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Abstract

In this thesis I study compact objects described by the Manko-Novikov spacetime. The Manko-

Novikov spacetime is an exact solution to the Einstein Field Equations that allows objects to be

black hole-like, but with a multipole structure different from Kerr black holes. The aim of the

research is to investigate whether we will observationally be able to tell these bumpy black holes,

if they exist, apart from traditional Kerr black holes. I explore the geodesic motion of a test

probe in the Manko-Novikov spacetime. I quantify the motion using Poincaré maps and rotation

curves. The Manko-Novikov spacetime admits regions with regular motion as well as regions with

chaotic motion. The occurrence of chaos is correlated with orbits for which the characteristic

frequencies are resonant. The new result presented in this thesis is a global characterisation

of where resonances and thus chaos are likely to occur for all orbits. These calculations are

performed in the Kerr spacetime, from which I obtain that low order resonances occur within

20 Schwarzschild radii (or 40M) of the compact object with mass M . By the KAM theorem,

the occurrence of chaos is therefore limited to this region for all small perturbations from Kerr.

These resonant events will be measurable in the Galactic Centre using eLISA. This confinement

of low order resonances indicates that the frequency values of orbits of radii well outside of

20 Schwarzschild radii can be approximated using canonical perturbation theory.

v
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Opsomming

In hierdie tesis word kompakte voorwerpe bestudeer soos omskryf deur die Manko-Novikov

ruimtetyd. Die Manko-Novikov ruimtetyd is ’n eksakte oplossing van die Einstein Veldverge-

lykings. Die Manko-Novikov ruimtetyd formuleer gravitasiekolk-tipe voorwerpe waarvan die

veelpool-struktuur afwyk van die tradisionele Kerr gravitasiekolk-struktuur. Die oogmerk van die

navorsing is om vas te stel of ons met behulp van waarnemings hierdie bonkige gravitasiekolke van

die tradisionele Kerr gravitasiekolke kan onderskei. Ek ondersoek die geodetiese beweging van ’n

toetsmassa in die Manko-Novikov ruimtetyd. Die beweging word gekwantifiseer met behulp van

Poincaré afbeeldings en rotasiekrommes. In die Manko-Novikov ruimtetyd identifiseer ek gebiede

waarbinne reëlmatige beweging voorkom asook gebiede waarbinne chaotiese bane voorkom. Die

ontstaan van chaos word geassosieer met bane waarvan die fundamentele frekwensies resonant is.

’n Nuwe resultaat wat in hierdie tesis voorgehou word behels ’n globale karakterisering wat aan-

dui waar resonansies en dus chaos na alle waarskynlikheid voorkom. Laasgenoemde berekeninge

word vir die Kerr ruimtetyd uitgevoer. Hierdeur toon ek alle lae orde resonansies kom voor binne

20 Schwarzschild radii (of 40M) vanaf die kompakte voorwerp met mass M . Die KAM Stelling

bepaal dan dat vir alle klein steurings toegepas op die Kerr ruimtetyd die voorkoms van chaos

beperk sal wees tot bogenoemde gebied. Die resonansies binne hierdie gebied sal deur eLISA in

die sentrum van die melkwegstelsel gemeet kan word. Hierdie beperking van lae orde resonansies

tot ’n sekere afstand vanaf die kompakte voorwerp verseker dat die frekwensies van bane wat

buite hierdie gebied val, akkuraat deur kanoniese steuringsteorie bepaal kan word.

vi

Stellenbosch University  http://scholar.sun.ac.za



Acknowledgements

I sincerely thank my advisor Dr. Jeandrew Brink for her continuous guidance and support over

these two years. Not only for all the technical advice and help to see this project to an end, but

also for all the time and energy devoted to broadening my exposure and enjoyment of general

relativity and gravitational wave physics. I thank her for sharing her enthusiasm with me.

I would like to extend my gratitude to the Square Kilometre Array project and the National

Research Foundation for providing the financial support for this MSc study. I also thank the

National Institute of Theoretical Physics for their contributions and provision of facilities in the

final stages of the project.

I would like to thank Ms Christine Ruperti from the Department of Physics at Stellenbosch

University for her efficiency and hard work over the years in handling all the administrative

aspects of my studies.

A special thanks to Gerrit Oliver and Aaron Zimmerman, peers who endured this thesis with

me and greatly contributed to the improvement thereof.

A final thanks to my family and friends for their encouragements and their care.

vii

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Opsomming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Testing General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Extreme Mass Ratio Inspirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 No-Hair Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Stationary Axisymmetric Vacuum fields . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 The Einstein Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 SAV metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Integrability and Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Chaotic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Nearly Integrable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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CHAPTER 1

Introduction and Motivation

There are restrictive theorems in general relativity that predict that quiescent black holes have

simple structures. They are spheroidal objects and defined entirely by only their mass and spin.

The metric associated with black holes that obey these No-Hair theorems is the Kerr metric.

These uncomplicated Kerr objects are believed to be the end state of any stellar collapse.

In the forthcoming decade we will be able to verify this prediction of the structure of black

holes observationally by means of gravitational wave detectors and radio astronomy observations.

The expanding ground-based gravitational wave detector network currently consists of more than

five detectors globally. Amongst these the Laser Interferometer Gravitational-Wave Observatory

(LIGO) in the United States is the most sensitive. A spaced based detector called the evolved

Laser Interferometer Space Antenna (eLISA) has also been proposed. Upon completion in 2024

the Square Kilometre Array (SKA) will provide us with a radio telescope that has 104 times the

survey speed and 50 times the sensitivity of the best current day telescopes.

Since compact objects like black holes curve the spacetime so strongly that not even light can

escape from them, measurements of the structure of black holes will have to be done indirectly.

One such indirect way in which we can obtain structural information of a black hole is to study

the trajectory of a low mass probe as it slowly moves inward around a stationary black hole.

These events are termed Extreme Mass Ratio Inspirals (EMRIs), since the central object is

several orders of magnitude more massive than the probe. The central object is typically a

supermassive black hole and the orbiting test mass a neutron star or white dwarf.

As the orbiting low mass probe slowly spirals in toward the central compact object, the

probe loses energy and angular momentum in the form of gravitational waves. Ground-based

gravitational wave detectors such as LIGO and space-based detectors like eLISA can detect the

gravitational waves emitted by the inspiraling probe. LIGO is typically sensitive to orbits around

compact objects with masses below 100M� (where M� is the mass of our Sun). eLISA on the

other hand has sensitivity in the low frequency band, 10−4Hz - 10−1Hz, which makes eLISA ideal

for detecting orbits around compact masses between 105M� and 107M�.

The closest black hole to Earth is Sagittarius A* (SgrA*), which lies at the centre of the Milky

Way. SgrA* is a supermassive black hole with a mass of roughly 4.3 × 106M�. Its large mass,

along with its proximity to Earth, ensures that the associated gravitational wave or radio wave

signals coming from the Galactic Centre will be loud and measurable by our detectors. Liu et

1
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2

al. [43] showed that if the SKA is to find a pulsar orbiting Sgr A* with a beaming frequency of

15 GHz and an orbiting period of less than a year, we will be able to determine the quadrupole

moment of Sgr A* with the precision of 1 part in 100. The SKA can also be set up as a pulsar

timing array (PTA) to monitor groups of stable millisecond pulsars in the vicinity of Sgr A* [37].

The gravitational waves emitted by the low mass probe falling onto Sgr A* will interrupt the

precise beaming frequency of the studied pulsars and be so detected.

From the above observations we seek to answer the question of whether the compact object

involved in the EMRI event that was studied is indeed a Kerr black hole or if perhaps the

compact object has a more interesting structure. In practice analysing the structure of the black

hole means measuring its multipole moments. An example of a spacetime that describes compact

objects more general than the Kerr black hole is the Manko-Novikov metric. The characteristics

of this metric are discussed in Chapter 6. In the Manko-Novikov spacetime you can specify all

the multipole moments independently, which is not possible in the Kerr metric where they are

related to the mass and spin. Compact objects like these, with a multipole moment structure

different from Kerr, have been termed bumpy black holes by Collins and Hughes [13].

The Kerr spacetime currently provides the basis for the templates for the EMRI searches to be

used by LIGO and eLISA. The Kerr spacetime has the feature that all its orbits are integrable,

so that given a set of initial conditions, the subsequent motion is predictable. In a more general

non-Kerr metric, such as the Manko-Novikov metric, this may not be the case. There exists the

possibility that some of the orbits may be chaotic and display sensitive dependence on initial

conditions. A more rigorous definition of integrability and chaos is given in Chapter 4.

The question of mathematical interest is to what extent chaos occurs in non-Kerr spacetimes

and where. If the EMRI being studied passes through a chaotic region in the spacetime there are

several observational implications. In Chapters 6 to 8 we see that the frequency evolution during

the orbital inspiral remains constant when the orbit crosses a resonance. In the event of strong

chaos, however, the orbit is no longer characterised by distinct frequencies, making detections

difficult.

On the other hand if the non-Kerr spacetime is integrable, perturbation theory can be used

to analyse the orbital frequencies from which we can infer the structure of the compact object.

The first proof of principle for this technique was presented by Ryan in 1995 [53]. He showed

that for nearly circular, nearly equatorial orbits the phase evolution of the emitted gravitational

radiation encodes all the information of the multipole moments, such as the values of the mass,

spin and quadrupole moment.

Most of the detailed investigation of the Manko-Novikov metric to date, such as the studies
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1. Introduction and Motivation 3

performed by Gair et al. [22] and Lukes-Gerakopoulos et al. [45], have focussed on carefully

characterising orbital motion for a small subset of the Manko-Novikov parameter space. Trajec-

tories of a particle with fixed energy (E) and angular momentum (Lz) around a black hole of

intrinsic spin (S) and quadrupole deviation parameter (q) are explored by plotting their Poincaré

maps and computing the rotation curve. In Chapters 6 and 7 I employ a similar strategy by nu-

merically analysing the geodesic motion. Using Poincaré maps I numerically verify that chaotic

orbits occur where the frequencies associated with the motion are resonant. This is in accor-

dance with the KAM theorem described in Chapter 4, Sections 4.5 and 4.6. In Chapter 6 I

quantify the occurrences of resonances more carefully by computing the rotation number defined

in Section 4.7.

The shortfall of exploring a group of orbits with fixed E and Lz is that it only characterises a

subset of the parameter space. When we conduct an observational study Nature will not grant

us the luxury of labelling the orbits by their parameters a priori. For this reason it is important

to make statements about the complete parameter range, i.e. about all the possible orbits in

a pre-defined spacetime. In Chapter 8 I begin the first quantitative steps for such a global

characterisation by studying resonances in the Kerr spacetime. The results so obtained will give

an indication of the dynamics involved in small perturbations of the Kerr metric. I find that the

lower order resonances and therefore chaos are likely to occur within 20 Schwarzschild radii (or

40M) of the event horizon of the compact object. The astrophysical implications of these results

are discussed in Chapter 9 along with an outlook on future studies.
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CHAPTER 2

Testing General Relativity

I have mentioned in Chapter 1 that Extreme Mass Ratio Inspiral (EMRI) events are a source of

gravitational waves from which we hope to analyse the structure of compact objects. Studying

the gravitational waves emitted by the low mass probe falling onto the compact object can in

principle uncover whether all black holes are indeed described by the Kerr metric and if deviations

from these traditional black holes do exist. In this chapter I will briefly describe the nature of

the inspiral laboratory and the measurements we are envisaging in order to test the validity of

the No-Hair theorems.

2.1 Extreme Mass Ratio Inspirals

Extreme Mass Ratio Inspirals, as the name suggests, are binary events between two objects

that differ greatly in mass – a low mass probe with rest mass µ and a central compact object of

mass M . The extreme mass ratio provides an ideal backdrop for analysing black hole spacetimes,

since in its limit (µ/M � 0) the low mass probe acts as a test particle whose dynamics is purely

modelled by gravitational effects of the central compact object [28, 27].

Typical examples of low mass probes are neutron stars, white dwarfs, or solar mass black

holes, i.e. black holes with a mass of the order of the mass of our Sun (∼ a few M�). The hope

is to study low mass probes like these as they gradually spiral in onto a highly compact object

such as a supermassive black hole at the centre of a galaxy. The probes under consideration

will typically spend many years and complete more than 105 orbits around the compact object

before permanently disappearing from view [22, 25].

Observations have shown that the cores of nearly all nearby galaxies contain a massive compact

object, which are generally believed to be black holes [39, 13]. Supermassive black holes (SMBH)

are black holes with mass ranging from 105M� − 109M�. They are most often associated with

the centre of galaxies, although the existence of intermediate black holes (IMBH), with masses

102M� − 104M�, has also been suggested [13].

The theory of general relativity requires that the low mass probe loses energy and angular

momentum as it spirals in. This energy and angular momentum are radiated away in the form

of gravitational waves, causing the orbit of the probe to shrink. As the orbits shrink the probe

moves closer and closer to the compact object. Since the time-scale over which the probe loses

energy and angular momenta is much longer than the typical orbital time-scale, it is sensible to

4
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2. Testing General Relativity 5

approximate the orbital energy and angular momenta with slowly evolving constants of motion.

This is known as the adiabatic approximation. The inspiral is so slow, however, that as a first

approximation we can consider the probe to always be moving along a geodesic. This means I

approximate the energy and angular momentum of an orbit with constants of motion.

A realistic portrayal of an EMRI event would include the loss of energy and angular momen-

tum. This however lies beyond the scope of my thesis. For examples of studies that do include

the time dependence of the orbital energy and angular momentum see [22, 45].

2.2 No-Hair Theorems

Black holes are believed to form through the gravitational collapse of heavy stars. According

to the mathematical theorems known as the No-Hair theorems, every black hole is fully described

by just three quantities: its mass, spin and charge. All other properties (hairs) are lost during

the formation process.

The assumptions that underlie the No-Hair theorems are Penrose’s Cosmic Censorship Con-

jecture (CCC) and the assumption that there are no closed timelike curves in the external field of

a black hole [32]. These assumptions describe an astrophysical black hole, since the CCC ensures

that all black holes possess an event horizon∗ and the assumption of no closed timelike loops

excludes time travel within spacetime [11, 31]. I will revisit these requirements in Chapter 5 and

6 when I discuss the Kerr and Manko-Novikov metrics.

By Penrose’s CCC [49] all the singularities of an asymptotically flat spacetime are hidden

within its event horizon. Since the Kerr black hole has a maximum spin value at which it still

exhibits an event horizon, the CCC requires the dimensionless spin parameter χ to satisfy

χ ≡ c

G

S

M2
≤ 1, (2.1)

where S is the spin of the black hole, M its mass, c is the speed of light and G the gravitational

constant. For simplicity I set both c and G equal to 1†. Throughout this thesis I will also work

in units of M , i.e. M = 1. These simplifications reduce Eq. (2.1) to S ≤ 1.

Following the assumptions of the CCC and not allowing for closed timelike curves, the No-Hair

theorems dictate that all black holes are completely described by their mass, spin and charge.

In Gravitation by Misner, Thorne and Wheeler (Chapter 33) [47], the authors explain why these

∗Beyond the event horizon no particle or photon can escape the gravitational field of the black hole any longer
and will plunge onto the black hole.
†This is known as geometric units. In geometric units time is interpreted as the distance travelled by light in

a given time interval. That means time has geometric units of length. Energy and angular momentum obtain
dimensions of length as well. To convert from mass expressed in kilograms to mass expressed in metres we multiply
by the conversion factor G/c2.
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three are necessarily the remaining properties. They argue, that of all the quantities that define

a source of gravity and electromagnetic radiation, only the mass, charge and spin have unique

descriptions in the far out field. All the other initial conditions disappear when the star plunges

through the event horizon to form a black hole. Passed the event horizon, no particle or photon

can escape back out again. In this way the star loses all its hairs as it collapses into a black

hole, while the asymptotic flat fields conserve the mass, charge and spin. Even the charge of an

astrophysical black hole is believed to be short-lived as it uncharges into the surrounding plasma.

The only two remaining quantities needed to describe the black hole then are its mass and spin

[12]. In essence this means the Kerr metric (discussed in Chapter 5) is the only stationary,

axisymmetric and asymptotically flat solution to the vacuum field equations that describes an

astrophysical black hole.

Once the mass M and spin S are known, the No-Hair theorems [23, 24, 30] require that the

l-th order multipole moment of the Kerr spacetime depend on the mass and spin through the

relation

Ml + iSl = M
(
i
S

M

)l
. (2.2)

The mass moment is obtained for l = 0 (M0 = M) and the spin moment for l = 1 (S1 = S).

For l ≥ 2, Ml has a non-zero value only if l is even and Sl has a non-zero value only for l odd.

The quadrupole moment for the Kerr black hole is given by M2 = −S2/M . This will become an

important point of reference when I study how the quadrupole moment of the Manko-Novikov

metric deviates from the quadrupole moment of the Kerr spacetime. All Kerr higher order

moments can be calculated in a similar manner from Eq. (2.2).

If we were to parameterise the spacetime metric describing a compact object in terms of

its multipole moments and observationally measure these moments, we could test whether the

No-Hair condition of Eq. (2.2) holds [33, 43].
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CHAPTER 3

Stationary Axisymmetric Vacuum fields

3.1 The Einstein Field Equations

In Chapter 1 it was noted that an astrophysical black hole is described by the Kerr metric

in agreement with the No-Hair theorems of general relativity (GR). The theory of GR was

introduced by Einstein in 1915 in the form of the Einstein Field Equations (EFE). It superseded

Newton’s theory of gravity by accurately predicting the precession of Mercury’s orbit [19]. The

EFE’s are a non-linear set of equations in spacetime coordinates (i.e. in four dimensions),

Gµν = Rµν −
1

2
Rgµν = 8πGTµν (3.1)

where Gµν on the LHS is the Einstein Tensor and a measure of the curvature of spacetime. It

contains the Ricci tensor Rµν , Ricci scalar R, and the metric gµν . Tµν on the RHS is the stress-

energy-momentum tensor that measures the energy and momentum content of matter. G is the

gravitational constant. The relationship described by Eq. (3.1) is popularly interpreted as matter

tells spacetime how to curve and spacetime tells matter how to move. For background reading

on the EFE’s and its construction I refer the reader to an introductory textbook on GR such as

[10].

After the Field Equations were published in 1915, many scientists worked to find solutions to

them. Because of their non-linearity, the only solutions that exist today are those which have

assumed certain constraints on the equations. The assumptions most often chosen are that the

spacetime being described is stationary, axisymmetric and in vacuum (SAV), as is discussed in

the next section.

3.2 SAV metrics

Here I consider Stationary Axisymmetric Vacuum spacetimes. The specific spacetimes con-

sidered in this thesis, namely Kerr and Manko-Novikov, are both members of the group of SAV

spacetimes. I will briefly look at the formalism of SAV spacetimes as well as the assumptions

that go into constructing them. After introducing the general SAV metric, I will continue to

introduce first Kerr as a simple example of such a type of spacetime (Chapter 5) and next the

Manko-Novikov spacetime (Chapter 6), which will be the focus of subsequent discussion and

analysis.

7
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As the name indicates, SAV metrics are firstly stationary, which means the spacetime does not

evolve in time. Secondly, it conserves azimuthal angular momentum making it axially symmetric.

Thirdly, SAV metrics are in vacuum, such that it describes a gravitational field free of matter

exterior to the black hole. Having a stationary metric is physically well motivated, since we

expect black holes to be quiescent. The vacuum approximation is analogous to the EMRI limit

in which the ratio of the mass of the probe to the mass of the compact object (µ/M) goes to

zero. However choosing an axisymmetric spacetime is a simplification purely made in order to

have a problem that is mathematically tractable.

An SAV metric can mathematically be expressed as a spacetime with two Killing vectors

(written as ∂t and ∂φ) which introduce conserved quantities. A Killing vector satisfies the

Killing equation,

ξa;b + ξb;a = 0, (3.2)

where the semi-colon indicates the covariant derivative. If the Killing vector is given by ξ = ∂x

then the metric components gab are independent of x [56]. In the case of an SAV metric, the

metric components are independent of both t and φ. Without these symmetries we would make

little progress in analysing the properties of spacetimes. Note however that a truly realistic

spacetime would have no Killing vectors [20].

The Weyl-Papapetrou line element for a SAV spacetime has the general form

ds2 = k2e−2ψ[e2γ(dρ2 + dz2) +R2dφ2]− e2ψ(dt− ωdφ)2, (3.3)

where ψ, γ, ω and R are functions of the spatial coordinates ρ and z and k is a real constant.

Note that the choice R2 = ρ2 is often made when working in Weyl coordinates. The ρ and

z coordinates used here are not necessarily Weyl coordinates. Refer to Appendix A for the

transformation between Weyl coordinates (ρw, zw) and the factor structure coordinates (ρ, z)

used throughout this thesis. For further reading on different SAV coordinate systems I direct

the reader to Exact Solutions of Einstein’s Field Equations Chapter 20 by Stephani et al. [56].

The line element of Eq. (3.3) gives the distance between any two points in the curved SAV

spacetime, expressed as a function of the spacetime parameters and the coordinates in question.

This line element is known as the Weyl-Papapetrou or sometimes Weyl-Lewis-Papapetrou line el-

ement in recognition of the contributors to its form. In 1917 Weyl considered static axisymmetric

vacuum solutions to the Einstein Field equations [59]. Static in this case means a non-spinning

spacetime. Weyl was able to show that metrics of this kind are characterised by two commuting

hypersurface orthogonal Killing vectors. Weyl’s original work was expanded on by Lewis (1932)
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3. Stationary Axisymmetric Vacuum fields 9

and Papapetrou (1966). They showed that the general line element for an SAV metric which

does include rotation and admits the Killing vectors ξ = ∂t (making it stationary) and η = ∂φ

(creating the axial symmetry), has the form given by Eq. (3.3) [56, 41].

The functions ψ, γ, ω and R of Eq. (3.3) can be solved for by means of the Ernst equation

for a complex potential E ,

R(E)~∇2E = ~∇E · ~∇E . (3.4)

Refer to [21] to see how solutions to Eq. (3.4) are obtained. An example of how the line

element functions relate to the complex potential E is that e2ψ is equal to the real part of the

potential, R(E). The other functions, γ and ω, can also be solved once the potential E is known.

For further reading on SAV spacetimes and solutions to the Einstein Field equations I again refer

the reader to Stephani et al. [56] and references therein.

3.2.1 Equations of Motion

In order to study a low mass probe inspiraling into a black hole, or into some highly curved

region of a SAV spacetime, we need to understand the dynamics of particles moving within

these gravitational potentials. In this section the equations of motion are discussed for a general

SAV spacetime. These will be implemented numerically for the Kerr metric in Chapter 5 and

Manko-Novikov metric in Chapter 6, respectively.

The Hamiltonian associated with the geodesic motion in a general SAV spacetime is given by

the expression

H(q,p) =
1

2
gµνpµpν (3.5)

with q = (ρ, z, φ, t) and p = (pρ, pz, pφ, pt) the generalised coordinates and conjugate momenta

respectively. The metric tensor is gµν . Its entries can be interpreted from the line element in

Eq. (3.3) with for example gρρ the coefficient to the dρ2-term. The inverse of the metric, written

as gµν , appears in Eq. (3.5). Note that the expression above makes use of the Einstein summation

convention to contract over the indices µ and ν.

To derive the equations of motion for particles in the SAV spacetime, consider the well-known

Hamilton’s equations q̇ = ∂H
∂p and ṗ = −∂H

∂q , expressed with respect to proper time. From this we

can show that for a metric independent of t and φ (as was suggested through the Killing vectors)

it follows that ṗt = 0 and ṗφ = 0. Conventionally we choose pt = −E and pφ = Lz [13, 22],

where E is the conserved energy of the particle in motion, and Lz the azimuthal component of

its angular momentum.
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After choosing these two constants of motion the original four-dimensional problem has been

reduced to a dynamical system with two degrees of freedom. This means that I can split the

contraction of the indices of the Hamiltonian into two summations,

H = H =
1

2
[gαβpαpβ + gγδpγpδ] (3.6)

where α and β run over ρ and z, and γ and δ run over the conserved quantities t and φ. The

inverse of gαβ is equal to

gαβ =
1

k2
e2ψ−2γδαβ, (3.7)

with delta the identity matrix. It follows that

H =
1

2

[ 1

V
(p2ρ + p2z)−G

]
(3.8)

with V = V (ρ, z) = k2e−2ψe2γ and G = G(ρ, z, E, Lz) = −gγδpγpδ‡.

Furthermore the Hamiltonian constant, which is the value of the Hamiltonian evaluated along

the worldline of the particle [54], is given by.

H = −1

2
µ2, (3.9)

where µ is the rest mass of the test particle. The reduced Hamiltonian given in Eq. (3.8)

(containing 2 constants of motion) together with the above Hamiltonian constant results in an

expression for the effective gravitational potential. Setting Eq. (3.8) equal to Eq. (3.9) fixes the

sum of the squares of the two remaining momenta such that

J(ρ, z, E, Lz, µ) ≡ (G− µ2)V = p2ρ + p2z, (3.10)

where J can be interpreted as the effective gravitational potential. Substituting Eqs. (3.8) and

(3.10) into Hamilton’s equations, the geodesic equations of motion obtain the form

q̇i =
pi
V

ṗi =
∂qiJ

2V
, (3.11)

with the index i running over ρ and z and the derivative taken with respect to proper time[8].

These will be used for analysing geodesic motion in the Kerr and Manko-Novikov spacetimes.

‡This G should not be confused with the gravitational constant of Section 2.2. The gravitational constant is
set equal to 1 throughout this thesis.
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CHAPTER 4

Integrability and Chaos

In Chapter 3 it was shown that SAV spacetimes are constructed by admitting two Killing vectors

or two constants of motion. The more conserved quantities exist the easier it becomes to handle

the dynamical equations and understand orbital motion within the spacetime. The Kerr solution

to the Einstein Field Equations is an example of an SAV metric where apart from the conventional

constants of motion, namely energy E, angular momentum Lz and rest mass µ, an extra conserved

quantity, known as the Carter constant Q, exists. I will discuss the Kerr metric in more detail

in Chapter 5.

In this chapter I analyse the nature of chaotic and integrable systems. Thereafter I consider

the relevant theorems for uncovering conserved quantities in a pre-defined spacetime. There are

two mathematical theorems of particular interest to my thesis, the Poincaré Birkhoff Theorem

and the KAM theorem. These theorems help devise a classification scheme to describe chaotic

behaviour in conservative systems [55].

4.1 Integrability

A system for which the Hamiltonian has a maximum number of mutually independent con-

stants of motion is said to be integrable. This implies that for a system of N degrees of freedom,

the Hamilton-Jacobi equations are separable into N independent equations [55]. Consider a

Hamiltonian system H(q,p) described by the generalised coordinates q and conjugate momenta

p. In the case of an integrable system there exists a suitable choice of canonical coordinates

(Q,P ), known as the action angle variables, for which the new momenta Pi are constants of

motion and the new coordinates Qi vary linearly in time [4, 60, 55].

In mathematical terms this means that a Hamiltonian H(p, q) is integrable if there exists

a characteristic function W (q,P ) which generates the new action angle variables Q and P by

means of the equations

p =
∂W (q,P )

∂q
Q =

∂W (q,P )

∂P
. (4.1)

It is required that in the new coordinates the Hamiltonian depends only on the new momenta

P . This is similar to ensuring that W (q,P ) is a solution to the Hamilton-Jacobi equation,

11
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θ1

θ2

 Δθ2 = 2π
ω2

ω1

Figure 4.1: The orbits in an integrable system with two degrees of freedom can be visualised

as trajectories wrapping around a two dimensional torus with characteristic frequencies ω1 and ω2,

relating to the angular advances θ1 and θ2. For rational values of ω2/ω1 the orbital trajectory will

retrace its path, while for irrational values of ω2/ω1 a trajectory will fill the torus densely.

H(q, ∂W/∂q) =
[
q, ∂W/∂q

]
= H̄(P ), (4.2)

where the definition of the Poisson bracket has been used and H̄(P ) is the form of the Hamilto-

nian which only depends on the new momenta P [60, 55].

The equations of motion in P and Q are now equal to

Ṗ = −∂H̄
∂Q

= 0 Q̇ =
∂H̄

∂P
= ω(P ). (4.3)

Integrating the above gives a set of constants of motion and a set of coordinates with periodicity

in time

P = constant Q = ωt+ k (4.4)

For each pair of action angle variable coordinates (Pi, Qi) the orbits of these integrable systems

are nested circles with radius Pi and polar angle Qi. For N pairs of action-angle variables,

the orbits lie on N -dimensional invariant tori in the 2N -dimensional phase space [60, 55]. If we

consider an integrable system with two degrees of freedom, that is a four-dimensional phase space

(as is the case for Kerr spacetime), we can express the motion as trajectories winding around

a 2-dimensional torus. Periodic orbits that follow the same trajectory as it spirals around the

torus will only occur if the ratio of the characteristic frequencies associated with each coordinate
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4. Integrability and Chaos 13

degree of freedom is a rational fraction, i.e.

ω2

ω1
=
m

n
= rational m,n = 1, 2, 3... (4.5)

with the ω’s as calculated from Eq. (4.4). Orbits for which the ratio of characteristic frequencies

have a rational fraction value, are often called resonant orbits, for reasons that will become clear

in Sections 4.5 and 4.6.

Figure 4.1 illustrates this for a system with two degrees of freedom. In the figure the average

angle with which the orbit advances as it wraps around the torus is labelled ∆θ2. This angle

can be expressed in terms of the characteristic frequencies such that ∆θ2 = 2π(ω2/ω1). If ω2/ω1

is a rational fraction, ∆θ2 will be a rational fraction of 2π such that, after a sufficient amount

of windings, the trajectory will retrace its path. For irrational frequency ratios the orbit never

retraces its path, but fills the entire torus densely over time.

In Chapter 8 I will utilise the above action angle variable formalism in order to compute the

occurrence of low-order resonances for all orbits in the Kerr spacetime.

4.2 Chaotic Orbits

In contrast to the periodicities exhibited by orbits of integrable systems, non-integrable sys-

tems can display chaotic orbits. Orbits are considered chaotic if the long-term behaviour of

the orbit remains non-periodic and the orbit depends sensitively on its initial conditions. This

sensitive dependence on initial conditions is quantified mathematically by a positive Lyapunov

exponent. A positive Lyapunov exponent of a given orbit characterises the mean exponential

rate with which other trajectories surrounding the orbit diverge away from it [57, 42]. As was

noted in Chapter 1, the existence of orbits that are sensitive to initial conditions will hinder the

extraction of physical properties from observational data.

4.3 Nearly Integrable Systems

We have seen that the integrability of Hamiltonian systems depends on the system having

a maximum number of independent constants of motion. In Chapter 5 I will consider the

Kerr metric as an example of an integrable system, where the additional constant of motion

is known as the Carter constant [12]. A next system of interest is one where the Hamiltonian

is not exactly integrable, but nearly integrable instead. Near-integrable systems are system for

which the Hamiltonian can be expressed as the Hamiltonian of an integrable system plus some
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perturbation of the integrable Hamiltonian,

H = H0 + εH1, (4.6)

where H0 = H0(P ) is the unperturbed Hamiltonian which is only a function of the actions P in

Eq. 4.4. H1 = H1(P ,Q) is a periodic function called the perturbation Hamiltonian and ε << 1.

Whether nearly integrable systems can remain stable was a question central to the celestial

mechanics of the nineteenth century. During this period mathematicians like Hamilton, Liouville

and Poincaré were attempting to find solutions to the so called N -body problem. The N -body

problem describes the motion of N masses interacting according to Newton’s laws of gravitation.

Through fossil records and other observations scientists were motivated to believe in the long-time

stability of our solar system and yet they had difficulty proving this mathematically [60, 42].

For N ≥ 3 the problem is not solvable in general, but the hope was that, if the three body

system was treated as a perturbation of the integrable two body problem, an approximate solution

could be found. This promoted the refinement of perturbation techniques. The two particular

mathematical difficulties that arose within these techniques were the so-called problem of secular

terms and the problem of small divisors [60].

Secular terms are often formed when expansions of the generalised coordinates used in per-

turbation theories lead to coordinate solutions that have a form such as t sin t, when the solution

should have been periodic instead. These types of solutions are only valid for very small times,

which is unfortunate since in celestial mechanics the long-time scales are of great importance.

Several methods were discovered to overcome this problem, most of which are known as the

averaging method. The small divisors problem is introduced when the ratio of the characteristic

frequencies of the system is rational, consequently causing the characteristic function (W from

Section 4.1) to diverge [60, 50, 40]. The system cannot be integrated by perturbation theory

for rational ratios because of these periodicities, and can at best be solved for irrational valued

ratios if the perturbation series converges [55]. Side stepping the small divisor problem is much

harder than solving the secular terms and was only finally overcome by the advent of the KAM

theorem, which will be discussed in Section 4.6.

4.4 Poincaré Maps

At the same time of the development of perturbation techniques, Poincaré was developing

a qualitative approach for dealing with the N -body problem. He suggested that a dynamical

system can be represented geometrically through its phase portrait. The phase portrait is made

up of all the trajectories which are solutions to the equations of motion of the system. These are
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4. Integrability and Chaos 15

plotted in phase space as orbits or paths where time varies along the trajectory [60].

Since it is hard to visualise a four dimensional phase space, a two dimensional slice of the space

is often chosen in which to map features of the dynamics of the system. A Poincaré map studies

the successive intersections that several orbits make with the chosen two dimensional surface of

section. Each time a trajectory pierces this surface, a point in the map is generated. The plot

produced by a sufficient amount of successive piercing points for several orbits, is the Poincaré

map as shown in Figure 4.4. If dots in a Poincaré map produce a closed curve it indicates a

conserved orbital quantity, since this means that after enough iterations all the possible values,

lying between the constrained minimum and maximum value of each of the two parameters, in

the surface of section had been explored. This is similar to the orbits having covered the phase

space torus densely over time as was explained in Section 4.1. Poincaré maps therefore facilitate

the search for invariant quantities in a perturbed Hamiltonian system and can assist quantifying

to what extent orbits are deviating from the paths associated with the related integrable system.

In this thesis Poincaré maps will be utilised when I consider the integrability of both the Kerr

and Manko-Novikov spacetime.

4.5 Fixed Points and the Poincaré-Birkhoff Theorem

One of the first properties of these maps that Poincaré investigated was that of fixed points.

Fixed points are either points on the Poincaré map that get mapped onto themselves and therefore

correspond to simple periodic orbits that close after crossing the surface of section once [60] or

alternatively they can correspond to orbits with higher periodicity whose trajectories will close

after crossing the surface a number of times.

From Section 4.1 we know that a completely integrable Hamiltonian system can be trans-

formed to action angle variables. In this coordinate system the tori will have concentric circles

as their surface of sections. Each point in a concentric circle is one pair of action angle variables

which can be chosen to imitate polar coordinates (r, θ). As an orbit of the system spirals around

the torus it will intersect the surface of section each time with a constant increase in polar angle

(∆θ = α) as shown in Figure 4.2. The polar angle can depend on the radius of the circle, varying

from torus to torus, i.e. from orbit to orbit. As you move from one torus to the next, α/2π will

change continuously, covering both irrational and rational values.

Poincaré investigated what would happen to this structure if both r and θ are slightly per-

turbed. He conjectured, and Birkhoff later proved, [6, 60] that a small change in the Hamiltonian

will destroy most of the fixed points (i.e. orbits for which the ratio of frequencies are rational).

He showed that under small perturbations the original torus breaks up into smaller tori. For

Stellenbosch University  http://scholar.sun.ac.za



16

(r,θ
0
)

(r,θ
1
)

α

(r,θ
2
)

α

α

Figure 4.2: An integrable system in action angle variables will necessarily have a circular phase

space surface of section, where each concentric circle is defined by a pair of action angle variables

(r, θ), chosen to correspond to polar angles. As an orbit in the system winds around the torus it

will pierce the r− θ surface of section with a constant increment α in polar angle. Moving from one

torus to the next α will change as a function of the radius of the circle.

α/2π = m/n, only an even multiple of n fixed points will remain. This is known as the Poincaré

Birkhoff-Theorem. The breaks of the tori are most prominent for low order rational fractions,

i.e. 1/2, 2/3 etc. For this reason these orbits are often called resonant orbits.

Two types of fixed points are distinguished, namely X-points and O-points. O-points, also

known as stable points, are surrounded by elliptically shaped invariant curves. These islands of

elliptical curves are often termed the Birkhoff Chains of Islands or Islands of stability [51, 5].

The width of the islands increases as the deviation from the integrable system grows [1]. An

interesting property of the Birkhoff chains of islands that I investigate in this thesis is the fact

that, although the characteristic frequencies associated with the orbits in the island change, the

rational ratio of the frequencies remains unchanged throughout the island.

The X-points on the other hand are unstable and surrounded by hyperbolic chaotic curves.

These curves form a thin chaotic layer around the islands of stability. As long as the deviation

from the integrable system remains small, however, the chaotic areas as seen on the surface of

section are constrained to a very narrow band. An equal number of O- and X-points exists and

are arranged alternately around an unperturbed invariant curve [60] as can be seen in Figure 4.3.

4.6 KAM Theorem

The Poincaré-Birkhoff theorem from Section 4.5 teaches that perturbations can destroy the

tori associated with fixed points, i.e. with periodic orbits. This theorem however draws no con-

clusions about the other invariant curves. Are all invariant tori destroyed by the introduction

of small perturbations to an integrable Hamiltonian? The answer to this question lies with the

work by Kolmogorov (1954), Arnold (1963) and Moser (1962). Their collective effort, known as
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Figure 4.3: The surface of section of a perturbed integrable system as shown in Arnold’s paper

of 1963 [2, 60]. The perturbations cause the rational tori to break up into a finite number of

periodic orbits, that show up as alternate O- and X fixed points in the surface of section. The

irrational surface remain as invariant tori. These invariant curves in the surface of section are

called KAM-curves.

the KAM-theorem, finally showed that integrable systems which are slightly perturbed will pre-

serve the integrability of orbits for most initial conditions, through the presence of KAM-curves.

In particular all tori for which the ratio of associated characteristic frequencies is sufficiently

irrational will remain stable under a small perturbation of the Hamiltonian [55]. This means the

tori for which the ratio of frequencies satisfy∣∣∣∣ω2

ω1
− m

n

∣∣∣∣ > k(ε)

n2.5
m,n = 1, 2, 3... and k(ε→ 0)→ 0 (4.7)

are stable under the perturbation εH1 (as presented in Eq. 4.6) in the limit ε << 1 [55, 42].

The domain of frequency ratios ω2/ω1 for which the above does not hold, in other words for

which the tori will become unstable, increases for lower values in n. This means for example

that for more frequency values close to the 2/3-resonance will orbits become unstable, than for

the 3/4-resonance.

The KAM theorem therefore shows that, when an integrable Hamiltonian is perturbed, every

torus associated with a rational ratio of frequencies is destroyed, leaving only an even number

of periodic orbits. On a Poincaré surface of section half of the remaining periodic orbits will

appear as O-points and half of them as X-points. However, provided that the perturbation is

small enough, the sufficiently irrational surfaces will still exist as invariant tori, i.e. they will

remain as closed curves on the Poincaré map. Figure 4.3 shows the break-up of irrational and

rational surfaces schematically.

The invariant curves surrounding the O-points have a fractal structure. Zooming in on the

Stellenbosch University  http://scholar.sun.ac.za



18

tori surrounding the O-point we again see the break-up of rational surfaces and the stability of

most of the irrational surfaces. For mathematical reviews and or proofs of the KAM theorem I

refer the interested reader to [3, 48].

The KAM theorem finally addressed the issue of the stability of the solar system. If you

consider the Earth’s motion about the Sun as a completely integrable two-body problem and then

introduce the other planets in the solar system as perturbations to the problem, the perturbation

could possibly lead to the instability of the Earth’s orbit [60]. However with the results of the

KAM-theorem, Arnold [2] was able to show that the motion of all the planets will remain bound,

except for a very specific set of initial conditions.

4.7 Rotation Curves

In Section 4.5 we investigated measuring the constant angle (α) between successive piercings

in the Poincaré surface of section for an integrable Hamiltonian system expressed in action-

angle variables. Finding a value for α/2π in turn gives the value for the ratio of characteristic

frequencies associated with the system (α/2π = ω2/ω1). This angle expressed as a fraction of a

circle is called the rotation number [18, 58].

It remains useful to calculate the rotation number even when the system is nearly integrable

and therefore not expressible in action angle variables and does not have a circular surface of

section. In this case the angle with which each piercing in a Poincaré map advances will not

be constant, but the convergent average angle of advance is still an indicator of the ratio of

characteristic frequencies of the system.

The rotation number is often expressed as a function of a phase space coordinate. Refer to

Section 4.5 where α for example was a function of the radius of the circular surface of section.

Plotting the dependence of the rotation number on some system parameter gives the rotation

curve. Most often the choice is made to plot the rotation number as a function of the orbital

distance to the central fixed point of the Poincaré map. In action angle variables the distance

from an invariant curve to the central fixed point is just the radius of the circular slice.

From Chapter 3 we know that the Hamiltonian associated with an SAV metric has two

conserved quantities, pt = −E and pφ = Lz, which reduces the Hamiltonian to a two degree of

freedom problem. The rotation number can therefore be used to indicate whether the frequencies

related to the remaining two parameters, namely ωr and ωθ (or ωρ and ωz in factor structure

coordinates, see Section 5.2), have a rational or irrational ratio.

The rotation number of a nearly integrable system is determined from its Poincaré map as

shown in Figure 4.4. Consider a closed curve within a Poincaré map corresponding to a specific
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Figure 4.4: Calculating the rotation number from a given Poincaré map. Each dot in this figure

represents an orbital trajectory piercing the ρ − pρ surface from below. Four successive piercings

of this surface of section is labelled 1 to 4. In order to calculate the rotation number (and hence

find an estimate for the ratio of the characteristic frequencies of the orbit), calculate the clockwise

angle between a sufficient amounts of successive piercings. The rotation number of a given orbit is

found by averaging over the calculated angles (to obtain an average angle of advance) and then by

expressing this value as a fraction of a circle. Refer to Eq. (4.8)

set of initial conditions. Label one of the piercings in the chosen surface of section as the ith

piercing. The next piercing on that curve is then the (i + 1)th piercing and the clockwise angle

between these two dots, relative to the fixed point at the centre of the map, is given by θi.

Calculate θi+1 and the successive angles in a similar way. In the limit where the number of

angles calculated goes to infinity, the average angle expressed as a fraction of a circle is equal to

the rotation number for a given orbit. The mathematical expression corresponding to the above

evaluation is

νθ = lim
N→∞

1

2πN

N∑
i=1

θi, (4.8)

where θi is the clockwise angle between the ith and (i+ 1)th piercing [45].

Note that when the rotation number is determined from a Poincaré map plotting ρ against pρ

as in Figure 4.4 it will have a rational value whenever the number of oscillations along the spatial

axis piercing the surface of section (the z-axis) is equal to a finite number of oscillations along

the other spatial axis (the ρ-axis) [1]. The rotation number therefore relates to the characteristic

frequencies of the system through
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r  or  ρ  

νθ

Rational fraction (O-point)

Undefined rotation number (X-point)

Figure 4.5: For every rational fraction valued rotation number the rotation curve shows a

plateau. This plateau corresponds to the Birkhoff chains of islands in the corresponding Poincaré

map. Within these islands of stability the rotation number remains a constant. An inflection

point on the rotation curve corresponds to an unstable orbit associated with an X-point, for which

the rotation number is undefined. The underlying dashed curve shows the rotation curve for an

integrable system such as Kerr. It has no plateaus or points of inflection.

νθ =
mωρ
nωz

, (4.9)

with m and n integer numbers.

The rotation curve is obtained by plotting the rotation number as a function of the distance

to the centre of the Poincaré map or similarly an initial spatial coordinate. For an integrable case

such as Kerr we expect the rotation curve to be a smooth and monotonically increasing curve.

(Depending on which frequency you choose as the denominator it could also be monotonically

decreasing). However, in a nearly integrable case the rotation curve has many plateaus, each

corresponding to a rational value of the rotation number and signifying a resonance breaking

regular motion. This is shown schematically in Figure 4.5. The plateaus show that, within the

Birkhoff chains of islands surrounding the O-points, the rotation number remains constant. In

contrast, rotation numbers associated with unstable X-points are undefined since these points are

surrounded by thin domains of chaos. These undefined rotation numbers show up as inflection

points on the rotation curve. In Chapter 6 I will make use of rotation curves to investigate the

occurrence of resonances in the Manko-Novikov metric.
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CHAPTER 5

Kerr Metric

After Einstein introduced his theory of general relativity and the accompanying Field Equations

(see Section 3.1), many physicists and mathematicians were interested in finding possible solu-

tions to this set of 4 by 4 symmetric tensor equations. The equations are non-linear and their

solutions not trivial.

One of the first solutions was discovered by Karl Schwarzschild in 1915. The Schwarzschild

solution describes a non-rotating and uncharged black hole, which in its radial asymptotic limit

reduces to flat spacetime. It wasn’t however until the sixties that Roy Kerr would come up

with a metric which included a rotating black hole in its description. The Kerr solution was

first published in Physics Review Letters in 1963 [35]. For a more recent review by Kerr, where

he discusses the details of this historical event and notes the excitement of finally showing the

solution he had found supported rotation, refer to [36].

A rotating solution was important to describe an astrophysical black hole since black holes

are believed to form through the gravitational collapse of massive stars and such a formation

process is unlikely to result in a non-spinning compact object.

In this thesis the Kerr metric serves both as an example of a well-studied integrable SAV

metric and as a base metric for Manko-Novikov, which reduces to Kerr when the quadrupole

deviation is dialled to zero. The Kerr metric describes an asymptotically flat SAV metric, with

two Killing vectors ∂t and ∂φ. However, apart from these two constants of motion introduced

through symmetry, it was famously shown by Carter in 1968 [12] that the metric admits another

constant of motion – which became known as the Carter constant. It is due to the separability of

the Hamilton-Jacobi equations for Kerr that a fourth conserved quantity (after energy, angular

momentum and the Hamiltonian constant) exists. The separability of the Hamilton-Jacobi equa-

tions ensures that Kerr is completely integrable. This means, as discussed in Section 4.1, that

the Kerr metric can be rewritten in terms of action angle variables. The action angle formalism

for Kerr was explored by Schmidt [54]. In his paper he derives expressions for computing the

(invariant) fundamental orbital frequencies of the Kerr metric. I will get back to his work in

Chapter 8 when I analyse the occurrence of resonances in the Kerr spacetime.

21
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Figure 5.1: A schematic representation of the shape a Kerr black hole which shows the ergosphere

and event horizon. The static limit and horizon touch where they are intersected with the black

hole’s axis of rotation, i.e. at θ = 0 and π. Elsewhere the regions are well separated, unless the

black hole is non-spinning (a = 0), in which case the Kerr black hole reduces to the Schwarzschild

solution where the static limit and horizon coincide such that the ergoregion disappears.

5.1 Boyer-Lindquist Coordinates

Although the Boyer-Lindquist coordinates are not the coordinates in which Kerr originally

formulated the spacetime, it is the coordinate system most often used because it allows for

convenient physical interpretations. As we will see below, Boyer-Lindquist coordinates offer

a relatively simple picture of the event horizons, limits and singularities of the Kerr metric,

presented in Figure 5.1.

In Boyer-Lindquist coordinates the external gravitational field of the black hole, i.e. the

gravitational field outside of the event horizon, is described by the line element,

ds2 = −∆

Σ

(
dt− a sin2 θdφ

)2
+

sin2 θ

Σ

(
(r2 + a2)dφ− adt

)2
+

Σ

∆
dr2 + Σdθ2 (5.1)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, M is the mass of the black hole and a = S/M is

the spin of the black hole per unit mass.

All the metric coefficients are independent of t and φ, which shows that Kerr is indeed sta-

tionary and axisymmetric. The intrinsic spin of the black hole causes inertial frames in the

surroundings of the black hole to be dragged along. The closer the frame lies to the black hole,

the more dramatic the dragging effect becomes. This introduces a precession effect relative to

distant stars.
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At the surface

rs = M +
√
M2 − a2 cos2 θ (5.2)

the dragging is so extreme that no observer can remain at rest anymore (relative to distant

stars). All observers will orbit the black hole in the same direction as the rotation of the black

hole itself. This surface is known as the static limit.

The horizon or event horizon of the Kerr black hole is located at

r = rH = M +
√
M2 −Q2 − a2, (5.3)

where Q is the fourth constant of motion or the Carter constant. No particle or photon, once it

has passed the horizon, can ever escape back out again. The area that lies between the static

limit and inner horizon is called the ergoregion or ergosphere.

The above mentioned Carter constant expressed in terms of Boyer-Lindquist coordinates has

the form [47]

Q = p2θ + cos2 θ[a2(µ2 − E2) +
1

sin2 θ
Lz

2] (5.4)

where pθ is the θ-component of the four-momentum and a, µ,E, Lz the spin of the black hole

and the rest mass, energy and angular momentum of the inspiraling probe respectively.

5.2 Prolate Spheroidal Coordinates and Factor Structure Coordinates

While the Boyer-Lindquist coordinates are valuable for understanding the physical properties

of the black hole, prolate spheroidal coordinates are helpful to show the separability and therefore

integrability of the Kerr potential. I will discuss the separability of the effective Kerr potential in

Section 5.4. Prolate spheroidal coordinates (x, y) also serve you well when you generalise from the

Kerr metric to the Manko-Novikov metric. For this reason most of the calculations in the thesis

will be done in this coordinate system. Most often I will make the choice x = cosh ρ and y = cos z,

where (x, y) are the prolate spheroidal coordinates and (ρ, z) factor structure coordinates [8].

These should not be confused with the Weyl coordinates (ρw, zw) used in [22, 45]. Since much

of the work done on the Kerr metric is presented in Boyer-Lindquist coordinates however, I will

give the needed transformation between the coordinate systems next.
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The Kerr line element in prolate spheroidal coordinates is

ds2 = k2e−2ψκe2γκ
(

dx2

x2 − 1
+

dy2

1− y2

)
+k2e−2ψκ(x2 − 1)(1− y2)dφ2 − e2ψκ(dt− ωκdφ)2, (5.5)

where

e2ψκ =
p2x2 + q2y2 − 1

(px+ 1)2 + q2y2
(5.6)

e2γκ =
p2x2 + q2y2 − 1

p2
(5.7)

ωκ =
2kq(1− y2)(px+ 1)

p(p2x2 + q2y2 − 1)
. (5.8)

The boundary of the ergoregion of an SAV spacetime occurs at gtt = 0, i.e. for Kerr when

e2ψK = 0. Also note that p and q are chosen such that p2 + q2 = 1, with p and q real constants

and k a real constant. For convenience the choice k = 1 is often made [10].

5.3 Transformation between Prolate Spheroidal coordinates and Boyer-Lindquist

coordinates

The transformation between the Boyer-Lindquist coordinates (t, r, θ, φ) and the prolate spheroidal

coordinates (t, x, y, φ) [44, 56] is given by

r = M(px+ 1) y = cos θ (5.9)

while choosing

p =

√
M2 − a2
M

q =
a

M
(5.10)

Comparing the coefficients of the dt2 terms in the line elements of Eqs. (5.1) and (5.5) is the

simplest way with which to verify this coordinate transform.

5.4 The Effective Kerr Potential

From Eq. (3.10) we have seen that the effective potential J for an SAV metric can be expressed

in terms of two potentials G and V and the squares of the conjugate momenta, such that

J = (G− µ2)V = p2ρ + p2z.
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It follows that the potential must be positive, since pρ and pz must be real to have physical

meaning. The region for which J > 0 is referred to as the physical space or the allowed region and

describes the parameter space in which the orbits analysed can have a physical interpretation.

Since the Kerr Hamiltonian is integrable it follows that the associated Hamilton-Jacobi equations

for Kerr are separable. This separability can be demonstrated by showing that the effective Kerr

potential is separable. In the next subsection I show how the Kerr potential separates when

using the prolate spheroidal coordinates of Section 5.2.

5.4.1 Separating the effective Kerr potential (J)

To show that the effective Kerr potential is separable in prolate spheroidal coordinates (x, y),

I start by computing G = −gABpApB, where A and B run over t and φ.

From the line element

ds2 = k2e−2ψKe2γK
(

dx2

x2 − 1
+

dy2

1− y2

)
+k2e−2ψK (x2 − 1)(1− y2)dφ2 − e2ψK (dt− ωKdφ)2 (5.11)

it follows that

gAB =

 −e2ψK ωKe
2ψK

ωKe
2ψK k2e−2ψK (x2 − 1)(1− y2)− ω2

Ke
2ψK

 , (5.12)

such that the inverse is equal to

gAB = − 1

k2(x2 − 1)(1− y2)

 −e2ψKω2
K + k2e−2ψK (x2 − 1)(1− y2) −e2ψKωK

−e2ψKωK −e2ψK

 (5.13)

and therefore, using the conserved quantities pt = −E and pφ = Lz,

G = −gABpApB

=
1

k2(x2 − 1)(1− y2)

[(
−e2ψKω2

K +
k2

e2ψK
(x2 − 1)(1− y2)

)
E2 + 2e2ψKωKELz − e2ψKL2

z

]
.

(5.14)

By substituting Eq. (5.14) into Eq. (3.10) and setting µ = 1, the effective potential becomes
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J =
1

(x2 − 1)(1− y2)

[(
−e2γKω2

K +
k2e2γK

e2ψK
2 (x2 − 1)(1− y2)

)
E2 + 2e2γKωKELz − e2γKL2

z

]
− k2e2γK

e2ψK
. (5.15)

Substituting Eqs. (5.6) – (5.8) into Eq. (5.15) and grouping the x and y terms gives

J = (G− 1)V

=
k2
(
7E2 − 1

)
p2

+ x
k2
(
4E2 − 2

)
p

+ x2k2
(
E2 − 1

)
+

1

x2 − 1

(
4k2E2 + 4kELzqp+ L2

zq
2p2 + 4k2E2p2

p4

)
+

x

x2 − 1

(
8k2E2 + 4kELzqp

p3

)
+
y2k2q2

p2
(
E2 − 1

)
− L2

z

1− y2
, (5.16)

such that the effective potential is separable in prolate spheroidal coordinates (x, y).

5.4.2 Physical Space Plots

The allowed physical space is the region for which J > 0 (from Eq. (3.10)). In Figure 5.2

regions for which the effective potential is positive are shown for different parameter values. To

ensure that the squares of p and q sum to 1, I express them as p = cosα and q = sinα. From

Eq. (5.10) we see that, for the mass of the Kerr black hole set to M = 1, changing α to vary

p and q amounts to varying the spin of the black hole, a. The panels of Figure 5.2 show how

the shape of the physical space changes as the spin of the black hole is varied for a fixed energy

and angular momentum. The value for α is changed from 0 to π/2, to ensure that the spin

ranges from 0 to 1. Figure 5.2(a) has α = a = 0, corresponding to a non-spinning black hole.

As the spin increases, from 5.2(b) to 5.2(c), a small bounded area is pinched off from the inner

region. Orbits that are born close to the inner region of the physical space that runs all the way

to the event horizon where ρ = 0 are plunging orbits and will fall rapidly to the central object.

However, geodesic orbits born in the pinched off region will be bounded by its physical space

boundaries and will therefore not plunge to the black hole. In the bottom panels (Figure 5.2(d)

to 5.2(f)) the two regions have merged again with increasing spin. The joined region will continue

to grow radially outwards as a maximally spinning Kerr black hole (a = 1) is approached. Orbits

starting out in the outer part of this joined region can still remain bound. In Chapter 6 we will

investigate bound regions for the Manko-Novikov metric in the same style. The Kerr physical
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a) Physical space plot for E = 0.95, Lz = −3.5, µ = M = k = 1 and α = 0, where p = cosα

and q = sinα was chosen, such that p2 + q2 = 1 as is required. This implies that q = a = 0, i.e. a non-

spinning black hole. (b) Physical space plot for parameter values as before, but with α = 0.1 (i.e.

the spin a ≈ 0.1). The outer region has pinched off to form a small bounded region, which lies

roughly between ρ = 2 and ρ = 3 and is symmetric about the equatorial plane. (c) The value of α

has been increased to 0.3, which implies a spin value of a ≈ 0.3, causing the bounded outer region to

move slightly outwards. (d) At a spin value of a ≈ 0.39 (α = 0.4) the two regions have joined again.

(e) At α = 0.8 the spin has increased to a ≈ 0.72 and the physical space has increased significantly.

(f) The physical space continues to grow outwards as the spin increases and will eventually become

unbound at a = 1, a maximally spinning black hole.

space is revisited in Appendix B where the Kerr limit of the Manko-Novikov metric is verified.

5.5 Poincaré Maps for Kerr

In Section 4.4 Poincaré maps were discussed as a valuable tool for investigating Hamiltonian

flows and the integrability of Hamiltonian systems. In the case of the Kerr spacetime, after

having introduced the constants of motion pt = −E and pφ = Lz, you are left with a system

of two degrees of freedom and therefore a phase space of four dimensions (ρ, z, pρ, pz) where

ρ and z are the factor structure coordinates from Section 5.2. To draw a Poincaré map for

this spacetime, I start by choosing a two dimensional slice in the phase space and study the

successive intersections that the orbital trajectories make with this surface. For convenience’s

sake I chose to study the equatorial plane. That means setting z = π/2 (or y = 0). Figure 5.3(a)
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(a) (b)

Figure 5.3: (a) The effective Kerr potential J(ρ, z) for E = 0.95, Lz = −3.5, k = M = µ = 1, p = cosα

and q = sinα with α = 0.3 – corresponding to the outer region of the top right panel of Figure 5.2.

The horizontal (magenta) slice shows the line J = 0 to indicate the physical space is in the dome

above this plane. The vertical (blue) slice shows the equatorial plane, z = π/2, the chosen surface of

section for creating the Poincaré map on the right. (b) The Poincaré map for the Kerr spacetime

with parameters given above. The map plots the ρ vs. pρ value for orbits piercing the equatorial

plane. The closed curves are typical of a fully integrable system.

shows a three dimensional plot of the effective potential associated with the pinched off region in

Figure 5.2(c). In Figure 5.3(a) the horizontal (magenta) slice shows the surface J = 0, such that

the orbits I am interested in lie in the dome above this plane. The vertical (blue) slice shows the

chosen surface of section (namely the equatorial plane, z = π/2) through which I will study the

orbital piercings.

Each time an orbit pierces the equatorial plane in a chosen direction, e.g. from below, a

point of the Poincaré curve is generated. The plot uncovered by studying a family of orbits

piercing the equatorial plane is the Poincaré Map. Dots that create a closed curve show that the

corresponding orbit has an extra constant of motion. In the case of Kerr, which is integrable and

has the Carter constant as a fourth constant of motion, we therefore expect closed curves for all

initial values and no breaking of the tori. All the resonant periodic orbits are stable and do not

form Birkhoff chains of island as was discussed in Section 4.5.

Consider the expression for the effective Kerr potential on the equatorial plane by setting

y = 0 (z = π/2) in Eq. (5.16),
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p2ρ + p2z = (G− µ2)V = J(ρ,E, Lz, µ
2)

=
k2(7E2 − 1)

p2
+ x

k2(4E2 − 2)

p
+ x2k2(E2 − 1)

+
1

x2 − 1

(
4k2E2 + 4kELzqp+ L2

zq
2p2 + 4k2E2p2

p4

)
+

x

x2 − 1

(
8k2E2 + 4kELzqp

p3

)
− L2

z. (5.17)

The Poincaré map I want to plot is the map of ρ vs. pρ, corresponding to the orbits piercing

the equatorial plane from below. In the separable Kerr case we see that as a quick check, instead

of evolving the equations of motion, we can just plot a contour map of

p2ρ − J(ρ,E, Lz) = −p2z (5.18)

where, for a chosen E, Lz and spin a (and values for µ, M and k), different values of p2z will

create different contours when plotting ρ against pρ , as is seen in Figure 5.3(b). In the case of

Manko-Novikov the effective potential is not separable and, instead of making analytical contour

plots as for Kerr, I will have to evolve the equations of motion numerically and interpolate the

piercing points onto a chosen surface of section.

A Poincaré map for the Kerr spacetime is also shown in Appendix B. There it is obtained as a

result of simplifying the Manko-Novikov spacetime to Kerr by dialling away the Manko-Novikov

quadrupole moment deviation, i.e. by smoothing its bumps and then evaluating the equations

of motion.
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CHAPTER 6

Manko-Novikov Metric

The Manko-Novikov metric is an exact solution to the SAV field equations discussed in Chapter 3.

This family of solutions was found in 1992 by Vladimir Manko and Igor Novikov. The Manko-

Novikov metric is a concise analytical form metric that describes the vacuum exterior of any

axisymmetric object with arbitrary mass multipole moments and a fixed spin [46, 16]. The

Manko-Novikov metric is a deviation off Kerr in the sense that the multipole moments can be

chosen in such a way that they agree with the Kerr multiple moments to a certain order and then

deviate from the Kerr moments at a higher order. By switching off the deviation you recover

Kerr.

As soon as a metric deviates from the Kerr multiple moments, the No-Hair multipole relations

given by Eq. (2.2) no longer hold. Compact objects that differ from Kerr black holes with the

addition of bumps in their higher order multipole moments have previously been termed bumpy

black holes (see Chapter 1). The Manko-Novikov metric is therefore the metric with which I

analyse the features of bumpy black holes.

To arrive at their solution, Manko and Novikov first constructed a non-linear superposition

of the Kerr solution with an arbitrary static vacuum Weyl field [46]. The solution to the Ernst

equation, given in Eq. (3.4), for such a construction has the form

ε = e2ψA−/A+ (6.1)

A∓ := x(1 + ab) + iy(b− a)∓ (1− ia)(1− ib) (6.2)

where ψ is any solution to the Laplace equation ∆ψ = 0, and a and b satisfy a set of first-order

differential equations. (This a should not be confused with the a used to label the spin of the

Kerr metric in Chapter 5.) In the case of the Manko-Novikov solution, ψ is set equal to the

ordinary Weyl multipole moments. That means it has the form

30
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ψ =

∞∑
n=1

αnψn =

∞∑
n=1

αnr
−n−1Pn(xy/r), (6.3)

where r ≡ (x2 + y2 − 1)1/2 (6.4)

and αn = constant. (6.5)

Each ψn satisfies the Laplace equation independently and Pn are the Legendre polynomials.

These expressions are later given in Eq. (6.19). The solution obtained possesses an event horizon

which has singularities only on the equator and is well behaved elsewhere.

In this thesis I will analyse a subclass of the solutions, for which the metric agrees with Kerr

up until the mass quadrupole moment. This means setting αn = 0 for all n 6= 2 in Eq. (6.3). By

varying a single parameter, α2, the quadrupole moment is dialled away from the Kerr solution.

Setting α2 = 0 along with a suitable choice of metric parameters, Kerr is recovered.

In this thesis I will focus on parameter sets which were analysed by both Gair et al. [22]

and Lukes-Gerakopoulos et al. [45] in order to compare my results to theirs. Both these groups

worked in Weyl coordinates (ρw, zw), whereas my analysis is conducted in the factor structure

coordinates (ρ, z) of Section 5.2. The transformation between these is straightforward and can

be found in Appendix A.

6.1 Manko-Novikov Coefficients

As a member of the SAV metrics, the mentioned subclass of Manko-Novikov spacetimes (hence

forth referred to as the Manko-Novikov metric) can be written in terms of the general SAV line

element,

ds2 = k2e−2ψ[e2γ(dρ2 + dz2) +R2dφ2]− e2ψ(dt− ωdφ)2, (6.6)

where again x = cosh ρ and y = cos z such that (x, y) are the prolate spheroidal coordinates and

(ρ, z) factor structure coordinates. In the case of the Manko-Novikov metric the line element

coefficients have the following expressions [22, 45, 8],
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R =
(
x2 − 1

)1/2 (
1− y2

)1/2
(6.7)

e2ψ = e2ψ̃
(
A

B

)
(6.8)

e2γ = e2γ̃
A
(
x2 − y2

)
(x2 − 1) (1− α2)2

(6.9)

ψ̃ = α2
P2

r3
(6.10)

γ̃ =
1

2
ln

x2 − 1

x2 − y2
− 1

2

(
ln

(
a

−α

)
+ ln

(
b

α

))
+ α2

2

9

6

P 2
3 − P 2

2

r6
(6.11)

ω = 2ke−2ψ̃
C

A
− 4kα

1− α2
, (6.12)

where

A =
(
x2 − 1

)
(1 + ab)2 −

(
1− y2

)
(b− a)2 (6.13)

B = [x+ 1 + (x− 1) ab]2 + [(1 + y) a+ (1− y) b]2 (6.14)

C =
(
x2 − 1

)
(1 + ab) [b− a− y (a+ b)] +

(
1− y2

)
(b− a) [1 + ab+ x (1− ab)]. (6.15)

The above a and b are defined in terms of the logarithms

ln

(
a

−α

)
= −2α2[(x− y)

(
P0

r
+
P1

r2
+
P2

r3

)
− 1] (6.16)

ln

(
b

α

)
= −2α2[(x+ y)

(
P0

r
− P1

r2
+
P2

r3

)
− 1], (6.17)

(6.18)

where the Pn are Legendre Polynomials defined recursively as

Pn (u) =
1

2nn!

(
d

dz

)n (
z2 − 1

)n
(6.19)

such that

P0 = 1 P1 = u P2 = −1
2 + 3

2u
2 P3 =

u(5u2−3)
2

(6.20)

with u = xy
r and r =

(
x2 + y2 − 1

) 1
2 . (6.21)

The parameters α, α2 and k determine the multipole moments of the spacetime, with the first
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few having the values

M0 = k
(
1 + α2

)
/
(
1− α2

)
S0 = 0

M1 = 0 S1 = −2αk2
(
1 + α2

)
/
(
1− α2

)2
M2 = −k3[α2 + 4α2

(
1 + α2

) (
1− α2

)−3
] S2 = 0

M3 = 0 S3 = 4αk4[α2 + 2α2
(
1 + α2

) (
1− α2

)−3
]/
(
1− α2

)
.

(6.22)

In order to coincide with Kerr at low order I choose the mass M = M0 and the spin S = S1.

This requires that

k = M 1−α2

1+α2 and α =
−M+

√
M2−(S/M)2

(S/M) . (6.23)

To investigate the effect of a quadrupole deviation from the Kerr value, define the dimensionless

quadrupole deviation as q = −(M2 −MKerr
2 )/M3 where MKerr

2 is as described in Section 2.2 and

Eq. (2.2). In terms of α and k,

MKerr
2 = −S2/M = −4α2k3(1 + α2)

(1− α2)3
. (6.24)

Substituting Eq. (6.24) into the expression of M2 in Eq. (6.22) we note that α2 quantifies the

deviation off Kerr,

M2 = −k3[α2 + 4α2(1 + α2)(1− α2)−3] = −k3α2 +MKerr
2 (6.25)

where

α2 = qM3/k3. (6.26)

6.2 Metric Characteristics

Two conditions are pre-supposed for obtaining a solution that describes an astrophysical

black hole - the spacetime must possess an event horizon and the spacetime must have no closed

timelike curves outside of this horizon. Close timelike curves open up the possibility for traveling

backwards in time, and are thus considered fundamentally unphysical. In Chapter 5 the Kerr

metric was discussed as an example of an astrophysical spacetime. Before continuing my analysis

of the dynamics of the Manko-Novikov metric, I look into these characteristics of the Manko-

Novikov spacetime, and analyse how the quadrupole deviation parameter, q, impacts on them.

Since the Manko-Novikov spacetime does not obey the No-Hair theorems, we expect it to break

one or both of the above mentioned assumptions.

A spacetime is called oblate if its mass quadrupole moment M2 is negative. From Eq. (6.24)
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Figure 6.1: Top row From left to right these panels show the regions for which the Manko-Novikov

component gtt > 0 with gtt = 0 the ergoregion. For all the plots E = 0.95, Lz = 3 and S = 0.9. The first

two panels in the row show the ergoregion for an extreme prolate perturbation (q = −0.95) and a

less extreme prolate perturbation (q = −0.1), respectively. The middle panel shows the unperturbed

spacetime where q = 0 and is therefore equivalent to the Kerr spacetime. The last two panels have

an increasing oblate perturbation with q = 0.1 and q = 0.95 respectively. Bottom row From left to

right these panels show regions in which the Manko-Novikov spacetime exhibit closed timelike

curves (CTCs) as a function of increasing q. All the panels in the bottom row again have E = 0.95,

Lz = 3 and S = 0.9. The first two panels have q = −0.95 and q = −0.1. The size of the region allowing

for CTCs grows as the perturbation grows. For q = 0, corresponding to Kerr there is no region

which admits CTCs. The next two panels have growing CTC regions with q-values q = 0.1 and

q = 0.95.

we see that Kerr is an oblate spacetime as can be expected for a rotating body. Figure 5.1 shows

that in Boyer-Lindquist coordinates the Kerr spacetime can be represented as a sphere that has

been flattened at the top and bottom. This is characteristic of an oblate perturbation. A prolate

spacetime can be depicted as a sphere that has been squashed from the sides and is therefore

elongated along the rotational axis. The type of perturbation (oblate or prolate) caused by the

quadrupole moment deviation parameter q changes as q changes sign. In this thesis Kerr is taken

as the reference metric, such that q > 0 represents an oblate perturbation off Kerr (making Kerr

more oblate) and q < 0 represents a prolate perturbation (making Kerr less oblate).

The Manko-Novikov metric has a horizon at ρ = 0. This event horizon however is broken at

the equatorial plane with a ring singularity at z = π/2 [46, 38]. Recall that the region between the

event horizon and the static limit, beyond which no observer can remain stationary any longer,

is called the ergoregion. For an SAV metric the static limit occurs at gtt = 0 and the ergoregion

at gtt > 0. The top row panels of Figure 6.1 show the ergoregion for a Manko-Novikov compact

object as a function of quadrupole deviation. Notice that a deviation from Kerr, whether prolate

or oblate, causes the ergoregion to be much more complicated, exhibiting lobe structures, than
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(a) (b)

Figure 6.2: (a) Contour lines corresponding to gtt of the Manko-Novikov spacetime with the

same E, Lz and S parameter values as in Figure 6.1 and an oblate perturbation of q = 0.95. The

physical ergoregion occurs for gtt > 0. (b) Contour lines corresponding to gφφ of the Manko-Novikov

metric with the same parameter values as mentioned above. The regions for which gφφ < 0 indicate

regions where closed timelike curves can occur. In both plots red indicates negative values and

blue positive values. The black line shows where the metric component is equal to zero.

for Kerr itself when q = 0. The shape of the ergoregion changes with respect to the type of

perturbation. For prolate perturbations, the ergoregion has two main parts, one lying above the

equatorial plane, the other below, whereas the oblate perturbed system has an ergoregion with

three parts, one of which spans the equatorial plane and the others again above and below the

equatorial plane respectively [22].

To investigate the presence of possible closed timelike curves in the spacetime we consider the

conditions for which gφφ < 0 [22]. The bottom panels of Figure 6.1 show the Manko-Novikov

regions that exhibit closed timelike curves as a function of different q values. Again these regions

have lobe like structures and vary in shape depending on whether the perturbation is prolate

or oblate. Notice that for q = 0 there are no closed timelike curves as one would expect for the

astrophysical Kerr spacetime. One way to get rid of these closed timelike loops is by constructing

an inner boundary and only considering the solutions exterior to that boundary. In this thesis

all the orbital analysis will be conducted in the regions outside of these unphysical regions that

would allow particles to move backwards in time. Figure 6.2 again shows the Manko-Novikov

metric components gtt and gφφ for a constant spin and constant quadrupole deviation parameter.

In this figure contour lines for constant metric component values are plotted, showing how the

positive and negative regions for each are formed.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: (a)-(c) The energy increases from E = 0.93 to E = 0.94 to E = 0.95, all the while

keeping angular momentum constant. (d)-(e) As the energy continues to rise taking on values

E = 0.96, E = 0.97 and E = 0.99 the previously disjoint regions merge to form one bounded physical

space. For E = 1.0 the merged region diverges to the right and does not close any longer. Note the

symmetry of the physical space about the equatorial plane for which z = π/2 ≈ 1.571

6.3 Physical Space

To analyse orbital structure in Manko-Novikov spacetime I again investigate bound regions

of the positive effective potential, J(ρ, z), presented in Eq. (3.10), for a given parameter set,

(E,Lz, µ, α, α2). I set the rest mass of the probe (µ) and the mass of the black hole (M) equal to

unity and choose to investigate a rapidly spinning black hole with S = 0.9 that has a high oblate

quadrupole deviation measure, q = 0.95, such that α = 0.6268 by Eq. (6.23) and α2 = 11.4708

by Eq. (6.26).

I now study the physical region as a function of changing energy E and azimuthal angular

momentum Lz independently. Figure 6.3 shows how the bound regions of physical space change

with a change in E. In Figure 6.4 similar effects can be obtained by varying Lz. In each of

these figures the line J = 0 is plotted. Everything inside the bounded regions represent areas for

which J > 0. The curves that don’t close and lie at values for which roughly ρ < 1.2 represent

plunging orbits. Probes in this region will rapidly fall onto the compact object at the centre.

In Figure 6.3 we see that, as the energy increases from 6.3(a) to 6.3(c) a bounded outer region

appears to the right of the bounded inner region. These two regions grow in size as the energy
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: (a)-(c) Keeping the energy constant at E = 0.95 the angular momentum is increased

from Lz = 2.4 to Lz = 2.9 to again having Lz = 3.0 when the regions pinch off. (d)-(e) As the angular

momentum increases even more, from Lz = 3.2 to Lz = 3.4 the outer region shrinks until for Lz = 3.5

it has disappeared entirely.

increases. In panel 6.3(d) a further increase in energy has caused the inner and outer physical

spaces to merge. In Figure 6.4 the physical space starts out as a merged space (panel 6.4(a)) and

then slowly separates as Lz is increased. Finally for a high enough Lz (panel 6.4(f)) the outer

region has disappeared.

An interesting parameter configuration from the above is the case for which E = 0.95 and

Lz = 3. For these values, along with the chosen spin and quadrupole deviation, the physical

space has split into two, exhibiting two bound regions with the inner boundaries relatively close

to each other. This physical space was the focus of the studies by both Gair et al.[22] and Lukes-

Gerakopoulos et al. [45]. I will start my analysis of the orbital structure within the Manko-

Novikov spacetime by examining this configuration. Figure 6.5 shows the three dimensional

structure of the effective potential J for these parameters. The lines on the 3D-figure have

constant J values.
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Figure 6.5: The effective Manko-Novikov potential (J) as a function of coordinates ρ and z with

S = 0.9, q = 0.95, E = 0.95 and Lz = 3. The black lines are lines of constant J-value. The region for

which J > 0 represents the physical space for this set of parameters.

1.5 2 2.5 3 3.5 4
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1.2

1.4
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2

2.2

ρ

z

Figure 6.6: Orbital trajectories in the physical space regions of the Manko-Novikov spacetime

for a given parameter set. The chosen parameters are E = 0.95, Lz = 3, S = 0.9 (α = −0.6268), q = 0.95

(α2 = 11.4708) and k = 1−α2

1+α2 . The black circles indicate the starting point of each orbit (on the

equatorial plane, shooting out of the plane). In the outer region the orbits appears regular, whereas

in the inner region the motion seems more chaotic. The green (dotted) and red (solid) lines in

the inner region are orbits with initial conditions close to each other (the ρ coordinates lie within

≈ 5 × 10−6% of each other). The trajectories for these orbits deviate significantly from each other.

This is characteristic of chaotic motion.
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6.4 Orbital Motion

Since the Manko-Novikov spacetime described here is a perturbation off Kerr and Kerr is

an integrable SAV metric exhibiting a fourth constant of motion (the Carter constant, refer to

Chapter 5), it is of interest to explore the integrability of the Manko-Novikov metric and the

possibility of finding an extra integral of motion in its case too. To start this exploration I examine

the dynamics of a test particle within the allowed physical space region. This is done by solving

the SAV equations of motion using the Manko-Novikov coefficients presented in Section 6.1.

Recall from Eq. (3.11) that the equations of motion have the form q̇i = pi/V and ṗi = ∂qiJ/2V ,

where the index i runs over the (factor structure) coordinates ρ and z. The potentials J and V

are defined in Eq. (3.10) and the corresponding metric coefficients are calculated from Eqs. (6.8)

to (6.21).

To plot the orbital trajectories in the ρ-z phase space slice, I find approximate solutions to

the equations of motion by integrating over discretised proper time. For this purpose I make

use of a numerical integrator that is based on an adaptive Runge-Kutta formula known as the

Dormand-Prince pair [52].

To find approximate solutions to the equations of motion the integrator is presented with a set

of initial conditions (ρ, z, pρ, pz) that lie within the physical space. Only three of these are needed,

since the fourth initial condition is automatically constrained by the other three initial conditions

and the Hamiltonian constraint (refer to Eq. (3.10)). I make the simple choice of starting the

orbit on the equatorial plane (z = π/2) and giving the particle initial momentum out of the

equatorial plane only (i.e. pρ = 0 and pz =
√
J(ρ, z) ). I then plot the (ρ, z) trajectories as they

evolve in proper time for various starting points in ρ. Figure 6.6 shows an example of orbital

trajectories in the Manko-Novikov spacetime. At a first glance the orbits in the outer bounded

region appear regular and typical of a system that exhibits integrability i.e. an extra constant

of motion. The orbital structure of the inner region, closer to the compact object, however

looks irregular and chaotic. Both Gair et al.[22] and Lukes-Gerakopoulos et al.[45] found this

same basic correlation of regular motion with the outer region and chaotic motion with the inner

region. They differ however in their more detailed analysis of the dynamics of the spacetime. I

will further my investigation of the integrability of the spacetime by constructing Poincaré maps

for the parameter sets associated with these two bounded regions.

6.5 Poincaré Maps

In the case of the Kerr metric I was able to derive an expression for the Poincaré map without

evolving the equations of motion. This was possible since the separability of the effective potential
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Figure 6.7: Poincaré maps of the Manko-Novikov metric. (a) The outer region has mostly closed

curves indicative of an additional constant of motion, however Birkhoff chains of islands appear

which shows chaotic motion is present. (b) An O-point and X-point from the above map. (c) The

map for the inner region is filled with dots characteristic of a chaotic system, but several closed

curves appear too.
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made an analytic solution possible and a contour construction therefore straightforward. In the

case of the Manko-Novikov metric the effective potential J is not separable. In order to obtain

the Poincaré plot I have to find exact points of intersection of the orbital trajectories with a slice

of section. I used a numerical integrator (suited for non-stiff functions) to approximate solutions

to the equations of motion. In order to resolve the details of the structure of the Poincaré map,

I evolved the equations for a million timesteps per orbit, with tolerances as follows: an initial

step tolerance of 10−10, a relative tolerance of 10−9 and an absolute tolerance of 10−12§.

Each orbit was started on the equatorial plane (z = π/2) with initial momentum out of the

plane (i.e. pρ = 0 and pz =
√
J(ρ,E, Lz, α, α2, µ) ). To cover the physical space (for a given

E,Lz, α, α2 and µ) I advanced the ρ coordinate at times with increments as small as 0.002.

After solving the equations of motion per set of initial conditions I interpolated the results to

restrict myself to values in the equatorial plane. I chose to always evaluate the piercings of

the ρ − pρ slice made by trajectories that approached the surface from below and then passed

upwards through it.

Figure 6.7(a) gives the Poincaré map for the outer region corresponding to Figure 6.6 for

which E = 0.95, Lz = 3, S = 0.9 and q = 0.95. The Poincaré surface of section for this region

exhibits mostly closed curves, indicative of an extra invariant quantity. This structure matches

what both [22] and [45] found. However, fine combing the allowed physical space region we

see that some of the closed curves are broken up and Birkhoff chains of islands surrounding the

elliptical fixed points (as described in Section 4.5) can be made out. These islands were not found

by [22] who did a too coarse overview of the parameter space. The Poincaré map they plotted

had only closed curves in the outer region and therefore prompted them to speculate about the

existence of a possible fourth constant of motion, in the same way that Kerr is associated with

the Carter constant. The Birkhoff chains of island were however noted by [45].

Studying Figure 6.7(a) we see that two chains of islands can be made out in the outer region.

The one island chain has a multiplicity of 3, meaning the invariant curve has split up to form

3 islands, i.e. 3 O-points and 3 X-points. The other island chain seen in Figure 6.7(a) has

multiplicity 2. These islands are especially thin and hard to pick up in this surface of section.

By choosing different initial conditions a Poincaré map can be generated that shows an island

chain with multiplicity 2 more clearly. The existence of these two types of chains of islands

proves that the system is non-integrable and the regular motion broken [45]. Some particular

§The tolerances adapt the time step size of the integrator. The initial tolerance provides an upper bound on
the size of the first step and sets the scale of the problem. The relative tolerance provides the largest acceptable
error relative to the size of each solution component during each time step. The absolute tolerance provides the
largest acceptable error as solutions approach zero, i.e. it provides a measure of the smallest possible solution. If
either the specified relative or absolute error is exceeded the time step size is reduced.
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integrable systems with one type of island of stability do exist, however as soon as a system has

more than one type of island it cannot be integrable any longer [17, 16].

The two panels of Figure 6.7(b) zoom in on an O-point and X-point, respectively, of Fig-

ure 6.7(a). The O-point shown corresponds to the islands of multiplicity 3, whereas the X-point

corresponds to the 2-chain island. The dark regions left and right of the X-point are made up

of single dots and represent the chaotic motion associated with X-points as was discussed in

Section 4.5.

In the next section we will see that an easier way to find these chains of islands than scanning

the parameter space carefully is by means of the rotation number. We expect the islands of

stability to be associated with resonant orbits i.e. with rational frequency ratios as was shown

in Figure 4.5. Figure 6.7(c) gives the Poincaré map of the inner region shown in Figure 6.6. As

expected form the orbital plots, the biggest part of this Poincaré map is made up of piercings

covering the space in its entirety and not forming any closed curves. What is unexpected however

is the regular looking islands seen within this Poincaré map. A single multiplicity island lying

between ρ-values 1.4 and 1.57 is found as well as a 3-chain island around ρ ≈ 1.85 which is harder

to discern. These islands of stability were not found by [22], but were picked up by [45]. The

orbital motion corresponding to the multiplicity-3 islands in the outer region (Figure 6.7(a)) as

well as the orbits of the main island in the inner region (Figure 6.7(c)) are shown in Figure 6.8. We

see in Figure 6.8(a) that the orbits are tri-periodic, travelling from island to island. Figure 6.8(b)

shows that the orbits in the main island of the inner region are contained and ordered as is

expected form invariant curves in a Poincaré map. The structure of the orbits is however much

more complicated when comparing them to the orbital trajectories of the outer region shown in

Figure 6.6 (in blue).

6.6 Rotation Curves and Resonances

The detailed Poincaré map in the previous section exhibited the typical Birkhoff chains of

islands (or islands of stability) that are associated with the breakdown of resonant tori in a nearly

integrable system. In this section I set out to calculate the rotation curve for the Poincaré map

to confirm that the islands are indeed associated with rational fraction values of the ratio of the

characteristic frequencies of the system.

After having evolved the equations of motion and interpolating such that I am only considering

points in the equatorial plane, I use these solutions to set up vectors that successively connect

each point with the centre of the Poincaré map, as was done in Figure 4.4. The centre point

value is calculated by finding the local maximum of the effective potential which corresponds to
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Figure 6.8: (a) The trajectories of two orbits that corresponds to the multiplicity 3 islands found

in Figure 6.7(a). Their starting points are ρ = 2.92 (blue) and ρ = 2.93 (red). Notice that they have

a turning point within the physical space, whereas the green orbit that lies just outside of the

islands (ρ = 2.91) has all its turning points on the boundaries of the physical space. (b) Orbits from

the inner region of the physical space which corresponds to the main island in Figure 6.7(c). Their

respective radial starting points are ρ = 1.4 (magenta), 1.41 (blue), 1.43 (red) and 1.45 (green). The

single black line corresponds to the fixed point (centre point of the Poincaré map) and has ρ ≈ 1.458.

The orbit in the background is a chaotic orbit from the region outside of the main island. All the

orbits in (a) and (b) were launched from the equatorial plane (z = π/2) and out of the plane (pρ = 0).

the fixed point to a high order of accuracy. Refer to Figure 6.5 to see this correspondence.

Averaging over a sufficient number of calculated angles and expressing this average as a

fraction of a circle (refer to Eq. (4.8)) gives the rotation number for a given orbit, i.e. for a given

closed curve on the Poincaré map. I plot these values as a function of the orbit’s leftmost ρ value

which is the initial ρ value. This can be translated to a distance from the centre point as well.

The rotation curve for the Poincaré map in Figure 6.7(a) (i.e. the outer region) is shown

in Figure 6.9(a). The plot shows that the rotation curve increases monotonically and is mostly

smooth. However, as expected, there is a plateau in the curve where the rotation number equals
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Figure 6.9: (a) Rotation curve for the Manko-Novikov metric with E = 0.95 and Lz = 3 and spin

and quadrupole deviation as before. The rotation curve shows a plateau at the rational number 2/3

corresponding to the multiplicity-3 islands of stability present in the Poincaré map of Figure 6.7(a).

(b) An enlargement of the 2/3-plateau. (c) The rotation number for the X-point associated with

the 1/2 resonance in Figure 6.7(a) is undefined. This is seen as an inflection point at νθ = 1/2 on

the rotation curve. Note that the ρ-values on all the plots correspond to the initial ρ-value of an

equatorial orbit.
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Figure 6.10: The rotation curve for a system with initial conditions along the line pρ = 0.1

shows the 1/2-plateau that was previously not seen in Figure 6.9. For this different set of starting

points the rotation number remains equal to 1/2 for all the orbits with initial conditions within the

associated island of stability.

a rational fraction value such as 2/3. The rotation number remains equal to this value over a

small range in ρ as can be seen more clearly in Figure 6.9(b). Looking back at the Poincaré map

in Figure 6.7(a) we see that these ρ’s correspond to the Birkhoff chains of islands of multiplicity

3. Figure 6.7(b) shows an X-point in the equatorial plane for ρ ≈ 2.5073. Recall from Section 4.7

that the rotation number associated with an X-point is undefined and therefore shows up as an

inflection point in the rotation curve. This inflection point associated with the 1/2 resonance is

visible in Figure 6.9(c).

To see the plateau associated with the 1/2 resonance I have to change the initial conditions of

the orbits such that the X-point itself is not a starting condition. By choosing a different initial

momentum (pρ = 0.1 instead of pρ = 0) the plateau in the rotation curve can be found. This 1/2

resonance is shown in Figure 6.10.

6.7 Observational Signatures

6.7.1 Quadrupole deviation

The plateaus seen in the rotation curves associated with orbital motion in the Manko-Novikov

metric can in principle serve as an observational signature for a non-Kerr central compact object.

The magnitude of the plateau scales with the size of the islands of stability and hence with

the magnitude of the deviation parameter q. In Figure 6.11 I show two Poincaré maps and

the corresponding rotation curves for a quadrupole deviation parameter of q = 0.5 and 0.2

respectively. The orbital constants of motion are as before. Comparing the Poincaré map in

Figure 6.11(a) with the Poincaré map in Figure 6.7(a) we see that, as q changes from 0.95
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Figure 6.11: Changing the quadrupole deviation parameter. The panels in (a) have a deviation

measure of q = 0.5, this is lowered to q = 0.2 in (b). For q = 0.5 a Birkhoff chain of islands appears

close to the inner boundary of the physical spaces. The existence of the island of stability shows

up as a 2/3-plateau in the corresponding rotation curve. For q = 0.2 no islands of stability are

seen in the physical space and the rotation curve shows no real plateaus. Thus, the smaller the

deviation from Kerr, the less likely we are to see a significant difference between the Kerr and the

Manko-Novikov metric.

to q = 0.5, the island of stability with multiplicity 3 remains visible, but has moved closer in

(i.e. closer to the compact object). The rotation curve corresponding to this value of q = 0.5

exhibits a plateau for νθ = 2/3. This plateau is roughly 4 times smaller than the 2/3 plateau

seen when q = 0.95. In Figure 6.11(b) the q value has been shrunk even further to q = 0.2. For

this value of q my numerical technique no longer picks up any island of stability in the Poincaré

map. Instead it shows a periodic orbit where an island of stability was anticipated. Also in the

rotation curve there is no proper plateau. For such small deviations from Kerr it will therefore be

increasingly difficult to measure the observational differences between an EMRI event involving

a Manko-Novikov compact object and an EMRI event involving a conventional Kerr black hole.
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Figure 6.12: The Radial (a) and polar (b) oscillations plotted as a function of proper time. The

chosen orbit has initial conditions on the equatorial plane, with momentum out of the plane (pρ = 0)

and starting position ρ = 2.7. The geodesic parameters have values E = 0.95, Lz = 3, S = 0.9, q = 0.95

and µ = 1, M = 1 as before. In panels (c) and (d) the periodicity of the radial and polar coordinates

are clear from the prominent peaks (Ωr and Ωθ) in each of the corresponding Fourier spectra.

6.7.2 Coordinate Frequencies and Fourier Transforms

The Poincaré maps and corresponding rotation curves have been useful to investigate the

integrability of the Manko-Novikov metric by indicating whether and where islands of stability

associated with non-integrable systems occur. The plateaus in the rotation curves have been

considered as possible candidates by which to distinguish non-Kerr black holes from Kerr black

holes. However, once we are able to detect the gravitational waves coming off an EMRI event,

it will be the oscillations and corresponding Fourier spectra of the system frequencies that we

observe [45]. In this section I further my investigation of the relationship between the calculated

rotation number and the observed Fourier spectra that we expect to construct from observational

measurements.

Figures 6.12(a) and 6.12(b) show the radial and polar oscillations for a given orbit in the

Manko-Novikov space. These were achieved by evolving the equations of motion for 105 time

steps of constant size dt = 0.01. The constant time steps ensure that the renormalisation of the

frequency axis to produce Fourier spectra is straightforward. For the purpose of this investigation

I have transformed back to Boyer-Lindquist coordinates using Eq. (5.9). The motivation for

this is that the Boyer-Lindquist (r, θ) have a more clear physical interpretation than the factor

structure coordinates (ρ, z) in which the Manko-Novikov metric was presented. In the Boyer-

Lindquist coordinates the Fourier spectrum of the radial frequency also has higher intensity peaks
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Figure 6.13: The ratio of the prominent frequencies obtained from Fourier spectra plotted as a

function of the orbital rotation number. The calculated orbital data (blue dots) are fitted with the

function νθ/(1 − νθ) (red line). The orbital parameters are (E,Lz, S, q) = (0.95, 3, 0.9, 0.95) with initial

conditions on the equatorial plane and momenta out of the equatorial plane (pρ = 0).

which makes it more suited for determining the characteristic frequency of the orbits [45]. (Note

that, since y = cos z in factor structure coordinates and y = cos θ from Eq. (5.9), it follows that

z = θ.)

The Fourier spectra of the orbital oscillations shown in Figure 6.12(a) and 6.12(b) are pre-

sented in Figure 6.12(c) and 6.12(d). These were produced through fast Fourier transforms of

the oscillatory data. Each Fourier spectrum shows the most prominent peak associated with

the radial and polar oscillations independently. The frequencies associated with these peaks are

labelled Ωr and Ωθ.

In Figure 6.13 I plot the ratio of the frequencies associated with the most prominent Fourier

peaks (Ωr/Ωθ) as a function of the orbital rotation number. The following empirical relationship

is obtained from Figure 6.13

Ωρ

Ωz
=

νθ
1− νθ

. (6.27)

A possible explanation for this relationship is that we expect the frequency value associated

with the highest peak in the Fourier spectrum to be equal to a multiple of the fundamental

frequencies (ωi) of the system, i.e.

Ωk =
∑
i

aki ωi (6.28)

with aki ’s integers [45]. The ratio of frequencies associated with the most intense peaks (which

are not harmonically related to each other) can therefore be expressed in terms of the rotation

Stellenbosch University  http://scholar.sun.ac.za



6. Manko-Novikov Metric 49

number such that

Ωρ

Ωz
=
a1ωρ + a2ωz
b1ωρ + b2ωz

=
ā1νθ + ā2
b̄1νθ + b̄2

(6.29)

where the definition of Eq. (4.9) was used and a1, a2, b1 and b2 as well as the barred quantities

are integers. The empirical relationship found in Eq. (6.13) suggests that in this case ā1 = 1,

ā2 = 0, b̄1 = −1 and b̄2 = 1.

As an example consider the Fourier spectra of the orbit which has the starting position

(ρ, z) = (2.7, π/2) as depicted in Figure 6.12(c) and 6.12(d). By introducing a Gaussian curve

fit to the prominent peaks of the Fourier spectra, I find that Ωr = Ωρ ≈ 4.646× 10−3 and

Ωθ = Ωz ≈ 3.132× 10−3. It follows that Ωρ/Ωz ≈ 1.48. The rotation number corresponding

to this orbit with starting point ρ = 2.7 is νθ ≈ 0.5971, as can roughly be seen from Fig-

ure 6.9(a). From these values we see that the empirical relationship of Eq. (6.27) holds, since

νθ/(1− νθ) = 0.5971/(1− 0.5971) ≈ 1.48

For a resonant orbit with νθ = 2/3, I find that Ωρ/Ωz ≈ 4.705× 10−3/2.35× 10−3 ≈ 2/1, so

that the ratio of characteristic frequencies is a rational fraction as was expected.

These calculations aim to illustrate the relationship that exists between the observable out-

puts, namely the Fourier spectra obtained from the detected gravitational waves, and the rotation

curves constructed from a theoretical analysis of the relevant Hamiltonian system.
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CHAPTER 7

Investigating Orbital Behaviour in a

Non-convex Effective Potential

In Chapter 6 I investigated the Manko-Novikov spacetime’s integrability by means of orbital

plots, Poincaré maps and rotation curves. The analysis was done for a given set of parameters

(E = 0.95, Lz = 3, q = 0.95 and S = 0.9) for which the physical space separates into two parts,

namely an outer region that contains mostly regular orbits and an inner region that contains

mostly chaotic orbits. Thorough investigation of the outer region showed that, although at first

it appears regular, at resonance values the closed curves of the Poincaré map break up to form

islands of stability. The spacetime was thus found to be non-integrable and will therefore not

exhibit an extra constant of motion.

Previously in Figures 6.3 and 6.4 we have seen that changing the values of the orbital energy

and angular momentum changes the shape of the allowed physical space. For some combinations

of energy and angular momentum the inner and outer regions of the physical space will fuse. In

this chapter I investigate the orbital dynamics within such a merged or non-convex¶ physical

space.

By increasing the energy from E = 0.95 to E = 0.951 a narrow neck connecting the outer and

inner regions is created as shown in Figure 7.1(a). I investigate this physical space by studying

orbital trajectories with initial conditions on the equatorial plane and varying radial launch

points. Orbits starting in the inner region and in the parts of the neck facing the inner region

spend most of their time in the chaotic regime, but will traverse the neck on occasion. After

escaping through the neck to the outer region the particle exhibits regular motion there before

crossing back to the inner region. Most orbits with initial conditions in the outer region or the

regions of the neck facing the outer region do not traverse the neck. Instead they exhibit the

same regular type motion as was discussed in Chapter 6 for the outer region. If however an orbit

in the outer region starts out very close to the boundary of the outer region’s allowed physical

space, these orbits too will traverse the neck, spending time in both (previously disjoint) regions.

Figure 7.1 shows the orbital structure for different equatorial initial conditions in physical

spaces with necks of changing width. A decrease in angular momentum Lz or, alternatively an

¶A region in Rn is convex if every pair of points within the object can be joined with a straight line segment
that lies within the object. If the inner and outer region of the Manko-Novikov physical space is joined by a neck
it forms a dumbbell shaped object which is non-convex.

50
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increase in energy E, causes the neck to widen. As the neck widens the interactions between the

two regions increase. Orbits in the outer most regions however mainly remain bound to their

side of the physical space (unless the orbits start out close to the boundaries of the outer region).

Two of the orbital trajectories shown in Figure 7.1(c) are presented again in Figure 7.3 - this

time with the contour lines of the associated effective potential superimposed on the figure. The

contour plot of the potential shows two spikes, symmetric about the equatorial plane. Orbits

that visit these plunging regions of the gravitational potential tend to cluster here for long times

before moving off again to the outer region. To gain further insight into the regularity of the

orbits in a merged physical space, I consider the Poincaré maps corresponding to the various

situations.

The Poincaré maps with increasing neck widths are presented in Figure 7.2. From 7.2(a) to

7.2(c) there is a clear increase in chaotic orbits around the main island of the outer region. This

corresponds to observing orbits that start out between the last KAM curve and the boundary of

the outer region. These orbits occasionally travel to the inner region and back again.

The phenomenon by which chaotic layers tend to keep alongside the regular curves has been

termed stickiness by Contopoulos [14, 45]. As long as the chaotic layer remains close to the

invariant curve it will exhibit two characteristic frequencies like conventional regular orbits.

When the layer releases itself from the invariant curve to traverse the neck, the characteristic

frequencies disappear, and the spectrum becomes chaotic [45]. It has been suggested that this

emergence and disappearance of two characteristic frequencies could be a tell-tale sign of a non-

Kerr spacetime, i.e. a bumpy black hole spacetime. However this phenomenon may in practice

be difficult to measure with gravitational wave detectors [45]. Also note from the Poincaré maps

that the main island of stability which existed in the inner region before becomes smaller and

disappears as the neck widens. There is therefore a general increase in chaos as the neck widens

and the two previously disjoint regions merge.

Clearly the occurrences of resonances and the associated chaotic region have a strong depen-

dence on the shape of the gravitational potential. The effective potential is parameterised by

characteristics of the spacetime that describes the compact object around which the low mass

probe orbits. These are the intrinsic spin S and the quadrupole moment deviation q. Addition-

ally the gravitational potential is shaped by the orbital constants of motion, namely the energy

E and angular momentum Lz of the orbiting probe. In Figures 7.1 and 7.2 the S and q remained

constant while E and Lz were changed only slightly. Cleary such an analysis investigates a very

specific situation and not the complete accessible parameter space. One way of aiming to char-

acterise the effective potential and its resonances completely is to find analytic expressions for
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Figure 7.1: The neck connecting the inner and outer regions widens as the energy and angular

momentum is changed. From these orbital structure plots we see that orbits starting in the inner

region can traverse the neck and follow a temporary, more organised trajectory in the outer region

before returning to the inside. Orbits starting in the outer region or the parts of the neck that

face the outer region tend to stay on the outside and exhibit regular structure. From (a) to (c) the

corresponding parameters are (E = 0.951, Lz = 3), (E = 0.98, Lz = 3) and (E = 0.98, Lz = 2).
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Figure 7.2: Poincaré maps corresponding to the orbits of Figure 7.1. As the neck widens the

stickiness surrounding the outer KAM curves increases. This emphasises that not only orbits with

initial condition in the inner region traverse the neck. Instead orbits lying between the last KAM

curve and the outer boundary of the physical space visit both regions too. The increase in neck

width causes the multiplicity 3 island in the outer region to move closer to the neck and shrink. In

the inner region the main island of stability shrinks from (a) to (b) and finally disappears in (c).
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Figure 7.3: Two orbital trajectories in the physical space prescribed by the parameters E = 0.98

and Lz = 2. Overlaid is a contour map of the effective potential J(ρ, z). The two prominent spikes

in the effective potential (ρ ≈ 1.2) cause orbits to cluster in this area of the plot.

the roots of the potential. In Appendix C I set out to calculate the roots of the Manko-Novikov

potential as a function of S, q, E and Lz on the equatorial plane. Eventually I had to be satisfied

with only an analytical expression for the biggest equatorial root, and even such an expression is

long and messy. In the next chapter I devise a different scheme for investigating the occurrence

of resonances (and therefore possibly chaos) as a function of the complete parameter space.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 8

Resonances in Kerr spacetime

In this chapter I start an investigation of the low-order resonances in the Kerr metric. The idea

is to explore, as a function of the complete parameter space, where low-order resonances in Kerr

are likely to occur if the spacetime is to be perturbed. The study was conducted (and will be

expanded on) in collaboration with Dr. Jeandrew Brink and Dr. Tanja Hinderer [7].

From the previous chapters discussing the Manko-Novikov spacetime (Chapter 6 and 7) it is

clear that a change in any of the parameters that characterise a geodesic in the spacetime will

alter the shape of the effective gravitational potential and consequently influence the regularity

of the orbits. Chapter 7 demonstrated how changes in the gravitational potential can create

changes in the transport of orbits between the ergodic region and the more regular region of

the system. Ultimately the geodesic parameters determine where resonances and the associated

breakdown of ordered orbits take place in the Manko-Novikov spacetime.

To date there have been a couple of studies, most notably by Contopoulos, Apostolatos and

Lukes-Gerakopoulos, that aim to quantify the occurrences of resonant orbits in the Manko-

Novikov metric. The investigations are conducted by changing each geodesic parameter inde-

pendently and then noting how the change modifies the shape of the effective potential as well

as the location of the Birkhoff chains in the corresponding Poincaré map [16, 15]. The short-

coming of such an approach is that you are considering the impact of one parameter by itself

separate from the impact of the others. In this way you are always only analysing a very specific

situation and not sampling all of the orbits or all of the parameter space. Ideally we would like

to understand the occurrence of resonances in the Manko-Novikov metric as a function of all the

parameters.

The integrable Kerr metric provides an easier model in which to characterise the resonant

orbits as a function of the complete parameter space. A natural set of variables to transform to

under these circumstances are the Keplerian parameters conventionally used to describe elliptical

orbits. These variables serve well to characterise the physics and geometry of the orbit in an

easily interpretable manner and allow for a direct reduction to ordinary orbital parameters in the

Newtonian regime. This means that instead of describing an orbit in terms of the probe’s energy

E, angular momentum Lz and the Carter constant Q, the orbit is characterised geometrically

by its eccentricity e, its inclination angle θ− and its semi-latus rectum p. The probe’s closest

approach to the central orbit along the elliptical track is called the periastron and is given by
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Figure 8.1: (a) Parameters describing an elliptic orbit of a probe around a black hole. The

eccentricity, e, is a measure of how elliptic the orbit is, i.e. how much it deviates from a circular

orbit. The orbit is perfectly circular when e = 0. As e deviates from 0 it becomes more elliptic until

at e = 1 the orbit is no longer an ellipse but has a parabolic trajectory instead. The semi-lactus

rectum, p, can be defined in terms of the eccentricity and the semi-major axis of the ellipse as is

show in green in the figure. The closest approach of the probe to the compact object is called

the periastron and given by rp in the sketch. The furthest orbital approach is the apastron and is

denoted by ra. (b) The orbital trajectories around a Kerr black hole. The third orbital parameter

necessary to describe these orbits (apart from p and e) is the inclination angle θ−. It measures the

angle between the rotation axis of the black hole and the orbital plane. This can alternatively be

described by ι = π/2 − θ−, the angle with respect to the black hole’s equatorial plane.

rp = p/(1 + e). The furthest distance between the probe and the compact object is the apastron

and equal to ra = p/(1− e). See Figure 8.1 for the geometrical interpretation of these parameters.

By the KAM theorem (presented in Section 4.6) we expect the orbits that have the lowest

resonance value, i.e. for which the denominator of the ratio of the frequencies ωr/ωθ is the lowest,

to have the biggest measurable impact. We have also seen in Chapter 6 that the 1/2- and 2/3-

resonances show up for orbits in the Manko-Novikov spacetime. For these reasons I study the

occurrence of the 1/2- and 2/3-resonance in Kerr in this chapter. The methods used can however

be applied for finding higher order resonances as well. There are different ways of computing

the characteristic frequencies of orbits in the Kerr metric. A systematic approach was presented

by Schmidt in 2002 [54] who used the integrability of the Kerr metric to rewrite the associated

Hamiltonian in terms of action angle variables. Form Chapter 4 Section 4.1 we know that, once a

Hamiltonian system is written in action angle variables, computing its characteristic frequencies

is straightforward (see Eqs. (4.3) and (4.4)). In the next section I give a quick overview of

Schmidt’s results.
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8.1 The Kerr Fundamental Frequencies

To determine the action angle variables a canonical transformation is needed such that the

Kerr Hamiltonian becomes cyclic in all the new generalised coordinates. In Section 4.1 it was

shown that this is similar to finding a characteristic function (W ) which is a solution to the

Hamilton-Jacobi equation given in Eq. (4.2).

An expression for the Hamiltonian associated with the Kerr spacetime is obtained by substi-

tuting the Kerr line element (given in Boyer-Lindquist coordinates in Eq. (5.1)) into the general

expression for the Hamiltonian of an SAV spacetime (Eq. (3.5)),

H(q,p) = −(r2 + a2)2 −∆a2 sin2 θ

2∆Σ
pt

2 − 2aMr

∆Σ
ptpφ

+
∆− a2 sin2 θ

2∆Σ sin2 θ
pφ

2 +
∆

2Σ
pr

2 +
1

2Σ
pθ

2, (8.1)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr+ a2 and a = S/M is the spin per unit mass, as before.

The generalised coordinates and momenta are given by q = (t, r, θ, φ) and p = (pt, pr, pθ, pφ).

After replacing the constants of motion E = −pt, Lz = pφ and Carter constant Q with the

expression given in Eq. (5.4), the characteristic function is given by

W = −Et+

∫ √
R

∆
dr +

∫ √
Θdθ + Lzφ, (8.2)

with

R =
[
(r2 + a2)E − aLz

]2 −∆
[
µ2r2 + (Lz − aE)2 +Q

]
, (8.3)

Θ = Q−
[
(µ2 − E2)a2 +

L2
z

sin2 θ

]
cos2 θ. (8.4)

R and Θ are known as the radial and polar potentials respectively [54]. The characteristic

function is used to rewrite the Hamiltonian using the action angle variables into a form from

which the fundamental frequencies can be calculated. For the details of the calculation I refer

the reader to Schmidt’s paper [54]. The closed form expressions for the fundamental frequencies

are given in terms of integrals that can be approximated numerically. In terms of the Keplerian

variables (p, e, θ−) and dimensionless quantities the characteristic frequencies ω̄r and ω̄θ are

expressed as
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ω̄r =
πpK(k)

(1− e2)Λ
(8.5)

ω̄θ =
πβ̄z+X̄

2Λ
, (8.6)

with Λ = (Ȳ + ā2z2+X̄)K(k)− ā2z2+X̄E(k). (8.7)

The barred quantities are dimensionless and β̄2 = ā2(1− Ē2). The roots of the polar potential

(Eq. (8.4)) are expressed as z2± after having made the substitution z = cos θ, i.e. Θ(z2±) = 0.

The parameter k is a function of these roots such that k =
√
z−/z+. K(k) and E(k) are elliptic

integrals of the first and second kind respectively. The dimensionless radial integrals in Eqs. (8.5)

- (8.7) have the form

X̄ =

∫ π

0

dχ√
J(χ)

(8.8)

Ȳ =

∫ π

0

p2dχ

(1 + e cosχ)2
√
J(χ)

, (8.9)

where J is defined by

J(χ) = (1− Ē2)(1− e2) + 2(1− Ē2 − 1− e2

p
)(1 + e cosχ)

+ ((1− Ē2)
3 + e2

1− e2
− 4

p
+ [ā2(1− Ē2) + L̄z

2
+ Q̄]

1− e2

p
)(1 + e cosχ)2. (8.10)

The parameters E,Lz and Q in Eq. (8.10) should be interpreted as functions of p, e and

z− = cos θ−, such that in the end the fundamental frequencies are functions of only one set

of constants of motion. For a given set of orbital parameters p, e and θ−, I use the scheme

suggested in Appendix B of [54] to calculate the values E,Lz and Q numerically. Four possible

solution sets (E,Lz, Q) arise for a given set of p, e and θ−. The solution sets can easily be

reduced to two, by noting that two solutions correspond to the time reversal of the motion. The

remaining two solutions, (EP , LPz , Q
P ) and (ER, LRz , Q

R), can be interpreted as particles that

either corotate or counterrotate with respect to the rotation of the black hole. Orbits of particles

that corotate with the black hole are called prograde orbits and those that counterrotate are

called retrograde orbits. The prograde angular momentum is higher than the retrograde angular

momentum. On the other hand prograde orbits have lower orbital energy and retrograde orbits

higher orbital energy [54]. In the case of prograde orbits the particle’s angular momentum Lz

and the intrinsic spin of the black hole S (or a) have the same sign, since the rotation is in
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Figure 8.2: The ratio of the fundamental orbital frequencies ωr/ωθ for parameter values a = 0.95,

e = 0.638 and ι = 1.2 as a function of the semi-latus rectum, p, given in units of M . The ratio of

frequencies for prograde orbits is shown in blue and for retrograde orbits in red. In a retrograde

system the possibility of encountering resonances occur further out than for the prograde system.

Two resonant frequency values, 1/2 and 2/3, are highlighted in the figure. If the Kerr metric is

perturbed it is likely that orbits corresponding to these parameters values will be sources of chaotic

motion.

the same direction. In the case of a retrograde orbit the particle’s angular momentum has the

opposite sign of the black hole’s spin.

8.2 Characterising resonances in the global parameter space

I now characterise the ratio of the fundamental frequencies, ωr/ωθ, in terms of the orbital

parameters p, e and ι, where ι = π/2− θ− is the inclination angle with respect to the equato-

rial plane as shown in Figure 8.1(b). Figure 8.2 shows ωr/ωθ for a given eccentricity (e) and

inclination angle (ι) while the semi-latus rectum (p) is the only dependent variable. The ratios

of frequencies for both retrograde and prograde orbits are shown. The fundamental frequencies

were calculated numerically using Eqs. (8.5) - (8.10). In Figure 8.2 the rational fraction values

ωr/ωθ = 1/2 and 2/3 are highlighted. From the plot it is clear that the resonances, 1/2 and 2/3,

occur further out from the black hole for retrograde orbits than for prograde orbits. For both

prograde and retrograde systems the 2/3-resonance is encountered before reaching the closer in

1/2-resonance. In the case of a retrograde system the 2/3-resonance corresponds to p ≈ 12.4M

such that ra ≈ 34.3M and rp ≈ 7.6M .

In order to facilitate a complete parameter study I am interested in finding out where low-

order resonances are expected to occur for the parameter space as a whole. I choose a single

resonance, the 2/3 resonance, and search for the values of (e, p, ι) for which the ratio ωr/ωθ

equals 2/3. The expression for ωr/ωθ given by Eqs. (8.5) and (8.6) is a function of p, e and ι.
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Figure 8.3: The orbital constants of motion (e, p, ι) for which the ratio of the fundamental

frequencies ωr/ωθ = 2/3. For these orbits we therefore expect that resonance is likely to occur if

the Kerr spacetime is perturbed. Each sheet represents prograde motion and corresponds to a

different spin value of the Kerr black hole. The blue (left) sheet has a spin value of S = 0.99, the red

(middle) sheet has S = 0.5 and the magenta (right) sheet has S = 0.2. The lower the spin value of a

prograde orbit, the further out resonance will occur. The resonances seem to be rather insensitive

to the effect of eccentricity.

Since the values for e and ι are well constrained, with 0 < e < 1 and 0 < ι < π/2, I choose

several e’s and ι’s to cover this range and numerically solve the implicit equation ωr/ωθ = 2/3

for p. The resulting sets of data points are plotted to form the sheets in Figure 8.3. All three

sheets correspond to prograde orbits, each with a different spin parameter. The lower the spin

value and the more inclined the orbital plane, the larger the corresponding p value and therefore,

the further out the resonances occur.

From Figure 8.3 we note that the eccentricity of the orbit has the least impact on the location of

the resonances. A quick way to therefore optimise the numerical work is to choose the eccentricity

constant and solve for the values of p and ι for which the frequency ratios have the rational

fraction value of 2/3. Figure 8.4 shows the dependence of the orbits on these two parameters,

p and ι, for both prograde and retrograde orbits with different spin values. In the case of the

retrograde orbits the resonant orbits move outward as the spin increases. We understand this

phenomenon by the fact that in general the orbits of probes are pushed outward when they are

counterrotating with the black hole and pulled inward when they corotate.

The plot also shows that, the higher the inclination angle, the less dependent the resonances

are on the spin value of the black hole. This makes sense since at ι ≈ π/2 you have a polar orbit

where the spin axis lies in the orbital plane. From Figure 8.4 we see that, in the case of a rapidly
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Figure 8.4: Curves corresponding to the resonance value of 2/3 as a function of p and ι, but

with a constant eccentricity of e = 0.6. The blue (solid) curves correspond to a two dimensional

projection of the prograde sheets shown in Figure 8.3 with spin decreasing from S = 0.99 to 0.5 to

0.2 from left to right. The red (dashed) curves are the complementary curves for retrograde orbits.

Here spin increases from left to right with the same three numerical values as for the prograde

curves.

spinning black hole (S = 0.99) and a probe on an orbit with e = 0.6 close to the equatorial plane,

the resonances can occur as far in as p ≈ 4M for prograde orbits and as far out as p ≈ 16M for

retrograde orbits. This translates to radial values of rp ≈ 2.5M , ra ≈ 10M and rp ≈ 10M ,

ra ≈ 40M respectively.

To determine whether these resonances will be observable by LISA (or eLISA) in the Galactic

Centre, consider the following expression for the radial separation of two inspiraling masses as a

function of the gravitational wave frequency [9].

R ≈ 300(
M

2.8M�
)1/3(

100Hz

fGW
)2/3 km (8.11)

where M is the mass of the compact object and fGW the frequency of the emitted gravitational

waves. This can be expressed in units of mass by dividing by the conversion factor G/c2‖. As was

mentioned in Chapter 1, eLISA will be operational in the frequency band 10−4Hz to 10−1Hz.

Recent studies have estimated the mass of Sgr A* at MSgrA∗ ≈ 4.31× 106M� [26]. Inserting

these values into Eq. (8.11) we see that eLISA is sensitive to probes at a radial distance of

0.54M to 54M with respect to Sgr A*. This overlaps with the region within which we roughly

expect to pick up resonances in a perturbed Kerr metric. These results will also be valid for

the Manko-Novikov spacetime with a small quadrupole moment deviation for which the Kerr

spacetime is a good approximation. If indeed the gravitational wave detectors are troubled by

resonances and the introduction of chaotic orbits, disentangling structural information about the

‖G is the gravitational constant equal to G = 6.67384× 10−11m3kg−1s−2 and c = 299792458ms−1 is the speed
of light.
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compact object central to the EMRI event will be increasingly complicated.

8.3 The Relationship between rotation curves and the Keplerian parameter

study

In this section I aim to reconcile the parameters used to produce rotation curves via Poincaré

maps of the Kerr metric, with the Keplerian variables introduced in this chapter. A complete

and analytic understanding of this transformation forms part of a study still in progress. Here I

give one example to show that the transformation holds.

To check this transformation for the Kerr metric I start by picking a set of (p, e, ι) associated

with the resonance for which ωr/ωθ = 2/3 for a given spin value. If I choose a prograde orbit

with the spin value equal to a = 0.5 this means I pick off a point on the red (middle) sheet of

Figure 8.3. Let this point be (p, e, ι) ≈ (8.5827, 0.6, 0.6). Using the numerical technique put forth

in Appendix B of [54] I can calculate the corresponding prograde energy and angular momentum

value. I find that

Ep(a, p, e, ι) = Ep(0.5, 8.5827, 0.6, 0.6) ≈ 0.96525

Lpz(a, p, e, ι) = Lpz(0.5, 8.5827, 0.6, 0.6) ≈ 2.9015 (8.12)

I use these orbital constants of motion together with initial conditions along the equato-

rial plane and initial momentum out of the plane to set up the equations of motion as before

(Eq. (3.11)). I solve these using the same (independent) integrator that was used in Section 6.4

to produce the associated Poincaré map and its corresponding rotation curve. These are shown

in Figure 8.5. I want to pick off the 2/3 resonance from the rotation curve and check that the

coordinates describing its location matches the Keplerian coordinates used to describe this reso-

nance in Figure 8.3. Interpolating the data used to produce the rotation curve in Figure 8.5(b)

shows that the 2/3 resonance occurs when ρ ≈ 2.30007. From Eqs. (5.9) and (5.10) this corre-

sponds to the Boyer Lindquist r ≈ 5.3627. By the Keplerian variables this same periastron rp

value can be calculated using

rp =
p

1 + e
=

8.5827

1.6
= 5.3642. (8.13)

The physical r-location for which the ωθ/ωr = 2/3 resonance occurs in the Kerr spacetime

is therefore independent of the choice of coordinates and the procedure followed. I executed

this check for several orbits to ensure that the transformation holds regardless of the initial
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Figure 8.5: (a) The Poincaré map for orbits with constants of motion (E,Lz, S) =

(0.96525, 2.9015, 0.5). The quadrupole deviation parameter has been set to zero to simplify the Manko-

Novikov effective potential to that of Kerr (see Appendix B). The absence of any islands of stability

confirms that this is indeed the integrable Kerr metric. The initial conditions of all the orbits lie

along the equatorial plane with initial momenta out of the plane. (b) The rotation curve associated

with the Poincaré map above. The 2/3-periodic orbit is shown where the dashed line intersects the

curve, i.e. at ρ ≈ 2.30007.

conditions. A quick and analytic transformation between the methods will be a valuable tool

for switching between the coordinates in which observables of an EMRI event is measured and

coordinates that are theoretically convenient to use.

8.4 Resonances with Carlson’s Integrals

Producing the numerical sheets in Figure 8.3 was computationally expensive∗∗ and therefore

prompted an investigation into solving the fundamental frequencies for Kerr globally in a more

efficient way. We are currently investigating using Carlson’s integrals to speed up the evaluation

∗∗The calculations were done in Mathematica and ran over several hours on a desktop PC with 8 cores (Intel
i7) of 2GB RAM each.
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of the fundamental frequencies. This study is still in an infant phase such that, apart from

introductory statements about Carlson’s integrals, no results are presented in this section.

We have seen that resonant orbits are defined by the parameter values for which ωr and

ωθ have commensurate values. We first rewrite this condition in terms of the radial and polar

potentials respectively. In order to do so we investigate the associated equations of motion. By

Eq. (4.1) we have that pβ = gβα∂W/∂q
α. Using the expression for the characteristic function

(Eq. (8.2)) along with Kerr Hamiltonian given in Eq. (8.1), the r and θ equations of motion are

given by [12, 47]

µΣ
dr

dτ
=
√
R µΣ

dθ

dτ
=
√

Θ, (8.14)

with τ proper time and R and Θ as defined in Eqs. (8.3) and (8.4). From the above the

fundamental frequencies become

µΣ

∫ ra

rp

dr√
R

=

∫ τ2

τ1

dτ =
1

ωr
(8.15)

µΣ

∫ θ−

−θ−

dθ√
Θ

=

∫ τ2

τ1

dτ =
1

ωθ
, (8.16)

where the boundaries of the integrals are the turning points of the radial and polar potentials

respectively. The resonance condition therefore becomes

m

∫ θ−

−θ−

1√
Θ
dθ = n

∫ ra

rp

dr√
R

(8.17)

with m and n integers.

The integrals in the above equation can be rewritten in terms of Carlson’s integrals as follows.

Start by writing the radial (R) and polar potential (Θ) in terms of their roots. The radial

potential is a fourth order polynomial with roots ra > rp > r3 > r4. After substituting z = cos θ,

the polar potential can be expressed as the square of a quadratic polynomial with roots z±. The

integrals in Eq. (8.17) become

an

∫ rp

ra

dr√
(ra − r)(r − rp)(r − r3)(r − r4)

= m

∫ z−

−z−

dz√
(z2 − z2−)(z2 − z2+)

(8.18)
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with a the spin of the Kerr black hole.

These integrals can be written in terms of Carlson’s integrals which have the form

RF (α, β, γ) =
1

2

∫ ∞
0

dt√
(t+ α)(t+ β)(t+ γ)

. (8.19)

The Carlson’s integrals provide a rapidly converging numerical scheme and even the potential

of finding an analytical solution for the fundamental frequencies. We hope to make use of the

symmetries of these types of integrals to solve the resonant conditions. The Carlson’s symmetries

are (amongst others)

RF (α, β, γ) = 2RF (α+ λ, β + λ, γ + λ), (8.20)

where λ = (αβ)1/2 + (αγ)1/2 + (βγ)1/2. Also RF (β, β, β) = β−1/2. Carlson’s functions are

furthermore homogeneous of degree −1/2, such that

RF (λα, λβ, λγ) = λ−1/2RF (α, β, γ). (8.21)

In terms of Carlson’s integrals, the resonance condition of Eq (8.18) becomes

anRF (0, (rp − r3)(ra − r4), (rp − r4)(ra − r3)) = mRF (0, (z− + z+)2, (z− − z+)2) (8.22)

By employing the symmetries of Carlson’s integrals, this can be rewritten such that

RF (0, (rp − r3)(ra − r4), (rp − r4)(ra − r3)) = RF (0,
a2n2

m2
(z2+ − z2−),

a2n2

m2
z2+) (8.23)

The most naive way of solving this equations is to say that the individual entries in each RF

function must be equal. This may not be the most general solution, but it is a starting point.

This brings us to

(rp − r3)(ra − r4) =
a2n2

m2
(z2+ − z2−) (8.24)

(rp − r4)(ra − r3) =
a2n2

m2
z2+ (8.25)

Note that the ratio of these equations is independent of the resonance condition i.e.

(rp − r3)(ra − r4)
(rp − r4)(ra − r3)

= 1−
z2−
z2+

(8.26)
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The next step is to solve the roots of this equation and check whether this could provide

a much quicker numerical scheme by which to produce projections of the sheets in Figure 8.3.

Finalising this work however lies beyond the scope of this thesis.
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CHAPTER 9

Conclusions and Outlook

In this thesis I used the EMRI model to seek a framework within which we will be able to

differentiate between traditional Kerr black holes and bumpy black holes observationally. The

Manko-Novikov metric was presented as an example of a spacetime that allows for compact

objects with multipole mass moments different from Kerr. The dynamics of a low mass probe

in the effective Manko-Novikov potential and the dependence of this motion on the geodesic

parameters was studied. In Chapters 6 and 7, the Manko-Novikov spacetime was explored

numerically to determine whether this non-Kerr spacetime admits any extra constants of motion,

i.e. whether it is integrable or not. By means of Poincaré maps (Figure 6.7) it was found that

certain periodic orbits in the Manko-Novikov spacetime break up into islands of stability, called

Birkhoff chains of islands, with differing multiplicities. These are smoking guns for Hamiltonian

systems which are not integrable. A system which is not integrable can in turn not possess

additional conserved quantities beyond E, Lz and µ. The rotation curves of Figure 6.9 and 6.10

were used to demonstrate that the islands of stability are associated with orbits for which the

ratio of fundamental frequencies has a rational fraction value. It is through resonances that the

breaking of regular orbital motion or alternatively the introduction of chaotic motion takes place.

These findings are in accordance with the predictions of the Poincaré-Birkhoff Theorem and the

KAM theorem of Sections 4.5 and 4.6. The orbits for which the fundamental frequencies have

a ratio equal to a low-order rational fraction such as 2/3 show up as plateaus in the rotation

curves drawn from the corresponding Poincaré maps. These plateaus in rotation curves can serve

as possible observational signatures by which gravitational wave detectors and radio telescopes

using pulsar timing arrays, can differentiate between Kerr black holes and non-Kerr black holes.

Apart from an outer region of the effective potential containing predominantly regular orbits an

inner region exhibiting full blown chaos was also found (Figure 6.7(c)). Changing the orbital

constants of motion (E and Lz) can cause these two regions to merge. Figure 7.1 and 7.2 shows

that within this joint non-convex potential orbits with a hybrid structure of order and chaos

arise. The general increase in the chaos of the system raises questions as to how well we will

be able to distinguish between Kerr and Manko-Novikov black holes, and how trustworthy and

predictable observations will be.

In Chapter 8 I initiated a study by which we ultimately aim to quantify the occurrence of

resonances in the complete Kerr parameter space. The results for the Kerr metric will be valid

67
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for the Manko-Novikov spacetime with a small quadrupole moment deviation (see Section 6.7.1

and Appendix B) and provide quantitative insight into the dynamics of the problem. By the

KAM theorem we expect the break of regularity under a perturbation of the Kerr spacetime to

be best observable for orbits with low-order commensurate frequency values. For this reason I

investigated the occurrence of the lower order resonances in the Kerr metric as a function of its

orbital parameters. I find that the 2/3-resonance occurs further out than the 1/2-resonance as

shown in Figure 8.2. Furthermore in Figure 8.4 I showed that the resonances associated with

retrograde orbits occur further out than those associated with prograde orbits. The higher the

spin value of the black hole, the closer in (further out) the resonances for prograde (retrograde)

orbits occur. This analysis quantises where in the parameter space resonances occur. Our finding

that resonances occur within 40 M (20 Schwarzschild radii) of the event horizon has mainly two

implications for observations in the Galactic Centre

1. Resonances occur in the region where EMRIs enter the eLISA frequency band (10−4 Hz -

10−1Hz) when orbiting Sgr A*

2. There is a large regime between 50M and 1000M where pulsar timing techniques can be

used to track EMRI’s free of resonances. In this nearly integrable regime our result that

low-order resonances are absent, guarantees that canonical perturbation theory calcula-

tions correctly capture the dynamics. In the region where resonances occur the canonical

perturbation theory fails.

The machinery used in Chapter 8 of this thesis to determine the location of resonances in the

Kerr spacetime builds strongly on the work by Schmidt [54] who found a closed form expression

for the Kerr fundamental frequencies as a function of the Keplerian variables. Unfortunately,

solving the corresponding resonant orbits in this way is computationally expensive. A possible

solution to speed up these evaluations is by means of Carlson’s integrals. A further investigation

into the effectiveness of such a technique will form part of a future study that complements the

work done in this thesis.

Other possible future projects include an investigation into the smallest deviation from the

Kerr quadrupole moment that we expect to be measurable. Most of the analysis of the Manko-

Novikov metric in this thesis was conducted with an almost maximum quadrupole deviation

measure of q = 0.95. It is questionable whether we should expect such a dramatic deviation.

The impact of having a much smaller deviation parameter should be investigated thoroughly and

a quantitative study made of the parameter space. To characterise the Manko-Noviko metric
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more effeciently a method for finding an analytic expression for the roots of the effective potential

would be valuable. This can then be used to approximate the Manko-Novikov potential by its

Kerr equivalent and consequently solve the occurrence of resonances in the Manko-Novikov space

globally.
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APPENDIX A

Weyl Coordinates

Weyl coordinates (ρw, zw) are related to the prolate spheroidal coordinates (x, y) in the following

manner.

ρw = k
√

(x2 − 1)(1− y2) zw = kxy (A.1)

Both [22] and [45] presented their analysis of the Manko-Novikov spacetime in Weyl coordinates.

The reverse relationship, namely prolate spheroidal coordinates (x, y) written in terms of Weyl

coordinates (ρw, zw), can be found by choosing

r± =
√
ρw2 + (zw ± k)2 (A.2)

and

x =
r+ + r−

2k
y =

r+ − r−
2k

. (A.3)

To check this relationship, we first note that from Eq. (A.3)

x2 =
r2+ + 2r+r− + r2−

4k2
y2 =

r2+ − 2r+r− + r2−
4k2

(A.4)

and from Eq. (A.2)

r2+ + r2− = ρ2w + z2w + 2kzw + k2 + ρ2w + z2w − 2kzw + k2 (A.5)

= 2(ρ2w + z2w + k2). (A.6)

Substituting the expressions for x2 and y2 given by Eq. (A.4) into ρ2w
k2

= (x2 − 1)(1− y2) gives
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Figure A.1: A physical space plot showing an orbital trajectory for the Manko-Novikov metric

in Weyl coordinates. The parameters E = 0.95, Lz = 3, S = 0.9 and q = 0.95 are chosen to match and

reproduce Figure 4 in [22] as well as Figure 1 in [45].

ρ2w
k2
⇒
(r2+ + 2r+r− + r2− − 4k2

4k2

)(4k2 − r2+ + 2r+r− − r2−
4k2

)
using Eq. (A.6)

=
(2(ρ2w + z2w − k2) + 2r+r−

4k2

)(2r+r− − 2(ρ2w + z2w − k2)+
4k2

)
=

4r2+r
2
− − 4(ρ2w + z2w − k2)2

16k4

=
4(ρ2w + (zw + k)2)(ρ2w + (zw − k)2)− 4(ρ2w + z2w − k2)2

16k4
using Eq. (A.2)

=
4(ρ2w + z2w + 2kzw + k2)(ρ2w + z2w − 2kzw + k2)− 4(ρ2w + z2w − k2)2

16k4

=
4(ρ2w + z2w + k2)2 − 16k2z2w − 4(ρ2w + z2w − k2)2

16k4

=
ρ2wk

2 + z2wk
2 − z2wk2

k4

=
ρ2w
k2

= LHS, (A.7)

by which the transformation holds. Figure A.1 shows that the above transformation correctly

reproduces the plots obtained by [22] and [45].
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APPENDIX B

Manko-Novikov in the Kerr Limit

In this thesis it has often been mentioned that the Manko-Novikov metric can be simplified to

the Kerr spacetime by dialling the quadrupole deviation to zero, that is to say by flattening the

bumps. This Appendix verifies that the Kerr spacetime is a simplification of the Manko-Novikov

spacetime and serves as a check of my numerical work in the previous chapters.

The deviation from Kerr has thus far been described by the parameter α2, which relates to

the actual quadrupole deviation parameter q through

α2 =
qM

k3
, (B.1)

where k is a function of the black hole spin, k = M(1− α2)/(1 + α2), as in Eq. (6.23). I again

set M = 1 throughout. Switching the quadrupole bump off is then the same as setting α2 = 0,

which reduces the Manko-Novikov coefficients (Eqs. (6.8) – (6.19)) as follows,

ψ̃ = α2
P2

r3
= 0 (B.2)

γ̃ =
1

2
ln

(
x2 − 1

x2 − y2

)
− 1

2

(
ln

(
a

−α

)
+ ln

(
b

α

))
+ α2

2

(
3

2

)2 P3
2 − P2

2

r6
(B.3)

=
1

2
ln

(
x2 − 1

x2 − y2

)
(B.4)

ln

(
a

−α

)
= −2α2[(x− y)

(
P0

r
+
P0

r
+
P0

r

)
] = 0 (B.5)

ln

(
b

α

)
= −2α2[(x+ y)

(
P0

r
− P1

r2
+
P2

r3

)
− 1] = 0 (B.6)

Note that from Eqs. (B.5) and (B.6) it follows that a = −α and b = α, such that

A = (x2 − 1)(1− α2)2 − 4α2(1− y2), (B.7)

B = [x+ 1− α2(x− 1)]2 + 4α2y2, (B.8)

C = 2α(x2 − 1)(1− α2) + 2α(1− y2)[1− α2 + x(1 + α2)]. (B.9)

From the reduced parameters above I calculate the elements of the Manko-Novikov metric, in

order to find a relationship between these and the Kerr parameters given by Eqs. (5.6) – (5.8).
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Stellenbosch University  http://scholar.sun.ac.za



B. Manko-Novikov in the Kerr Limit 73

I start by calculating e2ψ for the reduced Manko-Novikov spacetime,

e2ψ = e2ψ̃
A

B
=
A

B
using Eq. (B.2)

=
(x2 − 1)(1− α2)2 − 4α2(1− y2)

(x+ 1− α2(x− 1))2 + 4α2y2
using Eqs. (B.7) and (B.8)

=
k2x2 + 4α2y2

1+α2

2
− 1

(kx+ 1)2 + 4α2y2

(1+α2)2

, (B.10)

where in the last step the substitution k = (1− α2)/(1 + α2) was made. Compare this result

with the expression for e2ψ for the Kerr metric in Eq. (5.6),

e2ψκ =
p2κx

2 + q2κy
2 − 1

(pκx+ 1)2 + q2κy
2
. (B.11)

The κ-subscript is used to emphasise that these are the Kerr metric parameters as given in

Section 5.2. Correlating p2κ with k2 and q2κ with 4α2

(1+α2)2
, which satisfies p2κ + q2κ = 1 as required,

ensures a match. Next I calculate the reduced expression for e2γ by substituting Eqs. (B.2) and

(B.9) into Eq. (6.9) to obtain

e2γ = e2γ̃
A(x2 − y2)

(x2 − 1)(1− α2)2

=
A

(1− α2)2

=
(x2 − 1)(1− α2)2 − 4α2(1− y2)

(1− a2)2

= x2 − 1

k2
+ 4α2y2(1− α2)2

=
x2k2 + 4α2y2

(1+α2)2
− 1

k2
. (B.12)

Compare this with the Kerr form,

e2γκ =
p2κx

2 + q2κy
2 − 1

p2κ
. (B.13)

This is equal to Eq. (B.12) above when again p2κ = k2 and q2κ = 4α2

(1+α2)2
is chosen. It still remains

to be shown that the Manko-Novikov form for ω reduces to the Kerr definition for ωκ. This is

done by substituting Eqs. (B.7) and (B.9) into Eq. (6.12),
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Figure B.1: (a) The reduced physical space of the Manko-Novikov metric when the quadrupole

bumps are dialled away. This plot can either be found by using the Manko-Novikov coefficients of

Section 6.1 and setting q = α2 = 0, with parameters E = 0.95, Lz = 3 and S = 0.9 (α = 0.6268). Or by

using the Kerr coefficients of Section 5.2 with E = 0.95, Lz = 3 and S = 0.9 (α = 0.6268) while choos-

ing pκ = k = (1 − α2)/(1 + α2) = 0.4359 and qκ = 2α/(1 + α2) ≈ 0.9. (b) The Poincaré map for Manko

Novikov simplified to Kerr, with the parameter set as for the physical space plot. In this Poincaré

map I find only closed curves, which shows that Kerr is an integrable spacetime as was expected.

The rotation curve associated with this Poincaré map is monotonically increasing without any

plateaus.

ω = 2k

(
C

A
− 2α

(1− α2)

)
(B.14)

= 2k · 2α
(

(x2 − 1)(1− α2) + (1− y2)(1− α2 + x(1 + α2))

(x2 − 1)(1− α2)2 − 4α2(1− y2)
− 1

(1− α2)

)
(B.15)

=
4kα

(1 + α2)

1

k

 (1− y2)(1 + kx)

x2k2 + 4α2y2

(1+α2)2
− 1

 , (B.16)

which has the format for ωκ = 2kqκ(1−y2)(pκx+1)
pκ(p2κx

2+q2κy
2−1) with pκ = k and qκ = 2α

(1+α2)
.

By choosing pκ and qκ as was given above, we have that all the coefficients of the Manko-

Novikov line element reduce to those of Kerr. Plotting from this the Physical Space and Poincaré

Maps for Kerr gives Figure B.1.
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APPENDIX C

Analytical roots for the effective Manko-Novikov potential

C.1 Roots of Potential V

To find the roots of the effective potential J I consider

J = V (G− µ2) = 0 (C.1)

so that V = 0 or G = 1, for µ = 1. I start by solving V = k2e2γe−2ψ = 0. To simplify the

calculations I only consider roots on the equatorial plane, i.e. y = 0. Then

e2γe−2ψ = e2γ̃−2ψ̃
Ax2

(x2 − 1)(1− α2)2
B

A
(C.2)

= e2γ̃−2ψ̃
Bx2

(x2 − 1)(1− α2)2
. (C.3)

Next I investigate how the expressions for γ̃ and ψ̃ simplify on the equatorial plane. For the

Legendre Polynomials we have P0 = 1, P1 = 0, P2 = 1/2 and P3 = 0. Also r = (x2 − 1)
1
2 . This

brings about a = −b for y = 0, so that

γ̃ =
1

2
ln
x2 − 1

x2 − y2
− 1

2
(ln(

a

−α
) + ln(

b

α
)) + α2

2

9

6

P 2
3 − P 2

2

r6
(C.4)

=
1

2
ln
x2 − 1

x2
− ln(

a

−α
)− 3α2

2

8r6
(C.5)

ψ̃ =
α2P2

r3
= − α2

2r3
(C.6)

and hence

e2ψ−2γ =
(x2 − 1

x2

)α2

a2
e−

3α22
4r6

+
α2
r3 × Bx2

(x2 − 1)(1− α2)2
(C.7)

=
Bα2

a2(1− α2)2
e−

3α22
4r6

+
α2
r3 . (C.8)
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Figure C.1: This figure shows there exists no points of intersection between x = coshρ and −1/k

for −1 < α < 0 which are the values that α takes on for spin values of 0 < S < 1, by Eq. (6.23). This

shows that the roots of the V potential do not dictate the roots of the effective potential J and we

expect that potential G’s roots will play an important role.

Also, B on the equatorial plane is equal to [x(1− α2) + (1 + α2)]2, such that

V =
k2α2[x(1− α2) + (1 + α2)]2

a2(1− α2)2
e−

3α22
4r6

+
α2
r3 (C.9)

=
α2[x(1− α2) + (1 + α2)]2

a2(1 + α2)2
e−

3α22
4r6

+
α2
r3 , (C.10)

(C.11)

where k = (1− α2)/(1 + α2) has been used.

Next insert a = −αe−2α2[x(
1
r
− 1

2r3
)−1] to get

V =
[x(1− α2) + (1 + α2)]2

(1 + α2)2
e4α2[x(

1
r
− 1

2r3
)−1]− 3α22

4r6
+
α2
r3 . (C.12)

Finding the zeros to potential V amounts to solving

[x(1− α2) + (1 + α2)]2

(1 + α2)2
= 0, (C.13)

that is

x = −1 + α2

1− α2
= −1

k
. (C.14)

C.2 Roots of G− µ2

Since from the above it is clear that the roots of J will be determined by the roots of the

function G−µ2, we set out to solve this. Again start by solving the roots on the equatorial plane,

that is set y = 0 in the parameters for the Manko-Novikov metric. The following simplifications
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come about

C

B
=

−2ax

(x+ 1)− a2(x− 1)
(C.15)

A

B
=

(x− 1) + a2(x+ 1)

a2(x− 1)− (x+ 1)
(C.16)

C

A
=

2ax

(x− 1) + a2(x+ 1)
. (C.17)

Using the above and substituting a = −αe−2α2[x(1/r−1/2r3)−1], the potential G can be expressed

as

G = e−
α2
r3

[
α2(α2 − 1)2E2(x− 1)3e

2α2
r3 − (α2 − 1)2E2(x+ 1)3e−

2α2(2r
3−2r2x+x−1)

r3

+ (x− 1)(4αE + α2Lz + Lz)
2e2α2(− x

r3
+ 2x

r
−2)

+ 8α(α2 − 1)E(4αE + α2Lz + Lz)xe
−α2(2r

3−2r2x+x−1)

r3

− α2(x+ 1)(4αE + α2Lz + Lz)
2
]
/
[
(α2 − 1)2(x2 − 1)(α2(x− 1)− (x+ 1)e2α2(− x

r3
+ 2x

r
−2))

]
.

(C.18)

Similarly, for Kerr (where α2 = 0) on the equatorial plane,

GK =
[
− 8ELzα(1 + α2)2 − L2

z(1 + α2)2 − L2
z(1 + α2)2(1 + α2 + x(α2 − 1))

+ E2(−1− 15α2 − 15α4 − α6 + x3(α2 − 1)3 − 3x2(α2 − 1)2(α2 + 1)

+ x(−3− 7α2 + 7α4 + 3α6)
]
/[

(x2 − 1)(α2 − 1)2(−1− α2 + x(α2 − 1))
]
. (C.19)

In the Kerr case solving for GK = 1 amounts to solving the cubic polynomial

a3x
3 + a2x

2 + a1x+ a0 = 0, (C.20)
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where

a3 = (α2 − 1)3(E2 − 1)

a2 = (α2 − 1)2(α2 + 1)(1− 3E2)

a1 = (α2 − 1)3 − L2
z(α

2 − 1)(α2 + 1)2 + E2(−3− 7α2 + 7α4 + 3α6) (C.21)

a0 = −(α2 + 1)
{

(α2 − 1)2 + 8ELzα(α2 + 1) + L2
z(α

2 + 1)2 + E2(1 + 14α2 + α4)
}
. (C.22)

Once in the form of a cubic polynomial this can be solved analytically, see for example [29]. I

now cast the Manko-Novikov metric into the same polynomial shape (although, since it contains

exponential expressions, it’s not an actual polynomial). To solve GMN = 1 I have to find the

roots of the ‘polynomial’ in x, b3x
3 + b2x

2 + b1x
1 + b0 with coefficients

b3 = E2(α2 − 1)2[−e−Ae−2B + α2eA] + (α2 − 1)2[e2C − α2] (C.23)

b2 = 3E2(α2 − 1)2[−e−Ae−2B − α2eA] + (α2 − 1)2[e2C + α2] (C.24)

b1 = 3E2(α2 − 1)2[−e−Ae−2B + α2eA]

+ 8e−Ae−BEα(α2 − 1)(Lz + 4Eα+ Lzα
2)

+ (Lz + 4Eα+ Lzα
2)2e−A[e2C − α2] + (α2 − 1)2[−e2C + α2] (C.25)

b0 = −E2(α2 − 1)2[e−Ae−2B + α2eA]

− (Lz + 4Eα+ Lzα
2)2e−A[e2C + α2]− (α2 − 1)2[e2C + α2] (C.26)

where

eA = eα2/r3 (C.27)

eB = e[α2(−1+2r3+x−2r2x)/r3] (C.28)

eC = e[α2(−2−x/r3+2x/r)]. (C.29)

Replacing these with their expansions around x = 0 to linear order in α2 (after having replaced,

r =
√
x2 − 1), the cubic ‘polynomial’ from before can now be rewritten as quartic polynomial in

x,
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C. Analytical roots for the effective Manko-Novikov potential 79

(a) (b)

Figure C.2: The values of the roots found numerically are for (a) ρ1 ≈
4.13667, ρ2 ≈ 2.40154, ρ3 ≈ 2.28746, ρ4 ≈ 1.27546 and for (b) ρ1 ≈ 4.16974 and

ρ2 ≈ 1.27546. The analytical roots, found by solving the above quartic polyno-

mial (Eq. (C.30)) analytically for the parameter sets (E,Lz, S, q) = (0.95, 3, 0.9, 0.95) and

(E,Lz, S, q) = (0.951, 3, 0.9, 0.95) are (ρ1, ρ2, ρ3, ρ4) ≈ (1.94859, 0.35907 + 3.14i,4.13662, 2.53666) and

(ρ1, ρ2, ρ3, ρ4) ≈ (1.96059, 0.36200 + 3.14i,4.16971, 2.51136). In both cases the biggest numerical

(underlined) root compares well with the biggest analytical root (underlined) for a given set of

parameters.

QMN = (E2 − 1)(α2 − 1)3x4 − (3E2 − 1)(α2 − 1)2(α2 + 1)x3

(α2 − 1)[(α2 − 1)2 − L2
z(α

2 + 1)2 + E2(3 + 10α2 + 3α4)]x2

− [(α2 − 1)2(α2 + 1)− E2(α2 − 1)2(α2 + 1)−

(α2 + 1)(Lz + 4Eα+ Lzα
2)2 + E2(−1 + α2)3α2]x

− 3

2
(α2 − 1)2[1 + E2(1 + 2α2)]α2. (C.30)

From this expression I can analytically solve for the biggest equatorial root for the Manko-Novikov

metric. This is done by rewriting the quartic as a monic polynomial and changing variables to

express it as a depressed quartic (i.e. the coefficient of the cubic term is zero). Finally the roots

of the quartic polynomial are expressed in terms of a newly constructed cubic. For the details

of this process see texts such as [34]. In my analytic calculations of the roots only the biggest

root is accurate since approximating the exponents in Eq. (C.29) to linear order is only a good

approximation for x or r big. The correspondence between the biggest numerical root and the

calculated analytical root is shown in Figure C.2.
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