, as well as its means of administration [Kahn et al. 2006]. 

In addition to its role in carbohydrate and fat metabolism, insulin also plays a significant 

part in ribosomal biogenesis and protein synthesis [Kemi et al. 2008], nuclear factor 

translation and cardiomyocyte growth [Walsh 2006, O’Neill et al. 2005] as well as the 

regulation of cell death or survival [Duronio 2008]. 

The sections to follow, first review substrate utilization and metabolism in the heart during 

normal physiological conditions and the changes that occur in these during obesity. 
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Thereafter, the transport proteins involved in the myocardial uptake of these substrates, as 

well as the role that insulin plays in this process, are discussed. 

 

2.1.2 Myocardial substrate utilization under normal physiological conditions and the 

transport proteins involved in substrate uptake 

The myocardium is one of the biggest consumers of adenosine triphosphate (ATP) in the 

body and just like any other metabolic tissue it is dependent on various metabolic 

processes to provide this energy. In order to satisfy this large energy demand, for optimal 

myocardial functioning, the heart mainly utilizes long-chain fatty acids (LCFA) (60–70%) as 

it yields the largest amount of ATP of all the metabolic substrates [Bertrand et al. 2008]. 

Glucose, lactate and ketone bodies further contribute to the heart`s energy requirements 

[Coort et al. 2007, Bertrand et al. 2008]. However, in order for these metabolic substrates 

to be metabolised, they have to first gain entry into the cardiomyocyte and this is achieved 

by the use of various transport proteins. 

 

2.1.2.1 Glucose transporters 

There are two forms of glucose transporter (GLUT) proteins present in the myocardium 

namely GLUT1, which can be found in all tissues, and GLUT4, which is mainly restricted to 

insulin sensitive tissues [Coort et al. 2007, Bertrand et al. 2008]. Despite the heart 

expressing a relatively large amount of GLUT1, in comparison to other tissues, GLUT4 

expression is still predominant. In terms of cellular location for basal conditions, GLUT1 is 

mainly located in the sarcolemma and believed to be more involved in mediating basal 

glucose uptake. GLUT4, on the other hand, is predominantly found in endosomes in the 
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intracellular compartment of cardiac myocytes. However, there are indications that 

myocardial intracellular stores of GLUT1 exist which can be recruited to the sarcolemma 

by insulin, just like GLUT4, as well as by myocyte contraction [Luiken et al. 2004]. 

 

2.1.2.2 Fatty acid transporters 

Previously, it was thought that LCFAs only entered cells by means of simple diffusion, 

however in recent years, a number of LCFA membrane associated transport proteins have 

been identified that are believed to mediate the uptake of LCFA`s. 

The latter mechanism is believed to be predominant [Luiken et al. 2004] and despite not 

being wholly understood, it is known that their translocation to the sarcolemma is arbitrated 

by insulin. Like GLUT, LCFA transport proteins are located in intracellular endosomes and 

are thought to work together to facilitate the transport of LCFA`s into the heart [Coort et al. 

2007, Luiken et al. 2002]. 

The first of these transport proteins is a fatty acid translocase (FAT), the rodent homologue 

of the human homologue cluster determinant 36 (CD36), which is an 88kDa fatty acid 

translocase protein found at both the sarcolemma as well as in intracellular storage 

compartments [Coort et al. 2007, Luiken et al. 2002]. 

 

2.1.2.2.1 FAT/CD36 

This translocase is thought to resemble GLUT1, more so than GLUT4, since its 

translocation to the sarcolemma increases 1.5 fold when stimulated by insulin, as opposed 

to GLUT4 which more than doubles at the sarcolemma. Additionally, FAT/CD36 is less 

concentrated in cytoplasmic endosomes and more prevalent at the sarcolemma under 
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basal, non-stimulated conditions; much like GLUT1 and in contrast to GLUT4, which is 

mainly localized in cytoplasmic endosomes under these conditions [Luiken et al. 2002]. 

Cardiac myocyte contraction serves as another stimulus for the translocation of FAT/CD36 

to the sarcolemma and is mediated by the adenosine monophosphate (AMP) kinase 

signalling pathway (AMPK signalling pathway), which will not be discussed in further detail 

in this literature review [Coort et al. 2004]. 

 

2.1.2.2.2 FABPpm 

The 43kDa fatty acid binding protein (FABPpm) is a second type of LCFA transport 

protein, which is present on the outermost surface of the sarcolemma and which is 

believed to act together with FAT/CD36 in the LCFA uptake process.  

This is supported by data which showed that inhibition of FABPpm, with an anti-FABPpm 

antibody, decreases LCFA transport across the sarcolemmal membrane. Additionally, 

when both FAT/CD36 and FABPpm were inhibited the effects were non-additive, 

suggesting that they act in a similar fashion [Glatz et al. 2001, Luiken et al. 2002, Coort et 

al. 2004]. 

 

2.1.2.2.3 FATP 

In cardiac myocytes two isoforms of the fatty acid transport protein (FATP) family, the third 

type of LCFA transport protein, is found namely, FATP1 and FATP6. FATP6 expression is 

not only restricted to the heart but is also more abundant than FATP1. These two FATP`s 

are believed to act together, as well as in conjunction with FAT/CD36, during the LCFA 
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transport process as they are not only associated with the sarcolemma but also co-

localizes with FAT/CD36 [Coort et al. 2007, Luiken et al. 2002]. 

It is evident from the above that there are quite a number of different transport proteins 

involved in transporting various substrates into the myocyte, ensuring that that the energy 

demands of the heart are met.  

 

2.1.3 The role of insulin-mediated PI3K/PKB/Akt signalling in GLUT and FAT/CD36 

translocation to the myocardial sarcolemma under normal physiological conditions 

Insulin governs myocardial substrate usage and substrate transport protein localization 

and therefore is involved in the maintenance of normal plasma glucose and lipid 

concentrations. Insulin is known to activate the PI3K/PKB/Akt pathway, which in turn, 

mediates the uptake of glucose as well as LCFAs into the myocardium, when standard 

physiological conditions prevail [Bertrand et al. 2008, Van Gaal et al. 2006, Coort et al. 

2004]. The precise insulin-mediated PI3K/PKB/Akt signalling mechanism, which promotes 

GLUT and FAT/CD36 translocation to the sarcolemma, has not been completely 

elucidated thus far. However, several studies have been able to shed some light on the 

signalling mechanism [Luiken et al. 2002, Chabowski et al. 2005]. 

The insulin-mediated PI3K/PKB/Akt signalling pathway (see figure 2.1) commences when 

(1) insulin molecules bind to the extracellular segment of the sarcolemmal bound insulin 

receptor (IR), activating the intrinsic intracellular tyrosine kinase activity of the β-subunits 

within the receptor. The receptor then undergoes autophosphorylation and activation. (2) 

Once the IR is activated, it induces the cytoplasmic binding of the adaptor insulin receptor 

substrate-1 (IRS-1) protein to these receptors, catalyzing the phosphorylation of multiple 

tyrosine residues within IRS-1. IRS-1 is not the only insulin receptor substrate protein 
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involved in the insulin receptor cascade, insulin receptor substrate-2 (IRS-2) has also been 

identified to play an important role in insulin-mediated glucose transport. IRS-1 is the 

dominant isoform involved in the metabolic effects of insulin in skeletal muscle, adipose 

tissue and the heart; whereas IRS-2 complements these effects in the liver. Insulin 

receptor substrate-3 (IRS-3) has been identified in rodent adipocytes but is thought most 

likely not to be expressed in humans [Sciacchitano et al. 1997]. On the other hand, insulin 

receptor substrate-4 (IRS-4) is expressed in human embryonic kidney cell lines but has 

been reported not to be involved in insulin signalling and glucose homeostasis [Fantin et 

al. 2000].  

 

(3) Once activated, IRS-1 proceeds to recruit the p85 regulatory subunit of 

phosphatidylinositol 3 kinase (PI3K) and in doing so allows binding of this subunit to the 

p110 catalytic subunit of the kinase, resulting in activation. This is mediated by the binding 

of the sarc homology -2 (SH2) domain, which is located in PI3K`s regulatory subunit p85, 

to the phosphotyrosine residues of IRS-1. Insulin-mediated PI3K activation has been said 

to mediate GLUT and FAT/CD36 sarcolemmal translocation [Koonen et al. 2005, Schwenk 

et al. 2010]. (4) PI3K is then able to generate phosphatidylinositol (3,4,5)-triphosphate 

(PIP3) molecules, by phosphorylating the phosphatidylinositol (PI) phosphates at the third 

carbon. PIP3 acts like a second messenger to (5) recruit the downstream serine/threonine 

kinases 3-phosphoinositide-dependent protein kinase-1 (PDK-1) and protein kinase B 

(PKB/Akt) to the plasma membrane, mainly from the cytosol [Hajduch et al. 2001]. These 

kinases bind to PIP3 by means of their pleckstrin homology (PH) domains. Subsequently, 

PDK-1 phosphorylates the T-loop of PKB/Akt at its Thr308 residue, while integrin-linked 

kinase (ILK) is thought to phosphorylate the protein at its Ser473 residue, thereby fully 

activating it [Mora et al. 2004, Bertrand et al. 2008, Coort et al. 2007, Kalra et al. 2010]. 
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PI3K/PKB/Akt signalling has been shown to be involved in GLUT translocation, and it is 

speculated that this signalling is also involved in the translocation of FAT/CD36 to the 

membrane [Schwenk et al. 2010]. It has been speculated that the PI3K/PKB/Akt signalling 

pathway for GLUT and FAT/CD36 insulin-mediated sarcolemmal translocation might 

disperse at some point as they have different intracellular locations [Holloway et al. 2008]. 

In support of this speculation, Jain et al. (2012) found that GLUT translocation to skeletal 

muscle sarcolemma, as well as glucose uptake, was blighted in Munc18c (-/+) mice, upon 

insulin stimulation. On the other hand, when insulin served as stimulus the elevation in 

fatty acid transporter translocation to the sarcolemma and fatty acid transport, was 

unaffected in these mice. Munc18c plays an essential role in the fusion of GLUT4 and 

other insulin-mediated amino peptidase storage vesicles to the plasma membrane 

[Thurmond et al. 2000]. (6) Nevertheless, it would seem once PKB/Akt is activated, it 

stimulates the translocation of (i) GLUT receptors as well as (ii) LCFA transport proteins to 

the myocardial sarcolemma.  

 

Thus, we see that insulin plays a pivotal role in the translocation of glucose and fatty acid 

transporters to the myocardial membrane, via the PI3K/PKB/Akt pathway, thereby 

mediating substrate uptake and metabolism in the heart. 
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Figure 2.1. Insulin mediated activation of the PI3K/PKB/Akt pathway and its role in 

translocation of GLUT receptors and FAT/CD36 transport proteins to the myocardial 

sarcolemma, when normal physiological conditions prevail. Taken and adapted from Coort 

et al. 2007. 
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2.1.4 Glucose uptake and metabolism under normal physiological conditions  

Once GLUT receptors have translocated to the myocardial sarcolemma, it allows for 

glucose uptake to ensue. Upon reaching the cytoplasm, glucose is rapidly phosphorylated 

by the enzyme hexokinase to form glucose-6-phosphate (G-6-P) [Coort et al. 2007, 

Petersen et al. 2002]. 

A portion of the G-6-P is metabolised further, in a number of steps as shown in figure 2.2, 

to provide the heart with ATP for its immediate energy requirements. The first step is the 

entry of glucose-6-phosphate into the aerobic glycolytic pathway, where one molecule is 

eventually converted to two molecules of pyruvate with the breakdown of two molecules of 

ATP to ADP and the release of one molecule of reduced nicotinamide adenine 

dinucleotide (NADH).  

The next major step is the oxidative decarboxylation of pyruvate to acetyl coenzyme-A 

(acetyl-CoA) by the multienzyme complex pyruvate dehydrogenase (PDH), with the 

release of more NADH and some carbon dioxide. PDH is situated on the inner 

mitochondrial membrane. 

Acetyl-CoA is therefore formed in the mitochondria where it enters the tricarboxylic acid 

(TCA) cycle, the third key step, and is converted to oxaloacetate in a series of steps (see 

figure 2.2). This four carbon molecule proceeds to react with the next incoming acetyl-

CoA, forming citrate and thus allowing the TCA cycle to continue. During the oxidation of 

one molecule acetyl-CoA to one molecule of oxaloacetate, the TCA cycle additionally 

yields one guanosine 5'-triphosphate (GTP), three NADH and one 5,10-

methylenetetrahydrofolate reductase (FADH2) molecules. 

The final step of glucose metabolism encompasses oxidative phosphorylation (OXPHOS) 

whereby the energy rich molecules (GTP, NADH and FADH2) generated during glycolysis, 

pyruvate decarboxylation and the TCA cycle, donate their electrons to electron carriers. 
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This donation eventually drives ATP synthesis by the electron transport chain (ETC), 

located within the mitochondrial membrane. Please refer to figure 2.2. The OXPHOS 

process will be discussed in greater detail in section 2.1.5.1. 

 

As mentioned, only a portion of myocardial G-6-P is metabolized to produce ATP, the 

other subset is converted to glycogen for glucose storage [Tirone et al. 2001]. Initially, G-6-

P undergoes isomerization to glucose-1-phosphate (G-1-P) and is subsequently converted 

to uridine 5’-diphosphate glucose (UDP-glucose), which is ultimately polymerized into 

glycogen by the enzyme glycogen synthase (GS) [Petersen et al. 2002]. 
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Figure 2.2. Summary of the events during glycolysis and the Kreb`s cycle. (1) Illustrate the 

oxidation of glucose to pyruvate (2) which is subsequently converted to Acetyl CoA, with 

the release of energy intermediates. (3) Acetyl Co-A thereafter enters the TCA cycle to 

release even more energy intermediates, (4) which is eventually reduced by the 

mitochondrial ETC chain to produce ATP.  
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Obtained and edited from: 

(1) [http://rosswiki2009.pbworks.com/w/page/11977900/Glycolysis]  

(2) [http://www.coenzyme-a.com/tca.htm]  

(3) [http://thealchemistkitten.files.wordpress.com/2009/11/blaze_tca_cycle.jpg] 

 

2.1.5 Long chain fatty acid uptake and metabolism under normal physiological 

conditions 

LCFAs can be found in the circulation either in complex with albumin or esterified in the 

lipid core of very-low density lipoproteins (VLDLs) and chylomicrons [Spector 1984, Van 

der Vusse et al. 2000]. 

LCFAs which are bound to albumin are able to detach themselves rather easily from this 

plasma protein whereas esterified LCFAs are only released after being hydrolyzed at the 

luminal surface of the myocardial endothelium by lipoprotein lipase (LPL). Via an indistinct 

mechanism, the free LCFAs are transported across the endothelium and are once again 

bound to albumin, thus serving as the LCFAs “transport vehicle”, when in the extracellular 

fluid surrounding the cardiac myocytes. Once the LCFAs arrive at the sarcolemma, they 

once again separate from albumin and are transported across the sarcolemma by means 

of the various LCFA transport proteins discussed previously [Coort et al. 2007]. 

 

Upon entering the cytoplasm of the cardiomyocyte, the LCFAs bind to fatty acid binding 

proteins, namely heart-type cytoplasmic fatty acid-binding protein (H-FABPc), which act as 

vehicles for transporting the fatty acids through the aqueous cytoplasm [Coort et al. 2007]. 

Consequently, these fatty acids are activated by conversion to fatty acyl coenzyme-A 

molecules (fatty acyl-CoAs), by the enzyme fatty acyl-CoA synthetase (FACS) [Gargiulo et 

al. 1999], which subsequently binds to the cytoplasmic acyl-CoA binding protein (ACBP) 

Stellenbosch University http://scholar.sun.ac.za



 

16 

 

[Knudsen et al. 2000, Faergeman 2002]. This binding protein serves as another molecular 

vehicle, which is responsible for transporting the fatty acyl-CoAs to their site of metabolic 

conversion or breakdown [Schaap et al. 1999, Glatz et al. 2001].  

When fatty acyl-CoAs are bound to ACBP they can be transported to: (1) the mitochondria 

for β-oxidation, (2) a site in the cytoplasm where it will undergo esterification into 

triacylglycerol (TAG) and phospholipids, and (3) the cytoplasm for entry into signal 

transduction pathways. The destiny of the fatty acyl-CoAs is determined by the needs of 

the myocytes at a given point in time. If the plasma content of LCFAs are elevated then 

insulin will predominantly direct it to TAG and phospholipid esterification, consequently 

sequestering it as part of the intracellular “lipid pool”. However, if the myocardial ATP 

demand is high then myocyte contractions will shunt the LCFAs to mitochondrial β-

oxidation for energy production [Coort et al. 2007, Coort et al. 2004]. 

Fatty acyl-CoAs destined for mitochondrial β-oxidation reaches the mitochondria with the 

assistance of three specific carnitine-dependent enzymes. The first key regulatory enzyme 

is carnitine palmitoyl transferase I (CPT-I), which acts at the outer mitochondrial 

membrane to catalyze the formation of acyl-carnitine. Thereafter, acyl-carnitine gets 

transported into the mitochondria by the second enzyme carnitine/acyl-carnitine 

transferase (CACT). The third enzyme, carnitine palmitoyl transferase II (CPT-II), 

generates fatty acyl-CoA at the inner mitochondrial membrane by transferring an acyl 

group to CoA molecule from the mitochondrial pool [Coort et al. 2007]. 

Fatty acyl-CoAs are eventually converted to acetyl-CoA, via the process of β-oxidation, 

once it enters the mitochondria and the latter is subsequently metabolized in the citric acid 

cycle to yield high energy molecules such as GTP, FADH2 and NADH [Schulz 1994, 

Ghisla 2004]. These molecules are eventually converted to ATP by means of oxidative 

phosphorylation in the mitochondrial electron transport chain. An overview of (a) 
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cytoplasmic fatty acid uptake, activation as well as (b) mitochondrial β-oxidation is given in 

figure 2.3 [Coort et al. 2007, Lopuschuk et al. 2010]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Overview of long-chain fatty acid (LCFA) utilization in cardiac myocytes under 

normal physiological conditions. (a) Initially the LCFAs undergo cytoplasmic uptake and 

activation in cardiac myocytes. (b) Thereafter, these LCFAs are transported into the 

mitochondria and undergo β-oxidation. Taken and adapted from Coort et al. 2007. 
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2.1.5.1 A closer look at the oxidative phosphorylation (OXPHOS) process and the 

mitochondrial electron transport chain (ETC) 

Oxidative phosphorylation encompasses two major steps that is, the production of an 

electrochemical gradient via electron transfer and the synthesis of ATP. An overview of 

mitochondrial electron transport and ATP synthesis is given in figure 2.4. 

 

2.1.5.1.1 Electron transfer 

The most significant function of the mitochondria is to furnish the cell with energy in the 

form of ATP, which is derived from sources such as fats, proteins and carbohydrates 

[Leonard et al. 2000]. As mentioned in sections 2.1.4 and 2.1.5, the reducing equivalents 

i.e. energy rich molecules (GTP, NADH and FADH2) released during the metabolism of 

these substrates, are what drives ATP synthesis via the process of oxidative 

phosphorylation in the mitochondrial ETC [Leonard et al. 2000].  The electron transport 

chain consists of five complexes, namely NADH dehydrogenase, succinate 

dehydrogenase, cytochrome bc1 complex, cytochrome c oxidase and ATP synthase, 

otherwise referred to as complexes I to V. There are two components of the ETC which do 

not form part of the five complexes, but are nonetheless essential for electron (e-) transfer. 

These would be cytochrome c which interacts with complex IV, and “floats” on the outside 

of the inner mitochondrial membrane, and ubiquinone (coenzyme Q) which is able to 

diffuse within the mitochondrial membrane [Pedersen et al. 1999, DiMauro et al. 2009]. 

Complex I structure has been said to vary according to tissue type, whereas the 

configuration of complexes II and IV remain more consistent [Rustin et al. 1994].  

The oxidative phosphorylation process commences when complex I oxidises NADH to 

nicotinamide adenine dinucleotide (NAD+) and transfers two electrons to ubiquinone 
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(coenzyme Q). During this process four protons (H+) are pumped across the mitochondrial 

inner membrane to the intermembrane space, initiating the ETC proton gradient [Pedersen 

et al. 1999, Garrett et al. 1999]. Ubiquinone passes the electrons from complexes I and II 

through complex III, cytochrome c, and complex IV, while it pumps protons from the matrix 

to the intermembrane space in parallel. In complex IV, cytochrome c is reduced and its 

electrons donated to oxygen (O2), which generates two water (H2O) molecules. The 

protons in the intermembrane space all contribute to the 150mV electrochemical proton 

gradient that will drive ATP synthesis [Pedersen et al. 1999, Leonard et al. 2000]. The 

reducing equivalents generated during the metabolism of glutamate, pyruvate, and 3-

hydroxybutyrate gain entry into the ETC via complex I. Whereas the electron transfer 

protein which is attached to coenzyme Q as well as complex I, are points of entry for the 

reducing equivalents produced from fatty acid β-oxidation. Succinate on the other hand 

undergoes reduction at complex II [Leonard et al. 2000].  

 

2.1.5.1.2 ATP synthesis 

The electrochemical gradient results in the proton concentration in the intermembrane 

space being much higher than that it the mitochondrial matrix. This unequal distribution of 

protons causes complex V (ATP synthase) to transfer some of these protons back into the 

mitochondrial matrix, thus commencing the ATP synthesis step. 

 

ATP synthase contains two key components F0 and F1, where F0 is found in the inner 

mitochondrial membrane (IMM) and has a rotational capacity, while F1 extends into the 

matrix and is unable to rotate. Furthermore, F0 is responsible for translocating the protons 

while F1 synthesizes the ATP.  
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The F0 unit seizes a proton and attaches it to the protein rotor, which binds F0 and F1 

together, causing it to rotate and unload the proton on the inside of the membrane. During 

this process the rotor spins inside the stationary F1 subunit changing the chemical energy 

of the electrochemical gradient to mechanical energy, which in turn brings adenosine 

diphosphate (ADP) and inorganic phosphate (Pi) into correct alignment for phosphorylation 

and ATP production. One molecule of ATP is produced from 2 or 3 protons while one 

molecule of glucose yields about 31.5 molecules of ATP, whereas the saturated fatty acid 

palmitate yields 106 molecules of ATP [Vo et al. 2004]. 

 

2.1.5.1.3 Mitochondrial respiration coupling and uncoupling 

As mentioned in the previous section, during the transfer of electrons between the ETC 

complexes protons are pumped across the inner mitochondrial membrane to the 

intermembrane space, which creates an electrochemical gradient. This gradient exists 

because the protons are unable to diffuse back into the matrix, to reach equilibrium, across 

the IMM. The protons are only able to gain access to the matrix via ATP synthase because 

the F0 subunitof this synthase  grabs hold of the proton, while the F1 subunit  uses the free 

energy involved to phosphorylate ADP and produce ATP (as explained in section 

2.1.5.1.2). Thus, it is easy to see that the oxidation-reduction reactions and ATP 

production in the mitochondria are coupled; coining the entire process coupled oxidative 

phosphorylation [Pendersen et al. 1999, Nicholls et al. 2001, Ricquier 2005]. 

Uncoupled oxidative phosphorylation occurs when there is a “leak” in the IMM, thus 

allowing protons to diffuse across it into the matrix that is, without having passed though 

ATP synthase and without producing ATP. The free energy involved is given off as heat 

instead [Nicholls et al. 2001, Ricquier 2005]. 
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Figure 2.4: Overview of the electron transport process by complexes I to IV and 

electrochemical proton gradient production in the ETC, and its role in ATP synthesis via 

ATP synthase (complex V).  Taken and edited from Lücker et al. 2010. 
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2.1.5.1.4 ETC complexes and their subunits 

There is mounting evidence that the complexes of the electron transport chain are actually 

supercomplexes as they consist of multiple dimmers [Schägger et al. 2001]. The 

mitochondrial ETC complexes of bovine heart, bacteria and other eukaryotes have been 

characterized more extensively to date, as obtaining sufficient mitochondria from human 

tissue has proven difficult [Murray et al. 2003]. Therefore, the complex composition of 

these animals will be discussed in further detail. 

Complexes I to V have been reported to contain 42, 4, 11, 13 and 14 polypeptide subunits, 

respectively [Pedersen et al. 1999, Leonard et al. 2000]; each of which contribute to 

complex assembly and integrity in their own way. 

 

2.1.5.1.4.1 Complex I 

This complex consists of multiple subunits, for example 46 in bovine heart mitochondria 

with a total molecular weight of 980kDa, whereas human myocardial tissue has 42 

subunits with a molecular mass of about 1000kDa. It has been shown, in bovine heart 

mitochondria, that 7 of the subunits are encoded by mitochondrial DNA, whereas the 

genes for the other 35 subunits are encoded in the nucleus [Carrol et al. 2003, Murray et 

al. 2003]. 

Studies on bovine heart mitochondria have resolved complex I and discovered that it is L-

shaped, with one arm located in the mitochondrial membrane and orientated vertically to 

the plane of the membrane. The other arm is orientated horizontally to the mitochondrial 

matrix. Furthermore, complex I was found to consist of 3 subcomplexes, namely Iλ 

(extrinsic arm), Iα (first part of the membrane arm) and Iβ (second part of the membrane 
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arm). Please refer to table 1 for the subunit composition of subcomplexes Iα, Iλ and Iβ 

[Carrol et al. 2003]. 

 

2.1.5.1.4.2 Complex II 

Regardless of species, complex II of the mitochondrial ETC is the simplest in that it 

contains the least number of subunits.  This complex consists of 4 subunits in animals, 

fungi and bacteria, while the complex consists of 8 subunits in plants [Millar et al. 2004, 

Morales et al. 2009, Gawryluk et al. 2009]. In the amoeba Acanthamoeba castellanii (A. 

castellanii) as well as other eukaryotes, the molecular weight of this complex was found to 

be about 130kDa in its active form [Gawryluk et al. 2012]. Please refer to table II for the 

subunit composition of complex II in A. castellanii. 

 

2.1.5.1.4.3 Complex III 

This complex, regardless of species, has three common subunits which all have active 

redox centers, namely cytochrome b (Cob), cytochrome c1 (CytC1) and the “Rieske” [2Fe-

2S] protein (ISP). The 280kDa eukaryotic complex III is more complex in that it contains 

supplementary subunits, whereas bacterial complex III only contain these three subunits 

[Iwata et al. 1998, Gawryluk et al. 2012]. In bovine heart complex III is composed of 11 

subunits [Pedersen et al. 1999, Leonard et al. 2000]. Refer to table III for the subunit 

composition of complex III in A. castellanii. 
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2.1.5.1.4.4 Complex IV 

This 360kDa complex has been reported to contain more than 10 subunits in A. castellanii 

and about 13 subunits in bovine heart [Pedersen et al. 1999, Leonard et al. 2000, 

Gawryluk et al. 2012]. In addition to the subunits that make up complex IV, there are also 

additional proteins which assist with the assembly of this complex, as seen in table IV 

[Gawryluk et al. 2012]. 

 

2.1.5.1.4.5 Complex V 

In bacteria complex V (ATP synthase) consists of 8 subunits while bovine heart contains 

16 subunits [Müller et al. 2003]. As previously mentioned, this complex consists of two 

major components namely F1 and F0, where each component is composed of 5 subunits in 

A. castellanii. The remainder of the subunits are thought to be associated with the F0 base 

of ATP synthase. Similar to complex IV, there are also additional proteins that play a role 

in the assembly of complex V as listed in table V [Gawryluk et al. 2012].  
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Table I. The subunit composition of subcomplexes Iα, Iλ and Iβ in complex I of bovine 

mitochondrial ETC. Taken from Carroll et al. 2003. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II. The subunit composition of complex II, as well as the assembly proteins which 

assist in the assembly of this complex, in A. castellanii mitochondrial ETC. Taken and 

edited from Gawryluk et al. 2012. 

. 
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Table III. The subunit composition of complex III in A. castellanii mitochondrial ETC. Taken 

and edited from Gawryluk et al. 2012. 
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Table IV. The subunit composition of complex IV, as well as the associated proteins of this 

complex, in A. castellanii mitochondrial ETC. Taken and edited from Gawryluk et al. 2012. 
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Table V. The subunit composition of complex V (ATP synthase), as well as the associated 

proteins of this complex, in A. castellanii mitochondrial ETC. Taken and edited from 

Gawryluk et al. 2012. 
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2.2 Obesity and Insulin signalling 

2.2.1 What is Insulin Resistance? 

A common pathology of obesity is insulin resistance [Reaven 2008] which is classified as 

the inability of normal physiological levels of insulin to prompt a sufficient response in 

target tissues such as skeletal muscle, liver, adipose tissue and of course, the heart 

[Mlinar et al. 2007, Schwenk et al. 2008]. 

 

2.2.2 Changes in substrate utilization by the heart during obesity 

2.2.2.1 Reduced glucose metabolism 

A number of studies have been published regarding myocardial substrate utilization during 

a pathophysiological state such as obesity. Many of these studies involve analyzing 

expression, subcellular localization and functional regulation of GLUT4 and FAT/CD36 as 

these are imperative factors that ascertain the rate of substrate utilization [Coort et al. 

2004]. 

Studies showed that insulin stimulated activity of the PI3K/PKB/Akt pathway was reduced 

in cardiac myocytes isolated from rats that were exposed to a high fat diet and later 

developed T2DM [Ouwens et al. 2005], as well as in cardiac myocytes isolated from 

insulin resistant obese Zucker rats [Coort et al. 2007]. 

Additionally, it was found that insulin-stimulated (physiological concentrations) GLUT4 

translocation and glucose uptake were reduced in cardiomyocytes and cardiac muscle 

isolated from insulin resistant obese rats [Coort et al. 2007]. 
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2.2.2.2 Increased fatty acid β-oxidation 

In insulin resistant obese Zucker rats, it was found that myocardial LCFA uptake was 

increased in the hearts of these animals, which coincided with an elevation in the quantity 

of FAT/CD36 at the sarcolemma and a decrease in the FAT/CD36 intracellular content. 

The total FAT/CD36 content in the heart from the obese animals remained unchanged, 

indicating that there is a permanent relocation of FAT/CD36 from its intracellular 

compartment to the sarcolemma and this is most likely the reason for the increased LCFA 

uptake. Additionally, the rate of cardiac LCFA oxidation was unaffected while the content 

of TAG in myocardium as well as the rate at which LCFAs were converted to TAG, were 

augmented in these obese rats [Coort et al. 2004, Luiken et al. 2002]. 

Most studies conducted on humans are restricted to skeletal muscle. Nevertheless, the 

findings of these studies can be extrapolated to the myocardium, as it too is a muscle and 

regulates its substrate utilization similar to skeletal muscle [Coort et al. 2007]. Analysis of 

skeletal muscle, in obese and T2DM human subjects and compared to lean controls, 

indicated a similar increase in intracellular TAG content and an increase in the amount of 

FAT/CD36 protein at the sarcolemma as in the hearts of obese Zucker rats. Additionally, 

the rate of palmitate (a saturated fatty acid) transport was elevated in these obese and 

T2DM human subjects [Bonen et al. 2002]. 

As these studies have indicated, there is a strong correlation between obesity and cardiac 

insulin resistance and it would seem that the pivotal factor connecting these two conditions 

might be metabolic disturbances, such as increased LCFA and decreased glucose uptake, 

within the myocardium [Coort et al. 2007]. 
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2.2.3 Changes in substrate utilization by the heart during cardiomyopathies 

During myocardial pathophysiological conditions such as ischemia-reperfusion injury, 

hypertrophy, atrophy and advanced heart failure, it has been reported that substrate 

utilization in the heart and its subsequent ATP production, were altered. During these 

cardiomyopathies there is a reduction in fatty acid β-oxidation and elevated glucose 

metabolism, as indicated by a number of studies in humans, canines and rodents [Rosano 

et al. 2008, Hajri et al. 2001, Huss et al. 2005, Stanley et al. 2005]. Several of these 

cardiomyopathies have been shown to lead to heart failure [Taha et al. 2007] and thus, the 

changes in substrate utilization during heart failure will be discussed in further detail. 

There are conflicting studies but the general consensus, recently achieved, is that during 

the initial stages of heart failure, substrate utilization is still relatively normal in that fatty 

acids still serve as the main and glucose as the secondary energy source. It is during the 

late stages of the disease that fatty acid metabolism is blunted and glucose oxidation is 

upregulated [Stanley et al. 2005, Lopuschuk et al. 2010].  

It is thought that the heart perceives these pathologies as stressors and responds to it by 

changing its substrate metabolism, depending on whether or not the “stress” is acute or 

sustained. When the “stress” is acute the changes in substrate utilization manifest itself on 

the cytosolic level and can be considered transient. On the other hand, during chronic 

myocardial stress the initial metabolic changes become permanent as it becomes 

regulated on the nuclear level [Rajabi et al. 2007]. 

 

The precise mechanism is currently not known whereby the substrate switch on the 

cytosolic level leads to the changes seen on the nuclear level. It is speculated that the 

transcriptional level of a number of enzymes and transporters that play significant roles in 

myocardial substrate uptake and metabolism are elevated in the normal adult human 
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heart, in comparison to the foetal heart [Razeghi et al. 2001, Sack et al. 1997, Rajabi et al. 

2007]. While the transcriptional levels of these genes in the adult heart are thought to 

decline to the level found in the foetal heart during heart failure [Razeghi et al. 2001, 

Rajabi et al. 2007].  Please refer to table 1. 

  

Other changes seen during advanced heart failure include a reduction in peroxisome 

proliferator-activated receptor-α (PPAR-α) expression and activity [Barger et al. 2000] as 

well as PPARγ coactivator-1α (PGC-1α) [Heusch et al. 2005, Gottlieb 1999, Downward 

2003, Depre et al. 2005, Lazar 1997], both of which are essential in regulating 

mitochondrial metabolism and biogenesis [Huss et al. 2005, Rajabi et al. 2007]. The 

attenuation in the activity of the electron transport chain activity as well as a reduction in 

the flux of mitochondrial oxidative phosphorylation has also been noted during this stage of 

heart failure [Rajabi et al. 2007]. In addition, a few studies in humans and rodents have 

shown that the activity of several of the ETC complexes were downregulated [Jaretta et al. 

2000, Casademont et al. 2002, Scheubel et al. 2002, Stanley et al. 2005]. 

 

2.2.3.1 Could similar changes in myocardial substrate utilization occur in advanced 

obesity-related cardiomyopathies? 

Transgenic (TG) mice, overexpressing of GLUT1 were used to augment intracellular 

glucose in the heart, while these animals were also fed a high fat diet for 20 weeks to 

elevate fatty acid levels. The wild-type (WT) and TG mice fed high fat diets developed diet-

induced obesity and insulin resistance. The WT mice displayed elevated myocardial fatty 

acid oxidation and reduced glucose in response to the high fat diet. On the other hand, this 

diet did not increase the fatty acid oxidation in the TG mice however they showed 

significantly higher levels of glucose oxidation in the heart. Furthermore, the study found 
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that metabolic gene expression favoured glucose utilization as the elevated glucose levels 

induced decreased PPAR-α and 3-oxoacid CoA transferase expression, while the 

expression of acetyl-CoA carboxylase was enhanced in these mice. Lastly, when TG mice 

were fed a high fat diet they displayed elevated myocardial oxidative stress and contractile 

dysfunction [Yan et al. 2009]. 

This study suggests that despite the presence of elevated fats in the diet, the transgenic 

diet-induced obese mice favour glucose over fatty acid utilization after 20 weeks. The 

decreased myocardial fatty acid and increased glucose oxidation seen in these mice could 

be associated with the decreased PPAR-α and 3-oxoacid CoA transferase and elevated 

acetyl-CoA carboxylase expression.  

 

Belfiore et al. (1998) stated that increased plasma free fatty acids, glucose and insulin 

levels are associated with obesity. Furthermore, the increased free fatty acids induced 

inhibition of pyruvate dehydrogenase (PDH), by increasing acetyl-CoA levels, thereby 

blunting glucose metabolism. Whereas, increased plasma glucose and insulin levels inhibit 

CPT-I, via enhanced malonyl-CoA production, thus inhibiting fatty acid oxidation. These 

mechanisms are thought to occur through the short-term as well as the long term effects of 

obesity. 

On the other hand, as discussed in section 2.2.2 obesity is associated with increased fatty 

acid β-oxidation and decreased glucose oxidation. Perhaps these metabolic substrate 

changes seen are associated with the initial stages of obesity and the start of myocardial 

insulin resistance. Whereas those observed by Yan et al. (2009) could represent the 

changes in substrate utilization during advanced obesity and when insulin resistance is in 

a progressive stage.  
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Currently, little research has been done that compares the substrate utilization during the 

early onset and the advanced stages of obesity, thus it would be difficult to say whether 

the difference in substrate utilization seen by Yan et al. and those discussed in section 

2.2.2 are due to the stage of obesity. 

 

 

 

 

Table VI. Differences in the protein level of enzymes and transporters that play significant 

roles in myocardial substrate uptake and metabolism as well as myocardial structure, in 

the adult, foetal, hypertrophic and atrophied rodent heart. Taken from Rajabi et al. 2007. 
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2.3 Obesity and Cardiac Insulin Resistance 

The precise mechanism by which cardiac insulin resistance is mediated during obesity is 

at present not completely understood and thought to be complicated and attributable to 

multiple factors. Furthermore, research aimed at elucidating the mechanism of insulin 

resistance has mainly focused on skeletal muscle. This has nonetheless provided valuable 

insight into how myocardial insulin resistance could be mediated. One thought is that 

myocardial metabolic anomalies such as excess intracellular lipid accumulation could be 

one of the main culprits in initiating the pathophysiology. The change in myocardial 

substrate preference during obesity, discussed in section 2.2.2, is thus thought to be an 

arbitrator of obesity-related myocardial insulin resistance [Coort et al. 2007, Goodpastor et 

al. 2004, Petersen et al. 2002].  

 

2.3.1 Alluding to the mechanism of obesity-related cardiac insulin resistance 

Obese individuals consume more calories than they burn, in comparison to lean 

counterparts, resulting in a greater availability of metabolic energy that needs to be stored 

in the adipose tissue. This surplus adiposity, particularly intra-abdominal fat accumulation, 

hinders the ability of insulin to suppress hormone-sensitive lipase (HSL) and in turn, 

lipolysis in the adipose tissue. The rest of the proposed mechanism will be explained in 

figure 2.5. 

The elevated lipolysis in the adipocytes (1) subsequently increase plasma free fatty acid 

levels (2) which activate insulin secretion. (3) Thus stimulating permanent FAT/CD36 

translocation to the myocardial sarcolemma during obesity, as mentioned in 2.2.2.2, (4) 

which allows for the uptake of these excess extracellular free fatty acids (LCFAs) into the 
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myocardium. Additionally, there is a greater conversion of LCFAs into TAG which is also 

subsequently oxidised, increasing the intracellular content of TAG metabolites (ceramide, 

diacylglycerol (DAG) and acetyl-CoA). It is thought that by increasing the myocardial 

uptake of excess extracellular LCFAs, the heart has shifted its substrate metabolism to 

increased fatty acid utilization, as discussed in 2.2.2. (5) The intracellular TAG metabolites 

proceeds to activate protein kinase C -θ (PKC-θ), (6) diminishing tyrosine and enhancing 

serine phosphorylation of IRS-1. (7) This reduces the ability of IRS-1 to recruit and activate 

PI3K, which sequentially hinders the activation of protein kinase B (PKB/Akt) [Petersen et 

al. 2002]. When PKB/Akt activation is diminished then (8) GLUT translocation to the 

sarcolemma and glucose uptake is reduced. This reduction in glucose uptake is thought to 

be the second shift in substrate utilization seen during obesity, as discussed in section 

2.2.2. The decrease in glucose uptake is thought to reduce glycogen synthesis and (9) 

elevate blood glucose levels, rendering the cardiomyocyte insulin resistant as the high 

glucose blood levels stimulate the secretion of even more insulin, while the cells’ ability to 

take up the extracellular glucose is severely blunted. 
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Figure 2.5. Metabolic abberations involving the insulin mediated PI3K/PKB/Akt pathway in 

the obese individual, in pathophysiological conditions. Taken and adapted from Coort et al. 

2007. 
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2.3.1.1 How does the excess free fatty acids in the plasma, accumulate in ectopic 

organs during obesity? 

A bone of contention for researchers is the mechanism by which the excess intracellular 

lipids accumulate in ectopic organs such as skeletal muscle, liver, pancreas and the heart 

during obesity, resulting in insulin resistance. There are currently four hypotheses or 

theories available, which attempt to explain this metabolic aberration.  

 

2.3.1.1.1 The portal/visceral hypothesis 

This hypothesis proposes that obese individuals are characterized by elevated adipocyte 

lipolysis and accordingly, there is an increased secretion of fatty acids into the plasma and 

as a result the flux of fatty acids into the liver, via the portal vein, is augmented. 

Additionally, these fatty acids are also able to infiltrate skeletal muscle, the heart and 

pancreas. Hepatic TAG production and assembly into VLDLs are thus enhanced, 

consequently elevating the secretion of VLDLs into the plasma. The high lipid plasma 

levels stimulate the secretion of insulin which in turn activates the translocation of LCFA 

transport proteins to the myocardial sarcolemma. This translocation to the sarcolemma is 

permanent as the plasma lipid levels are chronically elevated in the obese individual. This 

is in contrast to the non-obese individual where the translocation is transient due to normal 

lipid handling by the adipose tissue and liver [Van Gaal et al. 2006, Bergman et al. 2007, 

Kahn et al. 2006].  

This theory then latches onto the Randle cycle by suggesting that insulin resistance in 

these target organs, including the heart, is achieved by increased intracellular 

concentrations of acetyl-CoA, as a result of increased LCFA oxidation. The increased 

acetyl-CoA then augments the concentration of G-6-P and decreases hexokinase activity, 
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ultimately causing a reduction in glucose uptake and oxidation [Bergman et al. 2007, 

Rasvussin et al. 2002, Coort et al. 2007]. 

 

2.3.1.1.2 Ectopic fat storage syndrome hypothesis 

This hypothesis proposes that the adipocyte stem cell precursors, from which the mature 

adipocyte is derived, lack their full proliferative and differentiation ability. Thus, the existing 

peripheral adipocytes undergo hypertrophy when there is excess energy or fat available, 

as is the case in obesity. The subcutaneous fat depots soon become saturated and the 

fatty acids filter into the ectopic organs such as the liver, skeletal muscle and heart, 

causing insulin resistance in the target organ [Ravussin et al. 2002]. 

 

2.3.1.1.3 Impaired fat oxidation hypothesis 

In this hypothesis it is suggested that whole body LCFA oxidation is blighted in the obese 

person, increasing plasma LCFA content and elevating ectopic lipid accretion; culminating 

in insulin resistance of the ectopic organ [Ravussin et al. 2002, Bergman et al. 2007]. 

 

2.3.1.1.4 Endocrine paradigm hypothesis 

This theory puts forward the idea that because adipocytes are also endocrine cells they 

are able to secrete cytokines and hormones [Bergman et al. 2007, Aguilera et al. 2008]. It 

is thought that these hormones or endocrine factors are able to influence the metabolism 

and biology of peripheral tissues such as the liver, muscle and heart and cause insulin 

resistance [Kahn et al. 2006, Ravussin et al. 2002, Bergman et al. 2007]. 
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It would seem that the majority of the literature favours the portal/visceral hypothesis. 

However, it should be noted that there is mounting evidence supporting the other three 

hypotheses. It could then be suggested, that the key to understanding the mechanism 

behind obesity induced ectopic intracellular lipid accumulation, might not lie in only one 

theory but rather a combination of all four theories. 

 

2.4 Obesity and the insulin-mediated PI3K/PKB/Akt pathway 

As seen in the previous sections, the insulin-mediated PI3K/PKB/Akt pathway plays a 

significant role in regulating glucose and fatty acid metabolism in the heart, while any 

aberrations in this pathway can mediate myocardial insulin resistance. The following 

sections will review the role that key components of the PI3K/PKB/Akt pathway plays in 

myocardial glycogen synthesis, during the normal physiological state and during obesity. 

 

2.4.1 The role of the insulin-mediated PI3K/PKB/Akt pathway in glycogen synthesis 

2.4.1.1 The PKB/Akt protein 

PKB/Akt is a 57kDa protein which possesses three isoforms, namely PKBα (Akt1), PKBβ 

(Akt2) and PKBγ (Akt3), and regardless of the isoform, contains an amino-terminal 

pleckstrin homology (PH), a carboxy-terminal regulatory and a kinase domain [Hajduch et 

al. 2001, Lawlor et al. 2001]. 

Growth factors, insulin, and DNA damage all serve as stimuli for the activation of 

cytoplasmic PKB/Akt under normal physiological conditions and once it is activated, 

PKB/Akt can migrate to an array of subcellular compartments [Parcellier et al. 2008]. In 

these subcellular compartments, such as the Golgi apparatus, endoplasmic reticulum, 
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mitochondria and nucleus [Hajduch et al. 2001], PKB/Akt phosphorylates substrates and 

regulates target molecules and genes [Hajduch et al. 2001, Parcellier et al. 2008]. 

Insulin stimulates the activation of tissue specific PKB/Akt isoforms. In the heart all 

isoforms of PKB/Akt are expressed however, that of PKBα/Akt1 and PKBβ/Akt2 was found 

to be the most expansive [Matsui et al. 2001]. 

The main isoform found in skeletal muscle and hepatocytes is PKBα/Akt1, whereas 

PKBβ/Akt2 is mainly expressed in adipocytes. The insulin-mediated activation of 

PKBγ/Akt3 did not occur in these two tissue types but has been detected in other cell lines 

[Walker et al. 1998]. 

Studies indicate that PKBα/Akt1 is most likely plays an important role in growth and 

PKBβ/Akt2 in metabolism whereas, PKBγ/Akt3 is thought to not be essential for either 

growth or metabolism [Chen et al. 2001, Cho et al. 2001]. Instead PKBγ/Akt3 is thought to 

play a role in myocardial hypertrophy and neurological phenotype [Taniyama et al. 2005, 

Sussman et al. 2010]. 

Phosphorylation of PKB/Akt at two specific residues is required for full activation, these 

residues being Thr308 and Ser473 for PKBα/Akt1, Thr309 and Ser474 for PKBβ/Akt2 and Thr305 

and Ser472 for PKBγ/Akt3. These residues are located in the kinase and carboxy-terminal 

regulatory domains, respectively [Delcommenne et al. 1998, Taniyama et al. 2005]. 

PDK-1 was found to be responsible for the phosphorylation of Thr308 while the kinase 

enzyme responsible for Ser473 phosphorylation has not yet been completely characterized, 

it is believed to be PDK-2 (3-phosphoinositide-dependent protein kinase-2) [Hajduch et al. 

2001, Kobayashi et al. 1999, Lawlor et al. 2001]. 
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2.4.1.2 PBK/Akt and glycogen synthesis 

Glycogen synthesis is the body`s mechanism of disposing of excess glucose and when 

this process is impaired in any way, as is the case in obesity, it paves the way for tissue 

specific insulin resistance [Pearce et al. 2004]. PKB/Akt is able to exert its control over this 

metabolic process via the phosphorylation and thus inhibition of the serine/threonine 

protein kinase glycogen synthase kinase-3 (GSK-3) [Rao et al. 2007]. This subsequently 

stimulates the activation of the enzyme glycogen synthase, and glycogen synthesis 

[Parcellier et al. 2008], all of which will be reviewed in the sections that follow.  

 

2.4.1.2.1 Glycogen synthase kinase-3 (GSK-3) protein 

A significant role has been established for GSK-3 in a wide selection of biological 

processes, such as cellular proliferation and differentiation, protein synthesis, embryonic 

development and apoptosis. GSK-3 has been found to regulate these processes by 

phosphorylating a number of proteins, thereby activating a variety of pathways [Frame et 

al. 2001, Xu et al. 2009]. One of the first roles assigned to GSK-3, was in the regulation of 

the glycogen synthesis process [Xu et al. 2009], the mechanism of which is discussed in 

more detail in the sections that follow. 

 

GSK-3 is found in two isoforms namely, GSK-3α and GSK-3β [Pearce et al. 2004], is 

constitutively active when the cells do not receive a stimulus [Hajduch et al. 2001] and is 

expressed in all cells and tissues [Ciaraldi et al. 2006].  

Furthermore, this kinase has an N-terminal residue, Ser21 for GSK-3α and Ser9 for GSK-

3β, that is regulated at all times by PKB/Akt (for the purpose of glucose metabolism), 

determining whether or not the kinase will remain activated or if its activation will be 
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downregulated [Rao et al. 2007, Lawlor et al. 2001, Hajduch et al. 2001]. However upon 

insulin stimulation, activated PKB/Akt phosphorylates these isoforms at their N-terminal 

residues, Ser21 (GSK-3α) and Ser9 (GSK-3β), subsequently leading to GSK-3 inhibition 

[Rao et al. 2007, Lawlor et al. 2001, Hajduch et al. 2001]. 

GSK-3 is also regulated, via phosphorylation, by a number of other substrates, each 

having their own biological significance (which is reviewed elsewhere), such as MAPK-

activated protein kinase-1 (MAPKAP-K1/RSK), epidermal growth factors (EGF) and p70 

ribosomal S6 kinase-1 (S6K1) [Frame et al. 2001, Doble et al. 2003, Xu et al. 2009]. 

 

2.4.1.2.2 GSK-3 during normal physiological conditions 

When insulin sensitive cells are not stimulated by insulin (during periods of rest or fasting 

for example) in a normal, healthy individual, then PKB/Akt activation is inhibited and 

prevents the phosphorylation and inactivation of GSK-3 at their respective serine residues 

[Rao et al. 2007, Lawlor et al. 2001, Hajduch et al. 2001]. This in turn ensures that GSK-3 

remains active and thus, capable of phosphorylating and inhibiting the enzyme glycogen 

synthase and the glycogen synthesis process [Pearce et al. 2004]. 

Active GSK-3 also has the ability to phosphorylate IRS-1 at its serine and threonine 

residues thus mediating a diminished interaction between IRS-1 and the insulin receptor 

by advancing the disintegration of IRS-1 [MacAulay et al. 2007, Boura-Halfon et al. 2009]. 

As a result the insulin signalling cascade is downregulated, reducing the translocation of 

GLUT receptors to the sarcolemma. Glucose uptake as a consequence is downregulated, 

thus maintaining normal blood glucose levels [Pearce et al. 2004]. 

In contrast, when cells are stimulated by insulin (postprandial for example), PKB/Akt is 

able to phosphorylate and inactivate GSK-3. In this subsequent repressed state, GSK-3 

cannot phosphorylate and block glycogen synthase; thus losing its inhibitory control over 
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the glycogen synthesis process. Furthermore, inactive GSK-3 is unable to phosphorylate 

and thereby disintegrate IRS-1, promoting GLUT receptor translocation to the sarcolemma 

and glucose uptake. This not only further promotes glycogen synthesis but also reduces 

the elevated blood glucose levels [Pearce et al. 2004]. 

 

2.4.1.2.3 GSK-3 during obesity 

Section 2.4.1.2.2 emphasizes the significant role that GSK-3 plays in insulin mediated 

glucose and glycogen metabolism as well as the influence the protein has on blood 

glucose levels. More importantly, it highlights the potential role of GSK-3 in mediating 

insulin resistance, a major hallmark of obesity. 

 

Indeed, GSK-3 expression or activity has been found to be significantly augmented in the 

skeletal muscle of animal models of insulin resistance [Ferrannini 1998, Eldar-Finkelman 

et al. 1997] as well as in insulin resistant T2DM patients [Nikoulina et al. 2000]  

Additionally, GSK-3 levels were not only found to be elevated in obese and insulin 

resistant high-fat fed mice [Eldar-Finkelman et al. 1999] and obese Zucker rats [Dokken et 

al. 2005] but in the skeletal muscle of obese humans as well [Henriksen et al. 2006]. 

The actions of activated GSK-3 in the normal, healthy individual give rise to the inhibition 

of glucose uptake and glycogen synthesis when the cells are not stimulated by insulin, as 

seen in section 2.4.1.2.2. Thus, the hypothesis is that glucose uptake and glycogen 

synthesis would be significantly downregulated during periods of rest in the obese 

individual. Furthermore, this is seen as a key contributing factor in mediating obesity-

related insulin resistance. 

A study conducted by Pearce et al. (2004) utilizing genetically engineered mice, which had 

excessively augmented GSK-3 expression specifically in their skeletal muscle, displayed 
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diminished muscle glycogen content despite increased plasma insulin levels at rest [Rao 

et al. 2007]. This study thus supports the role of GSK-3 as a potential mediator of insulin 

resistance. 

GSK-3 is suspected to intensify obesity, by increasing body weight and intra-peritoneal fat 

mass. Eldar-Finkelman et al. (1997) found, when comparing two different strains of 

genetically engineered mice subsequent to being fed a high fat diet for 15 weeks, that the 

obesity and diabetes prone strain (C57BL/6J) had an increased body weight of 30%. The 

A/J strain, which is resistant to diet-induced obesity and diabetes, on the other hand only 

had a fairly small increase in body weight, about 4 grams per animal on average. In 

addition, the GSK-3 activity in the epididymal fat tissue of the C57BL/6J mice displayed a 

two-fold increase in comparison to the control animals, while there was no significant 

difference in the skeletal muscle enzyme activity between the C57BL/6J and control mice. 

These findings thus indicate that GSK-3 might play an important role in mediating 

increased adiposity during the obese state. 

 

2.5 Obesity and Myocardial Cell Death 

2.5.1. Modes of cell death 

Apoptosis is a rigorously controlled biological, energy dependent, process crucial for the 

removal of unwanted or damaged cells [Gupta 2001]. This type of cell death encompasses 

cell shrinkage and the formation of small apoptotic bodies, plasma membrane blebbing, 

chromatin condensation and DNA fragmentation [Bennet 2002, Clerk et al. 2003, 

Dragovich et al. 1998, Strasser et al. 2000]. Apoptosis is also marked by alterations in 
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mitochondrial membrane permeability and the release of proteins from the mitochondrial 

intermembrane space [Krysko et al. 2008]. 

Autophagy was previously thought of as a second type of cell death but has recently been 

defined as a “housekeeping” process as it destroys damaged and dysfunctional organelles 

and protein aggregates in cells by means of degradation, under normal and aberrant 

physiological conditions [Dong et al. 2010]. This strictly regulated process is characterized 

by autophagic vacuoles which is composed of double membranes and is also activated 

when a cell is deprived of essential nutrients or growth factors [Krysko et al. 2008]. 

The third type of cell death, necrosis, or sometimes referred to as oncosis, is associated 

with swift cytoplasmic swelling which causes the intracellular organelles to swell as well, 

furthermore resulting in plasma membrane blebbing (reversible process). Eventually, the 

plasma membrane and organelles rupture, releasing (amongst others) lysosomal enzymes 

which cause inflammation in the adjacent cells and tissue [Dive et al. 1992, Krysko et al. 

2008].  

 

As a result of these features necrosis has long been thought of as an uncontrolled and 

“accidental” process [Krysko et al. 2008]. However, it has recently been shown that the 

necrotic process is regulated via the interaction of several biochemical and molecular 

activities at various cellular levels. 

Necrosis is elicited by stressors such as ATP depletion, ischemia, when a cell is unable to 

maintain ionic homeostasis, heat, high concentrations of reactive oxygen species (ROS) 

such as hydrogen peroxide, osmotic shock as well as mechanical stress; and is often 

characterized by unwanted cell loss in pathophysiological states [Festjens et al. 2006, 

Vanden Berghe et al. 2007]. 

 

Stellenbosch University http://scholar.sun.ac.za



 

47 

 

Apoptotic cell death will be discussed in greater detail in the sections to follow, for the 

purpose of this review, whereas autophagic and necrotic cell death are reviewed 

elsewhere [Dong et al. 2010, Festjens et al. 2006]. 

 

2.5.2 The role of the insulin-mediated PI3K/PKB/Akt pathway in myocardial 

apoptosis. 

The PI3K/PKB/Akt pathway is known to be cardioprotective [Rubio et al. 2009] and 

mediates its protection by activating PKB/Akt which in turn, promotes survival and 

prevents death of the cardiomyocytes [Hill et al. 2002] by moderating the process of 

apoptosis either directly or indirectly [Franke et al. 1997, Hemmings 1997]. Myocardial 

apoptosis is mediated by two pathways; (1) the extrinsic pathway, otherwise known as the 

death receptor pathway, and (2) the intrinsic pathway, also viewed as the mitochondrial 

dependent pathway [Bishopric et al. 2001]. 

 

2.5.2.1 The death receptor apoptotic (extrinsic) pathway 

In terms of the extrinsic pathway, there are actually a number of pathways that fall into this 

category. The receptors of the Fas and tumour necrosis factor receptor-I (TNFR-I) death 

receptor pathways, are active in cardiomyocytes and have been associated with the 

development of cardiovascular disease [Lee et al. 2009a]. These pathways are the most 

well-known of the death receptor apoptotic pathways and as the name suggests, are 

mediated by their respective receptors (Fas and TNF receptors) [Peter et al. 2003, Wang 

et al. 2003]. An overview of the signalling cascade of the Fas and TNFR death receptor 

apoptotic (extrinsic) pathways are given in figure 2.6. 
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Fas and TNFR-I are two of the death receptors which contain death domains that are able 

to undergo trimerization or aggregation once Fas ligands and tumour necrosis factor-α 

(TNF-α) bind to their respective receptors [Gupta 2001, Baines et al. 2005]. This in turn 

allows for the recruitment of adaptor molecules, Fas-associated death domain (FADD) and 

tumour necrosis factor receptor-associated death domain (TRADD) (for Fas and TNFR-I 

receptors, respectively) which are localized in the cytoplasm and contain their own death 

domains [Peter et al. 2003, Wang et al. 2003]. For the TNFR-I death pathway, TRADD first 

has to recruit FADD in order to mediate the activation of apoptosis, whereas FADD is 

directly recruited in the Fas death pathway [Gupta 2001]. Once recruited, FADD is able to 

bind to cytoplasmic procaspase-8 via the interaction of their homologous death effector 

domains (DED). The binding of the death domain (located in the ligand), FADD and 

procaspase-8 forms a complex known as the death-inducing signalling complex (DISC) 

[Gupta 2001, Yang et al. 1998]. While in the complex, procaspase-8 is activated to active 

or mature caspase-8, by means of autoproteolysis, which in turn activates caspase-3 (also 

called “effector” or “executioner” caspase) [Gupta 2001, Baines et al. 2005, Yang et al. 

1998]. Activated caspase-3 subsequently cleaves many “death” substrates (cytoplasmic as 

well as nuclear), leading to DNA fragmentation and the morphological modifications 

coupled to apoptosis [Gupta 2001]. 
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Figure 2.6. The signalling cascade of the Fas and TNFR death receptor apoptotic 

(extrinsic) pathways. Taken and adapted from Tumane et al. 2010. 
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2.5.2.2 PKB/Akt indirectly moderates apoptosis: The role of PKB/Akt in the extrinsic 

apoptotic pathway 

When health prevails the insulin-mediated activation of PKB/Akt is unhampered, as 

reviewed in section 2.1.3. Activated PKB/Akt is known to phosphorylate and activate I-ĸB 

kinase (IKK) at its Thr23 residue [Parcellier et al. 2008]. In turn, activated IKK is responsible 

for the phosphorylation of I-ĸBα on its Ser32 and Ser36 residues, subsequently leading to its 

rapid degradation via an ubiquitin/proteasome system [Kane et al. 1999, Ozes et al.1999]. 

I-ĸBα is a member of the I-κB family, a family of regulatory proteins which are able to 

inhibit nuclear factor-ĸB (NF-ĸB) [Hayden et al. 2004]. I-ĸB inhibits NF-ĸB by forming a 

complex with it and thus sequestering it in the cytoplasm [Huang et al. 2009] NF-ĸB is 

expressed in all cell types and is involved in the cellular response to a variety of stimuli 

such as stress, bacterial or viral antigens, free radicals, , cytokines and ultraviolet 

irradiation [Patel et al. 2009]. Degradation of I-ĸBα liberates NF-ĸB from its hold, thereby 

promoting its activation [Ozes et al. 1999] and migration to the nucleus [Huang et al 2009]. 

This subsequently enables NF-ĸB to activate a wide variety of genes, one group being the 

genes which encode for caspase inhibitors [Barket et al. 1999] while another group 

consists of the anti-apoptotic genes, which includes those that code for B-cell lymphoma-

extra large (Bcl-XL) [Parcellier et al. 2008]. The PKB/Akt-mediated activation of these 

genes, via NF-ĸB, highlights the pro-survival or protective function of PKB/Akt as well as 

NF-ĸB [Ozes et al. 1999]. 

NF-ĸB is increased during obesity [Huang et al. 2009] but it is still undecided whether it is 

the PI3K/PKB/Akt pathway or tumour necrosis factor-α (TNF-α), which is also upregulated 

during obesity, which causes this increase [Ruan et al. 2002]. Two separate studies have 

implicated PKB/Akt in the activation of NF-kB via TNF-α in embryonic kidney cells and 

human cervical carcinoma cells [Ozes et al. 1999] as well as in breast cancer cells [Burow 
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et al. 2000]. In contrast, Bieler et al. (2007) showed that simultaneous activation of 

PKB/Akt and NF-kB was required for the survival of human umbilical vein endothelial cells 

exposed to TNF (the isoform was not stipulated in this study) thereby implicating that these 

pathways were activated separately by TNF. 

There is mounting experimental evidence that supports the possibility of NF-ĸB as a key 

mediator in the genesis of insulin resistance [Patel et al. 2009] when a high fat diet is 

followed and during obesity, as indicated by studies using hepatic IKK-β knockout mice 

[Arkan et al 2005] or transgenic mice which overexpress IKK-β in the liver [Cai et al. 2005]. 

These studies support NF-ĸB as being the main contributor to insulin resistance as 

opposed to IKK, as previously suggested [Arkan et al. 2005].  

TNF-α is thought to induce insulin resistance primarily via the serine phosphorylation of 

IRS-1.  One of the multiple functions of NF-ĸB is to regulate the actions of TNF-α, which in 

turn is also a powerful activator of NF-ĸB (as indicated above); suggesting regulatory 

interplay between these two molecules [Patel et al. 2009].  

 

In addition to IKK, PKB/Akt is also known to phosphorylate forkhead box protein O1 

(FOXO1) on Thr24, Ser256 and Ser319, as well as forkhead box protein O3a (FOXO3a) and 

O4 (FOXO4) on three comparable sites in the nucleus (reviewed in Burgering et al. 2003). 

Forkhead box (FOX) proteins are a family of transcription factors that play a variety of 

significant roles in gene expression regulation, genes which are involved in apoptosis, cell 

growth, proliferation, differentiation, development and metabolism [Tuteja et al. 2007, 

Manning et al. 2007]. PKB/Akt mediated phosphorylation of FOXO allows 14-3-3 proteins 

to bind the transcription factors via their Thr24 and Ser256 residues, dislodging FOXO from 

their target genes and mediating their translocation to the cytoplasm, thus inhibiting the 

transcription factors [Manning et al. 2007].  
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Bcl-2 interacting mediator of cell death (BIM) protein as well as Fas ligand are pro-

apoptotic and are both targets of unphosphorylated (active) FOXO transcription factors, 

thus sequestering FOXO in the cytoplasm (therefore inhibiting it) which promotes cell 

survival [Dijkers et al. 2002, Brunet et al. 1999]. 

Furthermore, PKB/Akt is able to phosphorylate murine double minute 2 (MDM2) (or human 

double minute 2 (HDM2) in humans) on its Ser166 and Ser186 residues, which in turn 

activates MDM2/HDM2 and promotes the translocation of this protein from the cytoplasm 

to the nucleus. MDM2/HDM2 acts like an E3 ubiquitin ligase in that it binds ubiquitin to 

p53, thereby arbitrating ubiquitination on numerous p53 lysine residues. This subsequently 

prepares p53 for proteosomal degradation [Mayo et al. 2001, Iwakuma et al. 2003].  

Puma and Noxa are two pro-apoptotic members of the Bcl-2 family which are 

transcriptional targets of p53-mediated apoptosis. Thus, degradation of p53 would reduce 

Puma and Noxa levels and promote cell survival. Although, the significance of decreased 

Puma and Noxa levels to PKB/Akt mediated cell survival still has to be investigated 

[Villunger et al. 2003]. 

 

As discussed, the PI3K/PKB/Akt pathway plays an important role in promoting cell survival 

via mediators such as NF-ĸB, FOXO and MDM2/HDM2. Furthermore, NF-ĸB is highlighted 

as possibly playing a role in the arbitration of obesity-induced insulin resistance. 

 

2.5.2.3 The mitochondrial-dependent apoptotic (intrinsic) pathway 

The mitochondrial-dependent apoptotic pathway is activated on the receipt of various 

apoptotic stimuli, including ischemia-reperfusion, hypoxia, oxidative stress and loss of 
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growth factors [Regula et al. 2003, Weiss et al. 2003, Gustafsson et al. 2007], all of which 

fuel mitochondrial permeability transition. Augmented permeability of both the inner and 

the outer mitochondrial membranes are hallmark features of mitochondrial permeability 

transition [Weiss et al. 2003, Zamzami et al. 2001, Crompton et al. 2002]. An overview of 

the mitochondrial-dependent apoptotic (intrinsic) pathway signalling cascade is given in 

figure 2.7. 

 

A protein complex that bridges the inner and outer mitochondrial membranes, the 

mitochondrial permeability transition pore (MPTP), have been identified as the determinant 

of mitochondrial permeability [Baines et al. 2005]. It was previously thought that the 

transition pore consisted of the voltage dependent anion channel (VDAC), adenine 

nucleotide translocase (ANT) and cyclophilin-D. These pore constituents were thought to 

be located in the outer membrane, inner membrane and matrix of the mitochondrion 

respectively [Zamzami et al. 2001, Crompton et al. 2002].  

The latest research however, utilizing genetic knockouts, rules out VDAC as one of the 

main structural components of the MPTP. On the other hand, the structural role of 

cyclophilin-D in the pore has been confirmed, while the role of ANT is still controversial 

and thought to possibly play more of a regulatory than a structural function. Furthermore, 

these studies suggest a structural substitute for ANT in the MPTP namely, mitochondrial 

inorganic phosphate carrier (PiC) [Juhaszova et al. 2008, Leung et al. 2008]. 

 

Nevertheless, once the mitochondria are permeabilized, the intermembrane space 

releases a number of different proteins that are mediators of the apoptotic process, 

including cytochrome c, second mitochondria-derived activator of caspases 
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(Smac/DIABLO), endonuclease G (EndoG), and apoptosis-inducing factor (AIF) [Baines et 

al. 2005]. 

 

2.5.2.3.1 Cytochrome c 

Cytochrome c is a component of the mitochondrial ETC [Liu et al. 1996] that is responsible 

for ferrying electrons from complex III to complex IV of the chain [Lee et al. 2009]. When 

cytochrome c is released, upon apoptotic stimuli, it is able to bind to apoptotic protease-

activating factor-1 (Apaf-1) in the cytosol [Lee et al. 2009], increasing its affinity for dATP 

or ATP [Jiang et al. 2000]. The bond between Apaf-1 and dATP or ATP, independent of 

cytochrome c, is rather weak and thus cytochrome c plays a significant role in that it either 

opens up the nucleotide binding site or stabilizes the bound nucleotide to Apaf-1 [Jiang et 

al. 2000]. Once dATP or ATP attaches itself to the Apaf-1/cytochrome c complex, it 

facilitates the oligomerization of the complex, to form a multimeric apoptosome [Zou et al. 

1999, Adrain et al. 2001].  

 

Once complexed in the apoptosome, the caspase recruitment (CARD) domain of Apaf-1 

becomes exposed, enabling it to recruit numerous procaspase-9 molecules to the complex 

and subsequently arbitrate their autoactivation [Wang 2001]. The activated caspase-9 can 

now cleave and activate downstream executioner caspases such as caspase-3 and -7, 

just as caspase-8 cleaves and activates caspase-3 in the death receptor apoptotic 

pathway (section 2.5.2.3) [Rodriguez et al. 1999, Robertson et al. 2000]. The condensation 

of nuclear chromatin, fragmentation of DNA and the disintegration of the nuclear 

membrane as well as the formation of apoptotic bodies, soon occur as a result of the 

cleavage of vital intracellular compounds by the activated executioner caspases [Wang 

2001]. 
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2.5.2.3.2 Smac/DIABLO 

Mature Smac/DIABLO proteins can be found in the mitochondrial intermembrane space in 

healthy cells and is discharged into the cytosol, upon the reception of apoptotic stimuli 

[Wang 2001, Verhagen et al. 2000]. Prior to mature Smac/DIABLO becoming a 

mitochondrial protein, its precursor is produced in the cytosol and then carried to the 

mitochondria. Once there, the precursor undergoes cleavage which serves to expose the 

four amino acid residues Ala-Val-Pro-Ile (AVPI), on the now mature Smac/DIABLO protein. 

Through AVPI, Smac/DIABLO will be able to bind to the baculovirus IAP repeat (BIR) 

domain of inhibitor of apoptosis proteins (IAPs) at a later stage, after it has been triggered 

by apoptotic stimuli. IAPs are bound to pro-apoptotic procaspases-3 and -9 when there is 

a lack of apoptotic stimuli, thus inhibiting apoptosis [Wang 2001]. Once the cell receives 

apoptotic signals, Smac/DIABLO is released into the cytosol [Du et al. 2000, Verhagen et 

al. 2000] and impounds the IAPs, thereby indirectly freeing procaspases-3 and -9 which in 

turn promotes apoptosis [Wang 2001, Verhagen et al. 2002]. 

 

2.5.2.3.3 Endonuclease G (EndoG) 

EndoG, as the name suggests, is a nuclease that is encoded by a nuclear gene and 

translated in the cytosol, and eventually transported to the mitochondria [Côté et al. 1993]. 

It is believed that a significant portion of these nucleases proceed to reside in the 

intermembrane space of the mitochondrion and is released into the cytosol upon apoptotic 

signals, similar to cytochrome c. The ultimate function of EndoG, once it reaches the 

cytosol, is to stimulate nucleosomal DNA fragmentation [Wang 2001]. 
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The activity of EndoG has been identified to be independent of caspase activation [Liu et 

al. 1997, Enari et al. 1998] indicating that it initiates an analogous apoptotic pathway to 

that of the caspase-dependent apoptotic pathway [Wang 2001]. 

 

2.5.2.3.4 Apoptosis inducing factor (AIF) 

AIF is a flavoprotein that is located in the mitochondrial intermembrane space [Susin et 

al.1999] and is essential for the assembly and/or the stabilization of the respiratory 

complex I as well as oxidative phosphorylation [Lee et al. 2009]. This flavoprotein is 

released into the cytosol once apoptosis is induced [Candé et al. 2002]. This flavoprotein, 

just like EndoG, acts independently of caspases [Miramar et al. 2001] and once it reaches 

the cytosol it stimulates the condensation of nuclear chromatin and the fragmentation of 

high-molecular-weight (50kb) DNA [Yu et al. 2002].  

 

2.5.2.4 The Bcl-2 family and its regulation of the intrinsic apoptotic pathway 

The Bcl-2 family regulates the intrinsic pathway of apoptosis and consists of pro-apoptotic 

as well as anti-apoptotic protein members, all of which share at least four conserved 

regions known as Bcl-2 homology (BH) domains [Lee et al. 2009]. The anti-apoptotic 

members, which include B-cell lymphoma-2 (Bcl-2) and Bcl-XL, contain all four subtypes of 

BH domains and obstruct the function of the pro-apoptotic Bcl-2 proteins by promoting cell 

survival [Gustafsson et al. 2007]. The anti-apoptotic Bcl-2 proteins are crucial for cell 

survival and have been shown to defend cells against a wide variety of apoptotic stimuli or 

cellular stressors [Lee et al. 2009]. 

The pro-apoptotic Bcl-2 proteins are divided into two distinctive subfamilies according to 

which domains they contain. The multidomain proteins, which include B-cell lymphoma-
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associated X (Bax) and Bcl-2 homologous antagonist killer (Bak), all share three BH 

domains (BH domains 1 to 3); whereas the BH3-only domain proteins, for instance Bcl-

2/adenovirus E1B 19kDa protein-interacting protein 3 (Bnip3), Bcl-2/adenovirus E1B 

19kDa protein-interacting protein 3-like (Nix/Bnip3L), Bcl-2 associated death (Bad), BH3 

interacting domain (Bid), Noxa, and Puma, only contain one domain (BH domain 3) as the 

name suggests [Danial et al. 2004, Huang et al. 2000]. 

 

The precise mechanism of how the Bcl-2 family proteins moderate apoptosis is at present 

not completely clear. Three different models of apoptotic regulation have been suggested 

by Gustafsson et al. (2007), based on evidence from the literature.  

The first model indicates that pro-apoptotic Bax and Bak directly interact with one or two 

different anti-apoptotic Bcl-2 proteins and are thus retained in an inactive conformation. 

Pro-apoptotic BH3-only proteins are thought to bind and defuse the anti-apoptotic Bcl-2 

proteins and in doing so, release Bax and Bak upon an apoptotic signal. [Gustafsson et al. 

2007] The studies by Willis et al. (2005) and Chen et al. (2005b) provide evidence for this 

model. 

An alternative model suggests that certain pro-apoptotic BH3-only proteins, such as tBid 

and Bim, directly bind to Bax and Bak and thereby initiates apoptosis [Gustafsson et al. 

2007]; as proposed by a number of studies [Cartron et al. 2004, Harada et al. 2004, 

Kuwana et al. 2005, Kuwana et al. 2002, Wang et al. 1996].  

The third model implies that anti-apoptotic Bcl-2 family members prevent the activation of 

pro-apoptotic Bax and Bak by impounding pro-apoptotic BH3-only proteins to the cytosol. 

When the activated BH3-only proteins overcome the anti-apoptotic Bcl-2 proteins (that is, 

upon an apoptotic stimulus), they either directly activate Bax or Bak or they activate an 

unknown factor in the cytosol or mitochondria that is needed for Bax or Bak activation. In 

Stellenbosch University http://scholar.sun.ac.za

http://en.wikipedia.org/wiki/Bcl-2_homologous_antagonist_killer


 

58 

 

doing so, the apoptotic process is triggered [Gustafsson et al. 2007], as suggested by 

several studies [Cheng et al. 2001, Clohessy et al. 2006, Gomez-Bougie at al. 2004, Han 

et al. 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. The signalling cascade of the mitochondrial-dependent apoptotic (intrinsic) 

pathway. Taken and adapted from Crow et al. 2004. 
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2.5.2.5 PKB/Akt directly moderates apoptosis: The role of PKB/Akt in the intrinsic 

apoptotic pathway 

2.5.2.5.1 PKB/Akt and Bad protein 

Under normal physiological conditions, once myocardial PKB/Akt is activated it is able to 

phosphorylate the pro-apoptotic Bad protein in some cell types [Kharas et al. 2005, 

Sussman et al. 2011], at its Ser136 residue [Sale et al. 2008] and in doing so, promotes cell 

survival [Datta et al. 1999]. The phosphorylation of Bad ensures that it is released from its 

complex with anti-apoptotic Bcl-2 or Bcl-XL [Sale et al. 2008], which are located on the 

mitochondrial membrane, and binds to cytosolic 14-3-3 proteins [Parcellier et al. 2008]. 

This sufficiently sequesters Bad in the cytosol, thus blocking its pro-apoptotic function and 

prevents it from initiating mitochondrial-dependent apoptosis [Sale et al. 2008]. In turn, Bcl-

2 and Bcl-XL are free to promote cell survival [Parcellier et al. 2008]. 

The pro-apoptotic protein Bad has been shown to be elevated in the myocardium of obese 

rats [Lee at al. 2008].This protein is known to stimulate apoptosis by forming a heterodimer 

with the anti-apoptotic proteins, Bcl-2 or Bcl-XL, thus blocking their cardioprotective effects 

[Sussman et al. 2011], as previously explained. 

 

2.5.2.5.2 PKB/Akt and Bax protein 

Another member of the Bcl-2 family is the pro-apoptotic protein Bax [Gogvadze et al. 

2006], which is predominantly located in the cytosol of healthy cells. One of the many 

functions of activated PKB/Akt in the myocardium [Sussman et al. 2011] is to 

phosphorylate Bax, at its Ser184 residue [Gardai et al. 2004], thus sequestering it in the 

cytosol and away from mitochondrial membranes and thereby blocking its pro-apoptotic 
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functions [Gardai et al. 2004]. This containment of Bax in the cytosol is achieved by its 

heterodimerization with Bcl-XL or myeloid cell leukemia differentiation protein-1 (Mcl-1) 

[Gardai et al. 2004, Gross et al. 1999, Cory et al. 2003]. 

Another central role of activated PKB/Akt may very well be to suppress conformational 

changes in Bax and inhibit its migration to the mitochondria, thereby averting loss of 

mitochondrial membrane potential and the activation of caspase-3 [Yamaguchi et al. 

2001]. Activated PKB/Akt is thought to mediate the suppression of Bax conformational 

changes by directly impeding the interaction between Bax and Bid or Bax-interacting 

factor-1 (Bif-1), both of which participate in conformational changes in Bax and are pro-

apoptotic members of the Bcl-2 family [Majewski et al. 2004a, Majewski et al. 2004b, 

Sussman et al. 2011].  

A number of studies have highlighted the relationship between PKB/Akt activation, Bcl-2 

family member regulation, and inhibition of cardiomyopathic damage [Johnassen et al. 

2001, Kato et al. 2003, Kuwahara et al. 2000, Negoro et al. 2001, Pastukh et al. 2005, 

Uchiyama et al. 2004]. The inhibition of Bax translocation to the mitochondria, specifically 

via phosphorylation by PKB/Akt, has not been shown in the heart. However, mice which 

are homozygous for the deleted Bax gene have been shown to be protected against 

ischemia-reperfusion injury [Hochhauser et al. 2003]. 

Upon apoptotic stimuli, Bax undergoes a conformational change that exposes its N- and 

C-terminals [Nechushtan et al. 1999], allowing it to insert itself in the outer mitochondrial 

membrane and oligomerize with the membrane [Mattson et al. 2003]. Subsequently, a 

“protein-permanent” pore is formed within the mitochondrial membrane which allows the 

release of cytochrome c into the cytosol, thus initiating apoptosis [Nechushtan et al. 1999].  
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There are a number of other protein members of the Bcl-2 family which are activated by a 

variety of different stimuli, which have been shown to play significant roles in determining 

myocardial cell death or survival. A few of these proteins exerted their pro-apoptotic 

functions and promoted apoptosis in the heart [Gustafsson et al. 2007, Kubli et al. 2008, 

Capano et al. 2006, Hamacher-Brady et al. 2006, Wei et al. 2001, Zong et al. 2001], while 

the anti-apoptotic proteins exerted their cardioprotective functions [Imahashi et al. 2004, 

Brocheriou et al. 2000, Chen et al. 2001, Gustafsson et al. 2007]. However, these will not 

be reviewed here. 

 

2.5.2.6. PKB/Akt directly moderates the intrinsic apoptotic pathway independently of 

the Bcl-2 family 

Hexokinase I (HKI) and hexokinase II (HKII) are two isoforms of the hexokinase protein, 

essential in the first step of glucose metabolism [Robey et al. 2006], which have been 

shown to distinctively bind to the outer mitochondrial membrane (OMM) [Parcellier et al. 

2008]. Several studies have highlighted hexokinases as the downstream effectors of 

growth factor and PKB/Akt arbitrated cell survival [Majewski et al. 2004a, Gottlob et al. 

2001, Robey et al. 2006, Majewski et al. 2004b, Brunet et al. 1999, Robey et al. 2005]. 

PKB/Akt is believed to inhibit the hexokinase disengagement, the detachment being 

initiated by apoptosis, from the mitochondria [Gottlob et al. 2001]. This interrelation 

between PKB/Akt and hexokinase is believed to prevent the release of cytochrome c from 

the mitochondria to preserve their integrity, much like Bcl-2 [Kennedy et al. 1999]. PKB/Akt 

differs from Bcl-2 in that it has been found to be dependent on glucose to exert its 

protective function [Gottlob et al. 2001, Rathmell et al. 2003]. 
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2.5.2.7 PKB/Akt regulation of GSK-3 and its role in apoptosis 

GSK-3, when inhibited, has been found to be cardioprotective [Gomez et al. 2008], where 

inhibition of GSK-3 is achieved by the phosphorylation of Ser21 for GSK-3α and Ser9 for 

GSK-3β via activated PKB/Akt, as discussed in section 2.4.1.2.2 It was shown by Maurer 

et al. (2006) that, activated GSK-3 induces apoptosis, upon the removal of the growth 

factor interleukin-3 (IL-6). Active GSK-3 stimulates the Ser159 phosphorylation of anti-

apoptotic Mcl-1, which in turn encourages ubiquitination and results in Mcl-1 degradation 

by the proteasome. This in turn, provokes the release of cytochrome c from the 

mitochondria thereby initiating apoptosis. These observations emphasize the central role 

of PKB/Akt in the regulation of cell survival, via the inhibition of GSK-3 and in turn, the 

stability of Mcl-1 [Maurer et al. 2006, Parcellier et al. 2008]. 

 

2.6 Apoptosis and Obesity-induced Cardiovascular Disease 

Apoptosis has been linked to cardiac myocyte death, which is characteristic of heart failure 

[Bernecker at al. 2003, Singal et al. 2000, Abbate et al 2006], atherosclerosis [Clarke et al. 

2008], cardiac hypertrophy [Aharinejad et al. 2008], myocardial infarction [Abbate et al. 

2006] and ischemia/reperfusion injury [Gao et al. 2008, Sodha et al. 2008]. This cluster of 

cardiovascular diseases, are examples of cardiomyopathies which are defined as diseases 

of the cardiac muscle which can be implicated in the dysfunction of the heart. A 

cardiomyopathy can be classified either by the dominant physiological feature of the 

pathology or by the disease that is causing the pathology [Davies 2000]. Obesity 

cardiomyopathy is defined as a myocardial disease which occurs during obesity and is 

mediated by the obese state as it cannot be explained by other causes such as diabetes 

mellitus, hypertension, or coronary artery disease [Wong et al. 2007]. Indeed, heart failure 
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[Barouch et al. 2006] and myocardial ischemia/reperfusion injury [Yue et al. 2005, Shibata 

et al. 2005] have been characterized by myocardial apoptosis that has been linked to 

obesity in animal models. 

 

2.6.1 Obesity Cardiomyopathy: Apoptosis and Heart Failure 

Congestive heart failure manifests itself during the late stages of a plethora of 

cardiovascular diseases and is defined by a cardiac output that is ultimately well below the 

threshold required for an organism to function [Neuss et al. 2001]. Characteristic features 

of this cardiomyopathy include changes in the expression pattern of intracellular and 

extracellular matrix proteins, progressive loss of cardiomyocytes, and dilation or 

enlargement of the heart chambers [Narula et al. 2000, Neuss et al. 2001, Wencker et al. 

2003]. 

During the initial stages of heart failure the decline in cardiac output is compensated for by 

myocardial hypertrophy and dilation, ensuring that there is adequate, though not optimal, 

cardiac output [Narula et al. 2000]. However, these compensatory mechanical adaptations 

soon become inadequate to maintain a sufficient cardiac output [Katz 1994], culminating in 

cardiac dysfunction. The mechanism by which cardiac hypertrophy, which is activated by 

heart failure, concludes in myocardial dysfunction is not that apparent. [Narula et al. 2000, 

Wencker et al. 2003]. 

It has been hypothesized that apoptosis might be the key mediator in the progression of 

myocardial hypertrophy to cardiac dysfunction in congestive heart failure [Neuss et al. 

2001, Eichhorn et al. 1996, Beltrami et al. 1995, Narula et al. 1996, Narula et al. 1999, 

Olivetti et al. 1997, Reed et al. 1999]. The basis for this hypothesis is that since adult 

cardiomyocytes are terminally differentiated and cannot divide, growth stimulation (via 
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neurohumoral alterations and cytokine expression) of the cardiomyocytes of the failing 

heart, therefore results in the initiation of apoptosis instead [Narula et al. 2000]. At the 

outset, the stimulation of growth leads to cardiac hypertrophy but as the cardiac output 

declines, the chronic growth stimulation results in apoptosis [Narula et al. 1999]. 

Diverse experimental species and models of heart failure have been used to test the 

hypothesis that apoptosis may be responsible for cardiac dysfunction in heart failure. Much 

controversy still surrounds the role of apoptosis in this regard, despite the considerable 

amount of studies done on this topic. What remains unclear is whether apoptosis is just a 

coincidence, a protective mechanism, or whether it is a key participant in the development 

of the cardiomyopathy [Neuss et al. 2001, Wencker et al. 2003]. 

 

2.6.2 Obesity Cardiomyopathy: Apoptosis and Ischemia/Reperfusion 

While short periods of ischemia allow the heart to recover quite well despite an initial 

degree of impairment, prolonged periods of ischemia are associated with irreversible 

myocardial damage. The aforementioned will prevail provided that reperfusion, defined as 

the reinstatement of normal blood flow, rapidly succeeds the ischemia [Halestrap et al. 

2007]. 

 

2.6.2.1 What is Ischemia/Reperfusion Injury? 

This type of injury is categorized by myocardial damage that occurs during reperfusion that 

aggravates the damage incurred during the ischemic period by having an additive effect 

[Halestrap et al. 2007]. During ischemia/reperfusion injury there is a release of various 

enzymes and cardiomyocyte changes which are associated with necrosis [Halestrap et al. 
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1998, Suleiman et al. 2001, Halestrap et al. 2004], where the necrotic area in the heart is 

defined as the infarct [Halestrap et al. 2007]. Apoptosis has also been implicated in 

ischemia/reperfusion injury as some cardiomyocytes at the borders of the infarct has been 

found to undergo this type of cell death [Fliss et al. 1996, Anversa et al. 1998]. 

 

2.6.2.2 Causes of Ischemia/Reperfusion Injury 

There is an escalating body of evidence that underlines disrupted mitochondrial 

functioning as the determinant of both myocardial necrosis and apoptosis that are 

associated with ischemia/reperfusion injury [Halestrap et al. 1998, Halestrap et al. 2004, 

Shanmuganathan et al. 2005, DiLisa et al. 2006].  

In particular, it is the elevated intracellular concentration of calcium [Ca2+] as well as 

reactive oxygen species (ROS), that commences during ischemia and intensifies during 

reperfusion (due to a second torrent of ROS production and increased intracellular [Ca2+] 

[Kevin et al. 2003]), that is believed to mediate the damaging effects on the mitochondria 

[Halestrap 2006, Solaini et al. 2005]. 

During ischemia, the switch to increased anaerobic glucose metabolism causes lactic acid 

levels to increase and the cell`s pH (pHi) to swiftly decline, which in turn activates the 

Na+/H+ antiporter in an attempt to restore the intracellular pHi. However, glycolysis yields 

fewer ATP molecules than fatty acid β-oxidation which causes the cell`s ATP 

concentrations to rapidly plunge. In turn, this results in Na/K ATPase inhibition and an 

increase in myocellular sodium concentration [Na+], which sequentially blunts pHi 

restoration. Furthermore, the Na+/Ca2+ antiporter, which is responsible for pumping Ca2+ 

out of the cell, is either repressed or reversed which augments intracellular [Ca2+] 

[Halestrap et al. 1998, Halestrap et al. 2004, Solaini et al. 2005]. 
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There is a radical escalation in ROS cellular content [Kevin et al. 2003] that is not only the 

cause of myocardial damage during ischemia but is believed to make the heart more 

susceptible to damage during reperfusion [Halestrap et al. 2007]. Inhibition of repair 

processes, which are dependent on ATP, and loss of cardiomyocyte integrity are two of 

the aberrations that occur as a result of increased intracellular ROS and [Ca2+] as well as 

ATP diminution, during ischemia [Halestrap et al. 1998, Halestrap et al. 2004, Solaini et al. 

2005]. 

. Mitochondria are not only a source of ROS production but have been identified as targets 

of ROS and calcium damage as well, as indicated by the disruption of electron transport 

chain activity in the mitochondria of ischemic hearts [Solaini et al. 2005, Chen et al. 2006]. 

On the whole, the rise in intracellular ROS and [Ca2+] content has been shown to be the 

trigger for the opening of the mitochondrial permeability transition pore (MPTP) during 

ischemia/reperfusion injury [Halestrap et al. 1998, Halestrap et al. 2004, DiLisa et al. 2006, 

Solaini et al. 2005, Garcia Dorado et al. 2006]. 

 

2.7 The role of the PI3K/PKB/Akt pathway in heart failure and ischemia/reperfusion 

injury 

When the PI3K/PKB/Akt pathway mediator GSK-3 is inhibited, it has been found to reduce 

ischemia/reperfusion injury in the heart [Das et al. 2008, Gomez et al. 2008] and to be 

cardioprotective during heart failure [Hirotani et al. 2007]. GSK-3-mediated myocardial 

protection is mediated via the mitochondria but the precise mechanism is not entirely 

known [Das et al. 2008].  

GSK-3 has been proposed to play a major role in the cardioprotection associated with 

ischemic preconditioning [Tong et al. 2002, Murphy et al. 2005]. Ischemic preconditioning 

entails the exposure of the heart to two or three cycles of short periods of ischemia, 
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interspersed by brief periods of reperfusion [Edwards et al. 2000]. If this preconditioning 

takes place within 1-3 hours of a prolonged period of ischemia then the heart has been 

found to be protected against ischemia/reperfusion injury in both humans and 

experimental animals [Edwards et al. 2000, Yellon et al. 2003, Kloner et al. 2006]. 

During ischemic preconditioning, adenosine, bradykinin endogenous opioids and 

catecholemines are released and interact with their respective G-protein coupled receptors 

[Juhasova et al. 2004, Downey et al. 2007]. Consequently, PI3K is activated and in turn 

phosphorylates and activates PKB/Akt [Hausenloy et al. 2006, Hausenloy et al. 2005], 

amongst other kinase enzymes (discussed in Tong et al. 2004, Hausenloy et al. 2007, 

Liem et al. 2007).  

PKB/Akt is known to phosphorylate and inhibit GSK-3, as mentioned in section 2.4.1.2, 

and in doing so, its pro-apoptotic properties are blocked and cell survival is promoted 

[Jope et al. 2004]. The exact cardioprotective effect of GSK-3 on the mitochondria is not 

completely understood but it is thought that GSK-3 inhibition allows its migration to the 

mitochondria [Juhaszova et al. 2004]. It is at present undecided whether the 

phosphorylation of VDAC by GSK-3 (either directly or indirectly), could play a role in 

sensitizing the cell to MPTP opening as VDAC has recently been ruled out as an essential 

constituent of the MPTP (as discussed in section 2.5.2.3) [Juhaszova et al. 2004, 

Pastorino et al. 2005, Das et al. 2008]. 

 

In addition to GSK-3, PKB/Akt (once activated by PI3K) has also been found to 

phosphorylate Bad and Bax during ischemia/reperfusion injury, inhibiting their pro-

apoptotic effects by preventing them from migrating to the mitochondria, as discussed in 

sections 2.5.2.5.1 and 2.5.2.5.2 [Rácz et al. 2008]. 
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2.8 A Closer Look at the of Mitochondrial Permeability Transition Pore (MPTP) 

during Apoptosis  

Only a few essential metabolites and ions can gain access to the mitochondria through its 

inner membrane under normal physiological conditions, ensuring that the cell`s membrane 

potential and pH gradient is maintained and oxidative phosphorylation is able to proceed 

[Halestrap et al. 2007].  

In contrast, during unhealthy conditions where there are high intracellular calcium levels, 

oxidative stress, elevated phosphate and low adenine nucleotide concentrations, the 

MPTP opens (a non-specific pore). In the open state, the MPTP allows just about any 

molecule smaller than 1.5kDa into the mitochondria and in doing so, disintegrates the 

“permeability barrier” of the inner membrane [Halestrap et al. 2007].  

One consequence of MPTP opening is the unobstructed movement of protons over the 

inner mitochondrial membrane, which results in uncoupling of oxidative phosphorylation. 

ATP synthesis is not only inhibited but the ATPase pump shunts the existing ATP back 

into the cell and in doing this, hydrolyses the ATP [Halestrap et al. 2007].  This brisk 

deterioration in ATP leads to not only the activation of phospholipases, proteases and 

nucleases, all degradative enzymes, but an impairment of cellular homeostasis (ionic and 

metabolic) [Halestrap et al. 2004, Halestrap et al. 2006, Solaini et al. 2005]. 

A second outcome of MPTP opening is the depolarization of the mitochondrial membrane 

which results in additional pore opening in that particular mitochondrion [Scorrano et al. 

1997] and once the mitochondrion is completely open it begins to expand at length 

[Bernardi et al. 1999]. Ultimately, the outer membrane ruptures and cytochrome c and 

other vital pro-apoptotic factors are discharged from the mitochondria, allowing them to 

mediate cell death [Doran et al. 2000, Halestrap et al. 2007]. 
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2.9 Motivation for objectives and hypothesis of our study 

2.9.1 Motivation 

A review of the literature has shown that obesity-related cardiomyopathies are complex 

and mediated by multiple factors. What has come to light is that cardiac insulin resistance 

is implicated as one of the main causes of obesity-related CVD. A few studies have 

implicated perturbations in the insulin-mediated PI3K/PKB/Akt pathway in mediating this 

insulin resistance. Moreover, the PI3K/PKB/Akt pathway has been shown to regulate 

myocardial apoptosis, indicating that this pathway not only regulates metabolism but also 

plays a significant role in determining cell fate. 

Despite the large number of studies conducted, the mechanism of obesity-related 

cardiovascular diseases has not been completely elucidated. Of great interest, but for 

which few studies can be found, is the role of the PI3K/PKB/Akt and apoptotic pathway in 

the early versus advanced stages of obesity. 

 

2.9.2 Objectives 

The first objective of the study was to compare the early and advanced stages of obesity in 

terms of cardiac: 

(i) Cytosolic PI3K/PKB/Akt signalling 

(ii) Cytosolic apoptotic signalling 

(iii) Mitochondrial integrity 

 

The second objective was to assess the following in the myocardium during the advanced 

stages of obesity: 
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(i) Mitochondrial PI3K/PKB/Akt signalling  

(ii) Mitochondrial apoptotic signalling 

(iii) Mitochondrial function 

(iv) Mitochondrial integrity 

 

2.9.3 Hypothesis 

We hypothesize that obesity will have different effects on the myocardium during the initial 

and advanced stages of obesity. We propose that elevated PI3K/PKB/Akt and attenuated 

intrinsic apoptotic signalling will take place in the cytosol during the initial stages of obesity. 

During the advanced stages of obesity we hypothesize that signalling via the 

PI3K/PKB/Akt pathway will be downregulated in the cytosol, while that of apoptotic 

signalling will be augmented. Furthermore, we theorize that the signalling via these two 

pathways will be associated with increased cardioprotection during the initial stages, while 

this protection will be lost during the advanced stages of obesity. 

It terms of mitochondrial PI3K/PKB/Akt and apoptotic signalling, we hypothesize this will 

be downregulated and upregulated in the heart, respectively, in the advanced stages of 

obesity. Additionally, we anticipate that mitochondrial integrity and function will be 

negatively affected. 
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Chapter 3: Materials and Methods 

 

3.1 Materials 

The reagents utilized in this study, for the various experiments, were purchased at a 

number of different companies such as: 

Bayer-Bayer  

Eutha-naze (sodium pentobarbital).  

BDH Laboratory 

Na2S2O4, trichloroacetic acid (TCA) and perchloric acid (PCA). 

Cell Signalling technology  

Antibodies against total and phosphorylated: PI3K (p85 subunit), PKB/Akt Ser473, GSK-

3α/β Ser9 and Bad. 

Antibodies against total: Bax, Bcl-2 and β-Tubulin. 

Clover S.A. (Pty) Ltd. 

Elite fat free instant milk powder. 

Eli Lilly (S.A.) (Pty) Ltd. 

Humulin R (regular biosynthetic human insulin). 
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GE Healthcare (formerly known as Amersham Biosciences) 

ECLTM anti-rabbit Ig, horseradish peroxidase linked whole secondary antibody (from 

donkey), ECLTM anti-mouse Ig, horseradish peroxidase linked species-specific whole 

secondary antibody (from sheep). 

Merck NT laboratory supplies (Pty. Ltd)  

NaCl, KCl, CaCl2, KH2PO4, NaHCO3, MgSO4, NaSO4, NaK-Tartrate, CuSO4, Na2CO3, HCl, 

H3PO4, Na2HPO4, NaOH, Na+ pyrophosphate, Folin Ciocalteus (Folin C) reagent, sodium 

dodecyl sulphate (SDS), tris (hydroxylmethyl) aminomethane, acrylamide, D-glucose, 

glutamate, malate, sucrose, glycine, Tween-20. 

MitoSciences 

MitoProfile® Total OXPHOS Rodent Western Blot Antibody (Catalogue # MS604). 

Roche Diagnostics  

Bovine serum albumin (BSA). 

Sigma-Aldrich Life Science  

Na2VO3, ammonium persulfate (APS), mecarpto-ethanol, N,N,N,N,-

tetramethylethylenediamine (TEMED), Ponceau S (reversible) staining solution, 

phenylmethylsulphonyl fluoride (PMSF), EGTA, EDTA, β-glycerophosphate, triton-X-100, 

aprotonin, leupeptin), 99% pure methanol, palmitoyl-L-carnitine, succinate,rotenone, 

oligomycin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), ATP, AMP, ADP, CrP, 

12.% (v/v) HPLC graded methanol, tetrabuthylammonium perchlorate (TBAP). 
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3.1.1 Animals  

Ethical approval for this study was obtained from the Ethics Committee of Stellenbosch 

University, Faculty of Medicine and Health Sciences (Ethics number: 08/11/013). To 

maintain ethical standards, the revised South African National Standard for the care and 

use of laboratory animals for scientific purposes (South African Bureau of Standards 

(SABS), SANS 10386, 2008) was consulted throughout the study. 

For the purpose of this study, age and weight matched male Wistar rats, which had been 

weaned at 4 weeks of age, were utilized. The rats were housed in the University of 

Stellenbosch Central Research Facility and were given free access to food and water. 

They were subjected to a 12-hour artificial day/night cycle where a constant temperature of 

22°C and humidity of 40% were maintained.  

 

3.2 Methods 

3.2.1 Study design 

Rats weighing ± 200g were randomly assigned to either a control or a diet-induced obesity 

(DIO) group. Control rats were fed a standard rat chow diet which supplied an average of 

380kJ of energy per day. The DIO group were fed an obesity inducing diet that is, a high 

caloric diet which consisted of standard rat chow (33%), sucrose (7%), sweetened full 

cream condensed milk (Clover®) (33%) and distilled water (27%), which provided an 

average of 575kJ energy per day (refer to table 3.1). This method of diet-induced obesity 

and the average daily kilojoules intake was previously described by Du Toit et al. (2008).  

In reference to figure 3.1, the control and DIO groups were further subdivided into two 

groups according to the time period they were placed on their respective diets, that is the 8 
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and 20 weeks groups. The 8 weeks group represented the early stages of diet-induced 

obesity, while the 20 weeks group exemplified the advanced stages thereof. A further 

subdivision occurred in the 8 weeks group that is, groups 8A and 8B. Likewise, the 20 

weeks group was subdivided into groups 20A, 20B, 20C and 20D.  

Following their specific diet period, all of the animals in the 8 weeks group and the 20 

weeks group were fasted overnight, anaesthetized and then subjected to an intra-

peritoneal glucose tolerance test (IPGTT) to evaluate blood glucose homeostasis (refer to 

part (i) of figure 3.1). All the animals were allowed to recover for at least 1 week before any 

further experiments were conducted. 

Additionally, once the animals were anaesthetized, blood was collected from the jagular 

vein, prior to glucose administration, and allowed to clot on ice and thereafter centrifuged 

for 10 minutes at 11 500rpm and 4ºC. The resultant serum was collected and stored at -

80ºC for serum insulin level determination at a later stage in order to assess whole-body 

insulin sensitivity. 

Throughout all of the experiments, the animals were anaesthetized and weighed, to 

determine their total body weight as a measure of obesity, prior to being sacrificed. Once 

the hearts had been removed, the intra-peritoneal fat was collected (surrounding the 

kidneys and testes) and weighed to gauge intra-peritoneal adipocity.  

Groups 8A and 20A were sacrificed and their hearts immediately freeze-clamped in liquid 

nitrogen and stored at -80oC. These myocardial tissue were later subjected to western blot 

analysis to determine the early and advanced effects of diet-induced obesity with regard to 

protein markers of the PI3K/PKB/Akt and apoptotic signalling pathway (listed in figure 

3.1(i)), in the cytosolic fraction of the heart. Groups 8B and 20B were sacrificed and their 

hearts freeze-clamped in liquid nitrogen and stored at -80oC which were later used to 
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prepare mitochondrial lysates. These were then subjected to western blot analysis of 

various protein subunits (listed in figure 3.1(i)) located in the mitochondrial electron 

transport chain (ETC) in order to assess mitochondrial integrity. 

The animals in group 20C were further subdivided into groups 20C(i) to 20C(iii), sacrificed and 

their fresh hearts used for mitochondrial isolation upon which various respiration analyses 

were subsequently done (refer to figure 3.1(ii)), in order to moderate mitochondrial function 

during the advanced stages of obesity.  

The control animals in group 20D were subdivided into an untreated, insulin and ischemia 

group and administered their various treatments as stipulated in section 3.5.1. This 

protocol was repeated with the DIO animals in group 20D. Post sacrifice, the fresh hearts 

of all the animals in group 20D were utilized to produce mitochondrial lysates which were 

stored at -80oC. These were later used to assess the effects of advanced diet-induced 

obesity on the translocation of protein markers of the PI3K/PKB/Akt and apoptotic 

signalling pathway (refer to figure 3.1(ii)) from the cytosol to the mitochondria, via western 

blot analysis. 

 

Table 3.1:  Macronutrient composition of control versus DIO diets 

 

 

 

 

  

 

Control group DIO group Difference 

Carbohydrates 60% 65% 5% 

Protein 30% 19% 11% 

Fat 10% 16% 6% 

KJ/day ± 380KJ/day ± 575KJ/day ± 195KJ/day 
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Figure 3.1: (i) and (ii) Study design for the respective groups after 8 and 20 weeks of diet. 
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3.3 Experimental procedures 

3.3.1. Intra-peritoneal glucose tolerance test (IPGTT) 

Prior to this specific experiment, the animals were deprived of food for a period of 18 hours 

but given free access to water. The rats were anaesthetized with sodium pentobarbital 

(55mg/kg body weight) by intra-peritoneal injection and blood samples were subsequently 

collected by means of a pin-prick in the tail. These drops of blood were placed on the 

absorbent film of a disposable test strip (Gluco PlusTM, distributed by CIPLA DIBCARE, 

Bellville, South Africa) which was then inserted into a glucometer (Gluco PlusTM, 

distributed by CIPLA DIBCARE, Bellville, South Africa) to determine the baseline blood 

glucose level. The animals then received an intra-peritoneal injection of a 50% D-glucose 

solution, 1g/kg body weight, and the fasting blood glucose level subsequently determined 

at various time intervals (refer to figure 3.2). 

 

 

 

 

 

 

 

 

 

Figure 3.2: Experimental protocol for the intra-peritoneal glucose tolerance test (IPGTT). 
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3.3.2 Whole heart excision 

After the IPGTT’s, the animals were allowed to recover for a period of 1 week. Animals 

were then anaesthetized with sodium pentobarbital (160mg/kg) until a foot-pinch showed a 

lack of consciousness. Their hearts were removed and washed in ice cold Krebs-Henseleit 

buffer (pH 7.4) containing 119mM NaCl, 24.9mM NaHCO3, 4.74mM KCl, 1.19mM KH2PO4, 

0.6mM MgSO4, 0.5mM Na2SO4, 1.25mM CaCl2 and 11 mMD-glucose. The hearts were 

then freeze clamped in liquid nitrogen and stored at -80oC for western blot analysis. 

 

3.3.3 Fasting serum insulin level determination 

The serum from the fasted blood which had been collected from the experimental animals, 

as stipulated in section 3.2.1, were defrosted at room temperature. The purchased Coat-A-

Count® Insulin assay (Diagnostics Products Corporation, LA, USA), used for the 

quantitative measurement of serum insulin levels, provided all the necessary solutions and 

materials, all of which were brought to room temperature.  

Uncoated polypropylene tubes were labelled for total counts (T1 – T2) as well as non-

specific binding (N1 – N2), while fourteen of the insulin antibody-coated tubes were labelled 

as such: number 1 = MaxB (representing maximum insulin binding) and numbers 2-14 = 

Std1-14 (representing the rest of the standards). Furthermore, the rest of the insulin 

antibody-coated tubes were allocated for the controls (Cn+1,2,3...) and the samples 

(Sn+1,2,3...). 200μl of the zero calibrator A was subsequently pipetted into the non-specific 

binding and maximum binding tubes. Thereafter, 200μl of each remaining calibrator, 

control and sample was pipetted into their respective prepared tubes. 1.0ml of 125I insulin 

was then added to each tube, vortexed and then incubated for 18-24 hours at room 

temperature. Post incubation, all tubes (except the total count tubes) were placed in a 
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foam decanting rack and inverted on paper towels, for about 3 minutes,  to allow the 

effluent to drain. Any excess moisture surrounding the top half of the tube was removed 

with a cotton bud. The radioactivity was then measured in each tube using a gamma 

scintillation counter (Cobra II Auto Gamma, A.D.P, South Africa).  

 

3.4 Whole heart analysis 

3.4.3 Western blot analysis of cytosolic PI3K/PKB/Akt and apoptotic pathway 

signaling proteins 

(i) Lysate preparation 

Heart tissue (250mg) from groups 8A and 20A, which had been stored at -80oC, were 

homogenized on ice in 700μl ice-cold lysis buffer with a polytron PT-10 homogenizer (PCU 

Kinematica, Luzern, Switzerland) for 2 x 4 seconds at setting 4. The lysis buffer, which 

was used throughout all of the experiments, contained 20mM Tris-HCl (pH 7.5), 1mM 

EGTA, 1mM EDTA, 150mM NaCl, 1mM Na2VO3, 1mM β-glycerophosphate, 2.5mM 

sodium-pyrophosphate, 0.3mM PMSF, 1% (v/v) Triton X-100, 10μg/ml leupeptin, 10μg/ml 

aprotonin and 50µg/ml PMSF. The homogenates were then incubated on ice for 15 

minutes and thereafter centrifuged (Eppendorf Centrifuge 5413, Hamburg, Germany) at 

4oC and 11 500rpm for 10 minutes. The resultant supernatants were then subjected to a 

Bradford protein determination. 

 

(ii) Bradford protein determination [Bradford 1976] 

A series of protein standards were prepared, in duplicate, from a diluted bovine serum 

albumin (BSA) solution (diluted 1:5 with dH2O) in order to obtain a standard curve. 
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Throughout all of the experiments, a BSA stock solution with a known protein 

concentration of 1.22μg/μl was used. The diluted BSA solution was aliquoted into protein 

determination tubes such that the protein concentration increased linearly. That is, each 

tube had the following amount of protein (in µg) in the tube 2.42, 4.83, 9.66, 14.50 and 

19.33. The volume pipetted into each tube was (in μl): 10, 20, 40, 60 and 80, thereafter 

dH2O was added to each tube to give a final volume of 100μl. The supernatants from the 

experimental samples, refer to 3.4.3 (i), were diluted 1:10 with dH2O and 5μl of each of 

these samples were further diluted with 95μl of dH2O, in duplicate, with a final volume of 

100μl. Subsequently, 900μl of diluted Bradford reagent (1:5 with dH2O) was added and the 

samples vortexed and incubated at room temperature for 15-30 minutes. The Bradford 

reagent stock solution consisted of 0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (v/v) 

ethanol, and 8.5% (v/v) phosphoric acid. The absorbance values were read at 595nm 

using a spectrophotometer (Spectronic® 20 GenesysTM, Spectronic Instruments, USA). 

The generated standard curve and optical density (OD) values were subsequently used to 

determine the protein concentration of the experimental samples in milligrams per millilitre 

(mg/ml). 

From the standard curve, the volume of experimental sample, lysis buffer and 3x Laemmli 

sample buffer, needed to prepare an aliquot of each experimental sample (with a final 

volume of 180µl), was calculated. The 3x Laemmli sample buffer contained 63mM Tris-HCl 

(pH 6.8), 10% Glycerol, 2% SDS, 0.002% Bromophenol Blue and 5% 2-mercaptoethanol. 

Addition of the lysis buffer ensured that all the samples were diluted to an equal protein 

concentration. Lastly, the samples were boiled for 5 minutes and stored at -80ºC for use 

during gel electrophoresis. 
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(iii) Sample loading and gel electrophoresis  

 

The experimental samples, refer to 3.4.3 (ii), were defrosted by boiling it for 5 minutes. The 

samples were then centrifuged at room temperature and 15 000rpm (Sigma® 101M 

Centrifuge, distributed by Lasec SA, Cape Town, South Africa) for 5 minutes and the 

proteins therein separated by means of sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) using the standard Bio-Rad Mini-Protein III system (Bio-Rad, 

CA, USA). Throughout the study, a 4% stacking gel was utilized whereas the percentage 

resolving gel used depended on the molecular weight of the protein in question (refer to 

table 3.2). The experimental samples and a prestained protein ladder were loaded into the 

gel and the running buffer, containing 250mM Tris, 192mM glycine and 1% sodium 

dodecyl sulphate (SDS), subsequently poured into the system. Electrophoresis of the gels 

followed at 100 volts (V) and 200 milliampere (mA) for 10 minutes initially and thereafter 

for 65 minutes at 200V and 200mA.  

 

 

Table 3.2:  Acrylamide gel constituents for SDS-PAGE 

 

 

 

 

 

 

 

 
Resolving Gel Stacking Gel 

 
7.5% Gel 10% Gel 12% Gel    4% Gel 

dH2O  4.65ml 3.85ml 3.35ml 2.7ml 

1.5 M Tris-HCl (pH 8.8) 2.50ml 2.50ml 2.50ml ------- 

0.5 M Tris-HCl (pH 8.8) ------- ------- ------- 1.25ml 

10% SDS  90µl 90µl 90µl 50µl 

40% Acrylamide  1.7ml 2.25ml 2.7ml 450µl 

10% APS   50µl 50µl 50µl 50µl 

99% TEMED  20µl 20µl 20µl 10µl 
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(iv) Electroblotting and blockage of non-specific binding 

Following separation, the proteins were transferred to a polyvinylidene flouride (PVDF) 

membrane (Immobilon PTM, Millipore, MA, USA) using an electrotransfer system (BioRad 

Mini Transblot System, BioRad, CA, USA) at 200V and 200mA, while submerged in a 

transfer buffer containing 25mM Tris-HCl, 192mM glycine and 20% v/v methanol for 1 

hour. Post transfer, the PVDF membranes were soaked in 99% pure methanol for 30 

seconds and then left to air-dry for 15 minutes. Ponceau S (reversible red) staining 

solution (0.1% Ponceau S (w/v) and 5.0% acetic acid (w/v)) was subsequently used to 

ascertain the presence of the proteins and to confirm if the transfer process was 

successful. To remove the Ponceau red stain from the membranes, it was washed with 

washing buffer (TBS-Tween) composed of 10% of a 10x Tris-buffered saline (TBS) 

solution (50mM Tris, 150mM NaCl and 90% dH20), 90% dH2O and 0.1% Tween-20. The 

washing occurred for 3 x 5 minutes at room temperature on a rotator (LAB Rotator: Model 

DSR 2800V, Digisystem Laboratory Instruments Inc., Taiwan). This washing protocol was 

followed throughout all of the experiments, unless stipulated otherwise. 

The membranes were then blocked, from non-specific protein binding, by incubating them 

in membrane blocking buffer composed of TBS-Tween and 5% fat free milk powder, for 

1.5 to 2 hours. Post incubation, the membranes were washed and incubated in the primary 

(1°) antibody, all of which were diluted according to the manufacturers’ instructions (refer 

to table 3.3), that specifically recognizes the protein of interest. The incubation took place 

overnight at 4oC on the LAB Rotator. 
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Table 3.3:  Protein characteristics for western blot analysis 

 

 

 

 

 

 

 

(v) Secondary (2o) antibody incubation and protein detection  

The following day, the PVDF membranes were thoroughly washed and thereafter the 

membranes were incubated at room temperature on the LAB Rotator in anti-rabbit 

horseradish peroxidise-labelled secondary antibody. The secondary antibody was diluted 

according to manufacturers’ instructions for each specific protein of interest (refer to table 

3.3), for 1 hour at room temperature. After secondary antibody incubation, the membranes 

were thoroughly washed.  

In terms of protein detection, PVDF membranes were coated with enhanced 

chemiluminescence (ECL) detection reagents for 40 seconds in a dark room. 
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Subsequently, the membranes were exposed to an autoradiography film (Amersham 

Hyperfilm ECL (# RPN 2103), GE Healthcare UK Limited, Buckinghamshire, UK) to detect 

light emission from the protein of interest. The interval of exposure differed for each protein 

of interest.  

 

(vi) Densitometry  

Once the proteins were detected by chemiluminescence, the autoradiography films were 

scanned (Epson Perfection V700 Photo Scanner, Digital ICE Technologies, Indonesia) 

and analysed with densitometry (UN-SCAN-IT, Silk Scientific Inc., Orema, Utah, USA). 

This technique detects the density of each protein band, which is an indication of the 

amount of protein present, and relays that density in terms of total pixel values or arbitrary 

densitometry units. 

 

x) Equal loading determination 

To verify that unequal loading was not a factor, the PVDF membranes were stripped of all 

antibodies as well as the ECL detection reagents by washing them with distilled water 

(dH2O) for 2 x 5 minutes at room temperature on the LAB Rotator. The membranes were 

then incubated for 5 minutes in 0.2M NaOH on the belly dancer at room temperature and 

then again washed with dH2O, as previously mentioned. Thereafter, steps (iv) to (vi) of the 

protocol were followed. The β-Tubulin primary antibody was diluted, according to 

manufacturer`s instructions, 1:1000 (5μl 1º antibody in 5ml TBS-Tween), while the anti-

rabbit horseradish peroxidise-labelled secondary antibody was diluted 1:4000 (5μl 2º 

antibody in 20ml TBS-Tween). Equal protein loading was confirmed, if all of the protein 

bands on the β-tubulin autoradiography films had an equal density as seen in figure 3.3. 
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Figure 3.3: The (1) pPKB/Akt and (2) β-Tubulin autoradiography films, as an example 

confirmed equal loading. 

 

xi) P/T ratio 

The P/T ratio is that of the phosphorylated over the unphosphorylated (total) form of a 

particular protein and was obtained by dividing the arbitrary densitometry units, as 

described in section 3.4.3 (vi), of the phosphorylated by that of the unphosphorylated 

protein. 

 

xii) Sample number (n-value) 

All the n-values displayed on the graphs in Chapter 4 indicate the number of individual 

samples (hearts) per group. The images accompanying the graphs in figures 4.4-4.6, 4.11-

4.14 and 4.19-4.32 represent the autoradiography films developed during protein 

exposure, as explained in section 3.4.3 (v). The western blot experiment was duplicated 

with a different set of samples (i.e. more than one electroblot was run per protein of 

interest) for the previously mentioned graphs. 
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3.5 Cardiac mitochondrial analyses 

3.5.1 Western blot analysis of mitochondrial PI3K/PKB/Akt and apoptotic pathway 

signaling proteins 

(i) Mitochondrial isolation 

Prior to mitochondrial isolation, the control and DIO animals in group 20D were subdivided 

into a control, insulin and ischemia group. (1) Control: after anaesthesia of the rats, hearts 

were excised and arrested in a sorval tube with ice cold KE isolation medium (pH 7.4), 

which contained 0.18M KCl (13.42g/L) and 0.01M EDTA (3.72g/L), for 1-3 minutes. (2) 

The insulin group: Animals were injected intra-peritoneally with 20 units of a 100IU/ml 

insulin solution and given a 10 minute waiting period. Thereafter, they were anaesthetized 

and their hearts excised as explained in section 3.3.2. (3) Ischemia: the hearts from these 

animals were arrested in room temperature KE isolation medium and left for 25 minutes at 

room temperature.  

Subsequently, all of the fresh hearts were snipped into small pieces with scissors and the 

majority of the blood removed by repetitive washing with the ice cold isolation medium. All 

further procedures were performed on ice. The tissue was homogenized while submerged 

in the ice cold isolation medium, on ice with the Polytron PT10 homogenizer for 2 x 4 

seconds (setting 4). Next the sorval tube was filled to the top with the ice cold isolation 

medium and the homogenate was centrifuged for 10 min at 2 500rpm (755 x g) and 4°C in 

a Sorval® RC6 Plus, Thermo Electron Corporation, Osterode, Germany (SS34 rotor)). The 

resultant supernatants were decanted into a clean sorval tube and centrifuged at 12 

500rpm (18 800 x g) to obtain a mitochondrial pellet which was subsequently resuspended 

in 1ml ice cold lysis buffer, refer to 3.4.3 (i), and homogenized using a glass Teflon Potter 

Elvehjem homogenizer. The lysates were further homogenized with a polytron (Virsonic 
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Digital 550, The VirTis Co., USA) for 2 x 3 seconds at setting 3. The lysates were left to 

undergo additional digestion on ice for 15 minutes and thereafter it was centrifuged for 10 

minutes at 11 500rpm at 4ºC. The resultant supernatant was collected and the protein 

concentration determined by the method of Bradford, as explained in step (ii) of section 

3.4.3. Thereafter, the mitochondrial lysates were subjected to western blot analysis, as laid 

out in steps (iii) to (x) of section 3.4.3.  

 

3.5.2 Western blot analysis of mitochondrial ETC complex protein subunits 

(i) Mitochondrial isolation 

For the purpose of this experiment, frozen (at -80ºC) myocardial tissue, from groups 8B 

and 20B, were subjected to the same protocol as indicated in section 3.5.1 (i).  

 

(ii) Sample loading and gel electrophoresis  

10µg of each mitochondrial lysate sample, and 5µl of the molecular weight marker, were 

loaded into a commercially available pre-cast acrylamide gradient gel (Mini-Protean® 

TGXTM, BioRad, CA, USA).  Electrophoresis then proceeded in the previously mentioned 

Bio-Rad Mini-Protein III system, which was filled to the top with electrophoresis running 

buffer containing 25mM Tris, 192mM glycine and 0.1% SDS. The proteins were separated 

at 150V and 150mA for 2 hours or until the bromophenol blue dye of the Laemmli sample 

buffer had run out of the bottom of the gel. Thereafter, the gel was soaked in 

electroblotting transfer buffer, which contained 25mM Tris, 192mM glycine, 10% methanol 

and 0.1% SDS, for 30 minutes. 
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(iii) Electroblotting and blockage of non-specific binding 

Subsequent to soaking the gel, it was assembled in a standard transfer sandwich, using a 

PVDF membrane, which was placed in the Bio-Rad Mini Transblot system and fully 

submerged in electroblotting transfer buffer. Electroblotting was carried out at 150mA and 

150V for 2 hours. Post transfer, the proteins were fixed by immersing the PVDF 

membranes in methanol and the protein transfer confirmed with Ponceau red reversible 

dye, as explained in section 3.4.3 (iv). Throughout the experiment, the membranes were 

washed with membrane washing buffer, containing phosphate buffered saline solution 

(PBS) (1.4mM KH2PO4, 8mM Na2HPO4, 140mM NaCl and 2.7mM KCl, pH 7.3) and 0.05 

% Tween-20, for 3 x 5 minutes.  

The membranes were blocked overnight, at 4ºC on the LAB Rotator, in membrane 

blocking buffer containing PBS and 5% fat free milk powder. Post blocking, the 

membranes were incubated in a MitoProfile® Total OXPHOS Rodent Western Blot 

Antibody Cocktail, dilution factor 1:1000 (5µl primary antibody in 5ml 1 % fat free milk 

powder/PBS), at room temperature for 2 hours on the belly dancer. 

 

(iv) Secondary (2o) antibody incubation and protein detection  

The membranes were incubated in anti-mouse horseradish peroxidase (HRP) conjugated 

secondary antibody, dilution factor 1:4000 (5µl primary antibody in 20ml 1% fat free milk 

powder/PBS), at room temperature for 2 hours on the LAB Rotator. 

 

(v) Densitometry  

The same protocol was followed as in section 3.4.3 (vi). 
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(vi) Equal loading determination 

The same protocol was followed as in section 3.4.3 (x). 

 

3.5.3 Mitochondrial respiration analyses 

Mitochondria were prepared from fresh hearts (from all of the animals in group 20C) as 

described in section 3.5.1 The mitochondrial pellet was resuspended in 500µl KE isolation 

medium and homogenized with the glass Teflon Potter Elvehjem homogenizer. 50μl of 

each mitochondrial sample was precipitated in 1ml of 10% trichloroacetic acid (TCA) 

overnight at 4ºC for subsequent Lowry protein determination. Furthermore, 50μl of the 

resuspension was stored at -80ºC for citrate synthase assay analysis at a later stage.  

 

(ii) Lowry protein determination [Lowry et al. 1951] 

The precipitated samples were centrifuged for 15 minutes at 2 500rpm (755 x g) (Heraeus 

Megafuge 16R Centrifuge, Thermo Fisher Scientific Inc. (NYSE: TMO), USA). Thereafter, 

the supernatant was discarded while 500μl 1N NaOH was added to the pellet and 

vortexed. The proteins in the samples were then dissolved by heating it in a water bath at 

70°C for 10 minutes or until the solution was lucid. Subsequently, 500μl dH20 was added 

to each sample and then vortexed rendering a 0.5N NaOH solution.  

Three different albumin stock solutions, of which the protein concentration was known, 

were pipetted into lucham tubes and used to produce a standard curve. 0.5N NaOH was 

used as a blank. In duplicate, 50μl of the mitochondrial samples was added to lucham-

tubes. Thereafter, 1ml NaK-Tartrate-CuSO4 solution, consisting of 2% NaK-Tartrate, 1% 

CuSO4.5H2O and 2% Na2CO3, was added to each tube within a 10-30 second time 
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interval. The tubes were vortexed after each addition and after 10 minutes, 100μl diluted 

Folin Ciocalteu’s solution (diluted 1:3) was added at the same time interval. The tubes 

were again vortexed after each addition and subsequently left for 30 minutes to incubate at 

room temperature. The optical density was read at visible light (750nm). The generated 

standard curve and OD values were then used to determine the protein concentration of 

the mitochondrial samples in mg/ml. 

 

(iii) Oxygraph calibration 

Respiration of isolated mitochondria was measured at 25°C using an oxygraph containing 

a Clarke-type electrode disc (Hansatech Oxygraph, distributed by Scientific Associates cc 

(Tokai, RSA), whereby the O2 consumption was measured in nmolO2/ml/min. 

One of two incubation media was used to calibrate the oxygraph prior to the actual 

experiment, depending on its objective of that experiment. To assess respiration when 

glutamate served as a metabolic substrate, the glutamate  incubation medium (pH 7.4) 

was used, which consisted of 250mM sucrose, 10mM Tris-HCl (pH 7.4), 8.5mM 

K2HPO4.2H2O, 5mM glutamate and 20mM malate. In contrast, 5mM palmitoyl-L-carnitine 

replaced the 5mM glutamate in the glutamate incubation medium (i.e. palmitoyl-L-carnitine 

incubation medium) in order to establish respiration in the presence of fatty acids 

(metabolic substrate). 

An aliquot (the volume was dependent on the end reaction volume) of the incubation 

media was pipetted into the chamber of the oxygraph, subsequently an imprecise but 

small amount of sodium dithionite (Na2S2O4) was added to the chamber to scavenge all 

oxygen and render the medium anoxic. The chamber was sealed and the oxygraph 

calibrated to a 0 and 100% oxygen level. After the calibration the chamber was repetitively 

rinsed with dH2O to remove all remnants of the Na2S2O4.  
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(iv) Baseline mitochondrial respiration analysis 

Referring to figure 3.4, (1) 650µl of the incubation medium was added to the oxygraph 

chamber and allowed to become saturated with air for about 90 seconds. The first set of 

experiments used the glutamate medium whereas a separate set of experiments used the 

palmitoyl-L-carnitine incubation medium. (2) Thereafter, 50μl of the mitochondrial 

suspension (cardiac mitochondria isolated from group 20C(i)) was added and its 

equilibration in the chamber recorded for 90-120 seconds. (3) Hereafter 50μl ADP was 

added and the stopper rapidly closed, effectively sealing the chamber. (4) The active 

mitochondrial state 3 respiration was recorded that is, the mitochondria were allowed to 

use all the ADP to produce ATP. (5) Once the all the ADP was depleted, (6) state 4 

respiration was allowed to ensue (the mitochondria were allowed to respire in the absence 

of a high energy phosphate) (7) until all the oxygen in the chamber was depleted. O2 

consumption was measured in nmolO2/ml/min at 25ºC. The concentration of the ADP 

(stock solution diluted 250x) was determined spectrophotometrically by reading the 

absorbance in a quartz cuvette at a UV wavelength of 259nm. The molar extinction 

coefficient of ADP is 15.4 x 106.  

 

State 3 and 4 respiration was computed as the natoms oxygen consumed (during their 

respective respiration states) per milligram mitochondrial protein per minute (natoms 

O2/mg mitochondrial protein/min). 

The respiratory control index (RCI) was calculated as the ratio of state 3 to state 4 

respiration, whereas the ADP/O ratio was established as the amount of ADP 

phosphorylated (to ATP) over the amount of oxygen consumed during state 3 respiration. 
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The oxidative phosphorylation rate was calculated as the state 3 respiration rate multiplied 

by the ADP/O ratio. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A standard respiration graph produced by an oxygraph 
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(v) Anoxia/Reperfusion analysis 

During this analysis 600µl incubation medium was added to the chamber and after 90 

seconds 100μl of the mitochondrial suspension added. Following a 90 seconds 

equilibration period, 50μl ADP was added and the chamber sealed. The mitochondria were 

allowed to reach state 3 and state 4 respiration and thereafter 100μl of a 17.7mM ADP 

solution was added and the chamber rapidly sealed again, allowing for maximum 

stimulated respiration. Consequently, the oxygen levels within the chamber became 

completely depleted, making the chamber anoxic. This was allowed to proceed for 20 

minutes after which the mitochondria were re-oxygenated by removing the stopper and 

bubbling air through the reaction mixture with a plastic Pasteur pipette. The mitochondria 

were then allowed to regain state 3 respiration for 2 minutes. A recording of mitochondrial 

oxygen consumption was taken throughout the experiment. This protocol was followed for 

two separate sets of experiments, the first using glutamate and the second using 

palmitoyl-L-carnitine incubation medium. 

Subsequent to the anoxia/reperfusion analysis, the state 3 percentage recovery was 

computed as indicated below: 

 

 

 

 

                      (
                                      
                                      

)      
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(vi) Mitochondrial electron transport chain complex analysis [Lanza et al. 2009] 

Prior to the experiment, the oxygraph was a calibrated (as explained in 3.5.3 (iii)) and a 

baseline mitochondrial respiration analysis was conducted to measure respiration without 

substrates (as explained in 3.5.3 (iv)). For this experiment, 680µl incubation medium was 

pipetted into the oxygraph chamber and after 90 seconds, 20μl of the mitochondrial 

suspension was added. After another 90 seconds had passed, 50μl ADP was added and 

the chamber sealed with the stopper. A different pharmaceutical substance, each one 

inhibiting or uncoupling a specific complex within the ETC, was then injected through the 

capillary tube in the chamber stopper. After each addition the reaction was allowed to 

progress for at least 120 seconds with continuous recording. The order of addition was as 

follows: (1) 45μl of a 80Mm succinate stock solution, (2) 8μl of a 50μM rotenone stock 

solution, (3) 5μl of a 5mg/1ml oligomycin stock solution and (4) 8μl of a 5mM carbonyl 

cyanide m-chlorophenylhydrazone (CCCP) stock solution. This protocol was followed for 

two separate sets of experiments, the first using 5mM glutamate (glutamate incubation 

medium) and the other using 5mM palmitoyl-L-carnitine (palmitoyl-L-carnitine incubation 

medium) as substrate. 

 

The protocol used by Lanza et al., indicate the purpose of the various ETC inhibitors and 

uncouplers, which will briefly be discussed below: 

 

(1) Succinate: Succinate can stimulate respiration above the glutamate and malate 

stimulated state 3 thresholds by providing additional electron flow through complex 

II.  
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(2) Rotenone: Rotenone, in addition to succinate, is used to assess the function of 

complex II as it also selectively stimulates the flow of electrons through complex II 

in the presence of succinate. This is achieved by inducing a redox shift that 

effectively inhibits all of the NADH-linked dehydrogenases in the TCA cycle. 

 

(3) Oligomycin: Induces state 4 respiration by inhibiting the Fo unit of the ATP synthase 

enzyme, thus blocking the proton channel and effectively eliminating ATP synthesis. 

Due to the lack of ADP phosphorylation, there is a leakage of protons across the 

inner mitochondrial membrane and thus, oligomycin is used to indicate the degree 

of uncoupled respiration or proton leak. 

 

(4) CCCP: This uncoupler dissipates the proton gradient across the inner mitochondrial 

membrane and thus, uncouples oxidative phosphorylation. 

 

3.5.4 High performance liquid chromatography (HPLC)  

Prior to the HPLC analysis, the final reaction mixtures (from the experiments laid out in 

3.5.3 (iv), (v) and (vi)) were removed from the oxygraph chamber and added to 1ml of 6% 

PCA (perchloric acid). This allowed for protein precipitation which took place on ice for a 

maximum of 30 minutes. Thereafter, the mixture was centrifuged at 4000rpm at 4°C for 10 

minutes and 1 ml of the supernatant removed and added to 5μl universal pH indicator, 

transforming the supernatant from colourless to purple. A neutralization mixture (40% 

saturated KOH-KCl and 0.2M Tris-HCl in a 2:3 ratio) was progressively (± 5μl at a time) 

added to the supernatant until it turned green in colour, indicating a neutral pH (pH 7.0 - 

pH 7). Subsequently, the mixture was centrifuged at 4000rpm at 4°C for 3 minutes. The 
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resultant supernatants were then filtered through a 0.45μm nitrocellulose filter (Millipore, 

MA, USA) into Eppendorf tubes and stored at -80°C for subsequent HPLC analysis. 

For our experiments, we performed reverse-phase HPLC using a Spectra Physics 

(SP8440 XR) on-line UV detector (CA, USA) with a wavelength of 210nm. The mobile 

phase consisted of a buffer containing 257mM KH2PO4, 1.18mM 

tetrabutylammoniumphosphate (TBAP), 12.5 % (v/v) HPLC graded methanol, pH 4.0 with 

H3PO4. The column (distributed by Phenomenex®, UK), which was 250mm in length and 

had an internal diameter of 4.6mm, was packed with LUNA C18 (2) with a particle size of 

5μm and was filtered and de-gassed with helium. 

The amount of ATP, ADP, AMP and CrP were all quantified (in μmol/g mitochondrial 

protein) subsequent to the HPLC analysis, from the peak area ratio which was based on 

the calibration or standard curve generated from each individual standard. All of the 

standards used had known concentrations:  ATP = 0.4535nmol/10μl, ADP = 

0.5853nmol/10μl, AMP = 0.7200nmol/10μl and CrP = 0.7640nmol/10μl. 

 

3.5.6 Citrate synthase assay 

Prior to the assay, CellLytic M Cell lysis reagent (Catalogue # C2978, Sigma, St. Louis, 

USA) (about 200μl per g of mitochondrial tissue) was added to 50μl of each the 

mitochondrial samples (which had been stored at -80ºC in KE isolation medium). A citrate 

synthase assay kit (Catalogue # CS0720, Sigma, St. Louis, USA) was then used to 

determine the level of citrate synthase activity in each mitochondrial sample. The kit 

consisted of  1x Assay buffer solution,  30mM Acetyl-CoA, 10mM 5,5'-dithiobis-(2-

nitrobenzoic acid) (DTNB), 10mM oxaloacetate (OAA) solution and a diluted citrate 

synthase solution which served as the positive control. Subsequently, two reaction 
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mixtures were prepared (1 and 2) both containing 10μl Acetyl-CoA and 10μl DTNB 

solution. In addition, reaction mixture 1 also contained 920μl of the assay buffer, whereas 

mixture 2 contained 90μl of this buffer. 10μl of the diluted citrate synthase solution was 

added to reaction mixture 2 which served as the enzyme standard (positive control) from 

which a standard curve was later generated. Furthermore, 10μl of the mitochondrial 

samples were added to reaction mixture 1, which was later used to determine the citrate 

synthase activity these samples.Thereafter, the positive control and mitochondrial samples 

were heated to 25ºC and transferred to a 1ml absorbance reading cuvette and the OD 

measurements taken at a wavelength of 412nm every 20 seconds for a total of 1.5 

minutes to measure any baseline reaction. 50μl of the oxaloacetate solution was then 

added to all of the samples, the samples gently mixed and the OD measurements taken 

again every 20 seconds for a total of 1.5 minutes to measure the total citrate synthase 

activity. The generated standard curve and OD values were then used to calculate the 

level of citrate synthase activity in µmol/mg protein/minute. 

 

3.5.6 Statistical analyses 

For the purpose of this study, results were statistically compared using Microsoft 

GraphPad Prism, version 5.0. The unpaired Student t-test was used to compare one 

variable between two groups while the one-way analysis of variance (1-way ANOVA) test, 

followed by a Bonferroni post hoc test, was used to compare a single variable amongst 

more than two groups . On the other hand, a two-way analysis of variance (2-way ANOVA) 

test was used to compare multiple variables amongst more than two groups. All of the 

values were expressed as the mean ± standard error of the mean (SEM) and a p-value of 

less than 0.05 (p<0.05) was considered statistically significant. 
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Chapter 4: Results 

 

4.1 Physiological parameters  

4.1.1 8 weeks 

Consequent to following their respective diets, there was no significant difference between 

the control and DIO group with respect to their total body weight. In contrast, the DIO 

animals presented with significant increases in their intra-peritoneal fat mass (p<0.05), 

fasting blood glucose levels (p<0.05) and serum insulin levels (p<0.05) when compared to 

their controls. Please refer to table 4.1. 

 

4.1.2 20 weeks 

In comparison to the control animals, the DIO animals showed a significant elevation in 

both their total body weight (p<0.0001) and intra-peritoneal fat mass (p<0.0001). 

Additionally, these animals displayed significantly augmented fasting blood glucose levels 

(p<0.001) as well as serum insulin levels (p<0.0001). Please refer to table.4.1. 
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Table 4.1: The various physiological parameters of the DIO versus control animals 

subsequent to 8 and 20 weeks on their respective diets. 
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4.2 Intra-peritoneal glucose tolerance test (IPGTT) data 

4.2.1 8 weeks 

Subsequent to following their respective diets for a period of 8 weeks, the DIO animals 

displayed a significantly bigger area under the curve (AUC) (749.7mg/ml/min, p=0.0034), 

in comparison to the control animals (604.8mg/ml/min), during a 2 hour IPGTT (figure 4.1). 

Additionally, the baseline fasting blood glucose levels was significantly elevated in the DIO 

group (4.55mmol/L ± 0.24,   p<0.01), in contrast to their controls (3.91mmol/L ± 0.17). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The fasting blood glucose levels of control versus DIO animals, following an 8 

weeks high caloric diet, during a 2 hour IPGTT. 
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4.2.2 20 weeks  

The DIO animals displayed a significantly greater AUC (568.0mg/ml/min, p=0.0043) in 

comparison to the control animals (466.8mg/ml/min) during a 2 hour IPGTT, following 20 

weeks of diet (figure 4.2). As seen in figure 4.3, the DIO animals showed significantly 

higher fasting blood glucose levels at the zero (a) (5.28mmol/L ± 0.15, p<0.01) and 2 hour 

(b) time points (4.15 mmol/L ± 0.15, p<0.01), in comparison to the control animals (4.32 

mmol/L ± 0.21 and 3.38 mmol/L ± 0.18, respectively). 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.2: The fasting blood glucose levels of control versus DIO animals, following a 20 

weeks high caloric diet, during a 2 hour IPGTT. 
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Figure 4.3: The fasting blood glucose levels of control versus DIO animals (n=10 per 

group), following a 20 weeks high caloric diet, during a 2 hour IPGTT at the zero (a) and 2 

hour (b) time points. 
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4.3 Effects of 8 weeks high caloric diet on myocardial protein signalling 

4.3.1 Western blot data (cytosolic PI3K/PKB/Akt and apoptotic signalling analysis) 

 

4.3.1.1 p85 subunit of phosphatidylinositol-3 kinase (p85 PI3K) 

Subsequent to following their respective diets for 8 weeks, the total p85 (tp85) as well as 

the phosphorylated p85 (pp85) subunit levels (of the PI3K protein) were significantly higher 

in the DIO animals when normalized to their controls, figure 4.4 (a) and (b) respectively. 

Additionally, the P/T ratio was also found to be significantly elevated in the DIO animals 

when compared to the control animals (figure 4.4 (c)). 

 

4.3.1.2 Protein kinase B (PKB) 

After following their respective diets for a period of 8 weeks, The DIO animals showed no 

significant differences, in comparison to their controls, when the protein level of total 

PKB/Akt (tPKB/Akt) was analysed in whole heart lysates (figure 4.5 (a)).  

The protein level of phosphorylated PKB/Akt (pPKB/Akt) (figure 4.5 (b)) as well as the P/T 

ratio (figure 4.5 (c)) were significantly higher in the DIO animals, when matched against 

their controls. 

 

4.3.1.3 Glycogen synthase kinase-3 α/β (GSK-3 α/β) 

Subsequent to following their respective diets for a period of 8 weeks, the DIO animals 

showed no significant differences, in comparison to their controls, when the protein level of 

total GSK-3 α/β, (tGSK-3 α/β) was analysed in whole heart lysates (figure 4.6 (a)). When 
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evaluated, the DIO group had both a significantly higher level of phosphorylated GSK-3 

α/β, (pGSK-3 α/β) and P/T ratio in comparison to their controls (figure 4.6 (b) and (c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The myocardial tp85 (a) and pp85 (b) levels as well as the P/T ratio (c) in 

control versus DIO animals (n=8 per group), following 8 weeks of their respective diets. 
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Figure 4.5: The myocardial tPKB/Akt (a) and pPKB/Akt (b) levels as well as the P/T ratio 

(c) in control versus DIO animals (n=11 per group), following 8 weeks of their respective 

diets. 
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Figure 4.6: The myocardial tGSK-3 α/β (n=15 per group) (a) and pGSK-3 α/β (b) levels as 

well as the P/T ratio (n=8 per group) (c) in control versus DIO animals, following 8 weeks 

of their respective diets. 

*p<0.05 

   n=11 
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4.3.1.4 Bcl-2 associated death promoter (Bad) protein   

The myocardial level of total Bad (tBad) was not significantly different between the control 

and DIO groups, following 8 weeks of their respective diets (figure 4.7 (a)). 

The phosphorylated Bad (pBad) protein level as well as the P/T ratio was significantly 

higher in the DIO animals, as seen in figure 4.7 (b) and (c). 

 

4.3.1.5 Bcl-2 associated X (Bax) protein 

The DIO group exhibited significantly higher levels of myocardial Bax protein (figure 4.8 

(a)) and Bcl-2 protein (figure 4.8 (b)), when compared to their control groups, upon the 

completion of 8 weeks of their respective diets. 

 

4.3.1.6 Bax/Bcl-2 protein ratio 

There was no significant difference between the control and DIO animals in terms of their 

Bax/Bcl-2 protein ratio, after 8 weeks of their respective diets (figure 4.8 (c)).  
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Figure 4.7: The myocardial tBad (a) and pBad (b) levels as well as the P/T ratio (c) in 

control versus DIO animals (n=6 per group), following 8 weeks of their respective diets. 

Stellenbosch University http://scholar.sun.ac.za



 

109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: The myocardial Bax (a) and Bcl-2 (b) levels as well as the Bax/Bcl-2 ratio (c) in 

control versus DIO animals (n=6 per group), following 8 weeks of their respective diets. 

 

n=6 
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4.4 Effects of 8 weeks high caloric diet on cardiac mitochondrial integrity 

4.4.1 Western blot data (myocardial mitochondrial ETC complex analysis) 

 

4.4.1.1 NADH-ubiquinone oxidoreductase ASHI (NADH ASHI) subunit (of the ETC 

Complex I) 

The DIO group showed no significant difference in their level of NADH ASHI subunit when 

compared to the control group, subsequent to 8 weeks of their respective diets (figure 4.9 

(a)). 

4.4.1.2 Succinate dehydrogenase [ubiquinone] iron-sulfur (SDH) subunit (of the ETC 

Complex II) 

No significant difference was found in the level of SDH subunit, in the DIO group when 

compared to the control group, following 8 weeks of their respective diets (figure 4.9 (b)). 

4.4.1.3 Core protein 2 (UQCR2/QCR2) subunit (of the ETC Complex III) 

No significant difference was found in the level of Core protein-2 subunit, in the DIO group 

when compared to the control group, following 8 weeks of their respective diets (figure 4.9 

(c)). 

4.4.1.4 Subunit I (of the ETC Complex IV) 

No protein bands were revealed upon exposure. 
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4.4.1.5 α-subunit (of the ETC Complex V/ATP synthase) 

No significant difference was found in the level of α-subunit, in the DIO group when 

compared to the control group, following 8 weeks of their respective diets (figure 4.9 (d)). 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.9: The mitochondrial complex NADH ASHI (a), SDH (b), (c) Core protein-2 and 

(d) α- subunit levels in control (n=5 per group) versus DIO animals (n=6 per group), 

following 8 weeks of their respective diets. 

  n=5-6 
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4.5 Effects of 20 weeks high caloric diet on myocardial protein signalling  

4.5.1 Western blot data (Cytosolic PI3K/PKB/Akt and apoptotic signalling analysis) 

 

4.5.1.1 p85 subunit of phosphatidylinositol-3 kinase (p85 PI3K) 

The myocardial tp85 subunit level was not significantly different between the DIO and 

control group, subsequent to following their respective diets for 20 weeks (figure 4.10 (a)). 

The level of pp85 subunit as well as the P/T ratio was significantly lower in the DIO 

animals when assessed against their controls, as seen in figure 4.10 (b) and (c) 

respectively. 

4.5.1.2 Protein kinase B (PKB) 

Subsequent to 20 weeks of their respective diets, the DIO animals presented with 

significantly lower levels of myocardial tPKB/Akt as well as pPKB/Akt, when compared to 

their control animals (figure 4.11 (a) and (b), respectively). However, no significant 

difference was found between the DIO and control groups with respect to their P/T ratios, 

as seen in figure 4.11 (c). 

4.5.1.3 Glycogen synthase kinase-3 α/β (GSK-3 α/β) 

In comparison to the control group, the DIO group showed no significant difference in their 

tGSK-3 α/β protein level subsequent to following their respective diets for 20 weeks, as 

seen in figure 4.12 (a). 

The pGSK-3 α/β level and P/T ratio was significantly lower in the DIO group, when 

matched against their controls. Figure 4.12 (b) and (c) respectively. 
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Figure 4.10: The myocardial tp85 (a) and pp85 (b) levels as well as the P/T ratio (c) in 

control versus DIO animals (n=6 per group), following 20 weeks of their respective diets. 
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Figure 4.11: The myocardial tPKB/Akt (n=12 per group) (a) and pPKB/Akt (b) levels as 

well as the P/T ratio (n=11 per group) (c) in control versus DIO animals, following 20 

weeks of their respective diets. 
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Figure 4.12: The myocardial tGSK-3 α/β (n=11 per group) (a) and pGSK-3 α/β (b) levels 

as well as the P/T ratio (n=8 per group) (c) in control versus DIO animals, after following 

their respective diets for a 20 week period. 
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4.5.1.4 Bcl-2-associated death promoter (Bad) protein 

The tBad protein level was significantly elevated in the DIO animals, in comparison to the 

control animals, following 20 weeks of their respective diets (figure 4.13 (a)).  

There was no significant difference between the control and DIO animals in terms of their 

myocardial pBad protein level (figure 4.13 (b)), while the P/T ratio was significantly 

decreased in the DIO animals (figure 4.13 (c)). 

4.5.1.5. Bcl-2-associated X (Bax) and B-cell lymphoma/leukemia2 (Bcl-2) protein 

The Bax as well as the Bcl-2 protein level was not significantly different between the DIO 

and control groups following 20 weeks of their respective diets, as seen in figure 4.14 (a) 

and (b) respectively. 

4.5.1.6 Bax/Bcl-2 protein ratio 

There was no significant difference between the control and DIO animals in terms of their 

Bax/Bcl-2 protein ratio, after 20 weeks of their respective diets (figure 4.14 (c)).  
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Figure 4.13: The myocardial tBad (a) and pBad (b) levels as well as the P/T ratio (c) in 

control (n=4 per group) versus DIO animals (n=5 per group), after following their 

respective diets for a 20 week period. 
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Figure 4.14: The myocardial Bax (n=11 per group) (a) and Bcl-2 (b) levels as well as the 

Bax/Bcl-2 ratio (n=8 per group) (c) in control versus DIO animals, after following their 

respective diets for a 20 week period. 
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4.6 Effects of 20 weeks high caloric diet on cardiac mitochondrial integrity 

4.6.1 Western Blot data (Myocardial mitochondrial ETC complex analysis) 

 

4.6.1.1 NADH-ubiquinone oxidoreductase ASHI (NADH ASHI) subunit (of ETC 

Complex I) 

The NADH ASHI subunit level was significantly lower in the DIO animals than in the 

control animals subsequent to 20 weeks of their respective diets, as depicted in figure 4.15 

(a). 

4.6.1.2 Succinate dehydrogenase [ubiquinone] iron-sulfur (SDH) subunit 

The DIO animals had a significantly lower level of the SDH subunit, when compared to the 

control animals, after having followed their respective diets for a period of 20 weeks (figure 

4.15 (b)).  

4.6.1.3 Core protein-2 (UQCR2/QCR2) subunit (of the ETC Complex III) 

The DIO animals had a significantly higher level of the Core protein 2 subunit, when 

compared to the control animals, after having followed their respective diets for a period of 

20 weeks (figure 4.15 (c)). 

4.6.1.4 Subunit I (of the ETC Complex IV) 

No protein bands were revealed upon exposure. 
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4.6.1.5 α-subunit (of the ETC Complex V/ATP synthase) 

A significantly higher level of the α-subunit was found in the DIO animals, in comparison to 

the control animals, after having followed their respective diets for a period of 20 weeks 

(figure 4.15 (d)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: The mitochondrial complex NADH ASHI (a), SDH (b), Core protein-2 (c) and 

α- (d) subunit levels in control (n=5 per group) versus DIO animals (n=6 per group), 

following 20 weeks of their respective diets. 
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4.7 Effects of 20 weeks high caloric diet on cardiac mitochondrial function 

4.7.1 Cardiac mitochondrial function and anoxia/reperfusion data 

 

 

Table 4.2 The ADP/O ratio, State 3, State 4, oxidative phosphorylation (OXPHOS) rate, 

RCI as well as the percentage recovery of the control and DIO groups, using glutamate as 

a substrate, following 20 weeks of their respective diets. 
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Table 4.3 The ADP/O ratio, State 3, State 4, oxidative phosphorylation (OXPHOS) rate, 

RCI as well as the percentage recovery of the control and DIO groups, using palmitoyl-L-

carnitine as a substrate, following 20 weeks of their respective diets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After following a high caloric diet for a period of 20 weeks, the DIO group showed no 

significant differences, in comparison to the control group, in terms of the mitochondrial 

State 4, OXPHOS rate and percentage recovery when glutamate was used as a substrate. 

However, a significant difference was observed in the DIO animals when the ADP/O ratio, 

State 3 and RCI were analysed (table 4.2). 
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When palmitoyl-L-carnitine was used as a substrate, the DIO group displayed significant 

differences in their ADP/O ratio and percentage recovery, while analyses of their State 3 

and 4, RCI and OXPHOS rate yielded no significant differences (table 4.3). 

 

4.7.2 Cardiac mitochondrial complex inhibition data 

 

 

Table 4.4 The State 3 respiration, in control versus DIO animals following 20 weeks of 

their respective diets, subsequent to the addition of succinate or the mitochondrial complex 

inhibitors rotenone, oligomycin and CCCP, using glutamate as a substrate. 
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Table 4.5 The State 3 respiration, in control versus DIO animals following 20 weeks of 

their respective diets, subsequent to the addition of succinate or the mitochondrial complex 

inhibitors rotenone, oligomycin and CCCP, using palmitoyl-L-carnitine as a substrate.  

 

 

 

 

 

 

 

 

When glutamate was used as a substrate, the DIO group, when compared to the controls, 

showed no significant difference in terms of their state 3 respiration following the addition 

of succinate, rotenone and oligomycin. However, the DIO did display a significant 

difference in the state 3 respiration after the addition of CCCP (refer to table 4.4). 

The DIO group showed no significant difference in their state 3 respiration when any of the 

above mentioned mitochondrial complex inhibitors were utilised and palmitoyl-L-carnitine 

was used as a substrate, as depicted in table 4.5. 
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4.7.3 Cardiac mitochondrial citrate synthase activity data 

There was a significantly decreased level of citrate synthase activity in the DIO animals, in 

comparison to the control animals, after following their respective diets for 20 weeks. Refer 

to figure 4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: The citrate synthase activity level (μmol/mg mitochondrial protein/minute) in 

control (n=13 per group) versus DIO animals (n=11 per group), subsequent to 20 weeks of 

diet. 
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4.7.3 High pressure liquid chromatography (HPLC) analysis data 

4.7.3.1 ATP produced 

The amount of ATP produced was not significantly different between the DIO and control 

animals, following 20 weeks of their respective diets, when either glutamate or palimotyl-L-

carnitine was used as a substrate as seen in figure 4.17 (a) and (b), respectively. 

 

  

 

 

 

 

 

 

 

  

 

 

Figure 4.17: The amount of ATP produced in control (n=2 per group) versus DIO animals 

(n=3 per group), subsequent to a 20 week period of their respective diets, using glutamate 

(a) and palmitoyl-L-carnitine (b) as a substrate.  

 

n=2-3 
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4.7.3.2 ATP/O ratio 

The ATP/O was significantly decreased in the DIO in comparison to the control animals, 

following 20 weeks of their respective diets, when glutamate as well as palimotyl-L-

carnitine was used as a substrate as seen in figure 4.18 (a) and (b), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: The ATP/O ratio in control (n=2 per group) versus DIO animals (n=3 per 

group), subsequent to a 20 week period of their respective diets, using glutamate (a) and 

palmitoyl-L-carnitine (b) as a substrate.  
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4.8 Effects of 20 weeks high caloric diet on cardiac mitochondrial protein signalling 

4.8.1 Western blot data (Mitochondrial PI3K/PKB/Akt and apoptotic signalling 

analysis) 

 

4.8.1.1 p85 subunit of phosphatidylinositol-3 kinase (p85 PI3K) 

Control: There were no significant differences between the untreated, insulin treated and 

ischemia subjected control groups in terms of the tp85 protein subunit levels found at the 

mitochondria isolated from the hearts of these groups (figure 4.19 (a)). The pp85 level and 

the P/T ratio were significantly higher in the cardiac mitochondria for both the insulin and 

ischemia groups, in comparison to the untreated controls. However, no significant 

difference was found between the insulin and ischemia groups in terms of pp85 level and 

P/T ratio. Refer to figure 4.19 (b) and (c), respectively. 

 

DIO: The tp85 (a) and pp85 levels (b) were significantly higher in the insulin and the 

ischemia groups when compared to the untreated group (figure 4.20). Additionally, the 

pp85 subunit level was significantly higher in the ischemia group in comparison to the 

insulin group (figure 4.20 (b)). 

In comparison to the untreated DIOs, the P/T ratio was significantly higher in the ischemia 

group but not the insulin group. Furthermore, the P/T ratio was significantly elevated in the 

ischemia DIO group in comparison to the insulin DIO group. Refer to figure 4.20 (c). 

Control versus DIO: When the DIOs were compared to the controls, the pp85 level (b) 

and the P/T ratio (c) was significantly elevated in the untreated, insulin and ischemia DIO 
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groups (figure 4.21). There was no significant difference between these groups in terms of 

tp85 subunit level at their cardiac mitochondria (figure 4.21 (a)). 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.19: The mitochondrial tp85 (a) and pp85 (b) levels as well as the P/T ratio (c) in 

untreated versus insulin versus ischemia control animals (n=6 per group), following 20 

weeks of their respective diets. 
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Figure 4.20: The mitochondrial tp85 (a) and pp85 (b) levels as well as the P/T ratio (c) in 

untreated versus insulin versus ischemia DIO animals (n=6 per group), following 20 weeks 

of their respective diets. 

Stellenbosch University http://scholar.sun.ac.za



 

131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: The mitochondrial tp85 (a) and pp85 (b) levels as well as the P/T ratio (c) in 

untreated, insulin and ischemia control versus DIO animals (n=6 per group), following 20 

weeks of their respective diets. 
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4.8.1.2 Protein kinase B (PKB) 

Control: The mitochondrial tPKB/Akt subunit level was significantly higher in the insulin 

group, in comparison to the untreated group, as well the ischemia group when compared 

to the insulin group. No significant difference was found between the untreated and 

ischemia groups. Refer to figure 4.22 (a). 

The insulin and ischemia groups were significantly higher than the untreated group when 

the mitochondrial pPKB/Akt level was determined. No significant difference was found 

when comparing the insulin and ischemia groups with each other. Refer to figure 4.22 (b). 

The P/T ratio was significantly higher in the ischemia group when compared to the 

untreated group, while no significant difference was found between the insulin and 

untreated group. The P/T ratio was found to be significantly higher in the ischemia group 

when compared to the insulin group. Refer to figure 4.22 (c). 

 

DIO: No significant differences were found between any of the groups in terms of tPKB/Akt 

subunit levels. Refer to figure 4.23 (a). 

The pPKB/Akt level (a) as well as the P/T ratio (b) were significantly lower in the ischemia 

group in comparison to the untreated group. Furthermore, the pPKB/Akt level (a) and the 

P/T ratio (b) were significantly lower in the ischemia group when compared to the insulin 

group. Refer to figures 4.23 (b) and (c). 

 

Control versus DIO: When comparing the tPKB/Akt subunit level between all possible 

groups, no significant differences were found (a). The pPKB/Akt level (b) and the P/T ratio 
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(c) were significantly lower in the untreated, insulin and ischemia DIO groups in 

comparison to their controls. Refer to figure 4.24. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.22: The mitochondrial tPKB/Akt (a) and pPKB/Akt (b) levels as well as the P/T 

ratio (c) in untreated versus insulin versus ischemia control animals (n=6 per group), 

following 20 weeks of their respective diets. 

Stellenbosch University http://scholar.sun.ac.za



 

134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: The mitochondrial tPKB/Akt (a) and pPKB/Akt (b) levels as well as the P/T 

ratio (c) in untreated versus insulin versus ischemia DIO animals (n=6 per group), following 

20 weeks of their respective diets. 
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Figure 4.24: The mitochondrial tPKB/Akt (a) and pPKB/Akt (b) levels as well as the P/T 

ratio (c) in untreated, insulin and ischemia control versus DIO animals (n=6 per group), 

following 20 weeks of their respective diets. 
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4.8.1.3 Glycogen synthase kinase-3 α/β (GSK-3 α/β) 

Control: The tGSK-3 α/β subunit level was found to be significantly lower in the insulin 

and ischemia groups when compared to the untreated group. No significant difference was 

found between the insulin and ischemia groups. Refer to figure 4.25 (a). 

The ischemia group had a significantly higher level of pGSK-3 α/β and P/T ratio in 

comparison to the untreated group (figure 4.25 (b) and (c), respectively). No significant 

differences were found between the insulin and untreated groups, as well as the insulin 

and ischemia groups, in terms of the protein level of pGSK-3 α/β (figure 4.25 (b)). The P/T 

ratio was found to be significantly elevated in the insulin and ischemia groups in 

comparison to the untreated group, while no significant difference was found between the 

insulin and ischemia group (figure 4.25 (c)). 

 

DIO: The tGSK-3 α/β protein level was significantly lower in both the insulin and ischemia 

groups in comparison to the untreated group. No significant difference was found between 

the insulin and ischemia groups in terms of tGSK-3 α/β protein level. Refer to figure 4.26 

(a). 

The level of pGSK-3 α/β and the P/T ratio was significantly elevated in both the insulin and 

ischemia groups when compared to the untreated group. Additionally, the ischemia group 

had a significantly higher level of pGSK-3 α/β, as well as a significantly elevated P/T ratio, 

in comparison to the insulin group. Refer to figures 4.26 (b) and (c), respectively. 

Control versus DIO: No significant differences were found between any of the groups in 

terms of the myocardial tGSK-3 α/β protein level at the mitochondria (figure 4.27 (a)). The 

pGSK-3 α/β protein level as well as the P/T ratio was found to be significantly elevated in 
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the untreated, insulin and ischemia DIO groups when compared to their controls. Refer to 

figures 4.27 (b) and (c), respectively. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.25: The mitochondrial tGSK-3 α/β (a) and pGSK-3 α/β (b) levels as well as the 

P/T ratio (c) in untreated versus insulin versus ischemia control animals (n=6 per group), 

following 20 weeks of their respective diets. 
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Figure 4.26: The mitochondrial tGSK-3 α/β (a) and pGSK-3 α/β (b) levels as well as the 

P/T ratio (c) in untreated versus insulin versus ischemia DIO animals (n=6 per group), 

following 20 weeks of their respective diets. 
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Figure 4.27: The mitochondrial tGSK-3 α/β (a) and pGSK-3 α/β (b) levels as well as the 

P/T ratio (c) in untreated, insulin and ischemia control versus DIO animals (n=6 per group), 

following 20 weeks of their respective diets. 

 

*p<0.05 

    n=6 
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4.8.1.4. Bcl-2-associated death promoter (Bad) protein 

Control: No significant differences were found amongst any of the groups in terms of 

myocardial tBad and pBad protein levels, as well as P/T ratio, present at the mitochondria. 

Refer to figures 4.28 (a), (b) and (c), respectively. 

 

DIO: The tBad and pBad levels were significantly higher in the ischemia group in 

comparison to the untreated group. In terms of the tBad and pBad levels, no significant 

differences were found between the untreated and ischemia groups as well as between 

the insulin and ischemia groups. Refer to figures 4.29 (a) and (b). 

No significant differences were found amongst any of the groups when the P/T ratio was 

assessed (figure 4.29 (c)). 

 

Control versus DIO: The tBad protein level was significantly higher in the untreated, 

insulin and ischemia DIO groups in comparison to their controls (figure 4.30 (a)).  

When matched with their controls, the pBad protein level was significantly elevated in the 

ischemia DIO group; while no significant differences were found between the insulin and 

untreated DIO groups, and their controls (figure 4.30 (b)).  

The P/T ratio was significantly lower in the untreated, insulin and ischemia DIO groups in 

comparison to their controls (figure 4.30 (c)). 
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Figure 4.28: The mitochondrial tBad (a) and pBad (b) levels and the P/T ratio (c) in 

untreated versus insulin versus ischemia control animals (n=6 per group), following 20 

weeks of their respective diets. 
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Figure 4.29: The mitochondrial tBad (a) and pBad (b) levels and the P/T ratio (c) in 

untreated versus insulin versus ischemia DIO animals (n=6 per group), following 20 weeks 

of their respective diets. 
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Figure 4.30: The mitochondrial tBad (a) and pBad (b) levels as well as the P/T ratio (c) in 

untreated, insulin and ischemia control versus DIO animals (n=6 per group), following 20 

weeks of their respective diets. 
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4.8.1.5. Bcl-2 associated X (Bax) protein 

Control: No significant differences were found amongst any of the groups when the Bax 

protein level at the myocardial mitochondria was determined (figure 4.31 (a)). 

 

DIO: The insulin and the ischemia groups were significantly higher than the untreated 

group in terms of the Bax protein level. Additionally, the ischemia group displayed 

significantly elevated levels of Bax in comparison to the insulin group. Refer to figure 4.31 

(b). 

 

Control versus DIO: The untreated, insulin and ischemia DIO groups all had significantly 

higher levels of Bax protein than their controls (figure 4.31 (c)). 

 

4.8.1.6. B-cell lymphoma/leukemia2 (Bcl-2) protein 

Control: In terms of the cardiac Bcl-2 protein level at the mitochondria, no significant 

differences were found amongst any of the groups (figure 4.32 (a)). 

 

DIO: The Bcl-2 protein level was significantly lower in the insulin and ischemia groups in 

comparison to the untreated group, while no significance was found between the insulin 

and ischemia groups (figure 4.32 (b)). 

 

Control versus DIO: The untreated, insulin and ischemia DIO groups all had significantly 

higher levels of Bcl-2 protein than their controls (figure 4.32 (c)). 
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Figure 4.31: The mitochondrial Bax protein level in untreated, insulin and ischemia control 

hearts (a) as well as DIO hearts (b). The P/T ratio in untreated, insulin and ischemia 

control versus DIO hearts (c), following 20 weeks of their respective diets. n=6 per group. 
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Figure 4.32: The mitochondrial Bcl-2 protein level in untreated, insulin and ischemia 

control hearts (a) as well as DIO hearts (b). The P/T ratio in untreated, insulin and 

ischemia control versus DIO hearts (c), following 20 weeks of their respective diets. n=6 

per group. 
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Chapter 5: Discussion 

 

5.1 Overview of the study 

The correlation between obesity, insulin resistance and myocardial disease is well known 

today, however this association is a convoluted one and not straightforward as one would 

think [Bergman et al. 2007, Reaven 2008]. What adds to the complexity of this relationship 

between these diseases is that it has not been completely elucidated on a molecular level.  

A study conducted by Park et al., published in 2005, reported the development of 

myocardial insulin resistance in C57BL/6 mice after just one and a half weeks of high-fat 

feeding. Associated with the insulin resistance was a decline in PKB/Akt activity, GLUT 4 

protein levels and glucose uptake [Park et al. 2005], indicating that a high caloric diet, as 

often followed by obese individuals, can negatively affect myocardial insulin-mediated 

PI3K/PKB/Akt signalling. 

Lu et al. (2007) observed in their study that genetically obese rats had decreased 

myocardial anti-apoptotic Bcl-2 levels while the pro-apoptotic BNIP3 and Bad protein 

levels were elevated, in comparison to their lean counterparts. Furthermore, other studies 

involving a variety of animal models of obesity have showed that a number of 

cardiovascular diseases or aberrations involve the highly controlled process of apoptosis 

[Yue et al. 2005, Shibata et al. 2005].   

 

It is now common knowledge that insulin regulates the process of apoptosis via the 

PI3K/PKB/Akt pathway, as reviewed elsewhere [Duronio 2008, Iliadis et al. 2011]. 

However, what has received less attention thus far is the role of insulin in the context of 

apoptosis, specifically in the myocardium during obesity.  
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The focus of the present study was thus to elucidate if the insulin-mediated PI3K/PKB/Akt 

pathway played a role in the regulation of the mitochondrial-dependent pathway of 

apoptosis in the myocardium during obesity. This was achieved by utilizing a rat model of 

diet induced obesity and determining if any changes occurred in the proteins associated 

with PI3K/PKB/Akt pathway signalling in the cytosol, specifically PI3K, PKB/Akt and GSK-

3α/β, of these animals. In addition, their hearts were probed for any changes in the 

apoptotic markers Bad, Bax and Bcl-2. These proteins were characterized 8 as well as 20 

weeks after the completion of the obesity-inducing diet.  

After 20 weeks, the presence of these apoptotic markers and PI3K/PKB/Akt pathway 

proteins were also probed for specifically in the mitochondria to further elucidate the 

interplay between the two pathways during obesity. 

The study further aimed to establish if obesity resulted in cardiac mitochondrial dysfunction 

by analyzing mitochondrial respiration function during both anoxia/reperfusion and ETC 

complex inhibition after 20 weeks. Moreover, the protein profile of the various ETC 

complexes was analyzed for any changes after 8 as well as 20 weeks of diet to determine 

if structural changes had occurred in the mitochondria. 

The aim of the various experiments conducted after the 8 week time point was to assess 

the early effects of obesity on the myocardium, while the 20 week time point was used to 

evaluate the advanced effects. 
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5.2 Physiological and biometric data 

The obesity-inducing high caloric diet used in this study was causal in elevating total body 

weight gain when followed for a period of 20 weeks. Then again, when followed for a 

period of 8 weeks this diet did not cause a significant increase in total body weight gain 

(table 4.1). Nevertheless, regardless of the time period the DIO animals were on their diet, 

both of the experimental groups showed an elevation in intra-peritoneal fat accumulation 

(table 4.1). This augmented intra-peritoneal adipose deposition was associated with 

increased fasting blood glucose levels and serum insulin levels in both groups of obese 

animals. This indicates that an increase in intra-peritoneal fat accumulation has a positive 

correlation, more so than an increase in total body weight, with elevated blood glucose and 

serum insulin levels during obesity. Our data coincides with a number of other studies in 

which visceral obesity exhibited a greater correlation with various metabolic aberrations 

than overall or peripheral obesity [Fujioka et al. 1987, Poirier et al. 2005, Bergman et al. 

2007].  

Impaired glucose handling is often a consequence of obesity [Attallah et al. 2006, Fall et 

al. 2008], reviewed in Chapter 2, and would thus explain the presence of high serum 

insulin levels in both groups of DIO animals. Furthermore, this would be an indication that 

our obese animals were whole-body insulin resistant and that the excess insulin secretion 

is a compensatory mechanism, required by these animals to maintain their blood glucose 

levels. Although the DIO animals had significantly higher fasting blood glucose levels, after 

8 as well as 20 weeks high caloric diet, they were not characterized by T2DM. The fasting 

blood glucose levels of both groups were below 6.1mmol /L, which are considered within 

the normal range [Kahn et al. 1997]. 

In addition to these metabolic parameters, our 8 as well as 20 weeks DIO animals also 

had a lower glucose tolerance during their 2 hour IPGTT (figure 4.1; figure 4.2), in 
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comparison to their non-obese controls, as illustrated by their greater IPGTT AUC. This 

substantiates that both obese groups had systemic insulin resistance and corresponds 

with previous data found in our laboratory, where the obese animals were whole body 

insulin resistant and had higher fasting blood glucose and insulin levels after 8 weeks of 

following a high caloric diet [Huisamen et al. 2012]. Additionally, Liao et al. (2011) found 

that both high fat diet sedentary and high fat diet exercise groups (consisting of male 

Sprague-Dawley rats) had larger IPGTT areas under the curve after 6 weeks of protocol, 

once again illustrating that a high fat diet correlates with impaired glucose tolerance. 

 

5.3 Signalling proteins associated with the cytosol after 8 weeks 

5.3.1 Western blot analysis after 8 weeks  

Analysis of these hearts revealed that the obesity-inducing diet, had up-regulated the 

cytosolic PI3K/PKB/Akt and blunted the apoptotic signalling in these animals after 8 

weeks, when compared with their control counterparts. This was revealed by the increased 

levels of total (a) and phosphorylated (b) p85 subunit of the pro-survival [Duronio 2008] 

kinase PI3K, as well as an elevated p85 subunit P/T ratio (c) in the DIO animals (figure 

4.4). 

Furthermore, the phosphorylated PKB/Akt (figures 4.5 (b)) and GSK-3α/β levels (figure 4.6 

(b)), as well as their P/T ratios (figures 4.5 (c) and 4.6 (c), respectively), were elevated in 

these hearts. The total PKB/Akt and GSK-3α/β levels remained unchanged as seen in 

figures 4.5 (a) and 4.6 (a), respectively. 

The DIO animals concurrently displayed heightened pBad (b) and an increased Bad P/T 

ratio (c), while the tBad protein level in these animals did not differ from the controls (a) 
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(figure 4.7). It has been established that phosphorylation of pro-apoptotic Bad by various 

kinases, including PKB/Akt, allows the scavenging of this protein by the 14-3-3 scaffold 

proteins, conferring a pro-survival status [Danial 2009, Sussman et al. 2011]. 

Our results also revealed that the obese animals had increased myocardial levels of the 

anti-apoptotic protein Bcl-2 after 8 weeks of diet (figure 4.8 (b)), while concurrently having 

increased pro-apoptotic Bax levels as seen in figure 4.8 (a). Since these data contradicted 

each other, we calculated at the Bax/Bcl-2 ratio which can be used as an indicator of a 

cell`s apoptotic status (death versus survival) [Anarkooli et al. 2008]. It was found that the 

ratio did not differ between the obese and control animals. However, activation of PKB/Akt, 

as well as GSK-3α/β, and the increased pBad level and Bad P/T ratio in the DIO animals 

indicate that the pro-apoptotic signalling was decreased and that cell survival was 

favoured. 

Insulin has been shown to be cardioprotective in patients undergoing cardiac surgery 

[Carvalho et al. 2011, Ng et al. 2012] and of course, in the popular studies involving 

ischemic post-conditioning in rodent models [Jonassen et al. 2001, Zhu et al. 2006, Yin et 

al. 2009]. These reviews and studies have also indicated that insulin signalling and 

insulin–mediated cardiac protection are complex and occur via a number of different 

pathways. However, the 2009 experimental findings by Yin et al. and the 2012 review 

published by Ng et al., suggest that insulin is able to mediate these cardioprotective effects 

mainly via the PI3K/PKB/Akt pathway.  

In fact, the 2006 study conducted by Zhu et al. found that myocardial ischemic post-

conditioning elevated the protein levels, as well as its activity of PKB/Akt and GSK-3β in 

both healthy and “remodelled” hearts. This was in comparison to healthy and remodelled 

hearts which had undergone ischemia without post-conditioning. Moreover, the post-
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conditioning was associated with smaller infarct sizes and increased functional recovery in 

the “remodelled” hearts. 

Interestingly, when the enzyme activity of extracellular signal-regulated kinases 1 and 2 

(ERK1/2) was analyzed, it did not differ significantly between the healthy and “remodelled” 

hearts during post-conditioning. This suggests that the PI3K/PKB/Akt pathway is better 

associated with the cardioprotection of ischemic post-conditioning than the ERK1/2/MAPK 

pathway. [Zhu et al. 2006]  

In the present study, we therefore propose that the hyperinsulinemia during the initial 

stages of obesity-related insulin resistance is an adaptive mechanism not only to reduce 

plasma glucose levels but to elicit cardioprotection, after 8 weeks of a high caloric diet. A 

previous study conducted in our laboratory could substantiate this proposition as it found 

that DIO animals developed smaller myocardial infarct sizes in comparison to controls. 

This was after both groups followed an 8 weeks high caloric diet, and their hearts exposed 

to 25 minutes regional ischemia and subsequent reperfusion [Huisamen et al. 2012]. 

We propose that insulin mediates this protection via the PI3K/PKB/Akt signalling pathway, 

in a manner similar to the above mentioned studies. This would substantiate why we found 

increased PI3K/PKB/Akt and downregulated apoptotic signalling in the hearts of our obese 

animals. 

5.3.2 Mitochondrial ETC complex western blot analysis after 8 weeks  

NADH ASHII, SDH, α- and core protein-2 subunits are key protein components of the ETC 

complexes I, II, III and IV respectively, in that they are essential to the assembly and thus 

function of these complexes. With regard to these subunit levels, we found no significant 
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differences between the DIO and control animals (figure 4.9 (a)-(d)) indicating that an 8 

week obesity-inducing diet had no effect on ETC complex assembly. 

It would seem that the cardioprotective effects on the cytosolic level, provided by the 

elevated PI3K/PKB/Akt signalling (discussed in 5.3.1), were also exerted on the 

mitochondrial level after an 8 weeks high-caloric diet. That is, the augmented insulin-

mediated PI3K/PKB/Akt signalling prevented obesity-induced alterations in complex 

subunit assembly, allowing the mitochondria to maintain its ETC integrity.  

On the whole, it would thus seem that after 8 weeks the high caloric diet improved the 

hearts response to systemic insulin resistance and could be cardioprotective. Evidence of 

this would be that the mitochondrial integrity appears unchanged after 8 weeks of the diet. 

5.4 Signalling proteins associated with the cytosol after 20 weeks 

5.4.1 Western blot analysis after 20 weeks  

Whole heart tissue analysis from our obese animals revealed that the high energy diet, 

when followed for 20 weeks, was associated with reduced cytosolic PI3K/PKB/Akt and 

enhanced apoptotic signalling in these animals.  

Our results showed decreased levels of myocardial phosphorylated p85 PI3K subunit 

(figure 4.10 (b)), PKB/Akt (figure 4.11 (b)) and GSK-3α/β (figure 4.12 (b)) in the obese 

animals after 20 weeks of diet. Furthermore, the tPKB/Akt protein level (figure 4.11 (a)) as 

well as the p85 PI3K subunit and GSK-3α/β P/T ratios (figures 4.10 (c) and 4.12 (c) 

respectively) and were reduced in these animals.  

Similar tendencies were observed in other animal models of high caloric diet. Lee et al. 

(2010) researched whether whole-body and myocardial insulin resistance developed 
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together, by comparing the insulin signalling in skeletal and cardiac muscle in micropigs 

after 7 months of either a control (low fat) or high caloric diet. The results showed that the 

obese pigs had decreased phosphorylation and activation of PI3K and PKB/Akt in both 

myocardial and skeletal muscle tissue [Lee et al. 2010]. 

When transgenic mice, for the cardiac myocyte overexpression of IGF-1, were subjected 

to a high-fat diet for 5 months, the diet was associated with cardiac damage and 

dysfunction. The diet also correlated with decreased cardiac IRS (tyrosine), PKB/Akt and 

GSK-3β phosphorylation, and this is thought to most likely underlie the myocardial 

aberrations [Zhang et al. 2012]. 

The present study corroborates the findings in these two studies in that it indicates that 

obesity, induced after 20 weeks of a high caloric diet, is associated with attenuated 

myocardial PI3K/PKB/Akt signalling.  

Concurrent to the PI3K/PKB/Akt pathway protein aberrations, the apoptotic pathway was 

up-regulated in the obese animals after 20 weeks as revealed by the elevated tBad protein 

level and decreased Bad P/T ratio (figure 4.13 (a) and (c)). The Bax as well as the Bcl-2 

protein levels in the DIO rats did not differ significantly, in comparison to the controls 

(figure 4.14 (a) and (b)). This prompted us to once again look at the Bax/Bcl-2 ratio to 

obtain a clearer indication of what was happening in the cell in terms of cell death versus 

survival. The ratio was not significantly different between the control and DIO animals. 

Nevertheless, the increase in tBad and the reduction in its P/T ratio suggest that these 

hearts were more susceptible to apoptosis after following an obesity-inducing diet for 20 

weeks. 
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In terms of the Bad protein levels in the 20 weeks DIO animals, our findings are similar to 

that of Lu et al. 2007 in that the obese Zucker rats had increased cardiac levels of pro-

apoptotic Bad at 5 to 6 months of age.  

In addition to the impaired cardiac insulin signalling (discussed above), Zhang et al. (2012) 

also found that the cardiomyocytes of high fat fed transgenic mice had significantly 

attenuated levels of anti-apoptotic Bcl-2. However, this study also reported significantly 

elevated levels of phosphorylated Bax and Bad in these cardiomyocytes. Phosphorylation 

of these two molecules has been shown to promote cell survival as it inhibits their pro-

apoptotic activities [Gardai et al. 2004, Wente et al. 2006]. It is most likely that the Bax/Bcl-

2 ratio in these cardiomyocytes would have given a more appropriate indication of the 

apoptotic status of these cells.  

Nevertheless, it has been shown that a small amount of apoptosis is detrimental to the 

heart [Masri et al. 2008]. This would, in conjunction with the above studies, support our 

hypothesis that the obese animal hearts will be more susceptible to apoptosis and damage 

as a result of their decreased PI3K/PKB/Akt and increased apoptotic signalling. 

Experimental findings in previous studies conducted in our laboratory can substantiate the 

susceptibility of the 20 weeks DIO animals to myocardial damage in the current study. du 

Toit et al. (2008) and Nduhirabandi et al. (2011) both found that animals given a high 

caloric diet for 16 weeks developed hyperphagia-induced obesity. Furthermore, these 

obese animals in both studies had significantly larger myocardial infarct sizes after ex-vivo 

exposure to ischemia/reperfusion, indicating they were more susceptible to 

ischemia/reperfusion injury and had reduced cardioprotection. 
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5.4.2 Mitochondrial ETC complex western blot analysis after 20 weeks  

In contrast to the findings obtained after 8 weeks of diet, analysis after 20 weeks revealed 

that the integrity of complexes I and II had been compromised in the DIO rats, indicated by 

the reduction of NADH ASHII and SDH subunit levels in these animals. In contrast, α- and 

core protein-2 subunit levels were increased, demonstrating that complex III and V 

assembly and integrity were enhanced in the obese animals. 

The loss of complexes I and II integrity in these animals can be substantiated by the 

decreased PI3K/PKB/Akt signalling, and possible reduction in cardioprotection, as seen on 

the cytosolic level (discussed in 5.4.1). Contrasting levels of subunit expression are not 

foreign findings, as similar results were observed in other studies, for example, Liesa et al. 

2008. In their study, PGC-1β knockout mice were fed a high fat diet for 6 months and their 

liver assessed for mitochondrial ETC complex protein subunit expression. These mice 

displayed elevated subunit expression for two of the ETC complexes, while no significant 

differences were found in the subunit levels for the other complexes. The mitochondrial 

ETC complexes changes seen in their study were associated with attenuated Mitofusin 2 

expression, a protein essential for mitochondrial fusion [Chen et al. 2005]. 

The western blot ETC complex analysis data in the current study, suggests that 

mitochondria from the obese animals had disrupted integrity. In contrast, the integrity had 

remained intact in mitochondria from the obese animals, after following a high fat diet for 8 

weeks. 
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5.5 Cardiac mitochondrial function after 20 weeks 

In obesity, and diabetes, there is attenuated myocardial function which is associated with 

elevated fatty acid and reduced glucose metabolism, as well as increased cardiac oxygen 

consumption. Mitochondrial uncoupling proteins have been implicated in these cardiac 

aberrations, however little concrete evidence exists for this [Boudina et al. 2005]. 

Our study thus aimed to assess if different substrates could alter mitochondrial function in 

obese animals by evaluating oxidative phosphorylation capacity and performing 

anoxia/reperfusion analysis. Furthermore, we conducted mitochondrial ETC complex 

inhibition analysis to determine if complex inhibition or uncoupled respiration could 

mediate these cardiac dysfunctions. 

 

 

5.5.1 Oxidative phosphorylation capacity and anoxia/reperfusion analysis after 20 

weeks 

When both glutamate (table 4.2) and palmitoyl-L-carnitine chloride (table 4.3) were used 

as substrates the ADP/O ratio was lower in the DIO animals, indicating that these animals 

consumed more natoms oxygen than the control animals for the same amount of nmoles 

ADP utilized.  

Moreover, we found that the mitochondrial state 3 respiration rate was higher in the obese 

rats (table 4.2) with glutamate as substrate; an increase (not significant) was also 

observed when palmitoyl-L-carnitine was used as substrate, indicating that these animals 

were consuming significantly more oxygen during ATP production. With both substrates, 

the state 4 respiration rates showed that it was also higher (not significant) in the obese 
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animals causing a reduction in RCI, which is an indication of uncoupled mitochondrial 

respiration.  

This implies that the obese rats had poor respiratory control and that the coupling between 

mitochondrial respiration and phosphorylation was weaker than that of their lean 

counterparts. Taken overall, the above parameters indicate that the mitochondrial function 

in the obese hearts have been negatively affected when either glucose or fatty acids were 

used as their main source of energy. 

It would therefore appear that the elevated plasma free fatty acid level observed in the DIO 

animals had an in vivo effect on their mitochondrial oxidative phosphorylation capacity, 

which persisted in vitro when mitochondria were isolated and incubated under optimal 

conditions. This demonstrates the uncoupling effect of fatty acids on mitochondrial function 

[Stanley et al. 2005] and illustrates that the obesity-inducing diet indeed altered 

mitochondrial function. 

Interestingly, when palmitoyl-L-carnitine was used as substrate, the percentage 

mitochondrial functional recovery (as indicated by state 3 respiration) after a period of 

anoxia was greater in the obese animals, despite having a reduced ADP/O ratio. The 

percentage recovery, with glutamate as a substrate, did not differ between the obese and 

control groups, suggesting that mitochondria isolated from obese animals fare better with 

respect to their mitochondrial function when incubated in the presence of a fatty acid 

substrate such as palmitoyl-L-carnitine.  

Our findings indeed indicate that there is a shift in cardiac substrate utilization from 

glucose to fatty acids during obesity. Despite their improved recovery after exposure to 

anoxia, mitochondria isolated from hearts of obese animals have a significantly impaired 

oxidative phosphorylation.  In the long-term this may have a profound effect on myocardial 
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contractile function as shown by du Toit et al. (2008). In their study, du Toit et al. found 

that the DIO animals had a significantly reduced aortic output at reperfusion (and prior to 

ischemia) in comparison to the controls. Additionally, these obese animals were marked by 

attenuated percentage recovery post-ischemia. 

 

5.5.2 ETC complex inhibition analysis after 20 weeks 

In order to assess if mitochondrial electron transport chain complexes plays a role in diet-

induced obesity myocardial dysfunction we inhibited and uncoupled the complexes with 

various complex specific inhibitors and uncouplers. Thereafter, we determined the state 3 

respiration rate as a measure of mitochondrial function in the control and obese animals. 

Neither the addition of succinate nor the complex inhibition with rotenone or oligomycin, 

using either glutamate or palmitoyl-L-carnitine as substrate, yielded any differences 

between the DIO and control animals with respect to their state 3 respiration rates. 

However, OXPHOS uncoupling with CCCP [Benard et al. 2007] produced a higher 

respiration rate in the obese animals with glutamate as substrate but not when palmitoyl-L-

carnitine was used. This further substantiates the uncoupled state of the mitochondria in 

the DIO animals, especially when glutamate served as substrate. 
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5.6 Mitochondrial integrity after 20 weeks 

5.6.1 Citrate synthase assay 

Citrate synthase is the primary enzyme that mediates the binding of acetyl coenzyme A 

acetyl CoA and oxaloacetate to form citrate in the TCA cycle. Furthermore, this enzyme is 

located in the mitochondrial matrix and is used as a well-established marker to determine 

the amount of undamaged mitochondria present in a sample, and is achieved by 

measuring the activity of the enzyme [Raffaella et al. 2012]. Our study revealed that the 

citrate synthase activity was lower in the obese rats (figure 4.16), indicating that these 

animals had a lower number of intact cardiac mitochondria per mg isolated protein. This 

suggests that either there were fewer intact mitochondria initially present in the tissue or 

that the mitochondria were easily damaged upon isolation.  

These findings correlate to other studies in which the CS activity was lower and 

mitochondrial damage elevated, in animals fed high fat diets [Raffaella et al. 2012].  

The decreased number of intact mitochondria, taken together with the reduced 

mitochondrial ETC complex integrity (section 5.4.2); indicate that the obese animals had 

attenuated mitochondrial integrity after 20 weeks of diet. 

 

5.6.2 HPLC analysis after 20 weeks 

As described on in Chapter 3, the total amount of ATP formed during state 3 respiration 

was determined by HPLC analysis. No significant differences were found amongst the 

control and DIO animals with respect to the ATP yield, when either (a) glutamate or (b) 

palmitoyl-L-carnitine were used as substrates (figure 4.17). However, when we calculated 

the ATP/O ratio, from the ATP values obtained and the amount of oxygen taken up during 
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state 3 respiration, we saw that this was significantly reduced in the obese animals (figure 

4.18). This denotes that for both of these substrates, the obese animals produced less 

ATP than the controls but utilized more oxygen in order to do so, according to their lower 

ADP/O ratio. This confirms that the obese animals indeed had elevated cardiac oxygen 

consumption and were wasting it during ATP synthesis as discussed in 5.5.1. 

Overall, our data from the anoxia/reperfusion (section 5.5.1), ETC complex inhibition 

(section 5.5.2) and HPLC analyses indicate that there was a reduction in mitochondrial 

function in the heart after 20 weeks of diet-induced obesity. This especially seemed to be 

the case when glutamate acted as substrate. When palmitoyl-L-carnitine was used, the 

obese animals had a better recovery during anoxia/reperfusion analysis. We suspect that 

this is as a result of a metabolic substrate switch and increased use of fatty acids in these 

animals. 

Furthermore, the elevated complexes III and V integrity, could explain the increased 

percentage recovery after anoxia within the mitochondria from the DIO group, when 

utilizing palmitoyl-L-carnitine as a substrate.  

 

5.7 Signalling proteins associated with the mitochondria after 20 weeks 

Obesity associated cardiovascular diseases often stem from structural and functional 

aberrations as a result of irregularities in both cardiac cytosolic and mitochondrial 

signalling [Kim et al. 2008].  

Thus, our study further compared PI3K/PKB/Akt and apoptotic signalling in cardiac 

mitochondria isolated from control and obese rats under basal conditions (i.e. untreated) 

as well as after insulin treatment or exposure to ischemia. Firstly, we did the comparison in 
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control animals, 20 weeks after their standard diet, and secondly in the obese high caloric 

diet group. The purpose of this was to establish how exogenous insulin and ischemia 

would affect signalling in these two pathways, as both insulin [Duronio 2008, Ilidias et al. 

2011] and ischemia [Yong et al. 2008, Yin et al. 2009] have been shown to activate the 

PI3K/PKB/Akt pathway as a cardioprotective mechanism. Lastly, we compared myocardial 

markers of the PI3K/PKB/Akt and apoptotic signalling pathways, amongst control and DIO 

groups, at basal and when the hearts were treated with insulin and when exposed to 

ischemia. 

 

5.7.1 Western blot analysis after 20 weeks 

5.7.1.1 Mitochondrial signalling post insulin administration 

(i) Control animals 

Intra-peritoneal administration of insulin served to augment the PI3K/PKB/Akt signalling at 

the mitochondria in the control animals, while concurrently preventing an increase in 

apoptotic signalling. 

This can be seen by the increased phosphorylation of the p85 PI3K subunit, despite a lack 

of increased tp85 PI3K subunit translocation. Furthermore, the P/T ratio was higher in the 

insulin treated controls in comparison to the untreated controls, indicating that a larger 

portion of the p85 subunit was phosphorylated than dephosphorylated (figure 4.19 (a), (b) 

and (c)). 

In addition, not only was there an increase in tPKB/Akt translocation to the mitochondria in 

the insulin treated controls, there was also an increase in the phosphorylation of these 

PKB/Akt molecules (figure 4.22 (a) and (b)). Furthermore, we saw that the tGSK-3α/β 
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translocation level was lower (a) but that the phosphorylation of this molecule (b), as well 

as the P/T ratio (c), were elevated in these animals (figure 4.25). 

In terms of apoptotic pathway signalling, the mitochondrial translocation of tBad (figure 

4.87 (a)) and Bax (figure 4.31 (a)) in the insulin treated controls did not differ significantly 

from the untreated controls. The phosphorylation level of tBad in the insulin treated 

controls also did not differ significantly from that in the untreated controls, as seen in figure 

4.28 (b). Furthermore, there were no increases in the anti-apoptotic Bcl-2 level at the 

mitochondria (figure 4.32 (a)).  

The lack of increased apoptotic protein levels and translocation, to the mitochondria, and 

elevated PI3K/PKB/Akt pathway signalling indicates that the insulin treated control animals 

were afforded cardiac protection. 

 

(ii) DIO animals 

With regard to the insulin treated DIO animals, we found these animals displayed elevated 

mitochondrial insulin-mediated PI3K/PKB/Akt pathway protein translocation, and 

decreased apoptotic pathway protein translocation.  

We found that the tp85 and pp85 translocation to the mitochondria increased upon insulin 

administration in the obese animals (figure 4.20 (a) and (b)). The translocation of tPKB/Akt 

however, and the phosphorylation of this protein, remained unchanged (figure 4.23 (a) and 

(b), respectively). At the same time, there was decreased translocation of downstream 

tGSK3α/β but the phosphorylation of this protein, as well as the P/T ratio, was elevated in 

the insulin treated DIO animals (figure 4.26 (a), (b) and (c)).  
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In terms of the apoptotic signalling, we saw no decreased levels of tBad translocation, and 

parallel to that the phosphorylation of tBad and its P/T ratio did not increase in the insulin 

treated DIO animals (figure 4.29 (a), (b) and (c)). Conversely, pro-apoptotic Bax 

translocation increased while anti-apoptotic Bcl-2 levels decreased, indicating an increase 

in apoptotic signalling at the mitochondria. 

The above results would then indicate that at the mitochondrial level, the enhanced 

PI3K/PKB/Akt signalling was unable to provide protection against myocardial apoptosis in 

the obese insulin treated animals. 

On the whole, these findings denotes that exogenous insulin administration is able to elicit 

elevated PI3K/PKB/Akt signalling, in the mitochondria in the hearts of control as well as 

diet-induced obese animals after 20 weeks. However, it would seem that this pathway was 

only able to prevent increased intrinsic apoptotic signalling in the control but not the DIO 

animals. Thus, cardioprotection was lost at the mitochondrial level in the obese animals 

making these hearts more susceptible to apoptosis, while the control animal hearts were 

protected. 

Yang et al. (2009) conducted a study, in which they compared the insulin-mediated 

PI3K/PKB/Akt pathway in control and type-1 (T1DM), as well as type-2 (T2DM), diabetic 

rats. The T1DM mice were obtained by injecting normal rats with a once-off dose of 

streptozotocin, while the T2DM mice were obtained by feeding the animals a high fat diet 

for 6 weeks. After all the groups were fasted overnight and administered insulin acutely via 

the inferior vena cava, western blot analysis revealed that the translocation of tPKB/Akt 

and pPKB/Akt to the mitochondria was significantly higher in the T1DM animals, in 

comparison to the controls. Furthermore, the PKB/Akt P/T ratio in the mitochondria was 

higher in these mice. In contrast, the translocation of tPKB/Akt and pPKB/Akt to the 
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mitochondria, as well as the P/T ratio in the mitochondria, were attenuated upon acute 

insulin administration. Yang et al. concluded that the insulin-mediated PI3K/PKB/Akt 

signalling in the mitochondria was elevated in the T1DM model due to the insulin 

deficiency, which is characteristic of this type of diabetes. This deficiency has been shown, 

by other studies, to increase the number of insulin receptors as well as the receptor 

signalling to PI3K in the heart [Wang et al. 1999].  

On the contrary, Yang et al. (2009) further concluded that the attenuated PI3K/PKB/Akt 

signalling observed in the mitochondria of the T2DM animals were due to them being 

insulin resistant as other studies had shown that insulin receptor signalling is decreased in 

these animals [Bonnard et al. 2008, Milne et al. 2007]. 

 

The above conclusions could authenticate why the obese animals experienced a reduction 

in mitochondrial integrity and function, despite elevated PI3K/PKB/Akt signalling in the 

mitochondria. It is possible that as a result of our obese animals being insulin resistant, 

there was only a minimal amount of insulin receptor signalling to PI3K in the mitochondria. 

The signalling could have been sufficient to elevate tp85 PI3K subunit translocation and to 

enhance p85 phosphorylation in these animals. However, the insulin resistance most likely 

affected PI3K activation and phosphorylation of downstream PKB/Akt as Bax levels 

increased and pBad levels were unchanged in the mitochondria. Active PKB/Akt is known 

to phosphorylate Bad and Bax and thus inhibit their pro-apoptotic abilities [Wente et al. 

2006, Gardai et al. 2004]. 
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5.7.1.2 Mitochondrial signalling during cardiac ischemia 

(i) Control animals 

Similar to the insulin treated controls, mitochondria isolated from control hearts exposed to 

ischemia showed increased PI3K/PKB/Akt signalling, while the apoptotic signalling 

neglected to increase. 

In our study, the level of translocation of tp85 PI3K subunit and tPKB/Akt to the 

mitochondria in the ischemia controls was not significantly different from that of the 

untreated controls, as seen in figures 4.19 (a) and 4.22 (a). However, the phosphorylation 

of p85 (figure 4.19 (b)) and PKB/Akt (figure 4.22 (b)), as well as both of their P/T ratios 

(figures 4.19 (c) and 4.22 (c)), were greater in the ischemia groups. We found that 

although the level of tGSK3α/β translocation decreased in the ischemia controls, the 

phosphorylation of the mitochondrial protein was amplified (figure 4.25 (a) and (b)). 

Additionally, the P/T ratio increased in these animals as seen in figure 4.25 (c). 

In parallel, we found there were no significant changes in the translocation of apoptotic 

pathway proteins to the mitochondria in the ischemia controls, in comparison to the 

untreated controls: pro-apoptotic tBad did not translocate, nor did the phosphorylation 

thereof increase (figure 4.28 (a) and (b). Additionally, the Bad P/T ratio did not significantly 

increase in the ischemia controls as seen in figure 4.28 (c). We also failed to see an 

elevation in pro-apoptotic Bax levels nor an increased level of anti-apoptotic Bcl-2 

mitochondrial translocation in the ischemia controls. 

The elevated translocation of the insulin-mediated PI3K/PKB/Akt pathway proteins to the 

mitochondria during ischemia, as well as the lack of translocation of pro-apoptotic or anti-

apoptotic protein, indicate that these control hearts were protected. 
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(ii) DIO animals  

The DIO hearts in our study, which were subjected to ischemia, displayed both increased 

mitochondrial PI3K/PKB/Akt and decreased apoptotic signalling which indicates that these 

hearts were protected against ischemia. 

We found that the translocation of tp85 PI3K subunit to the mitochondria, as well as the 

phosphorylation thereof, was higher in the ischemia treated DIO hearts (figure 4.20 (a) and 

(b)). Additionally, the P/T ratio was elevated in these animals as seen in figure 4.20 (c). 

tPKB/Akt translocation in the ischemia DIO group did not alter significantly from that in the 

untreated DIO group (figure 4.23 (a)) whilst the phosphorylation of PKB/Akt and the P/T 

ratio was lower (figure 4.23 (b) and (c)).  

This finding produces a contrast as the changes regarding upstream PI3K p85 subunit 

indicate an increase in insulin-mediated PI3K/PKB/Akt signalling in the mitochondria, 

whilst those changes concerning downstream PKB/Akt signify a reduction in the signalling. 

To obtain a better understanding of the mitochondrial insulin signalling in the ischemia DIO 

animals, we analyzed the modifications regarding GSK3α/β. We found that less tGSK3α/β 

mitochondrial translocation occurred in these animals during ischemia (figure 4.26 (a)) 

however, the phosphorylation of this protein, as well as its P/T ratio, increased significantly 

(figure 4.26 (b) and (c)). On the whole, this indicates that the PI3K/PKB/Akt signalling 

pathway was upregulated in these animals. 

When we analyzed the apoptotic signalling protein profile in the ischemia DIO group, our 

results yielded that the tBad translocation was higher in this group than the untreated DIO 

animals (figure 4.29 (a)) and, the phosphorylation of this protein had increased 

simultaneously (figure 4.29 (b). This explained why we saw no significant difference 

between the untreated and ischemia DIO animals in terms of their Bad P/T ratio, as seen 
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in figure 4.29 (c). Nonetheless, we found that the Bax translocation had increased (figure 

4.31 (b)) while the Bcl-2 translocation had decreased collectively (figure 4.32 (b)), 

indicating that apoptotic signalling was elevated in these animals. 

The overall mitochondrial protein profile, during ischemia of the DIO animals, reveals 

increased myocardial apoptosis and loss of cardiac protection despite augmented 

PI3K/PKB/Akt signalling.  

It would thus seem that ischemia was able to instigate elevated PI3K/PKB/Akt signalling at 

the mitochondria in control as well as obese animals, after 20 weeks of their respective 

diets. However, this pathway was only able to prevent elevated apoptotic signalling in the 

control animals while it was unable to do so in mitochondria isolated from DIO ischemic 

hearts. 

Increased mitochondrial PI3K/PKB/Akt signalling in ischemia was also observed by others. 

Ahmad et al. (2006) found that when the mitochondrial KATP (mitoKATP) channels were 

activated in a mouse model of I/R injury, the level of cardiomyocyte apoptosis decreased 

as a result of elevated PKB/Akt phosphorylation in the mitochondria. It was concluded that 

the PI3K/PKB/Akt pathway is essential for cardioprotection against this type of injury when 

mediated through activated mitoKATP channels. Interestingly, they found that if 

phosphorylation of PKB/Akt only took place in the cytosol, it would not suffice in protecting 

the heart from ischemia. The results of this study indicated that pPKB/Akt needed to 

translocate from the cytosol to the mitochondria, to put forth its protective effects. [Ahmad 

et al. 2006] 

In the current study, the increased PI3K/PKB/Akt signalling is only associated with 

myocardial protection in the control animals whereas the obese animals showed elevated 

levels of cardiac apoptotic signalling. The fact that pPKB/Akt needed to translocate from 
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the cytosol to the mitochondria to protect the heart from ischemia, in the above study, 

indicates that PI3K/PKB/Akt signalling needs to be augmented in both the cytosol and 

mitochondria simultaneously for the cardioprotection to be exerted. The attenuated 

cytosolic PI3K/PKB/Akt signalling (section 5.4.1) could thus substantiate why our study 

found a reduction in cardiac mitochondrial function (sections 5.5.1, 5.5.2 and 5.6.2) and 

integrity (section 5.4.2. and 5.6.1) after 20 weeks. The augmented PI3K/PKB/Akt signalling 

in the mitochondria was thus not sufficient to protect the obese heart from mitochondrial 

damage and dysfunction. 

 

 

5.7.1.3 Mitochondrial signalling in control versus obese animals 

Comparisons amongst the untreated (basal), insulin and ischemia groups, in control 

versus DIO animals, indicated that PI3K/PKB/Akt as well as apoptotic signalling in the 

mitochondria was enhanced in the obese animals.  

This is substantiated by the lack of a difference in the translocation level of tp85 PI3K 

subunit, tPKB and tGSK-3α/β subunit to the mitochondria in all three control groups. 

However, the DIO animals in all three groups had elevated pp85 and pGSK-3α/β levels, as 

well as increased p85 PI3K subunit and GSK-3α/β P/T ratios at the mitochondrial level. 

This was also reflected in the lack of elevated Bad P/T ratio. Despite this, the well-known 

cardioprotective GSK-3α/β presented at mitochondrial elevated phosphorylated levels. In 

contrast, the obese animals in all three groups had decreased levels of pPKB/Akt and 

PKB/Akt P/T ratios in the mitochondria. 

In terms of apoptotic signalling, the tBad, Bax and Bcl-2 translocation to the mitochondria 

was augmented in all three of the obese groups. There was no difference in the pBad 
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levels in the mitochondria of the untreated and insulin DIO animals, in comparison to their 

controls. The DIO animals in the ischemia group on the other hand, displayed an 

increased level of pBad in the mitochondria when matched against its control. However, 

the Bad P/T ratios in all three groups of obese animals were blunted, indicating on the 

whole that Bad signalling was enhanced; while both Bax and Bcl-2 signalling was 

increased. 

Therefore, it would seem that PI3K/PKB/Akt as well as the apoptotic pathway was 

enhanced in the mitochondria of the obese animals in the untreated, insulin and ischemia 

groups. This indicates that myocardial protection was blunted during diet-induced obesity, 

despite an upregulation in the cardioprotective PI3K/PKB/Akt signalling pathway.  

The studies by Yang et al. (2009) and Ahmad et al. (2006), discussed in 5.7.1.1 and 

5.7.1.2 respectively, can provide assistance in clarifying why there was a contrast in terms 

of increased PI3K/PKB/Akt signalling but loss of cardioprotection in the DIO animals. It 

might be that the insulin resistance in filtered down to the insulin receptor signaling in the 

mitochondria and blunted receptor signalling to PKB/Akt, thus explaining why we saw a 

reduction in phosphorylation of PKB/Akt in these animals. The receptor signalling was 

clearly sufficient to elevate p85 PI3K subunit phosphorylation to a certain extent although, 

we suspect that the signalling was not operating at optimal level as we failed to see 

increased recruitment of tp85 subunit to the mitochondria. [Yang et al. 2009] What is more, 

the obese animals only had increased PI3K/PKB/Akt signalling in the mitochondria, 

whereas in the cytosol this pathway`s signalling was downregulated. We have seen from 

the study conducted by Ahmad et al. (2006) that upregulation of PI3K/PKB/Akt signalling in 

both the cytosol and the mitochondrion is essential for myocardial protection, and that 

increased mitochondrial signalling alone will not be adequate. 
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In summation, comparison of p85, PKB/Akt and GSK-3α/β in the cytosol and mitochondria 

of control and obese hearts show a translocation of p85 and GSK-3α/β from the cytosol to 

the mitochondria, while PKB/Akt is reduced in both fractions. Loss of cardioprotection 

occurs despite a 5 fold increase in mitochondrial pGSK-3α/β. 

GSK-3α/β can also be phosphorylated by other kinases but it seems as if the loss of 

PKB/Akt activation plays a significant role in the loss of mitochondrial function and 

cardioprotection, during obesity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

172 

 

Chapter 6: Conclusions 

 

6.1 Conclusions 

We hypothesized initially that obesity would have different effects on the myocardium 

during the initial and advanced stages of the disease. We proposed cardiac protection 

would take place during the initial stages of obesity, whereas this protection would be lost 

during the advanced stages thus negatively affecting the heart. Furthermore, we consider 

these differences in myocardial protection to be mediated through the PI3K/PKB/Akt and 

intrinsic apoptotic pathways, at both the cytosolic and mitochondrial level of the 

cardiomyocyte. 

Indeed we saw during the initial stages of obesity (8 weeks of diet-induced obesity), that 

the DIO animals had accumulated a significantly elevated amount of intra-peritoneal fat 

mass and were positive for systemic insulin resistance. These animals presented with 

augmented myocardial PI3K/PKB/Akt and blunted intrinsic apoptotic signalling at the 

cytosolic level, after 8 weeks. These changes correlated with a lack of change in 

mitochondrial ETC complex integrity during the initial stages of the disease, which could 

be associated with cardioprotection. 

The 20 weeks diet-induced obese animals, representing the advanced stages of obesity, 

had increased intra-peritoneal fat mass and whole body insulin resistance, similar to the 8 

weeks DIO animals. In contrast, the advanced stages were characterized by decreased 

PI3K/PKB/Akt and increased intrinsic apoptotic signalling at the cytosolic level. An 

unexpected finding was that these animals had elevated mitochondrial PI3K/PKB/Akt as 

well as apoptotic pathway signalling on the mitochondrial level. This was the case when 

the two pathways were compared in the control and obese animals, at basal level and 
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when insulin was administered as well as when the hearts were exposed to ischemia. We 

argue that this contrast seen, results from a resistance in the insulin receptor-mediated 

signalling to PKB/Akt, and because cardioprotection can only be mediated if PI3K/PKB/Akt 

signalling is upregulated in both the mitochondria and cytosol. Thus, these animals might 

be more susceptible to myocardial damage. 

This is further substantiated by the reduction in citrate synthase activity and the 

downregulation in the expression of ETC complexes I and II, thus revealing aberrations in 

the mitochondrial integrity. Furthermore, on the whole mitochondrial oxidative 

phosphorylation function is also negatively affected during the advanced stages of obesity, 

regardless of the substrate used. We observed that the obese animals using glutamate as 

a substrate present with a reduced RCI ratio, a sign of uncoupled respiration.  

In contrast, the mitochondrial function initially seems to be upregulated in the advanced 

obese animals as we see an increased percentage recovery after anoxia/reperfusion, 

when palmitoyl-L-carnitine serves as substrate. We do not see this elevated recovery 

when glutamate is used, indicating that the obese animals might have undergone a 

metabolic shift by increasing their fatty acid utilization.  

In summation (figure 6.1), we find that the initial stage of obesity is associated with 

augmented myocardial protection due to increased PI3K/PKB/Akt and attenuated 

apoptotic signalling. Conversely, the advanced stage of the disease is marked by loss of 

cardioprotection and increased susceptibility to apoptosis, as a result of decreased 

cytosolic PI3K/PKB/Akt and enhanced apoptotic signalling.  
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Figure 6.1: Summary of the present study`s experimental findings, regarding the 

myocardial changes at the cytosolic and mitochondrial level during the initial and advanced 

stages of diet-induced obesity. 
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6.2 Limitations of the study 

The current study did not assess cardiac mitochondrial function as well as mitochondrial 

PI3K/PKB/Akt and apoptotic signalling in the heart after 8 weeks of diet-induced obesity.  

Additionally, the study did not look at the effects of insulin administration and myocardial 

ischemia exposure on cytosolic PI3K/PKB/Akt and apoptotic signalling subsequent to 8 

weeks of diet-induced obesity. 

 

6.3 Future perspectives 

In our study, we were able to demonstrate the role of the PI3K/PKB/Akt pathway in 

cardioprotection. It is likely that this pathway does not act alone and thus it would be of 

great therapeutic value to ascertain the roles of other pathways (ERK and SAFE 

pathways), and the influence these might have on PI3K/PKB/Akt signalling, in myocardial 

protection.  

Furthermore, we showed that PI3K/PKB/Akt-mediated regulation of certain apoptotic 

markers, Bad, Bax and Bcl-2, was essential in determining the cells’ apoptotic fate. In 

future studies, it would be beneficial to look at other markers of apoptosis such as, cleaved 

caspase-3 and-9, cleaved PARP as well as FOXO1 to establish an even bigger picture of 

the apoptotic signalling during the initial and advanced stages of obesity. 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

176 

 

Bibliography 

 

I: Journal articles 

1. Abbate A, Bussani R, Amin MS, Vetrovec GW and Baldi A. Acute myocardial 

infarction and heart failure: role of apoptosis. Int.J.Biochem.Cell Biol. 38: 11: 1834-

1840, 2006.  

2. Adrain C and Martin SJ. The mitochondrial apoptosome: a killer unleashed by the 

cytochrome seas. Trends Biochem.Sci. 26: 6: 390-397, 2001.  

3. Aguilera C, Gil-Campos M and Canete R. Alterations in plasma and tissue lipids 

associated with obesity and metabolic syndrome. Clin.Sci. 114: 183-193, 2008.  

4. Aharinejad S, Andrukhova O, Lucas T, Zuckermann A, Wieselthaler G, Wolner E 

and Grimm M. Programmed cell death in idiopathic dilated cardiomyopathy is 

mediated by suppression of the apoptosis inhibitor Apollon. Ann.Thorac.Surg. 86: 1: 

109-114, 2008.  

5. Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun Ö and Ashraf M. Cardiac 

protection by mitoKATP channels is dependent on Akt translocation from cytosol to 

mitochondria during late preconditioning. American Journal of Physiology - Heart and 

Circulatory Physiology 290: 6: H2402-H2408, 2006.  

6. Anarkooli I, Sankian M, Ahmadpour S, Varasteh ARZ and Haghir H. Evaluation of 

Bcl-2 family gene expression and caspase-3 activity in hippocampus STZ-induced 

diabetic rats. Experimental Diabetes Research, 6 pages: 1-6, 2008.  

7. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G and Kajstura J. Apoptosis and 

myocardial infarction. Basic Res.Cardiol. 93: 8-12, 1998.  

Stellenbosch University http://scholar.sun.ac.za



 

177 

 

8. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, 

Poli G, Olefsky J and Karin M. IKK-β links inflammation to obesity-induced insulin 

resistance. Nat.Med. 11: 2: 191-198, 2005.  

9. Attallah H, Friedlander AL and Hoffman AR. Visceral obesity, impaired glucose 

tolerance, metabolic syndrome, and growth hormone therapy. Growth Hormone & IGF 

Research 16: Suppl A: S62-S67, 2006.  

10.  Baines CP and Molkentin JD. STRESS signaling pathways that modulate cardiac 

myocyte apoptosis. J.Mol.Cell.Cardiol. 38: 1: 47-62, 2005.  

11.  Barger PM and Kelly DP. PPAR signaling in the control of cardiac energy 

metabolism. Trends Cardiovasc.Med. 10: 6: 238, 2000.  

12.  Barkett M and Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription 

factors. Oncogene 18: 49: 6910, 1999.  

13.  Barouch LA, Gao D, Chen L, Miller KL, Xu W, Phan AC, Kittleson MM, Minhas 

KM, Berkowitz DE and Wei C. Cardiac myocyte apoptosis is associated with 

increased DNA damage and decreased survival in murine models of obesity. Circ.Res. 

98: 1: 119-124, 2006.  

14.  Belfiore F, Iannello S and Volpicelli G. Insulin sensitivity indices calculated from 

basal and OGTT-induced insulin, glucose, and FFA levels. Mol.Genet.Metab. 63: 2: 

134-141, 1998.  

15.  Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick 

EH, Olivetti G and Anversa P. The cellular basis of dilated cardiomyopathy in 

humans. J.Mol.Cell.Cardiol. 27: 1: 291-305, 1995.  

16.  Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T and 

Rossignol R. Mitochondrial bioenergetics and structural network organization. Journal 

of Cell Science 120: 5: 838-848, 2007.  

Stellenbosch University http://scholar.sun.ac.za



 

178 

 

17.  Bennett MR. Apoptosis in the cardiovascular system. Heart 87: 5: 480-487, 2002.  

18.  Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, Kabir M, Richey JM and 

Ader M. Abdominal obesity: role in the pathophysiology of metabolic disease and 

cardiovascular risk. The American Journal of Medicine 120: 2: S3-S8, 2007.  

19.  Bernardi P. Mitochondrial transport of cations: channels, exchangers, and 

permeability transition. Physiological Reviews 79: 4: 1127-1155, 1999.  

20.  Bernecker OY, Huq F, Heist EK, Podesser BK and Hajjar RJ. Apoptosis in heart 

failure and the senescent heart. Cardiovascular Research 3: 3: 183-190, 2003.  

21.  Bertrand L, Horman S, Beauloye C and Vanoverschelde JL. Insulin signalling in 

the heart. Cardiovascular.Research 79: 2: 238-248, 2008.  

22.  Bieler G, Hasmim M, Monnier Y, Imaizumi N, Ameyar M, Bamat J, Ponsonnet L, 

Chouaib S, Grell M and Goodman S. Distinctive role of integrin-mediated adhesion in 

TNF-induced PKB/Akt and NF-κB activation and endothelial cell survival. Oncogene 

26: 39: 5722-5732, 2007.  

23.  Bishopric NH, Andreka P, Slepak T and Webster KA. Molecular mechanisms of 

apoptosis in the cardiac myocyte. Current Opinion in Pharmacology 1: 2: 141-150, 

2001.  

24.  Bonen A, Luiken JJFP and Glatz JFC. Regulation of fatty acid transport and 

membrane transporters in health and disease. Molecular & Cellular Biochemistry 239: 

1: 181-192, 2002.  

25.  Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H 

and Rieusset J. Mitochondrial dysfunction results from oxidative stress in the skeletal 

muscle of diet-induced insulin-resistant mice. The Journal of Clinical Investigation 118: 

2: 789, 2008.  

Stellenbosch University http://scholar.sun.ac.za



 

179 

 

26.  Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME and Abel ED. Reduced 

mitochondrial oxidative capacity and increased mitochondrial uncoupling impair 

myocardial energetics in obesity. Circulation 112: 17: 2686-2695, 2005.  

27.  Boura-Halfon S and Zick Y. Phosphorylation of IRS proteins, insulin action, and 

insulin resistance. American Journal of Physiology - Endocrinology and Metabolism 

296: 4: E581-E591, 2009.  

28.  Bradford MM. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Analytical 

Biochemistry  72: 1-2: 248-254, 1976.  

29.  Brocheriou V, Hagège AA, Oubenaïssa A, Lambert M, Mallet VO, Duriez M, 

Wassef M, Kahn A, Menasché P and Gilgenkrantz H. Cardiac functional 

improvement by a human Bcl‐2 transgene in a mouse model of ischemia/reperfusion 

injury. The Journal of Gene Medicine 2: 5: 326-333, 2000.  

30.  Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, 

Blenis J and Greenberg ME. Akt promotes cell survival by phosphorylating and 

inhibiting a Forkhead transcription factor. Cell 96: 857-868, 1999.  

31.  Burgering BMT and Medema RH. Decisions on life and death: FOXO Forkhead 

transcription factors are in command when PKB/Akt is off duty. J.Leukoc.Biol. 73: 6: 

689-701, 2003.  

32.  Burow ME, Weldon CB, Melnik LI, Duong BN, Collins-Burow BM, Beckman BS 

and McLachlan JA. PI3-K/AKT regulation of NF-κB signaling events in suppression of 

TNF-induced apoptosis. Biochemical and Biophysical Research Communications 271: 

2: 342-345, 2000.  

Stellenbosch University http://scholar.sun.ac.za



 

180 

 

33.  Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J and Shoelson SE. Local 

and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. 

Nature Medicine 11: 2: 183-190, 2005.  

34.  Candé C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N and 

Kroemer G. Apoptosis-inducing factor (AIF): a novel caspase-independent death 

effector released from mitochondria. Biochimie 84: 2-3: 215, 2002.  

35.  Capano M and Crompton M. Bax translocates to mitochondria of heart cells during 

simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein 

kinases. Biochem. J. 395: Pt 1: 57-64, 2006.  

36.  Carroll J, Fearnley IM, Shannon RJ, Hirst J and Walker JE. Analysis of the subunit 

composition of complex I from bovine heart mitochondria. Molecular & Cellular 

Proteomics 2: 117-126, 2003.  

37.  Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, Meflah K, 

Vallette FM and Juin P. The first α helix of Bax plays a necessary role in its ligand-

induced activation by the BH3-only proteins Bid and PUMA. Molecular Cell 16: 5: 807-

818, 2004.  

38.  Carvalho G, Pelletier P, Albacker T, Lachapelle K, Joanisse DR, Hatzakorzian R, 

Lattermann R, Sato H, Marette A and Schricker T. Cardioprotective effects of 

glucose and insulin administration while maintaining normoglycemia (GIN therapy) in 

patients undergoing coronary artery bypass grafting. J Clin Endocrinol Metab 96: 5: 

1469-1477, 2011.  

39.  Casademont J and Miró Ò. Electron transport chain defects in heart failure. Heart 

Failure Reviews 7: 2: 131-139, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

181 

 

40.  Chabowski A, Coort SLM, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken 

JJFP and Bonen A. The subcellular compartmentation of fatty acid transporters is 

regulated differently by insulin and by AICAR. FEBS Letters 579: 11: 2428-2432, 2005.  

41.  Chen H and Chan DC. Emerging functions of mammalian mitochondrial fusion and 

fission. Human Molecular Genetics 14: suppl 2: R283-R289, 2005.  

42.  Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, 

Adams JM and Huang D. Differential targeting of prosurvival Bcl-2 proteins by their 

BH3-only ligands allows complementary apoptotic function. Molecular Cell 17: 3: 393-

403, 2005.  

43.  Chen Q, Moghaddas S, Hoppel CL and Lesnefsky EJ. Reversible blockade of 

electron transport during ischemia protects mitochondria and decreases myocardial 

injury following reperfusion. The Journal of Pharmacology and Experimental 

Therapeutics 319: 3: 1405-1412, 2006.  

44.  Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng 

W, Suzuki R and Tobe K. Growth retardation and increased apoptosis in mice with 

homozygous disruption of the Akt1 gene. Genes & Development 15: 17: 2203-2208, 

2001.  

45.  Chen Z, Chua CC, Ho YS, Hamdy RC and Chua BHL. Overexpression of Bcl-2 

attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. 

Molecular Cell 280: 5: H2313-H2320, 2001.  

46.  Ching C, Zhao B and Yang Z. Enzyme activity and high-fat diet: citrate synthase 

activity in myostatin propeptide transgenic and wild-type mice. Ethnicity & Disease 18: 

S1: 18-19, 2008. 

47.  Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw III EB, Kaestner KH, 

Bartolomei MS, Shulman GI and Birnbaum MJ. Insulin resistance and a diabetes 

Stellenbosch University http://scholar.sun.ac.za



 

182 

 

mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292: 

5522: 1728, 2001.   

48.  Ciaraldi TP, Oh DK, Christiansen L, Nikoulina SE, Kong APS, Baxi S, Mudaliar S 

and Henry RR. Tissue-specific expression and regulation of GSK-3 in human skeletal 

muscle and adipose tissue. American Journal of Physiology -  Endocrinology and 

Metabolism 291: 5: E891-E898, 2006.  

49.  Clarke MCH, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M and 

Bennett MR. Chronic apoptosis of vascular smooth muscle cells accelerates 

atherosclerosis and promotes calcification and medial degeneration. Circulation 

Research 102: 12: 1529-1538, 2008.  

50.  Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M and Valks DM. 

Regulation of cardiac myocyte cell death. Pharmacol.Ther. 97: 3: 223-261, 2003.  

51.  Clohessy JG, Zhuang J, de Boer J, Gil-Gómez G and Brady HJM. Mcl-1 interacts 

with truncated Bid and inhibits its induction of cytochrome c release and its role in 

receptor-mediated apoptosis. J.Biol.Chem. 281: 9: 5750-5759, 2006.  

52.  Coort SLM, Bonen A, van der Vusse GJ, Glatz JFC and Luiken JJFP. Cardiac 

substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal 

substrate transporters. Mol.Cell.Biochem. 299: 1: 5-18, 2007.  

53.  Coort SLM, Hasselbaink DM, Koonen DPY, Willems J, Coumans WA, Chabowski 

A, van der Vusse GJ, Bonen A, Glatz JFC and Luiken JJFP. Enhanced 

sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from 

obese zucker rats. Diabetes 53: 7: 1655-1663, 2004.  

54.  Cory S, Huang DCS and Adams JM. The Bcl-2 family: roles in cell survival and 

oncogenesis. Oncogene 22: 53: 8590-8607, 2003.  

Stellenbosch University http://scholar.sun.ac.za



 

183 

 

55.  Côté J and Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by 

endonuclease G. Science 261: 5122: 765, 1993.  

56.  Crompton M, Barksby E, Johnson N and Capano M. Mitochondrial intermembrane 

junctional complexes and their involvement in cell death. Biochimie 84: 2-3: 143, 2002.  

57.  Crow MT, Mani K, Nam YJ and Kitsis RN. The mitochondrial death pathway and 

cardiac myocyte apoptosis. Circ.Res. 95: 10: 957-970, 2004.  

58.  Danial N. BAD: undertaker by night, candyman by day. Oncogene 27: S53-S70, 2008.  

59.  Das S, Wong R, Rajapakse N, Murphy E and Steenbergen C. Glycogen synthase 

kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates 

voltage-dependent anion channel phosphorylation. Circ.Res. 103: 9: 983-991, 2008.  

60.  Datta SR, Brunet A and Greenberg ME. Cellular survival: a play in three Akts. Genes 

Dev. 13: 22: 2905-2927, 1999.  

61.  Davies M. The cardiomyopathies: an overview. Heart 83: 4: 469-474, 2000.  

62.  Delcommenne M, Tan C, Gray V, Rue L, Woodgett J and Dedhar S. 

Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 

and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. 95: 19: 

11211-11216, 1998.  

63.  Depre C and Vatner SF. Mechanisms of cell survival in myocardial hibernation. 

Trends Cardiovasc.Med. 15: 3: 101-110, 2005.  

64.  Di Lisa F and Bernardi P. Mitochondria and ischemia–reperfusion injury of the heart: 

fixing a hole. Cardiovasc.Res. 70: 2: 191-199, 2006.  

65.  Dijkers PF, Birkenkamp KU, Lam EWF, Thomas NSB, Lammers JWJ, 

Koenderman L and Coffer PJ. FKHR-L1 can act as a critical effector of cell death 

induced by cytokine withdrawal protein kinase B–enhanced cell survival through 

maintenance of mitochondrial integrity. J.Cell Biol. 156: 3: 531-542, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

184 

 

66.  DiMauro S and Rustin P. A critical approach to the therapy of mitochondrial 

respiratory chain and oxidative phosphorylation diseases. Biochimica et Biophysica 

Acta 1792: 12: 1159-1167, 2009.  

67.  Dive C, Gregory CD, Phipps DJ, Evans DL, Milner AE and Wyllie AH. Analysis and 

discrimination of necrosis and apoptosis (programmed cell death) by multiparameter 

flow cytometry. Biochim.Biophys.Acta 1133: 3: 275, 1992.  

68.  Doble BW and Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. 

J.Cell.Sci. 116: 7: 1175-1186, 2003.  

69.  Dokken BB, Sloniger JA and Henriksen EJ. Acute selective glycogen synthase 

kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal 

muscle. Am J Physiol Endocrinol Metab 288: 6: E1188-E1194, 2005.  

70.  Dong Y, Undyala VV, Gottlieb RA, Mentzer Jr RM and Przyklenk K. Review: 

Autophagy: definition, molecular machinery, and potential role in myocardial ischemia-

reperfusion injury. J.Cardiovasc.Pharmacol.Ther. 15: 3: 220-230, 2010.  

71.  Doran E and Halestrap AP. Cytochrome c release from isolated rat liver mitochondria 

can occur independently of outer-membrane rupture: possible role of contact sites. 

Biochem.J. 348: Pt 2: 343-350, 2000.  

72.  Downey JM, Davis AM and Cohen MV. Signaling pathways in ischemic 

preconditioning. Heart Fail. Rev. 12: 181–188, 2007. 

73.  Downward J. Cell biology: metabolism meets death. Nature 424: 6951: 896-897, 

2003.  

74.  Dragovich T, Rudin CM and Thompson CB. Signal transduction pathways that 

regulate cell survival and cell death. Oncogene 17: 25: 3207-3213, 1998.  

75.  Du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer B, Woodiwiss AJ, 

Norton GR and Lochner A. Myocardial susceptibility to ischemic-reperfusion injury in 

Stellenbosch University http://scholar.sun.ac.za



 

185 

 

a prediabetic model of dietary-induced obesity. Am J Physiol Heart Circ Physiol 294: 5: 

H2336-H2343, 2008.  

76.  Du C, Fang M, Li Y, Li L and Wang X. Smac, a mitochondrial protein that promotes 

cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 1: 

33-42, 2000.  

77.  Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. 

Biochem.J. 415: 333-344, 2008.  

78.  Edwards RJ, Saurin AT, Rakhit RD and Marber MS. Therapeutic potential of 

ischaemic preconditioning. Br.J.Clin.Pharmacol. 50: 2: 87-97, 2000.  

79.  Eichhorn EJ and Bristow MR. Medical therapy can improve the biological properties 

of the chronically failing heart: a new era in the treatment of heart failure. Circulation 

94: 9: 2285-2296, 1996.  

80.  Eldar-Finkelman H and Krebs EG. Phosphorylation of insulin receptor substrate 1 by 

glycogen synthase kinase 3 impairs insulin action. Proc. Natl. Acad. Sci 94: 18: 9660-

9664, 1997.  

81.  Eldar-Finkelman H, Schreyer SA, Shinohara MM, LeBoeuf RC and Krebs EG. 

Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J 

mice. Diabetes 48: 8: 1662-1666, 1999.  

82.  Emily HYAC, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T and Korsmeyer 

SJ. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-

mediated mitochondrial apoptosis. Mol.Cell 8: 705-711, 2001.  

83.  Cheng EHYA, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T and Korsmeyer 

SJ. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-

mediated mitochondrial apoptosis. Mol.Cell 8: 705-711, 2001.  

Stellenbosch University http://scholar.sun.ac.za



 

186 

 

84.  Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A and Nagata S. A 

caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. 

Nature 391: 6662: 43-50, 1998.  

85.  Faergeman NJ and Knudsen J. Acyl-CoA binding protein is an essential protein in 

mammalian cell lines. Biochem.J. 368: Pt 3: 679-682, 2002.  

86.  Fall CHD, Sachdev HS, Osmond C, Lakshmy R, Biswas SD, Prabhakaran D, 

Tandon N, Ramji S, Reddy KS and Barker DJP. Adult metabolic syndrome and 

impaired glucose tolerance are associated with different patterns of BMI gain during 

infancy data from the New Delhi birth cohort. Diabetes Care 31: 12: 2349-2356, 2008.  

87.  Fantin VR, Wang Q, Lienhard GE and Keller SR. Mice lacking insulin receptor 

substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am 

J Physiol Endocrinol Metab 278: 1: E127-E133, 2000.  

88.  Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent 

diabetes mellitus: problems and prospects. Endocr.Rev. 19: 4: 477-490, 1998.  

89.  Festjens N, Vanden Berghe T and Vandenabeele P. Necrosis, a well-orchestrated 

form of cell demise: signalling cascades, important mediators and concomitant immune 

response. Biochimica et Biophysica Acta 1757: 9: 1371-1387, 2006.  

90.  Fliss H and Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. 

Circ.Res. 79: 5: 949-956, 1996.  

91.  Frame S and Cohen P. GSK3 takes centre stage more than 20 years after its 

discovery. Biochem.J. 359: Pt 1: 1-16, 2001.  

92.  Franke TF, Kaplan DR and Cantley LC. PI3K: downstream AKTion blocks apoptosis. 

Cell 88: 4: 435, 1997.  

Stellenbosch University http://scholar.sun.ac.za



 

187 

 

93.  Fujioka S, Matsuzawa Y, Tokunaga K and Tarui S. Contribution of intra-abdominal 

fat accumulation to the impairment of glucose and lipid metabolism in human obesity. 

Metab.Clin.Exp. 36: 1: 54-59, 1987.  

94.  Gao HK, Yin Z, Zhou N, Feng XY, Gao F and Wang HC. Glycogen synthase kinase 

3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of 

inflammation and apoptosis. J.Cardiovasc.Pharmacol. 52: 3: 286, 2008.  

95.  Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agulló L and 

Cabestrero A. The end-effectors of preconditioning protection against myocardial cell 

death secondary to ischemia–reperfusion. Cardiovasc.Res. 70: 2: 274-285, 2006.  

96.  Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, 

Marrack P, Bratton DL and Henson PM. Phosphorylation of Bax Ser184 by Akt 

regulates its activity and apoptosis in neutrophils. J.Biol.Chem. 279: 20: 21085-21095, 

2004.  

97.  Gargiulo CE, Stuhlsatz-Krouper SM and Schaffer JE. Localization of adipocyte 

long-chain fatty acyl-CoA synthetase at the plasma membrane. J.Lipid Res. 40: 5: 881-

892, 1999.  

98.  Gawryluk RMR, Chisholm KA, Pinto DM and Gray MW. Composition of the 

mitochondrial electron transport chain in Acanthamoeba castellanii: Structural and 

evolutionary insights. Biochimica et Biophysica Acta 1817: 2027–2037, 2012.  

99.  Gawryluk RMR and Gray MW. A split and rearranged nuclear gene encoding the 

iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa. BMC 

Research Notes 2: 1: 16, 2009.  

100. Ghisla S. β‐Oxidation of fatty acids. Eur. J. Biochem. 271: 3: 459-461, 2004.  

101. Glatz JFC and Storch J. Unravelling the significance of cellular fatty acid-binding 

proteins. Curr.Opin.Lipidol. 12: 3: 267-274, 2001.  

Stellenbosch University http://scholar.sun.ac.za



 

188 

 

102. Gogvadze V, Orrenius S and Zhivotovsky B. Multiple pathways of cytochrome c 

release from mitochondria in apoptosis. Biochimica et Biophysica Acta 1757: 5: 639-

647, 2006.  

103. Gomez L, Paillard M, Thibault H, Derumeaux G and Ovize M. Inhibition of 

GSK3β by postconditioning is required to prevent opening of the mitochondrial 

permeability transition pore during reperfusion. Circulation 117: 21: 2761-2768, 2008.  

104. Gomez‐Bougie P, Bataille R and Amiot M. The imbalance between Bim and 

Mcl‐1 expression controls the survival of human myeloma cells. Eur.J.Immunol. 34: 11: 

3156-3164, 2004.  

105. Goodpaster BH and Wolf D. Skeletal muscle lipid accumulation in obesity, insulin 

resistance, and type 2 diabetes. Pediatric Diabetes 5: 4: 219-226, 2004.  

106. Gottlieb RA. Mitochondria: ignition chamber for apoptosis. Mol.Genet.Metab. 68: 2: 

227-231, 1999.  

107. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB and Hay N. Inhibition 

of early apoptotic events by Akt/PKB is dependent on the first committed step of 

glycolysis and mitochondrial hexokinase. Genes Dev. 15: 11: 1406, 2001.  

108. Gray S and Kim JK. New insights into insulin resistance in the diabetic heart. 

Trends in Endocrinology and Metabolism 22: 10: 394-403, 2011.  

109. Gross A, McDonnell JM and Korsmeyer SJ. BCL-2 family members and the 

mitochondria in apoptosis. Genes Dev. 13: 15: 1899-1911, 1999.  

110. Gupta S. Molecular steps of death receptor and mitochondrial pathways of 

apoptosis. Life Sci. 69: 25: 2957-2964, 2001.  

111. Gustafsson ÅB and Gottlieb RA. Bcl-2 family members and apoptosis, taken to 

heart. Am J Physiol Cell Physiol 292: 1: C45-C51, 2007.  

Stellenbosch University http://scholar.sun.ac.za



 

189 

 

112. Hajduch E, Litherland GJ and Hundal HS. Protein kinase B (PKB/Akt)–a key 

regulator of glucose transport? FEBS Letters 492: 3: 199-203, 2001.  

113. Hajri T and Abumrad NA. Fatty acid transport across membranes: Relevance to 

nutrition and metabolic pathology 1. Annu.Rev.Nutr. 22: 1: 383-415, 2001.  

114. Halestrap A. Calcium, mitochondria and reperfusion injury: a pore way to die. 

Biochem.Soc.Trans. 34: 232-237, 2006.  

115. Halestrap AP, Clarke SJ and Javadov SA. Mitochondrial permeability transition 

pore opening during myocardial reperfusion—a target for cardioprotection. 

Cardiovasc.Res. 61: 3: 372-385, 2004.  

116. Halestrap AP, Clarke SJ and Khaliulin I. The role of mitochondria in protection of 

the heart by preconditioning. Biochimica et Biophysica Acta 1767: 8: 1007-1031, 2007.  

117. Halestrap AP, Kerr PM, Javadov S and Woodfield K. Elucidating the molecular 

mechanism of the permeability transition pore and its role in reperfusion injury of the 

heart. Biochim.Biophys.Acta 1366: 1-2: 79, 1998.  

118. Hall JE, Crook ED, Jones DW, Wofford MR and Dubbert PM. Mechanisms of 

obesity-associated cardiovascular and renal disease. Am.J.Med.Sci. 324: 3: 127-137, 

2002.  

119. Hamacher-Brady A, Brady NR, Logue S, Sayen M, Jinno M, Kirshenbaum L, 

Gottlieb R and Gustafsson ÅB. Response to myocardial ischemia/reperfusion injury 

involves Bnip3 and autophagy. Cell Death and Differentiation 14: 1: 146-157, 2006.  

120. Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM and Rabinowich H. 

Degradation of Mcl-1 by granzyme B. J.Biol.Chem. 279: 21: 22020-22029, 2004.  

121. Harada H, Quearry B, Ruiz-Vela A and Korsmeyer SJ. Survival factor-induced 

extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with 

BAX and proapoptotic activity. Proc.Natl.Acad.Sci.U.S.A. 101: 43: 15313-15317, 2004.  

Stellenbosch University http://scholar.sun.ac.za



 

190 

 

122. Hausenloy DJ, Tsang A and Yellon DM. The reperfusion injury salvage kinase 

pathway: a common target for both ischemic preconditioning and postconditioning. 

Trends Cardiovasc.Med. 15: 2: 69-75, 2005.  

123. Hausenloy DJ and Yellon DM. Reperfusion injury salvage kinase signalling: taking 

a RISK for cardioprotection. Heart Fail.Rev. 12: 3: 217-234, 2007.  

124. Hausenloy DJ and Yellon DM. Survival kinases in ischemic preconditioning and 

postconditioning. Cardiovasc.Res. 70: 2: 240-253, 2006.  

125. Hayden MS and Ghosh S. Signaling to NF-κB. Genes Dev. 18: 18: 2195-2224, 

2004.  

126. Hemmings BA. Akt signaling-linking membrane events to life and death decisions. 

Science 275: 5300: 628-630, 1997.  

127. Henriksen EJ and Dokken BB. Role of glycogen synthase kinase-3 in insulin 

resistance and type 2 diabetes. Current Drug Targets 7: 11: 1435-1442, 2006.  

128. Heusch G, Schulz R and Rahimtoola SH. Myocardial hibernation: a delicate 

balance. Am J Physiol Heart Circ Physiol 288: 3: H984-H999, 2005.  

129. Hill MM and Hemmings BA. Inhibition of protein kinase B/Akt: implications for 

cancer therapy. Pharmacol.Ther. 93: 2: 243-251, 2002.  

130. Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, Hong C, Yatani A, 

Avila J and Sadoshima J. Inhibition of glycogen synthase kinase 3β during heart 

failure is protective. Circ.Res. 101: 11: 1164-1174, 2007.  

131. Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, 

Shneyvays V, Shainberg A and Goldshtaub V. Bax ablation protects against 

myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ 

Physiol 284: 6: H2351-H2359, 2003.  

Stellenbosch University http://scholar.sun.ac.za



 

191 

 

132. Holloway G, Luiken J, Glatz J, Spriet L and Bonen A. Contribution of FAT/CD36 

to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol 194: 

4: 293-309, 2008.  

133. Huang XF and Chen JZ. Obesity, the PI3K/Akt signal pathway and colon cancer. 

Obesity Reviews 10: 6: 610-616, 2009.  

134. Huisamen B, Dietrich D, Bezuidenhout N, Lopes J, Flepisi B, Blackhurst D and 

Lochner A. Early cardiovascular changes occurring in diet-induced, obese insulin-

resistant rats. Mol.Cell.Biochem 368: 37–45, 2012. 

135. Huss JM and Kelly DP. Mitochondrial energy metabolism in heart failure: a 

question of balance. J.Clin.Invest. 115: 3: 547-555, 2005.  

136. Iliadis F, Kadoglou N and Didangelos T. Insulin and the heart. Diabetes 

Res.Clin.Pract. 93: S86-S91, 2011.  

137. Imahashi K, Schneider MD, Steenbergen C and Murphy E. Transgenic 

expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification 

during ischemia, and reduces ischemia/reperfusion injury. Circ.Res. 95: 7: 734-741, 

2004.  

138. Iwakuma T and Lozano G. MDM2, an introduction. Mol Cancer Res 1: 14: 993-

1000, 2003.  

139. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, 

Ramaswamy S and Jap BK. Complete structure of the 11-subunit bovine 

mitochondrial cytochrome bc1 complex. Science 281: 5373: 64-71, 1998.  

140. Jain SS, Snook LA, Glatz JFC, Luiken JJFP, Holloway GP, Thurmond DC and 

Bonen A. Munc18c provides stimulus-selective regulation of GLUT4 but not fatty acid 

transporter trafficking in skeletal muscle. FEBS Letters 586, 2012.  

Stellenbosch University http://scholar.sun.ac.za



 

192 

 

141. Jarreta D, Orús J, Barrientos A, Miró O, Roig E, Heras M, Moraes CT, 

Cardellach F and Casademont J. Mitochondrial function in heart muscle from patients 

with idiopathic dilated cardiomyopathy. Cardiovasc.Res. 45: 4: 860-865, 2000.  

142. Jemmerson R and Wang X. Induction of apoptotic program in cell-free extracts: 

requirement for dATP and cytochrome c. Cell 86: 147-157, 1996.  

143. Jiang X and Wang X. Cytochrome c promotes caspase-9 activation by inducing 

nucleotide binding to Apaf-1. J.Biol.Chem. 275: 40: 31199-31203, 2000.  

144. Jonassen AK, Sack MN, Mjøs OD and Yellon DM. Myocardial protection by 

insulin at reperfusion requires early administration and is mediated via Akt and p70s6 

kinase cell-survival signaling. Circ.Res. 89: 12: 1191-1198, 2001.  

145. Jope RS and Johnson GVW. The glamour and gloom of glycogen synthase 

kinase-3. Trends Biochem.Sci. 29: 2: 95-102, 2004.  

146. Juhaszova M, Wang S, Zorov DB, Bradley Nuss H, Gleichmann M, Mattson MP 

and Sollott SJ. The identity and regulation of the mitochondrial permeability transition 

pore. Ann.N.Y.Acad.Sci. 1123: 1: 197-212, 2008.  

147. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, 

Wang S, Ytrehus K and Antos CL. Glycogen synthase kinase-3 beta mediates 

convergence of protection signaling to inhibit the mitochondrial permeability transition 

pore. J.Clin.Invest. 113: 11: 1535-1549, 2004.  

148. Kahn R, Wareham N and Zinman B (on behalf of the The Expert Committee). 

Report of the Expert Committee on the Diagnosis and Classification of Diabetes 

Mellitus. Diabetes Care 20: 7: 1183-1197, 1997. 

149. Kahn SE, Hull RL and Utzschneider KM. Mechanisms linking obesity to insulin 

resistance and type 2 diabetes. Nature 444: 7121: 840-846, 2006.  

Stellenbosch University http://scholar.sun.ac.za



 

193 

 

150. Kalra J, Sutherland B, Stratford A, Dragowska W, Gelmon K, Dedhar S, Dunn 

S and Bally M. Suppression of Her2/neu expression through ILK inhibition is regulated 

by a pathway involving TWIST and YB-1. Oncogene 29: 48: 6343-6356, 2010.  

151. Kane LP, Shapiro VS, Stokoe D and Weiss A. Induction of NF-κB by the Akt/PKB 

kinase. Current Biology 9: 11: 601-604, 1999.  

152. Kato K, Yin H, Agata J, Yoshida H, Chao L and Chao J. Adrenomedullin gene 

delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. 

Am J Physiol Heart Circ Physiol 285: 4: H1506-H1514, 2003.  

153. Katz AM. The cardiomyopathy of overload: an unnatural growth response in the 

hypertrophied heart. Ann.Intern.Med. 121: 5: 363, 1994.  

154. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G and 

Ellingsen O. Activation or inactivation of cardiac Akt/mTOR signaling diverges 

physiological from pathological hypertrophy. J.Cell.Physiol. 214: 2: 316-321, 2008.  

155. Kennedy SG, Kandel ES, Cross TK and Hay N. Akt/Protein kinase B inhibits cell 

death by preventing the release of cytochrome c from mitochondria. Mol.Cell.Biol. 19: 

8: 5800-5810, 1999.  

156. Kevin LG, Camara AKS, Riess ML, Novalija E and Stowe DF. Ischemic 

preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia 

and reperfusion. Am J Physiol Heart Circ Physiol 284: 2: H566-H574, 2003.  

157. Kharas MG and Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: 

mechanism of activation and downstream effectors. Cancer Res. 65: 6: 2047-2053, 

2005.  

158. Kim J, Wei Y and Sowers JR. Role of mitochondrial dysfunction in insulin 

resistance. Circ.Res. 102: 4: 401-414, 2008.  

Stellenbosch University http://scholar.sun.ac.za



 

194 

 

159. Kloner RA and Rezkalla SH. Preconditioning, postconditioning and their 

application to clinical cardiology. Cardiovasc.Res. 70: 2: 297-307, 2006.  

160. Knudsen J, Neergaard TBF, Gaigg B, Jensen MV and Hansen JK. Role of acyl-

CoA binding protein in acyl-CoA metabolism and acyl-CoA–mediated cell signaling. 

J.Nutr. 130: 2: 294S-298S, 2000.  

161. Kobayashi T and Cohen P. Activation of serum-and glucocorticoid-regulated 

protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 

3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem.J. 339: Pt 

2: 319-328, 1999.  

162. Koonen DPY, Glatz JFC, Bonen A and Luiken JJFP. Long-chain fatty acid uptake 

and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et Biophysica 

Acta 1736: 3: 163-180, 2005.  

163. Krysko DV, Vanden Berghe T, D’Herde K and Vandenabeele P. Apoptosis and 

necrosis: detection, discrimination and phagocytosis. Methods 44: 3: 205-221, 2008.  

164. Kuwahara K, Saito Y, Kishimoto I, Miyamoto Y, Harada M, Ogawa E, 

Hamanaka I, Kajiyama N, Takahashi N and Izumi T. Cardiotrophin-1 phosphorylates 

akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac 

myocytes. J.Mol.Cell.Cardiol. 32: 8: 1385-1394, 2000.  

165. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR 

and Newmeyer DD. BH3 domains of BH3-only proteins differentially regulate Bax-

mediated mitochondrial membrane permeabilization both directly and indirectly. 

Mol.Cell 17: 4: 525-536, 2005.  

166. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, 

Green DR and Newmeyer DD. Bid, Bax, and lipids cooperate to form supramolecular 

openings in the outer mitochondrial membrane. Cell 111: 3: 331-342, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

195 

 

167. Lanza IR and Nair KS. Functional assessment of isolated mitochondria in vitro. 

Meth.Enzymol. 457: 349-372, 2009.  

168. Lawlor MA and Alessi DR. PKB/Akt a key mediator of cell proliferation, survival 

and insulin responses? J.Cell.Sci. 114: 16: 2903-2910, 2001.  

169. Lazar M and Harold L. Enhanced preservation of acutely ischemic myocardium 

and improved clinical outcomes using glucose-insulin-potassium (GIK) solutions. 

Am.J.Cardiol. 80: 3: 90A-93A, 1997.  

170. Lee J, Xu Y, Lu L, Bergman B, Leitner JW, Greyson C, Draznin B and Schwartz 

GG. Multiple abnormalities of myocardial insulin signaling in a porcine model of diet-

induced obesity. Am J Physiol Heart Circ Physiol 298: 2: H310-H319, 2010.  

171. Lee SD, Kuo WW, Bau DT, Ko FY, Wu FL, Kuo CH, Tsai FJ, Wang PS, Lu MC 

and Huang CY. The coexistence of nocturnal sustained hypoxia and obesity additively 

increases cardiac apoptosis. J.Appl.Physiol. 104: 4: 1144-1153, 2008.  

172. Lee Y and Gustafsson ÅB. Role of apoptosis in cardiovascular disease. Apoptosis 

14: 4: 536-548, 2009.  

173. Leonard J and Schapira A. Mitochondrial respiratory chain disorders I: 

mitochondrial DNA defects. Lancet 355: 9200: 299, 2000.  

174. Leung AWC and Halestrap AP. Recent progress in elucidating the molecular 

mechanism of the mitochondrial permeability transition pore. Biochimica et Biophysica 

Acta 1777: 7: 946-952, 2008.  

175. Liao B and Xu Y. Exercise improves skeletal muscle insulin resistance without 

reduced basal mTOR/S6K1 signaling in rats fed a high-fat diet. Eur.J.Appl.Physiol. 111: 

11: 2743-2752, 2011.  

Stellenbosch University http://scholar.sun.ac.za



 

196 

 

176. Liem DA, Honda HM, Zhang J, Woo D and Ping P. Past and present course of 

cardioprotection against ischemia-reperfusion injury. J.Appl.Physiol. 103: 6: 2129-2136, 

2007.  

177. Liesa M, Borda-d'Água B, Medina-Gómez G, Lelliott CJ, Paz JC, Rojo M, 

Palacín M, Vidal-Puig A and Zorzano A. Mitochondrial fusion is increased by the 

nuclear coactivator PGC-1β. PLoS ONE 3: 10: e3613: 1-6, 2008.  

178. Liu X, Zou H, Slaughter C and Wang X. DFF, a heterodimeric protein that 

functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 

89: 2: 175-184, 1996.  

179. Lopaschuk GD, Folmes CDL and Stanley WC. Cardiac energy metabolism in 

obesity. Circ.Res. 101: 4: 335-347, 2007.  

180. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS and Stanley WC. 

Myocardial fatty acid metabolism in health and disease. Physiol.Rev. 90: 1: 207-258, 

2010.  

181. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with 

the Folin phenol reagent. J.Biol.Chem. 193: 1: 265-275, 1951.  

182. Lu MC, Tzang BS, Kuo WW, Wu FL, Chen YS, Tsai CH, Huang CY and Lee SD. 

More activated cardiac mitochondrial‐dependent apoptotic pathway in obese Zucker 

rats. OBESITY 15: 11: 2634-2642, 2007.  

183. Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, 

Damsté JSS, Spieck E and Le Paslier D. A Nitrospira metagenome illuminates the 

physiology and evolution of globally important nitrite-oxidizing bacteria. PNAS 107: 30: 

13479-13484, 2010.  

184. Luiken JJFP, Coort SLM, Koonen DPY, Horst DJ, Bonen A, Zorzano A and 

Glatz JFC. Regulation of cardiac long-chain fatty acid and glucose uptake by 

Stellenbosch University http://scholar.sun.ac.za



 

197 

 

translocation of substrate transporters. Pflugers Arch - Eur J Physiol 448: 1: 1-15, 

2004.  

185. Luiken JJFP, Koonen DPY, Willems J, Zorzano A, Becker C, Fischer Y, 

Tandon NN, Van Der Vusse GJ, Bonen A and Glatz JFC. Insulin stimulates long-

chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of 

FAT/CD36. Diabetes 51: 10: 3113-3119, 2002.  

186. MacAulay K, Doble BW, Patel S, Hansotia T, Sinclair EM, Drucker DJ, Nagy A 

and Woodgett JR. Glycogen synthase kinase 3α-specific regulation of murine hepatic 

glycogen metabolism. Cell Metabolism 6: 4: 329-337, 2007.  

187. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel 

NS, Thompson CB, Robey RB and Hay N. Hexokinase-mitochondria interaction 

mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and 

Bak. Mol.Cell 16: 5: 819-830, 2004b.  

188. Majewski N, Nogueira V, Robey RB and Hay N. Akt inhibits apoptosis 

downstream of BID cleavage via a glucose-dependent mechanism involving 

mitochondrial hexokinases. Mol.Cell.Biol. 24: 2: 730-740, 2004a.  

189. Manning BD and Cantley LC. AKT/PKB signaling: navigating downstream. Cell 

129: 7: 1261–1274, 2007.  

190. Masri C and Chandrashekhar Y. Apoptosis: a potentially reversible, meta-stable 

state of the heart. Heart Fail.Rev. 13: 2: 175-179, 2008.  

191. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, 

Hajjar RJ and Rosenzweig A. Akt activation preserves cardiac function and prevents 

injury after transient cardiac ischemia in vivo. Circulation 104: 3: 330-335, 2001.  

192. Mattson MP and Kroemer G. Mitochondria in cell death: novel targets for 

neuroprotection and cardioprotection. Trends Mol.Med. 9: 5: 196-205, 2003.  

Stellenbosch University http://scholar.sun.ac.za



 

198 

 

193. Maurer U, Charvet C, Wagman AS, Dejardin E and Green DR. Glycogen 

synthase kinase-3 regulates mitochondrial outer membrane permeabilization and 

apoptosis by destabilization of MCL-1. Mol.Cell 21: 6: 749-760, 2006.  

194. Mayo LD and Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes 

translocation of Mdm2 from the cytoplasm to the nucleus. PNAS 98: 20: 11598-11603, 

2001.  

195. Millar AH, Eubel H, Jänsch L, Kruft V, Heazlewood JL and Braun HP. 

Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain 

plant specific subunits. Plant Mol.Biol. 56: 1: 77-90, 2004.  

196. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss 

O, Perni RB and Vu CB. Small molecule activators of SIRT1 as therapeutics for the 

treatment of type 2 diabetes. Nature 450: 7170: 712-716, 2007.  

197. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, 

Penninger JM, Peleato ML, Kroemer G and Susin SA. NADH oxidase activity of 

mitochondrial apoptosis-inducing factor. J.Biol.Chem. 276: 19: 16391-16398, 2001.  

198. Mlinar B, Marc J, Janez A and Pfeifer M. Molecular mechanisms of insulin 

resistance and associated diseases. Clinica Chimica Acta 375: 1-2: 20-35, 2007.  

199. Mora A, Komander D, van Aalten DMF and Alessi DR. PDK1, the master 

regulator of AGC kinase signal transduction. Seminars in Cell & Developmental Biology 

15: 161-170, 2004.  

200. Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, 

Ōmura S and Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi 

is composed of 12 peptides including a heterodimeric Ip subunit. J.Biol.Chem. 284: 11: 

7255-7263, 2009.  

Stellenbosch University http://scholar.sun.ac.za



 

199 

 

201. Müller V and Grüber G. ATP synthases: structure, function and evolution of unique 

energy converters. Cell. Mol. Life Sci. 60: 3: 474-494, 2003.  

202. Murphy E and Steenbergen C. Inhibition of GSK-3beta as a target for 

cardioprotection: the importance of timing, location, duration and degree of inhibition. 

Expert Opin.Ther.Targets 9: 3: 447-456, 2005.  

203. Murray J, Zhang B, Taylor SW, Oglesbee D, Fahy E, Marusich MF, Ghosh SS 

and Capaldi RA. The subunit composition of the human NADH dehydrogenase 

obtained by rapid one-step immunopurification. J.Biol.Chem. 278: 16: 13619-13622, 

2003.  

204. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, 

Semigran MJ, Dec GW and Khaw BA. Apoptosis in myocytes in end-stage heart 

failure. N.Engl.J.Med. 335: 16: 1182-1189, 1996.  

205. Narula J, Kolodgie FD and Virmani R. Apoptosis and cardiomyopathy. 

Curr.Opin.Cardiol. 15: 3: 183-188, 2000.  

206. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, 

Semigran MJ, Bielsa-Masdeu A and Dec GW. Apoptosis in heart failure: release of 

cytochrome c from mitochondria and activation of caspase-3 in human 

cardiomyopathy. Proc. Natl. Acad. Sci. 96: 14: 8144-8149, 1999.  

207. Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic 

melatonin consumption prevents obesity-related metabolic abnormalities and protects 

the heart against myocardial ischemia and reperfusion injury in a prediabetic model of 

diet-induced obesity. J. Pineal Res. 50: 171-182, 2011. 

208. 206. Nechushtan A, Smith CL, Hsu YT and Youle RJ. Conformation of the Bax C-

terminus regulates subcellular location and cell death. EMBO J. 18: 9: 2330-2341, 

1999.  

Stellenbosch University http://scholar.sun.ac.za



 

200 

 

209. Negoro S, Oh H, Tone E, Kunisada K, Fujio Y, Walsh K, Kishimoto T and 

Yamauchi-Takihara K. Glycoprotein 130 regulates cardiac myocyte survival in 

doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt 

phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 103: 4: 555-561, 2001.  

210. Neuss M, Crow MT, Chesley A and Lakatta EG. Apoptosis in cardiac disease—

what is it—how does it occur. Cardiovascular Drugs and Therapy 15: 6: 507-523, 2001.  

211. Ng KW, Allen ML, Desai A, Macrae D and Pathan N. Cardioprotective effects of 

insulin. Circulation 125: 5: 721-728, 2012.  

212. Nguyen DM and El-Serag HB. The epidemiology of obesity. 

Gastroenterol.Clin.North Am. 39: 1: 1-7, 2010.  

213. Nikoulina SE, Ciaraldi TP, Mudaliar S, Mohideen P, Carter L and Henry RR. 

Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of 

type 2 diabetes. Diabetes 49: 2: 263-271, 2000.  

214. Neill BT and Abel ED. Akt1 in the cardiovascular system: friend or foe? 

J.Clin.Invest. 115: 8: 2059-2064, 2005.  

215. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di 

Loreto C, Beltrami CA and Krajewski S. Apoptosis in the failing human heart. 

N.Engl.J.Med. 336: 16: 1131-1141, 1997.  

216. Ouwens D, Boer C, Fodor M, De Galan P, Heine R, Maassen J and Diamant M. 

Cardiac dysfunction induced by high-fat diet is associated with altered myocardial 

insulin signalling in rats. Diabetologia 48: 6: 1229-1237, 2005.  

217. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM and Donner DB. NF-κB 

activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 

401: 6748: 82-85, 1999.  

Stellenbosch University http://scholar.sun.ac.za



 

201 

 

218. Parcellier A, Tintignac LA, Zhuravleva E and Hemmings BA. PKB and the 

mitochondria: AKTing on apoptosis. Cell.Signal. 20: 1: 21-30, 2008.  

219. Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, Dey A, Rothermel 

B, Kim YB and Kalinowski A. Unraveling the temporal pattern of diet-induced insulin 

resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 54: 

12: 3530-3540, 2005.  

220. Pastorino JG, Hoek JB and Shulga N. Activation of glycogen synthase kinase 3β 

disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-

dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer 

Res. 65: 22: 10545-10554, 2005.  

221. Pastukh V, Ricci C, Solodushko V, Mozaffari M and Schaffer SW. Contribution 

of the PI 3-kinase/Akt survival pathway toward osmotic preconditioning. 

Mol.Cell.Biochem. 269: 1: 59-67, 2005.  

222. Patel S and Santani D. Role of NF-kB in the pathogenesis of diabetes and its 

associated complications. Pharmacological Reports 61: 595: 595-603, 2009.  

223. Pearce NJ, Arch JRS, Clapham JC, Coghlan MP, Corcoran SL, Lister CA, 

Llano A, Moore GB, Murphy GJ and Smith SA. Development of glucose intolerance 

in male transgenic mice overexpressing human glycogen synthase kinase-3β on a 

muscle-specific promoter. Metab.Clin.Exp. 53: 10: 1322-1330, 2004.  

224. Pedersen PL. Mitochondrial events in the life and death of animal cells: a brief 

overview. J.Bioenerg.Biomembr. 31: 4: 291-304, 1999.  

225. Peter ME and Krammer P. The CD95 (APO-1/Fas) DISC and beyond. Cell Death 

and Differentiation 10: 1: 26-35, 2003.  

226. Petersen KF and Shulman GI. Pathogenesis of skeletal muscle insulin resistance 

in type 2 diabetes mellitus. Am.J.Cardiol. 90: 5A: 11G-18G, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

202 

 

227. Poirier P, Lemieux I, Mauriège P, Dewailly E, Blanchet C, Bergeron J and 

Després JP. Impact of waist circumference on the relationship between blood pressure 

and insulin: The Quebec health survey. Hypertension 45: 3: 363-367, 2005.  

228. Racz B, Gasz B, Gallyas Jr F, Kiss P, Tamas A, Szanto Z, Lubics A, Lengvari I, 

Toth G and Hegyi O. PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are 

involved in the protective effects of PACAP against ischemia/reperfusion-induced 

cardiomyocyte apoptosis. Regul.Pept. 145: 1: 105-115, 2008.  

229. Raffaella C, Francesca B, Italia F, Marina P, Giovanna L and Susanna I. 

Alterations in hepatic mitochondrial compartment in a model of obesity and insulin 

resistance. Obesity 16: 5: 958-964, 2012.  

230. Rajabi M, Kassiotis C, Razeghi P and Taegtmeyer H. Return to the fetal gene 

program protects the stressed heart: a strong hypothesis. Heart Fail.Rev. 12: 3: 331-

343, 2007.  

231. Rajani T, Shubhangi P, Aruna J and Nirmalendu N. An overview of caspase: 

Apoptotic protein for silicosis. 14: .  

232. Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP and Breyer M. 

Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism 

but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia 50: 2: 452-460, 2007.  

233. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM and Thompson CB. 

Akt-directed glucose metabolism can prevent Bax conformation change and promote 

growth factor-independent survival. Mol.Cell.Biol. 23: 20: 7315-7328, 2003.  

234. Ravussin E and Smith SR. Increased fat intake, impaired fat oxidation, and failure 

of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 

diabetes mellitus. Ann.N.Y.Acad.Sci. 967: 1: 363-378, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

203 

 

235. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier O and Taegtmeyer H. 

Metabolic gene expression in fetal and failing human heart. Circulation 104: 24: 2923-

2931, 2001.  

236. Reaven GM. Insulin resistance: the link between obesity and cardiovascular 

disease. Endocrinol.Metab.Clin.North Am. 37: 3: 581-601, 2008.  

237. Reed JC and Paternostro G. Postmitochondrial regulation of apoptosis during 

heart failure. Proc. Natl. Acad. Sci. 96: 14: 7614-7616, 1999.  

238. Regula KM, Ens K and Kirshenbaum LA. Mitochondria-assisted cell suicide: a 

license to kill. J.Mol.Cell.Cardiol. 35: 6: 559-567, 2003.  

239. Ricquier D. Respiration uncoupling and metabolism in the control of energy 

expenditure. Proc.Nutr.Soc. 64: 1: 47-52, 2005.  

240. Robertson JD, Orrenius S and Zhivotovsky B. Review: nuclear events in 

apoptosis. J.Struct.Biol. 129: 2: 346-358, 2000.  

241. Robey RB and Hay N. Mitochondrial hexokinases: guardians of the mitochondria. 

Cell Cycle 4: 5: 654-658, 2005.  

242. Robey R and Hay N. Mitochondrial hexokinases, novel mediators of the 

antiapoptotic effects of growth factors and Akt. Oncogene 25: 34: 4683-4696, 2006.  

243. Rodriguez J and Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. 

Genes Dev. 13: 24: 3179-3184, 1999.  

244. Rosano G, Fini M, Caminiti G and Barbaro G. Cardiac metabolism in myocardial 

ischemia. Curr.Pharm.Des. 14: 25: 2551-2562, 2008.  

245. Ruan H, Hacohen N, Golub TR, Van Parijs L and Lodish HF. Tumor necrosis 

factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte 

genes in 3T3-L1 adipocytes nuclear factor-κB activation by TNF-α is obligatory. 

Diabetes 51: 5: 1319-1336, 2002.  

Stellenbosch University http://scholar.sun.ac.za



 

204 

 

246. Rubio M, Avitabile D, Fischer K, Emmanuel G, Gude N, Miyamoto S, Mishra S, 

Schaefer EM, Brown JH and Sussman MA. Cardioprotective stimuli mediate 

phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear 

accumulation in cardiomyocytes. J.Mol.Cell.Cardiol. 47: 1: 96-103, 2009.  

247. Rustin P, Chretien D, Bourgeron T, Gerard B, Rötig A, Saudubray J and 

Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. 

Clin.Chim.Acta 228: 1: 35-51, 1994.  

248. Sack MN, Disch DL, Rockman HA and Kelly DP. A role for Sp and nuclear 

receptor transcription factors in a cardiac hypertrophic growth program. Proc. Natl. 

Acad. Sci. 94: 12: 6438-6443, 1997.  

249. Sale E and Sale G. Protein kinase B: signalling roles and therapeutic targeting. 

Cell. Mol. Life Sci. 65: 1: 113-127, 2008.  

250. Schaap FG, Binas B, Danneberg H, van der Vusse GJ and Glatz JFC. Impaired 

long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the 

heart-type fatty acid binding protein gene. Circ.Res. 85: 4: 329-337, 1999.  

251. Schägger H and Pfeiffer K. The ratio of oxidative phosphorylation complexes I–V 

in bovine heart mitochondria and the composition of respiratory chain supercomplexes. 

J.Biol.Chem. 276: 41: 37861-37867, 2001.  

252. Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, 

Silber RE and Holtz J. Dysfunction of mitochondrial respiratory chain complex I in 

human failing myocardium is not due to disturbed mitochondrial gene expression. 

J.Am.Coll.Cardiol. 40: 12: 2174-2181, 2002.  

253. Schulz H. Regulation of fatty acid oxidation in heart. J.Nutr. 124: 2: 165, 1994.  

Stellenbosch University http://scholar.sun.ac.za



 

205 

 

254. Schwenk RW, Holloway GP, Luiken JJFP, Bonen A and Glatz JFC. Fatty acid 

transport across the cell membrane: regulation by fatty acid transporters. 

Prostaglandins, Leukotrienes and Essential Fatty Acids 82: 4: 149-154, 2010.  

255. Schwenk RW, Luiken JJFP, Bonen A and Glatz JFC. Regulation of sarcolemmal 

glucose and fatty acid transporters in cardiac disease. Cardiovasc.Res. 79: 2: 249-258, 

2008.  

256. Sciacchitano S and Taylor SI. Cloning, tissue expression, and chromosomal 

localization of the mouse IRS-3 gene. Endocrinology 138: 11: 4931-4940, 1997.  

257. .Scorrano L, Petronilli V and Bernardi P. On the voltage dependence of the 

mitochondrial permeability transition pore. J.Biol.Chem. 272: 19: 12295-12299, 1997.  

258. .Shanmuganathan S, Hausenloy DJ, Duchen MR and Yellon DM. Mitochondrial 

permeability transition pore as a target for cardioprotection in the human heart. Am J 

Physiol Heart Circ Physiol 289: 1: H237-H242, 2005.  

259. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi 

T, Ouchi N and Walsh K. Adiponectin protects against myocardial ischemia-

reperfusion injury through AMPK-and COX-2–dependent mechanisms. Nature 

Medicine 11: 10: 1096-1103, 2005. 

260. Silverman HS and Stern MD. Ionic basis of ischaemic cardiac injury: insights from 

cellular studies. Cardiovasc.Res. 28: 5: 581-597, 1994.  

261. Singal P, Li T, Kumar D, Danelisen I and Iliskovic N. Adriamycin-induced heart 

failure: mechanisms and modulation. Mol.Cell.Biochem. 207: 1: 77-86, 2000.  

262. Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C and 

Sellke FW. The effects of therapeutic sulfide on myocardial apoptosis in response to 

ischemia–reperfusion injury. European Journal of Cardio-thoracic Surgery 33: 5: 906-

913, 2008.  

Stellenbosch University http://scholar.sun.ac.za



 

206 

 

263. Solaini G and Harris DA. Biochemical dysfunction in heart mitochondria exposed 

to ischaemia and reperfusion. Biochem.J. 390: Pt 2: 377-394, 2005.  

264. Spector A. Plasma lipid transport. Clin.Physiol.Biochem. 2: 2-3: 123-134, 1984.  

265. Stanley WC, Recchia FA and Lopaschuk GD. Myocardial substrate metabolism in 

the normal and failing heart. Physiol.Rev. 85: 3: 1093-1129, 2005.  

266. Strasser A, O’Connor L and Dixit VM. Apoptosis signaling. Annu.Rev.Biochem. 

69: 217-245, 2000.  

267. Suleiman M, Halestrap A and Griffiths E. Mitochondria: a target for myocardial 

protection. Pharmacol.Ther. 89: 1: 29-46, 2001.  

268. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion 

J, Jacotot E, Costantini P and Loeffler M. Molecular characterization of 

mitochondrial apoptosis-inducing factor. Nature 397: 6718: 441-446, 1999.  

269. Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, 

Avitabile D, Alvarez R and Sundararaman B. Myocardial AKT: the omnipresent 

nexus. Physiol.Rev. 91: 3: 1023-1070, 2011.  

270. Taha M and Lopaschuk GD. Alterations in energy metabolism in 

cardiomyopathies. Ann.Med. 39: 8: 594-607, 2007.  

271. Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, 

Ivashchenko Y and Walsh K. Akt3 overexpression in the heart results in progression 

from adaptive to maladaptive hypertrophy. J.Mol.Cell.Cardiol. 38: 2: 375-385, 2005.  

272. Thurmond DC, Kanzaki M, Khan AH and Pessin JE. Munc18c function is 

required for insulin-stimulated plasma membrane fusion of GLUT4 and insulin-

responsive amino peptidase storage vesicles. Mol.Cell.Biol. 20: 1: 379-388, 2000.  

273. Tirone TA and Brunicardi FC. Overview of glucose regulation. World J.Surg. 25: 

4: 461-467, 2001.  

Stellenbosch University http://scholar.sun.ac.za



 

207 

 

274. Tong H, Imahashi K, Steenbergen C and Murphy E. Phosphorylation of glycogen 

synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase–

dependent pathway is cardioprotective. Circ.Res. 90: 4: 377-379, 2002.  

275. Tong H, Rockman HA, Koch WJ, Steenbergen C and Murphy E. G protein-

coupled receptor internalization signaling is required for cardioprotection in ischemic 

preconditioning. Circ.Res. 94: 8: 1133-1141, 2004.  

276. Trivedi PS and Barouch LA. Cardiomyocyte apoptosis in animal models of 

obesity. Curr.Hypertens.Rep. 10: 6: 454-460, 2008.  

277. Tumane RG, Pingle SK, Jawade AA and Nath NN. An overview of caspase: 

Apoptotic protein for silicosis. Indian J. Occup. Environ. Med. 14: 2: 31-38, 2010.  

278. Tuteja G and Kaestner KH. SnapShot: Forkhead transcription factors II. Cell 12: 

192-193, 2007.  

279. Uchiyama T, Engelman RM, Maulik N and Das DK. Role of Akt signaling in 

mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 109: 

24: 3042-3049, 2004.  

280. Van Der Vusse GJ, Van Bilsen M and Glatz JFC. Cardiac fatty acid uptake and 

transport in health and disease. Cardiovasc.Res. 45: 2: 279-293, 2000.  

281. Van Gaal LF, Mertens IL and Christophe E. Mechanisms linking obesity with 

cardiovascular disease. Nature 444: 7121: 875-880, 2006.  

282. Vanden Berghe T, Declercq W and Vandenabeele P. NADPH oxidases: new 

players in TNF-induced necrotic cell death. Mol.Cell 26: 6: 769-771, 2007.  

283. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, 

Simpson RJ and Vaux DL. Identification of DIABLO, a mammalian protein that 

promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 1: 43-53, 

2000.  

Stellenbosch University http://scholar.sun.ac.za



 

208 

 

284. Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ, 

Adams JM and Strasser A. p53-and Drug-Induced Apoptotic Responses Mediated by 

BH3-Only Proteins Puma and Noxa. Proc.Natl.Acad.Sci. 100: 1-7, 2003.  

285. Vo TD, Greenberg HJ and Palsson BO. Reconstruction and Functional 

Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic 

and Biochemical Data. The Journal of Biological Chemistry 279: 38: 39532–39540, 

2004. 

286. Walker KS, Deak M, Paterson A, Hudson K, Cohen P and Alessi DR. Activation 

of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-

phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B 

alpha. Biochem.J. 331: Pt 1: 299-308, 1998.  

287. Walsh K. Akt signaling and growth of the heart. Circulation 113: 17: 2032-2034, 

2006.  

288. Wang K, Yin XM, Chao DT, Milliman CL and Korsmeyer SJ. BID: a novel BH3 

domain-only death agonist. Genes Dev. 10: 22: 2859-2869, 1996.  

289. Wang PH, Almahfouz A, Giorgino F, McCowen KC and Smith RJ. In vivo insulin 

signaling in the myocardium of streptozotocin-diabetic rats: opposite effects of diabetes 

on insulin stimulation of glycogen synthase and c-Fos. Endocrinology 140: 3: 1141-

1150, 1999.  

290. Wang S and El-Deiry WS. TRAIL and apoptosis induction by TNF-family death 

receptors. Oncogene 22: 53: 8628-8633, 2003.  

291. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 15: 22: 

2922-2933, 2001.  

292. Waselle L, Gerona RRL, Vitale N, Martin TFJ, Bader MF and Regazzi R. Role of 

phosphoinositide signaling in the control of insulin exocytosis. 19: 12: 3097-3106, 2005.  

Stellenbosch University http://scholar.sun.ac.za



 

209 

 

293. Wei MC, Zong WX, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ, 

Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ. Proapoptotic BAX and 

BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 5517: 

727-730, 2001.  

294. Weiss JN, Korge P, Honda HM and Ping P. Role of the mitochondrial permeability 

transition in myocardial disease. Circ.Res. 93: 4: 292-301, 2003.  

295. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani 

J, Armstrong RC and Kitsis RN. A mechanistic role for cardiac myocyte apoptosis in 

heart failure. J.Clin.Invest. 111: 10: 1497-1504, 2003.  

296. Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, 

Sewing S, Treinies I, Zitzer H and Gromada J. Fibroblast growth factor-21 improves 

pancreatic β-cell function and survival by activation of extracellular signal–regulated 

kinase 1/2 and Akt signaling pathways. Diabetes 55: 9: 2470-2478, 2006.  

297. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM and Huang 

DCS. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until 

displaced by BH3-only proteins. Genes Dev. 19: 11: 1294-1305, 2005.  

298. Wong C and Marwick TH. Obesity cardiomyopathy: diagnosis and therapeutic 

implications. Nature Clinical Practice Cardiovascular Medicine 4: 9: 480-490, 2007.  

299. Xu C, Kim NG and Gumbiner BM. Regulation of protein stability by GSK3 

mediated phosphorylation. Cardiovascular Research 8: 24: 4032-4039, 2009.  

300. Yach D, Stuckler D and Brownell KD. Epidemiologic and economic consequences 

of the global epidemics of obesity and diabetes. Nat.Med. 12: 1: 62-66, 2006.  

301. Yamaguchi H and Wang HG. The protein kinase PKB/Akt regulates cell survival 

and apoptosis by inhibiting Bax conformational change. Oncogene 20: 53: 7779-7786, 

2001.  

Stellenbosch University http://scholar.sun.ac.za



 

210 

 

302. Yan J, Young ME, Cui L, Lopaschuk GD, Liao R and Tian R. Increased glucose 

uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause 

cardiac dysfunction in diet-induced obesity. Circulation 119: 21: 2818-2828, 2009.  

303. Yang JY, Yeh HY, Lin K and Wang PH. Insulin stimulates Akt translocation to 

mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation 

in diabetic myocardium. J.Mol.Cell.Cardiol. 46: 6: 919-926, 2009.  

304. Yang X, Chang HY and Baltimore D. Autoproteolytic activation of pro-caspases by 

oligomerization. Mol.Cell 1: 2: 319-325, 1998.  

305. Yellon DM and Downey JM. Preconditioning the myocardium: from cellular 

physiology to clinical cardiology. Physiol.Rev. 83: 4: 1113-1151, 2003.  

306. .Yin Z, Gao H, Wang H, Li L, Di C, Luan R and Tao L. Ischaemic 

post‐conditioning protects both adult and aged Sprague‐Dawley rat heart from 

ischaemia–reperfusion injury through the phosphatidylinositol 3‐kinase–akt and 

glycogen synthase kinase‐3β pathways. Clinical and Experimental Pharmacology and 

Physiology 36: 8: 756-763, 2009.  

307. Yong QC, Lee SW, Foo CS, Neo KL, Chen X and Bian JS. Endogenous hydrogen 

sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J 

Physiol Heart Circ Physiol 295: 3: H1330-H1340, 2008.  

308. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, 

Dawson TM and Dawson VL. Mediation of poly (ADP-ribose) polymerase-1-

dependent cell death by apoptosis-inducing factor. Science 297: 5579: 259-263, 2002.  

309. Yue TL, Bao W, Gu JL, Cui J, Tao L, Ma XL, Ohlstein EH and Jucker BM. 

Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated 

cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial 

injury. Diabetes 54: 2: 554-562, 2005.  

Stellenbosch University http://scholar.sun.ac.za



 

211 

 

310. Zamzami N and Kroemer G. The mitochondrion in apoptosis: how Pandora's box 

opens. Nature Reviews: Molecular Cell Biology 2: 1: 67-71, 2001.  

311. Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P and Ren J. insulin-like growth 

factor 1 alleviates high-fat diet–induced myocardial contractile dysfunction role of 

insulin signaling and mitochondrial function. Hypertension 59: 3: 680-693, 2012.  

312. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, Schaub MC and 

Zaugg M. Ischemic postconditioning protects remodeled myocardium via the PI3K–

PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc.Res. 72: 1: 152-162, 

2006. 

313. Zong WX, Lindsten T, Ross AJ, MacGregor GR and Thompson CB. BH3-only 

proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the 

absence of Bax and Bak. Genes Dev. 15: 12: 1481-1486, 2001. 

314. Zou H, Li Y, Liu X and Wang X. An APAF-1· cytochrome c multimeric complex is a 

functional apoptosome that activates procaspase-9. J.Biol.Chem. 274: 17: 11549-

11556, 1999.  

 

II: Books 

1. Garrett R. and Grisham CM. Biochemistry. Fort Worth, Tex.: Saunders 2nd Ed.: 679-

692, c1999. 

2. Nicholls DG and Ferguson SJ. Bioenergetics 3. Amsterdam : Academic Press: 69-

126, 2001. 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

212 

 

III: Websites 

1. http://rosswiki2009.pbworks.com/w/page/11977900/Glycolysis 

2. http://www.coenzyme-a.com/tca.htm 

3. http://thealchemistkitten.files.wordpress.com/2009/11/blaze_tca_cycle.jpg 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za

http://rosswiki2009.pbworks.com/w/page/11977900/Glycolysis
http://www.coenzyme-a.com/tca.htm



