Structural Optimisation via Genetic Algorithms

by

Sophia Aletta Appelo

Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Civil Engineering at Stellenbosch University

Department of Structural Engineering,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Supervisor: Mr. E. van der Klashorst

December 2012

Stellenbosch University http://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is
my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly
otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining

any qualification.

Copyright (C) 2012 Stellenbosch University
All rights reserved.

Stellenbosch University http://scholar.sun.ac.za

Abstract

Structural Optimisation via Genetic Algorithms

S.A. Appelo

Department of Structural Engineering,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng (Civil)

December 2012

The design of steel structures needs to incorporate some optimisation procedure that evolves the initial
design into a more economic final design, where this final design must still satisfy all the initial design
criteria. A candidate optimisation technique suggested by this research is the genetic algorithm. The
genetic algorithm (GA) is an optimisation technique that was inspired by evolutionary principles, such
as the survival of the fittest (also known as natural selection). The GA operates by generating a
population of individuals which ‘compete’ with one another in order to survive, or differently stated,
in order to make it into the next generation. Each individual presents a solution to the problem.
Surviving solutions which propagate through to the next generation are typically ‘better’ or ‘fitter’
than the ones that had died off, hence suggesting a process of optimisation. This process continues
until a defined convergence criteria is met (e.g. specified maximum number of generations is reached),
where after the best individual in the population serves as the ultimate solution to the problem.

This study thoroughly investigates the inner workings that drive the algorithm, after which an al-
gorithm is presented to face the challenges of structural optimisation. This algorithm will be concerned
only with sizing optimisation; geometry, topology and shape optimisation is outside the scope of this
research. The objective of this optimising problem will be to minimise the weight of the structure, it
is assumed that the weight is inversely propotional to the cost of the structure. The motive behind
using a genetic algorithm in this study is largely due to its ability to handle discrete search spaces;
classical search methods are typically limited to some form of gradient search technique for which the
search space must be continuous. The algorithm is also preferred due to its ability to efficiently search

through vast search spaces, which is typically the case for a structural optimisation problem.

ii

Stellenbosch University http://scholar.sun.ac.za

ABSTRACT iii

The genetic algorithm’s performance will be examined through the use of bench-marking problems.
Benchmarking is done for both planar and space trusses; the 10 - and 25 bar truss problems. Such
problems are typically analysed with stress and displacement constraints. After the performance of
the algorithm is validated, the study commences towards solving real life practical problems. The first
step towards solving such problems would be to investigate the 160 bar truss benchmarking problem.
This problem will be slightly adapted by applying South African design standards to the design,
. This approach is more realistic, when compared to simply specifying stress and displacement
constraints due to the fact that an element cannot simply be assigned the same stress constraint for
tension and compression; slenderness and buckling effects need to be taken into account. For this case,
the search space will no longer simply be some sample search space, but will consist of real sections
taken from the Southern African Steel Construction Handbook, (2008). Finally, the research
will investigate what is needed to optimise a proper real life structure, the Eskom Self-Supporting
Suspension 518H Tower. It will address a wide variety of topics, such as modelling the structure
as realistically as possible, to investigating key aspects that might make the problem different from
standard benchmarking problems and what kind of steps can be taken to over-come possible issues
and errors.

The algorithm runs in parallel with a finite element method program, provided by Dr G.C. van

Rooyen, which analyses the solutions obtained from the algorithm and ensures structural feasibility.

Stellenbosch University http://scholar.sun.ac.za

Uittreksel

Strukturele Optimisasie via Genetiese Algoritmes

S.A. Appelo

Departement Siviele Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.
Tesis: MSclng (Siviel)

Desember 2012

Die ontwerp van staal strukture moet 'n sekere optimalisasie proses in sluit wat die aanvanklike ontwerp
ontwikkel na 'n meer ekonomiese finale ontwerp, terwyl die nuwe ontwerp nog steeds aan al die aan-
vanklike ontwerp kriteria voldoen. 'n Kandidaat optimeringstegniek wat voorgestel word deur hierdie
navorsing is die genetiese algoritme. Die genetiese algoritme (GA) is 'n optimaliserings tegniek wat ge-
inspireer was deur evolusionére beginsels soos die oorlewing van die sterkste (ook bekend as natuurlike
seleksie). Dit werk deur die skep van 'n bevolking van individue wat ‘kompeteer’ met mekaar om dit te
maak na die volgende generasie. Elke individu bied 'n oplossing vir die probleem. Oorlewende oplos-
sings wat voortplant deur middel van die volgende generasie is tipies ‘beter’ of ‘fikser’ as die individue
wat uitgesterf het, dus word 'n proses van optimalisering word saamgestel. Hierdie proses gaan voort
totdat 'n bepaalde konvergensie kriteria voldoen is (bv. 'n gespesifiseerde aantal generasies), waar na
die beste individu in die bevolking dien as die uiteindelike oplossing vir die probleem.

Hierdie studie ondersoek die genetiese algoritme, waarna ’n algoritme aangebied word om die uit-
dagings van strukturele optimalisering aan te spreek. Hierdie algoritme het alleenlik te doen met snit
optimalisering; meetkunde, topologie en vorm optimalisering is buite die bestek van hierdie navorsing.
Die motief agter die gebruik van ’'n genetiese algoritme in hierdie studie is grootliks te danke aan sy
vermoé om diskrete soek ruimtes te hanteer; klassieke soek metodes word gewoonlik beperk tot n
vorm van 'n helling tegniek waarvoor die soektog ruimte deurlopende moet wees. Die algoritme is ook
gekies as gevolg van sy vermoé om doeltreffend deur groot soektog ruimtes te soek, wat gewoonlik die

geval vir 'n strukturele probleem met optimering is.

iv

Stellenbosch University http://scholar.sun.ac.za

UITTREKSEL v

Die genetiese algoritme se prestasie sal ondersoek word deur die gebruik van standaarde toetse.
Standarde toetse word gedoen vir beide vlak en ruimte kappe, die 10 - en 25 element vakwerk. Sulke
probleme word tipies met spanning en verplasing beperkings ontleed. Na afloop van die bekragtiging
van die algoritme, word praktiese probleme hanteer. Die eerste stap in die rigting sou wees om die
160 element vakwerk toets probleem te ondersoek. Hierdie probleem sal effens aangepas word deur
die toepassing van die Suid-Afrikaanse ontwerp standaarde, aan die ontwerp. Dit is 'n
meer realistiese benadering in vergelyking met net gespesifiseerde spanning en verplasing beperkings
as gevolg van die feit dat 'n element nie net eenvoudig dieselfde spanning beperking vir spanning en
druk toegeken kan word nie; slankheid en knik effekte moet ook in ag geneem word. In hierdie geval
sal die soek ruimte nie meer net meer eenvoudig 'n sekere teoretiese soek ruimte wees nie, maar sal
bestaan uit ware snitte wat uit die Suid Afrikaanse Konstruksie Handboek kom, (2008). Ten
slotte sal die navorsing ondersoek instel na 'n standaard Eskom Transmissie toring en dit sal 'n wye
verskeidenheid van onderwerpe aanspreek, soos om die modellering van die struktuur so realisties as
moontlik te maak, tot die ondersoek van sleutelaspekte wat die probleem verskillend van standaard
toets probleme maak en ook watter soort stappe geneem kan word om moontlike probleme te oor-kom.

Die algoritme werk in parallel met 'n eindige element metode program, wat deur Dr GC van Rooyen

verskaf is, wat die oplossings ontleed van die algoritme en verseker dat die struktuur lewensvatbaar is.

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I would like to express my sincerest gratitude to the following people and organisations:

Mr. E van der Klashorst for being my study leader and for your time, patience and support -
Dr. G.C. van Rooyen for helping with the technical side of programming and for providing the finite
element method program -

Prof. A.A. Groenwold for insight into solving problems -

I thank my mother, C.E. Appelo, and my father, C. Appelo, for their support and faith in me -

I thank my uncle, H. Appelo, for proofreading this thesis -

Eskom for six years of financial support -

Centre for Development of Steel Structures for providing a laptop, internet access, printing quota and
an additional computer monitor -

Centre for Development of Steel Structures for sponsoring a trip to the SAISC Steel Awards in
Johannesburg -

South African Institute of Steel Construction for selecting me to attend the Steel Awards and all the
events surrounding the awards -

The University of Stellenbosch for sponsoring a trip to Johannesburg to attend a course on the
Design of Light Industrial Buildings and Connections presented by SAISC -

The University of Stellenbosch for sponsoring my attendance to the International Association for

Bridge and Structural Engineering conference which was held in Bellville.

vi

Stellenbosch University http://scholar.sun.ac.za

Dedications

This thesis is dedicated to Sophia van Zijl.

vii

Stellenbosch University http://scholar.sun.ac.za

Contents

[Abstract]

[Uittreksel

|Acknowledgements|

[Dedications]

Contents

|List of Figures|

I Contextual Informationl

11 Background|

[LI_Problem Statement] e
1.2 Objectives| e

[3 Towards Optimisation|

viii

ii

iv

vi

vii

viii

xiii

xvi

xviii

Xix

Stellenbosch University http://scholar.sun.ac.za

CONTENTS ix
8.1 An lllustrative Optimisation Problem|, 9
B2 Standard Formulationl L 11
3.3 General Comments on Search Spaces|o oL 11
B4 Complexity| e 14
3.0 Structural Optimisation| L e e e 14
4 Genetic Algorithms| 16
4.1 Introductionl. L e 16
4.2 What is a Genetic Algorithm?|.o Lo 16
K.3 Why Use a Genetic Algorithm?| oL 18
K4 How Do Genetic Algorithms Work?|. o oo oL 21
4.5 Object and Fitness Functions| o 26
4.6 Constraints and Penalty Functions| o 0000000 33
K7 Why Do Genetic Algorithms Work?| o o oo 40
[5_Test Functions 46
-1 DeJong’s Test FUNCEIONS| . .« .« v v v v v v e e e e e e e e e e e e 46
.2 Measuring Performance] o e 48
b.3 De Jong’s Conclusions| 49
6 Advanced Operators| 51
6.1 Combinatorial Optimisation| L o 51
6.2 Niches and Species| L 52
6.3 Hybrid Algorithms| o e 55
6.4 Additional Advanced Operators|« v v v i i e e e e e e e 59
|IIT Implementation| 56
Viod 57
[[1 Genetic Parametersl. 58
7.2 Mapping the Structure to an Individual|00 58
3 TOUPINE| . -« © o v o v v e e i e e e e e e e e e e e e e e e e 59
[[4 Comments on CPU Timel 61
[l.5 Deflection Criterial e 61
7.6 User Input Required to Run the Program| 61
|8 The Program| 64
8.1 Approach to Implementing Structural Optimisation|. 64
8.2 Characteristics of the Program| 0o 0. 65

Stellenbosch University http://scholar.sun.ac.za

CONTENTS x

8.7 Special Notes| o e

IV Benchmarking Problems|

[9__Introductionl

M0 10 Bar Trussl

10.1 Objective]l e e e e
110.2 Design Datal. o o e e e

125 Bar Trussl

11.1 Objective] e e e e e e e
[11.2 Design Datal. o

[12.8 Comparison| o e e e e e e e e

112.9 Results using Frame Element Results|. oo 0.

81

82

83
83
84
86
86
86
88

90
90
91
92
93
93
94

Stellenbosch University http://scholar.sun.ac.za

CONTENTS

|V Case Study: Eskom Transmission Tower|

115 Modelling and Implementation|

[15.1 Modelling Inaccuracies| L oo

|15.2 Dealing with Planar Joints|

115.3 Tension-only Members| o 0oL

115.4 Effective Length of Members|
115.5 Length of Members|. Lo o
115.6 Notes on Multiple Load Cases|.

|15.7 Provisional Solution for the Case Study|

|115.8 Alternative Proposal for the Multiple Load Cases|

VI Closurel

16 Conclusion|

[17 Future Research|

117.1 Difterent Approach to Optimisation|

117.3 Hybrid Algorithm|. oo
117.4 Upgrading the Genetic Algorithm|.

117.5 Difterent Types of Structures|

[17.1 Test Functions/Aritificial Landscapes|

IDe Jong’s Function 1. oo

IDe Jong’s Function 2|. oo

x1

Stellenbosch University http://scholar.sun.ac.za

CONTENTS x1i
De Jong’s Function 3. e 146
IDe Jong’s Function 4]. e e e e 146
IDe Jong’s Function o. oL 146
17.2 List of Possible Errors| 148
117.3 Eskom Tower Drawings| 149
[17.4 Eskom Design Datal 152
117.5 Equal Leg Angle Section List| 168
17.6 Eskom Transmission Tower: Load Cases| 170
117.7 Algorithm Code Extracts| 175
Algorithm| e 176
Population| e 187
IdvAduall « . . o o o e e 202

Stellenbosch University http://scholar.sun.ac.za

List of Figures

[3.1 Two bar plane truss problem (Spillers and MacBain, 2009) | 9
[3.2 Graphical solution of illustrative problem (Spillers and MacBain, [2009) | 10
3.3 Two events in a sample space |. L e 12
3.4 Two dimensional line with peak at zero gradient | 13
[3.5 Structural Optimisation according to[Auer (2005)] 15
4.1 Analogy to genetics| oL L e e e 17
4.2 Schwefel’s functionlo 20
4.3 Roulette wheel selection illustration| 22
[4.4 Crossover (Venter| [2012)]. 23
4.5 The genetic algorithm basic flow diagram| o 0L, 25
[4.6 Approach to fitness (Galante, [1996)[. L L 28
4.7 _Unscaled and scaled fitness roulette wheelsl 32
[4.8 Constraints according to |[Coley| (1999)o 33
4.9 Transforming the genetic algorithm from an unconstrained to a constrained problem solver| 36
[4.10 Real and implicit parallel process (Galantel [1996)|. 41
[4.11 Hyper-Planes (Goldberg, [1989)[. 42
[5.:1 Griewank’s function with 2 independent variables|. o v v v it 47
5.2 Step function with 2 independent variables| 0.0, 47
-3 Rastrigin’s tunction with 2 independent variables| o oL, 48
6.1 Combinatorial optimisation| e 51
[6.2 Local optima (Coley, [1999) 53
[6.3 Speciation (Coleyl [1999)] 54
[7.1 The truss element in space (Auer, [2005)|o oo Lo 57
[7.2 Mapping the structure to an individualf L o oo 59
7.3 Program start-up | e e e e e 62
7.4 Excel spreadsheet user input for creating the model | 62

xiii

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES xiv

7.5 User input for the material properties, grouping information and type of element to be used | 63

8.1 The design process| L 65
8.2 Flow diagram of the genetic algorithm| o000 68
8.3 Basic structure of the program| o e 69
8.4 Equal leg angle section|. 73
8.5 Genetic parameter and fitness selection options| oo 76
8.6 A femElementArray | Lo 79
8.7 A femIndexArray | oo 79
0.1 10 Bar Trussl o . o o e 83
[10.2 A convex function versus a non-convex functionl.o 84
110.3 10 bar truss performance for static fitness| 87
110.4 Mass comparison for parameter sets L and 2| 0oL 89
M1.1 25 Bar Trussl« . o o e 90
I11.2 25 Bar truss: Static fitness performance] Lo Lo 94
[12.1 160 Bar Truss Modell o . 0 96
[12.2 2 304 Planar space truss (Krishnamoorthy et al.,[2002)]. 97
|12.3 Comparison between class 3 section list and combined class 3 and 4 section list| 103
112.4 160 Bar Truss Static Fitness - Displacement vs Mass| 104
112.5 160 Bar Truss Static Fitness - Displacement vs Fitness|. 105
112.6 160 Bar Truss Dynamic Fitness - Displacement vs Mass| 105
112.7 160 Bar Truss Dynamic Fitness - Fitness vs Mass|. 106
112.8 160 Bar Truss Normalised Fitness - Fitness vs Displacement|. 106
12.9 160 Bar Truss Normalised Fitness - Fitness vs Massl 107
112.10160 Bar Truss Comparison - 1000 Generation Mass Function| 107
112.11160 Bar Truss Comparison - Design Variables| 108
112.12160 Bar Frame Truss - Fitness vs Displacement| 108
[12.13160 Bar Frame Truss - Fitness vs Masd. 109
12.14160 Bar Frame Truss Comparison - Mass| 109
[14.1 Eskom Transmission Tower Design (Property of Eskom)| 113
[14.2 Modeling the Eskom Tower| 0. o o 114
114.3 Tower Model and Loading| o . o 116
115.1 Small modelling inaccuracies can result in a mechanism| 118

[15.2 A planar joint|. oL e e e e e e 119

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES XV

[15.3 Behaviour of Tension-only Element (PLS|[2011)[. 121
|15.4 Adding nodes for a shorter eftective length|. 122
[15.5 Connection illustrating difference in member lengths from model (Property of Eskom)| . . . 122

|115.6 Pertormance for static fitness function with an average penalised objective tunction approach|125

|115.7 Pertformance for static fitness function with a maximum penalised objective function approach|126

(15.8 Critical load case mass and deflection behaviourl 127
(15.9 Cntical load case mass and fitness belaviouro 128
[15.10Pareto Optimality (Coley, [1999)] o 130
[15.11Dominated and Non-Dominated Solutions (Coley, [1999) 131
[17.1 Reliability-based optimisation approach by [Enevoldsen and Sorensen| (1994) 138
[17.2 Eskom Cross Rope Suspension Tower (Makhura, 2010) | 140
11 De Jong’s Function 1 1n 2D|o 145
12 De Jong’s Function 2in 2D|o 146
13 De Jong’s Function 3 2D| oo 147
2! De Jong’s Function 5 2D|o 147
5] Tower Drawing Main|. o 0 oo 150

16 Tower Drawing Legs| o o o e 151

Stellenbosch University http://scholar.sun.ac.za

List of Tables

[7.1 Genetic parameters|. oL L e e e 58
[10.1 10 Bar Truss Nodal Coordinates] 85
[10.2 10 Bar Truss Loading| o o 85
[10.3 10 Bar Truss Fixity] o . o 85
10.4 10 Bar Iruss Flement Definitionl o o0 o000 oo 85
[10.5 10 Bar Truss Material Properties| o oo 86
110.6 10 Bar Truss Section Listl oo oo 86
[10.7 10 Bar Truss Area Distribution| L oo oo 87
110.8 Minimum mass comparison tor the 10 bar benchmarking problem|. 88
110.9 Genetic parameter sets to illustrate algorithm dependence| 88
111 25 Bar Truss Nodal Coordinates] 91
[11.2 25 Bar Truss Loading| o o 91
[11.3 25 Bar Truss Fixity]« . o 91
I11.4 25 Bar Iruss Element Definition and Groupingl 92
[11.5 25 Bar Truss Material Properties| o o oo 92
[11.6 25 Bar Truss Section Listlo 92
L1725 Bar Truss Area Distribution| oo oo 93
|11.8 25 bar benchmarking problem comparison to literature|. 95
[12.1 160 Bar Truss Loading|. o o e 99
112.2 160 Bar Truss Fixity| o o o o e e e 99
112.3 160 Bar Truss Material Properties| o o oo 99
[12.4 160 Bar Truss Nodal Coordinates| o oo 0oL 100
12,5 160 Bar Truss Flement Definition | oo o oo o 101
[12.6 160 Bar Truss Grouping| o e 102
[12.7 160 bar benchmarking problem minimum mass [kg| comparison| 107
|[14.1 Genetic parameters for the case study| L oL 117

Xvi

Stellenbosch University http://scholar.sun.ac.za

LIST OF TABLES xvii

|15.1 Hypothetical objective function values of 2 load cases for explanation purposes| 125
|15.2 Element sizes for the given design variables| 128
[_Tower Nodal Coordinatesl e 153
2 Tower Nodal Coordinatesl 154
13 lower Nodal Coordinates| 155
4 lower Nodal Coordinates| 156
5] Tower Fixity] e 157
6 Tower BElement Definition|o Lo 158
[Tower Blement Definition| Lo 159
I8 Tower Blement Definition|o o o o s 160
O Tower Element Definition] o L 161
10 Tower FElement Definition| Lo 162
11 Tower Blement Definition| Lo 163
12 Tower Blement Definition|o Lo 164
13 Tower BElement Definition| 0. Lo 165
[14 Tower Grouping| o o e e e e e 165
15 Tower Grouping|« . . o o e e e e e e e 166
116 Tower Grouping| v v v v i i e e e e e e e e e e e 167
117 Equal Angle Section List|. 168
118 Equal Angle Section List|. e 169
MO CaseTAl . . . o oo 170
RO CaseTARI oottt 171
BT Case 28] . . . o oo 172
B2 Case BRI . . . o oot 173
23 Case 3l e e e e 173
R Case dAl o oo 174
BE_CasedBl o oo 174

Stellenbosch University http://scholar.sun.ac.za

Listings

8.1 CTOSSOVEIl . . & v v v i e e e e e e e e e e e e e e e e e e e 78
8.2 Mapping of area arrays|. o i e e e e e e e e e e e e e 79
I Class Algorithm| o o o 176
12 Class Population| o 187
B Class Individuall. oo 202
4 Class Truss Population|. 218

xviii

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

Assume the following values, unless otherwise specified:
E = 2.1x10° MPa
fy = 355 MPa
G = 77x10% MPa

¢st = 09

Variables (All variables are subject to conteat)
A Area
b Width
Cm, Fitness scaling constant
CP Crossover points
Cy Compressive capacity
C Large constant or combination
d Density
D Deflection
E

Modulus of elasticity

e An event

f Stress, unless specified as a function

F Force

g Generation counter or inequality constraint function
G Shear modulus of steel

GA Genetic Algorithm
h Equality constraint function
H Schemata

I Moment of inertia or specific individual

XI1x

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE XX
J St. Venant’s Torsion constant of a cross section
k Effective length factor, unless otherwise specified
l Substring length

L Individual string length

m Number of realisations for a specific schema
M Number of unknowns or number of members in a truss
n Population size or number of dimensions

N Number of nodes

NFT Near Feasibility Threshold

0 Order

P Penalty function

Pe Probability of crossover

Pd Probability of being destroyed
DPm Probability of mutation

Ds Probability of survival

P Permutation, unless otherwise specified
r Real value or a subset

R Radius of gyration

R™ Real number set with n dimensions

S Search space

t Time

T Thickness

T Tensile capacity

v Number of constraints violated

% Convergence velocity or global displacement in y direction

Vg Principle v — v axis coordinate of the shear centre with respect to the centroid of the cross
section

o Principle u — u axis coordinate of the shear centre with respect to the centroid of the cross
section

U Global displacement in x direction

Width to thickness ratio or global displacement in z direction

z Base 10 integer

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xxi

" Integer number set with n dimensions
A Search parameter
Defining length, unless otherwise specified

10) Objective function

Dp Penalised objective function
o Stress
P Composite constraint function

Fitness function

Vectors
A(t) Population at a time ¢

\% Vector space

Subscripts
all All/complete
allow Allowable
ave Average value
eff Effective
feas Feasible
g Gross
i Refers to an individual
mazr Maximum value
min Minimum value

of f Offline performance

on Online performance
P Penalised
r Resistance

sum Total sum of all the values in a set
v With respect to the v — v axis
U With respect to the u — u axis

y Yield

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xxii

Superscripts

s Scaled

Stellenbosch University http://scholar.sun.ac.za

Part 1

Contextual Information

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Background

1.1 Problem Statement

Structural optimisation poses many challenges; challenges such as dealing with discrete and extremely
vast search spaces. An algorithm for structural optimisation, which can handle vast discrete search
spaces, must, be investigated and implemented. Solutions found must be better than just satisfactory.
This study must serve as the preliminary phase to develop a tool with which real life structures can

be optimised in an automated design fashion.

1.2 Objectives

The aim of this research is to introduce to this department a useful tool towards efficient structural
design optimisation; to research the use of genetic algorithms as such a tool for robust structural opti-
misation. Although it is not intended to be viewed as a computer programming thesis, a large part of
this thesis involves programming in order to investigate the algorithm. Analysis and design procedures
will be integrated. An analysis iteration should therefore indicate a fragmentary improvement when
compared to the previous iteration, as a result of the newly optimised design variables. The algorithm
must be able to optimise structures which consist of truss/bar elements; an element with one degree
of freedom in the element’s axial direction. Such structures must have a defined geometry, topology
and element shape definition. Structures to be optimised can be both planar or space trusses. The
optimisation objective is to minimise the weight of the structure whilst adhering to displacment and
stress constraints. The final step is to implement the South African design code to serve as constraint.

This study forms part of a larger research initiative which will eventually investigate a multi-
objective problem; the reliability-based optimisation of steel structures. This study only considers the
materials cost, however the larger scope will take into account the construction cost, the life cycle cost,

sustainability and maintenance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. BACKGROUND 3

1.3 Motivation

The genetic algorithm, according to [Rajeev and Krishnamoorthy| (1992), is the best candidate for

structural optimisation due to the efficient manner in which it handles discrete search spaces; most
design variables in structural optimisation have a discrete nature. Moreover, solutions found by a
genetic algorithm will be both mathematically and practically feasible.

Consider that a typical design process would start off with selecting initial member sizes based on
experience, past knowledge or architectural requirements. This selection process typically results in an
iterative procedure. The next step involves creating an analytical model that is an idealised model of
the structure’s shape, element sizing, topology and loading. This model will generate the structure’s
response, which in turn will again be used to determine element sizing that would satisfy the ultimate
and serviceability limit state constraints. The number of conceivable design solutions exponentially
increases with the number of design variables and the size of the search space for each of these design
variables. Consider only a simple problem such as a ten bar truss and a discrete section list of, for
example, 40 sections. The number of solutions for this search space is 10*°. This number is incredibly
large; it is, for example, a few thousand times more than the number of estimated stars in our galaxy
(Wagner, . It would be unreasonable to expect an engineer with any number of years’ experience
to be able to choose the optimum truss from such a selection. However, there are a number of ways in

which near optimal results for such a problem can be found within minutes, one of which is through

implementing a genetic algorithm. (Coello et al.| (1994) claim that the genetic algorithm provides good

solutions, even when compared to complex and specialised methods.

Furthermore, consider that structural optimisation can be viewed as a profitable tool and should
become part of the standard design process. The increase in available computing power and the
world’s tendency towards efficient, efficacious and green designs are promoters of such an optimised
design approach. Little bits of saving can accumulate to a significant quantity in large scale projects.
With awareness comes the understanding that resources are scarce and in some cases even rapidly
tending towards depletion. This calls for greener construction methods and using lower quantities of
materials which are both efficient and economical. In the case of steel structures, one way of using

lower quantities of materials can be achieved through sizing optimisation.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Introduction

"This preservation of favourable variations and the rejection of injurious variations, I call Natural

Selection.” - Charles Darwin

Optimisation is a concept which humans seem to apply naturally in order to spend less energy, be
as comfortable as possible and to minimise pain. The basic concept of optimised design is concerned
with utilising the restricted obtainable resources in such a way as to maximise the profit or gain. [Haftka
and Girdall (1992) described such a design as “the best feasible design according to a preselected quan-
titative measure of effectiveness”. In other words, an optimisation procedure aims at finding the best
existing and available solution by seeking the ‘perfect’ trade off between all the given constraints.
This trade off, or settlement in some cases, must result in the most propitious outcome for the given
resources. This process of optimisation should occur within an economically and timely fashion and
produce results that are better than just satisfactory.

It is believed that Galileo was the first person who was concerned with structural optimisation, as
is apparent in his studies on the bending strength of beams. Other scientists such as Bernoulli and
Lagrange, to name but a few, also aimed at finding the ‘best’ profiles for structural elements that would
adhere to a set of strength constraints. Eventually a whole new discipline developed in engineering,
commonly known as structural optimisation (Coello et al., [1994)). This is a study that is concerned
with economical sizes which satisfy given constraints and requirements for design purposes.

In recent times, with the dawn of computers, engineers turned to automated structural design.
This allowed for the same quantity of work to be done more accurately and in less time. The question
however arises, to what degree of sophistication and complexity can computers aid in design? It seems
the future of design aims at completely automating structural design. (Coello et al., [1994)

This study will investigate a computer-based design approach for plane and space trusses with one
dimensional elements, which must be optimised in a discrete fashion. Continuous optimisation methods
prove to be inadequate for the sizing optimisation of steel trusses due to the nature of available steel

sections which forms a discrete, rather than continuous set. Solutions are mostly not optimum for

4

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. INTRODUCTION 5

the case where member sizes from the continuous set are simply rounded to the nearest available steel

profile section(Coello et al., [1994)). |Groenwold et al.| (1999) found that for the 160 bar problem, see

section the continuous minimum mass was found to be 1337.8kg. However, the minimum mass
increased to 1420.7kg when these continuous solution values were rounded to the nearest available
sections that are commonly manufactured. This is 60.9kg heavier than the discrete solution found by
the genetic algorithm.

Most optimisation techniques which can handle discrete search spaces are limited to specific types

of structures and therefore lack generality. |Goldberg and Samtani| (1986) were, evidently, the first to

suggest and use the genetic algorithm as a tool for structural optimisation.
The genetic algorithm offers a solution for both the aforementioned challenges as it readily deals

with discrete search spaces and is easily extended to deal with different types of structures which

involve minimal adjustments to the algorithm (Coello et al., 1994). The algorithm basically exists

in two realms, the phenospace and the genospace, with a direct analogy to phenotype and genotype.
Genetic operations occur in the genospace and function evaluations in the phenospace. The fitness
function acts as a mediator between these two spaces. The way in which the design variables are

encoded, the coding scheme, is also a link between the realms. The coding scheme serves as a means to

map individuals from the genospace to the phenospace and vice versa (Krishnamoorthy et all |[2002).

It can be inferred that the procedure consists of a problem-dependent and a problem-independent part,
with links between the two parts. This segregation of algorithmic parts is very useful as it enables for
a core section of the algorithm to be programmed (for the problem-independent part), which never has
to be adjusted again and can be applied repeatedly in the same manner for different types of problems.

A common problem between conventional optimisation techniques is their failure to differentiate
between global and local optima. The simplest method with which other optima can be found in
conventional search techniques, is through restarting the search at some random point and then to
check whether the search leads to a new improved optima. This problem is amplified when the search
space becomes discrete. For problems with many design variables, the probability of finding the
optimum with such an approach decreases to a point where it will be necessary to do a complete

exhaustive search, e.g. an enumerative search. For such cases the efficiency of the search drastically

deteriorates to a point where such searches become completely impractical (Haftka and Giirdall [1992).

The genetic algorithm does not necessarily guarantee a global optimum solution, however near optimal

solutions are found with relative ease (Erbatur et al., 2000).

The genetic algorithm also differs from conventional methods in that it deals with a population
of available solutions, instead of just one solution. The algorithm operates in a probabilistic fashion,
rather than deterministically. Each unique individual within the population serves as a potential
solution for the given problem, where these solutions are encoded as genes. A collection of genes forms
a chromosome, and a collection of chromosomes forms an individual. The genetic algorithm process,

along with its analogy to genetics, are thoroughly described later in the text.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. INTRODUCTION 6

Genetic algorithms have a limit to the number of design variables which it can effectively handle,
if the encoding scheme is binary. The reason is due to the strings (individuals) becoming too large.
Consider a problem with 5000 design variables, and string size of 10. The string size is dependent on
the accuracy required for the problem for the case of continuous design variables and the number of
discrete options for discrete design variables. For the case of discrete variables, the substring length
must ensure that each point in the search space is accessible by the algorithm. Then, for the scenario
above, the string length for one individual would be 50000 bits long. This becomes a large encoding
scheme when it is kept in mind that the algorithm uses a population of individuals. The upper bound
to where the algorithm is no longer effective is still not certain; the main limitation to this bound will

be the amount of available computing power and will therefore not be a set value.

2.1 Outline

The study will commence with a quick glance at optimisation in general, where after an extensive
literature review is provided in order to give context to the algorithm. Therefore, the algorithm is first
approached from a theoretical point of view with test functions and artificial landscapes. The focus
then shifts to discrete optimisation, which incorporates a finite element analysis. The algorithm is then
validated by means of benchmarking problems, first only taking into account stress and displacement
constraints. The benchmarking problems are the standard 10 bar plane truss and 25 bar space truss.
These problems serve to validate and illustrate the usefulness of the algorithm. The study then
adapts the algorithm in order to optimise the 160 bar truss problem, which will implement the South
African code of design, instead of prescribed constraints. The section list for this case changes from
some standard benchmarking list, to the equal leg angle section list in the Southern African Steel
Construction Handbook (SAISC| [2008)). This problem, with 38 design variables, serves to illustrate
the power of the algorithm. Finally, a real life structure is investigated and future research is discussed.
The purpose of discussing the future research is to provide insight as to why this research is important.
In other words, this chapter will highlight the relevance of this investigation with regard to the basis

that it has established, which could lead to a whole series of other applications.

Stellenbosch University http://scholar.sun.ac.za

Part 11

Literature Review

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Towards Optimisation

There is often no single approach that guarantees an optimised solution for a given problem; therefore
there is a wide variety of optimisation techniques developed for solving different kinds of problems.
Classical optimisation is synonymous to mathematical programming, some examples of such techniques
are calculus methods, geometric and quadratic programming (Rao}, 2009).

An engineering system typically consists of a set of quantities, or variables. Some of these variables
are pre-assigned parameters, however other variables are free to change in order to produce a better
system. Such variables can be grouped into vectors which form a design space, or a search space.
Each point in such a space is a design point which represents a solution. Solutions can be both
feasible or infeasible (possible or impossible). Solutions to engineering problems typically lie embedded
within regions which are surrounded by infeasible solutions within search spaces that are so large, it is
unfathomable (Raol, 2009). There are therefore three main components in an optimisation procedure:
the design variables, objective function and constraints.

Design variables are those parameters within the search which are adjustable, that would eventually
allow for the structure to be optimised. Therefore, these parameters could offer a set of solutions for a
given problem. This set could be useful in the case where different solutions need to be considered due
to reasons such as financial implications, practicability of construction and time constraints, to name
but a few. Design variables cannot be assigned arbitrarily, they have to adhere to a set of requirements
in order to produce a solution which is acceptable, or possible; i.e. lie within the feasible region. Such
requirements are termed design constraints.

Design constraints are restrictions to the given problem in order to ensure feasible and acceptable
outcomes. These restrictions can also be viewed as requirements or limitations.

The objective function specifies criteria for the optimisation process and is ruled by the nature of
the design problem. It serves as a filter in order to find solutions. In cases where there are more than
one criterion, the problem metamorphoses into a multi-objective optimisation problem.

Therefore, to summarise, an optimisation procedure varies design variables in order to obtain the

peaks within the objective function whilst adhering to the limitations of the design constraints.

8

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 9

In the case of classical structural optimisation, constraints would typically take on the form of
prescribed stresses and/or displacements and the objective function could for example describe the
weight of the structure, where an objective could be to minimise the weight, which indirectly minimises

the cost of the structure.

3.1 An Illustrative Optimisation Problem

The following optimisation problem, taken from [Spillers and MacBain| (2009), serves as an illustrative

introduction towards optimisation:

Consider the structure shown in figure [3.1] The aim of this optimisation problem is to vary the
height (H) and the diameter (d) of the two members in such a way that the structure is as light as
possible whilst still being able to carry the load. Furthermore, the stresses that develop in the members
must not exceed the yield stress (f,) and the members are not allowed to buckle. In other words, the
objective of the problem is to minimise the weight of the truss whilst adhering to stress and buckling

constraints. Equations to follow from basic structural engineering principles.

P tﬁ\
e

’ - Member Cross Section

[

Figure 3.1: Two bar plane truss problem (Spillers and MacBain), 12009

The second moment of inertia is:

I= & (d+t)" = (d— t)4] = %l (d* +1?) (3.1.1)

The force in a member:
P+B?+ H?
F = 5T+ (3.1.2)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 10

The stress in a member:

F
P -].-
o= (3.1.3)
The buckling stress in a member:
w2 EI

The volume of the truss is simply V = 2AL = 2 (rdt) vV H? + B?, where L is the total length of the

two bars. Therefore, the objective function to be minimised is:

¢ = 2 (rdt) H? + B? (3.1.5)

Where the problem is subjected to stress and buckling constraints:

_PVETTR 1

—f, < 1.
2 H dtm fr <0 (3:1.6)

g1

_ PVH?+B? 1 7T2E(d2+t2)<
RESTTH dtn S(HE+BY) O

Figure [3.2] offers a graphical solution to the problem. The contour lines are different volumes for

(3.1.7)

the structure for varying heights and diameters. Each contour represents one constant volume. The
optimised solution is shown where the stress and buckling constraints intersect. One can, in this case,
simply read off the height and diameter for the optimised structure from the graph. The marked green

region illustrates other solutions that satisfy the constraint criteria.

160

140

buckling
constraint

120

T

100 | .

T

H(in) 80 | \erk

Decreasing

60 + \
Volume \

40

20

Figure 3.2: Graphical solution of illustrative problem (Spillers and MacBain, 2009

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 11

It should be noted that the lightest structure is not necessarily the cheapest structure. In some
cases the fabrication costs, wastage, repetition of elements and so forth, might make a simpler, but

heavier design a more economical design.

3.2 Standard Formulation

1
T2
Find X =) which minimises the function ¢(X) such that
Tn
gi(x) >0, j=1,..,n, (3.2.1)
he(x) =0, k=1,..n, (3.2.2)

where X is an n-dimensional vector that contains the design variables (named the design vector),
(X)) is the objective function, g;(X) is the inequality constraints and hy(X) the equality constraints.
The formulation above is a constrained optimisation problem, there are simply no constraints for
the case of an unconstrained optimisation problem (Raol [2009). Haftka and Giirdal (1992) suggest

normalisation in order to remove boundless variations. For example, consider the constraint:

g = Ogllow —0 >0 (3.2.3)

The numerical outcome of the above is dependent on the stress units, for which reason the outcome

may be great or small. The magnitude of the outcome can be controlled with normalisation:

g

g=1- >0 (3.2.4)

Oallow

This method will be applied to the penalty functions, discussed later in the thesis.

3.3 General Comments on Search Spaces

Design variables can be divided into 2 categories, continuous (X € R™) or discrete (X € Z"). R refers
to real numbers, Z refers to integers and n, in this case, refers to the number of design variables or
dimensions to a problem. Certain optimisation models might contain a mixture of continuous and
discrete design variables (Rothlaufl, |2011)). A search space is defined by its design variables. Search
spaces can therefore be divided into continuous and discrete spaces. A continuous one dimensional

search space between the numbers 1 and 4 may be represented as follows:

S={z]l <z <4} (3.3.1)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 12

A discrete one dimensional search space can be represented as shown in equation [3:3.2]

S ={1,2,3,4} (3.3.2)

A random experiment in statistics is such an experiment where, even though the procedure is
repeated in an identical manner each time, the outcomes will typically vary from trial to trial. The set
of outcomes that can be obtained from the random experiment is termed a sample space. An event is
the occurrence of some subset of the sample space, denoted as e. The union of two events are denoted

as e U ey and is illustrated in figure [3.3]

Figure 3.3: Two events in a sample space

In this figure the rectangular area represents the sample space and all areas that are blue form part

of the events. The intersection of these two events can be denoted as e; N ey and is represented only

by the darker region in figure (Montgomary and Runger} |2007). A search space can be seen as a

sample space and solutions as different events. For example, the event e; can represent the event where
all the solutions have stresses in the structure within the allowable stress range and the event e; can be
seen as the event where all the solutions have displacements within the serviceability requirements. All
feasible solutions are therefore represented by the area e; Nes. The solution found by an optimisation
technique must be within this feasible region.

Traditionally, the optimum of a function is found where the gradient is equal to zero. This optimum
would be accepted if it lies within the feasible region, as discussed above. For example, take into
consideration a two dimensional function with one independent variable is illustrated in figure
Here the optimum for y is easily found by equating the derivative of the function to zero, the optimum
is indicated by the dashed line. The difficulty with a discrete search space, as will be thoroughly

explained later in the text, is that it does not contain any gradients with which to find the optimum.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 13

Figure 3.4: Two dimensional line with peak at zero gradient

Counting the number of solutions in a search space provides insight into the scale of structural
optimisation problems. Consider the following problem: Given ten different element sizes and a struc-
ture consisting of 4 elements, how many sets of four elements can be selected from the list of ten
sections that are all of different size? Let the numbers 1,...,10 represent different section sizes. For this
case, assume that the order in which sets are formed is considered, therefore {1,2,3,6} # {1,2,6,3}.

According to equation 5040 permutations can be found.

n!

Where P is the number of permutations of subsets of r elements selected from n different elements

Pl=nx(n-1)xn—-2)X..x(n—r+1)= (3.3.3)

(Montgomary and Runger}, 2007). Now consider the same problem, however without considering the

order in which sets can be formed. According to equation [3.:3.4] 210 combinations can be found.

cn = (") = T'(n”lr)' (3.3.4)

Where C is the number of combinations that has subsets of size r that can be selected from a set of n

elements (Montgomary and Runger} 2007). Note that there are fewer combinations than permutations,

as some combinations are equal. For example {1,2,3,4} = {3,2,4,1} = {3,4,1,2} and so forth.
The difference between combinations and permutations is therefore that order is not considered for
combinations. However, for a structural optimisation problem, different elements (design variables) are
allowed to have the same size and the order is of significance, as a different order would produce a new
structure. Therefore, finding a solution in the form of {3,3, 1,1} would be acceptable, if it be feasible,
and {3,3,1,1} # {1, 1, 3,3}. In other words, each element now has ten sizes to choose from, instead of
only from a remaining set once a size is removed. The search space size now suddenly increases with
almost 5000 times, from the original 210 combinations to 4'° = 1048 576.

Finally, it is important to note that search space sizes increase exponentially as the number of
elements in a structure and the number of sizes to choose from increase. A structure with 10 elements

will have a search space size of 10 billion, approximately 9 500 times larger than the search space of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION 14

4 elements. 9 500 times is quite a large increase when it is kept in mind that the number of elements
was only increased by 6 and the number of sizes to choose from remained the same. Considering that
10 elements is a small number for a realistic structure and therefore increasing the number of elements
to one hundred. This increase will result in a search space size that is 95 trillion times larger than the
original. To put this into perspective, if one times increased is equivalent to an increase in distance of
1 mm, then the total increase in length would be approximately 11 times the distance from Earth to

Pluto and back.

3.4 Complexity

Computer optimisation algorithms can be grouped according to their difficulty. Difficulty is defined
by the least amount of computation time needed to solve a problem. The amount of computation time
needed to solve an n dimensional problem is a function of time and space complexity. Time complexity
simply refers to the amount of time needed to execute a problem, this is typically expressed by the
number of iterations and steps to convergence criteria. Space complexity refers to the amount of
physical memory needed to run a problem. Therefore, problem difficulty increases as time and space
complexity increase. Complexity adds another dimension to the optimisation problem; not only is
a problem difficult to solve based on its search space and nature, but also due to limited physical
capabilities of a computer. Complexity classes ranges from class P to NP Hard, where P in this case
is the abbreviation for polynomial and NP is the abbreviation for non-deterministic polynomial time

(Rothlauf, [2011]).

3.5 Structural Optimisation

Structural optimisation can typically be divided into 3 main groups, refer to figure (Auer}, [2005))
e Topology Optimisation
— Adjusting the element-node connectivity in order to establish an optimal layout.
e Size Optimisation
— Adjusting element sizes.
e Shape Optimisation

— Shape optimisation of the structure concerns changing the shape of the structure without
changing the topology. Element shape optimisation is concerned with finding the best

profiles for elements.

This research is concerned with sizing optimisation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. TOWARDS OPTIMISATION

Topology Optimisation
(Connectivity)

Shape Optimisation

(Nodes)

Size Optimisation
(Elements)

N\

N

Figure 3.5: Structural Optimisation according to [Auer| (2005)

15

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Genetic Algorithms

"Natural selection is a mechanism for generating an exceedingly high degree of improbability” - Sir

Ronald Aylmer Fisher

The genetic algorithm owes its existence to John Holland, who’s research aims were to thoroughly
understand and describe the methods of natural adaptation and then to design an artificial system

that operates in the same way (Haftka and Giirdall [1992).

4.1 Introduction

The goal of optimisation has typically been to find the true optimum; it was concerned with whether
a method was converging rather than to explicitly focus on the process of betterment (which seems
to be the case in nature). For example, human nature suggests that perhaps perfection is too much
to accomplish, but instead it might be enough just to be better relative to others. This form of
optimisation seems to take on a whole new set of priorities compared to conventional optimisation. As
Goldberg (1989) puts it, the essential objective of optimisation is improvement, the actual optimum is
of much less significance in a sophisticated complex system.

The genetic algorithm can be seen as a heuristic method in the sense that the algorithm ‘learns’ as it
gains ‘experience’. In other words, previous information is ‘remembered’ to a certain degree throughout
the search and is therefore not completely lost as the algorithm continues to search through the search
space. It is based on the same principle of recessive genes; recessive genes might not display themselves

physically, but they are still carried by the individual (their information is not lost).

4.2 What is a Genetic Algorithm?

The genetic algorithm is an optimisation technique which searches through a given search space by

imitating the processes of natural selection. As the search loops through the iterations, new generations

16

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 17

gene/bit

lJ

101101010001110101000101010110101...

\))
| |

chromosome/substring chromosome/substring

\ J
|

individual/total string

Figure 4.1: Relationship between genetics and computer encoding

of artificial offspring are produced by combining the surviving individuals from the previous generation
in a systematic yet randomised interchange of information. This process is accompanied with the
occasional random new fragment to keep the search diverse and to steer away from obtaining local
optima (Goldberg, [1989). The algorithm generally consists of initial random guesses for a solution
of a given problem and a means of finding the better solutions from that initial population (Coleyl
1999). The algorithm is founded upon five ideas derived from Darwin’s evolution theory: selection,
variation, recombination, population and heredity. Each idea is assimilated into the algorithm in order

to simulate natural selection (Auer [2005).

4.2.1 Analogy to Genetics

The terminology used in the study of genetic algorithms is a muddle of the natural and the artificial
due to the fact that genetic algorithms stemmed from both natural genetics and computer science.
In nature, chromosomes consist of genes which can take on a number of values called alleles, where a
collection of chromosomes form an individual. Individuals are the total genetic design of an organism,
where the complete genetic package is called a genotype. The complete genetic package in its environ-
ment is called a phenotype. In an artificial system, these chromosomes are represented by substrings,
where a gene could refer to the bit with an allele taking on the value zero or a one (for the case of
binary encoding). Each substring represents an unknown or a dimension of the fitness function. All the
substrings combine to form a total string with its natural counterpart being an individual. A collection
of individuals form a population and a generation refers to a population at a specific point in time or
artificially to the iteration number in the loop. The genotype is called a structure (Goldberg, [1989).
The algorithm optimises a problem through the use of the fitness function. This function has the
analogy of being the predator or lack of resources which will govern the probability of a creature,
with a specific fitness, to survive. The stronger creatures will have a lower mortality rate on average,

when compared to the weaker ones. With a higher probability for stronger creatures to survive comes a

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 18

higher probability for them to reproduce (stronger) offspring for the new generation. This automatically

results in some form of optimisation.

4.2.2 How it the Genetic Algorithm Different to More Traditional Methods?

Instead of working with the actual parameters, the genetic algorithm works with an encoded parameter
set, where the natural parameter set is encoded into a string with finite length. In search, the genetic
algorithm searches from a population of points simultaneously, in contrast to traditional methods that
search from a single point which consecutively corrects a particular solution [1989). The
algorithm uses a fitness function instead of derivatives or similar traditional means. It is based on

probabilistic, rather than deterministic guidelines by using stochastic handlers (Coley, [1999).

4.3 Why Use a Genetic Algorithm?

A genetic algorithm could always be outperformed by other methods if sufficient information on the

search space is provided. However, to get hold of such information can prove to be nearly as challenging

as finding an answer to the problem itself (Coley, [1999).

The algorithm is powerful. |Goldberg and Samtani| (1986)) illustrated that a genetic algorithm can

search a vast search space and achieve very near optimal results by only considering an infinitesimal
portion of points in comparison to the whole search space. The authors gave context to the power of
the algorithm, after performing a ten bar truss benchmarking problem, by saying that the performance
of the benchmarking problem was equivalent to searching the world for the best person (population at
that time was 4.5 billion) by only interviewing 26 persons before making a decision.

The algorithm is robust even in complex search spaces. It handles a fine balance between efficacy

and efficiency, that is it has the ability to fulfill its intended purpose at minimal waste or cost. Robust

systems minimise or even completely avoid costly redesigns (Goldberg) [1989).

4.3.1 Advantages

e The genetic algorithm is powerful in its search for betterment, even though the essentials of the

algorithm are computationally straightforward (Coley} [1999).

e It is flexible in the sense that it can be applied to a wide variety of problems; examples of such

applications are image processing, water networks and spacecraft trajectories (Coley}, [1999).

e The algorithm is robust in the sense that it steers the search through the search space, sidestep-
ping the traps set by local optima (Coley, 1999).

e Features of the algorithm such, as self-guidance and self-repair (which are essential to efficient and

efficacious optimisation), are scarcely present in the most complex artificial systems (Goldberg,
1989).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 19

e The genetic algorithm is not vitally constrained by limiting assumptions for the search space,

examples of such assumptions concern continuity and derivatives (Goldberg, [1989).
e It can quickly scan a vast solution set (Goldberg and Samtani, [1986]).
e Bad proposals do not affect the end solution negatively as they are simply discarded.

e The inductive nature of the genetic algorithm means that it does not have to know any rules of
the problem - it works by its own internal rules. This is a useful characteristic for complex or

loosely defined problems.

4.3.2 Disadvantages

e Even though the biggest driving force behind the genetic algorithm is the evolutionary principles
upon which it rests, this is also its biggest limitation. |[Jaber et al.| (2006) explain that given
evolution’s inductive nature, it seems that life does not necessarily evolve towards a good solution,
it merely evolves to survive, it simply evolves away from that which does not work. This can
result in an ‘evolutionary dead end’. Similarly, the genetic algorithm is still always at risk of

finding local optima, however it has built-in operators to prevent such outcomes.

e The algorithm may require a large number of iterations, which can become computationally

expensive

— An increase in the number of design variables results in an exponential increase in the

number of iterations required

e The performance of the GA is highly dependent on selecting the correct parameters, such as

scaling constant and mutation probability (these are discussed later in the text)
— The algorithm needs to be calibrated for the problem which it must solve

e Most of these disadvantages are common to most modern optimisation techniques

4.3.3 Comparison to Traditional Search Methods

In order to explain the preference to use an evolutionary algorithm or to elaborate on why to use a

genetic algorithm, consider the following methods:

4.3.3.1 Calculus-Based Methods

These methods can be subdivided into two categories, direct and indirect. The indirect methods
search for local optima through solving sets of non-linear equations obtained by equating the objective
function’s gradient to zero. Therefore, for a given unconstrained and smooth function, obtaining a

probable peak begins with limiting the search to points of zero gradients in all directions. The direct

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 20

il
e

500

Figure 4.2: Schwefel’s Function for two independent variables in 3 dimensions

methods, also known as hill climbing methods, operate by jumping onto the function and are then
guided by the local gradient in order to find local optima (Goldberg, [1989)).

The calculus-based methods show lack in robustness in that their search is local in scope, the
solutions found by these methods are restricted to the proximity of the current point. Consider the
function shown in figure [4.2] it is clear that the locality of the scope could produce a false optimum.
A random restart mechanism or some other means need to be implemented in order to overcome this
deficiency, however this does not necessarily prove to be effective.

Another drawback of the calculus-based methods is its dependence upon existing derivatives with
prescribed gradients. Even with the allowance of numerical approximation, this defect can be seen as
a great weakness due to the fact that many realistic search spaces have little regard for derivatives and
smooth functions (Goldberg, |1989). The calculus-based methods were therefore not considered for this

research.

4.3.3.2 Enumerative Search Methods

The idea behind these methods is quite simple; considering a discretised infinite or finite search space,
the algorithm searches through the objective function values for all the points in the space one by one
(Goldberg, 11989). Although the straightforward approach is appealing, such methods cannot be used
for the purpose of this study purely because it is inefficient or impractical.

Realistic search spaces are simply too large. Consider a problem with 10 unknowns, where each

unknown needs an accuracy of 1%. This problem will need 100! estimations. Assuming that a

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 21

computer can compute 2.5 billion estimations per second, then it would take 1268,39 years to complete

the run.

4.3.3.3 Random Search Methods

Completely randomised methods were not considered in this study, also due to their lack of efficiency.
In the long run, these random search methods’ efficiency compares to that of the enumerative search
methods. However, take note that these methods do not refer to randomised techniques. The genetic
algorithm incorporates a randomised technique which arbitrarily guides the search through the search
space. It might seem odd to use a randomised technique for a directed search procedure, but this

occurrence is abundant in nature with good results (Goldberg, 1989).

4.3.4 Other Non-Classical Methods

The genetic algorithm was prefered above methods such as Particle Swarm Optimisation and Ant
Colony Optimisation simply due to examples in literature which state that the genetic algorithm is a
good candidate for structural optimsation (Coello et al., [1994).

Nanakorn and Meesomklin| (2001)) highlight characteristics from the algorithm which makes it ideal

for structural optimisation:
e The solution in a structural optimisation problem is global
e The design variables are typically discrete
e The optimisation problem is constrained

— The algorithm cannot be directly applied to constrained problems, however it can be indi-

rectly applied by means of penalty functions (see section [4.6).

4.4 How Do Genetic Algorithms Work?

Genetic algorithms operate by handling strings. Collections of strings have different names, depending
on the function of the strings. These names range from a population to an individual, where a
population contains a number of individuals and an individual contains a number of chromosomes.
There are a number of ways to code these data structures, one of the simplest ways is through binary
numbers, where an allele value would either be a 1 or a 0, these refer to bit values.

The foundation of the algorithm rests upon a few main operators, these are discussed below.

4.4.1 Selection

Selection needs to be able to distinguish, not only the fit from the unfit, but also the fit from the

fitter or the ‘good’ from the ‘very good’. The reason why selection cannot simply take all the top

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 22

10%

m Individual 1
u Individual 2
u Individual 3
350, W Individual 4
u Individual 5

® Individual 6

Figure 4.3: Roulette wheel selection illustration

performing individuals from a population is due to the fact that it will cause the algorithm to converge
prematurely or in the natural sense, loose important diversity. Selection is a method that tries to
imitate natural selection by awarding better performing (fitter) individuals a higher probability to be

selected, thereby giving these individuals a greater chance to pass on their information to the next

generation (Coleyl, [1999).

4.4.1.1 Roulette Wheel Selection

One of the simplest ways of selection is using a biased roulette wheel analogy, also known as ‘fitness-
proportional selection’. Roulette wheel slot sizes are attributed to individuals in a population in
relation to their fitness. The circumference of the circle must sum to the total sum of fitnesses for all
the individuals. Each slot, as shown in figure for a populatio of 6, is sized in such a way that the
percentage represents the ratio of that individual’s fitness to the total population fitness. ‘Spinning the
wheel’ is done by simply generating a random number and multiplying it with the population fitness.
Individual fitnesses are then added one by one until the roulette wheel value is reached, this can also
be visualised as the slot in which the ball finally stops. Fitter individuals therefore have a greater
probability to be selected due to the larger slot sizes that they were awarded .
An individual’s probability to be selected is:

G
select,; — ©r~ 4.4.1
Pselect,; ¢ ()

There are numerous other methods with which selection can be implemented, for example tourna-

ment selection.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 23

||

Figure 4.4: Crossover

4.4.2 Elitism

Fitness-proportional selection cannot guarantee that the fittest individuals of a population will propa-
gate through to the next generation, but in fact may (with a very small probability) fail to select them
all together . The most general case would be the occasional oversight of the fittest individual. Even
though this might be valuable for some problems, as it allows for faster exploration of the search space,
it might be a drawback for others. A genetic algorithm must handle a reasonable balance between
exploration and exploitation. Greater exploitation speeds up the algorithm, but decreases the proba-
bility of finding the true optimum. Elitism speeds up the algorithm by allowing elite members to pass
through to the next generation without being subjected to selection and thereby not losing important

information. This individual will also not be touched by crossover or mutation (Coley, [1999).

4.4.3 Crossover

Crossover is analogous to reproduction in that it permits the exchange of information to form new
offspring. Crossover only takes place with a given probability called the crossover probability. Two
parent strings that are selected through selection undergo crossover once it has been established that
crossover must, indeed occur. Crossover takes place at a random location on the string. For example,

given that the crossover location is 4 for the following, the children will look as follows:

Parent 1: 1101|011 Child1: 1101110
Parent 2: 1001|110 Child2:1001011

The illustration above is an example of one point crossover; however, crossover can occur at a

number of crossover locations. Crossover promotes exploration of the search space.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 24

4.4.4 Mutation

Mutation allows, usually with a very low probability, an occasional small random change in an indi-
vidual (string). It is a strategy to avoid premature loss of information and convergence to local optima
[959).

It operates by visiting every bit within a string and changing a 1 to a 0 or a 0 to a 1 for a
given prescribed probability. This prescribed probability is (as with crossover probability) problem
dependent, with a higher probability for some and a lower probability for others. Mutation rates are
typically in the order of 0.001; mutating on average 1 bit for every 1000 bits visited.
suggests the following mutation rates:

L o, <2 (4.4.2)

nvL - L

where n is the number of individuals in the population and L is the total string length.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 25

START

v

Create Initial
Population

b

‘ Fitness Evaluation ‘

v

‘ Fitness Scaling ‘

v

‘ Selection ‘

e

Yes

Perform
Crossover

e s o

Yes

Perform Mutation

Elitism Fi

4

Replace old population with
new population

s

Figure 4.5: The genetic algorithm basic flow diagram

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 26

4.5 Object and Fitness Functions

A genetic algorithm is a maximisation procedure, however, in numerous optimisation problems the
objective is naturally better expressed as a minimisation function (i.e. of some expense) rather than
a maximisation function (i.e. of some profit or utility). Nonetheless, the problem cannot simple be
converted to a maximisation problem by taking the negative of the objective function as the algorithm
cannot operate on negative values. Even if an objective function is more naturally expressed as a
maximisation function, some check still needs to be built into the function in order to ensure positive
and feasible outcomes. This function is called a fitness function, a function which converts the objective
function into some function that the genetic algorithm can understand. In other words, the objective

function must be mapped to some fitness function which the algorithm can use.

4.5.1 Decoding Problems

Binary strings can translate into some integer value, for example 1011 is 11. However, for continuous
problems this integer value, 11, must be converted into a real value. Alternatively, real-valued param-
eters can be used within the genetic algorithm itself, however this will involve changes to the basic
operators of the algorithm. The general way to achieve this transformation for a fixed string length is

through linear mapping. This linear mapping procedure is used in test functions (Coley, 1999).
e Convert the binary representation to an integer of base 10 and name this integer z
e Transform the integer to a real number through linear mapping
r=mz+c (4.5.1)
— m and c refer to the position and dimensions of the space
e Solve two simultaneous equations to obtain m and ¢
Tmin = MZmin + € (4.5.2)
Tmax = MZmax T € (4.5.3)
— The minimum value a binary string can take is 0000...0 = 0
. Zmin =0
— The maximum value a binary string can take is:
Zmax = 20 — 1 (4.5.4)
e From the two simultaneous equations:

T — Tmi
m = e min (4.5.5)
Zmax — Zmin

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 27

— Substituting values for zy,,, and zy,

7nzﬁ%{%@— (4.5.6)
e Rearrange equation to obtain:
€ = Tmin — MZmin (4.5.7)
— But zpin =0
/. C = Tmin

e The transformation equation can therefore be written as:

r= wz + Tmin (4.5.8)

e . 1011 for a range of 1 <x< 10 and a substring length of 4

—z=11

—r= () ne1=76

The next thing to consider is accuracy; the next integer after 11 is 12, which translates to binary
as 1100. There is no other number between 1011 and 1100. Transforming 12 to the real set gives r =
8.2 for a substring length of 4. It is clear that this poses a fundamental accuracy problem, given that
there is an infinite amount of numbers between 7.6 and 8.2. The only known techniques of improving

upon the accuracy are by increasing the string length and reducing the search space size.

4.5.1.1 Multi-Parameter Problems

An individual for a multi-parameter or multi-dimensional problem consists of more than one chro-
mosome, therefore more than one substring. Substrings are simply concatenated to form a string
[1999). Other than considering the genetic reproduction analogy, defense for such an approach
is that operators (section operate on individuals and not on chromosomes (complete strings, not

substrings). In other words, crossover takes places between individuals and not chromosomes.

L=>1 (4.5.9)

M is the number of unknowns, [is the substring length and L is the total string length.

Substrings need not be of similar length, which allows for accuracy fine tuning for specific param-

eters.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 28

Objective Augmented Scaled
Function Function Function

6 F

Figure 4.6: Approach to fitness (Galante, [1996)

4.5.2 Approach to Fitness

A means of describing the population fitness is to consider its level of saturation. Saturation describes

where the population fitness lies with respect to the best fitness thus far (Galante, 1996).

n

> G =

saturation = — 100 = ¢
NGmax max

100 (4.5.10)

where (is the fitness function value. The objective is to minimise the structure’s weight, where
after the objective function is penalised and is therefore transformed into an augmented function
(figure called the penalised objective function. The objective of the algorithm is to maximise the
fitness, however, due to reasons explained in section the objective changes to maximising the
scaled fitness. In general, the objective function value for a given individual solution can be expressed

as:

M
Gi(x) =Y dA; L (4.5.11)
j=1

where M is the number of members in the truss (structure) and x is a possible solution vector to the
problem. d is the density of the material, A is the area of an element and L is the length of an element.

Constraints for stress and displacement are typically expressed as:

M _1<0 (4.5.12)
Oallow
Dy
—-1<0 4.5.13
Dallo’w ()

where subscript allow indicates the allowable, M the number of members, N the number of nodes and
D the deflection.
4.5.2.1 Static Fitness

Goldberg (1989)) suggests obtaining a fitness function value by subtracting the objective function value

from a very large constant, C. This constant is typically in the order of 10°.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 29

G=C=0ip (4.5.14)

(1996))’s approach differs from equation by the implementation of a relative rate between

individuals that are maintained as initially expressed by the objective function and a large constant

value.

_C
¢i,p

¢ (4.5.15)

4.5.2.2 Dynamic Fitness

The foremost shortcoming of the static fitness approach, as was done by |Goldberg| (1989) and [Rajeev|

land Krishnamoorthy| (1992), is that the convergence behaviour could possibly be dependent on C, the

large constant value. The objective function value, ¢, might exceed C for the case where the value of C
was chosen too small, which will result in a negative fitness. Normalisation and choosing a larger value
for C' can correct such an outcome. Oppositely, if C' is assigned too large a number, then chromosomes
might be assigned similar fitnesses even though their objective function values vary. For example,
consider a large constant value of 1000 000. If it be that the objective function values range from 1 to
10, then the magnitude of the large constant value and that of the objective function values differs too
much. The fitnesses assigned to the individuals would all be in the range of 999 990 to 999 999, which
excludes 0.99999% of the fitness scale. Consider that, in this case, an objective function value of 1
should supposedly represent a poor fitness value, however, this transformation does not resemble the
degree of poor performance of the given value. A solution to the aforementioned, other than fitness
scaling (refer to section , is to incorporate a dynamic factor method in which case the fitness is
a function of maximum and minimum objective function values for each generation and the specific
individual’s objective function value under consideration. This approach will ensure that the individual

with the highest objective function value (lowest fitness) will be assigned a proportional value to that

of the lowest objective function value (Krishnamoorthy et al., 2002).

Ci = d)max + (bmin - (bi,p (4516)

[Toropov and Mahfouz| (2001) suggest a similar function, however the maximum and minimum

objectives should be penalised as well. Hence the function develops into:

Ci = ¢max,p + ¢)min,p - ¢i,p (4517)

®Pmax,p 18 the maximum penalised objective value, ¢in p is the minimum penalised objective value and
¢;p is the penalised objective value of individual i, refer to section This approach requires the

population fitness values to be sorted, where after all the individuals with a fitness below the average

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 30

fitness value are killed off. Therefore only the upper fittest part of the population remains. Now a new

fitness is defined for each individual based on the new highest and lowest fitness values:

" = P T Pminp — Pip (4.5.18)
The approach magnifies the distances between different top performing individuals, in the same way
a map with a smaller scale would emphasise the distance between two places by supplying more in-

formation. This method could, however, lead to premature search convergence due to the fact that

search loses much diversity.

[Coello et alf(1994) suggests a fitness that is inversely proportional to the objective function value:

1
i p [10000 + 1]

For this case v is the number of constraints violated for a specific solution. v would be zero for

Gi (4.5.19)

the case of no constraint violation, hence the fitness function would be reduced to the inverse of the
structure’s weight. It is clear that the fitness would decrease as the number of constraint violations

increase. A constant of a thousand was found to work best for the ten bar truss problem.

land Meesomklin| (2001) had the same approach, however not including a factor of a 1000 or the v

term. Both approaches reward the same level of punishment for all solutions violating a given number
of constraints. Therefore, it could be argued that solutions which are better performing than others
are treated too severely and poorer solutions are not penalised enough.

In general, the objective function would be some function of the structure’s weight, as it is deduced

that the weight of the structure is directly proportional to its cost, hence the cost is indirectly opti-

mised. However, [Raj and Kalyanaraman| (2005) incorporated actual costs in their objective function

by considering material and fabrication costs. Joint costs are dependent on the number of joints or
nodes, the number of individuals connected to the joint and the magnitude of forces transferred by
the joint. Hence the constraints include material strength, fatigue strength- and deflection limit and

buckling strength.

N, nj Mmj
min ¢; = (Z AkdkLk> Cat DD e, (4.5.20)
k=1 j=1r=1

C; is the cost of steel per kN, n,,; is the number of members that connects at joint/node j and
¢ per member added to the joint based on the accompanying force. For this case the augmented

objective function is given as:

Gip =i (1+ Pc) (4.5.21)

with ¢; as the objective function obtained in equation

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 31
m
-Pi,c = Z ((Cj,stresspj,stress) (Cj,deflectionPj,deflection) (Cj,implicitpj,implicit)) (4522)
j=1

P; . incorporates the penalised constraint violations of the individual solution 7, for all its members,
J, with Ctress, Cdisplacement and Cimplicit Tepresenting the constraints violations and Ptress, Pisplacement
and Pippiicit their associated penalty factors.

Krishnamoorthy et al.| (2002) used the following function for a specific load case:

M+N

M
Gp.i() = (Z diAiLi> L+ > kel (4.5.23)
i=1 j=1

max (o, S —1<Ovj €L, M])

(4.5.24)

ci =
’ maX(O,ddj;M—lg()Vje[M—i—l,N])

— M,allow
where k; is the penalty coefficient, L; is the length of member i, M the number of members in the
structure, N the number of nodes, d the density of the material and A; the area of member i. Due to
string length being directly proportional to the number of design variables, large convergence delays
and loss of important information can be expected for large number of design variables. To compensate
for this drawback, a method of member grouping is proposed, in which case certain members assume
the same size, hence leading to shorter string lengths and a reduced search space size (member grouping
will be thoroughly discussed later in the text). Another benefit of this approach is that it allows for
the design to stay symmetrical, which is good for constructability of the structure and ensures the

structure can handle reversed load conditions, for example wind load from the opposite side as was

done in the analysis. The objective function now evolves into:

M+N

NG My,
Pip(z) = <2Akzdil/i> 1+ > kel (4.5.25)
k=1 =1 j=1

Member grouping for smaller structures can be done a priori, however Krishnamoorthy et al.| (2002)
suggest member grouping strategies for larger structures due to inaccuracies regarding grouping which

could lead to suboptimal outcomes.

4.5.3 Fitness Scaling

It could happen that a few highly fit individuals are created prematurely in the run, causing its
offspring to drown other individuals in subsequent generations. This will lead to a huge loss in diversity,
producing offspring close to a manner of cloning, which could potentially result in a local optimum.
There needs to be some form of a steady state or balance of the power of the highly fit individuals
in the early and later stages of the algorithm. In other words, the highly fit individuals must be
prevented from hijacking the algorithm in its initial stages, but needs to be able to apply adequate

selection pressure to the algorithms in its final stages. Fitness is therefore scaled in order to maintain a

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 32

12%

12% M Individual 1
Individual 2
u Individual 3

M Individual 4

Unscaled Fitness Scaled Fitness

Figure 4.7: Unscaled and scaled fitness roulette wheels

saturation level of about 50% (see equation which will ensure proper exploitation of the search
space and to steer away from premature convergence.

Linear fitness scaling is a method which scales the fitness of individuals to the proximity of the
average population fitness. This implies that a certain ratio between the number of highly fit selected
individuals and the number of individuals selected with average fitness will be kept at a reasonable
proportion, which would be nearly constant. Conventional values for this constant are between 1 and 2;
where a value of 2 implies that about twice the number of highly fit individuals will propagate through
to the next generation compared to the number of individuals with average fitness. To accomplish this,
dynamic scaling of individuals’ fitnesses would need to take place by pulling fitnesses closer together
in the initials stages and then pushed apart in the later and final stages of the algorithm. The linear

transformation:

G (9) = a(g)Ci(g) + b(g) (4.5.26)

e (; is the actual fitness of a particular individual

e (7 is the scaled fitness for that particular individual

It is assumed that the average fitness of a population stays constant:

Cave(9) = Cave(9) (4.5.27)

Additionally:

Ghax(9) = €m(9)Cave(9) (4.5.28)

® ¢, is the fitness scaling constant

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 33

Figure 4.8: Constraints depicted as areas with zero fitness 1, 1999)

o (7. is the scaled fitness of the fittest member

a(g) _ (Cm — 1)({11}6(9)

" Cmax(9) — Cave(9) (4.5.29)
b(g) = (1 - a(g)) Cave(g) (4_5_30)

Implementing the linear scaling can result in negative fitnesses. One way to overcome this, is to

set ¢, = 0 for such cases (Coleyl, [1999).

There are also other scaling methods such as Sigma Truncation and the Power Law Scale.

4.6 Constraints and Penalty Functions

Constraints split the search space into feasible and infeasible segments. A constraint can be visually

understood as regions within a search space where no fitnesses can be allocated, refer to figure 1.8

4.6.1 Constraint Handling

The genetic algorithm performs best for unconstrained problems (Gahsemi et al., 1999). Problems

which are not heavily constrained are quite easily dealt with, the chromosome is decoded and the
fitness function awards a fitness to it. The fitness is simply zeroed for cases where there are constraints.
Even though the aforementioned approach seems appealing, it would be ineffective for densely

constrained problems and produce many solutions which will simply be discarded. Even if it was not

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 34

the case for a densely constrained problem, infeasible solutions may carry valuable information which
should not be cast-off. A genetic algorithm can however not be directly applied to constrained prob-
lems. In order to use the algorithm for engineering applications, the problem must be transformed
from a constrained to an unconstrained problem [1999). Nevertheless, any final solutions that
are obtained from the genetic algorithm need to satisfy all the prescribed constraints in order for it to
be feasible. A constraint can partly be classified by its criticality and difficulty. The criticality of a
constraint can be described by the degree to which it needs to be satisfied. A constraint is typically
formulated as absolute, where it may indeed be more ‘soft’. A genetic algorithm allows for the use of
‘soft’” constraints through the implementation of penalty functions, see figure A penalty function
acts as a sort of punishment for violating a constraint by decreasing the fitness of the guilty individual.
The amount of decrease is in relation to the severity of the violation. The penalty function must
not disrupt that equilibrium of exploitation and exploration. The algorithm allows for constraints to
be violated, where after it probabilistically selects the best solutions from a population of solutions.
The penalty function operates by decreasing the fitness of infeasible solutions relative to the severity
of the constraint violation. The difficulty of a certain constraint is directly related to the ratio of

the feasible area to that of the sample space area. An increased ratio will result in a lower difficulty.

The difficulty of a problem is however also related to the number of constraints (Smith and Coit,[1995]).

There are various ways in which a penalty function can be implemented :
e Death penalty
e Static penalty
e Dynamic penalty
e Annealing penalty
e Adaptive penalty
e Co-evolutionary penalty

o Segregated GA

Penalty methods can typically be divided into 3 groups (Smith and Coit|, [1995):

e The first group is called barrier methods, in which case only feasible solutions will be considered.

e The second group consists of partial penalty functions, where penalties only apply to areas which

are near the feasibility margin.

e The last group of penalty functions contains global penalty functions. These functions consider

the whole sample space (which includes the complete infeasible region).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 35

Penalty methods can crudely be grouped into four strategies with their advantages and disadvantages

(Gen and Cheng, (1996)):

e Rejecting approach
— Rejects all infeasible solutions
e Repairing approach
— Needs a repair procedure
e Modifying genetic operators approach
— Problem specific with specialised operators
e Penalising approach
— Converts a problem which is constrained into an unconstrained problem

The first three strategies never generate infeasible solutions which are advantageous; however it has
the disadvantage of not searching the infeasible regions as well, which is typically most of the search
space. A general requirement for good penalty functions include penalties which concern distance from
feasibility, rather than just simply keeping count of the constraints violated. Penalties incorporating
such a requirement are better performing. The relationship between feasible and infeasible solutions

is important as the penalty value should correspond to this amount. The penalty method is either a

function of (Gen and Cheng, 1996):

e The distance from a single infeasible solution
e The relative distance of all current infeasible solutions

e The adaptive penalty term

Combinatorial optimisation uses the Lagrangian Relaxation method (some alteration to the same
idea) in which case the difficult constraints are briefly relaxed. Control is kept with an adjusted
objective function which keeps the search from completely drifting away from the feasible region (Smith;

1993).
The standard optimisation formulation is adapted as follows to include penalty 2005)):

(%), ifx € Steas
(bi,p(x) = . (461)
#(x) + 1(x), otherwise
where 1(x) is the penalty applied. For the case where no constraints are violated, ¥ (x) = 0. ¢(x) is

the objective function. Syeqs refers to the feasible region.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 36

Initialise
Population (t)

4

Evaluate each
individual (t)

Apply
Penalty

4

Select Parents (t)

Evaluate (t+1) Crossover (t+1)

Mutation (t+1)

Figure 4.9: Transforming the genetic algorithm from an unconstrained to a constrained problem solver

Another method is a multiplicative function:

d(x), ifx € Steas
d(x)(x), otherwise

Bip(x) = (4.6.2)

For this case, when there is no constraint violation i(x) = 1. The better overall performer has
been observed to be the additive function. Penalty functions can further be divided into two types:
interior and exterior, however the exterior function is generally more preferred. For more information
on interior penalty functions, refer to Rao| (2009). The motivation behind this preference has to do
with the fact that the exterior penalty needs not to be initiated within the feasible region (Yeniay,

2005).

4.6.2 The Exterior Penalty Function

op(x) = d(x) + ZriGi + Z c;Lj (4.6.3)
i=1

J=qti
G; and L; are functions of the constraints g;(x) and h;(x). 7; and c; are penalty parameters.
Generally:
G; = max [0, g;(x)]” with 8 =1lor2 (4.6.4)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 37

L; = |h;(x)|” with v =1or2 (4.6.5)

The magnitude of the penalty is dependent on r; and c;.

4.6.3 Death Penalty Function

In this case the penalty function simply discards any unfeasible solutions.
p(x) = oo with x € S — Steas (4.6.6)

This method is only effective for a convex search space, see figure This approach will be ineffective

for highly constrained problems. Two approaches are thoroughly described by Homaifar and Kuri

Morelas with Quezada in (2005)).

4.6.4 Static Penalty Function

The penalty parameters are independent of the generation counter and are kept constant throughout

the search. Before the search commences, users must define degrees of violation. (Yeniayl, [2005)

m 0; = 1, if constraint ¢ violated
op(x) = (%) + Z C;6; where (4.6.7)

=1 d; = 0, if constraint ¢ satisfied
C; = enforced constant on the violation of constraint ¢. This category of penalty functions has
proven to be less effective when compared to penalisation techniques whose degree of penalty depends

on the distance to the feasibility. These penalisation techniques assume that this distance defines

accurately the closeness of the solution to the feasible region and that this distance value is significant

to the solution fitness (Smith and Coit], [1995)).

i (Sl (X)), fori = 1,..,
bp(x) = 60 + 3 Cvt where gy = {9 ‘ (46.8)
i=1 |hi(x)|, fori=q+1,...m

K is typically 1 or 2, C; is determined through scaling or experimentally and g and h are the inequal-

ity and equality constraint functions (Smith and Coit}, [1995)). 0 remains as defined in equation [£.6.7}

4.6.5 Dynamic Penalty Function

The main shortcoming of static penalty functions is in the difficulty of determining C;. The static
penalty functions also have contradictory aims in the sense that it allows for exploration in the infeasible
regions, however it needs the ultimate solution to be feasible. One way to lessen the difficulties of the
improved static search is by incorporating a dynamic feature to the penalty. In this case, the severity
of the penalty increases with an increasing distance between the problem outcome and the feasibility

region. In this case extremely infeasible solutions might be present during the initial stages of the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 38

search, where after extreme penalties will be applied in order to advance the solution to the feasible

region and then decreasing the penalty (Smith and Coit, 1995).

m

. 0;9i(x), fori =1,....q
0p(x.9) = B(x) + D si(g)uf where v = (4.6.9)
P |hi(x)], fori=q+1,..,m
Caution should be exercised with s;(g), where s;(g) is a function of the constraints. For the case
where s;(g) is too merciful the ultimate solution might be infeasible and for the case where it is too

severe the solution might be a local optimum as a result of premature convergence. It is suggested to

assume s; (9) = (Ci;g)® with a =1 or 2 (Smith and Coit}, [1995). Jounes and Houck used a value of

C = 0.5. Kazarlis and Petridis also formulated a penalty approach, however slightly altered, refer to
(2005). The problem with all the aforementioned dynamic approaches is the constants which
these approaches incorporate. These constants typically have no physical meaning and are simply

chosen after it was empirically observed that they produce the best outcome.

4.6.6 Adaptive Penalty Function

The adaptive penalty, as described by Hadj-Alouane and Bean in [Smith and Coit| (1995):

M ,
. 0;9:(x), fori =1,....q
op(x,9) = P(x) + E Ag¥; where 9; = (4.6.10)
=1 |hi(x)|, fori=q+1,....m

with
AgB1, if previous N¢ generations have infeasible best solution

Ag+1 = Ag/ B2, if previous N generation have feasible best solution (4.6.11)
Ag, otherwise
where 51 > B > 1. M refers to the number of members, g to the current generation number and &

is typically 1 or 2. These constants need to be selected, it might prove difficult to select a good value.

Pp(x, 9) = ¢(x) + Alg) ZQ?(X)JF > Ihi() (4.6.12)

Jj=q+1

For every generation g, update:

(é) A(g), if Case 1
A(g), if Case2 (4.6.13)

, otherwise

e Casel
— All the best performing individuals of the last g generations are feasible.

e Case 2

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 39

— All the best performing individuals of the last g generations are not feasible.
o Case 3

— The best performing individuals of the last g generations are a mixture of feasible and

unfeasible solutions.

The drawback of this approach concerns defining 5; and fs.

4.6.7 Near Feasibility Threshold

The near feasibility threshold (NFT) is the verge where the search can be considered as ‘getting
warmer’. The penalty function promotes the algorithm to search within the feasibility region and in

the near feasibility threshold of the feasible region and discourages search elsewhere. NFT according

to Smith and Tate as explained in (Smith and Coit, 1995):

005) = 000) + Ggeane) — o) Y- (577)

=1
' (4.6.14)
. 6lgl(x)’ fori = 17 - q
with ’(/)i =
|hi(x)|, fori =q+1,...m

Cat1(g) is the current best solution which is not penalised and (feqs(g) is the current best solution

which is feasible. These terms serve as adaptive scaling and amalgamate with the near feasibility

threshold of iteration ¢ (Smith and Coit} [1995).

NFT,
1+ A

NFT = (4.6.15)

A is the search parameter which modifies the near feasibility threshold by taking the search history
into account. The function will result in a static near feasibility threshold for the most elementary
case where the A parameter is zero. This parameter can be described as a function of time during
the search, for example for generation g, A = f(g) = Ag. With A > 0 the penalty will increase as the

threshold region decreases. A greater A results in a greater increase in penalty, therewith integrating

adaptive and dynamic elements into the search (Smith and Coit}, 1995).

4.6.8 Segregated Genetic Algorithm

This algorithm makes use of two distinct penalty parameters in two parallel populations. The main
objective of this approach is to eliminate problems concerning premature convergence or no convergence
at all due to too low/high penalty parameters. This is accomplished through selecting a low value

for the first penalty parameter and a high value for the second in order to achieve a simultaneous

convergence approaching from both the feasible and infeasible regions 2005).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 40

4.6.9 General Comment on Penalty Functions

The overall disadvantage of penalty function methods is concerned with choosing a suitable set of
penalty parameters, however penalty functions are decidedly the best approach when dealing with

non-constrained optimisers such as genetic algorithms (Yeniay, [2005)).

4.7 Why Do Genetic Algorithms Work?

It can be showed that there are specific string configurations that lead to higher fitness or better
performance for certain given problems. Two important steps in genetic optimisation are to seek
for similarities amongst individuals and to find a connection between these similarities and better

performance (Goldberg, (1989)).

4.7.1 Schema Theory/Similarity Theory

One string on its own is of no significance; this is due to the fact that only similarities between high
performing strings can help navigate the search. The question is therefore, how can a string resem-
ble strings of other string sets with similarities at specific string locations? The answer is through
schemata. A schema is a description for a subgroup of strings that has certain similarities (Goldberg,
1989). For the sake of discussion, consider binary encoding {0,1} with a wild card character * which
can represent either a zero or a one. Therefore, for a schema to match a given string, every 0 must
match with a 0 at a specified location, the same for every 1 and the * can match with either a 1 or a

0. For example, the following scheme:

— 001*1matches {00101,00111}

Take note of the fact that the * is merely a device to represent other symbols, this symbol itself
is not specifically used in the genetic algorithm. There are m! different strings of length [for a given
character set of m elements, with (m + 1)! schemata. The question that surfaces is, why consider the
schemata which will in effect increase the search space rather than just all the different string different

strings? For example, a string with length 10 has 2'°

= 1024 possible strings (for binary encoding),
why then consider 3! = 59049 schemata instead? Consider that individual strings only provides pieces
of information compared to the oceans of new information that is contributed by similarities which
will contribute to a more efficient search. The 'magnitude’ of this additional information is associated
with the number of unique schemata within a given population (Goldberg} 1989).

Schemata are not all of the same magnitude. For example, a schema of 1** is much greater than

a schema of 11*, as the one encapsulates a much larger part of the search space. The basic operators

(selection, crossover and mutation) have different effects on schemata. Fitter schemata will have on

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 41

Real Process Implicit Parallel Process

‘n’ Initial ‘n® Initial
Chromosomes Schemata

r A 4

Processing ‘n’ Processing ‘n*
chromosomes schemata

‘n’ Final ‘n* Final
chromosomes chromosomes with

good schemata

Figure 4.10: Real and implicit parallel process (Galante, 1996)

average more surviving individuals, due to fitter individuals having a higher probability to be selected.
However, selection alone does not contribute new points to the search space. One of two things can
happen when crossover occurs; it can either leave the schemata intact or destroy it to form a new

schema. Consider the following schemata:
— 0***land***01

The first of the two schemata will probably be destroyed with crossover, compared to the second
schema which has a higher chance to remain intact. Therefore, the shorter the defining length of
schemata, the higher the probability of survival after crossover. Mutation does not play a significant
role in the survival of schemata as it occurs in such low frequencies. The above will be explained
in more detail in section [f.7.2] Schemata which are very fit and of short defining length are called
‘building blocks’ and are propagated through the generations. This occurs with no special memory

or bookkeeping, where this whole procedure is called ’implicit parallelism’, see figure (Goldberg},

[1959).

4.7.1.1 Similarity Templates as Hyper-Planes

Consider the bit space from a geometric viewpoint for [= 3. Schemata of order three form cube corners

and schemata of order 2 form the lines between these corners, refer to figure Genetic algorithms
can be seen jumping through hyper-planes in the search of betterment (Goldberg), |1989).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 42
X2 *1* Pl
ane
i
11* Line
010 110
| *
1** Plane
011 oS T
|
000 100
0*1line —| == — |- x1
rr)’
001 |/ /
K 101
X3 *0* Plane

Figure 4.11: Hyper-Planes (Goldberg}, |1989)

4.7.2 Fundamental Theorem of Schemata

This section will take a closer look at the growth and decay of schemata within a population subjected

to selection, crossover and mutation.

Let A(t) refer to a population of strings at a specific time, therefore to a specific generation. Also, let

schema H have a vector space V = {0, 1, «}. For example:

— H = *10*0**

There are 3' schemata for a string with length [for the case of binary representation and in gen-

eral as already mentioned, (k + 1)! schemata for alphabets of k elements.

4.7.2.1 Types of Schemata

Different schemata are not tantamount; some schemata are better defined than others. For example,
111*0** is more specific than 1*¥*¥**** Additionally, some schemata have a greater span length over the
string, compare 1*¥0**** and 1****0*. This introduces two new concepts, order and defining length.

Order is symbolised as o(H), where it denotes the number of fixed positions in a string. Example:

— o(10*x*01 %) =4

Defining length is symbolised as §(H), where it denotes the span of a schema and is calculated by

subtracting the location of the last fixed position from the location of the first fixed position. Example:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 43

— 0(10%*01 % %) =5

The properties of the schemata provide a means to interpret the effect of selection, crossover and

mutation on a population (Goldberg) [1989).

4.7.2.2 Effect of Selection

Assume that there are m realisations of a specific schema H within A(t) at a given time ¢. This is
denoted as m = m(H,t). A string A; has a probability of p; = EC—Z to be selected. At a time ¢ + 1, for
J

selection with replacement from A(t), there will be m(H,t + 1) schemata.

m(H,1) - n - ((H)

com(H,t+1) = 4.7.1
(H,t+1) S (47.1)
where ((H) represents the average fitness for schema H at time t.
But the average population fitness is (gpe = ETCJ
H
m(H 1) = m(, o) (4.7.2)

Cave

From the above, it can be deduced that a schema’s growth is dependent on the proportion of average
schema fitness and average population fitness. In other words, when the schemata fitness is higher
than the average population fitness, then selection will be biased towards that particular schemata
by awarding it more individuals at time ¢ + 1. In this case the schemata will grow. The opposite
effect will occur to schemata with average fitness lower than the population average fitness, where the

schemata will start to die off. All schemata for a particular population are processed simultaneously,

or in parallel (Goldberg), |1989).

4.7.2.3 Effect of Crossover

The algorithm requires a crossover mechanism, because selection does not support exploration of the

search space. String A = 111|1000 might have the following shemata:

- Hy=#1x|x%%0 5(Hy) =5
— Hoy=sxx|10x*x 0(Hy) =1

It is clear that schema H; is destroyed with a probability of

_0(Hy) 5
Pa=T7-7 "% (4.7.3)

and has a survival probability of

1
ps=1-pi=g (4.7.4)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 44

For the case of Ha, pg = % and ps = %. Generally, a schema survives when the crossover site is located

outside of §(H). Therefore, for single crossover with a probability of p.:

6(H

Therefore, the effect of crossover on a schema can be described such that the shorter the schema’s
defining length, the greater is its probability to survive and reproduce (Goldberg, 1989).
4.7.2.4 Combined Effect of Selection and Crossover

The combined effect of selection and crossover on the expected schema H in generation ¢ + 1 (assuming

that selection and crossover are independent) is:

m(H.t+1) > m(H, 1) D [5(H>]

Ca'ue 1 B pc

4.7.6
1 (4.7.6)
In this case, the effect of schema is clear, the survival not only depends on average fitness, but also

defining length. Schemata with above average fitness with short defining lengths will grow exponentially

(Goldberg, 1989).

4.7.2.5 Effect of Mutation

Mutation occurs with a probability of p,,. All the fixed positions of a schema must survive for the

schema itself to survive. In other words, the schema survives when all o(H) fixed positions survives,

where each allele has a survival rate of 1 — p,, (Goldberg, |1989).

cops = (1= pm)°UD) (4.7.7)

(The survival rate for p,, << 1 is estimated as 1 — o(H) - pp,).

4.7.2.6 Overall Effect

The expected number of samples for a schema H is:

m(H,t+1) > m(H, t)CC(H) 1 —pc% —o(H)pm (4.7.8)

Finally it can be concluded that schema with short defining length, low order and above average

fitness will be awarded with an increasing amount of individuals (Goldberg), |1989).

4.7.3 Building Block Hypothesis

The complexity of the problem is reduced by the use of schemata; rather than constructing high
performance strings, the hypothesis aims to actively build improving strings from the best fragmentary

solutions of the former (refer to section [3.4). These best partial solutions are known as building

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. GENETIC ALGORITHMS 45

blocks. A building block is a schema which offers a good solution to a sub-problem, as explained in
section [4.7.2.6l It can be seen as analogous to genes within the genetic framework (Rothlauf] |2011]).
The building block hypothesis has showed promising results for a range of problems, including noisy

multimodal and combinatorial optimisation problems (Goldberg, [1989)).

4.7.3.1 Intra-Building Block Difficulty

This type of difficulty is related to the locality of the search. The problem difficulty increases if the
nature of the search space is of such that it leads the search away from the optimum. This is also
known as the deceptiveness of a sub-problem. A problem is deceptive to the order k if all schemata of
order lower than k have a lower fitness compared to the rest, even though they hold fragments of the

fittest solution (Rothlaufl [2011)).

4.7.3.2 Inter-Building Block Difficulty

Genetic algorithms are a form of recombination-based search; this simply implies that the greater
problem is decomposed into sub-problem. Simpler sub-problems are solved instead of solving one
extremely complex problem. Such sub-problems can be solved independently, given that the problems
were decomposed correctly. However, it might occur that the some sub-problems contribute more to the
objective than others, which results in inter-building block difficulties. Additionally, interdependencies
arise when problems cannot be effectively disintegrated into perfectly separate sub-problems (Rothlauf,

2011).

4.7.3.3 Extra-Building Block Difficulty

Noise can add difficulty to a problem by altering the objective values. The recombination-based search
will make poorer decisions as noise is introduced to the problem. Non-stationary problems cause a

similar problem as solutions have dissimilar valuations at different points in time (Rothlauf [2011]).

4.7.3.4 Berthke’s and Holland’s Walsh-Schema Partitioning Coefficient Transforms

Methods devised to analyse the Building Block Hypothesis can be grouped into two categories based on
their approach; the application of dynamic or static methods. The dynamic approach, in alliance with
the Minimal Deceptive Problem produces decent results for small problems (the actual approach will
not be discussed here). On the other hand, the static approach determines schema averages through
transformation methods, which is used to judge the Building Block Hypothesis. In other words, to
establish whether high performing schemata of short defining length and of low order propagate through
the generations in order to combine and create improved schemata which is longer and of higher order

(Goldberg, [1989).

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Test Functions

A Test function, also known as an artificial landscape, has the objective to analyse the performance
of a genetic algorithm. The outcome of these functions can be used to systematically rectify and fine
tune the internal settings of the algorithm. Therefore, once a genetic algorithm for a specific problem
is coded, the algorithm can be ‘tested’ by checking whether it produces the expected outcome of the
function. Internal settings are unique to each problem, these can therefore be adjusted. While these
test functions are of great value, they are of little significance to ‘real’ world problems. A genetic
algorithm should be tested with a set of test functions in order to cover various essential landscapes,

each with their own features. This set will test different aspects of the algorithm (Coley, [1999):

Functions with scalable dimensions

— The function should be able to adjust the number of unknowns if it would be desired

A unimodal, continuous function, to gain insight to the algorithm’s convergence velocity

— A single peak function, refer to figure [5.1

Test the algorithm’s performance with the absence of a local gradient

— A step function, refer to figure [5.2

Test the algorithm’s performance when faced with complexity with a multimodal function

— A multi peak function, refer to figure[5.3

5.1 De Jong’s Test Functions

De Jong realised the great value of controlled experimentation with genetic algorithms in neat problem
domains. He rid the genetic algorithm of all frills, together with its environment and performance

criteria to expose its sheer fundamentals. This allowed him to carry out experiments which aided in

46

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. TEST FUNCTIONS 47

Figure 5.1: Griewank’s function with 2 independent variables

5 5

Figure 5.2: Step function with 2 independent variables

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. TEST FUNCTIONS 48

the further development of genetic algorithm research and its uses. De Jong created a test environment

which dealt with minimisation of 5 problems. The functions he used encompassed the following features

g

o0 | [

o). YAIEAD
: ol

(Goldberg, 1989):

1 ||1'b
'ﬁ'” | -f;“ b

i | i #‘
\Htﬁ |I++1"'” "' fh
lli."*-r.f*f ﬁ m*

. Rt gl \ﬂlfH ,+ +* ﬂt:ril)
1 " AL A ”‘-.i Hm ':i I,'1 -!|',_f
. H 1'.= I *Iﬂl"h "' |l|,'+'r :
: *w’r -,ﬂ +.. l__,_ :

Figure 5.3: Rastrigin’s function with 2 independent variables

Continuous and discontinuous
Quadratic and non-quadratic

Convex and concave

Low and high dimensionality

Unimodal and multimodal

Deterministic and stochastic

Refer to Appendix for test functions and artificial landscapes.

5.2 Measuring Performance

De Jong carried out much work with regard to the genetic algorithm’s performance.
two gauges for performance which he called online and offline performance. The offline performance

(Cosy) refers to the continuous average fitness of the fittest population member ({mq,) and gauges

performance (Goldberg, [1989):

De Jong had

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. TEST FUNCTIONS 49

Q|+

Cog(9) = = Y Cmax(5) (5.2.1)
j=1

The online performance ({,,) is simply the average fitness thus far in the algorithm and measures

online performance (Coley, [1999):

9 1 X
) lN Zci(j)] (522)

(5.2.3)

5.3 De Jong’s Conclusions

De Jong constructed a few models (Goldberg, [1989):
e The Reproductive Plan

The Elitist Model

The Expected Value Model

The Elitist Expected Value Model

The Crowding Factor Model
e The Generalised Crossover Model

These models will not be discussed here, for more information refer to (Coley| (1999).

5.3.1 Towards Population Size

These studies indicated that larger populations result in improved offline performance, which results
in better convergence. This increase in offline performance is due to a bigger pool of diverse schemata
that is accessible by the algorithm. However, with an increased population size the online performance
is poorer in the early stages of the algorithm. Smaller populations are more agile which results in

higher initial online performance (Goldberg, (1989).

5.3.2 Towards Mutation Rate

An increased mutation rate can help maintain diversity by resisting premature allele loss. Too high
a mutation rate will however affect the run negatively, resulting in a decrease in offline and online

performance. Offline performance begins to mirror random search performance when the mutation

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. TEST FUNCTIONS 50

rate becomes too high. A mutation probability of 0.5 is simply random search; this is irrespective of

the values of the crossover probability and population size (Goldberg, [1989).

5.3.3 Towards Generation Gap

De Jong found that non-overlapping population models provided better results for optimisation, with

the major influencing factor being the offline performance (Goldberg), [1989).

5.3.4 Towards Crossover

De Jong also performed tests on crossover probability. De Jong suggested that a crossover probability
of 0.6 provides a good balance between offline and online performance. Later studies suggested higher
crossover rates with improved selection methods.

The generalised crossover model showed that there was a relation between the number of crossover
points (CPs) and performance, increasing the number of points decreases both offline and online
performance. The number of distinct operators involved in this process offers an explanation to the
observation. For one point crossover, there is a set of [-1 operators. CP = 2 has (}) combinations
to select different CPs. Generally there are (Lp) combinations. This implies that as CPs increases,
the number of combinations decreases, resulting in a lower probability for selecting a specific operator
during a specific cross. This leads to increased mixing and a decrease in structure. In other words,

the process becomes random and a significant increase in the loss of important schemata (Goldberg,
1989)).
5.3.5 Towards Elitism

De Jong came to the conclusion that elitism promotes local search by sacrificing some degree of global

perspective (Goldberg, [1989)).

All of the deductions above will be taken into account when running the algorithm in order to achieve

the best possible results.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Advanced Operators

There are a variety of ways to improve the performance and robustness of the algorithm, or to make

it more problem specific. The methods below offer solutions to difficulties found in real life problems.

6.1 Combinatorial Optimisation

For many real life problems, the aim of optimisation is not to optimise a simple chain of real valued
parameters, but to determine an ultimate ordered output or list as in the case of the Travelling Salesman
Problem. In this problem, a salesman has to travel the shortest route between a collection of cities
and has to visit each one (ideally, a city should not be visited more than once). Structural design is
also an example of a combinatorial optimisation problem (Coley, (1999).

The biggest challenge with combinatorial optimisation problems and genetic algorithms is the
potential for the algorithm to choose infeasible tours due to crossover and mutation. For illustration
purposes, refer to figure where each dot represents a city.

Possible tours might be:

— fceglabdh
— abfg|cdhe

a3
af ad
aC
ab ah
ac
ag

Figure 6.1: Combinatorial optimisation: Find the shortest distance between the cities

51

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. ADVANCED OPERATORS 52

For a single point crossover at for example the indicated point, the following children are obtained:

— fcegcdhe
— abfgabdh

It is clear that both these children are infeasible, as the routes that they describe visit some cities
more than once and others not at all. Therefore, the crossover operator needs to be changed so that
it will only generate feasible results. A city can only be visited once in the case of strings with fixed
lengths. |Coley| (1999) explains that there are a number of techniques to deal with the crossover prob-
lem, one of them being to simply proceed with crossover as usual and then to discard any infeasible
outcomes. However, the aforementioned is not a very effective technique. It should be noted that the
location of gene and its allele value are not unrelated. In other words, the location and value of a
bit are both independently significant. In fact, order is the only thing that is of importance for the
travelling salesman. Preferably, crossover and mutation must operate in such a way as to both produce

feasible results and combine building blocks that produce fitter offspring (Coley, [1999).

6.2 Niches and Species

Niches and species can be used to locate alternative solutions. To find the best solution for a problem
that is large and complex might be to find an answer that is only in the proximity of the true global
optimum. Even so, some problems need a series of solution options. For these problems the options
which dwell in the vicinity of the optimum need to be found. In these cases it is highly probable that
such solutions are separated by ‘bad’ regions. Therefore, contrary to the norm, the intent here is to
find local optima. However, an interesting question arises, why seek local optima when any point close
to the global optimum is highly likely to have a higher fitness? To answer the question, consider the
following example presented in [Coley| (1999)):

Consider a structural problem where z is the slant of the roof and f is some inverse cost function,
then it can be understood that each optima represents a noteworthy solution, refer to figure[6.2] These
solutions are indeed good, even though they are not the best. They offer a number of financial schemes
for a variety of different roof constructions. If cost was the only constraint, then the global optimum
x* would have been the best. However, for any additional constraints such as specifications on the
slant (enforced by the practicability of construction, requirements from the client or visual qualities)
then any of the other solutions (z1, x2, 23) could be of interest, even though they are more expensive
(have a lower fitness). Granting that there are a number of solutions in the vicinity of the optimum

that are less expensive than the local optima, their proximity might be too limiting on the slant of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. ADVANCED OPERATORS 53

=

x3!

E
b =
.--"'/

—
1
~
/v"’"
T

Figure 6.2: Local optima

the roof and could therefore proof to be infeasible. On way of finding these local optima in complex
search spaces, is through niches and species. In the natural sense, to subdivide a search space into
niches by species (subgroups of a population) is a common phenomenon. When it comes to genetic
algorithms, the niches imply some form of a fitness sharing and the species imply limits and restrictions

on mating partners. Partners who will be able to breed must be of certain resemblance and be related

to a satisfying extent (Coley, 1999).

6.2.1 Sharing

Consider two gambling machines and a certain number of players. If both machines pay out the
same amount within the same time frame then players can divide themselves equally to play on these
machines, where each player will receive maximum prize money (given that the money won at a
machine is distributed equally amongst the players, the money is shared). However, in the case where
one machine pays out more than the other in similar time intervals, then more players should move
over to that machine so that each will still receive maximum prize money. It is obvious that if the
players were to stay as they were in the first case, then one half of the players will receive more prize
money than the other half. If it was just a free for all and no sharing was involved, then all the players
would sooner or later end up at the machine that pays out the most money. The players that have to
share their winnings at the machine that pays out less will learn that even though they might not win

as much money in total, they still receive the same amount individually because there are less players

to share with. In this case it is sensible to form a niche (Coleyl [1999).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. ADVANCED OPERATORS 54

12

0000 1111

0011 1100
0.4
) \ /
8] T T T T Pt T T T T 1
-1 -08 -0.6 -04 -02 o] 0.2 04 0.6 0.8 1
X

Figure 6.3: Speciation

6.2.2 Species

Normally, mating does not occur between differing species. Thus far, the discussions on the genetic
algorithm have not considered such restrictions. There might be an advantage to consider species in

the algorithm, consider the following strings with single point crossover:

- 00]00=-1
- 11]11=1

For both of these points on the x axis, the fitness is {(x) = 1, refer to figure[6.3] However, crossover

of these two highly fit strings produces the following:

—- 0011
— 1100

The fitnesses of the offspring is now ((z) = 0.4 (nowhere near optimal), see figure[6.3] Even though
both the parents performed very well, their children performed poorly. The parents’ failure to produce
highly performing offspring lie in the fact that they are from different locations in the landscape, in

this case it makes sense to allow only for parents to mate with individuals of their own liking.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. ADVANCED OPERATORS 55

6.3 Hybrid Algorithms

Genetic algorithms are good at tackling large and complex search spaces, but finding the true optimum
proves to be challenging for it. Genetic algorithms have very good performance in the initial stages of
the search, but the performance decreases later in the search as localised search begins. It makes the
genetic algorithm the perfect means to start a search and to navigate through the space to locate the
near optimal solutions. The genetic algorithm would mostly find the optimum given that it had enough
time. However, time is usually not enough and is a very big factor in optimisation methods. Therefore
it is worthwhile to consider some form of collaboration between those methods that perform well at the
start and process the bulk of the search space, and those methods that are perfect at the end to lead
the search to the optimum in the final moments. These end methods are typically more traditional
methods. In other words, use the genetic algorithm to find the hill and a more specialised traditional
method to climb it, thereby forming a hybrid algorithm. The easiest way to construct such a hybrid
algorithm is to make the solution from the genetic algorithm, which was obtained after certain criteria
were met, the starting groundwork for the traditional method, in which case a real valued vector would
be used. The traditional method is chosen based on its ability to solve the specific problem. It is also
possible to continue the final stages of the search in binary code. For example, the search can climb the
local hill by mutating each bit in the string separately and then reassessing its fitness. The mutation is
only regarded in the search if the fitness has increased. Another way is through addition or subtracting
of 1 from the binary string and then yet again only regard the operation if it has improved the fitness.
This is done for all the unknown parameters. If it should prove to be beneficial, then such methods
can be applied at any point in time during the run and not only at the end of the search. However, it
would be a mistake to desert the genetic algorithm too soon in a complex and difficult search space,
as it can result in a fallacious solution. Other techniques include the use of heuristics, in which case
child strings inherit certain traits to speed up the search. Another way to speed up the search is by

only using approximated fitness estimations initially (Coleyl, [1999).

6.4 Additional Advanced Operators

There are numerous other operators which can be applied to the algorithm, examples of such are:
e Advanced mutation
e Dominance and diploidy
e Abeyance
e Inversion

These are simply mentioned for completeness sake and will not be discussed here. For more information

refer to |Coley| (1999) and |Goldberg (1989).

Stellenbosch University http://scholar.sun.ac.za

Part 111

Implementation

56

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Modelling

In general, a structure is a system of nodes and elements, where nodes are connected by elements. A
plane truss is a system of elements or members that are pin connected, where the whole structure lies
within a single plane. There are no moments at joints due to pin connections which results in one
degree of freedom in the axial direction. The applied forces must be in-plane forces for such a plane
structure. Distributed beam loads may by represented by statically equivalent loads at the appropriate
nodes for analysing purposes. This type of analysis, which is only subjected to nodal loads, will only
produce axial member forces in tension or compression. On the other hand, a space truss can have
members in any direction in space, not just members in one plane. This type of truss tolerates forces
from any direction, however, the type of element remains the same (Coello et al.l [1994]).

The model may be subjected to loading and constraints, once it has been properly defined. The
type of model governs the type of forces it can carry.

This study commences with the use of truss elements. This results in a truss type structure, with
one degree of freedom in the axial direction of the element, refer to figure Loading may only be
applied at the nodes. Fixity may only be specified in terms of translational restraints, as all nodes are

pin connected. The truss structural element needs only a specified cross sectional area. The length of

Fzo,Woy o
FYZ‘VZ "o".zvf"Auﬁ'

FX2< U2

Fyi, Vi | rzw'wi/ X,U
Fx1,Us

fy, Uy

ZW,

Figure 7.1: The truss element in space (Auer} 2005)

57

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 58

the element is determined by its nodal coordinates. Figure[7.1]illustrates a truss element within a three-
dimensional space, with local and global reference systems and degrees of freedom. Bold and capital
annotation represents the global coordinate system and faint and lowercase annotation represents the
local system. UVW refers to global displacement directions, XYZ are the global coordinate directions.

The numbers 1 and 2 refer to the two end nodes of an element.

7.1 Genetic Parameters

The benchmarking problems were performed with genetic parameters as specified in table unless
otherwise indicated. No sensitivity studies on these parameters are presented here as it is not directly
aligned with the main aim of this thesis. Multiple runs were performed to establish which parameters

result in the best outcome.

Table 7.1: Genetic parameters

Parameter Value
Crossover probability 0.85
Mutation probability 0.005
Population size 50
Maximum number of generations 5000
Scaling constant 1.5
Number of crossover points 1
Elitism TRUE
Selection with replacement TRUE

7.2 Mapping the Structure to an Individual

Each individual in a population offers a solution to the problem, where an individual consists of a
collection of chromosomes which describes it (refer to section |4.2.1). Hence, the algorithm would
offer a 100 solutions for a population of a 100 individuals. These solutions typically converge to the
same value late in the search when a near optimum has been found. A specific chromosome in an
individual refers to a specific element in the structure. This chromosome contains information such as
the element’s cross sectional area and orientation in space, to name but a few. The binary string length
of a chromosome is dependent on the size of the section list from which the algorithm can select discrete
member sizes and other information. The binary string must be of such a length as to ensure that it
can decode in a manner which allows the search to access every entry in the section list. Figure [7.2]
illustrates the relationship between chromosomes and truss members. This figure also illustrates the
concept of grouping (explained in section [7.3), where (for example) all red members are represented

by the same chromosome. In such a way the whole structure is translated from an engineering model

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 59

r Chromosome: 010011

Chromosome: 111001

Individual: 010011101101111001...

Figure 7.2: Converting the engineering model into a genetic model

into a binary genetic model consisting of individuals, chromosomes and genes. This conversion allows

for the algorithm to apply all its genetic operators discussed in section [£.4]

7.3 Grouping

Each member in a structure can be directly mapped to a new chromosome, however this might not
always be a practical, or even the best, approach. For certain cases it might be vital to retain symmetry
within the structure due to reasons such as practicality and simpler construction methods. In such a
case, certain members should be exactly the same in order to produce a symmetric structure. Another
motivation for symmetry is to accommodate reversed loading; for instance, wind might blow from the
opposite direction than originally described by the model loading and hence the structure needs to be
designed for this reversed loading case as well. A means of achieving symmetry is through grouping.
Grouping reduces the number of design variables for a given problem, therewith reducing the search
space size and computational time required to execute the algorithm. Grouping might, for some cases,

be the only way to solve a problem, even if symmetry is not required. The reason for this drawback is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 60

limited computation time. Consider a section list of 40 sections; this requires a minimum string length
of 6. This will result in an individual string length of 3000 for a structure of 500 elements or 500 design
variables. Also take into account that the genetic algorithm does not operate on an individual, but on
a population of individuals. It would be beneficial to decrease the number of design variables through
means of grouping. This study did not investigate the upper bound of the number of design variables
that a genetic algorithm can handle effectively due to computation time restrictions.

Member grouping can either be decided a-priori, or performed by the algorithm through a grouping
strategy. In this study grouping is defined by the user. It could be argued that the solution might be
suboptimal due to the predefined grouping order. The predefined grouping order might result in a case
where, given that the optimal structure was known, members of that optimal structure with different
cross sections are placed in the same group. In other words, the user grouped members into the same
group that should not be in the same group. In this way the optimal structure cannot be found by the
algorithm.

A grouping strategy should be as such that the final solution contains the smallest number of cross
sections with as much as possible search space reduction (Togan and Daloglu, 2008). A simple strategy
suggested in [Togan and Daloglu| (2008)) initially involves assigning the same cross sectional areas to
all the members in the structure. An analysis is performed on this structure, where after the internal
forces are divided into groups based on the magnitude of these forces obtained from the outcome of
the analysis. An initial round of grouping is performed by grouping elements with forces of similar
magnitudes. Tension and compression members fall into different groups. Members with zero force or a
very small force are placed in a separate group. This method could be refined by grouping tension and
compression members by different criteria. Tension members are still grouped by their internal axial
forces, however compression members are grouped based on their slenderness ratio. The genetic algo-
rithm is therefore only aware of the number of chromosomes (the number of groups), where the finite
element analysis is aware of all the members in the structure. The more criteria exerted on a grouping
strategy, the better the outcome will be. This is due to the fact that a group can only perform as
well as its weakest member. The lightest structure will be produced for the case of no grouping, given

that symmetry is not required and that there is enough computation time to accomplish such a solution.

According to (Togan and Daloglu), [2008)), grouping has the following advantages:
e Search space reduction
e Increased probability of finding the true optimum

— This advantage is mainly based on the fact that there is very likely not enough computation

time to solve for every element in a large realistic structure

e Enhanced algorithm performance

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 61

— Due to shorter string lengths

7.4 Comments on CPU Time

The analysis of the space truss, when compared to a planar truss, requires more CPU time as there
are more global directions, even though the space truss could potentially have less design variables
(which results in a smaller search space). This is due to the additional unknown forces that could
potentially act at a node. The algorithm requires an analysis whenever a design variable or member
of the structure was modified, in order to calculate the fitness and performance of the structure based
on the outcome of the analysis. The algorithm can establish feasibility once the analysis is done. An
analysis has to be performed for each individual in the population for every generation, before and
after modifications to the element. Therefore, for a population of a 100 and 5000 generations, the
program would perform a million finite element analyses. Keep in mind that a population of 100 is still
relatively small, greater populations might be needed for cases where greater exploration and diversity

are required.

7.5 Deflection Criteria

The algorithm makes use of Table D.1 - Maximum deflections at serviceability - |[SANS| (2005) for the
case where deflections are not prescribed. The structure, for this case, is assumed to be an industrial
type building, where its span is open to the interpretation and engineering judgement of the user.
The structure is penalised as a whole, instead of penalising individual nodal displacements for each
element, as is done for stress violations. This is done by assigning the maximum nodal displacement
in the structure as the whole structure’s displacement. The maximum allowable deflection that a

structure may undergo is assumed to be 1/180 of the ‘span’ length (if no deflection limit is prescribed).

7.6 User Input Required to Run the Program

At start up, the program asks two inputs, the genetic parameters and the actual model, refer to fig-
ure The genetic parameters are simply a list of parameters which the algorithm will need, refer
to figure 85} The model, however, has a few steps which need to be completed. Users communicate
the structure that they want to model through an Excel spreadsheet, hence the user needs to provide
the file path to this document. The input must be in exactly the same format as shown in figure [7.4]
this includes units (forces in Newton and nodal coordinates in meters). Columns J and K in figure
are element definitions. The element number associated with this definition is in column I. Grouping
is defined from column L onwards. In figure [7.4] there are 7 groups; group number 2 contains elements

number 2,3,4 and 5.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 62

fa ™
s cri=n D (=

File

Structural Optimisation via Genetic Algorithm

First set GA Parameters then set the FEM parameters after which the algorithm will run

FEM Analysis

L

Figure 7.3: Program start-up

Next, the user must supply a section list which the algorithm can use, this is also done in an Excel
spreadsheet. For this case however, the user has to indicate which columns in the sheet it must read.
The navigation tab allows for a user to specify which columns are assigned to which section property.
For example, a user can specify that the area column is column 5. This allows for the user to create

any section list with any number of elements.

A B @ D E F G H 1] K L/IM|N O|P|Q]|R
1 |Node X [m) v (m) z (m) Fixity Fx (M) Fy [N} Fz (M} Elements Grouping
2 1 09525] 5.08 4440 816 -444982 4440216 1 1 2 1 2 & 10 12 14 18
5 2 0.9525 o 5.08 -44488 2 -4448R 16 2 1 4 3 7 11 13 15 19
4 3 -0DB525 08515 254 2224908 3 1 5 4 B 16 20
5 4 09535 09525 254 4 2 3 5 9 17 21
6 5 09525 -0.9525 254 5 2 &
7 6 -0.9525 -0.9525 254 2669.8806 & 1 3
] 7 -2.54 254 0 ALL_TRANSLATION 7 1 &
9 B 254 254 0 ALL TRANSLATION] 2 4

Figure 7.4: Excel spreadsheet user input for creating the model

The general tab contains fields such as the number of entries in the section database, the number of
nodes and whether the structure is 2 or 3 dimensional. These input parameters are not only important
for the finite element model, but also because they enable the program to read the spreadsheets
accurately. These values, together with the number of design variables (obtained from the genetic
parameters) and information on grouping, completely navigate the algorithm through the model input
spreadsheet. Lastly, the user can define the structure’s span, refer to section [7.5

The properties tab contains input fields such as the modulus of elasticity, Poisson’s ratio, density
and the steel’s yield stress, see figure [7.5] It also allows for the user to indicate whether the structure
was grouped, in which case the actual number of elements for the structure must also be provided.
This extra input value is necessary, as the number of chromosomes and the number of elements will no
longer be the same value if grouping in implemented. Lastly, this tab allows for the user to indicate

whether frame elements must be used instead of truss elements, refer to section [15.2.4]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. MODELLING 63

File Edit

| File Path | General |} Froperties’| contraints | Navigation |

Modulus of Elastidty | 200800 Grouping? {¥/N)
Poison's Ratio 0.3 MNumber of Elements
Grouping Column

Frame Truss Element

Density

Yield Stress 355

Figure 7.5: User input for the material properties, grouping information and type

of element to be used

The constraints tab consists of two parts. The one part is for the case where stress and displacement
constraints are simply assigned predefined values. This part is activated for the case of benchmarking

problems. The other part creates the option of implementing the South African design code,

(2005).

Stellenbosch University http://scholar.sun.ac.za

Chapter 8

The Program

The program is an object oriented program which was written in Java and can be divded into two
distinct parts; optimisation of the design problem and structural modelling and analysis. These two

parts are completely separate, they are even coded in separate packages.

8.1 Approach to Implementing Structural Optimisation

The implementation process, as illustrated in ﬁgure starts with designing the structure (the design
parameters are generated), after which solutions from the optimisation process are analysed and eval-
uated. The structural variables are adjusted according to the outcome of the analyses. In this study,
the design process (selection of design variables), optimisation and evaluation will be performed by the
genetic algorithm and the analyses of the solutions generated will be performed by the finite element
method program. The finite element method program discretises a structure and operates by solving
systems of equations. Just as the finite element method moved structural analysis away from functions
towards discrete values at nodes, so too, in contrast to earlier techniques, did evolutionary algorithms
move optimisation away from searching for that optimum analytical function to rather searching for
optimum values in a discretised search space. The finite element program needs to analyse the prob-
lem repeatedly throughout the optimisation procedure, it is therefore recommended to use a relatively
crude finite element method model in order to be computationally effective. Once the programs have
looped and are now at the second generation or beyond, the outcome of the finite element program
will serve, together with the objective function, as a guide through the search space in the quest to
find the optimal structure. This outcome is in the form of internal element forces and a structural
displacement. The algorithm will then commence with the redesign. The two programs will, in such
a way, work together toward a common goal; they will run concurrently until optimisation conditions
are met, or a given number of loops were performed (generation counter).

The program makes allowance for the use of both classes 3 and 4 members (refer to section m

and figure [12.3)) for the implementation of the South African design code. Limiting the search to class

64

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 65

Segregated o
GA
Adaptive

Penalty Function

Genetic Algorithm

Objective
Function
Evaluation/Re-
evalvation

Analysis/Re-
analysis

Figure 8.1: The design process

3 elements would only produce a near optimal result for the constrained search space of class 3 only
sections, however it could result in a suboptimal solution for a realistic steel structure where no such
limitations are necessary on the search space. The program was only coded for equal leg angle sections

in order to avoid unnecessary complexities, such as shifted shear centres.

8.2 Characteristics of the Program

The number of sections that the user can consider in the search is not limited; the user can simply
compile a master section list which contains all the desired sections. The same is applicable to loading.
Unique test lists can also be compiled. Load cases are considered separately. The user must create a
new combined load case, for the case where load cases need to be combined. The program terminates

after the specified number of generations has been executed.

8.3 Pseudo Code

This section provides a step by step description of the algorithm. Figure 8.2 is a graphical illustration

of the complete program.

Step 1: Set the parameters
Step 2: Generate initial population
Step 3: Decode the chromosomes

Refer to section [4.5.1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM

Step

Step

Step

Step

Step

Step

Step
Step

Step

Step

Step 14:

10:
11:

12:

13:

Create finite element models
Analyse the finite element models
Obtain initial element forces and the largest displacement for
each individual
Begin genetic algorithm:

for g = 1 to number of generations
Evaluate the objective

¢Pp,i for (¢ = 1,2,...,n)

Refer to section
Find the fittest individual with regard to ¢,
Find the weakest individual with regard to ¢,
Evaluate fitness

¢ for (i = 1,2,...,mn)

Refer to section

Obtain statistics
n
Csum - Z Q
i=1

¢ — Csum
ave n

for ¢+ =1 ton
if (¢ > Cmax)
then (max = (i
end
end
Scale fitness
Csum =0
if (cm 7# Cmax and Cmax 7 Cave)

(em=1)Cave

Cmax —Cave
b=(1-a)Cave
for ¢ =1 ton
G =aGi+b
if (¢7 <0)

then a =

end
Coum = Coum + ¢
end
G = S
end
Select
create random number rouletteW heel = random number * (sum
sum = 0

while (sum < rouletteWheel and ¢ < n)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 67

sum = sum + (;
increment ¢
end
individual ¢ will be selected
Step 15: Crossover
if (random number < p.)
perform crossover, refer to section
end
Step 16: Mutate
For each individual [:
for k =1 to L
if (random number < pm,)

then if (I = 0)

then I =1
end
else
I, =0
end
end
end
Step 17: Create finite element models from new population
Step 18: Analyse the finite element models
Step 19: Obtain initial element forces and the largest displacement

for each individual
Step 20: Elitism
if elitism is true
if (Cmaz,otd > Cmaz,new)
place the fittest individual of the old population
at a random position in the new population
end
end
Step 21: Update the temporary population’s attributes after modifications
Different force and displacement values
Step 22: Replace the old population with the new population
temporary population — current population

Step 23: g=g+1

68

POT[}9UI JULUID[99INY PUR UIILIOF[R O1)oUeS PouIqUIOD oY) Jo ureiderp Mo[q :g'g oIndrq

e SR JBWB[F B)ul4

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM

ssauyy vonendad sy puig

[ENDIAIPU| 1S8%EBM BU) PLIZ

a0 ale sAELUR

[ENRIAIPU 153N pUid
uofendod mau ey HosyD

¥

uonended feioduws)
ynm uonended jusuns eejdey
wyiuoBy " Juswsoe|ds|p
aBusg Jo UeIg pue feue 800} Ue0
F3

uoendod . sassny sishjgue > ndod ss

JuBLInD SjEa) "| youonendod ejesi) ™| 1oy spowu 34 eieesn H o na esiiery
F

Luyjuabe n sauadoud apow ‘eseqeEp . suiEaweed -

Jopsfeuejeg uonoss ndul jppow uegn | anauab wegn

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM

GAMain

;

Modellnput

.

69

TrussPopulation

;

FrameMain
FrameParameters FrameTruss
Algo:ithm
!
Population Memberﬁtﬂributes
} !
Individual FemModel

8.4 Towards the Finite Element Method

An analysis can be linear or non-linear. Secondary (or P-Delta) effects are ignored for the case of
a linear analysis. On the other hand, the whole structure is in equilibrium for its deformed state
in the case of a nonlinear analysis, therefore the secondary effects are taken into account. Elastic
buckling can result from secondary effects.
buckling has occurred by either not converging or resulting in extreme post buckling displacements.
A linear analysis will not be able to detect buckling. This implementation will make use of a linear
finite element analysis, secondary effects are not explicitly taken into account by the analysis program,

however buckling is taken into account when the fitness values are calculated for the case where the

South African design code is implemented.

8.5 Discussion of Essential Classes

Analysis

Figure 8.3: Basic structure of the program

Figure 8.3 illustrates the relationship between all the different program classes.

A nonlinear analysis will be able to indicate whether

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 70

8.5.1 Population and Individual

The algorithm operates with two populations, the current population and the temporary population,
refer to figure 8.2. The current population’s function is to carry information from the one generation to
the next. All changes which are made to the current population are stored in the temporary population.
The temporary population will replace the current population only after all the modifications to the
individuals are complete. A population is an array of individuals and an individual is an array of
chromosomes. Each chromosome is a new design variable for a given structure. However, the individual
is simply an integer array which is initially populated at random, where after it is adapted by the
algorithm. A binary encoding scheme was used for the individuals, therefore the integers used for

populating the arrays were only 0 and 1. Refer to Appendix for complete code extracts.

8.5.2 Truss Population

The truss population contains a population of finite element models, named FemModels. A FemModel
is an object which has attributes such as material, load, support, node and element. These attributes
help to model the actual structure. This class acts as an interface between the genetic algorithm and

the finite element method program.

8.6 Notes on Functions

Only a few selected functions will be discussed and special features will be highlighted, such features

may in some cases simply specify which approach the algorithm implemented.

public void setArrays(FrameParameters gaParam, ...)

This method is activated before the algorithm is started. It serves to read all the excel input files’ data
into arrays. Arrays are created instead of real-time reading from file because real-time reading takes
an excessive amount of time. These arrays contain model information and section properties and will

remain unchanged throughout the run. This method creates:

e Arrays to be used in the objective function

The radius of gyration array

— St. Venant’s torsion constant of cross section array

The thickness array
— The cross sectional area array

— The lengths of all members array

The distance to shear centre array

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 71

— The moment of inertia array
e Arrays to store output from the finite element analysis

— The force (double) array

— The displacement array
e Arrays to communicate with finite element analysis

— The femIndexArray

— The femFElementArray

The force matrix, which will only be populated after the finite element analysis is run, is initialised
here. The force double array is a matrix, as each individual ¢ will have a force for each chromo-
some/element e, F = F; , for i = 1,..,number of individuals and e = 1, ..., number of elements. The
displacement array is also initiated here; however it is simply a vector as each individual only has one
overall displacement value. Only the largest nodal displacement in the structure will be used in the
penalty function, where the structure will be penalised as a whole, refer to section [7.5] In other words,
each chromosome is assigned a force and each individual is assigned a deflection.

The femIndexArray is used only for grouping, refer to section It acts as a mapping device from
the individual (which will only know the number of design variables/chromosomes) to an array which
the analysis will use (which will be the size of the actual number of elements in the structure). The
genetic algorithm is only ‘aware’ of the chromosomes, the finite element method program is ‘aware’ of
the whole structure. The femFElementArray is simply a means for the algorithm to determine which

element is part of which group.

public double findObjectiveFunctionValue(Individual individual, ...)

This method does not simply determine the weight of the structure (as the objective is to minimise the
weight), but also enforces a penalty on individuals with constraint violations. The function is divided
into two sections, the first section calculates the penalised objective function value (¢,) based on the
design code. The second section is a set of simpler checks for the case of prescribed constraints in order
to execute benchmarking problems. The first section is then further subdivided into two sections, one
which performs calculations for circular hollow sections and the other for equal angle sections. These
calculations are only performed for the number of design variables and not the number of elements in

the structure, hence saving computation time.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 72

8.6.1 Objective Function Value Calculation: Equal Leg Angle
8.6.1.1 Classification: Equal Leg Angle Sections

The SANS 10162-1 code classifies a section as either class 3 or 4, depending on its width to thickness

ratio:

S

b _ 200
LoV

for the case where this condition holds, the section can be classified as class 3.

(8.6.1)

8.6.1.2 Check for Slenderness

First the algorithm establishes whether a member is in tension or compression, where after the member
is checked for slenderness according to SANS 10162-1. The maximum slenderness ratio for members
in compression shall not exceed 200 (SANS| 2005).

KL

—— < 200 8.6.2
- (562

The maximum slenderness ratio for members in tension shall not exceed 300 (SANS, [2005).
KL

— < .6.
7 <300 (8.6.3)

The member is immediately penalised if these conditions are not met. The penalty parameter is a
variable declared at the start of the function. The penalty is increased for cases of constraint violations
and will be updated as the function continues through all the checks. For pinned connections the
effective length is simply taken to be the length of the element. In this case the penalty for individual

1 for a slenderness violation of element e in generation ¢ is as follows:

KL

I (8.6.4)
. — € -1
9t = 350R-

A thorough background to penalty functions is provided in Section [4.6] The function can also check
for redundant members, however these elements are simply defined for elements which carry no force.
Such elements might be needed to avoid mechanisms and it should only be classified as redundant if
it be redundant for all the relevant load cases. For the case of compression, the penalty for individual

1 simply changes to:

L ga.e(t) (8.6.5)

= —1
200R.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 73

Figure 8.4: Equal leg angle section

8.6.1.3 Determine Capacity of the member
The allowable force for each member is calculated according to SANS 10162-1 for both tension and
compression in order to establish whether a particular element has a constraint violation.
Tension
The tensile resistance of a member was taken as:
T, = ¢pstAgfy with ¢ = 0.9 (8.6.6)
The tensile resistance of connections are not taken into account and therefore also not their respec-

tive net effective areas.

Compression
The equal leg angle section is singly symmetric (see figure [8.4]), therefore for torsional or torsional-

flexural buckling f. was taken as the lesser of f., and fe,..

Torsional or Torsional-Flexural Buckling:

mFE
fey == ﬁ (867)
(%)
Ro=u?+vd+ R+ R? (8.6.8)
GJ
fez E— (869)
2 2
Q=1 M (8.6.10)

Ry

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 74

ey T Jezx 4fe ezQ
foe = % (1 _ \/1 _ (fi?ff)z> (8.6.11)

(8.6.12)

Flezural Buckling:

_ e
A= \/f» (8.6.13)

fe is taken to be the lesser of f., and f,..

Cr = pstAgfy (L+2") ™ (8.6.14)

with n = 1.34 and ¢4 = 0.9

According to table 3 in [SANS| (2005) an element is of class 4 if condition [8.6.15| does not hold and

might therefore require an area reduction.

b 200
S = (8.6.15)
t A/ fy
For the case where W < Wy;,,, no area reduction is necessary.
b

|kE
Wiim = 0644 [== with k= 0.43 (8.6.17)

f is a reduced calculated stress, taking into account slenderness and buckling (< f,). f is taken as

qg(with ¢ = 0.9. For this case the effective area of the section remains the gross area, Acrp = Ajy.
g

However, for the case where W > Wy, a special area reduction on the element is necessary and a new

compressive capacity is calculated from the new effective area.
kE 0.208 [kE
bnew =095t | — (1 — ——4/ — 8.6.18
\/ 7 (w7) ()

Aeff = Ag - (b - bnew)t (8619)

The new effective area:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 75

The new capacity of the element:

Cr = ¢Acssf (8.6.20)

The penalty is once again activated if the force from the analysis is greater than the allowable force
(T’ or C;), depending on whether the element is in tension or compression. For this case the penalty

for individual 7 is as follows:

9g3,e(t) = (F - 1> (8.6.21)

Fallowable

F, is the actual force in member e and Fyjjowapie is €ither T or C). depending on the analyses output.
The displacement constraint is typically prescribed or is a calculated assumption based on SANS 10162-
1. If the user does not specify a deflection limit, then the algorithm would assume a deflection limit
of span divided by 180 based on Annex D, see section [7.5] This is however an assumption where the
span has to be interpreted, i.e. as the height of a tower or the span of a dome or even some multiple
or variation thereof. Penalty for individual ¢ is activated for the case where the largest deflection in

the structure, as determined by the analysis, is greater than the deflection limit.

D reates
ga(t) = (9” - 1) (8.6.22)
Dallowable

For the second part of the function, where constraints are only prescribed, the penalties are calcu-
lated in the same way, however without calculating the allowable force, displacement and slenderness
limits. The allowable force and displacement are simply taken as prescribed values. The overall penalty
approach adopted here is the additive approach, refer to equation where the penalty terms are
simply added to the objective function in order to created the augmented penalised objective function.
A higher objective function value will result in a lower fitness function value. For the case where no
constraints are violated, ¥ (x) = 0. This implementation used an exterior penalty method, refer to

section The overall violation for individual 7 is measured by ;:

M
¥i(t) = [Z reGel with ro = 1 (8.6.23)
e=1
4 B
G. = max [O,Zg&e(t)] with 8 =2 (8.6.24)
s=1

A simple penalty parameter (250) was multiplied to the constraint functions after all the constraints
have been checked, instead of multiplying each violation with a small amount r.. It is easier to check
what the effect of the penalty parameter is on the performance of the search by applying the term in
this way. After all the penalty calculations have been performed for each element in an individual (),
the function calculates the mass of the structure. The objective function is simply the weight of the

structure, ¢; = d - mass;, where d is the density. The penalised objective function value (¢; ,) is the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 76
- B
| £| Genetic Algofhm Input F_':ammeters ‘ & ‘I_Elﬁlg
File Edit
Population Size 40| Select for Elitism
Mumber of ChromosomesDesign Variables 33 Select for Replacement
Maximum Mumber of Generations 500
H Crossover Probability 0.8 1
(@ Static Fitness Function
Mutation Probability 0.005 _ o .
(") Dynamic Fitness Function
Scaling Constant L5 () Normalised Fitness Function
Mumber of Crossover Points 1
I
=

Figure 8.5: Genetic parameter and fitness selection options

product of density and mass of the individual, plus the penalty function value. The exterior penalty
was slightly modified into a dynamic penalty function by incorporating the generation count (¢), see

section

Gip(t) = ¢; + 1250 ¢ (8.6.25)

The generation count simply refers to the number of generations already executed, this implies that
the severity of a penalty violation increases as the run progresses. The penalty parameter is simply
a constant number which amplifies the penalty term. For this study, this parameter was chosen to
be 250 as it resulted in the best performance for the algorithm. It was discovered that this number
in combination with the maximum number of generations greatly affects the search. The greater the

maximum number of generations, the smaller the penalty parameter needs to be.

public double findFitnessFunctionValue(Individual individual, ...)

Calculating only the objective function would not suffice as a genetic algorithm is a maximisation
algorithm, see section The fitness function value needs to be calculated in order to convert the
problem from a minimisation problem to a maximisation problem. The algorithm allows for three

different approaches to fitness, see figure Approaches to fitness are discussed in more detail in the
subsection [£.5.2]

8.6.2 Static Fitness

The fitness is simply calculated by subtracting the penalised objective function from a very large

constant value, refer to section

¢; = 1000000000 — ¢; (8.6.26)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 77

8.6.3 Dynamic Fitness

This approach ensures that the individual with the highest objective function value (lowest fitness) will

be assigned a proportional value to that of the lowest objective function value, refer to section

Ci = ¢min + (bmax - (bi,p (8627)

8.6.4 Normalised Fitness

The normalised fitness approach scales fitness values to fractional sizes, refer to section £.5.2.2]

1
¢y (1000 v+ 1)

Gi (8.6.28)

public void statistics()

This function simply needs to calculate the sum fitness, the average fitness and the maximum fitness

of the population. These values are important for functions such as elitism, refer to section [8:3]

public void scaleFitnessFEM(double[] largestDispl,...)

The algorithm makes use of linear fitness scaling as discussed in section [4.5.3

public Individual select ()

The algorithm implements the standard Roulette Wheel Selection, refer to section d.4.1

public void crossover ()

This method is not limited to one point crossover, the number of crossover points are defined by the
user. It contains a built in check, as a specific crossover location can only be used once in cases where
the number of crossover points are more than one. One point crossover produces a whole new struc-
ture, which behaves completely different (structurally) compared to the two parent models. It seems
that the difference between 1 and 2 point crossover is rather insignificant, due to the rather similiar
‘magnitude in difference’ of the offspring. Performance decreases once the number of crossover points
reaches 3, one could argue that this is the point where the search becomes too random. However, there
is an argument that states one point crossover should technically produce the best results, refer to
section The function uses the select function until the population is completely populated with

the method of replacement.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 78

if (Math.random() <= CROSSOVER_PROBABILITY){

//Perform crossover
for(int k = 0; k < CROSSOVER_POINTS + 1; k++){

begin = crossoverPoints[k];

end = crossoverPoints[k+1];

if (k>0)
end = crossoverPoints[k+1] - 1; //check for overlap

if (k==CROSSOVER_POINTS) //check for last point
end = crossoverPoints[k+1];

if (counter % 2 == 0){
for(int m = begin; m < end; m++){

childl.individual [m] = parentl.individuall[m];

child2.individual [m] = parent2.individuall[m];

}
}
elseq{
for(int m = begin; m < end; m++){
childl.individual [m] = parent2.individuall[m];
child2.individual [m] = parentl.individuall[m];
}
}
counter++;
}
counter = 0;

//Place children in temporary population

}
elsef
//No crossover
for (int g = 0; q < TOTAL_STRING_LENGTH; q++){
childl.individual[q] = parentl.individuall[q];
child2.individual[q] = parent2.individuall[q];

Listing 8.1: Crossover

public void elitism(double[] largestDispl,...)

Elitism for this implementation only allows for one elite individual to pass through to the next gener-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 79
ation.
public FemModel[] createFemModels (int[] femIndexArray,...)

A femModel is created for each individual in the population. Therefore, a population of 50 individuals
generate 50 femModels initially and then 50 new models after crossover and elitism were performed.
Refer to Appendix section [I7.5] for femModel code definition. After the nodes, loading, supports
and material has been added to the model, the function needs to scale the size of the area array used
by the genetic algorithm to the number of elements present in the structure to a size usable by the
analysis. At first the array is populated as governed by genetic algorithm, then a new array is created
(femAreas) using the femElementArray and femIndexArray as described earlier. For ten elements, the

femElementArray could typically look as illustrated by figure

1 2 3 7 B 9 4 5 6 | 10

Figure 8.6: A femElementArray

It is important to ensure that the correct elements correspond to correct attributes and properties,
therefore it remains crucial that the correct order of elements is maintained. For the ten elements,
the femIndexArray could typically look as illustrated by figure This is simply how the algorithm
counts the number of elements in a group from the way the user defined it in the input spreadsheet. As
the function loops through the array, the value obtained refers to the chromosome area that must be
inserted in the analysis area array, see listing [8.2] This is not necessary for the case where grouping is
false. The whole process of creating femModels is repeated, but in this case for the number of elements

and not chromosomes.

Figure 8.7: A femIndezArray

areas = new double[galndividual.NUMBER_OF_CHROMOSOMES];
areas = galndividual.getAreaIndividual_meters(gaIndividual,

entries);

if (isGrouped){
//Duplicate group elements

femAreas = new double[number0OfElements];

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. THE PROGRAM 80
for (int i = 0; i < femAreas.length; i++){
femAreas [femElementArray[i] - 1] = areas[femIndexArray[i]];
}
}

Listing 8.2: Mapping of area arrays

8.7 Special Notes

It is important to clear the sets created by the FemModels, as the program will run out of memory if
this is not done. The user must ensure that all the values are provided in the correct units, for the
steel sections database all values must be in millimetres or some power thereof. For the model input

all units must be in Newton or meter.

The structure should be stable for the algorithm to run:

e Joints and members should be defined as such that loading can be carried effectively through the

elements to the supports.

e Supports should be defined as such so that the structure does not become mobile or rotate.

Stellenbosch University http://scholar.sun.ac.za

Part IV

Benchmarking Problems

81

Stellenbosch University http://scholar.sun.ac.za

Chapter 9

Introduction

The benchmarking part of this thesis is dedicated towards solving standard problems in literature with
the genetic algorithm created in this study. These benchmarking problems have been solved many
times before; therefore an algorithm can be benchmarked by comparing its outcome to that of the
other studies. The algorithm is acceptable if its performance is comparable to literature to a satisfying
degree. The parameters used in these benchmarking problems were chosen based on a mixture of what
was used in literature and from running the problem multiple times for different parameters to see
which resulted in the best outcome. Each benchmarking problem will commence with an explanation
of the objective for that specific benchmarking problem, as different problems in this study serve to
illustrate and validate different aspects of the algorithm. The next section will provide the relevant
design data, this data is important as it highlights the exact architecture of the problem. The outcome
of a problem can only be compared when the design data of the two models at hand is exactly identical.
This also applies to the constraints enforced on a problem. Additional information which does not form
part of the design data is provided in cases where necessary. Finally, each bench-marking problem will

conclude with the results obtained by this study’s algorithm and a comparison to other literature.

The order in which these problems are implemented follows a gradual progression from a simple
two dimensional problem with fewer variables and prescribed stress and displacement constraints, to
a more complex three dimensional problem with more design variables which implements the South

African code of design (SANS, 2005).

82

Stellenbosch University http://scholar.sun.ac.za

Chapter 10

10 Bar Truss

10.1 Objective

The 10 Bar Truss depicted in figure [I0.1]is a non-convex problem, because it has multiple local minima
(Falakian and Mousavi, 2011). See figure for illustrative difference between convex and non-convex

functions. The objective of this problem is to optimise the cross sectional areas of each element in

the truss in order to minimise the weight of the structure. Running this benchmarking problem will

establish whether the algorithm works for plane trusses, by comparing the outcome to studies such as

\Galante| (1996) and Nanakorn and Meesomklin| (2001). Moreover, this benchmarking problem serves

to provide insight into the algorithm’s performance.

g
ﬂﬁ 5 4

N |

* . =
1 2 3
P P

Figure 10.1: 10 Bar Truss

83

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS 84

N\ \“ ‘0‘"”’ i
N \\‘\\‘\“\ “WMN i,

Convex function

Non-convex function

Figure 10.2: A convex function versus a non-convex function

10.2 Design Data

The weight of the truss is optimised by selecting different combinations of cross sectional areas (from
a section list provided) for the design variables, refer to table and table The material
properties used in this problem is that of aluminium, refer to table [I0.5] The only reason for this
specific set of material properties is to create the exact same model as the one used in the literature
studies. Table is the standard section list used for this problem. It is important to use the same

section list, as a different section list will result in a different answer. This is illustrated later in the text.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS

Table 10.1: 10 Bar Truss Nodal Coordinates

Node z (m) y (m) 2z (m)

1 0 0 0
2 9.144 0 0
3 18.288 0 0
4 18.288 9.144 0
5 9.144 9.144 0
6 0 9144 0

Table 10.2: 10 Bar Truss Loading

Node F, (N) F, (N) F. (N)

2 0 -444822 0
3 0 -444822 0

Table 10.3: 10 Bar Truss Fixity

Node Fixity

1 XY_TRANSLATION
6 XY_TRANSLATION

Table 10.4: 10 Bar Truss Element Definition

Design Variable Number End Nodes of Members

© 0 N & R W N -

A~ N AN /N N N N A~ N
L DN = N W NN = Ot O
b N N NN N N N2

-
(o=l

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS 86

Table 10.5: 10 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 68947.59 MPa
Density 2767.99 kg/m3

Table 10.6: 10 Bar Truss Section List

Area Section List mm?

1045.159 1161.288 1283.868 1374.191 1535.481 1690.319
1696.771 1858.061 1890.319 1993.544 2019.351 2180.641
2238.705 2290.318 2341.931 2477.414 2496.769 2503.221
2696.769 2722.575 2896.768 2961.284 3096.768 3206.445
3303.219 3703.218 4658.055 5141.925 7419.34 8709.66
8967.724 9161.272 9999.98 10322.56 10903.2 12129.01
12838.68 14193.52 14774.16 17096.74 19354.8 21612.86

10.3 Constraints

The design constraints below are standard to the 10 bar benchmarking problem, refer to |Coello et al.

(1994) or [Rajeev and Krishnamoorthy| (1992).
e Displacement constraint: Dy, < 50.8 mm

e Stress constraint: —172.25 MPa < 0qyj0w, < 172.25 MPa with ¢ = 1,...,10

10.4 Additional Information

Coello et al.|[(1994) used a mutation rate of 0.01 which implies that 1 in every 100 bits can potentially
be mutated. This is a very high mutation rate; it was found that the search became too random and
produced poor results when this rate was applied in this study. The best result was obtained with a

mutation rate of 0.005, where 1 in every 200 bits has a probability to be mutated.

10.5 Results

The 10 bar benchmarking problem was run for all the fitness approaches mentioned in sections [8.6.2]

and The outcome of the static fitness approach is plotted in figure in order to illustrate

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS 87

the performance and inner workings of the algorithm. The mass of the truss decreases as the deflection
increases to its limit, this suggests that the limiting constraint for this benchmarking problem is its
deflection. The minimum mass obtained for the 10 bar truss was 2494.46kg with a normalised fitness

approach (this does not prove the noramalised fitness approach to be superior).

3000 80
2900 - 75
- 70
2800 —_
£
_ ! 65 E
® 2700 -
2 1L111 - 60 g
S 2600 g
L; 55 =
R
2500 fa
P - 50
2400 s
2300 ‘ ‘ ‘ 40
0 500 1000 1500 2000 2500
Generation

—Mass —Displacement

Figure 10.3: 10 bar truss performance for static fitness

Table 10.7: 10 Bar Truss Area Distribution

Design Variable Area

Al 21612.86
A2 1045.159
A3 14774.16
A4 9999.98
A5 1045.159
A6 1045.159
AT 4658.055
A8 14774.16
A9 14774.16

A10 1045.159

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS 88

10.6 Comparison

For ease of reference, the following names were used in the table [I0.8}

e (alante for (1996)

Nanakorn for Nanakorn and Meesomklin| (2001

Appelo for this study

Coello for |Coello et al.| (1994)

Sivakumar for |Sivakumar et al| (2004)

e Rajeev for Rajeev and Krishnamoorthy| (1992)

The variables Al to A 10 in table correspond to the design variables given in table

Table 10.8: Minimum mass comparison for the 10 bar benchmarking problem

Study Mass A1l A2 A3 A4 A5 A6 AT A8 A9 Al0
Galante 2475.88 21613 1045 14194 9161 1045 1045 5142 14774 14194 1045
Appelo 249446 21613 1045 14774 10000 1045 1045 4658 14774 14774 1045
Nanakorn 2494.48 21613 1045 14774 10000 1045 1045 4658 14774 14194 1045
Coello 2534.08 19355 1045 14774 8710 1045 1045 8968 14194 14194 1045
Sivakumar 2540.06 19355 1045 12839 10903 1045 1045 5142 17097 14774 1284
Rajeev 2546.44 21613 1045 14194 10000 1045 1045 9161 12839 12839 1690

The mass in table is given in [kg] and the areas in [mm?]; the areas are represented by de-

sign variables Al,...,A10. The performance of the genetic algorithm is highly dependent on selecting

the correct parameters, implementing specialised genetic operators and different strategies regarding

grouping, fitness and reduced search spaces, to name but a few. For example, consider the 2 genetic

parameter sets defined in table [10.9]

Table 10.9: Genetic parameter sets to illustrate algorithm dependence

Genetic Paramater Set Population size Crossover rate Mutation rate

1 50 0.5 0.05
2 150 0.85 0.005

Figure illustrates the difference in performance of parameter set 1 and 2. It could be argued

that parameter set 1 did not have a large enough population for the algorithm to work with and that

its crossover rate was too low. The search is not allowed enough exploration with a crossover rate

that is too low; therefore it can be observed that parameter set 1 seems to easily fall onto a plateau,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 10. 10 BAR TRUSS 89

whereafter it takes a few generations before it finds a fitter solution. Conversely, parameter set 2
shows a gradual decline in mass with far less ‘plateau action’. This part is not meant to be viewed as
a sensitivity analysis, it merely serves to illustrate the algorithm’s dependence on selecting the correct

parameters for good performance.

3200

3000 [_\jt\
2800 n

s I T .
= 2600
a
=

2400

2200

2000 ‘ \ \ \

0 50 100 150 200
Generation
—Genetic Parameter Set1 —Genetic Parameter Set 2

Figure 10.4: Mass comparison for parameter sets 1 and 2

Stellenbosch University http://scholar.sun.ac.za

Chapter 11

25 Bar Truss

11.1 Objective

The objective of this benchmarking problem is to optimise a space truss and to make use of grouping.
Grouping will allow for the structure to remain symmetrical. The number of elements in this truss
is 25, however the number of design variables is only 8. Different colours group different elements

together, see figure [I1.1]

Figure 11.1: 25 Bar Truss

90

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 11. 25 BAR TRUSS 91

11.2 Design Data

The weight of the truss is optimised by selecting different combinations of cross sectional areas for the
design variables, refer to table and table The material properties used in this problem, as is
with the 10 bar truss problem, is that of aluminium, refer to table

Table 11.1: 25 Bar Truss Nodal Coordinates

Node z (m) y (m) z (m)

1 -0.9525 0 5.08
2 0.9525 0 5.08
3 -0.9525 0.9525 2.54
4 0.9525 0.9525 2.54
5 0.9525 -0.9525 2.54
6 -0.9525 -0.9525 2.54
7
8
9

-2.54 2.54 0
2.54 2.54 0
2.54 -2.54 0
10 -2.54 -2.54 0

Table 11.2: 25 Bar Truss Loading

Node F, (N) F,(N) F, (N)

1 4449.816 -44498.2 -44498.2
2 0 -44498.2 -44498.2
3 2224.908 0 0
6 2669.89 0 0

Table 11.3: 25 Bar Truss Fixity

Node Fixity

7 ALL TRANSLATION

ALL TRANSLATION
9 ALL TRANSLATION
10 ALL_ TRANSLATION

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 11. 25 BAR TRUSS 92

Table 11.4: 25 Bar Truss Element Definition and Grouping

Design Variable End Nodes of Members

Al (1,2)
A2 (1,4),(1,5),(2,3),(2,6)
A3 (1,3),(1,6),(2,4),(2,5)
A4 (3,6),(4,5)
A5 (3,4),(5,6)
A6 (3,10),(4,9),(5,8),(6,7)
AT (3,8),(4,7),(5,10),(6,9)
A8 (3,7),(4,8),(5,9),(6,10)

Table 11.5: 25 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 68947.59 MPa
Density 2767.99 kg/m3

Table 11.6: 25 Bar Truss Section List

Area List mm?

64.516 129.032 193.548 258.064 322.58 387.096
451.612 516.128 580.644 645.16 709.676 774.192
838.708 903.224 967.74 1032.256 1096.772 1161.288

1225.804 1290.32 1354.836 1419.352 1483.868 1548.384

16129 1677.416 1806.448 1935.48 2064.512 2193.544

11.3 Constraints

The design constraints below are standard to the 25 bar benchmarking problem, refer to |Coello et al.

(1994).
e Displacement constraint: Dy, < 8.89 mm

e Stress constraint: —275.79 MPa < 0gu0w, < 275.79 MPa with i =1,...,8

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 11. 25 BAR TRUSS 93

11.4 Additional Information

Groenwold et alf(1999)’s information was not included in the comparison since the authors made use
of a different area sections list. [Erbatur et al.|(2000) implemented a multilevel optimisation procedure
where the search space is reduced for each successive level. This approach starts off with an initial
level in the optimisation, where after the solutions from this level are used as the initial population
for the next level. ‘Sub-profile’ lists are compiled for the next level by dividing the initial discrete list
into subsets, after which the subsets are enlarged. This results in a smaller search space. This method
is only mentioned for completeness sake and will not be further discussed. Only the first level mass,

before the search space reduction, is used for comparison below.

11.5 Results

The minimum mass obtained for the 25 bar truss was 222.483kg.

Table 11.7: 25 Bar Truss Area Distribution

Design Variable Area
Al 129.032
A2 258.064
A3 2064.512
A4 129.032
A5 516.128
A6 774.192
A7 580.644
A8 2193.544

The GA found a feasible solution (a solution with no constraint violations), for the case of static

fitness, within 5 generations, refer to figure

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 11. 25 BAR TRUSS 94
300 9.3
280 92
260
240 21

§ £
220 S E
¥ 200 8.9 £
-~ . N . (]
] £
S 180 g8 8
160 a
[87 -4
140 a
120 - 8.6
100 ‘ ‘ ‘ - 85
0 1000 2000 3000 4000 5000
Generation

—Mass —Displacement

Figure 11.2: 25 Bar truss: Static fitness performance

11.6 Comparison

For ease of reference, the following names were used in table [IT.8

e Togan for Togan and Daloglu| (2008)

e Appelo for this study

e Coello for |Coello et al|(1994)

e Erbatur for [Erbatur et al.| (2000)

e FCD Method for [Flager et al| (2011)

e Rajeev for Rajeev and Krishnamoorthy| (1992)

e Groenwold for |Groenwold et al.| (1999)

The 25 bar benchmarking problem shows a significant increase in variation between section sizes
obtained by different studies. The design variables A1 to A8 in table [T1.§] correspond to the design
variables given in table

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 11. 25 BAR TRUSS 95
Table 11.8: 25 bar benchmarking problem comparison to literature
Study Mass (kg) A1 A2 A3 A4 A5 A6 A7 A8
Togan 219.25 65 194 2194 65 1290 645 323 2194
Appelo 222.43 65 65 2194 65 1419 774 323 2194
Coello 224.05 65 452 2065 65 903 710 323 2194
Erbatur 233.60 65 645 2194 129 387 710 581 1935
FCD Method 238.96 65 65 2194 65 65 516 1613 1613
Rajeev 247.67 65 1161 1484 129 65 516 1161 1935
Groenwold 248.09 6 1290 2065 6 6 452 1032 1677

Stellenbosch University http://scholar.sun.ac.za

Chapter 12

160 Bar Truss

12.1 Objective

The structure in this benchmarking problem is a 3 dimensional 160 bar tower, refer to figure

The objective of this benchmarking problem is to illustrate the power of the algorithm. In contrast to

[ZL}_-u:n- -
J]’E‘}ﬂ'}'— —

28

i
y

Lo -
L

Figure 12.1: 160 Bar Truss Model

96

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 97

previous problems, this problem has a significant increase in the number of design variables (38 design

variables) and it sets about steering the study towards solving real life problems.

Krishnamoorthy et al| (2002) went as far as creating a 1 792 - and a 2 304 planar space truss and

solving for it, refer to figure [[2.2 However, for the 1 792 planar space truss only a quarter of the
truss was modeled, thereby drastically reducing the number of elements to be processed by the finite
element method program. Additionally, the authors only used 24 design variables with 5 sections to
choose from. This results in a string encoding length that is relatively short (72 bits). Consequently,
the very large scale problem was reduced to a rather small scale problem. The same was done for the
2 304 planar space truss, which only had 10 design variables, with small string lengths of 30. It was
therefore decided to model 160 bar benchmarking problem with its 38 design variables.

AN

24m

27m

Figure 12.2: 2 304 Planar space truss (Krishnamoorthy et al., 2002

This problem will be implemented with the design code and makes use of a section
list provided in the Southern African Steel Construction Handbook 2008), see Appendix [17.5]
After results were obtained and compared to literature, the truss will be analysed again using frame
elements. The concept and motivation behind such elements are thoroughly discussed in chapter
The objective here is only to establish whether such elements will produce results similar to that of

truss elements. In other words, to validate using such an approach if it be needed.

12.2 Notes on the 160 Bar Truss

Problems found in literature vary greatly, from the way in which grouping is implemented to the forces

applied to the structure and constraints taken into account. Rajeev and Krishnamoorthy| (1992) and

(1996) ran this benchmarking problem, however Rajeev and Krishnamoorthy| (1992) had 12

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 98

design variables and (1996) had 16 design variables. |Groenwold et al.| (1999) took buckling
and slenderness into account, where Rajeev and Krishnamoorthy| (1992) did not. The loading applied

by Rajeev and Krishnamoorthy| (1992) and |Groenwold et al.| (1999) are completely different. The
mass of this structure reported by various studies differs significantly, from 666.487kg (Rajeev and
Krishnamoorthy}, 1992) to 1359.781kg (Groenwold et al., [1999). The studies do not indicate whether

own weight was included. It is not always clear what section lists were used by respective authors.

It was decided to only benchmark this study with that of (Groenwold et al|(1999), due to the above

described inconsistencies of this benchmarking problem. There are two significant differences between

this study and that of (Groenwold et al.| (1999):

e |Groenwold et al.| (1999) used an American design code, whereas this study implemented the

South African design code (SANS| [2005)

e |Groenwold et al.| (1999) used American section sizes, whereas this study used section sizes from

the Southern African Steel Construction Handbook(SAISC) 2008)

e This study used South African steel (SJ355R)

This benchmarking problem is the preparatory phase to the case study and serve to fulfill the
objective of implementing the South African design code in the algorithm. The algorithm itself, as
well as the implementation of the design code, needs to be validated before the study can commence
with the case study. This is why this study did not implement this problem with the American design

code.

12.3 Comments on Comparing Results

Different finite element method programs will produce the same results with great precision, when the
same type of analysis is performed. It should be noted that the outcome of the optimisation procedure
is therefore not dependent on the analysis program itself or only the optimisation technique itself,
but also on the design standards which are implemented (for example SANS 10162-1 or ASCE code).
Solving the same problem with different design standards will produce different results. The outcome
of an optimised problem, when compared to another, is not necessarily a reflection of the genetic

algorithm’s performance, but perhaps a reflection on the level of conservatism of a given design code.

12.4 Design Data

The material used in this model is SJ355R steel, refer to table This material was chosen as the
algorithm implemented the South African design code. Table defines the elements in the tower,
the bold numbers refer to the element number and the nodes column to the two nodes that create an

element. Table shows which elements are grouped together. For example, elements 1, 2, 3 and 4

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS

are all in group 1, therefore they are all represented by design variable 1.

Table 12.1: 160 Bar Truss Loading

Node Fx (N) Fy (N) Fz (N)

25 -8272 -4368 0
28 -7514 -4132 2562
37 -6940 -4132 2562
52 -6444 -3001 2705

Table 12.2: 160 Bar Truss Fixity

Node Fixity

1 ALL TRANSLATION
2 ALL TRANSLATION
3 ALL TRANSLATION
4 ALL TRANSLATION

Table 12.3: 160 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 210000 MPa
Density 7850 kg/m?

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS

Table 12.4: 160 Bar Truss Nodal Coordinates

100

Node x (m) y (m) z (m) Node x (m) y (m) z (m)
1 -1.05 0 -1.05 27 0.4 10.275 -04
2 1.05 0 -1.05 28 2.14 10.275 0
3 1.05 0 1.05 29 0.4 10.275 0.4
4 -1.05 0 1.05 30 04 10.275 0.4
5 -0.93929 1.75 -0.93929 31 -0.4 11.055 -0.4
6 0.93929 1.75 -0.93929 32 0.4 11.055 -04
7 0.93929 1.75 0.93929 33 0.4 11.055 0.4
8 -0.93929 1.75 0.93929 34 -0.4 11.055 0.4
9 -0.82859 3.5 -0.82859 35 -0.4 12.565 -04
10 0.82859 3.0 -0.82859 36 0.4 12.565 -04
11 0.82859 3.9 0.82859 37 -2.07 12.565 0
12 -0.82859 3.5 0.82859 38 0.4 12.565 0.4
13 -0.71156 5.35 -0.71156 39 0.4 12.565 0.4
14 0.71156 5.35 -0.71156 40 -0.4 13.465 -0.4
15 0.71156 5.35 0.71156 41 0.4 13.465 -0.4
16 -0.71156 5.35 0.71156 42 0.4 13.465 0.4
17 -0.60085 7.1 -0.60085 43 -0.4 13.465 0.4
18 0.60085 7.1 -0.60085 44 -0.26592 14.365 -0.26592
19 0.60085 7.1 0.60085 45 0.26592 14.365 -0.26592
20 -0.60085 7.1 0.60085 46 0.26592 14.365 0.26592
21 -0.49805 8.72 -0.49805 47 -0.26592 14.365 0.26592
22 0.49805 8.72 -0.49805 48 -0.12737 15.265 -0.12737
23 0.49805 8.72 0.49805 49 0.12737 15.265 -0.12737
24 -0.49805 8.72 0.49805 50 0.12737 15.265 0.12737
25 -2.14 10.275 0 51 -0.12737 15.265 0.12737
26 -04 10.275 -0.4 52 0 16.15 0

CHAPTER 12.

Stellenbosch University http://scholar.sun.ac.za

160 BAR TRUSS

Table 12.5: 160 Bar Truss Element Definition

Nodes Nodes Nodes Nodes
1 1 5 41 13 18 81 25 31 121 36 40
2 2 6 42 14 17 82 28 32 122 38 41
3 3 7 43 14 19 83 28 33 123 39 42
4 4 8 44 15 18 84 25 34 124 35 43
5 1 6 45 15 20 85 26 31 125 40 41
6 2 5 46 16 19 86 27 32 126 41 42
7 2 7 47 16 17 87 29 33 127 42 43
8 3 6 48 13 20 88 30 34 128 43 40
9 3 8 49 17 21 89 26 32 129 35 36
10 4 7 50 18 22 90 27 31 130 36 38
11 4 5 51 19 23 91 29 34 131 38 39
12 1 8 52 20 24 92 30 33 132 39 35
13 5 9 53 17 22 93 27 33 133 40 44
14 6 10 54 18 21 94 29 32 134 41 45
15 7 11 55 18 23 95 30 31 135 42 46
16 8 12 56 19 22 96 26 34 136 43 47
17 5 10 57 19 14 97 26 29 137 40 45
18 6 9 58 20 23 98 27 30 138 41 46
19 6 11 59 20 21 99 31 35 139 42 47
20 7 10 60 17 24 100 32 36 140 43 44
21 7 12 61 21 26 101 33 38 141 44 45
22 8 11 62 22 27 102 34 39 142 45 46
23 8 9 63 23 29 103 33 39 143 46 47
24 5 12 64 24 30 104 32 35 144 44 47
25 9 13 65 21 27 105 31 36 145 44 48
26 10 14 66 22 26 106 34 38 146 45 49
27 11 15 67 23 30 107 32 38 147 46 50
28 12 16 68 24 29 108 33 36 148 47 51
29 9 14 69 22 29 109 34 35 149 45 48
30 10 13 70 23 27 110 31 39 150 46 49
31 10 15 71 24 26 111 37 35 151 47 50
32 11 14 72 21 30 112 37 39 152 44 51
33 11 16 73 26 27 113 37 40 153 48 49
34 12 15 74 27 29 114 37 43 154 49 50
35 12 13 75 29 30 115 35 40 155 50 51
36 9 16 76 30 26 116 36 41 156 48 51
37 13 17 77 25 26 117 38 42 157 48 52
38 14 18 78 27 28 118 39 43 158 49 52
39 15 19 79 25 30 119 35 38 159 50 52
40 16 20 80 29 28 120 36 39 160 51 52

101

CHAPTER 12.

Stellenbosch University http://scholar.sun.ac.za

160 BAR TRUSS
Table 12.6: 160 Bar Truss Grouping
Design Variable Elements

1 1 2 3 4

2 5 6 7 8 9 10 11 12
3 13 14 15 16

4 17 18 19 20 21 22 23 24
5 25 26 27 28

6 29 30 31 32 33 34 35 36
7 37 38 39 40

8 41 42 43 44 45 46 47 48
9 49 50 51 52

10 53 54 57 58

11 55 56 59 60

12 61 62 63 64

13 65 66 67 68

14 69 70 71 72

15 73 74 75 76

16 77 78 79 80

17 81 82 83 &4

18 8 8 87 88

19 89 90 91 92

20 93 94 95 96

21 97 98

22 99 100 101 102

23 103 104 105 106

24 107 108 109 110

25 111 112

26 113 114

27 115 116 117 118

28 119 120

29 121 122 123 124

30 125 126 127 128

31 129 130 131 132

32 133 134 135 136

33 137 138 139 140

34 141 142 143 144

35 145 146 147 148

36 149 150 151 152

37 153 154 155 156

38 157 158 159 160

102

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 103

12.5 Constraints

The allowable deflection was taken as 16150/180 = 89.7mm. Stress constraints were not explicitly

imposed as [SANS| (2005) were used instead, refer to section [8.6.1]

12.6 Additional Information

Average computation time for the algorithm was 107 minutes for 5000 generations. The best mass

(1116.732kg) was obtained with a normalised fitness approach.

12.7 Results

It is clear that the deflection criteria is not the governing constraint for this lattice tower, the average
deflection was 57.3mm, which is significantly lower than the permissible deflection of 89.7mm. The first
order linear finite element analysis does not consider buckling and second order effects, however the
makes marginal provision for it by classifying elements as class 4 sections and reducing
their compression capacity for cases where local buckling can occur. The algorithm takes account of
this reduced compression capacity, subsequently such members are subjected to penalty sooner than
those who do not buckle which results in a lower probability to survive. It should be noted that the
actual area of the element is not reduced, only its compression capacity; the true area of the section is

still fed to the finite element analysis.

1600
1400 -
1200
1000 -
800 -
600
400 -
200
0 -

Mass (kg)

M Static Fitness Class 3 B Dynamic Fitness Class 3
B Normalised Fitness Class 3 B Static Fitness Class 3 & 4
M Dynamic Fitness Class 3 & 4 ® Normalised Fitness Class 3 & 4

Figure 12.3: Comparison between class 3 section list and combined class 3 and 4 section
list
It is interesting to note that the algorithm was initially run with a section list which only contained

class 3 sections. This has two major disadvantages. Firstly, the search space is considerably reduced,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 104

which implies that the number of possible solutions are less. The fewer solutions there are to choose
from, the less likely it is to find a good solution. There is however a fine balance. When the search
space becomes too large, the search might get lost and not produce any good result at all. The second
disadvantage has to do with the section sizes. Many class 4 elements are smaller in size, which is ideal
for bracing members which does not directly carry large loads. The algorithm must simply settle with
the next smallest size when these smaller sizes are not available. The difference in weight was rather

significant, refer to figure [12.3]

12.7.1 Static Fitness Approach

The algorithm takes a few generations to find the first feasible solution. Typical mass behaviour during
this stage is a significant increase in mass. The mass will start to decrease once it has found that first
feasible solution, a good schema, with which to work with. Observe that there is a rapid decrease
in mass right after the first feasible solution was found, where after it takes the algorithm many
generations to fine tune. This is a good illustration as to why hybrid algorithms are recommended,
refer to section The genetic algorithm is very good at searching vast search spaces quickly, but its

performance decreases in localised search.

60 7000

50 o L —"" " 000

u
_|J 5000
40

£
£ ﬂ[l‘r - 4000 W
3
S 30 =
£ m‘}\ 3000 @
3 s
2 20 T
s \\‘\ - 2000
o
10 1000
0 L0
0 1000 2000 3000 4000 5000
Generation

—Displacement —Mass

Figure 12.4: 160 Bar Truss Static Fitness - Displacement vs Mass

There is a typical relationship between the fitness of an individual and its deflection. A structure
will typically be of lighter mass if it is allowed to deflect more. A lighter mass leads to a lower objective

function value which will result in a higher fitness, refer to equation [8.6.26]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 105
60 1 -
=
K]
>0 (_k © 0.999995 B
E 40
E - 0.99999
- a
g 30 g
£ =]
7} - 0.999985 w
& 20
&
[a] 10 0.99998
0 0.999975
0 2000 4000
Generation
—Displacement —Fitness

Figure 12.5: 160 Bar Truss Static Fitness - Displacement vs Fitness

12.7.2 Dynamic Fitness Approach

Figure [12.6] illustrates the unpredictable nature of the search for the case where constraint violations
are active; the green region indicates generations where the constraints are violated. There is no clear
relationship between the fitness and objective values within these green regions. The chaotic nature of
the green region in the search is a result of the dynamic penalty function which is generation dependent.
There will be a decrease in the fitness function value in this region, even if the best solution from the
previous generation is carried through to the next generation. Again, observe the steep initial increase

in mass before the gradual optimisation process starts.

60 7000
50 d T 6000
€ 5000
£ 40
£ - 4000 ¥
g 30 a
Q ©
g]‘-\ 3000 &
a 20 -
2 h~— 2000
10 1000
0 0

T T T T
1 150 299 448 597 746 895 1044 1193 1342 1491
Generation

Penalty —Displacement —Mass

Figure 12.6: 160 Bar Truss Dynamic Fitness - Displacement vs Mass

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 106

Figure [I2.7] illustrates the dynamic behaviour of the fitness of this approach. The mass decreases

as the overall dynamic fitness increases.

w6 7000
c
S
P 6000
5000
1
o 4000 ¥
g 3 g
£ 3000 &
2
2000
1 1000
0 0
0 1000 2000 3000 4000 5000
Generation

—Fitness —Mass
Figure 12.7: 160 Bar Truss Dynamic Fitness - Fitness vs Mass

12.7.3 Normalised Fitness Approach

Normalised fitness is much like the static fitness, except that the fitness lies within the bound (0,1).
In contrast to the static fitness, this approach does not need to set a very large constant and to check

whether the constant is large enough in order to avoid negative fitness.

60 8.E-04
- 7.E-04
" J_,__U_,—_H?s—_ﬂ:

r‘-l_‘)/_"l_,r_/' i 6. E_O4
40

E
E . 5.E-04
-
] llln a
g 30 w 4E04 8
g | g
8 3.E-04
3 20
a 2.E-04

1

0 1.E-04

0 ‘ 0.E+00

0 1000 2000

Generation
—Displacement —Fitness

Figure 12.8: 160 Bar Truss Normalised Fitness - Fitness vs Displacement

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 107
1.E-03 7000
.E-04
9-E0 6000
8.E-04
7.E-04 - 5000
6.E-04 =
" - 4000 B
§ 5.E04 el 2
£ ae04 3000 2

3.E-04 -~ 2000

2.E-04

- 1000
1.E-04
0.E+00 : : 0
0 1000 2000 3000 4000 5000
Generation

Penalty —Fitness —Mass
Figure 12.9: 160 Bar Truss Normalised Fitness - Fitness vs Mass

12.8 Comparison

Table 12.7: 160 bar benchmarking problem minimum mass [kg] comparison

Static Mlass Dynamic Mass Normalised Mass Groenwold

1308.025 1294.891 1116.732 1359.781

7000
6000

5000 | | A

ao00 |} N
3000 \J\Lh\\
2000 - \L\}“‘—X-—

1000

Mass (kg)

T
0 200 400 600 800 1000
Generation

—Static Mass —Dynamic Mass Normalised Mass

Figure 12.10: 160 Bar Truss Comparison - 1000 Generation Mass Function

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 108

1600

- W]
o M A
{\WWRMWAINAAA

600

I
= H PR

Area mm?2

Design Variables

—Static Area —Dynamic Area —Normalised Area
Figure 12.11: 160 Bar Truss Comparison - Design Variables

12.9 Results using Frame Element Results

The frame element’s behaviour for this problem is depicted in figure [12.12] Reasons for this approach

is thoroughly described in the part [V]

80 7
c
o
70 - 65
o
—_]
£ 60 5
*E' 50
g R
E 40 | 1 ||I g
o I -3 X
M [
‘—é_ 30] IHHI
a 20 | |. I -2
10 1
0 -0
0 1000 2000 3000 4000 5000

Generation

—Displacement —Fitness

Figure 12.12: 160 Bar Frame Truss - Fitness vs Displacement

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 12. 160 BAR TRUSS 109
w7 6000
c
5|
=6 - 5000
5
- 4000 __
5 o s
£ [\ 3000 @
- 2000
2
1 1000
0 " | P R _AJ...J..._.J_AA. Lo
0 1000 2000 3000 4000 5000
Generation
—Fitness —Mass

Figure 12.13: 160 Bar Frame Truss - Fitness vs Mass

12.9.1 Comparison Truss and Frame Element

It is only significant to note, at this stage, that the frame element implementation is correct; this
approach compares well to the normal truss element analysis and could therefore be used if it be

necessary.

6000

5000

4000

3000 K
2000

e

Mass (kg)

1000

0 1000 2000 3000 4000 5000
Generation
—FrameTruss Mass —TrussMass

Figure 12.14: 160 Bar Frame Truss Comparison - Mass

Stellenbosch University http://scholar.sun.ac.za

Part V

Case Study: Eskom Transmission Tower

110

Stellenbosch University http://scholar.sun.ac.za

Chapter 13

Introduction

The key objectives in overhead power line optimisation are to achieve the lowest maintenance and

construction costs, coupled with essential operational reliability (Muftic et al), 2005). According to

[Diez-Serrano and Marais| (2005)), the objectives of overhead power line tower design are:

e Produce a safe structure

e Satisfy statutory requirements

e Facilitate maintenance

e Minimise the cost of the structure

The structure considered in this case study is Eskom’s Self-Supporting Suspension 518H Tower,
refer to Appendix 17.3 and Appendix 17.4. The tower consists of 947 elements, see figure [[4.2] It
is important to take note of the scale of this optimisation problem. The search space size is 94749.
According to the[BBC| documentary, To Infinity and Beyond, one of the largest known numbers
to mathematicians is a googol. “A googol is, for example, far larger than the number of atoms in the
human body or more than the number of atoms that make up planet earth. This number is even more
than all the atoms in the entire observable universe.” One cannot even begin to fathom the vastness of
this optimisation problem, when it is calculated that this search space is about 74° times larger than a
googol. In other words, the number of solutions to the design variables of this problem, is more than

7% times the number of atoms in the universe.

13.1 Objective

This case study only considers one of the objectives mentioned by [Diez-Serrano and Marais| (2005)),

which is to minimise the cost of the structure by means of weight minimisation. The objective of this
implementation is to create a model that is as close as possible to that of the real-life tower and to

investigate key aspects that might make this problem different from standard benchmarking problems.

111

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 13. INTRODUCTION 112

Finally, once all the issues have been identified, the objective is to optimise the structure or make future
recommendations. Establishing and investigating the type of difficulties involved with modelling and
optimising real-life structures contribute toward the main objective of this thesis. Therefore, this
case study serves as an introductory investigation as to how real life structures are different from

benchmarking problems and what kind of steps can be taken to over-come possible issues and errors.

Stellenbosch University http://scholar.sun.ac.za

Chapter 14

Design Data

The tower consists of 358 nodes and 947 elements. The section list used is in appendix [I7.5] The
design data is included in Appendix 17.4.

-«ﬂKO‘&W"'@ s Vﬁﬂmr}.’eﬂu . SECTION D-D sscngryg
8

8 6 SECTION A-A £ g@_‘,’; Q 3 3@
Gz ¥ R
= eSS e==—= J N

4 4 SECTION C-C SECTION E-E
SECTION B-B
3200 8500 ; ase0 3200
[880 y250 350,254
G e o A
1 L - { o o
% [af® T w B, q 18
= S v)
gre > S
r CTRCRe S IR
~ Lo o o,
9 hN BT NS NN Al
& g NN 1 % 5
3 § ‘n’c.\ /18 N 3200 @ Jad2oo XHyP ¥
> ‘-r Pl i ﬂPCK a'
oD ™ e
& ! 2 I
8 % ! S : Conductor drap?
5 = 237 due fo IS* foke-off
[270 -270
3
g 500 ' “500
3
ol 8
- § ¥250
g)
isf
3 arst
8 [/
o 4 WK 8§ 2
& Defoil tronsverse & longifudinal 3
E faces fhe same, from waisf en A8,
= down, so fhat fower body, body
= exfension and legs con be SECTION H-H
g § rofafed by 90°, separa.’gfy or
8| S| os o wnif. al
~N
4363 =
N &
~ = I .
E e 8 8
TREE 2
g8 S gl 2/ e
gg & 8= 9
N S|u
s off 5 L
T oEE 2

Figure 14.1: Eskom Transmission Tower Design (Property of Eskom)

113

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 14. DESIGN DATA 114

Figure 14.2: Modeling the Eskom Tower

14.1 Load Cases

There are eight defined load cases for this structure: (Data tables available in Appendix 17.6)
e Case 1A

— High transverse wind

— 0 =90°
e Case 1AR

— High transverse wind
- 6 =90°

— 38% vertical loads only
o Case 2A

— All conductors broken
e Case 2BR

— Broken centre and left conductors

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 14. DESIGN DATA 115

— 38% vertical loads only

Case 3

— Special transverse

Case 4A

— Maintenance and construction (left)

Case 4B

— Maintenance and construction (centre)

Case 5

— Heavy ice

These loads, provided by Eskom, are test loads. However, Eskom used these as design loads,
therefore no design factors were introduced in the calculations. These loads were treated as ultimate
loads, however serviceability was still taken into account (refer to section . The motive behind
still considering serviceability has to do with the type of load; for example, load 4B is maintenance
and construction, here the tower must deflect within limits to ensure for safety of the workers.

Loads that were applied to the conductors, were transferred to places where the conductors are
attached to the tower, see figure 14.3. The annotation for figure 14.3 is explained in Appendix 17.6.
The reason for this approach is because there are no nodes outside of the structure or type of connection

with which to transfer these loads from outside of the structure to the structure itself.

14.2 Grouping

No grouping strategies were programmed for this structure, instead grouping was user defined. Ele-
ments of similar sizes, as indicated on the original design, were simply placed in the same group, refer
to Appendix 17.4. This could result in a suboptimal structure, as the presumed sizing groups might
be incorrect. However, as stated earlier, investigating grouping strategies is not part of the objectives

of this research.

14.3 Serviceability

Eskom did not provide any guidance on acceptable deflections for the tower. The serviceability of
the structure was therefore roughly based on assumptions regarding Annex D in [SANS| (2005). The
structure was assumed to be an industrial type building with a ‘span’ equal to the tower’s height. The
maximum deflection was initially limited to the span divided by 180, which was rounded to 155mm.
This value was then roughly doubled to 300mm based on engineering judgement regarding the tallness

of the structure.

Stellenbosch University http://scholar.sun.ac.za

116

CHAPTER 14. DESIGN DATA

5 ase) Joy Ajup

slind [eaHan

S||nd IS1aAsURI]

slind |eujpnyiBuo]

SuIpeoT pue [OPOJN IOMOT, :¢'FT 9In3ig

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 14. DESIGN DATA

14.4 Genetic Parameters

117

The following genetic parameters were used in this case study, unless specified otherwise:

Table 14.1: Genetic parameters for the case study

Parameter

Crossover probability

Mutation probability

Population size

Maximum number of generations
Scaling constant

Number of crossover points

Elitism

Selection with replacement

Stellenbosch University http://scholar.sun.ac.za

Chapter 15

Modelling and Implementation

15.1 Modelling Inaccuracies

The program was unable to analyse the structure as a 3D truss model. A possible cause identified
for this outcome was unstable planar joints or mechanisms, see section due to small modelling
inaccuracies. Mechanisms result in an error as there is no stiffness in the perpendicular direction of the
plane in which the elements lie. Small modelling inaccuracies arise from calculating nodal coordinates
in 3 dimensions for 358 nodes; the 1074 positional values were hand calculated to the 3rd decimal from
the engineering drawings. However, the smallest inaccuracy will cause two joined elements to lie in
different planes. Figure illustrates a mechanism, where elements 1 and 2 are supposed to lie in
the plane x = 1. This small inaccuracy will cause the structure to loose all its strength, as there is no

resistance in the direction perpendicular to the plane (indicated by the red arrow).

(1;3)

(0.99;2) _

y

(n1)
L’X

Figure 15.1: Small modelling inaccuracies can result in a mechanism

118

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 119

There are no joints at positions where insulators are positioned (see figure 14.3: the positions of
the insulators, indicated by the rectangles, are outside of the structure), therefore there must be joints
at places where these insulators are connected to the structure or where concentrated loads are applied.
Loading at places outside of the structure (where no nodes are defined) are transferred as illustrated
in figure [I4.3] to the appropriate nodes.

Members that are enclosed by a system of elements and are redundant, need not be included in the
model . The inclusion of such members would add unnecessary complications such as extra
members and nodes, with no additional information provided by the analysis. These extra members
will bear no force, given that it is a linear analysis and all members are truss elements. These members
are, however, important in the structure as they would have to carry transverse load in cases where a
person might climb the tower and carry 1-3% of the compressive loads. 2011). This approach
was not implemented, all members where considered in the analysis and in calculating the mass of the

tower.

15.2 Dealing with Planar Joints

Planar joints can occur in three dimensional truss element structures. A planar joint is a connection
of elements which all lie within the same plane. This joint could start to resemble a mechanism.
Figure illustrates such a connection. Planar joints are problematic in linear first order analyses
as they provide no stiffness in the direction perpendicular to the plane. The program can therefore
potentially try to divide by zero which will result in an error. recommends avoiding planar

joints all together. Four methods are recommended in order to avoid the use of planar joints.

Figure 15.2: A planar joint

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 120

15.2.1 Dummy Elements

The adding of a dummy element method recommends adding a fictitious element as a support between
the planar joint and any stable point in close proximity (PLS|2011). This procedure was not selected

to solve the modeling problem in order to avoid changes in the force distribution of the structure.

15.2.2 Removing a Degree of Freedom

The removing a degree of freedom method suggests adding a support in the perpendicular direction
of the plane, hence the joint will not be able to form a mechanism (PLS| [2011). This approach was
not used to solve the modeling problem, as it would require excessive additional work from the user to
specify such points and define the supports. The problem needs to be solved without much additional

input effort and without making the algorithm problem specific.

15.2.3 Adding Fictitious Springs

The adding fictitious springs method resembles the approach of removing a degree of freedom, however
instead of adding supports, springs with a small stiffness of 1 Newton/meter are added to the structure

(PLS}, 2011). This method was not used in modeling the tower for the same reasons explained above.

15.2.4 Using Frame Elements

The last recommendation by (PLS,|2011) involves replacing the elements which form planar joints with
frame elements. These elements have more degrees of freedom with some stiffness in the perpendicular
direction of the planar joint. These members are, however, still treated as if they were truss elements.
This approach runs the risk of resulting in a tower that is too stiff, especially if all members are modeled
as frame elements.

The best solution to this problem was to model the structure with frame elements in order to
stabilise planar joints. The structure was still not subjected to design checks involving moments,
even though modelling inaccuracies might produce insignificant moments. The structure should not
be designed for modelling inaccuracies, in other words, for the limitations of analysing a realistic
structure. The engineer should be able to differentiate between modelling issues and actual physical
issues. The frame elements, in addition to having an area, are also assigned moments of inertia and St
Venant’s Torsion constants to provide stiffness. The axial forces from the analysis were used for design

checks, this approach was tested in section [I2.9]

15.3 Tension-only Members

Members can be defined such that they can only carry tension forces, when a truss structure is designed

as if the whole system is made of stiff ropes. Such members are known as tension only members, where

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 121
d Force
=
2 Axial Stiffness
2
2
1
Elongation
0

=
B
g _____ Compression Capacity
=1
£
(w]
(o]

Figure 15.3: Behaviour of Tension-only Element (PLS| [2011))

some programs (such as PROKON) make allowance for such members. Such a member will buckle for
the case where the compression force exceeds the member’s capacity, thereby loosing its compressive
strength, see figure [[5.3] Tension members typically have larger slenderness ratios. However, tension
only elements add great complexity to linear analyses due to changes in the stiffness matrix after
the element buckles (PLS| [2011). No such changes are required for cases without tension members.
PLS| (2011)) recommends avoiding tension-only members, therefore this case study did not make use of

tension-only members.

15.4 Effective Length of Members

The effective length of a member affects its compression capacity; a longer effective length results in a
smaller compression capacity, refer to section[8.6.1.3] However, the effective length of real life structures
of certain members are shortened due to connections. Figure illustrates how the effective length
of a member is shorter than its actual length due to a connection between two elements. Elements
6047 and 6046 are effectively shortened by the pin connecting them. This approach is not valid if
bi-axial bending is considered. Effective length adjustments were made by adding nodes at places

where members are connected.

15.5 Length of Members

The member lengths for the pylon model were simply measured from node 1 to node 2 (see figure in
the algorithm. However, in reality there are at times some member overlap or member length reduction.
Member 4011, in figure [15.5] illustrates steel overlap and member 4010 member length reduction. The

actual lengths of these elements in the model were taken to the centre of the connection. Connections,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 122

Figure 15.4: Adding nodes for a shorter effective length

however, are not considered in this optimisation procedure; the connections’ weight contribution was
ignored, such as the gusset plate weight. The weight of the connections of the actual structure is not
included in the total weight for the comparison in the results. It is assumed that the total length of
elements in the model compared to that of the real structure is the same, as it is assumed that places

of overlap and member length reduction balances out.

Figure 15.5: Connection illustrating difference in member lengths from model (Property of Eskom)

15.6 Notes on Multiple Load Cases

The eight load cases described in section [I4.1] cannot simply be used individually to optimize the
transmission tower; it would be incorrect to simply run the algorithm for each load case and then
to select the heaviest pylon as the solution. The heaviest structure is not necessarily a ‘conservative’
solution for all the other load cases. Another load case might cause the structure to fail as a result of a
given element being under-designed for this load case, even if the structure was designed satisfactory for
the initial ‘conversative’ load case. This can be the case even if the loading for this load case is smaller

in magnitude and the pylon (overall) a lighter structure. This is due to possible changes in the direction

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 123

and position of the loading, or perhaps a given load where there was none before. All load cases must be
considered to ensure structural feasibility. This can, however, not be achieved by simply adding all the
load cases together. Such a load condition will be unrealistic and will result in a severely over-designed
structure, which defeats all optimisation purposes. Eskom did not provide any load combinations,
nonetheless, load combinations can easily be dealt with by simply creating a new combined load case.
The challenge lies in solving for multiple load cases, and not in solving for a load combination. The
solution must somehow be valid for all load cases, separately but simultaneously. This can be done by
subjecting each model to all 8 loading conditions one by one. Some violation ‘bookkeeping’ must be
kept for the case where a solution violates a constraint for a given load combination. The performance
of the structure is evaluated and summarised for all loading conditions. This suggests that the structure
with the best overall performance will have the highest fitness and the highest probability to be selected
for the next generation, refer to section [£.4.1] Stress, displacement and slenderness violations must be
checked by performing an analysis for each load condition.

This problem becomes difficult in the sense that it takes a great amount of computing power. Each
model must be tested for all 8 cases, one after another; that is each individual for the whole population
in a generation. The number of analyses increases 16 fold for every run. A population of 100, for the
pylon model, takes one and a half days to produce 5000 generations without considering multiple load
cases. It should be noted that it is not in this case the GA that makes the run so computationally
expensive.

The finite element analysis computations, or more accurately, inverting a stiffness matrix, for 947
elements (358 nodes) with 6 degrees of freedom is computationally expensive. Equationexpresses
the basic stiffness equation which forms the basis for solving a finite element problem, refer to (Cook

et all, 2002)) for more information.

Kd=F (15.6.1)

The stiffness matrix, equation [I5.6.2] becomes larger and larger for each element added to a struc-
ture; smaller elemental matrices can be added to form one larger system stiffness matrix for the

complete structure.

B0 0 -EA 0
0 12E1 6E1 0 _12EI 6EI
3 12 [E] 12
0 6E1 4E] 0 _6EI 2E1
12 I 12
k = oA A (15.6.2)
-7 0 o 5 0 0
12E1 6E1 12E 6EI
0 BE R 0 13 E
651 2E1 6EI 4ET
i 0 2] 0 e T

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 124

However, the analysis of each new load case does not need a new inverted stiffness matrix as the
model itself did not change. The program can be coded as such that the inversion of the stiffness
matrix is performed only once, where after simple matrix multiplication can be performed to solve for
the unknown displacements and rotations, and back substitution to solve for all the unknown forces.
This approach should, for all practical purposes, take about the same amount of time as solving for
one load case. Moreover, there is some playoff between the number of individuals in a population
and the number of generations. The number of individuals can be increased to, for example, 200 and
therefore the number of generations can be decreased. There is however, a fine balance; increasing the
number of individuals increases the number of analyses that must be performed, however decreasing
the number of generations decreases the number of analyses. In other words, more individuals require
more analyses but fewer generations. Furthermore, it is not necessary to run the algorithm for 5000

generations, as minimal changes are made to the solution for the last four thousand generations.

The first approach to solving the multiple load case problem was to sum all the penalised objec-
tive functions and to divide the sum by the number of load combinations. This approach provides

some average performance of the tower under the various load conditions.

for each model ¢ in the population {
for each load case [{
create a femlModel
analyse the femModel
for each element e in the femModel {
store internal axial forces Fj_;

store model displacement = max{D;}
}
find the penalised objective qﬁip,l for load case [
}

>

Pip,l

=P
8

find the penalised objective for the model ¢,; =

find the fitness (; with ¢, ;

This approach did not provide good results, refer to figure One argument is that the average
of all the penalised objective functions is not necessarily a resemblance of any individual penalised
objective value for a given load case. For example, consider the hypothetical objective function values

in table [I5.1] for two load cases:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 125

Table 15.1: Hypothetical objective function values of 2 load cases for explanation purposes

Load Case Objective Function Value

1 1
2 10

The average of these two values is 5.5. This number does not tell the algorithm anything about
any of the two load cases. Furthermore, consider for argument’s sake a thousand load cases with a
large variance, providing it with average information is equivalent to expecting the algorithm to solve
for anything that can happen to the structure without giving it any particular information on the

behaviour of the structure subjected to the given load cases.

w 80 1 »
© [
S Wy 2
370 P Y =
3 : | | - 0.9999998 =
i 60 M 4l e
g "
= l:l |l1l 'u#hm!l‘ii" W) ﬂl”“ g
2 40 NN '!‘T T TRt i! 09999994 £
© i i k=
A | w
S 30 “‘l ["h! |
'i" | - 0.9999992
i 0.999999
10 L]\.l?a',l'.\n,.r.u e Uik atba e Rinnhs Sk b 8 o'l
0 - \ \ \ 0.9999988
0 200 400 600 800
Generation
—Mass —Penalty —Fitness
—Power (Mass) —Power (Penalty)—Linear (Fitness)

Figure 15.6: Performance for static fitness function with an average penalised objective function ap-
proach

Observe that the fitness function values decrease linearly as the generations increase. This is due
to a built-in generation parameter in the penalty function. The penalty is increased for every new gen-
eration that constraint violations are present, even if the solution did not change. The mass basically

jumps around at random, which indicates that the search has become random.

The second approach was to change the penalised objective function value from the average of all

load cases, to the most severe for all load cases.

for each model 7 in the population {

for each load case [{

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 126

create a femModel

analyse the femModel

for each element e in the femModel {
store internal axial forces Fj_ ;
store model displacement = max{D;}

}

find the penalised objective ¢;,; for load case [

X
find the penalised objective for the model ¢, ; = max {¢¢p,l} forl=1,2,..,8

find the fitness (; with ¢, ;

Figure illustrates the second approach for solving the multiple load case problem. This ap-
proach does result in better algorithmic behaviour, however, the algorithm still struggles to find that
first feasible solution. One reason might be that the algorithm is provided too little information about
the load cases, because only the load case which results in the lowest fitness for that particular gen-
eration is communicated to the algorithm. It might appear from the algorithm’s ‘point of view’ that

the objective function is continuously changing and can therefore not find direction in the search.

@ 40 45 3
c o
& 35 - 403
3 x
L L
=30 35
- 30
25
£ -2 2
@ 20 e
s 20 8
15
- 15
10 | 10
5 -5
..:'_ b o and
e enad Wi 0
0 1000 2000 3000 4000

Generation

—Mass —Penalty —Linear (Mass)
Figure 15.7: Performance for static fitness function with a maximum penalised objective function
approach

The outcomes above suggest that the solution of the multiple load case problem must somehow

include information of all the load cases. The study suggests gathering more information on the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 127

behaviour of the model for all the load cases applied to it by performing a form of pre-evaluation
for each and then somehow including the outcome in the objective, be it in a weighted form or
simply setting some standard. There is a definite need to perform a sensitivity study; setting the
genetic parameters to unfitting values could possibly disturb the search and restrict it from finding
an outcome. The optimisation procedure must be of such that the direction of the search can become
clear to the genetic algorithm, in other words, the objective function must be able to provide proper

guidance towards finding fit solutions.

15.7 Provisional Solution for the Case Study

The provisional solution provided by this study is simply an optimised solution for the critical load

case 2A. The allowable deflection was taken to be 300mm. The element sizes are given in table [15.2]
The total mass of the actual Eskom tower is 30,392 tons. This weight excludes the weight of

connections, for example gusset plates and bolting. The weight found by the algorithm for the critical

load case is 30,644 tons.

» 60
2 190
8
350 -
|'E - 170
40 =
= 150 E
2 B <
9 30 1]
© - 130 B
2 g
[)]
20 110 [
10 - 90
0 \ — 70
0 1000 2000 3000 4000 5000

Generation

M Penalty —Mass —Deflection

Figure 15.8: Critical load case mass and deflection behaviour

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 128
60
8 g
S - 99999999 3
350 x
2 - 99999 998
-
20 - 99999 997
2 30 - 99999 995 £
S i
= 99 999 994
20 99 999 993
10 99 999 992
- 99999 991
0 ‘ ‘ - 99999 990
0 1000 2000 3000 4000 5000
Generation

—Mass —Fitness

Figure 15.9: Critical load case mass and fitness behaviour

Table 15.2: Element sizes for the given design variables

Design Variable Area mm?

1 4300
2 430
3 4300
4 4300
) 2750
6 1510
7 1710
8 3480
9 935
10 935
11 1060
12 430
13 935
14 1310
15 935
16 1870
17 582
18 935
19 935
20 430
21 268
22 582
23 1550
24 1390
25 235

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 129

15.8 Alternative Proposal for the Multiple Load Cases

Spillers and MacBain| (2009) argue that a problem with two load cases can be decomposed into a single
load case. The authors do this by defining a primal and dual problem for the two load cases. The
primal problem is a minimisation problem for the maximum axial force in a member as a result of the
2 load cases. The dual problem is obtained from standard linear progamming. The authors use two
identities to decompose the problem. Refer to |Spillers and MacBain| (2009) for more information. This
approach, however, does not work for three or more load cases and is therefore rather limiting.
Konak et al.| (2006) mentions two traditional methods with which to approach such a problem.
The first is to combine all the objectives by some means, for example, the weighted sum method.
This method is however, not highly recommended due to difficulties with weights and balancing of the
objectives. The second approach is to add all the objectives, except for one, to the constraints and
then to optimise for the remaining objective. This method also does not come highly recommended
due to difficulties in finding suitable constraining values. A new approach is needed with which to

solve the problem. The following are important to note:

e The objective function changes with each new load case.

e It is perhaps not possible to create one master objective function, due to the conflicting nature

of some of the objectives.

Perhaps the aim of the problem should move towards finding a set of solutions, where each solution
is acceptable to a satisfying degree without dominating other solutions. |Konak et al.| (2006) state that

the GA is ideal to handle such problems.

15.8.1 Multi-Criteria Optimisation

Thus far the fitness for a specific solution was expressed as a single number, even though many
parameters were involved. This cannot be done for the multiple load case problem. In this case,
solutions can be obtained in a number of ways, where the solutions themselves cannot necessarily be
combined which makes it impossible to find a single expression for the fitness. |Coley| (1999)) explained
multi-criteria optimisation with the following example: An engineer might wish to minimise the weight
of a steel structure so that the cost of the structure will be at a minimum. However, the structure must
also be sufficiently safe and failure will lead to great cost implications. It is clear that the minimum
cost might not necessarily be a feasible solution due to the risks involved, therefore for this problem
both the weight of the structure and its safety must be considered. Ideally, the solution should provide
the lowest possible cost of structure for the highest possible safety. One way of dealing with such
problems is by applying the concept of Pareto Optimality. |(Castro and Barbosa| (2000) defines a Pareto

set as “the set of solutions which are such that no improvement can be made in one objective without

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 130

0.9
0.8 L 2
0.7 \ 4
0.6 b \ 4

0.5 \ 4 d

0.4 . :
0.3 &
0.2
0.1

]

m

Risk of Failure

Cost
Figure 15.10: Pareto Optimality 1, 1999)

deteriorating at least one of the other objectives is called the Pareto set of non-dominated solutions
and an approximation of it would be very useful in order to get insight into the problem and assist
the decision making process.” In figure [I5.10] the plotted points a to f represent possible solutions to
(1999)’s example. a is a solution which holds the lowest cost, but has the highest risk of failure
(the z axis is some arbitrary normalised cost unit). On the other hand, f has the lowest risk of failure,
but with the highest cost. e and ¢ are said to be dominated, this is due to the fact that there are other
solutions that offer both reduced risk and cost. These superior solutions are termed non-dominated.
Figure enables an engineer to make more informed decisions. There are different ways of
implementing Pareto optimality with a genetic algorithm during the selection procedure. One way is
to divide individuals into nondominate and dominate groups, where the nondominated are assigned
a rank value of 1. Individuals are removed from the selection pool once they are assigned to the
nondominated set. The whole process is repeated, but this time the rank value is 2. The process is

terminated as soon as all members are ranked.

A standard formulation for the multi-objective problem with K objectives can be defined as: (Konak

et all, [2006)

For a decision variable vector with n dimensions, x = {z1,...,z,}, in a solution space X, find x*
such that ¢ (z*) = {¢1 (x*), ..., ¢x (x*)} is a minimum, where the solution is subjected to constraints
gj (x*) > 0 for j = 1,...,J and bounds h,, (xx) = 0 for m = 1,..., M. A feasible solution x will
dominate a feasible solution y if ¢; (x) < ¢; (y) for i = 1,..., K and ¢; (x) < ¢, (y) for at least one

objective function j.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 131

Dominated

0.5

Dominated

Risk of Failure

Non-Dominated

Cost

Figure 15.11: Dominated and Non-Dominated Solutions 1 1999)

In a similar way that safety and minimum cost were two objectives in the example problem above,

so too can different load cases be different objectives. (Castro and Barbosal (2000) suggest an algorithm

which modifies an evenly distributed set of solutions by ranking the set based on its non-domination

properties, after which a filter is created in order to preserve the Pareto set solutions. This algorithm

will need special operators such as exclusion. |Castro and Barbosal (2000) state that the following

features make the genetic algorithm favourable for multi-criteria optimisation through means of a

Pareto set:
e The algorithm is population based
e It only needs objective function values

e The use of probabilistic transition rules makes it less susceptible to local minima

15.8.2 Implementing a Pareto Set in the Genetic Algorithm

|Osyczka and Kundu| (1995) explains that the basic concept of incorporating a Pareto set hinges on

ascribing fitness as such that greater fitness is awarded to solutions further away from the current
Pareto set. Award every Pareto solution a distance value denoted as d; for | = 1,...,1, where [,
indicates the number of existing Pareto solutions. Let f; = [fy;, ...,fH]T be the objective functions

vector for the I*! Pareto solution. The exterior penalised objective function suggested by
(1995) is:

M K
Gip (X) = ¢ (X) + 7Y [hn (X +7>_ G [gr (x))? for i =1,..., 1 (15.8.1)
= k=1

m=1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 132

Where G, = 0 for gi (x) >0 and G = 1 for gx (x) <0 and r simply scales the penalty. The

relative distance for each new solution x is:

I 2
2 (x) = Z(fl_f”@) for 1=1,...,1, (15.8.2)

i=1 il

15.8.2.1 Pseudo Code (Osyczka and Kundu, 1995)

begin at generation g =1 and individual i =1

create initial population and set the first random solution as
the Pareto optimal solution

set Pareto optimal solution fitness F' equal to d

value d; is a random starting point

if g=1

generate random solution x

else proceed from *

for solution x

calculate the relative distances with equation [15.8.2

find z (x) = min{z (x)} for I =1,...,1,
where index [* indicates which Pareto solution is closest to the newly
generated solution x
* if the last solution X is a new Pareto solution {
calculate the fitness for the new Pareto solution
F =dp~ + z- (x)
update existing Pareto set
remove all entries in old Pareto set that is dominated by the new set
add the rest of the new set to old set
set z of new Pareto solution equal to F}
* else {
calculate the fitness for this solution
F = dl* — Z1* (X)
check for negative fitness
if F <0 then FF=0}
find the maximum distance from all existing Pareto solutions
dmax = max {d;} for I =1,...,1,
where [, is the number of Pareto solutions
substitute d; = dmax for I =1,..,1,

g=g+1

Algorithm termination criteria were left out of the pseudo code, this can simply be a predefined

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 15. MODELLING AND IMPLEMENTATION 133

number of maximum generations or some other criteria.

This approach must first be tested with test functions to ensure that the new code is adequate. It
would have to follow the same procedure as was done in this study, by applying the algorithm to test
problems with known outcomes before it can be applied to a real life problems with unknown outcomes.

In this way, the adequacy of the new algorithm is extrapolated from the known to the unknown.

Stellenbosch University http://scholar.sun.ac.za

Part VI

Closure

134

Stellenbosch University http://scholar.sun.ac.za

Chapter 16

Conclusion

The first aim of the research was to thoroughly investigate the mechanics behind the genetic algorithm
and to introduce this research field to the Structural Department of Civil Engineering at Stellenbosch
University. There after the study implemented a genetic algorithm to serve as an optimisation tool to
optimise steel plane and space trusses, along with a Finite Element Method Program, whilst taking
into account various constraints. These constraints were typically stress and displacement constraints,
or constraints provided by SANS 10162, which would also account for slenderness and buckling effects.
Trusses were optimised for their weight, hence the design variables were the profiles’ cross sectional
areas. However, for future research, it could be extended to a multi-objective optimisation process.

With the use of benchmarking problems, it was proven that the algorithm produces competitive
results. The algorithm was then adapted and modified, first for a theoretical 160 bar tower, imple-
mented with South African design standards, and then for a complete realistic South African practical
application, the Standard Eskom Transmission Tower.

The algorithm provided solutions to discrete structural optimisation problems within acceptable
times for research purposes. Keeping in mind the No Free Lunch theorems, the purpose of this study
was not to claim that the GA is the ultimate solution to all optimisation problems, however merely to
illustrate that it is a good choice for structural optimisation. Solutions found by the algorithm were
feasible, both mathematically and practically and no gradient computations were necessary.

Genetic algorithms are slower than traditional methods, however with present day computing power
this is not necessarily a disadvantage anymore (Rajeev and Krishnamoorthy, [1992). The GA uses
a statistical approach to navigate the search, in contrast to deterministic methods, this method is
probabilistic and stochastic. The algorithm’s behaviour can be predicted, but not determined exactly.
The computations for each solution in a generation are independent, this allows for parallel computing.
The Schema theorem behind the genetic algorithm gives it a mathematical foundation upon which the
gain and loss of schema in succeeding generations operate. This theorem establishes that the overall
fitness of a population improves as the run progresses through the generations, which is a fundamental

prerequisite for any optimisation method. However, it cannot be mathematically deduced that the

135

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 16. CONCLUSION 136

algorithm will converge at the true optimum. This is due to the fact that the algorithm is not
calculus based. As genetic algorithms produce better results than traditional methods for engineering

application, it can be accepted as a suitable optimisation tool for structural engineering design (Rajeev,

land Krishnamoorthyl, [1992).

Stellenbosch University http://scholar.sun.ac.za

Chapter 17

Future Research

This study only focused on sizing optimisation of the composing elements of a structure for the case
of one dimensional bar/truss elements. However, genetic algorithms can be applied to various forms
of structural optimisation and structural optimisation types. These include topology and shape op-
timisation, frame elements with more degrees of freedom and additional moment calculations. The
algorithm could be extended to include all the various forms of optimisation, as well as using differ-
ent types of elements. Because the code is now readily available, further research into areas such as
improved fitness functions, penalties or perhaps even a completely new innovative way of dealing with
constraints are now possible. The basic genetic processes is independent and unattached to details
of the problem at hand, therefore to establish a primary genetic algorithm library that contains all
the genetic mechanisms, operators and approaches with an interface to an objective function (which
will be problem specific) would be a convenient optimisation tool. The program could be extended to
other disciplines; it need not only serve as structural optimisation. However, the code structure needs
refinement and improvement. Work is needed into solving computer memory problems and to reduce
the algorithm’s run time. This research recommends coding a finite element analysis uniquely for the
use of the GA, that is memory efficient for a large number of generations. A means of applying the GA
to problems with a large number of design variables or dimensions must be investigated. The program
was implemented for a single objective; to minimise the mass of the structure. However, it can easily
be extended to a multi-objective optimisation program. The individual can be divided into parts,
the chromosomes of different parts could refer to different objectives. [Krishnamoorthy et al.| (2002)
implemented shape optimisation for tubes, the first part indicates the number of groups necessary to
achieve a final solution and the second part is used for the thickness of the section. These two parts
were real-coded (not in binary format). The third part had a binary encoding scheme which related
to group cross sections.

The whole optimisation process can be combined with reliability. The optimisation of structures has
a direct effect on the cost, where cost needs to be kept at a minimum. This minimum cost is however not

only governed by structural principles, but also reliability theory. Eventually the aim of the research

137

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 17. FUTURE RESEARCH

Reliability Model

Reliability-Based

Optimisation Model

N
.

Optimisation Model

Figure 17.1: Reliability-based optimisation approach by Enevoldsen and Sorensen| (1994)

initiative is to perform reliability-based optimisation of a structure, by taking into consideration certain
reliability principles whilst keeping the structure at an optimum, refer to figure Research needs
to investigate how reliability based optimisation models for large realistic structures can be formulated
and simplified without a substantial loss of information. Also, to establish whether there is an overlap
between optimisation and reliability. In essence, future research is needed to formulate a reliability
based optimisation model which consists of a reliability model and an optimisation model which are
linked together.

Penalty techniques have been greatly criticised, even though they remain the most common way
with which to convert a constrained problem into an unconstrained problem for the case of the genetic
algorithm. Perhaps a complete new approach is needed that involves innovative thinking by going
back to genetic and evolutionary principles. These principles have proved to be of much value in this
study and it cannot be assumed that the concept is already fully developed. The same applies for the
encoding scheme in order to increase the number of design variables exponentially; it should be kept
in mind that chromosomes store unimaginable amounts of information.

With regard to the analysis, this implementation was only a first order linear analysis. It would be
more accurate to implement a second order analysis, also taking into account second order effects and

stability.

17.1 Different Approach to Optimisation

In this study, the structure was optimised with respect to stress and displacement constraints, or
through implementing the South African design code. Another approach to optimise the structure,
other than having stress and displacement constraints, is through constrained vibration frequencies
and modes with an eigenvalue method. This will not only be a useful alternative means with which to
approach a solution from a different engineering angle, but will also be needed in cases of earthquake
design where ground movement becomes an additional load case and structural dynamic movement a

constraint.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 17. FUTURE RESEARCH 139

17.2 A structure with Frame and Truss Elements

Rather than defining a whole structure as frame elements or truss elements, it might be better to model
some elements as frame elements and others as truss elements. This will reduce the risk of modelling
a structure that is too stiff, refer to section The aim would be to use as few as possible frame

elements, just enough to make the structure stable.

17.3 Hybrid Algorithm

Some classical optimisation technique could be implemented after the genetic algorithm has finished,
refer to section [6.3] This combined algorithm would result in an answer closer to the optimum. The
real extent to which the other advanced operators benefit a search needs investigation, refer to section

6l

17.4 Upgrading the Genetic Algorithm

Geometry optimisation can be implemented by the GA. In other words, the GA can be coded in such
a fashion where the user only needs to define certein key nodes in order to give the structure some
shape and to apply loading. The algorithm will then completely design the structure, from defining
the geometry to choosing the appropriate element sizes and even which element shapes are best suited.
Elements and nodes are removed from a grid of points which are all connected via elements. This
grid can vary in density. Hultman| (2010) explains that special constraint criteria are needed in order
to ensure that the structure remains stable, e.g. the lattice structure must not become a mechanism.
Elements must be chosen as such that the structure still deflects within limits. Another constraint
will be the structure’s constructability. For this case two or more elements cannot share the same end
nodes. Also, an element cannot begin and end at the same node. This is just one approach with which
the genetic algorithm can be converted into a very powerful tool. Better ways need to be investigated

into defining and implementing constraints in such a fashion as to produce feasible structures.

17.5 Different Types of Structures

This study only considered stable lattice structures, however, perhaps it is no longer vital to optimise
a specific type of structure, but rather finding the best type which the structure must be. For example,

a transmission tower is perhaps only at its optimum when built as a guyed stayed structure, refer to

figure

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 17. FUTURE RESEARCH 140

SERVITUDE AND CONDUCTOR CLEARANCE

275kV TRANSMISSION LINE
Cross-Rope suspension type

22.0m

|
(afesane) woeT 4)‘

Minimum Conductor

Clearance

-—
N

ra N
- 17.0m Gt
- 47.0m - |
55.0m {max) o
Servitude

Figure 17.2: Eskom Cross Rope Suspension Tower (Makhuray, {2010

Stellenbosch University http://scholar.sun.ac.za

List of References

Auer, B.J. (2005 April). Size and Shape Optimization of Frame and Truss Structures Through Evolutionary
Methods. Master’s thesis.

BBC (2012 March). To infinity and beyond. Part of the Brittish Broadcasting Commision Horizon series. Date
accessed 26 September 2013.

Available at: http://www.bbc.co.uk/programmes/b00gszch

Castro, R. and Barbosa, H. (2000). A genetic algorithm for multi-objective structural optimization. Tech.
Rep., Universidade Federal do Rio de Janeiro and Laboratorio Nacional de Computacao Ceintifica. Year of

release is unknown.

Coello, C.A., Rudnick, M. and Christiansen, A.D. (1994). Using genetic algorithms for optimal design of
trusses. IEEE, pp. 88-94.

Coley, D.A. (1999). An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific
Publishing Co. Pte. Ltd.

Cook, R., Malkus, D., Plesha, E. and Witt, R. (2002). Concepts and Applications of Finite Element Analysis.
John Wiley and Sons. Inc.

Diez-Serrano, J. and Marais, P. (2005). Supporting structures. In: The Plannin, Design and Construction
of Overhead Power Lines, chap. 20. Crown Publications cc. Book authors are Bisnath, S., Britten, A.C.,
Cretchley, D.H., Muftic, D., Pillay, T. and Vajeth, R.

Enevoldsen, I. and Sorensen, J.D. (1994). Reliability-based optimisation in structural engineering. Structural

Safety, pp. 169-196.

Erbatur, F., Hasancebi, O., Tiitiincii, I. and Kilic, H. (2000). Optimal design of planar and space structures
with genetic algorithms. Computers and Structures, pp. 209-224.

Falakian, A. and Mousavi, S. (2011). Hybrid genetic algorithm for structural optimization. Journal of Basic
and Applied Scientific Research, pp. 256-261.

Flager, F., Soremekun, G., Shea, K., Fischer, M. and Haymaker, J. (2011 October). Fully condtrained design:
A scalable method for discrete member sizing optimization of steel frames structures. Tech. Rep., Stanford

University. Center for Integrated Facility Engineering.

141

http://www.bbc.co.uk/programmes/b00qszch

Stellenbosch University http://scholar.sun.ac.za

LIST OF REFERENCES 142

Gahsemi, M., Hinton, E. and Wood, R. (1999). Optimization of trusses using genetic algorithms for discrete

and continuous variables. Engineering Computations, pp. 272-303.

Galante, M. (1996). Genetic algorithms as an approach to optimize real world trusses. Internaltion Journal

for Numerical Methods in Engineering, Vol 39, pp. 361-382.

Gen, M. and Cheng, R. (1996). A survey of penalty techniques in genetic algorithms. Evolutionary Computation,
pp. 804-809.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley

Longman, Inc.

Goldberg, D.E. and Samtani, M.P. (1986). Engineering optimization via genetic algorithm. Ninth Conference
on Electronic Computation, pp. 471-482.

Groenwold, A.A., Stander, N. and Snyman, J.A. (1999). A regional genetic algorithm for the discrete optimal

design of truss structures. International Journal for Numerical Methods in Engineering, pp. 749-766.
Haftka, R.T. and Giirdal, Z. (1992). Elements of Structural Optimization. Kluwer Academic Publishers.

Hultman, M. (2010). Weight optimization of steel trusses by a genetic algorithm. Tech. Rep., Lund Institute
of Technology. Sweden.

Jaber, A.Q., Hidehiko, Y. and Ramli, R. (2006). Machine learning in production sstems design using genetic
algorithms. International Journal of Computational Intelligence, Vol. 4, Number 1, pp. 72-79.

Konak, A., Coit, D. and Smith, A. (2006). Mutli-objective optimization using genetic algorithms: A tutorial.
Reliability Engineering and System Safety 91, pp. 992-1007.

Krishnamoorthy, C.S., Venkatesh, P.P. and Sudarshan, R. (2002). Object oriented framework for genetic
algorithms with application to space truss optimization. Journal of Computing in Civil Engineering, pp.

66-75.

Makhura, N. (2010 July). Final environmental impact and draft emp for proposed construction of 1x275kv from

glockner-kookfontein substations and upgrade of kookfontein. Tech. Rep., Baagi Environmental Consultants.

Montgomary, D.C. and Runger, G.C. (2007). Applied Statistics and Probability for Engineers. John Wiley and

Souns, Inc.

Muftic, D., Marais, P. and Mtolo, D. (2005). Introduction to design optimisation. In: The Plannin, Design
and Construction of Overhead Power Lines, chap. 10. Crown Publications cc. Book authors are Bisnath, S.,

Britten, A.C., Cretchley, D.H., Muftic, D., Pillay, T. and Vajeth, R.

Nanakorn, P. and Meesomklin, K. (2001). An adaptive penalty funciton in genetic algorithms for structural

design optimization. Computers and Structures, pp. 2527-2539.

Osyczka, A. and Kundu, S. (1995). A new method to solce generalized multicriteria optimization problems

using the simple genetic algorithm. Structural Optimization, Vol. 10, pp. 94-99.

Stellenbosch University http://scholar.sun.ac.za

LIST OF REFERENCES 143

PLS (2011). Tower Version 11.1 User’s Manual. Power Line Systems Inc.

Raj, R.P. and Kalyanaraman, V. (2005). Ga based optimal design of steel truss bridge. In: 6th World Congress

of Structural and Multidisciplinary Optimization.

Rajeev, S. and Krishnamoorthy, C.S. (1992). Discrete optimization of structures using genetic algorithms.

Journal of Structural Engineering, Vol. 118, No. 5, pp. 1233-1250.

Rao, S.S. (2009). Engineering Optimization - Theory and Practice, Fourth Addition. John Wiley and Sons,

Inc.
Rothlauf, F. (2011). Design of Modern Heuristics, Principles and Application. Springer.

SAISC (2008). South African Steel Construction Handbook - Red Book. Southern African Institute of Steel

Construction.
SANS (2005). South african national standards 10162. Tech. Rep. 1, Standards South Africa.

Sivakumar, P., Rajaraman, A., Knight, G.M.S. and Ramachandramurthy, D. (2004). Object-oriented opti-
mization approach using genetic algorithms for lattice towers. Journal of Computing in Civil Engineering,

pp. 162-171.

Smith, A.E. and Coit, D.W. (1995). Penalty functions. In: Handbook of Evolutionary Computation, chap.
Section C 5.2. Oxford University Press and Institute of Physics Publishing. Book authors are Beack, T.,
Fogel, D. and Michalewicz, Z.

Spillers, W. and MacBain, K.M. (2009). Structural Optimization. Springer Science and Business Media.

Togan, V. and Daloglu, A.T. (2008). An improved genetic algorithm with initial population strategy and
self-adaptive member grouping. Computers and Structures, pp. 1204-1218.

Toropov, V.V. and Mahfouz, S.Y. (2001). Design optimization of structural steelwork using a genetic algorithm,
fem and a system of design rules. Engineering Computations, Vol. 18 Iss:8, pp. 437—-459.

Venter, J.C. (2012). Web page name: What types of genome maps are there? Name of website: Genome News
Network.

Wagner (2000 June). Number of stars in the milky way. The Physics Factbook An Encyclopedia of Scientific
Essays. Date accessed 13 June 2013.

Available at: http://www.iol.co.za/news/south-africa/universities-running-on-empty-1.411745

Yeniay, O. (2005). Penalty function methods for constrained optimization with genetic algorithms. Mathemat-

ical and Computational Applications, Vol. 10, pp. 45-56.

http://www.iol.co.za/news/south-africa/universities-running-on-empty-1.411745

Stellenbosch University http://scholar.sun.ac.za

Appendices

144

Stellenbosch University http://scholar.sun.ac.za

17.1 Test Functions/Aritificial Landscapes

De Jong’s Function 1

with —5.12 < z; < 5.12.

De Jong’s Function 2

fa(z:) = 100(zF — 22) + (1 — 21)? (.0.2)

with —2.048 < x; < 2.048.

Figure 1: De Jong’s Function 1 in 2D

145

Stellenbosch University http://scholar.sun.ac.za

17.1 TEST FUNCTIONS/ARITIFICIAL LANDSCAPES 146

e
R I S A A
ﬁhﬂ:&‘ﬁi‘:“

Figure 2: De Jong’s Function 2 in 2D

De Jong’s Function 3

5

fa(x;) = Z integer(z;) (.0.3)
=1
with —5.12 < z; < 5.12.
De Jong’s Function 4
30
falz;) = Z iz} + Gauss(0, 1) (.0.4)
i=1
with —1.28 < ; < 1.28.
De Jong’s Function 5
25 1
fo(x:) =0.002+) - (.0.5)
=g+ 3 (i = aqj)°

=1

with —65.536 < z; < 65.536.

Stellenbosch University http://scholar.sun.ac.za

17.1 TEST FUNCTIONS/ARITIFICIAL LANDSCAPES 147

5 &

Figure 3: De Jong’s Function 3 in 2D

100

-100 100

Figure 4: De Jong’s Function 5 in 2D

Stellenbosch University http://scholar.sun.ac.za

17.2 List of Possible Errors

The list below are common errors to check for:
e Incorrect file paths
e Empty text fields that should have values
e The input section list has incorrect units
— Area is given in x10° mm

e ‘Error of empty string’ means that an essential value in the input sheet is empty, i.e. element

number missing
e The structure is unstable, refer to section
e Check the loading directions and structure orientation

e Structure might contain planar nodes, refer to section [15.2

148

Stellenbosch University http://scholar.sun.ac.za

17.3 Eskom Tower Drawings

149

/Ischolar.sun.ac.za

ity http:

Iversi

Stellenbosch Un

150

17.3 ESKOM TOWER DRAWINGS

urey SUIMRI(] I9MOT, :G 9InJ1g

< M-X NOILD3S . :

- ~
V1HS_9NImMvya NoIS3a)) . / . .
¥3MOL NOISN3dSNS - d-d NOI123S _vjlim % -7 NOILI3S S b B 18
. 9NILlY0ddNns-34713s - { os 2363u H ! H
. HOXA) @ KIS L] . ‘ ’ P -~ Do - N A
- SR by “No 931 141740 937 NOISS3¥ANOD .
Fo— . & - NOILVONNOJ 30 dO1 1v 0311ddv S30803 XV _
— . &
. . 3
aawvas) " 3 Ky f—r }
S s 9 L . T
4 Lo
3
oL @ x
LR & § \ &
Pa N .
A - 2 <
'390%1ddo 3r3ym 's3/buo fo y30q o4 y20q 240 sUOISUBWIP |1y TIION B W-W NOIL23S 1\ // W
- LAEd oL 9+51 1£3 589 161 . “ / £S5 5921 |$79¢ | Ster | $522| #51q 21x02i 02l T |2 8cr |vZ| prs |59 4 /// & W
z|or| 1] ror on | 521 | o |ogl| u £ Stu |L'€z |osee|€5sn| 6iL| 9505 x5L7 w& 29 _5 zor | €8 \ \ 9|8
7| or| 2| 1wz | 12z | 1ze | Lz |20 | b €182 | o€ |5295| 991 |229/| 9509508 r|pd 81 ‘a9 56 |og \ /1 3
wlor| z| roc | 9451 | 159 | s59 |siz| ol [5'2€ | LaNlssez|nsez|e«cer oz 112ve o0 | v 165 | 8L \\ by
wrlor] g| soe | 9451 | 1£9 | w9 lesc | o ’ Srel |S'9E | saell 82z | nsiz|zi0zix 021 7 ‘3l s€5 | w2 029 ' . / 3
zla| 1| wr on | sz odesr o |t #1| L€ losoc (€55 | it | 9105« gL 7292 2L ‘zel 7L h 9t > &
awos wg| || 0] 05 | 9 | 8o LE | L | oa]oh 001z | 2'¢1 | coz {675¢ (6195 | S5 0009 7281 6z fwi| 9t st w| - g]
o kx| o z| zoe | 16 | ez | 292 [wve2| W | 1| coiz | n'iz | ooz |286 | gemi| 9,05 x5t 289 oz 'ags| stz | me 3 @
or\or| z| €05 | 025 | ##5 | 255 | 2| _ / 0871 |9 |agn |8c61| s152|orxoai ezt 7 290 Lo |v2| 950t NS S
. zle| 2| o 26 o8 e | 1| . |’ L8l | 1's1 | €181{506Z |€0gr| $205 x 05 T | @b ¢ TVN z |a \:W Hw ~
‘S 7| 9| 2| zoy | sss [965 | zve [gor]| « | € s90| vz | gzse otizf8ue| gxbxob Tav| gez v |9z | it } | €5
9|9z 1se | peo | 2z | 256 [ss0| « | 2 9821 {0¢ | 9811 | s€51| S16) lornoor x001 7 vi| evz T2wi| 282 |oL f-F NOILD3S Lu S
1o /| os |,g5 | ser | €9 L] w | 7 og£c|5'9z |e1vg| 81E9) 106 |9« 591 06 1 |rz| 95 vzl 6+ g9 2 PRI
zlol | o |"on | s oz |zor] W | o §222|5%2 | Sgic|91€9 | 106 | 9x $9406 T lave §9 ‘vzl 9 '(9 & 2| Six o |
czle| 1| o0 26 90/ 2t lpg2| W 2 sl 't | sur|e's8e|€084| gro6 205 1 .mv_ 06 | -1 = 'p9 - ™ 5. gl
zlole| o | 26 | 02 | 68 | 0| 4| & o5t |15 | ost |c'o6z|c08h| Srogr05 1) -1 — ‘et 19 |g9 PNYZ 3 3 3R
ol 1| o5 | w 1ol . | swidwae |n892| grsi oot = — =1 2 |29 7 g 3. 3 I
zlorl 2| 100 | o | oa tor | o W | k| pa 9% joou €4z |ooU 'S |Lag| 9xoL xoL 1| -1 — lerl 19 |19 5 2 518 3 N
erorl tjosr | §9 | ser | 9% |evs| x| 2| b6 g2 |oozr |5 1991|169 | 18| 9x09x08 11292 cor |24 Lo gz g 2 &8 ¢ §
— - "l eje) 1| 26 Hor 55 |sgr| a b | €€ |26 |ggzr| 1’5t | 8821 |e'see|c0gn| Sx05 xos Tl | 1L e zs |95 7 4 ~ N]
[~ R zyorj 1| 1o 26 ho! gg | zor| w 7| 66 12c | 295 | 1'51 |€nyl (€985 (€095 | S x 05 #0571 wmw_ 6¢ |w | es |s¢ 4 S5y
- HEARAR 26 | g0/ | 2z S| 2| | en|sze|z'el| 528 |6'6e|685| 5109 x09 1|82 ¢z |6 |avz |hs
— zlalz| sor | z6 | 80 | 2zt |991 | w 2| | t'n|sze| 2% | 528 |6':¢ 685 | Sx09 x09 1p9 S9 lags| €9 |5 . In
I~ z|lo| | o | 26 | 8o v amt | ow b |ou |26 | 0591 1's1 | 059t |c'062|c'08%| ‘Sx05 x 051l 5| €& v 9 |25 3 — funoso o |3
Tlorl7i| o5 | g5 26/ 8 wloa v | se | e |eesz| ez |g2ecli'eea |L'as| 9x oL 7 o Wped gz 292 1z |os . . 0 Aj3j010d35 ",04 Aq popojos |Q S
HEARARZ] on | -zel | apl |s20(2 | 66 |1 |oser|s1z | €c6l|t'gs9|L'218| o xoL x 02 11292} 18 B8zl s8 |gn H-H NOI123S 39 wo> sy puo woisuapxa - 2 |~
“2la| 1| o 26 26 69 |awz | » € |20 | 0| g9 |SEr | 898 |€GEC |foen| Sxsh x St T |yl 18 pEZl 65 |Lh e Apoq "Apoq samoy foyj os ‘umaop K
1o 7| os ”w " 0 . oniaIN3E | Lhel| 8xSLx 00l T| w2l € lawe| S 9% v N vo fstom wouf ‘awos 3yf wﬁ& W
sor| 1| o5 22 - B/ NS £ [46.] 08 | vrg | 5’8 | po8 |cSeC|c'0gh| Sx xS Tpgsl € |ve| 96 | Sh s . . Jouipnyibuoy assaasuosf (1050 9
s slalzl oz | 2z | s /8 | o | w | €| 95| w|es |69 es| €| 106| 9459206 1 —| — ‘| |zer |# g 3% | —F |2
" REARANZ 97 26 26 vl W €| 15 [Tt'8 | 098 | s'er | 09 |€'SE|clogn] SxsyxSH Tivii B2 | 62 |2v . siomJ 2
77— 1 z|9| 1| wr| 26 | z6 56 | o 2 €| %€ | L'9| 00t |S'e |ooE |g'seg|c0ey| Saghash T =1 — o |5 |1% ' N & 3
I~ ol 1| of | ez | ¢s £ lesl .| % 2L11|7e02|€'992| gxshesh 1|82 € 2| @ |ov — T &
F— /o] | o5 82 (5 i€ | es . I3 845l |€'602|€'992| ¢x 54 * Sb 1 gz 2 |ez| € 8¢ _[l_ R ° N N
T 7t | os 94 901 be S " L4 0591 g'sgf| 5085 | Sr0s « 05 T wr| 1 €| 67 1 0s2h _ 2
zZ\9| 1|00l | 56 LS b2 |ogz| 4 SEel| €502\ €'9%| €x sk SpT| €| 8r (372 » 9¢ g°
— o1 osl ge | s | st [ea| v | 2 966/ | €602\ €'992| €xShx5h 1PIY 92 297 927 |s¢ =
[ohes e%s | /[97] /| 05 | 9% 26| 5 |eer| w b h99! | g'see|€'0E| Sxsh e 5h T (297 pi (290 bk |wE m
o ke | wer | 26 | 9o | oL Ju | v | € 900/ |€58c|€08%| S 057057 poz| $9 |ag] ¥9 |¢€ a
A7 94 26 9¢ | gy | I3 woul | ¢lsee | €ogn |"5x b x gy T fawel 91 |vz| wZ |2 o2 S,
7| os 9 |26 | 2 |bb| w | 2 ovg |g'see|cloen | sxsnesy 1 |we| €€ Pwz| 2z |If 47°- 2404 »51 0f 3np == S
o5 | 9o | el 9| W | 059/ [e'sgs |e0gn| sx 0505 1 |esl 2z |ws| 2z |og (doip 4ofarpue> J S
1| os 8z | (s 8z [o1 | » I S6u|E60z|e'M2| € xSh* Sy T gkl 7 [FH T 62 - = o) 0]
t] os 95 | .26 20 | qu 14 ol [§'see|€oen|S xSk« sh 1 g2l 8¢ [yez] -zt |92 - -
ARZ gz | .5 2 |19 4 0521 |e'e0z |€'997| €x5hrsh 1 (22| v 2| @ |€2z PN N 7 x.
r| s 022 | $¢! €5/ |02z £ €00/ |6'98 [6'85 | 6+09-09 T [v) | LO! -1 - 2z € I3
o | 26 |90 | 2 | o] w | €|an |ak|wo | [usor fesee [eogn| G505 051 || - il es |1z °
1| el 58 Ls LZ el |ow b |zl |18 Liszr | 9'¢1| 1521 (€07 |§'992| € SexGF T |vi | LE - = ez
z| 0z o en | 0ot |wpy| w 1| ¢8| 9% \gier |10z | gl |S81n|S%S| €% §hegh | €1 18 [avif 16 |S/ ,._h_ 3
ez 10 55 s ot wgr| W b | 921 |9 |€eu |10z [€211 15" (s'2gs | €x SexSh PvI| 95 [Vy| 28 2 S
z| 10¢ 2557 sz¢ 8sz |e22| o Z | I |6 886 | bic (L6l {181 | 1961 | 01- §9% 0017 Vi | €92 v | LEZ |o! N
2| 108 i | €05 sz (| oW 2| /8 |gu |8E01|9'tz | 8eni|S801| 4gE1| B<06x067 |vi |0IZ |¥vi| SLI |6 3
| RYass..s o[9| 2| €05 |0z6 |sges SIS | kbt | » Z | 19 |9%€2 || L'se | sc4i |86 | 8ie2|0ix 021 <021 1 |a82{58E lasz €05 €
F—"" “telal z| s 991 ror | 591 le2l| v 2 | ¢t [L'€l |osor |€'12 | oSor |e4gs|L'zi8| Ixoex OL T |ave] 2L vz| o L
[glo| 2| 2on | 895 | €4€ | 8+E | 18| 2 | L5 |9%1 |2zn |s'0s| hroi|epzi| 1551 |@x00ix 001 T Jagzl 011 |vi | 182 | 9
- Lo z| 1s€7| s15| £v€ | g Lz| « 2 | 19 |96 | 961 |50% [49p1| Lbz1 | 1550 | 82 001%00/ 1 |avz| €€ (w1 | €12 57
glarfz| roe | 197 | 862 | 192 |oi2| « | €| & |9w |66 |n'ez (1061|5801 |6gel| 9106 <06 T |wi | L2z [¥92 #1 | & .
Telol 2zl zse ['e1s | spe |obz |012] « L |96l |6En! Lozt 1ss1| @xoorxoor 1 fvi | 292 fve| ¥€ | € - S ‘
ol 2 somd Seed T { BT Lol 1 £ | /g {ver "o euz| 9wl ires| iab| 3roinor 1 |ew| o fam|eer | 2 3-3 NOID3S 9-2 NOII3S A&Wv{" AN‘Q‘A‘WV&‘
— €loi| z| st |99/ | #61 | 09 |tsi|se2| €| 26| vsi|esw 5oL || 9xo8x0e 1 [av| aer [€| cor | 1] e foor] AN AN AVANVAN AV SN AN iy
N 2z 8 m uvans [onivas| 31 [dmod [W | tdN uz.su. e e e Tws | oue | ua N o] o] amos |z 3 }7 . v&.ﬂw . . ° 8
[\ owwnay |Saf 5 lex ol e Lt [=a || | | x| e | el sw | NOWLD3S 3w ovo1 swiNE3H0S | & ZEANE S '
B3| R| 5 e w3anan i (v 3auos 2| 3-4 No1Lo3s a-a NOI193s
31NA3HIS Y38W3IW .)
T [_‘ ” T T ~ .

I.Nl.\:m_nl._\rw.o W - . -

Stellenbosch University http://scholar.sun.ac.za

151

17.3 ESKOM TOWER DRAWINGS

[|

s30T SuimeI(] I0MO], :9 2INJ1q

v e | | Y |
| C/H81S/69 o_lr.,.._,x% woe
C1HS onimvya NoIS3a R
. ¥43MOL NOISN3JSNS K
. ONI11¥0dd 73S y,
wg'e

Q3NNYIS

1 1 |
- 017 (ALd) S3NINY3IMOd

3U0 Wojjoq dyj of A puD : o
Uotfrauued. dof 3y{ of Suafas X SRqUBW [031fsaN Jog “SUO o2 s
. \3.\\8.\ Y of A pub Jemol 2y \o ﬂ Yf of {$950/3 =
uoiyreuuod 3yf of nh\o.. X Srquew [pjuozlioy Jof /\

1/v815/69°0 ONIMVEa 33S

NOISN3LX3 9317 W0'9 Y04

..,\..,m..w», A..?\E\) Al PafoRIpuI S1, pasinbal sjoq Jo 0u, UayM
¥

Ll

Il”!‘”
HEEER

05 9% T [6798%|6195| 57 09707 T
05 | 9% 1 1 £736¢|£'c87] 57057035
75 | 9% 1 e'sEEon| G735k
o5 Eid - I R I I R feot| €999 €75n*5n 1
AEANINZ B z A A A A A A 3 i R AR A I MR A i
79| 7| O . Z €[TOr|78 G| 5B 976 | #68 (€607 €T Exsh*57 T[orZ| & &Z
71 o5 7 26 85 [LG 99| 5o |89L [EEE[E0E IR
T | o_pee | ger|_gx09408 [1] 7| ¥
0% g go1 [Cur| o[2'e | o 6IEE[BB 57 09703 T 9| 62 |a¥
707 4 B T 16| 26| 1967 |BI6E[£785| S¥ 09709 T [dV] 99 |7
2 75 T8 |58 [9'€! | 99T [¢BOZ|€IR| EXFERTH T 9 [oF]
. T T 00|28 |00 (6|6 IgE| 5 709709 T [BVI] 6 [aV
(%3 4 T8 [Co [8ed[5er | Sesi[ESEE [T 087 G < 5% < 57 1|39l © V2
2 7 T [T 50229 |5102[6987[6185| §< 0909 T|a¥| 5 |3
o3[9% i3 [T 982 28i |92 [6'9P[6785 | 5% 09 *09 T[VZ[i [oar
% L T | €T87|S67 (9295 [§ LT 106 | 9% 59X 06 T [9¥I| T [vi
T 7 3 AR A A A i e A A T
2 7 [27 1829 [2°8 | 5226{6°997[6795 5x09 <09 T |21 . £ _|2@]]
o% Ei & qieg | 2792 |"269%| g | 9709709 T |37 T {35z
I 123 F7i7 | 9267| 1'E7 | 676T] BgoT| 91T 9705 7 59 T (597 ool 7@
T 7er or | F 51| “onze| 7 |02 | LOZg | L heE| 9708 ¥08 T [ei| ¥ a7
A EU AR [24 2T "ozl |26 "|0n2Z [6798%| 6785 | 5209x 09 T 97| 89 |¥9]
T o7 | oz seoc| 9911| 2291 9709708 W |9z 1L |97
T . 7 go7 CTEE[G| S7 09509 T [Fai| &1 [@7
EZ T U4 [4 134 65 or Txg =001 T p@z| =€ til
G R 757 797 | 6028 T85i| 5201 9x ST 00T T il
G g7 67 L90L| UhgE| 9X¥ 08 x 08 1 [O7| 96|34,
I Ed 157 E; 737 TRES| 28| 9 rO0lx01 7. 26 2
3 70 or 97 €27 Sier[€7z | 9292 [TheE | Laig| IF 0L ol 1| 2| 28 [397
HE] 707 (2 ED Fo1 201 €777 | €067 |U%85 | T2 | Frolx ol T |22 89 (98¢
FEHEE S N ua_Su T [T RN I T T | Wa 1] anod | 2
SyuVRIY mm w mm e I P PPN hu mo|a| [x1 | v | By | NOILO3S | 35v2 ovol awinasaos | £
EREIRAE nos - [¥3EW3N - (N¥) 30803 ol
37NA3HIS H3EW3INW
T T . ! £ [v 9 T z
- _ —_ - R —_— el e —

T2 8iIs/b90 2w

Stellenbosch University http://scholar.sun.ac.za

17.4 Eskom Design Data

152

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA
Table 1: Tower Nodal Coordinates

Node z(m) y(m) z(m) Node =z(m) y(m) =z (m)
1 7225 0 0 46 7.225 0 8.95
2 8.12 1.2 0.235 47 7.46 1.2 0.895
3 9.015 24 0.47 48 7.695 24 1.79
4 9.91 3.6 0.705 49 7.93 3.6 2.685
5 10.805 4.8 0.94 50 8.165 4.8 3.58
6 11.7 6 1.175 51 15.425 25.55 4.475
7 7.46 1.2 0.235 52 8.4 6 4.475
8 7.695 2.4 0.47 53 7.46 1.2 8.055
9 7.93 3.6 0.705 54 7.695 24 7.16
10 8.165 4.8 0.94 59 7.93 3.6 6.265
11 8.4 6 1.175 56 8.165 4.8 5.37
12 15.28 1.2 0.235 57 8.165 4.8 1.93
13 14.385 24 0.47 58 8.165 4.8 7.02
14 1349 3.6 0.705 59 15.94 1.2 0.895
15 12.595 4.8 0.94 60 15.705 2.4 1.79
16 15.94 1.2 0.235 61 15.47 3.6 2.685
17 15.705 24 0.47 62 15.235 4.8 3.58
18 15.47 3.6 0.705 63 15 6 4.475
19 15.235 4.8 0.94 64 15.94 1.2 8.055
20 15 6 1.175 65 15.705 24 7.16
21 16.175 0 0 66 15.47 3.6 6.265
22 9.155 4.8 0.94 67 15.235 4.8 5.37
23 14.245 4.8 0.94 68 15.235 4.8 1.93
24 8.12 1.2 8.715 69 15.235 4.8 7.02
25 9.015 24 8.48 70 8.635 7.2 1.41
26 9.91 3.6 8.245 71 8.87 8.4 1.645
27 10.805 4.8 8.01 72 9.105 9.6 1.88
28 11.7 6 7.775 73 9.34 10.8 2.115
29 7.46 1.2 8.715 74 9.575 12 2.35
30 7.695 24 8.48 75 14.765 7.2 1.41
31 7.93 3.6 8.245 76 14.53 8.4 1.645
32 8.165 4.8 8.01 " 14.295 9.6 1.88
33 8.4 6 7.775 78 14.06 10.8 2.115
34 15.28 1.2 8.715 79 13.825 12 2.35
35 14.385 2.4 8.48 80 8.635 7.2 7.54
36 13.49 3.6 8.245 81 8.87 84 7.305
37 12.595 4.8 8.01 82 9.105 9.6 7.07
38 15.94 1.2 8715 83 9.34 10.8 6.835
39 15.705 2.4 8.48 84 9.575 12 6.6
40 15.47 3.6 8.245 85 14.765 7.2 7.54
41 15.235 4.8 8.01 86 14.53 84 7.305
42 15 6 7.775 87 14.295 9.6 7.07
43 16.175 0 8.95 88 14.06 10.8 6.835
44 9.155 4.8 7.99 89 13.825 12 6.6
45 14.245 4.8 7.99 90 10.0625 6 1.175

153

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 154
Table 2: Tower Nodal Coordinates
Node =z (m) y(m) =z (m) Node z (m) y (m) z (m)
91 13.3375 6 1.175 136 9.22525 13.399 2.490451
92 10.0625 6 7.775 137 8.8755 14.798 2.630902
93 13.3375 6 7.775 138 8.51875 16.225 2.774163
94 8.4 6 2.8375 139 8.1625 17.65 2.917224
95 8.4 6 6.1125 140 7.80625 19.075 3.060285
96 15 6 2.8375 141 7.45 20.5 3.203346
97 15 6 6.1125 142 9.22525 13.399 6.459549
98 10.805 7.2 141 143 8.8755 14.798 6.319098
99 9.91 8.4 1.645 144 8.51875 16.225 6.175837
100 12.595 7.2 141 145 8.1625 17.65 6.032776
101 13.49 8.4 1.645 146 7.80625 19.075 5.889715
102 10.805 7.2 7.54 147 7.45 20.5 5.746654
103 9.91 84 7.305 148 9.22525 13.399 4475
104 12.595 7.2 7.54 149 8.51875 16.225 4.475
105 13.49 8.4 7.305 150 7.80625 19.075 4.475
106 8.635 7.2 3.58 151 14.17475 13.399 2.490451
107 8.87 8.4 2.685 152 14.5245 14.798 2.630902
108 8.635 7.2 5.37 153 14.88125 16.225 2.774163
109 8.87 8.4 6.265 154 15.2375 17.65 2.917224
110 14.765 7.2 3.58 155 15.59375 19.075 3.060285
111 14.53 8.4 2.685 156 15.95 20.5 3.203346
112 14.765 7.2 5.37 157 14.17475 13.399 6.459549
113 14.53 84 6.265 158 14.5245 14.798 6.319098
114 12.9775 10.8 2.16 159 14.88125 16.225 6.175837
115 10.4225 10.8 2.16 160 152375 17.65 6.032776
116 12.9775 10.8 6.79 161 15.59375 19.075 5.889715
117 10.4225 10.8 6.79 162 15.95 20.5 5.746654
118 14.06 10.8 5.7525 163 14.17475 13.399 4475
119 14.06 10.8 3.1975 164 14.88125 16.225 4.475
120 9.34 10.8 5.7525 165 15.59375 19.075 4475
121 9.34 10.8 3.1975 166 12.77575 13.399 2.490451
122 11.7 12 2.35 167 11.7265 14.798 2.630902
123 11.7 12 6.6 168 10.65625 16.225 2.774163
124 9.575 12 4.475 169 9.5875 17.65 2.917224
125 13.825 12 4.475 170 8.51875 19.075 3.060285
126 10.0625 6 2.8375 171 10.62425 13.399 2.490451
127 10.0625 6 6.1125 172 12.74375 16.225 2.774163
128 13.3375 6 2.8375 173 13.8125 17.65 2.917224
129 13.3375 6 6.1125 174 14.88125 19.075 3.060285
130 10.0625 6 4475 175 1277575 13.399 6.459549
131 13.3375 6 4.475 176 11.7265 14.798 6.319098
132 10.6375 12 3.4125 177 10.65625 16.225 6.175837
133 10.6375 12 5.5375 178 9.5875 17.65 6.032776
134 12.7625 12 3.4125 179 851875 19.075 5.889715
135 12.7625 12 5.5375 180 10.62425 13.399 6.459549

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 155
Table 3: Tower Nodal Coordinates
Node x (m) y (m) z (m) Node x (m) y (m) z (m)
181 12.74375 16.225 6.175837 226 4.316 26.4 5.061519
182 13.8125 17.65 6.032776 227 6.025 26.4 5.219765
183 14.88125 19.075 5.889715 228 7.45 26.4 5.324
184 10.65625 16.225 4.475 229 8.2375 26.4 5.324
185 8.51875 19.075 4.475 230 9.025 26.4 5.324
186 12.74375 16.225 4.475 231 10.6 26.4 5.324
187 14.88125 19.075 4.475 232 11.7 26.4 5.324
188 11.7265 14.798 4.475 233 12.8 26.4 5.324
189 7.8 21.9 3.343898 234 14.375 26.4 5.324
190 8.15 23.3 3.484449 235 15.1625 26.4 5.324
191 8.5 24.7 3.625 236 15.95 26.4 5.324
192 7.1 21.9 3.343898 237 17.375 26.4 5.219765
193 6.75 23.3 3.484449 238 19.084 26.4 5.061519
194 6.4 24.7 3.625 239 20.3665 26.4 4.93897
195 16.3 21.9 3.343898 240 21.17616 26.00334 4.850647
196 16.65 23.3 3.484449 241 22.13616 25.54376 4.762323
197 17 24.7 3.625 242 23.09616 25.09709 4.674
198 15.6 219 3.343898 243 234 24.7 4.474
199 15.25 23.3 3.484449 244 0.303837 25.09709 4.274
200 14.9 24.7 3.625 245 1.263837 25.54376 4.185677
201 7.45 24.7 3.625 246 2.223837 26.00334 4.097353
202 15.95 24.7 3.625 247 3.0335 26.4 4.00903
203 7.8 21.9 5.606102 248 4.316 26.4 3.886481
204 8.15 23.3 5.465551 249 6.025 26.4 3.728235
205 8.5 24.7 5.325 250 7.45 26.4 3.624
206 7.1 21.9 5.606102 251 8.2375 26.4 3.624
207 6.75 23.3 5.465551 252 9.025 26.4 3.624
208 6.4 24.7 5.325 253 10.6 26.4 3.624
209 16.3 219 5.606102 254 11.7 26.4 3.624
210 16.65 23.3 5.465551 255 12.8 26.4 3.624
211 17 24.7 5.325 256 14.375 26.4 3.624
212 15.6 21.9 5.606102 257 15.1625 26.4 3.624
213 15.25 23.3 5.465551 258 15.95 26.4 3.624
214 14.9 24.7 5.325 259 17.375 26.4 3.728235
215 7.45 24.7 5.325 260 19.084 26.4 3.886481
216 15.95 24.7 5.325 261 20.3665 26.4 4.00903
217 6.4 24.7 4.475 262 21.17616 26.00334 4.097353
218 17 24.7 4.475 263 22.13616 25.54376 4.185677
219 7.8 21.9 4.475 264 23.09616 25.09709 4.274
220 15.6 21.9 4.475 265 0.38506 24.8125 4.674
221 0 24.7 4.474 266 0.987 25 4.768008
222 0.303837 25.09709 4.674 267 2.223837 25.365 4.850647
223 1.263837 25.54376 4.762323 268 2.9385 25.6 4.953882
224 2.223837 26.00334 4.850647 269 3.7805 25.39806 5.03408
225 3.0335 26.4 4.93897 270 4.6105 25.16891 5.113135

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 156
Table 4: Tower Nodal Coordinates
Node z (m) y (m) z (m) Node x (m) y (m) =z (m)
271 5.4405 24.93386 5.19219 316 18.58 27.67 4.475
272 9.212 24.92809 5.324 317 18.83 27.67 4.475
273 10.038 25.16891 5.324 318 17.975 27.025 4.927
274 11.225 25.49 5.324 319 17.025 27.025 4.023
275 11.7 25.6 5.324 320 17.975 27.025 4.023
276 12.175 25.49 5.324 321 6.375 27.025 4.927
277 13.362 25.16891 5.324 322 5.17 27.67 4.475
278 14.188 24.92809 5.324 323 4.82 27.67 4.475
279 17.9595 24.93386 5.19219 324 4.57 27.67 4.475
280 18.7895 25.16891 5.113135 325 5.425 27.025 4.927
281 19.6195 25.39806 5.03408 326 6.375 27.025 4.023
282 20.4615 25.6 4.953882 327 5.425 27.025 4.023
283 21.17616 25.365 4.850647 328 9.8125 26.4 4.475
284 22.413 25 4.768008 329 13.5875 264 4.475
285 23.01494 24.8125 4.674 330 6.710068 26.4 4.475
286 0.38506 24.8125 4.276 331 5.060176 26.4 4.475
287 0.987 25 4.181992 332 3.591226 26.4 4.475
288 2.223837 25.365 4.099353 333 16.68993 26.4 4.475
289 2.9385 25.6 3.996118 334 18.33982 26.4 4.475
290 3.7805 25.39806 3.91592 335 19.80877 26.4 4.475
291 4.6105 25.16891 3.836865 336 10.2185 25.209 4.475
292 5.4405 24.93386 3.75781 337 8.856 24.814 4.475
293 9.212 24.92809 3.626 338 13.1815 25.209 4.475
294 10.038 25.16891 3.626 339 14.544 24.814 4.475
295 11.225 25.49 3.626 340 17.47033 24.81476 4.475
296 11.7 25.6 3.626 341 18.90451 25.19829 4.475
297 12.175 25.49 3.626 342 5.92967 24.81498 4.475
298 13.362 25.16891 3.626 343 4.495491 25.19829 4.475
299 14.188 24.92809 3.626 344 21.69538 25.22688 4.475
300 17.9595 24.93386 3.75781 345 22.78736 24.88371 4.475
301 18.7895 25.16891 3.836865 346 1.704621 25.22688 4.475
302 19.6195 25.39806 3.91592 347 0.612637 24.88371 4.475
303 20.4615 25.6 3.996118 348 16.08273 21.2433 4.475
304 21.17616 25.365 4.099353 349 16.4871 22.64842 4.475
305 22.413 25 4.181992 350 16.84929 24.09714 4.475
306 23.01494 24.8125 4.276 351 7.317269 21.2433 4.475
307 8.5 24.7 4.475 352 6.912895 22.64842 4.475
308 14.9 24.7 4.475 353 6.550715 24.09714 4.475
309 11.7 25.6 4.475 354 8.334084 24.03634 4.475
310 8.2375 26.4 4.475 355 15.06592 24.03634 4.475
311 15.1625 26.4 4.475 356 6.925 25.55 4.475
312 20.4615 25.6 4.475 357 7.975 25.55 4.475
313 2.9385 25.6 4.475 358 16.475 25.55 4.475
314 17.025 27.025 4.927
315 18.23 27.67 4.475

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA

Table 5: Tower Fixity

Node Fixity

1 ALL TRANSLATION
21 ALL_TRANSLATION
43 ALL_TRANSLATION
46 ALL_TRANSLATION

157

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 158
Table 6: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

1 1 7 46 29 30 91 48 49
2 7 8 47 30 31 92 49 50
3 8 9 48 31 32 93 50 52
4 9 10 49 32 33 94 46 53
5 10 11 50 46 24 95 53 54
6 1 2 51 24 25 96 54 55
7 2 3 52 25 26 97 55 56
8 3 4 53 26 27 98 56 52
9 4 5 54 27 28 99 7 47
10 5 6 55 43 34 100 8 48
11 7 2 56 34 35 101 9 49
12 8 3 57 35 36 102 10 57
13 9 4 58 36 37 103 57 50
14 10 22 59 37 28 104 94 52
15 22 5 60 43 38 105 11 94
16 9 6 61 38 39 106 53 29
17 11 90 62 39 40 107 54 30
18 21 12 63 40 41 108 55 31
19 12 13 64 41 42 109 56 58
20 13 14 65 29 24 110 58 32
21 14 15 66 30 25 111 95 33
22 15 6 67 31 26 112 52 95
23 21 16 68 44 27 113 47 8

24 16 17 69 32 44 114 48 9

25 17 18 70 92 28 115 49 57
26 18 19 71 33 92 116 57 11
27 19 20 72 34 38 117 53 30
28 12 16 73 35 39 118 54 31
29 13 17 74 36 40 119 55 58
30 14 18 75 37 45 120 58 33
31 23 15 76 45 41 121 43 64
32 19 23 77 93 42 122 64 65
33 91 20 78 28 93 123 65 66
34 6 91 79 24 30 124 66 67
35 2 8 80 25 31 125 67 63
36 3 9 81 26 44 126 21 59
37 9 22 82 31 44 127 59 60
38 4 22 83 44 33 128 60 61
39 22 11 84 34 39 129 61 62
40 12 17 85 35 40 130 62 63
41 13 18 86 36 45 131 38 64
42 14 23 87 40 45 132 39 65
43 18 23 88 45 42 133 40 66
44 23 20 89 1 47 134 41 69
45 46 29 90 47 48 135 69 67

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 159
Table 7: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
136 97 63 181 63 128 226 109 &2
137 42 97 182 128 6 227 28 102
138 59 16 183 6 126 228 102 103
139 60 17 184 126 52 229 103 82
140 61 18 185 126 11 230 28 104
141 62 68 186 127 33 231 104 105
142 68 19 187 129 42 232 105 87
143 96 20 188 128 20 233 63 112
144 63 96 189 129 131 234 112 113
145 64 39 190 131 63 235 113 87
146 65 40 191 131 128 236 63 110
147 66 69 192 127 130 237 110 111
148 69 42 193 130 52 238 111 77
149 40 69 194 130 126 239 85 112
150 9 57 195 11 70 240 8 113
151 31 58 196 70 71 241 110 75
152 59 17 197 71 72 242 111 76
153 60 18 198 72 73 243 75 100
154 61 68 199 73 T4 244 76 101
155 18 68 200 33 80 245 98 70
156 68 20 201 80 81 246 99 71
157 63 36 202 81 82 247 70 106
158 28 66 203 82 83 248 71 107
159 66 34 204 83 84 249 108 80
160 36 64 205 42 85 250 109 81
161 64 34 206 8 86 251 80 102
162 6 61 207 8 87 252 81 103
163 63 14 208 87 88 253 104 85
164 14 59 209 88 89 254 105 86
165 61 12 210 20 75 255 104 93
166 12 59 211 75 76 256 92 102
167 52 4 212 (e 257 94 106
168 6 49 213 7778 258 95 108
169 4 47 214 78 79 259 91 100
170 49 2 215 6 100 260 90 98
171 2 47 216 100 101 261 96 110
172 28 55 217 101 77 262 97 112
173 52 26 218 6 98 263 93 85
174 26 53 219 98 99 264 92 80
175 55 24 220 99 72 265 95 80
176 24 53 221 52 106 266 94 70
177 28 127 222 106 107 267 90 70
178 127 52 223 107 72 268 91 75
179 28 129 224 52 108 269 9% 75
180 129 63 225 108 109 270 97 85

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 160
Table 8: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
271 70 107 316 120 84 361 150 147
272 70 99 317 117 84 362 150 141
273 75 101 318 116 89 363 79 151
274 75 111 319 124 132 364 151 152
275 8 113 320 132 122 365 152 153
276 85 105 321 122 134 366 153 154
277 80 103 322 134 125 367 154 155
278 80 109 323 125 135 368 89 157
279 77 114 324 135 123 369 157 158
280 114 122 325 123 133 370 158 159
281 72 115 326 133 124 371 159 160
282 115 122 327 132 74 372 160 161
283 72 121 328 135 89 373 155 156
284 121 124 329 134 79 374 161 162
285 82 120 330 133 84 375 79 163
286 120 124 331 132 133 376 163 158
287 82 117 332 134 135 377 89 163
288 117 123 333 84 142 378 163 152
289 87 116 334 142 143 379 152 164
290 116 123 335 143 144 380 164 160
291 87 118 336 144 145 381 158 164
292 118 125 337 145 146 382 164 154
293 77 119 338 146 147 383 154 165
294 119 125 339 74 136 384 165 162
295 88 118 340 136 137 385 160 165
296 119 78 341 137 138 386 165 156
297 78 114 342 138 139 387 151 163
298 115 73 343 139 140 388 163 157
299 73 121 344 140 141 389 153 164
300 120 83 345 142 148 390 164 159
301 83 117 346 148 136 391 155 165
302 116 88 347 144 149 392 165 161
303 89 125 348 149 138 393 79 166
304 125 79 349 146 150 394 166 167
305 79 122 350 150 140 395 167 168
306 122 74 351 84 148 396 168 169
307 74 124 352 148 137 397 169 170
308 124 84 353 74 148 398 170 141
309 84 123 354 148 143 399 74 171
310 123 89 355 143 149 400 171 167
311 118 89 356 149 139 401 167 172
312 119 79 357 137 149 402 172 173
313 114 79 358 149 145 403 173 174
314 115 74 359 145 150 404 174 156
315 121 74 360 139 150 405 151 166

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 161
Table 9: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
406 171 136 451 145 179 496 201 191
407 152 167 452 160 183 497 200 202
408 167 137 453 176 188 498 202 197
409 153 172 454 188 167 499 198 195
410 168 138 455 188 184 500 199 196
411 154 173 456 188 186 501 192 190
412 169 139 457 167 184 502 195 199
413 155 174 458 176 184 503 193 201
414 170 140 459 176 186 504 190 201
415 166 152 460 167 186 505 199 202
416 171 137 461 177 184 506 196 202
417 152 172 462 184 168 507 147 206
418 137 168 463 184 178 508 206 207
419 153 173 464 184 169 509 207 208
420 138 169 465 178 185 510 147 203
421 154 174 466 169 185 511 203 204
422 139 170 467 179 185 512 204 205
423 84 180 468 185 170 513 162 212
424 180 176 469 185 147 514 212 213
425 176 181 470 185 141 515 213 214
426 181 182 471 172 186 516 162 209
427 182 183 472 186 181 517 209 210
428 183 162 473 186 173 518 210 211
429 89 175 474 186 182 519 206 203
430 175 176 475 173 187 520 212 209
431 176 177 476 182 187 521 207 204
432 177 178 477 174 187 522 213 210
433 178 179 478 187 183 523 208 215
434 179 147 479 187 156 524 215 205
435 142 180 480 187 162 525 214 216
436 143 176 481 141 192 526 216 211
437 144 177 482 192 193 527 206 204
438 145 178 483 193 194 528 209 213
439 146 179 484 141 189 529 207 215
440 157 175 485 189 190 530 204 215
441 158 176 486 190 191 531 213 216
442 159 181 487 156 198 532 210 216
443 160 182 488 198 199 533 195 348
444 161 183 489 199 200 534 209 348
445 180 143 490 156 195 535 162 348
446 175 158 491 195 196 536 156 348
447 143 177 492 196 197 537 206 351
448 158 181 493 192 189 538 147 351
449 144 178 494 193 190 539 141 351
450 159 182 495 194 201 540 192 351

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 162
Table 10: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
541 195 349 586 243 285 631 236 237
542 196 349 587 243 264 632 237 238
543 210 349 588 243 306 633 238 239
544 209 349 589 286 287 634 239 240
545 206 352 590 287 288 635 240 241
546 192 352 591 288 289 636 241 242
547 193 352 592 289 290 637 244 245
548 207 352 593 290 291 638 245 246
549 197 350 594 291 292 639 246 247
550 211 350 595 292 194 640 247 248
551 210 350 596 265 266 641 248 249
552 196 350 597 266 267 642 249 250
553 194 353 598 267 268 643 250 251
554 208 353 599 268 269 644 251 252
555 207 353 600 269 270 645 252 253
556 193 353 601 270 271 646 253 254
557 208 217 602 271 208 647 254 255
558 217 194 603 285 284 648 255 256
559 211 218 604 284 283 649 256 257
560 218 197 605 283 282 650 257 258
561 203 219 606 306 305 651 258 259
562 219 189 607 305 304 652 259 260
563 198 220 608 304 303 653 260 261
564 220 212 609 282 281 654 261 262
565 219 204 610 281 280 655 262 263
566 219 190 611 280 279 656 263 264
567 220 199 612 279 211 657 191 293
568 220 213 613 303 302 658 293 294
569 190 354 614 302 301 659 294 295
570 205 354 615 301 300 660 295 296
571 191 354 616 300 197 661 296 297
572 204 354 617 222 223 662 297 298
573 214 355 618 223 224 663 298 299
574 200 355 619 224 225 664 299 200
575 213 355 620 225 226 665 205 272
576 199 355 621 226 227 666 272 273
577 205 307 622 227 228 667 273 274
578 191 307 623 228 229 668 274 275
579 308 214 624 229 230 669 275 276
580 200 308 625 230 231 670 276 277
581 221 222 626 231 232 671 277 278
582 221 265 627 232 233 672 278 214
583 221 244 628 233 234 673 286 265
584 221 286 629 234 235 674 286 347
585 243 242 630 235 236 675 287 347

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 163
Table 11: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
676 266 347 721 299 339 766 249 227
677 265 347 722 278 339 767 249 330
678 268 346 723 308 202 768 330 228
679 289 346 724 308 216 769 330 250
680 287 346 725 202 218 770 227 330
681 266 346 726 216 218 771 250 228
682 225 313 727 202 216 772 250 310
683 313 247 728 197 340 773 310 230
684 268 313 729 279 340 774 228 310
685 289 313 730 300 340 775 310 252
686 269 313 731 211 340 776 229 310
687 290 313 732 281 341 7T 310 251
688 269 343 733 302 341 778 252 328
689 271 343 734 300 341 779 328 253
690 292 343 735 279 341 780 328 231
691 290 343 736 281 312 781 230 328
692 194 342 737 302 312 782 253 231
693 208 342 738 239 312 783 254 232
694 271 342 739 312 261 784 255 233
695 292 342 740 312 303 785 255 329
696 217 201 741 282 312 786 329 256
697 217 215 742 284 344 787 329 234
698 201 215 743 305 344 788 233 329
699 201 307 744 285 345 789 256 311
700 215 307 745 306 345 790 311 236
701 272 337 746 303 344 791 234 311
702 293 337 747 282 344 792 311 258
703 191 337 748 305 345 793 235 311
704 205 337 749 284 345 794 311 257
705 295 336 750 285 306 795 236 258
706 274 336 751 244 222 796 237 333
707 272 336 752 222 245 797 259 333
708 293 336 753 245 223 798 258 333
709 295 309 754 223 246 799 236 333
710 274 309 755 246 224 800 259 237
711 275 309 756 224 247 801 237 334
712 309 296 757 247 225 802 238 334
713 309 297 758 247 332 803 260 334
714 309 276 759 226 332 804 259 334
715 297 338 760 248 332 805 238 335
716 299 338 761 225 332 806 261 335
717 278 338 762 227 331 807 239 335
718 276 338 763 249 331 808 260 335
719 200 339 764 248 331 809 261 239
720 214 339 765 226 331 810 239 262

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 164
Table 12: Tower Element Definition
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

811 262 240 856 200 258 901 250 326
812 240 263 857 214 236 902 326 322
813 263 241 858 258 197 903 321 322
814 241 264 859 236 211 904 227 325
815 264 242 860 197 259 905 249 327
816 244 286 861 211 237 906 327 323
817 265 222 862 259 301 907 325 323
818 286 245 863 237 280 908 322 323
819 265 223 864 301 260 909 323 324
820 245 288 865 280 238 910 250 321
821 223 267 866 260 303 911 321 326
822 288 247 867 238 282 912 249 325
823 267 225 868 303 261 913 325 327
824 289 247 869 282 239 914 249 326
825 268 225 870 261 304 915 227 321
826 289 248 871 239 283 916 321 325
827 268 226 872 304 263 917 326 327
828 226 270 873 283 241 918 325 322
829 248 291 874 263 306 919 327 322
830 291 249 875 241 285 920 214 51

831 270 227 876 306 264 921 258 51

832 227 208 877 285 242 922 236 51

833 249 194 878 232 309 923 200 51

834 208 228 879 309 254 924 211 358
835 194 250 880 258 319 925 236 358
836 250 191 881 236 314 926 258 358
837 228 205 882 314 315 927 197 358
838 191 252 883 319 315 928 228 356
839 205 230 884 315 316 929 250 356
840 252 294 885 316 317 930 228 357
841 230 273 886 316 320 931 205 357
842 294 253 887 320 259 932 194 356
843 273 231 888 316 318 933 208 356
844 253 296 889 318 237 934 191 357
845 231 275 890 259 319 935 250 357
846 254 296 891 237 314 936 121 115
847 232 275 892 319 320 937 114 119
848 296 255 893 314 318 938 116 118
849 275 233 894 320 315 939 120 117
850 255 298 895 318 315 940 101 111
851 233 277 896 258 314 941 100 110
852 298 256 897 314 319 942 107 99

853 277 234 898 237 320 943 106 98

854 256 200 899 318 320 944 103 109
855 234 214 900 228 321 945 102 108

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA

Table 13: Tower Element Definition

Node 1

Node 2

946
947

113
112

105
104

Table 14: Tower Grouping

165

Design Variable 1

1

46

197

208

337

366

483

Design Variable 2

6

51

91

124

463

480

535

546

665

Design Variable 3

157
687
846
925
Design Variable 4

11

42

83
114
145
156
244
260
271
298
317
406
439
478
519
562
573
700
713

2
47
198
209
338
367
490

52

92
125
464
495
536
547
666

158
698
847
926

12

43

84
115
146
159
246
261
272
299
318
411
440
493
520
563
574
701
714

3
48
199
210
339
368
491

53

93
126
465
496
537
548
667

162
727
872
927

28

44

85
116
147
160
248
262
273
300
327
412
443
494
521
564
375
702
715

4
49
200
211
340
369
492

54

94
127
466
497
938
657
668

163
736
873
928

29

65

86
117
148
164
250
263
274
301
328
413
444
499
522
565
976
703
716

5}
60
201
212
341
370
507

10
55
95
128
469
498
539
658
669

167
737
878
929

35

66

87
118
149
165
252
264
275
302
329
414
449
500
527
566
692
704
717

23

61
202
213
342
371
508

18
56
96
129
470
923
540
659
670

168
771
879
930

36

72

88
119
150
169
254
265
276
311
330
419
450
501
528
967
693
705
718

24

62
203
214
343
372
509

19
57
97
130
473
924
541
660
671

172
782
920
931

37

73

99
120
151
170
255
266
277
312
349
420
451
502
529
568
694
706
719

25

63
204
333
344
373
516

20
98
98
457
474
925
542
661
672

173
784
921
932

38

79
100
131
152
174
256
267
278
313
350
421
452
503
530
569
695
707
720

26

64
205
334
363
374
517

21

99
121
458
475
926
543
662
783

453
795
922
933

39

80
106
132
153
175
257
268
295
314
391
422
467
504
531
570
696
708
721

27
195
206
335
364
481
518

22

&9
122
459
476
333
544
663

454
820
923
934

40

81
107
138
154
240
258
269
296
315
392
435
468
505
532
971
697
709
722

45
196
207
336
365
482

30

90
123
460
479
934
545
664

686
821
924
935

41

82
113
139
155
242
259
270
297
316
405
438
477
506
561
5972
699
710
723

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA

Table 15: Tower Grouping

166

Design Variable 4

713
724
756
780
794
871
914
Design Variable 5

13
76
141
245
389
446
675
690
748
765
799
817
Design Variable 6

16

112

192

441

740

887

Design Variable 7

177
626
649
Design Variable 8

215
226
237
288
Design Variable 9

305
Design Variable 10

319

714
725
757
781
800
890
915

14
101
142
247
390
447
676
691
749
767
801
876

17
136
194
557
741
888

178
627
650

216
227
238
289

306

320

715
726
766
785
809
891
916

15
102
161
249
409
448
677
732
750
768
802
877

33
137
303
558
818
889

179
628

217
228
279
290

309

321

716
728
772
786
810
892
917

30
103
166
251
410
455
678
733
751
769
803
894

34
143
304
359
819
900

180
629

218
229
280
291

310

322

717
729
773
787
811
893

31
108
171
253
415
456
679
734
758
770
804
895

70
144
307
960
874
901

181
630

219
230
281
292

323

718
730
774
788
812
897

32
109
176
345
416
461
680
738
759
735
805
896

71
185
308
d77
875
902

182
643

220
231
282
293

324

719
731
775
789
813
898

67
110
190
346
417
462
681
739
760
742
806
910

7
186
331
o978
880
903

183
644

221
232
283
294

325

720
752
776
790
814
899

68
133
193
347
418
471
682
744
761
743
807
918

78
187
332
379
881
904

184
645

222
233
284

326

721
753
T
791
822
911

69
134
239
348
437
472
683
745
762
796
808
919

104
188
407
580
882
905

623
646

223
234
285

722
754
778
792
823
912

74
135
241
387
442
673
688
746
763
797
815

105
189
408
684
883
906

624
647

224
235
286

723
755
779
793
870
913

75
140
243
388
445
674
689
47
764
798
816

111
191
436
685
886
907

625
648

225
236
287

Stellenbosch University http://scholar.sun.ac.za

17.4 ESKOM DESIGN DATA 167
Table 16: Tower Grouping

Design Variable 11
393 394 399 400 423 424 429 430 581 583 585
587 617 618 619 634 635 636 637 638 639 654
655 656

Design Variable 12
395 396 397 398 401 402 403 404 425 426 427
428 431 432 433 434

Design Variable 13
484 485 486 487 488 489 510 511 512 513 514
515

Design Variable 14
834 835 836 837 856 857 858 8539

Design Variable 15
824 825 826 827 828 829 830 831 832 833 838
839 840 841 842 843 844 845 848 849 850 851
852 853 854 855 860 861 862 863 864 865 866
867 868 869

Design Variable 16
582 584 586 588 589 590 591 592 593 594 595
596 597 598 599 600 601 602 603 604 605 606
607 608 609 610 611 612 613 614 615 616 620
621 622 631 632 633 640 641 642 651 652 653

Design Variable 17
884 885 908 909

Design Variable 18
711 712

Design Variable 19
549 550 551 552 553 554 555 556

Design Variable 20
351 352 353 354 355 356 357 358 359 360 361
362 375 376 377 378 379 380 381 382 383 384
385 386

Design Variable 21
936 937 938 939

Design Variable 22
940 941 942 943 944 945 946 947

Stellenbosch University http://scholar.sun.ac.za

17.5 Equal Leg Angle Section List

Table 17: Equal Angle Section List

Designation m A Iy ry J ay
hxbxt mm kg/m 10° mm?’ mm mm 10°mm? mm
25x25x3 1.11 0.142 9.43 4.83 0.476 7.21
25x25x5 1.77 0.226 9.14 4.8 198 7.98
30x30x3 1.36 0.174 113 5.81 0.635 8.35
30x30x5 2.18 0278 11.1 5.75 258 9.8
40x40x3 1.85 0235 153 7.84 0.882 10.7
40x40x4 2.42 0.308 152 7.77 192 11.2
40x40x5 2.97 0379 151 773 3.56 116
40x40x6 3.52 0.448 14.9 7.7 5.92 12
45x45x3 2.1 0.268 172 8.88 1.06 119
45x45x4 2.74 0349 171 876 227 123
45x45x5 3.38 0.43 17 871 417 128
45x45x6 4 0.509 16.9 8.67 6.9 13.2
50x50x3 2.34 0.298 192 9.92 1.15 131
50x50x4 3.06 0.389 19.1 9.79 248 136
50x50x5 3.77 0.48 19 9.73 4.58 14
50x50x6 4.47 0.569 189 9.68 7.62 145
50x50x8 5.82 0.741 186 9.63 17 152

168

Stellenbosch University http://scholar.sun.ac.za

17.5 EQUAL LEG ANGLE SECTION LIST 169

Table 18: Equal Angle Section List

Designation m A Iy Iy J ay
hxbxt mm kg/m 10> mm? mm mm 10°mm*? mm
60x60x4 3.7 0.471 23 118 3.07 16
60x60x5 4.57 0.582 23 117 5.64 16.4
60x60x6 5.42 0.691 229 117 9.36 16.9
60x60x8 7.09 0.903 226 116 21 177
60x60x10 8.69 1.11 22.3 11.6 39.2 18.5
70x70x6 6.38 0.813 26.8 13.7 112 193
70x70x8 8.36 1.06 26.6 13.6 25 201
70x70x10 10.3 131 263 135 46.8 209
80x80x6 7.34 0935 30.8 157 13 217
80x80x8 9.63 1.23 30.6 15.6 29.1 22.6
80x80x10 11.9 1.51 30.3 15.5 54.5 234
80x80x12 14 1.79 30 155 91.2 241
90x90x6 8.3 1.06 347 178 15 241
90x90x8 10.9 139 345 176 33.3 25
90x90x10 13.4 1.71 34.3 17.5 62.4 25.8
90x90x12 15.9 2.03 34 174 104 26.6
100x100x8 12.2 155 385 19.6 376 274
100x100x10 15 1.92 38.3 19.5 70.3 28.2
100x100x12 17.8 2.27 38 19.4 118 29
100x100x15 21.9 279 375 193 221 30.2
120x120x8 14.7 1.87 46.5 23.7 454 323
120x120x10 18.2 2.32 46.3 23.6 85.1 33.1
120x120x12 21.6 2.75 46 23.5 143 34
120x120x15 26.6 3.39 45.6 23.3 269 35.1
150x150x10 23 293 582 297 110 40.3
150x150x12 27.3 3.48 58 29.5 184 41.2
150x150x15 33.8 43 576 293 347 425
150x150x18 40.1 5.1 57.1 29.2 584 43.7
200x200x16 48.5 6.18 776 394 564 55.2
200x200x18 54.2 691 773 393 790 56
200x200x20 59.9 7.63 77 39.2 1070 56.8

200x200x24 71.1 9.06 76.4 39 1800 58.4

Stellenbosch University http://scholar.sun.ac.za

17.6 Eskom Transmission Tower: Load Cases

All the loading is in kN. The load cases are described in section [14.T

Table 19: Case 1A

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
E1T 0 15.18 0 0.06 -0.06
E1TA 11.3 -4.11 0 0.06 11.24
E2T 11.3 11.07 0 0.06 11.24
CiT 93.5 91 0 0.38 93.12
C2T 93.5 91 0 0.38 93.12
C3T 93.5 91 0 0.38 93.12
WwW2aT 0 17.2 0 0.21 -0.21
W3T 0 26.8 0 0.29 -0.29
w4T 0 28.8 0 0.2 -0.2
W5T 0 30.6 0 0.24 -0.24
We6T 0 41.3 0 0.29 -0.29

170

Stellenbosch University http://scholar.sun.ac.za

17.6 ESKOM TRANSMISSION TOWER: LOAD CASES 171

Table 20: Case 1AR

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
E1T 0 12.63 0 0.06 -0.06
E1TA 4.29 -1.56 0 0.06 4.23
E2T 4.3 11.07 0 0.06 4.24
C1T 35.53 91 0 0.38 35.15
C2T 35.53 91 0 0.38 35.15
C3T 35.53 91 0 0.38 35.15
WwW2aT 0 17.2 0 0.21 -0.21
W3T 0 26.8 0 0.29 -0.29
w4T 0 28.8 0 0.2 -0.2
W5T 0 30.6 0 0.24 -0.24
We6T 0 41.3 0 0.29 -0.29

17.6 ESKOM TRANSMISSION TOWER: LOAD CASES

Stellenbosch University http://scholar.sun.ac.za

Table 21: Case 2A

172

Loading At- Required Required Required
tachment Vertical Transverse Longitudinal Rigging Vertical Re-
Weight sultant
Point Load V Load H Load
E1T 0 4.18 0 0.06 -0.06
E1TA 6.56 -2.39 0 0.06 6.5
E2T 6.56 1.79 0 0.06 6.5
C1T 55 14.3 0 0.1 54.9
C2T 55 14.3 0 0.1 54.9
C3T 55 14.3 0 0.1 54.9
w2aT 0 4.3 0 0.21 -0.21
W3T 0 6.8 0 0.29 -0.29
w4T 0 7.2 0 0.2 -0.2
W5T 0 7.7 0 0.24 -0.24
We6T 0 10.3 0 0.29 -0.29
E1L 0 0 30 0.06 -0.06
E2L 0 0 30 0.06 -0.06
C1L 0 0 74.31 0.2 -0.2
C2L 0 0 74.31 0.2 -0.2
C3L 0 0 74.31 0.2 -0.2

Stellenbosch University http://scholar.sun.ac.za

17.6 ESKOM TRANSMISSION TOWER: LOAD CASES 173

Table 22: Case 2BR

Loading At- Required Required Required
tachment Vertical Transverse Longitudinal Rigging Vertical Re-
Weight sultant
Point Load V Load H Load
E1T 0 2.7 0 0.06 -0.06
E1TA 2.49 -0.91 0 0.06 243
E2T -0.23 2.33 0 0.06 -0.29
C1T 20.9 14.3 0 0.1 20.8
C2T 20.9 14.3 0 0.1 20.8
C3T 27.21 189 0 0.1 27.11
w2aT 0 4.3 0 0.21 -0.21
W3T 0 6.8 0 0.29 -0.29
w4T 0 7.2 0 0.2 -0.2
W5T 0 7.7 0 0.24 -0.24
WeéT 0 10.3 0 0.29 -0.29
E1L 0 0 30 0.06 -0.06
C1L 0 0 74.85 0.2 -0.2
C2L 0 0 74.85 0.2 -0.2
E2TA 3.32 2.94 0 0.06 3.26

Table 23: Case 3

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
E1T 0 9.31 0 0.06 -0.06
E2T 0 9.31 0 0.06 -0.06
C1T 0 75.4 0 0.38 -0.38
C2T 0 75.4 0 0.38 -0.38
C3T 0 75.4 0 0.38 -0.38
W2T 0 17.2 0 0.21 -0.21
W3T 0 26.8 0 0.29 -0.29
W4T 0 28.8 0 0.2 -0.2
W5T 0 30.6 0 0.24 -0.24
Wé6T 0 41.3 0 0.29 -0.29

Stellenbosch University http://scholar.sun.ac.za

17.6 ESKOM TRANSMISSION TOWER: LOAD CASES 174

Table 24: Case 4A

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
C1lv 125 0 0 0.38 124.62

Table 25: Case 4B

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
C1v 125 0 0 0.38 124.62

Table 26: Case 5

Loading At- Required Required Required

Rigging Vertical Re-
tachment Vertical Transverse Longitudinal

Weight sultant
Point Load V Load H Load
E1vV 18.3 0 0 0.06 18.24
E2V 18.3 0 0 0.06 18.24
C1v 159 0 0 0.38 158.62
Cc2v 159 0 0 0.38 158.62
C3V 159 0 0 0.38 158.62

Stellenbosch University http://scholar.sun.ac.za

17.7 Algorithm Code Extracts

175

Stellenbosch University http://scholar.sun.ac.za

176

17.7 ALGORITHM CODE EXTRACTS

f3TWITUOT3O9TFopP oTqnop ‘(@gst uesroog ‘Surdnorpuwniod 3JUT ° S3USWSTIFOISQUWOU 3JUT

‘uesToogpeodnoinst uesToog

‘ueds oTqnop ‘A7 sTqnop ¢ XeUWNTOS 3JUT ¢ [UWNTOD 3JUT

‘nnyuunTod JUT ¢ AAYUWNTOoS 3JUT ‘3 3UT ‘q 3UT

‘esayuwNTod 33Ul ‘yYyzedoseqejep Jurilg ‘weredeld siojsweIedoweld © SOTIJUS 3JUT

‘fq1suep aTqnop ‘pomws ofqnop ‘uostod eTqnop ‘andut andurTepol)wyatiodTy otTqnd

ssniq ® Jo 8sed 8yy Iog//
‘ysedoseqesep Jurisg
fpeol ‘Lexaysdoxoy [][]sTqnop

ffexzyq ¢ Lexayy ° Lexayxe ¢ Lexayr ¢ Lexaynna

¢ fexayanx ¢ fexayyaSBusr ¢ AexayLLl ¢ LexzayxxI ¢ Lexayeesxe []aTqmnop

uoT3jds>UNI 3s93 ® mOWHEﬂPQO

‘fexiyquowerygmweF ¢ Aerxyxepulwejy []auUT
fzsepou ‘jsepou ‘Yysepou ‘Tdstigasediel []erqnop
¢tB8utirgrusmete [][]8utIag
$zop []3utiag
fanduIssniy ssnilawexg
{ypssTIqus 3uT
fsessni3 uotzerndodssni]
fuotrgerndod uotrserndog
seqnqTIlle wWyaTtIoBTYy//
}uyatro3Ty ssers orrqnd

I0 3T Y3TH [HHIJ SOSN PUe SSNI) © S$93e9Id ISYITo wWysTio8Te oyL//

fastIpeyuTT - TTan-eael jxodur
fI1oqexsq] " TIan-eael azoduwt//

fqeg-Ttan-eael qioduwt//
fquoweTEssni] ' quswate - sjusuodwos ‘wey sxodurt
fquowoTgoweI juswe s - sjusuodwods ‘wey giodurt

£109%9) *8TeutrT ysew-oye j3xodwr

"SUOTIRIOUSS JO JOQUINU NWIXRW 97} 0} 019z wogj suni dooy oy} ‘doo © ur ud))1Im ST)] “SISATeue oY) pue siojerddo d11ouagd oY) [[e S[[ed SSe[o SIY T,

wy 03[y

Stellenbosch University http://scholar.sun.ac.za

177

17.7 ALGORITHM CODE EXTRACTS

}(++0 ¢FZISTNOILVTINdOd wezxeded > [fp = [3ur) zogz

f(sausweTHFoIoqunu ¢ LerxyjuswoTguwsF ¢ LeIIYXopUIWSI)STOPOHUSJ93©SID SOSSNIY
f(quoweTgowWeRI ST
‘ggst ‘ueeToogpednoxnst ‘JurijgirusweTe ¢ Fop ‘Zsepou fsepou
‘Ysepou ‘peoT ‘sjusweTyFOIsquWnu ‘yHsSeTIqus sSIYU]
‘sTenpratpurygferiyquszano -uotrrerndod ¢ Latsuep ‘uostod ‘pomws ‘qandur)uorrerndodssni] MU = SOSSNI]

W34 TeTaTutr 23es1d//

() fexaymegegesas-uotrerndod

ferxyeozor ‘TdsTgasefie] ‘// ¢(SQUPWATHIUEPUNPOYPUTI ‘ JTWITUOTIDSTFogasn ¢ Trenbygst
‘GHOST ‘SNYS®SNn ‘ SSoU3TJJPOSITRWIOU ‘ SSOURTIOTWRULpP ¢ SSOURTJIOT3RAS
fQTWTITSS8I34S ¢ 3TWITUOTIIDOTFop ‘ AexiyjuswerHweF ¢ Aeriyxepurwej
‘gquswaTgFoIoqunu ‘ueds ¢ Lexayxe ¢ Lexayq ¢ Lexayy ¢ Lexayr
‘£3 ‘powe ¢ Lexaynni ¢ Lexayaax ¢ LexayyaSueT
¢ fexzyeose ‘uweieded ‘ynseTIzuse- sIiyl ‘LaTsusp ‘andur)uorserndod meu = uoraerndod

uotrgeyndod seTTeTITUI//

‘f(SNySesn ‘renbgst ‘gH)sT ‘Surdnoinumnyoo

fsquUaWeTHIQIoqUNU ‘ S9TIFUS ‘ XeuwnTod * [UWNTOD ‘nnYyuwnTod ‘ AAYUWNTOD
‘eoxyuwniod ‘3 ‘q ‘andur ‘seanqrizze ‘weriedel)sfeirayies
pPopuIOUT ST ©9IY3 SSeTD Jo sisquaw ATug//
swtq uotjeindwod uo oaes 07 WYaTIoZTe oyYa Jo opisino shexre osaya 319g//

s8ueys j0u seop oseqeiep oYl ‘wWYITIo3[® STOYM oYl IOF 38S oq ued Lerie oyl ‘sheire eyl 38g//

(L7 ‘eeryumwnios ‘yYjredeaseqelep)ssqnqrIQlyISqUe]] MAU = S84NQTIJL1e S93INQIIFyIaqual

}(3uswWoTHoWRIJST ULSTOOg ° SIUSWATTIURPUUPOYPUTF UeaToog ¢ FTWITUOTIOSTFoJosSn uesfoog

¢ qTenbgst uesToog ‘gSHHST UesToog ‘SNYSesSn uesToog ¢ SSOUITIPOSTITRWIOU URSTOOg

‘ssoujlTJoTweufp uea[o0Og ¢ SSOUZTJOT3e3S UBST[OOg ¢ JTWITSSSOIFS OTqNOP

/7

Stellenbosch University http://scholar.sun.ac.za

178

17.7 ALGORITHM CODE EXTRACTS

}osTe

$([f]1dstgase8zeT + , Tdstp xew,)uTlzutid-ano- weiskg
{
fquemeseTdstp = [[]r1dstgase8iet

}(([f]1dstgasa8xeT)sqe - yrey < jusmweseTdsTp) JT

f(dstgxew ‘dsTquUTiw)Xew ' ysel = juswsdeTdstp sTqnop

(000T* () £xzugxem: () squsweseTdsTq0gasd -93)sqe ysey = dstgxew oTqunop

(000T* () Lxqugutm- () squemweoeTdsTqgpQgared -91)sqe-yaey = dsTtquim oTqnop

¢ (nw fexzy quewedserdst(q,)ursurid-qino-weaskg

}(esTey == (QgsT)3IT
MOAHD // $(0)298° () 10359 2 Tnsoysuomargae8 ey = [d][[]Lexayeosao]
sieqWew SsSnI] UT S982I0F T[BIX® uUT®1qQ//
}(s1Te :91 QUAWATHESSNIL)IOF
‘0 = [[]1dstgase8aet
‘0 = d surt
$([(]LeaayTopowssniy sossnIl)squsamaTg298 sossnI3 = S3T9
f()IeaTo ' 83T®

}(++[fIZISTNOILYINdOd weieded > [¢o = [3utr) zog

}(°STBF == QUOWSTHOWRIJST) JT

()< auswWATHOWRI> 1STTPOYUTT MOU = OWRIJSITS < JUSWATHOWRIL> 3STTPOHUTT
C()<AUSWSTISSNIL> 3STTPONUTT MOU = S2Td < JUSWSTISSNIL> 3STTPONUIT

{

f([[]Lexayrepowssniy-sessnig)osf{eue sassnig

!/

//

Stellenbosch University http://scholar.sun.ac.za

179

17.7 ALGORITHM CODE EXTRACTS

(000T* () £x3ugxeu- ()syusmesoeTdstqdngses - o3)sqe - ysey = dsrgxem sqnop

(0007 () £13ugutu’ ()siuswsserdsTqd0Qass o1)sqe yiey = dsTQuiw sTqunop

f(n fLexizy quewedseydstq,)urTautrid-ino-weaskg

}(esTey == (QgsT)IT
MOHHD // £(0)388° ()x0309 3 TnseyruswaTgies-e3 = [d][[]Lexayedao;
sIsqueuW SSnI3 UT $85I0 TeIX® UuT®R3qQ//
}(PweIgsaTe :93 jJuUowWOTToWRIJ)IOF
0 = [[]1dstgaselaet
‘0 = d aurt
f([[]LexiyTepowssnIy - sosSsnI))omeIfsquamaTyled sessnIqg = oWeIJSIT®
f()IeoTd 2wWRIJSIT®
}(++[£IZISNOILVINdOd wezxedeS > [¢o = [3ur) zogx
Yoste {
{

[, |

$([f1tdstgase8zeT + , Tdstp xew,)ulzutid-ano-wsishg
{
fquemeseTdstp = [[]1dstgasediet

}(([f]1dstgase8aeT)sqe - yrey < jusmedseldsTp) JT

f(dstgxew ‘dsTquUIiw)Xew' ysel = juswsdeTdstp sTqnop
(000T* () £xzugxem: () squsweseTdsTqd0gasd -93)sqe ysey = dstgxew oTquop
(000T* () Lxsugurm’ () syuesweserdsTqingaes -23)sqe-ysey = dstquiw aIqmnop

f(n fLexzy quewedseydstq,)urautrid-ino-weaskg

//

/7

//

Stellenbosch University http://scholar.sun.ac.za

180

17.7 ALGORITHM CODE EXTRACTS

‘seinqrIjle seinqrijiyIaqua)| ‘wereded sisjomeredemerq)sferryiss proa otTqnd

f(JuoWOTHOWRIJST ‘ATWITSSOIIS € 3TWITUOTIOSTFOP ‘ (EST

‘squameTgFpIoqunu ‘uesrfoogpednornsTt ‘ewergsiTe ‘saTe ‘Aarsuep ‘uostod ‘powe ‘andur ‘wereded)yn

{

f++d

‘([f]11dstgase81er + , Tdstp xew,)uTqutrid-ano-weqskg
{
fquswedseTdstp = [[(]TdstgaseSiet
}(([f]11dstgase8aer)sqe yaey < 3uswedeldstip) JFT

¢(dstgxew ‘dstquim)xew- yaey = jusmwedeTdsTp oTqnop

(000T* () £xqugxem- ()squemeseTdsTqg0gared -a1)sqe-ysey = dsTtgxew oTqnop

(000T* () £xaugutm’ () syusweoerdsTqingasd -o3)sqe-yjey = dstquiw aIqmnop
f(n Lexazy ausweoseldstg,)urlrutad-ano-wsisig

}osTe

¢([f]1dstqgase8zer + , Tdstp x®ew,)uTqutrid-ano- weqsfg

{
fquswedseTdstp = [[]TdstgaseSiet

}(([f]1tdstgase8aer)sqe - ysey < 3uswedeldstp) JFT

¢ (dstgxew ‘dstquiwm)xew- yaely = juamwedeTdsTp oTqmnop

//

/7

//

181

‘[SENOSOWOYHO " 40 4IEWAN " meaedeS]atquop

ww / / ¢ ()ysSusT3e8 - andu

¢ () sauswaTgdnoznwe y308 - andutr =
‘[sauswegFQIOqUNU] JUT MU =
f()sestpurdg2e3 - andurt

‘{[squsmweTgIQISqWNU] QUT MU

T = KexayyazSuseT

neu = LexayyaSueT

fexayruswasTquoe F
fexayrusweTHWS J
= fezzyxepuluwey

= feizyxepuluwejF

$[FZIS NDILVINdOd weiedeS]atquop seu = TdstgissSaet

Stellenbosch University http://scholar.sun.ac.za

17.7 ALGORITHM CODE EXTRACTS

{[sausweTgIQIoqunu]

f(q ‘ypseTIque - sIY3r)Lexiyqasd seqnqrizze = Leiayq
f[¥pseTIzus - sTyUYa]aTquop #su = Leixyq
(2 ‘ypsetique-siysz)Lexayraed-seanqrizze = Leixya
‘[ypseTIjue-sTyas]erqnop meu = LAexiya

[AZIS NOILVINdQd weiege3]eTqnop mau = Lexiysosioj

f(xXeuwnyoo ‘ypHseTijus-siyl)Lerryxeged-seqnqrizse = Lerryxe
f[ypssTIquUs "sSTYl]oTquop Mmou = Lerayxe
f(rumunios ‘yHnssaTIqus - sTYr)Lexiyrass-cseanqrizze = Lexayr
‘[ypseTIjus*sTyYr]oTqnop msu = Kexayr
f(nnyumwniod fyHserirue-styq)Lferiynniged-seqinqiizie = Lerxynni
‘[ypseTIlue - sTyYl]aTqnop meu = KLerrynni
f(Aayumwniod fyHsaTIlue-sTyl)Lerryanrgeld-seqinqrilie = LeIIYAAI
f[yDsSeTIqUeSTYl]oTqnop Mau = LeIlayaax
f(£LTuwntos ‘sotxqus)fexayLhrael-ssanqrrare = LexayL4Ll
‘[seTxqus]eTqnop Mou = LexayhLr
f(XXIJuwniod ‘sSaTIjus)LeIryxxIaod-seqnqrizre = AeIIyXX]
‘{[seTIque]eTqnop MouU = ABIIYXX]
f()seTIqug1e8 - S99NQqTIILRe = YHSOTIJUS " SIY]
z.uw// f(SNYSST ‘TTenbyst ‘gHpST ‘eeayumnyoo ‘3 ‘q ‘seTigus)feriyesayiral-seanqrigie = Leriyesie
f[seTIqus]sTqnop MouU = Leiayesie

‘8urdnoxpuwnrod 3JuUT

‘nnyuwunTod Jut

}(SNYSST uesToog °TTrenbgst uestoo

g

‘SHDST ueaToOg

fsquawWeTHIQIOQUWNU QUT € SSTIJUS QUT ¢ XeUWNTod 4UT ¢ fUWNTOD JUT

¢ AAYuUWNTOd quUT

‘eaayuuwnyos 3ur ‘3 3quT ‘q Jut “p:mﬁﬂ andurTepop

/7
/7
/7
//

Stellenbosch University http://scholar.sun.ac.za

182

17.7 ALGORITHM CODE EXTRACTS

fexxe ssoulTy putg//

f()sataoslqprenpratpurisayesn - uorqerndod

TeNPTATPUT 3sayees putrg//

f()eatsoelqpTenpraTpurisessty - uotseindod

TeNPIATPUT 3§933TF PUTA//

f((1+1) ‘Lexayeoioy ‘TdstgaseBiel ‘syenprartpurfgAeiiyjuexrind-uorqelndod)Leirxyeatqoelqo-uorgerndod
fexxe ssoulTy putdg//

fexxze dwsg ssjesad> Isa0SSs0ID//

I9A0SSOID> UTIYITA SINDD0 UOTID9TSS//

f(+ T+1)2utid-ano-weasg
H O T W) uT3utzd-ano-wegshg
(¢ (T+T) +, uoraersusd,)uraurid-qno-wesshg

HI O e e T e W)uTautad- ano-weasLg

}(++T SNOILVHENID XYW wereded > T {0 = T 3ur)Iog
0= IequUN®3T[® 3UT
}(1uemeTHoWRIJST UBSTOOg ‘QTWITTSSOIQS STqNOP ‘ATWITUOTLDSTISP STqnOp
f@esT uesToog ‘sjusweTYFQIequnu 3uUT ‘uesToogpednoinst uesToOg
fPWRIJS)TO < JUSWSTHOWRIJ> 3STTPONUTT ‘ S3TO® < IUSWSTHSSNIL> 3STIPONUTT ‘Latsusp oTqnop ‘uostod aTquop

‘pows oTquop °‘3ndut andurlepol] ‘weredeS sisjsweIedomerg)yn proa ostIqud

¢ ()Butiggsqusmarygaed - andur = SurtiggiusweTse
f£()A0gae8-andutr = jop
¢ ()zZsopofaad-andur = zZsapou

mw// $()iseopoNae8 - andur = fsepou
mw// ¢$()xsepoNasS - andur = Ysspou
// f()peo1ssd-andur = peof

ssnIj O_H_\\

//
//
//

Stellenbosch University http://scholar.sun.ac.za

183

17.7 ALGORITHM CODE EXTRACTS

¢ ([(]4exryTepomwssniy - sessnIig)siusmaTgirod - sossnig

= s37T®

f()IesTo 83T

}(++[£IZISNOILVINdOd wexedesS > [(o =

{ qut) zo0g

} (3usweTgoWRISST) IT

{

f([f]LexiyTepouwssniy - sessnig)esfTeue sassnig

F(++[fEZISTNOILVINDOd weieded > [

‘0 = [autr) zo0gz

f(sausmeTgFpIoqunu ° ferxaysuswoTFweF ‘ AeIIYXOpPUIWSJI)STOPO|USI93LOID SOSSNIY

¢ (JuswWoTHomWRI ST

‘ggst ‘ueeToogpednoxnst ‘JurajzgirusweTe ° Fop ¢ Zsepou

¢ Asepou

‘Ysepou ‘peOT ‘sjusweTHFOIoquWnu ‘yHsSeTIqua sSIYU]

‘stenpiatpuljpferayduweq-uortqeindod ¢ Latsusp ‘uostod ‘pomws ‘gandur)uorgeindodssni] MAU = SOSSNI]

f([m]LerIyTepowssnIy-SOSSNIY) [9PONSSNILIRSTD " SOSSNI]

(++8 fFZISTNOILVINJOd weieded > a

‘0 = A juT) I03%

¢ ()Lexayws gogesis - uorrerndod

pewxoyied oq ued wsSI3T[® oxoFeq uortszerndod meu uo ureSe [Hg

f([l]stenptatpurgpferaydwusg - uorgerndod)sseqnu

}(++[¢FZIS™NOILYINdOd weaeded > [

W34 ®3eeID//
wiogyxad asmy//

ruotrgerndod
t0 = [aur)zog

saean)//

¢()Ienossoxo-uorqerndod

IBA0SS0ID E.HO%.HO&\\

$((1+1) ‘fLexayesioy ‘TdstgrseSIeT)|HJSsouqTgeTess uorgerndod

¢1dstgase8aeT = e3rrITdsTgrusxan)ysslaer

f()sotastaeas - uorserndod

soTasTaeas ogundwop//

£((7+1) ‘Lexayeoioy ‘Tdstgase8iel ‘sTenpratpulfgieriyausiand-uorqelndod)sseusrguorrerndod-uorserndod

/7

//

Stellenbosch University http://scholar.sun.ac.za

184

17.7 ALGORITHM CODE EXTRACTS

tquomweoseTdstp = [[]Tdstgaselaet
}(([f]1dstgaseBaer)sqe yiey < 3usweoerdstp) It

¢ (dstgxeu ‘dstqQuiw)xew Y3l = jusmwedeTdsTIp aTqnop
£(000T* () £xqugxew- ()squewedseTdstgi0qae8-91)sqe-yaey = dsTgxem sTqnop
£(000T* () Axqugurm- () squewedseTdstqi0qare8 -9s1)sqe-yaey = dsTquUTm sTqnop

MOHHD // £(0)388° ()x0309 3 TnseyruswaTgIes- o3 = [d][[]Lexayedao;
}(s3T® :93 JUOWOTESSNIL)IOF
0 = [[]1dstgaselaet
‘0 = d aurt
f([[]LexayTepoussniy sessnij)siuswe[g1e8 sessniy = s1Te

f()xeoTo"837T®

}(++[fFZISTNOILYINdOd wezede8 > [¢o = [aur) zogz

[, |

tquomweseTdstp = [[]Tdstgaselaet
}(([f]1dstgase8aer)sqe yiey < 3usweoerdstp) It

¢ (dstgxeu ‘dstqQuiw)xew Yy3el = juswedeTdsTp aTqnop
£(000T* () £xqugxew- ()squowedseTdstgi0qae8-91)sqe-yaey = dsTigxem sTqnop
£(000T* () Axqugurm- () squewedseTdstgi0qae8-9s1)sqe-yaey = dsTquUIm sTqnop

MOHHD // £(0)388° ()x0309 3 TnseyruswaTgIes- o3 = [d][[]Lexayedao;
}(PwexgsaTe :93 jJuUowWOTIoWRIJ)IOF
f0 = [[]1dstgase8aet

‘0 = d aurt

}osTo{
{

Stellenbosch University http://scholar.sun.ac.za

185

17.7 ALGORITHM CODE EXTRACTS

‘0 = d aurt
$([[]LexzayTopowssnIy SOSSNIY)oWeIJSIUIWOTT198 sossnI) = oWeIJSITo
uAvHMOHU.OEMHmmPHm
}(++0 ¢FZIS™NOILVINGOd wexedeS > [fo = [aur) zoF
M.APQWEWHM—WEM.H.mev%H
{

f([[]LexiyTepomssnig - sessniy)esfTeur - sassnig

}(++[f3ZISTNOILYINd0d weiede8 > [¢o = [3ur) zog

f(sauswaTgIpoIoqunu ‘ LerxyjusweTiwey ‘ AeIIYXopUIWSJ)STOPO[WS J93€SID S9SSNIY
{(JuouweTHOWRIIST ‘(JEST
‘uesaToogpednoznst ‘Burizgiuswele ¢ Fop ¢ Zsepou ¢ xsepou
‘Ysepou ‘peoT ¢ squUomWSTHIQIOqUWNU ‘ yHSSTIQUS SIYL
‘sTenpratpulygferzydweq -uorqerndod ‘Lqrsusp ‘uostod ‘powe ‘gndur)uorgerndodssnI] MOU = SOSSNI]
(([M]LeIIYToPOWSSNI) " SOSSNI]) [OPONSSNILILSTD * S9SSNI

(++8 $FZISTNOILYINJOd weIieded > n fo = m 3ul) I0F

}((Oeartraptp-uorserndod) 3t

fexre frexodweq eyq UT TeNPIATPUT MAU 8Y] JFOo jusmwedeTdsTp uTelqo 01//

uteSe popeouU ST SISLATeUe WSF e fIND00 PIP WSTITTS® O©I9YM ©SED 8Ya I04//

{
f(xoqunyeaTTe ‘(F+T) ‘Lexiayeozoy ‘Tdstgaselrel)uwstarre uorrerndod
$(4ZISTNOILYINdOd uotrderndod x ()wopuex-yiael)(3ut) = IeqUUySITTe
g uotatsod// }(WSILITH weieded) It

WSTATT® wWIoFIad//

{

[|

Stellenbosch University http://scholar.sun.ac.za

186

17.7 ALGORITHM CODE EXTRACTS

Cred

fquswedseTdstp = [[(]TdstgaseSiet
}(([f]1tdstgase8aer)sqe yaey < 3uswedeldstp) JFT

¢ (dstgxew ‘dstquim)xew-yaely = juamwedeTdsTp oTqnop
£(000T* () £1rugxew- ()squamaseTdsTqipqgaed-e1)sqe-ysey = dsTgxew oTqnop
£(000T* () Lxaugurm’ () syusweoe1dsTqingasd -o3)sqe-yjey = dstquiw aIqmop

M0dIHD// £(0)398 () 10309 3Tnseyruswargred o3 = [d][[]Lexayeozog
}(saTe :83 JUBWSTESSNIL)IOF
‘0 = [[]1dsTtgasediet
‘0 = d aurt
f([f]LexiyTepowssni)-sossnij)sjuswerg1e8 sessnIiy = s3T°

f()xesTo " s3T®

Y(++[fFZISTNOILVINdOd weaeded > [¢o = [jur) zogz

Ch+d

fquswedseTdstp = [[(]TdstgaseSiet
}(([f]1tdstgase8aer)sqe - yaey < 3uswedeldstp) JFT

¢ (dstgxeuw ‘dstquim)xew- yael = jusmwedeTdsTp oTqnop
£(000T* () £xrugxew- ()squomeseTdsTqipgaed-e1)sqe-yaey = dsigxew oTqnop
£(000T* () £xququrm- ()squamwaserdsTqi0gaed-ea1)sqe-ysey = dsTtquUIW oTqnoOP

M0dHD// £(0)308 () x0309p3Tnseyruswargied o3 = [d][[]Lexayeoaog
}(dwergsaTe :93 jJUSWOTHOWRIJ)IOF

‘0 = [[]1dsTtqgasediet

yoste{
{

Stellenbosch University http://scholar.sun.ac.za

187

17.7 ALGORITHM CODE EXTRACTS

fqegysey-rr3n-eael jxodwut

fqeg-Tran-eael szodurt

fuyatxo8Tyorseusyn o8eyoed

WSO pue

UOT)RINUI ‘I9A0SSOI) ‘SUITRIS ‘UO0T109[es Se Yons siojelodo 01908 o1} 10 9POI O} SUIRIIOD OS[e SSB[D SIYJ, 'S[ENPIAIPUI JO SABIIE OM) SO)e9Id SSB[SIYJ,

uorjerndog

WYILIOB[Y SSe[) T Sursry

f(0)atxs-weashg

$()SI0108)IRSTD " I03D8)
f()o8-weashg
¢()eoerdex-uotgerndod
uotgerndod Lxexodwss sy3s yzts uotrqerndod qusxxnd sy3z soerdsy//
f()urautad- qno-wsgshg
f()urautad- qno-weqshg
{
f(n‘y + [m]TdstgasedzeT)autad-ano-weasg
}(++n fHZIS NOILYVINd0d uoTtserndod > u 0= m jur)iog

f()urtautrxd- ano-weasLg

{

/7
/7
/7
//
//
//

Stellenbosch University http://scholar.sun.ac.za

188

17.7 ALGORITHM CODE EXTRACTS

‘gNySesn uesToog ¢ SsauUjTIJpesSITeRWIOU uesfoog ‘sssujrjoTweulp uesfoog

$SSoU3TJOT3B3S UeST0O0g ¢ 3TWITSSSI3S oTQNOp * JTWITUOTIOSTISOP oTqnOp

¢ fexazydnoznwez [Jaur ‘ LexayxepulmwsF []3UT ‘ SIUSWSTHFQISQUNU 3UT

‘ueds aTqnop ‘xe []eTqnop ‘q []eTqnop ‘3 []eTqmop ‘r []sTqnop

‘wereded sIisjeuweIedowerqg

TdstgaseSieT ‘// ¢{ssoujiTJjXew °‘ssausTjuns

‘£7 eoTqmnop ‘powe oTqnop ‘mnnx []eTqnop ‘AAI []aTqnop
¢ fexxzyya8usT [JoTqnop ‘ Aexiyesie []aTqnop
setxqus jqut ‘Aqrsuep orqnop ‘andutr andurrepojl)uorgeindog orTqnd
WZd//
$()<I9893UT> 2198 YSey MOU = WNU <Io9393UI> 398
f()<TenpTATPUI> 39SYUSBH MOU = PO3DST9S < TRUPTATPUI >SS
fsjusweTHIFOIOQqUIAU * 3UNOHIUSIANDYESS33TF juno)dwse]3se33TF 3UT
‘fexiyquewsrygmwey ¢ Aerxyxepulwejy []aUT
fIsquUn)e3T[® 3UT
0 = USIPTIYHIUNOD 3UT
P3TWITSSOI3s C JTWITUOTIOST ISP oTquop
‘ssoujzTdoar ‘oaT3oslqpxejlasexyesn ‘oarsoslqpurliseSuoizs sTqunop

feexyuwniod ‘ NOILVYENID XYW ‘SINIOd YIADSSOYUD

‘HIONIT DNIYIS TIVIOL ‘HIDNIT HNIYLSENS ‘HZIS NOILVINAOd ‘ SHWOSOWOYHD J0 ¥HEWAN ‘SeTIjus 3Jut

sseultT1sey8ty‘pows ‘Lz ‘uweds ‘ INYLSNOD HNITYOS ‘ALITIEVE0HYd NOILVIAW® ALITIAVE0¥d ¥AAOSSOUD ‘ L£3tsuep erqnop

{SqUSWATHIUBPUNDPOYPUT F

‘3TWITUOTAO8TFegesn ‘renbysT ‘ GHOST ‘SNYSeSnH ‘o3TTAPTP

¢ S$SPUITIPOSTTRWION ‘ SSOUITIOTWeUukp °SSsUITIOTIRIs ‘ INEWIOYTIJEY ‘WSILITE uesrooq

¢Tenpratpurdme1s933T]

fandut 3ndullopoy
¢ fexaiyeoxzoy [][]eTqunop//

fxe ‘q ‘3 ‘Lexayr ‘nnx ‘anx ‘ LexayyaSBuel
‘ferzyesie ‘ feriysseusrtqguorqeindod ‘sesnyepsatioslqpdod []Jarqmnop
 TRNPTIAIPUIJUSIIN)1ISOYROM ¢ [RNPTATIPUIJUSIIN)LISS8134TF TBRNUPTATPUT
¢stenptatpurgygferzydwses []Tenpratpul
¢ fezayuorserndodquey ‘sTenpratpuIFgleriyiusians []TenpraTpul
suotgerndod jqusxaino pue dwel syYa I0J 03 sherie oma 93e2I0//

}uotgerndog ssels ost1qnd

Stellenbosch University http://scholar.sun.ac.za

189

17.7 ALGORITHM CODE EXTRACTS

ST

‘HLONIT DNIULSENS * SHWOSOWOYHO A0 YIIWAN = HIONIT HNIYLS TVIOL

‘(z)8otT usen)sod- yareyx(soTIaus)SoT YIRN)TTS2 " Y3BN) TTSO " Y3e} (3UT) = HIONIT HNIYLISLNS

fEZISTNOILVINdOd weieded = FZIS NOILYINLOd
¢ SHWOSOWOY¥HD A0 HIAWAN ' weieded = SANOSOWO™HO 40 HIGWAN

fSeTIjuU® = SOTIJUS"

¢fatsuep = Latsuep:

¢qandut = andut-

¢ fexaydnoanmey = LexayszusuweTduwe]
¢fexiyxopuIuwsi = Lexayxopuluwsl

¢SULWSTHIQISQUNU = S3USWSTTFQIOQUNU

‘ueds = ueds:

sTY3
sTY3
sTY3
sTy3
sTU%
sTU3
sTU3
sTy3
sTY3
sTy3

STU3

TsTUl

‘q = q-

fq9 = -

‘r = Kexayr
cLz = L3

{pows = pouws

‘nnIi = nnI-

SAAI = AAIC

f3TWITSS®I3S = JTWITTSSOILS"”

fSS9U3TJPOSTITRWIOU = SSOUFTJPOSTITRWIOU
fssousTgotweudp = sssustrTgoTweudp

fSSPU4TJOT3RAS = SSOUATIOT3RLS

$3TWITUOT3IO8TFOP = 3ITWITUOTIOSTFOP"

f1IWITUOTIAOSTIOCOSN = JTWITUOIIDSTFoCesSn "

{SqUSWATHIUBPUNDPSYPUIF = SIUSWSTHIUBPUNPSYPUTLF "

fSHDST = SHOST"

¢1Tenbgst = Trenbgst
fgNySesn = gNygesn
}(S31uUoWOTFIURPUNPOYPUTF UeSTOOY

‘3TWITUOT3D8[Fo(gesn uesToog °‘-Jrenbyst ueeloog ‘gHHST ueafoog

STU3
STYU3
STY3
STy
STy
STU3
STU3
STYU3
STY3
ST
ST
STY3
STU3
STU3
STY3
ST

sTy3

Stellenbosch University http://scholar.sun.ac.za

190

17.7 ALGORITHM CODE EXTRACTS

(., sTenpratpurygferiyjusarins,)uTqutid-gno- -wagsig

{
f(Lexayr ‘squULWSTHIUERPUNPSOYPUTF ¢ 2TWITUOTIOSTFogesn ‘Jrenbygst
fGHDST ‘GNYSesn ‘sjusweTHFOISQqUNU‘ SSOU}TJPOSITRWIOU ‘ SSOUITJIOTWRULp
‘sseugrgoriess ‘ Lexxyxepujuwey ‘ AexxyyszBuseT ‘seriqus ‘gndur ¢ Lexiyesie
‘HIODNIT DNIYLISEAS ¢ SHWOSOWOHHD A0 HHGWAN) TBNPTATPUI #du = [T]sTenpraTtpuljQieriyiusrino
}(++T fy3BusT sTeNPIATPUIFOLRIIYIUSIIND > T {0 = T 3UT) IOF

Wgd uotieindod tTer3TauTr o3eindod//
f[IZIS NOILYTINdOd]®Tqnop meu = Lexaysseuatjuoraerndod
¢[HZIS™NOILYVINdOd]TenpPTIatpul nsu = Lexayuorierndoduag

f(feiiyr ¢ sSquUSWETHIURPUNPSYPUTIF ‘ 4TWITUOTIDSTFeogasn ¢ Trenbygst
fQHOST ‘GSNySesn ¢ sjusweTHdFOISqUNU ¢ SS8URTIPOSTIRWIOU ¢ SSaujTgoTweudp
‘sssustTgoraess ¢ Lexayxepujuey ¢ LexiyyzBusT ‘sortrxzus ‘andut ¢ Leiayesae
CHLONIT HNIYISENS © STWOSOWOYHO A0 YHEWAN) TenpTATPUl Mou = Tenprartpuldwsiessigry
(Lexayr ‘sjusweTHIUEpPUNPLYPUTF ‘ 3TWITTUOTIOSTIs@esn ‘ Trenbygst
fGHOST ‘gNySesSn ‘siusWeTIFQIOQUANU € SSOULITIPOSITRUIOU € SSoULTIOTWRULD
‘sseustTgordess ¢ fexayxepujuey ¢ LexayyzBueT ‘ssrxqus ‘andur ¢ Lfeiayesae
‘HLONIT HNIYLISENS ‘ SHWOSOWOUHD A0 YIEWAN) TBNPTATPUI ASU = TRNPTATPUIZUSIIN)HISSIIT]
f[AZIS™NOILYINdOd weiede3]TenpraTpul #eu = srenpratpurjgfexrzyduwes
$[EZIS™NOILYINd0d WeiedeS] [enpTATPUl MdU = STENpPTATPUIFQAERIIyIUSIIND
$[AZIS NOILVINdODd weiede3]sTqnop #su = sounfepsatassalqpdod
¢ fexayysSusT = LezayyaBueT- sTyUl
tfexayesae = Leiiyesie- sIyl
fINAWADYIdAY "weieded = INAWIDVIJHYE STU2
fINVISNOD ™ DNITYDS weieded = LNYLSNOD HNITYDS STU3
$A1ITIEVE04d NOILYLIAKW weieded = XIITIGVE0Ud NOILVLAW STU3
CNOILVHINID XV weredeS = NOILVYANED XVW STU3
fWSILITHE weieded = HSILITH STU3
fALITIAYE0¥d ¥IAOSS0YD "weieded = ALITIGVE0Hd HIADSSOYUD STU3
fSINIOd ¥IAOSSOYUD weieded = SINIOd ¥IAOSSOYUD STUI

//
1/

Stellenbosch University http://scholar.sun.ac.za

191

17.7 ALGORITHM CODE EXTRACTS

f(u + o + (Latsuep

S[T]STenpIATPUIF0LARIIYIUSIIND = TeNPIATPUIIUSIIN)ISONROM
f[1]senTepsatdoalqpdod = saT3dslqpxelasovesn
}(eatadelqpxejasexyesn < [T1]senTepeatisalqpdod) 1T
F(++T fHZISTNOILVINLOd > T ‘0 = T 3UT) I0F

‘0 = aaT3oalqQxe|isayesn

}()oaT250[qQTenpTATPUISISOeOMA TRUPTATPUI oTTqnd

¢tsentepeatsoelqpgdod uinzex

{
f([T]senTepantadselqpdod)ursurad- qano-weaskg
f()urtautrxd- ano-weaskg
‘[T]STeNPTATPUT)ONTRAUOTIOUNISSOUITIPUTS ' [T]STenpTATPUT)3uTad 3no weysig

$(3TWITSSSI3S ‘QTWTITUOTI®OTFop ‘uorzersus8 ‘ueds ‘[1]1dstgaseSiet

‘xe ‘q ‘g ‘fLexayr ‘L3 ‘pows ‘mnni ‘aax ‘LaTsuep ‘[T]LexayedsoIofiusuweTs

‘[T]STeNPTATPUT)SNTRAUOTIOUNISATI22(qQPUTF [T]STeNPTIATPUT = [T]senTepsatsoslqgdod

S((T+T) + , Tenpratpul,)urautrid-ano-weaskg//
}(++T fyaBueT-sentepsatqoalqpdod > T {0 = T qur)iog
f(usonatqdo9lqo uotgerndod,)uraurad-ano- waaskg
fexie uwe UT TeUpTIATPUT Yded JO SSOUITF OYF SpuUTI//

}(uotaezsusl 3ur ‘ LexiyseorogiusmwsTs []J[]eoTquop

‘1dstgasediel []eoTqunop ‘sTenpratput []Tenpratpul)dexayeargoalqo [Jealqunop otTqnd

f()urautad- qno-weqshg

f([l]Tenpratpur [T]sTenpratpulygheriysustano)jutrad ano - usisig

(++[HIDNIT HNI¥IS TIVIOL [T]sTenpratpurgghexayauszans > [fo = [qur) zog

}(++1 ‘yaBueT-sTenpratpulfgdeIiyauserind > I Q) = T QUI) IO}

//
//
//

//

//
//
/7
/7
//

Stellenbosch University http://scholar.sun.ac.za

192

17.7 ALGORITHM CODE EXTRACTS

‘antgoalqpxe|isayean ‘oaaTioalqpurjiseBuorss‘usl ‘ueds ‘[1]Tdstgaselzet

‘xe ‘q ‘1 ‘Lexayr ‘A7 ‘pows ‘mni ‘aax ‘Latsusp ‘[T]LexaysdorofruswWSTS
‘[T]STeNpPIATPUT)®NTRAUOTIOUNISSOUITJPUTF [T]STRNPIATIPUT = Ssou3zTg3ssySIy
}(ssauaTdesey8tTy < (3TWITSSAILS
fQTWITUOT3OSTFOpP ¢ oarsoelqQxelisayesm ‘oatraoelqQurijpiseSuoxss‘usal ¢ ueds
‘[t]1dsTgaseldier ‘xe ‘q ‘q ‘Lexayr ‘L7 ‘pows ‘nni ‘aax ‘LaTsusp
‘[t]fexxyesiogiuswere ‘[T]STENPIATPUT)SONTRAUOTIOUNSSOULTJPUTF [T]STENPTATPUT) FT
}P(++1T TIZISTNOILVINLOL > T ‘0 = T 3uT) I0%
‘0 = ssau3Tg3saySIy
€0 = sunopdwelise3lats
STenpTATPUT Fo Leiie Ue T[EBNPTATPUT 2S8313TF 8Y3d SPUTL//
}(ue8 aur ¢ LexiyesiogiusweTs [][]eoTqnop
‘1dstgase8iel []eTqnop ‘STeNpPTATPUT [JTenpTATPUI)TeNpPIATPUIISS33TIPUTF Tenplatpul o1Tqnd

uotiouny ssauaty Sutpaelay//

CTenpPIATPUIIUSIINDISS3ITF UINGSI

{

T = 3UNOH3USIINHISOLITT
S[T]STenpIATPUIF0ACIIYIUSIIND = TeNPTATPUIIUSIINDISOIIT]
f[T1]senTepsatadsslqpdod = oat3oslqpuilissSuoxss
}(oat1ad9lqpurlasaSuoxas > [T]senTepsatasalqpdod) gt

F(++T ‘HZISTNOILVINLOd > T ‘0 = T 3uT) I0J

teaTgoelqQxeiseyesn = saradelqpuryiselSuoxas

fexze uorgerndod jueiind 8Y] WOIF T[BNPTATPUT 2S831TF 8Yl SPuUTA//

}()eat31oe[qQTenprAaTpuUIIsSe33TF TenpTaTpur otrqnd

uotriouny oatsdselqo SutpielSey//

{TeNpPIAIPUIIUSIINDISOYEOM UINISI

Stellenbosch University http://scholar.sun.ac.za

193

17.7 ALGORITHM CODE EXTRACTS

$(1- “"ZISTNOILYTINdOd)aod U3el + SSSUITJUNS = SSOUITJoA®

ssou3Ty o8eisae oYy putg//

‘[t]fexayssourtquorgerndod =+ sssuaTjuns

}(++T f‘yaBueT-sTenpraTtpuligAeiiyiuserind > T Q0 = T JUT) IO}

‘o

SSeU3TJ Wns 8yl PuUTI//

ssaujlrjuns

uotgerndod msu sssooxd o3 io3exsdo 3sel sy3z ST 3T se//
uotgeinu utr peurtwisiep uoriefndod meu Fo TenpraTpur 3se33TF ‘uorjerndod jquerand Fo TEUPTIATPUT 13S833TJg//
TeNPTATPUT 2S831TF ©Ul PUe SSOUITF WNWTIXRW 8Y] PUT]//

}()sotastaeas proa otTqnd

$(3TWITSSSI1s ‘ ATWITUOTADSTFOpP ‘oaT3oolqpxejisayesn
‘ontgoalqpuipaseBuorrs ‘uorgereusd ‘ueds ‘[1]T1dstgaselier
‘xe ‘q ‘a2 ‘fLexzyr ‘L3 ‘pows ‘mnnx ‘aax ‘LaTsuep ‘[1]LeriyeoIogiusmwaTs
‘[T]STeNPTATPUT)ONTRAUOTIDUNSSOULTJPUTF [T]STenpTATputr = [T]Lerayssousrtquorserndod
}(++T THZISTNOILYVINdOd > T ‘0 = T 3ur) Iog
}(uotqezsusl 3ur ‘ Lexiyeorogiuswsls []J[]eoTquop

‘1dstgase8aer []oTqnop ‘sTenpratpul []Tenpratpul)ssouzrquorierndod proa ot1qnd

¢Tenpratpuldwue[1S933TF UINISI

{

‘T = junondwsllss33TF
$[T]1STRNPTATPUT = Tenpratpuldwel3se3iry

{(1TWITSS8I1S ‘ ATWITUOTIDSTISOP

/Ischolar.sun.ac.za

Stellenbosch University http

194

17.7 ALGORITHM CODE EXTRACTS

‘[aunopduegaseqyTy]dearyesrogrusmatse ¢ (usld ‘ LerryeosoiogrusmsTse ‘ TdstgasaSier
¢ STeNpPTATPUI FOACIIYIUSIIND) [EUPTIATPUIIS923TJPUTF)ONTRCAUOTIOUNISSOUITIPUTT - (Ua8 ¢ Lexxyesiojauomatrse ‘ TdstgrsesSaet
¢ STenpTATPUIF0AeIIYIUSIIND) TeNPTATPUILISS2ITIPUTT) BB 0 =i LNVISNOD HNITYDS) IT
¢ (LNVLISNOD ONITVOS + u = auegsuop Suresg,)urzurid-ino-wesskg

f[4ZIS NOILYVINdOd]@Tanop neu = dwey [JeTqnop

f(,SsoulTpoTeds Uul,)ursutid-ano-wsaiskg
(poutTFop Iosm) 3ueqdsuo)lSUTITEOS puUB SSOULITJ9A® 03 Ppoidoslfqns {q + SSOUITJIUSIIND % B = SSOULTF pPoTedss//
wygtio8Te or1ousd 9722TT S.81eqpTlon utr se Jurledss xesuty Arddy//
WHd woIy ssauqTy oq BurpIoode sismsue oTeds AJuo ‘g1eeys Tedxe ur suotarisod eTeds jou oQq//

}(us8 qut ¢ LeiayesiogquemwsaTe [][]eTqnop ‘Tdstgase8zel []eTqnop)|HJssaulrgeTedss proa o1Tqnd

{
¢ssourTjone = [usS]Lexaysssustjone//
{((SSPUlTJ9AR)1RBRWIOT " I919BWIOT + :sseuaty o8eiene uorqelndog,)urrutid-ino-weqsfg
¢ ((SSPUITJWNS) QRWIOT " I91QRWIOT + :sseuqTF wns uorlgerndog,)urrutid-qno-weqskg
f((eat12250(qpur1se3U0IlS)QRWIOT * I913BWIOT + :sseuqTy wnuwixew uoTljelndod,)urrutid-ino-weqsfg
$ (w000 0#4)2BWIOJTRWTIOSJ MOU = I933BWIOJ 2BUWIOJISQUNON

s2T3sT3eds syl utad//
{

f[T]sTenpraTpulF0LeIIylaueIind = TENPIATPUIIUSIINDISSLLT]E
‘[1]fexxysseusrtquorgerndod = sssujlTfXRW
}(sseugtgxew < [T]Lexaysssugrquorqerndod) FT

}(++T fHZISTNOILYINdOd > T ‘0 = T 3ur) 1oz

{0 = ssoujTJXeu

ssou3Ty 03 paeSex YITA TRNPIATPUT 35833TJ//

!/

//

//
//
//
//

Stellenbosch University http://scholar.sun.ac.za

195

17.7 ALGORITHM CODE EXTRACTS

sseuqTJ wWng MaN//

fsssu3Tg3seoySty uingex

}()23s23314398 orquop orrqund

$(1- ‘UZISTNOILYINdOd)#od UaBH % SSOUITJUNS = SSOUITIOAR

C(IZISTNOILYINAOd ‘0 ¢ Lexaysssugrguorserundod ‘o ‘dmei)Ldoofexae wsysig
ssougTy uotrgerndod ojut dwsy Adop//
{

‘[1]dwmeq + SSPUITJUNS = SSOUQTJWNS

{

senTes aaT1e88uU pTOAY// 0 = [t]dwen

}(0 > [rldwea)gt

fzauessuod 4+ [T]Lexaysssuatjuorqerndod x Tauersuod = [T]dwmsg
}(++T {IZISTNOILYINAOL > T {0 = T 3ur)iog
Sutteos A1ddy//

f{ssaujTjore x (]JQaUBQSUOD -) = ZIUBISUOD STQNOp
$(T- ‘(ssaujzrgone -

(ATWTTSS2I3S ¢ ITWITUOTADOTIOP

‘onTado[qpxelrsoyean ‘oaTaoslqpurlissSuoxsds ‘ue8 ‘ueds ‘[qunopdwefisezsty]TdstgaseSzer ‘xe ‘q ‘3 ‘Lexayr ‘L3

fpows ‘mnni ‘aAax ‘Latsuep ‘[aunopdweygserary]Aeiiyesiojrusweie ¢ (ued ¢ LexiyedsoiogrusweTe ‘ Tdstgasedietr

‘sTenprIATpuUIF0LeIIY1UeIIND) [RNPTATPUILISO9 1T JPUTI)ONTRAUOTLIOUNISSOUITJPUT] (us8 ¢ LAeixyedoiojjauswars

‘ueds

f1dstgiseBIeT‘ STeNpPIATPUI J0ARIIYIUSIIND) [NPTIATPULIISa23TJpuT]))nod yaey
* (sseuirges® x (T - INVISNOD HNITVDS)) = T3UeisuUOd aTqmnop
{0 = ssaujzTjwWns
}((ssauaTgonre =; ssaulTJxew) %® (0 < SsSoUITJoA® -
(2TWTITSSsoI3s ATWITUOTAOSTFop ‘oatradalqpxejaseyesn ‘oatTidolqpuilaseSuoxrs °uel

‘[aunopdmafaseqary]TdsTgasadie ‘xe ‘q ‘3 ‘Lexxyr ‘A7 ‘powe ‘mnni ‘aax ‘Larsuep

Stellenbosch University http://scholar.sun.ac.za

196

17.7 ALGORITHM CODE EXTRACTS

CHIONIT ONIYLS IVIOL

suotatsod pus pue SutuutrS8eq I0F//

0 = uULIPTIYHIUNOD

= [T + SINIOd HIAOSSOYD]S3IUTOJISAOSSOID

‘0

‘[+ SILNIDd YIADSSOYD]3IUT meu =

= [0]S3UTOJISA0OSSOID

SqUTOJI®A0SSO0ID []aUT

fqurod jurt

mu.ﬁ._no& IS9A0SS0ID \\

f()aesTd wnu
() xesTd po3idaIes
sowty oY3 JO A3TTTQRQOIJIS®A0SS0Id ATUO ISA0OSSOID WIOFIdJ//

} () 19n0ssoxd prtoa d1Tqnd

¢ [XopUT]STeNpPTATPUIJOLEIIYIUSIIND UINJSI

osT®
[T - XopuUT]STenpIATPUIFQLARIIYIUSIIND UINISI
(4ZIS"NOILYVINdOd == X8pur) 3T
{1 =- Xepurt
{

T =+ Xopurt
sisoutel8e ssoujTy-sTenpratpuripferaysuszans sdeyxed ii// ¢ [xoputr] Lexxysssusrtjuorserndod =+ ums

} (3ZISTNOILYINdOd > ¥®pPUT 33 TO3YMS33STNOI > wWns) STIYA

fsseulTJUNs x ()WOPURBI Y3BY = [o8YMe©33@[noI oTqnop
‘{0 = Xepur aurt
{0 = wns eTqnop

UOT3IO08T®S TeayMm o&33a8Tnoy//
}()3oeTes Tenpratpul o1Tqnd
uotao9Tes NIAI//

Stellenbosch University http://scholar.sun.ac.za

197

17.7 ALGORITHM CODE EXTRACTS

}((enza

¢ (Zausied)ppe poidoTes
¢ (T2usied)ppe poidsTes

{
f£()a1oeTes = gauaied
f£()a1oeTes = Jquaied

== (gauesxed)surejquod - pe3da[es) || (eniy == (Jrusred)surejuod- peioeres) || (gausied == jiusied))eTrysm

f()ad9Tes = gausxed

f()adeTss = T3usxed

yoste{
¢()31o9T8s = gausxed
f()3oe1es = Tauexed
}(eni3 == INIWIADVIdIU)IT
0 = T aurt

}(T + ® = ® “IZISTNOILVINdOd > ® ‘0 = ® 3utr) I07%

jausweseTdeI 3noysTHa Io YITH//

fzausied TenpraIpul
¢7ausxied Tenpratrpul

s8utxis jquered suryeq//

HE¢ yurautad - zxs weaskg
}(HIONET DNIYLS IVIOL =< SINIOd YEIA0SSOUD)IT
f28Yp//

{pus jurt
{0 = Isjumnod 3ut
f0 = ut8eq aur

Ion0ssoxd> oTdTaTnw IoF siaeproy edserd//

Stellenbosch University http://scholar.sun.ac.za

198

17.7 ALGORITHM CODE EXTRACTS

IBA0SSO0ID E.HO%.H&&\\

}osTo{
f(2utod)saowal wnu
fqutod = [T+T1]S3UTOJISAOSSOID
}((2utod)surequod ‘wnu) JT
¢ ((HLONIT HNI¥IS TYIOL * ()WOPUBI Y3®[{)pPuUnOI- Y3el) (3ut) = 3urod
(Tt + , = T,)ursutad-ano-weaskg//
}(SLNIOd YIAO0SSOUD > T)oTrTyas
{
¢ (A)ppe-unu
F(++n THIDNIT HNIYIS IVIOL => 4 ‘T = 4 3ur)Iog
unu sgetndod//
soeTd ewes oYz uo TTeF 30u op squrtod om3 3eYl Xd9Yd> 03 18S °8sn//

F(ALITIAVE0Md YIAOSSOYUD => ()WOpPURI YI®B) JFT

2 + USIAPTIYDIUNOD = USIPTTYDIUNOD

C(LexIy[‘SQUSWSTIIURPUNPSYPUTF ‘ATWITUOTIOSTISJssn ‘Jrenbiyst

fQHOST ‘gGNYSOSnN f SIUSWSTHFIOIOQUNU f SSOUATJPOSTITRWIOU f SSoUlTIoTweulp
‘sseulTgordess ‘ fexayxepujweF ¢ LexayyzBusl ‘sertxzus ‘andur ‘ fexiyesie
‘HIDNIT DNIYLISENS ‘ SHWOSOWOY¥HD A0 YIEWAN) TRMPTATPUI M8U = ZPTTY> TeNPTATPUL

f(LeIiyr‘ squewWLTHIURPUNPLAYPUTF ‘ QTIWITuUOTIDeTFogesn ‘Jlenbyst

fQHOST ‘gNYySesn ‘sjusweTHFOIOqUNU ‘ SSOUITJPOSTTRWIOU ‘ ssSaujlTgoTweulp
fssoujtTgorieds LexayxepurweF ¢ LexayysSuer ‘sortxzus ‘andur ¢ Lexayesiw
‘HIONIT HNIYLSENS ‘ SHWOSOWOYHD 40 HIGWAN) TBMPTATPUI 48U = TPTTYD TROPTATPUL

uUSIPTIYD 93eTaTUI//

199

Stellenbosch University http://scholar.sun.ac.za

17.7 ALGORITHM CODE EXTRACTS

¢[b]tenpratpur - jquered = [b]fenprarpur-iprry>
}(++b {HIONIT ONIYLS IVIOL > b f0 = b 3utr) zog

I9A08s0ID Of//

losTe
{
fZPITIYD = [- ueIpITypaunos]sTenpratpulipierxydueq
$IPTTIYD = [g - UeIpTTYDaunoos]sTenpratpuljpierxydueq
uotgerndod Lxexodwsq UT USIPTIYD 92eTd//
{0 = I9%3uUNO0DO
{
f++I93UNOD
{

{
f[w]TenpraTput - f3uered = [W]TeNPTATPUT ZPTIYD
f[w]Tenpratput-gausred = [W]TenpTATPUT TPTTYD

}(++mw fpus > w furSeq = w JUT) IO

}osTe

{
{
‘[w]Tenpratpur-giussed = [W]TenpTATPUT ZPTTYD
f[w]Tenpratpul - fqusred = [W]TenpTATPUT TPTTYD
}(++mw fpus > w furl8eq = W JUT) IO
}(0 == g 9% Iequmod)Jt
{[]+¥]SIUTOJI®AOSSOID = pUd
jutod 3sel oy ¥oeyos// (SLNIDd ¥IAQSSOUD==¥)IT
derisno I10F ¥28uo// T - []+¥]S3UTOJIS®AOSSOID = pUd
(0<¥) 3T
C[T+¥]S2UTOJISAOSSOID = puUd
{[¥]s3utodisnossord = utdaq

F(++¥ T + SINIQOd YAAQSSOYD > ¥ ‘0 = ¥ 3ur)Iog

Stellenbosch University http://scholar.sun.ac.za

200

17.7 ALGORITHM CODE EXTRACTS

f(3TWIISS® IS

‘3TWITUOT309TFop‘ eatT3oalqpxeyaseyean‘ aatroalqQuirseSuorss ‘ us8‘ ueds

‘[3unopdweisezsty] TdsTgaseSier ‘xe ‘q ‘3 ‘Lexayr ‘LF ‘pows ‘unx‘aax‘fitrsusp

‘[3unopdwa1s933TF] AeIIy90I0J3USWSTS ‘93TT[S)ONTRAUOTIOUNISSOUITJPUTF 92T TS = 3so033TJdwes oTqnop

¢ (use8 ¢ LfexiyeoxojgiusmaTe

‘1dstqaseBzer‘ sTenpratpurFoLesrydwes) [enpTATPUILISOI3TAPUTF = 93TTS TBNPIATPUI

Iequem 99TT® oYs £Lq peoerdsIl ST Iequew pos1d9Tss ATwWopueI ® ULY] ‘onIl ST sA0qe oY1 SIL8YM 8Sed 8Yq ul//

uorqersusl snortasrd ® wWoIy IequWemw 99TTS UE JO SSOUATJ ISMOT © SBY TBNPTIATPUT 2S933TJ oYl Iayaaym ¥o0YUyd//

}(IoquUnNOITT® 3UT

‘usl jqutr ¢ fexayesiogauswerse [][]oTqnop‘ TdstgaseSiel []eTquop)wsTaTTe proa oTtTqund

poi1esId ussq sey sTenprarpur Jo Lexxe dwsq IsyJe pus 3e wstatle A1ddy//

{
{
{
$0 = [T]TENpPTATPUT [eNPTATPUT
ssT®
7 = [T]TeNpPTATPUT [eNPIATPUT
(0 == [T]TenpPIATPUT TENPTATPUT) JT

}(ALITIEVE0Ud NOILVIOAW => ()wopueI-yiej) JT
F(++T ‘HIDNIT HNIYLS IVIOL > T fQ0 = T 3UT) Iog

}(TenpIATPUT TenNpTATPUI)sieanu proa o1Tqnd

f()aes o wnu

() IeeTd " pe3daTss

fZTPTTUd [T - uweIpTTyYpaunco]stenpratpurgolezayduoss

[z - uweIpTTyYpauncd]sTenpratpurgolezayduos
{

PIPTTYUD

¢[b]tenpratpur-giuezed = [b]TenpraTtpur- gprTU®

Stellenbosch University http://scholar.sun.ac.za

201

17.7 ALGORITHM CODE EXTRACTS

¢(, :seexy pe3osereg ,)rutid-ino-uweiskg //
$(901049TqRMOTTYXRW ' TeNPTIATPUIIUSIINDISS2ITTE + , ¢,)3utad-ano-wsarshg //
¢ (ssew* (us8‘ fexayesIojauswate
¢ TdstgaseSieT ‘sTenpratpulFgleriydwes) [enpIATPUIISS13TIPUTT + Yautad - ano measfg
£ (0Ggx£1Teuad - (ued‘ fexiyeorojausmaTe
‘Tdstgase81e] ‘sTenpraipulygfieriydweq) [enpIATPUIISS13TIPUTT + Yautad-ano-weasig
f(aseaqtgdwer)qutad- ano-weasg
i (+ ooeTdstp- (us8‘ fexiysorojruswaTe
‘1dstgiseSier ‘srenpratpurypferaydmes) TenpraTpuIlses3Tiputry)iutad-ino-mweyshg
t9sTey = 93TTIPTIP
}ostTe {
f()urrutad-qno-meqsfg
f([Tt]esiypeide[es [ENPIATPUIIUSIINDISSLLTF + yautzd - ano-weaskg

(++T {GHWOSOWOYHD A0 ¥HAWAN > T 0 = T 3UT) IoFf

$(, :SeaIy Ppo3dsTeg ,)3urad-ano-weasig //
$(921049TqRMOTTYXeW ' TeNPIATPUIIUSIINDGISS2ITE + , ©,)23utad-ano-wsarskg //
¢(ssew’ TeNPTATPUIIUSIINDISOILITE + Yautad - ano measig
f(0gg*£LaTeued TenpPIATPUIIUSIINDISOLITT + Yautad-ano-weasg

‘(sseugTgxem)qutid- qano-meqsfg

f(+00eTdSTpP TRNPTIATPUIIUSIIN)YIS823TF)autid - ano - weashg
{
CTenpPTATPUIIUSIINDASS33TF = [IosqunpyoarTls]stenpratpulgpoleraydusy
Yoste {
{T=- Iequue3TIT®
{TRNPIATPUIIUSIINDISS11TI = [] - JIoqunyajTIfe]sienpraTtpuljigferaydueq
F(EZIS™NOILYVINdOd == JI9qUNNSITTe)JIT
(FdZISTNOILYINdOd * ()wopueI-y3e[) (3UT) = IS2qUDNSITT® //

fomIy = STTHEPIP
} (3so3atgdmes < sseuaTgxewm) JFT

fosTeI = 91TTHPTP

Stellenbosch University http://scholar.sun.ac.za

202

17.7 ALGORITHM CODE EXTRACTS

¢ Topojua - Tepow -waF qIodwT//

fquewWeTISSNIL " 3usmwaTs ' sgusauodmwos *wey gxodwt//

fuyatxoSTyoTsousn o8eyoed

"SUOTIOUNJ 9ATINA[QO PUR SSOUIY) I0] OPOD Y} SUIRIUOD OS[R PUL SOWOSOWOID JO ARIIR TR S9YRIID SSRD SIYT,

[enpraipuy

uoryendo sse[) :g Sunsry

C(AZISTNOILYINdOd ‘0 ‘stTenpratpulipfexayausiand ‘g ‘syenpratpulgpferayduwssr)Lfdosferse wsqshg
}()ooerdsx proa dstTqnd

fIsquUNNe3TT® UINISI

} () TequnysaTTgaed aut o1Tqnd

£93TTIPTP uUIn3aI

}()eatTdPIpP ueseroog o1Tqnd

f(QOurautad- qno-wsgsfg
$([T]esaypoideTos - (usl‘ feIiyesoIoJaUswWaTo
¢ TdstgaseSaeT ‘sTenpratpulygleriydweq) [enpIATPUIISS13TIPUTT + Yautad - ano measfg

(++T {SHWOSOWOYHD A0 ¥HAWAN > T Q0 = T 3UT) IOFf

Stellenbosch University http://scholar.sun.ac.za

203

17.7 ALGORITHM CODE EXTRACTS

HIDNIT OHNIYISENS * STWOSOWOYHD A0 ¥ILWAN =

‘HIONIT HNIY¥ISENS
‘SHINOSOWOYHD A0 ¥IGHAN =

fqTWITUOTAOSTIOQCASN

fSqULWSTTIURPUNDPOYPUTF =

¢ S®TIj3Uu® = S8TIju® "sSTIY]
HIONZT HONI¥IS TVIOL

HIONIT HNI¥ISENS ' STU3
SAWOSOKOYUHD A0 HIGHAN * STU
¢1Tenbgst = TrenbdsT - sty:
{SHOST = SHOST STU3

= JTWITUOTAD2STIo(@OSN " STIYS
fgNYSesn = gNySesm’SIYU3

S3USWSTTIURDPUNDPOYPUTF ' STYD

}(Lexayr []oTquop ¢ S1USWSTIIURPUNPSIYPUIF uUesToog

fQTWITUOT3O8[FO(Qesn uesaToog °‘ Trenbygst

uesToog ‘GH)YSTI uesfoog

‘gNySesn uesloog fSiuUsWATHFOISQUNU IJUT ‘ SSSUITJPOSITBWIOU UBSTOOY

‘sseusTgoTweuflp uesfoog ‘sSsSeuUlTgOTreaS uUesTJoog ‘ Aeriyxspujweg []auUT

‘ya8usT []eoTqnop ‘serTrgus aut ‘andutr anduyTepol ¢ LexiyesaIe []sTqnop

CHIONIT HNIYISEAS 2UT ‘ SHHOSOWOYHO A0 HHEWAN 3uT) Tenpratpul otTqnd

WHd I0F TenpIATpUI//

fent3oelqo aTqmnop

{SQUPWATHIURPUNPOYPUTF ¢ JTWTITUOTIO®TFO@esn ‘- Jrenbygst

fQHOST ‘gNySesn ¢ SSeU3TJPOSITRUWIOU ‘ SSOUATJOTWRUAD ¢ SSPU3TJDOT3R3S UeSTOOY

tosoerdstp ‘ssew ‘L3Teusd ‘onTepSATID

A qUT

safqo ‘sseou3aTjTenprAaTpPUT oTqmOP
9510 J0TqRMOTTYXRW STQNOP
‘fesiypeadares []erqnop

¢ fexayr ‘yaBueT []eTqnop

¢ fexiyeexe []eTqnop

fsqueweTgFQIoqUNU 3JUT

tsorxjus ‘ GHWOSOWOYHD J0 ¥IEWAN ‘ HIONIT HDNIYIS TVIOL ‘HIODNIT HNIYISENS 3uT

ffeIryxepuIwWeI‘ yHsswosomoIyppoposogherie ¢ TenprTATpuT []3UT

} Teunpratpul sserd> orrqnd

ypsewosowoIYy)apooap JFo Iequnu e woIiy dn epew ST TenprAIpul//

Stellenbosch University http://scholar.sun.ac.za

204

17.7 ALGORITHM CODE EXTRACTS

TenpIATPUT U® I0J SOnTeBA pPapPOddpP oYl Sputg//

f([t]TenpraTputr)autaid- ano weashg
(++T ¢yaBue [eMPTATPUT > T {0 = T 3UT) Iof

}() tenpratpursurad proa orTqnd

0 = [T]TenpIATPUT

asT®

‘7 = [T]TenpIATPUT

(6°0 < (Yuwopuex-ysey) JT
}(++T fy3BueT’ TeMPTATIPUT > T fQ = T 3UT) IO}

uorjexsusd 3sity Ioy Tenpratput oserndod LTwopuey//

‘y38ueT = yzBuer-sIysz

qou TTIM sSIequew oYa Fo Y13usa[oYa Se TeNpTATPUT UT @31eaid yadusT//
¢ [SAWOSOWOYHD 40 YHENAN] ©TANOP MOU = ©SIYPO3IDS[SS
[SINOSOWOYHD A0 YIAWAN] IUT HdU = yHSsmWosowoIyppopodosqieare
TenpIATPUT 9pod29p 03 IspIio UT//

TRUPTATPUT Ue ST UYOIYM YyHSSWOSOWOIY)HOpPod9p JFo Lexre ue s3esi1)d//
$[HIONET ONIYLS TIVL0L]3UT AdU = T[BONPTATPUT

¢SSOUlTJPOSTITRWIOU = SSOUITJPOSTTRWIOU' STY3

¢sssulrTgotTweulp = SsouUlTJOTWeulp STYI

€SS9ULTIOTIBLS = SSOUITJOTIBIS STYL
¢ferryxopulwoy = Lelxyxopulwof sSTyUl
¢SQUSWSTHIQISQUNU = SJIUSWSTHFQISQUOU ' STYUI
ffexxyr = Lexayr: siys

¢fexayesae = Leiiyeeie- sIyl

Stellenbosch University http://scholar.sun.ac.za

205

17.7 ALGORITHM CODE EXTRACTS

{Teax

s

- SHIHOSOWOYHO A0 ¥IGWAN] YHSowWosomwoIyppopoosqheare TenpIATpUT
LITHS AVI¥dS TIOY¥HT NI HIIHNAN MO 01l SYIIIH//
(T = Tesax
(0 > Te®ex) 3T
{seTIquUs = TeSI

(T + S®TIjue == T[eax) IT

$CCC(T- ‘m)mod yiex (D - UMOUNUNIUT))PUNOI Y3eW)) (IUT) = TSI
s+xw = £//

eseqeiep UT ST IoqUWaw pPe3d8[es 3BY3I Hd29Y)//

C(‘g)mod-yaely =+ umouUNU)IUT
}(T == [T]TenpPTATPUT TeMPTATPUT) IT
Y- < 1) IT

F(++¥ ‘HIDNAT HDNIYISENS > ¥ ‘0 = ¥ 3uT) I0F
(epod> fIeurq) enTea JuUT uTelqo//
{0 = Tesx
(0 = umouyuU)aIuUT
}(++0 f{SAN0SONOYHD~d0T¥EgHAN > [fo = [aur)
T - HIONAT DNIYIS IVIOL

oxsz 1e adeoiequr £// ‘uw

f(1-¢setiqus)mod-yreyx (Buriigxem) =

funouyu

}(seTIque JUT ‘ [eNPTATIPUI TeNPIATPUI)yHSamosomoIiy)spodap []aut o1Tqnd

Iog

= T 3ut
2 8Tgqmnop
mw eTqnop

T - (HIDNET HNI¥ISANS ‘g)mod yiew = Suriigxewm aTqnop

Tesx 3urt

Q3uT 3ut

Stellenbosch University http://scholar.sun.ac.za

206

17.7 ALGORITHM CODE EXTRACTS

f(1-

(T-

‘0 = A

0 = Te sTqnop

}(2TWITSS0I4S STqNOP ‘ ITWITUOTASSTISP OTANOP

‘ued qurt ‘ueds osrqnop ‘Tdstgasediel sTqnop ‘xe []Jelqnop ‘q []JeTqmnop ‘a3 []aTqnop

‘r []eTqnop ‘LI eTqnop ‘powe sTqnop ‘nni []eTqnop ‘AaI []efqnop ‘L3Tsusp sTqnop

¢ fexxyeoxojjusmweTe

[]°Tanop ‘ TenpPIATPUT TeNPTATPUI)enNTeAUOTIOdUNgaAT128[qQputf arqnop o1Tqnd

‘f uangesx

{

$(000000000T+b))nod yae«[[T] (S9TI3US TENPIATPUT) YDSOWOSOWOIY)Spooap Tenpratput]ferayr = [T]r

F(++T ‘SHWOSOWOUHD A0 HIEWAN > T 0 = T 2UT)IO0J
{[SAWOSOWOUYHD ~ A0 HAIWAN] ®Tqnop #eu = [[]aTqnop
£000T = b at1qmop

}(S9TI3U® 3UT ‘ TeNPTATPUT TeNPIATPUI)SIS3dW TenpraTtpurfass []erquop ostTqud

feeIe UINYLI

{

000000T) mod " ygex[[T](SOTIqU® ‘ [eNPTATPUT) YHSOWOSOWOIY)OPOOapP TenpIATpUT] fexiyesde = [T]eale

}(++T {SEWOSOWOYHD 40 ¥IEWAN > T {0 = T 3ur)iogy
*[SIWN0SOWOYHD 40 HIGUAN]®Tqnop Mou = ®adIe []eTquop

}(soTIque 3uUT ¢ [BMPIATPUTI TBNPIATIPUI)SIojow T[enpIATpureaxyield []Jefqnop otiqnd

F(++C

c.u//

fypsomwosowoIY)popoosgieiIe TeNPTATPUT UINGSI
{
‘yaSueT - ynpsowosoworyypopossqhexae Tenpratput > [fo = [qut) zoF

{

Stellenbosch University http://scholar.sun.ac.za

207

17.7 ALGORITHM CODE EXTRACTS

}(0 == 1) 3IT
dnoxz8 jusxins Nooy)y//

}(++1T fsaiuswsTgFQoISqUWnuU > T Q0 = T 3JUT)IOF
‘0 = Xepurt
suotioeuuod peuutd 107 T = ¥ //

uoTsusl IOI ¥o8yd//

SSeouIspusTsS IOF ¥29Ysd//

SNOILDIS MOTIOH ¥YINDYUID I0d4// }Y(SHOST)IT
{

‘[[P]Lexayxepur] feixyesaie = [b]esaypeiosfes

¢[b](serxius ‘ [ENPIATPUT)yHSOWOSOWOIY)SpPOoop TenpTATput = [b]Aeiiyxepur
} (++b SANOSOMOY¥HD 40 ¥EEWAN > b fo = b aur) zo0g

fexxe weoaie 291e8Id \\

r(snygesmn) 3t

SNYS o oses oya I04//

{SNYSATWITUOTIDSTIOP STANOP

BoIypo1daTes pue Lerryxepul ul uoritisod o3 sIsgax// f0 = XepuT JuT

$[SHINOSOWOYHD A0 ¥IIWAN] 3uT msu = Lexayxepur []Jaur

¢ I9pUSTS UESTO0Oq
fUOTSuU®3 uUEBSTO0Oq
‘0 = ®o1043se8xeT aTqnOp

f0 = ©D5I0J9TqRMOTTE® 8TqnOp
09z = aIejzeuweredfarteusd sTqnop
f0 = 9d5I049TqeMOTTyXew
¢1dstgaseS8ier = soerdstp

{0 = sseu

‘0 = KLateued

/7

Stellenbosch University http://scholar.sun.ac.za

208

17.7 ALGORITHM CODE EXTRACTS

f1-

(T-°‘00g)mod yaeyx(7- ‘[[xoput]fexayxopur]ani)nod- yseyx[[xoputr]dlexayxspur]yaSusT + £LaTeusd = LaTeusd
{onIg = JIOPUSTS
losTe
{9sTeI = IS9puUSTS
00z => (1- ‘[[xeput]fezayxepur]aai)nod- yseys[[xepur]Lezayxepur]ysdusT) 371
f{osTe] = UOTISU9a]
{
f(0)aTxs weqsLg
(T o+ yurautad- zxs weaskg
‘(yurautad- xzis-woaskg
}(0 == [1]fLexiyeoIogausmwaTa)IT
}eosTe
{

e

(T-“00g)nod yaeyx(7- [[xopur]fexayxoputr]anx)nod- yseyx[[xoputr]Lexayxepurt]yalusT + £LaTeusd = LaTeusd

f{9nIq = ISpUSTS
}osTe

f9sTeI = IS9puaTS
(00€ => (1- ‘[[xepur]ferzyxepur]asr)mod yaep«[[xepur]herayxepur]yssusr) JIT
f{onIq = UOTISUD]

}(0>[T]4eiiyeor043usmaT®) FT

{4+Xopur

dnox8 meapy//
}([1-t]fexayxepurwey =i [T]LeIIyXopuIwsy)JIT oS
{

{0 = Xeput

dnox8 asitg//

//

Stellenbosch University http://scholar.sun.ac.za

209

17.7 ALGORITHM CODE EXTRACTS

(zez>xey 3y Keg>xar)JItT
¢91 eTquop

£(Z- “(1-°‘[[xepur]Lexxyxeput]asx)nod-yaey

x[[xeput] fexxyxopur]yaSue)mod- - yaeyx(powsx (g ‘Id Uael)mod- yaey) = xXaF aTqnop

¢7 = e8eswo aTqnOp

C(71- ‘zoxx[[xspur]Lexxyxsputr] Lexiyesae)nod: yaey

*[[¥oput] AeIIYXSPUT] LD UTRYDH = ZoF OTqnOP

‘[[xepur] feriyxepur]nni

x[[xeput] feiIyxepur]nni x g = gO0I oTqnop

$(Z- “(1-°‘[[xepur]fexayxoputr]uni)sod- yaey
x[[xopur] fexayxepur]ysSusT)nod ysepx(pows* (g ‘Id-usren)nod yiey) = Loy oTqmop

‘[xepur]feriyesre = [T]eeIypeildefes
uotssexdwo)// }osTe
{
951040 TqQEMOTTe = ©2I0J0TqERAOTTYXeW
((®d>1049TqenoTT®)SsqR YR > (®2I048TqRMOTTYXRW)SqR Y3B)IT
$(951049TqeMOTT® + , UOTISUS] ©5I0F ©TqeMOTT®,)UT3autId G qano- weaskg
N // C(T-°000T7)mod yaeyx// ‘Axx[[xepur]feizyxopur]LeIiiyesIexg () = ODI0JoTqRMOTT®
‘[xepur]feriyesre = [T]eeIypeildefes
uotTsuayl// }(uotsuel) 3T

f0= ®d5I0JoTqeMOTT®

juswWeTe® I0F 92I0F OTqRMOTTY//

/7

/7

//

210

Stellenbosch University http://scholar.sun.ac.za

17.7 ALGORITHM CODE EXTRACTS

‘{0 = Xopurt //
suoTadosuuod psuutrd I03 T = ¥ //
uoTsuey IOy ¥{d29UD//
SSOUISPUSTS IO0F ¥d9Ud//
SNOILOHES HTHNY TvnDE ¥04// }(1tenbast) zr esye {
{

T - (T “(T1- ‘(®ox0gsTqesorTe)sqe-yiel)sod: qaey
x([t]£exayesaogauswara)sqe - yaey)sod yaey + Lateusd = LaTeusd
N// Y((ed>iogeTqemorile)sqe-yie < ([T]Lerayeoiogruswale)sqe yael) JIT
{
f([T1]Le1iyesiojruemeTe)sqe - yae = 85I0J1S88I®T
}(([1]LexiyeoioqqusmwaTe)sqe-yael > (8dI1043ss81eT)Ssqe yae)) JIT

£q1eusd ssoxyg//

£90I0J9TqRMOTT® = ©9D2I0J9TqRMOTTYyXeUW
((®21040TqeaOTT®)SqR "Y3B| > (®5I049TqRAOTTYXeW)Sqe Y3IBW)IT
Wi// (- ‘oo0r)mod uaex//f((T-‘pg T)nod gaexT- ‘((P€-T+g ‘epwel)sod yael+1))sod yaey

*LFx[[xoput] fexaiyxopur] felayealexG°(Q = 92I0JOTqRMOTT®

f((1-‘ox)mod-yaex£3)1ibs-yaey = epwel sTqnop

¢feoy = o3
osTe
{zZol = oF
(kez>zoy 3y x03I>20F)JT osT®

{xXeI = oaFf

Stellenbosch University http://scholar.sun.ac.za

211

17.7 ALGORITHM CODE EXTRACTS

(T-“00g)mod - gaepx(T-

}oste
{9osTeI = IopuUSTS
(002 => (1- ‘[[xepur]ferzyxepur]asr)mod yael«[[xopur]herryxepur]yrsual) JIT
f9sTeI = UOTSU®?l
{
f£(0)atxe "mweqsfg
(T o+ yutautad- 11s - weqskg
£ (yurautad- zxs - waaskg
}(sauswaTIIUCPUNPOYPUTE 33 O == [T]Leriyeorojausuwatls) It
}osTo
{

f1-
‘[[xeputr] Aexxyxeputr]asz)mod- -yseyx[[xepur]Lerryxepur]yaSusT + LaTeusd = L3Teuesd

f{onIg = JIOPUSTS
losTs

{osTeI = IopusTIs
(00g => (7- ‘[[xeputr]fezayxepur]aai)nod-ysey*[[xopur]Lezayxepur]ysdusT) 3t
f{onIq = UOTSUL]

}(0>[T]Leixyedsiofqusmete) JT

{++XopuUT
dnox3 may//
}([1-t]fezayxepurmey =i [T]LerIyxepuIwaf)J T oSTd
{
0 = Xepurt
dnox8 asitg//
}(0 == 1) 3T
dnox8 jusxins ooy //

}(++T fsauswerTyFQIequnu > T {Q = T 3JUT)IOF

/7

Stellenbosch University http://scholar.sun.ac.za

212

17.7 ALGORITHM CODE EXTRACTS

(1-°00z)mod ey« (1~

[[xeputr] fexxyxeput]xe))mod yseyxg) - T = eSewmo aTqnop

C(1- ‘zoxx[[xspur]Lexxyxsputr] fexiyesxae)nod: yaey

*[[¥oput] ABIIYXSPUT] LD UTR[YD = ZoF oTqnOP

‘[[xepur]feriyxepur]nni

x[[xeput] feriyxepur]nni + [[XopuTl]AeIIyXepuT]AAI
x[[xeputr]fexayxeputr]aax + (T ‘((1- ‘g)mod-ysey

* [[xopur]fexryxsputr]a

- [[xeput]fexayxepur]xe))snod ysejyxg = gOoI oTquop

f£(g- ‘(1-‘[[xeput]fexayxspur]nni)nod- yaey

x[[xeput] fexzyxepur]yaSuat)mod- - yaeyx(powsx (g ‘Id uae)mod-yaey) = £ay aTqnop

‘[xoputr] fexiyesre = [T]eoIypoidaTss //
uotssaxdwo)// }eosTe
{
(21049 TqeMOTT® + , UOTISUS] 8010 oTqeMOTT®,)uTautrid-ino-weaskg
£902I0J0TqRMOTI® = ©0I0JOTqRAOTTYXRUW

((ed2104aTqemoTTe)sqe-yae} > (°2I04aTqeMOTTyXew)sqe yaey) T
Ns// f(1-‘000T)mod yaeys«// fAyx[[xepur]ferayxepur]ferryesiexg 0 = 92I040TqRAOTTE
‘[xoputr]fexiyesre = [T]eoIypo3daTes //
uotsusr// }(uotsusi) 3T
‘0= ®5I049TqeMOTT®

QueWsT® IOJ 985I0F STqRMOTTY//

e
£1Teusd

‘[[xoput] fexayxoput]arx)mod yaeyx[[xopur]Lfexxyxopur]ysSusT + LaTeusd

f{9niIg = ISpUSTS

//

Stellenbosch University http://scholar.sun.ac.za

213

17.7 ALGORITHM CODE EXTRACTS

f(7- ‘([[xeputr]fexxryxeputr]Leriyesrexg-(Q))Mmod yje)] x ©5I0J9TqeRMOTI® = J aTqnop

$(1- ‘[[xeput]fexzayxsputr]a)mod- -yiey x [[xoput]fexayxepur]q = M oTquop

fesxyIsx aTquUOp

€ sseld usyY3l ‘sSpToY UOTITPUOd FT// YT~ ‘(£3)aabs-yaey)mod- yiey*00z) =>
((v- ‘[[xeputr]feazyxeputr]a)mod yaej+[[xepur]fezzyxepur]q)) 73T

SUOT158S ¢ SSeTd IO0J UOT1oNpaI eoaie jusweTduwmy//

UOT309S BY3 FO SSeTd oYl ¥d29Yp//

£95I0J0TqQRMOTTE = ©2I0J0TqRAOTTYXRUW

((®d210geTqemoTTe)sqe Y] > (©2I0J9TqRAOTTYyXeW)SqR Y3el) T

Nx// (- f000T)mod uaeix// ¢ ((T-%g T)nod urew*sI- ¢ ((¥€ Tz ‘epwel)sod-yrep+1))mod-giey

*LFx[[xoput] fexaiyxopur] felayesalexg () = 90I0J9TqRMOTT®

C((1-9F)mod ysepxLg)ribs-ysey = epuwel sTqnop

tzhey = o
osTe

{XeoI = 9F
(zhogz>xa71) 1T
¢91 oTquop

f£(g- ‘(1-‘[[xeput]fexayxspur]anx)nod- yaey

x[[xeput] fexxzyxepur]yaSuet)mod- - yaeyx(powsax (g ‘Id Uae)mod-yaey) = xXaF aTqnop

ST “(2zZe7F
+hor)yx(2oz+Log))nod yaeyx (eSowoxzorxhorxH))-T)2xbs yael-T1)x(7- ‘elomoxg)mod- yaeyx(zoy+Logz) = zLogy oTquop

(7- ‘gox)mod yaeRx((Z ‘((1- ‘g)mod-yaeyx[[xepur]Lerayxeputr]a-

Stellenbosch University http://scholar.sun.ac.za

214

17.7 ALGORITHM CODE EXTRACTS

}(aTwrTuUOTgdSeTFegesn) JT

£q1eusd jquswsserdstqg//

f[[]yaBueT % [[[]Lexziyxepujweg]esIypeida[as + B = Te

}(++[fsquewmeTgygrsqunu-Tenpratput > [{09 = [qut) zo0g

T - (g ‘(1- ‘(eoxogeTqemorre)sqe-yael)nod- yaey
«([T]LeiiyesiogrusmaTa)sqe-yaey)mnod-yaey + Lareusd = Lqreued
N// }((@d210g8TqemoTTe)sqe -yarel < ([T]LeIiiysdsIiojruswaTs)sqe-yaey) JFT
{
f([1]£exayesI10d3uswaTo) sqe Y = s85I0J1s981%T
}(([1]4Lexayedr0gruswaTe)sqe - yiey > (od1043sa81eT)sqe yiey) IT

£1Teusd ssoxyg//

7 % BOIYFOI % 6'0 = ©0I0JOTqRMOTT®

{

‘[[xeput] fexaiyxepur]q % (gheu - [[xepur]fexiyxepur]q) - [[xepur]Aeriyxepur]Leiriyesie = BaIyJol

$(((T-“F)mod-grey x (0000TT*€¥°0))3xbs uren x ((T- ‘M)mod U1BH*80Z 0)-T)

* ((1-“F)mod-ysey x

(00007Z*€¥%°0)) 3xbs ysey x [[xopur]Leriyxepur]i %G6°0 = gMeU STqnOP
}eoste {

f[[xoput] fexaiyxopur] feliyesie = eoIyJFol
F(UWTTM => M) FT
$((1-“F)mod-yrew x (0000TC*E€¥ 0))2xbs Urel * $$9 0 = WITH @Iqnop

215

Stellenbosch University http://scholar.sun.ac.za

17.7 ALGORITHM CODE EXTRACTS

$(T-)*[Xopur]feIIyesIex1TWITSSOI4S = ©5I0J9TqeMOTT®e
‘[xoputr] ferayesaie = [I]e0IypPo3d9Tas

}(uotsue3) 3t

0= ©2I0J9TqRMOTT®

QuswWeTe® IO0J 9510 oTqeMOTTYy//

{9osTeI = UOTISUD]
}osTe
{
{9NI1 = UOTISU9]
}(0>[T]Lexayeoiogrusmate) IT
f[1](SeTIqus ‘ TenpIATPUT)JHSOWOSOWOIY)SPOISP TRONPTATPUT = XopuUT
}(++T {SHNOSOWOYHD 40 ¥ILEWAN > T 0 = T 3ur)Iog
0 = Xepur
0 == ©5I0J USYA I0J jUSWO3®IS 93edId//
}esTe

SQUeTIQSUOD poaqriosaid Jo ased 8yl I0g//

ST =+ A
¢ (£ateuad + ,, fareued ,)3urtad-iano-weasig //

1-(2 ‘(1- ‘SNyVSatwiTuoradssTFep)mod-yareyx(TdstgaseldreT)sqe-yse)nod-yaey + Layeusad = LaTeusd

}(SNVS2TWITuOoT108TF8p < (TdstgaseSier)sde yael) It

$(1- ‘o0gr)mod-yseysueds = GNYSITWITUOTIDSTFAP
} estTe {
SNYS3TWITUOTad8TFop

$(3TWITUOTIDOTFOP)Sqe " Yiey

Stellenbosch University http://scholar.sun.ac.za

216

17.7 ALGORITHM CODE EXTRACTS

'1-(2T

(1-

fT® % (T-°000000000T)4a0d yaey * Aarsusp = ssew

UOT3OUNF SSoUITI//

17 =+ A

‘qTwTIUOT3oaeTFop)nod yarex (TdsTgaselSxer)sqe yae)mod- - ysey + £Lateusd = LaTeusd
}(3twruotr3oeaTFep < (TdsTtgiseBSzer)sqe-yze) It
£q1eusd jquswsderdstqg//

[[]yasBueT % [[[]Lexiyxepulmej]esIypeidsa[as + B = TE®

}(++[fsaquewmeTgzgrequnu- Tenpratpur > [{9 = [qur) zog

T - (2 “(1- ‘(@2x0geTqemMoTTR)sqe-yarel)nod- yaejy
x([1]LexxyesaogquswsTa)sqe yaey)uod yae + Lateusd = Lafeusd
}((®d21049TqenoTIR)sqe Yael < ([T]4eraysoxojrusmars)sqe qaey) It
{
f([T]4eraiyedIi0Jrusmate)sqe Y = 92I0g1s03Ie
}(([t]4LexayeoIoqquomaTa)sqe -yaey > (ed2I0gaselIeT)sqe yaey) IT

£aTeusd ssoxqg//

{
{[XopUT] AeIIyeaIex3TWITSSSILS = 8DI0JOoTqRMOTTR
‘[xoputr] ferxyesaie = [I]e0IypPo3daTas
uotssexdwo) // }esTe

/Ischolar.sun.ac.za

Stellenbosch University http

217

17.7 ALGORITHM CODE EXTRACTS

$(3TWITSSOIS ¢ 3TWITUOTIDSTFOP
‘us8 ‘ueds ¢ TdstgaseSiel ‘xe ‘q ‘3 ‘r ‘A3 ‘pows ‘mnnx ‘aax ¢ LiTtsusp

¢ fexIyeoI0J3USWSTS TeNMPTATPUT)SONTBAUOILIOUNISATE90(qQPUTF TenpPIATIPUT = aaT3da(qo

9In1o5nIqs 9yl Fo 1YZTem oYl SSOT oY1 ‘SsaulTI oyl I93ea1d oyq asI0FeIoyL//

anTaoelqo - yaBTem Xew osSTwWIXew 01 ST SS8UQTI ©oYL//

sIngonigs oYl Jo qySTem uTw oyq purjy oa sT oatadelqo oayi//

S1UTeI3SUOD TI® JUNODD® 03UT 9¥B] 03 UOTIOUNI SSSUGTF STY3 03 pappe sT LaTeusd//

squswaTe oYz TTe Ioa0 {Tyd} Fo ung ‘ayStem sat £q pouTWI®ILpP ST UOTIINTOS ® JO SSOUITI °oYL//
}(aTWIISSSI3s STqUOP ‘ ITWITUOTIOSTISP STqnop
‘ent3oelqpxe|asoxesn srqnop ‘oartzoslqguriyiseSuoxils sTqnop ‘usl 3utr
‘ueds eTqmnop ‘TdsTgaseliel eTqnop ‘xe []afqnop ‘q []aTqnop ‘a []eTqnop ‘pr []eTqnop
Ay eTqnop ‘pows aTqnop ‘nni [JaTqnop ‘aal []eTqnop ‘L9QIsusp sTqnop

‘ fexiyeorojausmweTs []oTqNOp ‘ TeNPTATPUT TeNpPTATPUI)SNTRAUOTIOUNISSaUITIPUTI oTqnop o1Tqnd

ysIiees oY3 3noy3noIyz oduUc oseqelep oYl sosseode ATuo pue Leixe syjq seosu poyasw SIYL//

fenTepeaTdoelqo uinzex
(@IngeisqTT url 3y3Tem

se pautrisQ) sse|// ‘(£aTeusdxiegemeredglqTeuadxusd + Te % (T-°000000000T)#sod -yrey x £LaTsuep) = snTepeaTasalqo

NX// $((T- 0007)uod yselx[d]LexaysozogqusmsTa)urqutrad - ano mwsqsig
}(++d fSHENO0SOWOY¥HD ™40 -¥dganaN > d o = d 3ur) zoz
f(4 = sedior,)urqutrid-ano- -weqskg
{

¢ ([d]yaSusT)uraurad- ano -weashg

}(++d {SHNOSOWOYHD A0~ ¥IEWAN > d ¢0 = d 3utr) zoF

f([d]esaypeadeTes)urrutad qno - meqshg

}(++d {SHNOSOWOY¥HD A0~ ¥IEWAN > d f0 = d 3ur) zoF

/7
/7
/7
//
//
//
//
/7
/7
//

Stellenbosch University http://scholar.sun.ac.za

218

17.7 ALGORITHM CODE EXTRACTS

¢Tetxegel sjusuodwoos -wey sxodurt
‘uoriosgssoxy - sausuodwos "wey jxoduwt
‘wegsfgejeurpioo) - sjusuodwod wey jxodwut
fjoq-uotjernoreds ‘weF gxodur
fsTsATRUyIROUTTIOPIQISITI sTshTeue -woy 3xodwr
fstsfTeuy stsfyeue -woF sxodwrt
¢10300p " 8Teutr] ysew- oye jxodwr

fxtage) - SreurT yzeuw-oye szodwt

‘wystro8Tyoraousy afeyoed

‘wyp1I03Te o139uad o1} pue urersold SISAeue JUSWL[S 91U

9} UO9M)I(DBJIDIUL OUIOS S SOAIdS 9] uryytiof[e oY) Aq popraoid UONRULIOJUT 9} UO Paseq (SPPOJNUR]) sessniy jo uorpendod e $9)eaId SSe[d SIT,

uvornyendog ssnif,

[POPIAIPU] SSBI) ¢ SULISIT

fSSOUITJTeNPTATPUT UINGSI

{

81eqpT10n// teoataoelqo - 000000000T = SS8UITITEBNPTATIPUT
} este {

fontaoalqo - oataoelqpxe|rsexesm + oaT308[qQurl3rse8uUoIls = SSOUFTJTENPTATPUT

}(ssosuatgotweulp) FT osTs {
oTT200// $(T- ‘((T+4%000T)*2aT300(qo))nod Yae+] = SSoUITITENPTATPUT

}(sseusrtTJposTTemIou) JIT

219

Stellenbosch University http://scholar.sun.ac.za

17.7 ALGORITHM CODE EXTRACTS

‘SeTIqus Jo Iaqunu swosomwoIyd sey LTuo Leire eesle 3sITI//
$S3THOWRIF < JUSWSTIIWRIL> 3STTPOAUT]
$S3T9 <IUSWSTISSNIL> ASTTIPOHUTT]

f{Zsepou ‘jsepou ‘Yysepou []aTqnop
ftButirgruswete [J[]Butiag

¢zop []Butiag

fferiryrepowssnig []Tepolueq

{seTIque qUT

$STeUPTATPUT []JTRNPTATPUL
fSsquswWeTTIQISQUNU ‘ SSPONFOISQUNU JUT
‘pows ¢ f3rsusp ‘uostod ‘Teriejzew oTqUOP
fqndut qnduitepon//

¢stsfreue stsdreuy

¢ TopolsSsnis Tepouadg

} uotaerndogssni] sseld> o1Tqnd

‘tde-Tran-eael szodurt

fastIpequrT-Tran-eael szodut
¢deyuyseg- - 1ran-eael jxodut

f9eg-Tran-eael sxodwrt

fI03eI1o3T TT3n eael sxodwr

fqogyusey TTan eael sxoduwrt

¢ [opojuwe - [opow-weF jxodwrT
‘q1egpeoTeuntop " peoT sjrusuodwoo wey sxodurt
‘peoTepo) peol- siusuodwos -wey srxodurt
fssenpeo] peol-sausuodwos -mey srxodurt
fquowoTESsSnI] * jusweTs - sgusuodwods *wey srodurt
fquowoTFoweI jusweTs - sgusuodwods ‘wey sxodurt
¢q110ddng - squsuodwos *meFy 3xoduwt

fopo| - szusuodwod "weF sxodurt

Stellenbosch University http://scholar.sun.ac.za

220

17.7 ALGORITHM CODE EXTRACTS

f()<quoweTHoWRI> ISTTPOYUTT MOU = sSqTgowexr]
$()<3UPWATISSNIL> ASTTPONUTT AU = S3TO

f[yaSusT sSTenprATpUT] [oPO[uUa Mou = Lexiylspomssnig
¢S8uTI1grULWETS = BUTIFGIUSWSTS " STYL

$F0p = Fop-'sSIU3

w// $zsepou = Zsapou-sIyYl

f1Sepou = jLSepou-sIyY3l

w// fYsapou Xsepou-' sIys
n// {peol = prOT'STIUL
fSQUOWSTHFOISOQWINU = SGUSWATTIQIQUOU STYSL

£SeTI3U® = SOTIJUS SIYL

{STRNPTATPUT = STBOPTATPUT " STY]

f()sepoNFpIequnyired-andur = sepoNFQISqUNU-STIY]

¢fatsusp = LaTsuep-sSIyYL

fuostod = uostod- stys

®d 03 3I9AU0D// (9 ‘0T)mod yze|] % pows = pows sSIYUL
fandutr = andut - stya//

fQUOWOTHOWRIJST = JUOWSTHOWRIJST STIYI

‘QesT = (QEST STIUL

¢pednoiznst = pednoinst-sIyl

f()sTsATeuyIesurTIopiglsIiTd mou = sishieue
} (ausweTgoweIgsT uwafoog
‘ggsT uesToog ‘podnoinst uesToog ‘SutrxagiusmeTe [J[]Sutzag ‘Fop []Sutiag
‘zZsepou []eTqnop ¢ jisepou []eTqnop ¢Ysepou []eTquop ‘peol []J[]eTquop
‘squswWeTPIQIOQWNU AJUT‘ SSTIJUS JUT ‘ STeNPTIATPUT []TBOPTATIPUI

‘fq1susp aTqnoq ‘uostod efqnog ‘pows oTqnoq ‘andur anduryepojy)uorrerndogssniy orTqnd

fquowoTgowWRIJST ‘(OgsT ‘pednorinst uesToog
tpeoT [J[]aTqmop
ffrwey ‘seexaywey ‘seale []aTquop

SeTIqUe® JO IaquUNnu jJuawefe ue sey Lexaiyuey//

Stellenbosch University http://scholar.sun.ac.za

221

17.7 ALGORITHM CODE EXTRACTS

¢ (NOILVISNY¥L ZA-¥0Q ° yand - sgggazoddns

C(NOILVISNVYL XX FoqQ ¢ yand - sgggazoddns
$(NOIIVIOY™Z' FoQ ° yand - sggqaxoddns
‘(NOILYLOY ™K FoqQ)3nd - sgggqazoddns
C(NOILYLOY X FoqQ y3nd - sgggqazoddns

(NOILVISNYYI™Z® ¥oqQ ° y3nd - sgggazodduns
(NOILVISNYYI &' Foq ° yaund - sgggazoddns
C(NOILVISNYYI™X Foaq ° yand - sgggazoddns

} ot3ess

£ ()<3oq ‘8utxiarg>deyysey meu = sjgggaxoddns <jyoq ‘Burtiag>dey oTaels ejzeatad
SuoTlelol pue suorjersuerl zoF dew ejesr)//
{

{s1THoWeII UINQSI

{

f(()31xXeu- I91T)ppe - S1THoWRI]
} (()3xeNsey-I83T) STTUA
¢ (SSeId JUBWS[HOWRIL) I01BIDLT TOPO|SSNI] = I893T < JUSWSTHOWEI > I03eISq]

} (Tepolssnij Topojmsej)oweIjsiuswaTgled < jusweTIowWeId> 2STIPoYUTT otTqud

{sqTe uanisx
{
£(()3xeu-193T)pPPR"-S3IT®
} (()axeNsey Ie3T) oTTYM
((SSeT2 JUSWOTISSNIL) I030ISQT " TOPONSSNIY = I93T < JUSWOTHISSNIL> I030ISL]

} (TopolsSsSnIl TOPONWSJ)SIUSWSTHI98 < JUBWSTISSNIL> 3STTpoquTrT oTTqud

Stellenbosch University http://scholar.sun.ac.za

222

17.7 ALGORITHM CODE EXTRACTS

peuTtyep Iesn Ied sSe sjuUsmWATe JO SPUS 1B SSPOU BYY SUIFeq//

} (sausweTIFOISQUIU 3UT

foweNuUOT309Ggss0xd SUTIg

fowepNsrzoddns ‘uotrgrpuopizoddns Sutiag
fpeoTro3oonr SUTIS

‘ome)peoT Sutriag

¢ zeoweepoNjusweTe Burigg

¢ JeweepoNrusweTe BuUTIg

‘oweNjusweTe SUTIAS

‘owepopou SuUTIIS

} (sauswesTgyQIoqunu 3ut ¢ LerayjusweTgweFy []autl ‘ Lexiyxepulwseg []aut

‘oweu 3SuTI3S ¢ TenpraTpuIeS TenpTATIPUI)SSnIIo3esrd Topojuwsg oTTqund

uotqerndod ut Arjugssnijwey LIieas I0J ssniyeaeeid//

¢ferxyTepowssni) uIniex

{
f(sausweTHFoIoqunu ‘ LerxyjuswsTguey ¢ Lexayxopuiwsg
‘oweNsSsnI] ‘[T]STeNPTATIPUT)SSNIJe1eaid = [T]AeIiylepowssnig
(T + T) + = SWeNSsSnIj

¢ fexayiusweTguwey []aut

f(NOILVISNVYL 11V 3o0Q ¢

C(NOILVISNYYL AX ' ¥od °
C(NOILVISNVYL ZX Foa ¢

} (++T fu3BusT sSTenpTATPUT > T {0 = T 3UT) I0F

‘omepssniz Suraalg

¢ fexiyxopulweF []3UT)sTopojuegosesard []Tepolus otTqud

S(TIY " Foa ¢ yand - sgggqaxoddns
C(NOILVLIOY 11V Foa ° y3nd - sgg0gqazoddns

yaud-sgpgaxodduns

yaud- - sgpgaxoddns
yand - sgggazoddns

Stellenbosch University http://scholar.sun.ac.za

223

17.7 ALGORITHM CODE EXTRACTS

f[1]Fop = uotratpuo)sroddns

saxoddns ppy//

C(2T)PpPpPe- TopPOSSNI]
{
¢ (ewe|peOT)PpPe-OT
f((WEILSAS ALYNIQHO0D 1Y40TH wessLgereurproo) ¢ (yx0308)388 10308}
¢ (peoTI01594)I03093193 103009, ‘ OWENOpPOU ° OWEPEOT)PEOTIPON MOU)PPe’ [O9PO|SSNII
(T == A)3IT
C((WILSAS ILYNIQYO0D IVE0TID weasLgazrurproo) °(y10328)398° 1030034
¢ (pPeOTIO01D9A)I03D91983 109009, ‘OWENOPOU ‘ OWEPROT)PROTOPON MOU)PPeE [9POJSSNII
(T == A)IT
f((WEILSAS HLYNIQHUO0D 1Y40TD we3sLgereurproo) ¢ (yx0308)388 10308}

‘(peoTI01D8A)I0300A193 I0900) ‘SWENOPOU ‘ SWENPEROT)PEROTAPON MOU)pPPe [SPOSSNII

(0 == W)IT

speoT PPY//

: + [d1[T]peoT + = proTIoisen

(uotao8i1Tp) (epou)peol Suidsousisgex peoT// () + + (T + 1) + = sweppeoT

F(++¥ ‘¢ > ¥ 0 = ¥ 3uUT) I0]

:Suo0T95eITpP ¢ TI® ut BuipeoT//

S(({[T]Zsepou ‘[T]Asopou ‘[T]XSopou}[]oTqunop HaU ‘oW OPOU)SPON MOU)pPpPe [PO|SSNI]
sapou PpPY//

(T + 1) + = suwe|spou
} (++T1 fsepopyFQIequnu > T f{Q = T 3qUT) I0F

ssnig s, Arquygssnijwey yoes IoF siroddns pue sepopy//

i ()ese)peoT MdU = O] ose)peoT]

¢ (oweu) TOpOjWe MOU = TOpPOSsSnIa

Stellenbosch University http://scholar.sun.ac.za

224

17.7 ALGORITHM CODE EXTRACTS

(T + 1) + = BPWeNJULWSTS

squswWeTs® SSNIY PPY//

f(([T]lrwsy “100000000°0 ‘T00000000°0 ‘[T]seeiywejy ‘SWBNUOTIOSGSSOID)UOTIDS9GSS0I) MAU)PPR ' TPPO|SSNIY
(T + 1) + = OWENUOT3D9gSS0ID
} (++1T fsjusweTyFQIequnu > T {Q = T 3UT) I0F
}(pednoxpst) T

} (3uoWSTHOWRIIST) IT

{

f[[t]fLexayxepuiweF][= [T - [T]LeiayauowsTguweg]rwejF
‘[[t]fexaiyxepujmeg]sesre = [] - [T]LeIiyjueomwsaT weI]sesIymwej]
}(++T f‘yaBueT-sesiywel > T ‘0 = T QUT) IOF
f[squswaTHFQISqUNU]STqNOP MOU = [WSF
f[squswWSTFTIQISQUNU] STQNOP MSU = SEBIIYWST
squswaTe dnox8 sgzestidug//
}(pednoxnst) IT
f(seTique ‘ Tenpratpuled)siejew TenpIaTpurfield-fenpratpured = [
f[SAWOSOMOYHD A0 HAGWAN " Tenpratpule8]erqnop meu = [[]eTqnop
f(seTIque ‘TenpraTpuleld)sIiejew TenpIATpulesIyiad-Tenpratpured = seale
¢ [SANDSOWOYHO A0 HIAGWAN " TemprATpuleS]e[qnop neu = seaIe
‘HYdH 0D ISOAW VD WOHd SENTYA SIWOSOWOUHD//

f((£atsuep ‘uostod ‘poms ¢)Ietisle]] MOU)pPpPR ' [9POKSSNI]

Tetisseuw ppy//

{
{
f(((uotstpuopszoddns)1e8-sjpqrroddns ¢ osweyepou ¢ osweysroddns)izoddng mou)ppe- [opo|ssSnIig
(T + T) + = swep3xoddns
} (TInu =; uotatpuo)aroddns) T

Stellenbosch University http://scholar.sun.ac.za

225

17.7 ALGORITHM CODE EXTRACTS

(T + T) + = SWeNUOT329§SSOID
(T + 1) + = SWEeNJULWSTS

sjQuswWeTS® SSNIY PPY//

f((0 ‘0 ‘[T]seeaywey ‘OWRNUOTIID®GSSOID)UOTID9GSSO0I) MAU)PPR ' [9PO}SSNI]
(T + 1) + = 9WEeNUOT]1D8§SS0ID
} (++1 fsjusweTgFpIequnu > T {Q = T 3UT) I0%

}(podnoxpst) JT

}esTe{
{
{
f((ggst ‘sweNUOT3D®GSSOID ¢
‘{Zowe|opofrusweTe ‘ JomweNepoNjuUsmaTe}[]SUTIIS MOU ‘ oWENIUSWSTS)lUSWSTHoWRIJ MoU)pPpPe [9PO|SSNI]
‘[7][t]8utIggausmatre + = goweNopoNjUSWSTS
poutTFeop Iosn
15d se squULWSTS JO SPUS 3B SSPOU SY] SUTFSQ// ‘[o][t]8utaagauomare + = JoWeNopONIUSWSTS
f(T + 1) + = OWEBNUOT3D98SS0IdD
(T + 1) + = oWBNJUOWSTS
squewaT® SSNI1 PPY//
f(([r]rweF °700000000°0 ‘T00000000°0 ‘[T]sedie ‘OWRNUOT3IISGSSOID)UOTIDSGSSOI) MOU)PPR [2PO|SsSnII
f(T + 1) + = SWENUOT3D98SS0Id
} (++T ‘SENOSOWOYHO 40 YEEWAN Tenpratpuled > T 0 = T 3UT) I0%
}esTe {

{
f((ggst ‘sweNUOT3D8EgSSOID ¢

‘{ZoweopojruswaTe ‘ JomwejepoNjusmaTe}[]SUTIIS MOU ‘oWENIUSWSTS)jUsWSTHoWRIJ MOU)pPpPe [OPO|SSNI]

f[1]1[T]3utIzgausmwats + ZoWeNopojuswaTe

psuTFop Iosn

1od se sjqusweTo JO SpuUS 3 SOpouU dY3 SUTFSq// ‘[o][T]Sutaagauomotre + TowWeNopONIUSWSTS

MA.—” + ._”v + = O9WEBNUOT3D285SSO0Id

Stellenbosch University http://scholar.sun.ac.za

226

17.7 ALGORITHM CODE EXTRACTS

‘{goweopoNjIUSWSTS

1od se sjqusweTo JFO SpuUS 3 SopouU 8Y3 SUTFSq//

‘{ZoWEopPONIUSWSTD

} (++71

£Te3erades sTepow poyssw ssed//

{(ToPOKSSNI])oA0WSI [S9PO}SSNIY

}(TopojsSsnIg Tepoluej) [opo[SSNITIeaTd proa dTTqnd

{
{TopPOjsSsSnNI3 uUINgoI
{
{
{
f((ggst ‘sweNUOT3D®EgSSOID ¢
‘ ToweyepoNjuUsWaTe}[]SuUTIS MOU ¢ oWeN]UAWSTS) JUSWSTHSSNI] MOU)pPPR " T9PONSSNI]
‘[7][t]8utasgausmare + = ZoWeNopoON3USWSTS
poutTIeop Iosn
‘[o][t]Sutasgauomotre + = JoweNopoNjuUSWSTS
(T + 1) + = OWEBNUOT3D9gSS0ID
(T + T) + = SWBRNJUOWSTS
squewaT® SSNI1 PPY//
f((0 ‘0 ‘[T]seoIe ‘PWRNUOTIZD9SSSOID)UOTIDIOESSOI) MOU)PpPR’ TOPO|SSNIL
f(T + 1) + = OWBNUOT3D98SS0Id
$SHNO0SOWOYHD A0 YHEWAN TenptatpuIed > T {0 = T 3UL) I0F
}eosTe {

{

f((ggst ¢ ewepNUOT3D®gSSOID ¢

¢ ToweopoN3IUSWOTS}[]SUTIIS MOU * SWeNIUSWSTS) JUSWSTHSSNI] HSU)ppe "’ [opolssnia

ied se squsweT® JO SpuUS 1® S9pPoOU oYl LUTIS]//

‘[7][t]8utasgausmare + = ZoWeNepofjuswsTs
peuTyeop Iosn

f[0]J[T]8utzrgrusmeTe + - JeuweyepoyNlUAWST®

Stellenbosch University http://scholar.sun.ac.za

227

17.7 ALGORITHM CODE EXTRACTS

uoryendoJ SSNI, sse[) 1§ Surysry

$()SIo2USLSTTTOPOILSTD TOPO|SSNIL
f(TopoNssnig)miogasd- - stsfTeue

} (Tepojssniq Tepojuej)eskieue proa otTqnd

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Listings
	Nomenclature
	Contextual Information
	Background
	Problem Statement
	Objectives
	Motivation

	Introduction
	Outline

	Literature Review
	Towards Optimisation
	An Illustrative Optimisation Problem
	Standard Formulation
	General Comments on Search Spaces
	Complexity
	Structural Optimisation

	Genetic Algorithms
	Introduction
	What is a Genetic Algorithm?
	Why Use a Genetic Algorithm?
	How Do Genetic Algorithms Work?
	Object and Fitness Functions
	Constraints and Penalty Functions
	Why Do Genetic Algorithms Work?

	Test Functions
	De Jong's Test Functions
	Measuring Performance
	De Jong's Conclusions

	Advanced Operators
	Combinatorial Optimisation
	Niches and Species
	Hybrid Algorithms
	Additional Advanced Operators

	 Implementation
	Modelling
	Genetic Parameters
	Mapping the Structure to an Individual
	Grouping
	Comments on CPU Time
	Deflection Criteria
	User Input Required to Run the Program

	The Program
	Approach to Implementing Structural Optimisation
	Characteristics of the Program
	Pseudo Code
	Towards the Finite Element Method
	Discussion of Essential Classes
	Notes on Functions
	Special Notes

	Benchmarking Problems
	Introduction
	10 Bar Truss
	Objective
	Design Data
	Constraints
	Additional Information
	Results
	Comparison

	25 Bar Truss
	Objective
	Design Data
	Constraints
	Additional Information
	Results
	Comparison

	160 Bar Truss
	Objective
	Notes on the 160 Bar Truss
	Comments on Comparing Results
	Design Data
	Constraints
	Additional Information
	Results
	Comparison
	Results using Frame Element Results

	Case Study: Eskom Transmission Tower
	Introduction
	Objective

	Design Data
	Load Cases
	Grouping
	Serviceability
	Genetic Parameters

	Modelling and Implementation
	Modelling Inaccuracies
	Dealing with Planar Joints
	Tension-only Members
	Effective Length of Members
	Length of Members
	Notes on Multiple Load Cases
	Provisional Solution for the Case Study
	Alternative Proposal for the Multiple Load Cases

	 Closure
	Conclusion
	Future Research
	Different Approach to Optimisation
	A structure with Frame and Truss Elements
	Hybrid Algorithm
	Upgrading the Genetic Algorithm
	Different Types of Structures

	List of References

	Appendices
	17.1 Test Functions/Aritificial Landscapes
	De Jong's Function 1
	De Jong's Function 2
	De Jong's Function 3
	De Jong's Function 4
	De Jong's Function 5

	17.2 List of Possible Errors
	17.3 Eskom Tower Drawings
	17.4 Eskom Design Data
	17.5 Equal Leg Angle Section List
	17.6 Eskom Transmission Tower: Load Cases
	17.7 Algorithm Code Extracts
	Algorithm
	Population
	Individual
	Truss Population

