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Abstract 

Entomopathogenic nematodes have the potential to be outstanding biocontrol agents against 

agricultural pest insects. Combined with their bacterial symbionts, these biocontrol agents have proven to 

be very effective against numerous pests. The nematodes belong to the families Steinernematidae and 

Heterorhabditidae, and are ideal to be used in, and integrated with, pest management systems. There is 

a dire need for new and innovative methods to control agricultural pests, as numerous pest insects have 

developed resistance against broad-spectrum insecticides. Together with the environmental impact of 

these insecticides and the safety aspect regarding humans and animals, the need to develop new 

technologies, including entomopathogenic nematodes for pest management, is high. In this study, the 

associated symbiotic bacteria of three entomopathogenic nematodes species were isolated, and the 

potential of two nematode species to be successfully mass cultured in liquid medium was evaluated. 

Regarding the symbiotic bacteria, results from the study showed that bacteria species from all 

three nematode species, Heterorhabditis noenieputensis, Steinernema khoisanae and Heterorhabditis 

zealandica, were novel. Heterorhabditis noenieputensis was isolated in the Mpumalanga province during 

a previous survey conducted in citrus orchards. The bacterium isolated from this nematode belongs to the 

genus Photorhabdus, and bear closest similarity (98.6%) to the type strain of P. luminescens subsp 

laumondii (TT01
T
). Photorhabdus luminescens subsp. noenieputensis subsp. nov., derives its name from 

the area where the nematode was sourced, namely the farm Springbokvlei, near the settlement 

Noenieput close to the Namibian border. Thus far, 85 Steinernema spp. have been described worldwide, 

including S. khoisanae which was isolated in the Western Cape province of South Africa. Four S. 

khoisanae strains, namely SF87, SF80, SF362 and 106-C, were used for characterisating the new 

bacteria from different localities in South Africa. Using the neighbor-joining method, all the strains were 

aligned with 97% homology to the 16S rRNA sequences of several Xenorhabdus- type strains, indicating 

that they belonged to the same genus. The multigene approach was used to distinguish between the 

Xenorhabdus spp. and partial recA, dnaN, gltX, gyrB and infB gene sequences of the various strains were 

analysed. The bacterium species was named Xenorhabdus khoisanae sp. nov. after the nematode from 

which it was isolated. The results showed that the third bacterium species, which was isolated from H. 
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zealandica, was new. The sequence of the bacteria strain clustered with the type strains of P. temperata 

and P. asymbiotica, indicate that it belonged to the genus Photorhabdus. This is the first study to show 

that H. zealandica associates with a luminescent Photorhabdus species, rather than with the known non-

luminescent P. temperata.  

The potential of H. zealandica and Steinernema yirgalemense mass culture in liquid was 

investigated. Results illustrated that H. zealandica and its P. luminescens symbiont can be successfully 

cultured in liquid. However, two generations occurred during the process time, instead of the desirable 

one-generation. The growth curve of the symbiotic bacteria during the process time was measured, in 

order to determine when the stationary phase was reached, with the results showing this to occur after 36 

h. Therefore, the optimum amount of time required for inoculating the IJs and for aiding in maximum 

infective juvenile (IJ) recovery is 36 h for adding the nematodes post pre-culturing of the bacteria. Future 

research goals should be to increase the percentage recovery in liquid culture, which would increase the 

number of nematodes produced per ml, which would, therefore, reduce the processing time significantly. 

The results from mass culturing the second nematode species, S. yirgalemense, indicated an 

asynchronous nematode development in the first generation. Growth curves were performed with the 

symbiotic bacteria that showed the exponential phase of Xenorhabdus started after 15 h, and that, after 

42 h, the stationary phase was reached, with an average of 51 × 10
7 

cfu·ml
-1

. Bioassays were performed 

to compare the virulence between in vitro- and in vivo-produced nematodes, with the results showing that 

the in vitro-produced nematodes were significantly less virulent than were the nematodes produced in 

vivo. The success obtained with the production of S. yirgalemense in liquid culture can serve as the first 

step in the optimising and upscaling of the commercial production of nematodes in industrial fermenters. 

The last aim of the current study was to determine when Xenorhabdus reached the stationary 

phase, when it is grown in a 20-L fermenter, as this would be the optimum time at which to add the IJs of 

S. yirgalemense. Such characteristics as the effect of stationary phase conditions on the bacterial cell 

density and on the DO2 rate in the fermenter were investigated. The results showed that the stationary 

phase of Xenorhabdus was reached after 36 h at 30˚C, which took 6 h less than did the same procedures 

followed with the Xenorhabdus sp. cultured in Erlenmeyer flasks on orbital shakers. This is the first step 
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toward the liquid mass culturing of S. yirgalemense in industrial-size fermenters. Data from this study 

indicated the optimum amount of time that is required for adding nematodes to the bacterial culture in the 

fermenter, and for ensuring the optimum recovery of IJs, as well as a subsequent high yield of nematodes 

within a minimum processing time. 

This is the first report of its kind to investigate comprehensively the successful liquid culture of 

two South African entomopathogenic nematode species for the sole purpose of evaluating potential 

commercialisation. Results emanating from this study could be used as groundwork in future, in 

combination with similar research such as culturing nematodes intensively in large fermenters.  
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Opsomming 

Entomopatogeniese nematodes het die potensiaal om as doeltreffende biologiese beheeragente 

teen sleutelplaaginsekte gebruik te word. Elke nematood werk interaktief met ‘n spesifieke bakterium. 

Entomopatogeniese nematodes, behorende tot die families Steinernematidae en Heterorhabditidae, is 

ideale kandidate vir gebruik in ‘n geïntegreerde plaagbestuurprogram. Tans is daar ŉ behoefte vir nuwe 

metodes vir die beheer van plaaginsekte, omdat meeste insekte reeds weerstand opgebou het teen 

bestaande plaagdoders. As gevolg van die negatiewe impak van plaagdoders op die omgewing, asook 

kommer oor veiligheid vir die mens en diere, is die ontwikkeling en gebruik van alternatiewe 

plaagbeheermiddels noodsaaklik. 

In die eerste deel van die studie word drie nuwe bakterie spesies geïsoleer en beskryf. Resultate 

van hierdie studie het aangetoon dat die bakterië spesies vanuit die nematode spesies, Heterorhabditis 

noenieputensis, Steinernema khoisanae, en Heterorhabditis zealandica, tot dusver onbeskryf was. 

Eersgenoemde, H. noenieputensis, is afkomstig van ŉ sitrusboord in die Mpumalanga Provinsie. Die 

bakterie hieruit geïsoleer behoort tot die genus Photorhabdus en is biologies verwant (98.6%) aan P. 

luminescens subsp laumondii (TT01
T
). Die bakterie is benaam as Photorhabdus luminescens subsp. 

noenieputensis nov. en is na die nematood waaruit dit geïsoleer is vernoem. Tot dusver is wêreldwyd 82 

spesies van Steinernema spp. beskryf, insluitende S. khoisanae van die Weskaap provinsie. Vier bakterie 

isolate is van S. khoisanae, SF87, SF80, SF362 en 106-C geïsoleer. Die buur-koppeling metode was 

gebruik om te bepaal dat hierdie bakterie isolate tot 97% ooreenstem met verskeie isolate van 

Xenorhabdus se 16S rRNA DNS volgordebepalings. Om tussen Xenorhabdus spp. te onderskei is ŉ 

multi-geen benadering gebruik deur gedeeltelike recA, dnaN, gltX, gyrB en infB DNS basispaar 

volgordebepalings van die verskeie isolate te bepaal. Hierdie bakterie isolaat is soortgelyk ook vernoem 

as, Xenorhabdus khoisanae sp. nov., na die nematood waaruit dit geïsoleer is. Die derde onbekende 

bakteriële spesie is uit H. zealandica geïsoleer. Die DNS basispaar volgordebepaling van die 16S geen 

van SF41 toon aan dat dit in dieselfde groep as P. temperata en P. asymbiotica val en sodoende aan die 

genus Photorhabdus behoort. Hierdie is die eerste studie met die bevinding dat H. zealandica ook met ŉ 

ander bakterie spesie geassosieer kan word buiten die normale P. temperata spesie. 
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Die tweede deel van die studie gaan oor die teling van twee nematood spesies, H. zealandica en 

Steinernema yirgalemense, en hulle is geëvalueer vir hulle potensiaal om geteel te word in ŉ vloeibare 

medium. Die resultate het gewys dat H. zealandica met sy P. luminescens simbiont suksesvol in vloeistof 

aangeteel kan word, ten spyte van die feit dat daar twee generasies ontwikkel het, in plaas van die meer 

ideale enkel generasie. Die groeikurwe van die simbiotiese bakterie was gemonitor om te bepaal 

wanneer die stasionêre fase bereik word. Die resultate toon dat hierdie fase na 36 uur bereik was. Dus 

was die infektiewe nematode larwes eers na 36 uur tot die vloeibare medium waarin die bakterie geteel 

was bygevoeg. Navorsing in die toekoms moet dus gefokus wees om die persentasie herwinning van die 

infektiewe larwes te verhoog. Dit sal daartoe lei dat meer nematodes per ml geproduseer kan word en 

ook die prosesseringstyd van die nematodes verminder. 

ŉ Tweede nematode spesie, S. yirgalemense, was ook in vloeistof geteel. Hier het ŉ asinkroniese 

ontwikkeling in die eerste generasie plaasgevind wat problematies is. Groeikurwes is bepaal van die 

bakteriële simbiont en die resultate het gewys dat die groeifase van Xenorhabdus na 15 uur in aanvang 

geneem het en dat die stasionêre fase bereik was na 42 uur met ŉ gemiddelde van 51 × 10
7 

selle·ml
-1
. 

Die virulensie van nematodes wat in vitro geteel is, is vergelyk met die virulensie van nematodes wat in 

vivo geteel is en die resultate het getoon dat die in vitro geteelde nematodes minder virulent was. Die 

teling van S. yirgalemense in vloeistof was oor die algemeen meer suksesvol as die teling van H. 

zealandica in dieselfde medium.  

Die doelwit van die laaste gedeelte van hierdie studie was om te bepaal wanneer Xenorhabdus 

die stasionêre fase bereik wanneer dit in ŉ 20-L fermenter gekweek word. Dit bepaal sodoende die 

optimale tyd wanneer die infektiewe larwes van S. yirgalemense bygevoeg behoort te word. Die 

uitwerking van die stasionêre fase op die bakteriële selle, asook die DO2-konsentrasie in die fermenter, 

was geëvalueer. Resultate het gewys dat die stasionêre fase van Xenorhabdus na 36 uur bereik was, wat 

6 uur korter is as toe dit gekweek is in Erlenmeyer flesse. Hierdie studie is die eerste stap om die massa 

teling van S. yirgalemense in industriële fermenters suksesvol te bemeester. Die data wat verkry was, het 

aangedui wat die ideale tydsduur sal wees om die bakteriegetalle te vermeerder voordat die nematode 

bygevoeg word.  
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Hierdie is die eerste studie wat die teling van twee Suid-Afrikaanse nematode spesies omvattend 

in vloeistof evalueer het. Die hoof doelwit is om die potensiaal van hierdie nematode spesies, met die oog 

op kommersiële gebruik, te meet. Die resultate van hierdie studie kan gekombineer word met 

toekomstige studies in hierdie spesifieke navorsingsveld.  
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CHAPTER 1 

Literature review 

 

Xenorhabdus and Photorhabdus, bacterial symbionts of the entomopathogenic nematodes 

Steinernema and Heterorhabditis and their in vitro liquid culture 

 

Introduction 

Annually, numerous insect pests cause damage to fruit and vegetables that are grown as food 

crops all over the world (Wyniger, 1962). These insect pests are a serious economic burden on 

agriculture in South Africa. Control methods that are highly specific to the target pests and that are, in 

addition, environmentally friendly, such as biological control agents, should constitute a major component 

of integrated pest management systems.  

Entomopathogenic nematodes (EPNs) represent an important part of the spectrum of potential 

biological control agents. Previous research in South Africa has shown that two local nematodes, 

Heterorhabditis zealandica Poinar, 1990 and Steinernema yirgalemense Nguyen, Tesfamariam, Gozel, 

Gaugler & Adams, 2005, in particular, have great insecticidal potential (De Waal et al., 2011a,b, 2012; 

Malan et al., 2011; Van Niekerk & Malan, 2012). Therefore, the ability to mass culture these two 

nematode species in liquid medium, using in vitro technology, is an important step toward their application 

as biocontrol agents on a commercial scale against key insect pests. However, for in vitro technology to 

be successful, the nematode-bacteria interaction needs to be understood. Bacterial symbionts of EPNs 

need to be isolated and characterised, with the life cycle of the nematode in culture requiring to be 

understood to be able to optimise for maximum nematode yield in liquid culture.  
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Xenorhabdus and Photorhabdus 

EPNs of the families Steinernematidae and Heterorhabditidae share a mutualistic relationship 

with bacteria of the genera Xenorhabdus Thomas & Poinar, 1979 and Photorhabdus Boemare, Akhurst & 

Mourant, 1993, respectively. The bacteria belong to the family Enterobacteriaceae, whose characteristics 

include being gram-negative and having non-fermentative rods (Koppenhöfer, 2007). Photorhabdus and 

Xenorhabdus are a unique group, as they are phenotypically (Holt et al., 1994) and genotypically 

(Brenner & Farmer, 2005) similar to no other genera grouped in this family. Both of them produce the 

enterobacterial common antigen that is present among the species of Enterobacteriaceae (Ramia et al., 

1982). Said nematode bacterial symbionts are pathogenic to insects. There is, however, an exception to 

the rule, as one species, Photorhabdus asymbiotica Fischer-Le Saux, Viallard, Brunel, Normund & 

Boemare, 1999 has been found to be an opportunistic pathogen to humans (Farmer et al., 1989; Peel et 

al., 1999).  

The bacterial symbionts are carried by their associated nematodes and released into the 

haemolymph of a host insect. Once inside the insect, the symbiotic bacteria overcome the immune 

system of the host and release endo- and exotoxins. Septicaemia develops, with the death of the host 

insect usually occurring within one to two days (Poinar, 1990a; Forst & Clarke, 2002). The bacterial 

symbionts contribute to the symbiotic relationship with EPNs by creating conducive conditions for 

nematode growth and reproduction in the host (Boemare et al., 1997b). Nutrients, as well as antimicrobial 

substances, are provided that inhibit the growth of a wide range of micro-organisms (Akhurst, 1982) in 

and on the insect cadaver. They also excrete substances preventing scavenging nematodes and insects 

from utilising the cadaver as a food source (Zhou et al., 2002). Up to three generations of nematodes can 

be produced per host, depending on the size of the insect host (Kakouli-Duarte & Hague, 1999). In 

smaller hosts, only one or two generations are produced (Ferreira, 2010; Van Niekerk & Malan, 2012). As 

soon as the food in the host cadaver is depleted, a new cohort of infective juveniles (IJs) enters the 

environment, with their bacterial symbionts enclosed in the digestive system of the nematode. The 

bacteria have not so far been reported as occurring freely in nature, but only in association with the 

nematode (Akhurst et al., 2004; Hazir et al., 2004; Lengyel et al., 2005; Tailliez et al., 2006). 
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Previous research has been aimed at screening and assaying the insecticidal properties of 

several of the symbiotic bacteria. Currently, there are three described species of Photorhabdus and 15 

subspecies and 23 species of Xenorhabdus. Since 2004, three new subspecies of Photorhabdus (Akhurst 

et al., 2004; Hazir et al., 2004) and 14 new species of Xenorhabdus (Lengyel et al., 2005; Tailliez et al., 

2006) have been described. However, many bacterial isolates from previously described nematode 

species still require characterisation.  

Life cycle of Xenorhabdus and Photorhabdus 

The Heterorhabditidae and Steinernematidae families of nematodes are obligate insect 

pathogens. The only way in which such nematodes can persist outside the insect host is as specialised 

third-stage IJs. Their bacterial symbionts are contained in the intestinal tract of the IJs. The bacterial 

symbiont of Heterorhabditis, which is Photorhabus, mainly colonises the anterior region of the intestine 

just posterior to the basal bulb. However, it is also to varying degrees located throughout the remainder of 

the intestine (Endo & Nickle, 1991; Ciche & Ensign, 2003). Xenorhabdus is the bacterial symbiont of 

Steinernema, with the nematodes having a specialised bilobed intestinal vesicle that becomes colonised 

by the bacteria (Bird & Akhurst, 1983; Martens et al., 2003). In both of the nematode symbionts, the 

bacteria are in a dormant state inside the IJ, apart from in the case of Steinernema carpocapsae (Weiser, 

1955) Wouts, Mráček, Gerdin & Bedding, 1982, where limited bacterial growth takes place until the 

intestinal vesicle is colonised by Xenorhabdus nematophila (Poinar & Thomas, 1965; Thomas & Poinar, 

1979; Martens et al., 2003). 

Once the IJ enters the haemocoel of a susceptible insect host, the nematode resumes 

development and releases its bacterial symbiont. Inside the insect gut, X. nematophila cells are released 

from the vesicle into the nematode’s intestine (Sicard et al., 2004) by means of defecation (Poinar & 

Thomas, 1966; Wouts, 1984; Martens et al., 2004; Sicard et al., 2004). Photorhabdus are released 

through the mouth of the nematode, in an action resembling regurgitation (Ciche & Ensign, 2003).  

The nematodes and bacteria work together to overcome the immune response of the host, thus 

allowing the bacteria to proliferate (Koppenhöfer, 2007). Steinernema carpocapsae secretes proteins 

suppressing the immune response of the insect host and this may aid the release of their symbionts (Gotz 
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et al., 1981; Simoes, 1998). It is unknown whether similar proteins are released by Heterorhabditis (Forst 

& Clarke, 2002). Both genera produce haemolysin activity (Brillard et al., 2001, 2002). While the bacteria 

develop in the insect host, they produce toxins and exo-enzymes. This results in the septicaemia of the 

insect host and the cadaver, which provides nutrition for the developing nematodes (Forst & Clarke, 

2002). The above takes place early on in the infection and preceding the insect’s death (Sicard et al., 

2004). Likewise, Photorhabdus reproduce in the haemocoel of Manduca sexta Linnaeus, 1763, 

destroying the immune system. Toxins are released by the bacteria late in the infection, destroying the 

epithelium of the midgut (Bowen et al., 1998; Silva et al., 2002).  

Towards the end of bacterial growth, the symbionts produce a range of antimicrobial compounds 

that protect the cadaver from colonisation by other organisms. The compounds include bacteriocins, 

which are active against closely related bacteria. In P. luminescens, the bacteriocins are also active 

against distantly related bacterial taxa (Thaler et al., 1995; Sharma et al., 2002). Antibiotics are other 

compounds that are produced by the bacteria, which are active against fungi, yeasts and other bacteria 

(Akhurst, 1982; Boemare et al., 1997a; Webster et al., 2002).  

Developing nematodes feed on a mixture of bacteria and bioconverted host tissue, enabling them 

to produce one to three generations until the food resources in the cadaver are depleted. As soon as 

depletion takes place, the nematodes develop a new generation of a special third generation of IJs 

enclosing the symbiotic bacterial cells, which exit the cadaver in search of a new susceptible insect host 

(Koppenhöfer, 2007).  

Phenotypic variation  

Phenotypic variants are produced by both Xenorhabdus and Photorhabdus. The primary form, 

which is called form I, is associated with the nematodes. The secondary form of the bacteria (Form II 

cells) arises abruptly when in artificial culture, and seldom occurs in the insect host during the later stages 

of nematode reproduction (Akhurst, 1980). The two forms of bacteria mentioned differ both 

morphologically and physiologically.  

Stellenbosch University http://scholar.sun.ac.za



5 
 

Form I cells are larger, as well as motile, as the result of peritrichous flagella, which form II cells 

do not have (Givaudan et al., 1995). Form I cells are able to absorb certain dyes and to produce 

crystalline inclusion bodies, antibiotics, lipase, and protease, while certain strains of Photorhabdus are 

also bioluminescent (Akhurst, 1980, 1982; Couche et al., 1987; Boemare & Akhurst, 1988; Forst et al., 

1997). All of these mentioned characteristics are reduced or missing in the variant cells. Form II cells in X. 

nematophila do not produce a stationary-phase outer membrane protein called OpnB (Volgyi et al., 2000). 

Xenorhabdus form II colonies have little or no pigment on nutrient agar, while Photorhabdus form II 

colonies depend on the strain or species, which differ (Akhurst, 1983; Akhurst & Boemare, 1988; 

Boemare & Akhurst, 1988; Boemare et al., 1997a).  

Higher levels of respiratory enzyme activity are present in form II cells for both X. nematophila 

and P. luminescens, and such cells are also more capable of taking up nutrients than are other cells 

(Smigielski et al., 1994). Differences in pathogenicity exist between the phenotypic variants of X. 

nematophila in lepidopteran hosts, but the overall pathogenicity is maintained in form II cells. Form I and 

form II cells are both pathogenic against Galleria mellonella (L.) (Lepidoptera: Pyralidae) (Akhurst, 1980). 

Photorhabdus form II cells cannot support the growth and reproduction of Heterorhabditis (Gerritsen & 

Smits, 1993, 1997). On the contrary, form II cells of X. nematophila can support nematode reproduction 

both in vitro (Ehlers et al., 1990; Volgyi et al., 2000) and in vivo (Sicard et al., 2005). In S. carpocapsae, 

the production of xenorhabdicin is maintained in form II cells, but, when antagonistic bacteria are present, 

they are not sensitive to xenorhabdicin, with form II cells providing less protection than do form I cells to 

their nematode host (Sicard et al., 2005). Producing antibiotics is costly with regard to metabolism, and, 

without this function, a great deal more nutrient uptake can occur than with it. The above ensues with 

increased proliferation of the bacteria and, as a result, they become more adaptive for survival (Smigielski 

et al., 1994; Sicard et al., 2005). Phenotypic change and the mechanisms that drive it are in the process 

of becoming understood. For example, form I characteristics in P. luminescens are negatively regulated 

by HexA (Joyce & Clarke, 2003), with, in X. Nematophila, such characteristics being positively regulated 

by Lrp (Park et al., 2007). Mutualism and pathogenesis are both affected by said bacterial regulators, and 

will occasionally revert to form I bacteria in Xenorhabdus, which has, however, not yet been documented 

for Photorhabdus (Givaudan et al., 1995; Forst & Clarke, 2002).  
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Taxonomy and systematics 

According to Stackebrandt et al. (2002), the current definition of bacterial species, although 

arbitrary and artificial, is still universally operational. A genomically consistent group of individual isolates 

sharing a high degree of similarity is regarded as a species. The degree of similarity should be present in 

numerous independent features, as well as be diagnosable by means of the presence of a discriminative 

phenotype (Rossello-Mora & Amann, 2001; Stackebrandt et al., 2002; Adams et al., 2006). The main 

criterion for the description of bacterial species continues to be DNA : DNA homology. Strains within a 

species should preferably have a DNA : DNA relatedness value of 70% or higher and a ΔTm of 5˚C or 

lower (Wayne et al., 1987; Rossello-Mora & Amann, 2001; Stackebrandt et al., 2002). Such values, 

however, are not absolute for the description of a new species (Rossello-Mora & Amann, 2001), as 

additional molecular techniques are encouraged when the degree of similarity of DNA : DNA 

reassociation is adequate (Stackebrandt et al., 2002). As a result of the low DNA : DNA relatedness 

values of earlier studies, and the differences between 16S rRNA gene sequences (Boemare et al., 1993; 

Nishimura et al., 1994), previous Xenorhabdus species have been described without considering DNA : 

DNA reassociation (Lengyel et al., 2005; Somvanshi et al., 2006). According to Tailliez et al. (2006), a 

consistent alternative to DNA : DNA hybridisation is a combination of randomly amplified polymorphic 

DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) sequences.  

Multi-locus sequence typing (MLST) is a method that holds great promise for the delineation of 

species. Partial sequences of internal fragments from multiple housekeeping genes are used. Based on 

the number of different loci, the evolutionary distance between isolates is subsequently quantified 

(Maiden et al., 1998; Adams et al., 2006). The method concerned can easily be replicated and, 

furthermore, there are publicly accessible databases containing sequences and software to use for 

comparing specific isolates (see http://www.mlst.net and http://pubmlst.org). The genomic association of 

strains can be determined with more confidence using MLSTs than with the use of DNA : DNA 

reassociation (Lan & Reeves, 2001; Adams et al., 2006). When using MLSTs the concatenation of 

several of these unlinked gene sequences have the ability to yield more robust phylogenetic trees (Rokas 

et al., 2003; Wertz et al., 2003) when compared to single-gene phylogenies. According to Tailliez et al 

(2010), creating a resolved phylogeny of these bacteria is necessary in order to study their co-evolution 
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with their nematode hosts. Analysis of the topology of single-gene phylogenetic trees (Doolittle, 1999) can 

be used to identify plausible lateral gene transfers (LGT) between species, which can have implications 

for the classification of strains and new isolates in the genera Photorhabdus and Xenorhabdus (Tailliez et 

al., 2010).  

A preferred method to DNA similarity or molecular methodology is a polyphasic approach for 

species description. The description of species should include an almost complete 16S rDNA sequence, 

the G + C mol% content of the type strain of the type genus, the phenotype and also the chemotaxonomic 

characters (Stackebrandt et al., 2002). Standard systems can easily be used to obtain phenotypic data. 

The description of Xenorhabdus and Photorhabdus species has been done in toto using API
®
 substrate 

panels, which were designed to illustrate the carbohydrate metabolism. Recently, Biolog GN™ has been 

used for species description and bacterial identification, in order to illustrate substrate utilisation (Hazir et 

al., 2004; Lengyel et al., 2005; Gouge & Snyder, 2006; Somvanshi et al., 2006). As phenotypes that are 

described by metabolism only are regarded as insufficient, supplementary chemotaxonomic characters 

should be considered (Rossello-Mora & Amann, 2001). 

The considerable differences in biochemical reactions for Xenorhabdus and Photorhabdus that 

have been reported (Holt et al., 1994; Brenner & Farmer, 2005) have complicated the comparing of 

species, with the variation probably being a result of using different bacterial strains and/or phenotypic 

variants (Akhurst & Boemare, 1988). Other possibilities for the variations may include weak and slow 

reactions, and the media type that is used for biochemical characterisation (Holt et al., 1994). 

The first bacterial symbiont that was isolated from the DD-136 strain of S. carpocapsae was 

described as a new bacterium species, namely Achromobacter nematophila Poinar & Thomas, 1965, by 

Poinar & Thomas (1965). The genus Achromobacter was later rejected (Hendrie et al., 1974) and 

reassigned to a different genus. The authors decided to create a new genus, Xenorhabdus, as A. 

nematophila did not closely enough resemble any of the accepted genera. The new genera included X. 

nematophilus, which is a symbiont of a Steinernema species, and X. luminescens, which is a symbiont of 

a Heterorhabditis species (Thomas & Poinar, 1979). A distinct difference could be discerned between X. 

luminescens and other Xenorhabdus strains, both in terms of their phenotypic (Akhurst, 1983; Akhurst & 

Stellenbosch University http://scholar.sun.ac.za



8 
 

Boemare, 1988; Boemare & Akhurst, 1988) and their molecular characteristics (Grimont et al., 1984; 

Farmer et al., 1989; Suzuki et al., 1990). Grimont et al. (1984) placed X. luminescens into a different 

group through the use of s1 nuclease and hydroxyapatite methods for determining DNA : DNA similarity. 

Photorhabdus was proposed as a new genus, as a result of insufficient DNA homology to other 

Xenorhabdus species (Boemare et al., 1993). Even though Photorhabdus is quite species poor in 

comparison to Xenorhabdus, it is still more homogenous than is the Xenorhabdus group (Akhurst et al., 

1996). Most of the bacterial symbionts of recently isolated EPNs must still be described.  

Xenorhabdus and Photorhabdus belong to the family Enterobacteriaceae (Rahn, 1937) Ewing, 

Farmer & Brenner, 1980, as well as the gamma subdivision of the Proteobacteria. Characteristics that 

said bacteria have include: the possession of gram-negative rods; motility by means of peritrichous 

flagella or non-motility; facultative anaerobism; negativity for oxidase; and asporogenous, non-acid fast, 

chemoorganic heterotrophs, with respiratory and fermentative metabolisms (Brenner, 1999; Brenner & 

Farmer, 2005). When considering the phenotypical characteristics of Xenorhabdus and Photorhabdus, 

they can be seen to be out of character, compared to other members of the Enterobacteriaceae family 

(Holt et al., 1994).  

When comparing Xenorhabdus and Photorhabdus, two main differences are that the latter are 

catalase-positive, with the majority being bioluminescent. Xenorhabdus isolates are negative for both 

characteristics concerned (Poinar et al., 1980; Farmer, 1984; Boemare & Akhurst, 1988). Distinguishing 

the two groups of bacteria clearly is the fact that Photorhabdus contains unique sequences in the 16S 

small subunit rDNA, which Xenorhabdus lacks. The sequence TTCG of Xenorhabdus is at the 208–211 

position (in terms of E. coli numbering), while Photorhabdus contains the longer TGAAG sequence 

instead (Szallas et al., 1997).  

By assessing bacterial diversity and identification through the polymorphism of the gene coding 

for the ribosomal RNA subunit, laborious phenotypic characterisation can be avoided. A method, such as 

the restriction fragment analysis of PCR-amplified gene products, has been used successfully for such 

purposes. The identification of Xenorhabdus and Photorhabdus can accurately be identified by means of 

restriction fragment length polymorphisms (RFLP) of the 16S rRNA gene sequence (Brunel et al., 1997; 
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Fischer-Le Saux et al., 1998; Bonifassi et al., 1999). Distinguishing between Xenorhabdus and 

Photorhabdus is also practical when using 16S rRNA sequences (Liu et al., 2001; Sergeant et al., 2006). 

Heterorhabditis and Steinernema 

More than 30 nematode families are known to parasitise, or are associated with, insects (Nickle, 

1972; Maggenti, 1981; Poinar, 1983, 1990b; Kaya & Stock, 1997). As a result of biocontrol potential, 

more research has been undertaken into seven families, including Mermithidae, Allantonematidae, 

Neotylenchidae, Sphaerularidae, Rhabditidae, Steinernematidae and Heterorhabditidae. The last two 

families have received the most attention so far, as they can be cultured and formulated, and can be used 

to control a wide range of insect pests within a short space of time (Lacey et al., 2001). 

Phasmarhabditis hermaphrodita (Schneider) is a member of the family Rhabditidae. It is known to 

suppress numerous slug and snail species, and has been developed as a biological molluscicide (Wilson 

et al., 1993; Glen & Wilson, 1997; Wilson & Gaugler, 2000). Such potential biocontrol agents of plant-

parasitic nematodes and plant pathogens as predatory mononchids, dorylaimids, nygolaimids, 

diplogasterids and the fungal-feeding nematode, Aphelenchus avenae Bastian, have also been studied 

(Kasab & Abel-Kader, 1996; Lootsma & Scholte, 1997; Matsunaga et al., 1997; Choudhury & Sivakumar, 

2000), without much success. 

Biology and behaviour of entomopathogenic nematodes 

EPNs of the family Steinernematidae and Heterorhabditidae are lethal pathogens of insects. In 

nature, they play a role in regulating the natural population of insects, but their main point of interest is 

their inundative application as biocontrol agents. The unique partnership between the nematode and the 

lethal insect-pathogenic bacterium has helped to ensure their success as biocontrol agents (Griffin et al., 

2005).  

Even though Heterorhabditis and Steinernema have adopted the same lifestyle, they belong to 

different families (Heterorhabditidae and Steinernematidae respectively) (Blaxter et al., 1998). Similarities 

include their association with insect-pathogenic bacteria, in addition to which they are thought to have 

originated through convergent evolution (Poinar, 1993). Both Steinernema and Heterorhabditis have a 
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single free-living stage, the IJ stage, which carries bacteria from the genus Xenorhabdus and 

Photorhabdus, respectively, in its gut (Boemare et al., 1993). The IJ can enter the insect through its 

mouth, anus or spiracles and move towards the haemocoel. Some species have the ability to penetrate 

through the insect cuticle (Bedding & Molyneux, 1982; Peters & Ehlers, 1994). For example, 

Heterorhabditis are able to do so by means of their anterior dorsal tooth (Bedding & Molyneux, 1982).  

Once the IJ is inside the haemocoel of the host, the nematode releases the cells of its bacterial 

symbiont from its intestine. The insect’s haemolymph is extremely nutrient-rich, and the bacteria multiply 

exponentially, causing insect death within 24-48 h. IJs feed on the proliferating bacteria and digested host 

tissue after they recover from their arrested state. Nematodes develop to the fourth larval stage, and 

subsequently to adult stages in order to reproduce. Depending on the available nutrients and resources, 

more than one generation can occur (Dix et al., 1992). 

Steinernematids and heterorhabditids have a different mode of reproduction. The first generation 

for the latter consists of self-fertilising hermaphrodites, with males and females developing in subsequent 

generations (Dix et al., 1992). For steinernematids, all the generations can reproduce through amphimixis 

(i.e. cross-fertilisation involving males and females) (Poinar, 1990a). Recently, however, a Steinernema 

sp. was found, of which most of the individuals were self-fertilising hermaphrodites, with a small portion of 

the population in each generation being males (Griffin et al., 2001). Therefore, in general, when only a 

single IJ invades a host insect, a heterorhabditid is able to reproduce and develop, while most 

steinernematids require two individuals, one male and one female, to be present before they can 

reproduce (Griffin et al., 2005). 

At first, eggs are laid by the females or hermaphrodites, and, in older females or hermaphrodites, 

the eggs hatch in the uterus, with the parental tissue being consumed by the juvenile. The process 

concerned is known as ‘endotokia matricida’ (Johnigk & Ehlers, 1999). Parental tissue makes for an 

extremely efficient conversion from insect biomass to IJ biomass. When there is an adequate food supply, 

the juveniles develop into adults. When the conditions inside the host insect are crowded, and there are 

limited resources, the IJs do not develop further. In a large insect host, hundreds of thousands of IJs can 
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develop, emerging from the insect cadaver over a period of days, whereupon they then begin to search 

for a new insect host (Griffin et al., 2005). 

When an IJ has newly emerged from its insect host, it retains the second-stage cuticle as a 

sheath. The sheath assists with the prevention of desiccation, freezing and fungal pathogen infection, 

especially in heterorhabditids (Timper & Kaya, 1989; Campbell & Gaugler, 1991b; Wharton & Surrey, 

1994). Steinernematids lose their sheath quite easily as they move through the soil, while the 

heterorhabditid sheath is not so easily lost, due to it being more tight-fitting (Campbell & Gaugler, 1991a; 

Dempsey & Griffin, 2003).  

In vitro culturing of nematodes 

The production of nematodes in vitro requires a detailed understanding of the biology and 

behaviour of the nematode species being mass produced. The first axenically liquid culture was 

concocted by Stoll (1952), using raw liver extract shaken in flasks. The use of bioreactors to culture 

nematodes was first attempted and described in 1986 by Pace et al. When said researchers cultured the 

nematodes in a standard 10-l bioreactor (Braun Biostat E), the main finding was that an impeller tip 

velocity of 1 m/s or more led to the disruption of adult females, leading to them recommending that the 

shear be less than 0.3 m/s, in order to produce maximum yield. Pace et al. (1986) used a kidney 

homogenate-yeast extract medium in which they inoculated X. nematophila 24 h before the inoculation of 

2000 IJs/ml of S. carpocapsae.  

Liquid culture technology was first made commercially available by the company Biosys, Palo 

Alto, California in 1992. The nematode produced was S. carpocapsae, which was upscaled to an 80 000-l 

fermenter. Currently, the majority of nematodes are produced in liquid culture by only a few companies, 

such as e-nema Gmbh (www.e-nema.de) in Germany, Koppert B.V. (www.koppert.nl) in The Netherlands, 

and Becker Underwood (www.beckerunderwood.com) and Certis (www.certisusa.com) from the United 

States (Ehlers & Shapiro-Ilan, 2005).  
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Liquid culture process technology 

The long process time required for nematode cultures, combined with the need for an even 

distribution of fluids and organisms, result in the cultures being extremely vulnerable to contamination. 

Any non-symbiotic micro-organism that is present in the culture will lead to a reduction in nematode yield. 

Monoxenicity of nematode and bacterial cultures must be ensured from the outset in inoculum production.  

Although symbiotic bacteria can be isolated from insect larvae infected with nematodes (Boemare 

& Akhurst, 1988), what is more laborious, however, is the establishing of bacteria-free nematodes. IJs 

cannot only be surface-sterilised as such a procedure does not exclude all contaminants. The preferred 

method requires the establishment of a monoxenic culture, by obtaining nematode eggs from gravid 

female stages (Lunau et al., 1993; Han & Ehlers, 1998). Monoxenic cultures of the nematode and 

bacteria together can be stored for months until they are inoculated into the bioreactor by shaking them at 

20 rpm at 4°C.  

Photorhabdus and Xenorhabdus have the ability to metabolise almost any kind of protein-rich 

medium. For this reason, selecting a specific medium for the nematode culture will depend mostly on 

economic considerations. A typical medium should have a carbon source (e.g. glucose or glycerol), 

various proteins of animal and plant origin, yeast extract, and, lastly, lipids of animal or plant origin (Pace 

et al., 1986; Friedman et al., 1989; Han et al., 1995; Surrey & Davies, 1996; Ehlers et al., 1998). Possible 

ways of increasing nematode yield entail either improving or adapting the liquid medium used (Ehlers, 

2001).  

Medium requirements vary between different nematode species. For example, S. carpocapsae 

require proteins of animal origin, without which they cannot reproduce (Yang et al., 1997). Production of 

offspring in a liquid medium without the addition of lipids is possible for H. bacteriophora, however (Han & 

Ehlers, 2001), because P. luminescens provides and metabolises the necessary lipids. S. glaseri is the 

only nematode for which essential amino acid requirements have been defined (Jackson, 1973). 

Nematodes can metabolise sterols from numerous steroid sources (Ritter, 1988), such as from lipids of 

either animal or plant origin. As a rule, though, lipids should always be added in order to increase the total 
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IJ fat content. The lipid composition affects the fatty acid composition of the bacteria and IJ (Abu Hatab et 

al., 1998), with a reduction in efficacy as a result of the low fat content in IJs (Patel et al., 1997a, 1997b).  

Conventional equipment used in biotechnology, such as bioreactors with flat-blade impellers, 

bubble columns, and airlift, and internal-loop bioreactors, have been tested, with the latter consistently 

yielding higher IJ concentrations than have the other types (Ehlers & Shapiro-Ilan, 2005). Before the IJs 

are added, the medium is always inoculated and pre-incubated for 24–36 h with the nematode species 

specific symbiotic bacterium, which is normally between 0.5% and 1% of the total culture volume. The 

nematode inoculum usually forms between 5% and 10% of the total culture volume (Ehlers & Shapiro-

Ilan, 2005). 

Specific optimum culture temperature varies, depending on the nematode species and medium 

composition being used. The optimum temperature for the growth of a bacterial symbiont should always 

be defined before mass culturing of the nematode is attempted, as deviation from the optimum 

temperature can potentially induce a switch to the secondary phase, impeding nematode reproduction 

(Ehlers et al., 2000). When the culture medium is started, the pH should ideally be between 5.5 and 7, 

with the oxygen saturation rate being kept above 30%, as doing so will prevent the bacteria from 

switching to the secondary phase (Ehlers & Shapiro-Ilan, 2005). 

One of the important parameters for an in vitro liquid culture is the aeration rate. Strauch and 

Ehlers (2000) compared yields of Heterorhabditis megidis Poinar, Jackson & Klein, 1987, with one culture 

being aerated at 0.3 vvm and another at 0.7 vvm. They found a significantly higher number of adults 8 

days after IJ inoculation, and a higher final yield in the culture aerated at a higher rate. Increasing the 

aeration rate often leads to increased foaming, which silicon oil can be used to prevent, but high 

concentrations of such oil can affect the nematodes negatively. The use of long-chain fatty acids to 

control foaming was found to affect H. bacteriophora negatively (Ehlers & Shapiro-Ilan, 2005).  

Numerous authors have reported final IJ yields from liquid culture (Pace et al., 1986; Bedding et 

al., 1993; Surrey & Davies, 1996; Han, 1996; Ehlers et al., 1998; Strauch & Ehlers, 2000). A negative 

correlation has been found to exist between the body length of the IJ and its yield. Body length is 

genetically defined and rather stable within a species, although it can differ according to strain and culture 
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condition. Ehlers et al. (2000) recorded > 500 000 IJs/ml for H. indica, which has one of the smallest IJs, 

with a body length of 528 µm. However, it has been proven to be more economically feasible to produce 

IJs with shorter body lengths (Ehlers & Shapiro-Ilan, 2005).  

Developmental biology of nematodes in liquid culture 

Nematodes experience a very different environment in liquid culture than they do in nature. When 

Steinernema infest insect cadavers, the inside of the insect becomes liquid. Heterorhabditis, however, 

turn the inside of the insect to a viscous texture (Ehlers & Shapiro-Ilan, 2005). When nematodes are in a 

bioreactor, they are continuously moved around by impellers or air bubbles, with the artificial environment 

having consequences for nematode feeding, development and copulation. 

The population dynamics of the nematode need to be understood in order to ensure a successful 

liquid culture, as there are critical phases during the process of developing a culture that can be optimised 

to obtain maximum IJ yield. The main principle that drives development is the availability of food. Low 

food concentration induces the formation of IJs, whereas high concentration induces the development of 

additional generations, or the recovery of IJs. The IJ, which is a developmentally arrested third-stage 

juvenile, can be stored in this stage until it is needed.  

When Heterorhabditis IJs are inoculated into the bacterial culture of their symbiont, they recover 

development. Their development then recommences through to where they are fourth-stage juvenile, and 

then into where they are automictic (i.e. self-fertilising) hermaphrodites. The density of the 

hermaphrodites, together with their body length, can be used to predict their final yield (Ehlers & Shapiro-

Ilan, 2005). A positive correlation exists between the food supply and the length of the hermaphrodites, as 

well as the number of eggs laid. The hermaphrodites first lay eggs in the surrounding medium, and then, 

after 12 h of first-stage juvenile hatch, the male phenotypes become identifiable. Female phenotypes can 

be distinguished after another 12 h (Johnigk & Ehlers, 1999).  

Amphimictic adults of Heterorhabditis can copulate and produce further generations of insects on 

solid media, but not in liquid media (Ehlers & Shapiro-Ilan, 2005). The Heterorhabditis male is unable to 

attach itself to the female in order for insemination to take place (Strauch et al., 1994). Development 
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subsequently ends at this stage, with the females being identifiable as containing unfertilised eggs, which 

can be distinguished by the enlarged nucleus. For Heterorhabditis, the only offspring that are able to 

continue their life cycle in liquid are the hermaphrodites resulting from the initial IJ inoculation. 

Development into either amphimictic adults or into IJs occurs during the first stage, and depends on the 

concentration of available food, as high concentrations of food induce amphimictic adults and low 

concentrations IJ formation. The development applies to both the genera of nematodes.  

When the parental Heterorhabditis hermaphrodites are no longer laying eggs, the juveniles will 

hatch within the uterus, with the term ‘endotokia matricida’ (i.e. intrauterine birth causing maternal death) 

being used to describe such occurrence, as has been described above in relation to the biology and 

behaviour of EPNs. High food concentrations delay the start of endotokia matricida, and subsequently 

lead to an increase in the number of eggs laid (Johnigk & Ehlers, 1999). The number of offspring in the 

uterus depends on the length of the hermaphrodite. First-stage juveniles that hatch out earliest 

immediately feed on the sperm, the non-fertilised eggs and oogonia, and when endotokia matricida 

subsequently starts, no further offspring can develop. Due to the combination of a low-concentration food 

source and a high number of nematodes, IJ formation is induced in the uterus. When the juveniles 

destroy the uterus and intestinal tissue, a change occurs in the food supply. They then have access to the 

body content of the adult, as well as to the cells of the symbiotic bacteria that they retain in their 

intestines. The body content of the hermaphrodite tends to be just enough to feed the number of offspring 

that reside in the uterus. The subsequent IJs are of excellent quality, with good fat reserves (Johnigk & 

Ehlers, 1999). Endotokia matricida in amphimictic females is also observed in insects and solid cultures. 

The IJs that emerge are a result of the IJs that developed from laid eggs or from endotokia matricida.  

The life cycle of Steinernema is similar, except that amphimictic adults developing from the 

inoculated IJs have the ability to copulate in liquid. Males of Heterorhabditis have a ‘bursa copulatrix’, 

which is a fan that is supplied with sensory receptors. The bursa copulatrix enables the male to attach to 

the female at the vulval region and to copulate with her, forming a lambda or ‘y’ with the female. Males of 

Steinernema wind themselves around the female, as they lack said structure, and the copulation 

behaviour concerned is achievable in liquid culture. The type of mating behaviour involved has important 

implications for a liquid culture, as Heterorhabditis can, in effect, have only one generation time in which 
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to produce IJs from hermaphrodites, while Steinernema can go though one or more generations (Ehlers 

et al., 1998; Strauch & Ehlers, 2000). 

Yields from different genera cultured in the same medium can vary quite substantially (Ehlers et 

al., 1998; Strauch & Ehlers, 2000). The population dynamics of the species of nematode is extremely 

important, especially from a commercial production point of view. Up to a hermaphrodite density of 

4000/ml on day 3, IJ yield is positively correlated to hermaphrodite density. This means that an 

inoculation density of > 4000 IJs/ml should be sufficient to obtain maximum yields. The challenge, 

however, lies in obtaining said hermaphrodite density, as IJ recovery is highly variable in liquid culture. 

Liquid culture lacks a food signal that could trigger recovery, whereas basically 100% of the IJs recover 

within a day after they enter the haemocoel of an insect. The symbiotic bacteria produce such food 

signals, and therefore preculturing the symbiotic bacteria is the key to the success of nematode in vitro 

production. The levels of recovery are, however, variable, and can range from 18% to 90% within a period 

of several days (Strauch & Ehlers, 1998).  

Unpredictable IJ yield is mainly due to an unsynchronised, low IJ recovery rate. The latter also 

impedes population management, which is required to maximise yield and to shorten the process time. A 

low hermaphrodite density is the result of a low IJ recovery rate. At a low density, the high concentration 

of food causes the hermaphrodite to lay many eggs, from which most develop into amphimictic adults 

instead of IJs. Such development is acceptable when culturing steinernematids, as it only serves to 

prolong the process time. The amphimictic adults of Steinernema can copulate in liquid culture and 

produce an F2 offspring generation (Strauch et al., 1994). When copulation occurs in a heterorhabditid 

culture, it can result in process failure, as the F1 amphimictic adults cannot produce offspring. 

Another problem with amphimictic adults is that they consume much of the bacterial culture that is 

needed for the hermaphrodites to develop from second-stage juveniles (J2d), or endotokia matricida. In 

some cases, high yield can be obtained from low hermaphrodite densities, due to the adaptability of the 

hermaphrodite. They can respond by increasing their body length, and, therefore, by increasing their 

number of offspring. Such a response is, however, only observable when synchronous IJ recovery takes 

place. When there are high numbers of hermaphrodites (> 2000/ml), the bacterial concentration becomes 
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very low, as a result of their feeding. Thus, less offspring develop into amphimictic adults, and many 

develop into IJs. The yield increases, and the hermaphrodites stop laying eggs. Most of the offspring at 

that stage originate from endotokia matricida. Said scenario results in high yields of high-quality IJs within 

a minimum processing time. The number of IJs per hermaphrodite is then reduced, as a result of limited 

food supply (Strauch & Ehlers, 1998).  

Increasing recovery in liquid culture 

Steinernema production is not as vulnerable to reduced recovery, and IJs normally respond well 

to the food signals of Xenorhabdus. There is, however, a key to the industrial-scale production of 

Heterorhabditis, which is a synchronised, reproducible and high IJ recovery rate. This goal can be 

reached by attaining an optimum number of parental hermaphrodites. Recovery can be influenced by 

preculturing the bacteria, as higher bacterial density creates a higher food signal. Therefore, nematodes 

should only be inoculated when the bacteria have reached the stationary growth phase, as the food signal 

will then be the strongest (Strauch & Ehlers, 1998). There is a significant drop in the respiration coefficient 

and a drop in the pH at the moment when conditions are favourable for the nematodes to be added 

(Ehlers & Shapiro-Ilan, 2005).  

The main source of variability is, however, the IJs themselves (Strauch & Ehlers, 1998; Jessen et 

al., 2000). Response to food signals can vary significantly from one batch to another, and it has been 

hypothesised that this can be as a result of the difference in the fat reserves of the IJs, and, therefore, IJ 

with low energy reserves have a higher need for recovery. According to Ehlers & Shapiro-Ilan (2005), 

however, this hypothesis was not supported.  

In conclusion, endemic EPNs are not currently commercially produced in South Africa. Therefore, 

the next logical step would be to use local nematode species, proven in previous research to perform the 

best against local key pest insects, and to assess their performance when they are mass cultured in 

liquid. This is a very important step, as the most suitable nematode isolate would not necessarilly be the 

most virulent, but must also be successfully cultured in high numbers, and formulated with a long shelf 

life. It is also imperative that the optimum growth parameters and general characteristics be known for the 

bacterial symbiont of any nematode isolate that might have the potential to be mass cultured for 
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commercial application. Research into the characterisation and identification of the symbiotic bacteria of 

EPN worldwide is still in its infancy. In South Africa, no bacterial symbiont associated with local EPNs has 

previously been described. 

 

Aims and objectives of the study 

The overall aim of this study was to develop an in vitro mass culture technique for two local EPNs, 

identified as promising biocontrol agents against key South African insect pests. 

The specific objectives of the study were to: 

1. Successfully isolate and characterise the associated symbiotic bacteria from these nematodes; 

2. Successfully mass culture H. zealandica in a liquid medium, using in vitro technology; 

3. Successfully mass culture S. yirgalemense in a liquid medium, using in vitro technology; and 

4. Determine the commercial potential of Xenorhabdus by upscaling to a 20 L reactor, enabling the 

investigation of the growth characteristics of the bacteria, including when the stationary growth 

phase was reached. 

 

The chapters of this study have been written as separate publishable papers, and, for this reason, 

some repetition in the different chapters has been unavoidable. 
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CHAPTER 2 

 

Description of Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic 

bacterium associated with a new Heterorhabditis species related to Heterorhabditis indica* 

 

 

*Published as: Tiarin Ferreira, Carol van Reenen, Sylvie Pagès, Patrick Tailliez, Antoinette P. Malan and 

Leon M.T. Dicks. (2012), ‘Description of Photorhabdus luminescens subsp. noenieputensis subsp. nov., a 

symbiotic bacterium associated with a new Heterorhabditis species related to Heterorhabditis indica’. 

International Journal of Systematic and Evolutionary Microbiology, in press (doi:10.1099/ijs.0.044388-0).  

Abstract 

The bacterial symbiont AM7
T
, isolated from a new entomopathogenic nematode species of the 

genus Heterorhabditis, displays the main phenotypic traits of the genus Photorhabdus and is highly 

pathogenic to Galleria mellonella. Phylogenetic analysis based on a multigene approach (16S rRNA, 

recA, gyrB, dnaN, gltX and infB) confirmed the classification of isolate AM7
T
 within the species 

Photorhabdus luminescens and revealed its close relatedness to Photorhabdus luminescens subsp. 

caribbeanensis, Photorhabdus luminescens subsp. akhurstii and Photorhabdus luminescens subsp. 

hainanensis. The five concatenated protein coding sequences (4197 nucleotides) of strain AM7
T
 revealed 

95.8%, 95.4% and 94.9% nucleotide identity (NI) with sequences of P. luminescens subsp. 

caribbeanensis strain HG29
T
, P. luminescens subsp. akhurstii strain FRG04

T
 and P. luminescens subsp. 

hainanensis strain C8404
T
, respectively. The NI values concerned were less than the threshold of 97% 

proposed for classification within one of the existing subspecies of P. luminescens. Unlike other strains 

described for P. luminescens, strain AM7
T
 produces acid from adonitol, sorbitol and xylitol, assimilates 

xylitol, and has no lipase activity on medium containing Tween 20 and Tween 60. Strain AM7
T
 is 

differentiated from P. luminescens subsp. caribbeanensis by the assimilation of N - acetyl glucosamine 
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and the absence of hemolytic activity. Unlike P. luminescens subsp. akhurstii, strain AM7
T
 does not 

assimilate mannitol and is distinguished from P. luminescens subsp. hainanensis by the assimilation of 

trehalose and citrate, the inability to produce indole from tryptophan, and the presence of acetoin 

production and urease activity. Strain AM7
T
 (ATCC BAA- 2407

T
, DSM 25462

T
) belongs to a new 

subspecies and is proposed as the type strain of Photorhabdus luminescens subsp. noenieputensis sp. 

nov. 

Introduction 

Bacteria of the genus Photorhabdus are symbiotically associated with entomopathogenic 

nematodes of the genus Heterorhabditis and are highly pathogenic to insects (Boemare et al., 1993). The 

genus Photorhabdus belongs to the family Enterobacteriaceae and contains three recognized species, 

i.e. P. luminescens, P. temperata and P. asymbiotica. Photorhabdus luminescens is further divided into P. 

luminescens subsp. caribbeanensis and P. luminescens subsp. hainanensis (Tailliez et al., 2010), P. 

luminescens subsp. kleinii (An & Grewal, 2011), P. luminescens subsp. akhurstii, P. luminescens subsp. 

laumondii, P. luminescens subsp. luminescens, (Fischer-Le Saux et al., 1999), P. luminescens subsp. 

kayaii and P. luminescens subsp. thracensis (Hazir et al., 2004). Photorhabdus luminescens subsp. 

thracensis was reclassified as P. temperata subsp thracensis comb. nov. (Tailliez et al., 2010). P. 

temperata is separated into P. temperata subsp. temperata (Fischer-Le Saux et al., 1999), P. temperata 

subsp. cinerea (Tóth & Lakatos, 2008), P. temperata subsp. khanii (=syn. P. temperate subsp. 

stackebrandii, An & Grewal, 2010) and P. temperata subsp. tasmaniensis (Tailliez et al., 2010). 

Photorhabdus temperata subsp. stackebrandtii includes strains GPS11 (DSM 23271), NC19, Habana and 

Meg1 (An & Grewal, 2010). Strain NC19 (=C1) was chosen as the type strain of P. temperata subsp. 

khanii by Tailliez et al. (2010) and includes Habana and Meg1. Thus, P. temperata subsp. stackebrandtii 

is a later heterotypic synonym of P. temperata subsp. khanii. P. asymbiotica is divided into P. asymbiotica 

subsp. australis and P. asymbiotica subsp. asymbiotica (Akhurst et al., 2004). 

During a survey conducted in citrus orchards in the Mpumalanga province of South Africa, one 

population of an unknown Heterorhabditis species was collected (Malan et al., 2011). We described here 
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the bacterial symbiont of the genus Photorhabdus associated with this unique population, as no other 

population of this unknown species has been collected elsewhere in the world. 

Materials and methods 

Bacterial strains and growth conditions 

Bacterial symbionts from Heterorhabditis strain 158-C (FJ235075) (Malan et al., 2011) were 

isolated according to the procedure described by Akhurst (1980). Bacteria were streaked onto NBTA 

(Nutrient agar; Biolab Diagnostics, Midrand, South Africa) and the plates incubated at 25°C for 48 h. Blue 

and blue-green colonies were randomly selected from the plates and transferred to Tryptic soy broth 

(TSB) (BD, Sparks, USA). Pure cultures were stored in 40% (v/v, final concentration) sterile glycerol at -

80°C. All the other bacterial strains used in the current study were from the bacterial collection at INRA 

(Montpellier, France) except DSM 10 and DSM 23513 which were from the DSMZ culture collection 

(Braunschweig, Germany). 

Genotypic characterization 

Total genomic DNA of an overnight culture of isolate AM7
T
 79 was extracted using the ZR 

fungal/bacterial DNA kit (Zymo Research Corporation, Irvine, California, USA). DNA of the 16S rRNA 

gene was amplified as described by Felske et al. (1997). The five protein coding genes recA, gyrB, dnaN, 

gltX and infB were amplified as described by Tailliez et al. (2010, 2011). PCR reactions used were as 

described previously (Tailliez et al., 2010), using TaKaRa Ex Taq™ (Takara Bio Inc., Shiga, Japan) 

together with the supplied 10x Ex Taq™ buffer and dNTP mixture at concentrations recommended by the 

manufacturer. Amplified products were cleaned (QIAquick PCR purification kit, Qiagen, Valencia, USA) 

and sequenced (DNA Sequencing Unit, Central Analytical Facility, University of Stellenbosch) using the 

BigDye Teminator V3.1 sequencing kit (Applied Biosystems). Sequences were analysed using BLAST 

(basic local alignment search tool, National Center for Biotechnology Information, National Library of 

Medicine, Bethesda, USA). 
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Sequences were assembled using the SeqMan module included in the DNASTAR Lasergene 

Software, version 7.0.0. (http://www.dnastar.com). Concatenated gene sequences were obtained using 

the function "concatenate" of the seaview software (http://pbil.univ-lyon1.fr/software/seaview.html). Single 

gene and concatenated gene sequences were aligned using ClustalW (http://www.clustal.org). 

Neighbour-joining distance (Saitou & Nei, 1987) and maximum likelihood (Guindon et al., 2010) trees 

were calculated using the "Phylogeny.fr" platform dedicated to phylogenetic analysis (Dereeper et al., 

2008). The neighbour-joining distance tree using the Kimura 2-parameter model (Kimura, 1980) was used 

for the 16S sequences. The maximum likelihood tree was used for the five single gene sequences (recA, 

gyrB, dnaN, gltX and infB) and the concatenated sequences. Models of evolution were selected using 

jModelTest to best fit with the data using the AICcriterion (Posada & Crandall, 1998). Sawyer's test for 

detecting recombination intervals based on the detection of shared patterns of polymorphisms (Sawyer, 

1989) was performed with the computer program GENECONV (http://www.math.wustl.edu/~sawyer). 

Physiological and biochemical characterization 

Growth at different temperatures was recorded by taking optical density readings at 600 nm. Ten 

ml Luria Broth (Biolab) was inoculated with 100 μl of an overnight-grown culture and incubated at 26°C, 

30°C, 37°C and 42°C, respectively, for 24 h. Catalase activity was determined by adding a drop of 10% 

(v/v) H2O2 onto a 20h-old colony on a plate (Koppenhöfer, 2007). The ability of strain AM7
T
 to absorb dye 

was tested by growing the cells on NBTA (Biolab) containing bromophenol blue (Sigma-Aldrich, St. Louis, 

USA) and 2,3,5, triphenyltetrazolium chloride (Sigma-Aldrich), as described by Koppenhöfer (2007), and 

on MacConkey agar containing Neutral Red (Biolab). Bioluminescens was determined by scanning the 

colonies with the Xenogen in vivo imaging system (IVIS, Caliper Life Sciences Inc., Alameda, USA). 

DNAse activity was determined by streaking colonies onto DNAse test agar (20 g tryptose, 2.0 g DNA, 5.0 

g NaCl, 15 g agar and 5 mg methyl green per litre distilled water). Lecithinase activity was determined 

using nutrient agar plates supplemented with 0.9% (w/v) NaCl and 10% (v/v) egg yolk emulsion (Oxoid, 

Basingstoke, United Kingdom). Hemolysis was observed by streaking strain AM7
T
 on sheep blood agar 

plates (National Health Laboratory Services, Cape Town, South Africa). Lipase activity was determined 

by streaking cells onto peptone agar medium, supplemented with Tween 20, Tween 40, Tween 60 and 
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Tween 80, respectively, as described by Sierra (1957). API 20E and API 20NE characters, acid 

production from carbohydrate and carbohydrate assimilation using API50 CH strip were obtained as 

described by the manufacturer (BioMerieux, Inc., Lyon, France). Reactions were recorded after 24 h, 48 h 

and 10 days of incubation at 30°C in a temperature regulated growth chamber. Resistance to ampicillin 

was determined in duplicate in microtitre plates by growing serial dilutions of strain AM7
T
 in LB containing 

200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78 μg/ml antibiotic, respectively. Plates were incubated for 

48h at 30°C. Escherichia coli DH5α was used as the negative control. Cell density was determined at 595 

nm using a Biorad Model 680 microplate reader (Bio-Rad Laboratories, Hercules, USA). Antibiosis was 

determined by overlaying AM7
T
 colonies on nutrient agar medium with 10 ml 0.8% (w/v) soft agar 

containing 100 μl of an overnight culture of Bacillus subtilis DSM 10 (Hazir et al., 2004). 

In vivo pathogenicity assay 

An in vivo pathogenicity assay was conducted with strain AM7
T
 and strain E. coli DH5α as control 

as described by Givaudan & Lanois (2000). Galleria mellonella (L.) larvae were reared on artificial diet at 

28°C. Ten ml LB broth were inoculated with 100 μl of a growing culture of AM7
T
 or E. coli DH5α and 

incubated at 30°C to an optical density of 0.7 (measured at 595 nm). The bacterial cells were harvested 

(2 x 10
2
 cells per μl for AM7

T
 and 2.1 x 10

4
 per μl for E. coli DH5α), washed with 0.8% (w/v) sterile saline, 

plated onto NBTA plates and the number of viable cells was determined after 24 h of incubation at 30°C 

(Sicard et al., 2006). Twenty G. mellonella larvae were surface-sterilized with 70 % (v/v) ethanol and their 

haemocoel was injected with 20 μl containing bacterial cells of strain AM7
T
 (4 x 10

3
 cfu) or E. coli DH5α 

(4.2 x 10
5
 cfu), using a BD Micro-Fine syringe. 

Results 

Genotypic characterization 

The accurate phylogenetic position of isolate AM7
T
 was studied using five protein coding 

sequences (Fig. 2. 1). The gyrB and recA genes have been used in several Photorhabdus and 

Xenorhabdus phylogenetic studies (Akhurst et al., 2004; An & Grewal, 2010, 2011; Lee & Stock, 2010, 
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Peat et al., 2010; Sergeant et al., 2006; Tailliez et al., 2010, 2011; Tóth & Lakatos, 2008). We also used 

gltX, dnaN and infB genes (Tailliez et al., 2010 & 2011) as markers with low probability of lateral gene 

transfer (Lerat et al., 2003). We investigated the infB gene instead of the glnA gene (Peat et al., 2010), 

which was not selected by Lerat et al. (2003) as marker with low probability of lateral gene transfer. 

Nevertheless, glnA appeared also to be interesting in resolving many relationships within the 

Photorhabdus phylogeny (Peat et al., 2010) and should be included in further studies after validation on 

representatives of all the Photorhabdus species and subspecies. The serC gene was not used in the 

current study, as was done by Lee & Stock (2010), because the gene in question was clearly shown to be 

submitted to extensive recombination within Xenorhabdus, brother genus of Photorhabdus, by other 

authors (Sergeant et al., 2006). Whatever the protein coding gene used in our study (Fig. 2. 2 to 2. 7), the 

phylogenetic analysis confirmed that isolate AM7
T
 belongs to the species P. luminescens. For dnaN, gltX 

and recA, AM7
T
 shared a common ancestor with P. luminescens subsp. caribbeanensis strains HG26 

and HG29
T
 despite low bootstrap values obtained for gltX and recA (58%). For infB and dnaN, AM7

T
 was 

included in a clade consisting of P. luminescens subsp. caribbeanensis, P. luminescens subsp. akhurstii 

and P. luminescens subsp. hainanensis. At least for gyrB, AM7
T
 shared a common ancestor with P. 

luminescens subsp. luminescens (with a bootstrap value of 70%), with the position not being in full 

agreement with that obtained with the four other genes described above. In the same way, we noted that 

the phylogenetic position (P. luminescens subsp. kayaii) of the type strain of P. luminescens subsp. kleinii 

(KMD37
T
, DSM 23513

T
), based on four gene sequences studied herein (recA, dnaN, gltX and infB) was 

not in agreement with that given by the gyrB gene sequence [HM072281, for KMD37
T
 and JX513407 for 

DSM23513
T
 are identical] (Fig. 2. 4) whatever the method of tree reconstruction used (parsimony for An & 

Grewal, 2011, and maximum likelihood in this study). However, for both KMD37
T
 (DSM 23513

T
) and 

AM7
T
 strains, no recombination event was highlighted for the gyrB gene using the GeneConv software 

(Sawyer's test), in contrast to strain CIP108428
T
 for which recombination events were detected for its gltX 

gene leading to an atypical phylogenetic position of the strain concerned (Tailliez et al., 2010). The 

authenticy of strain DSM 23513 with the type strain (KMD37
T
) needs to be determined. 

The five concatenated sequences of strain AM7
T
 showed 95.8% nucleotide identity (NI) with those 

of strain P. luminescens subsp. caribbeanensis HG29
T
 (Fig. 2. 1). Tailliez et al. (2010) proposed that 
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within the three recognized Photorhabdus species P. asymbiotica, P. luminescens and P. temperata, 

strains that shared less than 97% NI calculated on the four concatenated sequences (gyrB, recA, gltX 

and dnaN) do not belong to the same subspecies. The threshold of 97% NI applied to the concatenation 

of five gene-coding sequences (gyrB, recA, gltX, dnaN and infB, 4197 nucleotides) is still valid for 

differentiating between the P. luminescens subspecies previously recognized (Table 2. 1.). However, the 

same rule should be applied with caution after detection of atypical (type) strains and isolates with 

incongruent single gene phylogenies which could lead to misclassifications (e.g. the five concatenated 

sequences of strains DSM 23513
T
 and CIP108428

T
 showed 96.8% NI only due to their atypical gyrB and 

gltX sequences, respectively). The analysis of single-gene phylogenies remains essential to avoid 

erroneous species assignments. Thus, based on this result, we propose to consider strain AM7
T
 as a 

representative of a new P. luminescens subspecies, P. luminescens subsp noenieputensis subsp. nov. 

The 16S rRNA gene sequence of isolate AM7
T
 was compared with the sequences of 

representative strains of the different species and subspecies of the genus Photorhabdus (Fig. 2. 2). The 

sequence of isolate AM7
T
 clustered with the type strains of P. luminescens, indicating that it belongs to 

the genus Photorhabdus, with the closest similarity (98.6%) to the type strain of P. luminescens subsp 

laumondii (TT01
T
). 
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Fig. 2.1. Maximum likelihood (ML) phylogenetic tree of Photorhabdus luminescens calculated from five 

concatenated protein-coding sequences (recA, gyrB, dnaN, gltX and infB). Photorhabdus luminescens 

subsp. noenieputensis AM7
T
 belongs to a monophyletic group including P. luminescens subsp. 

caribbeanensis, P. luminescens subsp. akhurstii and P. luminescens subsp. hainanensis. The ML 

analysis was carried out using the General Time Reversible model of substitution with gamma-distributed 

rate heterogeneity and a proportion of invariant sites determined for all five protein coding sequences 

determined by jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The 

concatenated sequences of Xenorhabdus bovienii strain T228
T
, Xenorhabdus nematophila strain 

ATCC19061
T
 and Proteus mirabilis were used as outgroups. Bootstrap values (percentages of 100 

replications) (Felsenstein, 1988) of more than 50% are shown at the nodes. The bar represents 5% 

divergence. 
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Fig. 2.2. Distance tree based on 16S rDNA sequences of Photorhabdus strains including P. luminescens 

subsp. noenieputensis subsp. nov. strain AM7
T
. The 16S rDNA sequences of P. luminescens subsp. 

noenieputensis subsp. nov. strain AM7
T
 and P. luminescens subsp. laumondii TT01

T
 share 98.6% 

nucleotide identity on a length of 1159 nucleotides. The neighbour-joining tree (Saitou & Nei, 1987) was 

constructed using the Kimura 2-parameter model (Kimura, 1980). Bootstrap values (Felsentein, 1988) of 

more than 50% are indicated at the nodes. Bar indicates 1 % sequence divergence. GenBank accession 

numbers of the sequences are in brackets. The sequences of X. nematophila ATCC19061
T
 and P. 

luminescens subsp. laumondii TT01
T
 were from http://www.cns.fr/agc/microscope/home/index.php. The 

sequence of P. mirabilis was from GenBank [NC010554]. 
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Fig. 2.3. ML tree based on recA sequences of Photorhabdus luminescens strains including P. 

luminescens subsp. noenieputensis AM7T. The ML analysis was carried out with the GTR model of 

substitution with gamma distributed rate heterogeneity and a proportion of invariant sites determined by 

jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The sequences of 

Xenorhabdus bovienii T228T, Xenorhabdus nematophila ATCC19061T and Proteus mirabilis were used 

as outgroups. Bootstrap values (Felsentein, 1988) of more than 50% are indicated at the nodes. Bar 

represents 5% divergence. GenBank accession numbers of the sequences are in brackets. The 

sequences of X. nematophila ATCC19061T and P. luminescens subsp. laumondii TT01T were from 

http://www.cns.fr/agc/microscope/home/index.php. The sequence of P. mirabilis was from GenBank 

[NC010554]. 
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Fig. 2.4. ML tree based on gyrB sequences of Photorhabdus luminescens strains including P. 

luminescens subsp. noenieputensis AM7
T
. The ML analysis was carried out with the GTR model of 

substitution with gamma distributed rate heterogeneity and a proportion of invariant sites determined by 

jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The sequences of 

Xenorhabdus bovienii T228
T
, Xenorhabdus nematophila ATCC19061

T
 and Proteus mirabilis were used 

as outgroups. Bootstrap values (Felsentein, 1988) of more than 50% are indicated at the nodes. Bar 

represents 5% divergence. GenBank accession numbers of the sequences are in brackets. The 

sequences of X. nematophila ATCC19061
T
 and P. luminescens subsp. laumondii TT01

T
 were from 

http://www.cns.fr/agc/microscope/home/index.php. The sequence of P. mirabilis was from GenBank 

[NC010554]. The sequence of P. luminescens subsp. kleinii  strain KMD37 (= DSM23513) is that 

published by An & Grewal (2011). 

Stellenbosch University http://scholar.sun.ac.za

http://www.cns.fr/agc/microscope/home/index.php


45 
 

 

Fig. 2.5. ML tree based on dnaN sequences of Photorhabdus luminescens strains including P. 

luminescens subsp. noenieputensis AM7
T
. The ML analysis was carried out with the GTR model of 

substitution with gamma distributed rate heterogeneity and a proportion of invariant sites determined by 

jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The sequences of 

Xenorhabdus bovienii T228
T
, Xenorhabdus nematophila ATCC19061

T
 and Proteus mirabilis were used 

as outgroups. Bootstrap values (Felsentein, 1988) of more than 50% are indicated at the nodes. Bar 

represents 10% divergence. GenBank accession numbers of the sequences are in brackets. The 

sequences of X. nematophila ATCC19061
T
 and P. luminescens subsp. laumondii TT01

T
 were from 

http://www.cns.fr/agc/microscope/home/index.php. The sequence of P. mirabilis was from GenBank 

[NC010554].  
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Fig. 2.6. ML tree based on gltX sequences of Photorhabdus luminescens strains including P. 

luminescens subsp. noenieputensis AM7
T
. The ML analysis was carried out with the GTR model of 

substitution with gamma distributed rate heterogeneity and a proportion of invariant sites determined by 

jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The sequences of 

Xenorhabdus bovienii T228
T
, Xenorhabdus nematophila ATCC19061

T
 and Proteus mirabilis were used 

as outgroups. Bootstrap values (Felsentein, 1988) of more than 50% are indicated at the nodes. Bar 

represents 5% divergence. GenBank accession numbers of the sequences are in brackets. The 

sequences of X. nematophila ATCC19061
T
 and P. luminescens subsp. laumondii TT01

T
 were from 

http://www.cns.fr/agc/microscope/home/index.php. The sequence of P. mirabilis was from GenBank 

[NC010554]. 
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Fig. 2.7. ML tree based on infB sequences of Photorhabdus luminescens strains including P. 

luminescens subsp. noenieputensis AM7
T
. The ML analysis was carried out with the GTR model of 

substitution with gamma distributed rate heterogeneity and a proportion of invariant sites determined by 

jModelTest to best fit with the data using the AIC criterion (Posada & Crandall, 1998). The sequences of 

Xenorhabdus bovienii T228
T
, Xenorhabdus nematophila ATCC19061

T
 and Proteus mirabilis were used 

as outgroups. Bootstrap values (Felsentein, 1988) of more than 50% are indicated at the nodes. Bar 

represents 5% divergence. GenBank accession numbers of the sequences are in brackets. The 

sequences of X. nematophila ATCC19061
T
 and P. luminescens subsp. laumondii TT01

T
 were from 

http://www.cns.fr/agc/microscope/home/index.php. The sequence of P. mirabilis was from GenBank 

[NC010554]. 

Physiological and biochemical characterization 

The fifteen strains distributed in the different P. luminescens subspecies were analyzed for their 

main phenotypic traits (Table 2.1). Also included in this part of the study were P. luminescens subsp 

akhurstii strains D1 (Australia), EG1 and EG2 (Egypt), IS5 (Israel) and Tetuan (Cuba), and P. 

luminescens subsp laumondii strains HP88 (Utah), HV16 (Australia), NC162 (North Carolina) and K80 
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(Argentina) in order to increase the robustness of the analysis. These strains were described by Akhurst 

et al. (1996, 2004), Fischer-Le Saux et al. (1999), Marokhazi et al. (2003) and Peat et al. (2010) and were 

grouped by ribotyping in the laboratory of Tailliez, INRA Montpellier, France. All the P. luminescens 

strains were positive (cavaties showing photometric value above 30%) for catalase and negative (no 

reaction) for lecithinase, oxydase and nitrate reductase activities. All the P. luminescens strains were able 

to assimilate glycerol, ribose, glucose, fructose, D-mannose and D-maltose. Strain AM7
T
 can be 

differentiated from the other P. luminescens strains studied by the following specific traits: weak 

production of acid from adonitol, sorbitol and xylitol, capability to assimilate xylitol, and lack of lipase 

activity on Tween 20 and Tween 60. Photorhabdus luminescens subsp. caribbeanensis HG29
T
 and HG26 

can be differentiated from strain AM7
T
 by their annular hemolytic activity on sheep blood agar and their 

lack of N-acetyl glucosamine assimilation. P. luminescens subsp. hainanensis strain C8404
T
 and the 

majority of the P. luminescens subsp. akhurstii strains were able to assimilate (6/6) and to produce acid 

(5/6) from mannitol in contrast to strain AM7
T
. Strain AM7

T
 can also be differentiated from P. luminescens 

subsp. hainanensis strain C8404
T
 by the assimilation of trehalose and citrate, urease activity, production 

of acetoin and the lack of indole production from tryptophan. 
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Table 2. 1. Main phenotypic characters differentiating Photorhabdus luminescens subspecies. 

Subspecies noenieputensis akhurstii caribbeanensis hainanensis kayaii laumondii luminescens 

Type strain AM7
T
 FRG04

T
 HG29

T
 C8404

T
 CIP108428

T
 TT01

T
 Hb

T
 

Number of strains studied n = 1 n = 6 n = 2 n = 1 n = 6 n = 6 n = 2 

Upper threshold temperature 
for growth (˚C) 37 37-40 38-40 39-40 37-38 35-37 38-40 

Pigmentation + + V - V(+) + + 

DNase - V(+) w - V(+) V(+) + 

Arginine dihydrolase w - V - V(-) - - 

Simmons' citrate + V + + V(+) V(+) + 

Urease + V(+) + - V(+) + V 

Indole production - V(+) V + V(+) V + 

Voges-Proskauer + - - - V(-) V(-) - 

Esculin hydrolysis + + + + V V(+) V 

        

Acid production from:        

Glycerol + + + + V + + 

Ribose + + + + V(+) V(+) V 

Adonitol w - - - - - - 

Glucose + + + + V(+) + + 

Fructose + + + + V V(+) + 

Mannose + + + + V(+) V(+) + 

Inositol + V(+) w - V(-) V(-) + 

Mannitol - V(+) + + - V(-) V 

Sorbitol w - - - - - - 

N-acetyl glucosamine + V + + V V(+) + 

Esculine + + + + V(+) V(+) V 
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Subspecies noenieputensis akhurstii caribbeanensis hainanensis kayaii laumondii luminescens 

Type strain AM7
T
 FRG04

T
 HG29

T
 C8404

T
 CIP108428

T
 TT01

T
 Hb

T
 

Number of strains studied n = 1 n = 6 n = 2 n = 1 n = 6 n = 6 n = 2 

Salicine w - - - V(-) V(-) - 

Maltose + + + + V(-) + V 

Trehalose + V V + V(-) V(+) w 

Xylitol w - - - - - - 

L-Fucose w V + + - - w 

5-Keto gluconate - V(-) V + V(-) V(-) w 

        

Assimilation of:        

Inositol + + + + V(+) + + 

Mannitol - + + + - - + 

N-acetyl glucosamine + + - + + + + 

Esculine + + V + + + V 

D-Trehalose + V(+) + - V(+) V(+) + 

Xylitol + V(-) - - - - - 

L-Fructose - V V - - - - 

Gluconate + + + + + V(+) + 

Caprate - V - - V(-) V(-) + 

L-Malate - V(+) + - V(+) V(+) + 

Citrate + V(+) + - + + + 

 
+, 90% of strains positive; V(+), 50 to 89% of strains positive; V(-), 11 to 49% of strains positive; -, 0 to 10% of strains positive; V, variable; w, 
weak 
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In vivo pathogenicity assay 

After 16 h, all G. mellonella larvae that had been injected with strain AM7
T
 died, whereas larvae of 

the control group (which had been injected with E. coli) survived. This result confirms the 

entomopathogenic trait of P. luminescens subsp. noenieputensis strain AM7
T
. 

Discussion 

Photorhabdus luminescens subsp. noenieputensis [noe.ni.e.put.en’sis N.L. adj. noenieputensis 

from South Africa, from the farm Springbokvlei near the settlement Noenieput close to the Namibian 

border, was the source of the nematode (Malan et al., 2011) from which the bacterial type strain was 

isolated. Bacterial cells from this strain are Gram-negative, oxidase negative, catalase positive and 

bioluminescent. Colonies are pigmented. Good growth is observed in TSB from 26°C until the upper limit 

of 37°C. Nitrate is not reduced and no DNAse and lecithinase activity were noted. Haemolytic reaction for 

this bacterial strain was, however, observed when grown on sheep blood agar plates. Lipolytic activity 

was also observed when grown in the presence of Tween 40 and Tween 80, but not in the presence of 

Tween 20 and Tween 60. The bromophenol blue in NBTA and Neutral Red in MacConkey medium were 

absorbed by growing bacterial cells. Assimilation and acid production from glycerol, ribose, glucose, 

fructose, mannose, inositol, N-acetyl glucosamine, esculin, maltose, trehalose and xylitol were also 

recorded for the P. luminescens subsp. noenieputensis strain. The latter also applied for acid production 

from adonitol, sorbitol, salicine, L-fucose and the assimilation of gluconate and citrate. The strain showed 

to be resistant to ampicillin concentrations up to 100 μg/ml, while growth of B. subtilus DSM 10 was 

inhibited by cells grown on nutrient agar plates. The type strain is AM7
T
 (= ATCC BAA-2407

T
, = DSM 

25462
T
) and GenBank accession numbers of the type strain are: JQ424880 (16S rRNA), JQ424881 

(recA), JQ424884 (gyrB), JQ424882 (dnaN), JQ424883 (gltX) and JQ424885 (infB). 
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CHAPTER 3 

Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode 

Steinernema khoisanae* 

 

*Submitted as: Tiarin Ferreira, Carol van Reenen, Akihito Endo, Cathrin Spröer, Antoinette P. Malan and 

Leon M.T. Dicks. (2012), ‘Description of Xenorhabdus khoisanae sp. nov., the symbiont of the 

entomopathogenic nematode Steinernema khoisanae’. International Journal of Systematic and 

Evolutionary Microbiology (Accepted for publication). 

 

Abstract 

Strain SF87, and additional strains SF80, SF362 and 106-C, isolated from the nematode 

Steinernema khoisanae, are non-bioluminescent gram-negative bacteria that share many of the 

carbohydrate fermentation reactions recorded for the type strains of previously describe Xenorhabdus 

spp. Based on 16S rRNA gene sequence data, strain SF87 is 98.1% related to Xenorhabdus hominickii. 

Comparison of sequences obtained from the recA, dnaN, gltX, gyrB and infB genes grouped strain SF87 

at 96 to 97% with Xenorhabdus miraniensis. However, strain SF87 shares only 52.7% DNA homology 

with the type strain of X. miraniensis (DSM17902
T
), confirming that it belongs to a separate species. This 

is the first description of a bacterial symbiont, associated with the genus Steinernema from Africa. 

Xenorhabdus khoisanae sp. nov. is proposed as a new species of the genus Xenorhabdus (type strain 

SF87
T
, DSM 25463

T
, ATCC BAA-2406

T
). 

Introduction 

Xenorhabdus species are bound in obligate alliance of mutual benefit with specific species of 

entomopathogenic nematodes of the family Steinernematidae (Thomas & Poinar, 1979). Thus far 85 

Steinernema spp. have been described worldwide, of which Steinernema khoisanae Nguyen, Malan & 

Gozel, 2006 was isolated in the Western Cape province of South Africa (Nguyen et al., 2006).  
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Thomas and Poinar were the first to describe symbiotic bacteria in Steinernema as members of 

the genus Xenorhabdus in 1979 (Thomas & Poinar, 1979). Since then, 23 species in the genus 

Xenorhabdus have been described, i.e. X. beddingii (DSM 4764
T
), X. bovienii (DSM4766

T
), X. 

budapestensis (DSM 16342
T
), X. cabanillasii (DSM 17905

T
), X. doucetiae (DSM 17909

T
), X. ehlersii 

(DSM 16337T), X. griffiniae (DSM17911
T
), X. hominickii (DSM 17903

T
), X. indica (DSM 17382

T
), X. innexi 

(DSM 16336
T
), X. ishibashii (DSM22670

T
), X. japonica (DSM 16522

T
), X. koppenhoeferi (DSM 18168

T
), 

X. kozodoii (DSM 17907
T
), X. magdalenensis (DSM 24915

T
), X. mauleonii (DSM 17908

T
), X. miraniensis 

(DSM 17902
T
), X. nematophila (DSM 17382

T
), X. poinarii (DSM 4768

T
), X. romanii (DSM 17910

T
), X. 

stockiae (DSM 17904
T
), X. szentirmaii (DSM 16338

T
) and X. vietnamensis (DSM 22392

T
) (Akhurst & 

Boemare, 1988; Kuwata et al., 2012; Lengyel et al., 2005; Nishimura et al., 1994; Somvanshi et al., 2006; 

Tailliez et al., 2006, 2010, 2011; Thomas & Poinar, 1979). In this paper we describe a novel symbiont for 

South Africa, as a new species, Xenorhabdus khoisanae sp. nov., associated with the entomopathogenic 

nematode S. khoisanae. 

Materials and methods 

Bacterial strains and growth conditions 

Bacterial strains SF87 (type strain), SF80, SF362 and 106-C were isolated from different local S. 

khoisanae nematode populations, as previously described (Malan et al., 2006, 2011). Cultures were 

obtained indirectly from the nematodes by drawing blood from the haemocoel of wax moth larvae 

(Galleria mellonella L; Lepidoptera:Pyralidae) which was plated onto nutrient agar (Biolab, Biolab 

Diagnostics, Midrand, South Africa), supplemented with 0.004% (w/v) triphenyltetrazolium chloride and 

0.025% (w/v) bromothymol blue (NBTA) according to the procedure described by Akhurst (1980). Plates 

were incubated in a growth chamber at 26°C for 72 h and typical blue-green colonies were randomly 

selected for identification and further characterization. Isolates of Xenorhabdus spp. were also routinely 

cultured in Tryptic Soy Broth (TSB; Beckton Dickinson and Company, Sparks, USA) and Luria Broth (LB; 

Biolab), and stored in a 1.5 ml Eppendorf tube in 40% (v/v) glycerol at -80°C. Xenorhabdus miraniensis 

DSM 17902
T
, X. hominickii DSM 17903

T
 and Bacillus subtilis subsp. subtilis DSM 10

T
 were obtained from 
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Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Germany. Escherichia coli 

transformants were cultured in LB containing 100 μg/ml ampicillin. Bacillus subtilis DSM 10
T
 was grown in 

Nutrient Broth (NB; Biolab). 

Physiological and biochemical characterization 

Phenotypic characterization included colony pigmentation, determination of optimum growth 

temperature, sensitivity to ampicillin, antibiosis, lipase activity on peptone agar containing Tween 20, 

Tween 40, Tween 60 and Tween 80, DNAse activity, haemolysis of sheep and horse blood, lecithinase 

activity, production of catalase and oxidase, presence or absence of bioluminescens and biochemical 

reactions. Xenorhabdus miraniensis DSM 17902
T
 and X. hominickii DSM 17903

T
 were included as 

reference strains in carbohydrate (API) reactions and agar plate phenotypic tests, except for ampicillin 

sensitivity.  

For dye uptake, all isolates were streaked onto NBTA and McConkey Agar (Biolab), and 

incubated for 48 h at 30°C. To determine optimum temperature requirements for growth isolates were 

grown overnight in 10 ml test tubes containing LB at temperatures ranging from 26°C to 42°C (1°C 

increases). Growth was measured spectrophotometrically at 600 nm. Sensitivity to ampicillin in LB was 

determined as described by Somogyi et al. (2002). Antimicrobial activity was tested by overlaying 48 h-

old cultures of strains SF87, SF80, SF362, 106-C, X. hominickii DSM 17902
T
 and X. miraniensis DSM 

17903
T
 with an active growing culture of B. subtilis subsp. subtilis DSM 10

T
. Lipase, DNAse and 

lecithinase activities were determined as described by Ferreira et al. (2012). Haemolysis was observed by 

streaking the strains on agar plates containing either 10% (v/v) sheep blood or 5% (v/v) horse blood 

(National Health Laboratory Services, Cape Town, South Africa). Plates were incubated in a growth 

cabinet at 30°C for 48 h. All tests were conducted in duplicate. Biochemical properties were recorded 

using Biolog GN microplates (Biolog, Hayward, Canada), API 20 NE and API 50 CH test strips 

(BioMérieux, Marcy l'Etoile, France). Test strips were incubated at 30°C for 10 days as indicated by 

Boemare and Akhurst (1988). Possible presence of bioluminescens was determined by scanning the 

colonies with the Xenogen in vivo imaging system (IVIS, Caliper Life Sciences Inc., Alameda, USA). 
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Genotypic characterization 

Total genomic DNA of overnight (12 h) cultures of strains SF87, SF80, SF362 and 106-C was 

extracted using a ZR fungal/bacterial DNA kit (Zymo Research Corporation, Irvine, California, USA). 

Isolates were initially identified by amplifying the 16S rRNA gene using primers as described by Brunel et 

al. (1997). Based on previous phylogenetic studies, the recombinase A (recA), DNA polymerase III beta 

chain (dnaN), glutamyl-tRNA synthetase catalytic subunit (gltX), DNA gyrase subunit B (gyrB) and 

initiation factor B (infB) genes were amplified with primers recA1(F) and recA2(R), 8SF_gyrB(F) and 

9Rev_gyrB(R), dnaN1(F) and dnaN2(R), gltX1(F) and gltX2(R), and infB1 and infB2, respectively (Tailliez 

et al., 2010, 2011). An initial denaturation step of 94°C for 4 min was used, followed by 35 cycles of 94°C 

for 1 min, the appropriate temperature for each primer pair for 30 sec and 72°C for 1 min. Final extension 

was at 72°C for 7 min. TaKaRa Ex Taq, 10x Ex Taq buffer and dNTP mixture (Takara Bio Inc., Shiga, 

Japan), were used at concentrations recommended by the manufacturer. Amplified products were purified 

using a QIAquick PCR Purification kit (Qiagen Inc., Valencia California, USA), ligated into pGEM T-Easy 

vector (Promega Corporation, Madison, USA), transformed into Escherichia coli, and plasmid 

preparations sequenced (DNA Sequencing Unit, Central Analytical Facility, University of Stellenbosch) 

using the BigDye Teminator V3.1 sequencing kit (Applied Biosystems). Sequences were analyzed using 

BLAST (Basic Local Alignment Rearch Tool, National Center for Biotechnology Information, National 

Library of Medicine, Bethesda USA).  

The 16S rRNA gene sequences of strains SF87, SF80, SF362, 106-C and related species were 

aligned using the program Clustal_X, ver. 1.18 (Thompson et al., 1997). Sequences of the closest 

relatives were retrieved from DNA Databank of Japan (DDBJ). The Kimura two-parameter model was 

used to calculate distance matrices for the aligned sequences (Kimura, 1980) and bootstrapping with 

1000 replicates was done to estimate the robustness of the individual branches (Felsenstein, 1985). The 

neighbour-joining method (Saitou & Nei, 1987) analysed with PHYLIP ver. 3.65 (Felsenstein, 2005) were 

used for sequence analysis. Partial recA, dnaN, gltX, gyrB and infB gene sequences were analyzed using 

the neighbour-joining method. 
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Hybridization studies 

DNA-DNA hybridization between strain SF87 and the closest relative X. miraniensis DSM 17902
T
 

was performed according to Huss et al. (1983). Strains SF87, SF80, SF362 and 106-C were deposited at 

the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ). Strain SF87 was also deposited 

at the American Type Culture Collection (ATCC). 

Results 

Physiological and biochemical characterization 

All strains tested absorbed dye. Colonies were dark blue-green on NBTA and light reddish brown 

on McConkey agar. None of the strains displayed bioluminescens. All the isolates were catalase and 

oxidase negative, and did not reduce nitrate. Optimum growth temperature in LB was 31-32°C, while a 

maximum growth temperature of 42°C was observed for strain SF87 in NB. Strains SF87, SF80, SF362 

and 106-C were inhibited by ampicillin in solid medium at concentrations higher than 50 μg/ml, while 

slight variations in liquid medium were observed (SF87, no growth above 50 μg/ml; SF80 and 106-C, no 

growth at 25 μg/ml; SF362, no growth at 12.5 μg/ml). No lecithinase activity was observed for strains 

SF87, SF80, SF362 and 106-C, but positive reactions were recorded for the reference strains. All strains 

tested negative for DNAse activity. Lipase activity was not detected on plates containing Tween 20 or 

Tween 40, and variable results were recorded for plates containing Tween 60 and Tween 80. Total 

haemolysis was observed for all strains on sheep and horse blood. All strains showed strong 

antimicrobial activity against B. subtilis DSM 10
T
. 

BIOLOG GN microplate reactions indicated that strain SF87 utilized N-acetyl glucosamine, D, L-

lactic acid, bromo-succinic acid, L-alanine, L-alanine-glycine, glycyl-L glutamic acid, L-histidine and L-

serine (Table 3.1). This corresponds to BIOLOG GN results for most of the strains studied by Somvanshi 

et al. (2006). Strain SF87 had a weak affinity for D-mannose, uridine, ρ-hydroxy-phenyl acetic acid and D-

trehalose. Reactions recorded by Somvanshi et al. (2006) indicated that all strains tested utilized D-

mannose, most strains utilized uridine and D-trehalose, while few utilized ρ-hydroxy-phenyl acetic acid. 
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According to the API 50 CH system, strains SF87, SF80, SF362, 106-C, X. miraniensis DSM 

17902
T
 and X. hominickii DSM 17903

T
 produced acid from N-acetyl-glucosamine, D-fructose, D-glucose, 

glycerol, D-maltose, D-mannose and ribose. Weak acid production from inositol and 5-ketogluconate 

were recorded. Acid production on D-trehalose was positive for strains SF87, 106-C and the control 

strains, but only weak positive for strains SF80 and SF362. Weak positive reactions on starch were 

recorded for strains SF87 and 106-C, while strains SF80 and SF362 were negative. A comparison of API 

results of strains SF87, SF80, SF362 and 106-C to previously published data is shown in Table 3.1. 

Results from API 20 NE showed that all four strains and the two reference strains assimilated glucose, 

mannose, N-acetyl-glucosamine, maltose and gluconate. Similar results were obtained from all strains. 
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Table 3.1. Carbohydrate reactions recorded for X. khoisanae (SF87, SF80, 106-C and SF362) and other Xenorhabdus species after 48 h of 

incubation at 28°C and using the BIOLOG GN microplate (Somvanshi et al., 2006; Tailliez et al., 2010). 

Carbon 
substrate 

 Xenorhabdus species 
 

  

 
SF87

T
 

DSM  
17382

T
 

DSM  
3370

T
 

DSM  
16522

T
 

DSM  
4764

T
 

DSM  
4766

T
 

DSM  
4768

T
 

DSM  
16336

T
 

DSM  
16342

T
 

DSM  
16337

T
 

DSM  
16338

T    
 

DSM 
17903

T
 

DSM 
17902

T
 

Glycogen − − + − − − − − − + − nd nd 

Tween 40 − − − − − − + − − − − nd nd 

Tween 80 − − − − − − + + + − + nd nd 

N-acetyl-d-
glucosamine 

+ ++ ++ + − ++ ++ ++ ++ ++ ++ − + 

D-Fructose − + ++ ++ + + − + + + + v(−) + 

m-Inositol − − − + − − − − − − − − − 

α-Lactose − − − − − − + − − − − v(+) + 

Maltose − − + + + − + − + ++ + + + 

D-Mannose w ++ ++ + + + + ++ ++ ++ + nd nd 

Psicose nd − − − − − − + − − − nd nd 

Mono-methyl 
succinate 

− − − + − − + + − − w nd nd 

Acetic acid − − + + − − + − − + − nd nd 

Cis-aconitic 
acid 

− − + − + − + − − ++ ++ − + 

Citric acid − − + − + − + − − + w − + 

D-Gluconic acid − − + − ++ − + + − + − + + 

p-Hydroxy-
phenyl acetic 
acid 

w w + − − − − − + + − nd nd 

α-Keto glutaric 
acid 

− − + − − − − − − + − nd nd 

D,L-Lactic acid + w + + + − + + + + + v(+) + 

Bromo-succinic 
acid 

+ − + ++ + − + + − + + nd nd 

Alanin-amide − − + + − − − + − + − nd nd 
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Carbon 
substrate 

 Xenorhabdus species 
 

  

 
SF87

T
 

DSM  
17382

T
 

DSM  
3370

T
 

DSM  
16522

T
 

DSM  
4764

T
 

DSM  
4766

T
 

DSM  
4768

T
 

DSM  
16336

T
 

DSM  
16342

T
 

DSM  
16337

T
 

DSM  
16338

T    
 

DSM 
17903

T
 

DSM 
17902

T
 

D-Alanine nd − + + − − + + − + + w + 

L-Alanine + − + + − + + + − + + nd nd 

L-Alanyl-glycine + − + − + + + + − + + nd nd 

Glycyl-L-
aspartic acid 

− w + − − + + + + + + nd nd 

Glycyl-L-
glutamic acid 

+ − + − − − − + + + − nd nd 

L-Histidine + w + + − + + + + + − − − 

L-Proline − − + − + − + + + + + nd nd 

D-Serine + − + + + + + + + + − nd nd 

L-Threonine − − + + − + + − − − − nd nd 

Uridine w − ++ ++ − + + ++ + ++ + nd nd 

Thymidine − − + + − − − + + − + nd nd 

Glucose-1-
phosphate 

− + ++ − + + ++ + − ++ w nd nd 

Adonitol − − − − − − − − − − − nd nd 

D-Trehalose w w + + + + + + + + + − + 

Methyl 
pyruvate 

nd w + + + + + + + + + nd nd 

Succinic acid − − + + + + + + + + + v(+) + 

L-Aspartic acid nd − + + + + + + + + + + + 

L-Asparagine nd − + + + + + + + + + nd nd 

L-Glutamic acid − − + + + + + + + + + nd nd 

L-Serine + − + + + + + + + + + nd nd 

+ = carbohydrate utilised, - = not utilised, w = weak reaction (<20% of the highest reaction after 24 and 48 h), v = variable reaction, nd = not 
determined. 
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All strains utilized dextrin, α-D-glucose, glycerol, DL-α-glycerol phosphate, inosine and 

glucose-6-phosphate. None of the strains utilized any of the other substrates listed in Biolog GN2.  

SF87
T
 = X. khosanensis, DSM 17382

T
 = X. indica, DSM 3370

T
 = X. nematophila, DSM 16522

T
 = X. 

japonica, DSM 4764
T
 = X. beddingii, DSM 4766

T
 = X. bovienii, DSM 4768

T
 = X. poinarii, DSM 16336

T
 

= X. innexi, DSM 16342
T
 = X. budapestensis, DSM 16337

T
 = X. ehlersii, DSM 16338

T
 = X. 

szentirmaii, DSM 17903
T
 = X. hominickii, DSM 17902

T
 = X. miraniensis (Table 3.1). 

Genotypic characterization 

According to the neighbour-joining method, strains SF87, SF80, SF362 and 106-C aligned 

with 97% homology to the 16S rRNA sequences of several Xenorhabdus type strains, clearly 

indicating that it belongs to the same genus (Fig. 3. 1).  

In addition to 16S rRNA gene sequence analysis, several recent studies have adopted a multi 

gene approach to distinguish between Xenorhabdus spp. (Kuwata et al., 2012; Lee & Stock, 2010; 

Tailliez et al., 2010, 2011). Lee and Stock (2010) analysed the 16S rRNA gene and two housekeeping 

genes, phosphoserine aminotransferase (serC) and recA, while Tailliez et al. (2010, 2011) and 

Kuwata et al. (2012) used the genes recA, dnaN, gltX, gyrB and infB. In this study, partial recA, dnaN, 

gltX, gyrB and infB gene sequences of strains SF87, SF80, SF362 and 106-C were analysed using 

the neighbour-joining method. Results obtained with all five gene sequences have shown that these 

strains are phylogenetically closely related to X. miraniensis (96 to 97% similarity; Fig. 3. 2–3. 6.). 

This was confirmed by groupings obtained from concatenated sequences of the six genes (96 to 97% 

similarity, Fig. 3.7.). 
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Fig. 3.1. Bootstrap percentages above 55% are given at branching points. Phylogenetic relationship 

of strain Steinernema khoisanae sp. nov. SF87
T
 to known Xenorhabdus spp. based on 16S rRNA 

gene sequences. The tree was constructed by the neighbour-joining method. Photorhabdus 

asymbiotica subsp. asymbiotica was used as an outgroup. Bootstrap percentages above 70% are 

given at branching points. 
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Fig. 3.2. Phylogenetic relationship of Steinernema khoisanae sp. nov.  strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on recA gene sequences. The tree was constructed by 

the neighbour-joining method. Photorhabdus asymbiotica subsp. asymbiotica was used as an 

outgroup. Bootstrap percentages above 70% are given at branching points. 
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Fig. 3.3. Phylogenetic relationship of Steinernema khoisanae sp. nov. strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on dnaN gene sequences. The tree was constructed 

by the neighbour-joining method. Photorhabdus asymbiotica subsp. asymbiotica was used as an 

outgroup. Bootstrap percentages above 70% are given at branching points. 
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Fig. 3.4. Phylogenetic relationship of Steinernema khoisanae sp. nov. strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on gltX gene sequences. The tree was constructed by 

the neighbour-joining method. Photorhabdus asymbiotica subsp. asymbiotica was used as an 

outgroup. Bootstrap percentages above 70% are given at branching points. 
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Fig. 3.5. Phylogenetic relationship of Steinernema khoisanae sp. nov. strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on gyrB gene sequences. The tree was constructed by 

the neighbour-joining method. Photorhabdus asymbiotica subsp. asymbiotica was used as an 

outgroup. Bootstrap percentages above 70% are given at branching points. 
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Fig. 3.6. Phylogenetic relationship of Steinernema khoisanae sp. nov. strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on infB gene sequences. The tree was constructed by 

the neighbour-joining method. Photorhabdus asymbiotica subsp. asymbiotica was used as an 

outgroup. Bootstrap percentages above 70% are given at branching points. 
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Fig. 3.7. Phylogenetic relationship of Steinernema khoisanae sp. nov. strains SF87
T
, SF80, 106-C 

and SF362 to known Xenorhabdus spp. based on concatenated (16S rRNA, recA, dnaN, gltX, gyrB 

and infB) gene sequences. The tree was constructed by the neighbour-joining method. Photorhabdus 

asymbiotica subsp. asymbiotica was used as an outgroup. Bootstrap percentages above 70% are 

given at branching points. 

Hybridization studies 

Strain SF87 shared only 52.7% DNA homology with the type strain of X. miraniensis (DSM 

17902
T
). This is below the 70% DNA-DNA similarity threshold the ad hoc committee proposed for 

strains within a single species (Wayne et al., 1987). Steinernema khoisanae sp. nov. strains SF87, 

SF80, SF362 and 106-C are thus regarded isolates of a new species and the name X. khoisanae sp. 

nov. is proposed (type strain SF87). The name pertains to the nematode S. khoisanae from which the 

strain has been isolated. 
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Discussion 

Xenorhabdus khoisanae sp. nov., khoisanae, [khoi.san.ae. N.L. fem. adj. khoisanae] from the 

nematode Steinernema khoisanae (Nguyen et al., 2006). Cells are Gram-negative, catalase and 

oxidase negative and rod shaped (2-3 x 0.2-0.7 μm). Growth of bacterial cells of this strain is aerobic, 

with maximum growth temperature being recorded at 42°C in NB and 37°C in TSB. Colonies on 

McConkey agar are light reddish-brown. Acid is produced from N-acetyl glucosamine, D-fructose, D-

glucose, glycerol, D-maltose, D-mannose and ribose. Acid production on D-trehalose and starch is 

variable and negative for esculin. High 16S rRNA sequence similarity (98.1%) was recorded with X. 

hominickii, but comparison of recA, dnaN, gltX, gyrB and infB gene sequences grouped the species at 

96 to 97% with X. miraniensis. However, strain SF87 and the type strain of X. miraniensis (DSM 

17902
T
) share a DNA homology of only 52.7%.  

Strain SF87 of S. khoisanae was isolated by trapping with G. mellonella from soil of an apple 

orchard on the farm Tweefontein, Villiersdorp (33º57'06S/19º24'.02E), strain SF80 from soil of grass 

from the farm Roodezand, Tulbagh (33º12'.33S/019º06'.57E), strain SF362 from soil of grapevine on 

the farm Nuutbegin, Rawsonville and strain 106-C from a citrus orchard on the farm Rooihoogte, 

Porterville (33º04'5.03S/18º50'.30E). The type strain is SF87
T
 (DSM 25463

T
, ATCC BAA-2406

T
). The 

additional strains were also deposited at DSMZ (X. khoisanae 106-C = DSM 26373, X. khoisanae 

SF362 = DSM 26374 and X. khoisanae SF80 = DSM 26378). 
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CHAPTER 4 

 

Description of Photorhabdus sp. (SF41), a symbiont of the entomopathogenic nematode 

Heterorhabditis zealandica 

Abstract 

The bacterial symbiont SF41 (HQ142626) was isolated from the insect pathogenic nematode 

Heterorhabditis zealandica. This isolate belongs to the genus Photorhabdus, which is based on the 

16S rRNA gene sequence, has bioluminescent qualities and is Gram-negative. The phylogenetic 

position of the new isolate was analysed using a multigene approach. Strain SF41 was shown to 

share a common ancestor with P. temperata subsp. temperata, with P. asymbiotica subsp. 

asymbiotica and with P. luminescens subsp. luminescens. Several phenotypic traits, and the 

difference between the upper temperatures limiting growth of these four bacteria, allowed for the 

genetic and phenotypic differentiation of strain SF41 from its three closely related species. This is the 

first study to show that H. zealandica associates with a luminescent Photorhabdus species, and is not 

the known non-luminescent P. temperata. Strain SF41, therefore, represents a new species.  

Introduction 

Photorhabdus bacteria are symbiotically associated with entomopathogenic nematodes of the 

genus Heterorhabditis, contributing actively to the biological cycle of their host. The Heterorhabditidae 

family of nematodes consists of obligate insect pathogens. The nematodes and bacteria work 

together to overcome the immune response of their insect host, thus allowing the bacteria to 

proliferate. Developing nematodes feed on a mixture of bacteria and bioconverted host tissue, 

enabling them to produce one to three generations until the food resources in the cadaver are 

depleted (Koppenhöfer, 2007).  

Currently, three species of Photorhabdus, P. asymbiotica (Fischer-Le Saux, Viallard, Brunel, 

Normand &Boemare, 1999, P. luminescens (Thomas & Poinar, 1979) Boemare, Akhurst & Mourant, 

1993 and P. temperata Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999, have been 

described. In addition, six P. luminescens subspecies, three P. temperata subspecies, and two P. 
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asymbiotica subspecies are recognised. The P. luminescens subspecies are: P. luminescens subsp. 

luminescens (Thomas & Poinar, 1979) Boemare, Akhurst & Mourant, 1993; P. luminescens subsp. 

laumondii Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999, P. luminescens subsp. 

akhurstii Fisher-Le Saux, Viallard, Brunel, Normand & Boemare, 1999 (Fischer-Le Sauxet al., 1999); 

P. luminescens subsp. kayaii Hazir, Stakebrant, Lang, Schumann, Ehlers & Keskin, 2004; P. 

luminescens subsp. thracensis Hazir, Stackebrandt, Lang, Schumann, Ehlers & Keskin, 2004 (Hazir 

et al., 2004); and P. luminescens subsp. kleinii An & Grewal, 2011. The recognised P. temperata 

subspecies are: P. temperata subsp. temperata Fisher-Le Saux, Viallard, Brunel, Normand & 

Boemare, 1999, P. temperata subsp. cinerea (Toth & Lakatos, 2008): and P. temperata subsp. 

stackebrandtii An & Grewal, 2010. Two subspecies were described for P. asymbiotica, namely P. 

asymbiotica subsp. australis Akhurst Boemare, Janssen, Peel, Alfedson & Beard, 2004 and P. 

asymbiotica subsp. asymbiotica Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999.  

In this study a novel symbiont for South Africa is described, as a new species, which is 

associated with the entomopathogenic nematode H. zealandica. 

Materials and methods 

Bacterial strains and growth conditions 

Bacteria were obtained from the haemolymph of Galleria mellonella (L.) (Lepidoptera: 

Pyralidae) larvae infected with H. zealandica. Isolation was done by plating on blue NBTA (Trypticase 

soy agar and bacteriological agar supplemented with 0.0025% (w/v) bromothymol blue) plates and 

incubated at 30°C. Colonies that absorbed the blue colour were submitted to 16S rRNA sequencing. 

The most important phenotypic characteristics of the genus Photorhabdus was investigated for strain 

SF41, using the methods of Boemare & Akhurst (1988). Strain SF41 was stored at -80°C in trypticase 

soy broth, containing 15% glycerol (v/v).  

The shape and colour of the colonies were recorded after 72 h of incubation at 30°C on NBTA 

(Biolab) plates. Growth between 24°C and 42°C was determined by inoculating equal cell densities 

(OD620nm = 0.03) into Trypticase Soy Broth (TSB) (Biolab) and Nutrient Broth (NB) (Biolab), 

respectively. Morphology was determined using a Leica DM2000 research microscope equipped with 

Leica Application Suite (LAS), ver. 3.5.0. 
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Physiological and biochemical characterisation 

Carbohydrate fermentation reactions were recorded using API 20NE and API 50CH E test 

strips (BioMérieux, Marcy l'Etoile, France). The API test strips were used according to the 

manufacturers’ instructions. Reactions in the API 20NE and API 50CH E test strips were recorded 

after 48 h and 10 days of incubation at 30°C. Nitrate reduction and indole production were recorded 

after 48 h. 

Antimicrobial activity was tested by using the spot-on lawn method (Akhurst, 1982), with 

Bacillus subtilis subsp. subtilis DSM 10
T
, Ralstonia solanacearum DSM 9544

T
, and Pectobacterium 

carotovorum subsp. carotovorum DSM 30168
T
 as target organisms. 

Genotypic characterisation 

Phylogenetic analysis was conducted by sequencing and amplifying the16S rRNA gene, as 

well as the recA, gyrB, dnaN, gltX and infB genes, based on a multigene approach and described 

previously by Tailliez et al. (2010). The DNA of strain SF41was extracted using a ZR fungal/bacterial 

DNA kit (Zymo Research Corporation, Irvine, California, USA). The partial 16S rRNA gene was 

amplified using primer pair 8F and 1512R, as described by Felske et al. (1997). The partial infB gene 

was amplified with primers infB1 and infB2, as described by Tailliez et al. (2011), and the partial recA, 

gyrB, dnaN and gltX genes were amplified using primers recA1(F) and recA2(R), 8SF_gyrB(F) and 

9Rev_gyrB(R), dnaN1(F) and dnaN2(R), and gltX1(F) and gltX2(R), respectively, as described by 

Tailliez et al. (2010), with an Esco Swift MiniPro Thermal Cycler (Esco Micro Pte. Ltd., Singapore). An 

initial denaturation step of 94°C for 4 min was used, followed by 35 cycles of 94°C for 1 min, the 

appropriate temperature for each primer pair for 30 sec, and 72°C for 1 min. A final extension step at 

72°C for 7 min was added and samples were kept at 4°C until analysed. Reaction mixtures (50 l) 

containing TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan), together with the supplied 10x Ex Taq 

buffer and dNTP mixture were used at concentrations recommended by the manufacturer.  

Hybridisation studies 

The DNA homology shared between strain SF41 and the type strain of Photorhabdus 

asymbiotica subsp. australis DSM 17609
T
was determined. A French pressure cell (Thermo 

Spectronic) was used to disrupt cells. DNA in the crude lysate was purified by means of 
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chromatography on hydroxyapatite, as described by Cashion et al. (1977). DNA-DNA hybridisation 

was performed, as described by De Ley et al. (1970), modified according to Huss et al. (1983). A Cary 

100 Bio UV/VIS-spectrophometer was used, equipped with a Peltier-thermostatted 6×6 multicell 

changer and a temperature controller with in-situ temperature probe (Varian). 

In vivo pathogenicity assay 

An in vivo pathogenicity assay was conducted with strain SF41 and with an Escherichia coli 

Escherich 1885, isolate that served as the control (Givaudan & Lanois, 2000). Galleria mellonella 

larvae were reared on artificial diet (Poinar, 1975) at 28°C. The bacterial cultures were prepared by 

inoculating 100 µl of culture into 10 ml of Luria-Bertani broth, which was then incubated in 10 ml test 

tubes overnight at 30°C. When an optical density of 0.7 (600 nm wavelength) was reached, the 

culture was centrifuged in a 1.5 ml Eppendorf tube and the cells were washed and centrifuged three 

times using 0.8% sodium solution. Wax moth larvae were surface sterilised with 70% (v/v) ethanol 

using cotton wool, prior to intrahaemocoelic injection. Then, with a BD Micro-Fine syringe, groups of 

20 larvae were injected with 20 µl of bacterial cell solution. A control of the actual number of bacteria 

in the injected suspension was measured by plating it onto three NBTA plates (Au et al., 2004; Sicard 

et al., 2006). The experiment was performed on two different test dates. 

Results 

Physiological and biochemical characterisation 

Cells from the blue or blue-green colonies on the NBTA (Biolab) plates were Gram-negative 

and rod-shaped. The colony diameter was 1-3 mm and the pigmentation on the NBTA plates was 

blue-green, with a red centre. The isolates preferred aerobic growth conditions and were catalase-

positive.  

Biochemical properties determined by using API 20 NE and API 50CH test strips are listed in 

Table 4. 1. Growth in Nutrient Broth (Biolab) was recorded between 24°C and 42°C, and for 

Trypticase Soy Broth between 24°C and 35°C (Biolab). The optimum growth temperature in both 

media was 30°C (Table 4. 2). 
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Strain SF41 exhibited strong antibacterial activity towards B. subtilis subsp. subtilis DSM 10
T
 

and the plant pathogens R. solanacearum DSM 9544
T
 and P. carotovorum subsp. carotovorum DSM 

30168
T
, corresponding to what has been described for other Photorhabdus spp. (Somvanshi et al., 

2006) (Table 4.2). 

Table 4.1. Results from API 20 NE and API 50 CH test strips for SF41, P. asymbiotica subsp. 

australis, P. asymbiotica subsp. asymbiotica and P. temperata subsp. temperata.  

 
P. asymbiotica 

subsp. 
australis 

P. asymbiotica 
 subsp. 

asymbiotica 

P. temperata 
subsp. 

temperata 

 
SF41 

 

Control     

Glycerol + + + + 

Erythritol     

D-Arabinose +    

L-Arabinose     

D-Ribose w + w w 

D-Xylose    + 

L-Xylose     

D-Adonitol     

Methyl-βD xylopyranoside     

D-Galactose     

D-Glucose + + + + 

D-Fructose + + + + 

D-Mannose + + + + 

L-Sorbose     

L-Rhamnose     

Dulcitol     

Inositol + w  w 

D-Mannitol     

D-Sorbitol   w  

Methyl-
αDmannopyranoside 

    

Methyl-αD-
glucopyranoside 

    

N-Acetyl glucosamine + + + + 

Amygdalin     

Arbutin     

Esculin ferric citrate + + + + 

Salicin + +  w 

D-Cellobiose     

D-Maltose + + w w 

D-Lactose     

D-Melibiose     

D-Saccharose     

D-Trehalose w w w  

Inulin     

D-Melezitose     
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P. asymbiotica 

subsp. 
australis 

P. asymbiotica 
 subsp. 

asymbiotica 

P. temperata 
subsp. 

temperata 

 
SF41 

 

D-Raffinose     

Amidon     

Glycogen     

Xylitol   w  

Gentibiose     

D-Turanose     

D-Lyxose     

D-Tagatose     

D-Fucose     

L-Fucose w + +  

D-Arabitol     

L-Arabitol     

Potassium gluconate w  w w 

Potassium 2-
ketogloconate 

   w 

Potassium 5-
ketogluconate 

w w w w 

Reduction of nitrates to 
nitrites 

    

Reduction of nitrates to 
nitrogen 

    

Indole production     

Glucose fermentation + +  + 

Arginine dihydrolase + + w + 

Urease + + + + 

Hydrolysis (β-
glucosidase) esculin 

+ + + + 

Hydrolysis (protease) 
Gelatin 

+ + + + 

Β-galactosidase     

Glucose assimilation + + + + 

Arabinose assimilation     

Mannose assimilation + + + + 

Mannitol assimilation     

N-acetyl-glucosamine 
assimilation 

+ + + + 

Maltose assimilation + + + + 

Potassium gluconate 
assimilation 

+ + + + 

Capric acid assimilation     

Adipic acid assimilation     

Malic acid assimilation + +   

Trisodium citrate 
assimilation 

+ + +  

Phenyl acetic acid 
assimilation 

    

Oxidase     

+, 90% of strains positive; w, weak; blank, not available 
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Table 4.2. Phenotypic characters differentiating SF41, P. asymbiotica subsp. australis and P. 

asymbiotica (Somvanshi et al., 2006). 

Blank, not available 

Genotypic characterisation 

The 16S rRNA gene sequence of strain SF41 was compared with the sequences of 

representative strains of the different species and subspecies of the genus Photorhabdus (Fig. 4.1). 

The sequence of strain SF41 clustered with the type strains of P. temperata and P. asymbiotica, 

indicating that it belongs to the genus Photorhabdus. 

In addition to 16S rRNA gene sequences analysis, several recent studies have adopted a multi 

gene approach to distinguish between Photorhabdus species, as well as subspecies (Kuwata et al., 

2012; Lee & Stock, 2010; Tailliez et al., 2010, 2011). Lee and Stock (2010) analysed the 16S rRNA 

Phenotypic characterisation 

P.  

asymbiotica 

subsp. 

asimbiotica 

P. 

asymbiotica 

subsp. 

australis 

P. 

asymbiotica 

subsp. 

temperata 

SF41 

Growth in LB 26-42°C: Optimum    30 

Maximum temperature    42 

Amp resistance 1.563-200 ug/ml    75 

Colony pigmentation:  NBTA     Yes 

MacConkey    Yes 

Bioluminescens Yes Yes Yes Yes 

Antibiosis against Bacillus subtilis    ++ 

Pectobacterium sp.    ++ 

Ralstonia sp.    ++ 

Growth in Tween 20    + 

Tween 40    + 

Tween 60    + 

Tween 80    + 

DNAse activity    + 

Type of haemolysis (total, partial, 

annular) horse/sheep 

T T T T 

Lecithinase activity - - - + 

Catalase + + + + 

Oxidase - - - - 
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gene and two housekeeping genes, phosphoserine aminotransferase (serC) and recA, while Tailliez 

et al. (2010, 2011) and Kuwata et al. (2012) used the genes recA, dnaN, gltX, gyrB and infB. In this 

study, partial recA, dnaN, gltX, gyrB and infB gene sequences of strain SF41 were analysed, using 

the neighbour-joining method. Results obtained with all five gene sequences have shown that the 

strains are phylogenetically closely related to P. asymbiotica (Fig. 4.2-4.5). 

 

Fig. 4.1. Phylogenetic tree based on 16S rDNA sequences of Photorhabdus strains, including strain 

SF41. The tree was constructed using the maximum-likelihood method. Escherichia coli was used as 

an outgroup. 
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Fig. 4.2. Phylogenetic tree based on recA sequences of Photorhabdus strains, including strain SF41. 

The tree was constructed using the maximum-likelihood method. Xenorhabdus hominickii was used 

as an outgroup. 
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Fig. 4.3. Phylogenetic tree based on gyrB sequences of Photorhabdus strains, including strain SF41. 

The tree was constructed using the maximum-likelihood method. Xenorhabdus hominickii was used 

as an outgroup. 
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Fig. 4.4. Phylogenetic tree based on dnaN sequences of Photorhabdus strains, including strain SF41. 

The tree was constructed using the maximum-likelihood method. Xenorhabdus hominickii was used 

as an outgroup. 
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Fig. 4.5. Phylogenetic tree based on gltX sequences of Photorhabdus strains, including strain SF41. 

The tree was constructed using the maximum-likelihood method. Xenorhabdus hominickii was used 

as an outgroup. 

Hybridisation studies 

Based on DNA-DNA hybridisation, strain SF41 shares only 50.8% homology with the type 

strain of P. asymbiotica ssp. australis (DSM 17609
T
). This is below the 70% DNA-DNA similarity 

threshold that the ad hoc committee proposed for strains within a single species (Thompson et al., 

1997). Strain SF41 is, thus, regarded as a new species and the name Photorhabdus zealandica is 

proposed (strain SF41).  The name pertains to the nematode Heterorhabditis zealandica, from which 

the strain has been isolated. The strain has been deposited into the Deutsche Sammlung von Mikro-

organismen und Zellkulturen (DSM 25263
T
) and the American Type Culture Collection (ATCC). 
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In vivo pathogenicity assay  

After 16 h, there was 82.5% mortality of G. mellonella larvae injected with strain SF41, while 

the control group all survived. Results from the pathogenicity assay show strain SF41 is an effective 

insect pathogen, and has potential to be used in combination with its vector, H.zealandica, as a 

biological control organism against pest insects.  

Discussion 

Bacterial cells are Gram-negative, catalase-positive and rod-shaped. Growth of these bacterial 

cells is aerobic, with growth temperatures of strain SF41 ranging from 24°C to 42°C in Nutrient Broth, 

and from 24°C to 35°C in Trypticase Soy Broth. Optimal growth in both media was recorded at 30°C.  

Colonies on NBTA plates were blue or blue-green. Glycerol, glucose, fructose, mannose and N-Acetyl 

glucosamine were utilised by the bacteria after 10 days. Results from API 20NE show that strain 

SF41 were positive for glucose fermentation, arginine dihydrolase, urease, hydrolysis of esculin and 

hydrolysis of gelatine. After 10 days assimilation of glucose, mannose, N-acetyl-glucosamine, 

maltose, potassium gluconate and malic acid occurred. Nitrate was not reduced to either nitrite or 

nitrogen by bacterial cells of this strain. Strain SF41 and the type strain of P. asymbiotica ssp. 

australis (DSM 17609
T
) share a DNA homology of only 50.8%. 

The bacterial strain identified in this study was isolated from the nematode Heterorhabditus 

zealandica in Patensie, in the Northern Cape province, South Africa. The type strain is SF41
T
 and has 

been deposited into the Deutsche Sammlung von Mikroorganismen und Zellkulturen (25263) and the 

American Type Culture Collection (ATCC).  
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CHAPTER 5 

 

Development and population dynamics of Heterorhabditis zealandica and growth 

characteristics of the associated Photorhabdus luminescens symbiont in liquid culture 

 

Abstract 

Commercial use of entomopathogenic nematodes against key insect pests of deciduous fruit, 

grapevine and citrus in South Africa requires massive numbers of nematodes for inundative field 

application. High-technology in vitro liquid culture requires development to mass culture and to 

formulate said nematodes for commercial purposes. Heterorhabditis zealandica was identified as a 

species with potential as a biological control agent against a wide range of key insect pests. The first 

step towards the development of in vitro mass culture of H. zealandica is the establishment of 

monoxenic cultures of both the nematode and its Photorhabdus luminescens symbiont, using in vitro 

liquid culture technology. The body length of various H. zealandica life stages during in vitro 

development was measured to determine the growth characteristics of H. zealandica in liquid culture. 

The growth curve of the symbiotic bacteria during the process time was measured, to determine when 

the stationary phase was reached, as this would indicate the optimum time required for inoculating 

infective juveniles (IJs) and for aiding in maximum IJ recovery. On day 15, the IJs reached a 

maximum density of 41100·ml
-1

, while the hermaphrodites and females reached their highest density 

on day 16 at 9800·ml
-1

 and 7700·ml
-1
, respectively, after which the experiment was terminated. 

Bioassays using Galleria mellonella were performed to compare the virulence between in vitro- and in 

vivo-produced nematodes, which indicated in vitro-produced nematodes to be significantly less 

virulent. This study illustrates that H. zealandica and its P. luminescens symbiont can be successfully 

cultured in liquid. However, two generations occurred during the process time, instead of the desirable 

one-generation. Future research goals would be to increase the percentage recovery in the liquid 

culture, as doing so would increase the number of nematodes produced per ml and it would also 

reduce the processing time significantly. 
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Introduction 

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are 

symbiotically associated with bacteria of the genera Xenorhabdus and Photorhabdus, respectively, 

which are natural antagonists of the soil stages of insect pests (Dowds & Peters, 2002). The genus 

Photorhabdus belongs to the family Enterobacteriaceae and contains three recognised species, 

namely P. luminescens (Thomas & Poinar, 1979) Boemare, Akhurst & Mourant, 1993; P. temperata 

Fisher-Le Saux, Viallard, Brunel, Normand & Boermare, 1999; and P. asymbiotica Fischer-Le Saux, 

Viallard, Brunel, Normand & Boemare, 1999b. Within these nematode genera, a free-living soil stage 

occurs that overcomes periods of starvation as an enduring third juvenile stage, the infective juvenile 

(IJ). In Heterorhabditis, this stage carries the cells of the symbiotic bacterium in its intestine and 

represents the infective stage (Endo & Nickle, 1991). These bacto-helminthic complexes are safe 

biocontrol agents for agricultural soil insect pests (Boemare et al., 1996; Ehlers & Hokkanen, 1996).  

There is a demand for environmentally safe insecticides, with low toxicity, short-term 

persistence and limited effects on non-target organisms. For this reason, new insecticidal compounds 

are difficult to register for soil application, while many older compounds have been banned (Ehlers, 

1996). EPNs, however, can be used to control insect pests such as curculionid and scarabeid larvae 

in ornamental plants, strawberries and turf (Kaya & Gaugler, I993, Sulistyanto & Ehlers, 1996) and 

have many advantages over chemical compounds. They can reproduce in the host insect and, 

therefore, give a persistent effect in the soil (Ehlers, 1996). When the IJ enters the haemocoel of an 

insect host, it releases the symbiotic bacteria and starts developing from the third stage juvenile (J3) 

to the fourth-stage juvenile (J4) (Poinar et al., 1977), with the process concerned termed “recovery” in 

the closely related species Caenorhabditis elegans (Golden & Riddle, 1984). Heterorhabditis always 

develops, during the first generation, into self-fertilising hermaphrodites that produce eggs. The first 

stage juvenile (J1) hatching from the egg can either develop through the J2, J3 and J4 stages into 

males or females, which are amphimictic cross-fertilising adults, or they stop developing at the J3, in 

order to form IJs. The ratio of amphimictic (males and females) to automictic (hermaphrodites and IJs) 

individuals depends on the nutritional conditions encountered by the J1 larvae. Favourable conditions 

enhance the development of amphimictic males and females, whereas depleting food resources lead 

to the development of IJs, which can further develop into hermaphrodites (Strauch et al., 1994).  
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When the egg production of the hermaphrodites ceases, the remaining eggs develop within the 

uterus. These individuals develop into IJs and enter into the surrounding medium only after the 

hermaphrodite has died. The process concerned is called endotokia matricida (Johnigk & Ehlers, 

1999b). Due to their ‘y’, or lambda, type of copulation behaviour, the amphimictic adults of 

Heterorhabditis are unable to mate in liquid culture. In contrast, Steinernema males and females are 

able to copulate in liquid culture, because of the curling mating behaviour of the male (Strauch et al., 

1994). 

The objective of this study was the successful mass culture of Heterorhabditis zealandica 

Poinar, 1990 in liquid culture, in order to study the population dynamics of H. zealandica as well as 

the growth characteristics of the associated symbiotic bacterium Photorhabdus luminescens, followed 

throughout its culture period. 

Materials and methods  

Source of insects and nematodes 

Galleria mellonella (L.) (Lepidoptera: Pyralidae), wax moth larvae, were reared on a diet 

containing the following ingredients: five parts brown bread flour; five parts Cerelac Nestle
TM

 regular 

baby cereal; two parts wheat germ; two parts yeast; two parts glycerine; and one part honey. All the 

ingredients were mixed together with a beeswax comb (Bronskill, 1961; Woodring & Kaya, 1988). 

Nematodes were obtained from the nematode collection of the Department of Conservation 

Ecology and Entomology at Stellenbosch University (Malan et al., 2006). In vivo-produced IJs were 

reared and harvested at room temperature, according to the procedures devised by Kaya and Stock 

(1997). The IJs were stored at 14˚C in filtered tap water in flat, vented, horizontally placed 500 ml 

volume culture flasks. The flasks contained 150 ml nematode suspension, and were shaken weekly 

for aeration. Nematodes were used within one month after harvesting. 

Isolation of symbiotic bacteria 

The primary form of the symbiotic bacteria was isolated from last instar G. mellonella larvae 

infected with H. zealandica. Last instar G. mellonella larvae were surface-sterilised, 24 h after 

inoculation with IJs of H. zealandica, by being dipped into 95% (v/v) ethanol, ignited and immediately 
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plunged into sterile water. The cadaver was opened, using a sterile syringe and inoculating loop, the 

haemolymph was transferred and spread onto an NBTA plate (nutrient broth supplemented with 

0.004% (w/v) triphenyltetrazolium chloride and 0.025% (w/v) bromothymol blue (NBTA). Plates were 

incubated at 25-28˚C for 48 h (Akhurst, 1980; Kaya & Stock, 1997), propagated in trypticase soy broth 

(TSB) in 10 ml test tubes and stored in 15% glycerol at -80˚C. When required, the glycerol stocks 

were melted at room temperature, propagated in 10 ml TSB  in 25 ml test tubes for 2 days at 30˚C, 

and subsequently used.  

Identification of symbiotic bacteria 

The bacterium was identified by isolating the total genomic DNA of an overnight (12 h) culture 

of the symbiotic bacteria. It was extracted using the ZR fungal/bacterial DNA kit (Zymo Research 

Corporation, Irvine, California, USA). The DNA of the 16S rRNA gene was amplified, as described by 

Felske et al. (1997). PCR reactions were done, as described by Tailliez et al. (2010), using TaKaRa 

Ex Taq (Takara Bio Inc., Shiga, Japan), together with the supplied 10 × Ex Taq buffer and dNTP 

mixture, at concentrations recommended by the manufacturer. Amplified products were cleaned 

(QIAquick PCR purification kit, Qiagen, Valencia, USA) and sequenced at the Analytical Centre of the 

Department of Genetics at Stellenbosch University, using BigDye chemistry (PE Applied Biosystems, 

Foster City, California, USA). The base-pair calls of the sequences were verified and edited, using the 

software CLC DNA Workbench, version 6 (http://www.clcbio/products/clc-main-workbench/). 

Sequences were analysed using Basic Local Alignment Search Tool (BLAST). National Centre for 

Biotechnology Information, National Library of Medicine, Bethesda, USA). Bioluminescens was 

visualised by scanning the colonies with the Xenogen in vivo imaging system (IVIS, Caliper Life 

Sciences Inc., Alameda, USA). 

Axenisation of nematodes 

To obtain nematode eggs, last instar G. mellonella larvae were infected with IJs of H. 

zealandica. Infected G. mellonella larvae were dissected 4 days after inoculation with IJs. The 

hermaphrodites found were isolated and transferred to a 10-ml glass tube. Pieces of razor blades 

were added with Ringer’s solution (8 ml), which was then vortexed to cut the hermaphrodites and to 

release the eggs. The suspension was poured through a 25-µm sieve, allowing the eggs to pass 
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through, but retaining the nematode and razor blade pieces. The filtrate containing eggs was 

transferred to 1-ml Eppendorf tubes and centrifuged for 1 min at 2000 rpm to form an egg pellet. The 

supernatant was removed, and the tube was filled with 1 ml fresh Ringer’s solution. Centrifugation 

was repeated until the supernatant remained clear. The eggs were then transferred to a sterile 1.5 ml 

Eppendorf tube and again centrifuged, after which the supernatant was removed. Aliquots of a 

mixture of 0.5 ml sodium hypochlorite, 1.5 ml NaOH (4 N) and 10 ml distilled water was subsequently 

added and centrifuged for 2 min at 2000 rpm. The supernatant was discarded, after which the 

Eppendorf tube was filled with 1 ml TSB. The eggs were transferred using a pipette to a sterile 12-

multiwell plate, of which the wells were filled with 300 µl TSB, and incubated for 72 h (Ehlers et al., 

1998).  

A 250 ml Erlenmeyer flask was filled with 30 ml TSB and inoculated with the primary form of the 

bacterial symbiont. The culture was incubated on a platform orbital shaker at 180 rpm at 30˚C in the 

dark. Wout’s agar plates (5.4-cm diam.) were inoculated with two drops of the Photorhabdus bacterial 

suspension, after which 50-100 J1 larvae from the sterile cell-wells was added (Wouts, 1981). The 

plates were sealed with Parafilm and incubated in a growth chamber and kept at 25˚C. 

Monoxenic culture protocol 

The liquid medium (complex medium) in which the nematodes were propagated consisted of 

15.0 g yeast extract (Merck), 20.0 g soy powder (Nature’s Choice, Meyerton, South Africa), 4 g NaCl, 

0.35 g KCl, 0.15 g CaCl2, 0.1 g MgSO4 (Merck), 46 ml
 
vegetable oil per L (Ehlers et al., 1998). The 

250 ml Erlenmeyer flasks, containing 30 ml of nematode culture medium, were inoculated with 1% of 

the bacterial culture and pre-cultured at 30˚C for 36 h, before inoculating IJs from the monoxenic 

cultures. Flasks were incubated in a dark growth chamber at 25˚C for 15 days. Samples of 1 ml were 

taken in sterile conditions in a laminar flow cabinet and washed with Ringer’s solution through a 25-

µm sieve. The nematodes were counted using 10 µl aliquotes with a stereo microscope and the 

concentration determined.  

In order to provide a homogenous bacterial inoculum, Photorhabdus sp. was produced in one 

batch culture, and then 1 ml was added to three 250 ml Erlenmeyer flasks each (Hirao et al., 2010). 

When the bacterial pre-cultures reached a cell density of 10
7
 cells·ml

-1
 (as pre-determined in TSB) 

300 µl of it were transferred using a pipette to sterile 30-ml Erlenmeyer flasks and incubated on a 
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platform orbital shaker for 36 h at 180 rpm at 30˚C in the dark. The IJs were subsequently inoculated 

in the liquid medium at a density of 2000 IJs·ml
-1

, and incubated on a platform orbital shaker at 180 

rpm at 25˚C for 16 days in the dark. IJs were taken from monoxenic pre-cultures (Lunau et al., 1993). 

Three flask cultures were used, and the experiment was replicated on two different test dates.  

 

Assessment of developmental stages 

Samples of 1 ml of each of the three flasks were taken each day over a period of 16 days. 

Nematodes were washed with Ringer’s solution through a 25-µm sieve to determine population 

development in liquid culture. The different juvenile stages, J1/J2 and the J3/J4, were counted. The 

juvenile stages were distinguished from one another by measuring the body lengths. IJs were 

recognised by their slender shape, the tapering of the mouth region, the loose second-stage cuticle, 

and the dark intestine without a visible cavity. The recovered IJs had a flat mouth region, no second-

stage cuticle, and the intestinal lumen was evident (Strauch & Ehlers, 1998). The IJs were grouped 

and counted together with pre-infective juveniles (J2d), which were identified by the body being much 

darker than that of the other juvenile stages (Hirao et al., 2010). The adult hermaphrodites were 

distinguished from female phenotypes by the fertilised eggs in their uterus (Strauch et al., 1994). All 

female phenotypes were observed carrying unfertilised eggs (counted as females), and died without 

producing offspring. Nematode female phenotypes with fertilised eggs, or juveniles in the uterus, were 

counted as hermaphrodites. Males were recognised by their spicules (Johnigk & Ehlers, 1999a). 

Recovery was calculated by counting inoculated IJs that recovered and developed beyond the IJ 

stage, which included the number of hermaphrodites and the J3/J4 stages (Ehlers et al., 1998). 

Nematodes used for measurements were fixed in hot (85⁰C) TAF (triethanolamine 2%, formalin 

8%) (Courtney et al., 1995), and processed to pure glycerine, using the Seinhorst (1959) method, 

after which they were mounted in glycerine, using wax ring supports, to prevent flattening. 

Measurements were taken by means of a Leica DM2000 research microscope (Leica Microsystems, 

Wetzlar, Germany) equipped with a camera, computer and digital image software Leica Application 

Suite (LAS), version 3.5.0.  
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Bacterial growth curve 

A bacterial growth curve was determined in order to investigate the cell density dynamics of the 

symbiotic bacteria over a period of 48 h, to establish the stationary phase of the bacteria (Johnigk et 

al., 2004). This experiment was conducted at a temperature of 30˚C and using TSB as a medium. A 

sample, containing 40 µl of the bacteria stock solution, was inoculated into 10 ml of TSB and 

incubated in 25 ml test tube for 2 days in the dark at 30˚C. Then 400 µl of this solution was inoculated 

into 400 ml of 1 L schott bottle TSB, and a sample of 1 ml was taken every 3 h for 48 h. A dilution 

series was conducted for each sample and streaked out in triplicate and replicated twice, using NBTA 

plates. Plates were incubated for 2 days in a growth chamber and colony forming units were counted 

(Atlas, 1988). Optical density was also measured every 3 h using a spectophotometer.  

Cell density was determined once the IJs were inoculated into the liquid (Hirao & Ehlers, 

2009a; Hirao & Ehlers, 2010), Samples were taken every day for 16 days, streaked out in 

quadruplicate and replicated twice, using NBTA plates. Plates were incubated at 30˚C in a growth 

chamber in the dark for 2 days. Colonies were subsequently counted again using a dilution series 

(Ehlers, personal communication, 2012). 

Virulence studies 

Virulence bioassays were conducted after the IJs were harvested from the flasks. The in vitro-

produced IJs were harvested by washing them with Ringer’s solution through a 25-µm sieve and the 

supernatant containing the nematodes washed into a 250 ml glass beaker. Galleria mellonella were 

infected with 200 IJs/50 µl of in vitro-produced nematodes, and compared with H. zealandica IJs 

harvested from G. mellonella cultured nematodes (in vivo).  

Last instar G. mellonella larvae were placed in 24-well plates (flat bottom, Nunc
TM

, Cat. No. 

144530) with 10 filter paper discs (13-mm diam.) in each of the 10 wells. A concentration of 200 IJs 

per 50 µl was inoculated onto the filter paper discs, and one G. mellonella larva each was placed in 

each of the 10 wells. The plates were incubated in a growth chamber at 25˚C in the dark. Mortality of 

G. mellonella larvae was assessed by movement and colour change after 2 days and infection with 

nematodes confirmed by dissection in Ringer’s solution.  
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Statistical analysis 

All statistical analyses were performed by using the data analysis software program 

STATISTICA 10 (Statsoft Inc., T.O.U., 2011). Data were analysed using descriptive statistics. For the 

measurement of different nematode life stages and virulence studies, a one-way ANOVA with post-

hoc comparisons of means was used. Bonferroni’s method was used where residuals were not 

normally distributed. Data obtained from the counting of different life stages and bacterial growth 

curves were analysed using a factorial ANOVA with post-hoc comparisons of means, using the 

Tukey’s HSD test.  

Results  

Identity of symbiotic bacteria 

Analyses of the 16S gene showed the associated symbiotic bacteria of H. zealandica to 

belong to Photorhabdus luminescens. Bioluminescence of the bacteria was visually confirmed. 

Further analysis with known sequences from Genbank indicated the bacteria to be a new subspecies 

of P. luminescens, with the characterisation of the species as a new subspecies having been 

described in Chapter 4. 

Population dynamics of Heterorhabditis zealandica 

Analyses of data obtained for the H. zealandica life cycle development on each day (1 to 16) 

showed no significant differences between the two test dates (males: ρ = 0.93; females: ρ = 0.31; 

hermaphrodites: ρ = 0.5; IJs: ρ = 1; J1/J2: ρ = 0.65; J3/J4: ρ = 0.16). For the rest of the analyses, the 

data were therefore pooled. The population development for H. zealandica at 25˚C, from inoculated 

IJs to adults in monoxenic liquid culture, is presented in Figures 5.I., 5.2. and 5.3. The first 

hermaphrodites occurred on day 3 and the first males and females occurred on days 6 and 7 

respectively (Fig. 5.1.). The highest concentration of hermaphrodites and females was recorded on 

day 16, while the highest concentration of males was recorded on day 11. The sex ratio (males: 

females) of the amphimictic population was calculated as being 0.3 on day 7. As the males occurred 

one day earlier than did the females, the ratio was more than 1 on day 6. From day 10 to day 12, the 

ratio was calculated as being 0.8. A decrease in the number of female nematodes on day 13 was 
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followed by an increase in their number until the experiment was terminated on day 16. Contrary to 

the fluctuation in the female numbers, the male numbers remained relatively constant from day 10 to 

day 13, after which they decreased, until the experiment was terminated on day 16. The ratio of 

amphimictic to automictic nematodes on day 7 was 1:12 and the ratio on day 15 was 1:6. Since IJs 

exclusively develop into hermaphrodites, the IJs were counted as automictic when the ratio was 

calculated. 

 

Fig. 5.1. Mean population density (95% confidence interval) of males, females and hermaphrodites of 

Heterorhabditis zealandica in monoxenic liquid culture at 25˚C, over a period of 16 days (one-way 

ANOVA; F(30, 405) = 61.81). 

 

The inoculum density was 2000 IJs·ml
-1

, and the highest IJ concentration was reached on day 

15, with 41 100 IJs·ml
-1
. There was an increase in IJ density that occurred on day 7 (Fig. 5.1.). The 

inoculated IJs developed into hermaphrodites that reproduced, and J1 offspring occurred on day 4 

(Fig. 5.2.). On day 16, the IJs decreased to 40 000 IJs·ml
-1

 (Fig. 5.3.). The J1 offspring developed 

either into infective juveniles or adults (Fig. 5.3.). The highest concentration of J1/J2 stages was 

observed on day 7, with the highest concentration of J3/J4 stages occurring one day later (Fig. 5.2.). 

Recovery of IJs was observed as 12% on day 3, as 13% on day 4, and as 24% on day 5.  
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Fig. 5.2. Mean population density (95% confidence interval) of J1/J2 and J3/J4 larvae of 

Heterorhabditis zealandica in monoxenic liquid culture at 25˚C, over a period of 16 days (one-way 

ANOVA; F(15, 270) = 31.12). 

.  

 

Fig. 5.3. Mean population density (95% confidence interval) of Heterorhabditis zealandica IJs in 

monoxenic liquid culture at 25˚C, over a period of 16 days (one-way ANOVA; F(15, 135) = 4133). 
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The different body lengths of the hermaphrodites, males and F1 juvenile stages are 

summarised in Table 5.1 below. Measurements of the different life stages were taken until 7 days 

post IJ inoculation, as F1 and F2 generations could not be distinguished from each other (Hirao et al., 

2010). The body length of the different larval stages of H. zealandica were all significantly different 

from each other, while the adult male and female were easily distinguishable by means of their 

distinctive reproductive organs. The mean length of the IJ was found to be 635 µm and ranged 

between 589 µm and 731 µm. 

 

Table 5.1. Body length for hermaphrodites, males, J1, J2, IJ, J3 and J4 (mean ± standard error and 

range) (one way ANOVA; F(5, 95 = 265.93; ρ = < 0,0001).  

Nematode stage n Body length 
(µm) 

Significance 
symbols* 

Hermaphrodites 20 2240 ± 100 

(1343 – 2836) 

n/a 

Males 20 936 ± 12 

(849 – 1029) 

n/a 

J1 20 209 ± 10 

(152 – 310) 

a 

J2 20 482 ± 11 

(376 – 531) 

b 

IJ 20 635 ± 10 

(589 – 731) 

c 

J3 20 611 ± 12 

(532 – 694) 

cd 

J4 20 878 ± 13 

(782 - 990) 

e 

*Different letters indicate significant difference. 

Bacteria growth curve 

Analyses of data obtained for the cell densities and optical densities showed no significant 

differences between test dates (the mean cell density without nematodes: ρ = 0.6; the mean optical 

density: ρ = 0.5; the mean cell density with nematodes: ρ = 0.5) and results from the two test dates 

were thus pooled. The lag-phase of the Photorhabdus production was observed to be from 0 to 12 h 

(Figs. 5.4., 5.5.). The exponential growth phase started after 12 h, and after 33 h the stationary phase, 

with an average of 23 × 10
7
 per ml colony forming units, was reached (Fig 5.4).  
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Fig. 5.4. The mean colony forming units per ml (95% confidence interval) of Photorhabdus 

luminescens in trypticase soy broth, over a period of 48 h, at 30˚C in the dark (one-way ANOVA; F(16, 

112) = 168.4). 

 

Fig. 5.5. The mean optical density (measured at 595 nm) (95% confidence interval) of Photorhabdus 

luminescens in trypticase soy broth, over a period of 48 h at 30˚C in the dark (one-way ANOVA; F(16, 

32) = 132.5). 
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.  

 

A marked decrease occurred in bacterial cell density when nematodes were added to the 

liquid culture, as the IJs fed on the bacteria involved (Fig. 5.6.). The cell density was 23 × 10
7
·ml

-1
, 

after the bacteria had been grown for 33 h (Fig. 5.4). When nematodes were added, the cell density 

decreased substantially, until day 6  post IJ inoculation (Fig. 5.6.). After reaching its minimum amount 

on day 6, the bacterial cell density increased until day 12. After day 12, the cell density started to 

decrease again, until day 16, when the experiment was terminated (Fig. 5.6.). 

 

Fig. 5.6. The mean colony forming units per ml
 

(95% confidence interval) of Photorhabdus 

luminescens in liquid culture over a period of 16 days, post IJ inoculation at 25˚C (one-way ANOVA; 

F(15, 105) = 184.2). 

 

Bioassays for virulence 

A high percentage mortality of G. mellonella was obtained for both in vitro- (80% ± 5.53%) and 

in vivo- (90% ± 5.55%) produced IJ of H. zealandica (Fig. 5.7.), with in vivo-produced nematodes 

causing higher percentage mortality (one-way ANOVA; F(1, 68) = 28.26; ρ < 0.0001). 
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Fig. 5.7. The mean percentage mortality (95% confidence interval) after two days of Galleria 

mellonella larvae inoculated with 200 IJs/insect of Heterorhabditis zealandica (one-way ANOVA; F(1, 

68) = 28.26; ρ < 0,0001). Black bars depict mortality. Different letters indicate significant difference. 

 

Discussion 

The bacterium associated with H. zealandica in this study was identified as P. luminescens, of 

an unknown subspecies (Chapter 4). In previous studies, the associated bacterium of H. zealandica 

was described as Photorhabdus temperata. This is the first study to show that H. zealandica 

associates with a different symbiotic bacteria rather than the known P. temperata association. Limited 

research has been undertaken with H. zealandica, as the distribution of said nematode is not 

widespread. Heterorhabditis zealandica has been isolated in New Zealand (Barker & Barker, 1998), 

and is currently also available commercially in Australia for the control of a number of turf and pasture 

pests. 

The results obtained during this study indicate the first successful mass culture of H. zealandica 

in liquid medium. In this study, a low percentage recovery of the inoculated IJ was experienced, which 
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caused lower hermaphrodite numbers, and subsequently had an impact on the total number of 

offspring in the F1 generation. Recovery was found to be only 12% on day 3, 13% on day 4, and 24% 

on day 5. This low percentage recovery is comparable to that which was achieved in the research 

done by Ehlers et al. (1998) for Heterorhabditis megidis Poinar, Jackson & Klein, 1987, who found 

16% recovery on day 7 and 15% recovery on day 8, with an increase to 23% on day 13.  

Research undertaken by Strauch and Ehlers (1998) showed that the bacteria produce a food 

signal that induces IJ recovery in Heterorhabditis species, with the food signal being excreted through 

the culture medium. The bacterial food signal is much less efficient when compared to the food signal 

in an insect host, which, in said study, immediately induced the recovery of the IJs concerned 

(Strauch & Ehlers, 1998). This could partially explain the low percentage IJ recovery observed in this 

study. Another reason for low recovery could be ascribed to the lower bacterial cell density in the 

liquid medium during the IJ inoculation. H. zealandica IJs were inoculated when the bacterial 

symbiont reached the stationary phase of its growth curve, with a cell density of 23 × 10
7
·cfu ml

-1
. 

Research undertaken by Strauch and Ehlers (2000) showed that the bacterial symbiont of H. megidis 

was 1-5 × 10
9
·ml

-1
 after only one day. The difference in bacterial cell density between the bacterial 

symbiont of H. zealandica and H. megidis might, to some degree, explain the low IJ recovery. 

The method used in this study for determining cell density differed from that employed by Hirao 

and Ehlers (2010), who assessed bacterial cell density by counting cells in a Thoma chamber. For 

this study, a dilution series was made of each sample, and the number of colony-forming units (cfu) 

was determined by streaking out onto NBTA plates (Atlas, 1988; L. Dicks, personal communication, 

2012). Bacteria were initially grown in TSB to determine general growth characteristics, including 

growth rate and optimum temperature, as no work had previously been done with the specific P. 

luminescens subspecies identified for H. zealandica. Thereafter, the bacteria were grown in the 

complex medium before inoculating the H. zealandica IJs. During both experiments, the cfu 

concerned were determined, with no difference being found between growing the bacteria in either 

TSB or the complex medium used. The use of the different methods, however, could explain the 

difference found in bacterial cell density between the results from this study, and the results from the 

study conducted by Hirao and Ehlers (2010). Research done by Jeffke et al. (2000) produced good 

results for analysing bacterial growth. Amongst other things, analysis of growth was determined by 

cell mass and cell dry weight. The lag-phase of Photorhabdus was observed to be overcome after 12 
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h in this study, compared to a lag phase of only 8 h (Jeffke et al., 2000) conducted with P. 

luminescens. The exponential growth phase of P. luminescens ended after 16 to 18 h (Jeffke et al., 

2000), compared to the exponential phase that only ended after 33 h in this study. The methodology 

used by Jeffke et al. (2000) is likely more suitable for the analysis of bacterial growth and should be 

used in future research.  

When IJs were inoculated into the liquid medium containing bacteria on day 1, the cell density 

of the Photorhabdus was 23 × 10
7
·ml

-1
. The cell density decreased, until it reached its lowest level on 

day 6. This was as a result of the feeding of the inoculated IJs, and their recovery and development 

into hermaphrodites (Hirao & Ehlers, 2009b). After day 7, the cell density, however, increased again, 

with the increase preventing the starvation conditions necessary for inducing their development into 

IJs (Hirao & Ehlers, 2009b). These results were similar to the results obtained by Hirao and Ehlers 

(2009b), with whom an increase in cell density was found on days 8 and 12. In the current study, two 

peaks of cell density also occurred during the 16-day inoculation period, being found to take place on 

days 1 and 12. As a result of the cell density increasing again, the IJs that were present in the liquid 

culture recovered and developed into hermaphrodites (Ehlers et al., 1998). The increase of the 

bacterial cell density could be ascribed to the nematode density being too low for feeding sufficiently 

on the bacterium cells. The second peak of bacterial cell density coincided with the hermaphrodites 

also reaching their first peak around day 12. From day 12 to day 16, the bacterial cell density 

decreased, as the number of hermaphrodites and females increased. On day 16, the hermaphrodites 

reached a second peak of 9800·ml
-1

, originating from the F1-generation nematodes that had 

recovered. As a result of the high number of hermaphrodites present at this stage of the experiment, it 

was probably too early to terminate and harvest the IJs. The IJs recorded were offspring of the F1 

hermaphrodites, thus representing the F2 generation (Ehlers et al., 1998). Such a two-generation 

process was also reported by Ehlers et al. (1998). In a two-generation process, the total number of 

offspring in the F1 generation is lower, due to a lower hermaphrodite density, as a result of the lower 

percentage of inoculum recovery attained (Ehlers et al., 1998). This has an effect on the ratio of 

amphimictic (male and female) to automictic (F1-hermaphrodite and IJ) nematodes.  

Regarding the numbers of the larval stages, there should have been a peak in J1/J2 larvae, 

followed by a peak in J3/J4 larvae, and lastly followed by a peak in IJs. Theoretically every IJ would 
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have developed to a J1 and further on to J2, J3 and J4. This could be as a result of having lost J1-J4 

stages during the sieving process. 

The ratio of amphimictic to automictic nematodes is a key factor, as the amphimictic population 

is non-reproductive in liquid culture and should be kept low (Ehlers et al., 1998). In the current study, 

the ratio of amphimictic to automictic nematodes was 1:12 on day 7, which is a more ideal ratio than 

the ratio of 1:6, which was found on day 15. The ratio of amphimictic (males and females) to 

automictic (F1-hermaphrodite and IJ) nematodes can have a severe impact on the final number of IJs 

harvested. 

The sex ratio of the amphimictic population was calculated as 0.3 on day 7. On days 8 and 9, 

the ratio was 0.16, after which it increased to 0.8 on days 10, 11 and 12. Said results are similar to 

those of Johnigk and Ehlers (1999a), who had ratio between 0.7 and 0.8 until day 6, thereafter 

remaining constant at 0.6. Research undertaken by Strauch et al. (1994), however, found that their 

nematode sex ratio was almost 1:1. It is unusual to find an increase in females without any increase in 

males. This finding could be ascribed to hermaphrodites being misidentified as females from day 13 

onwards.  

Basic knowledge, such as that of the body length of various life stages of H. zealandica, is 

needed to monitor and to improve culture conditions for the successful production of H. zealandica in 

liquid. Therefore, in the current study, measurements were taken at each life stage. The data gleaned 

in this way are usable in estimating the population development and yields in commercial production, 

as well as in improving future culture conditions (Strauch & Ehlers, 2000). 

When the virulence of IJs produced from the use of in vivo methods was compared to that of 

IJs produced through the use of in vitro methods, a significant difference was observed. During the 

current study, a concentration of 200 IJs/50µl as an inoculum was used, which is high for G. 

mellonella larvae, as they are very susceptible to EPNs. Even with the relatively high concentration, a 

significant difference was found between the in vivo- and in vitro-produced IJ. This could have been 

the result of in vivo- produced IJs containing increased amounts of lipids (Molyneux, 1985). The in 

vitro-produced nematodes appeared visibly more transparent, when compared to their in vivo-

produced counterparts. This condition was generally associated with a reduction in the number of 

lipids, and is related to a reduction in pathogenicity against Tenebrio molitor L. (Coleoptera: 
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Tenebrionidae) larvae, according to Vanninen (1990). The in vitro-produced nematodes were also 

slightly shorter than those that were originally described as belonging to the species (Khuyen & Hunt, 

2007). Research undertaken by Gaugler and Georgis (1991), in which H. bacteriophora Poinar, 1975, 

were mass cultured in liquid, achieved significantly lower mortality against the Japanese beetle, 

Popillia japonica Newman (Coleoptera: Scarabaeoidea), than those did that were reared in vivo 

(Gaugler & Georgis, 1991).  

Lipids decline much more quickly in H. bacteriophora than they do in S. feltiae (Gaugler & 

Georgis, 1991). In the current study, a difference, though not significant, was found between the 

percentage mortality caused by S. yirgalemense compared to that caused by H. zealandica (Chapter 

6) for G. mellonella larvae, where both nematode species were cultured in vitro.  

The attempt to culture H. zealandica and its Photorhabdus symbiont was successful, even 

though two generations occurred, instead of the more desirable single generation. The only way, 

according to Ehlers et al. (1998), to achieve the latter is by increasing the inoculum density of the IJs. 

Since the IJs can only develop into hermaphrodites, the inoculum density is the key factor in the 

management of the population density. When there is a high concentration of J1 larvae in the F1 

generation, the high density induces the majority of nematodes to develop directly into IJs, and not 

into amphimictic adults. This high IJ population then, subsequently, prevents the development of F1 

hermaphrodites (Ehlers et al., 1998). The difficulty is that IJ recovery is extremely variable, and the 

challenge for future research with H. zealandica would be to increase the percentage recovery of the 

IJs of H. zealandica in the liquid culture, as this would be a key factor in optimising their mass rearing. 
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CHAPTER 6 

 

Development and population dynamics of Steinernema yirgalemense and growth 

characteristics of its associated Xenorhabdus symbiont in liquid culture 

 

Abstract 

Development of insect resistance to chemical insecticides has been a key driving force for 

changes in insect pest management. Entomopathogenic nematodes have become a valuable addition 

to the range of biological control agents that are available for such management, since they possess 

many of the attributes of an effective biocontrol agent. Therefore, the next logical step would be to 

mass culture a potential candidate, such as Steinernema yirgalemense, which has been found to be 

effective against numerous South Africa pest insects. The mass production of S. yirgalemense and 

the associated Xenorhabdus bacteria require the establishment of monoxenic cultures. Bacteria-free 

first-stage nematode juveniles from eggs were obtained through the alkaline lysis of gravid females, 

while the symbiotic bacteria of S. yirgalemense were isolated, cultured and identified, using molecular 

techniques. In this study, the population density of the various life stages of S. yirgalemense during 

the developmental phase in liquid culture was counted and measured. The recovery rate of IJs was 

66%, with them reaching a maximum population density of 75 000·ml
-1
 on day 13. There was an 

increase in adult density after 8 days, with the maximum female density being 4600·IJ ml
-1

 on day 15, 

whereas the maximum male density was 4300·ml
-1

 on day 12. Results from this study indicate an 

asynchronous nematode development in the first generation. Growth curves performed with the 

symbiotic bacteria showed that the exponential phase of Xenorhabdus started after 15 h and after 42 

h the stationary phase was reached, with an average of 51 × 10
7 

cfu·ml
-1

. Bioassays were performed 

to compare the virulence between in vitro- and in vivo-produced nematodes. The results showed the 

in vitro-produced nematodes to be significantly less virulent than were the nematodes produced in 

vivo. The success obtained with the production of S. yirgalemense in liquid culture can serve as the 

first step in the optimising and upscaling of the commercial production of nematodes in industrial 

fermenters. 
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Introduction 

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis of the 

order Rhabditida in the families Steinernematidae and Heterorhabditidae respectively, are used to 

control a wide range of pest insects (Grewal et al., 2005), as they have been proven to be safe and 

effective biological control agents (Ehlers & Hokkanen, 1996). The control of insects is based on the 

interactions between the nematodes and their symbiotic bacteria (Poinar & Thomas, 1966; Poinar et 

al., 1977). The association is an obligate mutualism, in which each (nematode and symbiotic bacteria) 

requires the other to proliferate (Poinar & Thomas, 1966; Poinar et al., 1997). The humoral and 

cellular defences of the insect hosts are defeated by the bacteria (Han & Ehlers, 1998). Said bacteria 

protect the insect cadaver against saprophytic micro-organisms, bacteriovorous nematodes, and 

scavenging insects, as well as acting as a substrate for growth and reproduction (Han & Ehlers, 

1998).  

The bacteria are delivered into the insect haemocoel through the nematode that serves as the 

vector. The nematode also enables the bacteria to persist outside an insect host, and to be 

transferred to a new insect host (Poinar & Thomas, 1966; Poinar et al., 1997; Han & Ehlers, 1998). 

When nematodes lack the symbiotic bacteria association, they usually fail to cause insect death, or, if 

mortality takes place, the reproduction of nematodes does not occur (Poinar & Thomas, 1966; Poinar 

et al., 1977; Han & Ehlers, 1998). The bacterial symbionts can be isolated from the nematodes, and 

separately cultivated.  

The bacterial symbionts have the ability to persist for numerous weeks within the free-living IJs, 

until the bacteria are again released within the insect haemocoel (Poinar, 1966; Wouts, 1984; Ciche & 

Ensign, 2003; Martens et al., 2004). Symbiotic bacterial cells are stored in the intestine of the IJ, and, 

during the recovery stage of the infective juvenile, such cells are released (Han & Ehlers, 2000). 

When IJ recovery takes place, the IJ develop from the arrested stage to the J4 stage (Strauch & 

Ehlers, 1998; Hirao & Ehlers, 2009a). The recovered juveniles develop into adults through feeding on 

bacterial cells and degraded host tissue. When the nutritious conditions are optimal, the nematodes 

produce offspring, which develop into another reproductive adult generation. In steinernematids, such 

adults are amphimictic, which enables them to copulate in liquid conditions. When depletion of 

nutrients and bacteria occurs, termination of egg-laying by the adults coincides with it. Instead, an 
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occurrence that is known as ‘endotokia matricida’ (Johnigk & Ehlers, 1999) takes place, whereby the 

first larval stages (J1s) hatch from eggs inside the uterus and develop into IJs. The IJs leave the 

insect cadaver when food resources are depleting (Strauch et al., 1994). The IJ is adapted to be 

durable and to survive in the soil environment (Susurluk & Ehlers, 2008), until it can find a suitable 

insect host (Lewis, 2002; Torr et al., 2004).  

In Europe and the USA, the first steps towards an outdoor commercial biopesticide application 

have been taken using EPNs. Various EPN formulations against a wide range of insect pests are 

currently commercially available in both Europe and the USA. However, for the quantities of EPNs 

needed for commercial field application against pest insects, they need to be mass cultured, using in 

vitro liquid culturing techniques (Ehlers, 2001). In South Africa, endemic nematodes are not currently 

available as a product on the market. Therefore, Steinernema yirgalemense Tesfamariam, Gozel, 

Gaugler and Adams, 2005, which is an endemic nematode, needs to be mass cultured for future 

commercialisation.  

The liquid culture process is extremely vulnerable to contamination, as a result of the long 

process time and the even distribution of fluids and organisms required during the mixing in the 

bioreactor (Grewal et al., 2005). The presence of non-symbiotic micro-organisms will result in the 

reduction of nematode yields, and, since the liquid culture process can last up to three weeks, it 

presents quite a challenge to maintain sterile conditions throughout. It is of importance that the 

monoxenicity of the cultures is ensured from the onset of inoculum production (Grewal et al., 2005). 

Symbiotic bacteria can be isolated from nematode-infected insect larvae, and stock cultures are 

obtained by mixing the bacteria with 15% (v/v) glycerol, and subsequently freezing it at -80˚C 

(Boemare & Akhurst, 1988). Establishing bacteria-free nematodes is more laborious (Lunau et al., 

1993; Han & Ehlers, 1998). Monoxenic cultures can be stored at 4˚C on an orbital shaker at 20 rpm 

for several months. Liquid nitrogen can also be used for storing nematode strain collections (Popiel & 

Vasquez, 1991). 

In South Africa, S. yirgalemense showed promise as biological control agents in laboratory 

bioassays against false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), 

larvae, pupae and emerging moths (Malan et al., 2011). De Waal et al. (2011) also found S. 

yirgalemense effective in controlling Cydia pomonella L. (codling moth) (Lepidoptera: Tortricidae), 
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whereas Van Niekerk and Malan (2012) found S. yirgalemense to be more potent than was 

Heterorhabditis zealandica Poinar, 1990 in laboratory bioassays 

Steinernema yirgalemense was found in a single sample in the Mpumalanga province during a 

survey for EPNs in citrus orchards (Malan et al., 2011). This nematode was first described by Nguyen 

et al. (2005) from Yiglemen in Ethiopia, where it was found to be the dominant species, with it later 

also being reported from the Central Rift Valley of Kenya (Mekete et al., 2005; Mwaniki et al., 2008). 

The nematode in question belongs to the bicornutum group of six described species, of which the 

unsheathed IJ has two hornlike structures in the cephalic region (Nguyen et al., 2004). Currently, the 

nematode has not been reported outside of the African continent.  

The aim of the current study was to mass culture S. yirgalemense, using liquid culture 

technology. The population development of S. yirgalamense in liquid culture was monitored, and the 

growth characteristics of the associated symbiotic Xenorhabdus bacteria were described. 

Materials and methods  

Source of insects and nematodes 

Galleria mellonella (L.) (Lepidoptera: Pyralidae) larvae, were reared on a diet containing the 

following ingredients: five parts brown bread flour; five parts baby Cerelac Nestle
TM 

regular cereal; two 

parts wheatgerm; two parts yeast; two parts glycerine; and one part honey. All the ingredients were 

mixed together, with a beeswax comb being added to the mixture (Bronskill, 1961; Woodring & Kaya, 

1988). 

Nematodes were obtained from the Department of Conservation Ecology and Entomology, 

Stellenbosch University collection of EPNs from previous surveys (Malan et al., 2011). In vivo-

produced IJs were reared and harvested at room temperature, according to the procedures devised 

by Kaya and Stock (1997). The IJs were stored in vented 500 ml culture flasks placed horizontally at 

14˚C in filtered tap water. The flasks containing 150 ml nematode suspension per flask were shaken 

weekly for aeration. Nematodes were used within one month of harvesting. 

Stellenbosch University http://scholar.sun.ac.za



118 

Isolation of symbiotic bacteria 

The primary form of the associated symbiotic bacteria was isolated from last-instar G. 

mellonella larvae infected with S. yirgalemense. Agar plates (9.5 cm diameter petri dishes) were 

incubated at 25-28˚C for 48 h (Akhurst, 1980; Kaya & Stock, 1997), propagated in trypticase soy broth 

(TSB), and stored in 15% glycerol at -80˚C. When required, the glycerol stocks were melted at room 

temperature, propagated in TSB for 2 days at 30˚C, and subsequently used (Chapter 5).  

Identification of associated symbiotic bacteria  

The bacterium was identified by isolating the total genomic DNA of an overnight (12 h) culture 

of the bacterium, isolated from S. yirgalemense-infected G. mellonella larvae (Chapter 5). DNA of the 

16S rRNA gene was amplified, as described by Felske et al. (1997). PCR reactions were done, as 

described by Tailliez et al. (2010).  

Axenisation of nematodes 

To obtain nematode eggs, last instar G. mellonella larvae were infected with IJs of S. 

yirgalemense. Infected Galleria larvae were dissected 4 days after inoculation, and gravid nematode 

females were isolated. The liquid medium (complex medium) in which the nematodes were 

propagated consisted of 15.0 g·l
-1

 yeast extract (Merck), 20.0 g·l
-1

 soy powder (Nature’s Choice, 

Meyerton, South Africa), 4 g·l
-1

 NaCl, 0.35 g·l
-1

 KCl, 0.15 g·l
-1

 CaCl2, 0.1 g·l
-1

 MgSO4 (Merck), and 46 

ml·l
-1

 of vegetable oil (Ehlers et al., 1998). The 250 ml Erlenmeyer flasks containing 30 ml of 

nematode culture medium were inoculated with 1% of the bacterial culture, and pre-cultured at 30˚C 

for 42 h before inoculating IJs from the monoxenic cultures. The flasks were incubated in a growth 

chamber at 25˚C for 15 days. Samples of 1 ml were taken under sterile conditions, and washed with 

Ringer’s solution through a 25-µm sieve. Nematodes were counted using a stereo microscope (Leica 

MZ75), and the concentration was determined (Chapter 5).  

Monoxenic cultures 

In order to provide a homogenous bacterial inoculum, the symbiotic bacteria were produced in 

one batch culture and then distributed over three Erlenmeyer flasks (Hirao et al., 2010). When the 

bacterial pre-cultures had reached a cell density of 10
7
 cfu·ml

-1
, 300 µl was transferred to sterile 30- 
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ml Erlenmeyer flasks and incubated on a platform orbital shaker, at 180 rpm at 30˚C in the dark for 42 

h. The IJs were subsequently inoculated into the liquid medium in 250 ml Erlenmeyer flasks at a 

density of 4000 IJs·ml
-1

, and incubated on a platform orbital shaker at 180 rpm at 25˚C in the dark for 

15 days. IJs were taken from monoxenic pre-cultures (Lunau et al., 1993). Three flask cultures were 

used and the experiment was conducted on two different test dates (Chapter 5).  

Assessment of developmental stages 

Samples of 1 ml each containing the nematodes, of the three flasks were taken every day for 

15 days. Nematodes were washed with Ringer’s solution through a 25-µm sieve to determine the 

population development in liquid culture. The different juvenile stages, which included from the first 

juvenile stage (J1) through to the fourth stage (J4) and the adults (male and female), were identified 

and counted (Hirao et al., 2010). The presence of the vulva and uterus was used to identify the 

females, with the spicules being used to identify the males (Hirao et al., 2010). The difference 

between the J1s, J2s and J3s was determined by measuring the body length of each juvenile stage. 

IJs were grouped and counted together with pre-infective juveniles (J2d), which were identified by 

their body being much darker than that of other juvenile stages (Hirao et al., 2010). Recovery was 

calculated by counting inoculated IJs that recovered and developed beyond the IJ stage on the 

second day post IJ inoculation, which included the J4 larval stages, as well as males and females 

(Hirao et al., 2010). 

Nematodes used for measurement were fixed in hot TAF (2% tri-ethanolamine and 8% 

formalin) (85˚C) (Courtney et al., 1995), and processed to pure glycerine, using the Seinhorst (1959) 

method, after which they were mounted in glycerine, using wax ring supports to prevent flattening. 

Measurements were taken by means of a Leica DM2000 research microscope that was equipped with 

a camera, computer and digital image software Leica Application Suite (LAS), ver. 3.5.0 (Chapter 5). 

Bacterial growth curve 

A bacterial growth curve was determined in order to investigate the cell density dynamics of 

the bacterial symbiont over a period of 48 h. This experiment was conducted at a temperature of 30˚C 

and using TSB as a medium. A sample, containing 40 µl of the bacteria stock solution, was inoculated 

into 10 ml of TSB, and incubated for 2 days in the dark at 30˚C. Then, 400 µl of this solution was 

Stellenbosch University http://scholar.sun.ac.za



120 

inoculated into 400 ml of TSB, with a sample of 1 ml being taken every 3 h for 48 h. Each sample was 

streaked out in triplicate and replicated twice, using NBTA plates. Plates were incubated for 2 days, 

and colony forming units were counted (Atlas, 1988), with the optical density also being measured 

every 3 h (Chapter 5).  

Bacterial colony forming units (cfu’s) were determined once the IJs were inoculated into the 

liquid (Hirao & Ehlers, 2009b; Hirao et al., 2010). Samples were taken every day for 15 days, streaked 

out in quadruplicate, and replicated twice, using NBTA plates. Plates were incubated at 30˚C in the 

dark for 2 days. Colonies were subsequently counted (R-U. Ehlers, personal communication, 2012) 

(Chapter 5).  

Virulence studies 

Virulence bioassays were conducted after IJs were harvested from flasks. Galleria mellonella 

were infected with in vitro-produced S. yirgalemense and compared with S. yirgalemense IJs 

harvested from G. mellonella-cultured nematodes (in vivo). The in vitro-produced IJs were harvested 

by washing them with Ringer’s solution through a 25-µm sieve (Chapter 5).  

The G. mellonella larvae were placed in 24-well plates (flat bottom, Nunc
TM

, Cat. No. 144530) 

which contained 10 filter paper discs (13-mm diameter) placed in 10 of the 24 wells. A concentration 

of 200 IJ·50 µl
-1

 was inoculated onto the filter paper discs, and one G. mellonella larva was placed in 

each of the 10 wells. The plates were incubated at 25˚C in the darkness. Insect mortality was 

assessed after 2 days, and infection was confirmed by dissection in Ringer’s solution (Chapter 5).  

Statistical analysis 

The results were analysed by means of STATISTICA 10 (Statsoft Inc., T.O.U., 2011), using 

descriptive statistics. For the measurement of different nematode life stages and virulence studies, a 

one-way ANOVA with post-hoc comparisons of means was used. Bonferroni’s method was used 

where the residuals were not normally distributed. Data obtained from the counting of different life 

stages and bacterial growth curves were analysed using a factorial ANOVA with post-hoc 

comparisons of means, using the Tukey’s HSD test.  
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Results 

Identification of the symbiotic bacteria 

The 16 rDNA sequence indicated that the bacterial symbiont associated with S. yirgalemense 

belongs to the genus Xenorhabdus. The phylogenetic analysis of the 16S rDNA gene sequence, with 

other known Xenorhabdus spp. sequences from Genbank, indicate the species to share a common 

ancestor with X. indica Somvanshi, Lang, Ganguly, Swiderski, Sazena & Sackebrandt, 2006 and X. 

cabanillasii Tailliez, Pagés, Ginibre & Boemare, 2006. Based on the phylogenetic relationship 

concerned, the bacterial symbiont associated with S. yirgalemense is regarded as an unknown and 

new species of Xenorhabdus. 

Population dynamics of S. yirgalemense 

Analyses of data obtained for the life cycle development on each day (1 to 15) showed no 

significant differences between the two test dates (males: ρ = 0.12; females: ρ = 0.17; endotokia 

matricida females: ρ = 0.99; J1: ρ = 0.98; J2: ρ = 0.57; IJs: ρ = 0.79; pre-adult: ρ = 0.51), therefore, for 

the rest of the analyses, data of the different test dates were pooled. The population development for 

S. yirgalemense at 25˚C from the inoculation of IJs into adults in monoxenic liquid culture is presented 

in Figures 6.1, 6.2 and 6.3.  

The first male and females occurred on day 2. The highest concentration of males was 

recorded on day 12, and the highest concentration of females on days 14 and 15 (Fig. 6.1). During 

the process time (15 days) concerned, the sex ratio was biased towards the females from day two to 

day four. From days 5-9, and then on days 12 and 13, the sex ratio was in favour of the males. On 

days 14 and 15, the female numbers exceeded the male numbers.  

The second and third adult (males and females) generations of S. yirgalemense were 

observed and increased from day 7 onwards (Fig. 6.1), with the maximum density being observed on 

day 13. The pre-adult juvenile stages (J3 and J4) reached their highest concentration on day 14. 

Endotokia matricida female numbers were very low throughout the 15 days, except for an increase 

that took place on day 4 and then again on day 7 (Fig. 6.1).  Newly hatched J1 and J2 offspring 

occurred simultaneously on day 4 (Fig. 6.2). The J2 concentration was low, except for a slight 
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increase that occurred on day 5 (Fig. 6.2). The highest concentration of J2 larvae was observed 5 

days after the inoculation of the IJs.  

The recovery of the IJs was observed as 67% (Fig. 6.1) on the second day post IJ inoculation 

and newly formed IJs were observed on day 7 (Fig. 6.3). The first offspring of the second generation 

occurred on day 7. The highest concentration of IJs and pre-infective juveniles occurred from day 13 

onwards (Fig. 6.3).  

 

Fig. 6.1. Mean population density (95% confidence interval) of Steinernema yirgalemense in 

monoxenic liquid culture at 25˚C, over a period of 15 days. The density of males, females, pre-adult 

stage juveniles (J3 and J4 stages) and endotokia matricida females is indicated (one-way ANOVA; 

F(42, 504) = 52.12). 
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Fig. 6.2. Mean population density (95% confidence interval) of J1 and J2 stages of Steinernema 

yirgalemense, in monoxenic liquid culture at 25˚C, over a period of 15 days (one-way ANOVA; F(14, 252) 

= 26.89). 

.  

 

Fig. 6.3. Mean population density (95% confidence interval) of infective juveniles (IJ) and pre-infective 

juveniles (J2d) of Steinernema yirgalemense, in monoxenic liquid culture at 25˚C, over a period of 15 

days (one-way ANOVA; F(14, 126) = 411.12). 

 

The body lengths of the first generation adults and juveniles are summarised in Table 6.1 

below. Differences in lengths were observed between the IJ, J1, J2, J3 and J4 stages. Measurements 
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of the different life stages were undertaken until 7 days post IJ inoculation, as the F1 and F2 

generations could not be distinguished from each other after 7 days (Hirao et al., 2010).  

Table 6.1.  Body length for females, males, IJ, J1, J2, J3 and J4 (pre-adults) (mean ± standard error 

and range) (one-way ANOVA; F(5, 95 = 362.09; ρ = < 0,0001). 

Nematode stage n 
Body length 

(µm) 
Significance symbols* 

Females 20 
1987 ± 65 

(1424 – 2666) 
n/a 

Males 20 
877 ± 18 

(671 – 995) 
n/a 

J1 20 
320 ± 12 

(213 – 387) 
a 

J2 20 
519 ± 8 

(432 – 557) 
b 

IJ 20 
635 ± 10 

(549 – 682) 
b 

J3 
 

20 
670 ± 15 

(531 – 773) 
c 

J4 20 
835 ± 18 

(701 – 990) 
e 

*Different letters indicate significant difference. 

The body length of the different life stages of S. yirgalemense varied significantly from one 

another, except for the IJs that were not significantly different from the J2 larvae in length.  

Bacteria growth curve 

Analyses of data obtained for the cell densities and optical densities showed no significant 

differences between test dates (mean cell density without nematodes: ρ = 0.54; mean optical density: 

ρ = 0.9; mean cell density with nematodes: ρ = 0.19), and the results from the two test dates were 

pooled. The colony forming units of Xenorhabdus, measured every three h up to 48 h at 30°C , are 

indicated in Figure 6.4, and the optical density in Figure 6.5. The lag phase of the Xenorhabdus was 

recorded as lasting from 0 to 15 h (Fig. 6.4). The exponential phase started after 15 h (Figs. 6.4) and, 

after 42 h, the stationary phase was reached, with an average of 51 × 10
7
 cfu ml

-1
 (Fig. 6.4).  
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Fig. 6.4. The colony forming units·ml
-1

 (95% confidence interval) of Xenorhabdus sp. in trypticase soy 

broth, over a period of 48 h, at 30˚C in the dark (one-way ANOVA; F(16, 112) = 206.7). 

 

 

Fig. 6.5. The optical density (measured at 595 nm) (95% confidence interval) of Xenorhabdus sp. in 

Luria broth, over a period of 48 h, at 30˚C in the dark (one-way ANOVA; F(16, 32) = 248.1). 
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The colony forming units of Xenorhabdus, measured over a period of 15 days, at 25°C, after 

inoculation of the IJs, is indicated in Figure 6.6. A marked reduction in bacterial cell density was 

observed until day 5 after the nematodes were added. This can be ascribed to the recovery and 

feeding of the nematodes on the bacteria, causing the cell density to decrease dramatically. After the 

bacteria had been grown for 42 h, the cell density was 50 × 10
7
·ml

-1
. From day 5, the bacterial cell 

density increased until day 9. On day 10, a slight decrease in bacterial cell density was observed, 

after which the cell counts seemed to remain constant until day 15 (Fig. 6.6). 

 

Fig. 6.6. The colony forming units (95% confidence interval) ml
-1

 of Xenorhabdus sp. in liquid culture 

over a period of 15 days, at 25˚C (one-way ANOVA; F(14, 98) = 29.7). 
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A high percentage mortality rate of G. mellonella larvae was obtained for both in vitro- and in 

vivo-produced IJs of S. yirgalemense (Fig. 6.7). However, the in vivo-produced nematodes were 

found to cause a higher percentage mortality of G. mellonella larvae. The results were analysed by 

means of a one-way ANOVA (F(1, 68) = 41.783; ρ = < 0.0001), indicating the percentage mortality to 
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Fig. 6.7. The mean percentage mortality (95% confidence interval) of Galleria mellonella larvae two 

days after inoculation with 200 IJs/insect of Steinernema yirgalemense (one-way ANOVA: F(1,68) = 

41.783; ρ = < 0.0001). ). Black bars depict mortality. Different letters indicate significant difference. 

Discussion 

For nematode population development in liquid culture to be successful, IJ recovery is the 

primary factor determining the number of adults in the parental generation, as it affects the size of the 

F1 generation (Hirao & Ehlers, 2010). The recovery of IJs varies unpredictably among cultures, 

making it difficult to adjust the number of nematodes feeding on the bacteria. As a consequence, food 

depletion and subsequent IJ formation does not always take place after a single generation. Likewise, 

a non-synchronous recovery also exposes early offspring to conditions of sufficient food, for the 

starting of another generation. Hence, maximum population density is sometimes reached only after a 

prolonged process time (Ehlers, 2001).  

Results obtained by Hirao and Ehlers (2010) showed IJ recovery of > 90% for Steinernema 

feltiae (Filipjev, 1934) Wouts, Mráček, Gerdin & Bedding, 1982. In the current study, the recovery rate 

of IJs was recorded as being 67%. Such a low percentage recovery rate for the IJs could be ascribed 

to the low bacterial cell density in the medium. In order to assist nematode development in liquid 

culture, the symbiotic bacteria were inoculated into the liquid medium at least one day prior to IJ 

inoculation.  The volume of the bacterial culture inoculated was between 0.5 and 1% of the culture 

volume (Ehlers, 2001). The pre-cultured symbiotic bacteria triggered the recovery of the IJs by 

providing appropriate food signals (Aumann & Ehlers, 2001; Hirao & Ehlers, 2009a). Doing so was 
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essential, as artificial media do not tend to produce sufficient food signals to allow for IJ recovery 

(Strauch & Ehlers, 1998).  

When S. yirgalemense IJs was inoculated, the cell density of Xenorhabdus was 5 × 10
8
 cfu 

·ml
-1
. When S. feltiae IJs were inoculated, the cell density of X. bovienii (Akhurst, 1983) Akhurst & 

Boemare, 1993 was 10 × 10
9
·ml

-1
 (Hirao & Ehlers, 2010), which was substantially higher than that of 

the bacterial symbiont in the current study. Results from the research conducted by Hirao and Ehlers 

(2010) indicate that bacterial cell density is the key factor for IJ recovery, and not IJ inoculum density, 

as was previously thought.  

The method used for determining cell density in the present study differed from the method 

used by Hirao and Ehlers (2010), who assessed bacterial cell density by counting cells in a Thoma 

chamber. In the current study, dilution series were made of each sample, and colony-forming units 

(cfu) were determined by streaking out onto NBTA plates (Atlas, 1988; L. Dicks, personal 

communication, 2012). Bacteria were initially grown in TSB to determine general growth 

characteristics, including their growth rate and optimum growth temperature, as no work with this 

specific Xenorhabdus symbiont of S. yirgalemense had yet been done. Thereafter, the bacteria were 

grown in the complex medium before it was inoculated with S. yirgalemense IJs. During both growth 

experiments, the cfu were determined, and no difference was found between the bacteria grown in 

either the TSB or the complex medium. The different methods used could explain the difference in 

bacterial cell density found between the results of the current study and that which was found in Hirao 

and Ehlers’ (2010) study. Direct cell counts would probably, it was concluded, have been a better 

option for determining cell density, and should rather be used in future.  

When asynchronous (when all IJs do not start developing simultaneously) recovery occurs in 

heterorhabditid cultures, the subsequent development of a second generation can cause a complete 

loss of the liquid culture process, due to the inability of F1 amphimicitic adults to copulate in liquid 

cultures (Strauch et al., 1994). In comparison, Steinernema are generally less vulnerable to the low 

recovery rate of IJs, because the adults are able to copulate in liquid (Strauch et al., 1994). In this 

study, IJ recovery continued to increase after newly hatched juveniles were observed, and no new 

generation IJs were observed four days after IJ inoculation. This indicates an asynchronous 

development in the first generation. Hirao and Ehlers’ (2010) research showed that the optimum 

inoculum density for S. carpocapsae (Weiser, 1955) Wouts, Mracek, Gerdin & Bedding, 1982 was 
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between 3-6 × 10
3 

IJs·ml
-1

, which would result in 1-3 × 10
3 ml

-1
 parental females being required for 

successful production. For S. feltiae, the optimum inoculum density is > 5 × 10
3
 IJs·ml

-1
, which would 

result in > 2 × 10
3
 parental females per ml (Hirao & Ehlers, 2010). In the current study, the inoculum 

density for S. yirgalemense was 4 × 10
3
 IJs·ml

-1
,
 
which resulted in a parental female density of only 1 

× 10
3
·ml

-1
 on day 9, and an increased density of 4 × 10

3
·ml

-1
 on day 15. The increase in adult density 

after day 8 indicates that the progeny of the late recovered IJs, as well as that of the second and third 

generations, were induced to develop into adults, instead of into IJs. The cell density of Xenorhabdus 

reached the lowest density on day 5, after which the cell density increased again. The increase 

prevented the starvation conditions necessary for inducing development into IJs, rather than into 

adults. The cell density reached two peaks, one of which was on day 1 and one on day 9, during the 

15-day developmental period. Control of the bacterial cell density is critical at the moment at which 

the progeny of the F1 generation hatches, as achieving high numbers of IJs within a short process 

time is required. 

In the current study, the sex ratio was not constantly biased towards the females, as was 

recorded in previous research done on Steinernema (Selvan et al., 1993; Alsaiyah et al., 2009; Hirao 

& Ehlers, 2010). The ratio concerned varied between the different days of the study, and whether this 

was caused by the low initial recovery of the IJs, the low bacterial cell density, or both, still requires 

investigation. Inoculum density has a strong effect on the fertility of the parental females (Hirao & 

Ehlers, 2010), and, in the present study, the bacterial concentration was relatively constant from day 

nine onwards. Therefore, fewer nutritional resources were available for the females, with increasing 

densities (Hirao & Ehlers, 2010). This was shown to have the same effect on S. carpocapsae as it did 

on S. feltiae parental females in the research that was undertaken by Hirao and Ehlers (2010). 

Reproduction of Steinernema is amphimictic, with male and female copulation occurring, and with the 

females producing eggs. When food is abundant in the liquid culture, the offspring develop further into 

reproductive adults. In comparison, the response to depleting food resources tends to encourage the 

development of IJs (Strauch et al., 1994). 

The development of a large number of offspring into adult males and females might cause 

problems when downstreaming of the process is required. As all non-IJs rapidly died off during 

formulation, the amount of contaminants increased, resulting in the nematode product being spoiled. 

Therefore, these stages should be removed from the IJ suspension before formulation.  Second- and 
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third- generation adults should also be avoided, as the increase concerned is caused by an increase 

in the bacterial density. This results in switching to adult development, instead of IJ formation, as the 

attainment of a one-generation process is the objective, as was achieved for S. carpocapsae in the 

past (Hirao & Ehlers, 2010). Results from this study suggest that the occurrence of second- and third- 

generation adults could be the rule for S. yirgalemense, and that the density of the IJ inoculum would 

then not be able to influence it.  

Basic knowledge, such as that of the body length of various life stages of S. yirgalemense, 

was monitored to improve culture conditions for the successful production of S. yirgalemense in liquid. 

The data could be used to estimate the population development and yields in commercial production, 

and future improvements in culture conditions. Results from the current study showed, that in terms of 

body length, most of the stages were significantly different from one another. A few of the nematode 

life stages were, however, similar in size to one another, such as the J4 larval stage of the males and 

the J2 larval stage of the IJs. The J4 larval stage is the final larval stage before the nematodes 

concerned develop into males or females, and, therefore, at said stage of larval development, it is 

mainly the reproductive organs that are still developing. The J4 larval stages and the males were 

distinguished by the presence or absence of male genitals. In regard to the J2 larval stage and the 

IJs, the latter are a specialised J3 larval stage, which could explain the body length overlapping. 

When comparing measurements of body lengths of the nematodes in the current study with the 

measurements taken of nematodes by Nguyen et al. (2005), a difference is discernible in the body 

length of the first- generation females and males. This difference in body length can be ascribed to 

the different method of culturing used, namely in vivo compared to in vitro, and is similar to what 

Ehlers and Shapiro-Ilan (2005) found when observing the decreasing body length of hermaphrodites 

in flask cultures. 

The virulence of IJs produced from employing in vivo methods was more effective compared 

to that of IJs produced from in vitro methods, with a significant difference being observed between the 

two. Similar results were obtained from research done by Gaugler and Georgis (1991), in which H. 

bacteriophora Poinar, 1976 produced by liquid culture achieved significantly lower mortality against 

the Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeoidea), than those did that 

were reared in vivo (Gaugler and Georgis, 1991). A concentration of 200 IJ·50µl
-1

 was used in this 

study, which was high for G. mellonella larvae, as they were already highly susceptible to 
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entomopathogenic nematodes. Even with the relatively high concentration, there was still a significant 

difference between the in vivo- and in vitro-produced IJs. Such differences could have been the result 

of the in vivo-produced IJs containing higher amounts of lipids (Molyneux, 1985). The nematodes that 

have been cultured in vitro appear to be visibly more transparent when compared to their in vivo-

produced counterparts. This condition is generally associated with the reduced presence of lipids, and 

is related to a reduction in pathogenicity against Tenebrio molitor L. (Coleoptera: Tenebrionidae) 

larvae, according to Vanninen (1990). As the amount of time between production and application 

increases, the reduced pathogenicity also increases (Vanninen, 1990). This has important 

consequences for S. yirgalemense, as the desired end result is commercial production and 

application in the field. 

The successful culturing of S. yirgalemense in vitro led to valuable information being gained in 

the current study. However, the liquid culture production of S. yirgalemense requires further 

investigation, especially regarding the production of IJs within a single generation. The bacterial 

growth should be further analysed, as the nutrients provided by the medium might not be fully 

exploited by the bacteria used. Improvement of the culture medium, as well as increasing the IJ 

inoculum, might result in an improved final number of IJs of S. yirgalemense, in a shorter process 

time. 
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CHAPTER 7 

 

Investigating the growth characteristics of Xenorhabdus, a bacterial symbiont associated with 

the entomopathogenic nematode Steinernema yirgalemense 

Abstract 

In South Africa, Steinernema yirgalemense has shown potential as a biological control agent of 

insect pests in agriculture. For the commercial use of these nematodes for the key pests of fruit crops, 

they have to be cultured and formulated in massive numbers. When this species of nematodes is 

cultured in industrial fermenters, monoxenic liquid cultures have to be pre-incubated with its symbiont, 

Xenorhabdus, before infective juveniles (IJs) of S. yirgalemense are to be inoculated. This study is the 

first to investigate the growth characteristics of this unknown Xenorhabdus sp., associated with S. 

yirgalemense, in a 20-L fermenter. Parameters that can be used to determine accurately when 

stationary growth phase conditions occur are bacterial cell density and dissolved oxygen (DO2). 

Bacterial cell density of 50 × 10
7
 cells·ml

-1
 was reached after 36 h, and the DO2 rate started to 

increase after 24 h, reaching 60% after 36 h. The results showed the stationary phase of 

Xenorhabdus was reached after 36 h at 30˚C in the 20-L fermenter, which took 6 h less than did the 

same procedures followed with the Xenorhabdus sp. cultured in Erlenmeyer flasks on orbital shakers.  

This is the first step in the future liquid mass culture of S. yirgalemense in industrial-size fermenters, 

as data from this study can indicate the optimum time required before adding IJ to the bacterial 

culture in the fermenter. This will ensure the optimum recovery of IJs, and a subsequent high yield of 

nematodes within a minimum amount of processing time. 

 

Introduction 

Xenorhabdus are motile gram-negative bacteria that belong to the family Enterobacteriaceae 

(Akhurst, 1980; Boemare & Akhurst, 1988; Boemare et al., 1993). Xenorhabdus bacteria are 

associated with EPNs from the family Steinernematidae, and are carried in the intestine of the 

infective juvenile (IJ) stage of the nematode (Poinar, 1990; Akhurst, 1993; Akhurst & Dunphy, 1993; 

Forst & Nealson, 1996). A diversity of aerial and soil insects can be controlled by EPNs, but the soil 
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stage of insects is naturally accessible to the free living IJ. In the soil, the IJs can locate the insect by 

secreted cues such as CO2 left behind by the insect and, when the digestive track of the host is 

entered, they penetrate through the lining to the haemocoel (Poinar, 1990; Akhurst & Dunphy, 1993). 

Access to the haemocoel of the insect can also be gained through the spiracles (Poinar, 1990). The IJ 

release their symbiotic bacteria as soon as they enter the haemocoel of the insect host. The insect is 

rapidly killed off by the bacteria and nematode combination, although the bacteria are usually more 

virulent (Akhurst & Dunphy, 1993). The bacteria grow to stationary phase inside the haemocoel of the 

insect host, while, simultaneously, the IJ recover to start feeding, developing and reproducing 

sexually. EPN reproduction is most favourable when the natural symbiont dominates the microbial 

flora inside of the host. When the food supply in the insect is depleted, the bacteria and nematode 

reassociate, with the latter developing into the IJ stage, which is a nonfeeding, specially adapted, third 

larval stage. The bacteria are carried in the intestinal tract of the IJ, and subsequently emerge in the 

intestine of the IJ from the depleted insect carcass into the soil, in search of a new host (Akhurst, 

1993; Kaya & Gaugler, 1993). 

Xenorhabdus can be grown under standard laboratory conditions as a free-living organism, 

although they have never been reported as occurring freely in nature (Akhurst, 1993; Kaya & Gaugler, 

1993). Numerous extracellular products, such as lipase(s), phospholipase(s), protease(s) and several 

different broad-spectrum antibiotics, are secreted as the bacteria enter the stationary phase of their 

growth cycle (Akhurst, 1982; Boemare & Akhurst, 1988; Gaugler & Kaya, 1990).  

Another important characteristic of Xenorhabdus is the formation of phenotypic variant forms 

(Akhurst, 1980; Bleakley & Nealson, 1988; Boemare & Akhurst, 1988; Hurlbert et al., 1989; Bermudes 

et al., 1993). During prolonged incubation under stationary phase conditions, such phenotypic variant 

forms can be isolated. The variant forms, also called phase II cells, are different from one another in 

terms of various properties, and are not naturally associated in the nematode. Phase I cells represent 

the form occurring in the IJ (Boemare & Akhurst, 1988). This phase variance should always being 

aware of during in vitro culture of EPNs as these phase II bacteria cause the IJ to lose its virulence. 

The optimum growth temperature of a bacterial symbiont should always be defined before 

mass culturing of the nematode is attempted (Ehlers et al., 2000). Deviation from the optimum 

temperature can potentially induce a switch to phase II cells, which will impede nematode 

reproduction (Ehlers et al., 2000). When the bacterial culture medium is started, the pH should ideally 
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be between 5.5 and 7, and the oxygen saturation rate should be kept above 30%, as doing so will 

prevent the bacteria from switching to phase II cells (Ehlers & Shapiro-Ilan, 2005). The aeration rate is 

very important, and Strauch and Ehlers (2000) compared yields of Heterorhabditis megidis Poinar, 

Jackson & Klein, 1987, with one culture being aerated at 0.3 vvm and another at 0.7 vvm (Strauch & 

Ehlers, 2000). The researchers concerned found a significantly higher number of adults 8 days after 

IJ inoculation, and a higher final yield in the culture that was aerated at a higher rate.  

Increasing the aeration rate in a fermenter often leads to increased foaming which affects the 

nematodes negatively. Silicon oil can be used to prevent foaming, but should be used cautiously, as 

high concentrations can affect the nematodes negatively. Long-chain fatty acids used to control 

foaming have been found to affect H. bacteriophora negatively (Ehlers & Shapiro-Ilan, 2005).  

The pathogenic potential of the bacteria/nematode complex can be very useful as a biological 

pest control agent (Klein, 1990). For nematodes to be used as a commercial biocontrol agent, they 

are produced in industry-scale fermenters (Ehlers, 1996; 2001). In these ferementers, prior to the 

inoculation of the IJs, the liquid medium is incubated with the bacterial symbiont (Ehlers et al., 1998), 

with the recovery of the IJs tending to vary quite noticeably in the liquid culture. The above is very 

different to IJ recovery in the haemocoel of the insect, where almost 100% recovery takes place within 

a day after entry of the haemocoel (Strauch & Ehlers, 1998). Therefore, in vitro production is possible 

due to the preculturing of the symbiotic bacteria, which excrete the food signals used by the IJs to 

induce their feeding, into the medium (Aumann & Ehlers, 2001), for recovery of the IJs to take place. 

Research undertaken by Strauch and Ehlers (1998) found that the highest recovery of IJs was 

obtained when bacteria were in the stationary growth phase.  

In this study, the aim was to determine when Xenorhabdus reaches the stationary phase when 

grown in a 20-L fermenter, as this would be the optimum time to add the IJs of Steinernema 

yirgalemense.  The effect of stationary phase conditions on the bacterial cell density and the 

dissolved rate (DO2) in the fermenter was investigated. 
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Materials and methods 

Isolation of symbiotic bacteria 

The primary form of the Xenorhabdus was isolated from last larval instars of Galleria 

mellonella (L.) (Coleoptera: Pylaridae) infected with S. yirgalemense (Chapter 6). After 24 h post 

inoculation with IJs of S. yirgalemense, the G. mellonella larva was surface sterilised by dipping them 

briefly into 95% (v/v) ethanol, igniting them and immediately thereafter plunging the insect into sterile 

water. The cadaver was dissected, using a sterile syringe and, with a sterile inoculating loop, the 

haemolymph was transferred and spread onto an NBTA (supplemented with 0.004 % (w/v) 

triphenyltetrazolium chloride and 0.025 % (w/v) bromothymol blue) plate. Plates were incubated at 25-

28˚C for 48 h (Akhurst, 1980; Kaya & Stock, 1997), propagated in trypticase soy broth (TSB) and 

stored in 15% glycerol at -80˚C. When required, the glycerol stocks were melted at room temperature, 

propagated in 10 ml TSB in 25 ml test tubes for 2 days at 30˚C, and subsequently used.  

Culture conditions 

The Xenorhabdus culture was grown in liquid media (complex medium) that consisted of 15.0 

g·l
-1

 yeast extract (Merck), 20.0 g·l
-1

 soy powder (Nature’s Choice, Meyerton, South Africa), 4 g·l
-1
 

NaCl, 0.35 g·l
-1

 KCl, 0.15 g·l
-1

 CaCl2, 0.1 g·l
-1

 MgSO4 (Merck), and 46 ml·l
-1
 vegetable oil (Ehlers et al., 

1998). The culture was grown in a fermenter (New Brumswick Scientific Bioflo IV, 20L reactor) 

(www.harlowscientific.com ) filled with 8 L of the above medium and supplemented with 0.03% (v/v) 

anti-foam (Antifoam 204 Sigma-Aldrich). The process temperature was set at 30˚C, and the pH was 

controlled at 7, using KOH (4N) and citric acid as a base and acid, respectively. The DO2 

concentration was set to remain above 30% by adjusting the agitation speed. The airflow rate 

(filtered) was set at 4 L/min and the velocity of the turbine was set between 200 and 1000 revolutions 

per minute (rpm).  

The fermenter filled with the liquid medium was steam sterilised in situ for 15 minutes at 121˚C, 

and then cooled down to 30˚C. The steam originated from a boiler that was connected to the 

fermenter. The medium in the vessel was inoculated with 80 ml of a 24 h phase I bacterial culture 

grown in the same liquid medium that was in the fermenter. Bacterial cell samples of 10 ml were 

taken aseptically from the fermenter every 3 hours over a period of 60 hours. Steam was used to 
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sterilse the sample port each time before and after samples were taken. The same experiment was 

conducted on two different test dates.  

Assessment of bacterial growth 

Bacteria cell samples were washed with 0.8% (w/v) sterile saline by centrifuging and washing 

three times. Cells were counted using a Petroff-Hausser Counter (Hausser Scientific). Counting was 

done using a Leica DM2000 Leica (Microsystems, Wetzlar, Germany) research microscope at a 1000 

× magnification. Of each sample that was taken, 4 ml was divided into 1 ml samples, from which the 

dilution series was made up. The experiment was repeated on two different test dates. 

Statistical analysis 

The results were analysed using STATISTICA 10 (Statsoft Inc., 2011). Analysis of the data was 

done using descriptive statistics. 

Results 

The stationary growth phase of Xenorhabdus in the fermenter was reached after 36 h at a 

bacterial cell density of 50 × 10
7
 cells·ml

-1
. A lag phase occurred from 0 to 3 h, and the exponential 

phase lasted from 3 to 33 h, with the bacterial cell density increasing from 0.05 × 10
7
 cells·ml

-1
 to 49 × 

10
7
 cells·ml

-1
 (Fig. 7.1.). A drastic decrease occurred in the DO2 level from 0 to 3 h (Fig. 7.2.), as 

Xenorhabdus started to grow. From 3 to 27 h, the DO2 rate was kept just above 30%, but, as a result 

of the delayed reaction of the reactor, the DO2 level declined to 29%. Said period coincides with the 

exponential phase (Fig. 7.1.) of Xenorhabdus growth (Fig. 7.3.). The DO2 level increased at 30 h, as 

Xenorhabdus developed into the stationary phase, which required less oxygen. From 42 to 60 h, the 

DO2 level rose steadily, except for a decrease at 45 h and 54 h, which coincided with the plateau that 

was reached with the bacterial cell density, at around 50 x 10
7
 cells·ml

-1
 (Fig. 7.3.). The effect of the 

bacterial cell density on the DO2 levels can clearly be seen in Figure 7.3. After 60 h, the DO2 level 

was 95% (Fig. 7.2.).  

The percentage DO2 was kept above 30% by increasing the speed of the agitation (rpm) 

provided by the turbine (Table 7.1.), which was set at a minimum of 200 rpm. After 24 h, the 

percentage DO2 started to increase above 30%, as Xenorhabdus was reaching the end of the 
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exponential phase of its growth (Fig. 7.1.). At 36 h, the rpm declined outomatically to a minimum of 

200 rpm, as the stationary phase started. The rpm was automatically controlled by the fermenter. As 

soon as the DO2  level went below 30 % the rpm increased.  At 60 h, very little oxygen was needed in 

the reactor (Table 7.1.). 

 

Fig. 7.1. The cell growth, measured as bacterial density·ml
-1

 of Xenorhabdus spp. in liquid medium, in 

three hour periods over a period of 60 h in a 20-L fermenter at 30˚C.  
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Fig. 7.2. The dissolved oxygen (DO2) readings taken every 3 h, over a period of 60 h, in a 20-L 

fermenter, in which Xenorhabdus was cultured in the liquid medium at 30˚C.   
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Fig. 7.3. The variation in bacterial cell density and dissolved oxygen levels (DO2) every three hours 

for a period of 60 h in a 20-L fermenter in which Xenorhabdus spp. was cultured in the liquid medium 

at 30˚C. 

 

Table 7.1. Dissolved oxygen (DO2) and medium agitation measured in revolutions per minute (rpm) 

recorded every 6 h during the growth phase of Xenorhabdus in a 20-L industrial fermenter.  

h 0 6 12 18 24 30 36 42 48 54 60 

DO2 (%) 
 

98 
 

27 30 29 30 38 60 74 77 78 95 

rpm 200 273 359 240 211 204 200 200 200 200 200 

 

 

Discussion 

Steinernema yirgalemense has been successfully cultured using Erlenmeyer flasks on orbital 

shakers (Chapter 6). The next step for commercial production would be to upscale the culturing of the 
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the bacteria and the nematodes would be exposed to different environmental conditions, as with each 

step in the upscaling process. Results of this study provide the first guidelines as to the successful 

future mass culture of Xenorhabdus from Erlenmeyer flasks to a 20-L fermenter.  

For the nematodes to recover from the arrested state and to resume feeding and reproduction, 

the bacteria must be in a stationary phase within the fermenter, as this would provide sufficient food- 

induced cues (Johnigk et al., 2004). The optimum time concerned can be determined by means of 

such process parameters as DO2. Data from the cell counts were used to distinguish between the 

different growth phases of the bacteria (Johnigk et al., 2004). Calculating cell density, using colony-

forming units (cfu), as was done in Chapter 6 to determine when Xenorhabdus reached stationary 

phase, gave similar results to the direct cell counts. Cell counts were lower than expected, which 

could possibly be ascribed to washing the cells prior to counting. High variation was observed in the 

bacterial cell density between the two test dates from 12 h to 18 h (Fig. 7.1). This could be ascribed to 

the exponential phase being reached earlier during the first experiment, compared to the experiment 

repeated on the second test date. This experiment was conducted twice and the data combined, and 

it would be advisable to repeat it further for fine tuning and reproducibility before future mass culturing 

in high-volume fermenters.   

Optical density (OD) was not used to measure growth, as a complex medium was used, 

including such components as oil which would result in inaccurate OD readings of the bacteria. 

Research undertaken by Johnigk et al. (2004) found that, when working with a complex medium, OD 

cannot be used to determine the growth phase of bacteria, and that using other parameters tends to 

provide more reliable information such as the DO2 level . Changes in DO2 levels can be interpreted as 

changes in bacterial metabolism (Johnigk et al., 2004), as the bacteria require less oxygen when they 

enter the stationary phase. In the current study, the DO2 was found to be efficiently kept around 30% 

by increasing the agitation speed concerned of the medium concerned.  As soon as the stationary 

phase of the bacteria was reached at 36 h, the DO2 rate increased to 60%, and the agitation speed of 

the propeller decreased to its minimum of 200 rpm (Table 7.1.). This could possibly indicate the 

reduced oxygen needs of the bacteria when their stationary phase is reached. The stationary phase 

of Xenorhabdus in the 20-L fermenter was reached after 36 h, which was 6 h earlier than when 

Xenorhabdus was grown in Erlenmeyer culture flasks (Chapter 6). It could be ascribed to the different 

environment concerned when scaling up from 250-ml volume Erlenmeyer flasks to a 20-L fermenter. 
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More oxygen would have been available for the bacteria in the 20-L fermenter, as air was actively 

being pumped in at a rate of 4 L/min, combined with the agitation speed of the propeller for improved 

circulation and oxygen transfer. 

Although fermenter design is an engineering issue, it is necessary to understand the factors 

that influence the needs of both the symbiotic bacteria, as well as the nematodes, which include 

correct temperature and enough oxygen (Gaugler & Han, 2002). In the future, such data from the 

study can be used to determine when it would be the optimum time to inoculate the IJs into the 

fermenter. 
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CHAPTER 8 

Conclusion 

A critical aspect to advancing research within the field of nematology is conducting surveys to 

search for new EPN species. Many surveys have been conducted worldwide in search of new 

isolates. In South Africa, however, knowledge on the distribution is still limited, and therefore 

surveying for new EPNs should always be a priority. Discovering novel EPNs can potentially lead to 

discovering novel bacterial species associated with such nematodes. Consequently, the field of 

research is very exciting at present, as the surface has only, so far, been scratched with regards to 

the development in the knowledge regarding EPNs and their bacterial symbionts on the African 

continent. Collecting endemic isolates and investing time and funds in producing a local biological 

control product is more ideal than is importing an exotic EPN species, and avoiding biological 

pollution. 

The South African deciduous fruit and citrus industries regard the use of entomopathogenic 

nematodes (EPNs) as important in an integrated pest management system for the production of pest- 

and residue-free fruit for the export market. For this goal to be realised, however, research has to be 

focused on in vitro liquid mass production of nematodes for commercial application. To fast track the 

use of EPNs in orchards, importation of a formulated nematode product from Germany was agreed 

upon by the two industries. However, research into production and supply of indigenous nematode 

species should continue to remain a priority. 

The first part of this study was aimed at isolating the symbiotic bacteria-associated 

Heterorhabditis noenieputensis, Steinernema khoisanae and Heterorhabditis zealandica, respectively. 

The former two species are new nematode species that were described from South Africa, while the 

occurrence of the latter was recorded for the first time in South Africa. No research on the associated 

bacteria of EPNs occurring in South Africa had previously been completed, and it was found that all 

three of the nematode species were associated with novel symbiotic bacterial species and/or 

subspecies, which were subsequently characterised and described in this thesis.  

The bacteria of Xenorhabdus and Photorhabdus generally associated with EPNs belong to the 

family Enterobacteriaceae, and are irreversibly locked together with their nematode partner. Together, 

they form a formidable mutual alliance that is capable of killing a wide range of insect pests. During 
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the current study, the importance of the bacterial partner in the nematode insect pathogenicity was 

realised. Most research undertaken during the last 30 years has mainly been aimed at the nematode 

and bacteria in combination, while research on the bacteria alone, has been lagging behind. The 

success of nematodes as biological control agents is highly dependent on our knowledge and 

understanding of the symbiotic bacteria that is associated with each nematode species as they work 

very closely together and are most effective against pest insects when in combination As each 

nematode-bacteria complex is unique, each complex requires separate investigation in terms of the 

process of mass culture, in order to gain more knowledge about their characteristics with regard to 

optimum liquid medium required, optimum temperature and duration of life cycle. Fortunately, the 

bacterial symbionts can easily be cultivated in artificial media and studied under laboratory conditions.  

The first bacterial symbiont described in this study was isolated from a Heterorhabditis species 

that was isolated from citrus orchards in the Mpumalanga province of South Africa. This was also the 

first work to be published on the characterisation of nematode symbiotic bacteria for South Africa. The 

associated bacterium, Photorhabdus luminescens subsp. noenieputensis n. sp., was named after the 

nematode from which it was isolated, H. noenieputensis. By injecting Photorhabdus noenieputensis 

directly into the haemocoel of G. mellonella larvae, they were found to be highly pathogenic, without 

the nematode, which essentially acts as the vector. 

Interest in the symbiotic bacteria is increasing rapidly, as more knowledge is gained about this 

unique genus. The bacteria associated with S. khoisanae and H. zealandica were also isolated and 

characterised. A new Xenorhabdus species was found and named X. khoisanae n. sp., after the 

nematode from which it was isolated. In addition, a new Photorhabdus species was isolated from H. 

zealandica, which is quite unique, as it is not just another subspecies, but another species entirely. 

This is the first study worldwide to show that H. zealandica associates with a different Photorhabdus 

species, and not with the known P. temperata. As shown by the results in this study, SF41 share a 

DNA homology of 50.8% with P. asymbiotica ssp. australis, even though four genes (recA, gyrB. 

dnaN, gltX) show the strains are closely related to P. asymbiotica ssp. asymbiotica. This raises the 

question of how significant house keeping genes and concatenated sequences is. In comparison to 

Steinernema the number of Heterorhabditis species is limited, as well as the associated bacteria, and 

more reseach is needed in species identification and their relatedness. 
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The second part of the study was aimed at investigating the mass production of two endemic 

EPN species, H. zealandica and Steinernema yirgalemense, using in vitro liquid culture technology. 

This was done in order to investigate the potential commercialization of one or both of these species 

for the use as a biopesticide. Only one isolate of S. yirgalemense has been found in South African 

surveys, and it has only been reported from Ethiopia. The two nematodes concerned have not 

previously been cultured in liquid, making this study the first attempt to accomplish such a feat. 

EPNs as commercial biological control agents can fill the gaps left after the banning or 

restriction of numerous organophosphate and carbamate insecticdes. In the present study, the 

attempt was first made to mass culture H. zealandica in liquid medium, as the species had shown, in 

previous research, to be highly virulent against such pest insects Phlyctinus callosus, Cydia 

pomonella, Thaumatotibia leucotreta, Planococcus citri and Pseudococcus viburni. When working 

with a Heterorhabditis species in liquid culture, one very important aspect that needs to be taken into 

consideration is that the male and female cannot copulate in liquid, as a result of their mating 

behaviour. Heterorhabditis has a ‘y’ or lambda copulation behaviour, which means that the male 

cannot attach itself to the female. Only the self-fertilising hermaphrodites can produce offspring and, 

subsequently, the final yield is predicted by the density of the hermaphrodites. In this study, two 

generations occurred in liquid, with H. zealandica and its Photorhabdus symbiont being mass 

cultured. More research is required to optimise the process, in order for the more desirable one-

generation process to take place. 

IJ recovery is another critical factor that should be improved upon in the liquid culture of H. 

zealandica. The recovery that occurred is not nearly sufficient for full-scale commercial production to 

be successful and economically viable. The symbiotic bacteria are a key factor when it comes to 

adequate recovery aimed at obtaining high infective juvenile (IJ) yields. The bacteria are responsible 

for producing food signals that induce IJ recovery. Said bacterial food signal is much less efficient 

when compared to the food signal in an insect host, which immediately induces the recovery of the 

IJs.  

Future research should be aimed at optimising the Photorhabdus growth in the medium. 

Different mediums could be investigated, as well as methods for enhancing stronger food signals. 

Heterorhabditis zealandica is already commercially available in Australia, and is used for the control 

of a number of turf and pasture pests. The product, which is produced by Ecogrow Australia Pty Ltd 
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(www.ecogrow.com.au), is known as ‘Weevilnem™’. It is not, however, mass cultured using in vitro 

liquid culture technology, but instead by means of three-dimensional monoxenic culture, using sponge 

as the medium. 

During the current study, S. yirgalemense was isolated during research that was conducted into 

the occurrence of EPNs in citrus orchards, and was shown, in different studies, to be more potent 

against codling moth, false codling moth and mealybug than was H. zealandica. Since Steinernema in 

general is known to be less difficult to culture in liquid, it was decided to investigate the liquid mass 

culture of this species. It was found that S. yirgalemense produced higher yields of IJs than did H. 

zealandica. Although the initial inoculation density of H. zealandica was less than that of S. 

yirgalemense, a general trend was previously seen in the preliminary trials, with S. yirgalemense 

producing higher yields than did H. zealandica. The higher yield from S. yirgalemense could be 

ascribed to the different copulation behaviour of the Steinernema species. Steinernema males and 

females are able to copulate in liquid culture, because of the curling mating behaviour of the male. As 

a result of the occurrence of male and female copulation, the females can produce fertilised eggs. 

The initial percentage recovery of S. yirgalemense was also higher than was that of H. zealandica. 

This could possibly be ascribed to a stronger food signal being emitted from Xenorhabdus. This study 

indicated that S. yirgalemense has more potential to be mass cultured in a liquid medium from a 

commercial point of view, than does H. zealandica. Future research should be aimed at: increasing 

the percentage recovery, shortening the processing time; and optimising the overall process, in order 

to achieve a higher yield of IJs. A key to success with the process is to reduce the cost of culturing the 

nematode in liquid medium, which can be achieved by further improving the population dynamics 

involved.  

The Faculty of Engineering at Stellenbosch University is equipped with state-of-the-art 

fermenters that are used for the culturing of bacteria, mostly for pharmaceutical purposes. One of 

their 20-L fermenters was used to upscale the culture of the Xenorhabdus associated with S. 

yirgalemense. The results from the study looked promising for the successful culture of the bacteria, 

with the next step being to add the nematodes. Upscaling, which is an important factor in the 

commercialisation of S. yirgalemense, is important to achieve in a cost-effective way. Even though the 

cost of nematode products has substantially decreased since liquid culture technology was first 

introduced, such products still cost more than do chemicals. A possible solution for the problem is to 
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focus on such high-cash crops as blueberries, as it is more economically feasible for these growers to 

invest in a biological control management tool. 

When importing nematodes from other countries, which is currently occurring, two factors act 

as obstacles. The first is the amount of time that it takes for the nematodes to reach South Africa, 

combined with the temperature at which they have to be kept while in transit (keeping them at cooler 

temperatures than usual, is unfortunately, not always possible). The second problem is the cost that is 

associated with importing nematodes from another country, which, due to such importing not being 

economically feasible in the long run, is, therefore, only a short-term solution. Consequently, our own 

endemic species need to be mass cultured and produced as a biopesticide in South Africa. South 

Africans can also serve as the leaders for other African countries to use nematodes as biocontrol 

agents. 
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