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Abstract 

This thesis comprises of the development of a facility were spark ignition engine 

fuels can be tested. Development of the facility included the installation of a 

standard spark ignition engine, an engine dynamometer, control and monitoring 

equipment, control and monitoring software, and an in-cylinder pressure 

measurement setup.  

The system was tested using petrol as well as a petrol-ethanol blend. The results 

indicated good accuracy and repeatability of the system. Analysis of the 

performance and combustion of the petrol-ethanol blend showed no significant 

difference in comparison to the petrol fuel. The petrol-ethanol blend showed a 

slight increase in oxygen content and fuel consumption as well as an increase in 

CO2 emissions and a decrease in CO emissions.  

During the project, a comparison was also made between the performance of fibre 

optic transducers and a piezoelectric transducer. It was found that the fibre optic 

transducers performed similarly to the piezoelectric transducer during low engine 

load conditions. At high load conditions however, the fibre optic transducers were 

not able to produce the same accuracy as the piezoelectric transducer. 
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Opsomming 

Hierdie tesis bestaan uit die ontwikkeling van 'n fasiliteit waar brandstowwe vir 'n 

vonkontsteking binnebrandenjin getoets kan word. Ontwikkeling van die fasiliteit 

sluit in die installering van 'n standaard vonkontsteking binnebrandenjin, 'n enjin 

rem, beheer en monitering toerusting, beheer en monitering sagteware, en 'n in-

silinder drukmeting opstelling. 

Die fasiliteit is getoets met suiwer petrol sowel as 'n petrol-etanol mengsel. Die 

resultate het hoë vlakke van akkuraatheid en herhaalbaarheid getoon. Ontleding 

van die werksverrigting en verbranding van die petrol-etanol mengsel het geen 

beduidende verskil getoon in vergelyking met die suiwer petrol brandstof nie. Die 

petrol-etanol mengsel het 'n effense toename in suurstofinhoud, brandstofverbruik, 

sowel as CO2 vrylating en 'n afname in CO vrylating getoon. 

Tydens die projek is 'n vergelyking getref tussen die akkuraatheid van optiese 

vesel drukmeters en 'n piësoëlektriese drukmeter. Daar is bevind dat die 

akkuraatheid van die optiese vesel drukmeters soortgelyk is aan die 

piësoëlektriese drukmeter gedurende lae enjin lastoestande. By hoë las 

omstandighede was die optiese vesel drukmeters egter nie in staat om dieselfde 

akkuraatheid as die piësoëlektriese drukmeter te handhaaf nie. 
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1. Introduction 

In today’s modern society the automobile is one of the main contributors to CO2 

emissions due to the fossil fuels it uses. This has led to the widespread interest in 

biofuels for use in spark ignition (SI) as well as compression ignition (CI) 

engines. Carbon in the plant matter used for producing biofuels originates from 

the CO2 absorbed from the atmosphere. Burning of biofuels therefore forms a 

closed loop carbon cycle. In contrast, fossil fuels, when burnt, release carbon into 

the atmosphere which has been trapped under the ground for millions of years 

(Milnes et al., 2010). 

However, for these biofuels to be considered as viable options for internal 

combustion (IC) engines they have to be tested in laboratories as well as in 

vehicles. Laboratory testing of biofuels, in CI engines, at Stellenbosch University 

has been possible since 2008 due to previous projects. A need was therefore 

identified to also develop a SI engine testing facility at the University to enhance 

fuel testing capabilities. For the project, a SI engine, which is capable of running 

on petrol as well as petrol-biofuel blends, was sponsored. This engine had to be 

coupled to a dynamometer and all the relevant sensing and control equipment 

installed.  

In-cylinder pressure is extremely useful for analysing the combustion process in 

IC engines. Combustion duration and the thermodynamic effects of different 

engine conditions and fuels can be studied when in-cylinder pressure data is 

available. Due to this, an in-cylinder pressure measurement setup also had to be 

developed for the test facility.  

The pressure transducers that are mostly used for in-cylinder pressure 

measurement are based on the piezoelectric effect. These transducers are however 

costly. For this reason, fibre optic transducers has recently been developed which 

are far more cost effective than their piezoelectric counterparts. However, the 

performance of fibre optic transducers in comparison to piezoelectric transducers 

has not been widely published. The project therefore also aimed to study the 

performance of fibre optic transducers during different engine operating 

conditions.  

The objectives that were therefore identified for the project are as follows: 

1. Develop a repeatable and accurate SI engine and dynamometer setup 

for fuel testing, 

2. Develop a highly accurate and repeatable in-cylinder pressure 

measurement setup for combustion analysis, 

3. Compare the performance of piezoelectric in-cylinder pressure 

transducers to fibre optic transducers,  and 

4. Test the completed setup for sensitivity to fuel changes. 
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2. Literature Review 

In order to gain a good understanding of engine testing facilities, a literature 

review was undertaken. Of the literature that was studied, the most important 

aspects are summarized in this chapter. The literature review includes 

requirements for engine testing, workings of modern SI engines, properties of 

petrol and bioethanol as well as the requirements for in-cylinder pressure 

measurement.  

2.1 Engine Testing  

In this section the requirements of an engine and dynamometer test setup is 

discussed. These include the parameters to be measured and controlled, 

installation of the engine and dynamometer and the operating principle of certain 

engine dynamometers. 

2.1.1 Overview 

The development of an engine testing facility requires a wide range of engineering 

skills which include design, procurement, installation, fault finding and software 

programming. These skills however need to be integrated during the development 

and completion of the facility to ensure that the specifications set at the beginning 

of the project are satisfied. (Plint & Martyr, 1995) 

An engine testing facility generally consists of the test cell infrastructure, a ladder 

frame test bed, a test engine, a dynamometer, sensors and actuators, control 

equipment as well as control software. Before the equipment is installed in the test 

cell, certain criteria have to be met to ensure user friendly and safe operation of 

the setup. Typical criteria to consider are overall floor size, engine layout 

(orientation), noise isolation, safety barriers during engine operation (doors, 

windows, walls, roof), lighting, location of the control room and fire 

extinguishing system. Furthermore, criteria also have to be met to ensure 

sufficient ventilation and water flow into and out of the test cell as well as 

electricity supply and exhaust extraction. (Plint & Martyr, 1995) 

Although all of the above mentioned aspects have to be taken into account during 

the development of an engine testing facility, the most important aspect to 

consider is safety. Plint and Martyr (1995) recommends that hard wired 

emergency stops be installed in the control room as well as the test cell itself. 

Furthermore it is recommended that computerized alarm systems are installed 

which can shut down the engine in case of a high or low parameter reading. These 

readings include temperatures, pressures, speed, load and fire suppression 

systems. 
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2.1.2 Measured parameters 

Typical parameters that have to be measured in an engine testing facility include 

torque, speed, air and fuel flow, temperature and pressure. Note, all parameters 

with the prefix brake refers to measurements made at the engine flywheel i.e. the 

net output of the engine. Standard SI units were used in the project. 

 

a) Engine torque and speed 

Engine torque is measured using a load cell which is installed on the 

dynamometer at a distance R from the centre of the dynamometer, as shown in 

Figure 1. More information on engine dynamometers will be given in section 

2.1.6. 

 

 

 

 

 

Engine rotational speed, which is required for calculations and control purposes, 

is measured using a speed sensor attached to the rear of the dynamometer. The 

speed sensor mostly used is a variable reluctance (VR) speed sensor (also referred 

to as a passive magnetic speed sensor). It consists of a permanent magnet, pole 

piece and a coil as can be seen in Figure 2.  

A toothed wheel rotates, in close proximity, past the tip of the sensor. The 

approach and passing of one of the teeth, changes the strength of the magnetic 

field. This in turn induces an AC voltage in the coil. The amplitude and frequency 

of the induced voltage is proportional to the speed of the toothed wheel and 

therefore the speed of the engine. (Honeywell sensing and control, 2012) (Presto, 

[S.a.]) 

 

 

 

Figure 1: Dynamometer and load cell setup (Plint & Martyr, 1995) 

Figure 2: Speed sensor internal configuration (Presto, [S.a.]) 
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b) Fuel and air flow 

Measurement of fuel flow is a very important parameter for comparative fuel 

testing. It is used to determine the brake specific fuel consumption (BSFC), the 

thermal efficiency of the engine as well as to calculate the heat release rate of the 

fuel (see section 2.5.3). BSFC is a measure often used to compare different fuels 

seeing as it takes into account engine torque, speed and fuel consumption. The 

formula for BSFC is as follows: 

 ���� �  
�� 	


�
 �  

�


� ���
      (1)  

where Pb is the brake power developed by the engine, �� � is the fuel mass flow 

rate, ηT is the thermal efficiency of the engine, and Qhv is the mass based energy 

content of the fuel (Ferguson & Kirkpatrick, 2001). An accurate measurement of 

fuel flow rate is therefore essential for accurate determination of BSFC. 

Fuel flow is measured either cumulatively or instantaneously. With cumulative 

fuel flow meters, fuel is supplied to the engine from a measuring vessel. Fuel flow 

is then calculated (either on a volumetric or gravimetric basis) by measuring the 

time required for a certain volume or mass of fuel to be drained from the vessel 

(Lilly, 1984). Instantaneous flow meters (e.g. Coriolis effect flow meter) measures 

the flow rate in real time. The advantage this has over cumulative flow meters is 

that it can be used for transient testing (Ferguson & Kirkpatrick, 2001).  

Seeing as IC engines use air as the working fluid, the inlet air flow rate is a 

commonly measured parameter. Equipment used to measure air flow include an 

orifice plate, venturi meters, viscous flow meters, turbine meters and hot wire or 

film anemometer devices. With viscous air flow meters, an element consisting of 

a large number of small passages (pipes) is used. These pipes produce a pressure 

drop across them proportional to the flow through them (Ferguson & Kirkpatrick, 

2001).  

c) Temperature and pressure 

Temperature and pressure are two parameters which are very important for 

monitoring purposes. Sensors that can be used to measure temperature include 

thermocouples, platinum resistance thermometers (PRT) and thermistors, out of 

which thermocouples are mostly used for engine testing. Where high accuracy 

temperature measurement is required, PRTs are used. Thermistors can be installed 

in space limited positions due to their small size and simplicity. (Lilly, 1984) 

Pressure measurement can be achieved by using either mechanical or electronic 

methods. The selected method depends on the application of the measured 

pressure value.  
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Electronic pressure measurement is usually done using a pressure transducer 

whereas with mechanical measurement, manometers and barometers are mostly 

used. (Figliola & Beasley, 2006) 

2.1.3 Engine installation considerations 

IC engines are a significant source of vibration. These vibrations are absorbed in a 

vehicle by rubber engine mountings designed for that specific engine. It is 

therefore recommended that these specific mountings are used for mounting the 

engine onto a test bed. Depending on the size of the engine, the vibrations it 

produces can induce vibration to the test cell structure. It is therefore common 

practice to mount the test bed onto a seismic block carried on flexible mountings, 

or to mount the test bed on isolation feet which reduces the vibration transmission 

to the floor. (Plint & Martyr, 1995) 

Apart from the engine mountings it is also recommended to install the exhaust 

system from a vehicle in which the engine is used (Plint & Martyr, 1995). If the 

exhaust system has to be modified, the back pressure in the exhaust system may 

change which will affect the volumetric efficiency and therefore power output of 

the engine. These changes therefore have to be taken into account when 

modifications to the exhaust system are made.  

2.1.4 Engine speed and load control  

Test sequences using an engine coupled to a dynamometer consist of sets of 

predetermined torque and speed points. These points can be achieved by adjusting 

the dynamometer torque setting and the engine throttle position via a throttle 

actuator.  

Two modes of dynamometer operation can be used with proper control systems, 

namely torque and speed. With torque mode, the dynamometer will maintain a 

fixed load on the engine for any throttle setting. If the engine throttle setting is 

therefore increased or decreased, the engine speed will also increase or decrease. 

In speed mode, the dynamometer maintains a constant speed setting for any 

throttle setting. A change in throttle setting would therefore cause a change in the 

applied torque. For partial load testing speed mode is preferred. (Plint & Martyr, 

1995) 

Engine testing can either be done on a steady-state or transient basis. With steady-

state testing the performance of the engine during constant load and speed points 

can be analysed. This is representative of the conditions experienced by an engine 

in a vehicle when driving at a constant velocity (freeway driving). With transient 

testing, changes in engine load and speed conditions (e.g. acceleration, gear shifts 

and deceleration) can be simulated. For transient testing, dynamometers capable 

of absorbing and producing power are required. Furthermore, fast response (less 

than 50 ms) is required from the hardware after a change is applied by the control 

system. (Plint & Martyr, 1995) 
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2.1.5 Dynamometer installation considerations 

In a testing facility the engine and dynamometer are generally coupled using a 

single drive shaft contained in a shaft guard. In a vehicle, the engine is coupled to 

the wheels through a gearbox, differential and side shafts, all of which have 

inherent damping and lower inertia than certain types of dynamometers. Typical 

inertia values for the wheels of passenger vehicles are in the region of 1,38 kg·m
2 

(Ubysz, 2010) while certain dynamometers (AC and DC dynamometers in 

particular) can have inertias in the region of 1,76 kg·m
2
 (Horiba, 2013).

 
 

Coupling a dynamometer to the engine using a single drive shaft therefore 

requires an analysis of the inertia, damping and stiffness requirements before 

specifying the drive shaft components. The stiffness of the assembled shaft must 

be such that its natural frequencies lie outside the range of speeds the test engine 

will be run. The use of the engine’s clutch should also be considered seeing as it 

aids in vibration damping and serves as a torque limiter. (Plint & Martyr, 1995) 

2.1.6 Dynamometer operating principal 

A dynamometer (also called a brake) consists of two main components namely the 

rotor and the stator (which is the absorbing element). The stator is mounted on 

trunnion bearings coaxial with the machine shaft which allows the stator to rotate 

due to the braking torque developed. This torque is then restrained and measured 

using a load cell as shown Figure 1. Dynamometer types that are mostly used for 

engine testing are hydraulic (water brake) or electrical motor based (Ferguson & 

Kirkpatrick, 2001).    

With hydraulic dynamometers an engine braking torque is developed by transfer 

of momentum from the rotating rotor to the stator (casing) using water. The 

braking torque developed can be varied by adjusting the amount of water in the 

casing. The motion between the rotor and the casing causes turbulent shear 

stresses in the water and therefore heat. This serves the purpose of absorbing the 

engine power and cooling the dynamometer. (Ferguson & Kirkpatrick, 2001) 

Electrical motor based dynamometers transform the absorbed engine power into 

electrical energy. The electrical energy developed is then dissipated in the form of 

electricity or heat. The heat is dissipated using either a cooling medium or a 

forced air stream. Electrical dynamometers available include direct current (DC), 

alternating current (AC) and eddy current dynamometers. DC and AC 

dynamometers are capable of absorbing and producing power and can therefore 

be used for transient testing (Plint & Martyr, 1995). These dynamometers convert 

engine shaft power into electricity which can be supplied to the electricity grid 

which reduces operational costs. For this project, an eddy-current dynamometer 

was used of which a sectional view of a similar model is given in Figure 3. 
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Descriptions for the numbers are as follows: 

1. Excitation coil      

2. Rotor  

3. Cooling chamber (loss plate) 

4. Rotor shaft 

5. Water outlet 

6. Rotor bearing 

7. Coupling flange  

8. Pendulum supports 

9. Frame 

10. Water inlet 

11. Speed sensor 

12. Casing 

The toothed rotor is made from high-permeable steel and it rotates between the 

steel loss plates. Braking of a prime mover is achieved by using the principle of 

electromagnetic induction. The coil in the dynamometer generates a magnetic 

field parallel to the axis of the machine. Rotation of the rotor in this magnetic field 

generates eddy currents at the inner surfaces of the loss plates. These eddy 

currents then generate an additional magnetic field and it is the interaction 

between the two magnetic fields which causes the braking torque (Schenck 

Pegasus GmbH, 1997). The torque can be varied by changing the supply current 

to the coils. 

The braking torque developed, and therefore power absorbed, causes an increase 

in temperature of the loss plates. These plates are cooled by circulating water 

Figure 3: Schenck eddy current dynamometer cross section (Schenck Pegasus GmbH, 1997) 
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through passages located within them. Additional cooling is achieved by air flow 

in the gaps between the rotor and the loss plates. 

2.2 Spark Ignition Engines  

The first four stroke SI engine was built by Nicolaus Otto in 1876. Thereafter, 

Karl Benz and Gottlieb Daimler developed a light, high speed engine from which 

most modern SI engines descended. In this section, the workings of modern SI 

engines as well as their combustion characteristics will be discussed. 

2.2.1 Overview 

In this section, certain parts of a SI engine that were applicable to the project will 

be discussed. For basic engine operating principals, the reader is referred to 

Internal Combustion Engine Fundamentals by JB Heywood or to Internal 

Combustion Engine Handbook by R Basshuysen and F Schäfer. 

a) Air-fuel mixture formation 

For the majority of SI engines the fuel is mixed with ambient air outside the 

combustion chamber. In more sophisticated engines, mixing takes place in the 

cylinder during the compression stroke. Older engines used carburettors to inject 

the fuel while modern engines use electronic fuel injection where fuel is injected 

using an injector. With port fuel injection (PFI) SI engines this injector is located 

in the manifold while with direct injection SI engines (DISI) the injector is located 

in the combustion chamber. PFI results in a homogenous mixture of fuel and air 

being supplied to the combustion chamber whereas DISI results in either 

homogenous or stratified mixtures, depending on the moment of injection (Van 

Basshuysen & Schäfer, 2004).  

Before ignition of the mixture can occur, the fuel droplets have to vaporise. 

Vaporisation (and mixing) takes place during the intake and compression stroke 

where the latter is responsible for the largest part of the evaporation. The fuel can 

only burn completely when the relative air-fuel ratio (called lambda) of the 

mixture is greater than or equal to 1 (Van Basshuysen & Schäfer, 2004). Lambda 

is the ratio of the actual air-fuel ratio of the mixture entering the engine to the 

stoichiometric required ratio. It is used as an indication of the amount of oxygen 

present in the mixture. The lambda values for stoichiometric, lean and rich air-fuel 

mixtures are 1, greater than 1 and less than 1 respectively. 

DISI was developed due to a demand for less CO2 emissions and therefore 

reduced specific fuel consumption. As the name implies, fuel is injected directly 

into the combustion chamber either early during the intake stroke or late during 

the compression stroke. The latter, known as stratified DISI, is used mostly during 

part load whereas the former, known as homogeneous DISI, is mostly used during 

full load.  Stratified operation results in an excess air factor greater than 1 (lean-

burn phase), while stoichiometric homogeneous injection results in an excess air 
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factor equal to 1. Although stratified operation creates an overall lean mixture, the 

local air-fuel ratio at the spark plug should be close to the stoichiometric ratio to 

ensure reliable ignition. This is achieved by concentrating the injected fuel around 

the spark plug using either jet directed, wall-directed or air-directed processes 

which depends on the intake system, piston crown and combustion chamber 

design.    (Van Basshuysen & Schäfer, 2004) 

b) Electronic control unit and sensors 

For the project, the engine utilizes a PFI system. Figure 4 shows the sensors as 

well as the electronic control unit (ECU) that can be found on a modern PFI 

engine. The ECU uses the readings from the various sensors to control the air-fuel 

ratio as well as the ignition timing. 

 

Engine load is monitored using either an intake air mass sensor or a manifold 

absolute pressure (MAP) sensor, coupled to an intake air temperature sensor. 

These sensors are located in the air intake system of the engine. (Bosch, 1995) 

During engine starting and warm-up, a rich mixture has to be supplied to the 

cylinders to enable sufficient fuel vaporisation. The ECU uses the coolant 

temperature sensor to determine engine starting and warm-up conditions. It also 

uses this sensor to determine when the engine is overheating. Extra fuel also has 

to be supplied to each cylinder during acceleration which is detected by 

monitoring the rate of change of the throttle blade angle. For this purpose, the 

ECU uses a throttle position sensor which consists of a potentiometer connected 

to the throttle shaft (Ferguson & Kirkpatrick, 2001).  

Figure 4: PFI engine management system (Bosch, 1995) 
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The throttle position sensor and valve is located in the throttle body (shown in 

Figure 5) which is bolted to the inlet of the intake manifold.  

 

A lambda sensor enables the ECU to determine the amount of oxygen in the 

exhaust and therefore whether the engine is running rich, lean or stoichiometric. 

Two types of lambda sensors are available namely binary and linear, both of 

which consist of a zirconium dioxide (ZrO2) electrolyte. This electrolyte is coated 

on its interior and exterior surfaces with porous platinum which creates the 

electrodes of the sensor. One of the electrodes is exposed to the exhaust gases 

while the other is exposed to ambient air. A voltage, dependant on the oxygen ion 

flow rate, is then produced across the electrolyte which is fed back to the ECU. 

(Ferguson & Kirkpatrick, 2001)  

For exact control of the moment of ignition as well start of injection, the ECU has 

to be able to identify the angular position of the crankshaft as well as the camshaft 

with reference to top dead centre (TDC). For this purpose, engines are fitted with 

a crankshaft and camshaft position sensor. The crankshaft position sensor 

provides information on the position of the pistons while the camshaft position 

sensor provides information on the current cycle of one of the cylinders. The 

crankshaft sensor is also used to measure engine speed. (Bosch, 1995) 

The ignition timing for optimum engine efficiency and for unwanted combustion 

(knock) is very close together and engines are therefore fitted with knock sensors. 

When knocking occurs, the engine generates characteristic vibration patterns 

which can be measured and fed back to the ECU by the sensor (Bosch, 1995).  

The ECU has two control modes namely open and closed loop control. Closed 

loop control is used when the engine is running at steady-state conditions and in 

this mode the ECU receives input from the lambda sensor in the exhaust. Under 

transient conditions however, the lambda sensor response is too slow and 

therefore the ECU uses open loop control. In this mode the ECU adjusts the 

fuelling according to a data table known as the ECU map which is stored in its 

memory.  

Figure 5: Throttle body 

Throttle position 

sensor 

Valve and 

throttle shaft 
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The map consists of a number of engine load and rpm combinations and the 

corresponding fuelling and timing requirements which is compiled by the engine 

manufacturer. (Chevron, 2009) 

2.2.2 Combustion in spark ignition engines 

The combustion process in a SI engine is initiated by a spark produced at the 

electrodes of the spark plug. The spark is triggered by the ECU and causes an 

exothermic chemical reaction in close proximity to its electrodes. This reaction 

then expands through the combustion chamber by means of a self-sustaining 

flame front. In order for the spark to develop between the spark plug electrodes, a 

high-voltage (in the region of 25 kV) is supplied by the ignition coil. The ignition 

coil and spark plug combination is referred to as the ignition system. (Van 

Basshuysen & Schäfer, 2004) 

The mixture that is present in the vicinity of the spark plug must have an air-fuel 

ratio between 0.8 and 1.2 to ensure reliable combustion. Furthermore, the mixture 

must be heated by the spark to a temperature in the range of 3000 to 6000 K. (Van 

Basshuysen & Schäfer, 2004) 

Propagation of the flame front can be best explained using Figure 6. The figure 

shows curves for in-cylinder pressure and mass fraction of fuel burnt which is the 

ratio of mass fuel burnt to mass fuel injected. After the flame development period, 

which is the time elapsed from spark discharge to a mass fraction fuel burnt of 

10 %, the bulk of the fuel is burnt during the rapid-burning period (section 

between 10 and 90 % mass fraction burnt). The slope of mass fraction burnt curve 

is known as the burn rate of the fuel which can be used as an analysis tool of the 

combustion process. For different fuels and engine load and speed points, the burn 

rate will vary. (Heywood, 1988)  

 

With SI engines, fluctuations in the in-cylinder pressure readings during constant 

load and speed, is a typical phenomenon. It is caused by cycle-to-cycle variations 

in the mixture motion at the time of spark as well as variations in the mixture 

composition (Heywood, 1988).  

Figure 6: Cylinder pressure and mass fraction burnt curves (Heywood, 1988) 
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In Figure 7, a typical in-cylinder pressure versus crank angle curve for different 

cycles of a PFI engine is shown, in which the fluctuations in pressure can clearly 

be seen.  

 

 

 

 

Normal combustion in a SI engine results in a smooth pressure rise as can be seen 

in Figure 7. When engine knock occurs, sharp fluctuations in the cylinder pressure 

are present, as shown in Figure 8, and the following engine characteristics can be 

perceived: (Chevron, 2009) 

• "Pinging" noise 

• Loss of power 

• Overheating of engine parts 

• Engine damage 

 

 

 

 

 

 

To counter knock, the engine’s ECU will retard the ignition timing or enrich the 

air-fuel mixture until normal combustion has been restored (Ferguson & 

Kirkpatrick, 2001) (The fuel expert, 2010). The cause of engine knock is given in 

section 2.3.1.  

Figure 8: Knock pressure curve (Van Basshuysen & Schäfer, 2004) 

Figure 7: Combustion pressure fluctuations (Heywood, 1988) 
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2.2.3 Emissions from spark ignition engines 

The main components of an SI engine’s exhaust gases are carbon dioxide (CO2), 

carbon monoxide (CO), unburnt and partially burnt hydrocarbons (HC) as well as 

nitrogen oxides (NOx). Nitrogen oxide emissions include NO, NO2, N2O, N2O3, 

N2O3, N2O4 and N2O5 of which NO and NO2 form the largest part. Formation of 

NO is influenced by temperature, oxygen concentration, dwell time and pressure, 

with maximum formation occurring at temperatures between 2200 K and 2400 K. 

DISI engines produce less NOx than PFI engines due to lower average combustion 

temperatures. (Van Basshuysen & Schäfer, 2004)  

CO2 is produced due to complete combustion of the HCs in the fuel and the 

concentration produced depends on fuel consumption and composition. CO is 

produced due to incomplete combustion and it depends on the air-fuel ratio and 

therefore the amount of oxygen present in the mixture (Van Basshuysen & 

Schäfer, 2004). During normal combustion, a small percentage of fuel is not burnt 

which causes HC emissions. Reasons for incomplete combustion include trapped 

fuel in the crevices and oil layers, carbon deposits, liquid fuel (and not fuel 

vapour) present in the mixture as well as exhaust valve leakage. (Ferguson & 

Kirkpatrick, 2001) 

CO2 and CO can be measured using a non-dispersive infrared analyser (NDIR) 

which is based on the infrared absorption spectrum of gases. The other two 

pollutants, HC and NOx, can be measured using a flame ionization detector (FID) 

and a chemiluminescence detector (CLD) respectively. The FID burns the HC 

present in the exhaust gas sample with a hydrogen-air flame. This process 

produces electrons and positive ions which are proportional to the number of 

carbon atoms present in the sample. During measurements using a CLD, photons 

are emitted due to a chemical reaction between the exhaust sample and ozone 

(O3). The amount of photons emitted is proportional to the amount of measured 

pollutant present in the sample. (Ferguson & Kirkpatrick, 2001) 

SI engine exhaust gas emission can be reduced using positive crankcase 

ventilation (PCV), exhaust gas recirculation (EGR) or a three way catalytic 

converter (TWC). With PCV, the gases that leaks by the piston rings (called blow 

by) are vented back into the intake air system which reduces HC emissions. EGR 

reroutes exhaust gas into the intake air system which reduces NOx emissions 

(Chevron, 2009). Three way catalytic converters are however able to reduce HC, 

CO and NOx emissions and are therefore favoured for reduction of emissions 

(Bosch, 1995). For SI engines operating at the stoichiometric point (lambda equal 

to 1) TWC’s are needed to meet current emissions legislation limits (Van 

Basshuysen & Schäfer, 2004). 
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2.3  Spark Ignition Engine Fuels: Petrol 

Petrol has been produced from crude oil since 1859. However, usage of it as a SI 

engine fuel only gained interest with the invention of the automobile in 1892. The 

early SI engines that were produced could run on any liquid that was highly 

flammable. However, it was the increased demand for better engines that resulted 

in petrol becoming the fuel of interest. This has also been the cause for the 

interdependence of fuel and engine development (Chevron, 2009). Engines are 

designed considering the available fuels and the fuels are produced considering 

the requirements of the engine in which it will be used.  

2.3.1 Petrol production and properties 

Petrol production starts off with fractional distillation of crude oil. Distillation 

separates the different HCs in the crude oil into naphtha (or straight-run petrol), 

kerosene, diesel and atmospheric bottoms. The products from distillation are then 

either used directly or processed further. Further processing that is commonly 

done is cracking, reforming and alkylation.  

Cracking is the process of breaking hydrocarbons with higher boiling points into 

hydrocarbons with lower boiling points. Reforming converts hydrocarbons of one 

class into another (e.g. paraffins into aromatics) while alkylation is used to 

combine gaseous hydrocarbons to form liquid hydrocarbons. (Chevron, 2009) 

For crude oil derived fuels there are currently numerous standards which must be 

met. These standards ensure that the fuel properties are compatible with the 

current vehicle fleet as well emissions requirements (SAPIA, 2008). The 

properties include octane number, volatility, residue and existent gum, copper 

strip corrosion, sulphur content, total aromatics, oxygenates, oxidation stability 

induction period and density.  

a) Octane number 

The octane number of a fuel is an indication of the fuels resistance to auto-

ignition. Three types of auto-ignition are found in SI engines namely knock, pre-

ignition and post-ignition. These phenomena can cause severe engine damage due 

to the uncontrolled combustion taking place.  

Knock occurs when the unburnt mixture ahead of the flame front is compressed to 

a high enough pressure, and therefore temperature, that it automatically ignites. 

Knocking is an uncontrolled process and can occur during high load conditions 

(e.g. hard acceleration and hill climbing). Pre- and post-ignition is typically 

initiated by a hot spot in the combustion chamber. Pre-ignition occurs before 

spark delivery whereas post-ignition occurs after spark delivery. (Chevron, 2009) 

The octane number of a fuel is determined by comparing the antiknock quality of 

a fuel sample to that of blends of iso-octane and n-heptane. Iso-octane has an 

octane number of 100 while n-heptane has an octane number of 0 (SAPIA, 2008). 
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An octane number of 95 therefore indicates that the fuel under consideration has 

the same anti-knock quality as a mixture of 95 % iso-octane and 5 % n-heptane.  

Two laboratory test methods exist for measuring octane number. The one test 

gives the research octane number (RON) while the other gives the motor octane 

number (MON). The former is representative of a fuel’s anti-knock quality at low 

speed, mild-knocking conditions whereas the latter is more representative of 

higher speed, higher temperature knocking conditions. To determine these two 

values a single cylinder, variable-compression, knock-test engine is used. The 

engine is operated under various conditions (speed, spark advance and mixture 

temperature) and compression ratios to determine at which setting a knock of 

standardized intensity is produced. The engine is then run under the same 

conditions with blends of iso-octane and n-heptane until the same knock 

characteristic is achieved. The sensitivity of a fuel can be determined by 

subtracting MON from RON. Sensitivity indicates the effect of changes in 

operating conditions on a fuel’s performance. (Chevron, 2009) 

The octane number of a fuel is of great significance for SI engines. Each engine 

has a fixed compression ratio, which is the ratio of maximum to minimum 

cylinder volume. This has a major effect on the pressures that will be reached in 

the cylinder and therefore the chance of knock occurring (SAPIA, 2008). The 

compression ratio of an engine therefore has to be finalised according to the 

octane number of available fuels.  

b)  Volatility 

Volatility is the tendency of a fuel to vaporise. This is very important in IC 

engines because it is the vapour above the atomized liquid fuel and not the liquid 

itself that burns. Therefore, if the fuel is not volatile enough (or too volatile) at a 

specific time, satisfactory combustion will not take place. 

The volatility of a fuel must be such that it enables easy cold starting but, does not 

cause vapour lock when the engine is hot. Furthermore, a fuel that is too volatile, 

will cause excessive evaporation from the fuel tank which causes unwanted 

environmental emissions and poses health threats. (SAPIA, 2008) 

There are a number of aspects that define a fuel’s volatility namely: (SAPIA, 

2008) 

• Distillation profile, 

• Vapour pressure, 

• Flexible volatility index (FVI), and 

• Drivability index. 

The distillation profile of petrol is a set of volumes, evaporated at specific 

temperatures which include 70 °C, 100 °C, 150 °C and 180 °C. In Figure 9 a 
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typical distillation profile of petrol is shown. T50 and T90 denote the 

temperatures at which 50 % and 90 % by volume have evaporated. 

 

 

 

 

 

 

 

 

Vapour pressure relates to the lighter components in the fuel. It is extremely 

important as it affects cold-start and warm-up driveability. Higher vapour 

pressures result in better cold-start performance whereas low vapour pressures aid 

in preventing vapour lock from occurring (Chevron, 2009). Measurement of the 

vapour pressure is however very complicated and therefore a simplified parameter 

is used which is referenced to a standard temperature of 37,8 °C. This parameter is 

called the Reid vapour pressure (SAPIA, 2008).  

The FVI is an indicator of the tendency of a fuel to cause vapour lock (hot running 

performance). A low FVI value is typical of fuels with high resistance to vapour 

lock. In contrast to the FVI the driveability index is a measure of a fuel’s 

performance during cold start and warm-up.  

Volatility is also affected by ambient conditions and therefore fuel specifications 

regarding volatility must not only take engine design into account, but also the 

conditions in which it will operate.  

c)  Total aromatics 

Aromatics are HCs with a molecular structure based on benzene rings which 

occur naturally in crude oil. Other common aromatics found in petrol are toluene 

and xylene. The name aromatic comes from the early days of the discovery of 

these compounds when they were grouped due to their fragrant odours.  

Figure 9: Petrol distillation profile (Chevron, 2009) 
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Increased levels of aromatics in petrol will increase the octane rating of the fuel 

due to high octane rating of aromatics (SAPIA, 2008). However, aromatic 

emissions are toxic. Benzene specifically is carcinogenic and can also damage 

certain elastomers used in seals and gaskets.  

2.3.2 Petrol additives 

In order to change the characteristics of petrol, additives are used. These additives 

include octane enhancing additives, oxidation inhibitors, corrosion inhibitors, 

oxygenates, metal deactivators (captures metal ions which can cause oxidation), 

demulsifiers (separates petrol and water), deposit control additives, dyes (used to 

distinguish between different fuels) and anti-valve seat recession (AVSR) 

additives (Chevron, 2009). In this section, the most significant additives will be 

discussed. 

a) Octane enhancers 

Currently there exist many substances that can be used as octane enhancers. These 

include lead products, manganese compounds and oxygenates. The lead products 

that are typically used are tetraethyl lead (TEL) and tetramethyl lead (TML) 

(Chevron, 2009). Lead however reduces the efficiency of catalytic converters and 

has negative effects on human health (SAPIA, 2008) and has therefore been 

phased out worldwide.  

The manganese compound that can be used as an octane enhancer is 

methylcyclopentadienyl manganese tricarbonyl (MMT). MMT however has been 

found to cause neurological damage in humans for moderate or high levels of 

exposure. MMT also causes damage to catalytic converters and spark plugs. Due 

to these negative effects, MMT is being phased out as an octane enhancer. (Sierra 

Research, 2008) 

b) Oxygenates 

Oxygenates are added to petrol mainly to reduce CO and HC emissions. Added 

advantages of oxygenates are an increase in octane rating and reduced particulate 

matter emissions. The reason for the reduced emission is the increased oxygen 

content given by oxygenates which decreases the chance of incomplete 

combustion occurring. (SAPIA, 2008) 

There are two main groups of oxygenates namely alcohols and ethers. The 

alcohols include ethanol, methanol, isopropyl alcohol and tertiary-butyl alcohol. 

Of these, ethanol will be discussed in more detail as it was the only alcohol tested 

in the project. The ethers include methyl tertiary-butyl ether (MTBE), ethyl 

tertiary-butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Out of these 

oxygenates, ethanol and MTBE are used most frequently. Ethanol is however 

preferred due to concerns over health effects and water contamination when using 

MTBE. (California Environmental Protection Agency, 1998) 
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Oxygenates can however cause driveability issues, depending on the engine 

management system, due to over-leaning. Petrol-oxygenate blends can also 

increase the vapour pressure of the fuel which results in an increase in evaporative 

emissions. This effect is most significant with methanol which can cause a 35 % 

increase in vapour pressure even at low concentrations. (SAPIA, 2008) 

c) Deposit control additives 

Deposits can form on any surface that comes into contact with the fuel. This 

includes the fuel system, combustion chamber, valves, cylinders, etc. Deposits can 

cause decreased engine performance, increased exhaust emissions, increased fuel 

consumption and deposit interference between the piston and the cylinder 

(Additive Technical Committee, [S.a.]). In Figure 10 the deposit formation on the 

cylinder head as well as on top of the piston of a BMW engine is shown.  

 

Figure 10: Engine combustion chamber deposits (M5 Board, [S.a.]) 

The additives that are currently available for deposit control are able to clean, and 

keep clean, the areas where deposits are commonly found. Chemical compounds 

that are used for controlling deposit formation include amides, amines, amine 

carboxylates, polyether amines and polyolefin amines. These compounds are used 

with carrier fluids which include polyalphaolefins, polyethers, mineral oils and 

esters. (Additive Technical Committee, [S.a.]) 

d) AVSR additives 

Due to the high speed and continuous movement of valves in an engine cylinder 

head, recession of the valve seats as well as valve wear can occur. In older 

vehicles, additives are needed to prevent this from happening. In modern vehicles, 

this is less prone to happen due to the use of more suitable valve and seat 

materials. The additives that can be used are MMT, phosphorus, potassium or 

sodium based. Phosphorus can however degrade the performance of catalytic 

converters. (NICNAS, 2004) 
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2.4 Spark Ignition Engine Fuels: Bioethanol 

Ethanol is a very popular biofuel and is produced either synthetically or through 

fermentation (bioethanol). Synthetic ethanol is produced from crude oil whereas 

bioethanol is produced from biodegradable feedstock. Synthetic ethanol is 

however mainly used for industrial purposes (Tamers, [S.a.]). 

2.4.1 Bioethanol production 

Two types of sources are normally used to produce bioethanol namely first and 

second generation. First generation sources include starch based crops (e.g. wheat 

and corn) or sugar cane while second generation sources include lignocellulosic 

material (woody biomass or waste residues from forestry). The various feedstocks 

used for bioethanol production are shown in Figure 11. 

The materials used are firstly broken down into sugars where after alcohol 

(ethanol) is produced through fermentation. The processes used with the different 

feedstocks are very similar except that hydrolysis is not used with sugar cane. 

Furthermore, the lignocellulosic material requires a more complicated hydrolysis 

process than starch feedstocks. (EUBIA, [S.a.]) 

 

Figure 11: Bioethanol feedstocks (EUBIA, [S.a.]) 

2.4.2 Bioethanol properties 

Bioethanol can be used without mixing with petrol. However, a mixture of 100 % 

bioethanol and 0 % petrol (known as E100) cannot be used in standard vehicles. 

This is due to the corrosive nature of ethanol. In order to use petrol-ethanol blends 

with high ethanol content, changes to certain engine components have to be made. 

These include certain plastic, rubber and metal components which can be 

damaged by ethanol. Vehicles that can run on low or high content ethanol blends 

are called fuel flexible vehicles or FFVs (Milnes et al., 2010). 
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The following list contains certain properties of ethanol: (SAPIA, 2008) 

• High octane rating. 

• Increases fuel volatility when added to petrol. 

• 34,7 % more oxygen content by weight than petrol. 

• Ethanol burns with limited visibility (fire hazard). 

• Ethanol is infinitely soluble in water (causes corrosion problems).  

• Ethanol is highly intoxicating when consumed. 

The Worldwide Fuel Charter (WWFC) has set out specific guidelines for the 

properties of ethanol. These properties are however specifically for anhydrous 

ethanol for use in up to E10 blends. The properties specified are purity, water 

content, density, electrical conductivity, phosphorus content, sulphur content, 

heavy metal content, non-volatile material content (can cause deposits), pH value 

(as close to neutral as possible), and appearance (must be clear and bright) (Koc et 

al., 2009). Heavy metals, phosphorus and sulphur content are regulated due to 

poisoning of catalytic converters (WWFC, 2009).  

The purity of ethanol is affected by the amount of saturated alcohols (C3-C5), 

methanol and water present in the sample. For petrol-ethanol blends of up to 10 % 

ethanol, a minimum of 99,5 % is specified for the purity of ethanol. Density is 

another measure of the purity of ethanol. The density of a sample of ethanol 

should be very close to that of pure ethanol. (WWFC, 2009) 

2.4.3 Effects of bioethanol on emissions and engine performance 

Ethanol reduces the emissions of CO and HCs while CO2 emissions increase when 

it is mixed with petrol. The reduced CO and HC emissions are a result of the 

increased oxygen available for combustion (Koc et al., 2009). However, 

combustion of ethanol produces toxic acetaldehyde and the eye irritant 

peroxyacetyl. The scale of these emissions can however be controlled through 

emissions control technologies (SAPIA, 2008). 

The advantage on a carburettor engine’s performance, when adding ethanol to 

petrol, is increased brake torque and power as well better thermal and volumetric 

efficiency (Al-Hasan, 2003). The increased brake torque and power is again due 

to the improved combustion while the improved volumetric efficiency is due to 

higher latent heat of vaporisation. Furthermore, when blended with petrol, ethanol 

increases the octane rating of the fuel which allows the use of higher compression 

ratios (Topgül et al., 2006). However, due to ethanol having a lower calorific 

value the fuel consumption increases when ethanol is used in SI engines (Al-

Hasan, 2003). 

Due to the increase in oxygen content when ethanol is blended with petrol the 

stoichiometric air-fuel ratio changes. For E10 the stoichiometric ratio changes 

from 14,7:1 to 14,1:1 (Ricardo Inc., 2010). Modern engine control systems using 

closed loop control are able to change the air-fuel ratio and are therefore able to 
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adjust to the addition of ethanol. With carburetted engines the air-fuel ratio is 

fixed and the addition of ethanol can damage these engines due to overheating 

(Australian Historical Motoring Federation, 2010). 

2.5 In-cylinder Pressure Measurement 

In-cylinder pressure measurement is done on a crankshaft angle (also referred to 

as crank angle) basis (AVL, 2002). The advantage that crank angle based 

measurement has, is that the different phases of the engine cycle can be studied in 

detail (Heywood, 1988). Others pressures that are commonly measured on a crank 

angle basis include intake and exhaust system pressure (AVL, 2002). In-cylinder 

pressure is a very important parameter in engine testing as it can be used to 

calculate important combustion related parameters in conjunction with cylinder 

volume. 

2.5.1 Pressure measurement 

In order to measure the in-cylinder pressure during the different engine cycles, a 

pressure transducer is used. These transducers are installed either directly into the 

cylinder head or through modification of the spark plug (in SI engines) or glow 

plug (in CI engines). Technologies that are used for these transducers are 

piezoelectric crystals and fibre optics. 

a) Piezoelectric transducers 

Piezoelectric transducers are the most popular for use in IC engines with Kistler 

and AVL being the foremost manufacturers. The construction of a water cooled 

AVL and Kistler pressure transducer is shown in Figure 12, with the main 

difference being the design of the measuring element. With the AVL the 

measuring element produces a charge on the face where the force (caused by 

deformation of the diaphragm due to the applied pressure) is applied, whereas 

with the Kistler, the charge is produced on the face perpendicular to the force 

(AVL, 2002). The former is known as the longitudinal effect while the latter is 

known as the transversal effect. The charge that is developed is converted to a 

voltage output using a charge amplifier. 

The crystal materials used are quartz (SiO2) and Gallium Orthophosphate 

(GaPO4). The piezoelectric properties of quartz are highly influenced by 

temperature, whereas the properties of Gallium Orthophosphate are not. 

Temperatures in the combustion chamber can, at the measuring positions, reach 

temperatures in excess of 400 °C and therefore cooling is needed when using a 

quartz transducer (AVL, 2002). This makes the transducer relatively large and 

therefore installation into the engine difficult due to space requirements and 

constraints. GaPO4 does not require cooling due its insensitivity to temperature 

which in turn allows for a smaller pressure transducer, making it easier to install 

into an IC engine.  
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Figure 12: AVL and Kistler transducer cross sections (AVL, 2002)

b) Fibre optic transducers

Due to the high cost involved with piezoelectric pressure transducers, a company 

called Optrand Inc. has developed

more cost effective transducer which uses fibre optics. The sensor consists of 

three main components namely the sensing head with a metal diaphragm, a cable 

containing two multimode op

all the optical and electronic components. In

is given. The diaphragm is wel

holding ferrule to which 

Figure 13: Optrand sensor cross section (Wlodarczyk et al., [S.a.])

AVL 
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: AVL and Kistler transducer cross sections (AVL, 2002)

Fibre optic transducers 

Due to the high cost involved with piezoelectric pressure transducers, a company 

has developed, specifically for automotive applications,

more cost effective transducer which uses fibre optics. The sensor consists of 

three main components namely the sensing head with a metal diaphragm, a cable 

containing two multimode optical fibres and a signal conditioner which contains 

all the optical and electronic components. In Figure 13, a schematic of the 

is given. The diaphragm is welded to the metal housing which contains a fibre 

holding ferrule to which the optical fibres are bonded. (Wlodarczyk et al., [S.a.])

 

: Optrand sensor cross section (Wlodarczyk et al., [S.a.])

KISTLER

 

: AVL and Kistler transducer cross sections (AVL, 2002) 

Due to the high cost involved with piezoelectric pressure transducers, a company 

specifically for automotive applications, a 

more cost effective transducer which uses fibre optics. The sensor consists of 

three main components namely the sensing head with a metal diaphragm, a cable 

tical fibres and a signal conditioner which contains 

a schematic of the sensor 

ded to the metal housing which contains a fibre 

(Wlodarczyk et al., [S.a.]) 

: Optrand sensor cross section (Wlodarczyk et al., [S.a.]) 

KISTLER 
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Light is supplied through one of the fibres to the sensor head by an LED in the 

signal conditioner. This light is then reflected off the metal diaphragm 

(experiencing deflection due to the applied pressure) and then sent back through 

the other fibre. At the signal conditioner, a photodiode measures the returning 

light where after the electronics convert the difference in light intensities between 

the light signals into a voltage. (Wlodarczyk et al., [S.a.]) 

c) Pressure transducer installation in cylinder head 

Installation of the transducer directly into the cylinder head allows the researcher 

to select the most suitable position in the combustion chamber. However, due to 

limited space in modern engine cylinder heads, a trade-off has to be made 

between the most suitable position and the space constraints.  

The transducer position in the combustion chamber determines the pressures that 

will be measured. This is due to the fact that the pressure is not uniform 

throughout the entire combustion chamber.  Installation in the squish gap (gap 

between the cylinder head roof and the top land of the piston) will cause rapid 

acceleration and oscillations of the combustion gases (AVL, 2002).  This in turn 

causes substantial differences in pressures measured above the piston bowl and 

the squish gap.  

Installation of the transducer above the piston bowl will cause much higher heat 

flow loads (heat flux), which results in higher cyclic temperature drift. This is also 

true when installing the transducer in the vicinity of the exhaust valves (AVL, 

2002). If the transducer’s thermal sensitivity is high, high cyclic temperature drift 

will cause large errors in the measured pressure value.  

Once the measuring position has been chosen, the design of the installation 

method has to be executed. One design that can be used is machining a bore 

through the cylinder head into the combustion chamber.  

This bore is then threaded to allow installation of the transducer. This design 

however requires an installation position which meets the following criteria: 

• Sufficient wall thicknesses for machining and tapping the bore 

• The bore must not penetrate any oil or water galleries 

The other design that can be used is installing a threaded sleeve into the threaded 

bore in the cylinder head. This sleeve is also threaded internally to allow 

installation of the transducer. The advantage of this design is it allows for 

penetration of oil and water galleries and therefore presents more installation 

options. However, a sealing method is required with the installation of the sleeve 

to ensure that the oil and water galleries are sealed off from each other and that 

the water gallery is sealed off from the combustion chamber.  
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There are various errors that can occur during pressure measuring due to the 

selected measuring position. The most significant of these errors are due to pipe 

oscillations, dead volumes, interference to gas flow in the combustion chamber, 

fuel deposits and temperature differences. Pipe oscillations can occur when the 

transducer is installed recessed and not flush with the combustion chamber roof. 

This recess creates an indicating channel which acts as an acoustic resonator. It is 

therefore recommended to design the installation position such that the measuring 

face of the pressure transducer is flush with the combustion chamber roof. (AVL, 

2002) 

d) Pressure transducer installation in spark plug 

An alternative to machining the cylinder head of an SI engine is modification of 

the engine’s spark plugs to allow pressure measurement through an indicating 

channel. The pressure transducer is then installed in this indicating channel. In 

Figure 14 an example of this is given.  

 

Figure 14: Spark plug installed transducer (AVL, 2002) 

2.5.2 Crank angle measurement  

Crank angle measurement can be done with a variety of sensors. However, the 

required accuracy limits the applicable sensors. Sensing technology that are 

mostly used are optical, magnetic and inductive sensing. Of these three, optical 

sensing is the most suitable option for engine indicating purposes due to their high 

accuracy (less than 1 ° accurate) (AVL, 2002).  

This type of sensor (see Figure 15) consists of a transparent glass disk inscribed 

with a pattern of opaque lines, a LED light source, a photo sensor (photodiode 

array) and signal conditioning circuitry. The photodiode picks up the light from 

the LED as it passes through the transparent glass disk.  

Transducer 

Spark plug 

Indicating channel 
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A sinusoidal waveform is then produced by the circuit electronics which is then 

transformed into a square wave. (Encoder Products Company, [S.a.]) 

 

Figure 15: Shaft encoder components (Encoder Products Company, [S.a.]) 

Angle measurement can either be on an absolute or incremental (relative) basis. 

The former is a method by which a unique output is given for each shaft position, 

while the latter outputs only a pulse after each increment in crank angle. The latter 

is more suited to engine indicating. Incremental encoders either have a single or 

two channel (quadrature) output (see Figure 16). With a two channel encoder, the 

output of the two channels (called A and B) are electrically 90 ° out of phase.  

The advantage this has over a single channel is that the direction of rotation can 

be determined by detecting the leading or lagging signal of A and B. Some 

incremental encoders also have a third channel output called the marker or index 

(channel Z). This channel outputs a pulse once per revolution, at the same point 

during each revolution, which can be used as a reference or as a trigger for data 

acquisition (DAQ).  For engine indicating the shaft encoder index is assigned to 

TDC of the piston used for pressure measurement. 

 

Figure 16: Shaft encoder output channels (Danaher Industrial Controls, 2003) 

Mounting of the encoder at the flywheel of the engine can cause measurement 

errors due to crankshaft torsion and it is therefore recommended that the piston 

adjacent to the crankshaft pulley is used for pressure measurement. (AVL, 2002).  
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2.5.3 Parameters calculated from in-cylinder pressure  

Parameters that can be calculated from in-cylinder pressure data include indicated 

mean effective pressure (IMEP), heat release from the fuel and the mass fraction 

of fuel burnt. The significance and calculation of these parameters will be 

discussed in this section. 

a) IMEP 

In-cylinder pressure can be used to determine the indicated (implies a combustion 

related parameter) work per cycle per cylinder developed by the engine. In four 

stroke engines the indicated work developed during the compression and 

expansion stroke is referred to as gross indicated work (Wi,g), whereas the 

indicated work for the entire cycle is referred to as net indicated work (Wi,n) 

(Heywood, 1988). The latter is calculated by subtracting the pumping work 

required during the intake and exhaust strokes from the gross indicated work. The 

indicated power available per cylinder per cycle can be calculated from the 

indicated work using the following equation: 

 �� � 
�� �

��
         (2) 

where N is the rotational speed of the engine and nr is the number of crankshaft 

revolutions for each power stroke. For four stroke engines nr is equal to 2 and for 

two stroke engines it is equal to 1.  

Dividing the indicated work by the swept volume of the cylinders gives the IMEP 

which is a fundamental parameter for calculating engine mechanical efficiency 

(Heywood, 1988). IMEP represents the mean positive pressure exerted on the 

piston during the power stroke. The equation used is as follows:  
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      (3)  

where Wi is the indicated work, Vd is the displaced volume of the cylinder, V is the 

crank angle dependant cylinder volume and p is the combustion pressure. The 

difference between the net and gross IMEP is referred to as the pumping mean 

effective pressure (PMEP).  

Due to frictional losses and accessory work (pumps, fans, alternator, etc.), the 

engine brake power is less than the indicated power. This is due to friction and is 

usually expressed as the friction mean effective pressure (FMEP). The FMEP can 

be calculated by subtracting the break mean effective pressure (BMEP) from the 

net IMEP. BMEP is a useful parameter for comparing different engines because it 

takes into account the swept volume and therefore size of the engine (Heywood, 

1988).  
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It is obtained as follows:  

�!"� �  
() *�

#$
       (4) 

where Tb is the torque applied by the dynamometer. 

b) Apparent rate of heat release 

Two other parameters that can be calculated from in-cylinder pressure data is the 

apparent rate of heat release and the mass fraction of fuel burnt which are useful 

tools for comparing the performance of different fuels (Ceviz & Kaymaz, 2005).  

With these two parameters the length of the combustion process and its 

thermodynamic effect can be evaluated (Van Basshuysen & Schäfer, 2004).  

Heat release is a technique used for determining the amount of fuel energy that is 

released per degree of crankshaft rotation during an engine cycle. The formula for 

a simple heat release rate model is developed from the first law of 

thermodynamics for a control volume representing the engine combustion 

chamber. This method is known as the zero dimensional approach. With a 

multidimensional approach the Navier-Stokes equations are taken into account in 

addition to the first law of thermodynamics (Verhelst & Sheppard, 2009).  

The period that is analysed for heat release is from spark delivery to the end of the 

power stroke (Ceviz & Kaymaz, 2005). The formula for a zero dimensional 

apparent heat release rate model (ignoring the effects of crevices) is given in 

equation 5 of which the derivation can be found in appendix B.2. Note that the 

model is based on a crank angle (θ) and not time basis. 
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where dQch is the gross heat release, dQht is the heat transfer to the walls, p is the 

combustion pressure, V is the cylinder volume and γ is the specific heat ratio. If 

dQht is omitted from equation 5, dQch represents the net heat release from the fuel. 

The following equation can be used to calculate dQht:      

 
'��0

',
 � 3 45  67 8 79:      (6) 

where A is the instantaneous surface area within the combustion chamber, hc the 

in-cylinder heat-transfer coefficient, T  the mean gas temperature and Tw  the mean 

wall temperature. The equations for calculating the surface area and cylinder 

volume can also be found in appendix B.2. 
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The mean gas temperature can be calculated using the ideal gas equation. Inlet 

valve closing (IVC) is used as the reference point for the temperature calculations. 

The equation is as follows: 

 7 � 
*�@	

&�@	 #�@	
 / A       (7) 

There exist many correlations for the heat transfer coefficient of which mostly 

used is the coefficient proposed by Woschni, Eichelberg, Hohenberg and Annand. 

The coefficient proposed by Eichelberg was used for the project and it is given by 

the following equation: (Lounici et al., 2010) 

45 � 7.67 E 10-H A�&
I.HHH 6

&

*
:I.J     (8) 

where Vmp is the mean piston speed. Eichelberg’s coefficient was chosen due to its 

simplicity of implementation. Furthermore, it has been shown by previous 

researchers that Eichelberg’s coefficient is sufficiently accurate for heat transfer 

calculations (Lounici et al., 2010).  

For calculating the specific heat ratio (γ), numerous models have been developed 

which are classified either as single or two zone models. With single-zone models 

the gas in the cylinder is seen as a single homogenous gas whereas with two-zone 

models a distinction is made between the burnt and unburnt gases (Verhelst & 

Sheppard, 2009). These two-zone models, although more accurate, are more 

complicated than single-zone models. 

Values for γ can either be assumed to remain constant (in the range of 1,25 and 

1,35) or to be dependent on temperature during the heat release period. Chun and 

Heywood (1987) however recommended that separate models be used for the 

compression, combustion and expansion cycles. Numerous temperature dependent 

polynomials have been developed by different researchers. For the project the 

following polynomial was used: (Ceviz & Kaymaz, 2005) 

  γ � 1.338 8 6 E 10-J 7 .1 E 10-M 7N              (9) 

Other models that have been developed include a linear function, and an 

exponential function. These models however have adjustable parameters that 

require tuning which is not the case with the model used in this project (Klein, 

2007). The model that was chosen has also been shown to give results close to 

that of more complicated two-zone models (Ceviz & Kaymaz, 2005) (Shehata, 

2010). 
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Typical zero dimensional, single-zone heat release rate curves of a SI engine, 

using different models for γ, are shown in Figure 17. 

 

c) Mass fraction of fuel burnt 

The mass fraction of fuel burnt can be calculated theoretically as well as from 

experimental data. One well known experimental method was developed by 

Rassweiler and Withrow. With their model, the mass fraction burnt (xb) is given 

as follows: (Ceviz & Kaymaz, 2005) 

 OP � 
∑ ∆&+
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                 (10) 

where Δpc* is the corrected pressure rise due to combustion, N refers to the crank 

angle at end of combustion, ign is the crank angle at ignition and i is increments in 

crank angle. The corrected pressure can be calculated as described by equation 11 

where VTDC refers to the cylinder volume at TDC and n to the polytropic exponent.  

 ∆/5
S � ]/� 8 6A�-� 8 A�:

�/�-�^6A�-� 8 A*_`)    (11) 

A theoretical approach that can be used to predict the mass fraction burnt is the 

Wiebe (or Vibe) function. It is defined as follows: (Chun & Heywood, 1987) 

 OP � 1 8 a-b6
cdce
∆c

:fgh
                      (12)  

where i is the crank angle, iIis the angle at the start of combustion, ∆i is the 

total combustion duration and a and m are adjustable parameters. Values for a and 

m can be obtained by fitting the Wiebe function to experimental data (Blair, 

1999). 

Figure 17: Heat release rate curve (Ebrahimi, 2011)  
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2.5.4 Pressure phasing and referencing 

The accuracy of parameters calculated from engine pressure depends on many 

different assumptions and parameters. One parameter that has a significant effect 

is the alignment between the shaft encoder reference trigger pulse and TDC of the 

piston used for pressure measurement (Goering, 1998). Lapuerta et al (2000) 

showed that a 1 ° deviation in the alignment can cause a 75 % error in IMEP 

calculations. 

The most convenient method for adjusting the phasing is by plotting a hot 

motoring pressure trace against the cylinder volume on a log scale (known as a 

log P - log V plot). Motoring refers to running the engine without combustion 

taking place. For correct phasing, the compression and expansion lines will not 

cross each other, will be straight without any curvature and will have a sharp tip at 

the TDC point on the log scale plot. Curvature can be due to incorrect pressure 

referencing, transducer linearity problems and an incorrect clearance volume 

measurement. Cross over occurs when the captured pressure trace is retarded with 

regard to TDC (Lancaster et al., 1975).  

Referencing (pegging) of the pressure values are required to convert the gauge 

pressures measured by the transducer to absolute pressures. For this purpose, the 

measured intake MAP, at IVC, is used to peg the pressure values for both the fibre 

optic and piezoelectric transducers. A properly phased and referenced hot 

motoring pressure trace is shown in Figure 18.  

 

 

 

Figure 18: log P - log V plot of properly phased data (Callahan et al., 1985) 

Stellenbosch University http://scholar.sun.ac.za



 

31 

 

3. Test Facility Design and Installation 

In this chapter the facility that was developed will be discussed. All of the 

mechanical, electrical and electronic aspects will be described in detail. 

3.1 System Overview  

The main components that were used in the project are a SI engine, a Schenck 

W130 eddy current dynamometer, an AVL fuel flow meter, an Allen Bradley 

programmable logic controller (PLC) and a National Instruments DAQ device. 

The layout of the system is shown in Figure 19. The 19" cabinet shown in the 

figure contains all of the controllers that were installed. In Figure 20 photographs 

of the completed setup are given. 

 

Figure 19: Testing facility layout 
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The specific engine that was used for the project is a four cylinder, 1.6 L SI 

engine with PFI and is suitable for biofuel research due to its proven reliability 

record and use locally and overseas. The eddy-current dynamometer was chosen 

due to its mechanical simplicity (allowing easy maintenance), low inertia and 

stability during steady-state testing.  

Figure 20: Testing facility photographs 

Rear right view 

Rear left view 
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3.2 Engine and Dynamometer Installation  

During the initial stage of the project the engine as well as the dynamometer had 

to be installed onto a test bed. Drive shaft arrangements were also made to enable 

coupling of the engine to the dynamometer. The details are discussed in this 

section.  

3.2.1 Test bed  

To save costs and design time an existing test bed was used for the project. It 

consists of two sections; one for the engine and one for the dynamometer, both of 

which are made up of 10 mm thick steel channels and angle iron. The bed for the 

engine was mounted on vibration blocks to aid in minimizing vibration transfer to 

the test cell infrastructure itself and to allow for installation of larger engines in 

the future. 

In order to adjust the height of the engine as well as the alignment between the 

engine and dynamometer, screw jacks and steel cross members were installed. 

The bed, screw jacks and cross members are shown in Figure 21. Also shown in 

the figure are the engine’s stands and mountings used for supporting the engine.  

The dynamometer was then installed and levelled (using spacers) before the 

engine was installed. This sequence was used due to the fixed height of the axis of 

the dynamometer relative to the floor. The engine was then installed and its axis 

aligned with that of the dynamometer. The engine was also levelled, as per 

installation requirements, to ensure correct running conditions. 

 

 

 

 

 

 

 

 

 
Figure 21: Test bed and engine mounting accessories 
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3.2.2 Drive shaft and coupling  

The engine was coupled to the dynamometer using a custom designed and 

manufactured drive shaft. A standard drive shaft with two constant velocity (CV) 

or universal joints could also be used however, this causes more vibration transfer 

to the dynamometer as well as increased joint wear due to torsional oscillations. 

For safety purposes a shaft guard was also designed and manufactured using 

available 16 mm thick pipe. The drive shaft and shaft guard are shown in Figure 

22. 

 

The shaft that was designed and manufactured consists of a standard BMW 5 

series side shaft, a standard BMW 5 series CV joint, a standard Mercedes rubber 

vibration damper, two custom flanges for connection to the dynamometer, a 

custom flange for connection to the engine and an IKO spherical plain bearing for 

alignment purposes. Drawings of the drive shaft can be found in appendix A.1. 

Due to the unknown properties of the drive shaft components calculations proving 

their suitability for use on the engine could not be done. The components 

therefore had to be selected according to the rated specifications of each 

component.  

 

 

 

 

Figure 22: Drive shaft and shaft guard 

CV joint Custom flanges 

Vibration damper 

Side shaft 
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The suitability of each component was supported as follows: 

• The side shaft, CV joint and vibration damper were manufactured for 

engines with higher maximum torque ratings than the engine used in 

the project. 

• All the fasteners that were used are made from high tensile steel and 

Loctite thread locker was used during assembly. 

• The custom flanges were checked for strength and manufactured 

without sharp corners to minimize stress concentrations. 

3.3 Cooling Systems 

The facility required development of a cooling system for the engine as well as for 

the dynamometer. The layout of the cooling system that was developed is shown 

in Figure 23 while the system wiring can be found in appendix E.  

 

 

 

 

 

 

 

 

In order to keep the engine temperature within design limits, coolant (water mixed 

with an additive) is pumped through the engine block as well as the cylinder head. 

In vehicles the heat is then dissipated from the coolant to the atmosphere using a 

radiator. When using a radiator in a test cell, additional ambient air flow and 

circulation is required to maintain engine temperature and prevent a substantial 

increase in the test cell air temperature.  

To achieve the additional air flow and circulation, large fans need to be installed 

in the test cell. Due to the fan size required, installation of a water to water heat 

exchanger is more beneficial for engine test cells. The capacity of the heat 

exchanger that was available for the project is however too large for the engine.  
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Figure 23: Cooling system layout 

Stellenbosch University http://scholar.sun.ac.za



 

36 

 

Due to this, a three way mixing valve (sized according to typical coolant flow 

rates in SI engines) was installed to enable control of the engine temperature. This 

valve is adjusted by an actuator which in turn is controlled using a stand-alone 

PID controller. The valve and actuator is shown in Figure 24 while the controller 

is shown in section 3.6.2.  

 

A choice had to be made between using the engine inlet water temperature as the 

control parameter or using the outlet water temperature and blocking (jamming) 

the engine thermostat in fully open mode. The latter was chosen for the project 

due to the possibility of thermostat failure which could cause overheating of the 

engine.  

To protect the dynamometer, safety switches for temperature and flow rate are 

located in the outlet water pipes of the dynamometer. These switches were 

provided with the dynamometer and they form a simple closed loop electronic 

circuit. When the outlet water exceeds 60 °C or the water flow rate becomes 

insufficient, the corresponding switch will open and break the circuit. This in turn 

is monitored by the dynamometer controller which will shut down the engine. 

3.4 Fuel System 

The engine used for the project utilizes a fuel rail which supplies fuel to the 

injectors. Injection pressure is kept nearly constant at 270 kPa by a pressure 

regulator in the return port of the injection rail. To supply fuel to the fuel rail a 

roller cell pump was used. Fuel enters the low pressure side of the pump and is 

then pumped by rotating cells. This pump is referred to as the fuel rail pump in 

this document and it is switched on by a relay which is controlled by the user (see 

section 3.6.2).  

Fuel is fed to the low pressure side of the rail pump from an AVL fuel flow meter 

mounted against the test cell wall. The flow meter (shown in Figure 25) is based 

on a gravimetric measuring principle. Fuel is supplied to the engine from the 

measuring vessel and any excess fuel is returned to this vessel.  

Figure 24: Three way valve and actuator 

Actuator 

Three way valve 
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The vessel is supported frictionless on a blade spring which is connected to a 

highly sensitive capacitive displacement transducer. This transducer senses any 

change in fuel mass in the vessel. Fuel flow is then calculated by measuring the 

change in the fuel mass over a certain measuring time (AVL, 1984). Calibration 

of the unit is done by running the built-in calibration routine on the controller.  

 

 

 

 

 

 

 

 

 

To fill the measuring vessel, fuel is pumped from a 25 L container using a roller 

cell pump. To prevent the fuel from flowing out of the vessel once full, a solenoid 

actuated valve is located in the fuel supply line. The solenoid is energized once 

the vessel is empty and de-energizes once it is full. The relay which controls the 

pump was wired to the same terminals as the solenoid valve causing the pump to 

switch on when the valve is opened and switch off when the valve closes.  

In Figure 26 a schematic of the fuel system is given. As can be seen in the figure, 

an overflow pipe was installed between the fuel flow meter and the fuel container. 

This was done to prevent fuel spills in the event that the solenoid valve (and 

therefore the header pump) is not switched off during filling.  

 

 

 

 

 

Figure 25: AVL dynamic fuel balance 
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3.5 Exhaust Gas Extraction and Cell Ventilation 

For the project a standard exhaust system (without a catalytic converter) from a 

vehicle using the same engine was installed. A photograph of the exhaust is given 

in Figure 27. This exhaust system was coupled to the existing air extraction 

system in the test cell using flexible steel tubing. 

 

Due to the minimal airflow across the engine in the test cell, the engine oil can 

overheat when running at high load conditions. Portable fans were therefore 

installed to achieve cooling of the oil. One of these fans can be seen in Figure 20. 
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Figure 26: Fuel system layout 

Figure 27: Engine exhaust system 

Stellenbosch University http://scholar.sun.ac.za



 

39 

 

3.6 System Instrumentation and Control Hardware 

In order to monitor and control the engine and dynamometer, a number of 

electrical and electronic devices were necessary. These include sensors, relays, 

controllers and actuators which will be discussed in this chapter. The wiring 

diagrams of all the instrumentation can be found in appendix E. 

3.6.1 Sensors and emergency stops 

The sensors that were installed in the test cell are thermocouples, pressure 

transmitters, a relative humidity sensor, a lambda sensor, a load cell and a speed 

sensor. Thermocouples were installed for measurement of the following 

temperatures: 

• Engine coolant outlet temperature 

• Engine coolant inlet temperature 

• Engine oil temperature 

• Intake air temperature 

• Ambient air temperature 

• Fuel temperature 

• Dynamometer outlet water temperature 

• Exhaust gas temperature 

Three pressure transmitters were installed for measuring the following: 

• Fuel rail pressure 

• Oil pressure 

• Atmospheric pressure 

The relative humidity transmitter was installed to enable calculation of a power 

correction factor. This factor is needed when the engine is used in atmospheric 

conditions different from that specified by the manufacturer (Sodré & Soares, 

2003). There are numerous different calculation methods for this factor and the 

one that was used for the project is the SAE J1349. For this factor, the 

atmospheric pressure, temperature and relative humidity in the test cell is 

required. This factor can however only be used at full load conditions. 

To monitor the mixture air-fuel ratio while the engine is running, a lambda sensor 

was installed in the first section of the exhaust. This sensor was connected to an 

ETAS model LA4_E lambda scanner which has an analogue output of 0-10 V. The 

sensor and scanner can be seen in Figure 28. 

 

 

 

 

 

Lambda sensor 

for monitoring 

Figure 28: Lambda sensor and ETAS scanner 
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The installation of emergency stops was a fundamental safety concern in the 

project. Two of these were installed; one in the test cell itself and the other in the 

control room (see Figure 29). These emergency stops, wired in series, both have 

normally closed contacts which were hardwired to shut down the engine when 

depressed.  

 

 

 

 

3.6.2 Controllers and actuators 

The controllers that were used for the project were all installed in a 19" cabinet in 

the control room. This cabinet and all the installed controllers are shown in Figure 

30.  

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Emergency stops 

Figure 30: 19" cabinet 
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a) Dynamometer and throttle 

The dynamometer coil is supplied with a DC current from the Schenck LEW 2000 

power supply. The amount of current that is supplied is controlled using the 

Schenck LSG 2000 control unit which receives input from the operator. The 

controller can be used to either control the torque or speed of the dynamometer or 

the position of the engine throttle. For the project only the speed mode was used 

for reasons that will be explained in section 3.7.2.  

Input to and output from the controller is a 0-10 V signal. The input is received 

from the PLC which is the hardware that was installed for controlling the engine 

and dynamometer setup (see section 3.6.2(d)). The response and stability of the 

LSG 2000 dynamometer controller was adjusted by tuning the built in PID 

controller setting while the engine was running. 

To enable control of the engine’s throttle, a Schenck throttle actuator and 

controller was installed which was connected to the throttle using a steel cable. 

This actuator is shown in Figure 31. The controller for the actuator also receives a 

0-10 V signal, depending on the desired throttle position of the user, from the 

PLC.  

 

b) Engine coolant controller 

On the engine coolant control system a stand-alone controller was installed. The 

input to the controller is the engine water outlet temperature while its output is a 

4-20 mA signal to the three way valve actuator. The controller is capable of using 

PID control which enables excellent stability of the coolant temperature. Values 

for P, I and D were set by running the built in auto tune function of the controller 

while the engine was running.  

 

Figure 31: Throttle actuator 
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c) Engine control unit 

For the project an ECU as well as a wiring loom was sponsored by Bosch South 

Africa. This ECU receives input from a throttle position sensor, lambda sensor, 

coolant temperature sensor, a MAP and intake air temperature sensor, a knock 

sensor, a crankshaft speed sensor as well as a camshaft position sensor, all of 

which were supplied with the engine.  

The ECU (as well as the starter solenoid) needs a supply voltage of 12 V which is 

achieved in vehicles using the ignition switch and the battery. For simulating the 

ignition switch two relays were installed; one for switching on the ECU (also used 

for switching on the fuel rail pump and lambda scanner) and one for switching on 

the starter solenoid.  These two relays are connected to the PLC which allows the 

user to switch on the ECU and operate the starter motor from the control room. 

d) PLC 

To allow user control of the dynamometer speed set point and the throttle actuator 

position as well as monitor the various parameters measured, an Allen Bradley 

PLC was installed. Initially a new PLC product from Allen Bradley namely the 

Micro830 connected to a PanelView touch screen was installed, both of which 

were donated for the project. In Figure 32 the PLC and the touch screen is shown. 

The touch screen serves as the user interface.   

 

Although this PLC setup worked very well, the screen was too small and slow to 

program. It was therefore decided to change the user interface to a more user 

friendly package namely ETA (Engine Test Automation) which was obtained from 

Cape Advanced Engineering. This software package however would not 

communicate with the Micro830 and therefore it was decided to use a 

MicroLogix1200 PLC which is capable of communicating with ETA. The 

MicroLogix1200 can be seen in Figure 30 and Figure 33.  

Figure 32: Micro830 PLC and Panelview touch screen 
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It consists of the following: 

1. Base unit containing 16 relay outputs and 24 AC digital inputs, 

2. Two analogue input modules, 

3. Two thermocouple input modules, 

4. One analogue output module, and 

5. One DC digital input module. 

 

 

 

 

 

The connections that were made to the base unit are at the relay outputs only. 

Channel 1 was used for the ignition relay while channel 2 was used for the starter 

solenoid relay. These relays are supplied with 24 V DC using an external power 

supply located in the 19" cabinet. The negative terminals of both relays are wired 

to the emergency stops shown in section 3.6.1 which de-energizes the relays when 

pressed and therefore shuts down the engine. 

The analogue input modules were used to measure oil pressure, the fuel mass in 

the AVL measuring vessel, relative humidity, atmospheric pressure, speed, torque, 

lambda and fuel pressure. Input to the modules can be either 0-10 V or 4-20 mA 

which has to be set in the programming software.  

To enable easy replacement of the thermocouples and aid with fault finding, a 

junction box was installed on the test bed. A junction box was also installed for 

the relays. From the thermocouple junction box extension wires were run to the 

19" cabinet and wired into the thermocouple modules of PLC. The type of 

thermocouple used can be specified for each channel of the module using the 

software package (see section 3.7.2) for the PLC.  

 

Figure 33: MicroLogix1200 PLC 
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The analogue output module was used to send the command values to the 

dynamometer controller as well as the throttle actuator controller. The module is 

capable of providing both current and voltage outputs which also has to be set in 

the programming software.  

The last module in the PLC namely the digital input module was used to hard wire 

an override button. This button can be used to prevent the software program from 

de-energizing the ignition relay and therefore shutting down the engine. Shut 

down occurs when one of the measured parameters exceeds the set points for the 

low or high limit. 

3.7 System Control Software and User Interface  

A layout of and the communication channels between the hardware and software 

packages that were used is shown in Figure 34. The Allen Bradley driver is used 

by ETA to communicate with the PLC through the RsLinx software package. The 

PLC is programed in RsLogix and is connected to the PC using RS232 

communication protocol. 

 

 

 

 

3.7.1 Control user interface  

For the engine test setup ETA is used as the supervisory control and data 

acquisition (SCADA) interface. Using ETA, the engine can be controlled, 

parameters can be monitored (temperatures, pressures, flows, torque, speed etc.), 

alarms and emergency shutdowns can be programmed, sensors can be calibrated 

and data can be logged. Furthermore, automated test sequences can also be 

programmed. The interface that was developed for the project is shown in Figure 

35.  

 

 

 

 

 

Figure 34: Software layout 
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The interface developed provides the user with the control functions labelled 1 to 

3 in the figure. These controls are as follows: 

1. Ignition and Starter buttons for controlling the ignition and starter 

solenoid relays respectively. 

2. Desired speed setting control panel. 

3. Control panel for throttle or torque setting. The user can choose 

between one of the two by simply clicking on the appropriate block. 

Data is exchanged between the PLC and ETA in the form of raw registry values 

between 0 and 32767 using the RsLinx software package and the Allen Bradley 

driver. In the case of a voltage input or output a 0 register value corresponds to 

0 V while a 32767 register value corresponds to 10 V. A signal of 4-20 mA will 

be sent as 6241 for 4 mA and 32767 for 20 mA.  

Each of the analogue input and output channels of the PLC can be calibrated in 

ETA using the channel calibration screens. In the calibration screens the registry 

values can be captured and the corresponding physical quantity assigned to that 

registry value. This is done for several consecutive points after which the program 

calculates a linear fit for the points. The calibration screens of the channels are 

given in appendix D.3. 

Figure 35: ETA user interface 

1

2

3

Stellenbosch University http://scholar.sun.ac.za



 

46 

 

Due to the large amount of information present on the user interface, it is difficult 

for the operator to constantly monitor all the parameters. Alarms were therefore 

set up on all the important channels in ETA. These channels include speed, torque, 

oil and fuel pressure, fuel mass in the AVL as well as all temperatures excluding 

ambient and air inlet temperature. The alarm system allows ETA to shut down the 

engine in case one of the parameters exceeds the set low or high limits. 

3.7.2 Ladder logic program 

Although ETA supplies the user interface, the PLC still has to be programmed 

using the ladder logic programming software package RsLogix 500.  

The ladder program that was compiled consists of one main routine and several 

subroutines. These routines are shown in appendix D.1. The main ladder routine is 

used only to monitor the watch dog timer and to jump to the different subroutines. 

The watch dog timer is used to monitor whether the PLC is connected or not. 

When power to the PLC is cut off or the serial connection between the PLC and 

the PC is disturbed, the watch dog timer will stop and an error will be shown in 

the user interface.   

The subroutines that were programmed include: 

1. Digital inputs, 

2. Digital outputs, 

3. Torque PID control, 

4. Fuel flow calculation, and 

5. Sending of values between PLC and ETA. 

Registry values are exchanged between ETA and the PLC using integer buffers 

located in the PLC memory. All analogue inputs are written (by the PLC) to the 

N10 buffer while all the analogue outputs are written (by ETA) to the N14 buffer.  

The dynamometer control unit has built in functions to control the throttle setting 

of the engine and the current to the dynamometer. The operator inputs a desired 

speed and torque and the controller then adjusts the current to the dynamometer 

and the position of the throttle until the desired speed and load set points are 

achieved. It was found however that when using this function, the controller 

moved the throttle to the wide open position for any speed and load set point. It 

was therefore assumed that the throttle control function of the controller was 

faulty. The throttle therefore had to be controlled by the PLC and a torque PID 

control routine was therefore written. The speed control function of the controller 

was functional and could therefore be used to control the current to the 

dynamometer. 

When the user selects the torque setting mode in ETA it activates the automatic 

throttle control function of the torque PID control routine. This PID controller 

adjusts the throttle until the desired torque is achieved.  
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It also maintains this setting until the user changes the desired torque set point. 

The torque set point desired by the user is read from N14:2 and a voltage output is 

then written to channel 1 of the analogue output module. The Values for the P, I 

and D constants were set while running the engine. 

The user is also provided with the option to manually adjust the throttle in ETA. In 

this mode the PLC reads the user input from N14:3 and directly outputs a voltage 

to channel 1 of the analogue output module. The same is done for the speed 

setting were the user input is read from N14:1 and the output is written to channel 

0 of the analogue output module. 

The digital inputs subroutine is used to send the digital input values to ETA and to 

monitor the override button. When the override button is pressed, this rung 

prevents ETA from turning off the ignition. The digital outputs subroutine is used 

to control the ignition and starter and prevents engagement of the starter motor 

once the engine is running. All digital input values are written to N10:99 while all 

digital output values are written to N14:99.  

3.7.3 Calibration of instrumentation 

The oil and fuel pressure transmitters were calibrated using a hand held pressure 

pump connected to the transmitter as well as a pressure gauge. The output from 

the transmitters as well as the pressure reading from the gauge was recorded using 

the ETA calibration screens. The atmospheric pressure and relative humidity 

channels were calibrated by setting the maximum and minimum output from the 

transmitters equal to the maximum and minimum registry values of the PLC.  

To enable proper control of the engine’s throttle, the throttle actuator’s zero point 

and range had to be adjusted. This was done using the potentiometers on the front 

face of the actuator controller. The zero point was adjusted until the throttle valve 

was at the idle position. Thereafter the range was set by adjusting the 

corresponding potentiometer to a certain setting and then applying an input in 

ETA, corresponding to full throttle, to the controller. This was repeated until a full 

throttle input command resulted in the throttle valve being fully open 

Calibration of the load cell (and therefore torque measurement) was done using 

calibration arms and a range of calibration weights as shown in Figure 36. The 

weights are loaded into a tray, located at a distance of exactly 1021 mm from the 

dynamometer centre, on the load cell side calibration arm. At this distance a 

weight of 1 kg results in a torque of 10 Nm exactly.  
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3.8 In-cylinder Pressure Measurement System 

To measure and capture the pressure in the cylinder during combustion, very 

accurate and sensitive equipment is needed. The equipment that was purchased or 

sourced and the software program that was written are described in this section. 

3.8.1 Components 

The setup consists of the following: 

• Two miniature AutoPSI-TC Optrand fibre optic pressure transducers 

• A NGK TR15B-13 spark plug which was modified to allow 

installation of the Optrand transducers in the spark plug 

• An uncooled Kistler 6117B piezoelectric transducer with a matching 

installation spark plug.  

• An AVL Micro-IFEM charge amplifier. 

• A Kübler 5020 incremental shaft encoder. 

• A modified cylinder head to allow installation of the Optrand 

transducers directly in the combustion chamber. 

• A National Instruments USB-6351 DAQ device with the appropriate 

software. 

Full specifications of the pressure transducers, the shaft encoder and DAQ device 

(shown in Figure 37) are given in appendix C.3. All of the transducers were 

calibrated using a dead weight tester. The results from the calibration can be 

found in appendix C.1. 

 

 

Figure 36: Load cell calibration 

Figure 37: Data acquisition device (National Instruments, 2012) 
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a) Optrand pressure transducers 

The Optrand fibre optic transducers (shown in Figure 38) that were purchased 

both have the same specifications. One of the transducers is installed in the 

modified spark plug and the other into the modified cylinder head. This allowed a 

comparison of the performance of the transducers in different measuring 

positions.  

 

The spark plug used to install the Optrand transducers is a standard NGK TR15B-

13 which was modified by Optrand Inc. A hole was firstly machined through the 

side of plug. This hole formed an indicating channel which was then fitted with an 

adaptor to allow installation of the Optrand transducers. The spark plug with the 

installed transducer is shown in Figure 39.  

 

b) Kistler pressure transducer 

The uncooled Kistler pressure transducer that was used was installed in a 

purposely manufactured (by Kistler) spark plug. The spark plug with the installed 

transducer is shown in Figure 40. This transducer was connected to an AVL 

Micro-IFEM charge amplifier which converts the charge output from the 

transducer to a voltage.  

According to the specifications of the Kistler and Optrand transducers, they 

should have similar performance during combustion pressure measurement. An in 

detail comparison of the actual performance of the transducers is however made in 

section 5.2.2. 

Figure 38: Optrand miniature pressure transducer 

Figure 39: NGK modified spark plug with installed pressure transducer 
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c) Shaft encoder 

The shaft encoder used in the project enables measurement of in-cylinder pressure 

every 0,1 ° of crankshaft rotation. The shaft encoder has six output channels 

namely A, B, Z and the inverse of each of these channels.   

To enable coupling of the encoder to the engine’s crankshaft, a hub was designed 

and manufactured. This hub bolts onto a modified crankshaft pulley. The 

alignment of the hub and crankshaft axis was adjusted using a dial gauge until the 

total run-out of the hub was less than 30 microns. Although this run-out was 

within the required specifications of the shaft encoder, a bellows coupling was 

used to connect the shaft encoder to the hub. This allowed for a larger tolerance of 

run-out between the hub and crankshaft axis as well as reduced vibration transfer 

to the encoder. The installed shaft encoder setup is shown in Figure 41.  

 

 

 

Figure 41: Shaft encoder setup 
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Figure 40: Kistler spark plug with installed pressure transducer (Kistler, [S.a.]) 
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The shaft encoder is suspended by the encoder support plate shown in Figure 41 

and Figure 42. This plate has two interface blocks bolted to it which are used to 

attach the plate to the support bracket using a threaded bar and a rod end. The rod 

end allows the shaft encoder to float to and fro (without rotation of the casing) 

while the engine is running and vibrating. This reduces both the load on the 

encoder bearings as well as the vibration transfer during engine operation.   

 

A simple frequency analysis was done on the support plate and bracket assembly 

to determine whether any of its natural frequencies are within the speed range of 

the engine. The procedure that was used is described in appendix C.2. The 

analysis showed that none of the harmonics of the assembly are within the speed 

range of the engine. 

d) Modified cylinder head 

For installing one of the Optrand transducers in the combustion chamber of the 

engine, the final year project done by Kenny (2010) was used. The cylinder head 

from that project is shown in Figure 43 next to the standard cylinder head from 

this project.  

In the figure it can be seen that a sleeve was installed in the cylinder head into 

which the transducer is then installed. The sleeve protrudes through oil and water 

galleries which were sealed off from each other using a Loctite sealant (Kenny, 

2010). The transducer is installed in a threaded hole in the combustion chamber as 

can be seen in Figure 44.  

 

 

 

 

Figure 42: Encoder support plate rear view 
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3.8.2 System wiring 

The wiring of the shaft encoder and Optrand pressure transducers to the DAQ is 

shown in Figure 45.  For clarity, wires that are white on the equipment is shown in 

yellow on the diagram. All the channel output wires from the shaft encoder were 

connected to allow access to all the channels during use. 

Figure 43: Side-by-side photograph of modified and standard cylinder head 

Figure 44: Combustion chamber of modified cylinder head 
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3.8.3 User interface 

The software package that was used with the National Instruments DAQ is called 

LabView. Programming in LabView is done in two parts. Firstly, the main 

program is compiled by using a block diagram and secondly the user interface is 

developed. In the block diagram there are numerous functions that can be 

implemented. These functions can be interconnected to build a program called a 

virtual instrument that is user/task specific. The block diagram that was created 

for data capturing is shown in appendix D.2. while the user interface is shown in 

Figure 46.  

When the program is switched to run mode, the DAQ starts reading the data from 

the pressure transducer every 0,1 ° of crankshaft rotation. The pressure trace that 

is captured is then showed on the graph on the front panel. The pulse on channel Z 

of the encoder is used as the starting point for data capturing. When the encoder 

was installed on the engine, this trigger pulse was tuned to coincide as closely as 

possible with TDC of cylinder number one of the engine.  

Figure 45: Indicating setup wiring 
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Due to two trigger pulses occurring in one full four stroke cycle, the pressure 

measurement may start at the incorrect TDC point. For the project the intake 

stroke TDC point was used as the starting point and therefore a method was 

needed to ensure that the correct TDC is picked up. To achieve this, a RESTART 

button was placed on the front panel which will restart the measurement at the 

other TDC point when it is activated. The STOP button will abort the virtual 

instrument once it is pressed. 

Once the correct TDC signal has been captured, the data can be logged for a 

specified number of cycles using the LOG button where one cycle is equal to two 

crankshaft revolutions. Once all the cycles have been logged a window is 

provided allowing the user to select the file for saving the data. The number of 

cycles that are logged can be selected as per the user requirements.  

3.9 Emissions Equipment and Measurement 

When comparing the performance of different fuels, comparisons between the 

emissions from the fuels are very important. For this purpose a Bosch ETT 855 

exhaust gas analyser (shown in Figure 47) was purchased and installed on the test 

setup. This analyser uses an infrared absorption technique to (within 1 % 

accuracy) measure the following:  

1. Volume percentage O2 present in the sample, 

2. Volume percentage CO present in the sample, 

3. Volume percentage CO2 present in the sample, and 

4. The parts per million (ppm) of HCs present in the sample. 

 

Figure 46: Indicating setup user interface 
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. 

From measurement 1 to 4 the analyser is able to calculate a lambda value for the 

exhaust gas sample.  

The analyser requires two gas samples namely exhaust gas and fresh air. Fresh air 

is supplied to the analyser from another test cell to ensure that no exhaust gas 

enters this line. The exhaust gas sampling point is located directly in the engine’s 

exhaust system just before the first noise damper (silencer).  

Condensation which forms in the exhaust gas supply line to the analyser can 

damage the analyser. It was therefore decided to install a chiller unit in the line as 

recommended by Bosch. This unit cools down the gas and then separates the 

condensate before it can reach the analyser. It was however recognised that 

cooling of the exhaust gas sample could cause some of the HCs to condense 

before they reach the analyser. For this reason it is recommended that a heated 

line be installed from the engine’s exhaust to the gas analyser. This line should 

typically be kept at temperatures higher than 100 °C. (Williams, 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Bosch ETT 855 exhaust gas analyser 
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4. System Fault Finding  

Before the system could be commissioned it had to be tested for reliability, 

accuracy and repeatability. During these tests any major issues in the setup could 

be identified and rectified. In this section these issues and their solutions will be 

discussed. 

Issues that were identified during installation of the equipment and initial 

repeatability testing included: 

• Faulty or incorrect controllers 

• AVL fuel flow unit calibration problems 

• Vibrations of the shaft encoder 

• Drive shaft imbalance 

• Leaking pressure transducer spark plug 

• Insufficient dynamometer cooling 

• Excessive noise on thermocouple readings 

• Low air-fuel ratios at high loads 

The most significant of these issues were the calibration problems of the AVL fuel 

flow unit, the excessive drift of the Kistler pressure transducer and the insufficient 

dynamometer cooling.  

4.1 Fuel Flow Meter Calibration 

Initial calibration of the AVL flow meter did not result in an accuracy of 0,1 g as 

prescribed by the manufacturer. The calibration procedure is done by lowering a 

100 g weight onto the measuring vessel and then lifting off. Once the weight is 

lifted completely off the vessel the display on the control unit should indicate a 

change in mass of exactly 100 ± 0,1 g. If this is not the case, potentiometers on the 

circuit board in the AVL unit can be adjusted until the correct tolerance is 

achieved. This has to be done with the vessel empty, full and half full. 

With the initial calibration the following values could be achieved for an empty, 

half full and full vessel: 

• Empty = 100 g 

• Half full  = 100,1 g 

• Full = 89 g 

The calibration value with a full vessel could not be adjusted to within the range 

as specified. It was assumed that the fault was mechanical and not electrical as 

accurate values could be obtained for two of the points. The AVL unit was 

therefore examined for any problems which could have an effect on the 

calibration. 
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It was found that the flexible pipes which supply the vessel with fuel were 

distorted. These pipes flex when the vessel is displaced and can therefore have an 

effect on the calibration. An attempt was made to straighten the pipes which 

improved the calibration only by a small percentage. 

Another issue that was identified was that the damping oil level in the unit was 

lower than specified by the manufacturer. This oil fills the damping cylinder 

which is attached to the opposite end of the beam which supports the measuring 

vessel. The function of the cylinder is to prevent the vessel from oscillating 

excessively and causing an error in the fuel flow reading. The oil was therefore 

filled to the specified level which solved the calibration issue. The following 

values were recorded: 

• Empty = 100,1 g 

• Half full  = 100,1 g 

• Full = 100 g 

4.2 Kistler Pressure Transducer Drift  

During calibration of the Kistler pressure transducer, excessive drift was observed 

on the signal from the charge amplifier. Another charge amplifier of the same type 

(Kistler model 5001) was then used which gave similar results. The transducer 

cable was then removed from the transducer located in the spark plug.  

An oil build-up was found in the installation socket in the spark plug. This oil was 

removed and the connections cleaned. The transducer and cable were then baked 

in an oven for 10 hours at 65 °C. When the transducer was then retested the drift 

appeared to be less, but still not sufficiently reduced to obtain a calibration curve.  

It was then decided to use a different model charge amplifier, namely an AVL 

Micro-IFEM charge amplifier, which significantly reduced the drift of the 

transducer. A calibration curve could then be obtained and the sensitivity of the 

transducer calculated. The Kistler amplifier is an older model and it was therefore 

suspected that it is not compatible with the newer model pressure transducer. 
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4.3 Dynamometer Cooling  

The engine that was used for the project was new and it therefore had to undergo a 

break-in test. During this test it was found that the dynamometer cooling water 

outlet temperature, from the front loss plate, exceeded 60 °C when running at 

40 kW or higher. This was a concern as the rated engine power is 70 kW and the 

dynamometer cooling water temperature may not exceed 60 °C. The flow rate 

through each side of the dynamometer was then measured and it was found that 

the flow rate through the rear cooling chamber was more than double that of the 

front cooling chamber.  

To improve the flow rate (and therefore the convective heat transfer coefficient) 

the dynamometer was flushed with a 3.5 pH acid solution in order to break down 

an assumed scale build-up in the cooling chambers. The acid that was used is 

hydrochloric acid which was mixed with water on a volumetric basis. A special 

funnel and outlet pipes had to be manufactured to enable flushing of the 

dynamometer. The funnel and outlet pipes are shown in Figure 48. 

 

 

 

 

 

 

 

The flushing process did not sufficiently clear the blockage and it was therefore 

decided to disassemble the dynamometer and manually clean the cooling 

chambers. Photographs of one of the loss plates, before and after cleaning, are 

shown in Figure 49. 

 

 

 

 

Figure 48: Adaptors for flushing dynamometer 

Inlet funnel 
Outlet pipes 
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After reassembly the rotor and bearing clearance of the dynamometer had to be 

adjusted to within the tolerance specified by the manufacturer. This was done by 

using the adjustment nuts/sleeves on the dynamometer and a dial gauge. The rotor 

was set to a distance exactly half way between the two loss plates while the 

bearing clamping sleeve was set to a clearance of 0,1 mm. The full assembly 

procedure can be found in the Schenck dynamometer manual.  

The dynamometer was then re-installed and run-in on the test setup. Running-in 

the dynamometer had to be done to allow the bearings to displace excess grease 

into galleries which ensured that the bearings did not overheat and seize. During 

the run-in the bearing temperatures were monitored using an infrared 

thermometer. The maximum bearing temperatures that were measured in the 

bearing housing was 41 °C. 

Once the run-in was completed and the bearings settled, the engine was brought 

up to 40 kW. At this load point the dynamometer water outlet temperatures were 

below 25 °C and it was therefore concluded that cleaning of the cooling chambers 

improved the flow rate (and therefore heat transfer coefficient). 

After the run-in procedure the engine was run at wide-open-throttle to determine 

the maximum torque and rated power of the engine. Maximum uncorrected torque 

and power that was measured is 132 N·m and 70 kW respectively which meets the 

performance requirements of the manufacturer (see appendix A.2.). After the test 

was completed a torque curve for the engine was plotted, which is shown in 

Figure 50.  

 

 

Figure 49: Loss plates before and after cleaning 

AFTER BEFORE 
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5. Testing and Results 

The main objective of the project was to develop a repeatable fuel testing facility. 

This was therefore the main focus during the test phase of the project. 

Repeatability of the engine and dynamometer setup as well as the in-cylinder 

pressure measurement setup was examined.  

Apart from developing a repeatable test facility the project also investigated the 

effect on the measured in-cylinder pressures when using different measuring 

positions in the combustion chamber. Furthermore, a comparison was also made 

between different in-cylinder pressure transducers.  

The details and results of the above mentioned tests are described in this chapter. 

All of the instrumentation was checked for calibration before the tests were done 

to ensure the best possible accuracy. 

5.1 Repeatability Testing 

For the project a set of partial load testing points were selected according to the 

performance of the selected engine in a motor vehicle. Estimated performance of 

the engine while driving at 60 km/h and 120 km/h in different gears was 

calculated using the procedure given in appendix B.1. At 60 km/h it was 

calculated that the engine produces approximately 30 N·m at a speed of 2300 rpm 

in 4th gear and at 120 km/h (in 5th gear) an approximate load and speed of 

75 N·m and 3600 rpm was calculated.  

An array of partial load test points, shown graphically in Figure 50, was then 

selected starting and ending at a load and speed of 30 N·m and 2300 rpm. The 

specific points were chosen to allow a repeatability analysis of the system over a 

range of engine operating conditions. 
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Figure 50: Partial load testing points 
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The partial load points were then used to program an automated test sequence in 

ETA. Initially data was logged for a duration of 3 minutes which was found to be 

insufficient time for the exhaust gas temperature to stabilize.  Logging time was 

then increased to 8 minutes which resulted in steady-state exhaust gas 

temperatures.  

5.1.1 Engine and dynamometer setup  

Parameters that were used to measure the repeatability of the engine and 

dynamometer system were BSFC, exhaust gas temperature and lambda. The 

repeatability curves are shown in Figure 51 to Figure 53. In the figures it can be 

seen that minimal differences in the results were obtained for test 1 and 2 (see 

appendix G for test results). The average percentage differences that were 

obtained for BSFC and lambda are 0,8 % and 0,35 % respectively. Exhaust gas 

temperature results showed a difference of 1,2 °C (on average) between the two 

tests.  

 

 

 

 

 

 

 

 

 

 

Figure 51: BSFC repeatability 

Figure 52: Exhaust gas temperature repeatability 
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Although the engine is fitted with a lambda sensor to enable closed loop lambda 

control, the engine did not run at the stoichiometric point of lambda equal to 1 (as 

can be seen in Figure 53). It was therefore concluded that the engine was run with 

the ECU in open loop control mode. This was confirmed and monitored using an 

Autel Autolink AL309 OBD-II code reader. 

5.1.2 In-cylinder pressure measurement setup  

For in-cylinder pressure measurements, cylinder number 1 of the engine was used 

for reasons described in section 2.5.2. Before the pressure curves could be plotted, 

the pressure values had to be properly phased and referenced. This was done by 

plotting hot motoring log P - log V curves and then adjusting the phasing until the 

conditions described in section 2.5.4 were met.  

Referencing was done using the measured intake MAP at IVC. Absolute intake 

manifold pressure was measured using an engine diagnostics device which 

displays the reading from the MAP sensor. The accuracy of the MAP sensor was 

tested using a WIKA reference pressure gauge. It was found that the MAP sensor 

is sufficiently accurate for referencing of the in-cylinder pressure values. 

The indicating setup was tested for repeatability using an Optrand pressure 

transducer and the modified spark plug by capturing 100 consecutive engine 

cycles at each test point. This large amount of cycles was needed in order to 

reduce the noise on the pressure curve by taking an average over all the captured 

cycles. The amount of cycles typically captured for in-cylinder pressure 

measurement is 100 or more cycles.  

Note that pressure is given in bar to be consistent with curves found in the 

literature. Furthermore, for comparison purposes, the pressure in Figure 54 was 

referenced to 0,3 bar gauge pressure at 30 ° crank angle after TDC (ATDC) 

during the intake stroke. 

Figure 53: Lambda repeatability 
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For the tests that were done in this section, the 2300 rpm at 30 N·m and 3600 rpm 

at 90 N·m were used as these were the lowest and highest loads tested during the 

project. The curves obtained for in-cylinder pressure vs. crank angle are shown 

Figure 54. The figure shows no significant difference in the results from test 1 and 

2 and therefore indicates good repeatability of the system.  

 

 

 

 

 

 

 

 

Figure 54: Optrand: In-cylinder pressure vs. crank angle 

The pressure vs. volume curves that were obtained are shown in Figure 55 and 

Figure 56. To determine the repeatability of these curves, calculation of the net 

IMEP values were used. However, to ensure accurate IMEP calculations the 

clearance volume of the engine in cylinder number 1 first had to be measured.  

This was done by measuring the volume of the combustion chamber in the 

cylinder head as well as the volume on top of the piston at TDC using a digital 

burette. A number of measurements were made after which an average was 

calculated for the clearance volume. The results from the measurement (as well as 

other engine specifications) can be found in appendix A.2.  

The results from the net IMEP calculations are given in Table 1. 

Table 1: Optrand net IMEP repeatability 

  Net IMEP (bar)  

Speed (rpm) Load (N·m) Test 1 Test 2 % difference 

2300 30 2,69 2,74 1,8 

3600 90 6,46 6,63 2,6 

The difference between the load points at 2300 rpm indicated better repeatability 

than the load points at 3600 rpm. This is due to thermal effects on the transducer 

at high load points which will be discussed in more detail in section 5.2.2. Similar 

results were obtained with the other available Optrand transducer. 
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Figure 55: Optrand: In-cylinder pressure vs. volume (2300 rpm @ 30 N·m) 

 

 

 

 

 

 

 

 

Figure 56: Optrand: In-cylinder pressure vs. volume (3600 rpm @ 90 N·m) 

The Kistler transducer was then installed in an attempt to increase repeatability of 

the indicating setup at high load points. The pressure versus volume curves that 

were obtained for 3600 rpm @ 90 N·m are shown in Figure 57. From the curves a 

net IMEP of 8,04 bar and 7,96 bar was calculated for test 1 and 2 respectively. 

This translates into a percentage difference of 1,0 % which is a significant 

improvement over the Optrand transducers.  
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Figure 57: Kistler: In-cylinder pressure vs. volume (3600 rpm @ 90 N·m) 

5.2 In-cylinder Pressure Measurement Comparisons 

The effect of using different in-cylinder pressure measuring positions on the 

measured pressures was studied using the modified spark plug and the modified 

cylinder head. An Optrand transducer was installed in each of these positions and 

not removed for all the pressure comparison testing that was done. This ensured 

that the compression ratio remained the same for each pressure trace captured.  

Furthermore, the performance of the Optrand transducers was compared to that of 

the Kistler transducer. For these tests the modified spark plug (with the attached 

Optrand transducer) was removed from the engine and the Kistler spark plug 

(with the attached Kistler transducer) installed. 

The captured pressure values were again referenced and phased using a hot 

motoring curve. However, for comparison purposes, the pressure in Figures 58, 62 

and 64 was referenced to 0,3 bar gauge pressure at 30 ° ATDC during the intake 

stroke. 

5.2.1 Measuring position comparison: Optrand vs. Optrand  

When using the modified spark plug, the in-cylinder pressures are measured in an 

indicating channel (see section 3.8.1). This is expected to cause more acoustic 

noise than when the measuring position in the modified cylinder head is used 

where the measuring position is directly in the combustion chamber. 

The measuring position in the modified cylinder is however closer to the 

combustion and directly over the piston bowl. This will cause higher heat flux on 

the pressure transducer than with the spark plug measuring position. It is therefore 

expected that thermal effects on the transducer will be more significant when 

using the measuring position in the cylinder head. (AVL, 2002) 
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a) In-cylinder pressures and IMEP 

According to AVL (2002), pressure in the combustion chamber is not uniform and 

therefore the use of different measuring positions should produce different 

measured pressures. The pressure vs. crank angle curves that were obtained at the 

two measuring positions used, for 2300 rpm @ 30 N·m as well as 3600 rpm @ 

90 N·m, are shown in Figure 58. As can be seen from the figures, the spark plug 

mounted transducer measured a lower combustion and expansion pressure than 

the cylinder head installed transducer. The differences in pressure readings 

therefore corresponded to the literature. These differences can be seen more 

clearly in Figure 59 and Figure 60.  

  

 

 

 

 

The mean effective pressures obtained at the different measuring positions are 

given in Table 2.  

Table 2: Mean effective pressures obtained with Optrand transducers 

  
 

IMEPnet 

(bar) 

IMEPgross 

(bar) 

FMEP 

(bar) 

Speed (rpm) Load (N·m) BMEP (bar) 
Spark 

plug 
Head 

Spark 

plug 
Head 

Spark 

plug 
Head 

2300 30 2,36 2,74 2,95 3,19 3,44 0,38 0,59 

3600 90 7,08 6,63 6,71 6,31 6,50 -0,45 -0,37 

The effect that the difference in measured pressure, between the two measuring 

positions, had on the net IMEP calculation was significant. The net IMEP, for the 

2300 rpm point, calculated from the cylinder pressures obtained with the spark 

plug installed transducer was 7,4 % lower than the cylinder head installed 

transducer.  

Figure 58: Position comparison: Pressure vs. crank angle 
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An anomaly was however found with the calculated net IMEP values for the 3600 

rpm point at both measuring positions. The net IMEP values were found to be 

lower than the corresponding BMEP values for both measuring positions. This 

results in a negative FMEP which is not possible.  

The gross IMEP values were also found to be lower than the net IMEP values 

implying negative pumping work which is also not possible for a naturally 

aspirated engine. It was therefore suspected that the Optrand transducers are not 

sufficiently accurate under the influence of high heat flux. 

 

Figure 59: Position comparison: log P - log V (2300 rpm @ 30 N·m) 

Figure 60: Position comparison: log P - log V (3600 rpm @ 90 N·m) 
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b) Noise on pressure curve 

Due to the indicating channel (in the spark plug) acting as an acoustic resonator, it 

was expected that more noise would be present on the pressure curve measured 

using the spark plug installed transducer than for the cylinder head installed 

transducer. One captured cycle at each position was therefore plotted to enable 

comparison of the noise levels. These curves are shown in Figure 61 and they 

indicate slightly higher amplitudes in noise when using the spark plug installation 

position.   

 

 

 

 

 

 

 

 

c) Effect of high heat flux 

Analysis of the effect of the heat flow load on the transducers at the different 

measuring positions could be done by plotting pressure versus volume on a log 

scale. For this purpose the 3600 rpm @ 90 N·m point was used. The curves that 

were obtained are shown in Figure 60 where a cross over between the intake and 

exhaust stroke pressure can be seen for both measuring positions. This is incorrect 

as the exhaust stroke pressures should be higher than the intake stroke pressures 

for naturally aspirated engines. This phenomenon is known as the bow tie effect 

and it is caused by thermal processes on the transducers (Lancaster et al., 1975).  

The effects of high heat flow loads at points greater than 20 kW could also be 

seen on the real-time pressure curves while running the engine. At these points the 

pressure curve continuously shifted vertically between each individual cycle. It 

was therefore suspected that the Optrand pressure transducers were not 

sufficiently accurate for high load testing.  

Figure 61: Position comparison: Noise (3600 rpm @ 90 N·m ) 
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5.2.2 Transducer comparison: Optrand vs Kistler 

The same analysis that was described in section 5.1.1 was repeated for comparing 

the performance of the Kistler to that of the Optrand transducers. The Kistler 

transducer was also installed in cylinder number 1 of the engine and the same 

testing points were used. 

a) In-cylinder pressures and IMEP 

The pressure vs. crank angle curves that were obtained (for 2300 rpm @ 30 N·m) 

with the Kistler transducer are shown in Figure 62 along with those obtained from 

the Optrand transducers. From the figure it can be seen that the Kistler and the 

spark plug installed Optrand transducer corresponds closely during the full 720 ° 

cycle due to the similarity of the measuring positions of the two. In comparison to 

the cylinder head installed transducer the Kistler measured a lower peak pressure. 

The difference in measured pressures can also be seen on the pressure vs. volume 

curves (on log scales) shown in Figure 63.  

The values and positions of peak pressures obtained with the Optrand and Kistler 

transducers are given in Table 3 while the calculated IMEP and FMEP values are 

given in Table 4. 

Table 3: Comparison of peak pressure values and positions 

  Optrand - spark plug Optrand - in head Kistler 

Speed (rpm) Load (N·m) Peak pressure values (gauge pressure in bar) 

2300 30 16,54 18,19 16,08 

3600 90 43,64 48,38 41,94 

  Positions of peak pressures 

2300 30 14,6 ° ATDC 14,8 ° ATDC 17 ° ATDC 

3600 90 13,6 ° ATDC 10,4 ° ATDC 14,3 ° ATDC 

Table 4: Mean effective pressures obtained with Kistler transducer 

Speed (rpm) Load (N·m) IMEPnet (bar) IMEPgross (bar) PMEP (bar) FMEP (bar) 

2300 30 2,94 3,41 0,47 0,58 

3600 90 8,05 8,46 0,41 0,97 
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At the higher load conditions however the Kistler outperformed the Optrand 

transducers as is shown in Figure 64 and Figure 65. From these curves it could be 

seen that the Kistler did not measure lower exhaust stroke than intake stroke 

pressures as was found with the Optrand transducers. Calculation of IMEP values 

with the Kistler also gave better results and repeatability (see section 5.1.2) than 

its fibre optic counterparts. As can be seen from Table 4, positive FMEP and 

PMEP values were obtained using the pressure measurements from the Kistler 

transducer. 
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Figure 62: Transducer comparison: Pressure vs. crank angle (2300 rpm @ 30 N·m) 

Figure 63: Transducer comparison: log P - log V (2300 rpm @ 30 N·m) 
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b) Noise on pressure curve 

Another improvement of the pressure curves obtained with the Kistler transducer 

over the Optrand transducers is less amplitude in noise. This is due to the higher 

sensitivity of the Kistler transducer. The sensitivities of the transducers are: 

• Kistler = 49 mV/bar 

• Optrand = 14 mV/bar 
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Figure 64: Transducer comparison: Pressure vs. crank angle (3600 rpm @ 90 N·m) 

Figure 65: Transducer comparison: log P - log V (3600 rpm @ 90 N·m) 
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In Figure 66 the differences in noise captured by the transducers can be seen.  

 

 

 

 

 

 

 

 

c) Effect of heat flux 

The possible reason for the better performance of the Kistler at the higher load 

points is that the thermal effects are less than with the Optrand transducers. This 

can be seen in Figure 65 which shows the log P - log V curves for the three 

transducers. In the figure it can be seen that the bow tie effect does not occur 

when using the Kistler transducer.  

Furthermore, the figure shows that the compression and expansion lines are linear 

with the Kistler transducer which is not the case with the Optrand transducers. 

The compression and expansion strokes can be approximated as a polytropic 

process and straight lines are therefore expected when plotted on log scales. 

Deviations from straight lines is frequently due to thermal effects on the 

transducers (Lancaster et al., 1975).  

The polytropic exponent that was obtained for the expansion stroke, using the 

Kistler pressure data, is 1,3. This is consistent with literature which recommends a 

value of 1,3 [± 0,05] (Heywood, 1988). 

5.2.3 Summary of findings 

In summary the following differences were found between the two measuring 

positions using the Optrand transducers: 

1. The position in the cylinder head produced higher combustion and 

expansion pressure readings than the spark plug position, 

2. The calculated IMEP is higher when calculated using the pressure 

measured directly in the combustion chamber, 

Figure 66: Transducer comparison: Noise (3600 rpm @ 90 N·m) 
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3. The amplitude in noise present on the pressure traces captured through 

the spark plug were slightly higher than through the cylinder head, and 

4. Cross over of exhaust stroke and intake stroke pressures occurring due 

to thermal effects on the transducer are experienced at both measuring 

positions. 

The comparison between the Kistler and Optrand pressure transducers showed the 

following: 

1. The Kistler transducer is not severely affected by high heat flux as is 

the case with the Optrand transducers,  

2. The pressure traces from the Optrand transducers did not produce 

straight lines (on the log P- log V curves) for the compression and 

expansion strokes whereas the Kistler transducer did, and 

3. The noise on the pressure trace was less with the Kistler transducer 

than with the Optrand transducers. 

5.3 Petrol and Petrol-Ethanol Blend Testing 

To complete one of the project objectives, the engine had to be run on a petrol-

ethanol blend. For the tests a blend, by volume, of 90 % unleaded petrol 95 RON 

(ULP 95) and 10 % ethanol was used. This blend is referred to as E10 in the 

automotive industry. The same automated partial load test procedure described in 

section 5.1 was used to study the effect of the ethanol addition.  This test was 

executed twice for the E10 blend to check for repeatability. 

Before and after the E10 blends were tested, a test was done with pump ULP. 

These tests are referred to as the bracket tests and they were done to check 

whether any change in the system occurred during the E10 tests. The results from 

the bracket tests were also used to plot the repeatability curves in section 5.1.1. 

Samples of the fuels that were used in the project were analysed by Intertek South 

Africa. The results from these tests and details of the ethanol are given in 

appendix F.  

5.3.1 Engine performance comparison 

For the project the engine was only tested under partial load conditions and 

therefore the effect on maximum torque and power when using E10 could not be 

evaluated. However, the lower energy content of the ethanol implied that a 

difference should be seen in the fuel consumption (and therefore BSFC) between 

ULP and E10 during partial load testing.  When the ECU is using closed looped 

control it is expected that the fuelling will increase when the fuel is switched from 

ULP to a blend of petrol and ethanol. 

It was however found that during the bracket and the E10 tests the ECU used open 

loop control implying that it determines the amount of fuelling according to set 

values in its map.  
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This implied that if the throttle setting (set by the PLC) at the different test points 

were the same for both fuels, the fuel flow rate will not change. The throttle set 

point (and therefore fuel consumption) did however increase slightly for the E10 

blend. 

The results that were obtained for BSFC and exhaust gas temperatures using E10 

are shown in Figure 67 and Figure 68 along with the average results obtained 

during the bracket tests. The figures show a slight increase in BSFC for the E10 

and similar exhaust gas temperatures for both fuels. Furthermore, the figures also 

show that good repeatability was obtained during the E10 tests. 

 

 

 

 

 

 

 

Figure 67: E10 BSFC results 

 

 

 

 

 

 

 

Figure 68: E10 exhaust gas temperature results 
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5.3.2 Emissions comparison 

In comparison to ULP, ethanol has a 34,7 % higher oxygen content by weight 

(Koc et al., 2009). Due to this, the oxygen content of E10 is also higher than with 

ULP, which implies that an increase in air-fuel ratio should be observed when 

switching from ULP to E10. This effect was observed during the E10 testing 

through higher measured lambda values with the E10 blend than with ULP.  

The increased oxygen content also caused a decrease in CO and an increase in 

CO2 present in the exhaust gas due to more complete combustion taking place 

(Koc et al., 2009). The change in lambda, CO2 and CO can be seen in Figure 69, 

Figure 70 and Figure 71 respectively.  

 

 

 

 

 

 

 

Figure 69: Lambda values obtained with ULP 95 and E10 

 

 

 

 

 

 

 

Figure 70: CO2 produced with ULP 95 and E10 
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Figure 71: CO produced with ULP 95 and E10 

5.3.3 Combustion comparison 

For the analysis that was done in this section the 3600 rpm at 90 N·m and 2300 

rpm at 30 N·m test points were used. This allowed for a comparison of the 

combustion of the fuels at a high speed and load condition as well as a low speed 

and load condition. In-cylinder pressure was measured using the Kistler 

transducer for the tests discussed in this section. 

Before the comparison was made, the pressure data was phased and referenced. 

The hot motoring log P - log V curves that were obtained for bracket test 1 after 

phasing and referencing is shown in Figure 72. Similar curves were obtained with 

the results from bracket test 2 as well as both of the E10 tests. 

 

 

 

 

 

 

 

 

Figure 72: Phased and referenced log P - log V motoring curve (bracket test 1) 
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a) In-cylinder pressures 

The peak in-cylinder pressures as well as IMEP values for both fuels did not show 

significant differences. The results that were obtained are given in Table 5. 

Table 5: ULP 95 and E10 combustion pressure comparison 

  Peak gauge 

pressure (bar) 

Peak pressure 

position (° ATDC) 

IMEPnet              

(bar) 

Speed (rpm) Load (N·m) ULP 95 E10 ULP 95 E10 ULP 95 E10 

2300 30 16,08 16,10 16,7 16,6 2,94 2,96 

3600 90 41,89 41,27 12,8 13,6 8,05 8,03 

b) Heat release rate and mass fraction burnt 

According to (Rodrigo & Sodré, 2010) the combustion of ethanol is faster and 

therefore the burn rate should increase when ethanol is added to petrol. However, 

they tested an ethanol-petrol blend under advanced timing conditions and with a 

higher percentage of ethanol than 10 % by volume. According to Srinivasan & 

Saravanan (2010) the heat release rate as well as burn rate decreases with 

increasing ethanol content due to flame quenching. During their testing a fixed 

ignition timing was used, as was the case with the testing done in this project. 

However, they also used blends with an ethanol content higher than 10 %. 

Schifter et al. (2011) found marginal effects on the combustion rate when adding 

10 % ethanol to petrol. 

The heat release model that was used for the project is a simple zero dimensional, 

single-zone model using a second order polynomial for calculation of γ (see 

section 2.5.3) and the heat transfer coefficient proposed by Eichelberg. For the 

calculation of bulk gas temperatures the reference temperature at IVC was 

assumed to be 340 K (Klein, 2007). An assumption had to be made seeing as air 

flow measurements made during testing did not give accurate results. Accurate air 

flow rate measurements are needed in the calculation, using the ideal gas law, of 

the reference temperature. Cylinder wall temperature was assumed to be constant 

at 440 K (Klein, 2007).  

The results that were obtained for the heat release rate are shown in Figure 73 and 

Figure 74. The curves did not show a major difference between the fuels. A slight 

decrease in the peak heat release rate was however observed with the E10 blend at 

the 3600 rpm point due to a lower peak pressure than the petrol fuel.  

As can be seen in the heat release curves there is a dip below zero during the 

compression stroke. This is due to evaporation of the injected fuel i.e. latent heat 

transfer from the charge air to the fuel (Shehata, 2010). During the expansion 

stroke it can be seen that the heat release rate only reaches zero at 516 ° crank 

angle. 
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Figure 73: Heat release rate curves (2300 rpm @ 30 N·m) 

 

 

 

 

 

 

 

 

The curves that were obtained for mass fraction fuel burnt are shown in Figure 75. 

These curves are plotted against degrees after spark delivery in the literature. 

However, they have been plotted against crank angle in this report to allow 

comparison of the effect of engine load change. The curves did not show a 

significant difference in combustion of the two fuels. A higher burn rate was 

observed at the higher load point with both fuels, in comparison to the lower load 

point. 

 

 

              ULP 95 

              E10  

              ULP 95 

              E10  

Figure 74: Heat release rate curves (3600 rpm @ 90 N·m) 
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The crank angle at which a MFB of 10 % and 90 % was obtained, for the different 

fuels, are given in Table 6. From the table it can be seen that the combustion 

duration for E10 and ULP during partial load is very similar with E10 burning 

slightly slower.  

Table 6: Mass fraction of fuel burnt results for ULP 95 and E10 tests 

   Crank angle (°) Rapid burning angle (°) 

Speed (rpm) Load (N·m) MFB (%) ULP 95 E10 ULP 95 E10 

2300 30 
10 2,2 BTDC* 2,9 BTDC 

20,6 22,4 
90 18,4 ATDC 19,5 ATDC 

3600 90 
10 4,6 BTDC 5 BTDC 

16 17 
90 11,4 ATDC 12 ATDC 

∗ Note: BTDC = Before top dead centre. 

 

 

 

 

 

 

Figure 75: Mass fraction of fuel burnt curves 
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6. Conclusions and Recommendations 

An engine and dynamometer setup with monitoring and control capabilities was 

developed. The setup was developed to allow Stellenbosch University to do SI 

engine fuels testing, using a standard passenger vehicle engine. The engine that 

was used was chosen due its proven reliability and widespread use locally and 

overseas with neat petrol as well as blends of ethanol and petrol.  

The repeatability testing of the setup showed excellent results and the main 

objective of the project was therefore achieved. Testing was done in the partial 

load operating range of the engine, representing typical freeway driving 

conditions.  

For comparing the combustion characteristics of different fuels, an in-cylinder 

pressure measurement setup was also developed. The setup includes fibre optic as 

well as a piezoelectric pressure transducer, an optical shaft encoder, a modified 

cylinder head and a high speed DAQ device. Testing of this setup also showed 

good repeatability. The setup is able to measure combustion pressures at 0,1 ° 

crankshaft angle intervals with a sensitivity of either 14 mV/bar or 49 mV/bar, 

depending on the transducer used. 

The indicating setup allowed for the comparison of different locations for in-

cylinder pressure measurement. Measurements could be made by installing the 

fibre optic transducers into a modified spark plug or directly into the combustion 

chamber using the modified cylinder head. It was found that installing the 

transducer directly into the combustion chamber caused higher readings of peak 

pressure. Noise present on the pressure signals was found to be similar at both 

positions. 

The indicating setup also allowed a comparison between the performance of 

piezoelectric and fibre optic pressure transducers during combustion. It was found 

that at low loads the performance of the transducers are similar. However, at high 

load conditions the fibre optic transducers showed high sensitivity to thermal 

effects whereas the piezoelectric did not. Furthermore, the pressure curves 

obtained with the piezoelectric transducer included less noise than the fibre optic 

transducers due to a higher sensitivity. 

The effects on engine performance of mixing 10 % ethanol and 90 % petrol, 

compared to neat petrol, were also studied. It was found that the fuel consumption 

increased slightly when using the E10 blend. This is due to the lower energy 

content of ethanol. The addition of the ethanol also increased the oxygen content 

of the charge supplied to the combustion chamber. This could be seen in the 

obtained lambda values which were higher than with neat petrol. The increase in 

oxygen content also caused a decrease in CO and an increase in CO2 emissions in 

comparison to neat petrol. This is due to the improved combustion when using the 

E10 blend. 
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Analysis of the combustion parameters when using neat petrol and E10 did not 

indicate any significant differences between the fuels. A slight decrease in peak 

heat release rate was observed for E10 at a speed and load of 3600 rpm and 

90 N·m due to a slight decrease in peak pressure. Furthermore, a slight increase in 

combustion duration was observed with the E10 blend. 

Recommendations for future work are: 

• Modification of a standard cylinder head for in-cylinder pressure 

measurement using a miniature piezoelectric pressure transducer. 

• Testing of the effect of different ethanol blends at partial and full load 

conditions. 

• Installation of an aftermarket ECU to enable control of injection and 

ignition timing as well as closed loop lambda control. 

• Installation of highly accurate emissions equipment for fuel 

comparison testing. 
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Appendix A:  Engine, Dynamometer and Drive Shaft 

Specifications 

For future reference and as additional supporting information for the project, the 

drive shaft design and drawings, the specifications of the engine and the 

specifications of the dynamometer are given in this appendix. 

A.1. Drive Shaft  

In Figure 76 an exploded view of the designed drive shaft is shown. The figure 

shows the locating spigot (spherical plain bearing) that was installed to keep the 

shaft aligned with the dynamometer. The drawings for the custom designed and 

manufactured flanges can be found in Figure 77 and Figure 78. It has been 

included to illustrate the thickness of each flange and therefore their 

appropriateness for the application. 

 

Figure 76: Drive shaft exploded CAD model 
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Figure 77: Side shaft and flange welding and machining 

 

Figure 78: Dynamometer flange 
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A.2. Engine  

In order to implement heat release and mass faction burnt models as well as to 

calculate IMEP and BMEP values, certain geometrical constants and 

specifications of the engine are needed. This includes the clearance volume, 

connecting rod length, cylinder bore diameter, piston stroke and displaced 

volume. All of these except the connecting rod length as well as clearance volume 

were readily available.  

Connecting rod length was measured by removing one from a spare engine 

available in the testing facility. Clearance volume was measured on the modified 

as well as a standard cylinder head using a digital burette. It was found that the 

difference in clearance volume between the two cylinder heads is negligible. The 

clearance could also be estimated using the given compression ratio and swept 

volume of the engine. However, for more accurate calculation results the 

clearance volume was measured. In Table 7 the clearance volume and all the other 

engine specifications that were needed for the project are given. 

Table 7: Engine specifications 

4 cylinder, 1.6 L SI engine 

Maximum torque 137 N·m @ 2500 rpm 

Maximum power 70 kW @ 5500 rpm 

Bore diameter  82,07 mm 

Stroke  75,48 mm 

Connecting rod length  129 mm 

Displaced volume  0,001597 m
3 

Clearance volume  0,00004647 m
3 

Compression ratio 9,5 

Intake valve opening 12 ° BTDC 

Intake valve closing 24 ° after bottom dead centre (ABDC) 

Exhaust valve opening 24 ° before BDC (BBDC) 

Exhaust valve closing 12 ° ATDC 

Ignition timing at 2300 rpm 

and 30 N·m 
36 ° BTDC * 

Ignition timing at 3600 rpm 

and 90 N·m 
29 ° BTDC * 

∗ Note: Timing and intake MAP was monitored using an Autel Autolink AL309 

OBD-II code reader. 
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A.3. Dynamometer  

In Table 8 the specifications of the Schenck W130 dynamometer that was used in 

the project are given. The torque vs. speed curve is highlighted in red in Figure 

79.  

Table 8: Dynamometer specifications (Schenck Pegasus GmbH, 1997) 

Schenck W130 eddy current dynamometer 

Nominal torque 400 N 

Speed 10000 rpm 

Nominal power 130 kW 

Maximum coupling weight 

at maximum speed 

2 kg 

Mass of inertia 0,14 kg·m
2 

Weight 270 kg 

Torsion spring constant up 

to centre of dynamometer 0,0535 N·m/rad 

 

 

Figure 79: Dynamometer torque vs. speed curve (Schenck Pegasus GmbH, 1997) 
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Appendix B: Calculations and Derivations 

The procedure that was used to calculate the partial load testing points for the 

project and the derivation of a zero dimensional apparent heat release model are 

given in this appendix. 

B.1. Load Point Calculation Procedure 

To determine the partial load test points the total running resistance of a motor 

vehicle fitted with the engine used in the project had to be approximated using the 

procedure set out in Bosch (2000). The total running resistance (Fw) comprises of 

the rolling resistance (FRo), aerodynamic drag (FL) and climbing resistance (FSt), 

all of which are illustrated in Figure 80. Climbing resistance was omitted in the 

load point calculations as it was assumed that the vehicle is driving on a flat road. 

 

For calculating the rolling resistance the following formula can be used: 

 �jk � l �m U        (13) 

where f is the dynamic friction coefficient, mv is the vehicle mass and g is 

gravitational acceleration. Aerodynamic drag can be calculated as follows: 

 �n � 0,5p q' 3� 6r . rI:
N      (14) 

where ρ is the density of air, cd is the drag coefficient of the vehicle, Af is the 

frontal area of the vehicle, v is the vehicle speed and v0 is the headwind speed. The 

frontal area can be calculated by multiplying the product of the vehicle height and 

track width by 0,9 (as recommended by Bosch (2000)).  

The total running resistance can then be converted to required power at the wheels 

of the vehicle as follows: 

 �9 � �9 r         (15) 

Figure 80: Resistive forces on motor vehicles (Bosch, 2000) 
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The required engine power can then be calculated using the following formula: 

 �s�t��s � 
uv m



       (16) 

where η is the drive train efficiency, which lies in the range of 88-92 % for the 

type of vehicle. 

Once the power has been calculated the required brake torque and engine speed 

can be determined as follows: 

 7P � 

@YX�Y@ wv �

m
        (17) 

 V � 
�v�@@x

�
        (18) 

where rw is the wheel diameter, i is the gear ratio between the engine and the 

wheels and n is the engine speed.  

The constants that were used for calculating the engine load and speed at 60 km/h 

and 120 km/h, in 4
th

 and 5
th

 gear respectively, are given in Table 9 below. 

Table 9: Constants used during load point calculations 

Constant  

f 0,013 

mv 1635 kg 

g 9.81 m/s
2 

cd 0.47 

Af 2.154 m
2 

v0 0 m/s 

η 0,9 

i - 4th gear 0,259 

i - 5th gear 0,324 
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B.2. Apparent Heat Release Derivation

The equation for a simple zero dimensional, single

model (on a crank angle basi

combustion chamber is modelled as an

81. 

Figure 81: Heat release analysis system boundary (Heywood, 1988)

The energy balance for this open system is: 

where dQch is the gross heat release rate, 

(which is equal to pdV) is the work done on the piston and 

sensible energy of the cylinder contents

the system boundaries. With PFI

flow into and out of the crevices as well as blow

engines the flow includes the

ignored. (Heywood, 1988)

If it is assumed that Us is given by 

boundary, u is the internal energy

mean bulk gas temperature, 

 

where cv is the specific heat of the gas. 

boundary is due to crevices (

yields the following equation: 

where h' is the enthalpy of the gas

88 

Apparent Heat Release Derivation 

simple zero dimensional, single-zone, apparent heat release

on a crank angle basis) is derived in this section. For this model t

combustion chamber is modelled as an open boundary system as shown in

 

: Heat release analysis system boundary (Heywood, 1988)

The energy balance for this open system is:  

  

             

is the gross heat release rate, dQht is the heat transfer to the walls, 

) is the work done on the piston and dUs  is the change of 

cylinder contents. The last term represents the flow across 

the system boundaries. With PFI and DISI engines the only flow that occurs is gas 

flow into and out of the crevices as well as blow-by while with stratifed 

engines the flow includes the injected fuel. The effects of blow by can usually be 

(Heywood, 1988) 

is given by mu(T), where m is the mass within the system 

is the internal energy (per kg) of the cylinder contents

gas temperature, dUs can be written as:  

 

is the specific heat of the gas.  Assuming that the only flow across the 

crevices (dmcr) and substituting equation 20 into equation 

yields the following equation:  

 

 

is the enthalpy of the gases flowing into or out of the crevices.

apparent heat release 

For this model the 

open boundary system as shown in Figure 

: Heat release analysis system boundary (Heywood, 1988) 

  

          (19) 

is the heat transfer to the walls, dW 

is the change of 

. The last term represents the flow across 

engines the only flow that occurs is gas 

stratifed DISI 

ted fuel. The effects of blow by can usually be 

is the mass within the system 

of the cylinder contents and T is the 

       (20) 

Assuming that the only flow across the 

into equation 19 

      

  (21) 

the crevices. 
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Using the ideal gas law and assuming a constant value for the gas constant R, the 

following equation can obtained: 

 y7 � 
# '&
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Using equation 22, equation 21 can be written as:  
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Defining the specific heat ratio as γ � 61 . 
j

5�
:, equation 24 can be written as: 
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  (25)  

Depending on the required accuracy of the model, equation 25 can be simplified 

by ignoring the effects of crevices.  

The heat transfer to the combustion chamber walls can be calculated using 

Newton’s law of cooling. The area that is required in this equation is described by 

the following: 

 3 � 35} . 3& . ~ � 6� . � 8 �:     (26) 

where Ach and Ap are the cylinder head and piston crown surface areas 

respectively. 
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Calculation of the rate of change of the cylinder volume can be done, on a 

numerical basis, using a central differencing scheme. To calculate the rate of 

change of pressure with respect to crank angle 2nd order central differencing can 

be used as described by: 

 
'&�

',
 � 

&�dz- M &�dh � M &�gh- &�gz 

�N ∆,
     (27) 

where pi  is the pressure at the analysed point and ∆θ is crank angle interval. 

Cylinder volume at each crank angle position can be calculated using the 

following equation: 

 A �  A5 . 
) �z

(
 6� . � 8 �:       (28) 

where Vc is the clearance volume of the cylinder, B is the cylinder bore, l is the 

connecting rod length, a is the crank radius and s is the distance between the crank 

axis and the piston pin. These parameters are shown in Figure 82. The figure 

illustrates the geometry of a cylinder, piston, connecting rod and crankshaft 

assembly. 

 

This distance s can be calculated using equation 29. 

 � � � q��i . 6�N 8 �N sinNi:I,J     (29) 

 

Figure 82: Engine cylinder geometry parameters (Heywood, 1988) 
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Appendix C: In-cylinder Pressure Measurement Setup  

In this appendix the calibration of the Kistler and Optrand pressure transducers, 

the design of the shaft encoder support as well as the pin assignments of the 

connectors that were used are given. The specifications of each transducers, shaft 

encoder and DAQ device are also given. 

C.1. Pressure Transducers Calibration 

The sensitivity (in mV/psi) of the Optrand transducers is determined by the 

manufacturer and is printed on the signal conditioner connected to the transducers. 

The sensitivity of the Kistler transducer depends on the charge amplifier used. 

The sensitivities were checked using a dead weight tester, calibration weights and 

a reference transducer namely an HBM electronic pressure transducer. Firstly the 

HBM was used to measure the pressure for a specific sequence of weights. These 

pressures were then recorded and used during calculation of the sensitivity for 

each of the other transducers. 

The calibration curves of the transducers as well as their sensitivities are shown in 

Figure 83. All of the transducers showed excellent linearity under the static 

loadings from the weights. 

 

Although the pressure transducers are able to measure pressures in excess of 100 

bar, the dead weight tester was not able to handle the amount of mass needed to 

reach pressures in excess of 74 bar. The linearity of the transducers in the range 

above 74 bar could therefore not be checked. This was however not an issue 

seeing as the test points used in the project all resulted in combustion pressures 

less than 74 bar. 
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Figure 83: In-cylinder pressure transducers calibration curves 
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C.2. Shaft Encoder Support Frequency Analysis

During the design of the shaft encoder support

done to determine whether the support will be excited at its natural frequency 

while running the engine in the range of 

natural frequencies of the support where all in excess of 6000

with a first harmonic at 6900

Figure 

Although the analysis that was done was very simplified

an understanding of the behaviour of the support bracket setup. A more accurate 

model was not done due to the unknown properties of the rod end. A worst case 

scenario was implemented w

cannot rotate.  
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Shaft Encoder Support Frequency Analysis 

During the design of the shaft encoder support a simple frequency analysis was 

done to determine whether the support will be excited at its natural frequency 

while running the engine in the range of 800-6000 rpm. It was found that the 

natural frequencies of the support where all in excess of 6000 rpm 

6900 rpm. This first harmonic is shown in Figure 

 

Figure 84: Shaft encoder support modal analysis 

lthough the analysis that was done was very simplified, it was only used to g

of the behaviour of the support bracket setup. A more accurate 

model was not done due to the unknown properties of the rod end. A worst case 

scenario was implemented where the rod end was seen as a fixed support which 

a simple frequency analysis was 

done to determine whether the support will be excited at its natural frequency 

6000 rpm. It was found that the 

rpm engine speed 

Figure 84. 

it was only used to gain 

of the behaviour of the support bracket setup. A more accurate 

model was not done due to the unknown properties of the rod end. A worst case 

ere the rod end was seen as a fixed support which 
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C.3. Component Specifications and Pin Assignments 

Specifications for the pressure transducers, shaft encoder (and bellows) as well as 

the DAQ device can be found in Table 10, Table 11 and Table 12 respectively.  

Table 10: Transducer specifications (Optrand Incoporated, [S.a.]) (Kistler, [S.a.]) 

 Kistler model 6117B Optrand AutoPSI-TC 

Major diameter  4,4 mm 4 mm 

Measuring range                0-200 bar 0-250 bar 

Sensitivity 49 mV/bar (with charge amp) 14 mV/bar 

Operating temperature 350 °C max 380 °C max 

Temperature sensitivity ±1.5 % @ 250 °C ±1.9 % @ 250 °C 

Non-linearity <±0.6 % FSO ±1.5 % FSO 

Table 11: Shaft encoder and bellows specifications (Fritz Kübler GmbH, 2012) 

Shaft encoder model number 
Kübler 

8.5020.D312.3600 

Maximum speed 6000 rpm 

Number of pulses per revolution 3600 

Vibration resistance 100 m/s
2
 

Shock resistance 2500 m/s
2
 

Working temperature range -40-80 °C 

Output circuit RS422 

Supply voltage 5-30 V DC 

Number of output channels 6 

Bellows model number 
Kübler 

8.0000.1101.1010 

Bellows:  

• Maximum radial 

displacement 

• Maximum  axial 

displacement 

• Maximum angular 

displacement  

 

± 0,2 mm 

 

± 0,7 mm 

 

± 1,5 ° 

 

Shaft diameter 10 mm 

Table 12: Data acquisition device specifications (National Instruments, 2012) 

National Instruments USB-6351 

Analogue input channels 8 differential or 16 single ended 

Digital input channels 24 

Sampling rate 1 MS/s for multi-channel inputs 

Analogue input range ± 10 V DC 
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The pin assignments for the 15 pin D-connectors used in the project are given in 

Table 13 while in Figure 85 a layout of the connector pin numbers are shown. 

Connectors were used for connecting the transducer as well as the shaft encoder to 

the DAQ device. Note that the Optrand transducer and the shaft encoder is 

connected to the same power supply. 

Table 13: Connector pin assignments 

Pin # Description Colour Connector for: 

1 Supply voltage Brown  

2 Ground White  

3 A Green   

4 A inverse Yellow  

5 B Gray Shaft encoder 

6 B inverse Pink  

7 Z  Blue  

8 Z inverse Red  

9 Shield Shield  

1 Supply voltage Red 

Optrand 

transducer 

2 Ground Black 

3 Diagnostics Green  

4 Shield Shield 

5 Output signal White 

2 Ground Green  
Kistler 

transducer 
4 Shield Shield 

5 Output signal Red 

 

 

 

 

 

 

 

Figure 85: 15 pin D-connector layout 
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Appendix D:  Software Programming 

The ladder logic routines that were developed are shown Figure 86 to Figure 91 

while the LabView block diagram is shown in Figure 92. 

D.1. PLC Ladder Routines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86: Main ladder routine 
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Figure 88: Digital output control routine 

Figure 87: Digital input and output data exchange routine 
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Figure 89: Torque PID control routine 
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Figure 90: Fuel flow calculation subroutine 
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Figure 91: Analogue input and thermocouple data exchange routine 
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D.2.  LabView Block Diagram 

 

Figure 92: LabView block diagram 
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D.3. ETA Calibration Screens 

 

Figure 93: Speed input calibration screen 

 

Figure 94: Torque input calibration screen 
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Figure 95: Torque output calibration screen 

 

Figure 96: Fuel pressure calibration screen 
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Figure 97: AVL fuel mass calibration screen 

 

Figure 98: Oil pressure calibration screen 
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Figure 99: Lambda calibration screen 
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Appendix E: Wiring Diagrams 

The layout of the wiring between the controllers, controlled devices (specimens) 

and the computer is shown in Figure 100. Specific wiring diagrams are shown in 

Figure 101 to Figure 107. 

 

Figure 100: System wiring layout 
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Figure 101: Cooling system wiring 

 

 

 

Figure 102: Dynamometer safety circuit wiring 
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MODULE 2 

Figure 104: Analogue input module wiring 

MODULE 1 

Figure 103: Relay wiring  
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MODULE 1 MODULE 2 

Figure 105: Thermocouple module wiring 

Figure 107: Digital input module wiring 

Figure 106: Analogue output module wiring 
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Appendix F: Fuel Analysis Results 

The ULP 95 and E10 fuels were analysed by Intertek South Africa. The results 

from their tests are given in Table 14. The results show good correspondence with 

the WWFC guidelines except for the sulphur content. An increase in RON was 

also found with the E10 blend which was expected due to the higher octane rating 

of ethanol.  

The ethanol (obtained from Servochem (Pty) Ltd) that was used, is anhydrous 

ethanol with a purity of 99,9 %. 

Table 14: Fuel analysis results 

 

 

 

 

 

 

Test Method 100 % ULP 95 
90 % ULP 95 & 

10 % Ethanol 

RON ASTM D2699 96.5 98.5 

MON ASTM D2700 86.8 86.6 

Sulphur (mg/kg) ASTM D5453 188 177 

Density @ 20 
0
C (kg/l) ASTM D4052 0.7399 0.744 

Dry vapour pressure equivalent 

(kPa) 
ASTM D5191 62 68.5 

Existent Gum:                        

Unwashed (mg/100ml) ASTM D381 

 

80 

 

83 

Washed (mg/100ml) <1 <1 

Manganese (ppm) ASTM D3831 <1.0 <1.0 

Distillation (
0
C):  

ASTM D86 

  
Initial boiling point 35.1 36.2 

10 % volume recovery 50.6 48.5 

50 % volume recovery 96 70.4 

70 % volume recovery 126.4 122.4 

90 % volume recovery 157.7 156.7 

Final boiling point 200.7 201.6 

Residue/Loss (% volume) 1.0/1.0 1.0/1.0 

Evaporation @ 70 
0
C (% volume) 29 49 

Aromatics (% volume) ASTM D1319 37 36.4 
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Appendix G: Test Results 

The values that were obtained during the bracket and E10 tests are given in this appendix. 

Table 15: Bracket test 1 results 

 

Torque 

(N·m) 

Speed 

(rpm) 

Power 

(kW) 

BSFC 

(g/kWh) 

Fuel flow 

(kg/h) 

Exhaust gas 

temperature 

(°C) 

Lambda 

Inlet air 

temperature 

(°C) 

Coolant outlet 

temperature 

(°C) 

Coolant inlet 

temperature 

(°C) 
B

ra
ck

et
 t

es
t 

1
: 

0
9

/1
1

/2
0

1
2
 

30 2300 7.3 370.3 2.7 455.4 0.999 23.1 83.0 75.9 

45 2300 10.9 313.3 3.4 513.3 0.989 23.4 82.6 74.7 

60 2300 14.5 290.2 4.2 554.8 0.993 25.5 82.5 74.3 

75 2300 18.1 276.1 5.0 583.9 0.981 26.2 82.2 73.5 

90 2300 21.8 264.0 5.7 623.3 0.966 26.6 81.9 73.0 

30 3600 11.4 387.4 4.4 580.3 0.970 27.2 81.4 75.9 

45 3600 17.1 332.4 5.7 633.3 0.965 27.4 81.3 75.3 

60 3600 22.7 296.7 6.7 660.1 0.966 27.6 81.3 74.2 

75 3600 28.4 268.4 7.6 694.9 0.969 27.7 81.3 73.6 

90 3600 34.1 269.4 9.2 723.7 0.962 27.3 81.9 73.9 

Table 16: Bracket test 2 results 

 
Torque 

(N·m) 

Speed 

(rpm) 

Power 

(kW) 

BSFC 

(g/kWh) 

Fuel flow 

(kg/h) 

Exhaust gas 

temperature 

(°C) 

Lambda 

Inlet air 

temperature 

(°C) 

Coolant outlet 

temperature 

(°C) 

Coolant inlet 

temperature 

(°C) 

B
ra

ck
et

 t
es

t 
2

: 
1
4

/1
1

/2
0

1
2
 

30.0 2300.0 7.3 367.6 2.7 456.6 1.006 25.4 82.4 75.9 

45.0 2300.0 10.9 317.0 3.5 512.6 0.995 26.7 81.9 74.5 

60.0 2300.0 14.5 279.7 4.1 555.2 0.994 27.3 81.8 73.8 

75.0 2300.0 18.2 270.4 4.9 585.0 0.985 28.0 81.6 73.2 

90.0 2300.0 21.8 258.0 5.6 623.0 0.967 28.8 81.3 72.5 

30.0 3600.0 11.4 368.5 4.2 581.8 0.977 30.4 81.0 75.5 

45.0 3600.0 17.1 326.3 5.6 635.6 0.972 30.7 80.7 74.4 

60.0 3600.0 22.8 299.5 6.8 662.0 0.969 30.6 80.8 74.1 

75.0 3600.0 28.5 280.2 8.0 693.0 0.968 30.3 81.0 73.8 

90.0 3600.0 34.1 266.5 9.1 722.4 0.961 29.5 81.4 73.9 
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Table 17: E10 test 1 results 

 
Torque 

(N·m) 

Speed 

(rpm) 

Power 

(kW) 

BSFC 

(g/kWh) 

Fuel flow 

(kg/h) 

Exhaust gas 

temperature 

(°C) 

Lambda 

Inlet air 

temperature 

(°C) 

Coolant outlet 

temperature 

(°C) 

Coolant inlet 

temperature 

(°C) 

E
1
0

 t
es

t 
1

: 
1
2

/1
1

/2
0
1
2
 

30.0 2300.0 7.3 381.6 2.8 452.6 1.016 23.3 82.5 76.0 

45.0 2300.0 10.9 323.4 3.5 514.1 1.012 24.0 82.1 74.8 

60.0 2300.0 14.5 296.9 4.3 555.8 1.017 24.7 81.9 74.2 

75.0 2300.0 18.2 281.5 5.1 588.8 1.006 25.2 81.8 73.7 

90.0 2300.0 21.8 273.3 5.9 630.5 0.991 25.6 81.8 73.0 

30.0 3600.0 11.4 393.9 4.5 587.2 1.004 25.6 81.3 75.4 

45.0 3600.0 17.1 334.4 5.7 640.2 1.004 26.1 81.4 75.2 

60.0 3600.0 22.8 297.7 6.8 665.4 1.003 26.3 81.1 74.4 

75.0 3600.0 28.4 278.0 7.9 702.6 1.004 26.6 81.5 74.4 

90.0 3600.0 34.1 278.6 9.5 731.9 0.989 26.0 81.7 74.3 

Table 18: E10 test 2 results 

 

Torque 

(N·m) 

Speed 

(rpm) 

Power 

(kW) 

BSFC 

(g/kWh) 

Fuel flow 

(kg/h) 

Exhaust gas 

temperature 

(°C) 

Lambda 

Inlet air 

temperature 

(°C) 

Coolant outlet 

temperature 

(°C) 

Coolant inlet 

temperature 

(°C) 

E
1
0

 t
es

t 
2

: 
1
3

/1
1

/2
0
1
2
 

30.0 2300.0 7.3 377.8 2.8 454.2 1.032 22.9 82.7 76.2 

45.0 2300.0 10.9 319.2 3.5 511.2 1.029 24.2 82.1 74.9 

60.0 2300.0 14.5 294.1 4.3 553.5 1.032 24.9 82.0 74.3 

75.0 2300.0 18.1 279.1 5.1 585.1 1.017 25.4 82.0 73.9 

90.0 2300.0 21.8 271.2 5.9 627.5 0.999 26.1 81.8 73.2 

30.0 3600.0 11.4 388.2 4.4 583.9 1.009 27.5 81.1 75.6 

45.0 3600.0 17.1 328.2 5.6 637.4 1.003 27.7 81.1 74.9 

60.0 3600.0 22.7 303.9 6.9 663.7 1.002 27.8 81.1 74.5 

75.0 3600.0 28.4 285.6 8.1 700.4 1.011 27.3 81.1 73.9 

90.0 3600.0 34.1 260.9 8.9 728.4 0.992 26.5 81.7 74.3 
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