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Thesis: MScEng (Civil)

December 2012

The design of steel structures needs to incorporate some optimisation procedure that evolves the initial

design into a more economic �nal design, where this �nal design must still satisfy all the initial design

criteria. A candidate optimisation technique suggested by this research is the genetic algorithm. The

genetic algorithm (GA) is an optimisation technique that was inspired by evolutionary principles, such

as the survival of the �ttest (also known as natural selection). The GA operates by generating a

population of individuals which `compete' with one another in order to survive, or di�erently stated,

in order to make it into the next generation. Each individual presents a solution to the problem.

Surviving solutions which propagate through to the next generation are typically `better' or `�tter'

than the ones that had died o�, hence suggesting a process of optimisation. This process continues

until a de�ned convergence criteria is met (e.g. speci�ed maximum number of generations is reached),

where after the best individual in the population serves as the ultimate solution to the problem.

This study thoroughly investigates the inner workings that drive the algorithm, after which an al-

gorithm is presented to face the challenges of structural optimisation. This algorithm will be concerned

only with sizing optimisation; geometry, topology and shape optimisation is outside the scope of this

research. The objective of this optimising problem will be to minimise the weight of the structure, it

is assumed that the weight is inversely propotional to the cost of the structure. The motive behind

using a genetic algorithm in this study is largely due to its ability to handle discrete search spaces;

classical search methods are typically limited to some form of gradient search technique for which the

search space must be continuous. The algorithm is also preferred due to its ability to e�ciently search

through vast search spaces, which is typically the case for a structural optimisation problem.

ii
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ABSTRACT iii

The genetic algorithm's performance will be examined through the use of bench-marking problems.

Benchmarking is done for both planar and space trusses; the 10 - and 25 bar truss problems. Such

problems are typically analysed with stress and displacement constraints. After the performance of

the algorithm is validated, the study commences towards solving real life practical problems. The �rst

step towards solving such problems would be to investigate the 160 bar truss benchmarking problem.

This problem will be slightly adapted by applying South African design standards to the design, SANS

(2005). This approach is more realistic, when compared to simply specifying stress and displacement

constraints due to the fact that an element cannot simply be assigned the same stress constraint for

tension and compression; slenderness and buckling e�ects need to be taken into account. For this case,

the search space will no longer simply be some sample search space, but will consist of real sections

taken from the Southern African Steel Construction Handbook, SAISC (2008). Finally, the research

will investigate what is needed to optimise a proper real life structure, the Eskom Self-Supporting

Suspension 518H Tower. It will address a wide variety of topics, such as modelling the structure

as realistically as possible, to investigating key aspects that might make the problem di�erent from

standard benchmarking problems and what kind of steps can be taken to over-come possible issues

and errors.

The algorithm runs in parallel with a �nite element method program, provided by Dr G.C. van

Rooyen, which analyses the solutions obtained from the algorithm and ensures structural feasibility.
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Strukturele Optimisasie via Genetiese Algoritmes

S.A. Appelo

Departement Siviele Ingenieurswese,
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Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MScIng (Siviel)

Desember 2012

Die ontwerp van staal strukture moet 'n sekere optimalisasie proses in sluit wat die aanvanklike ontwerp

ontwikkel na 'n meer ekonomiese �nale ontwerp, terwyl die nuwe ontwerp nog steeds aan al die aan-

vanklike ontwerp kriteria voldoen. 'n Kandidaat optimeringstegniek wat voorgestel word deur hierdie

navorsing is die genetiese algoritme. Die genetiese algoritme (GA) is 'n optimaliserings tegniek wat ge-

ïnspireer was deur evolusionêre beginsels soos die oorlewing van die sterkste (ook bekend as natuurlike

seleksie). Dit werk deur die skep van 'n bevolking van individue wat `kompeteer' met mekaar om dit te

maak na die volgende generasie. Elke individu bied 'n oplossing vir die probleem. Oorlewende oplos-

sings wat voortplant deur middel van die volgende generasie is tipies `beter' of `�kser' as die individue

wat uitgesterf het, dus word 'n proses van optimalisering word saamgestel. Hierdie proses gaan voort

totdat 'n bepaalde konvergensie kriteria voldoen is (bv. 'n gespesi�seerde aantal generasies), waar na

die beste individu in die bevolking dien as die uiteindelike oplossing vir die probleem.

Hierdie studie ondersoek die genetiese algoritme, waarna 'n algoritme aangebied word om die uit-

dagings van strukturele optimalisering aan te spreek. Hierdie algoritme het alleenlik te doen met snit

optimalisering; meetkunde, topologie en vorm optimalisering is buite die bestek van hierdie navorsing.

Die motief agter die gebruik van 'n genetiese algoritme in hierdie studie is grootliks te danke aan sy

vermoë om diskrete soek ruimtes te hanteer; klassieke soek metodes word gewoonlik beperk tot 'n

vorm van 'n helling tegniek waarvoor die soektog ruimte deurlopende moet wees. Die algoritme is ook

gekies as gevolg van sy vermoë om doeltre�end deur groot soektog ruimtes te soek, wat gewoonlik die

geval vir 'n strukturele probleem met optimering is.

iv
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UITTREKSEL v

Die genetiese algoritme se prestasie sal ondersoek word deur die gebruik van standaarde toetse.

Standarde toetse word gedoen vir beide vlak en ruimte kappe, die 10 - en 25 element vakwerk. Sulke

probleme word tipies met spanning en verplasing beperkings ontleed. Na a�oop van die bekragtiging

van die algoritme, word praktiese probleme hanteer. Die eerste stap in die rigting sou wees om die

160 element vakwerk toets probleem te ondersoek. Hierdie probleem sal e�ens aangepas word deur

die toepassing van die Suid-Afrikaanse ontwerp standaarde, SANS (2005) aan die ontwerp. Dit is 'n

meer realistiese benadering in vergelyking met net gespesi�seerde spanning en verplasing beperkings

as gevolg van die feit dat 'n element nie net eenvoudig dieselfde spanning beperking vir spanning en

druk toegeken kan word nie; slankheid en knik e�ekte moet ook in ag geneem word. In hierdie geval

sal die soek ruimte nie meer net meer eenvoudig 'n sekere teoretiese soek ruimte wees nie, maar sal

bestaan uit ware snitte wat uit die Suid Afrikaanse Konstruksie Handboek kom, SAISC (2008). Ten

slotte sal die navorsing ondersoek instel na 'n standaard Eskom Transmissie toring en dit sal 'n wye

verskeidenheid van onderwerpe aanspreek, soos om die modellering van die struktuur so realisties as

moontlik te maak, tot die ondersoek van sleutelaspekte wat die probleem verskillend van standaard

toets probleme maak en ook watter soort stappe geneem kan word om moontlike probleme te oor-kom.

Die algoritme werk in parallel met 'n eindige element metode program, wat deur Dr GC van Rooyen

verskaf is, wat die oplossings ontleed van die algoritme en verseker dat die struktuur lewensvatbaar is.
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Chapter 1

Background

1.1 Problem Statement

Structural optimisation poses many challenges; challenges such as dealing with discrete and extremely

vast search spaces. An algorithm for structural optimisation, which can handle vast discrete search

spaces, must be investigated and implemented. Solutions found must be better than just satisfactory.

This study must serve as the preliminary phase to develop a tool with which real life structures can

be optimised in an automated design fashion.

1.2 Objectives

The aim of this research is to introduce to this department a useful tool towards e�cient structural

design optimisation; to research the use of genetic algorithms as such a tool for robust structural opti-

misation. Although it is not intended to be viewed as a computer programming thesis, a large part of

this thesis involves programming in order to investigate the algorithm. Analysis and design procedures

will be integrated. An analysis iteration should therefore indicate a fragmentary improvement when

compared to the previous iteration, as a result of the newly optimised design variables. The algorithm

must be able to optimise structures which consist of truss/bar elements; an element with one degree

of freedom in the element's axial direction. Such structures must have a de�ned geometry, topology

and element shape de�nition. Structures to be optimised can be both planar or space trusses. The

optimisation objective is to minimise the weight of the structure whilst adhering to displacment and

stress constraints. The �nal step is to implement the South African design code to serve as constraint.

This study forms part of a larger research initiative which will eventually investigate a multi-

objective problem; the reliability-based optimisation of steel structures. This study only considers the

materials cost, however the larger scope will take into account the construction cost, the life cycle cost,

sustainability and maintenance.

2
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1.3 Motivation

The genetic algorithm, according to Rajeev and Krishnamoorthy (1992), is the best candidate for

structural optimisation due to the e�cient manner in which it handles discrete search spaces; most

design variables in structural optimisation have a discrete nature. Moreover, solutions found by a

genetic algorithm will be both mathematically and practically feasible.

Consider that a typical design process would start o� with selecting initial member sizes based on

experience, past knowledge or architectural requirements. This selection process typically results in an

iterative procedure. The next step involves creating an analytical model that is an idealised model of

the structure's shape, element sizing, topology and loading. This model will generate the structure's

response, which in turn will again be used to determine element sizing that would satisfy the ultimate

and serviceability limit state constraints. The number of conceivable design solutions exponentially

increases with the number of design variables and the size of the search space for each of these design

variables. Consider only a simple problem such as a ten bar truss and a discrete section list of, for

example, 40 sections. The number of solutions for this search space is 1040. This number is incredibly

large; it is, for example, a few thousand times more than the number of estimated stars in our galaxy

(Wagner, 2000). It would be unreasonable to expect an engineer with any number of years' experience

to be able to choose the optimum truss from such a selection. However, there are a number of ways in

which near optimal results for such a problem can be found within minutes, one of which is through

implementing a genetic algorithm. Coello et al. (1994) claim that the genetic algorithm provides good

solutions, even when compared to complex and specialised methods.

Furthermore, consider that structural optimisation can be viewed as a pro�table tool and should

become part of the standard design process. The increase in available computing power and the

world's tendency towards e�cient, e�cacious and green designs are promoters of such an optimised

design approach. Little bits of saving can accumulate to a signi�cant quantity in large scale projects.

With awareness comes the understanding that resources are scarce and in some cases even rapidly

tending towards depletion. This calls for greener construction methods and using lower quantities of

materials which are both e�cient and economical. In the case of steel structures, one way of using

lower quantities of materials can be achieved through sizing optimisation.
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Chapter 2

Introduction

"This preservation of favourable variations and the rejection of injurious variations, I call Natural

Selection." - Charles Darwin

Optimisation is a concept which humans seem to apply naturally in order to spend less energy, be

as comfortable as possible and to minimise pain. The basic concept of optimised design is concerned

with utilising the restricted obtainable resources in such a way as to maximise the pro�t or gain. Haftka

and Gürdal (1992) described such a design as �the best feasible design according to a preselected quan-

titative measure of e�ectiveness�. In other words, an optimisation procedure aims at �nding the best

existing and available solution by seeking the `perfect' trade o� between all the given constraints.

This trade o�, or settlement in some cases, must result in the most propitious outcome for the given

resources. This process of optimisation should occur within an economically and timely fashion and

produce results that are better than just satisfactory.

It is believed that Galileo was the �rst person who was concerned with structural optimisation, as

is apparent in his studies on the bending strength of beams. Other scientists such as Bernoulli and

Lagrange, to name but a few, also aimed at �nding the `best' pro�les for structural elements that would

adhere to a set of strength constraints. Eventually a whole new discipline developed in engineering,

commonly known as structural optimisation (Coello et al., 1994). This is a study that is concerned

with economical sizes which satisfy given constraints and requirements for design purposes.

In recent times, with the dawn of computers, engineers turned to automated structural design.

This allowed for the same quantity of work to be done more accurately and in less time. The question

however arises, to what degree of sophistication and complexity can computers aid in design? It seems

the future of design aims at completely automating structural design. (Coello et al., 1994)

This study will investigate a computer-based design approach for plane and space trusses with one

dimensional elements, which must be optimised in a discrete fashion. Continuous optimisation methods

prove to be inadequate for the sizing optimisation of steel trusses due to the nature of available steel

sections which forms a discrete, rather than continuous set. Solutions are mostly not optimum for

4

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. INTRODUCTION 5

the case where member sizes from the continuous set are simply rounded to the nearest available steel

pro�le section(Coello et al., 1994). Groenwold et al. (1999) found that for the 160 bar problem, see

section 12, the continuous minimum mass was found to be 1337.8kg. However, the minimum mass

increased to 1420.7kg when these continuous solution values were rounded to the nearest available

sections that are commonly manufactured. This is 60.9kg heavier than the discrete solution found by

the genetic algorithm.

Most optimisation techniques which can handle discrete search spaces are limited to speci�c types

of structures and therefore lack generality. Goldberg and Samtani (1986) were, evidently, the �rst to

suggest and use the genetic algorithm as a tool for structural optimisation.

The genetic algorithm o�ers a solution for both the aforementioned challenges as it readily deals

with discrete search spaces and is easily extended to deal with di�erent types of structures which

involve minimal adjustments to the algorithm (Coello et al., 1994). The algorithm basically exists

in two realms, the phenospace and the genospace, with a direct analogy to phenotype and genotype.

Genetic operations occur in the genospace and function evaluations in the phenospace. The �tness

function acts as a mediator between these two spaces. The way in which the design variables are

encoded, the coding scheme, is also a link between the realms. The coding scheme serves as a means to

map individuals from the genospace to the phenospace and vice versa (Krishnamoorthy et al., 2002).

It can be inferred that the procedure consists of a problem-dependent and a problem-independent part,

with links between the two parts. This segregation of algorithmic parts is very useful as it enables for

a core section of the algorithm to be programmed (for the problem-independent part), which never has

to be adjusted again and can be applied repeatedly in the same manner for di�erent types of problems.

A common problem between conventional optimisation techniques is their failure to di�erentiate

between global and local optima. The simplest method with which other optima can be found in

conventional search techniques, is through restarting the search at some random point and then to

check whether the search leads to a new improved optima. This problem is ampli�ed when the search

space becomes discrete. For problems with many design variables, the probability of �nding the

optimum with such an approach decreases to a point where it will be necessary to do a complete

exhaustive search, e.g. an enumerative search. For such cases the e�ciency of the search drastically

deteriorates to a point where such searches become completely impractical (Haftka and Gürdal, 1992).

The genetic algorithm does not necessarily guarantee a global optimum solution, however near optimal

solutions are found with relative ease (Erbatur et al., 2000).

The genetic algorithm also di�ers from conventional methods in that it deals with a population

of available solutions, instead of just one solution. The algorithm operates in a probabilistic fashion,

rather than deterministically. Each unique individual within the population serves as a potential

solution for the given problem, where these solutions are encoded as genes. A collection of genes forms

a chromosome, and a collection of chromosomes forms an individual. The genetic algorithm process,

along with its analogy to genetics, are thoroughly described later in the text.
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Genetic algorithms have a limit to the number of design variables which it can e�ectively handle,

if the encoding scheme is binary. The reason is due to the strings (individuals) becoming too large.

Consider a problem with 5000 design variables, and string size of 10. The string size is dependent on

the accuracy required for the problem for the case of continuous design variables and the number of

discrete options for discrete design variables. For the case of discrete variables, the substring length

must ensure that each point in the search space is accessible by the algorithm. Then, for the scenario

above, the string length for one individual would be 50 000 bits long. This becomes a large encoding

scheme when it is kept in mind that the algorithm uses a population of individuals. The upper bound

to where the algorithm is no longer e�ective is still not certain; the main limitation to this bound will

be the amount of available computing power and will therefore not be a set value.

2.1 Outline

The study will commence with a quick glance at optimisation in general, where after an extensive

literature review is provided in order to give context to the algorithm. Therefore, the algorithm is �rst

approached from a theoretical point of view with test functions and arti�cial landscapes. The focus

then shifts to discrete optimisation, which incorporates a �nite element analysis. The algorithm is then

validated by means of benchmarking problems, �rst only taking into account stress and displacement

constraints. The benchmarking problems are the standard 10 bar plane truss and 25 bar space truss.

These problems serve to validate and illustrate the usefulness of the algorithm. The study then

adapts the algorithm in order to optimise the 160 bar truss problem, which will implement the South

African code of design, instead of prescribed constraints. The section list for this case changes from

some standard benchmarking list, to the equal leg angle section list in the Southern African Steel

Construction Handbook (SAISC, 2008). This problem, with 38 design variables, serves to illustrate

the power of the algorithm. Finally, a real life structure is investigated and future research is discussed.

The purpose of discussing the future research is to provide insight as to why this research is important.

In other words, this chapter will highlight the relevance of this investigation with regard to the basis

that it has established, which could lead to a whole series of other applications.

Stellenbosch University  http://scholar.sun.ac.za



Part II

Literature Review

7

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3

Towards Optimisation

There is often no single approach that guarantees an optimised solution for a given problem; therefore

there is a wide variety of optimisation techniques developed for solving di�erent kinds of problems.

Classical optimisation is synonymous to mathematical programming, some examples of such techniques

are calculus methods, geometric and quadratic programming (Rao, 2009).

An engineering system typically consists of a set of quantities, or variables. Some of these variables

are pre-assigned parameters, however other variables are free to change in order to produce a better

system. Such variables can be grouped into vectors which form a design space, or a search space.

Each point in such a space is a design point which represents a solution. Solutions can be both

feasible or infeasible (possible or impossible). Solutions to engineering problems typically lie embedded

within regions which are surrounded by infeasible solutions within search spaces that are so large, it is

unfathomable (Rao, 2009). There are therefore three main components in an optimisation procedure:

the design variables, objective function and constraints.

Design variables are those parameters within the search which are adjustable, that would eventually

allow for the structure to be optimised. Therefore, these parameters could o�er a set of solutions for a

given problem. This set could be useful in the case where di�erent solutions need to be considered due

to reasons such as �nancial implications, practicability of construction and time constraints, to name

but a few. Design variables cannot be assigned arbitrarily, they have to adhere to a set of requirements

in order to produce a solution which is acceptable, or possible; i.e. lie within the feasible region. Such

requirements are termed design constraints.

Design constraints are restrictions to the given problem in order to ensure feasible and acceptable

outcomes. These restrictions can also be viewed as requirements or limitations.

The objective function speci�es criteria for the optimisation process and is ruled by the nature of

the design problem. It serves as a �lter in order to �nd solutions. In cases where there are more than

one criterion, the problem metamorphoses into a multi-objective optimisation problem.

Therefore, to summarise, an optimisation procedure varies design variables in order to obtain the

peaks within the objective function whilst adhering to the limitations of the design constraints.

8
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CHAPTER 3. TOWARDS OPTIMISATION 9

In the case of classical structural optimisation, constraints would typically take on the form of

prescribed stresses and/or displacements and the objective function could for example describe the

weight of the structure, where an objective could be to minimise the weight, which indirectly minimises

the cost of the structure.

3.1 An Illustrative Optimisation Problem

The following optimisation problem, taken from Spillers and MacBain (2009), serves as an illustrative

introduction towards optimisation:

Consider the structure shown in �gure 3.1. The aim of this optimisation problem is to vary the

height (H) and the diameter (d) of the two members in such a way that the structure is as light as

possible whilst still being able to carry the load. Furthermore, the stresses that develop in the members

must not exceed the yield stress (fy) and the members are not allowed to buckle. In other words, the

objective of the problem is to minimise the weight of the truss whilst adhering to stress and buckling

constraints. Equations 3.1.1 to 3.1.4 follow from basic structural engineering principles.

Figure 3.1: Two bar plane truss problem (Spillers and MacBain, 2009)

The second moment of inertia is:

I =
π

64

[
(d+ t)

4 − (d− t)4
]

=
πtd

8

(
d2 + t2

)
(3.1.1)

The force in a member:

F =
P

2

√
B2 +H2

H
(3.1.2)
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The stress in a member:

σ =
F

A
(3.1.3)

The buckling stress in a member:

σcr =
π2EI

AL2
(3.1.4)

The volume of the truss is simply V = 2AL = 2 (πdt)
√
H2 +B2, where L is the total length of the

two bars. Therefore, the objective function to be minimised is:

φ = 2 (πdt)
√
H2 +B2 (3.1.5)

Where the problem is subjected to stress and buckling constraints:

g1 =
P

2

√
H2 +B2

H

1

dtπ
− fy 6 0 (3.1.6)

g2 =
P

2

√
H2 +B2

H

1

dtπ
−
π2E

(
d2 + t2

)
8 (H2 +B2)

6 0 (3.1.7)

Figure 3.2 o�ers a graphical solution to the problem. The contour lines are di�erent volumes for

the structure for varying heights and diameters. Each contour represents one constant volume. The

optimised solution is shown where the stress and buckling constraints intersect. One can, in this case,

simply read o� the height and diameter for the optimised structure from the graph. The marked green

region illustrates other solutions that satisfy the constraint criteria.

Figure 3.2: Graphical solution of illustrative problem (Spillers and MacBain, 2009)
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It should be noted that the lightest structure is not necessarily the cheapest structure. In some

cases the fabrication costs, wastage, repetition of elements and so forth, might make a simpler, but

heavier design a more economical design.

3.2 Standard Formulation

Find X =



x1

x2

...

xn


which minimises the function φ(X) such that

gj(x) ≥ 0, j = 1, ..., ng (3.2.1)

hk(x) = 0, k = 1, ..., nh (3.2.2)

where X is an n-dimensional vector that contains the design variables (named the design vector),

φ(X) is the objective function, gj(X) is the inequality constraints and hk(X) the equality constraints.

The formulation above is a constrained optimisation problem, there are simply no constraints for

the case of an unconstrained optimisation problem (Rao, 2009). Haftka and Gürdal (1992) suggest

normalisation in order to remove boundless variations. For example, consider the constraint:

g = σallow − σ ≥ 0 (3.2.3)

The numerical outcome of the above is dependent on the stress units, for which reason the outcome

may be great or small. The magnitude of the outcome can be controlled with normalisation:

ḡ = 1− σ

σallow
≥ 0 (3.2.4)

This method will be applied to the penalty functions, discussed later in the thesis.

3.3 General Comments on Search Spaces

Design variables can be divided into 2 categories, continuous (X ∈ Rn) or discrete (X ∈ Zn). R refers

to real numbers, Z refers to integers and n, in this case, refers to the number of design variables or

dimensions to a problem. Certain optimisation models might contain a mixture of continuous and

discrete design variables (Rothlauf, 2011). A search space is de�ned by its design variables. Search

spaces can therefore be divided into continuous and discrete spaces. A continuous one dimensional

search space between the numbers 1 and 4 may be represented as follows:

S = {x|1 6 x 6 4} (3.3.1)
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A discrete one dimensional search space can be represented as shown in equation 3.3.2.

S = {1, 2, 3, 4} (3.3.2)

A random experiment in statistics is such an experiment where, even though the procedure is

repeated in an identical manner each time, the outcomes will typically vary from trial to trial. The set

of outcomes that can be obtained from the random experiment is termed a sample space. An event is

the occurrence of some subset of the sample space, denoted as e. The union of two events are denoted

as e1 ∪ e2 and is illustrated in �gure 3.3.

 

e
1

e
2

Figure 3.3: Two events in a sample space

In this �gure the rectangular area represents the sample space and all areas that are blue form part

of the events. The intersection of these two events can be denoted as e1 ∩ e2 and is represented only

by the darker region in �gure 3.3 (Montgomary and Runger, 2007). A search space can be seen as a

sample space and solutions as di�erent events. For example, the event e1 can represent the event where

all the solutions have stresses in the structure within the allowable stress range and the event e2 can be

seen as the event where all the solutions have displacements within the serviceability requirements. All

feasible solutions are therefore represented by the area e1 ∩ e2. The solution found by an optimisation

technique must be within this feasible region.

Traditionally, the optimum of a function is found where the gradient is equal to zero. This optimum

would be accepted if it lies within the feasible region, as discussed above. For example, take into

consideration a two dimensional function with one independent variable is illustrated in �gure 3.4.

Here the optimum for y is easily found by equating the derivative of the function to zero, the optimum

is indicated by the dashed line. The di�culty with a discrete search space, as will be thoroughly

explained later in the text, is that it does not contain any gradients with which to �nd the optimum.
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Figure 3.4: Two dimensional line with peak at zero gradient

Counting the number of solutions in a search space provides insight into the scale of structural

optimisation problems. Consider the following problem: Given ten di�erent element sizes and a struc-

ture consisting of 4 elements, how many sets of four elements can be selected from the list of ten

sections that are all of di�erent size? Let the numbers 1,...,10 represent di�erent section sizes. For this

case, assume that the order in which sets are formed is considered, therefore {1, 2, 3, 6} 6= {1, 2, 6, 3}.

According to equation 3.3.3, 5040 permutations can be found.

Pnr = n× (n− 1)× (n− 2)× ...× (n− r + 1) =
n!

(n− r)!
(3.3.3)

Where P is the number of permutations of subsets of r elements selected from n di�erent elements

(Montgomary and Runger, 2007). Now consider the same problem, however without considering the

order in which sets can be formed. According to equation 3.3.4, 210 combinations can be found.

Cnr = (nr ) =
n!

r!(n− r)!
(3.3.4)

Where C is the number of combinations that has subsets of size r that can be selected from a set of n

elements (Montgomary and Runger, 2007). Note that there are fewer combinations than permutations,

as some combinations are equal. For example {1, 2, 3, 4} = {3, 2, 4, 1} = {3, 4, 1, 2} and so forth.

The di�erence between combinations and permutations is therefore that order is not considered for

combinations. However, for a structural optimisation problem, di�erent elements (design variables) are

allowed to have the same size and the order is of signi�cance, as a di�erent order would produce a new

structure. Therefore, �nding a solution in the form of {3, 3, 1, 1} would be acceptable, if it be feasible,

and {3, 3, 1, 1} 6= {1, 1, 3, 3}. In other words, each element now has ten sizes to choose from, instead of

only from a remaining set once a size is removed. The search space size now suddenly increases with

almost 5 000 times, from the original 210 combinations to 410 = 1 048 576.

Finally, it is important to note that search space sizes increase exponentially as the number of

elements in a structure and the number of sizes to choose from increase. A structure with 10 elements

will have a search space size of 10 billion, approximately 9 500 times larger than the search space of
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4 elements. 9 500 times is quite a large increase when it is kept in mind that the number of elements

was only increased by 6 and the number of sizes to choose from remained the same. Considering that

10 elements is a small number for a realistic structure and therefore increasing the number of elements

to one hundred. This increase will result in a search space size that is 95 trillion times larger than the

original. To put this into perspective, if one times increased is equivalent to an increase in distance of

1 mm, then the total increase in length would be approximately 11 times the distance from Earth to

Pluto and back.

3.4 Complexity

Computer optimisation algorithms can be grouped according to their di�culty. Di�culty is de�ned

by the least amount of computation time needed to solve a problem. The amount of computation time

needed to solve an n dimensional problem is a function of time and space complexity. Time complexity

simply refers to the amount of time needed to execute a problem, this is typically expressed by the

number of iterations and steps to convergence criteria. Space complexity refers to the amount of

physical memory needed to run a problem. Therefore, problem di�culty increases as time and space

complexity increase. Complexity adds another dimension to the optimisation problem; not only is

a problem di�cult to solve based on its search space and nature, but also due to limited physical

capabilities of a computer. Complexity classes ranges from class P to NP Hard, where P in this case

is the abbreviation for polynomial and NP is the abbreviation for non-deterministic polynomial time

(Rothlauf, 2011).

3.5 Structural Optimisation

Structural optimisation can typically be divided into 3 main groups, refer to �gure 3.5: (Auer, 2005)

� Topology Optimisation

� Adjusting the element-node connectivity in order to establish an optimal layout.

� Size Optimisation

� Adjusting element sizes.

� Shape Optimisation

� Shape optimisation of the structure concerns changing the shape of the structure without

changing the topology. Element shape optimisation is concerned with �nding the best

pro�les for elements.

This research is concerned with sizing optimisation.
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Figure 3.5: Structural Optimisation according to Auer (2005)
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Chapter 4

Genetic Algorithms

"Natural selection is a mechanism for generating an exceedingly high degree of improbability" - Sir

Ronald Aylmer Fisher

The genetic algorithm owes its existence to John Holland, who's research aims were to thoroughly

understand and describe the methods of natural adaptation and then to design an arti�cial system

that operates in the same way (Haftka and Gürdal, 1992).

4.1 Introduction

The goal of optimisation has typically been to �nd the true optimum; it was concerned with whether

a method was converging rather than to explicitly focus on the process of betterment (which seems

to be the case in nature). For example, human nature suggests that perhaps perfection is too much

to accomplish, but instead it might be enough just to be better relative to others. This form of

optimisation seems to take on a whole new set of priorities compared to conventional optimisation. As

Goldberg (1989) puts it, the essential objective of optimisation is improvement, the actual optimum is

of much less signi�cance in a sophisticated complex system.

The genetic algorithm can be seen as a heuristic method in the sense that the algorithm `learns' as it

gains `experience'. In other words, previous information is `remembered' to a certain degree throughout

the search and is therefore not completely lost as the algorithm continues to search through the search

space. It is based on the same principle of recessive genes; recessive genes might not display themselves

physically, but they are still carried by the individual (their information is not lost).

4.2 What is a Genetic Algorithm?

The genetic algorithm is an optimisation technique which searches through a given search space by

imitating the processes of natural selection. As the search loops through the iterations, new generations

16
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Figure 4.1: Relationship between genetics and computer encoding

of arti�cial o�spring are produced by combining the surviving individuals from the previous generation

in a systematic yet randomised interchange of information. This process is accompanied with the

occasional random new fragment to keep the search diverse and to steer away from obtaining local

optima (Goldberg, 1989). The algorithm generally consists of initial random guesses for a solution

of a given problem and a means of �nding the better solutions from that initial population (Coley,

1999). The algorithm is founded upon �ve ideas derived from Darwin's evolution theory: selection,

variation, recombination, population and heredity. Each idea is assimilated into the algorithm in order

to simulate natural selection (Auer, 2005).

4.2.1 Analogy to Genetics

The terminology used in the study of genetic algorithms is a muddle of the natural and the arti�cial

due to the fact that genetic algorithms stemmed from both natural genetics and computer science.

In nature, chromosomes consist of genes which can take on a number of values called alleles, where a

collection of chromosomes form an individual. Individuals are the total genetic design of an organism,

where the complete genetic package is called a genotype. The complete genetic package in its environ-

ment is called a phenotype. In an arti�cial system, these chromosomes are represented by substrings,

where a gene could refer to the bit with an allele taking on the value zero or a one (for the case of

binary encoding). Each substring represents an unknown or a dimension of the �tness function. All the

substrings combine to form a total string with its natural counterpart being an individual. A collection

of individuals form a population and a generation refers to a population at a speci�c point in time or

arti�cially to the iteration number in the loop. The genotype is called a structure (Goldberg, 1989).

The algorithm optimises a problem through the use of the �tness function. This function has the

analogy of being the predator or lack of resources which will govern the probability of a creature,

with a speci�c �tness, to survive. The stronger creatures will have a lower mortality rate on average,

when compared to the weaker ones. With a higher probability for stronger creatures to survive comes a
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higher probability for them to reproduce (stronger) o�spring for the new generation. This automatically

results in some form of optimisation.

4.2.2 How it the Genetic Algorithm Di�erent to More Traditional Methods?

Instead of working with the actual parameters, the genetic algorithm works with an encoded parameter

set, where the natural parameter set is encoded into a string with �nite length. In search, the genetic

algorithm searches from a population of points simultaneously, in contrast to traditional methods that

search from a single point which consecutively corrects a particular solution (Goldberg, 1989). The

algorithm uses a �tness function instead of derivatives or similar traditional means. It is based on

probabilistic, rather than deterministic guidelines by using stochastic handlers (Coley, 1999).

4.3 Why Use a Genetic Algorithm?

A genetic algorithm could always be outperformed by other methods if su�cient information on the

search space is provided. However, to get hold of such information can prove to be nearly as challenging

as �nding an answer to the problem itself (Coley, 1999).

The algorithm is powerful. Goldberg and Samtani (1986) illustrated that a genetic algorithm can

search a vast search space and achieve very near optimal results by only considering an in�nitesimal

portion of points in comparison to the whole search space. The authors gave context to the power of

the algorithm, after performing a ten bar truss benchmarking problem, by saying that the performance

of the benchmarking problem was equivalent to searching the world for the best person (population at

that time was 4.5 billion) by only interviewing 26 persons before making a decision.

The algorithm is robust even in complex search spaces. It handles a �ne balance between e�cacy

and e�ciency, that is it has the ability to ful�ll its intended purpose at minimal waste or cost. Robust

systems minimise or even completely avoid costly redesigns (Goldberg, 1989).

4.3.1 Advantages

� The genetic algorithm is powerful in its search for betterment, even though the essentials of the

algorithm are computationally straightforward (Coley, 1999).

� It is �exible in the sense that it can be applied to a wide variety of problems; examples of such

applications are image processing, water networks and spacecraft trajectories (Coley, 1999).

� The algorithm is robust in the sense that it steers the search through the search space, sidestep-

ping the traps set by local optima (Coley, 1999).

� Features of the algorithm such, as self-guidance and self-repair (which are essential to e�cient and

e�cacious optimisation), are scarcely present in the most complex arti�cial systems (Goldberg,

1989).
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� The genetic algorithm is not vitally constrained by limiting assumptions for the search space,

examples of such assumptions concern continuity and derivatives (Goldberg, 1989).

� It can quickly scan a vast solution set (Goldberg and Samtani, 1986).

� Bad proposals do not a�ect the end solution negatively as they are simply discarded.

� The inductive nature of the genetic algorithm means that it does not have to know any rules of

the problem - it works by its own internal rules. This is a useful characteristic for complex or

loosely de�ned problems.

4.3.2 Disadvantages

� Even though the biggest driving force behind the genetic algorithm is the evolutionary principles

upon which it rests, this is also its biggest limitation. Jaber et al. (2006) explain that given

evolution's inductive nature, it seems that life does not necessarily evolve towards a good solution,

it merely evolves to survive, it simply evolves away from that which does not work. This can

result in an `evolutionary dead end'. Similarly, the genetic algorithm is still always at risk of

�nding local optima, however it has built-in operators to prevent such outcomes.

� The algorithm may require a large number of iterations, which can become computationally

expensive

� An increase in the number of design variables results in an exponential increase in the

number of iterations required

� The performance of the GA is highly dependent on selecting the correct parameters, such as

scaling constant and mutation probability (these are discussed later in the text)

� The algorithm needs to be calibrated for the problem which it must solve

� Most of these disadvantages are common to most modern optimisation techniques

4.3.3 Comparison to Traditional Search Methods

In order to explain the preference to use an evolutionary algorithm or to elaborate on why to use a

genetic algorithm, consider the following methods:

4.3.3.1 Calculus-Based Methods

These methods can be subdivided into two categories, direct and indirect. The indirect methods

search for local optima through solving sets of non-linear equations obtained by equating the objective

function's gradient to zero. Therefore, for a given unconstrained and smooth function, obtaining a

probable peak begins with limiting the search to points of zero gradients in all directions. The direct
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Figure 4.2: Schwefel's Function for two independent variables in 3 dimensions

methods, also known as hill climbing methods, operate by jumping onto the function and are then

guided by the local gradient in order to �nd local optima (Goldberg, 1989).

The calculus-based methods show lack in robustness in that their search is local in scope, the

solutions found by these methods are restricted to the proximity of the current point. Consider the

function shown in �gure 4.2, it is clear that the locality of the scope could produce a false optimum.

A random restart mechanism or some other means need to be implemented in order to overcome this

de�ciency, however this does not necessarily prove to be e�ective.

Another drawback of the calculus-based methods is its dependence upon existing derivatives with

prescribed gradients. Even with the allowance of numerical approximation, this defect can be seen as

a great weakness due to the fact that many realistic search spaces have little regard for derivatives and

smooth functions (Goldberg, 1989). The calculus-based methods were therefore not considered for this

research.

4.3.3.2 Enumerative Search Methods

The idea behind these methods is quite simple; considering a discretised in�nite or �nite search space,

the algorithm searches through the objective function values for all the points in the space one by one

(Goldberg, 1989). Although the straightforward approach is appealing, such methods cannot be used

for the purpose of this study purely because it is ine�cient or impractical.

Realistic search spaces are simply too large. Consider a problem with 10 unknowns, where each

unknown needs an accuracy of 1%. This problem will need 10010 estimations. Assuming that a
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computer can compute 2.5 billion estimations per second, then it would take 1268,39 years to complete

the run.

4.3.3.3 Random Search Methods

Completely randomised methods were not considered in this study, also due to their lack of e�ciency.

In the long run, these random search methods' e�ciency compares to that of the enumerative search

methods. However, take note that these methods do not refer to randomised techniques. The genetic

algorithm incorporates a randomised technique which arbitrarily guides the search through the search

space. It might seem odd to use a randomised technique for a directed search procedure, but this

occurrence is abundant in nature with good results (Goldberg, 1989).

4.3.4 Other Non-Classical Methods

The genetic algorithm was prefered above methods such as Particle Swarm Optimisation and Ant

Colony Optimisation simply due to examples in literature which state that the genetic algorithm is a

good candidate for structural optimsation (Coello et al., 1994).

Nanakorn and Meesomklin (2001) highlight characteristics from the algorithm which makes it ideal

for structural optimisation:

� The solution in a structural optimisation problem is global

� The design variables are typically discrete

� The optimisation problem is constrained

� The algorithm cannot be directly applied to constrained problems, however it can be indi-

rectly applied by means of penalty functions (see section 4.6).

4.4 How Do Genetic Algorithms Work?

Genetic algorithms operate by handling strings. Collections of strings have di�erent names, depending

on the function of the strings. These names range from a population to an individual, where a

population contains a number of individuals and an individual contains a number of chromosomes.

There are a number of ways to code these data structures, one of the simplest ways is through binary

numbers, where an allele value would either be a 1 or a 0, these refer to bit values.

The foundation of the algorithm rests upon a few main operators, these are discussed below.

4.4.1 Selection

Selection needs to be able to distinguish, not only the �t from the un�t, but also the �t from the

�tter or the `good' from the `very good'. The reason why selection cannot simply take all the top
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Figure 4.3: Roulette wheel selection illustration

performing individuals from a population is due to the fact that it will cause the algorithm to converge

prematurely or in the natural sense, loose important diversity. Selection is a method that tries to

imitate natural selection by awarding better performing (�tter) individuals a higher probability to be

selected, thereby giving these individuals a greater chance to pass on their information to the next

generation (Coley, 1999).

4.4.1.1 Roulette Wheel Selection

One of the simplest ways of selection is using a biased roulette wheel analogy, also known as `�tness-

proportional selection'. Roulette wheel slot sizes are attributed to individuals in a population in

relation to their �tness. The circumference of the circle must sum to the total sum of �tnesses for all

the individuals. Each slot, as shown in �gure 4.3 for a populatio of 6, is sized in such a way that the

percentage represents the ratio of that individual's �tness to the total population �tness. `Spinning the

wheel' is done by simply generating a random number and multiplying it with the population �tness.

Individual �tnesses are then added one by one until the roulette wheel value is reached, this can also

be visualised as the slot in which the ball �nally stops. Fitter individuals therefore have a greater

probability to be selected due to the larger slot sizes that they were awarded (Coley, 1999).

An individual's probability to be selected is:

pselect,i =
ζi
Σζ

(4.4.1)

There are numerous other methods with which selection can be implemented, for example tourna-

ment selection.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. GENETIC ALGORITHMS 23

Figure 4.4: Crossover (Venter, 2012)

4.4.2 Elitism

Fitness-proportional selection cannot guarantee that the �ttest individuals of a population will propa-

gate through to the next generation, but in fact may (with a very small probability) fail to select them

all together . The most general case would be the occasional oversight of the �ttest individual. Even

though this might be valuable for some problems, as it allows for faster exploration of the search space,

it might be a drawback for others. A genetic algorithm must handle a reasonable balance between

exploration and exploitation. Greater exploitation speeds up the algorithm, but decreases the proba-

bility of �nding the true optimum. Elitism speeds up the algorithm by allowing elite members to pass

through to the next generation without being subjected to selection and thereby not losing important

information. This individual will also not be touched by crossover or mutation (Coley, 1999).

4.4.3 Crossover

Crossover is analogous to reproduction in that it permits the exchange of information to form new

o�spring. Crossover only takes place with a given probability called the crossover probability. Two

parent strings that are selected through selection undergo crossover once it has been established that

crossover must indeed occur. Crossover takes place at a random location on the string. For example,

given that the crossover location is 4 for the following, the children will look as follows:

Parent 1: 1 1 0 1 | 0 1 1 Child 1: 1 1 0 1 1 1 0

Parent 2: 1 0 0 1 | 1 1 0 Child 2: 1 0 0 1 0 1 1

The illustration above is an example of one point crossover; however, crossover can occur at a

number of crossover locations. Crossover promotes exploration of the search space.
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4.4.4 Mutation

Mutation allows, usually with a very low probability, an occasional small random change in an indi-

vidual (string). It is a strategy to avoid premature loss of information and convergence to local optima

(Goldberg, 1989).

It operates by visiting every bit within a string and changing a 1 to a 0 or a 0 to a 1 for a

given prescribed probability. This prescribed probability is (as with crossover probability) problem

dependent, with a higher probability for some and a lower probability for others. Mutation rates are

typically in the order of 0.001; mutating on average 1 bit for every 1000 bits visited. Coley (1999)

suggests the following mutation rates:

1

n
√
L
≤ pm ≤

1

L
(4.4.2)

where n is the number of individuals in the population and L is the total string length.
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Figure 4.5: The genetic algorithm basic �ow diagram
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4.5 Object and Fitness Functions

A genetic algorithm is a maximisation procedure, however, in numerous optimisation problems the

objective is naturally better expressed as a minimisation function (i.e. of some expense) rather than

a maximisation function (i.e. of some pro�t or utility). Nonetheless, the problem cannot simple be

converted to a maximisation problem by taking the negative of the objective function as the algorithm

cannot operate on negative values. Even if an objective function is more naturally expressed as a

maximisation function, some check still needs to be built into the function in order to ensure positive

and feasible outcomes. This function is called a �tness function, a function which converts the objective

function into some function that the genetic algorithm can understand. In other words, the objective

function must be mapped to some �tness function which the algorithm can use.

4.5.1 Decoding Problems

Binary strings can translate into some integer value, for example 1011 is 11. However, for continuous

problems this integer value, 11, must be converted into a real value. Alternatively, real-valued param-

eters can be used within the genetic algorithm itself, however this will involve changes to the basic

operators of the algorithm. The general way to achieve this transformation for a �xed string length is

through linear mapping. This linear mapping procedure is used in test functions (Coley, 1999).

� Convert the binary representation to an integer of base 10 and name this integer z

� Transform the integer to a real number through linear mapping

r = mz + c (4.5.1)

� m and c refer to the position and dimensions of the space

� Solve two simultaneous equations to obtain m and c

rmin = mzmin + c (4.5.2)

rmax = mzmax + c (4.5.3)

� The minimum value a binary string can take is 0000...0 = 0

∴ zmin = 0

� The maximum value a binary string can take is:

zmax = 2l − 1 (4.5.4)

� From the two simultaneous equations:

m =
rmax − rmin

zmax − zmin
(4.5.5)
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� Substituting values for zmax and zmin

m =
rmax − rmin

2l − 1
(4.5.6)

� Rearrange equation 4.5.2 to obtain:

c = rmin −mzmin (4.5.7)

� But zmin = 0

∴ c = rmin

� The transformation equation can therefore be written as:

r =
rmax − rmin

2l − 1
z + rmin (4.5.8)

� ∴ 1011 for a range of 1 6x6 10 and a substring length of 4

� z = 11

� r =
(

10−1
24−1

)
11 + 1 = 7.6

The next thing to consider is accuracy; the next integer after 11 is 12, which translates to binary

as 1100. There is no other number between 1011 and 1100. Transforming 12 to the real set gives r =

8.2 for a substring length of 4. It is clear that this poses a fundamental accuracy problem, given that

there is an in�nite amount of numbers between 7.6 and 8.2. The only known techniques of improving

upon the accuracy are by increasing the string length and reducing the search space size.

4.5.1.1 Multi-Parameter Problems

An individual for a multi-parameter or multi-dimensional problem consists of more than one chro-

mosome, therefore more than one substring. Substrings are simply concatenated to form a string

(Coley, 1999). Other than considering the genetic reproduction analogy, defense for such an approach

is that operators (section 4.4) operate on individuals and not on chromosomes (complete strings, not

substrings). In other words, crossover takes places between individuals and not chromosomes.

L =
M∑
j=1

lj (4.5.9)

M is the number of unknowns, l is the substring length and L is the total string length.

Substrings need not be of similar length, which allows for accuracy �ne tuning for speci�c param-

eters.
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Figure 4.6: Approach to �tness (Galante, 1996)

4.5.2 Approach to Fitness

A means of describing the population �tness is to consider its level of saturation. Saturation describes

where the population �tness lies with respect to the best �tness thus far (Galante, 1996).

saturation =

n∑
i

ζi

nζmax
100 =

ζ

ζmax
100 (4.5.10)

where ζ is the �tness function value. The objective is to minimise the structure's weight, where

after the objective function is penalised and is therefore transformed into an augmented function

(�gure 4.6) called the penalised objective function. The objective of the algorithm is to maximise the

�tness, however, due to reasons explained in section 4.5.3 the objective changes to maximising the

scaled �tness. In general, the objective function value for a given individual solution can be expressed

as:

φi(x) =

M∑
j=1

dAjLj (4.5.11)

where M is the number of members in the truss (structure) and x is a possible solution vector to the

problem. d is the density of the material, A is the area of an element and L is the length of an element.

Constraints for stress and displacement are typically expressed as:

σM
σallow

− 1 6 0 (4.5.12)

DN

Dallow
− 1 6 0 (4.5.13)

where subscript allow indicates the allowable, M the number of members, N the number of nodes and

D the de�ection.

4.5.2.1 Static Fitness

Goldberg (1989) suggests obtaining a �tness function value by subtracting the objective function value

from a very large constant, C. This constant is typically in the order of 105.
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ζi = C − φi,p (4.5.14)

Galante (1996)'s approach di�ers from equation 4.5.14 by the implementation of a relative rate between

individuals that are maintained as initially expressed by the objective function and a large constant

value.

ζ =
C

φi,p
(4.5.15)

4.5.2.2 Dynamic Fitness

The foremost shortcoming of the static �tness approach, as was done by Goldberg (1989) and Rajeev

and Krishnamoorthy (1992), is that the convergence behaviour could possibly be dependent on C, the

large constant value. The objective function value, φ, might exceed C for the case where the value of C

was chosen too small, which will result in a negative �tness. Normalisation and choosing a larger value

for C can correct such an outcome. Oppositely, if C is assigned too large a number, then chromosomes

might be assigned similar �tnesses even though their objective function values vary. For example,

consider a large constant value of 1 000 000. If it be that the objective function values range from 1 to

10, then the magnitude of the large constant value and that of the objective function values di�ers too

much. The �tnesses assigned to the individuals would all be in the range of 999 990 to 999 999, which

excludes 0.99999% of the �tness scale. Consider that, in this case, an objective function value of 1

should supposedly represent a poor �tness value, however, this transformation does not resemble the

degree of poor performance of the given value. A solution to the aforementioned, other than �tness

scaling (refer to section 4.5.3), is to incorporate a dynamic factor method in which case the �tness is

a function of maximum and minimum objective function values for each generation and the speci�c

individual's objective function value under consideration. This approach will ensure that the individual

with the highest objective function value (lowest �tness) will be assigned a proportional value to that

of the lowest objective function value (Krishnamoorthy et al., 2002).

ζi = φmax + φmin − φi,p (4.5.16)

Toropov and Mahfouz (2001) suggest a similar function, however the maximum and minimum

objectives should be penalised as well. Hence the function develops into:

ζi = φmax,p + φmin,p − φi,p (4.5.17)

φmax,p is the maximum penalised objective value, φmin,p is the minimum penalised objective value and

φi,p is the penalised objective value of individual i, refer to section 4.6. This approach requires the

population �tness values to be sorted, where after all the individuals with a �tness below the average
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�tness value are killed o�. Therefore only the upper �ttest part of the population remains. Now a new

�tness is de�ned for each individual based on the new highest and lowest �tness values:

ζnew = φnewmax,p + φnewmin,p − φi,p (4.5.18)

The approach magni�es the distances between di�erent top performing individuals, in the same way

a map with a smaller scale would emphasise the distance between two places by supplying more in-

formation. This method could, however, lead to premature search convergence due to the fact that

search loses much diversity.

Coello et al. (1994) suggests a �tness that is inversely proportional to the objective function value:

ζi =
1

φi,p [1000v + 1]
(4.5.19)

For this case v is the number of constraints violated for a speci�c solution. v would be zero for

the case of no constraint violation, hence the �tness function would be reduced to the inverse of the

structure's weight. It is clear that the �tness would decrease as the number of constraint violations

increase. A constant of a thousand was found to work best for the ten bar truss problem. Nanakorn

and Meesomklin (2001) had the same approach, however not including a factor of a 1000 or the v

term. Both approaches reward the same level of punishment for all solutions violating a given number

of constraints. Therefore, it could be argued that solutions which are better performing than others

are treated too severely and poorer solutions are not penalised enough.

In general, the objective function would be some function of the structure's weight, as it is deduced

that the weight of the structure is directly proportional to its cost, hence the cost is indirectly opti-

mised. However, Raj and Kalyanaraman (2005) incorporated actual costs in their objective function

by considering material and fabrication costs. Joint costs are dependent on the number of joints or

nodes, the number of individuals connected to the joint and the magnitude of forces transferred by

the joint. Hence the constraints include material strength, fatigue strength- and de�ection limit and

buckling strength.

min φi =

(
Nm∑
k=1

AkdkLk

)
Cst +

 nj∑
j=1

nmj∑
r=1

cr

 (4.5.20)

Cst is the cost of steel per kN, nmj is the number of members that connects at joint/node j and

cr per member added to the joint based on the accompanying force. For this case the augmented

objective function is given as:

φi,p = φi (1 + Pi,c) (4.5.21)

with φi as the objective function obtained in equation 4.5.20.
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Pi,c =
m∑
j=1

((Cj,stressPj,stress) (Cj,deflectionPj,deflection) (Cj,implicitPj,implicit)) (4.5.22)

Pi,c incorporates the penalised constraint violations of the individual solution i, for all its members,

j, with Cstress, Cdisplacement and Cimplicit representing the constraints violations and Pstress, Pdisplacement

and Pimplicit their associated penalty factors.

Krishnamoorthy et al. (2002) used the following function for a speci�c load case:

φp,i(x) =

(
M∑
i=1

diAiLi

)1 +
M+N∑
j=1

kjc
2
j

 (4.5.23)

cj =

 max
(

0,
σj

σj,allow
− 1 6 0∀j ∈ [1,M ]

)
max

(
0,

dj−M

dj−M,allow
− 1 6 0∀j ∈ [M + 1, N ]

) (4.5.24)

where kj is the penalty coe�cient, Li is the length of member i, M the number of members in the

structure, N the number of nodes, d the density of the material and Ai the area of member i. Due to

string length being directly proportional to the number of design variables, large convergence delays

and loss of important information can be expected for large number of design variables. To compensate

for this drawback, a method of member grouping is proposed, in which case certain members assume

the same size, hence leading to shorter string lengths and a reduced search space size (member grouping

will be thoroughly discussed later in the text). Another bene�t of this approach is that it allows for

the design to stay symmetrical, which is good for constructability of the structure and ensures the

structure can handle reversed load conditions, for example wind load from the opposite side as was

done in the analysis. The objective function now evolves into:

φi,p(x) =

(
NG∑
k=1

Ak

Mk∑
i=1

diLi

)1 +

M+N∑
j=1

kjc
2
j

 (4.5.25)

Member grouping for smaller structures can be done a priori, however Krishnamoorthy et al. (2002)

suggest member grouping strategies for larger structures due to inaccuracies regarding grouping which

could lead to suboptimal outcomes.

4.5.3 Fitness Scaling

It could happen that a few highly �t individuals are created prematurely in the run, causing its

o�spring to drown other individuals in subsequent generations. This will lead to a huge loss in diversity,

producing o�spring close to a manner of cloning, which could potentially result in a local optimum.

There needs to be some form of a steady state or balance of the power of the highly �t individuals

in the early and later stages of the algorithm. In other words, the highly �t individuals must be

prevented from hijacking the algorithm in its initial stages, but needs to be able to apply adequate

selection pressure to the algorithms in its �nal stages. Fitness is therefore scaled in order to maintain a
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Figure 4.7: Unscaled and scaled �tness roulette wheels

saturation level of about 50% (see equation 4.5.10) which will ensure proper exploitation of the search

space and to steer away from premature convergence.

Linear �tness scaling is a method which scales the �tness of individuals to the proximity of the

average population �tness. This implies that a certain ratio between the number of highly �t selected

individuals and the number of individuals selected with average �tness will be kept at a reasonable

proportion, which would be nearly constant. Conventional values for this constant are between 1 and 2;

where a value of 2 implies that about twice the number of highly �t individuals will propagate through

to the next generation compared to the number of individuals with average �tness. To accomplish this,

dynamic scaling of individuals' �tnesses would need to take place by pulling �tnesses closer together

in the initials stages and then pushed apart in the later and �nal stages of the algorithm. The linear

transformation:

ζsi (g) = a(g)ζi(g) + b(g) (4.5.26)

� ζi is the actual �tness of a particular individual

� ζsi is the scaled �tness for that particular individual

It is assumed that the average �tness of a population stays constant:

ζsave(g) = ζave(g) (4.5.27)

Additionally:

ζsmax(g) = cm(g)ζave(g) (4.5.28)

� cm is the �tness scaling constant
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Figure 4.8: Constraints depicted as areas with zero �tness (Coley, 1999)

� ζsmax is the scaled �tness of the �ttest member

a(g) =
(cm − 1)ζave(g)

ζmax(g)− ζave(g)
(4.5.29)

b(g) = (1− a(g)) ζave(g) (4.5.30)

Implementing the linear scaling can result in negative �tnesses. One way to overcome this, is to

set cm = 0 for such cases (Coley, 1999).

There are also other scaling methods such as Sigma Truncation and the Power Law Scale.

4.6 Constraints and Penalty Functions

Constraints split the search space into feasible and infeasible segments. A constraint can be visually

understood as regions within a search space where no �tnesses can be allocated, refer to �gure 4.8.

4.6.1 Constraint Handling

The genetic algorithm performs best for unconstrained problems (Gahsemi et al., 1999). Problems

which are not heavily constrained are quite easily dealt with, the chromosome is decoded and the

�tness function awards a �tness to it. The �tness is simply zeroed for cases where there are constraints.

Even though the aforementioned approach seems appealing, it would be ine�ective for densely

constrained problems and produce many solutions which will simply be discarded. Even if it was not
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the case for a densely constrained problem, infeasible solutions may carry valuable information which

should not be cast-o�. A genetic algorithm can however not be directly applied to constrained prob-

lems. In order to use the algorithm for engineering applications, the problem must be transformed

from a constrained to an unconstrained problem (Coley, 1999). Nevertheless, any �nal solutions that

are obtained from the genetic algorithm need to satisfy all the prescribed constraints in order for it to

be feasible. A constraint can partly be classi�ed by its criticality and di�culty. The criticality of a

constraint can be described by the degree to which it needs to be satis�ed. A constraint is typically

formulated as absolute, where it may indeed be more `soft'. A genetic algorithm allows for the use of

`soft' constraints through the implementation of penalty functions, see �gure 4.9. A penalty function

acts as a sort of punishment for violating a constraint by decreasing the �tness of the guilty individual.

The amount of decrease is in relation to the severity of the violation. The penalty function must

not disrupt that equilibrium of exploitation and exploration. The algorithm allows for constraints to

be violated, where after it probabilistically selects the best solutions from a population of solutions.

The penalty function operates by decreasing the �tness of infeasible solutions relative to the severity

of the constraint violation. The di�culty of a certain constraint is directly related to the ratio of

the feasible area to that of the sample space area. An increased ratio will result in a lower di�culty.

The di�culty of a problem is however also related to the number of constraints (Smith and Coit, 1995).

There are various ways in which a penalty function can be implemented (Yeniay, 2005):

� Death penalty

� Static penalty

� Dynamic penalty

� Annealing penalty

� Adaptive penalty

� Co-evolutionary penalty

� Segregated GA

Penalty methods can typically be divided into 3 groups (Smith and Coit, 1995):

� The �rst group is called barrier methods, in which case only feasible solutions will be considered.

� The second group consists of partial penalty functions, where penalties only apply to areas which

are near the feasibility margin.

� The last group of penalty functions contains global penalty functions. These functions consider

the whole sample space (which includes the complete infeasible region).
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Penalty methods can crudely be grouped into four strategies with their advantages and disadvantages

(Gen and Cheng, 1996):

� Rejecting approach

� Rejects all infeasible solutions

� Repairing approach

� Needs a repair procedure

� Modifying genetic operators approach

� Problem speci�c with specialised operators

� Penalising approach

� Converts a problem which is constrained into an unconstrained problem

The �rst three strategies never generate infeasible solutions which are advantageous; however it has

the disadvantage of not searching the infeasible regions as well, which is typically most of the search

space. A general requirement for good penalty functions include penalties which concern distance from

feasibility, rather than just simply keeping count of the constraints violated. Penalties incorporating

such a requirement are better performing. The relationship between feasible and infeasible solutions

is important as the penalty value should correspond to this amount. The penalty method is either a

function of (Gen and Cheng, 1996):

� The distance from a single infeasible solution

� The relative distance of all current infeasible solutions

� The adaptive penalty term

Combinatorial optimisation uses the Lagrangian Relaxation method (some alteration to the same

idea) in which case the di�cult constraints are brie�y relaxed. Control is kept with an adjusted

objective function which keeps the search from completely drifting away from the feasible region (Smith

and Coit, 1995).

The standard optimisation formulation is adapted as follows to include penalty (Yeniay, 2005):

φi,p(x) =

 φ(x), ifx ∈ Sfeas
φ(x) + ψ(x), otherwise

(4.6.1)

where ψ(x) is the penalty applied. For the case where no constraints are violated, ψ(x) = 0. φ(x) is

the objective function. Sfeas refers to the feasible region.
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Figure 4.9: Transforming the genetic algorithm from an unconstrained to a constrained problem solver

Another method is a multiplicative function:

φi,p(x) =

 φ(x), ifx ∈ Sfeas
φ(x)ψ(x), otherwise

(4.6.2)

For this case, when there is no constraint violation ψ(x) = 1. The better overall performer has

been observed to be the additive function. Penalty functions can further be divided into two types:

interior and exterior, however the exterior function is generally more preferred. For more information

on interior penalty functions, refer to Rao (2009). The motivation behind this preference has to do

with the fact that the exterior penalty needs not to be initiated within the feasible region (Yeniay,

2005).

4.6.2 The Exterior Penalty Function

φp(x) = φ(x) +

 q∑
i=1

riGi +
m∑

j=q+i

cjLj

 (4.6.3)

Gi and Lj are functions of the constraints gi(x) and hj(x). ri and cj are penalty parameters.

Generally:

Gi = max [0, gi(x)]
β
with β = 1 or 2 (4.6.4)
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Lj = |hj(x)|γ with γ = 1 or 2 (4.6.5)

The magnitude of the penalty is dependent on ri and cj .

4.6.3 Death Penalty Function

In this case the penalty function simply discards any unfeasible solutions.

p(x) =∞ with x ∈ S − Sfeas (4.6.6)

This method is only e�ective for a convex search space, see �gure 10.2. This approach will be ine�ective

for highly constrained problems. Two approaches are thoroughly described by Homaifar and Kuri

Morelas with Quezada in Yeniay (2005).

4.6.4 Static Penalty Function

The penalty parameters are independent of the generation counter and are kept constant throughout

the search. Before the search commences, users must de�ne degrees of violation. (Yeniay, 2005)

φp(x) = φ(x) +

m∑
i=1

Ciδi where

 δi = 1, if constraint i violated

δi = 0, if constraint i satis�ed
(4.6.7)

Ci = enforced constant on the violation of constraint i. This category of penalty functions has

proven to be less e�ective when compared to penalisation techniques whose degree of penalty depends

on the distance to the feasibility. These penalisation techniques assume that this distance de�nes

accurately the closeness of the solution to the feasible region and that this distance value is signi�cant

to the solution �tness (Smith and Coit, 1995).

φp(x) = φ(x) +
m∑
i=1

Ciψ
κ
i where ψi =

 δigi(x), for i = 1, ..., q

|hi(x)| , for i = q + 1,...,m
(4.6.8)

κ is typically 1 or 2, Ci is determined through scaling or experimentally and g and h are the inequal-

ity and equality constraint functions (Smith and Coit, 1995). δ remains as de�ned in equation 4.6.7.

4.6.5 Dynamic Penalty Function

The main shortcoming of static penalty functions is in the di�culty of determining Ci. The static

penalty functions also have contradictory aims in the sense that it allows for exploration in the infeasible

regions, however it needs the ultimate solution to be feasible. One way to lessen the di�culties of the

improved static search is by incorporating a dynamic feature to the penalty. In this case, the severity

of the penalty increases with an increasing distance between the problem outcome and the feasibility

region. In this case extremely infeasible solutions might be present during the initial stages of the
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search, where after extreme penalties will be applied in order to advance the solution to the feasible

region and then decreasing the penalty (Smith and Coit, 1995).

φp(x, g) = φ(x) +
m∑
i=1

si(g)ψκi where ψi =

 δigi(x), for i = 1, ..., q

|hi(x)| , for i = q + 1,...,m
(4.6.9)

Caution should be exercised with si(g), where si(g) is a function of the constraints. For the case

where si(g) is too merciful the ultimate solution might be infeasible and for the case where it is too

severe the solution might be a local optimum as a result of premature convergence. It is suggested to

assume si (g) = (Cig)α with α = 1 or 2 (Smith and Coit, 1995). Jounes and Houck used a value of

C = 0.5. Kazarlis and Petridis also formulated a penalty approach, however slightly altered, refer to

Yeniay (2005). The problem with all the aforementioned dynamic approaches is the constants which

these approaches incorporate. These constants typically have no physical meaning and are simply

chosen after it was empirically observed that they produce the best outcome.

4.6.6 Adaptive Penalty Function

The adaptive penalty, as described by Hadj-Alouane and Bean in Smith and Coit (1995):

φp(x, g) = φ(x) +
M∑
i=1

λgψ
κ
i where ψi =

 δigi(x), for i = 1, ..., q

|hi(x)| , for i = q + 1,...,m
(4.6.10)

with

λg+1 =


λgβ1, if previousNf generations have infeasible best solution

λg/β2, if previousNf generation have feasible best solution

λg, otherwise

(4.6.11)

where β1 > β2 > 1. M refers to the number of members, g to the current generation number and κ

is typically 1 or 2. These constants need to be selected, it might prove di�cult to select a good value.

φp(x, g) = φ(x) + λ(g)

 q∑
i=1

g2
i (x) +

m∑
j=q+1

|hj(x)|

 (4.6.12)

For every generation g, update:

λ(g + 1) =


(

1
β1

)
λ(g), if Case 1

β2λ(g), if Case 2

λ(g), otherwise

(4.6.13)

� Case 1

� All the best performing individuals of the last g generations are feasible.

� Case 2
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� All the best performing individuals of the last g generations are not feasible.

� Case 3

� The best performing individuals of the last g generations are a mixture of feasible and

unfeasible solutions.

The drawback of this approach concerns de�ning β1 and β2.

4.6.7 Near Feasibility Threshold

The near feasibility threshold (NFT) is the verge where the search can be considered as `getting

warmer'. The penalty function promotes the algorithm to search within the feasibility region and in

the near feasibility threshold of the feasible region and discourages search elsewhere. NFT according

to Smith and Tate as explained in (Smith and Coit, 1995):

φp(x, g) = φ(x) + (ζfeas(g)− ζall(g))
m∑
i=1

(
ψi

NFTi

)κ

with ψi =

 δigi(x), fori = 1, ..., q

|hi(x)| , fori = q + 1, ...,m

(4.6.14)

ζall(g) is the current best solution which is not penalised and ζfeas(g) is the current best solution

which is feasible. These terms serve as adaptive scaling and amalgamate with the near feasibility

threshold of iteration i (Smith and Coit, 1995).

NFT =
NFT0

1 + Λ
(4.6.15)

Λ is the search parameter which modi�es the near feasibility threshold by taking the search history

into account. The function will result in a static near feasibility threshold for the most elementary

case where the Λ parameter is zero. This parameter can be described as a function of time during

the search, for example for generation g, Λ = f(g) = λg. With λ > 0 the penalty will increase as the

threshold region decreases. A greater λ results in a greater increase in penalty, therewith integrating

adaptive and dynamic elements into the search (Smith and Coit, 1995).

4.6.8 Segregated Genetic Algorithm

This algorithm makes use of two distinct penalty parameters in two parallel populations. The main

objective of this approach is to eliminate problems concerning premature convergence or no convergence

at all due to too low/high penalty parameters. This is accomplished through selecting a low value

for the �rst penalty parameter and a high value for the second in order to achieve a simultaneous

convergence approaching from both the feasible and infeasible regions (Yeniay, 2005).
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4.6.9 General Comment on Penalty Functions

The overall disadvantage of penalty function methods is concerned with choosing a suitable set of

penalty parameters, however penalty functions are decidedly the best approach when dealing with

non-constrained optimisers such as genetic algorithms (Yeniay, 2005).

4.7 Why Do Genetic Algorithms Work?

It can be showed that there are speci�c string con�gurations that lead to higher �tness or better

performance for certain given problems. Two important steps in genetic optimisation are to seek

for similarities amongst individuals and to �nd a connection between these similarities and better

performance (Goldberg, 1989).

4.7.1 Schema Theory/Similarity Theory

One string on its own is of no signi�cance; this is due to the fact that only similarities between high

performing strings can help navigate the search. The question is therefore, how can a string resem-

ble strings of other string sets with similarities at speci�c string locations? The answer is through

schemata. A schema is a description for a subgroup of strings that has certain similarities (Goldberg,

1989). For the sake of discussion, consider binary encoding {0,1} with a wild card character * which

can represent either a zero or a one. Therefore, for a schema to match a given string, every 0 must

match with a 0 at a speci�ed location, the same for every 1 and the * can match with either a 1 or a

0. For example, the following scheme:

→ 0 0 1 * 1 matches { 0 0 1 0 1, 0 0 1 1 1 }

Take note of the fact that the * is merely a device to represent other symbols, this symbol itself

is not speci�cally used in the genetic algorithm. There are ml di�erent strings of length l for a given

character set of m elements, with (m+ 1)l schemata. The question that surfaces is, why consider the

schemata which will in e�ect increase the search space rather than just all the di�erent string di�erent

strings? For example, a string with length 10 has 210 = 1024 possible strings (for binary encoding),

why then consider 310 = 59049 schemata instead? Consider that individual strings only provides pieces

of information compared to the oceans of new information that is contributed by similarities which

will contribute to a more e�cient search. The 'magnitude' of this additional information is associated

with the number of unique schemata within a given population (Goldberg, 1989).

Schemata are not all of the same magnitude. For example, a schema of 1** is much greater than

a schema of 11*, as the one encapsulates a much larger part of the search space. The basic operators

(selection, crossover and mutation) have di�erent e�ects on schemata. Fitter schemata will have on
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Figure 4.10: Real and implicit parallel process (Galante, 1996)

average more surviving individuals, due to �tter individuals having a higher probability to be selected.

However, selection alone does not contribute new points to the search space. One of two things can

happen when crossover occurs; it can either leave the schemata intact or destroy it to form a new

schema. Consider the following schemata:

→ 0 * * * 1 and * * * 0 1

The �rst of the two schemata will probably be destroyed with crossover, compared to the second

schema which has a higher chance to remain intact. Therefore, the shorter the de�ning length of

schemata, the higher the probability of survival after crossover. Mutation does not play a signi�cant

role in the survival of schemata as it occurs in such low frequencies. The above will be explained

in more detail in section 4.7.2. Schemata which are very �t and of short de�ning length are called

`building blocks' and are propagated through the generations. This occurs with no special memory

or bookkeeping, where this whole procedure is called 'implicit parallelism', see �gure 4.10 (Goldberg,

1989).

4.7.1.1 Similarity Templates as Hyper-Planes

Consider the bit space from a geometric viewpoint for l = 3. Schemata of order three form cube corners

and schemata of order 2 form the lines between these corners, refer to �gure 4.11. Genetic algorithms

can be seen jumping through hyper-planes in the search of betterment (Goldberg, 1989).
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Figure 4.11: Hyper-Planes (Goldberg, 1989)

4.7.2 Fundamental Theorem of Schemata

This section will take a closer look at the growth and decay of schemata within a population subjected

to selection, crossover and mutation.

Let A(t) refer to a population of strings at a speci�c time, therefore to a speci�c generation. Also, let

schema H have a vector space V = {0, 1, ∗}. For example:

→ H = *10*0**

There are 3l schemata for a string with length l for the case of binary representation and in gen-

eral as already mentioned, (k + 1)l schemata for alphabets of k elements.

4.7.2.1 Types of Schemata

Di�erent schemata are not tantamount; some schemata are better de�ned than others. For example,

111*0** is more speci�c than 1******. Additionally, some schemata have a greater span length over the

string, compare 1*0**** and 1****0*. This introduces two new concepts, order and de�ning length.

Order is symbolised as o(H), where it denotes the number of �xed positions in a string. Example:

→ o(10 ∗ ∗01 ∗ ∗) = 4

De�ning length is symbolised as δ(H), where it denotes the span of a schema and is calculated by

subtracting the location of the last �xed position from the location of the �rst �xed position. Example:
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→ δ(10 ∗ ∗01 ∗ ∗) = 5

The properties of the schemata provide a means to interpret the e�ect of selection, crossover and

mutation on a population (Goldberg, 1989).

4.7.2.2 E�ect of Selection

Assume that there are m realisations of a speci�c schema H within A(t) at a given time t. This is

denoted as m = m(H, t). A string Ai has a probability of pi = ζi
Σζj

to be selected. At a time t + 1, for

selection with replacement from A(t), there will be m(H, t+ 1) schemata.

∴ m(H, t+ 1) =
m(H, t) · n · ζ(H)

Σζj
(4.7.1)

where ζ(H) represents the average �tness for schema H at time t.

But the average population �tness is ζave =
Σζj
n .

∴ m(H, t+ 1) = m(H, t)
ζ(H)

ζave
(4.7.2)

From the above, it can be deduced that a schema's growth is dependent on the proportion of average

schema �tness and average population �tness. In other words, when the schemata �tness is higher

than the average population �tness, then selection will be biased towards that particular schemata

by awarding it more individuals at time t + 1. In this case the schemata will grow. The opposite

e�ect will occur to schemata with average �tness lower than the population average �tness, where the

schemata will start to die o�. All schemata for a particular population are processed simultaneously,

or in parallel (Goldberg, 1989).

4.7.2.3 E�ect of Crossover

The algorithm requires a crossover mechanism, because selection does not support exploration of the

search space. String A = 111|1000 might have the following shemata:

→ H1 = ∗1 ∗ | ∗ ∗ ∗ 0 δ(H1) = 5

→ H2 = ∗ ∗ ∗|1 0 ∗ ∗ δ(H2) = 1

It is clear that schema H1 is destroyed with a probability of

pd =
δ(H1)

l − 1
=

5

6
(4.7.3)

and has a survival probability of

ps = 1− pd =
1

6
(4.7.4)
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For the case of H2, pd = 1
6 and ps = 5

6 . Generally, a schema survives when the crossover site is located

outside of δ(H). Therefore, for single crossover with a probability of pc:

ps > 1− pc
δ(H)

l − 1
(4.7.5)

Therefore, the e�ect of crossover on a schema can be described such that the shorter the schema's

de�ning length, the greater is its probability to survive and reproduce (Goldberg, 1989).

4.7.2.4 Combined E�ect of Selection and Crossover

The combined e�ect of selection and crossover on the expected schema H in generation t + 1 (assuming

that selection and crossover are independent) is:

m(H, t+ 1) > m(H, t)
ζ(H)

ζave

[
1− pc

δ(H)

l − 1

]
(4.7.6)

In this case, the e�ect of schema is clear, the survival not only depends on average �tness, but also

de�ning length. Schemata with above average �tness with short de�ning lengths will grow exponentially

(Goldberg, 1989).

4.7.2.5 E�ect of Mutation

Mutation occurs with a probability of pm. All the �xed positions of a schema must survive for the

schema itself to survive. In other words, the schema survives when all o(H) �xed positions survives,

where each allele has a survival rate of 1− pm (Goldberg, 1989).

∴ ps = (1− pm)o(H) (4.7.7)

(The survival rate for pm << 1 is estimated as 1− o(H) · pm).

4.7.2.6 Overall E�ect

The expected number of samples for a schema H is:

m(H, t+ 1) > m(H, t)
ζ(H)

ζave

[
1− pc

δ(H)

l − 1
− o(H)pm

]
(4.7.8)

Finally it can be concluded that schema with short de�ning length, low order and above average

�tness will be awarded with an increasing amount of individuals (Goldberg, 1989).

4.7.3 Building Block Hypothesis

The complexity of the problem is reduced by the use of schemata; rather than constructing high

performance strings, the hypothesis aims to actively build improving strings from the best fragmentary

solutions of the former (refer to section 3.4). These best partial solutions are known as building
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blocks. A building block is a schema which o�ers a good solution to a sub-problem, as explained in

section 4.7.2.6. It can be seen as analogous to genes within the genetic framework (Rothlauf, 2011).

The building block hypothesis has showed promising results for a range of problems, including noisy

multimodal and combinatorial optimisation problems (Goldberg, 1989).

4.7.3.1 Intra-Building Block Di�culty

This type of di�culty is related to the locality of the search. The problem di�culty increases if the

nature of the search space is of such that it leads the search away from the optimum. This is also

known as the deceptiveness of a sub-problem. A problem is deceptive to the order k if all schemata of

order lower than k have a lower �tness compared to the rest, even though they hold fragments of the

�ttest solution (Rothlauf, 2011).

4.7.3.2 Inter-Building Block Di�culty

Genetic algorithms are a form of recombination-based search; this simply implies that the greater

problem is decomposed into sub-problem. Simpler sub-problems are solved instead of solving one

extremely complex problem. Such sub-problems can be solved independently, given that the problems

were decomposed correctly. However, it might occur that the some sub-problems contribute more to the

objective than others, which results in inter-building block di�culties. Additionally, interdependencies

arise when problems cannot be e�ectively disintegrated into perfectly separate sub-problems (Rothlauf,

2011).

4.7.3.3 Extra-Building Block Di�culty

Noise can add di�culty to a problem by altering the objective values. The recombination-based search

will make poorer decisions as noise is introduced to the problem. Non-stationary problems cause a

similar problem as solutions have dissimilar valuations at di�erent points in time (Rothlauf, 2011).

4.7.3.4 Berthke's and Holland's Walsh-Schema Partitioning Coe�cient Transforms

Methods devised to analyse the Building Block Hypothesis can be grouped into two categories based on

their approach; the application of dynamic or static methods. The dynamic approach, in alliance with

the Minimal Deceptive Problem produces decent results for small problems (the actual approach will

not be discussed here). On the other hand, the static approach determines schema averages through

transformation methods, which is used to judge the Building Block Hypothesis. In other words, to

establish whether high performing schemata of short de�ning length and of low order propagate through

the generations in order to combine and create improved schemata which is longer and of higher order

(Goldberg, 1989).
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Test Functions

A Test function, also known as an arti�cial landscape, has the objective to analyse the performance

of a genetic algorithm. The outcome of these functions can be used to systematically rectify and �ne

tune the internal settings of the algorithm. Therefore, once a genetic algorithm for a speci�c problem

is coded, the algorithm can be `tested' by checking whether it produces the expected outcome of the

function. Internal settings are unique to each problem, these can therefore be adjusted. While these

test functions are of great value, they are of little signi�cance to `real' world problems. A genetic

algorithm should be tested with a set of test functions in order to cover various essential landscapes,

each with their own features. This set will test di�erent aspects of the algorithm (Coley, 1999):

� Functions with scalable dimensions

� The function should be able to adjust the number of unknowns if it would be desired

� A unimodal, continuous function, to gain insight to the algorithm's convergence velocity

� A single peak function, refer to �gure 5.1

� Test the algorithm's performance with the absence of a local gradient

� A step function, refer to �gure 5.2

� Test the algorithm's performance when faced with complexity with a multimodal function

� A multi peak function, refer to �gure 5.3

5.1 De Jong's Test Functions

De Jong realised the great value of controlled experimentation with genetic algorithms in neat problem

domains. He rid the genetic algorithm of all frills, together with its environment and performance

criteria to expose its sheer fundamentals. This allowed him to carry out experiments which aided in

46
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Figure 5.1: Griewank's function with 2 independent variables

Figure 5.2: Step function with 2 independent variables
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Figure 5.3: Rastrigin's function with 2 independent variables

the further development of genetic algorithm research and its uses. De Jong created a test environment

which dealt with minimisation of 5 problems. The functions he used encompassed the following features

(Goldberg, 1989):

� Continuous and discontinuous

� Quadratic and non-quadratic

� Convex and concave

� Low and high dimensionality

� Unimodal and multimodal

� Deterministic and stochastic

Refer to Appendix 17.5 for test functions and arti�cial landscapes.

5.2 Measuring Performance

De Jong carried out much work with regard to the genetic algorithm's performance. De Jong had

two gauges for performance which he called online and o�ine performance. The o�ine performance

(ζoff ) refers to the continuous average �tness of the �ttest population member (ζmax) and gauges

performance (Goldberg, 1989):
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ζoff (g) =
1

g

g∑
j=1

ζmax(j) (5.2.1)

The online performance (ζon) is simply the average �tness thus far in the algorithm and measures

online performance (Coley, 1999):

ζon(g) =
1

g

g∑
j=1

[
1

N

N∑
i=1

ζi(j)

]
(5.2.2)

The convergence velocity is given as (Coley, 1999):

V = ln

√
ζmax(g = G)

ζmax(g = 0)
(5.2.3)

5.3 De Jong's Conclusions

De Jong constructed a few models (Goldberg, 1989):

� The Reproductive Plan

� The Elitist Model

� The Expected Value Model

� The Elitist Expected Value Model

� The Crowding Factor Model

� The Generalised Crossover Model

These models will not be discussed here, for more information refer to Coley (1999).

5.3.1 Towards Population Size

These studies indicated that larger populations result in improved o�ine performance, which results

in better convergence. This increase in o�ine performance is due to a bigger pool of diverse schemata

that is accessible by the algorithm. However, with an increased population size the online performance

is poorer in the early stages of the algorithm. Smaller populations are more agile which results in

higher initial online performance (Goldberg, 1989).

5.3.2 Towards Mutation Rate

An increased mutation rate can help maintain diversity by resisting premature allele loss. Too high

a mutation rate will however a�ect the run negatively, resulting in a decrease in o�ine and online

performance. O�ine performance begins to mirror random search performance when the mutation
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rate becomes too high. A mutation probability of 0.5 is simply random search; this is irrespective of

the values of the crossover probability and population size (Goldberg, 1989).

5.3.3 Towards Generation Gap

De Jong found that non-overlapping population models provided better results for optimisation, with

the major in�uencing factor being the o�ine performance (Goldberg, 1989).

5.3.4 Towards Crossover

De Jong also performed tests on crossover probability. De Jong suggested that a crossover probability

of 0.6 provides a good balance between o�ine and online performance. Later studies suggested higher

crossover rates with improved selection methods.

The generalised crossover model showed that there was a relation between the number of crossover

points (CPs) and performance, increasing the number of points decreases both o�ine and online

performance. The number of distinct operators involved in this process o�ers an explanation to the

observation. For one point crossover, there is a set of l -1 operators. CP = 2 has (l2) combinations

to select di�erent CPs. Generally there are (l
CP

) combinations. This implies that as CPs increases,

the number of combinations decreases, resulting in a lower probability for selecting a speci�c operator

during a speci�c cross. This leads to increased mixing and a decrease in structure. In other words,

the process becomes random and a signi�cant increase in the loss of important schemata (Goldberg,

1989).

5.3.5 Towards Elitism

De Jong came to the conclusion that elitism promotes local search by sacri�cing some degree of global

perspective (Goldberg, 1989).

All of the deductions above will be taken into account when running the algorithm in order to achieve

the best possible results.
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Advanced Operators

There are a variety of ways to improve the performance and robustness of the algorithm, or to make

it more problem speci�c. The methods below o�er solutions to di�culties found in real life problems.

6.1 Combinatorial Optimisation

For many real life problems, the aim of optimisation is not to optimise a simple chain of real valued

parameters, but to determine an ultimate ordered output or list as in the case of the Travelling Salesman

Problem. In this problem, a salesman has to travel the shortest route between a collection of cities

and has to visit each one (ideally, a city should not be visited more than once). Structural design is

also an example of a combinatorial optimisation problem (Coley, 1999).

The biggest challenge with combinatorial optimisation problems and genetic algorithms is the

potential for the algorithm to choose infeasible tours due to crossover and mutation. For illustration

purposes, refer to �gure 6.1 where each dot represents a city.

Possible tours might be:

→ f c e g | a b d h

→ a b f g | c d h e

Figure 6.1: Combinatorial optimisation: Find the shortest distance between the cities

51
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For a single point crossover at for example the indicated point, the following children are obtained:

→ f c e g c d h e

→ a b f g a b d h

It is clear that both these children are infeasible, as the routes that they describe visit some cities

more than once and others not at all. Therefore, the crossover operator needs to be changed so that

it will only generate feasible results. A city can only be visited once in the case of strings with �xed

lengths. Coley (1999) explains that there are a number of techniques to deal with the crossover prob-

lem, one of them being to simply proceed with crossover as usual and then to discard any infeasible

outcomes. However, the aforementioned is not a very e�ective technique. It should be noted that the

location of gene and its allele value are not unrelated. In other words, the location and value of a

bit are both independently signi�cant. In fact, order is the only thing that is of importance for the

travelling salesman. Preferably, crossover and mutation must operate in such a way as to both produce

feasible results and combine building blocks that produce �tter o�spring (Coley, 1999).

6.2 Niches and Species

Niches and species can be used to locate alternative solutions. To �nd the best solution for a problem

that is large and complex might be to �nd an answer that is only in the proximity of the true global

optimum. Even so, some problems need a series of solution options. For these problems the options

which dwell in the vicinity of the optimum need to be found. In these cases it is highly probable that

such solutions are separated by `bad' regions. Therefore, contrary to the norm, the intent here is to

�nd local optima. However, an interesting question arises, why seek local optima when any point close

to the global optimum is highly likely to have a higher �tness? To answer the question, consider the

following example presented in Coley (1999):

Consider a structural problem where x is the slant of the roof and f is some inverse cost function,

then it can be understood that each optima represents a noteworthy solution, refer to �gure 6.2. These

solutions are indeed good, even though they are not the best. They o�er a number of �nancial schemes

for a variety of di�erent roof constructions. If cost was the only constraint, then the global optimum

x∗ would have been the best. However, for any additional constraints such as speci�cations on the

slant (enforced by the practicability of construction, requirements from the client or visual qualities)

then any of the other solutions (x1, x2, x3) could be of interest, even though they are more expensive

(have a lower �tness). Granting that there are a number of solutions in the vicinity of the optimum

that are less expensive than the local optima, their proximity might be too limiting on the slant of
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Figure 6.2: Local optima (Coley, 1999)

the roof and could therefore proof to be infeasible. On way of �nding these local optima in complex

search spaces, is through niches and species. In the natural sense, to subdivide a search space into

niches by species (subgroups of a population) is a common phenomenon. When it comes to genetic

algorithms, the niches imply some form of a �tness sharing and the species imply limits and restrictions

on mating partners. Partners who will be able to breed must be of certain resemblance and be related

to a satisfying extent (Coley, 1999).

6.2.1 Sharing

Consider two gambling machines and a certain number of players. If both machines pay out the

same amount within the same time frame then players can divide themselves equally to play on these

machines, where each player will receive maximum prize money (given that the money won at a

machine is distributed equally amongst the players, the money is shared). However, in the case where

one machine pays out more than the other in similar time intervals, then more players should move

over to that machine so that each will still receive maximum prize money. It is obvious that if the

players were to stay as they were in the �rst case, then one half of the players will receive more prize

money than the other half. If it was just a free for all and no sharing was involved, then all the players

would sooner or later end up at the machine that pays out the most money. The players that have to

share their winnings at the machine that pays out less will learn that even though they might not win

as much money in total, they still receive the same amount individually because there are less players

to share with. In this case it is sensible to form a niche (Coley, 1999).
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Figure 6.3: Speciation (Coley, 1999)

6.2.2 Species

Normally, mating does not occur between di�ering species. Thus far, the discussions on the genetic

algorithm have not considered such restrictions. There might be an advantage to consider species in

the algorithm, consider the following strings with single point crossover:

→ 0 0 | 0 0 = -1

→ 1 1 | 1 1 = 1

For both of these points on the x axis, the �tness is ζ(x) = 1, refer to �gure 6.3. However, crossover

of these two highly �t strings produces the following:

→ 0 0 1 1

→ 1 1 0 0

The �tnesses of the o�spring is now ζ(x) = 0.4 (nowhere near optimal), see �gure 6.3. Even though

both the parents performed very well, their children performed poorly. The parents' failure to produce

highly performing o�spring lie in the fact that they are from di�erent locations in the landscape, in

this case it makes sense to allow only for parents to mate with individuals of their own liking.
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6.3 Hybrid Algorithms

Genetic algorithms are good at tackling large and complex search spaces, but �nding the true optimum

proves to be challenging for it. Genetic algorithms have very good performance in the initial stages of

the search, but the performance decreases later in the search as localised search begins. It makes the

genetic algorithm the perfect means to start a search and to navigate through the space to locate the

near optimal solutions. The genetic algorithm would mostly �nd the optimum given that it had enough

time. However, time is usually not enough and is a very big factor in optimisation methods. Therefore

it is worthwhile to consider some form of collaboration between those methods that perform well at the

start and process the bulk of the search space, and those methods that are perfect at the end to lead

the search to the optimum in the �nal moments. These end methods are typically more traditional

methods. In other words, use the genetic algorithm to �nd the hill and a more specialised traditional

method to climb it, thereby forming a hybrid algorithm. The easiest way to construct such a hybrid

algorithm is to make the solution from the genetic algorithm, which was obtained after certain criteria

were met, the starting groundwork for the traditional method, in which case a real valued vector would

be used. The traditional method is chosen based on its ability to solve the speci�c problem. It is also

possible to continue the �nal stages of the search in binary code. For example, the search can climb the

local hill by mutating each bit in the string separately and then reassessing its �tness. The mutation is

only regarded in the search if the �tness has increased. Another way is through addition or subtracting

of 1 from the binary string and then yet again only regard the operation if it has improved the �tness.

This is done for all the unknown parameters. If it should prove to be bene�cial, then such methods

can be applied at any point in time during the run and not only at the end of the search. However, it

would be a mistake to desert the genetic algorithm too soon in a complex and di�cult search space,

as it can result in a fallacious solution. Other techniques include the use of heuristics, in which case

child strings inherit certain traits to speed up the search. Another way to speed up the search is by

only using approximated �tness estimations initially (Coley, 1999).

6.4 Additional Advanced Operators

There are numerous other operators which can be applied to the algorithm, examples of such are:

� Advanced mutation

� Dominance and diploidy

� Abeyance

� Inversion

These are simply mentioned for completeness sake and will not be discussed here. For more information

refer to Coley (1999) and Goldberg (1989).
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Modelling

In general, a structure is a system of nodes and elements, where nodes are connected by elements. A

plane truss is a system of elements or members that are pin connected, where the whole structure lies

within a single plane. There are no moments at joints due to pin connections which results in one

degree of freedom in the axial direction. The applied forces must be in-plane forces for such a plane

structure. Distributed beam loads may by represented by statically equivalent loads at the appropriate

nodes for analysing purposes. This type of analysis, which is only subjected to nodal loads, will only

produce axial member forces in tension or compression. On the other hand, a space truss can have

members in any direction in space, not just members in one plane. This type of truss tolerates forces

from any direction, however, the type of element remains the same (Coello et al., 1994).

The model may be subjected to loading and constraints, once it has been properly de�ned. The

type of model governs the type of forces it can carry.

This study commences with the use of truss elements. This results in a truss type structure, with

one degree of freedom in the axial direction of the element, refer to �gure 7.1. Loading may only be

applied at the nodes. Fixity may only be speci�ed in terms of translational restraints, as all nodes are

pin connected. The truss structural element needs only a speci�ed cross sectional area. The length of

Figure 7.1: The truss element in space (Auer, 2005)
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the element is determined by its nodal coordinates. Figure 7.1 illustrates a truss element within a three-

dimensional space, with local and global reference systems and degrees of freedom. Bold and capital

annotation represents the global coordinate system and faint and lowercase annotation represents the

local system. UVW refers to global displacement directions, XYZ are the global coordinate directions.

The numbers 1 and 2 refer to the two end nodes of an element.

7.1 Genetic Parameters

The benchmarking problems were performed with genetic parameters as speci�ed in table 14.1, unless

otherwise indicated. No sensitivity studies on these parameters are presented here as it is not directly

aligned with the main aim of this thesis. Multiple runs were performed to establish which parameters

result in the best outcome.

Table 7.1: Genetic parameters

Parameter Value

Crossover probability 0.85
Mutation probability 0.005
Population size 50
Maximum number of generations 5000
Scaling constant 1.5
Number of crossover points 1
Elitism TRUE
Selection with replacement TRUE

7.2 Mapping the Structure to an Individual

Each individual in a population o�ers a solution to the problem, where an individual consists of a

collection of chromosomes which describes it (refer to section 4.2.1). Hence, the algorithm would

o�er a 100 solutions for a population of a 100 individuals. These solutions typically converge to the

same value late in the search when a near optimum has been found. A speci�c chromosome in an

individual refers to a speci�c element in the structure. This chromosome contains information such as

the element's cross sectional area and orientation in space, to name but a few. The binary string length

of a chromosome is dependent on the size of the section list from which the algorithm can select discrete

member sizes and other information. The binary string must be of such a length as to ensure that it

can decode in a manner which allows the search to access every entry in the section list. Figure 7.2

illustrates the relationship between chromosomes and truss members. This �gure also illustrates the

concept of grouping (explained in section 7.3), where (for example) all red members are represented

by the same chromosome. In such a way the whole structure is translated from an engineering model
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Figure 7.2: Converting the engineering model into a genetic model

into a binary genetic model consisting of individuals, chromosomes and genes. This conversion allows

for the algorithm to apply all its genetic operators discussed in section 4.4.

7.3 Grouping

Each member in a structure can be directly mapped to a new chromosome, however this might not

always be a practical, or even the best, approach. For certain cases it might be vital to retain symmetry

within the structure due to reasons such as practicality and simpler construction methods. In such a

case, certain members should be exactly the same in order to produce a symmetric structure. Another

motivation for symmetry is to accommodate reversed loading; for instance, wind might blow from the

opposite direction than originally described by the model loading and hence the structure needs to be

designed for this reversed loading case as well. A means of achieving symmetry is through grouping.

Grouping reduces the number of design variables for a given problem, therewith reducing the search

space size and computational time required to execute the algorithm. Grouping might, for some cases,

be the only way to solve a problem, even if symmetry is not required. The reason for this drawback is
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limited computation time. Consider a section list of 40 sections; this requires a minimum string length

of 6. This will result in an individual string length of 3000 for a structure of 500 elements or 500 design

variables. Also take into account that the genetic algorithm does not operate on an individual, but on

a population of individuals. It would be bene�cial to decrease the number of design variables through

means of grouping. This study did not investigate the upper bound of the number of design variables

that a genetic algorithm can handle e�ectively due to computation time restrictions.

Member grouping can either be decided a-priori, or performed by the algorithm through a grouping

strategy. In this study grouping is de�ned by the user. It could be argued that the solution might be

suboptimal due to the prede�ned grouping order. The prede�ned grouping order might result in a case

where, given that the optimal structure was known, members of that optimal structure with di�erent

cross sections are placed in the same group. In other words, the user grouped members into the same

group that should not be in the same group. In this way the optimal structure cannot be found by the

algorithm.

A grouping strategy should be as such that the �nal solution contains the smallest number of cross

sections with as much as possible search space reduction (Togan and Daloglu, 2008). A simple strategy

suggested in Togan and Daloglu (2008) initially involves assigning the same cross sectional areas to

all the members in the structure. An analysis is performed on this structure, where after the internal

forces are divided into groups based on the magnitude of these forces obtained from the outcome of

the analysis. An initial round of grouping is performed by grouping elements with forces of similar

magnitudes. Tension and compression members fall into di�erent groups. Members with zero force or a

very small force are placed in a separate group. This method could be re�ned by grouping tension and

compression members by di�erent criteria. Tension members are still grouped by their internal axial

forces, however compression members are grouped based on their slenderness ratio. The genetic algo-

rithm is therefore only aware of the number of chromosomes (the number of groups), where the �nite

element analysis is aware of all the members in the structure. The more criteria exerted on a grouping

strategy, the better the outcome will be. This is due to the fact that a group can only perform as

well as its weakest member. The lightest structure will be produced for the case of no grouping, given

that symmetry is not required and that there is enough computation time to accomplish such a solution.

According to (Togan and Daloglu, 2008), grouping has the following advantages:

� Search space reduction

� Increased probability of �nding the true optimum

� This advantage is mainly based on the fact that there is very likely not enough computation

time to solve for every element in a large realistic structure

� Enhanced algorithm performance

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7. MODELLING 61

� Due to shorter string lengths

7.4 Comments on CPU Time

The analysis of the space truss, when compared to a planar truss, requires more CPU time as there

are more global directions, even though the space truss could potentially have less design variables

(which results in a smaller search space). This is due to the additional unknown forces that could

potentially act at a node. The algorithm requires an analysis whenever a design variable or member

of the structure was modi�ed, in order to calculate the �tness and performance of the structure based

on the outcome of the analysis. The algorithm can establish feasibility once the analysis is done. An

analysis has to be performed for each individual in the population for every generation, before and

after modi�cations to the element. Therefore, for a population of a 100 and 5 000 generations, the

program would perform a million �nite element analyses. Keep in mind that a population of 100 is still

relatively small, greater populations might be needed for cases where greater exploration and diversity

are required.

7.5 De�ection Criteria

The algorithm makes use of Table D.1 - Maximum de�ections at serviceability - SANS (2005) for the

case where de�ections are not prescribed. The structure, for this case, is assumed to be an industrial

type building, where its span is open to the interpretation and engineering judgement of the user.

The structure is penalised as a whole, instead of penalising individual nodal displacements for each

element, as is done for stress violations. This is done by assigning the maximum nodal displacement

in the structure as the whole structure's displacement. The maximum allowable de�ection that a

structure may undergo is assumed to be 1/180 of the `span' length (if no de�ection limit is prescribed).

7.6 User Input Required to Run the Program

At start up, the program asks two inputs, the genetic parameters and the actual model, refer to �g-

ure 7.3. The genetic parameters are simply a list of parameters which the algorithm will need, refer

to �gure 8.5. The model, however, has a few steps which need to be completed. Users communicate

the structure that they want to model through an Excel spreadsheet, hence the user needs to provide

the �le path to this document. The input must be in exactly the same format as shown in �gure 7.4,

this includes units (forces in Newton and nodal coordinates in meters). Columns J and K in �gure 7.4

are element de�nitions. The element number associated with this de�nition is in column I. Grouping

is de�ned from column L onwards. In �gure 7.4 there are 7 groups; group number 2 contains elements

number 2,3,4 and 5.
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Figure 7.3: Program start-up

Next, the user must supply a section list which the algorithm can use, this is also done in an Excel

spreadsheet. For this case however, the user has to indicate which columns in the sheet it must read.

The navigation tab allows for a user to specify which columns are assigned to which section property.

For example, a user can specify that the area column is column 5. This allows for the user to create

any section list with any number of elements.

Figure 7.4: Excel spreadsheet user input for creating the model

The general tab contains �elds such as the number of entries in the section database, the number of

nodes and whether the structure is 2 or 3 dimensional. These input parameters are not only important

for the �nite element model, but also because they enable the program to read the spreadsheets

accurately. These values, together with the number of design variables (obtained from the genetic

parameters) and information on grouping, completely navigate the algorithm through the model input

spreadsheet. Lastly, the user can de�ne the structure's span, refer to section 7.5.

The properties tab contains input �elds such as the modulus of elasticity, Poisson's ratio, density

and the steel's yield stress, see �gure 7.5. It also allows for the user to indicate whether the structure

was grouped, in which case the actual number of elements for the structure must also be provided.

This extra input value is necessary, as the number of chromosomes and the number of elements will no

longer be the same value if grouping in implemented. Lastly, this tab allows for the user to indicate

whether frame elements must be used instead of truss elements, refer to section 15.2.4.
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Figure 7.5: User input for the material properties, grouping information and type

of element to be used

The constraints tab consists of two parts. The one part is for the case where stress and displacement

constraints are simply assigned prede�ned values. This part is activated for the case of benchmarking

problems. The other part creates the option of implementing the South African design code, SANS

(2005).
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The Program

The program is an object oriented program which was written in Java and can be divded into two

distinct parts; optimisation of the design problem and structural modelling and analysis. These two

parts are completely separate, they are even coded in separate packages.

8.1 Approach to Implementing Structural Optimisation

The implementation process, as illustrated in �gure 8.1, starts with designing the structure (the design

parameters are generated), after which solutions from the optimisation process are analysed and eval-

uated. The structural variables are adjusted according to the outcome of the analyses. In this study,

the design process (selection of design variables), optimisation and evaluation will be performed by the

genetic algorithm and the analyses of the solutions generated will be performed by the �nite element

method program. The �nite element method program discretises a structure and operates by solving

systems of equations. Just as the �nite element method moved structural analysis away from functions

towards discrete values at nodes, so too, in contrast to earlier techniques, did evolutionary algorithms

move optimisation away from searching for that optimum analytical function to rather searching for

optimum values in a discretised search space. The �nite element program needs to analyse the prob-

lem repeatedly throughout the optimisation procedure, it is therefore recommended to use a relatively

crude �nite element method model in order to be computationally e�ective. Once the programs have

looped and are now at the second generation or beyond, the outcome of the �nite element program

will serve, together with the objective function, as a guide through the search space in the quest to

�nd the optimal structure. This outcome is in the form of internal element forces and a structural

displacement. The algorithm will then commence with the redesign. The two programs will, in such

a way, work together toward a common goal; they will run concurrently until optimisation conditions

are met, or a given number of loops were performed (generation counter).

The program makes allowance for the use of both classes 3 and 4 members (refer to section 12.7

and �gure 12.3) for the implementation of the South African design code. Limiting the search to class
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Figure 8.1: The design process

3 elements would only produce a near optimal result for the constrained search space of class 3 only

sections, however it could result in a suboptimal solution for a realistic steel structure where no such

limitations are necessary on the search space. The program was only coded for equal leg angle sections

in order to avoid unnecessary complexities, such as shifted shear centres.

8.2 Characteristics of the Program

The number of sections that the user can consider in the search is not limited; the user can simply

compile a master section list which contains all the desired sections. The same is applicable to loading.

Unique test lists can also be compiled. Load cases are considered separately. The user must create a

new combined load case, for the case where load cases need to be combined. The program terminates

after the speci�ed number of generations has been executed.

8.3 Pseudo Code

This section provides a step by step description of the algorithm. Figure 8.2 is a graphical illustration

of the complete program.

Step 1: Set the parameters

Step 2: Generate initial population

Step 3: Decode the chromosomes

Refer to section 4.5.1
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Step 4: Create finite element models

Step 5: Analyse the finite element models

Step 6: Obtain initial element forces and the largest displacement for

each individual

Step 7: Begin genetic algorithm:

for g = 1 to number of generations

Step 8: Evaluate the objective

φp,i for (i = 1, 2, ..., n)

Refer to section 8.6

Step 9: Find the fittest individual with regard to φp

Step 10: Find the weakest individual with regard to φp

Step 11: Evaluate fitness

ζi for (i = 1, 2, ..., n)

Refer to section 8.6

Step 12: Obtain statistics

ζsum =
n∑
i=1

ζi

ζave =
ζsum
n

for i = 1 to n

if (ζi > ζmax)

then ζmax = ζi

end

end

Step 13: Scale fitness

ζsum = 0

if (cm 6= ζmax and ζmax 6= ζave)

then a = (cm−1)ζave

ζmax−ζave

b = (1− a) ζave

for i = 1 to n

ζsi = aζi + b

if (ζsi < 0)

ζsi = 0

end

ζsum = ζsum + ζsi

end

ζave =
ζsum
n

end

Step 14: Select

create random number rouletteWheel = random number * ζsum

sum = 0

while (sum < rouletteWheel and i < n)
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sum = sum + ζi

increment i

end

individual i will be selected

Step 15: Crossover

if (random number 6 pc)

perform crossover, refer to section 8.6

end

Step 16: Mutate

For each individual I:

for k = 1 to L

if (random number 6 pm)

then if (Ik = 0)

then Ik = 1

end

else

Ik = 0

end

end

end

Step 17: Create finite element models from new population

Step 18: Analyse the finite element models

Step 19: Obtain initial element forces and the largest displacement

for each individual

Step 20: Elitism

if elitism is true

if (ζmax,old > ζmax,new)

place the fittest individual of the old population

at a random position in the new population

end

end

Step 21: Update the temporary population's attributes after modifications

Different force and displacement values

Step 22: Replace the old population with the new population

temporary population → current population

Step 23: g = g + 1
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Figure 8.3: Basic structure of the program

8.4 Towards the Finite Element Method

An analysis can be linear or non-linear. Secondary (or P-Delta) e�ects are ignored for the case of

a linear analysis. On the other hand, the whole structure is in equilibrium for its deformed state

in the case of a nonlinear analysis, therefore the secondary e�ects are taken into account. Elastic

buckling can result from secondary e�ects. A nonlinear analysis will be able to indicate whether

buckling has occurred by either not converging or resulting in extreme post buckling displacements.

A linear analysis will not be able to detect buckling. This implementation will make use of a linear

�nite element analysis, secondary e�ects are not explicitly taken into account by the analysis program,

however buckling is taken into account when the �tness values are calculated for the case where the

South African design code is implemented.

8.5 Discussion of Essential Classes

Figure 8.3 illustrates the relationship between all the di�erent program classes.
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8.5.1 Population and Individual

The algorithm operates with two populations, the current population and the temporary population,

refer to �gure 8.2. The current population's function is to carry information from the one generation to

the next. All changes which are made to the current population are stored in the temporary population.

The temporary population will replace the current population only after all the modi�cations to the

individuals are complete. A population is an array of individuals and an individual is an array of

chromosomes. Each chromosome is a new design variable for a given structure. However, the individual

is simply an integer array which is initially populated at random, where after it is adapted by the

algorithm. A binary encoding scheme was used for the individuals, therefore the integers used for

populating the arrays were only 0 and 1. Refer to Appendix 17.5 for complete code extracts.

8.5.2 Truss Population

The truss population contains a population of �nite element models, named FemModels. A FemModel

is an object which has attributes such as material, load, support, node and element. These attributes

help to model the actual structure. This class acts as an interface between the genetic algorithm and

the �nite element method program.

8.6 Notes on Functions

Only a few selected functions will be discussed and special features will be highlighted, such features

may in some cases simply specify which approach the algorithm implemented.

public void setArrays(FrameParameters gaParam , ... )

This method is activated before the algorithm is started. It serves to read all the excel input �les' data

into arrays. Arrays are created instead of real-time reading from �le because real-time reading takes

an excessive amount of time. These arrays contain model information and section properties and will

remain unchanged throughout the run. This method creates:

� Arrays to be used in the objective function

� The radius of gyration array

� St. Venant's torsion constant of cross section array

� The thickness array

� The cross sectional area array

� The lengths of all members array

� The distance to shear centre array
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� The moment of inertia array

� Arrays to store output from the �nite element analysis

� The force (double) array

� The displacement array

� Arrays to communicate with �nite element analysis

� The femIndexArray

� The femElementArray

The force matrix, which will only be populated after the �nite element analysis is run, is initialised

here. The force double array is a matrix, as each individual i will have a force for each chromo-

some/element e, F = Fi,e for i = 1, .., number of individuals and e = 1, ..., number of elements. The

displacement array is also initiated here; however it is simply a vector as each individual only has one

overall displacement value. Only the largest nodal displacement in the structure will be used in the

penalty function, where the structure will be penalised as a whole, refer to section 7.5. In other words,

each chromosome is assigned a force and each individual is assigned a de�ection.

The femIndexArray is used only for grouping, refer to section 7.3. It acts as a mapping device from

the individual (which will only know the number of design variables/chromosomes) to an array which

the analysis will use (which will be the size of the actual number of elements in the structure). The

genetic algorithm is only `aware' of the chromosomes, the �nite element method program is `aware' of

the whole structure. The femElementArray is simply a means for the algorithm to determine which

element is part of which group.

public double findObjectiveFunctionValue(Individual individual , ...)

This method does not simply determine the weight of the structure (as the objective is to minimise the

weight), but also enforces a penalty on individuals with constraint violations. The function is divided

into two sections, the �rst section calculates the penalised objective function value (φp) based on the

design code. The second section is a set of simpler checks for the case of prescribed constraints in order

to execute benchmarking problems. The �rst section is then further subdivided into two sections, one

which performs calculations for circular hollow sections and the other for equal angle sections. These

calculations are only performed for the number of design variables and not the number of elements in

the structure, hence saving computation time.
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8.6.1 Objective Function Value Calculation: Equal Leg Angle

8.6.1.1 Classi�cation: Equal Leg Angle Sections

The SANS 10162-1 code classi�es a section as either class 3 or 4, depending on its width to thickness

ratio:

b

t
6

200√
fy

(8.6.1)

for the case where this condition holds, the section can be classi�ed as class 3.

8.6.1.2 Check for Slenderness

First the algorithm establishes whether a member is in tension or compression, where after the member

is checked for slenderness according to SANS 10162-1. The maximum slenderness ratio for members

in compression shall not exceed 200 (SANS, 2005).

KL

R
6 200 (8.6.2)

The maximum slenderness ratio for members in tension shall not exceed 300 (SANS, 2005).

KL

R
6 300 (8.6.3)

The member is immediately penalised if these conditions are not met. The penalty parameter is a

variable declared at the start of the function. The penalty is increased for cases of constraint violations

and will be updated as the function continues through all the checks. For pinned connections the

e�ective length is simply taken to be the length of the element. In this case the penalty for individual

i for a slenderness violation of element e in generation t is as follows:

KL

R
= 300

∴ g1,e(t) =
Le

300Re
− 1

(8.6.4)

A thorough background to penalty functions is provided in Section 4.6. The function can also check

for redundant members, however these elements are simply de�ned for elements which carry no force.

Such elements might be needed to avoid mechanisms and it should only be classi�ed as redundant if

it be redundant for all the relevant load cases. For the case of compression, the penalty for individual

i simply changes to:

∴ g2,e(t) =
Le

200Re
− 1 (8.6.5)
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Figure 8.4: Equal leg angle section

8.6.1.3 Determine Capacity of the member

The allowable force for each member is calculated according to SANS 10162-1 for both tension and

compression in order to establish whether a particular element has a constraint violation.

Tension

The tensile resistance of a member was taken as:

Tr = φstAgfy with φst = 0.9 (8.6.6)

The tensile resistance of connections are not taken into account and therefore also not their respec-

tive net e�ective areas.

Compression

The equal leg angle section is singly symmetric (see �gure 8.4), therefore for torsional or torsional-

�exural buckling fe was taken as the lesser of fex and feyz.

Torsional or Torsional-Flexural Buckling:

fey =
π2E(
Lu

Ru

)2 (8.6.7)

R
2

0 = u2
0 + v2

0 +R2
u +R2

v (8.6.8)

fez =
GJ

AR
2

0

(8.6.9)

Ω = 1− u2
0 + v2

0

R
2

0

(8.6.10)
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feyz =
fey + fez

2Ω

(
1−

√
1− 4feyfezΩ

(fey + fez)
2

)
(8.6.11)

fex =
π2E(
Lv

Rv

)2 (8.6.12)

Flexural Buckling:

λ =

√
fy
fe

(8.6.13)

fe is taken to be the lesser of fex and feyz.

Cr = φstAgfy
(
1 + λ2n

)−1
n (8.6.14)

with n = 1.34 and φst = 0.9

According to table 3 in SANS (2005) an element is of class 4 if condition 8.6.15 does not hold and

might therefore require an area reduction.

b

t
6

200√
fy

(8.6.15)

For the case where W 6Wlim no area reduction is necessary.

W =
b

t
(8.6.16)

Wlim = 0.644

√
kE

f
with k = 0.43 (8.6.17)

f is a reduced calculated stress, taking into account slenderness and buckling (6 fy). f is taken as

Cr

φAg
with φ = 0.9. For this case the e�ective area of the section remains the gross area, Aeff = Ag.

However, for the case where W > Wlim a special area reduction on the element is necessary and a new

compressive capacity is calculated from the new e�ective area.

bnew = 0.95t

√
kE

f

(
1− 0.208

W

√
kE

f

)
(8.6.18)

The new e�ective area:

Aeff = Ag − (b− bnew)t (8.6.19)
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The new capacity of the element:

Cr = φAefff (8.6.20)

The penalty is once again activated if the force from the analysis is greater than the allowable force

(Tr or Cr), depending on whether the element is in tension or compression. For this case the penalty

for individual i is as follows:

g3,e(t) =

(
Fe

Fallowable
− 1

)
(8.6.21)

Fe is the actual force in member e and Fallowable is either Tr or Cr depending on the analyses output.

The displacement constraint is typically prescribed or is a calculated assumption based on SANS 10162-

1. If the user does not specify a de�ection limit, then the algorithm would assume a de�ection limit

of span divided by 180 based on Annex D, see section 7.5. This is however an assumption where the

span has to be interpreted, i.e. as the height of a tower or the span of a dome or even some multiple

or variation thereof. Penalty for individual i is activated for the case where the largest de�ection in

the structure, as determined by the analysis, is greater than the de�ection limit.

g4(t) =

(
Dgreatest

Dallowable
− 1

)
(8.6.22)

For the second part of the function, where constraints are only prescribed, the penalties are calcu-

lated in the same way, however without calculating the allowable force, displacement and slenderness

limits. The allowable force and displacement are simply taken as prescribed values. The overall penalty

approach adopted here is the additive approach, refer to equation 4.6.1, where the penalty terms are

simply added to the objective function in order to created the augmented penalised objective function.

A higher objective function value will result in a lower �tness function value. For the case where no

constraints are violated, ψ(x) = 0. This implementation used an exterior penalty method, refer to

section 4.6.2. The overall violation for individual i is measured by ψi:

ψi(t) =

[
M∑
e=1

reGe

]
with re = 1 (8.6.23)

Ge = max

[
0,

4∑
s=1

gs,e(t)

]β
with β = 2 (8.6.24)

A simple penalty parameter (250) was multiplied to the constraint functions after all the constraints

have been checked, instead of multiplying each violation with a small amount re. It is easier to check

what the e�ect of the penalty parameter is on the performance of the search by applying the term in

this way. After all the penalty calculations have been performed for each element in an individual (i),

the function calculates the mass of the structure. The objective function is simply the weight of the

structure, φi = d ·massi, where d is the density. The penalised objective function value (φi,p) is the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 8. THE PROGRAM 76

Figure 8.5: Genetic parameter and �tness selection options

product of density and mass of the individual, plus the penalty function value. The exterior penalty

was slightly modi�ed into a dynamic penalty function by incorporating the generation count (t), see

section 4.6.5.

φi,p(t) = φi + t · 250 · ψi (8.6.25)

The generation count simply refers to the number of generations already executed, this implies that

the severity of a penalty violation increases as the run progresses. The penalty parameter is simply

a constant number which ampli�es the penalty term. For this study, this parameter was chosen to

be 250 as it resulted in the best performance for the algorithm. It was discovered that this number

in combination with the maximum number of generations greatly a�ects the search. The greater the

maximum number of generations, the smaller the penalty parameter needs to be.

public double findFitnessFunctionValue(Individual individual , ...)

Calculating only the objective function would not su�ce as a genetic algorithm is a maximisation

algorithm, see section 4.5. The �tness function value needs to be calculated in order to convert the

problem from a minimisation problem to a maximisation problem. The algorithm allows for three

di�erent approaches to �tness, see �gure 8.5. Approaches to �tness are discussed in more detail in the

subsection 4.5.2.

8.6.2 Static Fitness

The �tness is simply calculated by subtracting the penalised objective function from a very large

constant value, refer to section 4.5.2.1.

ζi = 1000000000− φi,p (8.6.26)
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8.6.3 Dynamic Fitness

This approach ensures that the individual with the highest objective function value (lowest �tness) will

be assigned a proportional value to that of the lowest objective function value, refer to section 4.5.2.2.

ζi = φmin + φmax − φi,p (8.6.27)

8.6.4 Normalised Fitness

The normalised �tness approach scales �tness values to fractional sizes, refer to section 4.5.2.2.

ζi =
1

φi,p · (1000 · v + 1)
(8.6.28)

public void statistics ()

This function simply needs to calculate the sum �tness, the average �tness and the maximum �tness

of the population. These values are important for functions such as elitism, refer to section 8.3.

public void scaleFitnessFEM(double [] largestDispl ,...)

The algorithm makes use of linear �tness scaling as discussed in section 4.5.3.

public Individual select ()

The algorithm implements the standard Roulette Wheel Selection, refer to section 4.4.1.

public void crossover ()

This method is not limited to one point crossover, the number of crossover points are de�ned by the

user. It contains a built in check, as a speci�c crossover location can only be used once in cases where

the number of crossover points are more than one. One point crossover produces a whole new struc-

ture, which behaves completely di�erent (structurally) compared to the two parent models. It seems

that the di�erence between 1 and 2 point crossover is rather insigni�cant, due to the rather similiar

`magnitude in di�erence' of the o�spring. Performance decreases once the number of crossover points

reaches 3, one could argue that this is the point where the search becomes too random. However, there

is an argument that states one point crossover should technically produce the best results, refer to

section 5.3.4. The function uses the select function until the population is completely populated with

the method of replacement.
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...

if (Math.random () <= CROSSOVER_PROBABILITY){

...

// Perform crossover

for(int k = 0; k < CROSSOVER_POINTS + 1; k++){

begin = crossoverPoints[k];

end = crossoverPoints[k+1];

if(k>0)

end = crossoverPoints[k+1] - 1; //check for overlap

if(k== CROSSOVER_POINTS) //check for last point

end = crossoverPoints[k+1];

if(counter % 2 == 0){

for(int m = begin; m < end; m++){

child1.individual[m] = parent1.individual[m];

child2.individual[m] = parent2.individual[m];

}

}

else{

for(int m = begin; m < end; m++){

child1.individual[m] = parent2.individual[m];

child2.individual[m] = parent1.individual[m];

}

}

counter ++;

}

counter = 0;

//Place children in temporary population

...

}

else{

//No crossover

for (int q = 0; q < TOTAL_STRING_LENGTH; q++ ){

child1.individual[q] = parent1.individual[q];

child2.individual[q] = parent2.individual[q];

} ..

}

...

Listing 8.1: Crossover

public void elitism(double [] largestDispl ,...)

Elitism for this implementation only allows for one elite individual to pass through to the next gener-
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ation.

public FemModel [] createFemModels(int[] femIndexArray ,...)

A femModel is created for each individual in the population. Therefore, a population of 50 individuals

generate 50 femModels initially and then 50 new models after crossover and elitism were performed.

Refer to Appendix 17.5, section 17.5 for femModel code de�nition. After the nodes, loading, supports

and material has been added to the model, the function needs to scale the size of the area array used

by the genetic algorithm to the number of elements present in the structure to a size usable by the

analysis. At �rst the array is populated as governed by genetic algorithm, then a new array is created

(femAreas) using the femElementArray and femIndexArray as described earlier. For ten elements, the

femElementArray could typically look as illustrated by �gure 8.6.

Figure 8.6: A femElementArray

It is important to ensure that the correct elements correspond to correct attributes and properties,

therefore it remains crucial that the correct order of elements is maintained. For the ten elements,

the femIndexArray could typically look as illustrated by �gure 8.7. This is simply how the algorithm

counts the number of elements in a group from the way the user de�ned it in the input spreadsheet. As

the function loops through the array, the value obtained refers to the chromosome area that must be

inserted in the analysis area array, see listing 8.2. This is not necessary for the case where grouping is

false. The whole process of creating femModels is repeated, but in this case for the number of elements

and not chromosomes.

Figure 8.7: A femIndexArray

areas = new double[gaIndividual.NUMBER_OF_CHROMOSOMES ];

areas = gaIndividual.getAreaIndividual_meters(gaIndividual ,

entries);

if (isGrouped){

// Duplicate group elements

femAreas = new double[numberOfElements ];
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for (int i = 0; i < femAreas.length; i++){

femAreas[femElementArray[i] - 1] = areas[femIndexArray[i]];

}

}

Listing 8.2: Mapping of area arrays

8.7 Special Notes

It is important to clear the sets created by the FemModels, as the program will run out of memory if

this is not done. The user must ensure that all the values are provided in the correct units, for the

steel sections database all values must be in millimetres or some power thereof. For the model input

all units must be in Newton or meter.

The structure should be stable for the algorithm to run:

� Joints and members should be de�ned as such that loading can be carried e�ectively through the

elements to the supports.

� Supports should be de�ned as such so that the structure does not become mobile or rotate.
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Introduction

The benchmarking part of this thesis is dedicated towards solving standard problems in literature with

the genetic algorithm created in this study. These benchmarking problems have been solved many

times before; therefore an algorithm can be benchmarked by comparing its outcome to that of the

other studies. The algorithm is acceptable if its performance is comparable to literature to a satisfying

degree. The parameters used in these benchmarking problems were chosen based on a mixture of what

was used in literature and from running the problem multiple times for di�erent parameters to see

which resulted in the best outcome. Each benchmarking problem will commence with an explanation

of the objective for that speci�c benchmarking problem, as di�erent problems in this study serve to

illustrate and validate di�erent aspects of the algorithm. The next section will provide the relevant

design data, this data is important as it highlights the exact architecture of the problem. The outcome

of a problem can only be compared when the design data of the two models at hand is exactly identical.

This also applies to the constraints enforced on a problem. Additional information which does not form

part of the design data is provided in cases where necessary. Finally, each bench-marking problem will

conclude with the results obtained by this study's algorithm and a comparison to other literature.

The order in which these problems are implemented follows a gradual progression from a simple

two dimensional problem with fewer variables and prescribed stress and displacement constraints, to

a more complex three dimensional problem with more design variables which implements the South

African code of design (SANS, 2005).

82
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10 Bar Truss

10.1 Objective

The 10 Bar Truss depicted in �gure 10.1 is a non-convex problem, because it has multiple local minima

(Falakian and Mousavi, 2011). See �gure 10.2 for illustrative di�erence between convex and non-convex

functions. The objective of this problem is to optimise the cross sectional areas of each element in

the truss in order to minimise the weight of the structure. Running this benchmarking problem will

establish whether the algorithm works for plane trusses, by comparing the outcome to studies such as

Galante (1996) and Nanakorn and Meesomklin (2001). Moreover, this benchmarking problem serves

to provide insight into the algorithm's performance.

Figure 10.1: 10 Bar Truss

83
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Figure 10.2: A convex function versus a non-convex function

10.2 Design Data

The weight of the truss is optimised by selecting di�erent combinations of cross sectional areas (from

a section list provided) for the design variables, refer to table 10.6 and table 10.4. The material

properties used in this problem is that of aluminium, refer to table 10.5. The only reason for this

speci�c set of material properties is to create the exact same model as the one used in the literature

studies. Table 10.6 is the standard section list used for this problem. It is important to use the same

section list, as a di�erent section list will result in a di�erent answer. This is illustrated later in the text.
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Table 10.1: 10 Bar Truss Nodal Coordinates

Node x (m) y (m) z (m)

1 0 0 0

2 9.144 0 0

3 18.288 0 0

4 18.288 9.144 0

5 9.144 9.144 0

6 0 9.144 0

Table 10.2: 10 Bar Truss Loading

Node Fx (N) Fy (N) Fz (N)

2 0 -444822 0

3 0 -444822 0

Table 10.3: 10 Bar Truss Fixity

Node Fixity

1 XY_TRANSLATION

6 XY_TRANSLATION

Table 10.4: 10 Bar Truss Element De�nition

Design Variable Number End Nodes of Members

1 (6,5)

2 (5,4)

3 (1,2)

4 (2,3)

5 (2,5)

6 (3,4)

7 (2,6)

8 (1,5)

9 (2,4)

10 (5,3)
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Table 10.5: 10 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 68947.59 MPa

Density 2767.99 kg/m3

Table 10.6: 10 Bar Truss Section List

Area Section List mm2

1045.159 1161.288 1283.868 1374.191 1535.481 1690.319

1696.771 1858.061 1890.319 1993.544 2019.351 2180.641

2238.705 2290.318 2341.931 2477.414 2496.769 2503.221

2696.769 2722.575 2896.768 2961.284 3096.768 3206.445

3303.219 3703.218 4658.055 5141.925 7419.34 8709.66

8967.724 9161.272 9999.98 10322.56 10903.2 12129.01

12838.68 14193.52 14774.16 17096.74 19354.8 21612.86

10.3 Constraints

The design constraints below are standard to the 10 bar benchmarking problem, refer to Coello et al.

(1994) or Rajeev and Krishnamoorthy (1992).

� Displacement constraint: Dmax 6 50.8 mm

� Stress constraint: −172.25 MPa 6 σallowi
6 172.25 MPa with i = 1, ..., 10

10.4 Additional Information

Coello et al. (1994) used a mutation rate of 0.01 which implies that 1 in every 100 bits can potentially

be mutated. This is a very high mutation rate; it was found that the search became too random and

produced poor results when this rate was applied in this study. The best result was obtained with a

mutation rate of 0.005, where 1 in every 200 bits has a probability to be mutated.

10.5 Results

The 10 bar benchmarking problem was run for all the �tness approaches mentioned in sections 8.6.2,

8.6.3 and 8.6.4. The outcome of the static �tness approach is plotted in �gure 10.3 in order to illustrate
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the performance and inner workings of the algorithm. The mass of the truss decreases as the de�ection

increases to its limit, this suggests that the limiting constraint for this benchmarking problem is its

de�ection. The minimum mass obtained for the 10 bar truss was 2494.46kg with a normalised �tness

approach (this does not prove the noramalised �tness approach to be superior).
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Figure 10.3: 10 bar truss performance for static �tness

Table 10.7: 10 Bar Truss Area Distribution

Design Variable Area

A1 21612.86

A2 1045.159

A3 14774.16

A4 9999.98

A5 1045.159

A6 1045.159

A7 4658.055

A8 14774.16

A9 14774.16

A10 1045.159
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10.6 Comparison

For ease of reference, the following names were used in the table 10.8:

� Galante for Galante (1996)

� Nanakorn for Nanakorn and Meesomklin (2001)

� Appelo for this study

� Coello for Coello et al. (1994)

� Sivakumar for Sivakumar et al. (2004)

� Rajeev for Rajeev and Krishnamoorthy (1992)

The variables A1 to A 10 in table 10.8 correspond to the design variables given in table 10.7.

Table 10.8: Minimum mass comparison for the 10 bar benchmarking problem

Study Mass A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Galante 2475.88 21613 1045 14194 9161 1045 1045 5142 14774 14194 1045

Appelo 2494.46 21613 1045 14774 10000 1045 1045 4658 14774 14774 1045

Nanakorn 2494.48 21613 1045 14774 10000 1045 1045 4658 14774 14194 1045

Coello 2534.08 19355 1045 14774 8710 1045 1045 8968 14194 14194 1045

Sivakumar 2540.06 19355 1045 12839 10903 1045 1045 5142 17097 14774 1284

Rajeev 2546.44 21613 1045 14194 10000 1045 1045 9161 12839 12839 1690

The mass in table 10.8 is given in [kg] and the areas in [mm2]; the areas are represented by de-

sign variables A1,...,A10. The performance of the genetic algorithm is highly dependent on selecting

the correct parameters, implementing specialised genetic operators and di�erent strategies regarding

grouping, �tness and reduced search spaces, to name but a few. For example, consider the 2 genetic

parameter sets de�ned in table 10.9.

Table 10.9: Genetic parameter sets to illustrate algorithm dependence

Genetic Paramater Set Population size Crossover rate Mutation rate

1 50 0.5 0.05
2 150 0.85 0.005

Figure 10.4 illustrates the di�erence in performance of parameter set 1 and 2. It could be argued

that parameter set 1 did not have a large enough population for the algorithm to work with and that

its crossover rate was too low. The search is not allowed enough exploration with a crossover rate

that is too low; therefore it can be observed that parameter set 1 seems to easily fall onto a plateau,
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whereafter it takes a few generations before it �nds a �tter solution. Conversely, parameter set 2

shows a gradual decline in mass with far less `plateau action'. This part is not meant to be viewed as

a sensitivity analysis, it merely serves to illustrate the algorithm's dependence on selecting the correct

parameters for good performance.
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Figure 10.4: Mass comparison for parameter sets 1 and 2
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25 Bar Truss

11.1 Objective

The objective of this benchmarking problem is to optimise a space truss and to make use of grouping.

Grouping will allow for the structure to remain symmetrical. The number of elements in this truss

is 25, however the number of design variables is only 8. Di�erent colours group di�erent elements

together, see �gure 11.1.

Figure 11.1: 25 Bar Truss
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11.2 Design Data

The weight of the truss is optimised by selecting di�erent combinations of cross sectional areas for the

design variables, refer to table 11.6 and table 11.4. The material properties used in this problem, as is

with the 10 bar truss problem, is that of aluminium, refer to table 11.5.

Table 11.1: 25 Bar Truss Nodal Coordinates

Node x (m) y (m) z (m)

1 -0.9525 0 5.08

2 0.9525 0 5.08

3 -0.9525 0.9525 2.54

4 0.9525 0.9525 2.54

5 0.9525 -0.9525 2.54

6 -0.9525 -0.9525 2.54

7 -2.54 2.54 0

8 2.54 2.54 0

9 2.54 -2.54 0

10 -2.54 -2.54 0

Table 11.2: 25 Bar Truss Loading

Node Fx (N) Fy (N) Fz (N)

1 4449.816 -44498.2 -44498.2

2 0 -44498.2 -44498.2

3 2224.908 0 0

6 2669.89 0 0

Table 11.3: 25 Bar Truss Fixity

Node Fixity

7 ALL_TRANSLATION

8 ALL_TRANSLATION

9 ALL_TRANSLATION

10 ALL_TRANSLATION
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Table 11.4: 25 Bar Truss Element De�nition and Grouping

Design Variable End Nodes of Members

A1 (1,2)

A2 (1,4),(1,5),(2,3),(2,6)

A3 (1,3),(1,6),(2,4),(2,5)

A4 (3,6),(4,5)

A5 (3,4),(5,6)

A6 (3,10),(4,9),(5,8),(6,7)

A7 (3,8),(4,7),(5,10),(6,9)

A8 (3,7),(4,8),(5,9),(6,10)

Table 11.5: 25 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 68947.59 MPa

Density 2767.99 kg/m3

Table 11.6: 25 Bar Truss Section List

Area List mm2

64.516 129.032 193.548 258.064 322.58 387.096

451.612 516.128 580.644 645.16 709.676 774.192

838.708 903.224 967.74 1032.256 1096.772 1161.288

1225.804 1290.32 1354.836 1419.352 1483.868 1548.384

1612.9 1677.416 1806.448 1935.48 2064.512 2193.544

11.3 Constraints

The design constraints below are standard to the 25 bar benchmarking problem, refer to Coello et al.

(1994).

� Displacement constraint: Dmax 6 8.89 mm

� Stress constraint: −275.79 MPa 6 σallowi
6 275.79 MPa with i = 1, ..., 8
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11.4 Additional Information

Groenwold et al. (1999)'s information was not included in the comparison since the authors made use

of a di�erent area sections list. Erbatur et al. (2000) implemented a multilevel optimisation procedure

where the search space is reduced for each successive level. This approach starts o� with an initial

level in the optimisation, where after the solutions from this level are used as the initial population

for the next level. `Sub-pro�le' lists are compiled for the next level by dividing the initial discrete list

into subsets, after which the subsets are enlarged. This results in a smaller search space. This method

is only mentioned for completeness sake and will not be further discussed. Only the �rst level mass,

before the search space reduction, is used for comparison below.

11.5 Results

The minimum mass obtained for the 25 bar truss was 222.483kg.

Table 11.7: 25 Bar Truss Area Distribution

Design Variable Area

A1 129.032

A2 258.064

A3 2064.512

A4 129.032

A5 516.128

A6 774.192

A7 580.644

A8 2193.544

The GA found a feasible solution (a solution with no constraint violations), for the case of static

�tness, within 5 generations, refer to �gure 11.2.
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Figure 11.2: 25 Bar truss: Static �tness performance

11.6 Comparison

For ease of reference, the following names were used in table 11.8:

� Togan for Togan and Daloglu (2008)

� Appelo for this study

� Coello for Coello et al. (1994)

� Erbatur for Erbatur et al. (2000)

� FCD Method for Flager et al. (2011)

� Rajeev for Rajeev and Krishnamoorthy (1992)

� Groenwold for Groenwold et al. (1999)

The 25 bar benchmarking problem shows a signi�cant increase in variation between section sizes

obtained by di�erent studies. The design variables A1 to A8 in table 11.8 correspond to the design

variables given in table 11.4
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Table 11.8: 25 bar benchmarking problem comparison to literature

Study Mass (kg) A1 A2 A3 A4 A5 A6 A7 A8

Togan 219.25 65 194 2194 65 1290 645 323 2194
Appelo 222.43 65 65 2194 65 1419 774 323 2194
Coello 224.05 65 452 2065 65 903 710 323 2194

Erbatur 233.60 65 645 2194 129 387 710 581 1935
FCD Method 238.96 65 65 2194 65 65 516 1613 1613

Rajeev 247.67 65 1161 1484 129 65 516 1161 1935
Groenwold 248.09 6 1290 2065 6 6 452 1032 1677
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Chapter 12

160 Bar Truss

12.1 Objective

The structure in this benchmarking problem is a 3 dimensional 160 bar tower, refer to �gure 12.1.

The objective of this benchmarking problem is to illustrate the power of the algorithm. In contrast to

Figure 12.1: 160 Bar Truss Model

96
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previous problems, this problem has a signi�cant increase in the number of design variables (38 design

variables) and it sets about steering the study towards solving real life problems.

Krishnamoorthy et al. (2002) went as far as creating a 1 792 - and a 2 304 planar space truss and

solving for it, refer to �gure 12.2. However, for the 1 792 planar space truss only a quarter of the

truss was modeled, thereby drastically reducing the number of elements to be processed by the �nite

element method program. Additionally, the authors only used 24 design variables with 5 sections to

choose from. This results in a string encoding length that is relatively short (72 bits). Consequently,

the very large scale problem was reduced to a rather small scale problem. The same was done for the

2 304 planar space truss, which only had 10 design variables, with small string lengths of 30. It was

therefore decided to model 160 bar benchmarking problem with its 38 design variables.

 

Figure 12.2: 2 304 Planar space truss (Krishnamoorthy et al., 2002)

This problem will be implemented with the SANS (2005) design code and makes use of a section

list provided in the Southern African Steel Construction Handbook (SAISC, 2008), see Appendix 17.5.

After results were obtained and compared to literature, the truss will be analysed again using frame

elements. The concept and motivation behind such elements are thoroughly discussed in chapter 15.

The objective here is only to establish whether such elements will produce results similar to that of

truss elements. In other words, to validate using such an approach if it be needed.

12.2 Notes on the 160 Bar Truss

Problems found in literature vary greatly, from the way in which grouping is implemented to the forces

applied to the structure and constraints taken into account. Rajeev and Krishnamoorthy (1992) and

Galante (1996) ran this benchmarking problem, however Rajeev and Krishnamoorthy (1992) had 12
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design variables and Galante (1996) had 16 design variables. Groenwold et al. (1999) took buckling

and slenderness into account, where Rajeev and Krishnamoorthy (1992) did not. The loading applied

by Rajeev and Krishnamoorthy (1992) and Groenwold et al. (1999) are completely di�erent. The

mass of this structure reported by various studies di�ers signi�cantly, from 666.487kg (Rajeev and

Krishnamoorthy, 1992) to 1359.781kg (Groenwold et al., 1999). The studies do not indicate whether

own weight was included. It is not always clear what section lists were used by respective authors.

It was decided to only benchmark this study with that of Groenwold et al. (1999), due to the above

described inconsistencies of this benchmarking problem. There are two signi�cant di�erences between

this study and that of Groenwold et al. (1999):

� Groenwold et al. (1999) used an American design code, whereas this study implemented the

South African design code (SANS, 2005)

� Groenwold et al. (1999) used American section sizes, whereas this study used section sizes from

the Southern African Steel Construction Handbook(SAISC, 2008)

� This study used South African steel (SJ355R)

This benchmarking problem is the preparatory phase to the case study and serve to ful�ll the

objective of implementing the South African design code in the algorithm. The algorithm itself, as

well as the implementation of the design code, needs to be validated before the study can commence

with the case study. This is why this study did not implement this problem with the American design

code.

12.3 Comments on Comparing Results

Di�erent �nite element method programs will produce the same results with great precision, when the

same type of analysis is performed. It should be noted that the outcome of the optimisation procedure

is therefore not dependent on the analysis program itself or only the optimisation technique itself,

but also on the design standards which are implemented (for example SANS 10162-1 or ASCE code).

Solving the same problem with di�erent design standards will produce di�erent results. The outcome

of an optimised problem, when compared to another, is not necessarily a re�ection of the genetic

algorithm's performance, but perhaps a re�ection on the level of conservatism of a given design code.

12.4 Design Data

The material used in this model is SJ355R steel, refer to table 12.3. This material was chosen as the

algorithm implemented the South African design code. Table 12.5 de�nes the elements in the tower,

the bold numbers refer to the element number and the nodes column to the two nodes that create an

element. Table 12.6 shows which elements are grouped together. For example, elements 1, 2, 3 and 4
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are all in group 1, therefore they are all represented by design variable 1.

Table 12.1: 160 Bar Truss Loading

Node Fx (N) Fy (N) Fz (N)

25 -8272 -4368 0

28 -7514 -4132 2562

37 -6940 -4132 2562

52 -6444 -3001 2705

Table 12.2: 160 Bar Truss Fixity

Node Fixity

1 ALL_TRANSLATION

2 ALL_TRANSLATION

3 ALL_TRANSLATION

4 ALL_TRANSLATION

Table 12.3: 160 Bar Truss Material Properties

Property Value Unit

Modulus of Elasticity 210000 MPa

Density 7850 kg/m3
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Table 12.4: 160 Bar Truss Nodal Coordinates

Node x (m) y (m) z (m) Node x (m) y (m) z (m)

1 -1.05 0 -1.05 27 0.4 10.275 -0.4

2 1.05 0 -1.05 28 2.14 10.275 0

3 1.05 0 1.05 29 0.4 10.275 0.4

4 -1.05 0 1.05 30 -0.4 10.275 0.4

5 -0.93929 1.75 -0.93929 31 -0.4 11.055 -0.4

6 0.93929 1.75 -0.93929 32 0.4 11.055 -0.4

7 0.93929 1.75 0.93929 33 0.4 11.055 0.4

8 -0.93929 1.75 0.93929 34 -0.4 11.055 0.4

9 -0.82859 3.5 -0.82859 35 -0.4 12.565 -0.4

10 0.82859 3.5 -0.82859 36 0.4 12.565 -0.4

11 0.82859 3.5 0.82859 37 -2.07 12.565 0

12 -0.82859 3.5 0.82859 38 0.4 12.565 0.4

13 -0.71156 5.35 -0.71156 39 -0.4 12.565 0.4

14 0.71156 5.35 -0.71156 40 -0.4 13.465 -0.4

15 0.71156 5.35 0.71156 41 0.4 13.465 -0.4

16 -0.71156 5.35 0.71156 42 0.4 13.465 0.4

17 -0.60085 7.1 -0.60085 43 -0.4 13.465 0.4

18 0.60085 7.1 -0.60085 44 -0.26592 14.365 -0.26592

19 0.60085 7.1 0.60085 45 0.26592 14.365 -0.26592

20 -0.60085 7.1 0.60085 46 0.26592 14.365 0.26592

21 -0.49805 8.72 -0.49805 47 -0.26592 14.365 0.26592

22 0.49805 8.72 -0.49805 48 -0.12737 15.265 -0.12737

23 0.49805 8.72 0.49805 49 0.12737 15.265 -0.12737

24 -0.49805 8.72 0.49805 50 0.12737 15.265 0.12737

25 -2.14 10.275 0 51 -0.12737 15.265 0.12737

26 -0.4 10.275 -0.4 52 0 16.15 0
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Table 12.5: 160 Bar Truss Element De�nition

Nodes Nodes Nodes Nodes

1 1 5 41 13 18 81 25 31 121 36 40

2 2 6 42 14 17 82 28 32 122 38 41

3 3 7 43 14 19 83 28 33 123 39 42

4 4 8 44 15 18 84 25 34 124 35 43

5 1 6 45 15 20 85 26 31 125 40 41

6 2 5 46 16 19 86 27 32 126 41 42

7 2 7 47 16 17 87 29 33 127 42 43

8 3 6 48 13 20 88 30 34 128 43 40

9 3 8 49 17 21 89 26 32 129 35 36

10 4 7 50 18 22 90 27 31 130 36 38

11 4 5 51 19 23 91 29 34 131 38 39

12 1 8 52 20 24 92 30 33 132 39 35

13 5 9 53 17 22 93 27 33 133 40 44

14 6 10 54 18 21 94 29 32 134 41 45

15 7 11 55 18 23 95 30 31 135 42 46

16 8 12 56 19 22 96 26 34 136 43 47

17 5 10 57 19 14 97 26 29 137 40 45

18 6 9 58 20 23 98 27 30 138 41 46

19 6 11 59 20 21 99 31 35 139 42 47

20 7 10 60 17 24 100 32 36 140 43 44

21 7 12 61 21 26 101 33 38 141 44 45

22 8 11 62 22 27 102 34 39 142 45 46

23 8 9 63 23 29 103 33 39 143 46 47

24 5 12 64 24 30 104 32 35 144 44 47

25 9 13 65 21 27 105 31 36 145 44 48

26 10 14 66 22 26 106 34 38 146 45 49

27 11 15 67 23 30 107 32 38 147 46 50

28 12 16 68 24 29 108 33 36 148 47 51

29 9 14 69 22 29 109 34 35 149 45 48

30 10 13 70 23 27 110 31 39 150 46 49

31 10 15 71 24 26 111 37 35 151 47 50

32 11 14 72 21 30 112 37 39 152 44 51

33 11 16 73 26 27 113 37 40 153 48 49

34 12 15 74 27 29 114 37 43 154 49 50

35 12 13 75 29 30 115 35 40 155 50 51

36 9 16 76 30 26 116 36 41 156 48 51

37 13 17 77 25 26 117 38 42 157 48 52

38 14 18 78 27 28 118 39 43 158 49 52

39 15 19 79 25 30 119 35 38 159 50 52

40 16 20 80 29 28 120 36 39 160 51 52
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Table 12.6: 160 Bar Truss Grouping

Design Variable Elements

1 1 2 3 4

2 5 6 7 8 9 10 11 12

3 13 14 15 16

4 17 18 19 20 21 22 23 24

5 25 26 27 28

6 29 30 31 32 33 34 35 36

7 37 38 39 40

8 41 42 43 44 45 46 47 48

9 49 50 51 52

10 53 54 57 58

11 55 56 59 60

12 61 62 63 64

13 65 66 67 68

14 69 70 71 72

15 73 74 75 76

16 77 78 79 80

17 81 82 83 84

18 85 86 87 88

19 89 90 91 92

20 93 94 95 96

21 97 98

22 99 100 101 102

23 103 104 105 106

24 107 108 109 110

25 111 112

26 113 114

27 115 116 117 118

28 119 120

29 121 122 123 124

30 125 126 127 128

31 129 130 131 132

32 133 134 135 136

33 137 138 139 140

34 141 142 143 144

35 145 146 147 148

36 149 150 151 152

37 153 154 155 156

38 157 158 159 160
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12.5 Constraints

The allowable de�ection was taken as 16150/180 = 89.7mm. Stress constraints were not explicitly

imposed as SANS (2005) were used instead, refer to section 8.6.1.

12.6 Additional Information

Average computation time for the algorithm was 107 minutes for 5000 generations. The best mass

(1116.732kg) was obtained with a normalised �tness approach.

12.7 Results

It is clear that the de�ection criteria is not the governing constraint for this lattice tower, the average

de�ection was 57.3mm, which is signi�cantly lower than the permissible de�ection of 89.7mm. The �rst

order linear �nite element analysis does not consider buckling and second order e�ects, however the

SANS (2005) makes marginal provision for it by classifying elements as class 4 sections and reducing

their compression capacity for cases where local buckling can occur. The algorithm takes account of

this reduced compression capacity, subsequently such members are subjected to penalty sooner than

those who do not buckle which results in a lower probability to survive. It should be noted that the

actual area of the element is not reduced, only its compression capacity; the true area of the section is

still fed to the �nite element analysis.
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Figure 12.3: Comparison between class 3 section list and combined class 3 and 4 section

list

It is interesting to note that the algorithm was initially run with a section list which only contained

class 3 sections. This has two major disadvantages. Firstly, the search space is considerably reduced,
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which implies that the number of possible solutions are less. The fewer solutions there are to choose

from, the less likely it is to �nd a good solution. There is however a �ne balance. When the search

space becomes too large, the search might get lost and not produce any good result at all. The second

disadvantage has to do with the section sizes. Many class 4 elements are smaller in size, which is ideal

for bracing members which does not directly carry large loads. The algorithm must simply settle with

the next smallest size when these smaller sizes are not available. The di�erence in weight was rather

signi�cant, refer to �gure 12.3

12.7.1 Static Fitness Approach

The algorithm takes a few generations to �nd the �rst feasible solution. Typical mass behaviour during

this stage is a signi�cant increase in mass. The mass will start to decrease once it has found that �rst

feasible solution, a good schema, with which to work with. Observe that there is a rapid decrease

in mass right after the �rst feasible solution was found, where after it takes the algorithm many

generations to �ne tune. This is a good illustration as to why hybrid algorithms are recommended,

refer to section 6.3. The genetic algorithm is very good at searching vast search spaces quickly, but its

performance decreases in localised search.
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Figure 12.4: 160 Bar Truss Static Fitness - Displacement vs Mass

There is a typical relationship between the �tness of an individual and its de�ection. A structure

will typically be of lighter mass if it is allowed to de�ect more. A lighter mass leads to a lower objective

function value which will result in a higher �tness, refer to equation 8.6.26.
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Figure 12.5: 160 Bar Truss Static Fitness - Displacement vs Fitness

12.7.2 Dynamic Fitness Approach

Figure 12.6 illustrates the unpredictable nature of the search for the case where constraint violations

are active; the green region indicates generations where the constraints are violated. There is no clear

relationship between the �tness and objective values within these green regions. The chaotic nature of

the green region in the search is a result of the dynamic penalty function which is generation dependent.

There will be a decrease in the �tness function value in this region, even if the best solution from the

previous generation is carried through to the next generation. Again, observe the steep initial increase

in mass before the gradual optimisation process starts.
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Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 12. 160 BAR TRUSS 106

Figure 12.7 illustrates the dynamic behaviour of the �tness of this approach. The mass decreases

as the overall dynamic �tness increases.
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Figure 12.7: 160 Bar Truss Dynamic Fitness - Fitness vs Mass

12.7.3 Normalised Fitness Approach

Normalised �tness is much like the static �tness, except that the �tness lies within the bound (0,1).

In contrast to the static �tness, this approach does not need to set a very large constant and to check

whether the constant is large enough in order to avoid negative �tness.
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Figure 12.8: 160 Bar Truss Normalised Fitness - Fitness vs Displacement
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Figure 12.9: 160 Bar Truss Normalised Fitness - Fitness vs Mass

12.8 Comparison

Table 12.7: 160 bar benchmarking problem minimum mass [kg] comparison

Static Mass Dynamic Mass Normalised Mass Groenwold

1308.025 1294.891 1116.732 1359.781

 

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000

M
a

ss
 (

k
g

)

Generation

Static Mass Dynamic Mass Normalised Mass

Figure 12.10: 160 Bar Truss Comparison - 1000 Generation Mass Function
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12.9 Results using Frame Element Results

The frame element's behaviour for this problem is depicted in �gure 12.12. Reasons for this approach

is thoroughly described in the part V.
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Figure 12.12: 160 Bar Frame Truss - Fitness vs Displacement
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Figure 12.13: 160 Bar Frame Truss - Fitness vs Mass

12.9.1 Comparison Truss and Frame Element

It is only signi�cant to note, at this stage, that the frame element implementation is correct; this

approach compares well to the normal truss element analysis and could therefore be used if it be

necessary.
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Chapter 13

Introduction

The key objectives in overhead power line optimisation are to achieve the lowest maintenance and

construction costs, coupled with essential operational reliability (Muftic et al., 2005). According to

Diez-Serrano and Marais (2005), the objectives of overhead power line tower design are:

� Produce a safe structure

� Satisfy statutory requirements

� Facilitate maintenance

� Minimise the cost of the structure

The structure considered in this case study is Eskom's Self-Supporting Suspension 518H Tower,

refer to Appendix 17.3 and Appendix 17.4. The tower consists of 947 elements, see �gure 14.2. It

is important to take note of the scale of this optimisation problem. The search space size is 94749.

According to the BBC (2012) documentary, To In�nity and Beyond, one of the largest known numbers

to mathematicians is a googol. �A googol is, for example, far larger than the number of atoms in the

human body or more than the number of atoms that make up planet earth. This number is even more

than all the atoms in the entire observable universe.� One cannot even begin to fathom the vastness of

this optimisation problem, when it is calculated that this search space is about 745 times larger than a

googol. In other words, the number of solutions to the design variables of this problem, is more than

745 times the number of atoms in the universe.

13.1 Objective

This case study only considers one of the objectives mentioned by Diez-Serrano and Marais (2005),

which is to minimise the cost of the structure by means of weight minimisation. The objective of this

implementation is to create a model that is as close as possible to that of the real-life tower and to

investigate key aspects that might make this problem di�erent from standard benchmarking problems.

111
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Finally, once all the issues have been identi�ed, the objective is to optimise the structure or make future

recommendations. Establishing and investigating the type of di�culties involved with modelling and

optimising real-life structures contribute toward the main objective of this thesis. Therefore, this

case study serves as an introductory investigation as to how real life structures are di�erent from

benchmarking problems and what kind of steps can be taken to over-come possible issues and errors.
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Design Data

The tower consists of 358 nodes and 947 elements. The section list used is in appendix 17.5. The

design data is included in Appendix 17.4.

Figure 14.1: Eskom Transmission Tower Design (Property of Eskom)

113
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Figure 14.2: Modeling the Eskom Tower

14.1 Load Cases

There are eight de�ned load cases for this structure: (Data tables available in Appendix 17.6)

� Case 1A

� High transverse wind

� θ = 90◦

� Case 1AR

� High transverse wind

� θ = 90◦

� 38% vertical loads only

� Case 2A

� All conductors broken

� Case 2BR

� Broken centre and left conductors
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� 38% vertical loads only

� Case 3

� Special transverse

� Case 4A

� Maintenance and construction (left)

� Case 4B

� Maintenance and construction (centre)

� Case 5

� Heavy ice

These loads, provided by Eskom, are test loads. However, Eskom used these as design loads,

therefore no design factors were introduced in the calculations. These loads were treated as ultimate

loads, however serviceability was still taken into account (refer to section 14.3). The motive behind

still considering serviceability has to do with the type of load; for example, load 4B is maintenance

and construction, here the tower must de�ect within limits to ensure for safety of the workers.

Loads that were applied to the conductors, were transferred to places where the conductors are

attached to the tower, see �gure 14.3. The annotation for �gure 14.3 is explained in Appendix 17.6.

The reason for this approach is because there are no nodes outside of the structure or type of connection

with which to transfer these loads from outside of the structure to the structure itself.

14.2 Grouping

No grouping strategies were programmed for this structure, instead grouping was user de�ned. Ele-

ments of similar sizes, as indicated on the original design, were simply placed in the same group, refer

to Appendix 17.4. This could result in a suboptimal structure, as the presumed sizing groups might

be incorrect. However, as stated earlier, investigating grouping strategies is not part of the objectives

of this research.

14.3 Serviceability

Eskom did not provide any guidance on acceptable de�ections for the tower. The serviceability of

the structure was therefore roughly based on assumptions regarding Annex D in SANS (2005). The

structure was assumed to be an industrial type building with a `span' equal to the tower's height. The

maximum de�ection was initially limited to the span divided by 180, which was rounded to 155mm.

This value was then roughly doubled to 300mm based on engineering judgement regarding the tallness

of the structure.
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14.4 Genetic Parameters

The following genetic parameters were used in this case study, unless speci�ed otherwise:

Table 14.1: Genetic parameters for the case study

Parameter Value

Crossover probability 0.8
Mutation probability 0.005
Population size 100
Maximum number of generations 5000
Scaling constant 1.5
Number of crossover points 1
Elitism TRUE
Selection with replacement TRUE
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Chapter 15

Modelling and Implementation

15.1 Modelling Inaccuracies

The program was unable to analyse the structure as a 3D truss model. A possible cause identi�ed

for this outcome was unstable planar joints or mechanisms, see section 15.2, due to small modelling

inaccuracies. Mechanisms result in an error as there is no sti�ness in the perpendicular direction of the

plane in which the elements lie. Small modelling inaccuracies arise from calculating nodal coordinates

in 3 dimensions for 358 nodes; the 1074 positional values were hand calculated to the 3rd decimal from

the engineering drawings. However, the smallest inaccuracy will cause two joined elements to lie in

di�erent planes. Figure 15.1 illustrates a mechanism, where elements 1 and 2 are supposed to lie in

the plane x = 1. This small inaccuracy will cause the structure to loose all its strength, as there is no

resistance in the direction perpendicular to the plane (indicated by the red arrow).

Figure 15.1: Small modelling inaccuracies can result in a mechanism
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There are no joints at positions where insulators are positioned (see �gure 14.3: the positions of

the insulators, indicated by the rectangles, are outside of the structure), therefore there must be joints

at places where these insulators are connected to the structure or where concentrated loads are applied.

Loading at places outside of the structure (where no nodes are de�ned) are transferred as illustrated

in �gure 14.3 to the appropriate nodes.

Members that are enclosed by a system of elements and are redundant, need not be included in the

model (PLS, 2011). The inclusion of such members would add unnecessary complications such as extra

members and nodes, with no additional information provided by the analysis. These extra members

will bear no force, given that it is a linear analysis and all members are truss elements. These members

are, however, important in the structure as they would have to carry transverse load in cases where a

person might climb the tower and carry 1-3% of the compressive loads. (PLS, 2011). This approach

was not implemented, all members where considered in the analysis and in calculating the mass of the

tower.

15.2 Dealing with Planar Joints

Planar joints can occur in three dimensional truss element structures. A planar joint is a connection

of elements which all lie within the same plane. This joint could start to resemble a mechanism.

Figure 15.2 illustrates such a connection. Planar joints are problematic in linear �rst order analyses

as they provide no sti�ness in the direction perpendicular to the plane. The program can therefore

potentially try to divide by zero which will result in an error. PLS (2011) recommends avoiding planar

joints all together. Four methods are recommended in order to avoid the use of planar joints.

Figure 15.2: A planar joint
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15.2.1 Dummy Elements

The adding of a dummy element method recommends adding a �ctitious element as a support between

the planar joint and any stable point in close proximity (PLS, 2011). This procedure was not selected

to solve the modeling problem in order to avoid changes in the force distribution of the structure.

15.2.2 Removing a Degree of Freedom

The removing a degree of freedom method suggests adding a support in the perpendicular direction

of the plane, hence the joint will not be able to form a mechanism (PLS, 2011). This approach was

not used to solve the modeling problem, as it would require excessive additional work from the user to

specify such points and de�ne the supports. The problem needs to be solved without much additional

input e�ort and without making the algorithm problem speci�c.

15.2.3 Adding Fictitious Springs

The adding �ctitious springs method resembles the approach of removing a degree of freedom, however

instead of adding supports, springs with a small sti�ness of 1 Newton/meter are added to the structure

(PLS, 2011). This method was not used in modeling the tower for the same reasons explained above.

15.2.4 Using Frame Elements

The last recommendation by (PLS, 2011) involves replacing the elements which form planar joints with

frame elements. These elements have more degrees of freedom with some sti�ness in the perpendicular

direction of the planar joint. These members are, however, still treated as if they were truss elements.

This approach runs the risk of resulting in a tower that is too sti�, especially if all members are modeled

as frame elements.

The best solution to this problem was to model the structure with frame elements in order to

stabilise planar joints. The structure was still not subjected to design checks involving moments,

even though modelling inaccuracies might produce insigni�cant moments. The structure should not

be designed for modelling inaccuracies, in other words, for the limitations of analysing a realistic

structure. The engineer should be able to di�erentiate between modelling issues and actual physical

issues. The frame elements, in addition to having an area, are also assigned moments of inertia and St

Venant's Torsion constants to provide sti�ness. The axial forces from the analysis were used for design

checks, this approach was tested in section 12.9.

15.3 Tension-only Members

Members can be de�ned such that they can only carry tension forces, when a truss structure is designed

as if the whole system is made of sti� ropes. Such members are known as tension only members, where
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Figure 15.3: Behaviour of Tension-only Element (PLS, 2011)

some programs (such as PROKON) make allowance for such members. Such a member will buckle for

the case where the compression force exceeds the member's capacity, thereby loosing its compressive

strength, see �gure 15.3. Tension members typically have larger slenderness ratios. However, tension

only elements add great complexity to linear analyses due to changes in the sti�ness matrix after

the element buckles (PLS, 2011). No such changes are required for cases without tension members.

PLS (2011) recommends avoiding tension-only members, therefore this case study did not make use of

tension-only members.

15.4 E�ective Length of Members

The e�ective length of a member a�ects its compression capacity; a longer e�ective length results in a

smaller compression capacity, refer to section 8.6.1.3. However, the e�ective length of real life structures

of certain members are shortened due to connections. Figure 15.4 illustrates how the e�ective length

of a member is shorter than its actual length due to a connection between two elements. Elements

6047 and 6046 are e�ectively shortened by the pin connecting them. This approach is not valid if

bi-axial bending is considered. E�ective length adjustments were made by adding nodes at places

where members are connected.

15.5 Length of Members

The member lengths for the pylon model were simply measured from node 1 to node 2 (see �gure 7.1) in

the algorithm. However, in reality there are at times some member overlap or member length reduction.

Member 4011, in �gure 15.5, illustrates steel overlap and member 4010 member length reduction. The

actual lengths of these elements in the model were taken to the centre of the connection. Connections,
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Figure 15.4: Adding nodes for a shorter e�ective length

however, are not considered in this optimisation procedure; the connections' weight contribution was

ignored, such as the gusset plate weight. The weight of the connections of the actual structure is not

included in the total weight for the comparison in the results. It is assumed that the total length of

elements in the model compared to that of the real structure is the same, as it is assumed that places

of overlap and member length reduction balances out.

Figure 15.5: Connection illustrating di�erence in member lengths from model (Property of Eskom)

15.6 Notes on Multiple Load Cases

The eight load cases described in section 14.1 cannot simply be used individually to optimize the

transmission tower; it would be incorrect to simply run the algorithm for each load case and then

to select the heaviest pylon as the solution. The heaviest structure is not necessarily a `conservative'

solution for all the other load cases. Another load case might cause the structure to fail as a result of a

given element being under-designed for this load case, even if the structure was designed satisfactory for

the initial `conversative' load case. This can be the case even if the loading for this load case is smaller

in magnitude and the pylon (overall) a lighter structure. This is due to possible changes in the direction
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and position of the loading, or perhaps a given load where there was none before. All load cases must be

considered to ensure structural feasibility. This can, however, not be achieved by simply adding all the

load cases together. Such a load condition will be unrealistic and will result in a severely over-designed

structure, which defeats all optimisation purposes. Eskom did not provide any load combinations,

nonetheless, load combinations can easily be dealt with by simply creating a new combined load case.

The challenge lies in solving for multiple load cases, and not in solving for a load combination. The

solution must somehow be valid for all load cases, separately but simultaneously. This can be done by

subjecting each model to all 8 loading conditions one by one. Some violation `bookkeeping' must be

kept for the case where a solution violates a constraint for a given load combination. The performance

of the structure is evaluated and summarised for all loading conditions. This suggests that the structure

with the best overall performance will have the highest �tness and the highest probability to be selected

for the next generation, refer to section 4.4.1. Stress, displacement and slenderness violations must be

checked by performing an analysis for each load condition.

This problem becomes di�cult in the sense that it takes a great amount of computing power. Each

model must be tested for all 8 cases, one after another; that is each individual for the whole population

in a generation. The number of analyses increases 16 fold for every run. A population of 100, for the

pylon model, takes one and a half days to produce 5000 generations without considering multiple load

cases. It should be noted that it is not in this case the GA that makes the run so computationally

expensive.

The �nite element analysis computations, or more accurately, inverting a sti�ness matrix, for 947

elements (358 nodes) with 6 degrees of freedom is computationally expensive. Equation 15.6.1 expresses

the basic sti�ness equation which forms the basis for solving a �nite element problem, refer to (Cook

et al., 2002) for more information.

Kd = F (15.6.1)

The sti�ness matrix, equation 15.6.2, becomes larger and larger for each element added to a struc-

ture; smaller elemental matrices can be added to form one larger system sti�ness matrix for the

complete structure.

k =



EA
l 0 0 −EAl 0 0

0 12EI
l3

6EI
l2 0 − 12EI

l3
6EI
l2

0 6EI
l2

4EI
l 0 − 6EI

l2
2EI
l

−EAl 0 0 EA
l 0 0

0 − 12EI
l3 − 6EI

l2 0 12EI
l3 − 6EI

l2

0 6EI
l2

2EI
l 0 − 6EI

l2
4EI
l


(15.6.2)
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However, the analysis of each new load case does not need a new inverted sti�ness matrix as the

model itself did not change. The program can be coded as such that the inversion of the sti�ness

matrix is performed only once, where after simple matrix multiplication can be performed to solve for

the unknown displacements and rotations, and back substitution to solve for all the unknown forces.

This approach should, for all practical purposes, take about the same amount of time as solving for

one load case. Moreover, there is some playo� between the number of individuals in a population

and the number of generations. The number of individuals can be increased to, for example, 200 and

therefore the number of generations can be decreased. There is however, a �ne balance; increasing the

number of individuals increases the number of analyses that must be performed, however decreasing

the number of generations decreases the number of analyses. In other words, more individuals require

more analyses but fewer generations. Furthermore, it is not necessary to run the algorithm for 5000

generations, as minimal changes are made to the solution for the last four thousand generations.

The �rst approach to solving the multiple load case problem was to sum all the penalised objec-

tive functions and to divide the sum by the number of load combinations. This approach provides

some average performance of the tower under the various load conditions.

for each model i in the population {

for each load case l {

create a femModel

analyse the femModel

for each element e in the femModel {

store internal axial forces Fie,l

store model displacement = max {Dl}

}

find the penalised objective φip,l for load case l

}

find the penalised objective for the model φp,i =

8∑
l=1

φip,l

8

find the fitness ζi with φp,i

}

This approach did not provide good results, refer to �gure 15.6. One argument is that the average

of all the penalised objective functions is not necessarily a resemblance of any individual penalised

objective value for a given load case. For example, consider the hypothetical objective function values

in table 15.1 for two load cases:
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Table 15.1: Hypothetical objective function values of 2 load cases for explanation purposes

Load Case Objective Function Value

1 1
2 10

The average of these two values is 5.5. This number does not tell the algorithm anything about

any of the two load cases. Furthermore, consider for argument's sake a thousand load cases with a

large variance, providing it with average information is equivalent to expecting the algorithm to solve

for anything that can happen to the structure without giving it any particular information on the

behaviour of the structure subjected to the given load cases.

 

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

0

10

20

30

40

50

60

70

80

0 200 400 600 800
F

it
n

e
ss

T
ri

ll
io

n
s

M
a

ss
 (

k
g

)

T
h

o
u

sa
n

d
s

Generation

Mass Penalty Fitness

Power (Mass) Power (Penalty) Linear (Fitness)

Figure 15.6: Performance for static �tness function with an average penalised objective function ap-

proach

Observe that the �tness function values decrease linearly as the generations increase. This is due

to a built-in generation parameter in the penalty function. The penalty is increased for every new gen-

eration that constraint violations are present, even if the solution did not change. The mass basically

jumps around at random, which indicates that the search has become random.

The second approach was to change the penalised objective function value from the average of all

load cases, to the most severe for all load cases.

for each model i in the population {

for each load case l {

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 15. MODELLING AND IMPLEMENTATION 126

create a femModel

analyse the femModel

for each element e in the femModel {

store internal axial forces Fie,l

store model displacement = max {Dl}

}

find the penalised objective φip,l for load case l

}

find the penalised objective for the model φp,i = max
{
φip,l

}
for l = 1, 2, ..., 8

find the fitness ζi with φp,i

}

Figure 15.7 illustrates the second approach for solving the multiple load case problem. This ap-

proach does result in better algorithmic behaviour, however, the algorithm still struggles to �nd that

�rst feasible solution. One reason might be that the algorithm is provided too little information about

the load cases, because only the load case which results in the lowest �tness for that particular gen-

eration is communicated to the algorithm. It might appear from the algorithm's `point of view' that

the objective function is continuously changing and can therefore not �nd direction in the search.
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Figure 15.7: Performance for static �tness function with a maximum penalised objective function

approach

The outcomes above suggest that the solution of the multiple load case problem must somehow

include information of all the load cases. The study suggests gathering more information on the
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behaviour of the model for all the load cases applied to it by performing a form of pre-evaluation

for each and then somehow including the outcome in the objective, be it in a weighted form or

simply setting some standard. There is a de�nite need to perform a sensitivity study; setting the

genetic parameters to un�tting values could possibly disturb the search and restrict it from �nding

an outcome. The optimisation procedure must be of such that the direction of the search can become

clear to the genetic algorithm, in other words, the objective function must be able to provide proper

guidance towards �nding �t solutions.

15.7 Provisional Solution for the Case Study

The provisional solution provided by this study is simply an optimised solution for the critical load

case 2A. The allowable de�ection was taken to be 300mm. The element sizes are given in table 15.2.

The total mass of the actual Eskom tower is 30,392 tons. This weight excludes the weight of

connections, for example gusset plates and bolting. The weight found by the algorithm for the critical

load case is 30,644 tons.
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Figure 15.8: Critical load case mass and de�ection behaviour
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Figure 15.9: Critical load case mass and �tness behaviour

Table 15.2: Element sizes for the given design variables

Design Variable Area mm2

1 4300
2 430
3 4300
4 4300
5 2750
6 1510
7 1710
8 3480
9 935
10 935
11 1060
12 430
13 935
14 1310
15 935
16 1870
17 582
18 935
19 935
20 430
21 268
22 582
23 1550
24 1390
25 235
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15.8 Alternative Proposal for the Multiple Load Cases

Spillers and MacBain (2009) argue that a problem with two load cases can be decomposed into a single

load case. The authors do this by de�ning a primal and dual problem for the two load cases. The

primal problem is a minimisation problem for the maximum axial force in a member as a result of the

2 load cases. The dual problem is obtained from standard linear progamming. The authors use two

identities to decompose the problem. Refer to Spillers and MacBain (2009) for more information. This

approach, however, does not work for three or more load cases and is therefore rather limiting.

Konak et al. (2006) mentions two traditional methods with which to approach such a problem.

The �rst is to combine all the objectives by some means, for example, the weighted sum method.

This method is however, not highly recommended due to di�culties with weights and balancing of the

objectives. The second approach is to add all the objectives, except for one, to the constraints and

then to optimise for the remaining objective. This method also does not come highly recommended

due to di�culties in �nding suitable constraining values. A new approach is needed with which to

solve the problem. The following are important to note:

� The objective function changes with each new load case.

� It is perhaps not possible to create one master objective function, due to the con�icting nature

of some of the objectives.

Perhaps the aim of the problem should move towards �nding a set of solutions, where each solution

is acceptable to a satisfying degree without dominating other solutions. Konak et al. (2006) state that

the GA is ideal to handle such problems.

15.8.1 Multi-Criteria Optimisation

Thus far the �tness for a speci�c solution was expressed as a single number, even though many

parameters were involved. This cannot be done for the multiple load case problem. In this case,

solutions can be obtained in a number of ways, where the solutions themselves cannot necessarily be

combined which makes it impossible to �nd a single expression for the �tness. Coley (1999) explained

multi-criteria optimisation with the following example: An engineer might wish to minimise the weight

of a steel structure so that the cost of the structure will be at a minimum. However, the structure must

also be su�ciently safe and failure will lead to great cost implications. It is clear that the minimum

cost might not necessarily be a feasible solution due to the risks involved, therefore for this problem

both the weight of the structure and its safety must be considered. Ideally, the solution should provide

the lowest possible cost of structure for the highest possible safety. One way of dealing with such

problems is by applying the concept of Pareto Optimality. Castro and Barbosa (2000) de�nes a Pareto

set as �the set of solutions which are such that no improvement can be made in one objective without
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Figure 15.10: Pareto Optimality (Coley, 1999)

deteriorating at least one of the other objectives is called the Pareto set of non-dominated solutions

and an approximation of it would be very useful in order to get insight into the problem and assist

the decision making process.� In �gure 15.10, the plotted points a to f represent possible solutions to

Coley (1999)'s example. a is a solution which holds the lowest cost, but has the highest risk of failure

(the x axis is some arbitrary normalised cost unit). On the other hand, f has the lowest risk of failure,

but with the highest cost. e and c are said to be dominated, this is due to the fact that there are other

solutions that o�er both reduced risk and cost. These superior solutions are termed non-dominated.

Figure 15.11 enables an engineer to make more informed decisions. There are di�erent ways of

implementing Pareto optimality with a genetic algorithm during the selection procedure. One way is

to divide individuals into nondominate and dominate groups, where the nondominated are assigned

a rank value of 1. Individuals are removed from the selection pool once they are assigned to the

nondominated set. The whole process is repeated, but this time the rank value is 2. The process is

terminated as soon as all members are ranked.

A standard formulation for the multi-objective problem with K objectives can be de�ned as: (Konak

et al., 2006)

For a decision variable vector with n dimensions, x = {x1, ..., xn}, in a solution space X, �nd x∗

such that φ (x∗) = {φ1 (x∗) , ..., φk (x∗)} is a minimum, where the solution is subjected to constraints

gj (x∗) > 0 for j = 1, ..., J and bounds hm (x∗) = 0 for m = 1, ...,M . A feasible solution x will

dominate a feasible solution y if φi (x) 6 φi (y) for i = 1, ...,K and φj (x) < φj (y) for at least one

objective function j.
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Figure 15.11: Dominated and Non-Dominated Solutions (Coley, 1999)

In a similar way that safety and minimum cost were two objectives in the example problem above,

so too can di�erent load cases be di�erent objectives. Castro and Barbosa (2000) suggest an algorithm

which modi�es an evenly distributed set of solutions by ranking the set based on its non-domination

properties, after which a �lter is created in order to preserve the Pareto set solutions. This algorithm

will need special operators such as exclusion. Castro and Barbosa (2000) state that the following

features make the genetic algorithm favourable for multi-criteria optimisation through means of a

Pareto set:

� The algorithm is population based

� It only needs objective function values

� The use of probabilistic transition rules makes it less susceptible to local minima

15.8.2 Implementing a Pareto Set in the Genetic Algorithm

Osyczka and Kundu (1995) explains that the basic concept of incorporating a Pareto set hinges on

ascribing �tness as such that greater �tness is awarded to solutions further away from the current

Pareto set. Award every Pareto solution a distance value denoted as dl for l = 1, ..., lp where lp

indicates the number of existing Pareto solutions. Let fl = [f1l, ..., fIl]
T
be the objective functions

vector for the lth Pareto solution. The exterior penalised objective function suggested by Osyczka and

Kundu (1995) is:

φi,p (x) = φi (x) + r
M∑
m=1

[hm (x)]
2

+ r
K∑
k=1

Gk [gk (x)]
2
for i = 1, ..., I (15.8.1)
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Where Gk = 0 for gk (x) > 0 and Gk = 1 for gk (x) < 0 and r simply scales the penalty. The

relative distance for each new solution x is:

zl (x) =

√√√√ I∑
i=1

(
fil − φp,i (x)

fil

)2

for l = 1, ..., lp (15.8.2)

15.8.2.1 Pseudo Code (Osyczka and Kundu, 1995)

begin at generation g = 1 and individual i = 1

create initial population and set the first random solution as

the Pareto optimal solution

set Pareto optimal solution fitness F equal to d1

value d1 is a random starting point

if g = 1

generate random solution x

else proceed from ∗

for solution x

calculate the relative distances with equation 15.8.2

find zl∗ (x) = min {zl (x)} for l = 1, ..., lp

where index l∗ indicates which Pareto solution is closest to the newly

generated solution x

∗ if the last solution x is a new Pareto solution {

calculate the fitness for the new Pareto solution

F = dl∗ + zl∗ (x)

update existing Pareto set

remove all entries in old Pareto set that is dominated by the new set

add the rest of the new set to old set

set z of new Pareto solution equal to F}

∗ else {

calculate the fitness for this solution

F = dl∗ − zl∗ (x)

check for negative fitness

if F < 0 then F = 0 }

find the maximum distance from all existing Pareto solutions

dmax = max {dl} for l = 1, ..., lp

where lp is the number of Pareto solutions

substitute dl = dmax for l = 1, ..., lp

g = g + 1

Algorithm termination criteria were left out of the pseudo code, this can simply be a prede�ned
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number of maximum generations or some other criteria.

This approach must �rst be tested with test functions to ensure that the new code is adequate. It

would have to follow the same procedure as was done in this study, by applying the algorithm to test

problems with known outcomes before it can be applied to a real life problems with unknown outcomes.

In this way, the adequacy of the new algorithm is extrapolated from the known to the unknown.
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Conclusion

The �rst aim of the research was to thoroughly investigate the mechanics behind the genetic algorithm

and to introduce this research �eld to the Structural Department of Civil Engineering at Stellenbosch

University. There after the study implemented a genetic algorithm to serve as an optimisation tool to

optimise steel plane and space trusses, along with a Finite Element Method Program, whilst taking

into account various constraints. These constraints were typically stress and displacement constraints,

or constraints provided by SANS 10162, which would also account for slenderness and buckling e�ects.

Trusses were optimised for their weight, hence the design variables were the pro�les' cross sectional

areas. However, for future research, it could be extended to a multi-objective optimisation process.

With the use of benchmarking problems, it was proven that the algorithm produces competitive

results. The algorithm was then adapted and modi�ed, �rst for a theoretical 160 bar tower, imple-

mented with South African design standards, and then for a complete realistic South African practical

application, the Standard Eskom Transmission Tower.

The algorithm provided solutions to discrete structural optimisation problems within acceptable

times for research purposes. Keeping in mind the No Free Lunch theorems, the purpose of this study

was not to claim that the GA is the ultimate solution to all optimisation problems, however merely to

illustrate that it is a good choice for structural optimisation. Solutions found by the algorithm were

feasible, both mathematically and practically and no gradient computations were necessary.

Genetic algorithms are slower than traditional methods, however with present day computing power

this is not necessarily a disadvantage anymore (Rajeev and Krishnamoorthy, 1992). The GA uses

a statistical approach to navigate the search, in contrast to deterministic methods, this method is

probabilistic and stochastic. The algorithm's behaviour can be predicted, but not determined exactly.

The computations for each solution in a generation are independent, this allows for parallel computing.

The Schema theorem behind the genetic algorithm gives it a mathematical foundation upon which the

gain and loss of schema in succeeding generations operate. This theorem establishes that the overall

�tness of a population improves as the run progresses through the generations, which is a fundamental

prerequisite for any optimisation method. However, it cannot be mathematically deduced that the
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algorithm will converge at the true optimum. This is due to the fact that the algorithm is not

calculus based. As genetic algorithms produce better results than traditional methods for engineering

application, it can be accepted as a suitable optimisation tool for structural engineering design (Rajeev

and Krishnamoorthy, 1992).
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Future Research

This study only focused on sizing optimisation of the composing elements of a structure for the case

of one dimensional bar/truss elements. However, genetic algorithms can be applied to various forms

of structural optimisation and structural optimisation types. These include topology and shape op-

timisation, frame elements with more degrees of freedom and additional moment calculations. The

algorithm could be extended to include all the various forms of optimisation, as well as using di�er-

ent types of elements. Because the code is now readily available, further research into areas such as

improved �tness functions, penalties or perhaps even a completely new innovative way of dealing with

constraints are now possible. The basic genetic processes is independent and unattached to details

of the problem at hand, therefore to establish a primary genetic algorithm library that contains all

the genetic mechanisms, operators and approaches with an interface to an objective function (which

will be problem speci�c) would be a convenient optimisation tool. The program could be extended to

other disciplines; it need not only serve as structural optimisation. However, the code structure needs

re�nement and improvement. Work is needed into solving computer memory problems and to reduce

the algorithm's run time. This research recommends coding a �nite element analysis uniquely for the

use of the GA, that is memory e�cient for a large number of generations. A means of applying the GA

to problems with a large number of design variables or dimensions must be investigated. The program

was implemented for a single objective; to minimise the mass of the structure. However, it can easily

be extended to a multi-objective optimisation program. The individual can be divided into parts,

the chromosomes of di�erent parts could refer to di�erent objectives. Krishnamoorthy et al. (2002)

implemented shape optimisation for tubes, the �rst part indicates the number of groups necessary to

achieve a �nal solution and the second part is used for the thickness of the section. These two parts

were real-coded (not in binary format). The third part had a binary encoding scheme which related

to group cross sections.

The whole optimisation process can be combined with reliability. The optimisation of structures has

a direct e�ect on the cost, where cost needs to be kept at a minimum. This minimum cost is however not

only governed by structural principles, but also reliability theory. Eventually the aim of the research
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Figure 17.1: Reliability-based optimisation approach by Enevoldsen and Sorensen (1994)

initiative is to perform reliability-based optimisation of a structure, by taking into consideration certain

reliability principles whilst keeping the structure at an optimum, refer to �gure 17.1. Research needs

to investigate how reliability based optimisation models for large realistic structures can be formulated

and simpli�ed without a substantial loss of information. Also, to establish whether there is an overlap

between optimisation and reliability. In essence, future research is needed to formulate a reliability

based optimisation model which consists of a reliability model and an optimisation model which are

linked together.

Penalty techniques have been greatly criticised, even though they remain the most common way

with which to convert a constrained problem into an unconstrained problem for the case of the genetic

algorithm. Perhaps a complete new approach is needed that involves innovative thinking by going

back to genetic and evolutionary principles. These principles have proved to be of much value in this

study and it cannot be assumed that the concept is already fully developed. The same applies for the

encoding scheme in order to increase the number of design variables exponentially; it should be kept

in mind that chromosomes store unimaginable amounts of information.

With regard to the analysis, this implementation was only a �rst order linear analysis. It would be

more accurate to implement a second order analysis, also taking into account second order e�ects and

stability.

17.1 Di�erent Approach to Optimisation

In this study, the structure was optimised with respect to stress and displacement constraints, or

through implementing the South African design code. Another approach to optimise the structure,

other than having stress and displacement constraints, is through constrained vibration frequencies

and modes with an eigenvalue method. This will not only be a useful alternative means with which to

approach a solution from a di�erent engineering angle, but will also be needed in cases of earthquake

design where ground movement becomes an additional load case and structural dynamic movement a

constraint.
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17.2 A structure with Frame and Truss Elements

Rather than de�ning a whole structure as frame elements or truss elements, it might be better to model

some elements as frame elements and others as truss elements. This will reduce the risk of modelling

a structure that is too sti�, refer to section 15.2.4. The aim would be to use as few as possible frame

elements, just enough to make the structure stable.

17.3 Hybrid Algorithm

Some classical optimisation technique could be implemented after the genetic algorithm has �nished,

refer to section 6.3. This combined algorithm would result in an answer closer to the optimum. The

real extent to which the other advanced operators bene�t a search needs investigation, refer to section

6.

17.4 Upgrading the Genetic Algorithm

Geometry optimisation can be implemented by the GA. In other words, the GA can be coded in such

a fashion where the user only needs to de�ne certein key nodes in order to give the structure some

shape and to apply loading. The algorithm will then completely design the structure, from de�ning

the geometry to choosing the appropriate element sizes and even which element shapes are best suited.

Elements and nodes are removed from a grid of points which are all connected via elements. This

grid can vary in density. Hultman (2010) explains that special constraint criteria are needed in order

to ensure that the structure remains stable, e.g. the lattice structure must not become a mechanism.

Elements must be chosen as such that the structure still de�ects within limits. Another constraint

will be the structure's constructability. For this case two or more elements cannot share the same end

nodes. Also, an element cannot begin and end at the same node. This is just one approach with which

the genetic algorithm can be converted into a very powerful tool. Better ways need to be investigated

into de�ning and implementing constraints in such a fashion as to produce feasible structures.

17.5 Di�erent Types of Structures

This study only considered stable lattice structures, however, perhaps it is no longer vital to optimise

a speci�c type of structure, but rather �nding the best type which the structure must be. For example,

a transmission tower is perhaps only at its optimum when built as a guyed stayed structure, refer to

�gure 17.2.
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Figure 17.2: Eskom Cross Rope Suspension Tower (Makhura, 2010)
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17.1 Test Functions/Ariti�cial Landscapes

De Jong's Function 1

f1(xi) =
3∑
i=1

x2
i (.0.1)

with −5.12 6 xi 6 5.12.

De Jong's Function 2

f2(xi) = 100(x2
1 − x2)2 + (1− x1)2 (.0.2)

with −2.048 6 xi 6 2.048.

Figure 1: De Jong's Function 1 in 2D
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Figure 2: De Jong's Function 2 in 2D

De Jong's Function 3

f3(xi) =

5∑
i=1

integer(xi) (.0.3)

with −5.12 6 xi 6 5.12.

De Jong's Function 4

f4(xi) =

30∑
i=1

ix4
i + Gauss(0, 1) (.0.4)

with −1.28 6 xi 6 1.28.

De Jong's Function 5

f5(xi) = 0.002 +

25∑
j=1

1

j +
2∑
i=1

(xi − aij)6

(.0.5)

with −65.536 6 xi 6 65.536.
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Figure 3: De Jong's Function 3 in 2D

Figure 4: De Jong's Function 5 in 2D

Stellenbosch University  http://scholar.sun.ac.za



17.2 List of Possible Errors

The list below are common errors to check for:

� Incorrect �le paths

� Empty text �elds that should have values

� The input section list has incorrect units

� Area is given in x103 mm

� `Error of empty string' means that an essential value in the input sheet is empty, i.e. element

number missing

� The structure is unstable, refer to section 8.7

� Check the loading directions and structure orientation

� Structure might contain planar nodes, refer to section 15.2
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Table 1: Tower Nodal Coordinates

Node x (m) y (m) z (m) Node x (m) y (m) z (m)

1 7.225 0 0 46 7.225 0 8.95
2 8.12 1.2 0.235 47 7.46 1.2 0.895
3 9.015 2.4 0.47 48 7.695 2.4 1.79
4 9.91 3.6 0.705 49 7.93 3.6 2.685
5 10.805 4.8 0.94 50 8.165 4.8 3.58
6 11.7 6 1.175 51 15.425 25.55 4.475
7 7.46 1.2 0.235 52 8.4 6 4.475
8 7.695 2.4 0.47 53 7.46 1.2 8.055
9 7.93 3.6 0.705 54 7.695 2.4 7.16
10 8.165 4.8 0.94 55 7.93 3.6 6.265
11 8.4 6 1.175 56 8.165 4.8 5.37
12 15.28 1.2 0.235 57 8.165 4.8 1.93
13 14.385 2.4 0.47 58 8.165 4.8 7.02
14 13.49 3.6 0.705 59 15.94 1.2 0.895
15 12.595 4.8 0.94 60 15.705 2.4 1.79
16 15.94 1.2 0.235 61 15.47 3.6 2.685
17 15.705 2.4 0.47 62 15.235 4.8 3.58
18 15.47 3.6 0.705 63 15 6 4.475
19 15.235 4.8 0.94 64 15.94 1.2 8.055
20 15 6 1.175 65 15.705 2.4 7.16
21 16.175 0 0 66 15.47 3.6 6.265
22 9.155 4.8 0.94 67 15.235 4.8 5.37
23 14.245 4.8 0.94 68 15.235 4.8 1.93
24 8.12 1.2 8.715 69 15.235 4.8 7.02
25 9.015 2.4 8.48 70 8.635 7.2 1.41
26 9.91 3.6 8.245 71 8.87 8.4 1.645
27 10.805 4.8 8.01 72 9.105 9.6 1.88
28 11.7 6 7.775 73 9.34 10.8 2.115
29 7.46 1.2 8.715 74 9.575 12 2.35
30 7.695 2.4 8.48 75 14.765 7.2 1.41
31 7.93 3.6 8.245 76 14.53 8.4 1.645
32 8.165 4.8 8.01 77 14.295 9.6 1.88
33 8.4 6 7.775 78 14.06 10.8 2.115
34 15.28 1.2 8.715 79 13.825 12 2.35
35 14.385 2.4 8.48 80 8.635 7.2 7.54
36 13.49 3.6 8.245 81 8.87 8.4 7.305
37 12.595 4.8 8.01 82 9.105 9.6 7.07
38 15.94 1.2 8.715 83 9.34 10.8 6.835
39 15.705 2.4 8.48 84 9.575 12 6.6
40 15.47 3.6 8.245 85 14.765 7.2 7.54
41 15.235 4.8 8.01 86 14.53 8.4 7.305
42 15 6 7.775 87 14.295 9.6 7.07
43 16.175 0 8.95 88 14.06 10.8 6.835
44 9.155 4.8 7.99 89 13.825 12 6.6
45 14.245 4.8 7.99 90 10.0625 6 1.175
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Table 2: Tower Nodal Coordinates

Node x (m) y (m) z (m) Node x (m) y (m) z (m)

91 13.3375 6 1.175 136 9.22525 13.399 2.490451
92 10.0625 6 7.775 137 8.8755 14.798 2.630902
93 13.3375 6 7.775 138 8.51875 16.225 2.774163
94 8.4 6 2.8375 139 8.1625 17.65 2.917224
95 8.4 6 6.1125 140 7.80625 19.075 3.060285
96 15 6 2.8375 141 7.45 20.5 3.203346
97 15 6 6.1125 142 9.22525 13.399 6.459549
98 10.805 7.2 1.41 143 8.8755 14.798 6.319098
99 9.91 8.4 1.645 144 8.51875 16.225 6.175837
100 12.595 7.2 1.41 145 8.1625 17.65 6.032776
101 13.49 8.4 1.645 146 7.80625 19.075 5.889715
102 10.805 7.2 7.54 147 7.45 20.5 5.746654
103 9.91 8.4 7.305 148 9.22525 13.399 4.475
104 12.595 7.2 7.54 149 8.51875 16.225 4.475
105 13.49 8.4 7.305 150 7.80625 19.075 4.475
106 8.635 7.2 3.58 151 14.17475 13.399 2.490451
107 8.87 8.4 2.685 152 14.5245 14.798 2.630902
108 8.635 7.2 5.37 153 14.88125 16.225 2.774163
109 8.87 8.4 6.265 154 15.2375 17.65 2.917224
110 14.765 7.2 3.58 155 15.59375 19.075 3.060285
111 14.53 8.4 2.685 156 15.95 20.5 3.203346
112 14.765 7.2 5.37 157 14.17475 13.399 6.459549
113 14.53 8.4 6.265 158 14.5245 14.798 6.319098
114 12.9775 10.8 2.16 159 14.88125 16.225 6.175837
115 10.4225 10.8 2.16 160 15.2375 17.65 6.032776
116 12.9775 10.8 6.79 161 15.59375 19.075 5.889715
117 10.4225 10.8 6.79 162 15.95 20.5 5.746654
118 14.06 10.8 5.7525 163 14.17475 13.399 4.475
119 14.06 10.8 3.1975 164 14.88125 16.225 4.475
120 9.34 10.8 5.7525 165 15.59375 19.075 4.475
121 9.34 10.8 3.1975 166 12.77575 13.399 2.490451
122 11.7 12 2.35 167 11.7265 14.798 2.630902
123 11.7 12 6.6 168 10.65625 16.225 2.774163
124 9.575 12 4.475 169 9.5875 17.65 2.917224
125 13.825 12 4.475 170 8.51875 19.075 3.060285
126 10.0625 6 2.8375 171 10.62425 13.399 2.490451
127 10.0625 6 6.1125 172 12.74375 16.225 2.774163
128 13.3375 6 2.8375 173 13.8125 17.65 2.917224
129 13.3375 6 6.1125 174 14.88125 19.075 3.060285
130 10.0625 6 4.475 175 12.77575 13.399 6.459549
131 13.3375 6 4.475 176 11.7265 14.798 6.319098
132 10.6375 12 3.4125 177 10.65625 16.225 6.175837
133 10.6375 12 5.5375 178 9.5875 17.65 6.032776
134 12.7625 12 3.4125 179 8.51875 19.075 5.889715
135 12.7625 12 5.5375 180 10.62425 13.399 6.459549
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Table 3: Tower Nodal Coordinates

Node x (m) y (m) z (m) Node x (m) y (m) z (m)

181 12.74375 16.225 6.175837 226 4.316 26.4 5.061519
182 13.8125 17.65 6.032776 227 6.025 26.4 5.219765
183 14.88125 19.075 5.889715 228 7.45 26.4 5.324
184 10.65625 16.225 4.475 229 8.2375 26.4 5.324
185 8.51875 19.075 4.475 230 9.025 26.4 5.324
186 12.74375 16.225 4.475 231 10.6 26.4 5.324
187 14.88125 19.075 4.475 232 11.7 26.4 5.324
188 11.7265 14.798 4.475 233 12.8 26.4 5.324
189 7.8 21.9 3.343898 234 14.375 26.4 5.324
190 8.15 23.3 3.484449 235 15.1625 26.4 5.324
191 8.5 24.7 3.625 236 15.95 26.4 5.324
192 7.1 21.9 3.343898 237 17.375 26.4 5.219765
193 6.75 23.3 3.484449 238 19.084 26.4 5.061519
194 6.4 24.7 3.625 239 20.3665 26.4 4.93897
195 16.3 21.9 3.343898 240 21.17616 26.00334 4.850647
196 16.65 23.3 3.484449 241 22.13616 25.54376 4.762323
197 17 24.7 3.625 242 23.09616 25.09709 4.674
198 15.6 21.9 3.343898 243 23.4 24.7 4.474
199 15.25 23.3 3.484449 244 0.303837 25.09709 4.274
200 14.9 24.7 3.625 245 1.263837 25.54376 4.185677
201 7.45 24.7 3.625 246 2.223837 26.00334 4.097353
202 15.95 24.7 3.625 247 3.0335 26.4 4.00903
203 7.8 21.9 5.606102 248 4.316 26.4 3.886481
204 8.15 23.3 5.465551 249 6.025 26.4 3.728235
205 8.5 24.7 5.325 250 7.45 26.4 3.624
206 7.1 21.9 5.606102 251 8.2375 26.4 3.624
207 6.75 23.3 5.465551 252 9.025 26.4 3.624
208 6.4 24.7 5.325 253 10.6 26.4 3.624
209 16.3 21.9 5.606102 254 11.7 26.4 3.624
210 16.65 23.3 5.465551 255 12.8 26.4 3.624
211 17 24.7 5.325 256 14.375 26.4 3.624
212 15.6 21.9 5.606102 257 15.1625 26.4 3.624
213 15.25 23.3 5.465551 258 15.95 26.4 3.624
214 14.9 24.7 5.325 259 17.375 26.4 3.728235
215 7.45 24.7 5.325 260 19.084 26.4 3.886481
216 15.95 24.7 5.325 261 20.3665 26.4 4.00903
217 6.4 24.7 4.475 262 21.17616 26.00334 4.097353
218 17 24.7 4.475 263 22.13616 25.54376 4.185677
219 7.8 21.9 4.475 264 23.09616 25.09709 4.274
220 15.6 21.9 4.475 265 0.38506 24.8125 4.674
221 0 24.7 4.474 266 0.987 25 4.768008
222 0.303837 25.09709 4.674 267 2.223837 25.365 4.850647
223 1.263837 25.54376 4.762323 268 2.9385 25.6 4.953882
224 2.223837 26.00334 4.850647 269 3.7805 25.39806 5.03408
225 3.0335 26.4 4.93897 270 4.6105 25.16891 5.113135
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Table 4: Tower Nodal Coordinates

Node x (m) y (m) z (m) Node x (m) y (m) z (m)

271 5.4405 24.93386 5.19219 316 18.58 27.67 4.475
272 9.212 24.92809 5.324 317 18.83 27.67 4.475
273 10.038 25.16891 5.324 318 17.975 27.025 4.927
274 11.225 25.49 5.324 319 17.025 27.025 4.023
275 11.7 25.6 5.324 320 17.975 27.025 4.023
276 12.175 25.49 5.324 321 6.375 27.025 4.927
277 13.362 25.16891 5.324 322 5.17 27.67 4.475
278 14.188 24.92809 5.324 323 4.82 27.67 4.475
279 17.9595 24.93386 5.19219 324 4.57 27.67 4.475
280 18.7895 25.16891 5.113135 325 5.425 27.025 4.927
281 19.6195 25.39806 5.03408 326 6.375 27.025 4.023
282 20.4615 25.6 4.953882 327 5.425 27.025 4.023
283 21.17616 25.365 4.850647 328 9.8125 26.4 4.475
284 22.413 25 4.768008 329 13.5875 26.4 4.475
285 23.01494 24.8125 4.674 330 6.710068 26.4 4.475
286 0.38506 24.8125 4.276 331 5.060176 26.4 4.475
287 0.987 25 4.181992 332 3.591226 26.4 4.475
288 2.223837 25.365 4.099353 333 16.68993 26.4 4.475
289 2.9385 25.6 3.996118 334 18.33982 26.4 4.475
290 3.7805 25.39806 3.91592 335 19.80877 26.4 4.475
291 4.6105 25.16891 3.836865 336 10.2185 25.209 4.475
292 5.4405 24.93386 3.75781 337 8.856 24.814 4.475
293 9.212 24.92809 3.626 338 13.1815 25.209 4.475
294 10.038 25.16891 3.626 339 14.544 24.814 4.475
295 11.225 25.49 3.626 340 17.47033 24.81476 4.475
296 11.7 25.6 3.626 341 18.90451 25.19829 4.475
297 12.175 25.49 3.626 342 5.92967 24.81498 4.475
298 13.362 25.16891 3.626 343 4.495491 25.19829 4.475
299 14.188 24.92809 3.626 344 21.69538 25.22688 4.475
300 17.9595 24.93386 3.75781 345 22.78736 24.88371 4.475
301 18.7895 25.16891 3.836865 346 1.704621 25.22688 4.475
302 19.6195 25.39806 3.91592 347 0.612637 24.88371 4.475
303 20.4615 25.6 3.996118 348 16.08273 21.2433 4.475
304 21.17616 25.365 4.099353 349 16.4871 22.64842 4.475
305 22.413 25 4.181992 350 16.84929 24.09714 4.475
306 23.01494 24.8125 4.276 351 7.317269 21.2433 4.475
307 8.5 24.7 4.475 352 6.912895 22.64842 4.475
308 14.9 24.7 4.475 353 6.550715 24.09714 4.475
309 11.7 25.6 4.475 354 8.334084 24.03634 4.475
310 8.2375 26.4 4.475 355 15.06592 24.03634 4.475
311 15.1625 26.4 4.475 356 6.925 25.55 4.475
312 20.4615 25.6 4.475 357 7.975 25.55 4.475
313 2.9385 25.6 4.475 358 16.475 25.55 4.475
314 17.025 27.025 4.927
315 18.23 27.67 4.475
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Table 5: Tower Fixity

Node Fixity

1 ALL_TRANSLATION
21 ALL_TRANSLATION
43 ALL_TRANSLATION
46 ALL_TRANSLATION
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Table 6: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

1 1 7 46 29 30 91 48 49
2 7 8 47 30 31 92 49 50
3 8 9 48 31 32 93 50 52
4 9 10 49 32 33 94 46 53
5 10 11 50 46 24 95 53 54
6 1 2 51 24 25 96 54 55
7 2 3 52 25 26 97 55 56
8 3 4 53 26 27 98 56 52
9 4 5 54 27 28 99 7 47
10 5 6 55 43 34 100 8 48
11 7 2 56 34 35 101 9 49
12 8 3 57 35 36 102 10 57
13 9 4 58 36 37 103 57 50
14 10 22 59 37 28 104 94 52
15 22 5 60 43 38 105 11 94
16 90 6 61 38 39 106 53 29
17 11 90 62 39 40 107 54 30
18 21 12 63 40 41 108 55 31
19 12 13 64 41 42 109 56 58
20 13 14 65 29 24 110 58 32
21 14 15 66 30 25 111 95 33
22 15 6 67 31 26 112 52 95
23 21 16 68 44 27 113 47 8
24 16 17 69 32 44 114 48 9
25 17 18 70 92 28 115 49 57
26 18 19 71 33 92 116 57 11
27 19 20 72 34 38 117 53 30
28 12 16 73 35 39 118 54 31
29 13 17 74 36 40 119 55 58
30 14 18 75 37 45 120 58 33
31 23 15 76 45 41 121 43 64
32 19 23 77 93 42 122 64 65
33 91 20 78 28 93 123 65 66
34 6 91 79 24 30 124 66 67
35 2 8 80 25 31 125 67 63
36 3 9 81 26 44 126 21 59
37 9 22 82 31 44 127 59 60
38 4 22 83 44 33 128 60 61
39 22 11 84 34 39 129 61 62
40 12 17 85 35 40 130 62 63
41 13 18 86 36 45 131 38 64
42 14 23 87 40 45 132 39 65
43 18 23 88 45 42 133 40 66
44 23 20 89 1 47 134 41 69
45 46 29 90 47 48 135 69 67
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Table 7: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

136 97 63 181 63 128 226 109 82
137 42 97 182 128 6 227 28 102
138 59 16 183 6 126 228 102 103
139 60 17 184 126 52 229 103 82
140 61 18 185 126 11 230 28 104
141 62 68 186 127 33 231 104 105
142 68 19 187 129 42 232 105 87
143 96 20 188 128 20 233 63 112
144 63 96 189 129 131 234 112 113
145 64 39 190 131 63 235 113 87
146 65 40 191 131 128 236 63 110
147 66 69 192 127 130 237 110 111
148 69 42 193 130 52 238 111 77
149 40 69 194 130 126 239 85 112
150 9 57 195 11 70 240 86 113
151 31 58 196 70 71 241 110 75
152 59 17 197 71 72 242 111 76
153 60 18 198 72 73 243 75 100
154 61 68 199 73 74 244 76 101
155 18 68 200 33 80 245 98 70
156 68 20 201 80 81 246 99 71
157 63 36 202 81 82 247 70 106
158 28 66 203 82 83 248 71 107
159 66 34 204 83 84 249 108 80
160 36 64 205 42 85 250 109 81
161 64 34 206 85 86 251 80 102
162 6 61 207 86 87 252 81 103
163 63 14 208 87 88 253 104 85
164 14 59 209 88 89 254 105 86
165 61 12 210 20 75 255 104 93
166 12 59 211 75 76 256 92 102
167 52 4 212 76 77 257 94 106
168 6 49 213 77 78 258 95 108
169 4 47 214 78 79 259 91 100
170 49 2 215 6 100 260 90 98
171 2 47 216 100 101 261 96 110
172 28 55 217 101 77 262 97 112
173 52 26 218 6 98 263 93 85
174 26 53 219 98 99 264 92 80
175 55 24 220 99 72 265 95 80
176 24 53 221 52 106 266 94 70
177 28 127 222 106 107 267 90 70
178 127 52 223 107 72 268 91 75
179 28 129 224 52 108 269 96 75
180 129 63 225 108 109 270 97 85
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Table 8: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

271 70 107 316 120 84 361 150 147
272 70 99 317 117 84 362 150 141
273 75 101 318 116 89 363 79 151
274 75 111 319 124 132 364 151 152
275 85 113 320 132 122 365 152 153
276 85 105 321 122 134 366 153 154
277 80 103 322 134 125 367 154 155
278 80 109 323 125 135 368 89 157
279 77 114 324 135 123 369 157 158
280 114 122 325 123 133 370 158 159
281 72 115 326 133 124 371 159 160
282 115 122 327 132 74 372 160 161
283 72 121 328 135 89 373 155 156
284 121 124 329 134 79 374 161 162
285 82 120 330 133 84 375 79 163
286 120 124 331 132 133 376 163 158
287 82 117 332 134 135 377 89 163
288 117 123 333 84 142 378 163 152
289 87 116 334 142 143 379 152 164
290 116 123 335 143 144 380 164 160
291 87 118 336 144 145 381 158 164
292 118 125 337 145 146 382 164 154
293 77 119 338 146 147 383 154 165
294 119 125 339 74 136 384 165 162
295 88 118 340 136 137 385 160 165
296 119 78 341 137 138 386 165 156
297 78 114 342 138 139 387 151 163
298 115 73 343 139 140 388 163 157
299 73 121 344 140 141 389 153 164
300 120 83 345 142 148 390 164 159
301 83 117 346 148 136 391 155 165
302 116 88 347 144 149 392 165 161
303 89 125 348 149 138 393 79 166
304 125 79 349 146 150 394 166 167
305 79 122 350 150 140 395 167 168
306 122 74 351 84 148 396 168 169
307 74 124 352 148 137 397 169 170
308 124 84 353 74 148 398 170 141
309 84 123 354 148 143 399 74 171
310 123 89 355 143 149 400 171 167
311 118 89 356 149 139 401 167 172
312 119 79 357 137 149 402 172 173
313 114 79 358 149 145 403 173 174
314 115 74 359 145 150 404 174 156
315 121 74 360 139 150 405 151 166
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Table 9: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

406 171 136 451 145 179 496 201 191
407 152 167 452 160 183 497 200 202
408 167 137 453 176 188 498 202 197
409 153 172 454 188 167 499 198 195
410 168 138 455 188 184 500 199 196
411 154 173 456 188 186 501 192 190
412 169 139 457 167 184 502 195 199
413 155 174 458 176 184 503 193 201
414 170 140 459 176 186 504 190 201
415 166 152 460 167 186 505 199 202
416 171 137 461 177 184 506 196 202
417 152 172 462 184 168 507 147 206
418 137 168 463 184 178 508 206 207
419 153 173 464 184 169 509 207 208
420 138 169 465 178 185 510 147 203
421 154 174 466 169 185 511 203 204
422 139 170 467 179 185 512 204 205
423 84 180 468 185 170 513 162 212
424 180 176 469 185 147 514 212 213
425 176 181 470 185 141 515 213 214
426 181 182 471 172 186 516 162 209
427 182 183 472 186 181 517 209 210
428 183 162 473 186 173 518 210 211
429 89 175 474 186 182 519 206 203
430 175 176 475 173 187 520 212 209
431 176 177 476 182 187 521 207 204
432 177 178 477 174 187 522 213 210
433 178 179 478 187 183 523 208 215
434 179 147 479 187 156 524 215 205
435 142 180 480 187 162 525 214 216
436 143 176 481 141 192 526 216 211
437 144 177 482 192 193 527 206 204
438 145 178 483 193 194 528 209 213
439 146 179 484 141 189 529 207 215
440 157 175 485 189 190 530 204 215
441 158 176 486 190 191 531 213 216
442 159 181 487 156 198 532 210 216
443 160 182 488 198 199 533 195 348
444 161 183 489 199 200 534 209 348
445 180 143 490 156 195 535 162 348
446 175 158 491 195 196 536 156 348
447 143 177 492 196 197 537 206 351
448 158 181 493 192 189 538 147 351
449 144 178 494 193 190 539 141 351
450 159 182 495 194 201 540 192 351
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Table 10: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

541 195 349 586 243 285 631 236 237
542 196 349 587 243 264 632 237 238
543 210 349 588 243 306 633 238 239
544 209 349 589 286 287 634 239 240
545 206 352 590 287 288 635 240 241
546 192 352 591 288 289 636 241 242
547 193 352 592 289 290 637 244 245
548 207 352 593 290 291 638 245 246
549 197 350 594 291 292 639 246 247
550 211 350 595 292 194 640 247 248
551 210 350 596 265 266 641 248 249
552 196 350 597 266 267 642 249 250
553 194 353 598 267 268 643 250 251
554 208 353 599 268 269 644 251 252
555 207 353 600 269 270 645 252 253
556 193 353 601 270 271 646 253 254
557 208 217 602 271 208 647 254 255
558 217 194 603 285 284 648 255 256
559 211 218 604 284 283 649 256 257
560 218 197 605 283 282 650 257 258
561 203 219 606 306 305 651 258 259
562 219 189 607 305 304 652 259 260
563 198 220 608 304 303 653 260 261
564 220 212 609 282 281 654 261 262
565 219 204 610 281 280 655 262 263
566 219 190 611 280 279 656 263 264
567 220 199 612 279 211 657 191 293
568 220 213 613 303 302 658 293 294
569 190 354 614 302 301 659 294 295
570 205 354 615 301 300 660 295 296
571 191 354 616 300 197 661 296 297
572 204 354 617 222 223 662 297 298
573 214 355 618 223 224 663 298 299
574 200 355 619 224 225 664 299 200
575 213 355 620 225 226 665 205 272
576 199 355 621 226 227 666 272 273
577 205 307 622 227 228 667 273 274
578 191 307 623 228 229 668 274 275
579 308 214 624 229 230 669 275 276
580 200 308 625 230 231 670 276 277
581 221 222 626 231 232 671 277 278
582 221 265 627 232 233 672 278 214
583 221 244 628 233 234 673 286 265
584 221 286 629 234 235 674 286 347
585 243 242 630 235 236 675 287 347
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Table 11: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

676 266 347 721 299 339 766 249 227
677 265 347 722 278 339 767 249 330
678 268 346 723 308 202 768 330 228
679 289 346 724 308 216 769 330 250
680 287 346 725 202 218 770 227 330
681 266 346 726 216 218 771 250 228
682 225 313 727 202 216 772 250 310
683 313 247 728 197 340 773 310 230
684 268 313 729 279 340 774 228 310
685 289 313 730 300 340 775 310 252
686 269 313 731 211 340 776 229 310
687 290 313 732 281 341 777 310 251
688 269 343 733 302 341 778 252 328
689 271 343 734 300 341 779 328 253
690 292 343 735 279 341 780 328 231
691 290 343 736 281 312 781 230 328
692 194 342 737 302 312 782 253 231
693 208 342 738 239 312 783 254 232
694 271 342 739 312 261 784 255 233
695 292 342 740 312 303 785 255 329
696 217 201 741 282 312 786 329 256
697 217 215 742 284 344 787 329 234
698 201 215 743 305 344 788 233 329
699 201 307 744 285 345 789 256 311
700 215 307 745 306 345 790 311 236
701 272 337 746 303 344 791 234 311
702 293 337 747 282 344 792 311 258
703 191 337 748 305 345 793 235 311
704 205 337 749 284 345 794 311 257
705 295 336 750 285 306 795 236 258
706 274 336 751 244 222 796 237 333
707 272 336 752 222 245 797 259 333
708 293 336 753 245 223 798 258 333
709 295 309 754 223 246 799 236 333
710 274 309 755 246 224 800 259 237
711 275 309 756 224 247 801 237 334
712 309 296 757 247 225 802 238 334
713 309 297 758 247 332 803 260 334
714 309 276 759 226 332 804 259 334
715 297 338 760 248 332 805 238 335
716 299 338 761 225 332 806 261 335
717 278 338 762 227 331 807 239 335
718 276 338 763 249 331 808 260 335
719 200 339 764 248 331 809 261 239
720 214 339 765 226 331 810 239 262
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Table 12: Tower Element De�nition

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

811 262 240 856 200 258 901 250 326
812 240 263 857 214 236 902 326 322
813 263 241 858 258 197 903 321 322
814 241 264 859 236 211 904 227 325
815 264 242 860 197 259 905 249 327
816 244 286 861 211 237 906 327 323
817 265 222 862 259 301 907 325 323
818 286 245 863 237 280 908 322 323
819 265 223 864 301 260 909 323 324
820 245 288 865 280 238 910 250 321
821 223 267 866 260 303 911 321 326
822 288 247 867 238 282 912 249 325
823 267 225 868 303 261 913 325 327
824 289 247 869 282 239 914 249 326
825 268 225 870 261 304 915 227 321
826 289 248 871 239 283 916 321 325
827 268 226 872 304 263 917 326 327
828 226 270 873 283 241 918 325 322
829 248 291 874 263 306 919 327 322
830 291 249 875 241 285 920 214 51
831 270 227 876 306 264 921 258 51
832 227 208 877 285 242 922 236 51
833 249 194 878 232 309 923 200 51
834 208 228 879 309 254 924 211 358
835 194 250 880 258 319 925 236 358
836 250 191 881 236 314 926 258 358
837 228 205 882 314 315 927 197 358
838 191 252 883 319 315 928 228 356
839 205 230 884 315 316 929 250 356
840 252 294 885 316 317 930 228 357
841 230 273 886 316 320 931 205 357
842 294 253 887 320 259 932 194 356
843 273 231 888 316 318 933 208 356
844 253 296 889 318 237 934 191 357
845 231 275 890 259 319 935 250 357
846 254 296 891 237 314 936 121 115
847 232 275 892 319 320 937 114 119
848 296 255 893 314 318 938 116 118
849 275 233 894 320 315 939 120 117
850 255 298 895 318 315 940 101 111
851 233 277 896 258 314 941 100 110
852 298 256 897 314 319 942 107 99
853 277 234 898 237 320 943 106 98
854 256 200 899 318 320 944 103 109
855 234 214 900 228 321 945 102 108
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Table 13: Tower Element De�nition

Node 1 Node 2

946 113 105
947 112 104

Table 14: Tower Grouping

Design Variable 1

1 2 3 4 5 23 24 25 26 27 45
46 47 48 49 60 61 62 63 64 195 196
197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 333 334 335 336
337 338 339 340 341 342 343 344 363 364 365
366 367 368 369 370 371 372 373 374 481 482
483 490 491 492 507 508 509 516 517 518

Design Variable 2

6 7 8 9 10 18 19 20 21 22 50
51 52 53 54 55 56 57 58 59 89 90
91 92 93 94 95 96 97 98 121 122 123
124 125 126 127 128 129 130 457 458 459 460
463 464 465 466 469 470 473 474 475 476 479
480 495 496 497 498 523 524 525 526 533 534
535 536 537 538 539 540 541 542 543 544 545
546 547 548 657 658 659 660 661 662 663 664
665 666 667 668 669 670 671 672 783

Design Variable 3

157 158 162 163 167 168 172 173 453 454 686
687 698 727 736 737 771 782 784 795 820 821
846 847 872 873 878 879 920 921 922 923 924
925 926 927 928 929 930 931 932 933 934 935

Design Variable 4

11 12 28 29 35 36 37 38 39 40 41
42 43 44 65 66 72 73 79 80 81 82
83 84 85 86 87 88 99 100 106 107 113
114 115 116 117 118 119 120 131 132 138 139
145 146 147 148 149 150 151 152 153 154 155
156 159 160 164 165 169 170 174 175 240 242
244 246 248 250 252 254 255 256 257 258 259
260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 295 296 297
298 299 300 301 302 311 312 313 314 315 316
317 318 327 328 329 330 349 350 391 392 405
406 411 412 413 414 419 420 421 422 435 438
439 440 443 444 449 450 451 452 467 468 477
478 493 494 499 500 501 502 503 504 505 506
519 520 521 522 527 528 529 530 531 532 561
562 563 564 565 566 567 568 569 570 571 572
573 574 575 576 692 693 694 695 696 697 699
700 701 702 703 704 705 706 707 708 709 710
713 714 715 716 717 718 719 720 721 722 723
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Table 15: Tower Grouping

Design Variable 4

713 714 715 716 717 718 719 720 721 722 723
724 725 726 728 729 730 731 752 753 754 755
756 757 766 772 773 774 775 776 777 778 779
780 781 785 786 787 788 789 790 791 792 793
794 800 809 810 811 812 813 814 822 823 870
871 890 891 892 893 897 898 899 911 912 913
914 915 916 917

Design Variable 5

13 14 15 30 31 32 67 68 69 74 75
76 101 102 103 108 109 110 133 134 135 140
141 142 161 166 171 176 190 193 239 241 243
245 247 249 251 253 345 346 347 348 387 388
389 390 409 410 415 416 417 418 437 442 445
446 447 448 455 456 461 462 471 472 673 674
675 676 677 678 679 680 681 682 683 688 689
690 691 732 733 734 738 739 744 745 746 747
748 749 750 751 758 759 760 761 762 763 764
765 767 768 769 770 735 742 743 796 797 798
799 801 802 803 804 805 806 807 808 815 816
817 876 877 894 895 896 910 918 919

Design Variable 6

16 17 33 34 70 71 77 78 104 105 111
112 136 137 143 144 185 186 187 188 189 191
192 194 303 304 307 308 331 332 407 408 436
441 557 558 559 560 577 578 579 580 684 685
740 741 818 819 874 875 880 881 882 883 886
887 888 889 900 901 902 903 904 905 906 907

Design Variable 7

177 178 179 180 181 182 183 184 623 624 625
626 627 628 629 630 643 644 645 646 647 648
649 650

Design Variable 8

215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236
237 238 279 280 281 282 283 284 285 286 287
288 289 290 291 292 293 294

Design Variable 9

305 306 309 310
Design Variable 10

319 320 321 322 323 324 325 326
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Table 16: Tower Grouping

Design Variable 11

393 394 399 400 423 424 429 430 581 583 585
587 617 618 619 634 635 636 637 638 639 654
655 656

Design Variable 12

395 396 397 398 401 402 403 404 425 426 427
428 431 432 433 434

Design Variable 13

484 485 486 487 488 489 510 511 512 513 514
515

Design Variable 14

834 835 836 837 856 857 858 859
Design Variable 15

824 825 826 827 828 829 830 831 832 833 838
839 840 841 842 843 844 845 848 849 850 851
852 853 854 855 860 861 862 863 864 865 866
867 868 869

Design Variable 16

582 584 586 588 589 590 591 592 593 594 595
596 597 598 599 600 601 602 603 604 605 606
607 608 609 610 611 612 613 614 615 616 620
621 622 631 632 633 640 641 642 651 652 653

Design Variable 17

884 885 908 909
Design Variable 18

711 712
Design Variable 19

549 550 551 552 553 554 555 556
Design Variable 20

351 352 353 354 355 356 357 358 359 360 361
362 375 376 377 378 379 380 381 382 383 384
385 386

Design Variable 21

936 937 938 939
Design Variable 22

940 941 942 943 944 945 946 947

Stellenbosch University  http://scholar.sun.ac.za



17.5 Equal Leg Angle Section List

Table 17: Equal Angle Section List

Designation m A ru rv J ay
hxbxt mm kg/m 103 mm2 mm mm 103mm4 mm

25x25x3 1.11 0.142 9.43 4.83 0.476 7.21
25x25x5 1.77 0.226 9.14 4.8 1.98 7.98

30x30x3 1.36 0.174 11.3 5.81 0.635 8.35
30x30x5 2.18 0.278 11.1 5.75 2.58 9.18

40x40x3 1.85 0.235 15.3 7.84 0.882 10.7
40x40x4 2.42 0.308 15.2 7.77 1.92 11.2
40x40x5 2.97 0.379 15.1 7.73 3.56 11.6
40x40x6 3.52 0.448 14.9 7.7 5.92 12

45x45x3 2.1 0.268 17.2 8.88 1.06 11.9
45x45x4 2.74 0.349 17.1 8.76 2.27 12.3
45x45x5 3.38 0.43 17 8.71 4.17 12.8
45x45x6 4 0.509 16.9 8.67 6.9 13.2

50x50x3 2.34 0.298 19.2 9.92 1.15 13.1
50x50x4 3.06 0.389 19.1 9.79 2.48 13.6
50x50x5 3.77 0.48 19 9.73 4.58 14
50x50x6 4.47 0.569 18.9 9.68 7.62 14.5
50x50x8 5.82 0.741 18.6 9.63 17 15.2
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Table 18: Equal Angle Section List

Designation m A ru rv J ay
hxbxt mm kg/m 103 mm2 mm mm 103mm4 mm

60x60x4 3.7 0.471 23 11.8 3.07 16
60x60x5 4.57 0.582 23 11.7 5.64 16.4
60x60x6 5.42 0.691 22.9 11.7 9.36 16.9
60x60x8 7.09 0.903 22.6 11.6 21 17.7
60x60x10 8.69 1.11 22.3 11.6 39.2 18.5

70x70x6 6.38 0.813 26.8 13.7 11.2 19.3
70x70x8 8.36 1.06 26.6 13.6 25 20.1
70x70x10 10.3 1.31 26.3 13.5 46.8 20.9

80x80x6 7.34 0.935 30.8 15.7 13 21.7
80x80x8 9.63 1.23 30.6 15.6 29.1 22.6
80x80x10 11.9 1.51 30.3 15.5 54.5 23.4
80x80x12 14 1.79 30 15.5 91.2 24.1

90x90x6 8.3 1.06 34.7 17.8 15 24.1
90x90x8 10.9 1.39 34.5 17.6 33.3 25
90x90x10 13.4 1.71 34.3 17.5 62.4 25.8
90x90x12 15.9 2.03 34 17.4 104 26.6

100x100x8 12.2 1.55 38.5 19.6 37.6 27.4
100x100x10 15 1.92 38.3 19.5 70.3 28.2
100x100x12 17.8 2.27 38 19.4 118 29
100x100x15 21.9 2.79 37.5 19.3 221 30.2

120x120x8 14.7 1.87 46.5 23.7 45.4 32.3
120x120x10 18.2 2.32 46.3 23.6 85.1 33.1
120x120x12 21.6 2.75 46 23.5 143 34
120x120x15 26.6 3.39 45.6 23.3 269 35.1

150x150x10 23 2.93 58.2 29.7 110 40.3
150x150x12 27.3 3.48 58 29.5 184 41.2
150x150x15 33.8 4.3 57.6 29.3 347 42.5
150x150x18 40.1 5.1 57.1 29.2 584 43.7

200x200x16 48.5 6.18 77.6 39.4 564 55.2
200x200x18 54.2 6.91 77.3 39.3 790 56
200x200x20 59.9 7.63 77 39.2 1070 56.8
200x200x24 71.1 9.06 76.4 39 1800 58.4
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17.6 Eskom Transmission Tower: Load Cases

All the loading is in kN. The load cases are described in section 14.1.

Table 19: Case 1A

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1T 0 15.18 0 0.06 -0.06

E1TA 11.3 -4.11 0 0.06 11.24

E2T 11.3 11.07 0 0.06 11.24

C1T 93.5 91 0 0.38 93.12

C2T 93.5 91 0 0.38 93.12

C3T 93.5 91 0 0.38 93.12

W2T 0 17.2 0 0.21 -0.21

W3T 0 26.8 0 0.29 -0.29

W4T 0 28.8 0 0.2 -0.2

W5T 0 30.6 0 0.24 -0.24

W6T 0 41.3 0 0.29 -0.29
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Table 20: Case 1AR

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1T 0 12.63 0 0.06 -0.06

E1TA 4.29 -1.56 0 0.06 4.23

E2T 4.3 11.07 0 0.06 4.24

C1T 35.53 91 0 0.38 35.15

C2T 35.53 91 0 0.38 35.15

C3T 35.53 91 0 0.38 35.15

W2T 0 17.2 0 0.21 -0.21

W3T 0 26.8 0 0.29 -0.29

W4T 0 28.8 0 0.2 -0.2

W5T 0 30.6 0 0.24 -0.24

W6T 0 41.3 0 0.29 -0.29
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Table 21: Case 2A

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1T 0 4.18 0 0.06 -0.06

E1TA 6.56 -2.39 0 0.06 6.5

E2T 6.56 1.79 0 0.06 6.5

C1T 55 14.3 0 0.1 54.9

C2T 55 14.3 0 0.1 54.9

C3T 55 14.3 0 0.1 54.9

W2T 0 4.3 0 0.21 -0.21

W3T 0 6.8 0 0.29 -0.29

W4T 0 7.2 0 0.2 -0.2

W5T 0 7.7 0 0.24 -0.24

W6T 0 10.3 0 0.29 -0.29

E1L 0 0 30 0.06 -0.06

E2L 0 0 30 0.06 -0.06

C1L 0 0 74.31 0.2 -0.2

C2L 0 0 74.31 0.2 -0.2

C3L 0 0 74.31 0.2 -0.2
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Table 22: Case 2BR

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1T 0 2.7 0 0.06 -0.06

E1TA 2.49 -0.91 0 0.06 2.43

E2T -0.23 2.33 0 0.06 -0.29

C1T 20.9 14.3 0 0.1 20.8

C2T 20.9 14.3 0 0.1 20.8

C3T 27.21 18.9 0 0.1 27.11

W2T 0 4.3 0 0.21 -0.21

W3T 0 6.8 0 0.29 -0.29

W4T 0 7.2 0 0.2 -0.2

W5T 0 7.7 0 0.24 -0.24

W6T 0 10.3 0 0.29 -0.29

E1L 0 0 30 0.06 -0.06

C1L 0 0 74.85 0.2 -0.2

C2L 0 0 74.85 0.2 -0.2

E2TA 3.32 2.94 0 0.06 3.26

Table 23: Case 3

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1T 0 9.31 0 0.06 -0.06

E2T 0 9.31 0 0.06 -0.06

C1T 0 75.4 0 0.38 -0.38

C2T 0 75.4 0 0.38 -0.38

C3T 0 75.4 0 0.38 -0.38

W2T 0 17.2 0 0.21 -0.21

W3T 0 26.8 0 0.29 -0.29

W4T 0 28.8 0 0.2 -0.2

W5T 0 30.6 0 0.24 -0.24

W6T 0 41.3 0 0.29 -0.29
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Table 24: Case 4A

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

C1V 125 0 0 0.38 124.62

Table 25: Case 4B

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

C1V 125 0 0 0.38 124.62

Table 26: Case 5

Loading At-

tachment

Point

Required

Vertical

Load V

Required

Transverse

Load H

Required

Longitudinal

Load

Rigging

Weight

Vertical Re-

sultant

E1V 18.3 0 0 0.06 18.24

E2V 18.3 0 0 0.06 18.24

C1V 159 0 0 0.38 158.62

C2V 159 0 0 0.38 158.62

C3V 159 0 0 0.38 158.62
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r
i
n
g
,

i
s
G
r
o
u
p
e
d
B
o
o
l
e
a
n
,

i
s
3
D
,

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
;

t
r
u
s
s
e
s
.
c
r
e
a
t
e
F
e
m
M
o
d
e
l
s
(
f
e
m
I
n
d
e
x
A
r
r
a
y
,

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)
;

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{
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t
r
u
s
s
e
s
.
a
n
a
l
y
s
e
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

} L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>

e
l
t
s

=
n
e
w

L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>
(
)
;

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>

e
l
t
s
F
r
a
m
e

=
n
e
w

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>
(
)
;

i
f
(
i
s
F
r
a
m
e
E
l
e
m
e
n
t

=
=

f
a
l
s
e
)
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
.
c
l
e
a
r
(
)
;

e
l
t
s

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

i
n
t

p
=

0
;

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
T
r
u
s
s
E
l
e
m
e
n
t

t
e
:

e
l
t
s
)
{

/
/
O
b
t
a
i
n

a
x
i
a
l

f
o
r
c
e
s

i
n

t
r
u
s
s

m
e
m
b
e
r
s

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

i
f
(
i
s
3
D

=
=

f
a
l
s
e
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
D
i
s
p
l
a
c
e
m
e
n
t

A
r
r
a
y

"
)
;

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
m
a
x

d
i
s
p
l

"
+

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
;

} e
l
s
e
{
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/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
D
i
s
p
l
a
c
e
m
e
n
t

A
r
r
a
y

"
)
;

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
m
a
x

d
i
s
p
l

"
+

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
;

} p
+
+
;

}

}

}
e
l
s
e
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
F
r
a
m
e
.
c
l
e
a
r
(
)
;

e
l
t
s
F
r
a
m
e

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
F
r
a
m
e
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

i
n
t

p
=

0
;

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
F
r
a
m
e
E
l
e
m
e
n
t

t
e
:

e
l
t
s
F
r
a
m
e
)
{

/
/
O
b
t
a
i
n

a
x
i
a
l

f
o
r
c
e
s

i
n

t
r
u
s
s

m
e
m
b
e
r
s

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

i
f
(
i
s
3
D

=
=

f
a
l
s
e
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
D
i
s
p
l
a
c
e
m
e
n
t

A
r
r
a
y

"
)
;

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;
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d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
m
a
x

d
i
s
p
l

"
+

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
;

} e
l
s
e
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
D
i
s
p
l
a
c
e
m
e
n
t

A
r
r
a
y

"
)
;

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
m
a
x

d
i
s
p
l

"
+

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
;

} p
+
+
;

}

}

}

G
A
(
g
a
P
a
r
a
m
,

i
n
p
u
t
,

e
m
o
d
,

p
o
i
s
o
n
,

d
e
n
s
i
t
y
,

e
l
t
s
,

e
l
t
s
F
r
a
m
e
,

i
s
G
r
o
u
p
e
d
B
o
o
l
e
a
n
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

i
s
3
D
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
,

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
;

} p
u
b
l
i
c

v
o
i
d

s
e
t
A
r
r
a
y
s
(
F
r
a
m
e
P
a
r
a
m
e
t
e
r
s

g
a
P
a
r
a
m
,

M
e
m
b
e
r
A
t
t
r
i
b
u
t
e
s

a
t
t
r
i
b
u
t
e
s
,
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M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
,

i
n
t

b
,

i
n
t

t
,

i
n
t

c
o
l
u
m
n
A
r
e
a
,

i
n
t

c
o
l
u
m
n
R
v
v
,

i
n
t

c
o
l
u
m
n
R
u
u
,

i
n
t

c
o
l
u
m
n
J
,

i
n
t

c
o
l
u
m
n
a
x
,

i
n
t

e
n
t
r
i
e
s
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

i
n
t

c
o
l
u
m
n
G
r
o
u
p
i
n
g
,

B
o
o
l
e
a
n

i
s
C
H
S
,

B
o
o
l
e
a
n

i
s
E
q
u
a
l
L
,

B
o
o
l
e
a
n

i
s
S
A
N
S
)
{

a
r
e
a
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
e
n
t
r
i
e
s
]
;

a
r
e
a
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
A
r
e
a
A
r
r
a
y
(
e
n
t
r
i
e
s
,

b
,

t
,

c
o
l
u
m
n
A
r
e
a
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

i
s
S
A
N
S
)
;

/
/
m
m
^
2

t
h
i
s
.
e
n
t
r
i
e
s
G
A

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
E
n
t
r
i
e
s
(
)
;

/
/

I
x
x
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
e
n
t
r
i
e
s
]
;

/
/

I
x
x
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
I
x
x
A
r
r
a
y
(
e
n
t
r
i
e
s
,

c
o
l
u
m
n
I
x
x
)
;

/
/

I
y
y
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
e
n
t
r
i
e
s
]
;

/
/

I
y
y
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
I
y
y
A
r
r
a
y
(
e
n
t
r
i
e
s
,

c
o
l
u
m
n
I
y
y
)
;

r
v
v
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

r
v
v
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
r
v
v
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

c
o
l
u
m
n
R
v
v
)
;

r
u
u
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

r
u
u
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
r
u
u
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

c
o
l
u
m
n
R
u
u
)
;

J
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

J
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
J
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

c
o
l
u
m
n
J
)
;

a
x
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

a
x
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
a
x
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

c
o
l
u
m
n
a
x
)
;

f
o
r
c
e
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
[
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
]
;

t
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

t
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
t
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

t
)
;

b
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
t
h
i
s
.
e
n
t
r
i
e
s
G
A
]
;

b
A
r
r
a
y

=
a
t
t
r
i
b
u
t
e
s
.
g
e
t
b
A
r
r
a
y
(
t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

b
)
;

l
a
r
g
e
s
t
D
i
s
p
l

=
n
e
w

d
o
u
b
l
e
[
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

f
e
m
I
n
d
e
x
A
r
r
a
y

=
n
e
w

i
n
t
[
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
]
;

f
e
m
I
n
d
e
x
A
r
r
a
y

=
i
n
p
u
t
.
g
e
t
F
E
M
I
n
d
i
c
e
s
(
)
;

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y

=
n
e
w

i
n
t

[
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
]
;

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y

=
i
n
p
u
t
.
g
e
t
F
e
m
G
r
o
u
p
E
l
e
m
e
n
t
s
(
)
;

l
e
n
g
t
h
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
g
a
P
a
r
a
m
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

l
e
n
g
t
h
A
r
r
a
y

=
i
n
p
u
t
.
g
e
t
L
e
n
g
t
h
(
)
;

/
/
m
m
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/
/
T
o

t
r
u
s
s

l
o
a
d

=
i
n
p
u
t
.
g
e
t
L
o
a
d
(
)
;

/
/
N

n
o
d
e
s
X

=
i
n
p
u
t
.
g
e
t
N
o
d
e
s
X
(
)
;

/
/
m

n
o
d
e
s
Y

=
i
n
p
u
t
.
g
e
t
N
o
d
e
s
Y
(
)
;

/
/
m

n
o
d
e
s
Z

=
i
n
p
u
t
.
g
e
t
N
o
d
e
s
Z
(
)
;

d
o
f

=
i
n
p
u
t
.
g
e
t
D
O
F
(
)
;

e
l
e
m
e
n
t
S
t
r
i
n
g

=
i
n
p
u
t
.
g
e
t
E
l
e
m
e
n
t
s
S
t
r
i
n
g
(
)
;

} p
u
b
l
i
c

v
o
i
d

G
A
(
F
r
a
m
e
P
a
r
a
m
e
t
e
r
s

g
a
P
a
r
a
m
,

M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
,

d
o
u
b
l
e

e
m
o
d
,

d
o
u
b
l
e

p
o
i
s
o
n
,

d
o
u
b
l
e

d
e
n
s
i
t
y
,

L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>

e
l
t
s
,

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>

e
l
t
s
F
r
a
m
e
,

B
o
o
l
e
a
n

i
s
G
r
o
u
p
e
d
B
o
o
l
e
a
n
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

B
o
o
l
e
a
n

i
s
3
D
,

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

d
o
u
b
l
e

s
t
r
e
s
s
L
i
m
i
t
,

B
o
o
l
e
a
n

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
{

i
n
t

e
l
i
t
e
N
u
m
b
e
r

=
0
;

f
o
r
(
i
n
t

i
=

0
;

i
<

g
a
P
a
r
a
m
.
M
A
X
_
G
E
N
E
R
A
T
I
O
N
;

i
+
+
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
"
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
G
e
n
e
r
a
t
i
o
n

"
+

(
i
+
1
)

)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
i
+
1

+
"
,
"
)
;

/
/
S
e
l
e
c
t
i
o
n

o
c
c
u
r
s

w
i
t
h
i
n

c
r
o
s
s
o
v
e
r

/
/
C
r
o
s
s
o
v
e
r

c
r
e
a
t
e
s

t
e
m
p

a
r
r
a
y

/
/
F
i
n
d

f
i
t
n
e
s
s

a
r
r
a
y

p
o
p
u
l
a
t
i
o
n
.
o
b
j
e
c
t
i
v
e
A
r
r
a
y
(
p
o
p
u
l
a
t
i
o
n
.
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

f
o
r
c
e
A
r
r
a
y
,

(
i
+
1
)
)
;

/
/
F
i
n
d

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

p
o
p
u
l
a
t
i
o
n
.
f
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
O
b
j
e
c
t
i
v
e
(
)
;

/
/
F
i
n
d

w
e
a
k
e
s
t

i
n
d
i
v
i
d
u
a
l

p
o
p
u
l
a
t
i
o
n
.
w
e
a
k
e
s
t
I
n
d
i
v
i
d
u
a
l
O
b
j
e
c
t
i
v
e
(
)
;

/
/
F
i
n
d

f
i
t
n
e
s
s

a
r
r
a
y
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p
o
p
u
l
a
t
i
o
n
.
p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
(
p
o
p
u
l
a
t
i
o
n
.
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

f
o
r
c
e
A
r
r
a
y
,

(
i
+
1
)
)
;

/
/
C
o
m
p
u
t
e

s
t
a
t
i
s
t
i
c
s

p
o
p
u
l
a
t
i
o
n
.
s
t
a
t
i
s
t
i
c
s
(
)
;

/
/

l
a
r
g
e
s
t
C
u
r
r
e
n
t
D
i
s
p
l
E
l
i
t
e

=
l
a
r
g
e
s
t
D
i
s
p
l
;

p
o
p
u
l
a
t
i
o
n
.
s
c
a
l
e
F
i
t
n
e
s
s
F
E
M
(
l
a
r
g
e
s
t
D
i
s
p
l
,

f
o
r
c
e
A
r
r
a
y
,

(
i
+
1
)
)
;

/
/
P
e
r
f
o
r
m

c
r
o
s
s
o
v
e
r

p
o
p
u
l
a
t
i
o
n
.
c
r
o
s
s
o
v
e
r
(
)
;

/
/
M
u
t
a
t
e

f
o
r
(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

p
o
p
u
l
a
t
i
o
n
.
m
u
t
a
t
e
(
p
o
p
u
l
a
t
i
o
n
.
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
j
]
)
;

} /
/
M
u
s
t

p
e
r
f
o
r
m

F
E
M

a
g
a
i
n

o
n

n
e
w

p
o
p
u
l
a
t
i
o
n

b
e
f
o
r
e

e
l
i
t
i
s
m

c
a
n

b
e

p
e
r
f
o
r
m
e
d

/
/
C
r
e
a
t
e

F
E
M

/
/

p
o
p
u
l
a
t
i
o
n
.
c
r
e
a
t
e
F
e
m
A
r
r
a
y
(
)
;

f
o
r

(
i
n
t

w
=

0
;

w
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

w
+
+
)

t
r
u
s
s
e
s
.
c
l
e
a
r
T
r
u
s
s
M
o
d
e
l
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
w
]
)
;

t
r
u
s
s
e
s

=
n
e
w

T
r
u
s
s
P
o
p
u
l
a
t
i
o
n
(
i
n
p
u
t
,

e
m
o
d
,

p
o
i
s
o
n
,

d
e
n
s
i
t
y
,

p
o
p
u
l
a
t
i
o
n
.
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

l
o
a
d
,

n
o
d
e
s
X
,

n
o
d
e
s
Y
,

n
o
d
e
s
Z
,

d
o
f
,

e
l
e
m
e
n
t
S
t
r
i
n
g
,

i
s
G
r
o
u
p
e
d
B
o
o
l
e
a
n
,

i
s
3
D
,

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
;

t
r
u
s
s
e
s
.
c
r
e
a
t
e
F
e
m
M
o
d
e
l
s
(
f
e
m
I
n
d
e
x
A
r
r
a
y
,

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)
;

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

t
r
u
s
s
e
s
.
a
n
a
l
y
s
e
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

} i
f
(
i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
.
c
l
e
a
r
(
)
;

e
l
t
s

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;
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i
n
t

p
=

0
;

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
F
r
a
m
e
E
l
e
m
e
n
t

t
e
:

e
l
t
s
F
r
a
m
e
)
{

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

} p
+
+
;

}

}

}
e
l
s
e
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
.
c
l
e
a
r
(
)
;

e
l
t
s

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

i
n
t

p
=

0
;

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
T
r
u
s
s
E
l
e
m
e
n
t

t
e
:

e
l
t
s
)
{

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

}
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p
+
+
;

}

}

} /
/
P
e
r
f
o
r
m

e
l
i
t
i
s
m

i
f
(
g
a
P
a
r
a
m
.
E
L
I
T
I
S
M
)
{

/
/
p
o
s
i
t
i
o
n

2

e
l
i
t
e
N
u
m
b
e
r

=
(
i
n
t
)
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*
p
o
p
u
l
a
t
i
o
n
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)
;

p
o
p
u
l
a
t
i
o
n
.
e
l
i
t
i
s
m
(
l
a
r
g
e
s
t
D
i
s
p
l
,

f
o
r
c
e
A
r
r
a
y
,

(
i
+
1
)
,

e
l
i
t
e
N
u
m
b
e
r
)
;

} /
/
F
o
r

t
h
e

c
a
s
e

w
h
e
r
e

e
l
i
t
i
s
m

d
i
d

o
c
c
u
r
,

a
f
e
m

a
n
a
l
y
s
i
s

i
s

n
e
e
d
e
d

a
g
a
i
n

/
/
t
o

o
b
t
a
i
n

d
i
s
p
l
a
c
e
m
e
n
t

o
f

t
h
e

n
e
w

i
n
d
i
v
i
d
u
a
l

i
n

t
h
e

t
e
m
p
o
r
a
r
y

a
r
r
a
y

i
f

(
p
o
p
u
l
a
t
i
o
n
.
d
i
d
E
l
i
t
e
(
)
)
{

f
o
r

(
i
n
t

w
=

0
;

w
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

w
+
+
)

t
r
u
s
s
e
s
.
c
l
e
a
r
T
r
u
s
s
M
o
d
e
l
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
w
]
)
;

t
r
u
s
s
e
s

=
n
e
w

T
r
u
s
s
P
o
p
u
l
a
t
i
o
n
(
i
n
p
u
t
,

e
m
o
d
,

p
o
i
s
o
n
,

d
e
n
s
i
t
y
,

p
o
p
u
l
a
t
i
o
n
.
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

t
h
i
s
.
e
n
t
r
i
e
s
G
A
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

l
o
a
d
,

n
o
d
e
s
X
,

n
o
d
e
s
Y
,

n
o
d
e
s
Z
,

d
o
f
,

e
l
e
m
e
n
t
S
t
r
i
n
g
,

i
s
G
r
o
u
p
e
d
B
o
o
l
e
a
n
,

i
s
3
D
,

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
;

t
r
u
s
s
e
s
.
c
r
e
a
t
e
F
e
m
M
o
d
e
l
s
(
f
e
m
I
n
d
e
x
A
r
r
a
y
,

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)
;

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

t
r
u
s
s
e
s
.
a
n
a
l
y
s
e
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

} i
f
(
i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
F
r
a
m
e
.
c
l
e
a
r
(
)
;

e
l
t
s
F
r
a
m
e

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
F
r
a
m
e
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

i
n
t

p
=

0
;
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l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
F
r
a
m
e
E
l
e
m
e
n
t

t
e
:

e
l
t
s
F
r
a
m
e
)
{

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

} p
+
+
;

}

}

}
e
l
s
e
{

f
o
r

(
i
n
t

j
=

0
;

j
<

g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

j
+
+
)
{

e
l
t
s
.
c
l
e
a
r
(
)
;

e
l
t
s

=
t
r
u
s
s
e
s
.
g
e
t
E
l
e
m
e
n
t
s
(
t
r
u
s
s
e
s
.
t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
j
]
)
;

i
n
t

p
=

0
;

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
0
;

f
o
r
(
T
r
u
s
s
E
l
e
m
e
n
t

t
e
:

e
l
t
s
)
{

f
o
r
c
e
A
r
r
a
y
[
j
]
[
p
]

=
t
e
.
g
e
t
E
l
e
m
e
n
t
R
e
s
u
l
t
V
e
c
t
o
r
(
)
.
g
e
t
(
0
)
;

/
/
C
H
E
C
K

d
o
u
b
l
e

m
i
n
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
i
n
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

m
a
x
D
i
s
p

=
M
a
t
h
.
a
b
s
(
t
e
.
g
e
t
D
O
F
D
i
s
p
l
a
c
e
m
e
n
t
s
(
)
.
m
a
x
E
n
t
r
y
(
)
*
1
0
0
0
)
;

d
o
u
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

=
M
a
t
h
.
m
a
x
(
m
i
n
D
i
s
p
,

m
a
x
D
i
s
p
)
;

i
f

(
d
i
s
p
l
a
c
e
m
e
n
t

>
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
[
j
]
)
)
{

l
a
r
g
e
s
t
D
i
s
p
l
[
j
]

=
d
i
s
p
l
a
c
e
m
e
n
t
;

} p
+
+
;

Stellenbosch University  http://scholar.sun.ac.za



17.7 ALGORITHM CODE EXTRACTS 187
}

}

}

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

/
/

f
o
r
(
i
n
t

w
=
0
;

w
<

p
o
p
u
l
a
t
i
o
n
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

w
+
+
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
l
a
r
g
e
s
t
D
i
s
p
l
[
w
]

+
"
,
"
)
;

/
/

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

/
/
R
e
p
l
a
c
e

t
h
e

c
u
r
r
e
n
t

p
o
p
u
l
a
t
i
o
n

w
i
t
h

t
h
e

t
e
m
p
o
r
a
r
y

p
o
p
u
l
a
t
i
o
n

p
o
p
u
l
a
t
i
o
n
.
r
e
p
l
a
c
e
(
)
;

S
y
s
t
e
m
.
g
c
(
)
;

V
e
c
t
o
r
.
c
l
e
a
r
V
e
c
t
o
r
s
(
)
;

} S
y
s
t
e
m
.
e
x
i
t
(
0
)
;

}

}

L
is
ti
n
g
1
:
C
la
ss

A
lg
o
ri
th
m

P
o
p
u
la
ti
o
n

T
h
is
cl
a
ss

cr
ea
te
s
tw
o
a
rr
ay
s
o
f
in
d
iv
id
u
a
ls
.
T
h
is
cl
a
ss

a
ls
o
co
n
ta
in
s
th
e
co
d
e
fo
r
th
e
g
en
et
ic
o
p
er
a
to
rs

su
ch

a
s
se
le
ct
io
n
,
sc
a
li
n
g
,
cr
o
ss
ov
er
,
m
u
ta
ti
o
n

a
n
d
el
it
is
m
.

p
a
c
k
a
g
e

G
e
n
e
t
i
c
A
l
g
o
r
i
t
h
m
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
S
e
t
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
H
a
s
h
S
e
t
;
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p
u
b
l
i
c

c
l
a
s
s

P
o
p
u
l
a
t
i
o
n
{

/
/
c
r
e
a
t
e

t
w
o

a
r
r
a
y
s

t
o

f
o
r

t
h
e

t
e
m
p

a
n
d

c
u
r
r
e
n
t

p
o
p
u
l
a
t
i
o
n
s

I
n
d
i
v
i
d
u
a
l
[
]

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

f
e
m
P
o
p
u
l
a
t
i
o
n
A
r
r
a
y
;

I
n
d
i
v
i
d
u
a
l
[
]

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
;

I
n
d
i
v
i
d
u
a
l

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
,

w
e
a
k
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
,

f
i
t
t
e
s
t
T
e
m
p
I
n
d
i
v
i
d
u
a
l
;

d
o
u
b
l
e
[
]

p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
,

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
,

a
r
e
a
A
r
r
a
y
,

l
e
n
g
t
h
A
r
r
a
y
,

r
v
v
,

r
u
u
,

J
A
r
r
a
y
,

t
,

b
,

a
x
;

/
/
d
o
u
b
l
e
[
]
[
]

f
o
r
c
e
A
r
r
a
y
;

M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
;

b
o
o
l
e
a
n

E
L
I
T
I
S
M
,

R
E
P
L
A
C
E
M
E
N
T
,

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

d
i
d
E
l
i
t
e
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,
f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
;

d
o
u
b
l
e

d
e
n
s
i
t
y
,

C
R
O
S
S
O
V
E
R
_
P
R
O
B
A
B
I
L
I
T
Y
,
M
U
T
A
T
I
O
N
_
P
R
O
B
A
B
I
L
I
T
Y
,

S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T
,

s
p
a
n
,

f
y
,

e
m
o
d
,
h
i
g
h
e
s
t
F
i
t
n
e
s
s
;

i
n
t

e
n
t
r
i
e
s
,

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
,

C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S
,

M
A
X
_
G
E
N
E
R
A
T
I
O
N
,

c
o
l
u
m
n
A
r
e
a
;

d
o
u
b
l
e

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

a
v
e
F
i
t
n
e
s
s
,

s
u
m
F
i
t
n
e
s
s
,

m
a
x
F
i
t
n
e
s
s
;

/
/
,

l
a
r
g
e
s
t
D
i
s
p
l

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
;

i
n
t

c
o
u
n
t
C
h
i
l
d
r
e
n

=
0
;

i
n
t

e
l
i
t
e
N
u
m
b
e
r
;

i
n
t
[
]

f
e
m
I
n
d
e
x
A
r
r
a
y
,

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
;

i
n
t

f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
,

f
i
t
t
e
s
t
C
u
r
r
e
n
t
C
o
u
n
t
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

S
e
t
<
I
n
d
i
v
i
d
u
a
l
>

s
e
l
e
c
t
e
d

=
n
e
w

H
a
s
h
S
e
t
<
I
n
d
i
v
i
d
u
a
l
>
(
)
;

S
e
t
<
I
n
t
e
g
e
r
>

n
u
m

=
n
e
w

H
a
s
h
S
e
t
<
I
n
t
e
g
e
r
>
(
)
;

/
/
F
E
M

p
u
b
l
i
c

P
o
p
u
l
a
t
i
o
n
(
M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
,

d
o
u
b
l
e

d
e
n
s
i
t
y
,

i
n
t

e
n
t
r
i
e
s
,

F
r
a
m
e
P
a
r
a
m
e
t
e
r
s

g
a
P
a
r
a
m
,

d
o
u
b
l
e
[
]

a
r
e
a
A
r
r
a
y
,

d
o
u
b
l
e
[
]

l
e
n
g
t
h
A
r
r
a
y
,

d
o
u
b
l
e
[
]

r
v
v
,

d
o
u
b
l
e
[
]

r
u
u
,

d
o
u
b
l
e

e
m
o
d
,

d
o
u
b
l
e

f
y
,

d
o
u
b
l
e
[
]

J
,

d
o
u
b
l
e
[
]

t
,

d
o
u
b
l
e
[
]

b
,

d
o
u
b
l
e
[
]

a
x
,

d
o
u
b
l
e

s
p
a
n
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

i
n
t
[
]

f
e
m
I
n
d
e
x
A
r
r
a
y
,

i
n
t
[
]

f
e
m
G
r
o
u
p
A
r
r
a
y
,

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

d
o
u
b
l
e

s
t
r
e
s
s
L
i
m
i
t
,

B
o
o
l
e
a
n

s
t
a
t
i
c
F
i
t
n
e
s
s
,

B
o
o
l
e
a
n

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

B
o
o
l
e
a
n

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

B
o
o
l
e
a
n

u
s
e
S
A
N
S
,

Stellenbosch University  http://scholar.sun.ac.za



17.7 ALGORITHM CODE EXTRACTS 189
B
o
o
l
e
a
n

i
s
C
H
S
,

B
o
o
l
e
a
n

i
s
E
q
u
a
l
L
,

B
o
o
l
e
a
n

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

B
o
o
l
e
a
n

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
)
{

t
h
i
s
.
u
s
e
S
A
N
S

=
u
s
e
S
A
N
S
;

t
h
i
s
.
i
s
E
q
u
a
l
L

=
i
s
E
q
u
a
l
L
;

t
h
i
s
.
i
s
C
H
S

=
i
s
C
H
S
;

t
h
i
s
.
f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s

=
f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
;

t
h
i
s
.
u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t

=
u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
;

t
h
i
s
.
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t

=
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
;

t
h
i
s
.
s
t
a
t
i
c
F
i
t
n
e
s
s

=
s
t
a
t
i
c
F
i
t
n
e
s
s
;

t
h
i
s
.
d
y
n
a
m
i
c
F
i
t
n
e
s
s

=
d
y
n
a
m
i
c
F
i
t
n
e
s
s
;

t
h
i
s
.
n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s

=
n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
;

t
h
i
s
.
s
t
r
e
s
s
L
i
m
i
t

=
s
t
r
e
s
s
L
i
m
i
t
;

t
h
i
s
.
r
v
v

=
r
v
v
;

t
h
i
s
.
r
u
u

=
r
u
u
;

t
h
i
s
.
e
m
o
d

=
e
m
o
d
;

t
h
i
s
.
f
y

=
f
y
;

t
h
i
s
.
J
A
r
r
a
y

=
J
;

t
h
i
s
.
t

=
t
;

t
h
i
s
.
b

=
b
;

t
h
i
s
.
a
x

=
a
x
;

t
h
i
s
.
s
p
a
n

=
s
p
a
n
;

t
h
i
s
.
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s

=
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

t
h
i
s
.
f
e
m
I
n
d
e
x
A
r
r
a
y

=
f
e
m
I
n
d
e
x
A
r
r
a
y
;

t
h
i
s
.
f
e
m
E
l
e
m
e
n
t
A
r
r
a
y

=
f
e
m
G
r
o
u
p
A
r
r
a
y
;

t
h
i
s
.
i
n
p
u
t

=
i
n
p
u
t
;

t
h
i
s
.
d
e
n
s
i
t
y

=
d
e
n
s
i
t
y
;

t
h
i
s
.
e
n
t
r
i
e
s

=
e
n
t
r
i
e
s
;

t
h
i
s
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S

=
g
a
P
a
r
a
m
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

t
h
i
s
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E

=
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

t
h
i
s
.
S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H

=
(
i
n
t
)
M
a
t
h
.
c
e
i
l
(
M
a
t
h
.
c
e
i
l
(
M
a
t
h
.
l
o
g
(
e
n
t
r
i
e
s
)
*
M
a
t
h
.
p
o
w
(
M
a
t
h
.
l
o
g
(
2
)
,

-
1
)
)
)
;

t
h
i
s
.
T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H

=
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S

*
S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
;
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t
h
i
s
.
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S

=
g
a
P
a
r
a
m
.
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S
;

t
h
i
s
.
C
R
O
S
S
O
V
E
R
_
P
R
O
B
A
B
I
L
I
T
Y

=
g
a
P
a
r
a
m
.
C
R
O
S
S
O
V
E
R
_
P
R
O
B
A
B
I
L
I
T
Y
;

t
h
i
s
.
E
L
I
T
I
S
M

=
g
a
P
a
r
a
m
.
E
L
I
T
I
S
M
;

t
h
i
s
.
M
A
X
_
G
E
N
E
R
A
T
I
O
N

=
g
a
P
a
r
a
m
.
M
A
X
_
G
E
N
E
R
A
T
I
O
N
;

t
h
i
s
.
M
U
T
A
T
I
O
N
_
P
R
O
B
A
B
I
L
I
T
Y

=
g
a
P
a
r
a
m
.
M
U
T
A
T
I
O
N
_
P
R
O
B
A
B
I
L
I
T
Y
;

t
h
i
s
.
S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T

=
g
a
P
a
r
a
m
.
S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T
;

t
h
i
s
.
R
E
P
L
A
C
E
M
E
N
T

=
g
a
P
a
r
a
m
.
R
E
P
L
A
C
E
M
E
N
T
;

t
h
i
s
.
a
r
e
a
A
r
r
a
y

=
a
r
e
a
A
r
r
a
y
;

t
h
i
s
.
l
e
n
g
t
h
A
r
r
a
y

=
l
e
n
g
t
h
A
r
r
a
y
;

p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s

=
n
e
w

d
o
u
b
l
e
[
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s

=
n
e
w

I
n
d
i
v
i
d
u
a
l
[
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s

=
n
e
w

I
n
d
i
v
i
d
u
a
l
[
g
a
P
a
r
a
m
.
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l

=
n
e
w

I
n
d
i
v
i
d
u
a
l
(
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

a
r
e
a
A
r
r
a
y
,

i
n
p
u
t
,

e
n
t
r
i
e
s
,

l
e
n
g
t
h
A
r
r
a
y
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
,

J
A
r
r
a
y
)
;

f
i
t
t
e
s
t
T
e
m
p
I
n
d
i
v
i
d
u
a
l

=
n
e
w

I
n
d
i
v
i
d
u
a
l
(
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

a
r
e
a
A
r
r
a
y
,

i
n
p
u
t
,

e
n
t
r
i
e
s
,

l
e
n
g
t
h
A
r
r
a
y
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
,

J
A
r
r
a
y
)
;

f
e
m
P
o
p
u
l
a
t
i
o
n
A
r
r
a
y

=
n
e
w

I
n
d
i
v
i
d
u
a
l
[
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y

=
n
e
w

d
o
u
b
l
e
[
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

/
/
P
o
p
u
l
a
t
e

i
n
t
i
t
i
a
l

p
o
p
u
l
a
t
i
o
n

F
E
M

f
o
r

(
i
n
t

i
=

0
;

i
<

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
.
l
e
n
g
t
h
;

i
+
+
)
{

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]

=
n
e
w

I
n
d
i
v
i
d
u
a
l
(
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

a
r
e
a
A
r
r
a
y
,

i
n
p
u
t
,

e
n
t
r
i
e
s
,

l
e
n
g
t
h
A
r
r
a
y
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
,

J
A
r
r
a
y
)
;

}

/
/

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s

"
)
;
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/
/

f
o
r

(
i
n
t

i
=

0
;

i
<

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
.
l
e
n
g
t
h
;

i
+
+
)
{

/
/

f
o
r

(
i
n
t

j
=

0
;

j
<

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]
.
T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
;

j
+
+
)

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]
.
i
n
d
i
v
i
d
u
a
l
[
j
]
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

/
/

}

}

p
u
b
l
i
c

d
o
u
b
l
e
[
]

o
b
j
e
c
t
i
v
e
A
r
r
a
y
(
I
n
d
i
v
i
d
u
a
l
[
]

i
n
d
i
v
i
d
u
a
l
s
,

d
o
u
b
l
e
[
]

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e
[
]
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

i
n
t

g
e
n
e
r
a
t
i
o
n
)
{

/
/
F
i
n
d
s

t
h
e

f
i
t
n
e
s
s

o
f

e
a
c
h

i
n
d
i
v
i
d
u
a
l

i
n

a
n

a
r
r
a
y

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
p
o
p
u
l
a
t
i
o
n

o
b
j
e
c
t
i
v
e
s
"
)
;

f
o
r
(
i
n
t

i
=

0
;

i
<

p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
.
l
e
n
g
t
h
;

i
+
+
)
{

/
/
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
I
n
d
i
v
i
d
u
a
l

"
+

(
i
+
1
)
)
;

p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]

=
i
n
d
i
v
i
d
u
a
l
s
[
i
]
.
f
i
n
d
O
b
j
e
c
t
i
v
e
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
i
]
,

s
p
a
n
,

g
e
n
e
r
a
t
i
o
n
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

d
e
n
s
i
t
y
)

+
"

+
"
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]
)
;

} r
e
t
u
r
n

p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
;

} p
u
b
l
i
c

I
n
d
i
v
i
d
u
a
l

w
e
a
k
e
s
t
I
n
d
i
v
i
d
u
a
l
O
b
j
e
c
t
i
v
e
(
)
{

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

i
f

(
p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]

>
w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
)
{

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e

=
p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]
;

w
e
a
k
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l

=
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]
;

}

}
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r
e
t
u
r
n

w
e
a
k
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
;

} /
/
R
e
g
a
r
d
i
n
g

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

p
u
b
l
i
c

I
n
d
i
v
i
d
u
a
l

f
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
O
b
j
e
c
t
i
v
e
(
)
{

/
/
F
i
n
d
s

t
h
e

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

f
r
o
m

t
h
e

c
u
r
r
e
n
t

p
o
p
u
l
a
t
i
o
n

a
r
r
a
y

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e

=
w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
;

f
o
r

(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

i
f

(
p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]

<
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
)
{

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e

=
p
o
p
O
b
j
e
c
t
i
v
e
V
a
l
u
e
s
[
i
]
;

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l

=
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]
;

f
i
t
t
e
s
t
C
u
r
r
e
n
t
C
o
u
n
t

=
i
;

}

} r
e
t
u
r
n

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
;

} /
/
R
e
g
a
r
d
i
n
g

f
i
t
n
e
s
s

f
u
n
c
t
i
o
n

p
u
b
l
i
c

I
n
d
i
v
i
d
u
a
l

f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
I
n
d
i
v
i
d
u
a
l
[
]

i
n
d
i
v
i
d
u
a
l
s
,

d
o
u
b
l
e
[
]

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e
[
]
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

i
n
t

g
e
n
)
{

/
/
F
i
n
d
s

t
h
e

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

a
n

a
r
r
a
y

o
f

i
n
d
i
v
i
d
u
a
l
s

f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t

=
0
;

h
i
g
h
e
s
t
F
i
t
n
e
s
s

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

i
f

(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
i
]
,

s
p
a
n
,

g
e
n
,
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)

>
h
i
g
h
e
s
t
F
i
t
n
e
s
s
)
{

h
i
g
h
e
s
t
F
i
t
n
e
s
s

=
i
n
d
i
v
i
d
u
a
l
s
[
i
]
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
i
]
,

s
p
a
n
,

g
e
n
,
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,
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d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)
;

f
i
t
t
e
s
t
T
e
m
p
I
n
d
i
v
i
d
u
a
l

=
i
n
d
i
v
i
d
u
a
l
s
[
i
]
;

f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t

=
i
;

}

} r
e
t
u
r
n

f
i
t
t
e
s
t
T
e
m
p
I
n
d
i
v
i
d
u
a
l
;

} p
u
b
l
i
c

v
o
i
d

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
(
I
n
d
i
v
i
d
u
a
l
[
]

i
n
d
i
v
i
d
u
a
l
s
,

d
o
u
b
l
e
[
]

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e
[
]
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

i
n
t

g
e
n
e
r
a
t
i
o
n
)
{

f
o
r

(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
]

=
i
n
d
i
v
i
d
u
a
l
s
[
i
]
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
i
]
,

s
p
a
n
,

g
e
n
e
r
a
t
i
o
n
,

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)
;

}

} p
u
b
l
i
c

v
o
i
d

s
t
a
t
i
s
t
i
c
s
(
)
{

/
/
F
i
n
d

t
h
e

m
a
x
i
m
u
m

f
i
t
n
e
s
s

a
n
d

t
h
e

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

/
/
F
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

o
f

c
u
r
r
e
n
t

p
o
p
u
l
a
t
i
o
n
,

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

o
f

n
e
w

p
o
p
u
l
a
t
i
o
n

d
e
t
e
r
m
i
n
e
d

i
n

m
u
t
a
t
i
o
n

/
/
a
s

i
t

i
s

t
h
e

l
a
s
t

o
p
e
r
a
t
o
r

t
o

p
r
o
c
e
s
s

n
e
w

p
o
p
u
l
a
t
i
o
n

/
/
F
i
n
d

t
h
e

s
u
m

f
i
t
n
e
s
s

s
u
m
F
i
t
n
e
s
s

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
.
l
e
n
g
t
h
;

i
+
+
)
{

s
u
m
F
i
t
n
e
s
s

+
=

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
]
;

} /
/
F
i
n
d

t
h
e

a
v
e
r
a
g
e

f
i
t
n
e
s
s

a
v
e
F
i
t
n
e
s
s

=
s
u
m
F
i
t
n
e
s
s

*
M
a
t
h
.
p
o
w
(
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
,

-
1
)
;
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/
/
F
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

w
i
t
h

r
e
g
a
r
d

t
o

f
i
t
n
e
s
s

m
a
x
F
i
t
n
e
s
s

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

i
f

(
p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
]

>
m
a
x
F
i
t
n
e
s
s
)
{

m
a
x
F
i
t
n
e
s
s

=
p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
]
;

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l

=
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
]
;

}

} /
/
P
r
i
n
t

t
h
e

s
t
a
t
i
s
t
i
c
s

/
/

N
u
m
b
e
r
F
o
r
m
a
t

f
o
r
m
a
t
t
e
r

=
n
e
w

D
e
c
i
m
a
l
F
o
r
m
a
t
(
"
#
0
.
0
0
0
"
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
P
o
p
u
l
a
t
i
o
n

m
a
x
i
m
u
m

f
i
t
n
e
s
s
:

"
+

f
o
r
m
a
t
t
e
r
.
f
o
r
m
a
t
(
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
)
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
P
o
p
u
l
a
t
i
o
n

s
u
m

f
i
t
n
e
s
s
:

"
+

f
o
r
m
a
t
t
e
r
.
f
o
r
m
a
t
(
s
u
m
F
i
t
n
e
s
s
)
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
P
o
p
u
l
a
t
i
o
n

a
v
e
r
a
g
e

f
i
t
n
e
s
s
:

"
+

f
o
r
m
a
t
t
e
r
.
f
o
r
m
a
t
(
a
v
e
F
i
t
n
e
s
s
)
)
;

/
/
a
v
e
F
i
t
n
e
s
s
A
r
r
a
y
[
g
e
n
]

=
a
v
e
F
i
t
n
e
s
s
;

} p
u
b
l
i
c

v
o
i
d

s
c
a
l
e
F
i
t
n
e
s
s
F
E
M
(
d
o
u
b
l
e
[
]

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e
[
]
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

i
n
t

g
e
n
)
{

/
/
D
o

n
o
t

s
c
a
l
e

p
o
s
i
t
i
o
n
s

i
n

e
x
c
e
l

s
h
e
e
t
,

o
n
l
y

s
c
a
l
e

a
n
s
w
e
r
s

a
c
c
o
r
d
i
n
g

t
o

f
i
t
n
e
s
s

f
r
o
m

F
E
M

/
/
A
p
p
l
y

l
i
n
e
a
r

s
c
a
l
i
n
g

a
s

i
n

G
o
l
d
b
e
r
g
'
s

l
i
t
t
l
e

g
e
n
e
t
i
c

a
l
g
o
r
i
t
h
m

/
/
s
c
a
l
e
d

f
i
t
n
e
s
s

=
a

*
c
u
r
r
e
n
t
F
i
t
n
e
s
s

+
b
;

s
u
b
j
e
c
t
e
d

t
o

a
v
e
F
i
t
n
e
s
s

a
n
d

s
c
a
l
i
n
g
C
o
n
s
t
a
n
t

(
u
s
e
r

d
e
f
i
n
e
d
)

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
I
n

s
c
a
l
e
d
F
i
t
n
e
s
s
"
)
;

d
o
u
b
l
e
[
]

t
e
m
p

=
n
e
w

d
o
u
b
l
e
[
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
]
;

/
/
C
H
E
C
K

f
i
t
t
e
s
t
c
o
u
n
t
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
S
c
a
l
i
n
g

C
o
n
s
t
a
n
t

=
"

+
S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T
)
;

i
f

(
S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T

!
=

0
&
&

(
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

g
e
n
)
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

g
e
n
)
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,
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d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,

s
p
a
n
,

g
e
n
,

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)

-
a
v
e
F
i
t
n
e
s
s

>
0
)

&
&

(
m
a
x
F
i
t
n
e
s
s

!
=

a
v
e
F
i
t
n
e
s
s
)
)
{

s
u
m
F
i
t
n
e
s
s

=
0
;

d
o
u
b
l
e

c
o
n
s
t
a
n
t
1

=
(
(
S
C
A
L
I
N
G
_
C
O
N
S
T
A
N
T

-
1
)

*
a
v
e
F
i
t
n
e
s
s
)

*

M
a
t
h
.
p
o
w
(
(
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,
l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

g
e
n
)
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

g
e
n
)
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,

s
p
a
n
,

g
e
n
,

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)

-
a
v
e
F
i
t
n
e
s
s
)
,

-
1
)
;

d
o
u
b
l
e

c
o
n
s
t
a
n
t
2

=
(
1

-
c
o
n
s
t
a
n
t
1
)

*
a
v
e
F
i
t
n
e
s
s
;

/
/
A
p
p
l
y

s
c
a
l
i
n
g

f
o
r
(
i
n
t

i
=

0
;

i
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

i
+
+
)
{

t
e
m
p
[
i
]

=
c
o
n
s
t
a
n
t
1

*
p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
]

+
c
o
n
s
t
a
n
t
2
;

i
f
(
t
e
m
p
[
i
]

<
0
)
{

t
e
m
p
[
i
]

=
0
;

/
/
A
v
o
i
d

n
e
g
a
t
i
v
e

v
a
l
u
e
s

} s
u
m
F
i
t
n
e
s
s

=
s
u
m
F
i
t
n
e
s
s

+
t
e
m
p
[
i
]
;

/
/
N
e
w

S
u
m

f
i
t
n
e
s
s

} /
/
C
o
p
y

t
e
m
p

i
n
t
o

p
o
p
u
l
a
t
i
o
n

f
i
t
n
e
s
s

S
y
s
t
e
m
.
a
r
r
a
y
c
o
p
y
(
t
e
m
p
,

0
,

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
,

0
,

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)
;

a
v
e
F
i
t
n
e
s
s

=
s
u
m
F
i
t
n
e
s
s

*
M
a
t
h
.
p
o
w
(
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
,

-
1
)
;

}

}

p
u
b
l
i
c

d
o
u
b
l
e

g
e
t
F
i
t
t
e
s
t
(
)
{

r
e
t
u
r
n

h
i
g
h
e
s
t
F
i
t
n
e
s
s
;
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}

/
/
F
E
M

s
e
l
e
c
t
i
o
n

p
u
b
l
i
c

I
n
d
i
v
i
d
u
a
l

s
e
l
e
c
t
(
)
{

/
/
R
o
u
l
e
t
t
e

w
h
e
e
l

s
e
l
e
c
t
i
o
n

d
o
u
b
l
e

s
u
m

=
0
;

i
n
t

i
n
d
e
x

=
0
;

d
o
u
b
l
e

r
o
u
l
e
t
t
e
W
h
e
e
l

=
M
a
t
h
.
r
a
n
d
o
m
(
)

*
s
u
m
F
i
t
n
e
s
s
;

w
h
i
l
e

(
s
u
m

<
r
o
u
l
e
t
t
e
W
h
e
e
l

&
&

i
n
d
e
x

<
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E

)
{

s
u
m

+
=

p
o
p
u
l
a
t
i
o
n
F
i
t
n
e
s
s
A
r
r
a
y
[
i
n
d
e
x
]
;

/
/
!
!
!

p
e
r
h
a
p
s

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
.
f
i
t
n
e
s
s

a
g
a
i
n
?
?
?

i
n
d
e
x

+
=

1
;

} i
n
d
e
x

-
=

1
;

i
f

(
i
n
d
e
x

=
=

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)

r
e
t
u
r
n

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
n
d
e
x

-
1
]
;

e
l
s
e

r
e
t
u
r
n

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
i
n
d
e
x
]
;

} p
u
b
l
i
c

v
o
i
d

c
r
o
s
s
o
v
e
r
(
)
{

/
/
P
e
r
f
o
r
m

c
r
o
s
s
o
v
e
r

o
n
l
y

c
r
o
s
s
o
v
e
r
P
r
o
b
a
b
i
l
i
t
y

o
f

t
h
e

t
i
m
e
s

s
e
l
e
c
t
e
d
.
c
l
e
a
r
(
)
;

n
u
m
.
c
l
e
a
r
(
)
;

/
/
c
r
o
s
s
o
v
e
r

p
o
i
n
t
s

i
n
t

p
o
i
n
t
;

i
n
t
[
]

c
r
o
s
s
o
v
e
r
P
o
i
n
t
s

=
n
e
w

i
n
t
[
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S

+
2
]
;

/
/
f
o
r

b
e
g
i
n
n
i
n
g

a
n
d

e
n
d

p
o
s
i
t
i
o
n
s

c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
0
]

=
0
;

c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S

+
1
]

=
T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
;

c
o
u
n
t
C
h
i
l
d
r
e
n

=
0
;
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/
/
p
l
a
c
e

h
o
l
d
e
r
s

f
o
r

m
u
l
t
i
p
l
e

c
r
o
s
s
o
v
e
r

i
n
t

b
e
g
i
n

=
0
;

i
n
t

c
o
u
n
t
e
r

=
0
;

i
n
t

e
n
d
;

/
/
C
h
e
c
k

i
f
(
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S

>
=

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
)
{

S
y
s
t
e
m
.
e
r
r
.
p
r
i
n
t
l
n
(
"
!
T
o
o

m
a
n
y

c
r
o
s
s

s
i
t
e
s
!
"
)
;

} /
/
D
e
f
i
n
e

p
a
r
e
n
t

s
t
r
i
n
g
s

I
n
d
i
v
i
d
u
a
l

p
a
r
e
n
t
1
;

I
n
d
i
v
i
d
u
a
l

p
a
r
e
n
t
2
;

/
/
W
i
t
h

o
r

w
i
t
h
o
u
t

r
e
p
l
a
c
e
m
e
n
t
?

f
o
r

(
i
n
t

a
=

0
;

a
<

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
;

a
=

a
+

2
)
{

i
n
t

i
=

0
;

i
f
(
R
E
P
L
A
C
E
M
E
N
T

=
=

t
r
u
e
)
{

p
a
r
e
n
t
1

=
s
e
l
e
c
t
(
)
;

p
a
r
e
n
t
2

=
s
e
l
e
c
t
(
)
;

}
e
l
s
e
{

p
a
r
e
n
t
1

=
s
e
l
e
c
t
(
)
;

p
a
r
e
n
t
2

=
s
e
l
e
c
t
(
)
;

w
h
i
l
e
(
(
p
a
r
e
n
t
1

=
=

p
a
r
e
n
t
2
)

|
|

(
s
e
l
e
c
t
e
d
.
c
o
n
t
a
i
n
s
(
p
a
r
e
n
t
1
)

=
=

t
r
u
e
)

|
|

(
s
e
l
e
c
t
e
d
.
c
o
n
t
a
i
n
s
(
p
a
r
e
n
t
2
)

=
=

t
r
u
e
)
)
{

p
a
r
e
n
t
1

=
s
e
l
e
c
t
(
)
;

p
a
r
e
n
t
2

=
s
e
l
e
c
t
(
)
;

} s
e
l
e
c
t
e
d
.
a
d
d
(
p
a
r
e
n
t
1
)
;

s
e
l
e
c
t
e
d
.
a
d
d
(
p
a
r
e
n
t
2
)
;

}
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/
/
I
n
i
t
i
a
t
e

c
h
i
l
d
r
e
n

I
n
d
i
v
i
d
u
a
l

c
h
i
l
d
1

=
n
e
w

I
n
d
i
v
i
d
u
a
l
(
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

a
r
e
a
A
r
r
a
y
,

i
n
p
u
t
,

e
n
t
r
i
e
s
,

l
e
n
g
t
h
A
r
r
a
y
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s

,
J
A
r
r
a
y
)
;

I
n
d
i
v
i
d
u
a
l

c
h
i
l
d
2

=
n
e
w

I
n
d
i
v
i
d
u
a
l
(
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

a
r
e
a
A
r
r
a
y
,

i
n
p
u
t
,

e
n
t
r
i
e
s
,

l
e
n
g
t
h
A
r
r
a
y
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,
s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
,

J
A
r
r
a
y
)
;

c
o
u
n
t
C
h
i
l
d
r
e
n

=
c
o
u
n
t
C
h
i
l
d
r
e
n

+
2
;

i
f

(
M
a
t
h
.
r
a
n
d
o
m
(
)

<
=

C
R
O
S
S
O
V
E
R
_
P
R
O
B
A
B
I
L
I
T
Y
)
{

/
/
U
s
e

s
e
t

t
o

c
h
e
c
k

t
h
a
t

t
w
o

p
o
i
n
t
s

d
o

n
o
t

f
a
l
l

o
n

t
h
e

s
a
m
e

p
l
a
c
e

/
/
p
o
p
u
l
a
t
e

n
u
m

f
o
r
(
i
n
t

w
=

1
;

w
<
=

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
;

w
+
+
)
{

n
u
m
.
a
d
d
(
w
)
;

} w
h
i
l
e
(
i

<
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S
)
{

/
/
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
i

=
"

+
i
)
;

p
o
i
n
t

=
(
i
n
t
)
(
M
a
t
h
.
r
o
u
n
d
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*
T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
)
)
;

i
f
(
n
u
m
.
c
o
n
t
a
i
n
s
(
p
o
i
n
t
)
)
{

c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
i
+
1
]

=
p
o
i
n
t
;

n
u
m
.
r
e
m
o
v
e
(
p
o
i
n
t
)
;

}
e
l
s
e
{

i
-
=

1
;

} i
+
=
1
;

} /
/
P
e
r
f
o
r
m

c
r
o
s
s
o
v
e
r
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f
o
r
(
i
n
t

k
=

0
;

k
<

C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S

+
1
;

k
+
+
)
{

b
e
g
i
n

=
c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
k
]
;

e
n
d

=
c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
k
+
1
]
;

i
f
(
k
>
0
)

e
n
d

=
c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
k
+
1
]

-
1
;

/
/
c
h
e
c
k

f
o
r

o
v
e
r
l
a
p

i
f
(
k
=
=
C
R
O
S
S
O
V
E
R
_
P
O
I
N
T
S
)

/
/
c
h
e
c
k

f
o
r

l
a
s
t

p
o
i
n
t

e
n
d

=
c
r
o
s
s
o
v
e
r
P
o
i
n
t
s
[
k
+
1
]
;

i
f
(
c
o
u
n
t
e
r

%
2

=
=

0
)
{

f
o
r
(
i
n
t

m
=

b
e
g
i
n
;

m
<

e
n
d
;

m
+
+
)
{

c
h
i
l
d
1
.
i
n
d
i
v
i
d
u
a
l
[
m
]

=
p
a
r
e
n
t
1
.
i
n
d
i
v
i
d
u
a
l
[
m
]
;

c
h
i
l
d
2
.
i
n
d
i
v
i
d
u
a
l
[
m
]

=
p
a
r
e
n
t
2
.
i
n
d
i
v
i
d
u
a
l
[
m
]
;

}

} e
l
s
e
{ f
o
r
(
i
n
t

m
=

b
e
g
i
n
;

m
<

e
n
d
;

m
+
+
)
{

c
h
i
l
d
1
.
i
n
d
i
v
i
d
u
a
l
[
m
]

=
p
a
r
e
n
t
2
.
i
n
d
i
v
i
d
u
a
l
[
m
]
;

c
h
i
l
d
2
.
i
n
d
i
v
i
d
u
a
l
[
m
]

=
p
a
r
e
n
t
1
.
i
n
d
i
v
i
d
u
a
l
[
m
]
;

}

} c
o
u
n
t
e
r
+
+
;

} c
o
u
n
t
e
r

=
0
;

/
/
P
l
a
c
e

c
h
i
l
d
r
e
n

i
n

t
e
m
p
o
r
a
r
y

p
o
p
u
l
a
t
i
o
n

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
c
o
u
n
t
C
h
i
l
d
r
e
n

-
2
]

=
c
h
i
l
d
1
;

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
c
o
u
n
t
C
h
i
l
d
r
e
n

-
1
]

=
c
h
i
l
d
2
;

} e
l
s
e
{ /
/
N
o

c
r
o
s
s
o
v
e
r

f
o
r

(
i
n
t

q
=

0
;

q
<

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
;

q
+
+

)
{

c
h
i
l
d
1
.
i
n
d
i
v
i
d
u
a
l
[
q
]

=
p
a
r
e
n
t
1
.
i
n
d
i
v
i
d
u
a
l
[
q
]
;
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c
h
i
l
d
2
.
i
n
d
i
v
i
d
u
a
l
[
q
]

=
p
a
r
e
n
t
2
.
i
n
d
i
v
i
d
u
a
l
[
q
]
;

} t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
c
o
u
n
t
C
h
i
l
d
r
e
n

-
2
]

=
c
h
i
l
d
1
;

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
c
o
u
n
t
C
h
i
l
d
r
e
n

-
1
]

=
c
h
i
l
d
2
;

}

} s
e
l
e
c
t
e
d
.
c
l
e
a
r
(
)
;

n
u
m
.
c
l
e
a
r
(
)
;

} p
u
b
l
i
c

v
o
i
d

m
u
t
a
t
e
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
)
{

f
o
r

(
i
n
t

i
=

0
;

i
<

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
;

i
+
+
)
{

i
f

(
M
a
t
h
.
r
a
n
d
o
m
(
)

<
=

M
U
T
A
T
I
O
N
_
P
R
O
B
A
B
I
L
I
T
Y
)
{

i
f

(
i
n
d
i
v
i
d
u
a
l
.
i
n
d
i
v
i
d
u
a
l
[
i
]

=
=

0
)

i
n
d
i
v
i
d
u
a
l
.
i
n
d
i
v
i
d
u
a
l
[
i
]

=
1
;

e
l
s
e

i
n
d
i
v
i
d
u
a
l
.
i
n
d
i
v
i
d
u
a
l
[
i
]

=
0
;

}

}

}

/
/
A
p
p
l
y

e
l
i
t
i
s
m

a
t

e
n
d

a
f
t
e
r

t
e
m
p

a
r
r
a
y

o
f

i
n
d
i
v
i
d
u
a
l
s

h
a
s

b
e
e
n

c
r
e
a
t
e
d

p
u
b
l
i
c

v
o
i
d

e
l
i
t
i
s
m
(
d
o
u
b
l
e
[
]

l
a
r
g
e
s
t
D
i
s
p
l
,
d
o
u
b
l
e
[
]
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

i
n
t

g
e
n
,

i
n
t

e
l
i
t
e
N
u
m
b
e
r
)
{

/
/
C
h
e
c
k

w
h
e
t
h
e
r

t
h
e

f
i
t
t
e
s
t

i
n
d
i
v
i
d
u
a
l

h
a
s

a
l
o
w
e
r

f
i
t
n
e
s
s

o
f

a
n

e
l
i
t
e

m
e
m
b
e
r

f
r
o
m

a
p
r
e
v
i
o
u
s

g
e
n
e
r
a
t
i
o
n

/
/
I
n

t
h
e

c
a
s
e

w
h
e
r
e

t
h
e

a
b
o
v
e

i
s

t
r
u
e
,

t
h
e
n

a
r
a
n
d
o
m
l
y

s
e
l
e
c
t
e
d

m
e
m
b
e
r

i
s

r
e
p
l
a
c
e
d

b
y

t
h
e

e
l
i
t
e

m
e
m
b
e
r

I
n
d
i
v
i
d
u
a
l

e
l
i
t
e

=
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,
l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

g
e
n
)
;

d
o
u
b
l
e

t
e
m
p
F
i
t
t
e
s
t

=
e
l
i
t
e
.
f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
e
l
i
t
e
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,

d
e
n
s
i
t
y
,
r
v
v
,
r
u
u
,

e
m
o
d
,

f
y
,

J
A
r
r
a
y
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
[
f
i
t
t
e
s
t
T
e
m
p
C
o
u
n
t
]
,

s
p
a
n
,
g
e
n
,
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,
w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)
;
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d
i
d
E
l
i
t
e

=
f
a
l
s
e
;

i
f

(
m
a
x
F
i
t
n
e
s
s

>
t
e
m
p
F
i
t
t
e
s
t
)

{

d
i
d
E
l
i
t
e

=
t
r
u
e
;

/
/

e
l
i
t
e
N
u
m
b
e
r

=
(
i
n
t
)
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*
P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)
;

i
f
(
e
l
i
t
e
N
u
m
b
e
r

=
=

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)
{

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
e
l
i
t
e
N
u
m
b
e
r

-
1
]

=
f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
;

e
l
i
t
e
N
u
m
b
e
r

-
=
1
;

}
e
l
s
e
{

t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
[
e
l
i
t
e
N
u
m
b
e
r
]

=
f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
;

} S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
d
i
s
p
l
a
c
e
+

"
,
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
m
a
x
F
i
t
n
e
s
s
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
p
e
n
a
l
t
y
*
2
5
0
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
m
a
s
s
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"

S
e
l
e
c
t
e
d

A
r
e
a
s
:

"
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
s
e
l
e
c
t
e
d
A
r
e
a
[
i
]
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

}
e
l
s
e
{

d
i
d
E
l
i
t
e

=
f
a
l
s
e
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,
g
e
n
)
.
d
i
s
p
l
a
c
e

+
"
,
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
t
e
m
p
F
i
t
t
e
s
t
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,
g
e
n
)
.
p
e
n
a
l
t
y
*
2
5
0
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,
g
e
n
)
.
m
a
s
s
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
t
t
e
s
t
C
u
r
r
e
n
t
I
n
d
i
v
i
d
u
a
l
.
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"

S
e
l
e
c
t
e
d

A
r
e
a
s
:

"
)
;
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f
o
r

(
i
n
t

i
=

0
;

i
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"
,

"
+

f
i
n
d
F
i
t
t
e
s
t
I
n
d
i
v
i
d
u
a
l
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

l
a
r
g
e
s
t
D
i
s
p
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,
g
e
n
)
.
s
e
l
e
c
t
e
d
A
r
e
a
[
i
]
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
)
;

}

} p
u
b
l
i
c

B
o
o
l
e
a
n

d
i
d
E
l
i
t
e
(
)
{

r
e
t
u
r
n

d
i
d
E
l
i
t
e
;

} p
u
b
l
i
c

i
n
t

g
e
t
E
l
i
t
e
N
u
m
b
e
r
(
)
{

r
e
t
u
r
n

e
l
i
t
e
N
u
m
b
e
r
;

}

p
u
b
l
i
c

v
o
i
d

r
e
p
l
a
c
e
(
)
{

S
y
s
t
e
m
.
a
r
r
a
y
c
o
p
y
(
t
e
m
p
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

0
,

c
u
r
r
e
n
t
A
r
r
a
y
O
f
I
n
d
i
v
i
d
u
a
l
s
,

0
,

P
O
P
U
L
A
T
I
O
N
_
S
I
Z
E
)
;

}

}

L
is
ti
n
g
2
:
C
la
ss

P
o
p
u
la
ti
o
n

In
d
iv
id
u
a
l

T
h
is
cl
a
ss

cr
ea
te
s
a
n
a
rr
ay

o
f
ch
ro
m
o
so
m
es

a
n
d
a
ls
o
co
n
ta
in
s
th
e
co
d
e
fo
r
th
e
�
tn
es
s
a
n
d
o
b
je
ct
iv
e
fu
n
ct
io
n
s.

p
a
c
k
a
g
e

G
e
n
e
t
i
c
A
l
g
o
r
i
t
h
m
;

/
/
i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
e
l
e
m
e
n
t
.
T
r
u
s
s
E
l
e
m
e
n
t
;

/
/
i
m
p
o
r
t

f
e
m
.
m
o
d
e
l
.
F
e
m
M
o
d
e
l
;
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/
/
I
n
d
i
v
i
d
u
a
l

i
s

m
a
d
e

u
p

f
r
o
m

a
n
u
m
b
e
r

o
f

d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A

p
u
b
l
i
c

c
l
a
s
s

I
n
d
i
v
i
d
u
a
l

{

i
n
t
[
]

i
n
d
i
v
i
d
u
a
l
,

a
r
r
a
y
D
e
c
o
d
e
d
C
h
r
o
m
o
s
o
m
e
s
G
A
,
f
e
m
I
n
d
e
x
A
r
r
a
y
;

i
n
t

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
,

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

e
n
t
r
i
e
s
;

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

d
o
u
b
l
e
[
]

a
r
e
a
A
r
r
a
y

;

d
o
u
b
l
e
[
]

l
e
n
g
t
h
,

J
A
r
r
a
y
;

d
o
u
b
l
e
[
]

s
e
l
e
c
t
e
d
A
r
e
a
;

d
o
u
b
l
e

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
;

d
o
u
b
l
e

i
n
d
i
v
i
d
u
a
l
F
i
t
n
e
s
s
,

o
b
j
e
c
t
i
v
e
V
a
l
u
e
,

p
e
n
a
l
t
y
,

m
a
s
s
,

d
i
s
p
l
a
c
e
;

i
n
t

v
;

B
o
o
l
e
a
n

s
t
a
t
i
c
F
i
t
n
e
s
s
,

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

u
s
e
S
A
N
S
,

i
s
C
H
S
,

i
s
E
q
u
a
l
L
,

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
;

d
o
u
b
l
e

o
b
j
e
c
t
i
v
e
;

/
/
I
n
d
i
v
i
d
u
a
l

f
o
r

F
E
M

p
u
b
l
i
c

I
n
d
i
v
i
d
u
a
l
(
i
n
t

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
,

i
n
t

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
,

d
o
u
b
l
e
[
]

a
r
e
a
A
r
r
a
y
,

M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
,

i
n
t

e
n
t
r
i
e
s
,

d
o
u
b
l
e
[
]

l
e
n
g
t
h
,

i
n
t
[
]

f
e
m
I
n
d
e
x
A
r
r
a
y
,

B
o
o
l
e
a
n

s
t
a
t
i
c
F
i
t
n
e
s
s
,

B
o
o
l
e
a
n

d
y
n
a
m
i
c
F
i
t
n
e
s
s
,

B
o
o
l
e
a
n

n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

B
o
o
l
e
a
n

u
s
e
S
A
N
S
,

B
o
o
l
e
a
n

i
s
C
H
S
,

B
o
o
l
e
a
n

i
s
E
q
u
a
l
L
,

B
o
o
l
e
a
n

u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

B
o
o
l
e
a
n

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
,

d
o
u
b
l
e
[
]

J
A
r
r
a
y
)
{

t
h
i
s
.
f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s

=
f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
;

t
h
i
s
.
u
s
e
S
A
N
S

=
u
s
e
S
A
N
S
;

t
h
i
s
.
u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t

=
u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
;

t
h
i
s
.
i
s
C
H
S

=
i
s
C
H
S
;

t
h
i
s
.
i
s
E
q
u
a
l
L

=
i
s
E
q
u
a
l
L
;

t
h
i
s
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S

=
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

t
h
i
s
.
S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H

=
S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
;

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H

=
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S

*
S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
;

t
h
i
s
.
e
n
t
r
i
e
s

=
e
n
t
r
i
e
s
;
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t
h
i
s
.
a
r
e
a
A
r
r
a
y

=
a
r
e
a
A
r
r
a
y
;

t
h
i
s
.
J
A
r
r
a
y

=
J
A
r
r
a
y
;

t
h
i
s
.
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s

=
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

t
h
i
s
.
f
e
m
I
n
d
e
x
A
r
r
a
y

=
f
e
m
I
n
d
e
x
A
r
r
a
y
;

t
h
i
s
.
s
t
a
t
i
c
F
i
t
n
e
s
s

=
s
t
a
t
i
c
F
i
t
n
e
s
s
;

t
h
i
s
.
d
y
n
a
m
i
c
F
i
t
n
e
s
s

=
d
y
n
a
m
i
c
F
i
t
n
e
s
s
;

t
h
i
s
.
n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s

=
n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
;

i
n
d
i
v
i
d
u
a
l

=
n
e
w

i
n
t
[
T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H
]
;

/
/
C
r
e
a
t
e

a
n

a
r
r
a
y

o
f

d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A

w
h
i
c
h

i
s

a
n

i
n
d
i
v
i
d
u
a
l

/
/
i
n

o
r
d
e
r

t
o

d
e
c
o
d
e

i
n
d
i
v
i
d
u
a
l

a
r
r
a
y
D
e
c
o
d
e
d
C
h
r
o
m
o
s
o
m
e
s
G
A

=
n
e
w

i
n
t
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

s
e
l
e
c
t
e
d
A
r
e
a

=
n
e
w

d
o
u
b
l
e
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

/
/
L
e
n
g
t
h

c
r
e
a
t
e

i
n

i
n
d
i
v
i
d
u
a
l

a
s

t
h
e

l
e
n
g
t
h

o
f

t
h
e

m
e
m
b
e
r
s

w
i
l
l

n
o
t

c
h
a
n
g
e

t
h
i
s
.
l
e
n
g
t
h

=
l
e
n
g
t
h
;

/
/
R
a
n
d
o
m
l
y

p
o
p
u
l
a
t
e

i
n
d
i
v
i
d
u
a
l

f
o
r

f
i
r
s
t

g
e
n
e
r
a
t
i
o
n

f
o
r

(
i
n
t

i
=

0
;

i
<

i
n
d
i
v
i
d
u
a
l
.
l
e
n
g
t
h
;

i
+
+
)
{

i
f

(
M
a
t
h
.
r
a
n
d
o
m
(
)

>
0
.
5
)

i
n
d
i
v
i
d
u
a
l
[
i
]

=
1
;

e
l
s
e

i
n
d
i
v
i
d
u
a
l
[
i
]

=
0
;

}

} p
u
b
l
i
c

v
o
i
d

p
r
i
n
t
I
n
d
i
v
i
d
u
a
l
(
)
{

f
o
r

(
i
n
t

i
=

0
;

i
<

i
n
d
i
v
i
d
u
a
l
.
l
e
n
g
t
h
;

i
+
+
)

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
i
n
d
i
v
i
d
u
a
l
[
i
]
)
;

} /
/
F
i
n
d
s

t
h
e

d
e
c
o
d
e
d

v
a
l
u
e
s

f
o
r

a
n

i
n
d
i
v
i
d
u
a
l
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p
u
b
l
i
c

i
n
t
[
]

d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
,

i
n
t

e
n
t
r
i
e
s
)
{

i
n
t

i
n
t
U
n
k
n
o
w
n
;

i
n
t

r
e
a
l
;

d
o
u
b
l
e

m
a
x
S
t
r
i
n
g

=
M
a
t
h
.
p
o
w
(
2
,

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
)

-
1
;

d
o
u
b
l
e

m
=

(
m
a
x
S
t
r
i
n
g
)
*
M
a
t
h
.
p
o
w
(
e
n
t
r
i
e
s
,
-
1
)
;

d
o
u
b
l
e

c
=

m
;

/
/
y

i
n
t
e
r
c
e
p
t

a
t

z
e
r
o

i
n
t

i
=

T
O
T
A
L
_
S
T
R
I
N
G
_
L
E
N
G
T
H

-
1
;

f
o
r

(
i
n
t

j
=

0
;

j
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

j
+
+
)
{

i
n
t
U
n
k
n
o
w
n

=
0
;

r
e
a
l

=
0
;

/
/
o
b
t
a
i
n

i
n
t

v
a
l
u
e

(
b
i
n
a
r
y

c
o
d
e
)

f
o
r

(
i
n
t

k
=

0
;

k
<

S
U
B
S
T
R
I
N
G
_
L
E
N
G
T
H
;

k
+
+
)
{

i
f

(
i

>
-
1
)
{

i
f

(
i
n
d
i
v
i
d
u
a
l
.
i
n
d
i
v
i
d
u
a
l
[
i
]

=
=

1
)
{

i
n
t
U
n
k
n
o
w
n

+
=

M
a
t
h
.
p
o
w
(
2
,

k
)
;

}

} i
-
-
;

} /
/
C
h
e
c
k

t
h
a
t

s
e
l
e
c
t
e
d

m
e
m
b
e
r

i
s

i
n

d
a
t
a
b
a
s
e

/
/
y

=
m
x
+
c

r
e
a
l

=
(
i
n
t
)
(
(
M
a
t
h
.
r
o
u
n
d
(
(
i
n
t
U
n
k
n
o
w
n

-
c
)
*
M
a
t
h
.
p
o
w
(
m
,

-
1
)
)
)
)
;

i
f

(
r
e
a
l

=
=

e
n
t
r
i
e
s

+
1
)

r
e
a
l

=
e
n
t
r
i
e
s
;

i
f

(
r
e
a
l

<
0
)

r
e
a
l

=
1
;

/
/
R
E
F
E
R
S

T
O

R
O
W

N
U
M
B
E
R

I
N

E
X
C
E
L

S
P
R
E
A
D

S
H
E
E
T

i
n
d
i
v
i
d
u
a
l
.
a
r
r
a
y
D
e
c
o
d
e
d
C
h
r
o
m
o
s
o
m
e
s
G
A
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S

-
j

-
1
]

=
r
e
a
l
;
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} f
o
r

(
i
n
t

j
=

0
;

j
<

i
n
d
i
v
i
d
u
a
l
.
a
r
r
a
y
D
e
c
o
d
e
d
C
h
r
o
m
o
s
o
m
e
s
G
A
.
l
e
n
g
t
h
;

j
+
+
)
{

}

r
e
t
u
r
n

i
n
d
i
v
i
d
u
a
l
.
a
r
r
a
y
D
e
c
o
d
e
d
C
h
r
o
m
o
s
o
m
e
s
G
A
;

} /
/
m
^
2

p
u
b
l
i
c

d
o
u
b
l
e
[
]

g
e
t
A
r
e
a
I
n
d
i
v
i
d
u
a
l
_
m
e
t
e
r
s
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
,

i
n
t

e
n
t
r
i
e
s
)
{

d
o
u
b
l
e
[
]

a
r
e
a

=
n
e
w

d
o
u
b
l
e
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

f
o
r
(
i
n
t

i
=

0
;

i
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)
{

a
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
i
v
i
d
u
a
l
.
d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A
(
i
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
[
i
]
]
*
M
a
t
h
.
p
o
w
(
1
0
0
0
0
0
0
,

-
1
)
;

}

r
e
t
u
r
n

a
r
e
a
;

} p
u
b
l
i
c

d
o
u
b
l
e
[
]

g
e
t
J
I
n
d
i
v
i
d
u
a
l
_
m
e
t
e
r
s
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
,

i
n
t

e
n
t
r
i
e
s
)
{

d
o
u
b
l
e

q
=

1
0
0
0
;

d
o
u
b
l
e
[
]

J
=

n
e
w

d
o
u
b
l
e
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

f
o
r
(
i
n
t

i
=

0
;

i
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)
{

J
[
i
]

=
J
A
r
r
a
y
[
i
n
d
i
v
i
d
u
a
l
.
d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A
(
i
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
[
i
]
]
*
M
a
t
h
.
p
o
w
(
(
q
+
1
0
0
0
0
0
0
0
0
0
)
,

-
1
)
;

}

r
e
t
u
r
n

J
;

} p
u
b
l
i
c

d
o
u
b
l
e

f
i
n
d
O
b
j
e
c
t
i
v
e
F
u
n
c
t
i
o
n
V
a
l
u
e
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
,

d
o
u
b
l
e
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

d
o
u
b
l
e

d
e
n
s
i
t
y
,

d
o
u
b
l
e
[
]

r
v
v
,

d
o
u
b
l
e
[
]

r
u
u
,

d
o
u
b
l
e

e
m
o
d
,

d
o
u
b
l
e

f
y
,

d
o
u
b
l
e
[
]

J
,

d
o
u
b
l
e
[
]

t
,

d
o
u
b
l
e
[
]

b
,

d
o
u
b
l
e
[
]

a
x
,

d
o
u
b
l
e

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e

s
p
a
n
,

i
n
t

g
e
n
,

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

d
o
u
b
l
e

s
t
r
e
s
s
L
i
m
i
t
)
{

d
o
u
b
l
e

a
l

=
0
;

v
=

0
;

Stellenbosch University  http://scholar.sun.ac.za



17.7 ALGORITHM CODE EXTRACTS 207
p
e
n
a
l
t
y

=
0
;

m
a
s
s

=
0
;

d
i
s
p
l
a
c
e

=
l
a
r
g
e
s
t
D
i
s
p
l
;

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
;

d
o
u
b
l
e

p
e
n
a
l
t
y
P
a
r
a
m
e
t
e
r

=
2
5
0
;

d
o
u
b
l
e

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
;

d
o
u
b
l
e

l
a
r
g
e
s
t
F
o
r
c
e

=
0
;

b
o
o
l
e
a
n

t
e
n
s
i
o
n
;

b
o
o
l
e
a
n

s
l
e
n
d
e
r
;

i
n
t
[
]

i
n
d
e
x
A
r
r
a
y

=
n
e
w

i
n
t
[
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

i
n
t

i
n
d
e
x

=
0
;

/
/
r
e
f
e
r
s

t
o

p
o
s
i
t
i
o
n

i
n

i
n
d
e
x
A
r
r
a
y

a
n
d

s
e
l
e
c
t
e
d
A
r
e
a

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
S
A
N
S
;

/
/
F
o
r

t
h
e

c
a
s
e

o
f

S
A
N
S

i
f

(
u
s
e
S
A
N
S
)
{

/
/
c
r
e
a
t
e

a
r
e
a

a
r
r
a
y

f
o
r

(
i
n
t

q
=

0
;

q
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

q
+
+
)
{

i
n
d
e
x
A
r
r
a
y
[
q
]

=
i
n
d
i
v
i
d
u
a
l
.
d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A
(
i
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
[
q
]
;

s
e
l
e
c
t
e
d
A
r
e
a
[
q
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
q
]
]
;

} i
f
(
i
s
C
H
S
)
{

/
/
F
o
r

C
I
R
C
U
L
A
R

H
O
L
L
O
W

S
E
C
T
I
O
N
S

/
/
c
h
e
c
k

f
o
r

s
l
e
n
d
e
r
n
e
s
s

/
/
C
h
e
c
k

f
o
r

t
e
n
s
i
o
n

/
/

k
=

1
f
o
r

p
i
n
n
e
d

c
o
n
n
e
c
t
i
o
n
s

/
/

i
n
d
e
x

=
0
;

f
o
r
(
i
n
t

i
=

0
;

i
<

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

i
+
+
)
{

/
/
C
h
e
c
k

c
u
r
r
e
n
t

g
r
o
u
p

i
f

(
i

=
=

0
)
{
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/
/
F
i
r
s
t

g
r
o
u
p

i
n
d
e
x

=
0
;

} e
l
s
e

i
f
(
f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
]

!
=

f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
-
1
]
)
{

/
/
N
e
w

g
r
o
u
p

i
n
d
e
x
+
+
;

}

/
/

i
f

(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
<
0
)
{

t
e
n
s
i
o
n

=
t
r
u
e
;

i
f

(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)

<
=

3
0
0
)

s
l
e
n
d
e
r

=
f
a
l
s
e
;

e
l
s
e
{ s
l
e
n
d
e
r

=
t
r
u
e
;

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
*
M
a
t
h
.
p
o
w
(
3
0
0
,
-
1
)

-
1
;

}

} e
l
s
e
{ i
f
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]

=
=

0
)
{

S
y
s
t
e
m
.
e
r
r
.
p
r
i
n
t
l
n
(
"
-
-
-
-
-
-
-
-
-
!
R
e
d
u
n
d
a
n
t

E
l
e
m
e
n
t
s

P
r
e
s
e
n
t
!
-
-
-
-
-
-
-
-
-
"
)
;

S
y
s
t
e
m
.
e
r
r
.
p
r
i
n
t
l
n
(
"
E
l
e
m
e
n
t

n
u
m
b
e
r

"
+

i
)
;

S
y
s
t
e
m
.
e
x
i
t
(
0
)
;

} t
e
n
s
i
o
n

=
f
a
l
s
e
;

i
f

(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)

<
=

2
0
0
)

s
l
e
n
d
e
r

=
f
a
l
s
e
;

e
l
s
e
{ s
l
e
n
d
e
r

=
t
r
u
e
;

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
*
M
a
t
h
.
p
o
w
(
2
0
0
,
-
1
)

-
1
;
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}

} /
/
A
l
l
o
w
a
b
l
e

f
o
r
c
e

f
o
r

e
l
e
m
e
n
t

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
;

i
f

(
t
e
n
s
i
o
n
)
{

/
/
T
e
n
s
i
o
n

/
/

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
.
9
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
f
y
;

/
/
*
M
a
t
h
.
p
o
w
(
1
0
0
0
,
-
1
)
;

/
/
k
N

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
a
l
l
o
w
a
b
l
e

f
o
r
c
e

t
e
n
s
i
o
n

"
+

a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
;

i
f
(
M
a
t
h
.
a
b
s
(
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e

=
a
l
l
o
w
a
b
l
e
F
o
r
c
e
;

} e
l
s
e
{

/
/
C
o
m
p
r
e
s
s
i
o
n

/
/

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

d
o
u
b
l
e

f
e
y

=
(
M
a
t
h
.
p
o
w
(
M
a
t
h
.
P
I
,

2
)
*
e
m
o
d
)
*
M
a
t
h
.
p
o
w
(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,
-
1
)
,

-
2
)
;

d
o
u
b
l
e

r
0
2

=
2

*
r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
;

d
o
u
b
l
e

f
e
z

=
G
A
M
a
i
n
.
G
*
J
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
r
0
2
,

-
1
)
;

d
o
u
b
l
e

o
m
e
g
a

=
1
;

d
o
u
b
l
e

f
e
x

=
(
M
a
t
h
.
p
o
w
(
M
a
t
h
.
P
I
,

2
)
*
e
m
o
d
)
*
M
a
t
h
.
p
o
w
(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,
-
1
)
,

-
2
)
;

d
o
u
b
l
e

f
e
;

i
f
(
f
e
x
<
f
e
y

&
&

f
e
x
<
f
e
z
)
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f
e

=
f
e
x
;

e
l
s
e

i
f
(
f
e
z
<
f
e
x

&
&

f
e
z
<
f
e
y
)

f
e

=
f
e
z
;

e
l
s
e

f
e

=
f
e
y
;

d
o
u
b
l
e

l
a
m
d
a

=
M
a
t
h
.
s
q
r
t
(
f
y
*
M
a
t
h
.
p
o
w
(
f
e
,
-
1
)
)
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
.
9
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
f
y
*

M
a
t
h
.
p
o
w
(
(
1
+
M
a
t
h
.
p
o
w
(
l
a
m
d
a
,

2
*
1
.
3
4
)
)
,

-
1
*
M
a
t
h
.
p
o
w
(
1
.
3
4
,
-
1
)
)
;
/
/
*
M
a
t
h
.
p
o
w
(
1
0
0
0
,

-
1
)
;

/
/
k
N

i
f
(
M
a
t
h
.
a
b
s
(
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e

=
a
l
l
o
w
a
b
l
e
F
o
r
c
e
;

} /
/
S
t
r
e
s
s

p
e
n
a
l
t
y

i
f

(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
)
{

l
a
r
g
e
s
t
F
o
r
c
e

=
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
;

}

i
f

(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)

>
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)
{

/
/
N

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
*

M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
,

-
1
)
,

2
)

-
1
;

v
+
=

1
;

}

}

}
e
l
s
e

i
f

(
i
s
E
q
u
a
l
L
)
{

/
/
F
O
R

E
Q
U
A
L

A
N
G
L
E

S
E
C
T
I
O
N
S

/
/
c
h
e
c
k

f
o
r

s
l
e
n
d
e
r
n
e
s
s

/
/
C
h
e
c
k

f
o
r

t
e
n
s
i
o
n

/
/

k
=

1
f
o
r

p
i
n
n
e
d

c
o
n
n
e
c
t
i
o
n
s

/
/

i
n
d
e
x

=
0
;
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f
o
r
(
i
n
t

i
=

0
;

i
<

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

i
+
+
)
{

/
/
C
h
e
c
k

c
u
r
r
e
n
t

g
r
o
u
p

i
f

(
i

=
=

0
)
{

/
/
F
i
r
s
t

g
r
o
u
p

i
n
d
e
x

=
0
;

} e
l
s
e

i
f
(
f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
]

!
=

f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
-
1
]
)
{

/
/
N
e
w

g
r
o
u
p

i
n
d
e
x
+
+
;

}

/
/

i
f

(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
<
0
)
{

t
e
n
s
i
o
n

=
t
r
u
e
;

i
f

(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)

<
=

3
0
0
)

s
l
e
n
d
e
r

=
f
a
l
s
e
;

e
l
s
e
{ s
l
e
n
d
e
r

=
t
r
u
e
;

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
*
M
a
t
h
.
p
o
w
(
3
0
0
,
-
1
)

-
1
;

}

} e
l
s
e
{ i
f
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]

=
=

0
&
&

f
i
n
d
R
e
d
u
n
d
a
n
t
E
l
e
m
e
n
t
s
)
{

S
y
s
t
e
m
.
e
r
r
.
p
r
i
n
t
l
n
(
"
-
-
-
-
-
-
-
-
-
!
R
e
d
u
n
d
a
n
t

E
l
e
m
e
n
t
s

P
r
e
s
e
n
t
!
-
-
-
-
-
-
-
-
-
"
)
;

S
y
s
t
e
m
.
e
r
r
.
p
r
i
n
t
l
n
(
"
E
l
e
m
e
n
t

n
u
m
b
e
r

"
+

i
)
;

S
y
s
t
e
m
.
e
x
i
t
(
0
)
;

} t
e
n
s
i
o
n

=
f
a
l
s
e
;

i
f

(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)

<
=

2
0
0
)

s
l
e
n
d
e
r

=
f
a
l
s
e
;

e
l
s
e
{
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s
l
e
n
d
e
r

=
t
r
u
e
;

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
*
M
a
t
h
.
p
o
w
(
2
0
0
,
-
1
)

-
1
;

}

} /
/
A
l
l
o
w
a
b
l
e

f
o
r
c
e

f
o
r

e
l
e
m
e
n
t

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
;

i
f

(
t
e
n
s
i
o
n
)
{

/
/
T
e
n
s
i
o
n

/
/

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
.
9
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
f
y
;

/
/
*
M
a
t
h
.
p
o
w
(
1
0
0
0
,
-
1
)
;

/
/
k
N

i
f
(
M
a
t
h
.
a
b
s
(
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e

=
a
l
l
o
w
a
b
l
e
F
o
r
c
e
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
a
l
l
o
w
a
b
l
e

f
o
r
c
e

t
e
n
s
i
o
n

"
+

a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
;

} e
l
s
e
{

/
/
C
o
m
p
r
e
s
s
i
o
n

/
/

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

d
o
u
b
l
e

f
e
y

=
(
M
a
t
h
.
p
o
w
(
M
a
t
h
.
P
I
,

2
)
*
e
m
o
d
)
*
M
a
t
h
.
p
o
w
(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,
-
1
)
,

-
2
)
;

d
o
u
b
l
e

r
0
2

=
2
*
M
a
t
h
.
p
o
w
(
(
a
x
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

-

t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

*

M
a
t
h
.
p
o
w
(
2
,

-
1
)
)
,

2
)

+
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

+
r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

r
u
u
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
;

d
o
u
b
l
e

f
e
z

=
G
A
M
a
i
n
.
G
*
J
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
r
0
2
,

-
1
)
;

d
o
u
b
l
e

o
m
e
g
a

=
1

-
(
2
*
M
a
t
h
.
p
o
w
(
(
a
x
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
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-
t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
2
,

-
1
)
)
,

2
)
)
*
M
a
t
h
.
p
o
w
(
r
0
2
,

-
1
)
;

d
o
u
b
l
e

f
e
y
z

=
(
f
e
y
+
f
e
z
)
*
M
a
t
h
.
p
o
w
(
2
*
o
m
e
g
a
,

-
1
)
*
(
1
-
M
a
t
h
.
s
q
r
t
(
1
-
(
(
4
*
f
e
y
*
f
e
z
*
o
m
e
g
a
)
*
M
a
t
h
.
p
o
w
(
(
f
e
y
+
f
e
z
)
*
(
f
e
y
+

f
e
z
)
,

-
1
)
)
)
)
;

d
o
u
b
l
e

f
e
x

=
(
M
a
t
h
.
p
o
w
(
M
a
t
h
.
P
I
,

2
)
*
e
m
o
d
)
*
M
a
t
h
.
p
o
w
(
l
e
n
g
t
h
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*

M
a
t
h
.
p
o
w
(
r
v
v
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,
-
1
)
,

-
2
)
;

d
o
u
b
l
e

f
e
;

i
f
(
f
e
x
<
f
e
y
z
)

f
e

=
f
e
x
;

e
l
s
e

f
e

=
f
e
y
z
;

d
o
u
b
l
e

l
a
m
d
a

=
M
a
t
h
.
s
q
r
t
(
f
y
*
M
a
t
h
.
p
o
w
(
f
e
,
-
1
)
)
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
.
9
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
f
y
*

M
a
t
h
.
p
o
w
(
(
1
+
M
a
t
h
.
p
o
w
(
l
a
m
d
a
,

2
*
1
.
3
4
)
)
,

-
1
*
M
a
t
h
.
p
o
w
(
1
.
3
4
,
-
1
)
)
;
/
/
*
M
a
t
h
.
p
o
w
(
1
0
0
0
,

-
1
)
;

/
/
k
N

i
f
(
M
a
t
h
.
a
b
s
(
m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)

m
a
x
A
l
l
o
w
a
b
l
e
F
o
r
c
e

=
a
l
l
o
w
a
b
l
e
F
o
r
c
e
;

/
/
C
h
e
c
k

t
h
e

c
l
a
s
s

o
f

t
h
e

s
e
c
t
i
o
n

/
/
I
m
p
l
e
m
e
n
t

a
r
e
a

r
e
d
u
c
t
i
o
n

f
o
r

c
l
a
s
s

3
s
e
c
t
i
o
n
s

i
f

(
(
b
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
*
M
a
t
h
.
p
o
w
(
t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
)

<
=

(
2
0
0
*
M
a
t
h
.
p
o
w
(
M
a
t
h
.
s
q
r
t
(
f
y
)
,

-
1
)
)
)
{

/
/
i
f

c
o
n
d
i
t
i
o
n

h
o
l
d
s
,

t
h
e
n

c
l
a
s
s

3

d
o
u
b
l
e

r
e
f
A
r
e
a
;

d
o
u
b
l
e

W
=

b
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

*
M
a
t
h
.
p
o
w
(
t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
,

-
1
)
;

d
o
u
b
l
e

f
=

a
l
l
o
w
a
b
l
e
F
o
r
c
e

*
M
a
t
h
.
p
o
w
(
(
0
.
9
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
)
,

-
1
)
;
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d
o
u
b
l
e

W
l
i
m

=
0
.
6
4
4

*
M
a
t
h
.
s
q
r
t
(
(
0
.
4
3
*
2
1
0
0
0
0
)

*
M
a
t
h
.
p
o
w
(
f
,
-
1
)
)
;

i
f

(
W

<
=

W
l
i
m
)
{

r
e
f
A
r
e
a

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
;

}
e
l
s
e
{

d
o
u
b
l
e

n
e
w
B

=
0
.
9
5
*

t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

*
M
a
t
h
.
s
q
r
t
(
(
0
.
4
3
*
2
1
0
0
0
0
)

*
M
a
t
h
.
p
o
w
(
f
,
-
1
)
)

*

(
1
-
(
0
.
2
0
8
*
M
a
t
h
.
p
o
w
(
W
,

-
1
)
)

*
M
a
t
h
.
s
q
r
t
(
(
0
.
4
3
*
2
1
0
0
0
0
)

*
M
a
t
h
.
p
o
w
(
f
,
-
1
)
)
)
;

r
e
f
A
r
e
a

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

-
(
b
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]

-
n
e
w
B
)

*
t
[
i
n
d
e
x
A
r
r
a
y
[
i
n
d
e
x
]
]
;

} a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
.
9

*
r
e
f
A
r
e
a

*
f
;

}

} /
/
S
t
r
e
s
s

p
e
n
a
l
t
y

i
f

(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
)
{

l
a
r
g
e
s
t
F
o
r
c
e

=
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
;

}

i
f

(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)

>
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)
{

/
/
N

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
*

M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
,

-
1
)
,

2
)

-
1
;

v
+
=

1
;

}

}

} f
o
r

(
i
n
t

j
=

0
;

j
<

i
n
d
i
v
i
d
u
a
l
.
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

j
+
+
)
{

a
l

=
a
l

+
s
e
l
e
c
t
e
d
A
r
e
a
[
f
e
m
I
n
d
e
x
A
r
r
a
y
[
j
]
]

*
l
e
n
g
t
h
[
j
]
;

} /
/
D
i
s
p
l
a
c
e
m
e
n
t

p
e
n
a
l
t
y

i
f

(
u
s
e
D
e
f
l
e
c
t
i
o
n
L
i
m
i
t
)
{
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d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
S
A
N
S

=
M
a
t
h
.
a
b
s
(
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
)
;

}
e
l
s
e

{

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
S
A
N
S

=
s
p
a
n
*
M
a
t
h
.
p
o
w
(
1
8
0
,

-
1
)
;

} i
f

(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
)

>
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
S
A
N
S
)
{

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
)
*
M
a
t
h
.
p
o
w
(
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
S
A
N
S
,

-
1
)
,

2
)
-
1
;

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
"

p
e
n
a
l
t
y

"
+

p
e
n
a
l
t
y
)
;

v
+
=

1
;

}

} /
/
F
o
r

t
h
e

c
a
s
e

o
f

p
r
e
s
c
r
i
b
e
d

c
o
n
s
t
r
i
a
n
t
s

e
l
s
e
{

/
/
c
r
e
a
t
e

s
t
a
t
e
m
e
n
t

f
o
r

w
h
e
n

f
o
r
c
e

=
=

0

i
n
d
e
x

=
0
;

f
o
r
(
i
n
t

i
=

0
;

i
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)
{

i
n
d
e
x

=
i
n
d
i
v
i
d
u
a
l
.
d
e
c
o
d
e
C
h
r
o
m
o
s
o
m
e
s
G
A
(
i
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
[
i
]
;

i
f

(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
<
0
)
{

t
e
n
s
i
o
n

=
t
r
u
e
;

} e
l
s
e
{ t
e
n
s
i
o
n

=
f
a
l
s
e
;

} /
/
A
l
l
o
w
a
b
l
e

f
o
r
c
e

f
o
r

e
l
e
m
e
n
t

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
0
;

i
f

(
t
e
n
s
i
o
n
)
{

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
s
t
r
e
s
s
L
i
m
i
t
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
*
(
-
1
)
;

}
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e
l
s
e
{

/
/
C
o
m
p
r
e
s
s
i
o
n

s
e
l
e
c
t
e
d
A
r
e
a
[
i
]

=
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

a
l
l
o
w
a
b
l
e
F
o
r
c
e

=
s
t
r
e
s
s
L
i
m
i
t
*
a
r
e
a
A
r
r
a
y
[
i
n
d
e
x
]
;

} /
/
S
t
r
e
s
s

p
e
n
a
l
t
y

i
f

(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
F
o
r
c
e
)

<
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
)
{

l
a
r
g
e
s
t
F
o
r
c
e

=
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
;

}

i
f

(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)

>
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
)
{

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
i
]
)
*

M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
a
l
l
o
w
a
b
l
e
F
o
r
c
e
)
,

-
1
)
,

2
)

-
1
;

v
+
=

1
;

}

} f
o
r

(
i
n
t

j
=

0
;

j
<

i
n
d
i
v
i
d
u
a
l
.
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

j
+
+
)
{

a
l

=
a
l

+
s
e
l
e
c
t
e
d
A
r
e
a
[
f
e
m
I
n
d
e
x
A
r
r
a
y
[
j
]
]

*
l
e
n
g
t
h
[
j
]
;

} /
/
D
i
s
p
l
a
c
e
m
e
n
t

p
e
n
a
l
t
y

i
f

(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
)

>
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
)
{

p
e
n
a
l
t
y

=
p
e
n
a
l
t
y

+
M
a
t
h
.
p
o
w
(
M
a
t
h
.
a
b
s
(
l
a
r
g
e
s
t
D
i
s
p
l
)
*
M
a
t
h
.
p
o
w
(
d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

-
1
)
,

2
)
-
1
;

v
+
=

1
;

}

} /
/
F
i
t
n
e
s
s

f
u
n
c
t
i
o
n

m
a
s
s

=
d
e
n
s
i
t
y

*
M
a
t
h
.
p
o
w
(
1
0
0
0
0
0
0
0
0
0
,
-
1
)

*
a
l
;
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/
/

f
o
r

(
i
n
t

p
=

0
;

p
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

p
+
+
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
s
e
l
e
c
t
e
d
A
r
e
a
[
p
]
)
;

/
/

}

/
/

f
o
r

(
i
n
t

p
=

0
;

p
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

p
+
+
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
l
e
n
g
t
h
[
p
]
)
;

/
/

}

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
f
o
r
c
e
s

=
"

)
;

/
/

f
o
r

(
i
n
t

p
=

0
;

p
<

N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

p
+
+
)
{

/
/

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
[
p
]
*
M
a
t
h
.
p
o
w
(
1
0
0
0
,

-
1
)
)
;

/
/
k
N

/
/

}

o
b
j
e
c
t
i
v
e
V
a
l
u
e

=
(
d
e
n
s
i
t
y

*
M
a
t
h
.
p
o
w
(
1
0
0
0
0
0
0
0
0
0
,
-
1
)

*
a
l

+
g
e
n
*
p
e
n
a
l
t
y
P
a
r
a
m
e
t
e
r
*
p
e
n
a
l
t
y
)
;

/
/
M
a
s
s

(
D
e
f
i
n
e
d

a
s

w
e
i
g
h
t

i
n

l
i
t
e
r
a
t
u
r
e
)

r
e
t
u
r
n

o
b
j
e
c
t
i
v
e
V
a
l
u
e
;

}

/
/
T
h
i
s

m
e
t
h
o
d

u
s
e
s

t
h
e

a
r
r
a
y

a
n
d

o
n
l
y

a
c
c
e
s
s
e
s

t
h
e

d
a
t
a
b
a
s
e

o
n
c
e

t
h
r
o
u
g
h
o
u
t

t
h
e

s
e
a
r
c
h

p
u
b
l
i
c

d
o
u
b
l
e

f
i
n
d
F
i
t
n
e
s
s
F
u
n
c
t
i
o
n
V
a
l
u
e
(
I
n
d
i
v
i
d
u
a
l

i
n
d
i
v
i
d
u
a
l
,

d
o
u
b
l
e
[
]

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

d
o
u
b
l
e

d
e
n
s
i
t
y
,

d
o
u
b
l
e
[
]

r
v
v
,

d
o
u
b
l
e
[
]

r
u
u
,

d
o
u
b
l
e

e
m
o
d
,

d
o
u
b
l
e

f
y
,

d
o
u
b
l
e
[
]

J
,

d
o
u
b
l
e
[
]

t
,

d
o
u
b
l
e
[
]

b
,

d
o
u
b
l
e
[
]

a
x
,

d
o
u
b
l
e

l
a
r
g
e
s
t
D
i
s
p
l
,

d
o
u
b
l
e

s
p
a
n
,

i
n
t

g
e
n
,

d
o
u
b
l
e

s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e
,

d
o
u
b
l
e

w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e
,

d
o
u
b
l
e

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

d
o
u
b
l
e

s
t
r
e
s
s
L
i
m
i
t
)
{

/
/
T
h
e

f
i
t
n
e
s
s

o
f

a
s
o
l
u
t
i
o
n

i
s

d
e
t
e
r
m
i
n
e
d

b
y

i
t
s

w
e
i
g
h
t
,

S
u
m

o
f

{
p
A
L
}

o
v
e
r

a
l
l

t
h
e

e
l
e
m
e
n
t
s

/
/
P
e
n
a
l
t
y

i
s

a
d
d
e
d

t
o

t
h
i
s

f
i
t
n
e
s
s

f
u
n
c
t
i
o
n

t
o

t
a
k
e

i
n
t
o

a
c
c
o
u
n
t

a
l
l

c
o
n
s
t
r
a
i
n
t
s

/
/
T
h
e

o
b
j
e
c
t
i
v
e

i
s

t
o

f
i
n
d

t
h
e

m
i
n

w
e
i
g
h
t

o
f

t
h
e

s
t
r
u
c
t
u
r
e

/
/
T
h
e

f
i
t
n
e
s
s

i
s

t
o

m
a
x
i
m
i
s
e

m
a
x

w
e
i
g
t
h

-
o
b
j
e
c
t
i
v
e

/
/
T
h
e
r
e
f
o
r
e

t
h
e

g
r
e
a
t
e
r

t
h
e

f
i
t
n
e
s
s
,

t
h
e

l
e
s
s

t
h
e

w
e
i
g
h
t

o
f

t
h
e

s
t
r
u
c
t
u
r
e

o
b
j
e
c
t
i
v
e

=
i
n
d
i
v
i
d
u
a
l
.
f
i
n
d
O
b
j
e
c
t
i
v
e
F
u
n
c
t
i
o
n
V
a
l
u
e
(
i
n
d
i
v
i
d
u
a
l
,

e
l
e
m
e
n
t
F
o
r
c
e
A
r
r
a
y
,

d
e
n
s
i
t
y
,

r
v
v
,

r
u
u
,

e
m
o
d
,

f
y
,

J
,

t
,

b
,

a
x
,

l
a
r
g
e
s
t
D
i
s
p
l
,

s
p
a
n
,

g
e
n
,

d
e
f
l
e
c
t
i
o
n
L
i
m
i
t
,

s
t
r
e
s
s
L
i
m
i
t
)
;
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i
f

(
n
o
r
m
a
l
i
s
e
d
F
i
t
n
e
s
s
)
{

i
n
d
i
v
i
d
u
a
l
F
i
t
n
e
s
s

=
1
*
M
a
t
h
.
p
o
w
(
(
o
b
j
e
c
t
i
v
e
*
(
1
0
0
0
*
v
+
1
)
)
,

-
1
)
;

/
/
C
o
e
l
l
o

}
e
l
s
e

i
f

(
d
y
n
a
m
i
c
F
i
t
n
e
s
s
)
{

i
n
d
i
v
i
d
u
a
l
F
i
t
n
e
s
s

=
s
t
r
o
n
g
e
s
t
M
i
n
O
b
j
e
c
t
i
v
e

+
w
e
a
k
e
s
t
M
a
x
O
b
j
e
c
t
i
v
e

-
o
b
j
e
c
t
i
v
e
;

}
e
l
s
e

{

i
n
d
i
v
i
d
u
a
l
F
i
t
n
e
s
s

=
1
0
0
0
0
0
0
0
0
0

-
o
b
j
e
c
t
i
v
e
;

/
/
G
o
l
d
b
e
r
g

} r
e
t
u
r
n

i
n
d
i
v
i
d
u
a
l
F
i
t
n
e
s
s
;

}

}

L
is
ti
n
g
3
:
C
la
ss

In
d
iv
id
u
a
l

T
r
u
ss

P
o
p
u
la
ti
o
n

T
h
is
cl
a
ss

cr
ea
te
s
a
p
o
p
u
la
ti
o
n
o
f
tr
u
ss
es

(f
em

M
o
d
el
s)

b
a
se
d
o
n
th
e
in
fo
rm

a
ti
on

p
ro
v
id
ed

b
y
th
e
a
lg
o
ri
th
m
.
It

se
rv
es

a
s
so
m
e
in
te
rf
a
ce

b
et
w
ee
n
th
e

�
n
it
e
el
em

en
t
a
n
a
ly
si
s
p
ro
g
ra
m

a
n
d
th
e
g
en
et
ic
a
lg
o
ri
th
m
.

p
a
c
k
a
g
e

G
e
n
e
t
i
c
A
l
g
o
r
i
t
h
m
;

i
m
p
o
r
t

a
h
o
.
m
a
t
h
.
l
i
n
a
l
g
.
M
a
t
r
i
x
;

i
m
p
o
r
t

a
h
o
.
m
a
t
h
.
l
i
n
a
l
g
.
V
e
c
t
o
r
;

i
m
p
o
r
t

f
e
m
.
a
n
a
l
y
s
i
s
.
A
n
a
l
y
s
i
s
;

i
m
p
o
r
t

f
e
m
.
a
n
a
l
y
s
i
s
.
F
i
r
s
t
O
r
d
e
r
L
i
n
e
a
r
A
n
a
l
y
s
i
s
;

i
m
p
o
r
t

f
e
m
.
c
a
l
c
u
l
a
t
i
o
n
.
D
o
f
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
C
o
o
r
d
i
n
a
t
e
S
y
s
t
e
m
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
C
r
o
s
s
S
e
c
t
i
o
n
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
M
a
t
e
r
i
a
l
;
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i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
N
o
d
e
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
S
u
p
p
o
r
t
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
e
l
e
m
e
n
t
.
F
r
a
m
e
E
l
e
m
e
n
t
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
e
l
e
m
e
n
t
.
T
r
u
s
s
E
l
e
m
e
n
t
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
l
o
a
d
.
L
o
a
d
C
a
s
e
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
l
o
a
d
.
N
o
d
e
L
o
a
d
;

i
m
p
o
r
t

f
e
m
.
c
o
m
p
o
n
e
n
t
s
.
l
o
a
d
.
V
o
l
u
m
e
L
o
a
d
S
e
t
;

i
m
p
o
r
t

f
e
m
.
m
o
d
e
l
.
F
e
m
M
o
d
e
l
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
H
a
s
h
S
e
t
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
I
t
e
r
a
t
o
r
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
S
e
t
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
H
a
s
h
M
a
p
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
L
i
n
k
e
d
L
i
s
t
;

i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
M
a
p
;

p
u
b
l
i
c

c
l
a
s
s

T
r
u
s
s
P
o
p
u
l
a
t
i
o
n

{

F
e
m
M
o
d
e
l

t
r
u
s
s
M
o
d
e
l
;

A
n
a
l
y
s
i
s

a
n
a
l
y
s
i
s
;

/
/
N
o
d
a
l
I
n
p
u
t

i
n
p
u
t
;

d
o
u
b
l
e

m
a
t
e
r
i
a
l
,

p
o
i
s
o
n
,

d
e
n
s
i
t
y
,

e
m
o
d
;

i
n
t

n
u
m
b
e
r
O
f
N
o
d
e
s
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

I
n
d
i
v
i
d
u
a
l
[
]

i
n
d
i
v
i
d
u
a
l
s
;

i
n
t

e
n
t
r
i
e
s
;

F
e
m
M
o
d
e
l
[
]

t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
;

S
t
r
i
n
g
[
]

d
o
f
;

S
t
r
i
n
g
[
]
[
]

e
l
e
m
e
n
t
S
t
r
i
n
g
;

d
o
u
b
l
e
[
]

n
o
d
e
s
X
,

n
o
d
e
s
Y
,

n
o
d
e
s
Z
;

L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>

e
l
t
s
;

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>

f
r
a
m
e
E
l
t
s
;

/
/
f
i
r
s
t

a
r
e
a

a
r
r
a
y

o
n
l
y

h
a
s

c
h
r
o
m
o
s
o
m
e

n
u
m
b
e
r

o
f

e
n
t
r
i
e
s
,
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/
/
f
e
m
A
r
r
a
y

h
a
s

a
n

e
l
e
m
e
n
t

n
u
m
b
e
r

o
f

e
n
t
r
i
e
s

d
o
u
b
l
e
[
]

a
r
e
a
s
,

f
e
m
A
r
e
a
s
,

f
e
m
J
;
;

d
o
u
b
l
e
[
]
[
]

l
o
a
d
;

B
o
o
l
e
a
n

i
s
G
r
o
u
p
e
d
,

i
s
3
D
,

i
s
F
r
a
m
e
E
l
e
m
e
n
t
;

p
u
b
l
i
c

T
r
u
s
s
P
o
p
u
l
a
t
i
o
n
(
M
o
d
e
l
I
n
p
u
t

i
n
p
u
t
,

D
o
u
b
l
e

e
m
o
d
,

D
o
u
b
l
e

p
o
i
s
o
n
,

D
o
u
b
l
e

d
e
n
s
i
t
y
,

I
n
d
i
v
i
d
u
a
l
[
]

i
n
d
i
v
i
d
u
a
l
s
,

i
n
t

e
n
t
r
i
e
s
,
i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
,

d
o
u
b
l
e
[
]
[
]

l
o
a
d
,

d
o
u
b
l
e
[
]

n
o
d
e
s
X
,

d
o
u
b
l
e
[
]

n
o
d
e
s
Y
,

d
o
u
b
l
e
[
]

n
o
d
e
s
Z
,

S
t
r
i
n
g
[
]

d
o
f
,

S
t
r
i
n
g
[
]
[
]

e
l
e
m
e
n
t
S
t
r
i
n
g
,

B
o
o
l
e
a
n

i
s
G
r
o
u
p
e
d
,

B
o
o
l
e
a
n

i
s
3
D
,

B
o
o
l
e
a
n

i
s
F
r
a
m
e
E
l
e
m
e
n
t
)

{

a
n
a
l
y
s
i
s

=
n
e
w

F
i
r
s
t
O
r
d
e
r
L
i
n
e
a
r
A
n
a
l
y
s
i
s
(
)
;

t
h
i
s
.
i
s
G
r
o
u
p
e
d

=
i
s
G
r
o
u
p
e
d
;

t
h
i
s
.
i
s
3
D

=
i
s
3
D
;

t
h
i
s
.
i
s
F
r
a
m
e
E
l
e
m
e
n
t

=
i
s
F
r
a
m
e
E
l
e
m
e
n
t
;

/
/
t
h
i
s
.
i
n
p
u
t

=
i
n
p
u
t
;

t
h
i
s
.
e
m
o
d

=
e
m
o
d

*
M
a
t
h
.
p
o
w
(
1
0
,

6
)
;

/
/
C
o
n
v
e
r
t

t
o

P
a

t
h
i
s
.
p
o
i
s
o
n

=
p
o
i
s
o
n
;

t
h
i
s
.
d
e
n
s
i
t
y

=
d
e
n
s
i
t
y
;

t
h
i
s
.
n
u
m
b
e
r
O
f
N
o
d
e
s

=
i
n
p
u
t
.
g
e
t
N
u
m
b
e
r
O
f
N
o
d
e
s
(
)
;

t
h
i
s
.
i
n
d
i
v
i
d
u
a
l
s

=
i
n
d
i
v
i
d
u
a
l
s
;

t
h
i
s
.
e
n
t
r
i
e
s

=
e
n
t
r
i
e
s
;

t
h
i
s
.
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s

=
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

t
h
i
s
.
l
o
a
d

=
l
o
a
d
;

/
/
N

t
h
i
s
.
n
o
d
e
s
X

=
n
o
d
e
s
X
;

/
/
m

t
h
i
s
.
n
o
d
e
s
Y

=
n
o
d
e
s
Y
;

t
h
i
s
.
n
o
d
e
s
Z

=
n
o
d
e
s
Z
;

/
/
m

t
h
i
s
.
d
o
f

=
d
o
f
;

t
h
i
s
.
e
l
e
m
e
n
t
S
t
r
i
n
g

=
e
l
e
m
e
n
t
S
t
r
i
n
g
;

t
r
u
s
s
m
o
d
e
l
A
r
r
a
y

=
n
e
w

F
e
m
M
o
d
e
l
[
i
n
d
i
v
i
d
u
a
l
s
.
l
e
n
g
t
h
]
;

e
l
t
s

=
n
e
w

L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>
(
)
;

f
r
a
m
e
E
l
t
s

=
n
e
w

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>
(
)
;
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} p
u
b
l
i
c

L
i
n
k
e
d
L
i
s
t
<
T
r
u
s
s
E
l
e
m
e
n
t
>

g
e
t
E
l
e
m
e
n
t
s
(
F
e
m
M
o
d
e
l

t
r
u
s
s
M
o
d
e
l
)

{

I
t
e
r
a
t
o
r
<
T
r
u
s
s
E
l
e
m
e
n
t
>

i
t
e
r

=
t
r
u
s
s
M
o
d
e
l
.
i
t
e
r
a
t
o
r
(
T
r
u
s
s
E
l
e
m
e
n
t
.
c
l
a
s
s
)
;

w
h
i
l
e

(
i
t
e
r
.
h
a
s
N
e
x
t
(
)
)

{

e
l
t
s
.
a
d
d
(
i
t
e
r
.
n
e
x
t
(
)
)
;

} r
e
t
u
r
n

e
l
t
s
;

} p
u
b
l
i
c

L
i
n
k
e
d
L
i
s
t
<
F
r
a
m
e
E
l
e
m
e
n
t
>

g
e
t
E
l
e
m
e
n
t
s
F
r
a
m
e
(
F
e
m
M
o
d
e
l

t
r
u
s
s
M
o
d
e
l
)

{

I
t
e
r
a
t
o
r
<
F
r
a
m
e
E
l
e
m
e
n
t
>

i
t
e
r

=
t
r
u
s
s
M
o
d
e
l
.
i
t
e
r
a
t
o
r
(
F
r
a
m
e
E
l
e
m
e
n
t
.
c
l
a
s
s
)
;

w
h
i
l
e

(
i
t
e
r
.
h
a
s
N
e
x
t
(
)
)

{

f
r
a
m
e
E
l
t
s
.
a
d
d
(
i
t
e
r
.
n
e
x
t
(
)
)
;

} r
e
t
u
r
n

f
r
a
m
e
E
l
t
s
;

} /
/
C
r
e
a
t
e

m
a
p

f
o
r

t
r
a
n
s
l
a
t
i
o
n
s

a
n
d

r
o
t
a
t
i
o
n
s

p
r
i
v
a
t
e

s
t
a
t
i
c

M
a
p
<
S
t
r
i
n
g
,

D
o
f
>

s
u
p
p
o
r
t
D
O
F
s

=
n
e
w

H
a
s
h
M
a
p
<
S
t
r
i
n
g
,

D
o
f
>
(
)
;

s
t
a
t
i
c

{

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
X
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
X
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
Y
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
Y
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
Z
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
Z
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
X
_
R
O
T
A
T
I
O
N
"
,

D
o
f
.
X
_
R
O
T
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
Y
_
R
O
T
A
T
I
O
N
"
,

D
o
f
.
Y
_
R
O
T
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
Z
_
R
O
T
A
T
I
O
N
"
,

D
o
f
.
Z
_
R
O
T
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
X
Y
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
X
Y
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
Y
Z
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
Y
Z
_
T
R
A
N
S
L
A
T
I
O
N
)
;
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s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
X
Z
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
X
Z
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
X
Y
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
X
Y
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
A
L
L
_
T
R
A
N
S
L
A
T
I
O
N
"
,

D
o
f
.
A
L
L
_
T
R
A
N
S
L
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
A
L
L
_
R
O
T
A
T
I
O
N
"
,

D
o
f
.
A
L
L
_
R
O
T
A
T
I
O
N
)
;

s
u
p
p
o
r
t
D
O
F
s
.
p
u
t
(
"
A
L
L
"
,

D
o
f
.
A
L
L
)
;

} p
u
b
l
i
c

F
e
m
M
o
d
e
l
[
]

c
r
e
a
t
e
F
e
m
M
o
d
e
l
s
(
i
n
t
[
]

f
e
m
I
n
d
e
x
A
r
r
a
y
,

i
n
t
[
]

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)

{

S
t
r
i
n
g

t
r
u
s
s
N
a
m
e
;

f
o
r

(
i
n
t

i
=

0
;

i
<

i
n
d
i
v
i
d
u
a
l
s
.
l
e
n
g
t
h
;

i
+
+
)

{

t
r
u
s
s
N
a
m
e

=
"
t
r
u
s
s
"

+
(
i

+
1
)
;

t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
[
i
]

=
c
r
e
a
t
e
T
r
u
s
s
(
i
n
d
i
v
i
d
u
a
l
s
[
i
]
,

t
r
u
s
s
N
a
m
e
,

f
e
m
I
n
d
e
x
A
r
r
a
y
,

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)
;

}

r
e
t
u
r
n

t
r
u
s
s
m
o
d
e
l
A
r
r
a
y
;

} /
/
c
r
e
a
t
e
T
r
u
s
s

f
o
r

e
v
e
r
y

f
e
m
T
r
u
s
s
E
n
t
r
y

i
n

p
o
p
u
l
a
t
i
o
n

p
u
b
l
i
c

F
e
m
M
o
d
e
l

c
r
e
a
t
e
T
r
u
s
s
(
I
n
d
i
v
i
d
u
a
l

g
a
I
n
d
i
v
i
d
u
a
l
,

S
t
r
i
n
g

n
a
m
e
,

i
n
t
[
]

f
e
m
I
n
d
e
x
A
r
r
a
y
,

i
n
t
[
]

f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
,

i
n
t

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
)

{

S
t
r
i
n
g

n
o
d
e
N
a
m
e
;

S
t
r
i
n
g

e
l
e
m
e
n
t
N
a
m
e
;

S
t
r
i
n
g

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1
;

/
/
D
e
f
i
n
e

t
h
e

n
o
d
e
s

a
t

e
n
d
s

o
f

e
l
e
m
e
n
t
s

a
s

p
e
r

u
s
e
r

d
e
f
i
n
e
d

S
t
r
i
n
g

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2
;

S
t
r
i
n
g

l
o
a
d
N
a
m
e
;

S
t
r
i
n
g

v
e
c
t
o
r
L
o
a
d
;

S
t
r
i
n
g

s
u
p
p
o
r
t
C
o
n
d
i
t
i
o
n
,

s
u
p
p
o
r
t
N
a
m
e
;

S
t
r
i
n
g

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
;
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t
r
u
s
s
M
o
d
e
l

=
n
e
w

F
e
m
M
o
d
e
l
(
n
a
m
e
)
;

L
o
a
d
C
a
s
e

l
c

=
n
e
w

L
o
a
d
C
a
s
e
(
"
U
s
e
r

D
e
f
i
n
e
d
"
)
;

/
/
N
o
d
e
s

a
n
d

s
u
p
p
o
r
t
s

f
o
r

e
a
c
h

f
e
m
T
r
u
s
s
E
n
t
r
y
'
s

t
r
u
s
s

f
o
r

(
i
n
t

i
=

0
;

i
<

n
u
m
b
e
r
O
f
N
o
d
e
s
;

i
+
+
)

{

n
o
d
e
N
a
m
e

=
"
n
"

+
(
i

+
1
)
;

/
/
A
d
d

n
o
d
e
s

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

N
o
d
e
(
n
o
d
e
N
a
m
e
,

n
e
w

d
o
u
b
l
e
[
]
{
n
o
d
e
s
X
[
i
]
,

n
o
d
e
s
Y
[
i
]
,

n
o
d
e
s
Z
[
i
]
}
)
)
;

/
/
L
o
a
d
i
n
g

i
n

a
l
l

3
d
i
r
e
c
t
i
o
n
s
:

f
o
r

(
i
n
t

k
=

0
;

k
<

3
;

k
+
+
)
{

l
o
a
d
N
a
m
e

=
"
l
o
a
d
"

+
(
i

+
1
)

+
"
,
"

+
(
k
)
;

/
/
L
o
a
d

r
e
f
e
r
e
n
c
i
n
g

l
o
a
d
(
n
o
d
e
)
(
d
i
r
e
c
t
i
o
n
)

v
e
c
t
o
r
L
o
a
d

=
"
{
"

+
l
o
a
d
[
i
]
[
k
]

+
"
}
"
;

/
/
A
d
d

l
o
a
d
s

i
f
(
k

=
=

0
)

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

N
o
d
e
L
o
a
d
(
l
o
a
d
N
a
m
e
,

n
o
d
e
N
a
m
e
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
v
e
c
t
o
r
L
o
a
d
)
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
"
{
1
,
0
,
0
}
"
)
,

C
o
o
r
d
i
n
a
t
e
S
y
s
t
e
m
.
G
L
O
B
A
L
_
C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M
)
)
;

i
f
(
k

=
=

1
)

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

N
o
d
e
L
o
a
d
(
l
o
a
d
N
a
m
e
,

n
o
d
e
N
a
m
e
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
v
e
c
t
o
r
L
o
a
d
)
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
"
{
0
,
1
,
0
}
"
)
,

C
o
o
r
d
i
n
a
t
e
S
y
s
t
e
m
.
G
L
O
B
A
L
_
C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M
)
)
;

i
f
(
k

=
=

2
)

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

N
o
d
e
L
o
a
d
(
l
o
a
d
N
a
m
e
,

n
o
d
e
N
a
m
e
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
v
e
c
t
o
r
L
o
a
d
)
,

V
e
c
t
o
r
.
g
e
t
V
e
c
t
o
r
(
"
{
0
,
0
,
1
}
"
)
,

C
o
o
r
d
i
n
a
t
e
S
y
s
t
e
m
.
G
L
O
B
A
L
_
C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M
)
)
;

l
c
.
a
d
d
(
l
o
a
d
N
a
m
e
)
;

} t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
l
c
)
;

/
/
A
d
d

s
u
p
p
o
r
t
s

s
u
p
p
o
r
t
C
o
n
d
i
t
i
o
n

=
d
o
f
[
i
]
;

Stellenbosch University  http://scholar.sun.ac.za



17.7 ALGORITHM CODE EXTRACTS 224
i
f

(
s
u
p
p
o
r
t
C
o
n
d
i
t
i
o
n

!
=

n
u
l
l
)

{

s
u
p
p
o
r
t
N
a
m
e

=
"
s
"

+
(
i

+
1
)
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

S
u
p
p
o
r
t
(
s
u
p
p
o
r
t
N
a
m
e
,

n
o
d
e
N
a
m
e
,

s
u
p
p
o
r
t
D
O
F
s
.
g
e
t
(
s
u
p
p
o
r
t
C
o
n
d
i
t
i
o
n
)
)
)
;

}

} /
/
A
d
d

m
a
t
e
r
i
a
l

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

M
a
t
e
r
i
a
l
(
"
m
a
t
"
,

e
m
o
d
,

p
o
i
s
o
n
,

d
e
n
s
i
t
y
)
)
;

/
/
C
H
R
O
M
O
S
O
M
E
S

V
A
L
U
E
S

F
R
O
M

G
A

M
U
S
T

G
O

H
E
R
E
:

a
r
e
a
s

=
n
e
w

d
o
u
b
l
e
[
g
a
I
n
d
i
v
i
d
u
a
l
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

a
r
e
a
s

=
g
a
I
n
d
i
v
i
d
u
a
l
.
g
e
t
A
r
e
a
I
n
d
i
v
i
d
u
a
l
_
m
e
t
e
r
s
(
g
a
I
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
;

d
o
u
b
l
e
[
]

J
=

n
e
w

d
o
u
b
l
e
[
g
a
I
n
d
i
v
i
d
u
a
l
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
]
;

J
=

g
a
I
n
d
i
v
i
d
u
a
l
.
g
e
t
J
I
n
d
i
v
i
d
u
a
l
_
m
e
t
e
r
s
(
g
a
I
n
d
i
v
i
d
u
a
l
,

e
n
t
r
i
e
s
)
;

i
f

(
i
s
G
r
o
u
p
e
d
)
{

/
/
D
u
p
l
i
c
a
t
e

g
r
o
u
p

e
l
e
m
e
n
t
s

f
e
m
A
r
e
a
s

=
n
e
w

d
o
u
b
l
e
[
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
]
;

f
e
m
J

=
n
e
w

d
o
u
b
l
e
[
n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

f
e
m
A
r
e
a
s
.
l
e
n
g
t
h
;

i
+
+
)
{

f
e
m
A
r
e
a
s
[
f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
[
i
]

-
1
]

=
a
r
e
a
s
[
f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
]
]
;

f
e
m
J
[
f
e
m
E
l
e
m
e
n
t
A
r
r
a
y
[
i
]

-
1
]

=
J
[
f
e
m
I
n
d
e
x
A
r
r
a
y
[
i
]
]
;

}

} i
f
(
i
s
F
r
a
m
e
E
l
e
m
e
n
t
)
{

i
f

(
i
s
G
r
o
u
p
e
d
)
{

f
o
r

(
i
n
t

i
=

0
;

i
<

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

i
+
+
)

{

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

C
r
o
s
s
S
e
c
t
i
o
n
(
c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

f
e
m
A
r
e
a
s
[
i
]
,

0
.
0
0
0
0
0
0
0
0
1
,

0
.
0
0
0
0
0
0
0
0
1
,

f
e
m
J
[
i
]
)
)
;

/
/
A
d
d

t
r
u
s
s

e
l
e
m
e
n
t
s

e
l
e
m
e
n
t
N
a
m
e

=
"
t
"

+
(
i

+
1
)
;
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c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
0
]
;

/
/
D
e
f
i
n
e

t
h
e

n
o
d
e
s

a
t

e
n
d
s

o
f

e
l
e
m
e
n
t
s

a
s

p
e
r

u
s
e
r

d
e
f
i
n
e
d

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
1
]
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

F
r
a
m
e
E
l
e
m
e
n
t
(
e
l
e
m
e
n
t
N
a
m
e
,

n
e
w

S
t
r
i
n
g
[
]
{
e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1
,

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2
}
,

"
m
a
t
"
,

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

i
s
3
D
)
)
;

}

}
e
l
s
e
{

f
o
r

(
i
n
t

i
=

0
;

i
<

g
a
I
n
d
i
v
i
d
u
a
l
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)

{

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

C
r
o
s
s
S
e
c
t
i
o
n
(
c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

a
r
e
a
s
[
i
]
,

0
.
0
0
0
0
0
0
0
0
1
,

0
.
0
0
0
0
0
0
0
0
1
,

f
e
m
J
[
i
]
)
)
;

/
/
A
d
d

t
r
u
s
s

e
l
e
m
e
n
t
s

e
l
e
m
e
n
t
N
a
m
e

=
"
t
"

+
(
i

+
1
)
;

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
0
]
;

/
/
D
e
f
i
n
e

t
h
e

n
o
d
e
s

a
t

e
n
d
s

o
f

e
l
e
m
e
n
t
s

a
s

p
e
r

u
s
e
r

d
e
f
i
n
e
d

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
1
]
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

F
r
a
m
e
E
l
e
m
e
n
t
(
e
l
e
m
e
n
t
N
a
m
e
,

n
e
w

S
t
r
i
n
g
[
]
{
e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1
,

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2
}
,

"
m
a
t
"
,

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

i
s
3
D
)
)
;

}

}

}
e
l
s
e
{

i
f

(
i
s
G
r
o
u
p
e
d
)
{

f
o
r

(
i
n
t

i
=

0
;

i
<

n
u
m
b
e
r
O
f
E
l
e
m
e
n
t
s
;

i
+
+
)

{

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

C
r
o
s
s
S
e
c
t
i
o
n
(
c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

f
e
m
A
r
e
a
s
[
i
]
,

0
,

0
)
)
;

/
/
A
d
d

t
r
u
s
s

e
l
e
m
e
n
t
s

e
l
e
m
e
n
t
N
a
m
e

=
"
t
"

+
(
i

+
1
)
;

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;
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e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
0
]
;

/
/
D
e
f
i
n
e

t
h
e

n
o
d
e
s

a
t

e
n
d
s

o
f

e
l
e
m
e
n
t
s

a
s

p
e
r

u
s
e
r

d
e
f
i
n
e
d

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
1
]
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

T
r
u
s
s
E
l
e
m
e
n
t
(
e
l
e
m
e
n
t
N
a
m
e
,

n
e
w

S
t
r
i
n
g
[
]
{
e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1
,

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2
}
,

"
m
a
t
"
,

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

i
s
3
D
)
)
;

}

}
e
l
s
e
{

f
o
r

(
i
n
t

i
=

0
;

i
<

g
a
I
n
d
i
v
i
d
u
a
l
.
N
U
M
B
E
R
_
O
F
_
C
H
R
O
M
O
S
O
M
E
S
;

i
+
+
)

{

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

C
r
o
s
s
S
e
c
t
i
o
n
(
c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

a
r
e
a
s
[
i
]
,

0
,

0
)
)
;

/
/
A
d
d

t
r
u
s
s

e
l
e
m
e
n
t
s

e
l
e
m
e
n
t
N
a
m
e

=
"
t
"

+
(
i

+
1
)
;

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e

=
"
s
e
c
t
i
o
n
"

+
(
i

+
1
)
;

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
0
]
;

/
/
D
e
f
i
n
e

t
h
e

n
o
d
e
s

a
t

e
n
d
s

o
f

e
l
e
m
e
n
t
s

a
s

p
e
r

u
s
e
r

d
e
f
i
n
e
d

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2

=
"
n
"

+
e
l
e
m
e
n
t
S
t
r
i
n
g
[
i
]
[
1
]
;

t
r
u
s
s
M
o
d
e
l
.
a
d
d
(
n
e
w

T
r
u
s
s
E
l
e
m
e
n
t
(
e
l
e
m
e
n
t
N
a
m
e
,

n
e
w

S
t
r
i
n
g
[
]
{
e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
1
,

e
l
e
m
e
n
t
N
o
d
e
N
a
m
e
2
}
,

"
m
a
t
"
,

c
r
o
s
s
S
e
c
t
i
o
n
N
a
m
e
,

i
s
3
D
)
)
;

}

}

} r
e
t
u
r
n

t
r
u
s
s
M
o
d
e
l
;

} p
u
b
l
i
c

v
o
i
d

c
l
e
a
r
T
r
u
s
s
M
o
d
e
l
(
F
e
m
M
o
d
e
l

t
r
u
s
s
M
o
d
e
l
)
{

t
r
u
s
s
M
o
d
e
l
.
r
e
m
o
v
e
(
t
r
u
s
s
M
o
d
e
l
)
;

} /
/
p
a
s
s

m
e
t
h
o
d

m
o
d
e
l
s

s
e
p
e
r
a
t
e
l
y
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p
u
b
l
i
c

v
o
i
d

a
n
a
l
y
s
e
(
F
e
m
M
o
d
e
l

t
r
u
s
s
M
o
d
e
l
)

{

a
n
a
l
y
s
i
s
.
p
e
r
f
o
r
m
(
t
r
u
s
s
M
o
d
e
l
)
;

t
r
u
s
s
M
o
d
e
l
.
c
l
e
a
r
M
o
d
e
l
L
i
s
t
e
n
e
r
s
(
)
;

}

}

L
is
ti
n
g
4
:
C
la
ss

T
ru
ss

P
o
p
u
la
ti
o
n
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