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Abstract 

Parkinson's disease (PD) is a severely debilitating neurodegenerative disorder that results in 

motor circuit dysregulation and ultimately, causes impairment of movement.  This condition 

is due to the selective degradation of the dopaminergic neurons in the substantia nigra pars 

compacta in the midbrain, which subsequently results in the pathological symptoms namely 

bradykinesia, resting tremor, postural instability and rigidity.  It was initially hypothesized 

that individuals who develop PD were exposed to an environmental trigger(s) that caused the 

onset of the disease, but more recently, a significant genetic component, coupled to 

environmental factors have been implicated in disease pathogenesis.  Currently, there are 

eight genes (Parkin, PINK1, LRRK2, SNCA, DJ-1, ATP13A2, EIF4G1 and VPS35) that have 

been directly implicated in PD. 

  

Worldwide, the prevalence of neurodegenerative disorders is increasing as populations are 

living longer.  In Europe, Canada and USA, it has been projected that the prevalence of PD 

may increase by a factor of two between 2010 and 2050; approximately a 92% increase.  In 

Tanzania (the only study done in sub-Saharan Africa) an even larger increase of 184% 

between 2005 and 2025 is predicted, due to the fact that the speed of populations ageing in 

developing countries, will exceed that of developed countries.  Research into the causes and 

risk factors underlying neurodegenerative disorders such as PD is therefore urgently needed 

for policy makers and governments in developing nations to take appropriate action to deal 

with this impending health care problem.  

 

The aim of the present study was to investigate the molecular aetiology of a group of South 

African PD patients.  A total of 262 patients from various ethnic backgrounds were recruited 

for the study, and 35% had a positive family history of PD with the average age at onset 

(AAO) being 54.3 years of age (SD = 12.5 years).  Mutation screening of the known PD 

genes  (Parkin, PINK1, LRRK2, SNCA and DJ-1) was performed using high resolution melt 

and Sanger sequencing.  Genotyping was done using fluorescently-labelled PCR primers 

followed by electrophoresis on an ABI 3130xl genetic analyser (for CTG repeats in JPH3) 

and with a KASP™ Genotyping Assay (for a 16bp indel in DJ-1).  In order to identify a 

novel PD-causing gene, whole exome sequencing (WES) was conducted on three Afrikaner 

probands with an Illumina Genome Hiseq 2000
TM

 and the sequences were aligned using the 
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NCBI Human Reference Genome 37.2.  The BORG (Bio-Ontological Relationship Graph) 

semantic database, which models the relationship of human and model organism genes to 

functions, pathways and phenotypes, was used to filter and prioritise genetic variants shared 

between the three PD exomes. 

 

It was determined that the known PD genes do not play a significant role in disease 

pathogenesis in the South African patients as only 15/262 (5.7%) of the patients harboured 

mutations:  seven in Parkin,  one in PINK1,  six in LRRK2 and one in SNCA.  Only one of the 

patients harboured a 16bp indel variant at the transcription start site of DJ-1.  None of the 

Black PD patients had pathogenic repeat expansions in JPH3 thereby excluding Huntington 

disease-like 2 as a cause of the disease phenotype.   

 

Genealogical analysis revealed that six of the apparently unrelated Afrikaner PD probands 

were related to a founder couple that immigrated to South Africa in the 1600s which suggests 

that there is a possible founder effect for the disease.  Bioinformatics analysis of WES data 

on three of the probands identified 21 variants in 12 genes that were present in all three PD 

exomes and fulfilled various criteria.  Sanger sequencing was used for verification of five 

variants and of these, two (in CDC27 and NEDD4) were found to be artefacts.  The 

remaining three (in HECDT1, TBCC and RNF40) were excluded based on the lack of co-

segregation with disease and the high frequency of the allele in controls.  Further work is 

necessary to verify the presence of the remaining sixteen variants and to characterise each of 

them for their possible pathogenicity. 

 

The discovery of novel PD-causing genes is important as this may shed light on the pathways 

or processes that are involved.  A current hypothesis implicates the lysosome-dependent 

pathway as a unifying biochemical pathway that can account for the phenotypic spectrum 

within PD.  Notably, although Mendelian forms are thought to account for only about 10-

15% of cases, the study of Mendelian inherited variants is likely to provide insight into the 

pathophysiology of the more common sporadic form of this condition.  Dissecting the key 

molecular mechanisms underlying PD will provide critical information for improved 

treatment strategies and drug interventions that will ultimately prevent or halt neuronal cell 

loss in susceptible individuals. 
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Opsomming 

Parkinson se siekte (PS) is 'n erge neurodegeneratiewe bewegings-siekte, wat  motorstroombaan 

disregulasie veroorsaak.  Dit lei uiteindelik tot beperkte bewegings vermoëns.  Hierdie toestand 

word veroorsaak weens die selektiewe agteruitgang van die dopaminergeniese neurone in die 

substantia nigra pars compacta in die midbrein, wat later lei tot die patologiese simptome 

naamlik: bradykinesia, rustende spiersametrekkings, posturale onstabiliteit en rigiditeit.  Daar is 

aanvanklik vermoed dat individue wat PS ontwikkel, aan 'n omgewingsfaktor(e) blootgestel is 

wat die aanvang van die siekte veroorsaak het, terwyl meer onlangs is daar 'n aansienlike 

genetiese komponent tesame met  omgewingsfaktore geïdentifiseer, wat betrokke is by die 

patogenese van die siekte.  Tans is daar agt gene (Parkin, PINK1, LRRK2, SNCA, DJ-1, 

ATP13A2, EIF4G1 en VPS35) wat direk by PS geïmpliseer is. 

 

Wêreldwyd is daar ‗n toenemende voorkoms van neurodegeneratiewe siektes aangesien 

bevolkings langer leef.  In Europa, Kanada en die VSA, is daar geprojekteer dat die voorkoms 

van PS tussen 2010 en 2050 met 'n faktor van twee verhoog kan word.  Dit is ongeveer 'n 92%-

verhoging.  In Tanzanië (die enigste studie wat tot dusver in sub-Sahara Afrika gedoen is) word 

daar selfs ‗n groter toename, van 184% tussen 2005 en 2025 voorspel.  Dit is te danke aan die feit 

dat die bevolkings- veroudering in ontwikkelende lande die van ontwikkelde lande sal oorskry.  

Ondersoeke na die oorsake en risiko-faktore onderliggend aan neurodegeneratiewe siektes, 

byvoorbeeld PS, word dus dringend benodig deur beleidmakers en regerings in ontwikkelende 

lande, sodat hulle die nodige stappe kan neem om hierdie dreigende gesondheidsorg-probleem op 

te los. 

 

Die doel van die huidige studie was om ondersoek in te stel na die molekulêre etiologie van 'n 

groep Suid-Afrikaanse PS pasiënte.  'n Totaal van 262 pasiënte van verskillende etniese 

agtergronde, is gewerf vir die studie.  Hiervan het 35% 'n positiewe familiegeskiedenis van PS en 

die gemiddelde aanvangs ouderdom (AAO) was 54,3 jaar (SD = 12,5 jaar). Mutasie-analise van 

die bekende PS gene is uitgevoer met behulp van hoë resolusie smelt en Sanger 

volgordebepaling.  Genotipering is gedoen met behulp van fluoresserend geëtiketteerde PKR 

inleiers met elektroforese, op 'n ABI 3130xl genetiese analiseerder (CTG herhalings in JPH3), en 

met 'n KASP ™ Genotipering toets (vir 'n 16bp indel in DJ-1).  Ten einde, om 'n nuwe PS-

veroorsakende geen te identifiseer was heel eksoom volgordebepaling (WES) uitgevoer op drie 

Afrikaner PS positiewe pasiënte met 'n Illumina Genome Hiseq 2000™ en die volgorders is 
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gerangskik met behulp van die NCBI Menslike Verwysings Genoom 37.2.  Die BORG (Bio-

Ontologiese Verhoudings Grafiek) semantiese databasis, wat gebaseer is op die verhouding van 

die mens en model organisme gene funksies, paaie en fenotipes, en is gebruik om genetiese 

variante, wat gedeel word tussen die drie PS exome te filtreer en te prioritiseer. 

 

Daar is vasgestel dat die bekende PS gene nie  'n belangrike rol in die patogenese van die siekte 

in die Suid-Afrikaanse pasiënte speel nie.  Dit is aangesien slegs 15/262 (5.7%) van die pasiënte 

bekende mutasies dra: sewe in Parkin, een in PINK1, ses in LRRK2 en een in SNCA. Slegs een 

van die pasiënte het  'n 16bp delesie variant in die transkripsie promotor area van DJ-1 gedra.  

Geen van die Swart PS pasiënte het patogeniese herhalings in JPH3 vertoon nie.  Gevolglik is 

Huntington siekte-agtige 2  uitgesluit as 'n oorsaak van die siekte fenotipe. 

 

Genealogiese analise het getoon dat ses van die skynbaar onverwante Afrikaner PS pasiënte 

verwant is aan 'n stigter paartjie wat in die 1600's na Suid-Afrika geïmigreer het, wat daarop dui 

dat daar 'n moontlike stigter effek vir die siekte is.  Bioinformatiese analise van WES data vir drie 

van die pasiënte, het 21 variante in 12 gene geïdentifiseer, wat in al drie PS exome teenwoordig 

was en verskeie kriteria vervul het.  Sanger volgordebepaling is gebruik vir die bevestiging van 

vyf variante en van hierdie, is twee (in CDC27 en NEDD4) bevind om artefakte te wees.  Die 

oorblywende drie (in HECDT1, TBCC en RNF40) is uitgesluit gebaseer op die gebrek aan 

gesamentlike-segregasie met die siekte en die hoë frekwensie van die allele in die kontrole groep.  

Verdere werk is nodig om die teenwoordigheid van die oorblywende variante te verifieer en om 

elkeen van hulle te karakteriseer vir hulle moontlike patogenisiteit. 

 

Die ontdekking van die nuwe PS-veroorsakende gene is belangrik aangesien dit lig kan werp op 

die stelsels of prosesse wat betrokke is. 'n Huidige hipotese impliseer die lisosoom-afhanklike pad 

as 'n verenigende biochemiese padweg, wat verantwoordelik is vir die fenotipiese spektrum binne 

PS. Alhoewel Mendeliese vorms vermoedelik verantwoordelik is vir slegs omgeveer 10-15% van 

die gevalle, is die studie van Mendelse gene geneig om insig te verkry in die patofisiologie van 

die meer algemene sporadiese vorm van hierdie toestand.  Ontleding van die kern molekulêre 

meganismes onderliggend aan PS sal kritiese inligting vir beter strategieë vir behandeling en 

geneesmiddel-intervensies voorsien, wat gevolglik neuronale sel verlies in vatbare individue sal 

voorkom of beëindig. 
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Outline of the Thesis 
 

In order to improve the flow of the different sub-sections of the study, we have deviated from 

convention by dividing the thesis into nine chapters and the layout is as follows: 

 

 Chapter One provides a comprehensive background on what is currently known 

about Parkinson's disease (PD) worldwide, previous findings on the South African 

patients and the overall aims and objectives of the present study. 

 

 Chapters Two to Eight are the experimental chapters, each including results.  

o Chapters Two, Three, Four, Five and Six outline the mutation screening of 

the known PD genes 

o Chapter Seven describes a study into PD in Black African individuals and its 

possible clinical overlap with Huntington's disease-like 2. 

o Chapter Eight encompasses whole exome sequencing, the first of its kind to 

be performed on South African PD patients, with the underlying hypothesis 

that a founder effect may exist for PD in the South African Afrikaner 

population. 

 

 Chapter Nine provides the general conclusions that can be drawn from the entire 

study, stresses the need for more studies to be carried out on the sub-Saharan African 

populations and also describes future work which may be carried out to further the 

knowledge on South African PD patients. 
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1.1  Introduction 

 

The 4
th

 November 2006 marked the 100
th
 anniversary of the first documentation of  

proteinaceous depositions in the brains of patients (Heemels 2006).  The investigation into 

this broad and complex field began when Alois Alzheimer identified proteinaceous amyloid 

plaques in the brains of his severely demented patients on post-mortem (Alzheimer 1892).  

More than 100 years later, other neurodegenerative disorders such as Parkinson‘s disease, 

Huntington‘s disease and amyotrophic lateral sclerosis have been differentiated and it has 

been demonstrated that patients suffering from these disorders also have proteinaceous 

inclusions and depositions.  To date, definitive answers have yet to be provided to 

Alzheimer‘s original question of whether the depositions are a causal factor in 

neurodegeneration (Rubinsztein 2006).  There are currently two hypotheses that exist 

regarding the development of these disorders:  1) Neurodegeneration causes the 

proteinaceous plaque deposits, but protein aggregation has no causal role in the development 

of the disease;  2) Proteinaceous plaques form aggregations and deposits which subsequently 

result in neurodegeneration (Lansbury and Lashuel 2006).   

 

According to a report published by the World Health Organization (WHO) in 2008, it has 

been estimated that collectively mental, neurological and substance abuse (MNS) disorders 

contribute to as much as 13% of the global disease burden (Mathers et al. 2008) (Table 1.1), 

which is greater than the burden of both cardiovascular disorders and cancer.  Although 

scientific research has provided meaningful insight into MNS disorders, the inability to 

provide a cure or to provide possible preventative strategies for these devastating illnesses, is 

an indication of the lack of understanding of the brain and its pathways - at both a molecular 

and biochemical level (Ferri et al. 2005; Mathers et al. 2008).  There are few available 

treatment strategies for MNS disorders, but even these remain unavailable to the thousands of 

patients who are in need of them, particularly in the developing countries.  It has been 

estimated that in some countries as many as 25% of patients do not have access to anti-

epileptic drugs and alarmingly, as many as 83% of patients are unable to receive anti-

Parkinsonian medication; these figures are estimates for low income or impoverished 

countries such as those on the African continent, the East Asian regions and areas within the 

South Americas (Mathers et al. 2008). 
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Currently, the lack of understanding regarding MNS disorders has led to the exploration of 

the impact of war, natural disasters and other additional environmental factors on disease 

development (Saxena et al. 2008).  The investigation into the role of genes and the 

environment and their interactions will also provide valuable insight into the aetiology of 

MNS disorders.  However, the translation of scientific research into clinical practice remains 

a stumbling block for both treatment and cure of these disorders (Palop, Chin, and Mucke 

2006). 

Parkinson's disease (PD) (OMIM # 168600), the focus of the present study (highlighted in 

Table 1.1), is among the top 14 MNS disorders worldwide and is the second most common 

neurodegenerative disorder, preceded only by Alzheimer‘s disease (Beddington et al. 2008).  

It is characterised by a range of motor symptoms inevitably resulting in an impairment of the 

affected individual‘s motor skills (Gasser 2001).  This disorder was first identified in 1817 by 

the English physician Dr. James Parkinson in his essay entitled “An essay on the shaking 

palsy” (Parkinson 1817).  This appears to be the first known documentation of PD.  

Approximately 60 years after Dr. Parkinson‘s description, the French neurologist Dr. Jean 

Martin Charcot formally recognised Parkinson‘s disease and named it as such.  

 

Table 1.1  Global burden of mental, neurological and substance abuse (MNS) disorders.  

 Worldwide High - income countries Low and middle - income countries 

Rank Cause DALYs
1 

(millions) 

Cause DALYs 

(millions)
 

Cause DALYs 

(millions) 

1 Unipolar depressive 

disorders 

65.5 Unipolar depressive 

disorders 

10.0 Unipolar depressive 

disorders 

55.5 

2 Alcohol abuse 

disorders 

23.7 Alzheimer's and 

dementias 

4.4 Alcohol abuse 

disorders 

19.5 

3 Schizophrenia 16.8 Alcohol abuse disorders 4.2 Schizophrenia 15.2 

4 Bipolar affective 

disorder 

14.4 Drug abuse disorders 1.9 Bipolar affective 

disorder 

12.9 

5 Alzheimer's and 

dementias 

11.2 Schizophrenia 1.6 Epilepsy 7.3 

6 Drug abuse disorders 8.4 Bipolar affective 
disorder 

1.5 Alzheimer's and 
dementias 

6.8 

7 Epilepsy 7.9 Migraine 1.4 Drug abuse disorders 6.5 

8 Migraine 7.8 Panic disorder 0.8 Migraine 6.3 
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9 Panic disorder 7.0 Insomnia 0.8 Panic disorder 6.2 

10 Obsessive compulsive 

disorder 

5.1 Parkinson's disease 0.7 Obsessive 

compulsive disorder 

4.5 

11 Insomnia 3.6 Obsessive compulsive 

disorder 

0.6 Post traumatic stress 

disorder 

3.0 

12 Post traumatic stress 

disorder 

3.5 Epilepsy 0.5 Insomnia 2.9 

13 Parkinson's disease 1.7 Post traumatic stress 

disorder 

0.5 Multiple sclerosis 1.2 

14 Multiple sclerosis 1.5 Multiple sclerosis 0.3 Parkinson's disease 1.0 

Data taken from the World Health Organization The Global Burden of Disease, 2004. 1Disability Adjusted Life 

Year (DALYs) - a unit for measuring the amount of health lost due to disease or injury. 

 

This debilitating disease is currently without a cure, and the pathological degeneration of the 

dopaminergic neurons of the substantia nigra pars compacta (SNpc) in the midbrain is the 

main cause for the movement impairment.  Decreases in the levels of the neurotransmitter 

dopamine at the nerve terminals leads to a dysregulation of the motor circuits (Cookson and 

Bandmann 2010) (figure 1.1).  Motor circuit dysregulation not only affects movement in 

several ways, but also has a major impact on the psychiatric and cognitive states of the 

patient (Cookson and Bandmann 2010). 

The pathology of PD is relatively well understood but the aetiology of the disease remains 

largely unknown.  Historically, the predominant view regarding the aetiology was that it was 

solely due to environmental factors (Dawson and Dawson 2003).  In recent times, it is 

hypothesized that a combination of genetic and environmental factors may lead to disease 

development (Moore et al. 2005).  For this reason, along with the significant clinical diversity 

between PD patients, it is likely that several molecular pathways involving different genes 

and effectors will influence the survival of the dopaminergic neurons (Moore et al. 2005).  

These pathways include the autophagy-lysosomal and ubiquitin proteasomal systems - both 

of which are involved in the degradation of excess, unwanted and misfolded proteins within 

the cell (Pan et al. 2008), cell signalling, mitochondrial electron transport, glucose utilization 

and glucose sensing (Betarbet et al. 2006).  Mitochondrial dysfunction, impaired drug and 

toxin handling as well as protein misfolding/aggregation are alternate pathways which could 

lead to an increase in neurodegeneration and subsequent PD . 
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Figure  1.1  A representation of the brain regions affected by PD.  The yellow regions are an indication of 

the affected regions – voluntary movements are initiated in the motor cortex and output regulated to the brain 

stem which is comprised of the midbrain, medulla and spinal cord.  The transfer of the output signal is managed 

by so-called sub-cortical targets which include the thalamus, putamen and subthalamic nucleus (Taken from  

Farrer 2006). 

 

1.2  Diagnosis, Symptoms and Treatment of PD 

 

Diagnostic criteria used for the clinical diagnosis of PD have been established by the UK 

Parkinson‘s Disease Society Brain Bank (Gibb and Lees 1988).  The clinical diagnosis is 

predominantly based on the motor symptoms presented by the patient (Fearnley and Lees 

1991) and these include: 

 bradykinesia 

 resting tremor 

 rigidity 

 postural instability 

The diagnosis of the disorder is dependent on the presence of three of the four above 

mentioned symptoms, but bradykinesia (the inability of a patient to start and continue 

movements, as well as the inability to adjust the positioning of the body) is an essential 

symptom (Brooks 2010).  These motor symptoms are thought to arise in a patient when 
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approximately 80% of the striatal dopamine and 50% of the nigral neurons are lost (Fearnley 

and Lees 1991).  Non–motor symptoms of PD include the development of dementia as well 

as other psychiatric disturbances (Siderowf 2001).  Additionally, it has been reported that 

patients may have visual hallucinations, as well as aggression and paranoia, particularly 

towards family members  (Naimark et al. 1996).  A number of additional, early symptoms 

have been recorded in numerous patients who subsequently went on to develop PD and these 

are now considered when examining and diagnosing possible PD patients.  These symptoms 

precede the onset of the disease by up to ten years and include olfactory disturbances (such 

as a loss of smell) incontinence, constipation, depression and sleep disturbances (Adler 2005; 

Parkinson‘s Disease Foundation).  Sensory symptoms such as muscle soreness and 

numbness in the extremities (Samii, Nutt, and Ransom 2004), as well as variations in 

sleeping patterns, dyskinesias and excessive sweating have been documented but have also 

been shown to be exacerbated when treatment therapies are employed (Samii, Nutt, and 

Ransom 2004).   

Treatment strategies for PD patients are relatively limited, with the administration of 

levodopa (a precursor of dopamine) being the most common and to date, most effective 

treatment strategy (Gibb and Lees 1988).  Additional treatment approaches include 

monoamine oxidase (MAO) inhibitors, dopamine antagonists and amantadine (Jankovic 

2006).  Surgery is also an effective treatment for certain patients and may include the 

implantation of deep brain simulation (DBS) devices that are implanted into the thalamus, 

sub thalamic nucleus or palladium (University of Maryland Medical Centre).  Additionally, 

advancements in stem cell therapy, the transplantation of foetal neurons and gene silencing 

techniques provide possible alternative treatment strategies for PD (Snyder and Olanow 

2005; McCormack et al. 2010).   

The distinction of PD from other Parkinsonian disorders is difficult due to overlapping 

symptoms and for this reason various diagnostic techniques using neuro-imaging have been 

developed.  However, these have not been widely implemented and often a patient's rapid 

response to levodopa treatment, is typically used for confirming a PD diagnosis  (Brooks et 

al. 2010).   
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Figure 1.3 A representation of the substantia nigra of a PD patient and an unaffected individual.  The 

substantia nigra is almost completely indistinguishable in an affected individual.  This is due to the 

dopaminergic neuronal loss (Taken from  http://gwc maricopa.edu/class/bio201/parkn/jcadis51 htm). 

 

The degradation of the substantia nigra is not the only pathological characteristic that can be 

identified following autopsy in PD patients.  The presence of Lewy bodies (LBs) (figure 1.4) 

and Lewy body neurites can be identified in the remaining neurons found in the substantia 

nigra (Jankovic 2008).  Both can be visualized through immunohistochemical staining (Love 

2005).  LBs are intra-cytoplasmic inclusions that are highly proteinaceous and have a dense 

eosinophilic core, while Lewy body neurites are nerve cell processes that contain aggregates 

of α-synuclein and other proteins, all of which are highly ubiquinated (Gasser 2001).  The 

major fibrillar component of LBs and Lewy body neurites is the protein, α-synuclein that is 

predominantly expressed in the neocortex, substantia nigra, cerebellum and thalamus  

(Dawson and Dawson 2003; J Jankovic 2008).  The current hypothesis regarding these 

pathological hallmarks is that amino acid changes, whole gene duplications or triplications in 

α-synuclein, may lead to an increased possibility that aggregations of this protein will form, 

ultimately resulting in neuronal dysfunction and death (Goedert and Spillantini 1998; 

Karpinar et al. 2009).   
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Figure 1.4 An immunohistochemical stain showing a Lewy body (LB) in an affected individual.  LBs are 

intra-cytoplasmic inclusions which are identified in PD patients through autopsy (Taken from 

http://www.virtualmedstudent.com/links/neurological/parkinsons html). 

 

1.4  Incidence and Prevalence of PD 

 

The incidence of a disease is defined by the total number of new cases that present in a given 

population over a specified time.  Prevalence is defined as the portion of individuals within a 

population that are affected by the disease (Sellbach et al. 2006).  PD occurs worldwide, but 

the prevalence and incidence of this disorder differs significantly, particularly across 

geographic locations as well as across various ethnic groups – generally lower rates have 

been reported in Africa (Okubadejo et al. 2006).  It has been hypothesized that this may be 

due to genetic and environmental variations as well as cultural and ethnic differences 

between patients (Okubadejo et al. 2006).  The crude incidence rate of PD globally is 

estimated to be around 17 per 100 000 per year – in Africa, this figure is estimated to be at 

around 4.5 per 100 000 (Melcon et al. 1997), significantly lower than the global rates.  Africa 

has a crude prevalence rate of between 7 and 43 per 100 000, while globally, this figure has 

been estimated to be between 7 and 657 per 100 000 (Melcon et al. 1997; Okubadejo et al. 

2006).  PD is not, however restricted to older individuals.  Patients who present with clinical 

manifestations of the symptoms before the age of 50 years, are considered to have early onset 

PD (Periquet et al. 2003).  Late onset PD occurs in patients with an age at onset (AAO) of 50 
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years and older.  Juvenile PD has been recorded, where patients have an AAO of 20 years 

and younger.  It is estimated that PD affects 1% of individuals over the age of 65 years; this 

figure increases significantly as the age of the population increases, with as many as 4% of 

individuals over the age of 85 being affected by the disorder (Eeden et al. 2003).   The 

incidence rate of PD has also been recorded as being higher in men (almost double) than in 

women (Luecking et al. 2000).  A proposed hypothesis for these gender differences is the fact 

that women produce oestrogen which may have a neuroprotective role (Gillies and McArthur 

2010).  The proposed mechanisms involving oestrogen include an increase in blood flow that 

promotes the removal of neurotoxins from the cranial regions, antioxidant functions and the 

inhibition of the MAO enzyme  (Dluzen and McDermott 2000).   

 

1.5  Environmental Risk Factors for PD 

 

Neurodegeneration involves a loss of neuronal structure as well as function.  Prior to 

advancements in molecular genetics, it was initially hypothesized that PD was caused by 

exposures to various environmental factors (Elbaz and Tranchant 2007).   Studies have 

concluded that it is highly unlikely that neurodegenerative disorders such as PD are caused by 

exposures to a single environmental agent (Cannon and Greenamyre 2011).  Instead, 

epidemiological studies have provided evidence that there are a number of compounds and 

risk factors that may play a role in the development of PD (Cannon and Greenamyre 2011).  

Exposure to pesticides, herbicides and fungicides such as rotenone and paraquat are some of 

the most well studied examples.  Paraquat is commonly used in developing countries as a 

broad-spectrum herbicide and does not appear to enter the brain across the blood-brain barrier 

but is transferred through a neutral amino acid channel  (McCormack 2003).  Paraquat has 

been identified as a role player in redox cycling, thereby exerting a negative effect on 

dopaminergic neurons (Cannon and Greenamyre 2011) (figure 1.5).  Rotenone is another 

toxin that has been widely studied and is used as an insecticide.  It is a lipophilic compound 

that can cross the blood-brain barrier (figure 1.5); it is a selective inhibitor of mitochondrial 

complex I and has been implicated in the development of PD (Cannon and Greenamyre 2011; 

Tanner et al. 2011).  Another molecule capable of crossing the blood brain barrier is the 

synthetic bi-product of heroin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Dauer 

and Przedborski 2003).  This molecule is highly neurotoxic and when transported into the 

dompaminergic neurons of the substantia nigra, irreparable damage to these neurons results 
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in Parkinsonian features.  MPTP is also used to generate primate models of PD (Dauer and 

Przedborski 2003).  

 

 

Figure 1.5  Toxin entry into the brain and the interactions with various cell types.  Toxins may enter the 

brain and central nervous system (CNS) through transporters, if it shares structural similarity with another 

molecule.  Alternatively, the toxins may be transported across the blood-brain barrier.  Ex, example;  BBB, 

blood brain barrier (Taken from Cannon and Greenamyre 2011). 

 

Other environmental compounds that have been implicated in PD pathogenesis include 

organophoshates, organochlorines and carbamates but there is very limited epidemiological 

data available to support this (Cannon and Greenamyre 2011).  Exposure to metals has also 

been investigated in various neurodegenerative disorders;  increases in iron levels have been 

observed in the substantia nigra of PD patients but it is unclear whether accumulations of the 

compound is as a result of the disease process, or whether the increased iron levels contribute 

to the pathogenesis of the disorder (Oakley et al. 2007).  Abnormally high exposures to 

manganese result in striatal dopamine depletion and subsequently Parkinsonism, but the 

phenotypic features differ distinctly from typical PD (Santamaria and Sulsky 2010).  

Parkinsonism is defined as the clinical manifestation of some PD symptoms but the 

predominant features are atypical or additional neurological features not commonly found in 

typical PD cases (Klein, Schneider, and Lang 2009). 
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Manganese exposure also plays a significant role in mitochondrial dysfunction as it 

accumulates in the mitochondria and impairs oxidative metabolism (Cannon and Greenamyre 

2011).  Additional environmental factors that may contribute to PD pathogenesis include 

rural living, well water drinking and head trauma (Sanyal et al. 2010).  It has been suggested 

that patients who have suffered severe head trauma are two and a half times more likely to 

develop PD (Goldman et al. 2006; Elbaz and Tranchant 2007; Tanner et al. 2011).  It should 

be noted however, that environmental exposures do not only predispose to disease 

development as certain factors such as smoking and caffeine intake have been shown to 

protect against the development of PD.  Smoking is one of the most widely studied lifestyle 

factors and its role in PD has been extensively studied (Wirdefeldt et al. 2011).  Numerous 

mechanisms have been proposed for the way in which smoking may play a neuroprotective 

role - the compounds contained in tobacco (anabasine, cotinine, hydroquinone, nicotine and 

nomicotine) may play a cumulative role in neuroprotection, but nicotine is proposed to be the 

most likely compound as it is a dopaminergic stimulant and relieves PD symptoms (Alves et 

al. 2008; Wirdefeldt et al. 2011).  Interestingly, the combination of nicotine and 

hydroquinone have been shown to inhibit the formation of α-synuclein fibrils in mouse 

models, thereby providing strong evidence of the neuroprotective role of smoking in PD 

(Hong, Fink, and Uversky 2009; Wirdefeldt et al. 2011).  Caffeine is the most widely used 

psychoactive stimulant because of its presence in substances such as coffee and energy drinks 

as well as other commercially available products  (Douna et al. 2012).  It has been shown to 

abate the depletions in striatal dopamine in mouse models that had been treated with MPTP 

to induce Parkinsonian features.  Further exploration also revealed that continual intake of 

caffeine reduced MPTP toxicity and resulted in overall locomotor tolerance, further 

implicating its plausible neuroprotective effects (Xu et al. 2010).  It is hypothesized that the 

neuroprotective effects of caffeine are due to the fact that it is an adenosine receptor 

antagonist - this is defined as a drug capable of attaching to a specific receptor and 

subsequently preventing the binding of any other molecule to that specific receptor site 

(Julien 2004; Wirdefeldt et al. 2011).  It is thought that the adenosine receptor anagonism is 

the most likely way in which caffeine promotes neuroprotection and that this mechanism of 

action may be further mediated by the attenuation of neuronal glutamate release as the 

adenosine receptor antagonists facilitate excitotoxic glutamate release in the CNS (Xu et al. 

2010; Douna et al. 2012).   
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1.6  Genetic Aetiology of PD 

 

Over the past 15 years, advancements in molecular genetics have provided significant insight 

into the understanding of PD (Luecking et al. 2000).  The theory that PD is largely sporadic 

and without a genetic aetiology has been discarded and genetic studies have strengthened the 

hypothesis that the disease has a significant genetic component (Polymeropoulos et al. 1996; 

Luecking et al. 2000).  Mutations within six genes namely SNCA, LRRK2, Parkin, DJ-1, 

PINK1 and ATP13A2, have been conclusively identified in cases of autosomal dominant and 

autosomal recessive PD (Table 1.2).  More recently, two new genes namely VPS35 and  

EIF4G1 have been included in the list of PD causing genes but to date, only one pathogenic 

mutation has been identified in each of these genes (Vilariño-Güell et al. 2011; Chartier-

Harlin et al. 2011). 

 

The aetiology of PD still remains poorly understood, but the continual investigation into the 

identification of PD genes and development of new animal models have provided significant 

insight into the pathobiology of the disease (Moore et al. 2005).  Advances in molecular 

research have provided evidence that mitochondrial dysfunction (PINK1, DJ-1 and Parkin), 

dysfunctions in the ubiquitin-proteasome system and the autophagy-lysosomal pathway 

(Parkin, ATP13A2  and SNCA) may result in PD pathogenesis.  Alterations in the kinase 

signalling pathways (PINK1  and  LRRK2)  are additional pathways that have been implicated 

in the disease (Moore et al. 2005; Brooks 2010). 

The known PD genes screened in this study will be discussed in more detail in Chapters Two 

to Five. 
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Table 1.2  List of the genes involved in familial PD. 

Gene Locus Form of PD Inheritance AAO 

(years) 

Mutations Protein Protein Function 

SNCA PARK1/4 Early onset AD 20 – 85 A30P;  E46K;  A53T;  

gene duplications and 

tripliactions 

Alpha synuclein Plays a role in synaptic vesicle recycling, 

compartmentalization of 

neurotransmitters  

Parkin PARK2 Juvenile and 

early onset 

AR 16 – 72 Various point 

mutations;  exonic 

rearrangements 

Parkin Cell signalling, protein clearance and 

degradation 

PINK1 PARK6 Early onset AR 20 – 40 Various point 

mutations;  rare, large 

deletions 

PTEN putative induced 

kinase 

Unknown;  possible role in mitochondrial 

protection during oxidative stress 

DJ – 1 PARK7 Early onset AR 20 – 40 Point mutations;  large 

deletions 

Oncogene DJ-1 Unknown; possible role in cellular 

protection against oxidative stress 

LRRK2 PARK8 Late onset AD 32 – 79 7 point mutations Leucine rich repeat kinase 

2 

Cellular and protein interactions and cell 

signalling 

ATP13A2 PARK9 Juvenile and 

early onset 

AR 11 – 16 Point mutations P5 subfamily of ATPases Unknown;  cellular cation homeostasis 

and maintenance of neuronal integrity and 

possible lysosomal functioning 

AD= autosomal dominant,  AR = autosomal recessive;  AAO= Age at onset 
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As described previously, PD can only be diagnosed with certainty at autopsy.  For this 

reason, it is important to exclude other neurodegenerative disorders which present with 

similar overlapping clinical feartures or Parkinsonism.  Some disorders share overlapping 

clinical features with PD particularly during the early stages of the disease and some of these 

diseases include Huntington's Disease-like 2 (HDL2), spinocerebellar ataxia (SCA) and 

fragile X Tremor Ataxia Syndrome (Table 1.3) (Klein, Schneider, and Lang 2009).  HDL2 is 

a rare neurodegenerative disorder that has been reported in very few patients and is a result of  

triplet repeat expansions in the JPH3 gene (Margolis 2001; Margolis et al. 2004).  This 

neurodegenerative disorder is characterized by selective neuronal degeneration, dementia and 

movement abnormalities (Bardien et al. 2007).  This disorder is discussed in more detail in 

Chapter 7.  There are numerous subtypes of SCAs, all of which are characterized specifically 

by the lack of coordination of walking in the patients – this inability to coordinate walking is 

also coupled to a poor control of hand and eye movements, as well as speech impairments 

(Miyai et al. 2011).  Due to advancements in genetics, genetic testing can now be used 

successfully to differentiate between most of the disorders that are listed in Table 1.3. 

 

Table 1.3  Some examples of disorders that can present clinically with a Parkinsonian 

phenotype. 

Condition Gene Involved Clinical Phenotype 

PARK1 SNCA Parkinsonism associated with the G209A 

mutation 

PARK9/ Kufor Rakeb 

Syndrome 

ATP13A2 Kufor Rakeb disease—levodopa-responsive 

parkinsonism with pyramidal degeneration, 

supranuclear gaze palsy and dementia 

PARK14 PLA2G6 Adult-onset dystonia-parkinsonism 

DYT3 TAF1 X-linked dystonia-parkinsonism / Lubag 
disease; response to deep brain stimulation 

surgery 

DYT5 (DRD) Tyrosine hydroxylase Tyrosine hydroxylase deficiency in infancy 

DYT12 ATP1A3 Rapid-onset dystonia-parkinsonism in an Irish 

kindred 

DYT12 ATP1A3 The first Asian case of rapid-onset dystonia 

parkinsonism 

SCA2 Ataxin 2 ‗‗Apparently sporadic Parkinson‘s disease‘‘ 

SCA2 Ataxin 2 Dopa-responsive parkinsonism 

SCA3 Ataxin 3 Parkinsonism in Machado-Joseph disease 

SCA6 CACNA1A Parkinsonism and reduced nigrostriatal 

function 

NBYA1/ PKAN PANK2 Akinesia in two siblings compound, 

heterozygote with two missense mutations in 

the PANK2 gene 

FXTAS/ Fragile X FMR1 Fragile X Tremor Ataxia Syndrome 

HDL2 JPH3 Clinical heterogeneity in a South African 
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family 

Aceruloplasminemia CP Parkinsonism 

GM1 type 3 gangliosidosis GLB1 Dystonia-parkinsonism 

PKU - Phenylketonuria presenting as L-Dopa 

responsive parkinson syndrome 

 Taken from Klein, Schneider, and Lang 2009. 

 

1.7  PD Molecular Research in South Africa 

 

Extensive investigation into the genetic basis of PD in the European, Japanese and North 

American populations has been carried out, but little is known about the genetic cause of PD 

in Africa, particularly in the sub-Saharan African regions (Okubadejo 2008).  The drive to 

identify other genes that may be involved in the development of PD or may act as 

susceptibility or protective factors, remains important (Farrer 2006; Gasser 2010).  It is 

hypothesized that  due to the demographic transition which Africa as a whole is experiencing, 

the population is likely to become significantly older and therefore the incidence of 

neurodegenerative disorders such as PD in African countries, will increase (Okubadejo et al. 

2006). 

Epidemiological data available for PD in Africa to date suggests that it is uncommon,  but 

very few studies have focussed specifically on sub-Saharan African patients and subsequently 

there is very limited knowledge about the biochemical pathways that are affected in these 

patients.  It has been suggested that PD in black patients may present with different clinical 

features, making disease identification rather than diagnosis a possible problem (Okubadejo 

et al. 2006; Haylett et al. 2012). 

The PD genetics research group at the Division of Molecular Biology and Human Genetics at 

Stellenbosch University in Cape Town, South Africa is currently the only group studying the 

genetic aetiology of PD in South African patients.  Results to date (Table 1.4) from the 

studies conducted by the group have concluded that mutations in the known PD genes have 

low frequencies in affected patients (Bardien et al. 2009; Keyser et al. 2010; Haylett et al. 

2012).  

 

 

Stellenbosch University http://scholar.sun.ac.za



 

17 

 

Table 1.4  Mutations previously identified in South African PD patients. 

PD genes implicated in autosomal recessive PD 

Gene Patient No. Ethnicity AAO Mutation Family History 

 

 

 

 

 

 

 

Parkin 

37.12 Black 45 Heterozygous duplication 

of exon 2 + heterozygous 

deletion of exon 9 

Yes 

53.44 Mixed Ancestry 27 Homozygous deletion of 

exons 3+4 

No 

56.45 Caucasian (Afrikaner) 27 Homozygous deletion of 

exon 4 

Yes 

77.60 Caucasian 25 Heterozygous 

P113fsX163 + 

heterozygous deletion of 

exon 3 

Yes 

78.74 Black 56 Heterozygous G430D + 

heterozygous deletion of 

exon 3 

No 

78.76 Caucasian 27 Heterozygous G430D + 

heterozygous deletion of 

exon 4 

No 

81.03 Caucasian 48 Heterozygous duplication 

of exon 2-6 + 

heterozygous duplication 

of exon 5 

Yes 

PINK1 68.10 Indian 37 Homozygous Y258X Yes 
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PD genes implicated in autosomal dominant PD 

 

 

 

LRRK2 

60.47 Mixed Ancestry 47 Heterozygous G2019S Yes 

68.06 Caucasian 42 Heterozygous G2019S Yes 

81.64 Caucasian 70 Heterozygous G2019S Yes 

82.57 Caucasian 63 Heterozygous G2019S No 

84.25 Caucasian 58 Homozygous G2019S Yes 

85.57 Mixed Ancestry 62 Heterozygous R1441C Yes 

SNCA 42.35 Caucasian 46 Whole gene triplication Yes 

Heterozygous variants identified with unknown pathogenic significance 

 

 

 

Parkin 

42.06 Caucasian (Afrikaner) 37 R402C No 

51.70 Caucasian (Afrikaner) 42 E310D No 

55.54 Caucasian (Afrikaner) 56 Duplication of exon 2 No 

65.79 Caucasian 55 H200Q Yes 

68.22 Mixed Ancestry 50 Duplication of exons 2+3 No 

81.27 Mixed Ancestry 49 Heterozygous deletion of 
exon 4 

Yes 

84.47 Mixed Ancestry 61 Deletion of exons 3+4 No 

DJ-1 50.31 Mixed Ancestry 38 g.6_+10 del (16bp 

deletion at transcription 

start site) 

No 

LRRK2 68.07 Caucasian (Afrikaner) 50 Q2089R Yes 
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1.8  Mutation Detection Approaches used in the Present Study 

 

There are a wide variety of different techniques that have been developed for mutation 

screening, each with their own advantages and limitations.  The methods employed in the 

present study include high resolution melt, Sanger sequencing and WES in order to identify 

pathogenic mutations.  The principles underlying these methods will be described briefly in 

this section. 

 1.8.1  High Resolution Melt 
 

High resolution melt (HRM) is an analytical method in which DNA fragments are 

distinguished from each other through their melting behaviour.  It is an expansion of existing 

DNA dissociation methods, that allow for the characterization of DNA fragements according 

to the way in which they dissociate ('melt').  Double stranded DNA (dsDNA) (pre-melt 

phase) is converted to single stranded (ss) DNA (post-melt phase) as it is subjected to 

increases in temperatures (figure 1.6).  This is analysed or monitored by adding a fluorescent 

dye (e.g. EvaGreen, Syto 9 and Sybr Green) to the PCR reaction mixture that is allowed to 

intercalate within the dsDNA of the PCR products.  As the strands separate, the dye is 

released, causing a decrease in fluorescence as the temperature increases.  HRM 

instrumentation collects and analyses fluorescent signals in real time, thereby characterizing 

the different DNA fragments. 

 

Figure 1.6 Illustration of the principle underlying high resolution melt. With an increase in temperature 

double stranded (ds) DNA melts and becomes single stranded (ss) DNA.  As the melt progresses, an 

intercalating dye is released - the fluorescence produced is used to create a thermal denaturation profile which is 

unique for each DNA sequence.  As the temperature increases, more of the dsDNA is converted to ssDNA.  

Fluorescence is plotted against temperature (Taken from Introduction to HRM Analysis 
http://www.kapabiosystems.com/public/pdfs/kapa-hrm-fast-pcr-

kits/Introduction to High Resolution Melt Analysis Guide.pdf). 
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HRM is a relatively simple and cost effective means to screen patients for known mutations.   

It is also a means of identifying novel variants and is sufficiently sensitive to identify single 

base pair changes.  An additional advantage is that it is a closed-assay system, and no post 

PCR processing is therefore necessary. 

 1.8.2  Sanger Sequencing 
 

Samples with altered denaturation profiles identified though the use of HRM were sequenced 

using direct sequencing to characterize the sequence variant.  This was performed using the 

Sanger Sequencing method, otherwise known as the ‗Chain terminator sequencing method'.  

In this technique, the DNA is denatured into single strands, and primers that are specific to 

the sequence are added and annealing takes place.  The DNA fragments are truncated with di-

deoxynucleotides (ddNTPs) that are added to the reaction mix in addition to the 'normal' 

dNTPs.  The addition of the ddNTPs allows for the generation of DNA fragments that have 

been terminated at locations where these nucleotides are inserted as they prevent the addition 

of further nucleotides (Cawley 2005; Metzenberg 2008).  The resulting fragments, varying by 

1bp each, are then separated in glass capillaries which are filled with a viscous polymer and 

analysed using specialized software (Cawley 2005; Metzenberg 2008). 

 1.8.3  Whole Exome Sequencing 
 

The human genome is composed of an estimated 3 billion nucleotides, but only 

approximately 1.22% of these are thought to form part of the protein coding regions, namely 

the exons  (Ng et al. 2010).  Whole exome sequencig (WES) is a relatively new molecular 

technique which allows for the identification of novel genes and disease causing mutations by 

sequencing only the exons;  it is estimated that there is a total of approximately 180 000 

exons in the human genome (Teer and Mullikin 2010).  Essentially, the exome therefore 

represents a highly enriched subset of the genome in which to search for pathogenic 

mutations with large effect sizes.   

 

There are several basic steps which are needed before the actual sequencing of the exons can 

be carried out.  Genomic DNA is used as the input DNA and is used to construct a shotgun 

library; the DNA is randomly sheared and the fragments that are generated by this shearing 

process are flanked by specific adaptors.  Library enrichment follows through a process 

known as aqueous-phase hybridization capture;  this allows for fragments of sheared DNA, 
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which are complimentary to the exons to hybridize to biotinylated DNA in the presence of 

so-called 'blocking oligonucleotides' which are complimentary to the adaptors.  Hybridized 

fragments are then isolated through the use of biotin-streptividin-based pull-down and this 

allows the target DNA to be captured, amplified and sequenced through the use of massively 

parallel sequencing approaches.  This is then followed by the mapping, alignment and 

identification of sequence variants (figure 1.9) (Bamshad et al. 2011). 

 

Figure 1.9  Basic workflow of whole exome sequencing (WES) (Taken from Bamshad et al. 2011).    

 

One of the biggest challenges currently faced regarding the use of WES as a method to 

identify novel disease-causing mutations, is the definition of the exome.  Although significant 

advancements have been made, a considerable amount of uncertainty regarding which 

regions of the human genome are truly protein-coding regions still exists (Bamshad et al 

2011).  The initial approach when selecting the target regions for WES was a very 

conservative one, with only a 'high confidence' subset of genes being identified as targets and 

thus studied further - most of the exons have been annotated in the consensus CDS (CCDS) 

(http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) (Bamshad et al. 2011).  As the 

capacity of sequencing has increased, so has the target range, with a number of proteins with 

a postulated function now being included in the target regions.   

 

Three main vendors (Agilent,  Illumina and NimbleGen) provide commercial kits that target 

exons obtained from the CCDS, as well as the additional hypothetical proteins.  The 
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differences in these commercial kits reinforce the drawback of not being able to fully define 

the exome;  Agilent provides a SureSelect Human All Exon 50 Mb Kit
™

, which targets exons 

annotated by the GENCODE (http://www.sanger.ac.uk/gencode/) project, CCDS and 

includes 10 base pairs of flanking sequence for each region.  Non-coding RNAs are also 

included and these are obtained from miRBase and Rfam databases respectively  - this kit 

also captures a large portion of the putative exome, with up to 50Mb being captured per 

single sequencing reaction  

(http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageTy

pe=ProductData&PageID=2318).   

 

Illumina provides the TruSeq
™

 Exome Enrichment  Kit that allows for a greater region of the 

exome to be sequenced as 64Mb of the human genome can successfully be targeted.  This kit 

covers exons defined in the CCDS, RefSeq (coding exons and exons plus short intronic 

sequences) (http://www.ncbi.nlm.nih.gov/RefSeq/),  Encode/Gencode coding exons as well 

as predicted microRNA targets (http://www.microrna.org/microrna/getDown-loads.do).  This 

kit therefore provides a broad coverage of all of the exons in the databases, but provides 

insight into non-coding DNA in the exon flanking regions such as the promoter regions as 

well as 3'UTRs 

(http://www.illumina.com/documents/products/datasheets/datasheet truseq exome enrichme

nt_kit.pdf). 

 

The Roche NimbleGen SeqCap EZ Exome v3
™ 

is another commercially available kit that can 

be used for exome capture.  This kit also covers 64Mb of the human genome and makes use 

of six different databases to collect the information needed for the coding portions of the 

genome.  It makes use of Gencode (http://www.gencodegenes.org/) and miRBASE 

(http://www.mirbase.org/) as two additional databases for exome identification whereas all 

the other kits only make use of dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), Vega 

(http://vega.sanger.ac.uk/index.html), Ensembl (www.ensembl.org), RefSeq 

(http://www.ncbi.nlm.nih.gov/RefSeq/) and CCDS.  This kit also targets microRNAs.  For 

exons which are smaller than 100bp in length, this kit lengthens the reads to more than 

100bp, thus covering a greater region of the genome 

(http://www.nimblegen.com/products/seqcap/ez/v3/index.html). 
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The development of commercial kits has not, however, come without a number of 

restrictions.  The biggest and most significant issue encountered is the fact that unannotated 

genes or exons are missed.  Additionally, the efficiency of the capture probes varies 

significantly and for this reason, some regions (especially those that are GC rich) may not be 

targeted with the same efficiency as others and certain regions may not be sequenced at all.  

Another cause for concern is that not all target fragments are amplified with identical 

efficiency thus making alignment and variant calling problematic. 

However, despite the stumbling blocks that are encountered when using WES, this strategy 

provides a powerful means to identify possibly novel disease-causing mutations (Bilgüvar et 

al. 2010; Bamshad et al. 2011).  The feasibility and plausibility of this approach as a new and 

successful method to identify novel candidate disease-causing mutations was demonstrated 

when a novel gene was identified and successfully implicated in Miller syndrome, a rare 

Mendelian disorder (Ng et al. 2010).  This study was the first documentation of the use of 

WES as a means to identify novel genes in rare disorders;  Ng and colleagues performed 

WES on four patients (two of the affected patients were siblings and the other two affected 

patients were unrelated).  The exons, as well as all of the splice donor and acceptor sites were 

sequenced; the splice donor and acceptor sites were included as many variations in these 

regions have been linked to Mendelian disorders (Kobelka 2010).  Synonymous variants were 

assumed to be non-pathogenic and in this study, only non-synonymous coding variants and 

variants identified in splice donor and acceptor sites were prioritized (Ng et al. 2010).  These 

variants were then compared to various databases and a list of novel candidate genes 

subsequently identified.  The novel variants identified in both siblings were then compared to 

those variants identified in the other two affected patients and based on the finding of 

overlapping novel genes among all four affected patients, a novel candidate disease-causing 

gene, DHODH was identified (Kobelka 2010) (figure 1.10). 

The identification of the novel disease-causing gene identified by Ng and colleagues provided 

the first significant evidence that WES is a powerful tool for studying inherited disorders.  In 

doing so, a framework for the identification of rare mutations can be developed and 

importantly, this approach can be used for small families not amenable to traditional 

approaches such as linkage analysis (Ng et al. 2010; Kobelka 2010). 
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Figure 1.10 Basic filtering approach used to narrow down WES results to identify disease-causing genes.   

Kindred 1 is the affected sibling pair and kindreds 2 and 3 are unrelated, affected patients.  Based on the 

overlapping novel genes in all four patients, the novel candidate gene was identified as DHODH. 

 

1.9  The Present Study 

 

There is a need to focus specifically on South African PD patients as they differ significantly 

in ancestral origins when compared to the rest of the world; and it is therefore likely that 

these patients may harbour novel mutations ( Okubadejo et al. 2008; Keyser et al. 2010; 

Haylett et al. 2012).  The identification of disease-causing mutations in patients is important 

in families as this will facilitate better clinical management of their families and high risk 

individuals can be identified. 

For the present study a total of 262 South African PD patients, from diverse ethnic groups, 

were recruited for genetic analysis (Table 1.5).  For the puropses of our study, the English-

speaking Caucasians and Afrikaner Caucasians were analysed seperately as the Afrikaner 

population is unique to South Africa and due to the high number of reported PD cases in this 

this specific ethnic group, significant insight into PD may be gained through the independant 

study of these patients. 
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The various ethnic groups can be defined as follows: 

 The English-speaking Caucasian population is comprised of individuals of European 

descent. 

 The Afrikaner Caucasian population is unique to South African and is comprised of 

Afrikaans speaking individuals.  These individuals are mainly of Dutch decent, but 

may also have German and French ancestry (Greeff 2007).  

 The Mixed Ancestry population is defined as an admixture or a combination of 

various ethnic groups.  These various combinations include immigrants from 

Western Europe, India, Malaysia and Madagascar  as well as combination of ethnic 

groups which are indigenous to South Africa, such as San and Khoi – Khoi 

(Patterson et al. 2010). 

 The Black African population is comprised of individuals whose ancestry can be 

directly traced to the African continent.  This ethnic group is comprised of 

individuals who speak traditional African languages such as Zulu, Xhosa, Ndebele, 

Tsonga, Venda, Swazi, Northern Sotho, Tswana and Sesotho.   

 The Indian population is comprised of individuals who migrated from colonial India 

to the African continent in the early 19
th

 century. 

Table 1.5  Ethnic breakdown of the 262 South African PD patients participating in the study 

Ethnic group n (% of 262) Pos family history n (%) 

of each group 

Average AAO 

(range) in years 

English-speaking 

Caucasian 

101 (38.6)  30 (29.7) 57.8 (25-80) 

Afrikaner 

Caucasian 

76 (29.0)  22 (29.3) 51.8 (17-76) 

Mixed Ancestry 64 (24.4)  10 (15.6) 51.5 (20-80) 

Black African  17 (6.5)  3 (17.6)  54 (30-74) 

Indian 4 (1.5)  1 (25.0) 50 (35-68) 

Pos, positive; AAO, age at onset of the disorder 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

27 

 

 1.9.1  Aims and Objectives 

 

Our hypothesis was that South African PD patients harbour novel disease-causing mutations 

due to their unique ancestry.  The aim of the present study was therefore to identify and 

characterise the disease-causing mutations in 262 South African patients with PD.  

Five of the known PD genes, namely Parkin (all exons), PINK1 (all exons), LRRK2 (selected 

exons), SNCA (selected exons) and DJ-1 (only one variant) were screened for mutations.  

ATP13A2 was not included because patients with mutations in this gene have a very unusual 

phenotype, which is juvenile onset usually under 20 years and atypical PD symptoms such as 

behavioural problems, dementia, facial tremor and pyramidal tract dysfunction (Vilariño-

Güell et al. 2008) and none of our patients presented with these specific symptoms.  EIF4G1 

and VPS35 were not included as to date, only one pathogenic mutation has been identified in 

each of these genes (Chartier-Harlin et al. 2011b; Zimprich et al. 2011).  Mutations in DJ-1 

are very rare worldwide; accounting for <1% of all PD cases, so the exons of this gene were 

not screened.  Instead, we screened for the presence of a functional variant, a 16bp indel (g.-

6_+10del) in the 5'UTR of DJ-1 that is thought to influence transcription (Keyser et al. 2009).  

Furthermore, we investigated triplet repeat expansions at the HDL2 locus in the JPH3 gene, 

in only the Black PD patients.  Of the 262 study participants, varying numbers of patients had 

previously been screened for mutations by other members of our research group. Therefore, 

in the present study subsets of the 262 patients were screened for different loci in an attempt 

to ensure that all the patients had been screened for these genes. 

The objectives of the study were as follows: 

1. To screen four of the known PD genes (PARK2, SNCA, LRRK2, and PINK1) for 

disease-causing mutations using HRM and Sanger sequencing. 

2. To screen for the presence of the 16bp indel polymorphism in the DJ-1 gene. 

3. To determine whether Black patients diagnosed with PD harbour pathogenic repeat 

expansions at the HDL2 locus. 

4. To perform WES on an extended Afrikaner kindred to identify a possible novel 

disease-causing mutation. 
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2.1  Introduction 

Parkin (PARK2) (OMIM #600116) encodes a 465 amino acid protein (Luecking et al. 2000) 

that belongs to a family of E3 ubiquitin ligase proteins, which are also known as the in-

between ring (IBR) family (Beasley, Hristova, and Shaw 2007).  The five protein domains of 

Parkin are shown in figure 2.1.  Parkin plays a pivotal role in the protein degradation part of 

the ubiquitin proteasomal system (UPS) by tagging proteins with ubiquitin (Beasley, 

Hristova, and Shaw 2007).  

 

Figure 2.1  Protein domains of Parkin.  The numbers indicate the exons. The five domains are N-terminal 

ubiquitin-like domain (UBL),a cysteine-rich unique parkin domain,  two C-terminal RING (really interesting 

new gene) domains that are separated by an in-between-RING domain (IBR). The positions of the nonsense and 

frameshift mutations are indicated by the diamonds and the locations of the disease-associated mutations are 

indicated by the asterisks (Taken from Kahle and Haass 2004). 

 

Parkin is located on chromosome 6, specifically at the 6q26 location and has 12 exons.  The 

role of Parkin in PD was first described in 1998, when exonic deletions were identified 

through the use of linkage analysis in Japanese families who presented with autosomal 

recessive, early onset PD (Kitada et al. 1998).  Mutations in Parkin have been implicated in 

approximately 20% all of early onset familial cases with autosomal recessive inheritance of 

PD (Wider and Wszolek 2007) as opposed to the 10% for other genes that have been 

documented as causal factors for early onset PD (Luecking et al. 2000; Wider and Wszolek 

2007).   

More than 150 mutations have been identified in the Parkin gene and these include point 

mutations and exonic rearrangements.  Exonic rearrangements are thought to be due to the 

large size of the introns, resulting in errors in mRNA splicing ultimately leading to the 
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incorporation of insertions and deletions (Abbas et al. 1999; Gasser 2001; Gasser 2010). 

Documentations of Parkin mutations have shown that the mutations occur throughout the 

gene (figure 2.1) (Bonifati 2007; Gasser 2010).  Parkin mutations are thought to possibly 

result in pathological changes which cause the degeneration of the substantia nigra as well as 

changes in the locus coeruleus.  The changes in the locus coeruleus are considered to be 

milder and less significant than those in the substantia nigra (Gasser 2010).  LBs were 

initially thought to be uncommon in patients with Parkin mutations (Shimura et al. 2000; 

Huynh et al. 2001).  Recent studies using improved analytical methods have, however 

identified LB-positive PD patients with Parkin mutations, although they are considered to be 

uncommon (Farrer et al. 2001; Pramstaller et al. 2005).  A noteworthy feature of patients who 

carry Parkin mutations is that the disease progression appears to be slower than in other cases 

of PD.  Interestingly, when levodopa is administered as a management strategy, these patients 

show a greater responsiveness to the drug, at significantly lower doses without the additional 

treatment complications such as dyskinesias (Lohmann et al. 2003). 

 2.1.1  Expression Profile 

The protein product of Parkin is principally a cytosolic protein and has been shown to co-

localise with actin filaments providing evidence that it may be a cytoskeletal–associated 

protein (Huynh et al. 2001;  Cookson 2003; Wang et al. 2005).  Parkin is also expressed in 

the cell bodies of neurons in the midbrain, cerebellum, cerebral cortex as well as the basal 

ganglia (Shimura et al. 2000).  It appears to be widely spread throughout many of the human 

tissues but significant expression can be seen in the brain (Kitada et al. 1998) (figure 2.2).  

Parkin has also been identified as a protein that is present in the synaptic vesicles, 

endoplasmic reticulum and the outer membrane of the mitochondria (Darios et al. 2003). 
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Figure 2.2 Northern blot analysis of Parkin expression.  A Northern blot showing the expression of Parkin in 

the human body.  It is expressed in nearly all anatomical tissues but significant expression can be seen in the 

cranial regions (Taken from Kitada et al. 1998). 

 

 2.1.2  Postulated Function 

Parkin plays a pivotal role in the UPS, the predominant mechanism by which misfolded, 

damaged and short-lived proteins are removed from the cell.  The UPS regulates protein 

turnover, therefore resulting in a dynamic proteome (Hershko and Ciechanover 1998).  As 

mentioned before, Parkin belongs to the E3 ubiquitin ligase family due to the fact that it has 

an IBR domain.  This domain is significant as it is the region that interacts with the ubiquitin–

conjugating enzymes (E2) and catalyses the attachment of ubiquitin molecules to specific 

protein targets (Moore et al. 2005) (figure 2.3).  This process allows for 'ubiquitin tagging' to 

take place in order to specify the destruction of specific proteins by the proteasome (Shimura 

et al. 2000).  Ubiquitination results from the consecutive actions of the ubiquitin activating 

E1, E2 and E3 enzymes.  Subsequent cycles of ubiquitination result in the formation of a 

poly–ubiquitin chain that can then be recognised by the 26S proteasome (Moore et al. 2005).  

E3 ubiquitin ligases provide substrate specificity to the ubiquitination process as each ligase 

binds to specific subsets of proteins.  Defects in Parkin may thus interfere with the proteolytic 

pathway that could lead to the deleterious accumulation of particular proteins which in turn 

may contribute to the death of nigral neurons (Matsumine et al. 1997; Kitada et al. 1998).  

The tagging of proteins with ubiquitin may also occur for processes that are proteosome-

independant: some of these roles include signal transduction and protein trafficking (Kahle 

and Haass 2004).  Additionally, it was determined that Parkin is associated with 
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mitochondrial DNA in a neuroblastoma cell line as well as in cells that are undergoing 

proliferation (Rothfuss et al. 2009).  The conclusions reached through various studies were 

that Parkin protects the mitochondrial DNA from oxidative damage and may act to stimulate 

mitochondrial repair (Rothfuss et al. 2009; da Costa et al. 2009).  It has been reported that 

Parkin acts together with PINK1 in a pathway which promotes the maintenance of 

mitochondrial functioning and integrity  (Rothfuss et al. 2009). 

 

Figure 2.3  The ubiquitin-proteasome system (UPS) and ubiquitination. Parkin (an E3 protein) plays a 

specific role in this system as is mediates the transfer of ubiquitin monomers to E2.  Mutations in Parkin are 

therefore thought to play a significant role in the UPS and may thus alter the functionality of the pathway due to 

protein mishandling.  E1, ubiqitin activating enzyme;  E2, ubiquitin conjugating enzyme;  E3, Parkin;  DUB, 
deubiquitinating enzyme;  Ub, ubiquitin (Taken from Glickman and Ciechanover 2002). 
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2.1.3  Disease-causing Mutations and Susceptibility Alleles 

  2.1.3.1  Disease-causing Mutations 

Mutations found in this gene include nonsense and missense mutations, as well as whole 

exon rearrangements, deletions and duplications (Hattori et al. 2004).  Five of the most 

common mutations in Parkin are (1) deletions of exon 4;  (2)  various single base pair 

deletions in exon 2;  (3) deletions of exons 3 and 4;  (4) deletions of exon 3;  (5) point 

mutations in exon 7 (Abbas et al. 1999; Kann 2002; Klein et al. 2003).  These five variants 

account for approximately 35% of all Parkin mutations (Klein et al. 2003).  Collectively, 

mutations in Parkin have been associated with 50% of early onset PD in some studies, and 

the mutation frequency decreases significantly with an increase in the age at onset (Kann 

2002).  In one study, 73 families who presented with PD before the age of 45 years were 

examined.  It was determined that 36 of these patients had Parkin mutations – approximately 

49% of the total patients (Wirdefeldt et al. 2011).  Notably, 77% of the patients who were 

younger than 20 years of age when they were diagnosed with PD, had Parkin mutations.  

Further examination of the study participants revealed that the need for a molecular diagnosis 

for Parkin-associated PD is essential and that clinical manifestations alone are not sufficient 

for accurate and definitive diagnosis of the disease in patients (Luecking et al. 2000).   

  2.1.3.2  Susceptibility Alleles 

A susceptibility allele increases an individual‘s risk of developing a particular disorder.  

Parkin is highly polymorphic and the current hypothesis is that polymorphisms in this gene 

may result in an increase in susceptibility to develop PD – whether early onset or late onset 

PD (Oliveira 2003).  One study identified eighteen different polymorphisms in the patients 

that were studied, of which four were identified as novel and therefore plausible susceptibility 

alleles (Sun et al. 2006).  However, larger scale studies are necessary in order to determine 

the role of heterozygous Parkin mutations and the determination of whether or not they act as 

susceptibility factors for PD. 

 2.1.4  The Present Study 

The present study investigated the role of Parkin in South African PD patients and all 12 

exons were screened using HRM and sequencing. 
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2.2  Materials and Methods 

 2.2.1 Study Participants 

Ethics approval was obtained from the Committe for Human Research at Stellenbosch 

University, Cape Town (Protocol number:  2002/C059).  A total of 262 PD patients had been 

recruited from the Movement Disorders Clinic at Tygerberg Hospital in Cape Town, as well 

as from the Parkinson‘s Association of South Africa. The patients were diagnosed according 

to the UK Brain Bank Diagnostic criterion which requires that the patients present with 

bradykinesia plus at least one of the following symptoms: resting tremor, rigidity and postural 

instability (Gibb and Lees 1988).  All study participants met the criteria.  The cohort included 

161 (61.5%) male and 101 (38.5%) female patients.  The average age at onset (AAO) of the 

patients was 54.3 years of age.  The standard deviation (SD) is 12.46 years and the range of 

the AAO falls between 17 and 80.  A total of 35% of these patients reported a positive family 

history while 65% could either not provide any information regarding possible family history, 

or had no known reported history of PD.   

Written, informed consent was obtained from each of the patients and a blood sample was 

taken in order to obtain a DNA sample for the genetic analysis.  A total of 132 control 

samples from each of the different ethnic groups namely Afrikaner Caucasian, English-

speaking Caucasian, Mixed Ancestry and Black were additionally recruited from the Western 

Province Blood Transfusion Services and these patients were not examined for PD, but were 

used as a means to assess the frequency of specific sequence variants in each ethnic group. 

Of the 262 patients, 229 had already been screened for mutations in Parkin in a previous 

study by our group (Haylett et al. 2012) and therefore in the present study the remaining 33 

patients were investigated. 

 2.2.2  Genetic Analysis 

Peripheral blood samples were collected from each patient and genomic DNA was extracted 

using the phenol-chloroform method (Appendix I). 

Specific PCR primer sequences had been designed using Primer 3 software (Rozen 2000) and 

the sequences are provided in Table 2.1.  A total volume of 25µl reaction mix was set up for 

each sample.  The reaction mixture consisted of the following reagents: 20µM of each of the 

forward and reverse primers; 3.0µM MgCl2 (Bioline, UK); 1x NH4 buffer (Bioline, UK); 
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2µM SYTO9 fluorescent dye (Invitrogen, USA); 0.25 units BIOTAQ DNA polymerase 

(Bioline, UK) and 10ng template DNA.  The reactions were set up using the epMotion™ 

5070 (Brinkmann Instruments, Canada) that allows for automated pipetting and preparation 

of PCR reactions.   

All 12 exons of Parkin were PCR amplified and screened using HRM.  The real-time PCR 

and HRM analysis was set up and carried out on a RotorGene 6000 instrument (Corbett Life 

Science, Australia) with the following cycling conditions:  an initial step at 94⁰C for 5 min; 

40 cycles with conditions of denaturation at 94⁰C for 15 s, varying annealing temperatures 

(Table 2.1) for 15 s and extension at 72⁰C for 20 s. Thereafter, two additional holding steps 

were included: 94⁰C for 1 min to allow for complete denaturation of the double stranded 

DNA and then at 50⁰C for 1 min to allow for renaturation of the DNA.  HRM analysis was 

performed with melt temperatures ranging from 75⁰C to 95⁰C with the temperature 

increasing by 0.1⁰C increments at each step. A wild-type (WT) reference sample was 

included in every run and samples with altered HRM profiles were selected and Sanger 

sequenced in order to identify the sequence variant.  Known variants in each exon were 

included as positive controls. 

Samples exhibiting altered denaturation profiles were first cleaned by adding 0.5 units of  

Exonuclease I (Promega, USA) and SAP (Shrimp Alkaline Phosphatase) (Cleveland, Ohio, 

USA) to 8.0µl PCR product.  This cocktail was then incubated at an initial temperature of 

37⁰C for 15 min followed by 15 min at 80⁰C (to denature the enzymes) in a 2720 Thermal 

Cycler (Applied Biosystems, Foster City, USA).  Exonuclease I was used to remove any 

excess primer or primer dimers and SAP served to remove excess dNTPs. 

Sequencing was performed at the Central Analytical Facility (CAF), Stellenbosch University 

using the Sanger Sequencing Method, that made use of the BigDye Terminator Sequence 

Ready Reaction kit version 3.1 (Applied Biosystems, Foster City, USA).  The reactions were 

then electrophoresed and analysed on a 3130 x1 Genetic Analyser (Applied Biosystems, 

Foster City, USA). Sequencing electropherograms were analysed using BioEdit version 7.0.1 

(Hall 1999). 
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Table 2.1  Primers designed for the exonic sequences of the PARK2 gene. 

Exon Primer Sequence (5´-3´) %GC Tm 

(°C) 

PCR conditions 

(Ta in °C) 

Size of PCR 

fragment (bp) 

1 For: gaa cta cga ctc cca gca g 

Rev: ccc gtc att gac agt tgg 

58 

56 

57.3 

55.7 

55 300 

2 For: cac cat ttaa ggg ctt cga g 

Rev:tca ggc atg aat gtc aga ttg 

50 

43 

56.5 

56.3 

55 313 

3 For: tct cgc att tca tgt ttg aca 

Rev: gca gac tgc act aaa caa aca 

39 

43 

56.5 

57.3 

55 364 

4 For: gct ttt aaa gag ttt ctt gtc 

Rev: ttt ctt ttc aaa gag ggg tga 

33 

38 

51.3 

55.2 

55 299 

5 For: gga aac atg tct taa gga gt 

Rev: ttc ctg gca aac agt gaa ga 

40 

45 

52.5 

57.3 

55 223 

6 For: cca aag aga ttg ttt act gtg 

Rev: ggg gga gtg atg cta ttt tt 

38 

45 

52.8 

55.3 

55 276 

7 For: cct cca gga tta cag aaa ttg 

Rev: gtt ctt ctg ttc ttc att agc 

43 

38 

54.0 

52.6 

55 280 

8 For: ggc aac act ggc agt tga ta 

Rev: ggg gag ccc aaa ctg tct 

50 

61 

58.5 

58.8 

55 232 

9 For: tcc cat gca ctg tag ctc ct 

Rev: cca gcc cat gtg caa aag c 

55 

58 

60.2 

60.4 

55 297 

10 For:  caa gcc aga gga atg aat at 

Rev: gga act ctc cat gac ctc aaa 

40 

48 

52.7 

57.3 

53 272 

11 For: ccg acg tac agg gaa cat aaa 

Rev: gga acc ttc aga cag cat at 

48 

55 

57.8 

54.8 

55 300 

12 For: tct agg cta gcg tgc tgg tt 

Rev: gcg ttg tgt gtg tgt ttg a 

55 

47 

61.0 

57.3 

55 296 

 Tm, melting temperature;  Ta, annealing temperature 
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2.3  Results 

Through the use of HRM and direct sequencing, a number of polymorphisms were identified 

in the patients (Table 2.2).  The majority of these polymorphisms have already been reported. 

A novel heterozygous variant of unknown pathogenic significance, T387P was identified in 

one of the Mixed Ancestry patients (figure 2.4). 

 

Table 2.2 Sequence variants found in the PARK2 gene in 33 South African patients. 

Patient Ethnicity Age at 

Onset 

Family 

History 

Variant Exon In dbSNP Frequency from dbSNP 

(n=number of 

chromosomes) 

89.02 MA 54 No P37P 2 rs143477190 C, 0.993;  T, 0.007;  n= 2276 

88.99 MA 30 No A46T 

S167N 

L261L 

V380L 

2 

4 

7 

10 

rs75860381 

rs1801474 

rs143902760 

rs1801582 

C, 0.958;  T, 0.042;  n=118 

G, 0.919;  A,0.082;  n= 4550 

G, 1.00;  A, 0.00;  n=4550 

G, 0.682;  C 0.318;  n=4550 

92.60 Afrikaner 45 Yes R42C 2 rs149699346 G, 1.00;  A, 0.00;  n=4552 

90.94 MA 40 No P153R 

M192L 

L261L 

4 

5 

7 

rs55654276 

rs9456735 

rs143902760 

C, 0.989;  G, 0.011;  n=4450 

T, 0.941;  G, 0.059;  n=286 

G, 1.00;  A, 0.00;  n=4550 

90.86 MA 70 Yes M192L 

IVS12+16G>A 

5 

3'UTR 

rs9456735 

No 

T, 0.941;  G, 0.059;  n=286 

- 

90.88 MA 80 No M192L 5 rs9456735 T, 0.941;  G, 0.059;  n=286 

92.94 MA 57 No L261L 

V380L 

T387P 

7 

10 

10 

rs143902760 

rs1801582 

Novel 

G, 1.00;  A, 0.00;  n=4550 

G, 0.682;  C 0.318;  n=4550 

- 

91.85 MA 65 No R256C 7 rs150562946 G, 0.997;  A, 0.003;  n=1322 

92.97 MA 77 No L261L 

P437L 

7 

12 

rs143902760 

rs149953814 

G, 1.00;  A, 0.00;  n=4550 

G, 0.997;  A,  0.003;  n= 4282 

88.74 Afrikaner 36 Yes IVS8+48C>T 3'UTR No - 

89.01 Caucasian 47 Yes IVS8+48C>T 3'UTR No - 

88.52 MA 55 Yes V380L 10 rs1801582 G, 0.682;  C 0.318;  n=4550 

88.53 MA 59 No V380L 10 rs1801582 G, 0.682;  C 0.318;  n=4550 
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the results of the present study in which 33 additional patients were screened, the number of 

patients with Parkin mutations in our total cohort is only 2.7% (7/262).  However, this 

frequency takes into account patients who also have late-onset PD (i.e. AAO >50 years).  If 

only patients with a young AAO (i.e. AAO ≤ 50 years) are included in the study, then the 

frequency of Parkin mutations is 6.5% (6/93).  Some studies have shown that Parkin 

mutations can be found in up to 20% of non-familial, early-onset PD cases and in up to 50% 

of familial early-onset PD cases (West et al. 2003).  Frequencies of Parkin mutations can 

depend on the population group studied;  in a recent study carried out on a Mexican 

population of PD patients, it was determined that 17.5% of the patients were carriers of 

simple heterozygous mutations and 25.4% were carriers of compound heterozygous 

mutations (Camacho et al. 2012).  However, low frequencies of Parkin mutations have been 

reported in Serbian and Polish populations, where the frequencies of these mutations range 

between 1.3 and 3.8% in affected PD individuals (Djarmati et al. 2004; Koziorowski et al. 

2010).  The low frequency in the South African patients could therefore also be due to the 

numerous unique and diverse ethnic groups present in the country.   

Notably, some of the non-synonymous variants such as S167N and M192L have previously 

been described as pathogenic in some sudies (Satoh and Kuroda 1999; Hedrich et al. 2002).  

However, given the high frequencies of these mutations in control individuals (7.9% for 

S167N and 6.7% for M192L (Haylett et al. 2012) it is unlikely that they are disease-causing 

and this suggests that further studies are needed before variants in this gene can be labelled as 

'disease-causing'. 

The present study also identified a novel variant, a heterozygous T387P in exon 10.  This 

variant was identified in a Mixed Ancestry patient with an AAO of 57 years of age and no 

known family history.  This patient was also identified as a carrier of two known 

polymorphisms, L161L and V380L (Table 2.2).  The pathogenicity of T387P is not known as 

it was not identified in any of the 132 ethnic-matched control patients that were screened, but 

it was predicted to be benign through the use of the Variant Effect Predictor Tool 

(http://www.ensembl.org/tools.html).  The T387P variant affects an amino acid which is 

evolutionarily conserved across human, chimp, mouse and rat but not in chicken.  It is found 

between the IBR, is cysteine rich and separates the two RING domains (Shimura et al. 2000) 

- the RING finger motifs are essential for binding to UbcH7, which then conversely binds to 

the E2 conjugating enzyme thus forming an active component of the UPS (Shimura et al. 

2000).  This suggests that although this variant had been predicted to be benign, it could be 
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speculated that the location of the variant, as well as the fact that it is absent in the controls, 

may implicate it in PD susceptibility.  Additional variants found in this region are A366T and 

T388L (Lohmann et al. 2003).  Both of these variants have been predicted as non-pathogenic 

(http://www.ensembl.org/tools.html). 

The large number of variants (fourteen in total) that were found, along with the fact that the 

positive controls for each exon were detected using HRM, is an indication that this mutation 

screening method is effective.  However, it is still possible that some mutations could have 

been missed by not sequencing all of the exons in each of the patients, but this cost is 

currently prohibitively expensive in our particular setting.   

Future studies should include screening for exonic deletions or insertions in Parkin in these 

33 patients using a technique such as Multiplex Ligation-dependent Probe Amplification 

(MLPA) (Bardien et al. 2009; Keyser et al. 2010).  In addition, functional studies such as 

yeast-two hybrid and AP/MS (Affinity Purification and Mass Spectometry) are warranted on 

the novel T387P variant to determine whether it possibly influences protein function. 

In conclusion, heterozygous or homozygous point mutations in Parkin are not a major cause 

of PD in South African patients and therefore mutation screening of other PD genes are 

warranted.  Identification of the disease-causing genes and mutations in these families is 

necessary as this will elucidate the biological pathways underlying PD in South African 

patients.  In addition, this information would be important to confirm diagnosis in patients 

that present with atypical PD symptoms and also to identify at-risk family members. 
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3.1  Introduction 

PTEN-putative induced kinase 1 (PINK1) (OMIM# 608309) has been implicated in 

autosomal recessive PD and was the first gene that successfully linked mitochondria to the 

disease (Valente et al. 2004).  It is found on chromosome 1p36.12, is composed of 8 exons 

and encodes a protein of 581 amino acids in length, which is localized in the mitochondria.  

PINK1 is composed of two main domains: a highly conserved serine/threonine kinase domain 

and a N-terminal mitochondrial targeting domain (MTS) and a transmembrane region is 

found between these two domains (Valente et al. 2001) (figure 3.1).  The serine/threonine 

protein kinase found in this domain belongs to the calcium/calmodulin-dependant class of 

kinases (CaMKs) that are responsible for calcium transduction within cells (Abou-Sleiman et 

al. 2006; Ibanez 2006).  The CaMKs are involved in a wide variety of cellular responses that 

are induced by factors such as neurotransmitters and other signalling mechanisms which 

involve hormones (Means 2001).  Additionally, the CaMKs are significantly affected by 

calcium levels within the cells and so-called 'calcium-mobilizing stimuli' are employed in 

order to maintain intracellular calcium levels.  Elevations in the levels of calcium thus act as 

a second messenger system (Means 2001).  Although PINK1 has been identified as a protein 

kinase, the actual kinase activity of the protein has not yet been demonstrated (Moore et al. 

2005). 

 

Figure 3.1  Protein domains of PINK1.  The mitochondrial targeting domain (MTS), transmembrane region 

(TM) and the serine/threonine kinase domain are indicated (Taken from  

http://jcs.biologists.org/content/suppl/2012/03/25/125.4.795.DC1/JCS093849Panel2.jpg). 

 

PINK1 was initially identified through linkage mapping in an Italian family that presented 

with autosomal recessive and early onset PD (Valente et al. 2001).  The locus, PARK6 was 

identified in the family which had four definitely affected PD individuals with an AAO that 

ranged between 32 and 48 years of age (Valente et al. 2001).  The PARK6 locus was 

confirmed in a further eight families across four  different countries in Europe, all of whom 

had early onset PD (Brancati 2002).   
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Linkage to the PARK6 locus was also described in eight Asian families that were unrelated 

and had early onset PD - the AAO of these patients was reported between 18 and 56 years 

(Hatano et al. 2004).  Noteworthy observations of this particular study was the documentation 

of levodopa responsiveness and slow disease progression (Hatano et al. 2004).  This finding 

was further supported when 21 patients who had been positively identified as having PINK1-

associated PD, were re-examined (Albanese et al. 2005).  It was determined that 20 of the 

patients had slow disease progression, but that 84% of the patients had developed additional 

involuntary and impaired movements, which were concluded to be as a result of the levodopa 

treatment and not as a result of the disease (Albanese et al. 2005).  

PINK1 provided the first evidence that a kinase signalling pathway may be actively involved 

in dopaminergic cell death (Moore et al. 2005).  The serine/threonine kinase of PINK1  has 

been identified as a protective mechanism against oxidative stress and subsequent apoptosis 

(Deas, Plun-Favreau, and Wood 2009).  PINK1 is critical for mitochondrial integrity as well 

as for the maintenance of mitochondrial homeostasis due to the presence of the 

aforementioned serine/threonine kinase (Valente 2004; Hoepken et al. 2007).  Over expressed 

PINK1 has, however been localized to the mitochondria and has been further implicated in 

PD pathogenesis (Valente 2004; Abou-Sleiman et al. 2006).  

Evidence for the involvement of mitochondria in PD first surfaced when heroin users 

presented with severe Parkinsonian features after the unintentional injection of a synthetic bi-

product,  MPTP (Langston 1983).  MPP
+
 (1-methyl-4-phenyl-pyridinium ion) is the active 

metabolite of MPTP and is able to cross the blood-brain barrier.  This molecule is of 

particluar interest as it can be transported into the dopaminergic neurons (Dauer and 

Przedborski 2003).  Interestingly, MPP
+
 is an active inhibitor of mitochondrial complex I 

(Nicklas 1987) and the inhibition of this specific mitochondrial complex,  is directly related 

to an increase in free radical generation.  Free radical generation results in an increase in 

oxidative stress through changes in the electron transport chain (Schapira 1997; Schapira 

2010).  This discovery is of relevance to PD as continual studies have shown that PD patients 

have significantly lower activity in complex I but that this lack of activity is not due to 

levodopa treatment administered to the patients (Mann et al. 1994; Haas et al. 1995; Cooper 

et al. 1995).  There are two current hypotheses involving mitochondrial complex I and 

neurodegenerative disorders: 1) the complex I inhibitors may be independently responsible 

for development of neurodegenerative disorders and 2) complex I inhibitors may contribute 
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towards the development of neurodegenerative disorders in conjunction with genetic and 

environmental factors (Schapira 2010). 

Oxidative stress results in damage to intra- and extra-cellular cell structures, nucleic acids and 

proteins within the cells due to an excess of reactive oxygen species (ROS) (Storz and Imlayt 

1999).  It has been documented that increases in the ROS of the cells may be advantageous to 

the immune system and may play an important role in cell signalling (Zhou, Ma, and Sun 

2008).  The maintenance of ROS levels in the cells must remain carefully balanced - if the 

levels of ROS increase to such an extent that the cells cannot neutralize and then eliminate 

them from the targeted cells, they can damage intra-cellular structures, DNA, lipids and 

proteins (Zhou, Ma, and Sun 2008). 

Under expression or accumulation of the protein is not the only mechanism by which PINK1 

is thought to cause disease;  PD-associated mutations that are found in PINK1 may result in 

the inability of PINK1 to protect the mitochondria against oxidative stress and apoptosis 

(Deng et al. 2008; Haque et al. 2008) (figure 3.2).  This is due to the fact that mutations in 

PINK1 may prevent the phosphorylation of TRAP1 (mitochondrial chaperone tumour 

necrosis factor receptor-associated protein-1) and the protection against oxidative stress then 

becomes reduced (Pridgeon et al. 2007). 

 

Figure 3.2  PINK1 and its protective role against oxidative stress.  Should a mitochondrion be PINK1 

deficient, it will show altered complex I activity.  PINK1 is also necessary to phosphorylate TNF receptor 

associated protein 1 (TRAP1) in order to protect the cell against oxidative stress  (Taken from Deas, Plun-

Favreau, and Wood 2009). 
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Mitochondrial dysfunction is therefore thought to be the most likely way in which PINK1  

plays a role in PD pathogenesis  (Yao and Wood 2009).  Interestingly, PINK1 and Parkin act 

in unison with each other in order to regulate mitochondrial function - and this pathway has 

been examined in PD pathogenesis (Yu et al. 2011).  Should there be mutations in either 

PINK1 or Parkin,  a loss of function is exhibited (Cookson and Bandmann 2010).  Drosphila 

melanogaster knockouts have been used to study the interactions of PINK1 and Parkin.  

Knockouts of PINK1 result in mitochondrial abnormalities and apoptosis, both of which are 

predominant in the flight muscles of the fly as well as in the spermatid cells (Greene et al. 

2003).  Parkin knockouts have shown very similar phenotypic characteristics and 

additionally, in the absence of PINK1, Parkin is able to salvage the loss of PINK1 (Cookson 

and Bandmann 2010) thus providing evidence that the two proteins interact with each other in 

the same pathway (Clark et al. 2006; Park 2006).  The converse cannot be seen and it has 

been concluded that PINK1 functions upstream of Parkin (Cookson and Bandmann 2010).  

The PINK1-Parkin pathway has been examined extensively and it has been determined that 

although Parkin is normally a cytosolic protein, if membrane potential decreases sufficiently, 

it can be recruited to the membrane of the mitochondria (Narendra et al. 2008) and then be 

involved in the promotion of mitochondrial autophagy (mitophagy) (Narendra et al. 2008; 

Geisler et al. 2010; Vives-Bauza et al. 2010).   

 3.1.1  Expression Profile 

Numerous functional studies have been carried out on PINK1 and it has been determined that 

it is localized to the mitochondria, specifically in the mitochondrial matrix as well as in the 

intermembrane spaces (Gandhi, Chen, and Wilson-Delfosse 2009).  PINK1 is expressed in 

numerous organs but high levels of this protein are found in the heart, skeletal muscle and  

testes (Unoki and Nakamura 2001) (figure 3.3).   
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Figure 3.3  Northern Blot analysis of PINK1 expression. Northern blot analysis of PINK1 shows that the 

protein product of the gene is expressed in numerous tissues throughout the body. (Taken from Unoki and 

Nakamura 2001). 

 3.1.2  Postulated Function 

Limited knowledge on the exact function of PINK1 is available.  It has been postulated that it 

may play a role in neuroprotection, or more specifically, the prevention of mitochondrial 

dysfunction and apoptosis that is caused by the inhibition of proteins (Rohe 2004).  The 

localization of PINK1 to the mitochondria has been shown through the use of  a number of 

knockout models.  As mentioned above, it has been noted that the loss of the specific 

phenotypes in PINK1 knockout flies can all be directly associated with mitochondrial 

dysfunction and additionally have significant problems in coping with oxidative stress (Clark 

et al. 2006; Park 2006). 

 3.1.3  Disease-causing Mutations and Susceptibility Alleles 

  3.1.3.1  Disease-causing Mutations 

PINK1 mutations have been identified in patients who have early onset PD - whether these 

cases are sporadic or familial.  The frequency of PINK1 mutations has been estimated to be 

between 0% and 15% across various ethnic groups (Ferraris et al. 2009).  Additionally, 

PINK1 mutations have been reported as the second most common cause of autosomal 

recessive, early onset PD and is preceded only by Parkin.  Two PINK1  mutations,  G309D 
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and W437X were initially identified in three consanguineous families, and both mutations are 

found in the kinase domain (Valente et al. 2004).  Additional mutations that have been 

identified are truncating mutations, frame shift mutations as well as several point mutations 

(Tan 2010; Bonifati 2012).  It has been documented that the majority of the mutations which 

are found in PINK1 are found in the kinase domain and decrease the enzymatic activity of the 

protein (Leutenegger 2006; Tan and Skipper 2007) (figure 3.4). 

 

Figure 3.4  Positions of PINK1 mutations in humans.  A diagrammatic representation of some of the 
mutations that have been identified in the PINK1 gene and that have been associated with PD.  Note that the 

majority of the mutations are found in the kinase domain (Taken from 

http://www.ppu.mrc.ac.uk/research/?pid=11&sub1=research). 

 

 3.1.3.2  Susceptibility Alleles 

Mutations in PINK1 are relevant to understanding disease because of their frequency in PD 

patients;  the frequency of these mutations is highly dependent on the ethnic group studied 

and may be as high as 15% in some groups of patients (Klein 2007).  The current theories 

involving PINK1 is that homozygous mutations cause autosomal recessive, early onset PD, 

while heterozygous mutations are considered to be susceptibility factors for the disease 

(Eggers et al. 2010).  A number of susceptibility factors have been identified and these 

include L63L, A340T and N521T - the A340T variant has been associated with late-onset PD 

in the Chinese populations (Groen et al. 2004; Eggers et al. 2010).  A340T has been 

extensively studied and it has been concluded that although the single nucleotide 

polymorphism (SNP) lies in a kinase domain, the corresponding amino acid residue 

(Threonine) is not evolutionarily conserved across species (Wang et al. 2006).  Additionally, 

the N521T variant is found outside any coding region, but the Asparagine at position 521 is 

highly conserved across species (Rohe 2004).  Susceptibility factors affect progression, onset 
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and severity of PD and are thought to have an additive effect - in PINK1 it has been 

hypothesized that heterozygous mutations are more likely to increase the risk for the 

development of PD, while the homozygous or compound heterozygous mutations are disease-

causing (Eggers et al. 2010). 

 3.1.4  The Present Study 

The present study investigated the role of PINK1 in South African PD patients.  All eight 

exons were screened using HRM and sequencing. 

 

3.2  Materials and Methods 

 3.2.1  Study Participants 

A total of 155 patients had already been screened for possible mutations in exons 1 to 8 

(R.Keyser, PhD thesis 2011; Keyser et al. 2010).  In the present study, the remaining 107 of 

the 262 patients were screened  for mutations in all exons. 

 3.2.2  Genetic Analysis 

The HRM and sequencing methodology has been described in Chapter 2; section 2.2.2; page 

34-35.  Specific primer sequences had been designed for the PCR using Primer 3 software 

(Rozen 2000) and the primer sequence for each exon is provided in Table 3.1.  In some cases, 

5% of various additives (DMSO, Formamide and Betaine) were added for optimization of the 

PCR reaction. 
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Table 3.1  Primers designed for PINK1 exons 1 to 8. 

Region Primer Sequence (5´-3´) %GC Tm 

(°C) 

PCR conditions 

(Ta in °C) 

Size of PCR 

fragment (bp) 

Exon 1 

(part A*) 

For: agg cgc cat tac cag cat ag 

Rev: aag aag cgg aga cgg tta gg 

55 

55 

60.3 

59.5 

58 (DMSO + 
Betaine) 

389 

Exon 1 

(part B*) 

For: agg ctg ggc cgc agg ac 

Rev: cct ccg ctc ggc tta gga c 

76 

68 

64.7 

62.1 

55 (Formamide) 283 

Exon 2 

(part A*) 

For:  cct ttt ctt ggg cct tcc ta 

Rev: aat gta ggc atg gtg gct tc 

50 

50 

57.1 

58.2 

55 204 

Exon 2 

(part B*) 

For: agg gca gtc cat tgg taa gg 

Rev: ggg cat ttt gag aac atc tcc 

55 

47 

59.4 

57.3 

55 250 

Exon 3 For: agg cag ggc tta caa gga ac 

Rev: tgc tct caa aga agt ccc agt 

55 

47 

60.0 

59.0 

55 220 

Exon 4 For: agg tgt tgt atc tga tgc tg 

Rev: tcc cct tgg gag atg tat ca 

45 

50 

55.2 

57.1 

55 287 

Exon 5 For: cgt cga tgt gtg gta gcc 

Rev: tct agt gcc cct gga gag c 

61 

63 

57.9 

60.4 

55 250 

Exon 6 For:  gaa gga ggg gag gag aaa tg 

Rev: tgc att cag tgg aca tgt gg 

51 

53 

57.0 

58.5 

55 233 

Exon 7 For: atg ggc ggg cag cgt gat gtc t 

Rev:  ctg gaa cga gaa cag agg ttt c 

63 

50 

69.1 

58.9 

55 339 

Exon 8 

(part A*) 

For:  gga cca gag aag gga aga cc 

Rev: ctt ctc tgt gag cct gtt gg 

60 

55 

59.1 

58.2 

55 (DMSO) 248 

Exon 8 

(part B*) 

For: aga tgg ttg gct ggc tcc t 

Rev: acc ctc acc att cac aga cc 

58 

55 

60.9 

59.1 

55 (DMSO + 

Betaine) 

248 

 Due to the large size of exons 1, 2 and 8, two sets of overlapping PCR fragments were produced for 

each of these exons.  DMSO, dimethyl sulfoxide. 
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3.3  Results 

After HRM analysis, a number of samples with altered HRM profiles were selected for 

sequencing.  A total of five known as well as one novel variant was identified and the 

pathogenicity was assessed.  The variants that were identified are shown in Table 3.2.  The 

novel variant identified, A494V was analysed using the Variant Effect Predictor Tool from 

Ensembl (http://www.ensembl.org/tools.html) and was predicted to be benign (Table 3.3).   

Sequence alignments showed that the A494 residue is evolutionarily conserved from man 

through to zebrafish, but that it does not occur in a conserved region of PINK1 (figure 3.5) 

although it lies in a kinase domain 

 

Table 3.2  Sequence variants which were identified in PINK1 in South African PD patients. 

Patient Ethnicity Age at 

Onset 

Family 

History 

Variant Exon In dbSNP Frequency in 

dbSNP 

(n=number of 

chromosomes) 

83.42 Caucasian 68 No R312R 4 rs56200357 G, 0.998; A, 

0.002;  n=4550 

81.67 Caucasian 63 No R312R 4 rs56200357 G, 0.998; A, 

0.002;  n=4550 

85.57 MA 62 No S284Y 4 rs113092523 C, 0.999; A, 

0.001;  n=4552 

91.95 MA 55 No A340T 5 rs3738136 G, 0.910; A, 

0.090;  n=1324 

81.68 MA 54 No A340T 5 rs3738136 G, 0.910; A, 

0.090;  n=1324 

84.66 MA 57 No A340T (homo) 5 rs3738136 G, 0.910; A, 

0.090;  n=1324 

84.47 MA 61 No A494V 7 Novel - 

90.92 MA 75 Yes R501Q 8 rs61744200 G, 0.988; A, 

0.012;  n=4546 

90.98 Afrikaner 68 No N521T 8 rs1043424 A, 0.688; C, 

0.312; n=4544 

98.77 Indian 55 Yes 3'UTR +37A>T 8 rs686658 A, 0.288; T, 0.712;  

n=120 
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3.4  Discussion 

PINK1 is the second most common cause of PD, preceded only by Parkin, and is responsible 

for the development of autosomal recessive, early onset PD (Deng et al. 2008).  In the present 

study, we screened all eight exons of PINK1 in the South African PD patients.  A number of 

known variants were identified in the patients including four non-synonymous, one 

synonymous, two known variants in the 3'UTR and one novel variant (A494V). 

In a previous study on PINK1, our group reported that of the 155 PD patients screened, 

mutations were identified in only one of the patients (a homozygous nonsense mutation, 

Y258X) (Chapter 1, Table 1.4; R. Keyser, PhD thesis, 2011; Keyser et al. 2010).  Taken 

together with the findings of the present study, this reveals a frequency of only 0.4% of 

mutations in PINK1 (1/262).  The frequency of PINK1 mutations in other studies ranges 

between 1 and 15%, but this is dependant on the population group which is studied (Bonifati 

et al. 2005).  In a group of Italian patients, the frequency of PINK1 mutations was to be found 

7.7% (Bonifati et al. 2005),  and in a Filipino PD population, 3% of the individuals who had 

been diagnosed with PD had mutations in PINK1 (Rogaeva et al. 2004). 

One patient of Mixed Ancestry and with no family history was found to have a novel 

heterozygous A494V variant in exon 7.  The pathogenicity of this variant was assessed 

through the use of the Variant Effect Predictor Tool from Ensembl 

(http://www.ensembl.org/tools.html) and it was predicted to be "benign".  The A494V variant 

is found in the kinase domain and occurs at an amino acid position that is evolutionarily 

conserved (figure 3.5).  Interestingly, the majority of mutations that have been identified in 

PINK1 have been found in the kinase domain and the enzymatic activity is reduced in these 

regions (Sim et al. 2006).  Another observation has been that mutations which are located 

outside of the kinase domain may play a role in protein stability, therefore affecting kinase 

activity.  No controls were screened to determine the frequency of the novel A494V variant 

because the patient (84.47) in which the variant was identified had already been identified as 

a carrier of an exonic deletion in Parkin (Table 1.4, Chapter 1).   

A limitation of the present study is the fact that we did not screen for exonic rearrangements 

in this gene and therefore MLPA will be used in future studies of this gene.  In conclusion, 

mutations in PINK1 are thought to be a minor cause of PD in South African patients and 

other genes should be screened to identify causative genetic factors in these patients.  

Stellenbosch University http://scholar.sun.ac.za



 

54 

 

Chapter 4:  Mutation Screening of the LRRK2 gene 
 

 Page 

 

4.1  Introduction ..................................................................................................................... 55 

4.1.1  Expression Profile ............................................................................................ 56 

4.1.2  Postulated Function .......................................................................................... 56 

4.1.3  Disease-causing Mutations and Susceptibility Alleles ....................................... 57 

4.1.3.1  Disease-causing Mutations ................................................................ 57 

4.1.3.2  Susceptibility Alleles ........................................................................ 58 

4.1.4  The Present Study ............................................................................................ 59 

4.2  Materials and Methods ..................................................................................................... 59 

4.2.1  Study Participants ............................................................................................. 59 

4.2.2  Genetic Analysis .............................................................................................. 60 

4.3  Results ............................................................................................................................. 60 

4.4  Discussion ....................................................................................................................... 67 

 

 

  

Stellenbosch University http://scholar.sun.ac.za



 

55 

 

4.1  Introduction 

Leucine–rich repeat kinase 2 (LRRK2) (OMIM #609007) is implicated in the development of 

autosomal dominant PD.  LRRK2 was identified as a PD-causing gene in 2004 by two 

independant groups (Zimprich et al. 2004; Paisán-Ruíz et al. 2004).  It encodes a multi–

domain protein which is composed of 2 527 amino acids, and has 51 exons in total (Paisán 

Ruíz et al. 2005). It is located on chromosome 12p12 and the protein for which LRRK2 

encodes forms part of the ROCO protein family (Zimprich et al. 2004).  LRRK2 is composed 

of a number of functional domains, including the armadillo domain (ARM); ankyrin repeat 

domain (ANK); leucine – rich repeat domain (LRR); Ras of complex proteins (ROC), 

carboxy terminal of ROC (COR) and mitogen–activated protein kinase kinase kinase 

(MAPKKK) (figure 4.1).  The ROC domain binds to GTP and is essential for the functioning 

of MAPKKK and is noteworthy as it does not possess GTPase activity (figure 4.1).  The final 

domain of LRRK2 is a WD40 domain which is rich in aspartate and tryptophan repeats 

(Zimprich et al. 2004). 

 
Figure 4.1  Protein domains of LRRK2.  The LRRK2 protein contains 7 domains which are ARM, ANK, 

LRR, Roc, COR, MAPKKK and WD40.  The numbers indicate the amino acids positions (Taken from Lesage 

and Brice 2009).  

 

Mutations in the coding regions of LRRK2 have been implicated and linked to the 

development of autosomal dominant, late onset PD (Farrer 2006).  Pathologically, the 

patients are heterogeneous with documentations of both Lewy Body and tau pathologies.  

Additionally, motor neuron disease and neuronal loss without intracellular inclusions have 

also been reported (Zimprich et al. 2004).  Tau pathologies are significant as these may also 

affect the outcome of tau proteins, which are highly soluble microtubule-associated proteins 

(MAPs) (Zimprich et al. 2004) that are significant role players in physiology as they act as 

stabilizers of microtubules through different isoforms and phosphorylation (MacLeod et al. 
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does not possess GTPase activity (Ito, Shirai, and Hattori 2007).  One study showed that 

LRRK2 presents with autophosphorylation activity as well as a mixed- lineage kinase activity 

(West et al. 2005).  The presence of a number of protein interaction domains, suggests that 

LRRK2 may form the scaffolding complex which is necessary for the assembly of a multi–

protein signal complex (Guo, Wang, and Chen 2006).  Additional studies have made use of 

Drosophila showing that LRRK2 has the ability to interact with microRNA pathways as a 

means to regulate protein synthesis (Gehrke et al. 2010).  LRRK2 has also been implicated in 

the endosomal–autophagic pathway and is a target gene for IFNγ which may be involved in 

additional pathogenic pathways (Gardet et al. 2010). 

 4.1.3  Disease-causing Mutations and Susceptibility Alleles 

  4.1.3.1  Disease-causing Mutations 

To date, mutations in the LRRK2 gene are significant as they are documented as the most 

common cause of dominantly inherited PD (Gasser 2010).  LRRK2 mutations have been 

implicated in approximately 10% of all cases of PD in Caucasians (Orr Urtreger 2007).  

These statistics do not exclude sporadic cases of PD, of which LRRK2 mutations are 

estimated to appear in 3.6% of cases (Khan et al. 2005; Mata et al. 2005).  It has been 

documented that certain variants identified in LRRK2 may exert an increase in kinase activity 

(West et al. 2005).  More than 100 sequence variants have been identified for this gene and a 

number of these variants have been directly and unequivocally implicated as disease causing 

variants by co-segregation in large families or via functional studies (Biskup et al. 2006).  

These variants include: N1437H located in exon 29; R1441C, R1441G, R1441H in exon 31; 

Y1699C in exon 35; I2020T and the most common mutation G2019S are both found in exon 

41.  These mutations are located in the functional domains of the protein (Hedrich et al. 

2006).  

G2019S has been identified as the single most common mutation in LRRK2 and is frequent in 

both sporadic (1-2%) and familial (2-5%) cases of PD (Lesage and Brice 2009).  Three 

different haplotypes have been found in G2019S carriers.  Haplotype 1, a common 193kb 

genomic region (Zabetian et al. 2006), is shared by 95% of documented G2019S carriers 

from European, North and South African populations as well as Ashkenazi Jews (Lesage and 

Brice 2009).  The mutation that these populations appear to share possibly developed in the 

Ashkenazi Jews.  The hypothesis is that the mutation arose in this population much earlier 

than in the Europeans or in the North African Arabs (Lesage and Brice 2009).  Haplotype 2 
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has been documented in five families of European ancestry, and haploype 3 is comprised of 

mainly Japanese carriers, but has also been recorded in a Turkish family (Lesage and Brice 

2009).  Interestingly, it appears as though the prevalence of G2019S may be affected by 

ethnicity – G2019S accounts for 30-40% of familial and sporadic cases of PD in patients 

from North Africa (Ozelius et al. 2006; Lesage et al. 2010), 10-30% of PD in Ashkenazi Jews 

(Orr Urtreger 2007; Ishihara et al. 2007), but is very rare in sub-Saharan Africa (Okubadejo 

et al. 2008), Asia and certain European countries such as Germany and Poland 

(Papapetropoulos et al. 2007; Lesage and Brice 2009).  The penetrance of G2019S is also age 

specific – 28% penetrance at an age of 59 years, 51% at 69 years of age compared to 74% at 

an age of 79 years (Healy et al. 2008).   

  4.1.3.2  Susceptibility Alleles 

LRRK2 is a highly polymorphic gene (Ross et al. 2008) and it was hypothesized that these 

polymorphisms may be risk factors in the development of PD.  This hypothesis has since 

been proven, and it has been concluded that polymorphisms in LRRK2 are susceptibility 

alleles for PD in certain patients and some polymorphisms may have a protective role in 

particular groups of individuals (Ross et al. 2011).  In a study carried out on 15,540 

individuals that were separated into varying ethnic groups, 121 LRRK2 exonic variants were 

examined (Ross et al. 2011).  It was determined that the M1646T variant identified in 

Caucasian PD patients and controls, was more likely to act as a susceptibility allele in all 

Caucasian patients from varying geographic locations except those individuals from South 

Africa.  The same study found that three SNPs, namely N551K, R1398H and K1423K, 

although found in stronge linkage disequilibrium have a significant protective effect in 

Caucasians and Asian individuals, thus forming a so-called three-SNP haplotype (Ross et al. 

2011). 

A number of studies have been carried out on Asian populations in order to identify possible 

risk factors for PD (Di Fonzo et al. 2005).  G2385R was found at a significantly higher 

frequency in PD patients who were of Chinese and Taiwanese ethnicity as opposed to the 

control populations (Di Fonzo et al. 2005).  This observation was supported by independant 

studies, and it was subsequently suggested that the G2385R variant could be included as a 

common risk factor in the Asian populations (Tan et al. 2008).  An additional SNP that has 

also been identified as a risk factor for late onset but dopamine responsive PD in the Asian 

populations is the R1628P variant.  This SNP is found in a highly conserved region of the 

Stellenbosch University http://scholar.sun.ac.za



 

59 

 

gene (Ross et al. 2008) and in one study in Chinese populations was identified in 8.4% of PD 

positive patients vs. 3.4% of the controls (Tan et al. 2008).  Subsequent in vitro analyses 

showed that G2385R and R1628P have increased autophosphorylation and kinase activity 

when compared to the wild type LRRK2 and could therefore increase the risk of PD via a 

similar mechanism to that of the pathogenic mutations (Tan 2010). 

Genome wide association studies (GWAS) have been used to identify susceptibility alleles 

for PD.  In GWAS, unrelated patients and controls who present with a particular phenotype 

as well as unaffected controls are genotyped for thousands of SNPs that are spread 

throughout the genome (Cookson 2010).  Two noteworthy GWAS performed specifically on 

PD patients were on Caucasian patients and controls, and an additional study was performed 

on the Asian population (Cookson 2010).  A few thousand cases were examined and it was 

determined that modest associations with PD could be detected (Simón-Sánchez et al. 2009).  

G2385R was found to be a common variant in the Asian population and was associated with 

PD.  Also, for individuals who are from European decent and who present with a positive 

family history of PD, variation around LRRK2 was consistently found to alter the risk for the 

development of PD (Simón-Sánchez et al. 2009). 

 4.1.4  The Present Study 

In the present study, selected exons of LRRK2 were screened for pathogenic mutations in the 

South African patients using HRM and sequencing.  Exons 31 and 41 were screened as they 

contain the majority of the known mutations; R1441C/G/H (in exon 31), and G2019S and 

I2020T (both in exon 41).  In addition, exon 42 was screened, as a putative pathogenic 

variant in this exon, Q2089R, had previously been found by our group in one Afrikaner PD 

patient (A. Marsberg, BScHons thesis, 2009). 

 

4.2  Materials and Methods 

 4.2.1  Study Participants 

For exon 31, a total of 194 patients had previously been screened for mutations (R. Keyser, 

PhD thesis, 2011) and therefore in the present study the remaining 68 patients were screened.   

For exon 41, a total of 239 patients had previously been screened (Lesage et al. 2010; 

unpublished data) and therefore in the present study, the remaining 23 patients were screened. 
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The entire group of 262 patients were screened for the putative pathogenic variant, Q2089R, 

in exon 42.  Additionally, 132 Afrikaner controls were screened to determine the frequency 

of this variant in the ethnically matched background population. 

 4.2.1  Genetic Analysis 

The HRM and sequencing methodology has been described in Chapter 2; section 2.2.2; page 

34-35. Specific primer sequences had been designed for the PCR using Primer 3 software 

(Rozen 2000) and the primer sequence for each exon is provided in Table 4.1. 

Table 4.1  Primers designed for exons 31,41 and 42 of the LRRK2 gene. 

Region Primer Sequence (5´-3´) %GC Tm 

(⁰C) 

PCR conditions (Ta in 

⁰C) 

Size of PCR 

fragment (bp) 

Exon 31 For: agc agg ccc agt ttg aaa g 

Rev: gaa ccc tcg ctt att cag ga 

53 

50 

58.3 

57.2 

55 173 

Exon 41 For: gca cag aat ttt tga tgc ttg 

Rev: gag gtc agt ggt tat cca tcc 

38 

52 

54.9 

57.5 

55 331 

Exon 42 For: gcc tcc ttg gat gta gta tga gc 

Rev: tga agc tgc tga tat taa gaa aa 

52 

30 

60.6 

54.4 

55 289 

 

 

4.3  Results 

Screening for mutations in exon 31 

The R1441C mutation could easily be identified and distinguished from the wild type 

samples using HRM analysis (figure 4.3). 
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LRRK2Human       YDILTTGGRIVEGLKFPNEFDELEI Q GKLPDPVKE 2098 

LRRK2Chimp       YDILTTGGRIVEGLKFPNEFDELEI Q GKLPDPVKE 2098 

LRRK2Rat         YDILTTGGRIAEGLKFPNEFDELAI Q GKLPDPVKE 2098 

LRRK2Cow         YDILTTGGRIAEGLKFPNEFDELAI Q GKLPDPVKE 2098 

LRRK2Mouse       HDIWTTGSRIMEGLRFPNEFDELAI Q GKLPDPVKE 2098 

                 :** ***.** ***:******** * * ********* 

 

Figure 4.11  Sequence alignments of LRRK2 Q2089R using ClustalW.  Sequence alignments of LRRK2 

Q2089R in human (ENSG00000188906), chimpanzee (ENSPTR0000004828), mouse (ENSMUS36273), rat 

(ENSRNOG0000004048) and  cow (ENSBTAG00000016260).  The box is indicates the position of the 

Q2089R variant.  The conserved regions (where there are no amino acid changes) have been indicated with an 

asterisk. 

 

The frequency of the Q2089R variant in ethnically matched controls is 0.38% (1/264 

chromosomes) and using the Variant Effect Predictor Tool from Ensembl 

(http://www.ensembl.org/tools.html), it was predicted that the variant is "possibly damaging".  

This variant is found in the MAPKKK domain, a region that is evolutionarily conserved 

across a number of species (figure 4.11). 

 

4.4  Discussion 

The aim of the present study was to determine whether any of the South African patients 

harbour known or novel mutations in three exons (exons 31, 41 and 42) of the LRRK2 gene.  

All 51 exons of LRRK2 were not screened due to the costs, and to date, the majority of the 

mutations have been found in exons 31 and 41.  Mutations in LRRK2 have been identified as 

a significant cause of autosomal dominant, late onset PD (Farrer 2006; Guedes et al. 2010). 

A total of 68 patients were screened for mutations in exon 31 and none were found to carry 

the R1441C mutation.  In a previous study, R1441C was found in one patient (Table 1.4, 

Chapter 1; R. Keyser, PhD thesis, 2011) and therefore in total, the frequency of the R1441C 

mutation is 0.4% (1/262) in this group of patients.  Studies carried out on various population 

groups worldwide have reported different frequencies for the R1441C mutation - the 

frequency was reported to be as high as 20% in familial PD cases in a Spanish cohort 

(Paisán-Ruíz et al. 2005) and as low as 0.2% of familial PD cases in Northern Nebraska 

(Zimprich et al. 2004).  Furthermore, the family members of the carrier (AAO = 62) of the 

R1441C mutation were screened using sequencing and the variant was identified in an 

affected sibling and an unaffected sibling (61 years of age) of the patient as well as his 

unaffected niece (47 years of age) (figure 4.4).  The sibling was not interested in neurological 
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assessment to determine whether he had any signs of PD.  The niece was examined and is 

currently unaffected but may well develop PD at a later stage.  R1441C is found in the ROC 

domain of the protein (Lesage and Brice 2009), which contains a GTPase, a hydrolysis 

enzyme found in the highly conserved G domain, which along with the kinase domain, is 

hypothesized to play a role in signal transduction and other cellular signalling pathways 

(Vancraenenbroeck et al. 2012).  This hypothesis is supported by the fact that the proteins 

found in the ROC domain include adenylyl cyclase which is a significant role player in a 

range of cellular processes such as signal transduction,  cytoskeletal organization and nuclear 

transport (Shin et al. 2008; Vancraenenbroeck et al. 2012). 

A total of 23 patients were screened for mutations in exons 41 and none had the common 

G2019S mutation.  Previously G2019S had been found in 5 patients (Table 1.4; R. Keyser, 

PhD thesis, 2011) and therefore the total frequency of G2019S in our patients is 1.9% 

(5/262).  The worldwide frequencies of the G2019S mutation are variable and the frequency 

observed in the South African patients is significantly lower than in many populations:  the 

highest documented is in North African Arabs, where the frequency has been reported as 

39% and the lowest rates have been reported as 0.1% in countries such as Greece and India 

(Guedes et al. 2010).   

All 262 patients were screened for a novel heterozygous variant, Q2089R in exon 42 which 

had been previously identified in one of our Afrikaner Caucasian patients through direct 

sequencing of this exon in 30 patients (A. Marsberg, BSc Hons thesis, 2009).  This variant 

was predicted as "possibly damaging" through the use of the Variant Effect Predictor Tool 

(http://www.ensembl.org/tools.html) and therefore the frequency in our entire PD cohort was 

examined.  Q2089R was not identified in any additional patients.  The available family 

members of the affected patient (AAO = 50) were screened and it was determined that the 

Q2089R variant is found in both of the unaffected children of the affected individual (aged 47 

and 44 years of age respectively), but was not found in the unaffected sibling, who is aged 76 

years (figure 4.9).  Additionally, 132 Afrikaner controls were screened in order to determine 

the frequency in the population and one individual was found to harbour the variant, 

providing a frequency of 1/264 chromosomes (0.38%).  The Q2089R variant is of importance 

as it falls in the MAPKKK domain (similar to that of G2019S and I2020T) and mutations in 

this region are hypothesized to have a significant effect on the kinase activity of the protein 

(West 2005; Vancraenenbroeck et al. 2012).  In addition, Q2089 is evolutionarily conserved 

and resides within a highly conserved region (figure 4.11). 
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Limitations of the present study include the fact that not all of the exons of LRRK2 were 

screened and therefore future studies should involve mutation screening of all 51 exons to 

determine the full spectrum of mutations in this gene.  In addition, kinase assays should be 

performed for the Q2089R variant to determine whether it has a possible effect on the kinase 

function of LRRK2. 

In conclusion, in the present study the R1441C and G2019S mutations were both found at a 

relatively low frequency when compared to other studies.  It is plausible that other mutations 

in this gene are the cause of PD in our patients and it would be interesting to investigate 

whether founder effects may exist for novel mutations, as has been found for G2019S, 

particularly in the Afrikaner patients.   
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5.1  Introduction 

α-Synuclein (SNCA) (OMIM# 163890) was the first gene to be identified as a pathogenic PD 

gene (Polymeropoulos et al. 1996).  It has been implicated in autosomal dominant, early 

onset PD and is found on chromosome 4q21.  SNCA is composed of 6 exons that encode a 

140 amino acid protein called α-synuclein (SNCA) (Jo et al. 2000).  SNCA is comprised of 

an amphipathic N-terminal region, a non-amyloid-B component (NAC) domain and a C-

terminal region, that is highly acidic (figure 5.1) (Fortin et al. 2004; Bisaglia et al. 2009). 

 

 

Figure 5.1  Protein domains of SNCA.  The N-terminal amphipathic region, NAC domain and C-terminal 

acidic domain are indicated above.  The positions of the three known pathogenic point mutations are indicated 

on the diagram (Taken from Moore et al. 2005). 

 

SNCA is a member of the synuclein family and is one of three structurally related proteins.  

This family includes beta–synuclein (which has been implicated as an antagonist to α–

synuclein) and gamma–synuclein (implicated in cancer as well as certain neurodegenerative 

disorders) (Surguchov and Jeon 2008).  These proteins are small and soluble, are expressed in 

neural tissues and have also been identified in certain tumours.  There are two noteworthy 

structural characteristics of these proteins: the presence of a repetitive but degenerative amino 

acid motif KTKEGV throughout the first 87 residues, as well as the acidic stretches that have 

been identified in the C – terminal region (Surguchov and Jeon 2008).  SNCA is an 

intrinsically unfolded molecule that is able to assemble into Lewy body–like filaments, which 

separates it from other synucleins as it is the only protein capable of doing this (Dawson and 

Dawson 2003).  Due to the small size of SNCA, it has a tendency to misfold and this 

misfolding leads to aggregation (Uversky and Eliezer 2009).  The misfolding is thought to 

have a significant effect on the toxic effects of the protein leading to the increase in protein 

load, that will ultimately result in pathogenicity (Uversky and Eliezer 2009).  SNCA has been 

identified as the major fibrillar component of Lewy bodies and Lewy body neurites, the 

pathological hallmarks of both sporadic and familial PD.  Three point mutations, A30P, 

E46K and A53T in SNCA have been implicated in PD pathogenesis and pathogenic whole 
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gene duplications and triplications of the whole gene have also been reported in certain cases 

(Mueller et al. 2005; Uversky and Eliezer 2009).   

 

 5.1.1  Expression Profile 

SNCA is expressed throughout the brain and is found in high concentrations in the 

presynaptic nerve terminals (George 2002).  The major cranial regions that have been 

reported as having the highest levels of the protein are the cerebral neocortex, the 

hippocampus and the substantia nigra (George 2002). 

 

 

Figure 5.2  Northern Blot analysis of SNCA expression.   A Northern Blot showing the expression of SNCA 

in the human body.  SNCA is expressed predominantly in the heart and brain. Lane 1: heart,  Lane 2: brain,  

Lane 3: placenta,  Lane 4: lung,  Lane 5: liver,  Lane 6: skeletal muscle,  Lane 7 : kidney,  Lane 8: pancreas 

(Taken from Uéda et al. 1993). 

 

 5.1.2  Postulated Function 

It has been postulated that SNCA may have a number of functions – however, a single core 

function is yet to be determined.  SNCA is a significant component of Lewy bodies (Moore et 

al. 2005).  It remains unclear whether the Lewy bodies themselves are toxic to the cells, or 

whether the so-called protofibrils (intermediates that have been fibrillized) are the major 

cause for toxicity (Miller et al. 2004).  SNCA has been identified as a possible protein 

interaction partner of synphilin–1, that is present in numerous cranial regions (Engelender et 

al. 2000).  Functional studies have been carried out in order to further investigate the 

interaction between SNCA and synphilin-1.  It has been determined that the two proteins 

interact with each other in the neurons when in vivo and promote the formation of cytosolic 

inclusions (Engelender et al. 2000).  When the proteins are co-transfected into HEK23 cells, 
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cytoplasmic eosinophilic inclusions can be observed (Engelender et al. 2000).  This study has 

been supported by an additional study, where it was shown that synphilin-1 can be 

ubiquitinated by Parkin, subsequently resulting in ubiquitin positive, Lewy body–like 

structures (Chung et al. 2001).    

 

SNCA has been identified as an active role player in oxidative stress (Moore et al. 2005). 

Additional studies show that over expression of the protein in P12, NT2 and SK-N-MC 

neuroblastoma cell lines may result in a decrease in proteasome activity, and therefore a 

subsequent decrease in the viability of the cell (Lee and Price 2001; Petrucelli et al. 2002; 

Fleming et al. 2004).  SNCA has also been implicated in the induction of fibrillization of 

MAPT; animal models have provided evidence that the co-incubation of SNCA and tau will 

promote the fibrillization of both of these proteins jointly (Fleming et al. 2004).  This is 

significant and suggests that there is an interaction between SNCA and tau that may account 

for the inclusions present in various neurodegenerative disorders. 

 

 5.1.3  Disease-causing Mutations and Susceptibility Alleles 

  5.1.3.1  Disease-causing Mutations 

The first point mutation that was identified in SNCA was the A53T mutation and only two 

additional point mutations have been identified to date and they are A30P and E46K (Kruger 

1998; Zarranz et al. 2004).  Whole gene duplications and triplications have also been 

identified in patients, but it should be noted that all of the above-mentioned mutations are 

extremely rare. To date, no SNCA point mutations have been identified in patients with 

sporadic PD (Berg et al. 2005).  It has been documented that patients with SNCA duplications 

present with late onset but levodopa responsive PD, that resembles typical PD.  Patients who 

have SNCA  triplications have much earlier onset PD, which is considered to be more severe, 

with dementia and a faster disease progression common in these individuals (Fuchs et al. 

2007).  Cumulatively, all results that have been documented to date show that SNCA is 

capable of triggering neurodegeneration when the overall expression levels are increased by 

even a modest level – thus the mutations may cause disease due to the fact that there is an 

increase in function (Gasser 2010). 
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  5.3.1.2  Susceptibility Alleles 

Two recent GWAS on PD have concluded that SNCA may play a role in both familial and 

sporadic PD, even though no SNCA point mutations have been identified in sporadic cases 

(Simón-Sánchez et al. 2009; Satake et al. 2009).  This may be due to the fact that SNCA has 

been identified in Lewy bodies that are present in both forms of PD (Cookson and Bandmann 

2010).  It remains to be determined however, whether the increased risk for PD in sporadic 

cases from GWAS is mainly due to the SNPs identified using this method may affect dosage 

of SNCA, or whether there is an additional, underlying cause (Cookson and Bandmann 

2010). 

 5.1.4  The Present Study 

In the present study two of the six exons of SNCA were screened using HRM and sequencing.   

These exons were selected as the three missense mutations previously identified reside in 

these exons; A30P (in exon 2), and E46K and A53T (both in exon 3). 

 

5.2  Materials and Methods 

 5.2.1  Study Participants 

A total of 119 patients had already been screened for the A30P, E46K and A56T mutations 

(unpublished data).  In the present study the remaining 143 of the 262 patients were screened 

for mutations in both exons.  Due to the fact that the variations in SNCA are relatively rare, no 

positive controls were available for the HRM analyses. 

 5.2.2  Genetic Analysis 

The HRM and sequencing methodology has been described in Chapter 2; section 2.2.2; pages 

34-35.  Specific primer sequences had been designed for the PCR using Primer 3 software 

(Rozen 2000) and the primer sequences for each exon are provided in Table 5.1. 
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Table 5.1  Primers designed for exons 2 and 3 of the SNCA gene. 

Region Primer Sequence (5´-3´) %GC Tm 

(⁰C) 

PCR 

conditions 

(Ta in ⁰C) 

Size of PCR 

fragment 

(bp) 

Exon 2 For: ccc cga aag ttc tca ttc aa 

Rev: ccc atc act cat gaa gc 

45 

50 

55.7 

52.0 

55;  

3.0mM 

MgCl2 

235 

Exon 3 For: ttt aag gct agc ttg aga ct 

Rev: cca cac taa tca cta gat ac 

40 

40 

53.7 

49.8 

40;  

2.5mM 

MgCl2 

146 

 

 

5.3  Results 

The screening of exons 2 and 3 in SNCA using HRM showed that no patients had any of the 

known mutations.  None of the patients that were screened using HRM showed altered 

denaturation profiles (figure 5.3 and 5.5).  However, for each exon, samples that appeared to 

have any shift in the melt curves, were selected and sequenced in order to verify that no 

sequence variants were present (figures 5.4, 5.6 and 5.7). 

It was therefore concluded that none of the 143 patients that were screened for mutations in 

both exons 2 and 3 had any known or unknown pathogenic mutations – the patients were thus 

all wild type. 

 

 

Figure 5.3  HRM normalized graph of the results obtained from the screening of exon 2 of SNCA for the A30P 

mutation.  
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Figure 5.4  Sequence Alignment using BioEdit.  Sequence alignment of the WT and patient samples for the 

A30P mutation in exon 2.  None of the patients were found to have this variant and the position of the A30P 

variant is shown by the arrow. 

 

 

Figure 5.5  HRM normalized graph of the results obtained from the screening of exon 3of SNCA in order to 

determine whether or not the PD patients had any of the known mutations in this exon. 

 

  

Figure 5.6  Sequence Alignment using BioEdit.  Sequence alignment of the WT and a patient samples for the 

E46K mutation in exon 3.  None of the patients were found to have this variant and the position of the E46K 

variant is shown by the arrow. 

 

  

Figure 5.7  Sequence Alignment using BioEdit.  Sequence alignment of the WT and a patient samples for the 

A53T mutation in exon 3.  None of the patients were found to have this variant and the position of the A53T 

variant is shown by the arrow. 
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5.4  Discussion 

Mutations in SNCA are rare and result in autosomal dominant, early-onset PD with the 

disease progressing rapidly in affected patients (Miller et al. 2004).  Only three missense 

mutations (A30P in exon 2; E46K and A53T in exon 3) have been identified in this gene as 

well as whole gene duplications and triplications (Polymeropoulos et al. 1996; Zarranz et al. 

2004).  In the present study, we investigated whether these three mutations were present, but 

none of the 143 patients screened harboured any of these mutations or any other sequence 

variants.  

Previously, our group had screened individuals for the point mutations in exons 2 and 3 as 

well as copy number variations using MLPA and one of the patients with a triplication of the 

entire gene was identified (Table 1.4; Keyser et al. 2010).  Therefore, in total, we have 

identified mutations in SNCA in only 0.4% of our patients (1/262). 

The missense mutations that have been identified in SNCA are all found in the N-terminal 

amphipathic region which contains six, imperfect eleven-residue repeats, denoted 

XKTKEGVXXXX (Sode et al. 2007).  The KTKEGV is a highly conserved hexameric motif 

and has been shown to maintain the natural unfolded state of α-synuclein and this 

subsequently prevents fibril formation in the cells (Sode et al. 2007).  Mutations in the 

amphipathic region, but particularly E46K as it is found in the  KTKEGV motif, are thought 

to contribute significantly to disease pathogenesis because these defects prevent α-synuclein 

from maintaining the unfolded state and therefore results in protein accumulation and 

subsequent disease. 

Limitations of the current study were that positive controls for the three mutations were not 

included in the HRM analysis, the fact that not all of the exons of SNCA were screened and 

that the investigation of duplications and triplications of the gene were not included in the 

study.  Therefore, future work should address these particular shortcomings. 

In conclusion, none of the 262 South African patients have point mutations in exons 2 or 3 of 

SNCA.  However, the remaining exons should be sequenced to determine if novel mutations 

exist in these patients.  Although mutations in SNCA are a rare cause of PD worldwide, due to 

its expression in presynaptic vesicles and it being an integral component of Lewy bodies, it 

remains an important gene for mutation screening. 
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Taken together, the results from Chapters Two to Five imply that mutations in the known PD 

genes Parkin, LRRK2, SNCA and PINK1 that have been reported at relatively high 

frequencies in other global populations, are not a major cause of the disorder in the South 

African patients that were screened.  Therefore, other approaches such a whole genome or 

whole exome sequencing is necessary to identify possible novel PD genes in our patients.  

The identification of a novel PD-causing gene(s) is important as this may shed light on the 

pathways leading to the disorder and also ultimately may lead to the development of 

improved therapeutic modalities. 
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6.1  Introduction 

Mutations in DJ-1 (Daisuke-Junko-1) (OMIM# 602533) have been identified in autosomal 

recessive, early onset PD (Bonifati et al. 2003).  This gene is located on chromosome 1p36.23 

and is composed of seven exons which encode a protein of 189 amino acids in length (van 

Duijn et al. 2001; Bonifati et al. 2003).  It was initially identified as an oncogene and was 

implicated as the causal factor for male rat infertility before its role in PD was discovered 

(Nagakubo et al. 1997; Kim et al. 2005).  The protein product of DJ-1 is located in the 

cytoplasm and belongs to the DJ-1/Thi/PfpI protein superfamily due to the presence of the 

DJ-1/PfpI domain (figure 6.1).  This family of proteins contains a well conserved catalytic 

cysteine residue which lies adjacent to a histidine residue and is part of the catalytic triad 

(which involves Cys-His-Asp/Glu) in the proteases (Wilson et al. 2004).  The cysteine 

residue is significant because it is modified in the presence of reactive oxygen species (ROS) 

and becomes sulfinic acid, an oxoacid of sulphur with a distinct structure of RSO(OH) 

(Canet-Avilés et al. 2004).  Interestingly, all of the proteins that belong to this family are 

oligomers that appear to be central to the maintenance of the biochemical activity and 

stability within the cell (Wilson et al. 2004).  The oligomerization (the formation of an 

oligomer from monomers, dimers and trimers) of the DJ-1/Thi/PfpI protein family has been 

shown to be variable and it is hypothesized that this may be associated with the functional 

diversity that is observed within this family (Wilson et al. 2004).   

 

Figure 6.1  Protein domains of DJ-1.  DJ-1 is composed of a single domain, namely the DJ-1/PfpI domain. 

This domain possesses a critical cysteine residue, which is sensitive to ROS (Taken from Moore et al. 2005). 
 

Mutations in  DJ-1 were initially identified in two families of European origin  (Dutch and 

Italian) both of which presented with early-onset, autosomal recessive PD (Bonifati et al. 

2002; Hague et al. 2003).  In a subsequent study of 185 unrelated, early onset PD cases, with 

Ashkenzai Jewish and Afro-Carrabean ethnicities, only two of the individuals were found to 

have mutations in DJ-1 (Abou-Sleiman et al. 2006).  This study was supported when a 

mutation was identified in only one early onset PD patient of Hispanic and Jewish Ancestry 

from a total PD cohort of 953 patients screened for mutations in the gene (Alcalay 2010).  

Stellenbosch University http://scholar.sun.ac.za



 

81 

 

Mutations in DJ-1 are rare and  account for as less than 1% of early onset PD cases (Moore et 

al. 2005).  

Due to the scarcity of PD patiets with DJ-1 mutations, there is limited knowledge regarding 

the clinical presentations of patients with these mutations and very little data regarding 

genotype-phenotype (Vásquez et al. 2004).  Also the molecular mechanisms which triggers 

pathogenesis remains unclear (Wang et al. 2012).  The abnormal accumulation of proteins 

such as SNCA in PD patients is thought to contribute significantly to neurodegeneration and 

disease progression (Taylor, Hardy, and Fischbeck 2002; Bonifati et al. 2003) and 

cytoskeletal proteins such as DJ-1 may clear misfolded proteins, thus preventing protein 

accumulation and lead to the prevention of neurodegeneration (Wang et al. 2012). 

DJ-1 has also been identified as a critical factor in mitochondrial function and autophagy.  

Autophagy is a homeostatic process which is employed by the cell in order to break down the 

intracellular components - this strategy is essential for normal cell functioning (Levine, 

Mizushima, and Virgin 2011).  DJ-1 functions together with the PINK1/Parkin pathway 

(Section 3.1 pg 45-46)  in order to carry out this homeostatic process (Thomas and Beal 

2011).  It has been suggested that the disruption of the removal of damaged mitochondria 

from the cells through mitophagy may be a central part of the PD pathogenic process 

(Thomas and Beal 2011).  This has been supported through studies of mammalian cells, that 

have proven that DJ-1 functions downstream of both PINK1 and Parkin.  This is due to the 

fact that a loss of PINK1 and Parkin will still result in an altered phenotype, irrespective of 

the fact that DJ-1 is still present in the cell (Dodson and Guo 2007; Exner et al. 2007).  DJ-1 

plays an active role in alleviating oxidative stress as it can decrease the amount of ROS 

within the cells through a self oxidation process (Taira et al. 2004).  During increased periods 

of oxidative stress, DJ-1 located in the mitochondria may prevent mitochondrial damage. 

 6.1.1  Expression Profile 

DJ-1 is a cytoplasmic protein but is capable of translocating to the mitochondria when 

elevated levels of ROS are expressed in the cells (Nagakubo et al. 1997).  It is expressed 

throughout the body, with significant levels of protein expressed in the pancreas, skeletal 

muscle and heart (figure 6.2).  Importantly, DJ-1 is found in neurons and astrocytes (Lee et 

al. 2003; Tao and Tong 2003). 
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Figure 6.2  Northern Blot analysis of DJ-1 expression.  Northern blot analysis of DJ-1 shows that it is found 

ubiquitously, with one exception being the lung (Taken from Nagakubo et al. 1997). 

 

 6.1.2  Postulated Function 

To date, as mentioned, no definitive physiological functions have been defined for DJ-1 

(Moore et al. 2005) but there are several that have been hypothesized.  Prior to the 

identification of the role of  DJ-1  in PD, it was successfully linked to various biological 

processes such as oncogenesis, infertility, cellular responses to stressors, mRNA stability and 

gene transcription (Bonifati 2007).  The catalytic triad involving Cys-His-Asp/Glu has been 

implicated as an antioxidant and therefore as a means to protect the cells against oxidative 

stress (Abou-Sleiman et al. 2003; Moore et al. 2005).  The antioxidant properties are, 

however largely dependent on the cysteine residue, which is located at position 106 (Canet-

Avilés et al. 2004).  When oxidation takes place, the cysteine residue forms a disulphide 

bond, that has a reinforcing effect on the  protein structure and stability (Canet-Avilés et al. 

2004).  It is also hypothesized that DJ-1 may prevent the aggregation of SNCA and may 
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additionally act as a protector of dopaminergic neurons that are exposed to ROS (Taira et al. 

2004). 

 6.1.3  Disease-causing Mutations and Susceptibility Alleles 

  6.1.3.1  Disease-causing Mutations 

Some of the pathogenic mutations in DJ-1 include heterozygous and homozygous point 

mutations, truncations caused by nonsense mutations and exonic deletions, most of which 

result in a loss of function of the gene (Eeden et al. 2003).  Some point mutations that have 

been identified in DJ-1 result in structural changes of the protein such as a decrease in the 

antioxidant activity and unfolding of the protein which may lead to destabilization of the 

molecule (Takahashi-Niki et al. 2004; Tomiyama et al. 2009).  The point mutation L166P is 

the most widely studied mutation and the structural and functional effects that occur as a 

result of this mutation, are well characterized (Tomiyama et al. 2009).  It has been reported 

that L166P results in an altered secondary structure in vitro and this suggests a loss of 

function (Olzmann et al. 2004).  Other mutations identified in DJ-1 are M26I and D149A 

(Abou-Sleiman et al. 2003), A104T (Hague et al. 2003) and E46D (Hering et al. 2004).  

Limited information regarding the physiological and biochemical changes which occur as a 

result of these mutations, is currently available. 

  6.1.3.2  Susceptibility Alleles 

The coding region of DJ-1 is highly conserved across various species (Taira et al. 2004).  

Polymorphisms and susceptibility alleles have been observed and these are present in the 

non-coding regions of the gene (Bonifati 2007).  One of the susceptibility alleles is an 18bp 

indel (g.168_185) which was initially identified in a Finnish PD population (Eerola et al. 

2003).  This indel is found in the 5'UTR and is hypothesized to affect gene expression 

because of its proximity to the promoter region and a transcription regulatory sequence (SP1) 

(figure 6.3) and has been identified in approximately 25% of PD cases (Eerola et al. 2003; 

Morris et al. 2003).  Another variant thought to be a susceptibility factor is the R98Q variant, 

in exon 5 which has been found in 2% of patients vs. 0.7% in the control population 

(Djarmati et al. 2004).  This variant was also found in a homozygous state in a control patient 

- suggesting that this variant is non-pathogenic (Bonifati 2007). 
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-1015  ggatccttct aagctcattc aagaattttg ggctttaact atttcctttg atttaacctg 

-955   gtaccaggtg ccaactttag ataataggga tatctaatta cttctaaatt cctcagataa 

-895  ggggcctgct tgatggtcac caggtgatct gtgctctcct taagagggaa taagacctag 

-835 cgttggcaga gttctgtagg gtgactatag ttaacagtaa tctgttgtat attttaaaat 

-775 gttattattg aagagagtaa ctggaatgtt cccagtataa agacaaatgt ttaaggtgat 

-715 agagatctca tttaccctga tttaatcatt acacattata tgaaagtatc aaaataccac 

-655  atgtacccag aaaacacata cgtctcttac atatcaataa atacaacttg agattatgat 

-595 gtaaatacat ctgaccaact tggtacttat tagacttatg tgcgcagcac tgctctagtc 

-535 ctgtgggtgc agcagcatca ggatcgttaa agaaaacaaa caatgctgag aaaaaaactc 

-475 acacccctga gacatccggg tgtgaataaa tgcggcagag tcgcccgaga tcgggagacc 

-415 aggcgtgggg gagaggtccg ggaggcctgg accagagtcc taacagacca gaggcgaaac 

-355 gggaaggcgc gccagaaaag gaacaacgca aagggagcag gcgtgcacgg agcgcgaact 

-295 aaggaacccc tctgacaacc ccagtccctc ggcagttcca gagaccggct cctcacggag 

-235 ggtggcggta gagactgtta agccccgcgg gcgccggggc aggccggact gtgccattcg 

-175  tggggggtac catgtgggac cgagccgcct cacccagggc tgtccagcta gaaactcccc 

-115 ggtgccaccc ccgcctcagt ccgaggtaga ctcggccgga cgtgacgcag cgtgaggcca 

-55 aggcggcgtg agtctgcgca gtgtggggct gagggaggcc ggacggcgcg cgtgcgtgct 

+5  ggcgtgcgtt cactttcagc ctggtgtggg gtgagtggta cccaacgggc cggggcgccg 

+65  cgtccgcagg aagaggcgcg gggtgcaggt cagcgccagc gggggcgcgg cgcatgtgtg 

+125  ggccgtggcg ctgggcggcg tgggggtgct ggacggtgtc cctgtgctgg acggtgtccc 

+185  gctggctcag aaccggcgcg gggcctgggt cggggccgcc ctcgcttccg gcctcccagt 

+245  cgggccctgt cgctggcgtt ggatttgact gaccgccagc gtggtggcaa cgctgaagcg 

+305  tccagaatct tctgcctaac ctctcgccgg catggaactg gctagccgtt ttattaaact 

+365  ctgttttgcg tggacggtaa accctccaga taatctgtaa ataggttaaa aaaaattcgg 

+425  aacctcgttg agctgctgtc gttggcagtg agaactccgc gcagagagac agatgtagtt 

+485  gggttgactt cagtgagggg atttccatct ttctcagtca ttaaaaaaag tgttcagaca 

+545  tttaacactg ttgaccccca cacacaattt tttagtacag ttataactaa gaaaacaaaa 

+605  atcccctcca aaaaattaca agttaattgc gaaagaccac atttaaattt ttgcccatga 

+665  aattcagttt agtcgtttct ctgaaacagt gcttcaaaaa agactgtttc cccgcattgt 

+725  gtgaaatgca ggagacccac gtacttgtat ttttaaaaaa cccatttgca acatactatt 

+785  aaagttggat ttaagagaac atggtagaag aaaatctaag caatactaca ccttttagca 

+845  ccctcattat gttttcatct cagagcaatt aaaactgcta tacaaatcaa cgttaagata 

+905  actaaactgc tgcttttttc gtattcagtt gtctatgaaa accgtttccc taggaagtac 
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+965  ttactctgct tgaaaatgct cctaaacttt aaattttggg gtatctcagg gttgcaatga 

+1025  aagttttttg aaatcttttt tttttttttt ttttaaggct tgtaaacata taacataaaa 

+1085 atggcttcca aaagagctc 

Figure 6.3  Nucleotide sequence of the promotor region of DJ-1.  The position of the 18bp indel that has 

been identified in the 5'UTR of DJ-1 is indicated in bold blue font and nucleotide base pair underlined and in 
bold, red font indicates the transcription start site.  The 18bp indel is thought to affect gene expression because 

of its proximity to the start site.  The SP1 site (a transcriptional regulation sequence) is indicated in bold, purple 

font and has a double underline.  The position of the g.-6_+10del variant, the focus of the present study, is 

indicated by the bold, underlined font (GenBank Accession number:  AB045294). 

 

 6.1.4  The Present Study 

In a previous study, conducted by our group, a novel g.-6_+10del variant had been identified 

at the transcription start site in one of the South African Mixed Ancestry PD patients (figure 

6.3) (Keyser et al. 2009).  Genotyping of the family resulted in the identification of one 

homozygous and additional heterozygous individuals (figure 6.4).  A functional study using a 

luciferase assay showed that the deletion reduces transcriptional levels by 40% (Keyser et al. 

2009).  The aim of the present study was to investigate the frequency of the 16bp deletion in 

the PD cohort and thereby possibly determine the role of this variant in the South African PD 

patients.  
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6.2  Materials and Methods 

 6.2.1  Study Participants 

A total of 148 patients had previously been screened for the g.-6_+10del variant using a 

restriction fragment length polymorphism (RFLP) (Keyser et al. 2009).  We aimed to re-

genotype these patients and to include the remaining 114 patients in our cohort that had not 

yet been screened. 

 6.2.2  Genetic Analysis 

A number of different techniques were employed in order to successfully genotype the g.-

6_+10del variant in the South African patients. These methods included HRM, RFLPs, a 

Dual Labelled Probe Assay (Applied Biosystems, Foster City, USA) and finally, since none 

of these methods worked, a custom KASP™ Genotyping Assay was designed (LGC 

Genomics, Teddington, United Kingdom).   

HRM Analysis 

The HRM and sequencing methodology has been described in Chapter 2; section 2.2.2; pages 

34-35.  Specific primers had previously been designed for the PCR using Primer3 software 

(Rozen 2000)  and the primer sequences are indicated in Table 6.1.  Due to the high GC 

content of the fragment, the size of the PCR fragment as well as the non-specific binding of 

the primers to the target sequencing of DNA, a number of different primers needed to be 

designed for the HRM analysis of this variant (Table 6.1).  Various additives (DMSO, 

Formamide and Betaine) were included at 5% concentrations to each of the PCR reactions. 

Restriction fragment length polymorphism (RFLP) analysis 

The PCR primer set labelled "A" generated a PCR product of 234bp in length  (Table 6.1) 

was used for this analysis.   Following PCR, a total of 5 units of KpnI (Promega, USA) was 

added to 8µl of the PCR product, and incubated overnight at 37°C.  The digested products 

were then electrophoresed on 4% agarose gels as well as on a 12% polyacrylamide gels 

(Appendix V).  Both gels were used to compare the resolution of the digested fragments.  

Silver staining was used to visualize the digested PCR products on the polyacrylamide gels 

and ethidium bromide was used to visualize the digested PCR product on the agarose gels.  

KpnI  cuts at position 103 of the PCR fragment (figure 6.5), therefore it is expected that in a 

homozygous wild type individual, fragments of 131bp and 103bp would be visualized, whilst 
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in a patient with the heterozygous g.-6_+10del variant,  three fragments would be generated 

131bp, 103bp and 87bp - the 87bp is as a result of the g.-6_+10del variant that is missing 

from the sequence.  In an individual homozygous for the deletion, two fragments of 131bp 

and 87bp would be visualized due to the fact that the g.-6_+10del variant is missing on both 

of the alleles. 

 

Table 6.1 Primers designed for HRM analysis for the DJ-1 gene. 

Primer 

Name 

Primer Sequence (5´-3´) %GC Tm 

(°C) 

PCR conditions (Ta in °C) Size of PCR 

fragment 

(bp) 

Primer 

set A 

For:  caa ggc ggc gtg agt ctg 

Rev:  gtc cag cac agg gac acc 

67 

67 

61.1 

60.0 

62 (Formamide and Betaine) 234 

Primer 
set B 

For: acc cag ggc tgt cca gct 

Rev: ggt gtc cct gtg ctg gac 

67 

67 

63.0 

60.0 

60 (Betaine) 321 

Primer 

set C 

For:  aac gca cgc cag cac gca cg 

Rev: ggt gtc cct gtg ctg gac 

70 

67 

69.6 

60.0 

65 (DMSO) 192 

Primer 

set D 

For:  gta cca ctc acc cca cac cag 

Rev:  gtc cag cac agg gac acc 

62 

67 

62.3 

60.0 

62 (DMSO and Betaine) 195 

 

 

ccaaggcggcgtgagtctgcgcagtgtggggctgagggaggccggacggcgcgcgtgcgtgctggcg 

     KpnI cut site  

tgcgttcactttcagcctggtgtGGGGTGAGTGGTACCCAA CGGGCCGGGGCGCCGCGTCCGCAGG    

AAGAGGCGCGGGGTGCAGgtcagcgccagcgggggcgcggcgcatgtgtgggccgtggcgctgggcgc      

gtgggggtgctggacggtgtccctgtgctggac 

 

Figure 6.5  Nucleotide sequence of the 234bp PCR product of DJ-1 used for RFLP.  The position of the g.-
6_+10del variant is indicated by the blue, underlined section of sequence.  KpnI  cuts at position 103, as 
indicated on the sequence. 

 

Dual Labelled Probe Assay 
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The samples were also genotyped on an ABI Prism 7900HT Fast Real-Time PCR System 

(Applied Biosystems, Foster City, USA) using a custom designed DNA Dual Labelled Probe 

Assay (Integrated DNA Technologies, Coralville, Iowa).  This assay works in exactly the 

same way as a conventional TaqMan
®
 or 5' exonuclease assay.  Probes that are composed of 

two fluorophores are used.  One of these fluorophores is called a quencher (Q) and while the 

probe is intact, it causes a reduction of the fluorescence from the second fluorophore (F) 

which is referred to as the reporter.  The fluorophore is located at the 5' end of the probe and 

the quencher at the 3' end.  Once the probe has bound to the template DNA, after denaturation 

has taken place, the primers will anneal and the Taq polymerase will add the necessary 

nucleotides.  Through its 5' exonuclease activity, Taq is able to cleave off the probe and the 

quencher and reporter will then be separated.  The reporter is then able to emit its energy, 

which is quantified using digital software (figure 6.6)  

(www.bio.davidson.edu/courses/molbio/molstudents/spring2003/pierce/realtimepcr.htm).  By 

using two probes with different reporter fluorophores, SNPs or indels can be genotyped using 

this approach.  

 

Figure 6.6  Principle behind conventional Taqman
®
 Assay/Dual Labelled Probe Assay.  Initially, both the 

probes and primers anneal to the target sequence and the proximity of the fluorphore (F) and quencher (Q) 

prevents fluorescence.  When Taq polymerase reaches the probe, the fluorophore is cleaved from the quencher 

and the fluorescent signal can be measured.  The signal obtained is directly proportional to the amount of PCR 

product produced (Taken from www.qiagen.com/hb/quantitectmultiplexpcr). 
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The PCR primer/probe sequences that were designed for detection of the 16bp deletion in DJ-

1 are indicated in Table 6.2.  A total reaction volume of 25µl was set up for each of the 

samples using the real-time PCR kit, QuantiFast
®

 Multiplex PCR kit (Qiagen, Hilden, 

Germany).  The reaction mixture was comprised of 12.5µl QuantiFast
®

 Multiplex PCR kit 

(Qiagen, Hilden, Germany), 20x primer/probe mix (20x primer probe mix is composed of 

10µM forward primer, 10µM reverse primer and 4µM probe), 10ng template DNA and 7.0µl 

RNAse free water.  The PCR was carried out on the ABI 7900HT (Applied Biosystems, 

Foster City, USA) and the cycling conditions were as follows:  an initial enzyme activation 

step for 5 min at 95°C, followed by two-step cycling for 45 cycles with a denaturation step at 

95°C for 30 s and an annealing/extension step of 60°C for 30 s.  Allelic discrimination was 

performed on the ABI Prism 7900HT using the end-point analysis which was carried out 

using the Sequence Detection System (SDS) 2.4 software that has a 95% confidence level.  

This software allows for the fluorescence of the samples to be detected and calibrated and 

subsequently performs automatic allele calling through the generation of allelic 

discrimination plots. 

 

Table 6.2 Primers and probes designed for the Dual Labelled Probe Assay. 

 Sequence (5´-3´) %GC Tm 

(°C) 

PCR conditions 

(Ta in °C) 

Size of PCR 

fragment (bp) 

PCR Forward Primer 

PCR Reverse Primer 

ggc tgt cca gct aga aac tcc 

gtt ggg tac cac tca ccc 

57.1 

61.1 

60.4 

56.9 

60 187 

Probe (wild type) 

Probe (16bp del) 

HEX-tga acg cgc gcc gtc 

FAM-acg cca gca cgc acg c 

73.3 

75.0 

- 

- 

- 

- 

- 

- 

 

The wild type probe was labelled with HEX which fluoresces green and the probe for the g.-

6_+10del variant was labelled with FAM, which fluoresces blue on the ABI 7900HT. 

 

KASP™ Genotyping Assay  

Genotyping of the g.-6_+10del variant was performed by a commercial company, 

KBiosciences (LGC Genomics, Teddington, United Kingdom) using a custom designed 
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KASP™ Genotyping Assay.  This assay is based on the fluorescent resonance energy transfer 

(FRET) system that is an effective means for SNP and indel detection 

(http://www.lgcgenomics.com/kasp-overview).  This system is a probe based system that 

allows two fluorophores, a donor and acceptor that are tagged with a specific dye, to interact 

when bound to a target fragment within a specific proximity to each other.  The proximity of 

the two fluorophores results in a FRET reaction. When the donor fluorophore is in close 

proximity to the acceptor fluorophore and is subsequently excited by a light source, the 

acceptor fluorophore is excited and a fluorescence is produced.  This fluorescence is directly 

proportional to the amount of target DNA that is amplified 

(http://dnasoftware.com/FretAssays/tabid/139/Default.aspx) (figure 6.7).  

A total reaction volume of 20µl was set up for each of the samples in a 384 well plate.  This 

reaction volume was composed of 10ng template DNA, 2x KASP™ Master Mix and 0.055 µl 

KASP™ Primer Master Mix.  The plate was then heat sealed and the PCR carried out on the 

Hydrocycler (LGC Genomics, Teddington, United Kingdom), which supports plate based 

PCR reactions.  KASP™ makes use of a two step PCR rather than the conventional three step 

PCR.  The initial activation step of 94°C for 15min is necessary for Hot-Start Taq activation, 

followed by 10 cycles of annealing which includes 20s at 94°C and 60s at a temperature of 

between 65-57°C (with the temperature being decreased by 0.8°C per cycle).  The final 

extension step is performed at 94°C for 20s immediately followed by a lower temperature of 

57°C for 60s - both of which take place over 26 cycles. 

Following successful PCR, plate reading was performed in order to determine the 

fluorescence in each well.  SNP calling was performed using KlusterKaller™ software that 

uses dual emission data imported from a fluorescent reader to generate a cluster graph for 

each assay (http://www.kbioscience.co.uk/software/klustercaller.html). Algorithms are built 

into the software in order to determine if the genotype calls are homozygous for one allele, 

heterozygous, homozygous for the second allele or inconclusive. 
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Figure 6.7  KASP™ Genotyping Chemistry.  Fluorescence is emitted at a specific wavelength when the donor 
and acceptor (in this assay, HEX and FAM) are in close proximity to each other.  Fluorescence will occur when 

the specific oligonucleotide is no longer quenched (Taken from http://www.lgcgenomics.com/how-does-kasp-

work).  
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6.3  Results 

Sequencing of family member of patient 50.31 

Initially, all family members of proband 50.31 were sequenced in order to verify the results 

that had been previously obtained.  This was successfully achieved and the findings 

corroborated the previous results (figure 6.4).  Sequencing results of a wild type, 

heterozygous and homozygous individual for the g.-6_+10del variant are shown in figure 6.8.   

 

 (A) 

 

 

 

 

 (B) 

 

  

 

 

 

 

16bp present in homozygous WT 

16bp deleted a heterozygous individual 
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 (C) 

 

 

Figure 6.8  Sequence electropherograms of the family members of patient 50.31.  (A) An individual 

homozygous for the wild-type allele; (B) An individual heterozygous for the g.-6_+10del variant; (C) An 

individual homozygous for the g.-6_+10del variant in DJ-1. 

 

 

 

Figure 6.9  Sequence Alignment the g.-6_+10del variant using BioEdit.  Sequence alignment of the 

homozygous WT  and homozygote for the g.-6_+10del variant. The deletion can be clearly detected when the 

sequences are aligned. 

 

Genotyping using HRM 

Samples that were wild type, heterozygous for the deletion or homozygous for the deletion 

were used in the HRM experiments as positive controls using primer set A (Table 6.1).  

However, despite numerous attempts, the various genotypes could not be distinguished from 

each other using this method (figure 6.10 and 6.11).  This was unexpected as a 16bp deletion 

should significantly alter melt profile of a DNA fragment.  Designing alternative forward and 

reverse primers (Table 6.1; sets B, C and D) to change the size of the PCR product as well as 

to change the GC content of the fragment (as this is a GC rich region) also did not result in a 

detection of the g.-6_+10del variant.  Identical results were obtained for each of the primer 

sets i.e. none of the genotypes could be distinguished from each other. 

We therefore decided to genotype the g.-6_+10del variant using the RFLP method that had 

been used previously (Keyser et al. 2009). 

 

16bp deleted in a homozygous individual 
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Figure 6.10 HRM normalized graph using the positive controls for DJ-1.  A distinction between the WT, 
heterozygous and homozygous mutants could not be made. 

 

 

Figure 6.11  HRM normalized graph from the screening of the g.-6_+10del variant.  A total of  68 patients 

were included in the run and no differences in the melt profiles were observed. 

 

Genotyping using RFLP 

An initial experiment, using only 8 samples, was attempted to determine whether this method 

could be used to successfully genotype the g.-6_+10del variant.  The RFLP assay in this 

small sample number generated the expected results (figure 6.12).  However, when the large 
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batches of samples were digested with KpnI, the assay became problematic and the positive 

controls could no longer be distinguished (figure 6.13).  All samples appeared identical and it 

would seem as if the PCR did not work efficiently when cocktails were made for large 

batches of samples.  Electrophoresing the digests on agarose or PAGE gels did not improve 

the resolution of the fragments. 

 

 

Figure 6.12  Digest of DJ-1 using KpnI in the positive control samples on an agarose gel.  The digest 

produced the expected fragment sizes. Het, heterozygous; Hom, homozygous; L, ladder (O'Range Ruler 100bp 

DNA ladder).   

 

 

 

Figure 6.13  Digest of DJ-1 fragment using KpnI in the patient samples.  When the KpnI digest was 

performed in large batches of samples, the digest did not work.  No distinction could be made between any of 

the samples and the controls. 
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6.4  Discussion  

DJ-1 has been implicated in autosomal recessive PD, however mutations in this gene are a 

rare cause of the disease, accounting for less than 1% of all cases (Tomiyama et al. 2009).  

For this reason, this gene is generally not routinely screened for mutations (Wirdefeldt et al. 

2011).  In the present study we did not screen the exons, but aimed to investigate the role of a 

functional variant in a group of South African PD patients.  This variant had been previously 

identified in one of our affected PD patients and in unaffected family members.  The 

significance of this discovery is the fact that this indel was found to span the transcription 

start site (Taira et al. 2004) and and was shown to reduce transcription of DJ-1 (Keyser et al. 

2009).  This was done using a Dual-Luciferase Reporter assay;  the 5'UTR region that 

spanned the g.-6_+10del variant was cloned into a pGL4.10-Basic luciferase vector and 

subsequently transfected into HEK293 and BE (2)- M17 neuroblastomal cells.  It was 

determined that the g.-6_+10del variant caused a 47% decrease in luciferase activity in the 

HEK293 cells and a 60% reduction in the BE (2)-M17 cells when compared to the wild type.  

These findings emphasized the importance of g.-6_+10del variant in the regulation of 

transcription which in turn may influence the efficiency of translation and/or transcript 

stability (Keyser et al. 2009). 

As the PCR of this region is problematic, it was decided that sequencing of the family 

members of 50.31 should be carried out to confirm the original results.  We verified the 

presence of the g.-6_+10del variant in heterozygous state in the patient's unaffected mother 

(aged 76 years) and sister (aged 59 years) and in a homozygous state in another unaffected 

sister (aged 47 years) (figure 6.4).  The ages of these family members are older than that of 

the AAO of the proband, which was documented as 38 years.  This reduces the likelihood 

that the disorder in the proband is due to the presence of the deletion. 

Numerous molecular analytical techniques were employed to identify the g.-6_+10del variant 

in our group of patients.  It is surprising that the g.-6_+10del variant could not be detected 

using HRM as the variant is expected to impact significantly on the melt profile of the 

fragment.  However, previous work in our laboratory suggests that HRM on the RotorGene 

6000 can miss small deletions (unpublished data).  We also hypothesized that the GC content 

of this fragment may play a significant role in the inability to detect the deletion.  The GC 

content of the PCR fragment with and without the deletion is 79% and 73% respectively.  It is 

therefore speculated that due to the high GC content and the presence of repetitive sequences, 

Stellenbosch University http://scholar.sun.ac.za



 

100 

 

the fragment produces secondary structures that have an impact on the melt profile, making 

HRM analysis ineffective under these circumstances.  Furthermore, RFLP analysis failed to 

detect the g.-6_+10del variant in large batches of samples.  We suspect that in large batches 

of PCR, the reaction works less efficiently and primer dimers are a significant contaminant.  

Therefore as the aim was to generate an efficient medium to high throughput assay for 

genotyping of the g.-6_+10del variant, we attempted to use a TaqMan
®
 probe approach.  The 

PCR fragment generated for this method was only 195bp but contained repeat sequences.  

The primers and probes were separate i.e. the primer was not labelled with the probe and due 

to the repeatative nature of the PCR fragment, it is likely that there was significant non-

specific binding of the probes to the fragment, therefore resulting in the incorrect genotype 

calls (i.e. all patient samples were laballed as homozygous for the deletion). 

Finally, a collaboration with KBiosciences was established in order to have a custom assay 

designed which resulted in the successful genotyping of the patients.  As already mentioned, 

the KASP™ Genotyping Assay makes use of the FRET system to detect SNPs and indels, but 

is more efficient as it does not require a separation step.  This method was effective because 

the primers are designed and validated in silico thereby allowing for 99% accuracy and  

maximum flexibility per reaction and the system is based on competative allele specific PCR, 

thus resulting in successful genotyping.  The results obtained from the genotyping concluded 

that the g.-6_+10del variant was only found in one of the 262 South African PD patients.   

An 18bp indel in the 5'UTR of DJ-1 was indentified in a Finnish population with autosomal 

recessive, early onset PD (Eerola et al. 2003).  The location of the g.-6_+10del variant lies 

157bp upstream of the 18bp indel (g.168_185dup).  A total of 147 patients with sporadic PD 

and 137 controls were genotyped for the 18bp indel and were analysed (Eerola et al. 2003).  

A fragment of 405bp was expected in homozygous wild type individuals and  a fragment of 

387bp was expected in patients with the deletion (Eerola et al. 2003).  No significant 

differences were identified between the allele or genotype frequencies of the patients and 

controls and it was detemined that this 18bp indel did not act as a significant risk factor for 

PD (Eerola et al. 2003).  To date, no case-control association study has been performed on 

the g.-6_+10del variant. 

One of the major limitations of the present study is the fact that sequencing could not be 

performed on all of the patients to screen for pathogenic mutations because of financial 

constraints.  It is proposed that for future work, the frequency of the 16bp indel should be 
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determined in ethnically matched controls.  In addition, further functional studies should be 

performed on the variant to determine its effect on the antioxidant properties on DJ-1.  Due to 

its position at the transcription start site, the 16bp indel warrants further investigation on 

transcriptional regulation of DJ-1 and possible interaction with enhancers and repressor 

molecules.  
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7.1  Introduction 

PD occurs across the globe, but far fewer cases have been reported in Black African 

individuals (Okubadejo et al. 2006).  The crude incidence rate (i.e. the number of new cases 

of PD observed in a population of individuals over a specified length of time) worldwide has 

been estimated at around 17 per 100 000, whereas in Africa this number is estimated to be 

lower, at around 4.5 per 100 000 (Twelves, Perkins, and Counsell 2003).  Similarly, the crude 

prevalence rate varies globally between 7 and 657 per 100 000 but in Africa this falls to 

between 7 and 43 per 100 000 (Osuntokun et al. 1987; Lanska et al. 1988; Haimanot 1990).   

It could also be speculated that the PD phenotype in Black African individuals may be 

different to that of Caucasians due to environmental and cultural differences between the 

various populations (McInerney-Leo, Gwinn-Hardy, and Nussbaum 2004) and for this 

reason, many of these cases remain undiagnosed.  It is also hypothesized that the disorder in 

Black Africans may be due to novel genetic causes or gene-environment interactions, that 

could subsequently affect disease development and progression (Okubadejo et al. 2006; 

Okubadejo et al. 2008). 

Huntington‘s disease-like 2 (HDL2) is an autosomal dominant neurodegenerative disorder, 

which is found  predominantly in individuals of Black African descent (Margolis 2005).  

Interestingly, HDL2 and PD have been shown to share many overlapping clinical features 

specifically in the early stages of both disorders (Bardien et al. 2007; Table 7.1).  HDL2 was 

first described in 2001 and patients who have this disease have a trinucleotide repeat 

expansion (CTG/CAG) in the junctophilin-3 (JPH3) gene that is found on chromosome 

16q24.3 (Margolis 2001; Margolis 2005).  The pathogenic repeats are found in exon 2A of 

JPH3, and are in a CTG orientation (Margolis 2003).  The normal range for the CTG/CAG 

repeats is between 6 and 28, while affected patients have more than 40 of these repeats 

(Holmes et al. 2001).   

HDL2 is a rare disorder, with less than 100 patients being reported worldwide (Margolis 

2005).  It has, to date, only been described in individuals of African ancestry (Bardien et al. 

2007).  In one study, all 28 American patients who were diagnosed with HDL2 identified 

themselves as African-American (Margolis 2005).  Also, a Moroccan patient who was 

diagnosed with HDL2 was from a region in Morocco which has been predominantly 

occupied by African individuals (Margolis et al. 2004).  In South Africa, a study was reported 

on 56 South African Black and Mixed Ancestry patients who had been referred to the 
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National Health Laboratory Services (NHLS)/University of Witwatersrand's genetic testing 

service for Huntington disease (HD) triplet repeat expansion and HDL2 (Margolis 2005).  

The results showed that only 38% of these patients had HD, whereas 27% had HDL2 

(Margolis 2005).  In another South African study, of 11 Black families (12 individuals in 

total), half of the individuals (6/12) were found to have mutations in JPH3 and were 

subsequently diagnosed with  HDL2 (Magazi et al. 2008).  It has been speculated that HDL2 

in Black Africans may be due to a founder effect. 

 

Table 7.1  Comparison of the motor and non-motor symptoms of PD and HDL2. 

 Parkinson’s disease Huntington’s disease-like 2 

Motor symptoms Bradykinesia Bradykinesia 

Resting tremor Tremor 

Rigidity Rigidity 

Postural instability - 

Non-motor symptoms Autonomic dysfunction - 

Cognitive and 

neurobehavioral problems 

Cognitive and 

neurobehavioral problems 

Sensory and sleep 

disturbances 

- 

Causative genes LRRK2;  PINK1;  SNCA;  

DJ–1;  Parkin;  ATP13A2 

JPH3 

 

The HDL2 phenotype is very similar to that of HD with progressive and severe dementia, and 

emotional  and movement abnormalities being the predominant clinical symptoms of patients 

(Bardien et al. 2007).  However Parkinsonian symptoms (bradykinesia, rigidity and tremor) 

may predominate in some families (Bardien et al. 2007). 

HDL2 should therefore be considered in a wide spectrum of individuals who present 

clinically with abnormal movement and neuropsychiatric disturbances, so that the full 

spectrum of this disorder can be documented (Bardien et al. 2007; Magazi et al. 2008). 
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 7.1.1  The Present Study 

We hypothesized that the Black South African PD patients in our cohort that were excluded 

from the known PD genes may harbour pathogenic repeat expansions in the JPH3 gene. Only 

the Black patients were screened as HDL2 expansions have to date been found exclusively in 

individuals of African ancestry. 

 

7.2  Materials and Methods 

 7.2.1  Study Participants 

Of the 262 patients, only the 17 Black patients were analyzed.  These patients exhibited an 

average AAO of 54 years (SD = 11.72) and a range of 30-74 years of age.  Approximately a 

quarter (24%) of these individuals had a positive family history of the disorder.  The 

pedigrees of these 17 patients are shown in Appendix II. The DNA of one HDL2-positive 

individual with 42 repeats was included in the analysis as a positive control. 

 7.2.2  Genetic Analysis 

The JPH3 gene was screened for triplet repeat expansions and genotyping was carried out 

using fluorescently labelled (FAM) primers that had been designed to flank the CTG/CAG 

triplet repeat (Table 7.2).  A total PCR reaction volume of 25µl reaction was set up for each 

sample and the reaction mixture consisted of the following reagents: 20µM each of the 

forward and reverse primers; 2.0mM MgCl2 (Bioline, UK); 1x NH4 buffer (Bioline, UK); 

0.25 units BIOTAQ DNA polymerase (Bioline, UK) and 10ng template DNA.  The PCR 

conditions were as follows:  an initial denaturation step at 94⁰C for 5 min; 30 cycles with 

conditions of denaturation at 94⁰C for 30 s, 58⁰C annealing temperatures for 30 s and 

extension at 72⁰C for 45 s.  The PCR products that were obtained were subsequently 

electrophoresed on an ABI 3130xl Genetic Analyser (Applied Biosystems, Foster City, USA) 

and analysed using GeneMapper Software version 3.7  (Applied Biosystems).  Sanger 

sequencing of a selected number of patients was then used in order to confirm the counting of 

number of repeats.  This sequencing was performed using the BigDye Terminator Sequence 

Ready Reaction kit version 3.1 (Applied Biosytems). 
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Table 7.2  Primers designed to detect CTG/CAG repeat expansions in the JPH3 gene. 

Gene Primer Sequence (5´-3´) %C Tm 

(°C) 

PCR 

conditions 

(Ta in °C)  

Size of PCR fragment 

(bp) 

 

JPH3 

For: gga atc tcg tct ttc agt gg 

Rev: FAM-tga gga gtg gat atc gga gag 

50.0 

52.4 

55.9 

57.8 

58 242 (14 CTG repeats) 

 

 

7.3  Results 

All 17 Black patients were successfully PCR-amplified and analysis on the ABI 3130xl 

Genetic Analyser facilitated distinction between alleles in the normal range and those in the 

pathogenic expanded range (figure 7.1 and figure. 7.2).  A total of five individuals with 

homozygous genotypes were sequenced in order to verify that the repeats were counted 

accurately.  Figure 7.3 shows the sequence of an individual who is homozygous for 14 

CTG/CAG repeats. It should be noted that the repeats are uninterrupted.  

 

Figure 7.1   Chromatogram of the CTG/CAG repeats in JPH3 in an unaffected individual.  The two alleles 
comprising of 14 and 18 repeats are clearly visible.  This individual is thus unaffected due to the fact that the 

number of repeats does not fall into the pathogenic range of more than 40. (More than one peak is visible for 

each allele- this is possibly due to slippage). 
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Figure 7.4 Graphic representation of the number of repeats in the JPH3 gene in the 17 Black PD patients.  
It was determined that the mode was 14 repeats and the highest number of repeats in all  of the patients was 18, 

which falls into the normal non-pathogenic range. 

 

7.4  Discussion 

In the present study we had hypothesised that Black African patients with a diagnosis of PD 

or Parkinsonism may harbour pathogenic repeat expansions in the gene for HDL2.  HDL2 is 

due to repeat expansions (>40 repeats) in only one gene, JPH3, and therefore we screened 

this gene to determine the number of repeats in our patients.  All 17 patients were excluded as 

having pathogenic expansions in this gene. Therefore, further work is necessary to determine 

the cause of the movement disorder in this group of patients.  

Although none of the limited number of patients that we had screened had pathogenic repeat 

expansions in JPH3, it remains plausible that individuals with Parkinsonism may have 

pathogenic expansions in this gene as there are numerous overlapping clinical symptoms 

between these two neurodegenerative disorders.  Due to the fact that HDL2 is found 

predominantly in individuals of African ancestry and appears to be relatively common in 

South African Black patients (Magazi et al. 2008), we propose that all Black individuals with 

a diagnosis of idiopathic PD or Parkinsonism be screened for repeat expansions in JPH3. 

Stellenbosch University http://scholar.sun.ac.za



 

109 

 

The results obtained from the present study cannot, however be considered representative of 

the Black population, particularly those who have been diagnosed with PD or Parkinsonism.  

The Black patients recruited for the study were predominantly from the Xhosa-speaking 

individuals.  This ethnic group comes mainly from the Eastern Cape province where the 

infrastructure surrounding public health care in this province and no state-employed 

neurologists pose major problems regarding the identification of PD, leaving many patients 

undiagnosed or misdiagnosed (Prof. J. Carr, personal communication).  Throughout the 

course of the present study, it was noted that there is an urgent need to expand the study, 

increase patient numbers from the Black African populations and from various provinces in 

South Africa for a better representation of the different ethnic groups.   

It has been shown that PD patients may harbour pathogenic repeat expansions in the genes 

for SCA2 and SCA3 albeit that the repeats are smaller than those found in spinocerebellar 

ataxia patients (Gwinn-Hardy et al. 2001; Socal et al. 2009).  These patients present clinically 

with features such as asymmetric onset, bradykinesia, rigidity and tremor - making the 

distinction between PD and spinocerebellar ataxia difficult.  The importance and role of SCA 

mutations have been emphasized in numerous PD patients, particularly those of diverse 

ethnic backgrounds (Socal et al. 2009).  Studies have reported that as many as 13% of 

individuals who had initially been diagnosed with PD, had pathogenic repeat expansions in 

SCA genes - suggesting that screening for other genes in diseases that present with 

Parkinsonian is important, particularly in specific ethnic groups where the frequency of the 

disease appears to be low (Gwinn-Hardy et al. 2001; Socal et al. 2009).  In a previous study 

by a BSc(Hons) student from our group, all our Black patients had been excluded from the 

SCA2 and SCA3 loci (M.Morris, BSc Hons thesis 2010).  

In conclusion, genetic testing can be used in conjunction with various clinical and imaging 

tests, to distinguish between disorders with overlapping clinical symptoms and phenotypes.  

As the underlying genetic basis of more disorders is delineated, this will aid in exclusion of 

disorders that share similar clinical features.  Ultimately, a definitive diagnosis is critical as 

this would mean improved clinical management of the affected individual and identification 

of at-risk family members. 
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8.1 Introduction 

Next generation sequencing (NGS) is a powerful and effective strategy for discovering the 

genetic basis of human disorders that were previously intractable to conventional approaches 

such as positional cloning and linkage analysis.  There are two main NGS strategies viz. 

whole genome sequencing and whole exome sequencing (WES) (Hedges et al. 2009).  Whole 

genome sequencing is the characterization of the entire genome of an individual.  This is a 

complex and costly process, as the data obtained is difficult to analyse because of the large 

volumes of information generated and interpretation of variants in the non protein-coding part 

of the genome is challenging (Ng et al. 2009; Robinson, Krawitz, and Mundlos 2011).  

Furthermore, the bioinformatics expertise and infrastructure needed to process whole genome 

sequencing data is beyond the scope of most laboratories (Bras and Singleton 2011). 

On the other hand, WES is a targeted sequencing approach where only the approximately 

180,000 exons (about 1.22% of the entire genome) are sequenced and screened for 

pathogenic mutations.  WES requires only about 5% as much sequencing as whole genome 

sequencing and therefore is far less expensive.  Besides its application to biomedical 

research, WES can also be applied to numerous other areas of research, including human 

evolution and biological research.  Applications to human evolution allow for trace amounts 

of ancient, contaminated DNA to be sequenced, that could not be done through conventional 

sequencing methods such as shotgun Sanger sequencing (Burbano et al. 2010).  Biological 

applications of WES have examined the effects of copy number variations (CNVs) in disease; 

low resolution methods have been used in conjunction with targeted exome capture to 

successfully identify breakpoints for a number of known CNVs and subsequently identify the 

most likely repair mechanisms employed by the biological system (Conrad et al. 2010).  

However, the application and success of WES has had the most impact on biomedical 

research with the discovery of new causal mutations for a number of Mendelian disorders 

such as Kabuki syndrome, Miller Syndrome, Fowler Syndrome and Freeman-Sheldon 

Syndrome (Ku, Naidoo, and Pawitan 2011).   

Currently, a formidable challenge faced when analysing WES data is how to identify a 

pathogenic mutation amongst the background of polymorphisms and possible sequencing 

errors that are generated in each sequenced individual.  This approach yields a high number 

of single nucleotide variants (SNVs); typically ~24,000 SNVs in African American samples 

compared to ~20,000 SNVs in Caucasian American samples (Bamshad et al. 2011) (Table 
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8.1).  The difference in the numbers of  SNVs identified is dependent on various factors, 

some of which include:  locus heterogeneity, the specific population, family or ethnic group 

studied and the sequencing platform used (Bamshad et al. 2011).  The most effective 

approach to analysing the data is to screen a relatively small number of affected individuals 

as well as a control group.  The results obtained should then be analysed through a sequential 

filtering process (Biesecker 2010).  The target group of patients should include (as far as 

possible) closely related affected individuals as well as unrelated affected individuals.  A list 

of coding variants is obtained and these are compared to those found in the public databases 

such as dbSNP as well as those SNVs that are found in controls - any variants found in either 

the control group or the database are then eliminated as possible candidates.  The final 

outcome of the filtering process is a shortlist of possible candidate disease-causing genes 

which can be analysed further (Biesecker 2010; Bamshad et al. 2011).   

Table 8.1 Mean number of coding variants in two different populations. 

Variant type Mean number of variants (±SD) 

in African Americans (n=100) 

Mean number of variants (±SD) 

in Caucasian Americans (n=100) 

Novel Variants 

Missense 303 (±32) 192 (±21) 

Nonsense 5 (±2) 5 (±2) 

Synonymous 209 (±26) 109 (±16) 

Splice 2 (±1) 2 (±1) 

Total 520 (±53) 307 (±33) 

Non-Novel Variants 

Missense 10 828 (± 342) 9 319 (±233) 

Nonsense 98 (±8) 89 (±6) 

Synonymous 12 567 (±416) 10 536 (±280) 

Splice 36 (±4) 32 (±3) 

Total 23 529 (±751)  19 976 (±505) 

Total Variants 

Missense 11 131 (±364) 9 511 (±244) 

Nonsense 103 (±8) 93 (±6) 

Synonymous  12 776 (±434) 10 645 (±286) 

Splice 38 (±5) 34 (±4) 

Total 24 049 (±791) 20 283 (±523) 

 
 Taken from (Bamshad et al 2011) 

 

Diseases such as PD are amenable to WES approaches with both rare Mendelian as well as 

common sporadic forms of the disorder being suitable for this type of analysis (Bras and 

Singleton 2011).  For recessive forms of PD, as few as three individuals may provide 

significant insight into the disease when using WES; for clearly dominant disorders, as few as 
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four or five individuals may be sufficient to identify novel mutations (Wang et al. 2010; 

Glazov et al. 2011).   

The success of this approach in identifying novel mutations in diseases such as PD has been 

shown by the identification of a novel gene VPS35 (vacuolar sorting protein associated 

protein 35) in a Swiss-kindred with autosomal dominant late-onset  PD (Vilariño-Güell et al. 

2011).  WES was performed on an affected pair of first degree cousins (Vilariño-Güell et al. 

2011).  The NimbleGen Sequence Arrays were used for exonic capture and sequencing 

performed on the Illumina Genome Analyzer.  The number of variants identified in each 

patient was 34,754 and 29,952 respectively.  Filtering was carried out using HapMap to filter 

the results further by eliminating additional polymorphisms and structural alterations such as 

CNVs were eliminated using the Database of Genomic Variants (version 6) and a total of 

4,265 candidate variants remained.  Upon further filtering, where variants found on the X and 

Y chromosomes as well as synonymous and non-coding variants that were  already present in 

dbSNP (version 130) were excluded, a preliminary candidate list of disease-causing variants 

of 69 variants was identified (Vilariño-Güell et al. 2011).  Notably, of these, 36 were found to 

be artefacts using Sanger sequencing, leaving 33 validated variants.  Only two variants were 

identified as novel namely A1012V found in Integrin alpha X (ITGAX) and D620N, found in 

VPS35.   Upon further screening of 4,326 PD patients and 3,309 controls, only four additional 

patients were identified as carriers of the novel variant in VPS35 and none of the patients 

carried the ITGAX  variant, but it was identified in one of the controls.  None of the controls 

were found to carry the VPS35 variant thus identifying it as a novel disease-causing mutation 

in PD (Vilariño-Güell et al. 2011).  The use of  first degree cousins and the specific filtering 

strategy employed was a proof of principle that WES could be used to successfully identify 

novel PD-causing genes. 

The same variant in VPS35  was identified in an Austrian family and in this case, two second 

degree cousins were selected for WES under the assumption that any shared rare variants 

identified in these patients would be plausible disease-causing mutations (Zimprich et al. 

2011).  Once the sequencing results were obtained and the sequences aligned, the SNVs were 

identified using dbSNP (version 131).  Further filtering made use of SAMtools (version 

0.1.7), which eliminated SNVs recorded in dbSNP as well as known indels (Zimprich et al. 

2011).  This approach resulted in only ten non-synonymous coding variants to be short-listed 

as candidates, possibly as more distantly-related individuals had been used (second degree 

cousins) as opposed to the first degree cousins which had been used for the first study 
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(Vilariño-Güell et al. 2011).  The D620N change in the VPS35 gene was observed in all eight 

patients available for genetic study but was not found in any of the 2,783 controls screened 

(Zimprich et al. 2011).  This study provided further evidence that WES is an effective tool 

that can be used in the identification of novel disease genes even if the filtration processes to 

identify the mutations differs from study to study. 

It is expected that in the near future, WES will provide significant insights into both complex 

and Mendelian disorders (Bras and Singleton 2011; Dixon-Salazar et al. 2012).  For 

monogenic disorders, the best possible approach is to examine the family members of the 

affected individual thereby eliminating overlapping variants in unaffected individuals and 

pinpointing novel variants that co-segregate with the disorder (Bras and Singleton 2011).  In 

the case of complex disorders, protein-coding genetic association studies can be carried out, 

thus identifying novel risk factors for the disease (Bras and Singleton 2011).  To date, many 

WES strategies have been successful using a small number of closely related, affected 

individuals to find rare mutations in the same gene that is shared amongst these individuals.  

It is speculated that populations that exhibit genetic founder effects (many individuals sharing 

identical mutations by familial descent), such as the South African Afrikaner, would be 

especially tractable to this approach.  The Afrikaner are unique to South Africa, and are 

descended from approximately 2,000 mainly male progenitors primarily of Dutch, German 

and French descent who settled in the Cape in the 17
th
 and 18

th
 centuries (Heese 1971).  

Research into the Afrikaner lineage indicates that the Dutch make up approximately 53% of 

the Afrikaner population, with 27% and 17% being attributed to German and French settlers, 

respectively.  The remaining 3% is made up of so-called 'other' European population groups 

such as Swiss, Belgian and Polish settlers (Heese 1971).  It is hypothesized that the 

forefathers of the Afrikaners who arrived on the continent in the 17
th 

century contributed 

significantly to the Afrikaner lineage.  This implies that settlers who had arrived with Jan van 

Riebeeck were more likely to contribute to the growth of the Afrikaner lineage than the 

individuals who had arrived on the continent at a later stage (Heese 1971).  Due to language, 

religious and cultural differences, these settlers initially lived in very isolated communities.  

Many couples had more than four children and in subsequent generations, many 

consanguineous marriages followed (Heese 1971;  Prof. G. Geldenhuys, personal 

communication).   

Today, founder effects for a number of rare inherited disorders such as porphyria, Long QT 

syndrome and Huntington's disease are evident in the Afrikaner population (Karayiorgou et 
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al. 2004; Greeff 2007).  Populations that exhibit founder effects are important in genetic 

research because the role of environmental factors as well as other genetic variations 

(modifiers) can be examined and could be used to explain phenotypic variations observed in 

affected patients (as the primary mutation often does not account for the phenotypic 

differences) (Brink et al. 2005).  Therefore, the study of diseases which appear to have 

founder effects will provide a more comprehensive framework for the identification of 

phenotypic variations as well as provide insight into the role of additional genetic factors in 

the development of a disease.  

 8.1.1  The Present Study 

Notably, it was observed that approximately 29% of the 262 South African patients in our 

cohort are Afrikaner.  Given that founder effects for a number of different disorders have 

been found in the Afrikaner population, we hypothesized that a founder effect for PD may 

exist in this population.  The aim of the present study was therefore to determine whether 

founder effects for PD exist in the Afrikaner population using genealogical analysis and 

whole exome sequencing.  

 

8.2  Materials and Methods 

 8.2.1  Study Participants 

Of the 262 study participants, 76 were self-identified as Afrikaner.  The AAO of these 

patients was 51.8 years of age, SD ± 6.8 and a range of 17-76 years.  A total of 68% of the 

patients were male and 32% were female.  A total of 29% of these patients presented with a 

positive family history of PD. 

 8.2.2  Genetic Analysis 

Extensive genealogical analysis was conducted by a genealogist, Prof. Gerhard Geldenhuys, 

on all recruited Afrikaner PD families with a positive family history of the disorder.  Dutch 

Reformed church records, government archival records and books on Afrikaner families were 

reviewed in order to construct family trees for each of the families.   

Genomic DNA of three of the Afrikaner probands were selected and subjected to WES in the 

laboratory of our collaborator, Prof. Owen Ross at the Department of Neuroscience at the 
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Mayo Clinic College of Medicine in Florida, USA.  Exome capture was performed using the 

Agilent SureSelect Human All Exon Kit, a liquid-phase hybridization method that covers 

1.22% of the human genome.  This coverage includes all known genes, over 700 human 

miRNAs and over 300 non-coding RNAs, which include small nucleolar RNAs (snoRNAs) 

and small Cajal body-specific RNAs (scaRNAs) .  WES was performed using an Illumina 

Genome Hiseq 2000™, by paired end reads.  The input DNA was diluted and the DNA 

sheared (Agilent Technologies, Santa Clara, California, USA).  Samples were purified using 

the QIAquick PCR Purification Kit (Agilent Technologies) and the quality of the DNA 

subsequently checked through the use of the Agilent 2100 Bioanalyser™ - DNA quality 

could be observed in the form of an electropherogram and samples with a distribution peak at 

a height of 150 ± 10% nucleotides were selected for further analysis.  Further purification of 

the sheared DNA then took place and 'A' bases were then added to the 3' end of the 

fragments.  The samples were then purified through the use of Qiagen MinElute PCR 

Purification Column (Qiagen, Hilden, Germany).  The paired end adaptors were then ligated 

to the fragments and the samples further purified through the use of the AMPure DNA 

Purification Kit (Agilent Technologies).  An adaptor ligated library was then generated, 

purified and the quality assessed and at this stage, a minimum of 500ng of library was needed 

for the hybridization amplification.  The sequencing was then carried out following cluster 

amplification of the library (http://www.chem.agilent.com/Library/datasheets/Public/5990-

6319en_lo.pdf). 

This design covers approximately 37Mb of the genome and a minimum of thirty fold 

redundancy which provides a coverage of greater than 99% with a concordance of 99.9%.  

The sequences were then aligned using NCBI Human Reference Genome 37.2.  The Illumina 

quality system was used to determine the presence of indels as well as point mutations.  

Common SNP variations were filtered using dbSNP (version 132) and structural variations 

such as CNVs were determined using the Database of Genomic Variants 

(http://projects.tcag.ca/variation/) as well data obtained from the 1000 Genomes Project 

(http://www.1000genomes.org/) using a paired-end method and clustering algorithms.  Novel 

point mutations and indels were identified using CASAVA software provided by Illumina 

and visualized with GenomeStudio Software.  The mrFAST (micro-read fast alignment 

search tool) was also used for the prediction of absolute CNVs for duplicated segments and 

genes. 
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The data obtained through this exome seqencing method was then subsequently analysed 

through the use of bioinformatics tools in collaboration with Dr. Junaid Gamieldien at the 

South African National Bioinformatics Institute (SANBI).  A bioinformatics pipeline was 

designed in order to analyse the data.  A semantic database called BORG (Bio-Ontological 

Relationship Graph) (figure 8.1) was used to filter and prioritize the variants that were shared 

between the three PD exomes.  BORG, in combination with a list of so-called 'Parkinson's 

Disease related terms' (Appendix III) mined various online databases in order to identify 

human genes as well as orthologous genes in model organisms which are involved in PD-

associated functions, pathway and phenotypes.    

Primer sequences designed for screening the prioritized variants in the CDC27, NEDD4, 

HECTD1, RNF40 and TBCC genes are shown in Appendix VI.  

 

 

Figure 8.1  Diagram of relationships and networks on which  BORG (Bio-Ontological Relationship 

Graph) is based.   
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Table 8.2  List of variants identified in each of the three Afrikaner PD probands. 

 ZA92 ZA106 ZA111 

Total number of variants 26,724 27,405 25,815 

Total number of SNVs 24,853 25,524 23,933 

Total number of Indels 1,871 1,881 1,882 

Total number of SNVs not in dbSNP 2,982 2,760 2,559 

Total number of Indels not in dbSNP 878 816 850 

  SNVs , single nucleotide variants 

 

Analysis of all the known PD genes revealed a number of known SNPs and one novel variant 

in the 5‘UTR of EIF4G1 (Table 8.3).  No variants were found in DJ-1 or SNCA.  Notably, the 

findings exclude all the known PD genes from causing the disorder in these individuals.  This 

means that it is likely that they harbour a mutation(s) in a novel PD-causing gene. 

 

Table 8.3 Variants detected in the known PD genes in the three PD patients ZA92, ZA106 

and ZA111. 

 Variant In dbSNP Frequency 

(n=no. 

chromosomes) 

Present in 

    ZA92 ZA106 ZA111 

Parkin V189L rs1801582 (ESP) C,0.174; 

G,0.826; n=4550 

Yes Yes Yes 

3'UTR +118G>A rs6812138 No frequencies 

available 

No No Yes 

PINK1 Non-genic* rs3131713 No frequencies 

available 

Yes Yes Yes 

N521T rs1042434 (ESP) C,0.677; 

G,0.333; n=4552 

Yes Yes Yes 

3'UTR+37A>T rs686658 No frequencies 

available 

No Yes Yes 

3'UTR+181 C>G rs513414 No frequencies 

available 

Yes Yes No 

3'UTR+40A>G rs6893 No frequencies No No Yes 
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available 

LRRK2 R50H rs2256408 (ESP) A, 0.923; 

G, 0.077;  

n=4550 

Yes Yes Yes 

N551K rs7308720 (ESP) C, 0.898; 

G0.102; n=4510 

No Yes Yes 

R1398H rs7133914 (ESP) A,0.100; 

G, 0.900;  

n=4540 

No Yes No 

S1647T rs3459182 No frequencies 

available 

No Yes No 

M2397T rs3761863 (ESP) A,0.384; 

G,0.616;  

n=4554 

Yes Yes Yes 

3'UTR+140 C>T rs6673790 No frequencies 

available 

Yes Yes Yes 

SNCA - - - - - - 

DJ-1 - - - - - - 

ATP13A2 P1172P rs3170740 No frequencies 

available 

Yes Yes No 

Non-genic* rs7531163 N/A No No Yes 

VPS35 3'UTR+281 C>A rs808078 No frequencies 

available 

No No Yes 

 

EIF4G1 

T161A rs1331914 (YRI) C,0.5; T, 

0.5; n=2 

No No Yes 

M432V rs2178403 (ESP) C,0.841; 

T,0.159;  n=4552 

No No Yes 

5ʹUTR Novel No frequencies 

available 

No No Yes 

*Non-genic refers to areas on contigs that do not contain any genes;  ESP, Exome Sequencing Project;  YRI, 

Yoruba Ibidan, Nigeria;  

 

Next, in this preliminary analysis of the data, the variants were analysed to determine what 

was shared across all three probands and not present in the public databases, namely dbSNP 

and 1000 Genomes.  A dominant model of inheritance was assumed due to the parent-to-

child transmission observed in family ZA111 (Appendix IV). Variants in the 5' UTR and 3' 

UTR as well as on the X and Y chromosomes were excluded.  This produced a list of 1,135 

variants and after further filtering with BORG, 175 of the variants were prioritized for further 

study (Table 8.4). 
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Table 8.4  Number of missense, nonsense and indels identified across all three patients. 

 Variants shared across three 

probands 

Shared variants that were 

filtered by BORG 

Novel coding indels 25 3 

Novel missense 1 108 171 

Novel nonsense 2 1 

Total 1 135 175 

 

Of these shared variants, we further prioritized according to whether they met the following 

criteria:  

1) were non-synonymous or nonsense variants, AND  

2) the average allele frequency of the variant in the databases had to be  ≤ 0.01, AND  

3) the read depth had to be  30, OR  

4) if the variants were predicted as being potentially deleterious according to SIFT and 

PolyPhen2.   

 

Read depth refers to the number of times each base was sequenced in total.  This is 

predetermined by the platform used and for the Illumina Human All Exon Kit, it is predicted 

that each base will be covered a minimum of 30x - therefore anything below this coverage 

may be an artefact rather than a true variant (Charier et al. 2012).  These criteria reduced the 

list to only 21 variants (Table 8.5) of which five were chosen for Sanger sequencing 

verification based on their function being related to that of the known PD genes.  Verification 

with Sanger sequencing is a necessary and important step as NGS technology is known to 

produce a significant number of artefacts mainly due to the short read lengths. 

The results of the Sanger sequencing are shown in figure 8.3 and Table 8.6.  In total, seven 

individuals were sequenced; all six probands in figure 8.2 as well as the affected sibling of 

ZA92.  These results showed that two of the five variants (R625X in CDC27 and P294L in 

NEDD4) were artefacts, as when the sequences were aligned to the Human Reference 

Genome 37.2, all the patients contained the wild-type alleles.  This finding further 

emphasizes the fact that Sanger sequencing must be used for validation of WES data.  The 

remaining three variants (L2029P in HECDT1, Q615R in RNF40 and V65A in TBCC) were 

found to be real as they were confirmed in the patients.  However, it was determined that 
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these variants are likely to be non-pathogenic.  In the case of the L2029P and Q615R 

variants, all the patients were homozygous for the common (major) allele; in both instances 

the reference genome harboured the rare (minor) allele (figure 8.3C and D; Table 8.6). For 

V65A, individual ZA92 had the heterozygous variant but it was not present in the affected 

sibling of this individual or the other five probands (figure 8.3E; Table 8.6).  

 

Table 8.5  List of variants prioritized for further analysis in the six Afrikaner probands. 

Gene SNV rs# Polyphen and 

SIFT 
prediction 

Ave. Allelic 
Frequency 

(n = no of 
chromosomes) 

Read 
Depth 

Function 

CDC27  R625X  rs77685276  Unknown (YRI & CEU) 
A,0.5; G,0.5; 
n=4 * 

157  Plays a significant role in G1 phase of the cell 
cycle - E3 ubiquitin ligase that controls 
progression through mitosis. Protein 
ubiquitination. 

CDC27  W638R  rs74348171  Probably 
damaging  

(YRI) A,0.5; 
G,0.5; n=2 * 

84   

CDC27  H609Q  rs75661039  Probably 
damaging  

(CSAgilent) 
T,0.007; 
A,0.993; 
n=129  

171   

CDC27  H609R  rs76926116  Possibly 
damaging  

(YRI) C,0.5; 
T,0.5; n=2 * 

169   

CDC27  A273G  -  Possibly 
damaging  

- 143   

CDC27  I235T  -  Possibly 
damaging  

-  145   

DDX11  A848V  -  Probably 
damaging  

-  54  Necessary for the E2 ubiquitination protein to 
the mitotic chromosomes.  Also necessary for 
the maintenance of chromosome segregation .  
Cellular response to unfolded protein. 

GRIN3A  R1111Q  rs76232475  Damaging 
(low 
confidence)  

(CSAgilent) 
A,0.003; 
G,0.997; 
n=1323 

98  Plays a role in the development of dendritic 
spines and function is dependent on Ca2+ and 
Mg2+ in the cell.  Abnormal synaptic 
transmission. 

NEDD4  P294L  -  Damaging  -  118  E3 ubiquitin-protein ligase that is able to 
accept ubiquitin from E2 ubiquitin-conjugating 
enzyme and then transfers the ubiquitin to a 

target molecule.  Directly involved in 
ubiquiting binding. 

PREX1  T1111A  -  Unknown  -  40  Functions as a Rac guanine nucleotide 
exchange factor which converts GDP to GTP. 

RP1L1  E1328V  -  Unknown  -  100  Necessary for the differentiation of 
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photoreceptor cells into both rods and cones. 

RP1L1  E1328K  -  Unknown  -  100   

RP1L1  T1327I  -  Unknown  -  96   

RP1L1  T1327A  -  Unknown  -  95   

RP1L1  A1319T  rs73201156  Unknown  - 97   

TRIP11  N701S  -  Unknown  -  241  Involved in the maintenance of the cis Golgi 
structure. 

CLCN6  E198G  rs198400  Probably 
damaging  

 (ESP) A,0.01; 
G,0.99; 
n=4550 

56  Functions as an antiporter in the chloride 
transport system. 

GPR126  Q1127R  rs1262686  Probably 
damaging  

(ESP) A,0.01; 
G,0.99; 
n=4550 

346  Necessary for the promylenation of Schwann 
cells and the myelination of axons. 

HECTD1  L2029P  rs1315794  Possibly 
damaging  

(ESP) T,0.01; 
C,0.99; 
n=4550 

161  E3 ubiquitin-protein ligase which accepts 
ubiquitin from an E2 ubiquitin-conjugating 
enzyme  Similar functioning as NEDD4. 

RNF40  Q615R  rs7195142  Probably 
damaging  

(ESP) A,0.01; 
G,0.99; 
n=4550 

64  E3 ubiquitination activity. Manages 
monoubiquitination of H2BK120ub1. 

TBCC  V65A  rs2234026  Possibly 
damaging  

(ESP) T,0.01; 
C,0.99; 
n=4550 

78  Plays a role in the final step of the tubulin 
folding pathway. 

SNVs highlighted were selected for verification in the six Afrikaner probands using Sanger sequencing.  

* Allele frequency >0.01 but only 1 individual had been genotyped. 

CSA Agilent, This population includes 662 participants of European descent from the ClinSeq project, all of 

whom have undergone  WES using Agilent's 38Mb or 50Mb capture kit.  YRI, Yoruba Ibidan, Nigeria.  ESP, 

Exome Sequencing Project. ‗-‗; no frequency data available. 

  

 

 (A)  Sequence Alignment of CDC27 
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 (E)  Sequence Alignment of TBCC 

 

 

Figure 8.3  Sequence alignments of each of the five prioritized variants.   The location of the variant is 

indicated by the red arrow.  Three of the five variants were found to be real through the use of Sanger 

sequencing.  Sib, sibling (the affected sibling of ZA92, figure 8.2).  The wild type is the reference sample, the 

mutant is the sample in which a homozygous change would be present and the accession numbers are as 

follows: for CDC27 (ENSG00000004897), for NEDD4 (ENSG00000069869), for HECTD1 

(ENSG00000092148), for RNF40 (ENSG00000103549) and TBCC (ENSG00000124659). 

 

Table 8.6:  Results obtained from Sanger sequencing validation. 

Gene SNV Codon ZA78 ZA89 ZA92 

(Proband) 

ZA92 (Sib) ZA106 ZA111 ZA134 

CDC27 R625X CGA>TGA        

NEDD4 P294L CCT>CTT DNW       

HECTD1 L2029P CTT>CCT (hom) (hom) (hom) (hom) (hom) (hom) (hom) 

RNF40 Q615R CAG>CGG (hom) (hom) (hom) DNW (hom) (hom) (hom) 

TBCC V65A GCT>GTT    (het)     

, variant present;  , variant absent;  DNW, did not work;  het, heterozygous;  hom, homozygous; Sib, affected 

sibling of ZA92 (figure 8.2) 

 

8.4  Discussion 

The present study aimed to determine whether founder effects for PD exist in the Afrikaner 

population and this was analysed using genealogical analysis and WES.  The basis for this 

hypothesis was the fact that approximately 30% of our PD cohort are Afrikaner and that 

founder effects have been implicated in this population for numerous diseases including 

Huntington's disease, porphyria, Long QT Syndrome and Gaucher's disease.  Six apparently 

unrelated Afrikaner probands were found to be distantly related though genealogical analysis 
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and three of these patients were exome sequenced.  Approximately 27,000 variants were 

identified in each of these individuals and through the use of bioinformatics, 21 variants in 12 

genes were identified as candidate variants, that warrant further study to assess their possible 

pathogenicity. 

This is the first WES project to be performed on South African PD patients.  Our previous 

work had excluded the known PD genes in these three patients and this was confirmed by the 

WES results because no pathogenic mutations were found in any of the known PD genes 

(Table 8.3).  From the shortened list comprised of 21 candidate disease-causing variants, five 

were screened using Sanger sequencing.  These variants had been prioritized according to the 

function of the protein. Parkin (one of the predominant causes of early-onset PD) functions as 

an E3 ubiquitin protein ligase and four of the five namely CDC27, NEDD4, HECTD1 and 

RNF40 are E3 ubiquitin protein ligases.  CDC27 (cell division cycle protein 27) is a 

functional component of the anaphase promoting complex/cyclosome (APC/C), regulated by 

the cell-cycle and controls progression through mitosis and the G1 phase of the cell cycle 

(Ahlskog et al. 2010).  NEDD4 (neural precursor cell expressed developmentally down-

regulated protein 4) transfers ubiquitin from an E2 ubiquitin-conjugating enzyme to specific 

targeted substrates (Kwak et al. 2012).  HECTD1 (HECT domain containing 1) has 

functional characteristics identical to those of NEDD4 (Zohn, Anderson, and Niswander 

2007).  RNF40 (Ring finger protein 40) actively mediates the monoubiquitination of 'Lys-

120' of histone H2B - this adds a tag for epigenetic transcriptional activation and acts as a 

precursor for histone H3 ('Lys-4' and 'Lys 79') methylation (Jääskeläinen et al. 2012).  TBCC 

(tubulin folding cofactor C), although not an E3 ubiquitin protein ligase, plays a role in 

tubulin binding- this is significant as  heat shock proteins Hsp60 and Hsp90 have both been 

directly implicated in PD pathogenesis (Ebrahimi-Fakhari, Wahlster, and McLean 2011).  

Despite the results obtained which confirms the presence of two of the variants in all the 

affected patients (L2029P in HECDT1 and Q615R in RNF40), the data suggests that these 

variants are likely to be non-pathogenic due to their frequencies in controls in the online 

databases.  In both cases, the more common allele (which appears at a frequency of 99% in 

the control population screened) was found in all of the affected PD patients thereby 

concluding that the SNV is likely to be non-pathogenic due to the frequency and 

notwithstanding the function.  In the case of R625X in CDC27 and P294L in NEDD4,  it was 

concluded that the results obtained through WES were, in fact, sequencing artefacts which 

are due to short sequencing read lengths (typically < 100bp) particularly when SNV coverage 
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is low, general quality scores (such as read depth) are low or when there is strand bias i.e.  

when SNVs are covered only by sequences found on the same strand.  The generation of 

artefacts, and thereby false positives, is a common feature of WES, with as many as 52% 

(36/69) of the prioritized SNVs being excluded as artefacts through Sanger sequencing 

validation (Vilariño-Güell et al. 2011). This is why Sanger sequencing must be used to verify 

the presence of all  prioritized variants (Bras and Singleton 2011; Chahrour et al. 2012; 

Dixon-Salazar et al. 2012). 

Limitations of employing WES as a method for novel mutation detection include the fact that 

a significant portion of the human genome is not examined (98.8%).  Also, the definition of 

the so-called "exome" differs widely but this is dependent on the commercial kit that is used,  

CNVs are difficult to detect using this method, unannotated genes can be missed, all exons 

are not sequenced equally therefore variant calling may become a problem and, as mentioned, 

false positives and negatives are also often encountered.   

Future work for this project encompasses verification of the remaining sixteen variants using 

Sanger sequencing and in variants that are real, checking for co-segregation and the 

frequency of the specific allele in the online databases.  Once a putative pathogenic 

variants(s) is found, screening of the rest of the South African PD cohort and large numbers 

of ethnically matched controls should be performed in order to determine the frequency in the 

population as well as screening of approximately 10 000 PD patients that can potentially be 

obtained through collaboration with researchers affiliated to the international PD consortium, 

GEOPD (http://www.geopd.org), of which we are a member.  Finally, functional studies are 

needed to determine the effect of the variant on protein function, but the nature of these 

experiments is dependent on the specific function of the protein involved as well as the 

domain in which the variant resides. 

In conclusion, the use of NGS, more specifically the use of WES to identify novel disease-

causing mutations is effective and highly applicable to South African Afrikaner PD patients.  

This specialized technique, along with appropriate bioinformatics pipelines for analysis 

provides a framework for the identification of disease genes that would not have been 

possible using traditional approaches.  The present study provided important insights into PD 

in the Afrikaner population and the basis for identification of a possible founder mutation. 
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9.1  Introduction 

The impact of neurodegenerative disorders on the global disease burden is a significant one 

(Beddington et al. 2008; Collins et al. 2011).  Global statistics indicate that brain disorders 

account for the highest number of disability adjusted life years (DALYs) (Collins et al. 2011).  

In addition, the high levels of continuous care that is needed by these patients as well as the 

increases in medical overheads and losses of output to the economy makes this one of the 

more costly groups of disorders (Beddington et al. 2008; Collins et al. 2011) .  For this 

reason, it is quintessential that accurate projections for neurodegeneration are made in order 

for countries to budget appropriately for healthcare initiatives and interventions.  In a study 

carried out on populations with movement disorders from Europe, Canada and USA, it has 

been projected that the prevalence of PD may increase by a factor of two between 2010 and 

2050;  approximately a 92% increase in the number of affected patients (Dorsey et al. 2007; 

Bach et al. 2011).  In developing countries such as those on the African continent, the 

prediction of the number of affected patients is even more significant because of the expected 

faster increase in the number of aged individuals (Dotchin et al. 2012).  In Tanzania, it is 

estimated that the prevalence of PD will increase by 184% by 2025 (Dotchin et al. 2012);  

this emphasizes the need for further research on PD pertaining to the genetic basis, as this 

may pave the way towards improved disease management, targeted treatment strategies and 

ultimately a cure. 

 

The investigation into the molecular aetiology of PD in the South African population has 

provided important insights into this disease.  It has been determined that five of the known 

PD-causing genes do not appear to play a significant role in disease development in these 

patients (Table 9.1) which prompted a study to identify a novel PD gene using WES.  
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Table 9.1  Results obtained from mutation screening of the known PD genes in the South African patients. 

Gene Exons screened Number of patients 

screened* 

Results- number patients with 

mutations* 

Comment 

Parkin All 12 exons 262 7/262 (2.7%) 

Various exon rearrangements and 

point mutations 

Remaining 33 patients need to be screened for exon dosage 

using MLPA. 

PINK1 All 8 exons 262 1/262 (0.4%) 

1 with Y258X 

Remaining 33 patients should be screened using MLPA. 

LRRK2 31, 41 and 42 

 

262 6/262 ( 2.3%) 

5 with G2019S; 1 with R1441C 

All 51 exons should be screened. 

SNCA 2 and 3 262 1/262 (0.4%)  

1 with whole gene triplication 

 

Remaining 33 patients need to be screened using MLPA.   

All five exons should be screened. 

DJ-1 Promoter region 262 1/262 (0.4%) 

1 with a 16bp del (pathogenicity 

unknown) 

Frequency in controls from different ethnic groups to be 

determined.   

All eight exons should be screened. 

 

* Combination of findings from the present study and previous studies by our group. 
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The largest number of pathogenic mutations was found in Parkin (2.7%) which is rather low 

when compared to many other published studies (Djarmati et al. 2004; Koziorowski et al. 

2010).  LRRK2 was the second largest contributor (2.3%) and all five of G2019S-positive 

patients are known to share a common founder haplotype (Bardien et al. 2011;  R. Keyser 

PhD thesis 2010).  For the PINK1 and SNCA genes, mutations in only single patients were 

found.  One patient harboured a 16bp deletion over the transcription start site of DJ-1 but the 

pathogenicity of this variant is still undetermined.  Differences in socio-economic statuses of 

affected patients and environmental exposures of the various South African ethnic groups as 

well as the lack of infrastructure regarding medical healthcare systems and novel disease 

genes may all impact on the low numbers of mutation-positive individuals that were 

identified. 

 

WES analysis was performed on three PD probands from six Afrikaner families that were 

shown to be related to a common founder couple through genealogical analysis.  This 

analysis revealed 1,135  novel variants that were shared by the PD patients, which is higher 

than that which is expected in three unrelated individuals (Cirulli et al. 2010).  Various 

filtering strategies were employed that reduced the list of shared variants to 175, one of which 

was a nonsense variant (R625X in CDC27;  Table 8.4).  It is postulated that five of these 

genes, namely CDC27, NEDD4, HECTD1, RNF40 and TBCC are the most likely candidates 

because each of them have an active role in the UPS.  CDC27 plays a role in the cell cycle 

regulation and mediates the progression of mitosis to G1 phase (Pérez-Pérez et al. 2008);  

NEDD4 plays a crucial role in neural development (Kwak et al. 2012);  HECTD1 plays an 

active role in the regulation of intracellular localization and secretion of Hsp90, a component 

directly implicated in PD pathogenesis (Sarkar and Zohn 2012);  RNF40 is a histone H2B 

monoubiquitination enzyme, responsible for DNA repair (Jääskeläinen et al. 2012).  Lastly, 

TBCC was selected based on the role that it has to play as a molecular chaperone (Hage-

Sleiman et al. 2010)  Proteins involved in the ubiquitination process were specifically 

prioritized as Parkin is a key enzyme in this protein degradation pathway.  The ubiquitination 

of proteins is important to maintain cell homeostasis by tagging the unwanted and excess 

proteins within the cell (Glickman and Ciechanover 2002).  However, through the use of 

Sanger sequencing, it was determined that all five of the SNVs in each of the genes could be 

excluded as possible PD-causing mutations.  For this reason, further work is necessary to 

identify which of the variants that have been identified through WES are real as opposed to 

false positives and ultimately which one is the novel disease-causing mutation. 
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To date, most WES projects have analysed affected individuals that are closely related to one 

another in the quest to discover rare disease-causing mutations in the same gene in these 

individuals.  Similarly, populations that demonstrate founder effects may be amenable to 

WES approaches.  Founder populations are significant as they originate from a relatively 

limited number of individuals and have expanded over several generations in relative 

isolation (Karayiorgou et al. 2004).  As a result thereof, it is reasonable to hypothesize that 

there are a limited number of independent susceptibility alleles or mutations which may 

segregate in these populations (Karayiorgou et al. 2004).  The Afrikaner population was 

founded by immigrants who initially settled in the Cape in 1652 and they later spread inland, 

where they then became geographically isolated from other communities;  it should be noted 

that geographic separation was not the only means in which these individuals isolated 

themselves from others:  language, cultural and religious practices contributed significantly to 

the isolation of these communities (Karayiorgou et al. 2004).  Consanguinity was common, 

particularly in the early generations and population growth can be contributed largely to 

reproduction and immigration (Hayden 1980; Goldman 1996; Warnich et al. 1996).  The 

demographic history of this population is observed in the increased prevalence of certain rare 

Mendelian disorders such as  porphyria, Long QT syndrome, Huntington's disease and 

Gaucher's disease (Greeff 2007; Karayiorgou et al. 2004).  Additionally, low allelic diversity 

has been associated with these disease loci, specifically in the Afrikaner population and it is 

hypothesized that this is due to the genetic drift because of  the population size (Karayiorgou 

et al. 2004).  For these reasons, the South African population has been identified as a good 

candidate population for this pilot study on WES (Chapter 8). 

 

 

9.2 Common variants underlie common diseases (CVCD) vs. rare variants underlie 

common diseases (RVCD) hypothesis for PD 

 

One of the long-standing theories regarding PD pathogenesis is that there are common 

variants that underlie this common disorder  (Goldstein 2009).  This theory has been 

extensively studied in PD through the use of genome wide association studies (GWAS).  

These GWAS examine thousands of SNPs with minor allele frequencies of typically greater 

than 5% in unrelated affected individuals, in order to determine whether or not a variant can 

be associated with the disorder (Simón-Sánchez et al. 2009).  The results obtained have 

shown that SNPs in genes such as SNCA, MAPT and LRRK2 are major contributors to PD 
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susceptibility, thereby supporting previous hypotheses (Satake et al. 2009; Do et al. 2011).   

However, other loci have not been verified in independent GWAS studies and in general the 

susceptibility loci have been shown to have modest effect sizes  with odd ratios of less than 

two (Bras and Singleton 2011).  Also the exact genes and variants driving most of the 

associations are still unknown.  Therefore, more recently emphasis has been placed on the 

multiple rare variants underlie common diseases (RVCD) hypothesis for PD (Tsuji 2010;  

Farrer, GEO-PD submission 2012).  

 

Empirical data provides evidence for the RVCD hypothesis with variants in LRRK2 

(G2385R, R1628P and M1646T) (Tan et al. 2008; An et al. 2008, 2; Ross et al. 2011) found 

to have the highest population and allelic attributable risk.  In many of these cases, evidence 

for a common ancestral founder was identified, through haplotype analysis  using 

polymorphic microsatellite markers, and this has provided further support for pathogenicity 

(Tan et al. 2008; An et al. 2008, 2; Ross et al. 2011).  More intensive efforts should therefore 

be focussed on PD families with multiple affected individuals to identify novel disease genes 

and mutations which can then be genotyped across large panels of patients and controls from 

diverse populations.  The development of high-throughput NGS technologies has expedited 

this approach (Tsuji 2010;  Farrer, GEO-PD submission 2012).  The discovery of D620N, in 

VPS35 is one example that supports the RVCD hypothesis.  Initially, D620N was discovered 

in one Swiss and one Austrian kindred using WES (Vilariño-Güell et al. 2011; Zimprich et al. 

2011).  A subsequent study in which D620N was genotyped in 4,326 PD patients and 3,309 

controls found that mutation was not found in the controls, but was identified in five of the 

familial and importantly, also in two of the sporadic PD positive patients (Vilariño-Güell et 

al. 2011).  This provided the 'proof of principle' that rare mutations such as D620N is also 

implicated in the sporadic form of PD and justifies the study of Mendelian forms of PD.  

Novel NGS approaches such as WES can be an effective strategy to prove the RVCD theory 

in various complex disorders. 

 

9.3  A current unifying model of PD pathogenesis 

 

PD can be considered to be a multifactorial disorder and there are numerous factors that are 

hypothesized to play a role in disease development and progression.  The current evidence 

from molecular and cellular biology has provided evidence that several pathways may be 

involved and continual research into the field suggests that possible targets can be identified 
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and used for the diagnosis of the disease before the onset of major motor symptoms (Tofaris 

2012).  Genetic studies have provided the necessary insight to demonstrate that PD cannot be 

considered as a single clinical entity, but should rather be considered as a heterogeneous 

group of diseases, with varying associated pathologies, clinical signs and symptoms (Corti, 

Lesage, and Brice 2011).  By this it is meant that some patients may present with atypical PD 

symptoms such as dystonia or early onset dementia and that only between 5-10% of patients 

formally diagnosed with PD will have a 'textbook' clinical presentation with symptoms of 

bradykinesia, resting tremor, postural instability and rigidity and will carry mutations in the 

known PD genes (Farrer 2006; Corti, Lesage, and Brice 2011).  Despite this 

clinicopathological heterogeneity, it is hypothesized that PD is due to defects in a single, 

unifying biochemical pathway.  The investigation into the relationship between autosomal 

dominant and autosomal recessive PD genes may disentangle the pathways of convergence 

between different PD forms thereby tipping the scales towards pathology and ultimately 

towards a cure (Corti, Lesage, and Brice 2011; Alberio, Lopiano, and Fasano 2012; Tofaris 

2012). 

 

The development of disease models are proposed to provide a more systematic approach to 

PD pathogenesis.  One such model is illustrated by focussing specifically on the autosomal 

recessive genes involved in PD.  It has been demonstrated through numerous genetic and 

functional studies that the clinical similarities of PD caused by mutations in Parkin, PINK1  

and DJ-1, the unique characteristics of each gene as well as the identification of specific 

functions of each of these genes within common biological pathways provides the evidence 

needed to conclude that these genes may interact with each other and as a result, are 

cumulatively involved in PD pathogenesis (Corti, Lesage, and Brice 2011).  PINK1 and  

Parkin  interact with each other and in cases where there is a loss of function in either of these 

genes due to mutations, the maintenance of mitochondria is no longer possible;  conversely 

mutations in DJ-1 have been shown to directly affect mitochondrial function and therefore is 

hypothesized to interact with the PINK1/Parkin pathway although it remains unclear as to 

how exactly this interaction may or may not occur (Canet-Avilés et al. 2004; Corti, Lesage, 

and Brice 2011).  Other models suggest that all the recessive and dominant genes interact, 

albeit at different levels, giving rise to the phenotypic differences observed (figure 9.1). 
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Figure 9.1  Proposed interactive model involving PD pathogenesis.   It is hypothesized that autosomal 
dominant and recessive genes interact in such a way as to result in PD pathogenesis (Taken from Olga Corti, 

Lesage, and Brice 2011). 

 

 

More recently, specific focus has been given to the dysfunctional lysosome-dependant 

pathway as a key unifying mechanism in PD pathogenesis (figure 9.2).  Lysosomes are 

dynamic, membrane bound organelles that are actively involved in degradation within 

numerous pathways and they are specifically regulated by protein/organelle interactions 

(Tofaris 2012).  They are actively involved in the degradation of damaged mitochondria 

through mitophagy and in PD, this pathway may be disrupted, thus leading to pathogenesis 

(Tofaris 2012).  The accumulation of SNCA is hypothesized to act as a trigger for the 

pathogenic cascade involved in PD and therefore, directly affects the lysosome.  The impact 

hereof, is a direct effect on PINK1, Parkin and DJ-1 whereby the mitochondrial integrity can 

no longer be maintained and in the cases of PINK1 and Parkin, mitophagy is affected.  This 

then produces a knock-on effect where autophagy (the self degradation of the contents of a 

cell through the use of lysosomal machinery) and endosomal trafficking is affected in 

LRRK2, the endosomal recycling in VPS35 is affected and the ATP13A2 and GBA needed 

Stellenbosch University http://scholar.sun.ac.za



 

136 

 

for lysosomal functioning may lead to pathogenesis (Tofaris 2012).  Mitochondrial 

membrane damage, lysosomes and synaptic vesicles possibly trigger functions even further 

downstream because of the increase in ROS, proteases and neurotransmitters. 

 

 

 

 

Figure 9.2  Lysosome-dependant pathway as a model for PD pathogenesis.  The known PD genes are 

hypothesized to interact in the lysosomal pathway subsequently resulting in a change in the reaction of the cell 

to oxidative stress and the processing of excess proteins (Taken from Tofaris 2012). 

 

 

9.4  Neurodegenerative disorders with overlapping clinical symptoms 

 

A confounding factor in studies on PD is the number of neurodegenerative disorders with 

similar clinical symptoms; often complicating diagnosis of the disorder.  PD is typically 

defined phenomenologically as the presence of  bradykinesia, rigidity, postural instability and 

resting tremor (although, not all features are mandatory) together with an excellent and 

sustained response to levodopa as well as the development of motor complications after many 

years of levodopa treatment.  The definitive diagnosis requires the demonstration of loss of 

dopaminergic neurons and the presence of Lewy-body synucleinopathy at autopsy which 
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obviously is not available in the clinical setting.  This means that clinicians have to consider 

an increasing range of differential diagnosis when confronted with a patient with 

Parkinsonism and a positive family history.  Parkinsonism can be defined as a variety of 

dissimilar underlying clinical features that can cause Parkinson's-like symptoms, such as 

tremor, stiffness, slowing of movement and balance problems, but the predominant features 

are atypical or additional neurological features that are not found in the majority of PD cases 

(Klein, Schneider, and Lang 2009).  Disease classification and identification is largely 

dependent on the clinician's expertise and the clinical manifestations of the patient at the time 

of the consultation.  Disorders such as HDL2 and SCAs can share a significant clinical 

overlap with PD and for this reason, algorithms have been designed as a means to clarify PD 

diagnosis, particularly in early onset or atypical cases, using clinical observations and results 

from MRI scans.  Also, the ethnic background can be useful as there are a number of diseases 

which are specifically related to specific populations and genetic testing can be performed in 

such instances, so as to rule out disorders that present with signs of Parkinsonism or even 

mimic idiopathic PD (figure 9.3) (Klein, Schneider, and Lang 2009). 

 

 

Figure 9.3  Suggested algorithm for clinical diagnosis  based on ethnic background (Klein, Schneider, and 

Lang 2009). 

 

Along with the suggested algorithm, a relatively new development into PD and its separation 

from other Parkinsonian disorders,  is the discovery and identification of biomarkers that can 

then be used as a reliable and accurate way to identify at risk populations (Agarwal and 
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Stoessl 2012; Jankovic 2012).  The biomarker projects aim to investigate blood, genetic, 

cerebrospinal fluid, imaging and neurophysiologic abnormalities in patients that may be 

affected (Jankovic 2012).  Additionally, new developments into PD involve modifications of 

the single photon emission computerized tomography (SPECT) scan;  these have been used 

to identify pre-synaptic dopamine levels in the nigrostriatal terminals, thereby providing a 

means to differentiate PD from similar Parkinsonian disorders.   

 

9.5  Problems with PD research in sub-Saharan Africa (SSA) 

 

The prevalence of PD in sub-Saharan African (SSA) countries is reported to be significantly 

lower than that found in the developed world.  In Africa,  the prevalence has been reported to 

be between 7 and 43 per 100 000 (Okubadejo et al. 2006) compared to figures of between 7 

and 657 for the rest of the world.  However, these figures for SSA are likely to be an 

underestimation due to a number of reasons including methodological problems with some of 

the studies (hospital-based studies are thought to underestimate PD as most patients are in the 

community and are not in a hospital or clinical environment) and the fact that many patients 

are either misdiagnosed or undiagnosed.    

 

Although PD can only be identified with certainty following autopsy, the diagnosis thereof 

can be made according to a set of clinical criteria such as the UK PD Society Brain Bank 

criteria.  Moreover, it is of paramount importance that patients be diagnosed by a movement 

disorder specialist and undergo specialized and specific neurological examinations.  In 

progressed forms of the disease, diagnosis becomes more straightforward, while definitive 

PD diagnoses are more difficult in the early stages (Dotchin et al. 2012).  In developed 

countries technological applications such as SPECT scans have been developed and 

successfully utilized to aid in diagnosis.  This approach is used in cases where diagnosis is 

uncertain and gamma rays are used to measure the dopamine re-uptake which is significantly 

reduced in patients where neuronal degeneration has taken place, as is the case in PD patients 

(Isaias and Antonini 2010).  Additionally, dopaminergic transporter imaging scans have been 

developed and these have a sensitivity approaching 100% in the diagnosis of 

neurodegenerative Parkinsonism.  Cumulatively, the availability of modern technologies, 

trained specialists and functional healthcare infrastructures allows for the identification of PD 

and subsequently appropriate management of the disorder (Dotchin et al. 2012).  This is not 

possible in SSA as these specialised imaging modalities  are not widely available and few 
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patients go on to post-mortem examination so the only way in which diagnosis of the disease 

can take place is through clinical examination (Mshana, Dotchin, and Walker 2011).  This  

poses another problem as due to cultural beliefs and practices of many tribes in SSA, many 

individuals who are affected by PD seek treatment from traditional healers, as the symptoms 

presented may be believed to be a curse or as a result of witchcraft (Mshana, Dotchin, and 

Walker 2011).  Other patients do not seek medical treatment due to the misconception that 

their symptoms are part of the normal ageing process (Dotchin et al. 2012). 

 

Several SSA countries do not have neurologists, movement disorder specialists or 

neurosurgeons.  Training of other healthcare professionals to identify PD would be one way 

of overcoming the lack of specialists and would be an innovative way of raising awareness of 

the disorder. In one study carried out in Tanzania, a PD specialist nurse who had been  

trained in the UK, was used to educate patients and carers about the disease.  Furthermore, a 

manual entitled ‗Where there is no neurologist‘ developed by the World Federation of 

Neurology is available for free via the internet and can be used by paramedical professionals 

to give basic advice, prescribe treatment and identify conditions that need to be referred to a 

doctor (http://www.wfneurology.org/the-african-experience). 

 

Another critical challenge faced in SSA is that for the minority of PD patients who are 

diagnosed, anti-Parkinsonian drug therapies are often unavailable or unaffordable (Dotchin et 

al. 2012).  Typically, hospitals in SSA stock outdated PD drugs with a levodopa and 

carbidopa formulation that contains a lower proportion of dopa-decarboxylase inhibitor than 

used in developed countries.  This often results in side effects including nausea and postural 

hypotension leading to noncompliance with the medication.  In general, modern, efficacious 

treatments for PD such as nonergot dopamine agonists and monoamine oxidase B inhibitors 

are not available in SSA.  PD does not only affect the motor systems of patients; non-motor  

symptoms may precede the onset of disease , continue throughout its course and can be more 

troubling to the patient than the motor symptoms (Dotchin, Msuya, and Walker 2010).  Some 

of these non-motor symptoms include depression, cognitive decline, changes in sleeping 

patterns, constipation and pain and these may lead to a reduced quality of life even if the 

motor symptoms are adequately controlled (Parkinson‘s Disease Foundation 2012).  Notably, 

the cognitive impairment and mood disturbances are challenging for these patients as well as 

their carers; and diagnosis of cognitive impairment is difficult in the African setting, as the 

tools are not suitable for use in populations with low educational levels (Dotchin et al. 2012).   
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To date, only a minor number of studies regarding the underlying genetic factors of PD in 

SSA have been reported.  The number of published studies is as little as nine, with the 

majority of these stemming from our group in South Africa (Bardien et al. 2009; Keyser et al. 

2009; Keyser 2010a; Keyser 2010b; Haylett et al. 2012).  The focus of these studies was 

predominantly on the known PD causing genes and small number of mutations identified in 

these patients has provided strong evidence that the known PD causing genes do not play a 

major role in the disorder and therefore the hypothesis that novel genes may be involved is a 

plausible one.  The use of alternative NGS technologies may be particularly feasible in these 

populations for the identification of these novel disease-causing mutations. 

 

Recently, the international Movement Disorder Society launched an Interest Group for 

Movement Disorders in SSA.  Their goal is to build a network of interested parties to provide 

education and training in movement disorders for improving patient care.  Regular meetings 

and conferences to encourage networking between African clinicians and scientists with an 

interest in PD and other movement disorders would also be a major boost to more research 

activities in this field.  In Mali, the Health Minister has announced an innovative programme 

allowing all PD patients to be provided with anti-Parkinsonian drugs free of charge (Dotchin 

et al. 2012).  Taken together, these initiatives will help raise awareness of PD in SSA 

countries, may aid in the identification of the disease at an earlier stage,  and may also reduce 

stigmas for patients and their family members. 

 

9.6  Limitations of the  present study 

 

Limitations of the present study included the limited numbers of study participants 

particularly from the Black ethnic group, for which only 17 patients had been recruited.  This 

may be due to recruitment bias as study participants were only recruited from The Movement 

Disorders Clinic at Tygerberg Hospital in Cape Town.  In addition, there are no state-

employed neurologists in the Eastern Cape Province, from which almost all of our Black 

patients originate, which means that many Black patients will not be diagnosed.  Another 

limitation was the fact that there were not many families available for study that had more 

than two affected individuals.  Co-segregation with disease within a family was therefore not 

possible and the pathogenicity of novel variants could not be determined.  Furthermore, due 

to financial constraints not all study participants could be assessed using comprehensive 
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imaging analysis such as MRI and SPECT scans to determine the extent and progression of 

their condition.  

 

Another major limitation of the study is that Sanger sequencing could not be performed on all 

of the patients.  Ideally, if financial constraints had not been a factor, all exons of all eight of 

the known PD genes would have been screened for pathogenic mutations.  However, this was 

not feasible and for this reason, alternative cost-effective methods had to be employed.  HRM 

was chosen as the most cost-effective, medium throughput method to be used for mutation 

screening but it is possible that pathogenic mutations were missed using this approach.  False 

positives and negatives are generated when primer dimers are formed and the normalized 

graphs are re-adjusted to incorporate the primer dimer formation, thus possibly resulting in 

aberrant results.  Additionally, it is of paramount importance that the cycle threshold (Ct) 

values of the pre-amplification template be less than 30.  Ct can be defined as the number of 

cycles that are required for fluorescent signals to cross the threshold (i.e. the background).  

The lower the Ct value, the greater the amount of target nucleic acid per reaction;  if these Ct 

values are not below 30, then poor RT-PCR products are generated and poor melt curves are 

the result, thus making the curves difficult to analyse (Wittwer 2009; Ye et al. 2010).  Also, 

HRM was not effective in the identification of a g.-6_+10del variant in DJ-1 with a 

significant GC content.  It has been reported that HRM is not effective in identifying 

homozygous substitutions and A>T substitutions do not cause significant shifts in the melt 

curves (less than a 0.2°C, difference), thus making these specific substitutions difficult to 

detect (Wittwer 2009; Ye et al. 2010).  It should also be noted that samples with the same or 

similar melt curves may not have the same variant and all samples with altered melt profiles 

should thus be sequenced to characterize the sequence variant. 

 

Of the 262 patients that were included in the study, 33 of them were not screened for exon 

dosage changes using MLPA assays.  Exonic rearrangements, whole gene duplications and 

triplications are common in PD patients (Hedrich et al. 2002) but are not detected by 

techniques such as HRM or Sanger sequencing  and all patients should thus be subjected to 

MLPA analysis to exclude copy number variations or rearrangements within the known PD 

genes. 

 

The WES approach, although extremely useful in the identification of novel disease-causing 

mutations,  comes with a number of requirements that need to be taken into account when 
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employing this technique (Cirulli et al. 2010; Kim 2010).  The biggest concern is the fact that 

approximately 98.8% of the genome is not analysed as the assumption is that the mutation is 

in the coding regions.  Added to this, variations with regards to the definition of the ‗exome‘ 

also poses a significant challenge and different commercial kits vary in their specific targets.  

Moreover, WES does not cover all genes; some of the genes that are found in highly 

repetitive regions, genes that have a high degree of sequence similarity with other genomic 

regions including pseudogenes and as yet unidentified or unannotated genes are missed.  

CNVs are also not effectively detected through the use of this method.  Sanger sequencing  to 

verify the presence of variants detected is still an important step in this process as due to the 

short read lengths many fragments could be mapped to the wrong genomic region.   Whole 

genome sequencing is therefore an attractive alternative to WES and generation of whole 

genome data from all the South African PD patients would be a significant resource.  

However, until this approach becomes more affordable and the appropriate bioinformatics 

infrastructure is in place to deal with the large amounts of data, WES remains the more viable 

option.  

 

9.7  Future work 

 

A relatively small number of novel variants were identified in the known PD genes, but these 

should be analysed further to conclusively determine their role in PD pathogenesis.  

Functional studies and analysis of the novel sequence variants identified in Parkin (T387P) 

and LRRK2 (Q2089R) are proposed.  The frequency of each of the variants should first be 

established in large number of ethnically matched controls and given the outcome, possible 

functional studies should be carried out.  It is plausible to consider this because  the Q2089R 

variant in LRRK2 resides in the highly conserved kinase domain and it has been documented 

that mutations in this gene may decrease GTPase activity and increase kinase activity (Tan et 

al. 2008; Aasly et al. 2010).  In the case of Parkin, the effect of the T387P variant on 

ubiquitination and protein aggregation could be carried out through the use of 

immunohistochemistry and ubiquitylation assays. 

 

Improved and effective, medium-throughput methods for the identification of g.-6_+10del 

variant in DJ-1 are also a necessary consideration.  This variant was genotyped by a 

commercial company (KBiosciences, LGC Genomics, Teddington, United Kingdom), but an 

effective assay should be established locally.  The frequency of  the g.-6_+10del variant can 

Stellenbosch University http://scholar.sun.ac.za



 

143 

 

then be determined in controls from the different ethnic groups once an appropriate screening 

method has been developed.  Moreover, given the proximity of the indel to the transcription 

start site, it is warranted that further investigation be carried out on the effect on 

transcriptional regulation using South western blotting or electrophoretic mobility shift assays 

(Siu, Lee, and Chow 2008).  Patients and controls should also be screened for the frequency 

of the 18bp indel which had previously been identified in a Finnish population in the 

promoter region (Eerola et al. 2003). 

 

Another facet of future work which may be applied, is a targeted resequencing approach 

(Chan et al. 2012).  This is a relatively new concept, but one which has not yet been widely 

applied to many NGS projects.  This approach investigates a relatively small number of genes 

across large populations and is complex in that a large amount of PCR is necessary to amplify 

all the exons targeted while at the same time managing to keep track of which PCR product 

belongs to which patient - this is done through DNA bar coding, which allows multiplexing 

of numerous samples and this, in turn, decreases the overall costs involved in the sequencing 

process (Chan et al. 2012).  This means that even when as few as 10 genes with 10 exons 

each are examined in 100 individuals, approximately 10,000 PCR reactions and 10,000 

sequencing reactions are the result.  An NGS approach would theoretically amplify the 

genomic regions, combine all information and finally run a library prep protocol (i.e. 

fragment and attach linkers).  The advantages of this approach are that any region of interest 

can be targeted and the results are relatively easy to analyse.  Future work should involve 

targeted resequencing of all known PD genes in all of the South African PD patients, and it is 

anticipated that this work could be done locally on the Ion Torrent (Life Technologies, 

Carlsbad, California, USA), which is available at the Central Analytical Facility (CAF) at 

Stellenbosch University. In conjunction with targeted resequencing, MLPA should be 

performed for all patients.  This is important as current software used in the analysis of 

targeted resequencing data is not effective at detecting CNVs.  CNVs are thought to influence 

gene expression and can be directly associated with a range of phenotypes and diseases.  Also 

as new genes are discovered, CNVs analysis of these genes should be included in the 

mutation screening strategies. 

 

The WES study on South African PD patients in is the first of its kind and has yielded 

promising results. Future work will involve the verification through the use of Sanger 

sequencing of the remaining sixteen sequence variants that were identified as plausible 
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candidate disease-causing mutations.  Additionally, the entire PD cohort should be screened 

for these variants and the pathogenicity assessed within the population.  The frequency of the 

identified pathogenic mutations can then be assessed in approximately 10 000 PD patients 

potentially available from the GEOPD consortium.  And finally, the effect of the identified 

variants on protein function should be assessed through the use of various assays such as 

protein kinase assays if the protein has a kinase function. The present study has highlighted 

that there is an urgent need for the development of a ‗universal bioinformatics pipeline‘ that 

can be applied to all future WES projects so as to ensure consistency and optimal 

functionality of this approach.   

 

9.8  Concluding remarks 

 

Given the significant economic and social burden of neurodegenerative disorders such as PD, 

more research into the underlying causes and risk factors, is needed.  The investigation into 

the molecular aetiology of PD in the South African patients has revealed that five of the 

known genes do not play a significant role in these patients and it is plausible to assume that 

the underlying mutations in many of these patients are in novel PD-causing genes.  Only 15 

patients were identified as carriers of mutations and of these, the majority (eight) of these are 

Caucasian.   

 

Since the South African population encompasses numerous diverse ethnic groups, each with 

unique ancestral origins it is plausible that they may harbour novel PD genes that could 

potentially provide important insights into disease mechanisms (Okubadejo et al. 2008).  

Notably, the Black population has been understudied worldwide and therefore more studies 

are warranted on this particular group of patients. However, there are only 17 Black patients 

in our group of study participants and therefore more intensive efforts are needed for the 

identification and recruitment of additional patients.  In the quest to find disease genes, NGS 

approaches are an important strategy as large families with multiple affected individuals are 

not required, and this is significant because these are rare in a late-onset disorder such as PD.  

The drive to identify more PD genes is of utmost important as this information is needed to 

help piece together all the pieces of the puzzle of the disease pathogenesis.  Current 

hypotheses implicate lysosome-dependent pathways as playing an integral role (Tofaris 2012) 

and it would be interesting to see if new PD genes fit in with this hypothesis or implicate 

other pathways.  Taken together, the pathways in which PD genes are involved and data on 
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pathological as well as clinical symptoms of patients may reveal exactly why the 

dopaminergic neurons in the substantia die in these patients – which, almost 200 years after 

Dr James Parkinson first described the disorder, remains a key unanswered question.  
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Appendix I:  DNA isolation from blood using the phenol/chloroform 

method 
 

Extraction of nuclei from whole blood 

Blood from two 5ml EDTA tubes per patient was transferred into a 50ml Falcon tube. The 

tube was then filled to 20 ml with ice-cold lysis buffer and inverted gently a few times.  

Subsequently, the sample was incubated on ice for 5-10 min. The sample was then 

centrifuged at 2500-3000 rpm at room temperature in a Beckman model TJ-6 centrifuge 

(Scotland, UK).  The supernatant was discarded and the pellet was resuspended in 20ml, ice-

cold lysis buffer which was then followed by another round of incubation and centrifugation. 

The supernatant was discarded and the pellet resuspended in DNA extraction buffer, after 

which the nuclei were either immediately used for DNA extraction, or stored at -70°C until 

DNA was required for genetic testing. 

Extraction of DNA from nuclei 

A total volume of 100l of proteinase K (10μg/ml) was added to newly prepared or defrosted 

nuclei and the mixture was incubated overnight at 37°C.  After this step, 2ml distilled water, 

500l 3M sodium-acetate and 25l phenol/chloroform were added to the sample.  The tubes 

were subsequently inverted and mixed gently for 10 min on a Voss rotator (Voss of Maldon, 

England) at 4°C.  The mixture was then transferred to a glass Corex tube so that the aqueous 

phase could be clearly distinguished from the organic phase, followed by centrifugation in a 

Sorvall RC-5B refrigerated super-speed centrifuge (rotor SS 34, Dupont Instruments) at 8000 

rpm at 4°C for 10 min.  

The upper aqueous phase contained the DNA and was transferred to a clean Corex tube using 

a sterile plastic Pasteur pipette, while taking care not to disturb the interface or the organic 

phase.  Approximately 25ml chloroform/octanol was added to the aqueous phase after which 

the tube was closed with a polypropylene stopper and gently inverted for 10 min. This 

mixture was centrifuged at 4°C, followed by the removal of the upper aqueous phase as 

described earlier. The DNA was then ethanol precipitated by adding two volumes of ice-cold 

96% ethanol and inverting gently until DNA strands appeared as a white precipitate. 
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The DNA strands were removed using a yellow-tipped Gilson pipette and placed in a clean, 

1.5ml Eppendorf microfuge tube.  One millilitre 70% ethanol was then added to the DNA and 

the mixture centrifuged in a Beckman microfuge for 3 min at 13000 rpm. The ethanol was 

carefully decanted and the 70% ethanol wash step was repeated one more time in order to 

remove any excess salts.  After careful removal of most of the ethanol, the DNA pellet was 

air-dried for 30-60 min at room temperature by inverting the Eppendorf microfuge tube on 

Carlton paper.  Two hundred microlitres Tris-EDTA buffer was added and the DNA was 

resuspended, initially by stationary incubation at 37°C overnight and subsequently by gentle 

mixing in a Voss rotator  at 4°C for a further 3 days. This was followed by stationary 

incubation at 4°C until the DNA had been fully resuspended. 

After 1-2 weeks, when the DNA had completely resuspended in the buffer, the optical density 

(OD) of the DNA was determined in a Milton Roy series 120i spectrophotometer (USA) at 

260nm (OD260).  The DNA concentration, in g/l, was determined by diluting 10l of 

DNA in 500l of TE and multiplying the measured OD260  by a factor of 2.5, while the 

purity of the DNA was monitored by the OD260//OD280 ratio, which should be 

approximately 1.8 for pure DNA. 
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Appendix II:  Pedigrees of the Black African Patients 
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Appendix III:  List of PD terms used for BORG Analysis 
 

GO:0000151 ubiquitin ligase complex 

GO:0000152 nuclear ubiquitin ligase complex 

GO:0000153 cytoplasmic ubiquitin ligase complex 

GO:0000209 protein polyubiquitination 

GO:0000422 mitochondrion degradation 

GO:0000502 proteasome complex 

GO:0000835 ER ubiquitin ligase complex 

GO:0000836 Hrd1p ubiquitin ligase complex 

GO:0000837 Doa10p ubiquitin ligase complex 

GO:0000838 Hrd1p ubiquitin ligase ERAD-M complex 

GO:0000839 Hrd1p ubiquitin ligase ERAD-L complex 

GO:0001588 dopamine receptor activity, coupled via Gs 

GO:0001591 dopamine receptor activity, coupled via Gi/Go 

GO:0001963 synaptic transmission, dopaminergic 

GO:0001964 startle response 

GO:0003832 beta-alanyl-dopamine hydrolase activity 

GO:0003833 beta-alanyl-dopamine synthase activity 

GO:0004221 ubiquitin thiolesterase activity 

GO:0004500 dopamine beta-monooxygenase activity 

GO:0004839 ubiquitin activating enzyme activity 

GO:0004842 ubiquitin-protein ligase activity 

GO:0004843 ubiquitin-specific protease activity 

GO:0004952 dopamine receptor activity 

GO:0005329 dopamine transmembrane transporter activity 

GO:0005330 dopamine:sodium symporter activity 

GO:0005838 proteasome regulatory particle 

GO:0005839 proteasome core complex 

GO:0006464 protein modification process 
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GO:0006511 ubiquitin-dependent protein catabolic process 

GO:0006513 protein monoubiquitination 

GO:0006585 dopamine biosynthetic process from tyrosine 

GO:0006986 response to unfolded protein 

GO:0007014 actin ubiquitination 

GO:0007191 activation of adenylate cyclase activity by dopamine receptor signaling pathway 

GO:0007195 inhibition of adenylate cyclase activity by dopamine receptor signaling pathway 

GO:0007212 dopamine receptor signaling pathway 

GO:0008537 proteasome activator complex 

GO:0008540 proteasome regulatory particle, base subcomplex 

GO:0008541 proteasome regulatory particle, lid subcomplex 

GO:0010390 histone monoubiquitination 

GO:0010499 proteasomal ubiquitin-independent protein catabolic process 

GO:0010798 regulation of multivesicular body size involved in ubiquitin-dependent protein  

  catabolism 

GO:0010992 ubiquitin homeostasis 

GO:0010993 regulation of ubiquitin homeostasis 

GO:0010994 free ubiquitin chain polymerization 

GO:0010995 free ubiquitin chain depolymerization 

GO:0014046 dopamine secretion 

GO:0014059 regulation of dopamine secretion 

GO:0014069 postsynaptic density 

GO:0015872 dopamine transport 

GO:0016567 protein ubiquitination 

GO:0016574 histone ubiquitination 

GO:0016578 histone deubiquitination 

GO:0016579 protein deubiquitination 

GO:0019005 SCF ubiquitin ligase complex 

GO:0019773 proteasome core complex, alpha-subunit complex 

GO:0019774 proteasome core complex, beta-subunit complex 

GO:0022623 proteasome-activating nucleotidase complex 
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GO:0022624 proteasome accessory complex 

GO:0030579 ubiquitin-dependent SMAD protein catabolic process 

GO:0031144 proteasome localization 

GO:0031145 anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein 

  catabolic process 

GO:0031146 SCF-dependent proteasomal ubiquitin-dependent protein catabolic process 

GO:0031371 ubiquitin conjugating enzyme complex 

GO:0031396 regulation of protein ubiquitination 

GO:0031397 negative regulation of protein ubiquitination 

GO:0031398 positive regulation of protein ubiquitination 

GO:0031461 cullin-RING ubiquitin ligase complex 

GO:0031462 Cul2-RING ubiquitin ligase complex 

GO:0031463 Cul3-RING ubiquitin ligase complex 

GO:0031464 Cul4A-RING ubiquitin ligase complex 

GO:0031465 Cul4B-RING ubiquitin ligase complex 

GO:0031466 Cul5-RING ubiquitin ligase complex 

GO:0031467 Cul7-RING ubiquitin ligase complex 

GO:0031593 polyubiquitin binding 

GO:0031595 nuclear proteasome complex 

GO:0031596 ER proteasome complex 

GO:0031597 cytosolic proteasome complex 

GO:0031598 nuclear proteasome regulatory particle 

GO:0031599 ER proteasome regulatory particle 

GO:0031600 cytosolic proteasome regulatory particle 

GO:0031601 nuclear proteasome core complex 

GO:0031602 ER proteasome core complex 

GO:0031603 cytosolic proteasome core complex 

GO:0031606 cytosolic proteasome core complex, alpha-subunit complex 

GO:0031607 nuclear proteasome core complex, beta-subunit complex 

GO:0031608 ER proteasome core complex, beta-subunit complex 

GO:0031609 cytosolic proteasome core complex, beta-subunit complex 
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GO:0031610 nuclear proteasome regulatory particle, base subcomplex 

GO:0031611 ER proteasome regulatory particle, base subcomplex 

GO:0031612 cytosolic proteasome regulatory particle, base subcomplex 

GO:0031613 nuclear proteasome regulatory particle, lid subcomplex 

GO:0031614 ER proteasome regulatory particle, lid subcomplex 

GO:0031615 cytosolic proteasome regulatory particle, lid subcomplex 

GO:0031624 ubiquitin conjugating enzyme binding 

GO:0031625 ubiquitin protein ligase binding 

GO:0031748 D1 dopamine receptor binding 

GO:0031749 D2 dopamine receptor binding 

GO:0031750 D3 dopamine receptor binding 

GO:0031751 D4 dopamine receptor binding 

GO:0031752 D5 dopamine receptor binding 

GO:0032225 regulation of synaptic transmission, dopaminergic 

GO:0032226 positive regulation of synaptic transmission, dopaminergic 

GO:0032227 negative regulation of synaptic transmission, dopaminergic 

GO:0032434 regulation of proteasomal ubiquitin-dependent protein catabolic process 

GO:0032435 negative regulation of proteasomal ubiquitin-dependent protein catabolic process 

GO:0032436 positive regulation of proteasomal ubiquitin-dependent protein catabolic process 

GO:0033134 ubiquitin activating enzyme binding 

GO:0033182 regulation of histone ubiquitination 

GO:0033183 negative regulation of histone ubiquitination 

GO:0033184 positive regulation of histone ubiquitination 

GO:0033522 histone H2A ubiquitination 

GO:0033523 histone H2B ubiquitination 

GO:0033602 negative regulation of dopamine secretion 

GO:0033603 positive regulation of dopamine secretion 

GO:0033768 SUMO-targeted ubiquitin ligase complex 

GO:0034450 ubiquitin-ubiquitin ligase activity 

GO:0034515 proteasome storage granule 

GO:0035240 dopamine binding 
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GO:0035361 Cul8-RING ubiquitin ligase complex 

GO:0035518 histone H2A monoubiquitination 

GO:0035519 protein K29-linked ubiquitination 

GO:0035520 monoubiquitinated protein deubiquitination 

GO:0035521 monoubiquitinated histone deubiquitination 

GO:0035522 monoubiquitinated histone H2A deubiquitination 

GO:0035523 protein K29-linked deubiquitination 

GO:0035616 histone H2B conserved C-terminal lysine deubiquitination 

GO:0035800 ubiquitin-specific protease activator activity 

GO:0035871 protein K11-linked deubiquitination 

GO:0042053 regulation of dopamine metabolic process 

GO:0042416 dopamine biosynthetic process 

GO:0042417 dopamine metabolic process 

GO:0042420 dopamine catabolic process 

GO:0042551 neuron maturation 

GO:0042787 protein ubiquitination involved in ubiquitin-dependent protein catabolic process 

GO:0043130 ubiquitin binding 

GO:0043161 proteasomal ubiquitin-dependent protein catabolic process 

GO:0043162 ubiquitin-dependent protein catabolic process via the multivesicular body sorting  
  pathway 

GO:0043223 cytoplasmic SCF ubiquitin ligase complex 

GO:0043224 nuclear SCF ubiquitin ligase complex 

GO:0043248 proteasome assembly 

GO:0043328 protein targeting to vacuole involved in ubiquitin-dependent protein catabolic process 

  via the multivesicular body sorting pathway 

GO:0043329 protein targeting to membrane involved in ubiquitin-dependent protein catabolic  

  process via the multivesicular body sorting pathway 

GO:0043494 CLRC ubiquitin ligase complex 

GO:0044313 protein K6-linked deubiquitination 

GO:0044314 protein K27-linked ubiquitination 

GO:0044382 CLRC ubiquitin ligase complex localization to heterochromatin 

GO:0045963 negative regulation of dopamine metabolic process 
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GO:0045964 positive regulation of dopamine metabolic process 

GO:0046928 regulation of neurotransmitter secretion 

GO:0050372 ubiquitin-calmodulin ligase activity 

GO:0050780 dopamine receptor binding 

GO:0051087 chaperone binding 

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 

GO:0051438 regulation of ubiquitin-protein ligase activity 

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 

GO:0051440 regulation of ubiquitin-protein ligase activity involved in meiotic cell cycle 

GO:0051441 positive regulation of ubiquitin-protein ligase activity involved in meiotic cell cycle 

GO:0051442 negative regulation of ubiquitin-protein ligase activity involved in meiotic cell cycle 

GO:0051443 positive regulation of ubiquitin-protein ligase activity 

GO:0051444 negative regulation of ubiquitin-protein ligase activity 

GO:0051583 dopamine uptake 

GO:0051584 regulation of dopamine uptake 

GO:0051585 negative regulation of dopamine uptake 

GO:0051586 positive regulation of dopamine uptake 

GO:0051587 inhibition of dopamine uptake 

GO:0051865 protein autoubiquitination 

GO:0055105 ubiquitin-protein ligase inhibitor activity 

GO:0055106 ubiquitin-protein ligase regulator activity 

GO:0060158 activation of phospholipase C activity by dopamine receptor signaling pathway 

GO:0060159 regulation of dopamine receptor signaling pathway 

GO:0060160 negative regulation of dopamine receptor signaling pathway 

GO:0060161 positive regulation of dopamine receptor signaling pathway 

GO:0060162 negative regulation of phospholipase C-activating dopamine receptor signaling  
  pathway 

GO:0070086 ubiquitin-dependent endocytosis 

GO:0070530 K63-linked polyubiquitin binding 

GO:0070534 protein K63-linked ubiquitination 
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GO:0070535 histone H2A K63-linked ubiquitination 

GO:0070536 protein K63-linked deubiquitination 

GO:0070537 histone H2A K63-linked deubiquitination 

GO:0070628 proteasome binding 

GO:0070682 proteasome regulatory particle assembly 

GO:0070842 aggresome assembly 

GO:0070844 polyubiquitinated protein transport 

GO:0070845 polyubiquitinated misfolded protein transport 

GO:0070936 protein K48-linked ubiquitination 

GO:0070979 protein K11-linked ubiquitination 

GO:0071108 protein K48-linked deubiquitination 

GO:0071542 dopaminergic neuron differentiation 

GO:0071596 ubiquitin-dependent protein catabolic process via the N-end rule pathway 

GO:0071629 cytoplasm-associated proteasomal ubiquitin-dependent protein catabolic process 

GO:0071630 nucleus-associated proteasomal ubiquitin-dependent protein catabolic process 

GO:0071795 K11-linked polyubiquitin binding 

GO:0071796 K6-linked polyubiquitin binding 

GO:0071894 histone H2B conserved C-terminal lysine ubiquitination 

GO:0071947 protein deubiquitination involved in ubiquitin-dependent protein catabolic process 

GO:0075346 modification by symbiont of host protein by ubiquitination 

GO:0080008 CUL4 RING ubiquitin ligase complex 

GO:0080129 proteasome core complex assembly 

GO:0085020 protein K6-linked ubiquitination 

GO:0090085 regulation of protein deubiquitination 

GO:0090086 negative regulation of protein deubiquitination 

GO:0090363 regulation of proteasome core complex assembly 

GO:0090364 regulation of proteasome assembly 

GO:0097027 ubiquitin-protein ligase activator activity 

GO:0097039 protein linear polyubiquitination 

GO:1900044 regulation of protein K63-linked ubiquitination 

GO:1900045 negative regulation of protein K63-linked ubiquitination 
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GO:2000058 regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic 

  process 

GO:2000059 negative regulation of protein ubiquitination involved in ubiquitin-dependent protein 

  catabolic process 

GO:2000060 positive regulation of protein ubiquitination involved in ubiquitin-dependent protein 

  catabolic process 

GO:2000152 regulation of ubiquitin-specific protease activity 

GO:2000157 negative regulation of ubiquitin-specific protease activity 

GO:2000158 positive regulation of ubiquitin-specific protease activity 

GO:2000395 regulation of ubiquitin-dependent endocytosis 

GO:2000396 negative regulation of ubiquitin-dependent endocytosis 

GO:2000397 positive regulation of ubiquitin-dependent endocytosis 

GO:2000777 positive regulation of proteasomal ubiquitin-dependent protein catabolic process  

  involved in cellular response to hypoxia 

GO:2001166 regulation of histone H2B ubiquitination 

GO:2001167 negative regulation of histone H2B ubiquitination 

GO:2001168 positive regulation of histone H2B ubiquitination 

GO:2001173 regulation of histone H2B conserved C-terminal lysine ubiquitination 

GO:2001174 negative regulation of histone H2B conserved C-terminal lysine ubiquitination 

GO:2001175 positive regulation of histone H2B conserved C-terminal lysine ubiquitination 

HP:0001276 Hypertonia 

HP:0001288 Gait disturbance 

HP:0001295 Involuntary rhythmic myoclonic movements ('tremor') of the distal extremities,  

  usually fingers 

HP:0001300 Parkinsonism 

HP:0001309 Movements ('tremors') characterized by 8 to 10-Hz discharges 

HP:0001332 Dystonia 

HP:0001337 Tremor 

HP:0001347 Hyperreflexia 

HP:0002063 Rigidity 

HP:0002067 Bradykinesia 

HP:0002080 Intention tremor 

HP:0002172 Postural instability 
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HP:0002174 Postural tremor 

HP:0002275 Poor motor coordination 

HP:0002322 Resting tremor 

HP:0002333 Motor deterioration 

HP:0002345 Action tremor 

HP:0002346 Head tremor 

HP:0002361 Psychomotor degeneration 

HP:0002378 Hand tremor 

HP:0002489 Psychomotor regression 

HP:0006925 Postural tremor, slow, irregular 

HP:0007197 Action and postural tremor 

HP:0007297 Postural tremor of arms 

HP:0007351 Upper limb postural tremor 

HP:0100022 Abnormality of movement 

MP:0000745 tremors 

MP:0000811 hippocampal neuron degeneration 

MP:0000836 abnormal substantia nigra morphology 

MP:0000952 abnormal CNS glial cell morphology 

MP:0001363 increased anxiety-related response 

MP:0001388 abnormal stationary movement 

MP:0001405 impaired coordination 

MP:0001905 abnormal dopamine level 

MP:0001906 increased dopamine level 

MP:0002066 abnormal motor capabilities/coordination/movement 

MP:0002272 abnormal nervous system electrophysiology 

MP:0002882 abnormal neuron morphology 

MP:0003203 increased neuron apoptosis 

MP:0003224 neuron degeneration 

MP:0003243 abnormal dopaminergic neuron morphology 

MP:0003244 loss of dopaminergic neurons 

MP:0003313 abnormal locomotor activation 
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MP:0003491 abnormal voluntary movement 

MP:0003492 abnormal involuntary movement 

MP:0003635 abnormal synaptic transmission 

MP:0003964 abnormal noradrenaline level 

MP:0004250 tau protein deposits 

MP:0005424 jerky movement 

MP:0005643 decreased dopamine level 

MP:0006035 abnormal mitochondrial morphology 

MP:0010149 abnormal synaptic dopamine release 

MP:0011448 decreased dopaminergic neuron number 

MP:0011449 increased dopaminergic neuron number 

MP:0011450 ectopic dopaminergic neuron 

MP:0011451 increased susceptibility to dopaminergic neuron neurotoxicity 

MP:0011452 decreased susceptibility to dopaminergic neuron neurotoxicity 

PW:0000144 ubiquitin/proteasome degradation pathway 

PW:0000182 lysosomes based pathway of protein degradation 

PW:0000294 altered ubiquitin/proteasome degradation pathway 

PW:0000325 protein degradation pathway 

PW:0000326 altered protein degradation pathway 

PW:0000394 dopamine signaling pathway 

PW:0000395 altered dopamine signaling pathway 

PW:0000409 dopamine metabolic pathway 

PW:0000414 protein degradation pathway via the 'core' 20S proteasome pathway 

PW:0000415 proteasome degradation pathway involving cullin-dependent ubiquitin ligases 

PW:0000417 ubiquitin, ubiquitin-like/proteasome degradation pathway 

PW:0000418 altered ubiquitin, ubiquitin-like degradation pathway 

PW:0000433 protein modification pathway via conjugation with ubiquitin and ubiqutin-like  
  molecules 

PW:0000434 ubiquitination pathway 

PW:0000802 dopamine biosynthetic pathway 

PW:0000851 dopamine signaling pathway via D1 family of receptors 
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Appendix IV:  The individual pedigrees of each of the Afrikaner individuals 

included in Chapter 8 
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Appendix V:  Reagents and Solutions 
 

Cresol Loading Dye 

2% (v/v) 10mg/ml cresol stock solution 

0.9933M sucrose 

10x TBE Electrophoresis Buffer (pH 8.3) 

0.0890M Trizma Base 

0.0890M Boric Acid 

0.0020M EDTA 

12% Polyacrylamide gel electrophoresis (PAGE) gels 

H2O 10.2 ml 

1.5 M Tris-HCl (pH 8.8) 7.5 ml 

20% (w/v) SDS 0.15 ml 

Acrylamide/Bis-acrylamide 

(30%/0.8% w/v) 
12.0 ml 

10% (w/v) ammonium persulfate (APS) 0.15 ml 

TEMED 0.02 ml 

Stacking Gel Solution (4% Acrylamide): 

H2O 3.075 ml 

0.5 M Tris-HCl, pH 6.8 1.25 ml 

20% (w/v) SDS 0.025 ml 

Acrylamide/Bis-acrylamide 

(30%/0.8% w/v) 
0.67 ml 

10% (w/v) ammonium persulfate (APS) 0.025 ml 

TEMED 0.005 ml 
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Appendix VI:  Primers Designed for Validation of WES Results 
 

Gene Primer Sequence (5´-3´) %GC Tm (⁰C) PCR conditions (Ta in ⁰C) Size of PCR fragment (bp) 

CDC27 For: GAG TAT CTA CTG AAG CTC CTC CAT 

Rev: CCA GCA CCA TCA ATA CGA CTT TGT C 

45.8 

48.0 

58.9 

63.4 

55 384 

NEDD4 For: TTC CTA GGA GTC CTT CAA CTA CCC GA 

Rev: TTT GGG AGG ATG GCA AAC ATG CAG 

50.0 

50.0 

64.2 

64.2 

58 477 

HECTD1 For: ATC CCA GGA AGg tct gta aga agc 

Rev: TCA GAG GGA AGG GAA AGA TGG TGA 

50.0 

50.0 

61.9 

62.1 

55 290 

RNF40 For: ACC ATC TGA CTT CAT CCC TCT TCC 

Rev: AAG GAG ACA GGA ACA GAG CCT CA 

50.0 

52.3 

67.7 

62.9 

58 491 

TBCC For: GGG CTG CAG AAA CTA ATC AAC GAC 

Rev: AGT CAC TGC AGT CCT CCA GGA AA 

50.0 

53.4 

62.4 

63.4 

55 478 
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