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Abstract

Improved models of biological sequence evolution

B. S. Murrell
Computer Science Division

Department of Mathematical Sciences
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.
Dissertation: PhD (Computer Science)

August 2012

Computational molecular evolution is a field that attempts to characterize
how genetic sequences evolve over phylogenetic trees – the branching processes
that describe the patterns of genetic inheritance in living organisms. It has a
long history of developing progressively more sophisticated stochastic models
of evolution. Through a probabilist’s lens, this can be seen as a search for
more appropriate ways to parameterize discrete state continuous time Markov
chains to better encode biological reality, matching the historical processes
that created empirical data sets, and creating useful tools that allow biologists
to test specific hypotheses about the evolution of the organisms or the genes
that interest them. This dissertation is an attempt to fill some of the gaps that
persist in the literature, solving what we see as existing open problems. The
overarching theme of this work is how to better model variation in the action
of natural selection at multiple levels: across genes, between sites, and over
time. Through four published journal articles and a fifth in preparation, we
present amino acid and codon models that improve upon existing approaches,
providing better descriptions of the process of natural selection and better
tools to detect adaptive evolution.
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Uittreksel

Verbeterde modelle van biologiese sekwensie-evolusie

(“Improved models of biological sequence evolution”)

B. S. Murrell
Afdeling Rekenaarwetenskap

Departement Wiskundige Wetenskappe
Universiteit Stellenbosch,

Privaatsak X1, Matieland 7602, Suid-Afrika.
Proefskrif: PhD (Rekenaarwetenskap)

Augustus 2012

Komputasionele molekulêre evolusie is ’n navorsingsarea wat poog om die evo-
lusie van genetiese sekwensies oor filogenetiese bome – die vertakkende prosesse
wat die patrone van genetiese oorerwing in lewende organismes beskryf – te ka-
rakteriseer. Dit het ’n lang geskiedenis waartydens al hoe meer gesofistikeerde
waarskynlikheidsmodelle van evolusie ontwikkel is. Deur die lens van waars-
kynlikheidsleer kan hierdie proses gesien word as ’n soektog na meer gepasde
metodes om diskrete-toestand kontinuë-tyd Markov kettings te parametriseer
ten einde biologiese realiteit beter te enkodeer – op so ’n manier dat die histo-
riese prosesse wat tot die vorming van biologiese sekwensies gelei het nageboots
word, en dat nuttige metodes geskep word wat bioloë toelaat om spesifieke hi-
potesisse met betrekking tot die evolusie van belanghebbende organismes of
gene te toets. Hierdie proefskrif is ’n poging om sommige van die gapings
wat in die literatuur bestaan in te vul en bestaande oop probleme op te los.
Die oorkoepelende tema is verbeterde modellering van variasie in die werking
van natuurlike seleksie op verskeie vlakke: variasie van geen tot geen, variasie
tussen posisies in gene en variasie oor tyd. Deur middel van vier gepubliseerde
joernaalartikels en ’n vyfde artikel in voorbereiding, bied ons aminosuur- en
kodon-modelle aan wat verbeter op bestaande benaderings – hierdie modelle
verskaf beter beskrywings van die proses van natuurlike seleksie sowel as beter
metodes om gevalle van aanpassing in evolusie te vind.
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Foreword

This is a dissertation by publication. It begins with a general introduction to
the field, followed by four chapters which very briefly summarize five papers,
concluding with a synopsis chapter. The five papers themselves are appended,
for the convenience of the reader, to the end of the dissertation. Four of the
papers are included in their final published form, but the one paper is unpub-
lished as of submission time. Should this paper be accepted, the published
version may differ from the one included in this dissertation. The bibliogra-
phies for each paper are self contained, and only the references cited during
the introduction and synopsis of the dissertation itself are included in the
dissertation bibliography.

Like most endeavors in science, these papers are collaborations with mul-
tiple authors. I have attempted to clarify my contribution to each paper after
the brief summary section outlining the papers.
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Chapter 1

Introduction

1.1 Dissertation outline

The central theme of this dissertation is incorporating variation into models of
sequence evolution. This mirrors the history of progress in the field, where the
restrictive assumptions of earlier models are incrementally relaxed to better
account for the staggering variability of biological reality. The selective forces
influencing the evolution of living organisms are never constant. Different
genes have different functions, so selective pressures will vary from one gene
to another. Indeed, different amino acid sites within each gene have specific
roles, facilitating different interactions, and thus a concomitant heterogeneity
of selective forces governs which specific amino acids at each site yield better
adapted organisms with greater replicative fitness. Finally, the environments
of genes – including other genes which influence their contribution to the fitness
of the organism, as well as the environment exogenous to the organism – are
frequently in flux, and selective pressure is seldom constant over time. After
chapter 1, which briefly introduces the material upon which the rest of the
dissertation builds, the remaining chapters all present techniques to better
model variation in natural selection.

Chapter 2 describes a new way of modeling heterotachy, where an evolu-
tionary rate is allowed to vary across the phylogeny. The process on every
branch is modeled as a random effect, using a mixture of Markov substitution
processes, allowing the rate at each site to vary from one branch to another.
This technique is applied to two problems: detecting lineages where some sites
are under episodic selection, and detecting sites where some lineages are under
selection. Both demonstrate substantial improvements over previous models.

Chapter 3 continues the theme of selective pressure varying over time, but
deals with the case where a known rapid exogenous event triggers a sudden
shift in the fitness landscape. This model is applied to HIV-1(Human Im-
munodeficiency Virus Type 1) drug resistance, where current models fail to
appropriately capture the dynamics of the scenario.

1
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CHAPTER 1. INTRODUCTION 2

Chapter 4 explores variation from site to site – a niche with a rich history
in this field – and demonstrates that substantial improvement is still possible.
By employing innocuous computational shortcuts, we can develop an approxi-
mate Bayesian approach which captures far richer site to site heterogeneity in
selective pressure, enabling the models to detect sites with greater accuracy
and at a fraction of the computational cost, allowing the analysis of larger
datasets.

Finally, models of protein evolution require a large number of parameters:
typically too large to estimate for specific genes. Chapter 5 proposes and tests
a method for allowing gene to gene variation in models of protein evolution.
Non-negative matrix factorization – a dimensionality reduction technique – is
employed to efficiently parameterize amino acid rate matrices, where the final
model is a mixture of “basis” rate matrices discovered through non-negative
matrix factorization.

1.2 Preliminaries

Understanding models of biological sequence evolution requires an understand-
ing of basic probability theory, statistical inference, and elementary biology.
This chapter attempts to introduce just enough of each to make the subsequent
chapters comprehensible, but is invariably too short to serve as a comprehen-
sive introduction. If a more detailed introduction to biology is required, please
see Chapter 1 of Hunter (1992) (this chapter is available online). If proba-
bility theory is required, see the first chapter of Durbin et al. (1998) for an
appropriately brief introduction. We will also introduce the components of a
phylogenetic model of sequence evolution: 1) the alignment, 2) the phylogeny,
and 3) the transition probability matrices, and describe how substitution pro-
cesses are parameterized. If more depth is necessary, we refer the reader to the
excellent and comprehensive Yang (2006) and Salemi and Vandamme (2003).
We will proceed to describe the necessary parts of the history of the field of
modeling molecular evolution, followed by more recent developments that form
the foundation for the novel work presented in later chapters.

1.3 Briefest biology

This dissertation is about modeling the evolution of genes that code for pro-
teins. DNA (deoxyribonucleic acid) is composed of nucleotides: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). In non-viral organisms,
stretches of nucleotides (with specific properties) will be transcribed to mes-
senger RNA (ribonucleic acid), which is in turn translated into chains of amino
acids (AAs), which fold into proteins. Although there are some exceptions, the
functional importance of such protein coding genes is overwhelmingly deter-
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CHAPTER 1. INTRODUCTION 3

mined by the particular string of amino acids that determines the structure
(through complex folding dynamics) and physicochemical properties of the re-
sulting protein. In some viruses, genetic information is encoded directly as
RNA, which has Uracil (U) in place of Thymine.

If we want to model how gene sequences change over evolutionary his-
tory, then we have to capture the mutational forces affecting the nucleotide
sequences, and the selective forces acting on the resulting proteins. We thus
need to understand the genetic code, which determines the amino acid se-
quence from the nucleotide one. Nucleotides are arranged in a triplet code,
where each successive nucleotide triplet is called a “codon”. Each of these
codons is translated into one of 20 amino acids. Given a triplet of 4 possible
characters, there are 64 codons. In the standard “universal” genetic code (as
always, there are exceptions), 61 of these triplets code for amino acids (the
“sense codons”), and 3 encode the “stop codons” which terminate translation,
and so do not themselves occur in coding sequences. There are 61 possible
sense codons and only 20 amino acids. The genetic code is thus a many-to-one
mapping from codons to amino acids.

Mutations are changes to the nucleotide sequence. Because of the many-to-
one genetic code, some of these mutations modify the resulting amino acid and
thus modify the protein (called “non-synonymous” changes), but some leave
the amino acid (and thus the protein) unaltered (“synonymous changes”). An
assumption made throughout this dissertation is that natural selection acts
predominantly on the protein sequence, and thus synonymous changes have lit-
tle to no impact on the replicative capacity or fitness of the organism (although
there are counter-examples: see Cuevas et al., 2011, for experimental evidence
from viruses). We can thus build models that treat nucleotide substitutions
differently depending on whether they are synonymous or non-synonymous.

Evolution is change in gene frequency over time. Mutations occur by
chance, and can either die out, go to fixation (where the entire population
comes to possess that mutation), or be maintained as stable polymorphisms
(where a stable proportion of individuals posses the mutation). The factors
influencing the fate of any particular mutation are vast. Even if the mutation
has no fitness consequences, stochastic fluctuations may still drift it to fixa-
tion, or, if the mutation has fitness benefit, chance may see it eradicated. The
process we seek to model is thus far from deterministic, and this is why we
turn to stochastic models of evolution.

1.4 Phylogenetic models of evolution

Gene sequencing technology provides an abundance – rapidly growing (Roth-
berg and Leamon, 2008) – of protein coding sequences from related organisms.
Phylogenetic models of evolution allow us to infer the structure of the an-
cestral relationships between these organisms and details of the evolutionary
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CHAPTER 1. INTRODUCTION 4
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Figure 1.1: Phylogeny and alignment. A coding sequence is depicted, with taxon
names tax1 . . . tax5, and the phylogeny describing the ancestry of the sequences. For
example, tax1 and tax2 are the most closely related, since the total branch length
separating them is the shortest.

processes that led to these organisms.

1.4.1 The alignment

For our purposes, an alignment is a set of characters arranged by taxon and
site, including gap characters which handle insertions and deletions. This is the
data that the model needs to explain. As illustrated in figure 1.1, each row is a
sequence that has been obtained from an organism, and a multiple alignment
algorithm (e.g. Löytynoja and Goldman, 2008) has determined where to place
gap characters to best align the sequences.

Multiple sequence alignment algorithms typically use heuristic search tech-
niques to find gap placements. One popular multiple alignment approach,
called “progressive alignment”, identifies the two most closely related sequences,
and performs a pairwise alignment. Then the next closest sequence is aligned
to this alignment, and so on. More sophisticated algorithms use alignment
scoring systems, and perform a more thorough search of the space of possible
alignments. Recent developments (e.g. Löytynoja and Goldman, 2008) take
the phylogenetic relationships between sequences into account when deciding
on gap placement. Sequence alignment is not dealt with in this dissertation:
the alignment is treated as a fixed entity throughout, and gap characters are
treated as missing data.

Another simplifying assumption that will be made throughout this dis-
sertation (and is indeed made throughout most of the literature) is that each
alignment column evolves independently of the rest – an unrealistic assumption
required for computational tractability. An alignment column (often called a
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CHAPTER 1. INTRODUCTION 5

“site”) represents the genetic information for a single position in every se-
quence, but differs depending on whether the model is capturing nucleotide,
amino acid, or codon evolution. If, for example, one is neglecting the effects
of the genetic code and using a simple nucleotide model, a site will be one
nucleotide per taxon, but will instead be one codon (a nucleotide triplet) if
codon data is being modeled.

1.4.2 The phylogeny

For our purposes, the phylogeny is simply the specification of the branching
structure of nodes, intended to represent the ancestral relationships between
the observed taxa. Besides the root node – which is an orphan – every node
must have a single parent (see figure 1.1). This ensures that the phylogeny has
a tree structure. We refer to the nodes that lack children – corresponding to
the sequenced taxa – as leaf nodes, and the internal nodes represent the most
recent common ancestors of their child nodes. We will aim to model evolution
over this phylogeny. Since each site is assumed to have evolved independently,
we may refer to the “state” of the process at a single site: the genetic character
(nucleotide, codon or amino acid) present at that node for that site; observed
for the leaf nodes but uncertain for the internal nodes.

Each branch of a phylogeny represents a homogeneous population. One of
the assumptions made by phylogenetic models of evolution is that the time it
takes for a mutation to either die out or go to fixation is negligible compared
to the rate at which mutations occur. A mutation occurs in an individual, and
then instantly tends to fixation or extinction across the whole population that
is represented by that branch. This assumption is innocuous when leaf nodes
represent distinct species, but may be violated when the data is sampled from
a more homogeneous intermixing population, as is the case with within-host
viral data. In such cases, the phylogeny may be thought of as a partial geneal-
ogy where branches represent individuals rather than populations, although
the behavior of phylogenetic models in these contexts have been questioned
(Kryazhimskiy and Plotkin, 2008).

Techniques for estimating phylogenies from sequence data abound. “Dis-
tance methods” first compute a matrix of pairwise evolutionary distances be-
tween all sequence pairs, and then use heuristic algorithms to attempt to find
phylogenies that capture the structure of the distance matrix. Maximum like-
lihood methods search through the space of possible phylogenies, attempting
to find the branching structure that best explains the data, where “explains”
is precisely defined in the next section. Bayesian methods similarly rely on
explicit probabilistic models of sequence evolution, but, rather than finding a
single tree, they find a set of credible phylogenies, quantifying the uncertainty
in the tree structure. While all the methods presented in this dissertation
require the existence of a phylogeny, this is not the focus, and standard phy-
logeny estimation tools are used throughout.
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CHAPTER 1. INTRODUCTION 6

1.4.3 The likelihood function

If we denote the i

th site as Di, then a phylogenetic model of evolution with
parameters ✓ will assign P (Di|✓), the probability of the site given the model.
Because sites are assumed to be independent, we can compute the probability
of the whole alignment, P (D|✓) =

Q
i P (Di|✓). This probability is called the

likelihood function, since it assigns a likelihood to the data as a function of the
model parameters. Phylogenetic models of evolution calculate this likelihood
by parameterizing a Markov process over a tree, where the state at any node
is conditionally dependent on its parent state, and conditionally independent
of the state at any other node.

1.4.3.1 Transition probability matrices

A transition probability matrix captures the conditional dependence from a
parent to a child node. Let b denote a node in the phylogeny, with pa(b) the
parent of that node and Ab the state at node b. If the set of allowable states
is S, then an element of the transition probability matrix T is Tij = P (Ab =

Sj|Apa(b) = Si), the probability of a transition from state i to state j over
that branch. Depending on exactly what we are attempting to model, this
transition probability matrix could be unique to branches or sites or both, and
would then require appropriate indices.

1.4.3.2 Calculating the likelihood over a phylogeny

Let A = {A0 . . . AB} denote the vector of states for each node, indexing from
0 (the root) to the total number of branches, B. Further, partition this vector
into terminal states, D, and internal states, A

⇤. Then, if the ancestral states
for each node were known, the joint probability of the terminal and ancestral
states could be calculated as

P (D, A

⇤|✓) = P (A|✓) = P (A0|✓)
BY

b=1

P (Ab|Apa(b), ✓) (1.4.1)

where ✓ determines the full specification of the transition probability matrix
along each branch. Since the internal ancestral states A

⇤ are not typically
known, we can compute the likelihood, P (D|✓), by marginalizing over the
unknown ancestral states:

P (D|✓) =

X

A⇤

P (D, A

⇤|✓) (1.4.2)

where the sum in the expression is taken over all possible arrangements of the
unknown ancestral states. Naively, the complexity of the sum grows expo-
nentially with the number of branches, but fortunately Felsenstein’s algorithm
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CHAPTER 1. INTRODUCTION 7

(Felsenstein, 1981) can compute this quantity efficiently using dynamic pro-
gramming, the resulting computation being linear in the number of branches.

Thus, given an alignment, a phylogeny, and a transition probability matrix
for each branch, we can compute the likelihood of the data.

1.4.4 A substitution process along a single branch

Transition probability matrices are obtained by specifying a substitution pro-
cess for each branch (but see Barry and Hartigan, 1987, for a different ap-
proach). We will be dealing with transition probability matrices that are
parameterized as discrete state, continuous time Markov processes. An un-
derlying rate matrix Q = {qij} is specified, where all off-diagonal entries are
non-negative (qij,i6=j � 0) and the rows sum to 0 (qii = �

P
8k 6=i qik). The

entries in Q are the instantaneous substitution rates. To obtain a transition
probability matrix after time t, we use the matrix exponential:

T (t) = e

Qt (1.4.3)

Once again, the rate matrix Q can differ by branch or by site or both,
and may need to be indexed as such. We will refer to t as the branch length
parameters – they are typically shared across sites but differ from branch to
branch.

1.5 Specific models

1.5.1 Nucleotide models

When the alignment is considered at the nucleotide level, substitutions between
the 4 character states are modeled with a 4⇥4 nucleotide rate matrix. There is
a large literature – motivated by computational considerations – surrounding
models with tractable analytic forms of the matrix exponential required to
compute the transition probability matrix from the rate matrix (see Posada
and Crandall, 1998, for a popular approach comparing such models). With
current computational power it is inexpensive to exponentiate rate matrices
numerically, so more complex and flexible models may be adopted. For the
purposes of this dissertation, knowledge of the Generalized Time Reversible
(GTR) model will suffice, which has 6 rate parameters nij = nji (i 6= j),
and 3 equilibrium frequency parameters ⇡j (there are only 3 because of the
usual stochastic constraint:

P
j ⇡j = 1). The rate matrix is the product of a

symmetric matrix of rate parameters (with the diagonal elements constrained
to ensure row sums of 0, which leaves 6 parameters) with equilibrium frequency
parameters multiplied column-wise:
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CHAPTER 1. INTRODUCTION 8

qij =

8
><

>:

nij⇡j, i > j

nji⇡j, i < j

�
P

k 6=i qik, i = j.
(1.5.1)

Since this is a Markov process, as long as no changes are impossible the
expected frequencies of each state will tend to a constant limit as time tends to
infinity, and the expected frequencies at this limit are controlled by the equi-
librium frequency parameters. This model is called “time reversible” because,
at equilibrium, the process is indistinguishable if run forwards or backwards,
which is true of any symmetric matrix of rates with frequencies multiplied
column-wise (Yang, 2006). This dissertation will not deal with nucleotide
models in depth. They are used to provide computationally expedient esti-
mates of branch proportions, and as the backbone upon which codon models
are built.

1.5.2 Amino acid models

When the alignment data consists of strings of amino acids, even with the
reversibility assumption imposing symmetry on the rate matrix, 209 parame-
ters must be specified. The matrix has exactly the same definition as equation
1.5.1, but i and j go from 1 to 20 instead of from 1 to 4. 190 values are required
for the symmetric off-diagonal elements and 19 for the equilibrium frequencies.
This is over-parameterized for most datasets, and most applications involving
amino acid models resort to using fixed-value models trained on databases of
large protein family alignments. This problem is discussed and addressed in
chapter 5.

1.5.3 Codon models

Codon models (introduced simultaneously by Goldman and Yang, 1994; Muse
and Gaut, 1994) exploit the structure of the genetic code to efficiently param-
eterize substitution models at the codon level. Under the universal genetic
code, there are 61 sense codons, which, even with reversibility constraints,
would make for a large number of parameters (1830 off-diagonal elements,
with 60 frequency parameters). Instead, codon models distinguish only two
types of nucleotide substitutions: those that change the amino acid, and those
that do not (but see Delport et al., 2010b). The process along a branch is de-
fined by its instantaneous rate matrix, Q = {qij}, with elements that describe
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CHAPTER 1. INTRODUCTION 9

the rate of substitution of codon i with codon j:

qij(↵, �, ⇧,N ) =

8
>>><

>>>:

↵⇡ijnij, �(i, j) = 1, AA(i) = AA(j),
�⇡ijnij, �(i, j) = 1, AA(i) 6= AA(j),
0, �(i, j) > 1,
�

P
k 6=i qik, i = j.

(1.5.2)

�(i, j) counts the number of nucleotide differences between codons i and
j, and instantaneous changes requiring more than one nucleotide substitution
are disallowed (although they are possible in any finite amount of time). ↵

and � parameterize the rates of synonymous and non-synonymous substitu-
tions respectively. nij (comprising N ) are the nucleotide mutational biases,
parameterized as in the nucleotide model in equation 1.5.1. ⇡ij (comprising
⇧) denote the equilibrium frequency parameters. There is a large literature
surrounding the equilibrium frequency parameters, with the Muse and Gaut
(1994) approach differing from the Goldman and Yang (1994) approach, and
with some more sophisticated new developments (Kosakovsky Pond et al.,
2010; Yap et al., 2010). In this dissertation, the approach of Kosakovsky Pond
et al. (2010) is adopted. Traditionally, the frequencies of the 61 sense codons
are estimated using the product of the position specific nucleotide frequen-
cies (the so-called “F3⇥4” estimator), invoking an independence assumption
to reduce the number of required parameters. Kosakovsky Pond et al. (2010)
demonstrate that this approach neglects the nucleotide composition of stop
codons, causing the estimate to be biased, and they propose a corrected es-
timator that accounts for stop codon nucleotide composition. Readers are
referred to Kosakovsky Pond et al. (2010) for details.

1.6 Literature overview: accounting for

variation

With the future chapters in mind (particularly chapters 2, 3 and 4), we will at-
tempt to give an overview of the existing literature and the relevant techniques
used to incorporate variation. The discussion will mostly be in the context of
codon models, since that is what we will be dealing with in later chapters,
although similar developments have occurred for nucleotide and amino acid
models. See Delport et al. (2009) and Anisimova and Kosiol (2009) for com-
prehensive reviews.

The earliest codon models allowed no variation in the parameters governing
the relative synonymous and non-synonymous rates (Goldman and Yang, 1994;
Muse and Gaut, 1994). These were fixed across the sites in the alignment and
across the branches in the phylogeny. One of the goals of these codon models
was to detect instances where nucleotide changes that modified the protein
were more likely to go to fixation than changes that did not – where the
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non-synonymous rate was larger than the synonymous rate. This suggests
that natural selection was acting to change the protein. The problem for
these models is that natural selection seldom favors changes to all amino acids
in a protein, and seldom on all branches in a phylogeny – over the entire
evolutionary history of that protein.

1.6.1 Variation over branches

The simplest way of incorporating variation over branches is to allow each
branch to have its own set of selection parameters. This was proposed by
Yang (1998). One can then test whether � > ↵ on any particular branch by
introducing a constrained null model with �  ↵ for each branch in turn, and
comparing these null models to the unconstrained alternative model. Infer-
ence with likelihood ratio tests (LRT – see A.1.2) can assess the evidence for
rejecting the null model.

A second method for incorporating variation over branches was introduced
in the form of a “covarion” model Tuffley and Steel (1998). A number of
substitution models can be combined, such that the overall substitution model
allows switching between any of the component models at any point along
a branch. The switching process itself is also modeled as a continuous time
Markov chain, and switching rate parameters need to be estimated from the
data. While some attempts have been made to use covarion models to capture
variation in selection parameters (Guindon et al., 2004), this approach has
not been widely adopted, perhaps because the tests for selection based on this
model do not outperform the tests that assume constant rates over branches.
In chapter 2 we describe an approach that addresses this problem, and which
has substantially greater power to detect sites under episodic selection.

1.6.2 Variation over sites

There is generally no reason to expect the selective pressures that guide se-
quence evolution to be identical from one amino acid site to another. Allowing
the selective pressure to vary from site to site has thus been one of the most im-
portant developments in the history of codon models. There are two strategies:
fixed and random effects.

1.6.2.1 Fixed effects models

Fixed effects models partition the alignment into regions that we would ex-
pect a priori to share the same selection parameters. For example, Yang and
Swanson (2002) model the evolution of the major histocompatibility complex
(MHC) by partitioning it into antigen recognition sites (ARS – which bind
to foreign antigens) and non-ARS regions. The ARS regions all share one !

(which is equal to �/↵, using a single parameter governing the non-synonymous
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to synonymous rate ratio), and the non-ARS regions share another. This model
is able to show that the ! value for the ARS regions was significantly greater
than 1, using an LRT.

With many genes, such a priori partitioning is not available. In such cir-
cumstances, a fixed effects approach can allow each site to possess a unique set
of selection parameters. Such approaches have been proposed by Kosakovsky Pond
and Frost (2005b) and Massingham and Goldman (2005) and have shown some
success at detecting individual sites subject to positive selection.

1.6.2.2 Random effects models

Random effects models allowing rate variation over sites were first proposed in
the context of nucleotide models (Yang, 1993). Assume, for illustration, that
a single parameter, !, varies across sites. If we allow the value of ! at each
site to be one of a set of K discrete rate categories, indexed !1, . . . ,!K , then,
introducing probabilities for each rate category, P (!i), we can calculate the
marginal likelihood for a single site as

P (D) =

KX

i=1

P (D|!i)P (!i). (1.6.1)

The marginal likelihood is thus calculated as the sum of the likelihoods
for each rate category, weighted by the probability of each category. The
parameters governing the distribution of ! are shared across sites, but the value
of ! at each site varies as a random draw from this distribution. This allows
! to vary over sites, while incurring a small number of parameters relative to
the fixed effects likelihood approach, which requires a different parameter for
each site.

Inference over entire alignments using such models allows one to infer where
there was positive selection on a small proportion of sites, where constant rate
models would suggest that selection was, on average, purifying. As an example,
the earliest such model allowed 3 ! categories (Nielsen and Yang, 1998; Yang
et al., 2000): !0  1, !1 = 1 and !2 � 1 for the alternative model. The null
model only possessed the first two categories. This allows an LRT to assess
the evidence for a proportion of sites evolving under positive selection.

An empirical Bayes (see A.1.3) procedure is used to estimate the posterior
probabilities for the ! categories for each site. Using the maximum likeli-
hood parameter estimates for our prior distribution, we use the conditional
likelihoods for each category to compute the posteriors:

P (!|D) =

P (D|!)P (!)P
8! P (D|!)P (!)

(1.6.2)

We can use these posterior probabilities directly, or compute Bayes factors
(Kosakovsky Pond and Muse, 2005) to assess the strength of evidence for
positive selection at each site.
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Much of the literature surrounding random effects models can be charac-
terized as finding more parsimonious ways to parameterize distributions over
selection parameters, as well as increasing the list of parameters that should
vary from site to site. Kosakovsky Pond and Muse (2005), for example, show
that allowing the synonymous rate to vary from site to site results in better
fitting models, and that not doing so can lead to false positives. In chapter 4,
we demonstrate a computationally inexpensive approach that flexibly accounts
for rich site to site variation in both synonymous and non-synonymous rates
without assuming any parametric form for their joint distribution.

1.6.2.3 Branch-site models

An additional class of models are the so-called “branch-site” models, introduced
in Yang and Nielsen (2002), and refined in Zhang et al. (2005) and Yang and
Reis (2011). These models allow a subset of branches on the phylogeny to
be designated as foreground, and the rest as background. A random effects
model is created with this partition, allowing each site to belong to one of a
number of categories, where each category allows the foreground and back-
ground branches to be treated differently. For example, in Yang and Nielsen
(2002) there are 3 ! values: !0  1, !1 = 1 and !2 � 1. One category has
both foreground and background branches with !0  1, another has both with
!1 = 1, and yet another has foreground branches with !2 � 1, but background
branches with !0  1, while the final category has foreground branches with
!2 � 1, but background branches with !1 = 1. These models can use LRTs to
detect branches (or sets of branches) where selection is positive at only a small
proportion of sites, and use empirical Bayes to infer which sites were likely
under diversifying selection. We show, however, in chapter 2, that this model
is sensitive to departures from an overly restrictive null model, which can lead
to both false positive and false negative rates being uncontrolled. We then
propose an approach that addresses this problem by relaxing the restrictive
constraints on the background branches.

1.7 Implementation

There are multiple software packages implementing phylogenetic models of evo-
lution. PAML (Phylogenetic Analysis by Maximum Likelihood) (Yang, 1997)
contains the models implemented by Ziheng Yang’s group, which are predom-
inantly maximum likelihood random effects models. MrBayes (Huelsenbeck
and Ronquist, 2001) allows for the implementation of a range of phylogenetic
models in a fully Bayesian framework. HyPhy (Hypothesis Testing using Phy-
logenies)(Kosakovsky Pond et al., 2005) has a useful graphical user interface,
and possesses a rich scripting language, allowing the implementation of cus-
tom models of molecular evolution. All of the models in this dissertation are
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implemented in HyPhy, and some have been included in the HyPhy group’s
webserver, Datamonkey (Kosakovsky Pond and Frost, 2005a).
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Chapter 2

Random effects models allowing
rate variation over branches

2.1 Summary

The two papers comprising this chapter both exploit a novel technique for
allowing the rate class on each branch to be a random draw from a discrete
distribution. While random effects models over sites calculate marginal likeli-
hoods for each site as a weighted mixture of conditional likelihoods of the data
at each site given the rate class, our approach takes this mixing further inside
Felsenstein’s algorithm, mixing the transition probability matrices themselves.
We show in Kosakovsky Pond et al. (2011) that doing this is equivalent to
marginalizing over all possible assignments of rate classes to branches. The
model in Kosakovsky Pond et al. (2011) allows each branch to have a set of
3 selection parameters and 2 mixture proportions, and constructs a likelihood
ratio test for selection affecting individual branches, using the transition proba-
bility mixture approach to avoid the overly restrictive assumptions of previous
branch-site tests. These previous tests are shown to behave poorly when such
assumptions are violated, leading to loss of power or inflated false positive
rates, while our random effects test is well behaved.

In Murrell et al. (2012b), we define a Mixed Effects Model of Evolution
(MEME) that allows each site to have two non-synonymous rates, a synony-
mous rate, and a mixture proportion (interpreted as the proportion of branches
evolving under the larger non-synonymous rate at this site). A likelihood ra-
tio test is used to detect episodic selection at individual sites. This test can
detect sites even where only a small proportion of branches are evolving un-
der positive selection. Existing tests which assume that selection is constant
across branches, effectively relying on an averaged selection pressure, identify
only purifying selection at such sites. Using MEME on 16 empirical align-
ments, we show that the number of sites with detectable selection is approxi-
mately 4 times greater than previous tests would suggest, and conclude that

14
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the number of sites evolving under positive selection may have been greatly
underestimated.

Papers for this chapter:
Kosakovsky Pond, S.L., Murrell, B., Fourment, M., Frost, S.D., Delport, W.
and Scheffler, K. (2011). A random effects branch-site model for detecting
episodic diversifying selection. Molecular biology and evolution, vol. 28, no. 11,
pp. 3033–3043. ISSN 1537-1719.
Available at: http://dx.doi.org/10.1093/molbev/msr125

Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K. and
Kosakovsky Pond, S.L. (2012). Detecting Individual Sites Subject to Episodic
Diversifying Selection. PLoS Genet, vol. 8, no. 7, pp. e1002764+.
Available at: http://dx.doi.org/10.1371/journal.pgen.1002764

2.2 Contribution statement

My contribution to Kosakovsky Pond et al. (2011): The idea for weighted
mixtures of probability transition matrices was mine, but Sergei Kosakovsky
Pond implemented and tested the Branch-Site random effects model (BS-REL)
that first used these mixture matrices. The authorship order reflects Sergei’s
leading role here. I wrote and edited some sections of the paper. I have
included this paper, partly because it is an important prelude to the other
paper in this chapter, and partly because the mixture idea which allows random
effects models over branches may turn out to be my largest contribution to
this field.

My contribution to Murrell et al. (2012b): The idea for the model and test
was mine. I wrote the HyPhy code implementing the test, and ran simulations.
Sergei Kosakovsky Pond ported the code to the Datamonkey web server, and
refined the test statistic distribution. I wrote the first draft of the paper, and
refined it along with my co-authors. Joel Wertheim contributed biological
expertise and interpreted the detected sites for the empirical datasets.
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Chapter 3

Modeling HIV-1 Drug Resistance
as Episodic Directional Selection

3.1 Summary

When exposed to treatment, HIV-1 and other rapidly evolving viruses have
the capacity to acquire drug resistance mutations (DRAMs), which limit the
efficacy of antivirals. There are a number of experimentally well characterized
HIV-1 DRAMs, but many mutations whose roles are not fully understood have
also been reported. In Murrell et al. (2012a) we construct evolutionary mod-
els that identify the locations and targets of mutations conferring resistance
to antiretrovirals from viral sequences sampled from treated and untreated
individuals. While the evolution of drug resistance is a classic example of nat-
ural selection, existing analyses fail to detect the majority of DRAMs. We
show that, in order to identify resistance mutations from sequence data, it is
necessary to recognize that in this case natural selection is both episodic (it
only operates when the virus is exposed to the drugs) and directional (only
mutations to a particular amino-acid confer resistance while allowing the virus
to continue replicating). The new class of models that allow for the episodic
and directional nature of adaptive evolution performs very well at recovering
known DRAMs, can be useful at identifying unknown resistance-associated
mutations, and is generally applicable to a variety of biological scenarios where
similar selective forces are at play.

The paper for this chapter:
Murrell, B., de Oliveira, T., Seebregts, C., Kosakovsky Pond, S.L., Scheffler,
K., (2012). Modeling HIV-1 Drug Resistance as Episodic Directional Selection.
PLoS Comput Biol, vol. 8, no. 5, pp. e1002507+.
Available at: http://dx.doi.org/10.1371/journal.pcbi.1002507
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3.2 Contribution statement

The episodic directional selection model was designed by myself and Konrad
Scheffler, and implemented by myself. The datasets and simulations were
constructed by myself. Sergei Kosakovsky Pond contributed a modified DEPS
(Directional Evolution in Protein Sequences) model for an episodic directional
model of amino acid evolution. The paper was written by myself and edited
by Konrad Scheffler and Sergei Kosakovsky Pond, with suggestions from the
other co-authors.
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Chapter 4

FUBAR : An efficient analysis of
the molecular footprint of natural
selection

4.1 Summary

Model-based selection analyses that attempt to detect sites evolving under
non-neutral selection constraints often model the site-to-site variation in se-
lection parameters as a random effect. Random effects methods can be slow,
and are restricted to using a relatively small number of discrete rate categories
(see section 1.6.2.2), placing unrealistic constraints on the distribution of se-
lection parameters over sites. Such methods are also prohibitively slow for
large alignments. We present an approximate Bayesian method that allows
rich, flexible site-to-site variation, which improves the statistical performance
of the method, while still detecting selection much faster than current methods.

By exploiting some commonly used approximations, FUBAR (Fast Un-
constrained Bayesian AppRoximation) can accurately identify positive and
purifying selection orders of magnitude faster than existing random effects
methods and 3 to 20 times faster than fixed effects methods (with the dispar-
ity increasing for larger alignments). We introduce a fast Markov chain Monte
Carlo (MCMC) routine that allows a flexible distribution over the selection
parameters to be learned from the data (see A.1.3), with no parametric con-
straints on the shape of this distribution. This allows information to be shared
between sites, yielding greater power to detect positive selection than that of
fixed effects methods, but without the potential bias introduced by the overly
restrictive distributions used by current random effects models.

The flexibility and speed is achieved using a precomputed grid of condi-
tional likelihoods, which means the the shape of the distribution over the syn-
onymous and non-synonymous rates can be inferred, using MCMC, without
having to recompute the likelihood function each iteration. From a practical

18
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perspective, selection analyses of smaller alignments that typically required
hours of computation time now take just minutes. Very large alignments,
which were previously intractable, can now be analyzed in reasonable time.
We demonstrate this on a large influenza Haemagglutinin dataset (3142 se-
quences), which took just 1.5 hours to complete.

4.2 Contribution statement

The method was conceived by Konrad Scheffler and myself. The first version
of the code for FUBAR was written by myself, assisted by Sasha Moola and
Thomas Weighill. Amandla Mabona assisted with some theoretical arguments
about the optimal grid scaling (which did not make it into the final version
of the paper) and with the PAML comparison. Sergei Kosakovsky Pond par-
allelized and ported the code to Datamonkey. Daniel Sheward provided a
biological interpretation of the influenza analysis. Konrad Scheffler and Sergei
Kosakovsky Pond suggested changes to the manuscript.
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Chapter 5

Non-Negative Matrix
Factorization for Learning
Alignment-Specific Models of
Protein Evolution

5.1 Summary

Models of protein evolution are used to align protein sequences, construct
phylogenies and infer details about the evolutionary process. In Murrell et al.
(2011), we consider a class of models that quantify the exchangeability of each
of 190 amino acid pairs. Originally, these were constructed from large datasets
involving different proteins, and were intended to describe protein evolution
generally. More recently, researchers have found that amino acid exchange-
abilities can be very different for different genes or organisms, and that models
constructed from gene-specific or organism-specific datasets outperform gen-
eralist models. Large, specific datasets are seldom available, however. We
propose a method, based on a mathematical technique called non-negative
matrix factorization (NNMF), that achieves a compromise between the gener-
alist and specialist approaches. Our method uses a large, general dataset to
estimate a set of basis matrices, and then learns a small number of parameters
from a single alignment of interest. The resulting model of protein evolution
is specialized to match a single alignment, with the degree of specialization
adapted to suit the richness of the data. Our new models outperform existing
approaches in terms of model fit, quantify the degree of conservation of differ-
ent amino acid properties, and lead to improved inference of phylogenies.

The paper for this chapter:
Murrell, B., Weighill, T., Buys, J., Ketteringham, R., Moola, S., Benade, G.,
du Buisson, L., Kaliski, D., Hands, T. and Scheffler, K. (2011). Non-Negative
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Matrix Factorization for Learning Alignment-Specific Models of Protein Evo-
lution. PLoS ONE, vol. 6, no. 12, pp. e28898+.
Available at: http://dx.doi.org/10.1371/journal.pone.0028898

5.2 Contribution statement

This project arose from a computational biology workshop. Along with Konrad
Scheffler, I posed the problem, conjectured a solution, and then worked with a
team of undergraduate student assistants to implement it. The components of
the solution were implemented during the workshop. A collection of training
rate matrices were estimated from a large collection of Pandit alignments,
assisted by Gerdus Benade and Lise du Buisson. Matlab’s NNMF routine was
used to perform the factorization, assisted by Jan Buys and Tristan Hands.
Code to infer the mixture weights was written in HyPhy, assisted by Thomas
Weighill and Sasha Moola. Examination of the amino acid properties of the
basis matrices was assisted by Daniel Kaliski. Running the comparisons on
the UCSD cluster was assisted by Robert Ketteringham. The estimates of the
phylogenetic impact of the method were assisted by Sasha Moola. Analyzing
results was performed after the workshop, by myself. I wrote the first draft of
the paper, and refined it along with Konrad Scheffler.
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Chapter 6

Synopsis

6.1 Introduction

The papers comprising this dissertation have contributed a number of method-
ologies and models for the analysis of biological sequence data. This chapter
will attempt to summarize the contributions, clarifying the relationships be-
tween the models, and suggesting profitable avenues for future research.

We distinguish between modeling contributions and methodological contri-
butions: the former is where a new model is created using modeling techniques
already available in the field, but the latter is the introduction of novel tech-
niques themselves. MEDS and EDEPS are examples of models created from
existing techniques to address a previously unattended biological scenario. Us-
ing a mixture of continuous time Markov chains to construct a random effects
model of branch to branch rate variation is an example of a methodological
contribution, and BS-REL and MEME are the models that employ this new
technique.

Table 6.1 provides a list of the models contributed by this dissertation,
as well as the key properties of each model. They are characterized by: the
kind of data they describe, codon or amino acid (AA); by how they account
for heterotachy, using mixtures to incorporate random effects over branches
(Mixture), or using a fixed a priori partition over branches (Fixed); by how
they model variation over sites, with site-specific parameters that are optimized
(Fixed), or in the random effects framework (Random), or even relying on
the branch mixtures to implicitly allow site heterogeneity (Implicit); or by
what kind of selection they model, whether it be in the form of ! = �/↵

(Diversifying) or elevated rates towards specific amino acids (Directional), or
in the form of aggregated exchangabilities between amino acids (Implicit).

22
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Table 6.1: A summary of the models introduced in this dissertation.

Data Heterotachy Site variation Selection
NNMF AA None None Implicita
BS-REL Codon Mixture Implicitb Diversifying
MEME Codon Mixture Fixed Diversifying
MEDS Codon Fixed Fixed Directional
EDEPS AA Fixed Random Directional
FUBAR Codon None Random Diversifying

a
NNMF captures selection implicitly by accounting for different substitution rates be-

tween different amino acids

b
BS-REL allows site-to-site variation implicitly - the process is identical from one site

to another, but each branch at each site is a random draw, allowing site to site variation

6.2 Methodological contributions

This section describes the methodological contributions made by this disser-
tation - new ways to model evolutionary processes.

6.2.1 Using dimensionality reduction to reduce model

complexity

In Murrell et al. (2011), we introduced a method to reduce the statistical
complexity of amino acid substitution models. The modeling technique was
presented in the context of that specific application, but it should have more
general applicability as well. From a large collection of large datasets, we
learn particular parameter values for over-parameterized models. From this
set of fitted models, we then learn which model dimensions are critical, and
which can be ignored. Our particular method of dimensionality reduction, non-
negative matrix factorization, also has the benefit of learning which parameters
vary together - when parameters vary together, only one degree of freedom is
required to accommodate this variation.

This can be seen as an attempt to automate the discovery of parsimo-
nious models. This stands in contrast with human-driven model development:
When the history of the field of nucleotide model development is considered,
for example, the first models were simple, and complexity was added incre-
mentally, usually guided by biological hypotheses (eg. the step from JC69
to the inclusion of the transition/transversion rate ratio). In contrast to this
hypothesis-driven model development, our NNMF approach begins with max-
imally complex models, and uses a data-driven dimensionality reduction step
to achieve a spectrum of models of varying complexity. Wherever there is a
large amount of data and a way to construct models of varying complexity in
a commensurable manner (where parameters from more complex models are
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identifiable with parameters from simpler models), this method of data-driven
model discovery could prove useful.

6.2.2 Modeling heterotachy using mixtures of Markov

processes

The approach for allowing branch to branch rate variation in the random
effects framework (Kosakovsky Pond et al., 2011; Murrell et al., 2012b) should
have applications across phylogenetics. In this dissertation, we applied the
technique to codon models to better handle cases where selection is episodic,
but it can be used wherever a model requires branch to branch substitution
process variation, regardless of the kind of model used (nucleotide, amino acid,
codon etc.).

Heterotachy is a ubiquitous feature of evolution (Lopez et al., 2002). It
can bias estimates of node dates (Wertheim et al., 2012), and, as we show,
obscure selection (Murrell et al., 2012b). We have used our mixture of Markov
processes along each branch to alleviate the latter problem, but it may yield
an improvement with respect to the other concerns too. Heterotachy itself can
describe a variety of ways in which the process can change from one branch to
another. Our mixture of Markov processes assumes branch-to-branch and site-
to-site independence. This works well when modeling selection, but might not
work well when modeling variation that violates this independence assumption:
strong correlations between neighbouring branches (covarion-like processes) or
when a large number of sites all switch to a different process along a single
lineage. It should, however, always be better than not modeling branch to
branch variation at all.

6.2.3 Building complex models efficiently

The approach employed by FUBAR to efficiently detect � > ↵ can also be
considered more generally: sacrifice correctness when estimating unimportant
parameters to improve model complexity for critical parameters. This is not
a novel tradeoff, even within phylogenetics. The CAT approximation (Sta-
matakis, 2006), for example, yields dramatic improvements in the speed of
phylogeny reconstruction, by abandoning site to site variation using a dis-
cretized �-distribution, and instead estimating a distinct rate for each site.
The speed increase comes from forcing these rates to be one of a number of
discrete categories, which allows the re-use of the matrix exponential across
sites. The CAT approximation allows the efficient discovery of phylogenies
that have improved likelihoods, even when evaluated under the �-distribution.

FUBAR’s use of the ↵, � grid is very similar, but the approach is used to
capture potentially complex distributions of site to site variation in selection
parameters with a fixed phylogeny, rather than to estimate the phylogeny itself.
The fact that the CAT approximation is so successful in phylogeny estimation
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(Price et al., 2010) suggests that grid-based approaches like FUBAR might
be useful even when the phylogeny is unknown and needs to be reconstructed
under the full model.

Grid-based approximations do have their limitations. If the number of
parameters that need to vary from one site to another (1 in the CAT ap-
proximation, 2 in FUBAR) is too large, then building a grid of conditional
likelihoods becomes infeasible, because the number of evaluations grows expo-
nentially with grid size. MEDS, for example, would probably not benefit from
a FUBAR-like implementation, because the synonymous rate, background and
foreground non-synonymous rates, and directional rate would all have to vary
from site to site, enforcing a very coarse grid. It remains to be seen just how
many dimensions these sorts of grid-based approaches can tolerate before their
gains are nullified.

6.3 List of problems addressed

This section describes practical biological problems to which this disserta-
tion has contributed, either by addressing new problems that had no existing
solutions in the literature, or by improving upon existing methods. These
improvements could be in terms of performance in model selection criteria,
computational efficiency, or statistical performance in the form of power and
false positive rates.

6.3.1 Detecting lineages under selection

Detecting lineages under positive selection has been a popular kind of selec-
tion analysis since the first methods were developed by Yang (1998). Prior
to this dissertation, there were a number of model-based methods for detect-
ing lineages under adaptive evolution. The earlier approaches assumed that
rates of evolution on the target lineage were constant across sites, but this
was relaxed with the introduction of branch-site methods (Yang and Nielsen,
2002; Zhang et al., 2005; Yang and Reis, 2011). These branch-site methods
partitioned sites into foreground and background, allowing a small number of
different patterns (positive on foreground but purifying on background, pos-
itive on foreground but neutral on background etc.) at each site. We used
our mixture of Markov processes to relax these assumptions, integrating over
all possible rate categories on each branch. The resulting method, BS-REL
(Kosakovsky Pond et al., 2011), has greater power to detect selection, and
does not break down (as the existing branch-site methods do) when selection
is variable on the background branches. Since its introduction, this method
has been used in a number of papers (9 citations as of July 2012), includ-
ing selection analyses on a glucose transporter gene in fruit bats (Shen et al.,
2012), antifreeze proteins in Fragilariopsis (Sorhannus, 2011), Bean Necrotic
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Mosaic Virus (de Oliveira et al., 2012), Dengue virus (Costa et al., 2012), and
Hepacviruses in primates (Patel et al., 2012).

6.3.2 Estimating alignment specific amino acid models

Models of amino acid substitution are used throughout comparative bioin-
formatics - for aligning sequences, constructing phylogenies, and as a base-
line against which to detect elevated substitution rates. Specifying a model
requires specifying 190 symmetric exchangeability rates between all pairs of
amino acids. When analyzing a new sequence alignment, a biologist would
select an amino acid model from a list of pre-estimated models, either using
a model selection tool or, in some packages, using the only available option.
Depending on the alignment, this selected model could be very well or very
poorly suited to the data.

With the NNMF approach we propose in (Murrell et al., 2011), one can
now fit a model to a specific dataset. The model complexity is automatically
adapted to suit the amount of data. The resulting amino acid models can be
used to refine alignments or phylogenies, or as baseline AA models used to
detect directional selection.

6.3.3 Detecting selection in larger alignments

The speed of selection analyses places restrictions on the size of alignments that
can be studied. This is especially true of publicly available webservers such as
Datamonkey (Delport et al., 2010a), where many jobs are being processed (166
jobs per day over July 2012) - computational considerations become critical.
For example, FEL and REL analyses on Datamonkey are restricted to 500 and
75 taxa respectively, which makes the analysis of large alignments inconvenient.

FUBAR has extended the range of selection analyses. Datamonkey allows
FUBAR to analyze 5000 sequences, which is an order of magnitude greater
than any other Datamonkey analysis. The primary practical contribution of
FUBAR is the efficient detection of selection in much larger alignments. This
will hopefully prove useful in the era of large databases and deep sequencing.

6.3.4 Detecting episodic positive selection masked by

pervasive purifying selection

The blind discovery of individual sites under selection - where nothing beyond
the alignment and phylogeny is known or provided - is a very common kind of
selection analysis, with a large number of approaches addressing this problem.
As was demonstrated in Kosakovsky Pond and Frost (2005b), once synony-
mous rate variation is accounted for, the performance of different methods is
very similar. The conclusions in Murrell et al. (2012b) challenge that picture.
A critical feature of selection was being overlooked by all existing methods that
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attempted to detect sites under positive selection: selection is overwhelmingly
episodic. Even more importantly, the combination of positive selection and
prevalent purifying selection at some sites causes methods that assume con-
stant selection across branches to calculate an “average” �/↵, which is often
less than 1 simply because purifying selection is more pervasive. MEME de-
tects almost 4 times as many sites as FEL, by relaxing the assumption of a
fixed rate across all branches.

The inability to detect episodic positive selection has not previously been
addressed in the literature, and - when the prevalence of this mode of selection
is considered - is a crippling feature of models that fail to account for this
kind of variation. We thus hope MEME will prove useful to the field. MEME
became publicly available on the Datamonkey webserver before the paper de-
scribing the method was published, and, prior to that publication, results from
MEME analyses were already used in two papers, finding sites under selection
in circoviruses in the endangered Echo parakeet (Kundu et al., 2012), and iden-
tifying episodic diversifying selection in Influenza A H3N2 (Westgeest et al.,
2012).

6.3.5 Episodic directional selection

When a sudden environmental shift affects a large number of lineages simul-
taneously, and when it is known (or at least hypothesized) which lineages
were affected, then existing models may fail to adequately capture the pattern
of selective forces acting at those sites. This is caused by a combination of
two problems. Firstly, the environmental disruption means that selection is
not constant, but episodic. Secondly, even if a model allowed branches to be
partitioned into background (before the environmental shift) and foreground
(after the environmental shift), the manner in which positive selection is usu-
ally modeled (�/↵) is inappropriate for this scenario, where selection tends to
favor a particular amino acid, which is under purifying selection once it be-
comes fixed. This scenario is exactly what we observe in the emergence of drug
resistance, and models such as MEDS or EDEPS, that appropriately account
for both the episodic and directional features, are much better at identifying
drug resistance mutations than those that do not. We count this kind of sce-
nario among the biological problems that did not previously have an adequate
solution.

6.4 Future work

There is much room for model development using the techniques introduced
in this dissertation. This section will outline research directions we believe
should prove profitable.
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6.4.1 FUBAR-DEPS

DEPS and EDEPS detect sites in proteins evolving under directional selection,
using a random effects approach. DEPS uses an underlying amino acid model,
and detects sites where evolution towards a particular amino acid is elevated
across the phylogeny. This is done using a random effects model, where, for
each possible target amino acid, there is a single null category and a single
category with a rate multiplier greater then 1.

DEPS and EDEPS could likely be improved by a grid-based implementa-
tion, in the style of FUBAR. This would have many foreseeable benefits: 1)
The very coarse 2 category site to site variation could be enriched with far
more categories, which should improve the power to detect weaker directional
selection. 2) Site to site variation in the overall (non-directional) substitu-
tion rate could be efficiently incorporated, which could prevent false positives
due to directional rate parameters compensating for a non-directional rate in-
crease. 3) Rather than considering 20 distinct alternative models, with each
having accelerated substitutions to one amino acid, the hierarchical Bayesian
approach could consider a composite model that included 20 models at once.
4) The speed of the method could be dramatically increased, allowing a so-
phisticated directional (or episodic directional) analysis to be performed on
very large alignments.

6.4.2 Branch mixtures and site mixtures

It is interesting to compare the manner in which traditional random effects
models allow for variation over sites to how our approach allows for random
effects variation over branches. If D is the data at a single site, then P (D) =PK

k=1 P (D|!k)P (!k) computes the probability of D when the value of ! is
an unknown draw from the discrete distribution P (!k). Thus the marginal
likelihood is computed as a weighted mixture of conditional likelihoods. When
we want ! to vary from branch to branch, with the process along each branch
being one of a number of categories, we use a weighted mixture of transition
matrices: T (t)ij =

PK
k=1 P (S = j|Spa = i, t,!k)P (!k). T (t)ij is the probability

of transitioning from the parent state Spa = i to the descendent state S = j.
In both cases we are using weighted mixtures to describe a situation where

the overall distribution is generated by an unknown selection from a number
of possible processes, but the models differ at the level (site or branch) of the
randomness (when thinking of the generative model) or the uncertainty (when
thinking of the inferential procedure). In one case, the mixing happens once
per site (we call these site-mixtures), and, in the other, once per branch per
site (branch-mixtures).

There is no impediment to allowing both kinds of variation. MEME - which
used two categories to allow branch to branch variation - used site specific
parameters (fixed effects) to achieve variation from site to site. It would be
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interesting to consider far more parametrically efficient models where branch
and site variation are both modeled in the random effects framework.

As an example, consider the following hypothetical model meant to account
for heterogenous positive selection combining site to site and branch to branch
variation: There are 7 site categories, M1, . . . ,M7, with 6 associated mixture
weights controlling the site proportions. We model the sites as belonging to
these categories using a 7 category site-mixture. There are three ! values,
!1, . . . ,!3. If a site is M1, then all branches evolve under !1. Similarly for
M2 and M3 with !2 and !3. If a site is M4, then we use a branch-mixture
to let each branch evolve under either !1 or !2, with a mixture proportion
parameter p4 controlling the branch proportions. If a site is M5, then we use
a branch-mixture of !1 and !3, with p5 for the proportions. If M6, then we
use a branch-mixture of !2 and !3, with p6 for the proportions. Finally, if a
site is M7, then we use a branch-mixture of !1, !2 and !3, with p7a and p7b

controlling the proportions.
Such a model would be very effective at handling data where some sites

appear to evolve at constant rates, but others are more episodic, switching be-
tween purifying-, neutral-, and positive selection. The proportion of sites with
episodic vs. constant positive selection could also be estimated, which would
be an interesting metric under which to compare different genes. This model
has 6 site level proportion parameters, 5 branch level proportion parameters, 3
omega parameters, but, in a sense, this is the smallest “complete” model with
3 ! values that can be constructed. We might want the values of ! to differ
between the different Ms, or we might want to allow site to site variation in the
synonymous rate rather than just !, or a large number of potential variations,
all of which complicate matters further.

Combining site and branch process mixing should provide a fruitful ground
upon which to explore novel models and strategies to detect selection. Other
kinds of variation, such as covarion models, could also be incorporated, and
comparisons between different modes of evolution would serve to further elu-
cidate the nature of natural selection.
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Appendix A

Approaches to inference

A.1 Inference and model selection

Inference plays multiple roles in phylogenetics. Phylogenies themselves can be
compared to see if the data supports one possible ancestry over another. This
will not be dealt with in this dissertation, which instead concerns itself with
which model the data supports, or even what range of values are supported
for a model parameter. All probabilistic inference is based on the likelihood
function, but it can be used in different ways. Each has vastly different philo-
sophical grounding, but in phylogenetics the choice is often based on practical
considerations.

A.1.1 Frequentist

Frequentist inference, for our purposes, proceeds by constructing statistical
tests with reliable frequency properties. Typically, null and alternative hy-
potheses are compared. A test statistic is obtained from the data, and a
p-value derived from the distribution of the test statistic under the null model
describes the probability of obtaining a test statistic at least that extreme
given that the null model was true (ie. given that the data was generated
under the null model).

A.1.1.1 Likelihood ratio tests for model comparison

When models are nested - when the alternative model reduces to the null
model for specific parameter values - then likelihood ratio tests (LRTs) may
be employed. The log-likelihood functions of both the null and alternative
models are maximized, yielding MLnull = max✓null

P (D|✓null) and MLalt =

max✓alt
P (D|✓alt). If we define our likelihood ratio statistic (LRS) as

LRS = �2 ln(MLnull) + 2 ln(MLalt), (A.1.1)
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then, under some regularity conditions (Self and Liang, 1987), when the
null model is true the LRS will be asymptotically �

2
d distributed with degrees

of freedom d equal to the difference in the number of free parameters between
the null and the alternative models. Knowing this, we can use the inverse
of the cumulative �

2
d distribution to compute a p-value, telling us how often

we obtain a likelihood improvement this large when the null model is used
to generate the data. When this p-value is very small, we can reject the null
hypothesis.

The �

2
d distribution of the statistic only holds asymptotically, and in prac-

tice such tests are often conservative. Further, if the null models constrains
a parameter to be on the boundary of parameter space, a mixture of �

2 dis-
tributions will describe the distribution of the test statistic (Self and Liang,
1987). Simulations under the null model are used to investigate how well the
tests behave for different amounts of data.

A.1.2 Information theoretic

When models are not nested, the conditions for LRTs do not obtain. The
Akaike information criterion (AIC, Akaike, 1974) provides a convenient alter-
native, based on information theory. It provides an asymptotically unbiased
estimate of the expected information loss (in the form of Kullback-Leibler di-
vergence) incurred relative to the true data generating distribution when one
model is used instead of another. If ML is the maximized log-likelihood of a
model, then

AIC = 2k � 2 ln(ML) (A.1.2)
where k is the number of parameters. AIC gets smaller when the maximized

likelihood is larger, but gets larger when the number of parameters increases.
To compare models within a candidate set, the AIC for each model is calcu-
lated, and then difference between AIC values indicates how much support
there is for one model over another.

As with LRTs, AIC is only asymptotically valid. With small datasets, a
second order correction is recommended (Burnham and Anderson, 2002). One
of the components in this correction is the number of observations, which is
particularly problematic in phylogenetics, since it is not clear exactly what
constitutes a single observation. See Posada and Buckley (2004) for further
discussion.

A.1.3 Bayesian

Bayesian methods of inference involve specifying a prior distribution over mod-
els and parameters, and using Bayes’ theorem to compute the posterior distri-
bution. The data plays its role in updating the posterior through the likelihood
function:
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P (✓|D) =

P (D|✓)P (✓)

P (D)

(A.1.3)

P (D) is a normalizing constant whose exact calculation requires integrating
over theta: P (D) =

R
✓ P (D|✓)P (✓). Such integrals are often intractable. Ap-

proximate Bayesian inference techniques such as Markov Chain Monte Carlo
allow samples to be drawn from the posterior when only point-wise evaluation
of the likelihood and prior functions is available. The integral in the denomi-
nator of Bayes’ theorem does not need to be evaluated. Inference can then be
performed on the posterior samples.

Bayesian approaches have the advantage that prior information can be in-
cluded in the modeling process through the specification of the prior distribu-
tion over parameters, but the disadvantage that prior distributions are required
even in the absence of such knowledge. In such cases vague or non-informative
priors can be used. Bayesian inference procedures lack the frequency coverage
guarantees of frequentist hypothesis testing and are often slower than frequen-
tist approaches, but are sometimes the only option when a large number of
nuisance parameters would hamper frequentist inference (see Rodrigue et al.,
2010, for a recent relevant example).

A.2 Empirical Bayes

Phylogenetic models of evolution are often hierarchical - parameters them-
selves can be unobserved variables that have a prior distribution specified over
them. When calculating the model likelihood, this prior must be integrated
out. We frequently encounter cases where the prior distribution itself has pa-
rameters, but we are more interested in the value of the latent variable. A
fully Bayesian treatment would specify a hyper-prior over the prior distribu-
tion, and integrate over all parameters. Empirical Bayes, which can be viewed
as an approximation to this, finds the maximum likelihood values of the prior
parameters, and then uses Bayes’ theorem to perform inference over the latent
variable. It is often faster than a fully Bayesian treatment.

This approximation is most useful when inference over the unobserved vari-
able is insensitive to changes in the prior parameters. When such inference is
sensitive to some prior parameters, but not to others, Bayes Empirical Bayes
(Deely and Lindley, 1981; Yang et al., 2005) can be useful, where some prior
parameters (the ones that minimally affect inference) are fixed at their maxi-
mum likelihood values, but the others are integrated out.
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Abstract
Adaptive evolution frequently occurs in episodicbursts, localized to a few sites in a gene, and to a small number of lineages in a
phylogenetic tree. A popular class of “branch-site” evolutionarymodels provides a statistical framework to search for evidence
of such episodic selection. For computational tractability, current branch-site models unrealistically assume that all branches
in the tree can be partitioned a priori into two rigid classes—“foreground” branches that are allowed to undergo diversifying
selective bursts and “background” branches that are negatively selected or neutral. We demonstrate that this assumption
leads to unacceptably high rates of false positives or false negatives when the evolutionary process along backgroundbranches
strongly deviates from modeling assumptions. To address this problem, we extend Felsenstein’s pruning algorithm to allow
efficient likelihood computations for models in which variation over branches (and not just sites) is described in the random
effects likelihood framework. This enables us to model the process at every branch-site combination as a mixture of three
Markov substitution models—our model treats the selective class of every branch at a particular site as an unobserved state
that is chosen independently of that at any other branch. When benchmarked on a previously published set of simulated
sequences, our method consistently matched or outperformed existing branch-site tests in terms of power and error rates.
Using three empirical data sets, previously analyzed for episodic selection, wediscuss howmodeling assumptions can influence
inference in practical situations.

Key words: episodic selection, random effectsmodel, evolutionarymodel, branch-site model.
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Introduction
The inference of selection from molecular data, both along
a sequence (Nielsen and Yang 1998; Suzuki and Gojobori
1999; Yang et al. 2000) and over the evolutionary tree (Yang
and Nielsen 2002; Kosakovsky Pond and Frost 2005a), has
been an area of active research and unrelenting debate
(Suzuki and Nei 2004; Wong et al. 2004; Nozawa et al. 2009).
Selective pressures can vary over both sites and time, result-
ing in bursts of selection localized to a subset of sites and a
small number of lineages, for example, Messier and Stewart
(1997).

A class of methods, termed “branch-site” tests (Yang
and Nielsen 2002), was the first to offer a model-based
phylogenetic hypothesis testing framework for deciding
whether or not a lineage (or lineages) of interest had under-
gone adaptive change. Branch-site tests measure selective
pressure by ω, the ratio of nonsynonymous (β) to synony-
mous (α) substitution rates, and if a proportion of sites in
the sequence provides statistically significant support for
ω > 1 along the lineages of interest, then episodic positive
selection is inferred. The original formulation of themethod
suffered from high rates of false positives when the model

assumptions were violated (Zhang 2004) because themodel
could misidentify relaxed selective constraints as evidence
of diversifying selection andwas subsequently revised to ad-
dress that shortcoming (Zhang et al. 2005). Typically, the lin-
eages to be tested (“foreground” lineages) were specified a
priori, until a recent extension outlined and benchmarked
a sequential testing approach to examine whether any sin-
gle lineage was under selection (Anisimova and Yang 2007).
These branch-sitemethods have been usedextensively, with
well over 1,000 citations to date, highlighting the interest
of the evolutionary community in being able to identify
instances of episodic selection. Alternative approaches to
capturing variable selective pressures include the covarion
models of Guindon et al. (2004) and a full Bayesian treat-
ment in the framework of Rodrigue et al. (2010).

In the context of codon evolutionary models, the se-
lective profile of site Ds in a multiple sequence alignment
can be characterized by the collection of branch-specific
ω values, (ω1, . . . ,ωB ), denoted Ωs, where B equals the
total number of branches in the phylogeny. Existingbranch-
sitemodels use three alignment-wide (i.e., sharedbyall sites)
ratiosω− < ωN = 1 ! ω+ to model strong conservation,
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FIG. 1. An illustration of episodic selection profiles at a single site with
three possible regimes: negative, neutral (or nearly neutral), and di-
versifying selection along a branch. Panel (A ) depicts the phylogeny
used for discussion in the text and to carry out robustness simula-
tions; Branch 5 is designated as foreground (FG), and the remaining
four branches as background (BG). Panel (B ) illustrates the four a pri-
ori selective profiles allowed by themodel of Zhang et al. (2005). Panel
(C ) shows 2 of 239 possible selective profiles not modeled by current
branch-site models; these profiles are used in robustness simulations
(see Methods).

neutral evolution, and diversifying selection, respectively.
Assuming these three ω ratios (fig. 1) with no further re-
strictions, each site can follow one of 3B possible selec-
tive profiles—the number of different ways to assign the
B branches to the three different selection rate bins. How-
ever, it is unclear how to determinewhich of these selective
profiles or, equivalently, assignments of branches to selec-
tion rate bins is the most appropriate at a given site.

One approach (Yang and Nielsen 2002) is to model each
site using only four predefined profiles regardless of the
size of the phylogeny. More specifically, 1) every branch
belongs either to the a priori known foreground class, which
is allowed to experience diversifying selection, or the “back-
ground” class, which evolves under purifying selection or
neutrally and 2) at a given site, there is no variation in se-
lection strength (ω) among background branches, with all
foreground branches either sharing the selection strength
of the background or being under shared diversifying se-
lection (fig. 1B ). Clearly, these options are not exhaustive:
For example, neither variable strength of selection among
background or foreground nor positive selection along
background branches is allowed. We refer to this approach
as the restricted branch-site (rBS) model because the num-
ber of selective profiles is limited to the four a priori defined
scenarios. Given a 4-taxon tree (fig. 1), and three selection
parameters (as in fig. 1B ), there are 35 = 243 possible se-
lection configurations, only four of which are accounted for
by the branch-site model. The number of ω configurations

grows as KB , where K is the number of rate classes, thus
making it unlikely that any four selection profiles cho-
sen a priori are going to be sufficiently representative.
Because there are no compelling biological reasons to ex-
pect that any two branches in the phylogenetic tree will
have the same ω at any given site, we do not expect these
four predefined selective profiles to provide an adequate
description of complex biological data. This model was
likely motivated by the need to avoid overfitting in the
case of small sample sizes; however, we argue that if
branches with differing selective pressures are incorrectly
assigned to the same class, likelihood ratio test (LRT)-
based branch-site methods can be positively misleading. In
this manuscript, we present one case where they falsely
identify positive selection on a neutrally evolving lineage
(Type I or false positive error), and another where they
fail to detect positive selection on a lineage with ω > 1
(Type II or false negative error). In addition, if several
branches are claimed to be under positive selection by
setting the foreground to one branch at a time, as is
done by the sequential testing procedure of Anisimova
and Yang (2007), this creates a logical inconsistency—
when a branch is found to be under selection, the model
under which this was established implies that no other
branch could be under positive selection.

We introduce a new class of models in which substitu-
tion rates may vary from branch to branch and from
site to site. We incorporate this variation via “random
effects”—unobserved strengths of selection at sites and
branches are incorporated using a discrete or a dis-
cretized parametric probability distribution. Parameters
defining the distribution are estimated jointly from
all sites using maximum likelihood. Random effects
likelihood (REL) and complementary fixed effects likelihood
(FEL) models are standard tools in statistical modeling.
Both types of model have been used to allow sitewise rate
variation in phylogenetic models—see Kosakovsky Pond
and Frost (2005b) for an overview. Nucleotide REL models
were first introduced in Yang (1994), where rates over
sites in a nucleotide alignment followed a discretized
unit-mean gamma distribution (the now ubiquitous +Γ4
model). Nielsen and Yang (1998) and Yang et al. (2000)
applied REL models to codon data in order to identify
signatures of natural selection, whereas Kosakovsky Pond
and Frost (2005b) and Massingham and Goldman (2005)
used FEL models for the same purpose. For all these
models, likelihoods of individual sites are computed by
Felsenstein’s pruning algorithm (Felsenstein 1981). How-
ever, as we show later, the direct application of the pruning
algorithm is intractable for REL models with branchwise as
well as sitewise rate variation. It is presumably for this reason
that, to date, branch models (Yang 1998; Kosakovsky Pond
and Frost 2005a) have only been implemented in the FEL
framework and branch-site models only as a four-category
sitewise REL model. Our solution involves a simple exten-
sion of the pruning algorithm which makes it feasible to
implement not only the model proposed here but also
several other branch-site REL models.
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The extended pruning algorithm computes the likeli-
hood of each site, treating the selection site profileΩs as an
unobserved variable, under the assumption that the proba-
bility of observing a substitution rate at a branch is indepen-
dent of all other branches. Computationally, our algorithm
is equivalent to replacing the standard Markov evolution-
ary model at a single phylogenetic branch with a mixture
of three Markov models (one each for ω−,ωN , and ω+),
where the mixing coefficients and ω rates are inferred for
each branch alongwith branch lengths, nucleotide substitu-
tion biases, and other alignment-wide parameters. Just like
existing branch-site methods (Anisimova and Yang 2007),
we use sequential likelihood ratio testing to identify which
branches support a model with episodic diversifying selec-
tion. Unlike existing methods, however, our approach is
unrestricted and considers every possible site profile, thus
avoiding some of the prominent issues posed bymodel mis-
specification and further allows ω rates to vary indepen-
dently from branch to branch and site to site.

Using an extensive collection of simulated sequences
from Anisimova andYang (2007), we perform a direct com-
parison of the unrestricted branch-site (uBS) model with
the existing, restricted, approach (rBS) to evaluate Type I er-
ror and power. We also reinvestigate three empirical data
sets that had been previously analyzed with the standard
or sequential branch-site method and discover that many,
but not all, of the original inferences are supported by our
mixture model. Lastly, we report selective episodes not pre-
viously detected.

Methods
Codon Model Specification
To facilitate our presentation of episodic selection meth-
ods, we first briefly reviewmaximum likelihood codon phy-
logenetic models (although see Delport et al. 2009 and
Anisimova and Kosiol 2009 for detailed reviews). These
models assume that substitutions along a branch of a phy-
logenetic tree can be described by an appropriately parame-
terized continuous-time stationaryMarkov process, defined
by its instantaneous rate matrix, Q , with elements that de-
scribe the rate of substitution of codon i with codon j :

qij =






r(Ai ,Aj )θijπij , δ(i , j ) = 1,

0, δ(i , j ) > 1,

−
∑
k "=i

qik , i = j .
(1)

Here, δ(i , j ) is the number of nucleotide differences be-
tween codons i and j , πij denote the equilibrium frequency
parameters (e.g., πAAA ,AAC = q3

C ,πACC ,AAC = q2
A ), θij are

the nucleotidemutational biases, and r(Ai , Aj ) = r(Aj ,Ai )
are the relative substitution rates between amino acids en-
coded by codons i and j . In the most general model, each
of these r(Ai ,Aj )’s can be independently estimated (see
Delport et al. 2010), but here we follow the common ap-
proach of allowing only two rates:α for synonymous (Ai =
Aj ) and β for nonsynonymous (Ai "= Aj ) substitutions.
Their ratio, β/α, is the familiar selection parameter, ω.

The equilibrium frequency parameters may be estimated
empirically either as the product of position-specific nu-
cleotide frequencies (Goldman and Yang 1994) or as the
position-specific frequency of the target nucleotide (Muse
and Gaut 1994). Because we have previously identified bi-
ases using such empirical approaches (Kosakovsky Pond
et al. 2010), we use corrected estimates (CF3 × 4) of nu-
cleotide frequency parameters. Given a phylogenetic tree T
(fig. 1), with B branches and branch lengths ti , i = 1, . . . , B ,
the likelihood of changing from state i to j at a site along
branch b in time tb is given by the (i , j ) element of the
transition matrix PQ (tb ) = eQtb . Subsequently, the likeli-
hood of observing the alignment is evaluated as the product
of site-likelihoods (with sites ranging from 1 to the number
S of sites in the alignment), each of which is calculated us-
ing the standard pruning algorithm (Felsenstein1981) given
the data, a phylogenetic tree, T , and instantaneous rate
matrix, Q .

Sitewise REL Models
Before extending Felsenstein’s pruning algorithm, we first
summarize how it is used in the context of the commonly
used class of sitewise REL models. We pick our notation to
allow extension to other types of RELmodels in the sections
that follow. Throughout, we consider only the case of a finite
number of discrete categories; extension to continuous-
valued unobserved variables is straightforward, but compu-
tationally impractical, at least in the standard frequentist
phylogenetic framework.

In a sitewise REL model, we think of each site as belong-
ing to a site category, with the possible site categories rang-
ing from 1 to K . For notational convenience, we present the
special case where the categories differ only in terms of their
ω values—allowing us to denote the category for site s by
ωs . Considering all sites simultaneously, the configuration
of categories over all sites is a vector Ω∀ b = (ω1, . . . ,ωS ),
where the subscript makes it explicit that this configuration
is shared by all branches. We model the joint probability of
the configuration as the product of independent factors:

P (Ω∀ b ) =
S∏

s=1

P (ωs ). (2)

The individual category probabilities P (ωs) are shared
across all sites. Although the independence of sites is a stan-
dard assumption in the literature and allows for a particu-
larly efficient likelihood calculation, it is not necessary. For
example, P (Ω∀ b ) has been modeled as a Hidden Markov
process to permit spatial correlations among site categories
(Felsenstein and Churchill 1996).

Another alternative to the model assumption of equa-
tion (2) would have been to allow only a small number
of configurations. For example, we could imagine a model
where sites are divided a priori into “buried” and “exposed”
residues (e.g., Yang and Swanson 2002) andpropose the fol-
lowing four configurations: 1) all sites conserved; 2) all sites
evolving neutrally; 3) buried sites conserved and exposed
sites under positive selection; and 4) buried sites evolving
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neutrally and exposed sites under positive selection. One
could calculate the alignment-wide likelihood under each
configuration and infer which of the configurations fits the
data best. We mention this not because we think it is a
good model (surely, it would not be biologically realistic to
assume such a limited number of possible configurations)
but because it is directly analogous to the existing branch-
site model of Zhang et al. (2005). Our contribution in this
manuscript is to upgrade from a branch-site model with
four prechosen configurations such as these to one that is
analogous to a REL model where the categories of different
sites are independent.

Returning to standard sitewise RELmodels, the likelihood
of the data Ds observed at site s (conditioned implicitly on
non-ωmodel parameters) is

P (Ds) =
∑

ωs

P (ωs)P (Ds |ωs) (3)

=
∑

ωs

P (ωs)
∑

A

P (Ds ,A |ωs), (4)

where the first sum is over all site categories, A denotes a
vector of ancestral node states, and the sum over A is taken
over all possible such vectors. Labeling each nonroot node
with the number of its parental branch, and the root node
as 0, we can write this out more fully using

P (Ds , A |ωs) = P (A0)
B∏

b=1

P (Ab |Apa(b ),ωs , tb ), (5)

where Ab denotes the state at node b and pa(b ) is the par-
ent node of b . The task of Felsenstein’spruning algorithm is
to calculate the sum

P (Ds |ωs) =
∑

A0

∑

A1

· · ·
∑

AB

P (Ds ,A |ωs), (6)

which, because each of the terms P (Ab |Apa(b ),ωs , tb ) in
equation (5) depends only on a local part of the tree (a child
and parent node and the branch connecting them), can be
factorized efficiently and calculated bymeans of a postorder
tree traversal. Inwhat follows, we retain this property so that
the same tree traversal remains an efficientway to calculate
the desired likelihood.

Branch-Site REL Models
To define a branch-site REL model, we replace our sitewise
category variable ωs with a branch-site category variable
ωbs . Each branch-site combination is considered to belong
to one of our K categories. We still aim to calculate the
likelihood for a single site s , so we consider the configura-
tion Ωs = (ω1s , . . . ,ωBs ) of branch categories. Our new
approach is based on the observation that if the branch
categories are independent, so that

P (Ωs) =
B∏

b=1

P (ωbs), (7)

then the likelihood at a site can be computed efficiently
without the need to apply the pruning algorithm for every
possible value ofΩs . By definition,

P (Ds) =
∑

Ωs

P (Ωs)P (Ds |Ωs) (8)

=
∑

Ωs

B∏

b=1

P (ωbs )
∑

A

P (Ds ,A |Ωs). (9)

Changing the order of summations, this can be written as
follows:

P (Ds) =
∑

A

P (A0)
∑

ω1s

∑

ω2s

· · ·
∑

ωBs

B∏

b=1

P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ). (10)

This is identical to the quantity calculated by Felsenstein’s
algorithm except for the presence of the P (ωbs) terms and
the summations over ω values. Thinking algorithmically,
and as indicated in equation (10), the entire space of KB

values of Ωs can be traversed by B nested loops,
where the outermost loop iterates over ω1s , the sec-
ond loop over ω2s etc. Note that each product term
P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ) depends on only one branch.
Hence, the sum computed by B nested loops (O(KB )
operations) is equivalent to a product of B sums (O (KB )
operations):

∑

ω1s

∑

ω2s

· · ·
∑

ωBs

B∏

b=1

P (ωbs)P (Ab |Apa(b ),ωbs , tb )

=
B∏

b=1

K∑

ωbs=1

P (ωbs)P (Ab |Apa(b ) ,ωbs , tb ).

Consequently, we can rewrite equation (10):

P (Ds)=
∑

A

P (A0)
B∏

b=1

[
K∑

ωbs=1

P(ωbs )P (Ab |Apa(b ) ,ωbs , tb )

]

.

(11)

The summation in parentheses can be viewed as the
transition probability matrix of a mixture of K Markov
substitution models, with P (Ab |Apa(b ) ,ωbs , tb ) being the
model-specific likelihoods at branch b , and P(ωb) being the
mixing proportions. IfQωbs is the ratematrix associatedwith
ωbs (as in equation (1)), then this transition probabilityma-
trix can be computed as

P bs(t) =
K∑

ωb=1

P (ωbs )e
Qωbs t . (12)

The sum over A in equation (11) can be carried out
efficiently using Felsenstein’s pruning algorithm, with the
transitionmatrices along each branch defined as K -process
mixtures as above. In other words, in order to compute the
likelihood of an alignment site, we first assume that the
probability of a particular selective regime at a branch is in-
dependent of that at any other branch, and apply the prun-
ing algorithm as usual, except that the substitution model
along each branch is given as the mixture of equation (12).
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Depending on how the mixing coefficients and the tran-
sition matrices in equation (12) are parameterized, we can
obtain different types of branch-sitemodels. In principle, for
every branch-site combination (b , s ), there could be K in-
dependently estimated mixing proportions P (ωbs ) and se-
lection parameters ωbs . However, this approach will yield
a model with considerably more parameters than observa-
tions. Three simpler model types appear promising.

Nonspecific Branch-Site REL.
ωbs and P (ωbs ) for each category K are shared by all
branches and sites. There are K alignment-wide ω param-
eters (Ωk ), and the probability that P (ωbs = Ωk ) = qk
is described by an alignment-wide frequency parameter
qk ,
∑

k qk = 1. This is a simplemodel with 2K −1 parame-
ters estimated from the entire alignment butmay not incor-
porate enough biological realism.We used it as the first step
of the optimizationprocess for our more complexmodel to
obtain initial parameter estimates.

Site-Specific Branch-Site REL.
P (ωbs ) is a function of s , that is, every site (ormore precisely
site pattern) has its own set of mixing coefficients, shared
across all branches. ωbs are shared by all sites and branches.
This model has KS + K − S parameters: KΩk parameters
estimated jointly from the alignment and S sets of qsk mix-
ing parameters, with

∑
k qsk = 1, ∀ s = 1, . . . , S , so that

P (ωbs = Ωk ) = qsk . Because the number of parame-
ters grows with the size of the alignment, the model will be
asymptotically ill behaved. However, for fixed length align-
ments withmany sequences, it may be possible to learn site-
specific mixing parameters reliably.

Branch-Specific Branch-Site REL.
ωbs and P (ωbs) are functions of b , that is, every branch has
its own set of model parameters (ωkb ) and mixing coeffi-
cients (qk

b ,
∑

k q
k
b = 1), but they are estimated jointly from

all sites. This model has (2K − 1)B parameters and is inves-
tigated in the presentmanuscript. It has the attractive prop-
erty that the model parameters we learn include, for every
branch, the proportion of sites belonging to every selection
category.

A New Test for Episodic Selection
We define and fit a branch-specific branch-site REL model
(termed unrestricted branch site or uBS). For consistency
with several existing REL models, we restrict ω at every
branch to take on one of K = 3 values ω−b ! ωNb !
1 ! ω+b , representative of strong and weak conservation
and positive diversifying selection. In our experience (e.g.,
see Kosakovsky Pond et al. 2010), models that permit mul-
tiple classes of sites with ω < 1 fit protein-coding se-
quence alignmentsmuch better than those with one of the
ω values fixed at 1.We denote their mixing proportionsq−b ,
qN
b , and q+b (subject to q−b + qN

b + q+b = 1), respec-
tively. All model parameters are estimated by maximum
likelihood. Next, we fit B models (one for each branch),
where model b = 1, . . . , B differs from the unrestricted

model by the additional constraint of ω+b = 1. Each
of these models, therefore, disallows diversifying selection
along a single branch while leaving all other background
branches unrestricted. Compare this with the requirement
that all background branches have uniform neutral or neg-
ative selection regimes in the standard branch-site model
(Zhang et al. 2005). As describedmost recently inAnisimova
and Yang (2007), the evidence for positive selection along
branch b can be evaluated by a LRT using the asymptotic
distribution of the LR statistic defined by (χ21+ χ

2
0)/2 (Self

and Liang 1987). If B branches are tested in sequence, it is
necessary to correct the nominal significance level for each
individual test to control the cumulative (or familywise) er-
ror rate of the tests. Anisimova and Yang (2007) compared
multiple such corrections in the context of branch-site
methods and reported that their performance was broadly
similar.With that inmind, we settled on the correction pro-
cedure due to Holm (1979), which is more powerful and as
easy to compute as the simple Bonferroni correction. Briefly,
if the desired Type I error for the event “any of the B tests is
a false positive under the null model” is α, then the testing
procedure first ranks p values for each individual test in in-
creasing order p (1) ! p (2) ! · · · ! p (B) and rejects first k
hypotheses if p (i ) ! α/(B − i + 1) for i = 1, . . . , k and
p (k+1) > α/(B − k ). Our testing procedure uses a single
alternative hypothesis and requires that B + 1 model fits
be performed, whereas the testing procedure of Anisimova
and Yang (2007) demands the fitting of 2B models because
a different null and alternative pair must be evaluated for
each branch.

Evaluating the Robustness of the rBS Model
We simulated data according to two selection scenarios
along a 4-taxon tree (fig. 1A ) using the codon substitu-
tionmodel definedabove, withequal codon equilibriumfre-
quencies (π = 1/61) and the HKY85 (Hasegawa et al. 1985)
nucleotide substitution biases (i.e., θac = θat = θcg =
θgt = 2; θag = θct = 1). This choice of base frequencies
andnucleotide substitution biases will deemphasize the dif-
ferences in how frequency parameters and nucleotide sub-
stitution biases are modeled in rBS and uBS.

First (robustness simulation 1, RS1), we designated
branch 5 (fig. 1 A ) as a neutrally evolving foreground, that
is, the one to be tested for episodic diversifying selection
by the models), branch (ω = 1), whereas background
branches 1 and 3 were simulated under strong diversify-
ing selection (ω = 10), and background branches 2 and
4—under strong purifying selection (ω = 0.1). This sce-
nario was crafted to include variable selection along back-
ground branches which is not handled by any of the four
classes of the branch-site model, and hence the standard
branch-site test of selection along branch 5 will be fit-
ting the data using two incorrect models. Second (RS2),
we designated branch 5 as a positively selected foreground
branch (ω = 2), whereas background branches 1 and
2 are under strong diversifying selection (ω = 10) and
background branches 3 and 4 are under strong purifying
selection (ω = 0.05). These two scenarios are designed
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to explore the asymptotic behavior of the tests and use
sequences longer than most genes. A test with poor asymp-
totic properties when a specific model assumption is vio-
lated may appear to behave acceptably on smaller samples
due to, for example, lack of power. If test errors increasewith
sample size, this may point to fundamental issues with the
approach.

Evaluating the Performance of the Unrestricted
Branch-Site Model
Anisimova and Yang (2007) generated several thousand
alignments under seven selective regimes, three of which
included no positive selection (to test for Type I error or
false positives) and four included varying extents of diver-
sifying selective pressure (to assess Type II error or power).
These simulation alignments were kindly provided by the
authors, and we reanalyzed the data for a direct compari-
son with our approach. For complete details on these simu-
lations, we refer the reader to table 2 and text in Anisimova
and Yang (2007). Briefly, either 4 or 8 taxon balanced trees
were used for simulations,with 1,000 (4 taxa) or 200 (8 taxa)
300-codon long replicates/scenario.

In addition, we test our approach in a high information
content setting, using sequences with 1,000 codons simu-
lated along a 16-taxon balanced tree (supplementary fig. S3,
Supplementary Material online). We subdivide the length
of the sequence into three partitions, such that a site is sim-
ulated under one of three potential selection models. The
first two models are homogeneous with respect to the tree
and encompass purifying selection (ω = 0.1) and neutral-
ity (ω = 1) with proportions, p1 = 0.8 and p2 = 0.05,
respectively. Finally, the third model, with proportion p3 =
0.15, is heterogeneous with respect to the tree, comprising
neutral evolution (ω = 1) at all branches, except a set
of three branches at which strong diversifying selection is
simulated (ω = 5). We considered two modifications of
this scenario: a lower proportion of selected sites (p2 =
0.15, p3 = 0.05) or weaker selection (ω = 2 in the third
model).

Finally, we reexamine three empirical alignments previ-
ously analyzed for evidence of episodic selection: a data set
consisting of 19 lysozyme c sequences (S = 130 codons)
from primates, initially analyzed by Messier and Stewart
(1997); CD2 gene sequences (S = 187 codons) coding for
a cell adhesion molecule located on the surface of certain
type of lymphocyte, isolated from 10 mammalian species
and originally analyzed by Lynn et al. (2005); and 10 mam-
malian sequences (S = 1, 162 codons) of the tumor sup-
pressor gene BRCA1 (Zhang et al. 2005).

Implementation
The model is implemented as a collection of HyPhy
(Kosakovsky Pond et al. 2005) Batch Language scripts and
is distributed as a part of HyPhy v2.0020110306 or later
as BranchSiteREL.bf file in the Positive Selection rubrik of
standard analyses.

Results
Test Performance on Simulated Data
We applied our uBS sequential selection test to parametric
replicates generated under seven different selection profiles
previously used by Anisimova and Yang (2007) to evalu-
ate the original sequential branch-site test for detecting
episodic selection (Zhang et al. 2005) and to two additional
sets robustness simulations. Details of simulation results are
collated in table 1.

1. When sequences are simulated under rBS assumptions
(fig. 1), that is, those which conform to the null or the al-
ternativemodel of Zhang et al. (2005), both uBS and rBS
perform comparably (NC1, NC2, and SC in table 1), with
similar familywise error rates (FWER) and power. It is en-
couraging that our unrestrictedmethoddoes not appear
to be strongly underpowered compared with rBS, even
when the data are simulated to favor the former (38%
vs. 44%poweron SCwithone sequence). The sameholds
for data generated under models which deviate from rBS
assumptions but not too strongly (NI, SI1 in table 1).

2. The advantages of uBS over rBS become apparent when
the assumptions of the latter are inappropriate for the
data (SI2 and SI3). Already, in the SI2 scenario, where
two branches are experiencing episodic diversifying se-
lection, uBS provides a considerable boost in power for
8-taxon trees (63% vs. 48.5%). The greatest difference
between our approach and rBS is revealed in the SI3 sim-
ulation scenario, when four background branches in a
4-taxon tree were simulated under episodic selection,
whereas the single foreground branch was evolved neu-
trally or under purifying selection. The intent of SI3 in
Anisimova and Yang (2007) was to violate the assump-
tions of the rBS model as much as conceivably possible
and investigate how this would reflect on Type I errors.
Although the rBSmodel controlled the rates of false posi-
tives (FWER 1.7%), it suffered a severe loss of power—the
cumulative power was reported at only 35.3%, despite
pervasive episodic selection in this case. In contrast, uBS
achieved 92.5% power while maintaining FWER of 6.0%.

3. Given sufficient deviations from modeling assumptions
(RS1, RS2 in table 1), rBS tests for selection on foreground
branches can be severely misleading. For RS1, the null
model (ω2 = 1) is rejected in favor the alternativemodel
(ω2 " 1), implying positive selection along the neu-
tral lineage five with frequencies much higher than the
nominal error rate of the tests, and a very skewed dis-
tribution of the p -values (supplementary fig. S1, Supple-
mentary Material online). The null hypothesis rejection
rate increases as the length (S codons) of the alignment
is increased. For example, at testp = 0.05, the nullmodel
was rejected 12/100 times for S = 1, 000, 31/100 times
for S = 2, 000, 74/100 times for S = 5, 000, and in
97/100 cases for S = 10, 000. Nominal p -values are com-
monly interpreted as the acceptable rate of false posi-
tives of the test, hence p = 0.05 should result in about
5/100 false rejections of the null. Lowering p = 10−4 still
yields 34/100 false positives for S = 10, 000, suggesting
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Table 1. uBS Performance on Simulated Data.

Simulation Sequences/Codons Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 FWER Power
Scenario

rBS uBS rBS uBS
NC1 4 0.008 0.006 0.01 0.007 0.005 0.043 0.036 — —

8 0.005 0.005 0.005 0.015 0.00 0.044 0.03 — —
NC2 4 0.014 0.01 0.016 0.007 0.07 0.053 0.053 — —

8 0.005 0.015 0.01 0.005 0.000 0.045 0.035 — —
NI 4 0.006 0.012 0.009 0.001 0.005 0.051 0.033 — —

8 0.03 0.025 0.01 0.005 0.005 0.08 0.07 — —
SC 4 0.005 0.008 0.004 0.004 0.101 0.026 0.02 0.084 0.101

8 0.015 0.015 0.000 0.005 0.38 0.045 0.035 0.44 0.38
SI1 4 0.007 0.007 0.005 0.007 0.103 0.033 0.025 0.082 0.103

8 0.00 0.015 0.005 0.015 0.435 0.06 0.035 0.495 0.435
SI2 4 0.116 0.004 0.008 0.009 0.07 0.033 0.021 0.166 0.176

8 0.53 0.01 0.01 0.00 0.195 0.02 0.02 0.485 0.630
SI3 4 0.295 0.484 0.599 0.667 0.06 0.017 0.06 0.353 0.925
RS1 1,000 1 0.01 1 0.00 0.00 0.12 0.01 1.00 1.00
RS1 2,000 1 0.00 1 0.00 0.08 0.31 0.08 1.00 1.00
RS1 5,000 1 0.01 1 0.00 0.03 0.74 0.03 1.00 1.00
RS1 10,000 1 0.00 1 0.01 0.03 0.97 0.03 1.00 1.00
RS2 1,000 1 1 0.00 0.00 0.44/0.03∗ 0.00 0.00 1.00 1.00
RS2 2,000 1 1 0.00 0.00 0.83/0.02∗ 0.00 0.00 1.00 1.00
RS2 5,000 1 1 0.00 0.00 0.98/0.03∗ 0.00 0.00 1.00 1.00
RS2 10,000 1 1 0.00 0.00 1.00/0.05∗ 0.00 0.00 1.00 1.00

RS1 and RS2 are described in the text and figure 1. Simulations NC1, NC2, NI, SC, SI1, SI2, and SI3 are taken from Anisimova and Yang (2007) (see table 2 therein for complete
details of simulation parameters). The first three simulations (NC1, NC2, and NI) do not include any lineages under positive selection, whereas the last four include one or
more lineages under selection at some sites in the alignment. Branches that experience positive selection are typeset in italic. Entries for Branch 1–Branch 5 columns show the
proportion of replicates where any branch from this class was found to be under positive selection at p ! 0.05. FWER is the proportion of replicates where at least one branch
was falsely classified as undergoing positive selection. The Power column lists the proportion of replicates for which at least one branch under positive selection was correctly
classified as such. ∗ : the second number reports the proportion of replicates where Branch 5 was reported under positive selection by rBS.

that the rate of false positives is difficult to control. The
estimate of ω along lineage 5 is biased, with mean ω̂ ≈
1.4 andvariance inverselyproportional to sample size.On
the same data, uBS hadwell-controlled rates of false posi-
tives, which did not correlate with the length of the align-
ments. For RS2, the rBS test now performs as if the null
model (ω = 1 on branch 5) were correct—the rate of
rejections is similar to the rate expected under the null
model and the ω2 estimate is now biased downward to
ω2 ≈ 1.0 and very low power (2–5%) to detect selection
along branch 5 (table 1). We observed shrinking estima-
tor variances for larger sample sizes (fig. S2), showing that
the lack of power is not due to insufficient sample sizes. In
contrast, uBS showed very low rates of false positives on
the negatively selected branches (0%) andpower ranging
from 44% (S = 1, 000) to 100% (S = 10, 000) on the
interior branch of the tree simulated to be under diversi-
fying selection.

Test Performance as a Function the Strength and Extent
of Episodic Selection
For the 16-taxon tree and 1, 000-codon long sequences with
lineagesA, B, andAB (supplementaryfig. S3, Supplementary
Material online) are under positivediversifying selection,we
observed the following test performance.

15% of Sites under Selection with ω = 5.
uBS achieved 100% power and FWER of 2%, demonstrat-
ing that larger and more informative alignments allow the
test to bemorediscriminative andaccurate, as expected. For

the same data set, rBS was surprisingly conservative with 0%
FWER, but only 6% power.

5% of Sites under Selection withω = 5.
uBS achieved only 9% power at FWER of 2%, demonstrating
that if too few sites are under selection, the ability of the test
to detect episodic selection is severely impacted.

15% of Sites under Selection withω = 2.
uBS attained 8% power at FWER of 3%, indicating that
a weak selection signal is considerably more difficult to
identify.

Empirical Data Applications
First, we analyzed CD2 gene sequences coding for a cell ad-
hesion molecule located on the surface of certain types of
lymphocytes. These sequences were isolated from tenmam-
malian species and were previously analyzed by Lynn et al.
(2005) using a branch (no site-to-site variation) method
(Yang 1998) and more recently by Anisimova and Yang
(2007) with a branch-site method. Lynn and colleagues
found that lineages leading to pig, cow, horse, cat, the (pig
and cow) ancestor (lineage 3 in fig. 2A ), and the primate
clade ancestral lineage (13) were under positive selection
because themean point estimate ofω at those branches ex-
ceeded one and the branch heterogeneity test (Yang 1998)
rejected the hypothesis that all lineages were under the
same selective pressure. Anisimova and Yang (2007) iden-
tified positive selection along lineages leading to cow, cat,
and the ancestor of (pig, cow, horse, and cat) clade us-
ing a sequential rBS test; and pointed out that comparing
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FIG. 2. Empirical data sets analyzed for episodic selection. Each tree is
scaled on the expected number of substitutions/nucleotide. The hue
of each color indicates strength of selection, with primary red corre-
sponding to ω > 5, primary blue to ω = 0, and grey to ω = 1.
Thewidth of each color component represents the proportion of sites
in the corresponding class. Thicker branches have been classified as
undergoing episodic diversifying selection by the sequential test at
p ! 0.05.

the value of point estimate of ω to 1 was only suitable for
exploratory analyses and did not constitute a valid statisti-
cal test. Our uBS model confirms (at p ! 0.05) episodic
selection along the same three lineages reported by Anisi-
mova and Yang (2007) but also identifies two additional
lineages—the horse lineage and the most recent common

ancestor of the primate clade. Neither of these lineages
approached significance in the analysis of Anisimova and
Yang, but because CD2 appears to have undergone exten-
sive episodic selection at multiple lineages, the assumptions
of the rBS test are likely to be violated in these data, for
example, leading to loss of power by rBS (as was shown in SI3
simulations). The patterns of episodic selection were com-
plex (fig. 2A and table 2), with marked differences in the
extent (proportion) and strength (ω+) of selection along
different lineages. Interestingly, Branches 6 (not reported
by Lynn et al. 2005) and 13 (not reported by Anisimova
and Yang 2007) appear to experience very strong selective
forces (ω+6 = 37.2,ω+13 = 39.7) on a small percentage of
sites (q+6 = 0.094, q+13 = 0.092), whereas the other three
selected branches (cow, horse, and cat) each have ap-
proximately 40% of sites under relatively weaker positive
selection (ω = 5.2–10.7).

Next, we reexamined a data set consistingof 19 lysozyme
c sequences from primates initially analyzed byMessier and
Stewart (1997) and more recently by Zhang et al. (2005).
The authors suspected positive selection along the lineage
leading to the colobine monkeys and hominoids for which
the lysozyme protein may have acquired a different diges-
tive function that allows them to lyse symbiotic bacteria.
Yang (1998) confirmed positive selection along the homi-
noid lineage (and elevated ω compared with background
on the colobine lineage) using codon models that permit-
ted no site-to-site rate variation. Indeed, it appears that if
one assumes negative or neutral selection elsewhere on the
phylogeny, the “average” strength of selection along the lin-
eages of interest exceeds or approaches one. It was there-
fore somewhat unexpected that more sensitive rBS models
did not find evidence of episodic diversifying selection along
the two lineages (Zhang et al. 2005). uBS reached the same
conclusion—no single lineage had sufficient statistical sup-
port for episodic diversifying selection under a sequential
(branch at a time) test. The inferred selectivemixture for the
hominoid ancestral lineages (28 in fig. 2B ) showed 18.2% of
sites under very strong selection ω > 100 and an uncor-
rected p -value of 0.008, that is, were we to test only for selec-
tion only along this lineage based on apriori information,we
would find episodic diversifying selection at p < 0.05. For
the colobine ancestral lineage (8 in fig. 2B ), 100% of sites
were allocated to the positive selection regime (ω = 3.4),
yet the test p -value was only 0.10.

The last data set we analyzed contains ten mammalian
sequences of the tumor suppressor gene BRCA1. Zhang
et al. (2005) previously analyzed eight of these sequences
as the chimpanzee and human lineages are suspected
to be under positive selection but found no evidence
of positive selection along any lineages. Our sequen-
tial analysis found evidence of episodic diversifying se-
lection on the lineage ancestral to primates and lemurs
(Branch 15 in fig. 2C ) with 3.3% of sites in the ω+ =
17.3 class. The human lineage shows borderline (uncor-
rected) significance with p = 0.076 (all sites un-
der weaker positive selection, ω = 2.26), whereas
the chimpanzee lineage is not significant (uncorrected
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Table 2. uBS on the CD2 Data Set.

Branch Mean ω ω− q− ωN qN ω+ q+ LRT p Corrected p
Pig 1.341 0.000 0.443 0.919 0.000 2.811 0.557 3.276 0.035 0.352
Cow 1.914 0.000 0.025 0.000 0.513 10.732 0.462 23.465 0.000 0.000
3 1.480 0.000 0.328 0.000 0.370 7.824 0.303 5.989 0.007 0.079
Horse 1.244 0.000 0.001 0.000 0.569 5.190 0.430 11.463 0.000 0.005
Cat 1.598 0.252 0.463 1.000 0.137 6.544 0.400 13.309 0.000 0.002
6 0.664 0.000 0.906 0.118 0.000 37.328 0.094 7.432 0.003 0.038
RHmonkey 22.503 1.000 0.007 1.000 0.316 113.398 0.677 1.196 0.137 0.822
Baboon 0.000 0.000 0.550 0.000 0.336 0.000 0.113 0.000 1.000 1.000
9 0.400 0.047 0.000 0.443 1.000 0.009 0.000 0.000 1.000 1.000
Human 0.002 0.126 0.468 0.215 0.384 2.963 0.148 0.000 0.500 1.000
Chimpanzee 24.634 0.313 0.000 0.812 0.000 47.512 1.000 0.630 0.214 1.000
12 0.368 0.000 0.149 0.000 0.803 12.624 0.048 1.393 0.119 0.952
13 1.915 1.000 0.020 1.000 0.888 39.772 0.092 8.823 0.001 0.019
14 0.432 0.156 0.039 0.162 0.730 2.581 0.232 1.315 0.126 0.880
Rat 1.093 0.000 0.552 0.002 0.000 2.998 0.448 0.367 0.272 1.000
Mouse 0.524 0.400 0.947 0.799 0.000 22.217 0.053 2.240 0.067 0.605

Mean ω is estimated under the free-ratio MG94× REV model (no site-to-site rate variation). ω and q values reflect the branch-level mixture of negative, (nearly) neutral, and
positive selection models. LRT: likelihood ratio test statistic, p : uncorrected p -value obtained using the mixture ofχ2

0 andχ
2
1 distributions; corrected p : after an application of

Holm’s multiple testing correction. Internal branches are numbered concordantly with figure 2. Branches found by uBS to be under positive diversifying selection are shown
in italic.

p = 0.16). These findings are in qualitative agreement with
previous analyses (Zhang et al. 2005).

Discussion
This work demonstrates that current branch-site meth-
ods can have excessive Type I and Type II errors when the
data strongly deviate frommodel assumptions. These mod-
els enforce uniform selective pressure on all background
branches, thus biasing the estimate of ω along foreground
branches. We have demonstrated this behavior to be posi-
tivelymisleading, with decreasing variance for larger sample
sizes. The nature of the bias will depend on the distri-
bution of selective pressures along background branches,
nucleotide substitution biases, and branch lengths. More
critically, the sequential rBS approach (Anisimova and Yang
2007) to test eachbranch in a phylogeny for evidence of pos-
itive selection, while specifically postulating that no other
branches in the phylogeny are subject to positive selection,
is likely an oversimplification of biological reality. Further-
more, when one branch is found to be under selection by
this method, it automatically implies that no other branch
(in the background) can be under selection, hence the
sequential testing procedure that finds multiple selected
branches by setting the foreground to one branch at a time
is logically inconsistent.

We have developed and validated a new random ef-
fects branch-site model (uBS) to detect positive selection
in protein-coding sequences that do not require partition-
ing lineages into foreground andbackground branches. This
model considers all possible assignments of three selective
regimes to the branches in a phylogeny at a given site. If
the selective behavior along a branch is independent of that
along other branches, our model can be efficiently evalu-
ated in the standardphylogenetic framework. This is accom-
plished by replacing the standard substitution model along
a branch with a mixture of three Markov models: one for
purifying, one for nearly neutral, and one for diversifying

selection. To detect episodic diversifying selection,we adopt
the familiar hypothesis testing framework (Anisimova and
Yang 2007) to identify the lineages in a phylogeny that could
have undergone episodic selection, and we measure the
strength (ω) and extent (proportion of sites) of such se-
lection independently (but jointly) for each branch. uBS is
approximately twice as computationally efficient as the cur-
rent branch-site approach because it tests a series of nulls
(no positive selection on a given branch) versus a univer-
sal alternative (no constraints on any branches), whereas
the sequential rBS approach constructs a separate null and
alternative model for each branch. The new approach is
more computationally attractive than the family of codon-
based covarionmodels (Guindon et al. 2004), where the ad-
dition of each evolutionarymodality incurs an expansionof
the character state space and the corresponding quadratic-
to-cubic (in terms the number of ω classes) increase in al-
gorithmic complexity. However, some aspects of covarion
models are more flexible, for example, the switchpoints in
the evolutionary process are not delineated by branches in
the tree as they are in uBS, hence the two approaches are
complementary.

Because our testing procedure does not limit the num-
ber and type of site configurations at a site, we expect it
to demonstrate improved performance on data that do not
conformto the restrictive assumptions of the rBSmodel. Us-
ing the same set of simulations as in Anisimova and Yang
(2007), we demonstrate that uBS has notably higher power
and lower error rates than the sequential rBS method when
the assumptions of the latter method are strongly violated
(scenarios SI2 and SI3). Encouragingly, on the data that do
meet rBS restrictions, our approach delivers comparable
performance, suggesting that it is not necessary to make a
priori assumptions about the patterns of episodic selection.
uBS attains 100% power if sufficient data (e.g., 16 sequences,
1,000 codons, and 15% of sites under selection) are
supplied. Our reanalysis of three benchmark biological data
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sets revealed slight differences from published results and
confirmed the lower power of sequential rBS methods to
detect short bursts of strong selection in a data set subject
to pervasive episodic selection.

Much future work remains, however. First, there is no
clear understanding of what extent and strength of se-
lection, data sizes, and divergence levels are necessary for
episodic selection tools to be appropriately powered, yet
not subject to excessive false positive rates. Even based on
our limited 16-taxon simulations, it is apparent that uBS
rapidly loses power when the proportion of sites under se-
lection is too small or when selective pressures are relaxed.
Second, does the location of lineages under selection in the
phylogeny (e.g., tips vs. deep internal branches) influence
our ability to infer selection? Simulations in this study sug-
gest that theremaybemorepower todetect recent episodic
selection at terminal branches, but a more systematic
exploration is necessary. Third, how does one go about au-
tomatically pooling branches together to boost the power
to detect weaker selection that affects the same set of sites
in multiple lineages—a good example would be HIV evo-
lution to independently acquire drug-resistance mutations
in lineages that represent patients on treatment (Seoighe
et al. 2007). Fourth, much of episodic selection is likely to
be directional rather than diversifying, hence models must
be adapted to include this type of selection as well (e.g.,
Delport et al. 2008; Kosakovsky Pond et al. 2008). Fifth,
might it be beneficial to relax the assumption of con-
stant synonymous rates (Kosakovsky Pond andMuse 2005)?
Sixth, naive, or Bayes empirical Bayes approaches developed
for rBS for detecting individual sites subject to episodic di-
versifying selection (Yang et al. 2005), need to be adapted to
and evaluated in the context of uBS.

Based on the results, theoretical considerations and
computational feasibility presented in this manuscript, we
advocate our mixture approach over current tools for the
detection of episodic diversifying selection (Anisimova and
Yang 2007). Unlike Nozawa et al. (2009), who propounded
a severely underpowered (and difficult to extend) counting
method for lineage-specific selection detection and made
a number of strong claims recently refuted by Yang and
dos Reis (2011), we espouse the view that likelihoodmodel-
based approaches are a much more appealingway forward.
We are convinced that continued improvements in biologi-
cal realism of evolutionarymodels, underpinned by gains in
computing power and algorithmic development, will pro-
vide evolutionary biologists with the tools to better char-
acterize fundamental adaptiveprocesses. uBS demonstrates
the potential for continued extension of classical frequentist
and hypothesis testing approaches to parallel recent semi-
nal developments in Bayesian approaches to fitting complex
substitutionmodels (e.g., Rodrigue et al. 2010).

Supplementary Material
Supplementary figures S1–S3 are available at Molec-
ular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Abstract

The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently
transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to
identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of
positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of
both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we
demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic
selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly
underestimated.
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Introduction

Following the introduction of computationally tractable codon-
substitution models [1,2] nearly two decades ago, there has been
sustained interest in using these models to study the past action of
natural selection on protein coding genes. Positive selection can be
inferred whenever the estimated ratio (v) of non-synonymous (b)
to synonymous (a) substitution rates significantly exceeds one
(reviewed in [3] and [4]). In the original models, the v ratio was
shared by all sites in an alignment, providing little power to detect
the signature of positive selection. Indeed, even among classical
examples of positively selected genes [5,6,7], most substitutions are
expected to be neutral or deleterious [8]. Consequently, relatively
few genes in which mean v estimates are significantly greater than
one are expected to exist, e.g. only 35=8079 were found in a
human - chimpanzee genome-wide comparison [9].

Random effects codon-substitution models [10] permitted v to
vary from site to site, which made it possible to identify instances
when positive selection had acted only upon a small proportion of
sites. Such site-level models can detect which positions in a
sequence alignment may have been influenced by diversifying
positive selection, e.g. [11,12]. However, these models posit that
diversifying selective pressure at each site remains constant
throughout time, i.e. affects most lineages in the phylogenetic
tree, (Figure 1A), and there are very few cases where this
assumption is biologically justified (see [13,14,15,16] for examples
of models that allow selection to vary throughout the tree). When a

site evolves under purifying selection on most lineages, site
methods which assume v is constant over time may be unable
to identify any episodic positive selection, since they will likely infer
vv1 [17]. It has been noted that positive selection is more readily
identified in smaller alignments: counterintuitively, including
additional sequences may cause sites to no longer be detected
[18,19]. This phenomenon could be readily explained by purifying
selection on some lineages masking the signal of positive selection
on others.

We present a mixed effects model of evolution (MEME), based
on the broad class of branch-site random effects phylogenetic
methods recently developed by our group [20]. MEME allows the
distribution of v to vary from site to site (the fixed effect) and also
from branch to branch at a site (the random effect, Figure 1B).
Our approach provides a qualitative methodological advance over
existing approaches which integrate site-to-site and lineage-to-
lineage rate variation, e.g. the branch-site methods [17] or codon-
based covarion models [13]. MEME can reliably capture the
molecular footprints of both episodic and pervasive positive
selection, a task for which current models are not well suited.
Using empirical sequence data sets spanning diverse taxonomic
categories and gene functions, along with comprehensive simula-
tions, we demonstrate that MEME matches the performance of
traditional site methods when natural selection is pervasive, and
that MEME reliably identifies episodes of diversifying evolution
affecting a small subset of branches at individual sites, where site
methods often report purifying selection at the same site. For most
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empirical data sets analyzed here, episodic selection appears to
be the dominant form of adaptive evolution. The biological
implications of this type of selection are discussed for each specific
data set. We conclude by providing practical guidelines for
applying MEME to biological data, and argue that while it is
possible to reliably identify sites or branches subject to episodic
diversifying selection, statistical power to detect individual branch-
site pairs evolving adaptively is inherently limited by a small
sample size available for such inference.

Methods

At its core, our approach uses phylogenetic models to describe
the evolution of codon characters along a branch in a phylogeny
by a continuous-time stationary Markov process. Given a
phylogenetic tree t, with B branches and a vector of relative
branch length parameters T~(ti,i~1 . . . B), the probability of
changing from codon i to j at a site along branch b in time tb, is

recorded in the (i,j) element of the transition matrix Mb(tb)~eQtb ,

where Q is the rate matrix. The elements Q~ qij

! "
parameterize

the instantaneous rate of substitution of codon i with codon j:

Figure 1. The standard random effects approach and samples. A) The standard random effects approach, in which the rates vary randomly
over sites but are constant over branches. Different values of v are showed in different colors. B) Samples from our new random effects approach
[20], used by MEME, in which the rate on each branch is drawn independently of the rate on any other branch. All possible assignments of rates to
sites are considered.
doi:10.1371/journal.pgen.1002764.g001

Author Summary

Identifying regions of protein coding genes that have
undergone adaptive evolution is important to answering
many questions in evolutionary biology and genetics. In
order to tease out genetic evidence for natural selection,
genes from a diverse array of taxa must be analyzed, only a
subset of which may have undergone adaptive evolution;
the same gene region may be under stabilizing or relaxed
selection in lineages leading to other taxa. Most current
computational methods designed to detect the imprint of
natural selection at a site in a protein coding gene assume
the strength and direction of natural selection is constant
across all lineages. Here, we present a method to detect
adaptive evolution, even when the selective forces are not
constant across taxa. Using a variety of well-characterized
genes, we find evidence suggesting that natural selection
is generally episodic and that modeling it as such reveals
that many more sites are subject to episodic positive
selection than previously appreciated.

Detecting Episodic Diversifying Selection
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qij(a,b,P,H)~

ahijpij , d(i, j)~1, AA(i)~AA(j),

bhijpij , d(i, j)~1, AA(i)=AA(j),

0, d(i, j)w1,

{
P
k=i

qik, i~j:

0

BBBBB@

d(i,j) counts the number of nucleotide differences between codons
i and j. a and b parameterize the rates of synonymous and non-
synonymous substitutions, respectively. hij (comprising H) are the

nucleotide mutational biases, which we model using the 5-
parameter general time reversible nucleotide model. pij (com-

prising P) denote the equilibrium frequency parameters. Our

estimate (denoted throughout as P̂P) uses nine position-specific
frequency parameters for the target nucleotides [1], corrected for
the absence of stop codons using the CF3|4 estimator [21]. The
likelihood of observing the site is calculated using the pruning
algorithm [22] given the data, the tree (t), the instantaneous rate
matrix (Q), and the branch lengths (T ).

To model the evolution of a site in an alignment in a manner
that treats the non-synonymous rate (b) at each branch b as a
random draw from one of K selective categories, we introduce a
variable, cb, which can take values from 1 . . . K . An assignment of
categories to all B branches, is described by the configuration
vector C~(c1, . . . ,cB) of branch categories. We assume that the
category on each branch is independent of that on all other
branches, and that each category has an associated probability,
p(cb), for each branch. Next, we seek to marginalize the likelihood
of each site D over all branch configuration vectors:

p(D)~
X

C

p(C)p(DDC)

Since this sum is over possible configurations, it has BK terms,
and would appear infeasible, unless B is small. However,
if we assume that branch categories are independent,

p(C)~PB
b~1 p(cb), then the sum can be computed directly using

the pruning algorithm by replacing the transition matrices with
mixtures of transition matrices (see [20] for the derivation). If Mb

is the transition matrix on branch b, and we denote Felsenstein’s
algorithm, which computes the probability of observing D
given a transition probability matrix for every branch, as
F (M1, . . . ,MB), then:

p(D)~
X

C

F (M
c1
1 , . . . ,M

cB
B )p(C)

~F
XK

c~1

p(c1)M
c1
1 , . . . ,

XK

c~1

p(cB)M
cB
B

 !

,

ð1Þ

where M
cb
b associates a transition matrix at each branch with a

category. We have thus constructed a tractable model where the
process at every branch is a random draw from a set of K
categories.

In [20], we used this result to develop a model where each
branch had a set of v values and proportion parameters common
to all sites. The goal was to identify lineages with a proportion of
sites evolving with vw1. Here, we let each site have a set of free
parameters governing the strength of selection for two discrete
categories, and weights for each category, and these parameters
are shared for all branches at that site. The goal is to detect sites
where a proportion of lineages are evolving with vw1.

The MEME test for episodic diversifying selection
The fitting of MEME to an alignment of coding sequences

proceeds in three stages:
First, the MG94|REV codon model with an alignment-wide

v~b=a is fitted to the data using parameter estimates under a
GTR nucleotide model as initial values. Although in some cases
nucleotide branch lengths may be a good approximation to codon
branch lengths [23,24], recent results indicate that in other
instances, nucleotide models can significantly underestimate
branch lengths and possibly bias downstream inference [25].

The resulting maximum likelihood estimates, ĤH and t̂tb, for each
branch b[1 . . . B, are used in the site-by-site analyses in the next
two steps. Thus we are assuming that the relative branch length
and mutational bias parameters are shared across sites and are well
approximated by those estimated under a simpler codon model.
However, the absolute branch lengths also depend on the site- and
model-specific rate parameters below.

Second, at each site, we first fit the alternative random effects
model of lineage-specific selective pressure with two categories of

b: b{ƒa and bz (unrestricted). The probability (p(cb) in equation

1) that branch b[1 . . . B is evolving with bb~b{, is 0ƒq{ƒ1,

and the complementary probability that it is evolving with bb~bz

is qz~1{q{. By equation 1, the phylogenetic likelihood at a site,

marginalized over all 2B possible joint assignments of bb, is
equivalent to computing the standard likelihood function with the
following mixture transition matrix for each branch b:

Mb(a,b{,bz,q{)~q{eQ a,b{;ĤH,P̂Pð Þt̂tbz

(1{q{)eQ a,bz;ĤH,P̂Pð Þt̂tb :
ð2Þ

Consequently, the alternative substitution model includes four
parameters for each site, inferred jointly from all branches of the
tree: b{,bz,q{ and a. These form the fixed effects component of
the model. Estimating a separately for each site accounts for the
site-to-site variability in synonymous substitution rates [26].

Lastly, at every site, we fit the model from the previous step, but
with bzƒa: our null model. Using simulated data, we determined
that an appropriate asymptotic test statistic for testing most worst-

case null of of bz~b{~a is a 0:33 : 0:3 : 0:37 mixture of x2
0,x2

1

and x2
2 (see Text S1). Mixture statistics of this form often arise in

hypothesis testing where model parameters take values on the
boundaries of the parameter space, and closed-form expressions
for mixing coefficients are difficult to obtain [27].

Throughout the manuscript, we compare MEME to the fixed
effects likelihood approach, introduced in [24] (see Text S1 for
motivation). The procedure used by FEL differs from MEME in
that a single pair of a,b rates are fitted at each site (no variation
over branches) in Step 2, and the test in Step 3 is to determine if

a=b. Positive selection is inferred by FEL when b̂bwâa and the p-

value derived from the LRT is significant, based on the x2
1

asymptotic distribution.

Detecting individual branches subject to diversifying
selection at a given site

If the LRT indicates that a particular site (s) is subject to
episodic diversifying selection, it may be of interest to explore
which branches at that site have undergone diversification. The
empirical Bayes (EB) procedure originally used to identify
individual sites subject to diversifying selection in random effects
models [28], can be readily adapted here. To compute the

Detecting Episodic Diversifying Selection
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empirical posterior probability at branch b that b~bzwa, we

apply Bayes’ theorem, using Ds to denote the data at site s and ĤH
to denote all the maximum likelihood parameter estimates from
the alternative MEME model fitted to site s:

P bb~bzDDs,ĤH
h i

~
P(DsDbb~bz)(1{q{)

P(DsDbb~bz)(1{q{)zP(DsDbb~b{)q{
:

To compute the two likelihood terms P(DsDbb~bz) and
P(DsDbb~b{), we use q{~0 and q{~1, respectively, for the
model assigned to branch b in equation 2. The rest of the branches
employ the matrices fitted under the alternative model of MEME.

Having computed P bb~bzDDs,ĤH
h i

for each branch b, we

evaluate the empirical Bayes factor for the event of observing
positive selection at each branch:

EB bb~bzDDs,ĤH
h i

~
P bb~bzDDs,ĤH
h i

=P bb~b{DDs,ĤH
h i

(1{q{)=q{
:

When EBwKw1, sequence data increase the prior odds of
observing selection at the branch. We do not recommend using
this type of inference other than for the purposes of data
exploration, even for large values of K (e.g. 100). Intuitively, all
the information contributing to the estimate of EB is derived from
observing the evolution along a single branch at a single site (i.e.
from a sample with size &1). To quantify this supposition, we
simulated sequence data using the vertebrate rhodopsin phylogeny
and branch lengths, applied positive selection of varying strength
to five branches in the tree selected a priori (see Text S1),
and applied the EB procedure to infer the identity of selected
branches.

Results

Model assessment
To assess the performance of MEME on both simulated and

empirical data, we selected the fixed effects likelihood method
(FEL [24]) as the most appropriate reference test for pervasive
diversifying selection, because FEL most closely matches the
assumptions made by MEME (see Text S1). We simulated data
sets under a number of scenarios: refer to Text S1 for details of
simulation strategies.

Assessing the rates of false positives. Under the scenario
where each site was evolved under the worst-case null hypothesis
of constant v~1, MEME had well controlled rates of false
positives at test p-value of 0:05 (Figure S1, also see Text S1 for the
empirical derivation of the asymptotic distribution of the test
statistic for this hypothesis). MEME appears to be conservative for
smaller sample sizes (numbers of sequences, N), but not for larger
samples. The rates of false positives were v0:01 (N~8), 0:01
(N~16), 0:03 (N~32), 0:04 (N~64), and 0:05 (N~128 and
256). We also analyzed simulations based on seven large
(N~517{640) phylogenies downloaded from TreeBase (http://
www.treebase.org). The rate of false positives remained well
controlled (0:047{0:053) at a nominal p-value of 0.05, suggesting
that further increasing the number of taxa does not lead to a
degradation of Type I error rates.

A further analysis using 36 trees from a variety of published
studies downloaded from TreeBase, to simulate 10 replicates from
each tree (see Text S1 and Tables S1 and S2 for details), revealed
that MEME is generally conservative for alignments of with low
pairwise divergence (e.g. v0:1 nucleotide substitutions per site),

nominal for those with medium to high pairwise divergence
(0:1{0:4 nucleotide substitutions per site), and nominal to slightly
anti-conservative for higher pairwise divergence (w0:4 nucleotide
substitutions per site), although this relationship is influenced by
other factors. Overall, we conclude that false positive rates of
MEME, are well controlled in the setting of the most pessimistic
(strict neutral) null.

Constant selection pressure at individual sites. At
nominal p~0:05 MEME consistently tracked FEL on sequence
alignments simulated under the lineage-constant model assumed
by FEL (Table S3), losing several percentage points of power
because of its more conservative test statistic. Because each
simulated alignment contained a subset of sites generated under
the null (neutral model), we could derive empirical estimates of the
size of the test and set the nominal p-value to achieve a Type I
error rate of 5%. When calibrated to deliver a 5% Type I error
rate, MEME held a small edge in power. This finding is not
surprising, because at a fixed Type I rate, MEME should find
every site found by FEL, and resolve FEL borderline cases affected
by stochastic variation in v throughout the tree.

Variable selection pressure at individual sites. The
difference in power between MEME and FEL became stark when
selection at individual sites varied among lineages, with each
branch evolving under positive selection (vz) with probability qz,
and negative selection (v{) with complimentary probability
1{qz. For every combination of independent simulation
parameters (v{,vz,qz), MEME had more power to detect sites
under episodic diversifying selection (Table 1). Both methods
gained power with an increasing proportion of positively selected
lineages and/or a greater degree of diversification. The largest
differences between MEME and FEL were observed when a small
proportion of lineages (qz~0:1) were subjected to diversifying
selection. Regardless of the strength of background purifying
selection, FEL was effectively powerless (power 0{10%) to detect
episodes of positive selection under any of the three phylogenetic
simulation scenarios, whereas MEME achieved low (4{53%
when vz~4), modest (15{95% when vz~12), and excellent
(37{100% when vz~36) power. Under these conditions, the
power of MEME increased with the alignment size, whereas the
power of FEL remained very low. Although FEL gained
appreciable power when 25% (or 50%) of the lineages were
subject to diversification, its power was on average only &24%
(&67%) of that realized by MEME.

Taken together, the constant and variable selection pressure
simulations demonstrate the uniform superiority of MEME over a
standard test for diversifying positive selection. MEME has well
controlled rates of false positives, has power comparable to FEL
when selective forces are uniform at individual sites, and gains a
large power advantage when these forces are variable, as is
undoubtedly the case in most biological data sets.

Power and accuracy of the empirical Bayes procedure to
identify branches subject to diversifying selection at a
single site. Our exploratory simulations (see Figure S2) suggest
that it is difficult to accurately identify individual positively selected
branches at an individual site. We restricted the analysis to only
those sites, which were found to be under episodic diversifying
selection by MEME (pƒ0:05) and set the threshold of 20 for the
empirical Bayes factor to call an individual branch selected. The
best results are achieved when selected branches are placed in the
background of strongly conserved lineages (v~0:1) – an
individual branch is correctly detected in approximately 25% of
cases, while at least one selected branch is found in 89:8% of cases
(see Figure S3). However, while none of the negatively selected
background branches are reported in more than 5% of cases, in
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55% of cases at least one background branch was falsely detected as
positively selected. In a more difficult case of neutrally evolving
background, the EB procedure performs considerably worse: at
least one select branch is found in 55:6% of cases, whereas at least
one background branch is detected in 86:5% instances. 18
background neutral branches are reported as selected at over
5% frequency, while the 5 positively selected branches are
identified at 3:4{26% of selected sites.

Empirical data
To gauge the comparative performance of MEME and FEL

when identifying sites subject to pervasive diversifying selection, we
used a collection of 16 protein-coding alignments, representing a
diverse array of taxa, genes subject to differing levels of
conservation, and a range of data set sizes (Table 2). In 12=16
alignments analyzed, MEME identified all the sites inferred by
FEL to be under diversifying positive selection and found between

Table 1. Comparative performance of FEL and MEME on simulated data where v varies along phylogenetic lineages.

Japanese encephalitis virus env Vertebrate rhodopsin Camelid VHH

v2 q + v+ = 4 v+ = 12 v+ = 36 v+ = 4 v+ = 12 v+ = 36 v+ = 4 v+ = 12 v+ = 36

0 0.1 0.00 0.06 0.01 0.25 0.03 0.50 0.00 0.21 0.00 0.53 0.02 0.81 0.00 0.53 0.00 0.95 0.04 0.99

0 0.25 0.01 0.12 0.06 0.32 0.12 0.51 0.01 0.30 0.04 0.68 0.15 0.88 0.00 0.66 0.14 0.98 0.56 1.00

0 0.5 0.06 0.12 0.19 0.29 0.34 0.45 0.09 0.28 0.34 0.59 0.54 0.82 0.23 0.77 0.85 0.98 0.96 0.98

0.2 0.1 0.00 0.05 0.01 0.21 0.02 0.41 0.00 0.09 0.01 0.35 0.02 0.67 0.00 0.16 0.01 0.87 0.04 0.98

0.2 0.25 0.02 0.08 0.07 0.27 0.14 0.48 0.03 0.17 0.09 0.55 0.17 0.84 0.01 0.42 0.27 0.96 0.62 0.99

0.2 0.5 0.05 0.11 0.18 0.29 0.36 0.49 0.13 0.25 0.36 0.60 0.55 0.76 0.30 0.72 0.84 0.99 0.90 0.99

0.4 0.1 0.00 0.04 0.01 0.15 0.03 0.37 0.01 0.07 0.02 0.30 0.03 0.57 0.01 0.10 0.04 0.78 0.10 0.97

0.4 0.25 0.02 0.06 0.09 0.27 0.15 0.45 0.04 0.16 0.09 0.49 0.21 0.78 0.03 0.32 0.33 0.97 0.63 0.99

0.4 0.5 0.07 0.10 0.17 0.26 0.33 0.46 0.17 0.28 0.39 0.58 0.51 0.76 0.40 0.62 0.82 0.94 0.96 1.00

Power to detect sites under selection (p~0:05) are reported for FEL and MEME (in boldface) for each unique combination of negative selection (v{), positive selection
(vz), and proportion of branches under positive selection (qz) parameters.
doi:10.1371/journal.pgen.1002764.t001

Table 2. Comparative performance of MEME and FEL on 16 empirical alignments (see Results and Text S1 for an extended
discussion of each individual case).

Data set N S Mean Classes of sites detected at p#0.05 Mean q+ Sites where

Div. M+F0 M+F+ M+F2 M2F+ M+F02 M+F+
MEME.FEL at p = 0.05

Abalone sperm lysin 25 134 0.43 17 9 0 1 (0.04/0.05) 0.17 0.35 19

Camelid VHH 212 96 0.27 22 6 2 0 (n/a) 0.11 0.50 26

Diatom SIT 97 300 0.54 12 0 36 0 (n/a) 0.05 n/a 82

Drosophila adh 23 254 0.26 9 1 0 0 (n/a) 0.09 0.19 7

Echinoderm H3 37 111 0.33 0 0 1 0 (n/a) 0.02 n/a 3

Flavivirus NS5 18 342 0.48 3 0 1 0 (n/a) 0.16 n/a 7

Hepatitis D virus Ag 33 196 0.29 13 7 0 1 (0.05/0.07) 0.08 0.37 10

HIV-1 rt 476 335 0.08 12 10 7 0 (n/a) 0.04 0.69 27

HIV-1 vif 29 192 0.08 5 2 0 7 (0.04/0.06) 0.11 0.59 3

IAV H3N2 HA 349 329 0.04 7 11 2 3 (0.04/0.06) 0.04 0.73 8

JEV env 23 500 0.13 2 1 1 0 (n/a) 0.11 1.00 3

Mamallian b-globin 17 144 0.38 10 2 0 0 (n/a) 0.20 0.31 11

Primate COXI 21 510 0.36 3 0 1 0 (n/a) 0.18 n/a 4

Salmonella recA 42 353 0.04 1 0 0 0 (n/a) 0.02 n/a 0

Vertebrate rhodopsin 38 330 0.34 13 1 5 0 (n/a) 0.11 0.74 39

West Nile virus NS3 19 619 0.13 1 1 0 0 (n/a) 0.04 1.00 2

Total/Mean 130 51 56 12 0.10 0.59

N (S) reports the number of sequences (codons) in the alignment. Mz (M{) refers sites found by MEME to be positively (negatively) selected (pƒ0:05). Fz (F{)

denote sites found by FEL to be positively (negatively) selected (pƒ0:05). F0 references sites that are classified as neutrally evolving by FEL. Values in parentheses for
the M{Fz column show the mean p-values for FEL and MEME on this set of sites, respectively. Values reported in the rightmost column count the number of sites
where MEME fits significantly better than FEL, based on a 2-degrees of freedom LRT (pƒ0:05). Abbreviations: IAV = Influenza A virus, JEV = Japanese encephalitis virus.
doi:10.1371/journal.pgen.1002764.t002

Detecting Episodic Diversifying Selection

PLoS Genetics | www.plosgenetics.org 5 July 2012 | Volume 8 | Issue 7 | e1002764

Stellenbosch University http://scholar.sun.ac.za



1 (e.g. West Nile virus NS3) and 48 (Diatom SIT) additional sites
that were subject to episodic diversifying selection (Table 2). In
four data sets, 1{7 sites identified by FEL with p-values close to
0:05 were missed by MEME. Note that MEME p-values for these
sites remained in the 0:05{0:07 range (Table 2), i.e. marginally
significant.

Sites identified by both methods tended to have a greater
average proportion of lineages under selection (0:59, measured by
the mean of MLE estimates of qz); sites found only by MEME
experienced more episodic selection (0:10). In 9 data sets (Table 2),
sites that FEL inferred to be under purifying selection are instead
identified by MEME as likely to have been subjected to episodic
diversifying selection. Almost universally (Tables S4, S5, S6, S7,
S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19), such
sites had a smaller estimated proportion of positively selected
lineages (v10%). This behavior is consistent with the relative
performance of the two tests on simulated data and corroborates
the expectation that MEME has greater power to identify sites
when only a proportion of lineages evolved under positive
selection. Vertebrate rhodopsin, Japanese encephalitis virus env,
and Camelid VHH are investigated in detail below; for a
discussion other genes, see Text S1.

Vertebrate rhodopsin
The vertebrate rhodopsin (a low-light vision protein) data set

was previously experimentally investigated for the substitutions
that modulate the wavelength of the light absorbed by the
molecule (lmax, [18]). The authors asserted that, because none of
the 12 sites that they had determined as affecting lmax by site-
directed mutagenesis were detected by site-level computational
methods, ‘‘statistical tests of positive selection can be misleading
without experimental support.’’ Other authors reanalyzed the
same data set more comprehensively and went even further, ques-
tioning the utility of v-based methods for detecting experimentally

validated sites, because ‘‘most of the current statistical methods are
designed to identify codon sites with high v values, which may not
have anything to do with functional changes. The codon sites
showing functional changes generally do not show a high v value’’
[29]. The validity of this generalization has been correctly
questioned with a simple counter-argument that the sites detected
by computational methods may also be functionally important,
because the change in lmax is unlikely to be the sole determinant of
adaptation [17].

The MEME analysis of this gene suggests another obvious
alternative, also expounded by previous studies [17]: the failure of
the original computational analysis [18] to identify functionally
important sites results from the fact that these sites have been
subjected to episodic selection, which is masked by predominantly
purifying selection elsewhere in the tree. Indeed, among three sites
that alter lmax found by MEME (96, 183 and 195, versus none
found by FEL), no more than 13% of the branches exhibited vw1
(Table S17); at these sites, the average v is less than 1. We note
that, because adaptive evolution will not always adhere to a single,
simple scenario of episodic diversifying selection, we do not expect
MEME to find all 12 sites experimentally confirmed to alter
lmax. For example, three of the nine missed sites (83,194,292)
appear to have been subjected to partial selective sweeps and have
been detected using a specialized model of directional evolution
[29].

Three sites from this alignment can be used to illustrate how the
inclusion of lineage variability modifies inference of selection
(Figure 2). Site 54 was inferred to have experienced pervasive non-
synonymous substitutions throughout its evolutionary history. Both
FEL and MEME detect this site as positively selected (p~0:02).

Sixty three percent of the lineages at this site evolved with bzwa,
whereas the remainder were conserved (a~b{~0), according to
MEME. The log-likelihood of the site is only marginally higher for
MEME, which suggests that MEME behaves like FEL at sites with

Figure 2. Individual sites of the vertebrate rhodopsin alignment used to illustrate similarities and differences between FEL and
MEME. Branches that have experienced substitutions, based on most likely joint maximum likelihood ancestral reconstructions at a given site, are
labeled as count of synonymous substitutions:count of non-synonymous substitutions. The thickness of each branch is proportional to the minimal
number of single nucleotide substitutions mapped to the branch. Branches are colored according to the magnitude of the empirical Bayes factor
(EBF) for the event of positive selection: red – evidence for positive selection, teal – evidence for neutral evolution or negative selection, black –Ê no
information. See Methods for more detail. All three sites were identified as experiencing positive diversifying selection by MEME. FEL reported site 54
as positively selected, site 273 as neutral, and site 210 as negatively selected.
doi:10.1371/journal.pgen.1002764.g002
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‘‘canonical’’ patterns of diversifying selection, corroborating the
simulation results.

At codon 273, FEL obtained a maximum likelihood estimate of
bwa, but failed to infer positive selection, as the signal was not
statistically significant (p~0:70). MEME, on the other hand,
allocated 0:04 (0.013–0.10: 95% confidence interval obtained by
latin hypercube sampling importance resampling [30]) of branches

to a rate class with a~0:0,bz~9:49 (2.94–6726) and inferred
positive selection (p~0:03). The difference in log-likelihoods
between MEME and FEL is 4:9 points: MEME fits significantly
better, based on a 2-degrees of freedom likelihood ratio test
(p~0:007). The maximum likelihood estimates of individual
model parameters have large associated errors (although in all

posterior samples we obtained bzwa), as is expected for inference
based on a single site. This has also been noted by Yang and dos
Reis [17]. The point estimates themselves, however, are imma-
terial for inferring whether or not a site is positively selected, since
the likelihood ratio test is used for that purpose.

Perhaps the most dramatic example of the added power of
MEME is illustrated by site 210. At this site, the evolutionary
history is replete with non-synonymous substitutions along deep
lineages followed by extensive synonymous evolution, indicative of
purifying selection. There is also a small clade with repeated
synonymous and nonsynonymous substitutions. Averaging over all
branches, FEL determined that the site, overall, is under negative
selection (p~0:01). MEME reported that 89% of the branches
were under a very strong selective constraint (a~2:13,b{~0:0),
but that the remaining 11% 5:5{18:6%ð Þ were under strong

diversifying selection (bz~26:5 10:1{6519ð Þ). The log-likelihood
improvement is now 13:4 at the cost of two parameters, which is
highly significant (pv0:001). Site 210 is the ideal illustration of
why it is undesirable to average v over all lineages: bursts of
diversification followed by conservation will most likely be missed
by traditional site methods.

Japanese encephalitis virus env
No evidence for selection was found in this envelope gene in

previous analyses [28], and FEL found only one site under positive
selection. Despite the low levels of divergence among a relatively
small number of taxa (23 isolates), MEME found episodic selection
at sites called negatively selected by FEL (Table S12). Two of these
sites fall within a beta-barrel epitope known to be involved in
escape from neutralizing antibodies [31]. Sites 33 and 242 showed
evidence of repeated toggling at terminal lineages. Remarkably,
site 33 – likely a part of a neutralizing antibody epitope [32] –
changed from isoleucine to leucine on 6 terminal lineages; site 242
changed from phenylalanine to serine on 5 terminal lineages.
These substitutions co-occur on three terminal lineages. Evidence
of recombination was detected in this alignment, and corrected for
using a partitioning approach (details on how MEME can correct
for recombination are in Text S1).

Camelid VHH
The camelid VHH data set comprises partial variable domain

sequences (germline alleles) of llama and dromedary heavy chain
only antibodies (Table S3). 11 of 16 sites in the variable
complementarity determining regions (CDR) 1 (sites 26–33) and
2 (sites 51–58) were found to be under diversifying selection by
MEME (2/16 were detected by FEL and 2 more were marginally
significant). Because CDR regions are driven to diversify in order
to provide a broad basis of antigen recognition, positive selection is
expected to be commonplace in the CDRs [33]. MEME was able
to uncover selective signatures at a majority of those sites. Of the

remaining 19 sites classified by MEME as positively selected, six
were associated with VHH family differentiation [34]. Unlike
standard antibodies, which must maintain relatively conserved
framework regions (FR) involved in binding heavy and light chains
to form functional tetramers, VHH antibodies are free of such
functional constraints. A previous analysis of camelid VHH for
evidence of positive selection using counting methods [35]
reported evidence for positive selection at a single site (14) in
FR1 (sites 1–25 in Table S3), but this analysis could find no clear
evidence of positive or negative selection at 49 FR sites. In
contrast, MEME inferred episodic selection at six sites in FR1, six
sites in FR2 (sites 34–50), and 7 sites in FR3 (sites 59{96). The
well-known lack of power of counting methods to detect even
pervasive selection [17] likely hampered the previous study.

Effect of sequence sampling
Although a previous analysis of 38 vertebrate rhodopsin

sequences found no sites under selection at posterior probability
§95% [18], the same authors found 7 selected sites in the subset
of 11 squirrelfish sequences, and 2 selected sites when the subset of
28 fish sequences was analyzed. These results run counter to the
expectation that more data should provide greater power to detect
selection. MEME, on the other hand, detects more selected
sites when more sequences are included. One site is identified in
the squirrelfish alignment, 9 in the fish alignment, and 19 in the
complete rhodopsin alignment. All but 5 sites detected in the
subset alignments are also identified in the full alignment (Table
S20). Allowing v to vary over branches at least partially mitigates
the pathology of constant-v models which effectively rely on an
average v for inferring selection. A similar pattern is seen in the
analysis of the influenza A virus H3N2 hemagglutinin sequences,
where site-level methods also appear to be sensitive to sequence
sampling ([19], see Text S1 and Table 23).

Discussion

We have presented a mixed effects model of evolution, MEME,
and a statistical test for detecting the signal of past episodic positive
selection from molecular sequence data. Our model corrects the
biologically unrealistic assumption that selective pressure, as
measured by the v ratio, remains constant over lineages. Based
on comprehensive simulations and empirical analysis of an array
of taxonomically diverse genes, MEME can be recommended as a
replacement for existing site models. MEME matches the
performance of older approaches when natural selection is
pervasive, but possesses greater power to identify sites where
episodes of positive selection are confined to a small subset of
branches in a phylogenetic tree.

Our results suggest that it may be necessary to revise previous
estimates of the proportion of sites under positive selection in
many genes. Using the FEL method, which assumes constant
selective pressure at a site, we are able to detect 63 sites across all
16 empirical alignments. MEME identifies 51 of these sites (the
remaining 12 are borderline significant) and 186 additional sites –
nearly 4 times as many as FEL. For individual data sets (e.g.
Drosophila adh and Diatom SIT, Table 2), the differences may be
even more dramatic. The greater power of MEME indicates that
selection acting at individual sites is considerably more widespread
than constant v models would suggest. It also suggests that natural
selection is predominantly episodic, with transient periods of
adaptive evolution masked by the prevalence of purifying or
neutral selection on other branches. We emphasize that MEME is
not just a quantitative improvement over existing models: for 56
sites in our empirical analyses, we obtain qualitatively different
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conclusions. FEL asserts that these sites evolved under significant
purifying selection, but MEME is able to identify the signature of
positive selection on some branches. Furthermore, MEME is less
sensitive to sampling effects that plague existing positive selection
detection tools [18,19]. Variable levels of purifying selection
pressure across different lineages prevented these older methods
from detecting instances of episodic positive selection; MEME is
able to peer through the fog of purifying selection.

It is important to bear in mind that the mixture x2 statistic used
to calculate the p-values reported here is based on a null model
under which all sites are evolving neutrally. This, however, is not
biologically realistic: the null hypothesis against which sites ideally
ought to be screened is one under which sites are evolving either
neutrally or under purifying selection. But the proportion of sites
evolving under negative selection and the strength of this selection
are unknown and vary from case to case, which means that such a
null hypothesis would be very sensitive to modeling assumptions
that cannot be justified in general. Instead, the neutral null
hypothesis represents a worst case scenario for our inference, so
that the p-values we obtain are upper bounds of the true p-values.
This ensures that our inference is conservative. Even in the worst
(and biologically unrealistic) case for MEME, namely when
selective pressures are constant throughout the phylogeny, the
loss of power compared to FEL is minimal: a site with FEL p-
values between 0:0346 and 0:05 will be missed by MEME, since its
p-value will be w0:05 for the same ranges of the likelihood ratio
test statistic (LRT). In our simulation scenarios under the
assumption of constant v, this translates to no more a 5% loss
in power (Table S3).

Our inference is performed in a site-wise rather than an
alignment-wide manner, and we therefore control the site-wise
rather than the family-wise error rate. We do not recommend
combining the results of multiple site-wise inferences to perform
alignment-wide inference. To aid interpretation of the results
while taking account of multiple testing, we calculate the false
discovery rate [36]; the resulting q-value upper bounds are
reported alongside their corresponding p-value upper bounds in
Tables S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,
S17, S18, S19. This gives an upper bound on how many of the
reported sites can be expected to be false discoveries: for instance,
of the 30 sites reported in Table S5 we expect no more than 5
(14%) to be false, and probably far fewer because of the
conservative choice of null model. We emphasize that q-values
are usually much larger than their corresponding p-values and
caution that p-values (regardless of whether they have been
corrected for multiple testing) cannot be used to estimate an
expected number of false discoveries in the same way.

MEME is a conceptual advance over the first generation of
random effects models designed to detect episodic selection (called
‘‘branch-site models’’ in the literature [17]). MEME does not
require a priori designation of, or an exhaustive search for, the
branches under selection, and it allows each site to have its own
selective history. Whereas branch-site models make restrictive a
priori assumptions about how v values are distributed across the
tree – sometimes leading to very poor statistical performance [20]
– MEME treats the selective class on each branch as a random
effect that is marginalized over in the likelihood calculation.

For computational tractability, MEME assumes that the value
taken by v on each branch is independent of that on any other
branch, i.e. selective pressures between branches are uncorrelated.
This assumption could potentially be violated: for example, if v
changes very slowly across the phylogeny, then v values on
neighboring branches will be correlated. Further research is
needed to understand how inference of selection would be affected

if these correlations were directly accounted for, and whether the
additional model and computational complexity would be
justified. In practice, MEME could be combined with models of
directional selection to improve power, e.g. [15,16]. Unlike
covarion models [37,13], MEME does not allow v to change in
the middle of a tree branch. The effect of this restriction is unclear,
but it could be tested by implementing a mixed effects covarion
model, where switching rates and proportion of time spent under
vw1 are estimated at an individual site.

The ability of MEME, or similar substitution model-based
methods, to accurately infer the identity of individual branches
subject to diversifying selection at a given site seems unavoidably
limited. Most of the information that such inference might be
based on is limited to character substitutions along a single branch
at a single site, i.e. one realization of the Markov substitution
process. Selection along terminal branches in the context of
negatively selected background can be detected more reliably than
selection along interior branches among neutrally evolving
background lineages. However, we caution that despite obvious
interest in identifying specific branch-site combinations subject to
diversifying selection, such inference is based on very limited data
(the evolution of one codon along one branch), and cannot be
recommended for purposes other than data exploration and result
visualization. This observation could be codified as the ‘‘selection
inference uncertainty principle’’ – one cannot simultaneously infer
both the site and the branch subject to diversifying selection. In
this manuscript, we describe how to infer the location of sites,
pooling information over branches; previously [20] we have
outlined a complementary approach to find selected branches by
pooling information over sites.

Finally, although MEME is considerably more powerful than
existing methods at detecting bursts of selection, it still requires
that a measurable proportion of lineages (5{10%) experience
non-synonymous evolution at a site. When a single substitution
modifies an adaptive trait and is subsequently fixed, we expect v
based methods to have very little power. Specialized methods
which make use of change in allele frequencies [15,16], or between
and within-population diversification patterns [38], will be re-
quired in such cases.

Supporting Information

Figure S1 Quantile–Quantile plot of three asymptotic distribu-
tions (x-axis) for the MEME LRT test versus the LRT derived by
parametric bootstrap (y-axis), limited to the meaningful test p-
value range of v0:01. The x2

1 distribution is too liberal (lying

below the x~y line), the x2
2 is too conservative, while the mixture

is approximately correct.
(PDF)

Figure S2 Simulation parameters for generating datasets for
evaluating the empirical Bayes inference of branch-site combina-
tions under selection. Branches are colored according the the value
of v used to evolve sequences along them; branches simulated
under positive selection are also labeled with v values.
(PDF)

Figure S3 Summary of empirical Bayes inference of branches
under selection on data simulated using the selective parameters
from Figure S2. Each branch is colored according to the
proportion of times it was found to have an empirical Bayes
factor of 20 or greater at sites with MEME p-value of 0.05 or less.
Branches with w5% detection rates are also labeled with the
values of the rates.
(PDF)
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Table S1 False positive rates for data sets simulated under
strict neutrality using empirical trees from TreeBase. The
entries are sorted in order of increasing mean false positive rate
derived from simulated data (10 replicates per tree). Mean
divergence between any pair of leaves in a given tree is reported
in expected nucleotide substitutions per site. False positive range
reports the minimum and maximum values for false positive
rates for an individual replicate. 95% confidence intervals are
derived from the binomial distribution with the probability of
success p~0:05, and the number of trials N equal to the
number of codons. This range provides the expected spread of
per replicate false positive rates for a test that has the pro-
bability of making a false positive error of exactly 0:05 over N
tests.
(PDF)

Table S2 False positive rates for three empirical trees from
TreeBase when the parameters of the null model are varied: 20%
of the branches are simulated with the foreground v, and the
remainder under the background v. 10 replicates with 300 codons
each per tree-v pair were simulated. The synonymous rate was set
to 0:52 for the first 150 codons, 0:9 for the next 100 codons, and
1:58 for the last 50 codons.
(PDF)

Table S3 Comparative performance of FEL and MEME on
simulated data where v does not vary among tree branches.
The rate of false positives (FP) and power are reported for a
fixed nominal test p-value of 0:05. Power is also shown for the
p-value that achieves FP of 0.05, estimated empirically from
the distribution of p-values on the subset of sites evolving
neutrally.
(PDF)

Table S4 Positively selected sites in abalone sperm lysin. z
stands for a positively selected site and { stands for a negatively
selected site (FEL pw0:1). zz and {{ reflect borderline
significant sites (FEL p between 0:05 and 0:1). zzz and {{{
denote significant sites (FEL pƒ0:05).
(PDF)

Table S5 Positively selected sites in camelid VHH. z stands for
a positively selected site and { stands for a negatively selected site
(FEL pw0:1). zz and {{ reflect borderline significant sites
(FEL p between 0:05 and 0:1). zzz and {{{ denote
significant sites (FEL pƒ0:05).
(PDF)

Table S6 Positively selected sites in Diatom silicon transporters
found by MEME at pƒ0:05. The FEL result column summarizes
the classification obtained by FEL. z stands for a positively
selected site and { stands for a negatively selected site (FEL
pw0:1). zz and {{ reflect borderline significant sites (FEL p
between 0:05 and 0:1). zzz and {{{ denote significant sites
(FEL pƒ0:05).
(PDF)

Table S7 Positively selected sites in Drosophila adh found by
MEME at pƒ0:05. The FEL result column summarizes the
classification obtained by FEL. z stands for a positively selected
site and { stands for a negatively selected site (FEL pw0:1). zz
and {{ reflect borderline significant sites (FEL p between 0:05
and 0:1). zzz and {{{ denote significant sites (FEL
pƒ0:05).
(PDF)

Table S8 Positively selected sites in Echinoderm histone H3. z
stands for a positively selected site and { stands for a negatively

selected site (FEL pw0:1). zz and {{ reflect borderline
significant sites (FEL p between 0:05 and 0:1). zzz and {{{
denote significant sites (FEL pƒ0:05).
(PDF)

Table S9 Positively selected sites in Flavivirus NS5. z stands for
a positively selected site and { stands for a negatively selected site
(FEL pw0:1). zz and {{ reflect borderline significant sites
(FEL p between 0:05 and 0:1). zzz and {{{ denote
significant sites (FEL pƒ0:05).
(PDF)

Table S10 Positively selected sites in Hepatitis D virus Ag. z
stands for a positively selected site and { stands for a negatively
selected site (FEL pw0:1). zz and {{ reflect borderline
significant sites (FEL p between 0:05 and 0:1). zzz and {{{
denote significant sites (FEL pƒ0:05).
(PDF)

Table S11 Positively selected sites in HIV-1 reverse transcriptase
(rt). z stands for a positively selected site and { stands for a
negatively selected site (FEL pw0:1). zz and {{ reflect
borderline significant sites (FEL p between 0:05 and 0:1). zzz
and {{{ denote significant sites (FEL pƒ0:05).
(PDF)

Table S12 Positively selected sites in HIV-1 viral infectivity
factor (vif). z stands for a positively selected site and { stands for
a negatively selected site (FEL pw0:1). zz and {{ reflect
borderline significant sites (FEL p between 0:05 and 0:1). zzz
and {{{ denote significant sites (FEL pƒ0:05).
(PDF)

Table S13 Positively selected sites in Influenza A virus
hemagglutinin (H3N2 serotype). Superscript letters after the site
indicate the epitope in which substitutions can affect phenotype.
z stands for a positively selected site and { stands for a
negatively selected site (FEL pw0:1). zz and {{ reflect
borderline significant sites (FEL p between 0:05 and 0:1). zzz
and {{{ denote significant sites (FEL pƒ0:05).
(PDF)

Table S14 Positively selected sites in Japanese encephalitis virus
env. z stands for a positively selected site and { stands for a
negatively selected site (FEL pw0:1). zz and {{ reflect
borderline significant sites (FEL p between 0:05 and 0:1). zzz
and {{{ denote significant sites (FEL pƒ0:05).
(PDF)

Table S15 Positively selected sites in mammalian b-globin. The
FEL result column summarizes the classification obtained by FEL.
z stands for a positively selected site and { stands for a
negatively selected site (FEL pw0:1). zz and {{ reflect
borderline significant sites (FEL p between 0:05 and 0:1). zzz
and {{{ denote significant sites (FEL pƒ0:05).
(PDF)

Table S16 Positively selected sites in primate cytochrome c
oxidase subunit 1 (COX1). z stands for a positively selected site
and { stands for a negatively selected site (FEL pw0:1). zz
and {{ reflect borderline significant sites (FEL p between 0:05
and 0:1). zzz and {{{ denote significant sites (FEL
pƒ0:05).
(PDF)

Table S17 Positively selected sites in Salmonella recA. z stands
for a positively selected site and { stands for a negatively selected
site (FEL pw0:1). zz and {{ reflect borderline significant sites
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(FEL p between 0:05 and 0:1). zzz and {{{ denote
significant sites (FEL pƒ0:05).
(PDF)

Table S18 Positively selected sites in vertebrate rhodopsin. z
stands for a positively selected site and { stands for a negatively
selected site (FEL pw0:1). zz and {{ reflect borderline
significant sites (FEL p between 0:05 and 0:1). zzz and {{{
denote significant sites (FEL pƒ0:05).
(PDF)

Table S19 Positively selected sites in West Nile virus NS3. z
stands for a positively selected site and { stands for a negatively
selected site (FEL pw0:1). zz and {{ reflect borderline
significant sites (FEL p between 0:05 and 0:1). zzz and {{{
denote significant sites (FEL pƒ0:05).
(PDF)

Table S20 Test p-values for positively selected sites found by
MEME in a set of 38 vertebrate rhodopsin sequences analyzed
with REL methods in Yokoyama2008fk. Sites with pƒ0:05 are
shown in bold. The partial ordering of subsets is as follows:
Squirrelfish 5 Fish 5 All, Coelacanth and tetrapods 5 All. Sites
found to be under positive selection with posterior probability of

w95% (M8 model) in Yokoyama2008fk in at least one of the
subsets are marked with ?.
(PDF)

Table S21 Test p-values for positively selected sites found by
MEME in a set of 86 influenza A virus hemagglutinin sequences
(Set 3) and its various subsets, analyzed with REL methods in
Chen2011fk. Sites with pƒ0:05 are shown in bold. The partial
ordering of subsets is as follows: Set 4 5 Set 1 5 Set 3, Set 5 5
Set 2 5 Set 3, Set 6 5 Set 3, Set 7 5 Set 3. Sites found to be
under positive selection with posterior probability of w95% (M3
model) in Chen2011fk in at least one of the subsets are marked
with ?.
(PDF)

Text S1 Supplementary methods, results, and discussion.
(PDF)
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Abstract

The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on
antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While
methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model
combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and
EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer
the sites and target residues that were likely subject to directional selection, using either codon or protein sequences.
Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be
involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional
selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives.
This suggests that episodic directional selection is a better description of the process driving the evolution of drug
resistance.
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Introduction

Among positively selected evolutionary changes, a distinction
can be made between diversifying selection, where any nucleotide
substitutions that change the amino acid are favored, and directional
selection, where only substitutions towards a small number of target
amino acids are selected for. Detection of genes or sites evolving
under positive selection [1–6] has been dominated by methods
which explicitly or implicitly assume diversifying positive selection.
This assumption allows evolution to be modeled as a continuous-
time Markov process without assuming that any particular residue
is the preferred target of substitutions at any sites. For most models
of diversifying selection, apart from a single rate governing amino
acid change, the process is no different from one site to the next.
By contrast, models have been proposed in which specific residues
do have special status at specific sites. In models of toggling
selection [7], substitutions away from a site-specific ‘‘wild type’’
amino acid are likely to be followed by reversions to that amino
acid. Models of directional selection [8,9] allow substitution rates
towards a site-specific ‘‘target’’ amino acid to be accelerated. By
making a distinction among all possible targets of a substitution,

such models allow the detection of positive selection favoring
mutations towards one amino acid, even at sites where the overall
rate of amino acid change is decreased by purifying selection. For
a review of codon models of selection, see [10].

A second distinction is that between selective pressure that is
constant over time, and selective pressure that changes over time,
possibly instantaneously – we shall refer to the latter as episodic
selection. Several authors have studied models that allow evolution-
ary rates to change over time, including models in which the
selective pressure is different on different branches [11–14] as well
as various models [15–17] in which the rate of evolution at any site
may change at any point in time. We are specifically interested in
the former type of model, under which rate changes occur
simultaneously at a particular set of sites - as would be expected
under an external change in selective pressure, i.e. episodic
selection. This type of selection is applicable to countless real world
scenarios that have been studied extensively: examples include the
evolution of lysozyme in response to diet changes [18], the
adaptation of HIV to different host populations [14], the evolution
of the rhodopsin pigment following changes in habitat [19], and
the adaptation of HIV-1 [20,21] and Influenza A Virus (IAV) [22]
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genes following zoonosis events. For a review on the evidence for
episodic selection in large numbers of protein sequences, see [23].

Here, we consider the evolution of drug resistance in HIV-1
following the treatment of a subset of the host population. We expect
that selective pressure will be both episodic, with drug-induced
adaptive amino acid changes occurring only in patients receiving
therapy, and directional, with site-specific target residues increasing
in frequency over time in the treated subset. HIV-1 experiences a
variety of other selective pressures, most prominently due to host
immune response (e.g. [14,24]), but because such response is nearly
unique in each host, we expect that the majority of concerted
selective changes in subjects on treatment will be drug-induced.

Previous approaches to detect positive selection driving
treatment resistance have had variable success. Crandall et al.
[25] showed that normalized ratios of non-synonymous to
synonymous substitution counts (dN=dS ) obtained by the counting
method of Nei and Gojobori [1] failed to show consistent
evidence of selection, despite obvious resistance associated
substitutions occurring in parallel in many patients. Chen et al.
[26] used a contingency-table counting method to characterize
positive selection towards specific amino acids in a sample of
approximately 40000 sequences. However, their approach

ignored the phylogenetic relationships between samples which
can cause selection to be conflated with founder effects [22,27].
Lemey et al. [28] used the branch-site model of Yang and Nielsen
[12] – a model of episodic diversifying selection – to analyze the
evolution of drug resistance over a transmission chain. A number
of sites were inferred to be under positive selection, of which some
were associated with drug resistance. Seoighe et al. [8] modeled
the evolution of reverse transcriptase between pre- and post-
treatment samples from 300 patients. They successfully detected
some of the major drug resistance mutations with few false
positives.

In this paper we aim to demonstrate that explicitly modeling the
directional and episodic character of the evolution of drug
resistance increases the power and accuracy to detect drug
resistance sites. We introduce a codon-based Model of Episodic
Directional Selection (MEDS) and a model of protein evolution
called Episodic Directional Evolution of Protein Sequences
(EDEPS), and show that both models outperform models that
lack either the episodic or directional components.

Models

MEDS
Our codon model of episodic directional selection assumes that

branches on the phylogenetic tree can be partitioned into fore-
ground (F) and background (B) subsets a priori. Evolution along
background branches is described by a standard codon model (QB,
see below). In the model for foreground branches (QF ), directional
selection is incorporated via an elevated rate of substitutions towards
a target amino acid.

MEDS extends two previously proposed models of coding
sequence evolution: 1) the episodic component of MEDS is
structurally identical to the Internal Fixed Effects Likelihood
(IFEL) model proposed in [14], although IFEL is used to detect
diversifying selection along internal branches only, and, 2) the
directional component is introduced in a manner similar to that in
the model of directional selection proposed by Seoighe et al. [8].
We used MG94|REV [29] as our baseline codon model: it
combines a general time-reversible (GTR) model of nucleotide
substitution with separate synonymous (a) and non-synonymous
(b) rates. To facilitate reading, table 1 summarizes the properties of
each model.

Following Seoighe et al. [8] we add a directional selection
parameter vT to modulate the rate of substitutions to the target
residue T in the model assigned to foreground branches. If
AA(x) represents the amino-acid encoded by codon x, then the
instantaneous rates of change between codons i and j (i=j) are
given by:

Author Summary

When exposed to treatment, HIV-1 and other rapidly
evolving viruses have the capacity to acquire drug
resistance mutations (DRAMs), which limit the efficacy of
antivirals. There are a number of experimentally well
characterized HIV-1 DRAMs, but many mutations whose
roles are not fully understood have also been reported. In
this manuscript we construct evolutionary models that
identify the locations and targets of mutations conferring
resistance to antiretrovirals from viral sequences sampled
from treated and untreated individuals. While the evolu-
tion of drug resistance is a classic example of natural
selection, existing analyses fail to detect the majority of
DRAMs. We show that, in order to identify resistance
mutations from sequence data, it is necessary to recognize
that in this case natural selection is both episodic (it only
operates when the virus is exposed to the drugs) and
directional (only mutations to a particular amino-acid
confer resistance while allowing the virus to continue
replicating). The new class of models that allow for the
episodic and directional nature of adaptive evolution
performs very well at recovering known DRAMs, can be
useful at identifying unknown resistance-associated muta-
tions, and is generally applicable to a variety of biological
scenarios where similar selective forces are at play.

Table 1. Summary of models described in this manuscript.

Model Data Baseline model Site variation Lineage variation Selection test Citation

MEDS Codon MG94|REVa Fixed effects Episodic Directional This paper

FEEDS Codon MG94|REV Fixed effects Episodic Diversifying [14]b

DEPS Protein HIV-Betweenc Random effects Constant Directional [9]

EDEPS Protein HIV-Between Random effects Episodic Directional This paper

a[29].
bFEEDS has the same structure as a model called IFEL in that paper, but the use here is novel.
c[37].
doi:10.1371/journal.pcbi.1002507.t001

Episodic Directional Selection
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QF
i,j~

0,when i and j differ at more than one position, otherwise :

h(i,j)|a|pij when AA(i)~AA(j)

h(i,j)|bF |pij when AA(i)=T&AA(i)=T&AA(i)=AA(j)

h(i,j)|bF |vT|pij when AA(i)=T&AA(j)~T

h(i,j)|bF |1=vT|pij when AA(i)~T&AA(i)=T

8
>>>>>><

>>>>>>:

ð1Þ

for the foreground and

QB
i,j~

0,when i and j differ at more than one position, otherwise :

h(i,j)|a|pij when AA(i)~AA(j)

h(i,j)|bB|pij when AA(i)=AA(j)

8
><

>:
ð2Þ

for the background branches. We assume that a does not change
significantly between foreground and background branches.
Indeed, available evidence (e.g. [30–32]) suggests that synonymous
rate variation among sites is due to biological processes which
change slowly, e.g. RNA secondary structure, transcriptional or
translational efficiency, relative to the nearly instant change in the
selective environment due to the presence of ARV. In principle,

the model can readily handle such variation. bF and bB can be
inferred independently. h(i,j) is the GTR-based rate of the
underlying nucleotide substitution from codon i to j, shared

between QF and QB. Equilibrium frequency parameters pij are

derived with the corrected F3|4 estimator [33]. While the same
pij values are used for background and foreground models, when

vT=1 the equilibrium frequencies of QF will depart from those
dictated by pij , although we do not need to calculate these new

equilibrium frequencies explicitly. This feature is essential because
directional evolution changes the character frequencies at a site.
We also experimented with a version of the model where the factor
1

vT
in the last line of Equation 1 was omitted – this had essentially

no impact on the results. To ensure that Q defines a valid Markov
process generator, along the diagonal of Qwe set:

Qi,i~{
X

j,j=i

Qi,j : ð3Þ

Model fitting proceeds in two stages: (a) estimating the
parameters shared across sites, and (b) site-wise analysis [6,34].
The branch lengths and QF and QB, without the directional
component (i.e. vT~1), are first optimized over the entire
alignment to obtain gene-wide parameter estimates in the presence
of potentially ubiquitous purifying or diversifying selection. The
nucleotide rate parameters (h(i,j)) and relative branch lengths are
then fixed for subsequent analyses. From then, the analysis
proceeds site by site. We define the null model by setting vT~1, a
special case of the alternative directional model (vT is free to vary),
and equivalent to IFEL [14]. The null model has 3 free parameters
per site: a (synonymous substitution rate), bF (non-synonymous
substitution rate along foreground lineages) and bB (non-synon-
ymous substitution rate along backfround lineages). The alterna-
tive model has a single additional parameter, vT , biasing
substitutions towards T . To test for selection towards amino acid
T at a specific site, we obtain maximum likelihood scores for the
null and alternative models and perform a likelihood-ratio test
(LRT) with one degree of freedom based on the asymptotic x2

distribution of the likelihood-ratio statistic.
The above test treats nucleotide substitution rates and branch

length parameters at a single site as known, even though these are

estimated across sites under a simpler model. It is possible that this
could affect inference if these estimates were substantially biased.
Our simulations suggest that the test performs well in spite of this
computational shortcut, and using different models to infer these
parameters does not substantially affect the test results on the
empirical data we analyze here. Additionally, the x2 asymptotic
approximation implicit in MEDS relies on the intuition that when
the number of sequences increases, the number of branches in the
tree will increase, so that substitutions on those branches will
constitute different (although dependent) realizations of the
process. We note that the asymptotic approximation for our test
requires not only many branches but also many foreground
branches. While theoretical results justifying our use of the x2

approximation are currently lacking, our simulations (see below)
suggest that the use of the x2 appears to lead to a conservative test
for the conditions we have examined.

Scanning a site for selection towards any possible amino acid (T )
involves testing 20 hypotheses, and we employ Bonferroni
correction [35] to control the site-wise Type I error rate. For
computational efficiency, we skip invariant sites and restrict
potential values of T to those observed at a given site. Because
these reductions are informed by the data, we still employ the 20-
test Bonferroni correction at each site.

FEEDS
To assess the importance of the directional component of

MEDS, we adapt IFEL to test for episodic diversifying selection
along foreground branches and use it as a benchmark for
MEDS. As the branches of interest are mostly terminal, the
name, IFEL, is no longer appropriate, and we rename the
model FEEDS, for ‘Fixed Effects Episodic Diversifying Selec-
tion’. The alternative model for FEEDS is identical to the null
model for MEDS, allowing a, bF and bB to vary for each site.
To test for non-neutral selection along foreground branches, we
set up a null model with bF ~a, and use an LRT (one degree of
freedom) to determine whether the alternative model fits better
than the null model. If bF wa results in a significant likelihood
improvement, we have evidence for diversifying selection along
foreground branches. This test for episodic diversifying selection
has three features that distinguish it from the popular branch-
site model of Yang and Nielsen [12] and Zhang, Nielsen and
Yang [36]: 1) it uses a sitewise likelihood-ratio test [5], otherwise
known as a fixed effects likelihood [6] approach, 2) it allows site-
to-site synonymous rate variation, which has been shown to be
ubiquitous and can cause spurious detection of diversifying
selection if ignored [29] and 3) it allows diversifying selection on
the background branches in both the null and alternative
models. MEDS shares these properties, allowing us to attribute
any performance differences specifically to the directional
component of MEDS.

DEPS
Throughout the analyses we also compare our results against

DEPS (full results in tables S1 to S3), a method for detecting non-
episodic directional selection proposed by Kosakovsky Pond et al.
[9]. DEPS identifies sites with increased substitution rates towards
specific amino acids, but it differs from MEDS in three ways: 1)
DEPS models directional selection at the amino acid level rather
than the codon level, 2) DEPS uses a Random Effects Likelihood
(REL) framework to bias selection towards target amino acids
across all sites, relying on an empirical Bayes analysis to identify
sites of interest and 3) in DEPS, directional selection affects all
branches of the phylogeny.

ð1Þ

ð2Þ

Episodic Directional Selection
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Episodic DEPS
It is a straightforward exercise to modify DEPS to incorporate

the episodic nature of MEDS – namely, we restrict accelerated
substitutions towards a target residue T (and retard substitutions
away from it) to foreground branches, while background branches
always evolve according to the baseline protein substitution model
specific to HIV-1 [37]. The entire testing framework of DEPS, as
described in Kosakovsky Pond et al. [9], applies without change. It
is well known that amino acid substitution rates depend on the
residues involved (e.g. see [38]), and specifying a baseline model
which includes unequal substitution rates provides a qualitative
advance over MEDS. Conversely, because DEPS works with
protein sequences, the natural proxy of approximately neutral
evolution (the rate of synonymous substitutions) is not available.

All models and their accompanying LRTs are implemented in a
HyPhy Batch Language script [39], and all code and test datasets
are available on the MEDS section of the HyPhy wiki (www.
hyphy.org) and included in the latest HyPhy distribution (version
2.0020101225 or later).

Datasets
We analyzed three HIV-1 datasets obtained from the South

African mirror of the Stanford HIV Drug Resistance Database
(HIVdb) [40,41]. Synthetic datasets were generated by simulation
to investigate the power and false positive rate of MEDS. The
primary goal of this paper is to show that MEDS and EDEPS
perform well on medium-sized datasets constructed under a
variety of conditions. Every empirical dataset includes sequences
sampled from both treated and untreated patients, but we varied
the inclusion criteria from one dataset to the next. An ideal dataset
for detecting drug resistance would include pre- and post-
treatment samples from the same patients (as in our reverse
transcriptase dataset), but often such data are not available, e.g.
when sequences are obtained from patients experiencing regimen
failure. To evaluate the performance of MEDS and EDEPS when
pre- and post-treatment sequence pairs were not available (our
protease and integrate datasets), we selected pre-treatment
sequences using heuristic measures of proximity to the post-
treatment samples, as one would be forced to do under such
circumstances. Exactly which factors are responsible for perfor-
mance variation is left as a topic for future research. The objective
of each analysis was to detect sites (and corresponding amino
acids) that are involved in drug resistance. For validation, we used
the curated list of drug resistance associated mutations (DRAMs)
which is available from the Stanford HIVdb (http://hivdb.
stanford.edu). This list is produced every year and approved by
the International AIDS Society (http://www.iasusa.org/
resistance_mutations/). These mutations have been rigorously
validated with genotype-phenotype and genotype-clinical data and
are known to confer varying levels of resistance to one or more
antiretroviral agents – they can therefore be used as a ground truth
for evaluating the performance of our methods.

We screened each sequence for evidence of recombination
(known to have a biasing effect on selection detection, e.g. [42])
using SCUEAL [43] and excluded any sequences showing w90%
support for either inter- or intra-subtype recombination, and using
the Rega HIV-1 Subtyping tool Version 2.0 [44], excluding any
sequences with clear inter-subtype recombination.

Reverse transcriptase. The first dataset comprises pairs of
reverse transcriptase (RT) isolates obtained before and after the
initiation of highly active anti-retroviral therapy (HAART) from
241 patients (482 sequences). The data were obtained from the
Stanford HIVdb using a query that retrieved paired samples from
the same patient, filtered on the earlier sample being Reverse

Transcriptase Inhibitor (RTI) naive, and the later sample taken
during therapy with at least one Non-Nucleoside RTI (NNRTI)
and at least one Nucleoside RTI (NRTI). The topology of the
phylogeny was estimated using PhyML [45] (settings for all
datasets: REV model with tree search by Nearest Neighbor
Interchange and Subtree Pruning and Regrafting), and all
terminal branches leading to post-treatment sequences were
selected as foreground (see Figure S1). As an artifact of older
sequencing assays [14], a large number of sequences were missing
data at the beginning and end of RT, hence we analyzed the
region from codon 40 to 250. Six sequences were excluded from
our analyses because they displayed evidence of recombination.

Protease. A dataset consisting of 49 protease isolates (from 37
patients), sampled post-Protease Inhibitor (PI) treatment was
retrieved from HIVdb (query: Number of PIs = 3, Subtype = C).
Additionally, the entire collection of treatment naive protease
isolates was obtained, and all full length sequences were searched
for two sequences nearest (under the Hamming distance) to each
of the 49 post-treatment sequences. The final dataset was
constructed by combining the post-treatment and closely related
naive sequences: a total of 122 sequences, as some naive sequences
were closely related to more than one post-PI sequence. Since
protease is only 297 nucleotides long, we were concerned that
convergent evolution due to drug resistance might inflate the
apparent relatedness between some of the treatment resistant
sequences [46], hence we excluded the major resistance sites
before reconstructing the phylogeny, using PhyML. As there are
many instances where a number of post-treatment sequences were
sampled from a single patient, we adopted a recursive branch
labeling strategy for the internal branches. All terminal branches
leading to post-PI and PI-naive isolates were labeled as foreground
and background respectively, and internal branches were labeled

Figure 1. The maximum-likelihood phylogeny for the protease
dataset. Foreground branches are marked in red. All terminal
foreground branches lead to sequences obtained from patients who
had been receiving antiretroviral therapy. See text for details of how we
determined which internal branches were assigned to foreground.
MEDS and EDEPS allow the presence of a directional component along
the foreground branches where antiretroviral therapy exerts selective
pressure.
doi:10.1371/journal.pcbi.1002507.g001
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as foreground if both child branches were foreground, and
background otherwise (See figure 1). This labeling ensures that
drug resistance selection occurs only on foreground branches.
Because there may be portions of foreground branches not under
drug selection, the effect of potential mislabeling is to dilute the
signal along foreground branches and reduce the power of the test.
No sequences showed evidence of recombination.

Integrase. The post-treatment sequences for the final empir-
ical dataset were 83 integrase isolates sampled from 40 patients
after Integrase Inhibitor (II, Raltegravir) therapy. 1237 II-naive
isolates were obtained from the Stanford HIVdb, and the final
Raltegravir dataset was made up of 315 sequences: the 83 post-II
isolates, plus the union of the 25 II-naive isolates nearest to each of
the 83 post-II isolates under the HKY85 distance [47]. The
topology of the phylogeny was again estimated using PhyML, and
the foreground region was labeled in the same fashion as the

protease dataset (see Figure S2). 20 sequences were excluded for
showing evidence of recombination.

Power simulations. We investigated the power of MEDS
by simulating alignments over a balanced 64-taxon phylogeny
(see Figure S3 for an example). All parameters were varied (see
Text S1 for complete details). Of particular interest, we simulated
under 4, 8, 16 or 32 foreground branches and, selecting a
random target amino acid T for each site, the directional
selection parameter vT took values of 2, 5, 10, 100 and 1000.
These vT values are in a reasonable range: in our three empirical
datasets, the 25%, 50% and 75% percentiles of the maximum-
likelihood estimates of vT values for detected substitutions are
32:2, 629:9 and 5544:3. 400 sites were simulated for each vT

value, for each number of foreground branches, yielding 8000
simulated sites. To assist in understanding the effects of vT and
the size of the foreground subset, we also recorded the number of

Table 2. Sites under episodic directional and episodic diversifying selection in reverse transcriptase.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

41 L 0:00259 1937 (280.06) -e - NRTIf

62 V - - - 313 NRTI

64 K 0:00244 11:99 (5.58) 0:0067 -

77 L - - - 211 NRTI

98 S 0:00488 w1000 (w1000) - -

100 I v0:0001 w1000 (524.49) - w105 NNRTIg

102 ?h - - 0.0025 -

103 N v0:0001 629:9 (466.73) v0:0001 w105 NNRTI

104 Y 0:00244 w1000 (90.81) - -

115 F - - - 3110 NRTI

116 Y 0:00319 w1000 (179.80) - - NRTI

151 M v0:0001 w1000 (186.13) - w105 NRTI

151 Q 0:00023 13:96 (7.04) - -

162 S - - - 1772

165 L v0:0001 w1000 (w1000) - 2245

174 R - - - 105

181 I v0:0001 w1000 (118.72) - w105 NNRTI

184 V v0:0001 25:82 (16.68) - w105 NRTI

188 L v0:0001 377:93 (32.42) 0:0002 w105 NNRTI

188 Y v0:0001 17:61 (11.15) - -

190 S v0:0001 75:85 (26.09) - w105 NNRTI

200 ? - - v0:0001 -

215 F 0:00282 160:65 (10.36) - 2727 NRTI

215 T 0:00035 15:19 (6.69) - -

228 R 0:00029 72:2 (14.09) - 1401 NRTI accessory

230 L 0:00297 w1000 (44.6) - w105 NNRTI

245 ? - - 0.0006 -

286 A 0:00085 w1000 (w1000) - -

aMEDS versus FEEDS LRT, testing for directional selection.
bthe lower bound of the approximate 99% confidence interval calculated from profile likelihood.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e‘-’: not significant.
fNucleoside reverse-transcriptase inhibitor.
gNon-nucleoside reverse-transcriptase inhibitor.
h?: detected only by FEEDS which does not identify a target AA.
doi:10.1371/journal.pcbi.1002507.t002
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substitutions towards the target amino acid that occurred along
foreground branches.

In real evolving systems, the modeling assumption of selection
towards a single target amino acid could be violated. We
investigated how such deviations would impact the power of the
model by simulating directional selection towards two target
amino acids, with substitutions towards one target accelerated on 8
foreground branches, and substitutions towards another acceler-
ated on a different 8 foreground branches. The parameters were
varied in the same manner as the single-target power simulation,

and 1600 sites were simulated for each vT value, again yielding
8000 sites in total.

False positive simulations. We used exactly the same
simulation configuration and parameters to asses the rates of false
positives under the null model (vT~1). We simulated 400 sites for
each of 4, 8, 16 or 32 foreground branches.

In evolving proteins, each site could have its own site-specific
selective constraints governing amino acid distributions. MEDS
assumes that background equilibrium frequencies are the same for
all sites, and a potential concern is that deviations from this

Table 3. Sites under episodic directional and episodic diversifying selection in protease.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

10 ?e -f - 0.0005 - PIg accessory

12 T v0:0001 28:88 (8.58) - -

13 V 0:0059 490:2 (138) - 145 PI accessory

35 D 0:0035 8:56 (1.99) - -

54 ? - - 0.0026 - PI

60 E v0:0001 w1000 (w1000) - - PI accessory

61 E v0:0001 w1000 (w1000) - -

71 V - - 0.0011 257 PI accessory

74 S 0:0007 19:93 (4.08) 0.0013 - PI accessory

82 A - - v0:0001 w105 PI

84 V 0:00798 890:3 (248.19) - w105 PI

90 M v0:0001 w1000 (986.17) v0:0001 w105 PI

93 L 0:0078 w1000 (6.36) - - PI accessory

aMEDS versus FEEDS LRT, testing for directional selection.
b99% lower confidence interval calculated from the likelihood profile.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e?: detected only by FEEDS which does not identify a target AA.
f‘-’: not significant.
gProtease inhibitor.
doi:10.1371/journal.pcbi.1002507.t003

Table 4. Sites under episodic directional and episodic diversifying selection in integrase.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

72 I 0:0095 w1000 (533.76) -e - INIf accessory

97 A 0:0028 337 (105.52) v0:0001 w105 INI accessory

140 S v0:0001 w1000 (w1000) 0:0003 w105 INI

143 R 0:0015 23:5 (3.83) v0:0001 w105 INI

148 H v0:0001 35:5 (14.53) v0:0001 w105 INI

155 H v0:0001 w1000 (w1000) 0:0006 w105 INI

163 R - - - 1143 INI accessory

221 Q - - - 107

227 ?g - - 0.0064 -

230 ? - - 0.0048 - INI accessory

aMEDS versus FEEDS LRT, testing for directional selection.
b99% lower confidence interval calculated from the likelihood profile.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e‘-’: not significant.
fIntegrase inhibitor.
g?: detected only by FEEDS which does not identify a target AA.
doi:10.1371/journal.pcbi.1002507.t004
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modeling assumption could lead to excessive false positives. To
investigate this, we simulated data under a version of the null
model where each site’s amino acid equilibrium frequencies were
sampled from a symmetric Dirichlet distribution with density

f (qp; a)* P
20

p~1
qa{1

p ð4Þ

The concentration parameter a took values 0.005, 0.05, 0.5 and 5,
varying the equilibrium frequency distributions from extremely
peaked to relatively flat. Each sampled amino-acid frequency qp

was evenly distributed among all codons encoding p and a version

of QB with the Goldman-Yang parameterization of equilibrium
frequencies [4] was employed to simulate codon sequence data.

Results

Reverse transcriptase
MEDS detected twenty substitutions at seventeen sites under

significant directional selection at pƒ0:01, after correcting for
multiple tests (see tables 2 and S4). Of these, five are known NRTI
drug resistance associated mutations (DRAMs) (41L, 116Y, 151M,
184V and 215F) and six are known NNRTI DRAMs (100I, 103N,
181I, 188L, 190S and 230L). Additionally, 228R is listed as an
accessory NRTI mutation. The eight detected substitutions that
have not been experimentally or clinically associated with drug
resistance are 64K, 98S, 104Y, 151Q, 165L, 188Y, 215T and
286A. Interestingly, at three of these sites (151, 188 and 215)
selection was detected both towards the wildtype and towards
resistant residues. EDEPS agreed with MEDS on eleven sites,
detected additional DRAMs 62V, 77L and 115F, missed two
MEDS-reported DRAMs (41L and 116Y), and found episodic
selection at 162S and 174R which are not known to confer drug
resistance.

Remarkably, FEEDS detected only six sites under diversifying
selection (table S5), two of which are known resistance mutations,
strongly supporting the inclusion of a directional component in the
model. A continuous directional selection model (DEPS) detected
46 sites under directional selection with Bayes factors w100 (see
table S1), only ten of which are on the HIVdb list. This indicates
that focusing our attention on branches where the evolutionary
environment shifts is advantageous for finding evidence of
adaptive response to such shifts.

Protease
MEDS detected nine substitutions under directional selection at

pƒ0:01 (tables 3 and S6). Of these, two are major DRAMs (90M
and 84V). Three are accessory polymorphic mutations (13V, 60E
and 93L) under selective pressure from the drugs. 74S is a non-
polymorphic accessory mutation. EDEPS agreed with MEDS on
three (13V, 84V and 90M), detected one more major mutation,
82A, and an accessory mutation at 71V. Interestingly, 60E and
61E found by MEDS involve substitutions (D?E and Q?E)
which, in HIV, are much more frequent than the mean
substitution rate [37]. Because MEDS sets the background rate
of non-synonymous substitutions to the same value for all pairs of
residues, it could use vT to compensate for the overall underes-
timation of rates that are much greater than the mean rate.

FEEDS identified six sites involved in diversifying selection
(table S7), with all six listed on HIVdb. In addition to two sites
already detected by MEDS (74 and 90), sites 10 and 71 are listed
as accessory mutations, while 54 and 82 are major resistance
mutations. DEPS appeared to be much more conservative on this

dataset, detecting four sites under directional selection, two of
which are listed on HIVdb (see table S2).

Integrase
MEDS detected six substitutions under significant directional

selection at the 1% level (see tables 4 and S8). Four (140S, 143R,
148H and 155H) appear on the HIVdb list of mutations associated
with a w5{10 fold decrease in Raltegravir susceptibility. Two are
listed as mutations selected by Raltegravir (72I and 97A). EDEPS
confirmed five DRAMs (97A, 140S, 143R, 148H and 155H),
together with a 163R accessory substitution and a 221Q mutation
which is not a known DRAM.

FEEDS found seven sites under diversifying selection (table S9),
six of which are known resistance mutations. 230 is the only
correctly identified resistance site in the integrase dataset that is
detected as being under diversifying selection by FEEDS, but not
directional selection by MEDS. 230 R and N are listed as selected
by Raltegravir. DEPS detected 39 substitutions under directional
selection (see table S3), nine of which appear on the HIVdb list.

Comparing methods
Comparing the fit of FEEDS and MEDS on known resistance

sites in all three datasets, LRTs reject a null model of FEEDS in
favor of MEDS on 24 sites, with FEEDS being favored on five
(four from protease and one from integrase). Note that FEEDS
might still be useful for detecting these sites, but the LRT
demonstrates that MEDS is a better model of the process. This
suggests that episodic directional selection is, in most cases, a
better characterization of the evolution of drug resistance. Overall,
FEEDS detects fourteen true positives, while MEDS and EDEPS
detect 24 each (although not the same 24). Where FEEDS appears
to have a reasonably low rate of false positives but misses a large
number of true positives, DEPS detects a large number of true
positives but with a very high false positive rate. This is expected as
DEPS will detect substitutions under selection along background
branches that are not related to drug resistance.

Power simulations
The power of MEDS, like that of other codon methods, strongly

depends on the information content of the sequences, specifically
on the number of times that substitutions toward the target occur
along the foreground lineages. For example, even when vT is
1000, no substitutions towards T occur on half the sites simulated
on the phylogeny with sixteen foreground branches. The primary
reason for this is that vT affects only the instantaneous substitution
rate from a codon to its direct neighbors; if none of the direct

Table 5. Single target power simulations: power as a function
of vT .

# FG
branches vT

2 5 10 100 1000

4 0 (8)a 0 (16) 0 (37) 0.31 (110) 0.79 (155)

8 0 (11) 0 (18) 0.04 (62) 0.51 (129) 0.73 (170)

16 0 (31) 0.018 (54) 0.036 (83) 0.59 (177) 0.71 (201)

32 0.02 (62) 0.03 (71) 0.16 (116) 0.68 (223) 0.80 (282)

aNumbers in brackets are the number of times at least one substitution towards
the target occurred along foreground branches: i.e. the denominator for the
proportion of detections.
doi:10.1371/journal.pcbi.1002507.t005
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neighbors of T are visited along a foreground branch, a change in
vT will not affect the process.

Hence, we tabulate MEDS results only for sites with at least one
substitution towards the target on any foreground branch. Table 5
shows that the power is positively correlated with vT . MEDS
appears to be quite powerful, even when the number of
foreground branches is small, achieving, for example, 51% power
with vT~100 with only eight foreground branches. Table 6
displays the power of MEDS conditioned on the number of
substitutions towards the target on foreground branches. With
only one substitution there is almost no power, but moderate
power (&30%) occurs with two substitutions towards T , and with
five or more substitutions towards T , the power is almost 100%.

For data simulated with two target residues, each on eight
foreground branches, the occurrence of at least one substitution
towards both targets is infrequent. From 4800 sites simulated with vT

values of 2, 5 and 10, this occurs only 58 times, and is never detected.
From 1600 sites simulated with vT~100 for both targets, substitutions
to both targets occur 174 times. MEDS detects substitutions to at least
one target in 47% of such sites, but only detects substitutions to both
targets in 5% of such sites. With vT~1000, we see 306 of 1600 sites
with substitutions to both targets, and MEDS detects substitutions to at
least one target in 86% of these sites, and to both targets in 31%.

Table 7 shows how the power increases with the number of
substitutions towards both targets on the foreground branches.
Since there too many possible combinations and too few
observations, we display power in a cumulative manner (i.e. §N
substitutions towards both targets).

False positive simulations
MEDS behaves conservatively. With data simulated under the

null model, far fewer sites are identified as under episodic
directional selection than would be expected from the nominal
p-value thresholds. Across all four foreground configurations, only

one false positive detection (pv0:01, with Bonferroni correction)
occurs on the 32 foreground branch phylogeny, and none on the
others. With pv0:05, with 4, 8, 16 and 32 branches, we have false
positive rates of 0, 0.0025, 0.0075 and 0.01; with pv0:1, we have
0.005, 0.005, 0.0125 and 0.02, respectively. This is most likely due
to FEL methods being generally conservative [6] as well as the
conservative nature of Bonferroni correction. The effect of the
correction is compounded because increasing the frequency of one
amino acid reduces the frequency of the others, and thus the
twenty tests are not independent. Table 8 shows the false positive
rate for alignments simulated under site specific equilibrium
frequencies. MEDS is still conservative under this scenario, and
the false positive rates do not appear to be influenced by the
concentration parameter.

Discussion

We have proposed a codon (MEDS) and a protein (EDEPS)
model of episodic directional selection, and demonstrated their
performance on three HIV-1 datasets, where drug-induced
directional episodic selection is expected to operate. We have also
proposed a model of episodic diversifying selection (FEEDS), to
rigorously evaluate the importance of modeling the directional
component of natural selection. As expected, on all datasets, our
episodic directional tests strongly outperform a test for continuous
directional selection (DEPS) for detecting drug resistance sites. The
assumptions of DEPS are inappropriate for the analysis of episodic
selection, where selection is limited to specific regions of the
phylogeny, because DEPS assumes uniform selection over the
whole phylogeny. This serves as a caution against using
suboptimal models, rather than a criticism of DEPS.

We tested MEDS with extensive simulations. MEDS is a
conservative test, even when strong constraints on the amino acid
state space are introduced in the form of site-specific equilibrium
frequencies. Under the alternative model, good power is achieved
even when relatively few substitutions towards target amino acids
take place along foreground branches. When we deviate from the
alternative model and elevate the substitution rate towards several
target residues, the power to detect both targets is lower than it
would be assuming independence. This reduction in power is

Table 7. Dual target power simulations: power as a function of number of substitutions to two target AAs.

Substitutions to both targetsa: §1 §2 §3 §4 §5 §6 §7 ~8

MEDS detects at least one target: 0.64 0.81 0.89 0.92 0.95 0.98 1 1

MEDS detects both targets: 0.19 0.36 0.48 0.52 0.63 0.76 0.78 0.81

Total sites: 538 288 214 179 132 99 69 32

aSubstitutions along foreground branches. Each target has 8 foreground branches along which changes towards it were accelerated.
doi:10.1371/journal.pcbi.1002507.t007

Table 6. Single target power simulations: power as a function
of number of substitutions to target AA along foreground
branches, pooling over vT .

# FG
branches # substitutions to target AA

0 1 2 3 4 §5

4 0 (1674)a 0 (119) 0.2 (58) 0.77 (48) 0.99 (111) N/A

8 0 (1610) 0 (146) 0.23 (53) 0.69 (26) 1 (21) 0.99 (144)

16 0 (1454) 0 (200) 0.34 (92) 0.49 (39) 0.79 (34) 0.97 (181)

32 0 (1246) 0.03 (234) 0.4 (107) 0.41 (70) 0.70 (46) 0.97 (297)

aNumbers in brackets are the number of times that many substitutions towards
the target occurred along foreground branches: i.e. the denominator for the
proportion of detections.
doi:10.1371/journal.pcbi.1002507.t006

Table 8. False positives with site specific equilibrium
frequencies as a function of the concentration parameter a
and the nominal p-value of the test.

a parameter: 0.005 0.05 0.5 5

p~0:01 0.005 0.0025 0.0025 0.0075

p~0:05 0.02 0.0175 0.02 0.015

p~0:1 0.0325 0.0325 0.035 0.0375

doi:10.1371/journal.pcbi.1002507.t008
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expected: as the number of targets along foreground branches
increases, the directional nature of the process is lost.

Hughes [48] argues that diversifying selection is only appropri-
ate for modeling pathogen-host co-evolution, and that the
constantly shifting environment is required for the standard
diversifying selection model to be appropriate. Our results
highlight that models of diversifying selection also serve as
reasonable approximations in instances where selective constraints
allow escape to many different residues, such as codon 54 in
protease, which has V, T, A, L and M as major drug resistant
residues. However, at most sites conferring drug resistance,
directional models better approximate reality – positive selection
acts only on one or a few specific mutations, while the rest are
suppressed by purifying selection. The simulations presented in
Table 7 illustrate how much power MEDS can be expected to
have in cases such as site 54 in protease. This example also
suggests a future extension of MEDS, where instead of considering
one target residue at a time, substitution rates could be elevated
towards classes of target residues.

Another interesting property of directional models is exempli-
fied by a substitution in the protease dataset. 93L is a polymorphic
mutation selected for by protease inhibitors. Despite L already
being the most common residue in subtype C, the model detects
selective pressure towards it – the proportion of L residues is
indeed lower in nave sequences. At the population level this
appears as purifying selection: the most common amino acid
increases in frequency. This is nevertheless detected by our test.
Far from being problematic, such information could be useful for
directing treatment, if it turns out that patients with I at position
93 are more susceptible to PI therapy. Such observations should,
of course, be directly verified with clinical data.

There are clear differences in organism-wide amino acid
exchangeabilities in HIV-1 [37], yet the null model of MEDS
(and the vast majority of other codon-models) posit that the non-
synonymous substitution rate does not depend on the residues. We
evaluated the effect of this assumption by comparing MEDS with
an episodic version of DEPS – a test that specifically incorporates a
heterogeneous exchangeability matrix in the evolutionary model.
With a few exceptions, MEDS and EDEPS return overlapping sets
of directionally evolving residues and identify the same targets.
There are several sites in protease and integrase, where MEDS
may be misclassifying non-uniform exchangeabilities as directional
selection, hence another extension of MEDS would be to
incorporate multiple non-synonymous substitution rates [38].

MEDS and EDEPS were designed with HIV-1 drug resistance
in mind, but should be applicable wherever episodic directional
selection occurs along multiple lineages. To use the models, two
specific conditions must be met: 1) Lineages expected to be under
directional selection must be known a priori, at least approximately.
This is necessary to partition the phylogeny into foreground and
background regions. 2) A rich collection of background sequences
are needed. With HIV-1, this translates to requiring treatment
naive sequences. Variety in these sequences is also important. If all
the background sequences were so closely related that the
foreground and background regions were separated by a single
branch, if would be difficult to separate directional selection from
founder effects, which would result in a loss of power. If the
background sequences are spread about the phylogeny, however,
founder effects are rendered unlikely and the test for directional
selection should be well powered.

With HIV-1 drug resistance datasets, the foreground labeling
strategy might prove important. On the RT dataset, branch-
labeling was straightforward, as we had access to pre-treatment
sequences for each patient. This is not the case for most real-world

datasets, and other approximate labeling schemes, as well as the
robustness of the results to these differences, should be investigated.

Another consideration is the rooting of the tree. With directional
models, the expected amino acid frequencies change across the
phylogeny, and the position of the root becomes important [9].
With MEDS and EDEPS, the directional component only affects
foreground branches. Consequently, the tree can be rooted on any
background branch and the likelihood will be unaffected [49].

Amidst growing concerns about an epidemic of circulating drug
resistant HIV-1, the WHO and SATuRN are recommending a
scale-up of drug resistance surveillance [41,50]. This is to ensure the
long-term success of the world’s largest antiretroviral treatment
programs, located in Africa. We see improved models of the
sequence evolution playing a role in characterizing local differences
in treatment resistance patterns, perhaps driven by different
treatment regimens, adherence and transmission dynamics, and
possibly identifying new resistance mutations.
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Abstract

Model-based selection analyses (such as those performed by PAML and HyPhy) often model the
site-to-site variation in selection parameters as a random e↵ect. Due to computational limitations,
these methods are restricted to using a relatively small number of discrete rate categories, placing
unrealistic constraints on the distribution of selection parameters over sites. Such methods are also
prohibitively slow for large alignments. We present an approximate hierarchical Bayesian method that
allows rich, flexible site-to-site variation, which improves the statistical performance of the method,
while still detecting selection much faster than current methods.

By exploiting some commonly used approximations, our Fast Unconstrained Bayesian AppRoxi-
mation (FUBAR) can accurately identify positive and purifying selection orders of magnitude faster
than existing random e↵ects methods and 3 to 20 times faster than fixed e↵ects methods (with the
disparity increasing for larger alignments). We introduce a fast Markov chain Monte Carlo (MCMC)
routine that allows a flexible distribution over the selection parameters to be specified, with no para-
metric constraints on the shape of this distribution. This flexible distribution allows information
to be shared between sites, yielding greater power to detect positive selection than that of fixed ef-
fects methods, but without the potential bias introduced by the overly restrictive distributions used
by current random e↵ects models. We demonstrate the utility of these computational speedups by
analyzing selection on a large influenza haemagglutinin dataset (3142 sequences).

FUBAR is available as a batch file within the latest HyPhy distribution, as well as on the Data-
monkey web server (http://www.datamonkey.org/)

1 Introduction

When natural selection has driven adaptive change throughout the evolutionary history of a group of
related organisms, a detectable trace of this adaptation may be left upon their protein coding sequences,
courtesy of the structure of the genetic code: the relative rate of non-synonymous substitutions at some
sites may be inflated beyond that of the synonymous rate. This is called positive selection. Conversely,
purifying selection - where mutations that modify the protein are less likely to go to fixation - causes
the non-synonymous rate to be smaller than the synonymous rate. While purifying selection is pervasive
(conserving useful protein structures), positive selection is usually more interesting, pointing to host-
pathogen co-evolution (Hughes and Nei, 1988) or adaptation to environmental changes (Messier and
Stewart, 1997).

This paper revisits the problem of site-to-site variation in selection intensity. Two codon model-
based (Muse and Gaut, 1994; Goldman and Yang, 1994) techniques have dominated the literature: fixed

⇤
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and random e↵ects. Fixed e↵ects approaches (Kosakovsky Pond and Frost, 2005) to detecting sites
evolving under selection make no assumptions about how the selection coe�cients ↵ (the synonymous
rate) and � (the non-synonymous rate) are distributed over sites, having two free parameters per site.
Computationally e�cient estimation of site-specific ↵ and � parameters requires that the topology and
branch proportions of the tree be fixed in advance, usually estimated under a simpler model.

Random e↵ects models (Nielsen and Yang, 1998; Pond and Muse, 2005), on the other hand, explicitly
model a distribution over ↵ and �, under the assumption that each site is an independent and identically
distributed draw from this distribution. The parameters that control the distribution are shared across all
sites, so the model uses a smaller number of parameters than fixed e↵ects models. This comes at the cost
of flexibility, since a form for this distribution must be specified. For computational tractability, discrete
distributions are used, where ↵ and � can take a small number of values. The computational complexity
of the likelihood calculation increases linearly with the number of categories, so the discretization is often
quite coarse. As we show in section 3.3, overly coarse distributions can mislead inference.

On the one hand, fixed e↵ects models make no assumptions about the distribution of the selection
parameters over sites, so ↵ and � can take any value, but evidence from one site cannot inform our
expectations regarding another. On the other hand, random e↵ects models - which do allow such sharing
of information between sites - are forced, by computational considerations, to make overly restrictive
assumptions and overly coarse discretizations of the parameter space, so ↵ and � are restricted to be one of
a small number of categories. Where the restrictive assumptions are relaxed, a substantial computational
cost is incurred (Huelsenbeck et al., 2006).

We propose FUBAR (a Fast Unconstrained Bayesian AppRoximation), which exploits a collection of
computational shortcuts to speed up the detection of positive (or purifying) selection. Like the fixed e↵ects
method of Kosakovsky Pond and Frost (2005), FUBAR estimates the branch proportion parameters and
nucleotide substitution rates using a nucleotide model, and fixes these parameters for the subsequent
selection analysis. The key contribution of FUBAR is that, with these parameters estimated in advance,
one can e�ciently precompute a dense “grid” of conditional likelihoods - the probability of the data at
each site given particular values for ↵ and �. Approximate site specific inference - whether frequentist
likelihood ratio tests, random e↵ects empirical Bayes, or fully hierarchical Bayes - can then be performed
e�ciently on this grid of precomputed conditional likelihoods.

With the substantial computational saving a↵orded by a precomputed grid, far more complex models
of site-to-site variation may be considered. The default settings for FUBAR, for example, recommend 400
categories for ↵,�, compared to 9 for the random e↵ects approach in Pond and Muse (2005). To handle the
statistical complexity required by a models with a large number of categories, we employ a hierarchical
Bayesian approach with a Dirichlet hyperprior over p(↵,�), and we integrate over the uncertainty in
p(↵,�) using Markov Chain Monte Carlo (MCMC). This hierarchical Bayesian approach should be far
less vulnerable to model misspecification than approaches that assume a small number of categories or a
parametric form for the distribution of ↵,�, while at the same time avoiding over-parameterization, since
the uncertainty in the parameters is marginalized out.

Despite this model complexity, the precomputed conditional likelihood grid allows FUBAR to run
orders of magnitude faster than current fixed and random e↵ects approaches. With such a large number
of ↵,� categories, FUBAR combines the site-to-site flexibility enjoyed by fixed e↵ects methods with
the ability to share information across sites enjoyed by random e↵ects methods, at a fraction of the
computational cost of either. This allows the analysis of very large datasets that would otherwise be
intractable using model based methods. See table 1 for a summary of the trade-o↵s and gains made by
FUBAR compared to other methods: fixed e↵ects, exemplified by FEL, HyPhy’s two rate fixed e↵ects
method (Kosakovsky Pond and Frost, 2005), and random e↵ects, exemplified by REL, HyPhy’s two rate
random e↵ects method (Pond and Muse, 2005).
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Table 1: Trade-o↵s made by di↵erent approaches to accommodate variation from site to site.
Random e↵ects Fixed e↵ects FUBAR

Flexible variation of ↵,� No Yes Yes
Shares information across sites Yes No Yes
T and N from full model Yes No No
Computational e�ciency Poor Moderate Excellent

2 Methods

Following Muse and Gaut (1994), we model the process for a particular branch at a site as an instantaneous
rate matrix, Q = {q

ij

}, with elements that describe the rate of substitution of codon i with codon j:

q

ij

(↵,�,⇧,N ) =

8
>>><

>>>:

↵⇡

ij

n

ij

, �(i, j) = 1, AA(i) = AA(j),
�⇡

ij

n

ij

, �(i, j) = 1, AA(i) 6= AA(j),
0, �(i, j) > 1,
�

P
k 6=i

q

ik

, i = j.

(1)

�(i, j) counts the number of nucleotide di↵erences between codons i and j. ↵ and � parameterize
the rates of synonymous and non-synonymous substitutions respectively. n

ij

(comprising N ) are the
nucleotide mutational biases, which we model using the 5-parameter general time reversible nucleotide
model (GTR; Tavaré, 1986). ⇡

ij

(comprising ⇧) denote the equilibrium frequency parameters.
We denote a phylogenetic tree T , specifying both the tree topology and, for every branch b, a branch

length parameter, t

b

. The probability of changing from codon i to j at a site along branch b in time
t

b

, is recorded in the corresponding element of the transition matrix e

Qtb . The likelihood of observing
the site given the model parameters is calculated using the Felsenstein’s pruning algorithm (Felsenstein,
1981). The goal of a selection analysis is to infer values for ↵ and � for each site, and provide a measure
of evidence for the hypotheses that ↵ > � or ↵ < �.

2.1 Random E↵ects models

2.1.1 Calculating the likelihood.

The model used by FUBAR requires that the synonymous and non-synonymous rates vary across sites.
To achieve this, we follow Pond and Muse (2005) and treat ↵ and � as random e↵ects, specifying a
distribution from which they are drawn, and we integrate over that distribution to calculate the marginal
likelihoods. For computational tractability these distributions are discrete. Furthermore, the sites are
assumed to evolve independently, with the overall likelihood being the product of the site likelihoods.
Thus, if x

i

denotes the i

th site of the alignment X, then the overall likelihood can be calculated as

p(X|T ,⇧,N , ✓) =
Y

i

X

↵,�

p(x
i

|↵,�, T ,⇧,N )p(↵,�|✓) (2)

where p(↵,�|✓) specifies the probability of each (↵,�) combination, and ✓ is a set of parameters
governing this distribution.

2.1.2 Site-specific inference.

If we had a fixed phylogeny with branch lengths, T̂ , fixed equilibrium frequencies, ⇧̂, fixed nucleotide
rates, N̂ , as well as a fixed prior distribution, p(↵,�|✓̂), then we could calculate the site-specific posteriors
using Bayes theorem:
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p(↵,�|x
i

, T̂ , ⇧̂, N̂ , ✓̂) =
p(x

i

|↵,�, T̂ , ⇧̂, N̂ )p(↵,�|✓̂)X

↵,�

p(x
i

|↵,�, T̂ , ⇧̂, N̂ )p(↵,�|✓̂)
(3)

The posterior probability that positive selection occurred at a site is the total probability where � > ↵:

p(� > ↵|x
i

, T̂ , ⇧̂, N̂ , ✓̂) =
X

�>↵

p(↵,�|x
i

, T̂ , ⇧̂, N̂ , ✓̂) (4)

and Bayes factors can be calculated straightforwardly:

BF (i) =
p(�>↵|xi,✓̂)

1�p(�>↵|xi,✓̂)

p(�>↵|✓̂)

1�p(�>↵|✓̂)

(5)

The empirical Bayes approach would optimize the likelihood function, obtaining maximum likelihood
estimates of all parameter values. Evidence for selection at each site is then calculated using the Bayesian
inference machinery, ignoring uncertainty in the parameter estimates. FUBAR seeks to estimate models
with a large number of ↵ and � categories, and with no constraints on the shape of the distribution
over these categories, which renders empirical Bayes both computationally intractable and statistically
unsound. FUBAR thus turns to approximate hierarchical Bayes, exploiting heuristics to make the esti-
mation of such complex models not just computationally tractable and statistically robust, but fast as
well.

2.2 Recycling conditional likelihoods

To prevent having to recalculate the conditional likelihoods, p(x
i

|↵,�, T ,⇧,N ), we fix all parameters
that would a↵ect them in advance. The equilibrium frequency parameters, ⇧̂, are estimated directly
from the sequence data, using a counting approach (Kosakovsky Pond et al., 2010). The nucleotide
substitution rates, N̂ , and the tree topology and branch proportion parameters, T̂ , are fixed at the
maximum likelihood estimates under a nucleotide model.

To construct a distribution over the selection parameters, both the values of ↵ and � and their
associated probabilities, p(↵,�|✓), must be specified. Random e↵ects models typically parameterize the
values of ↵ and � as a function of ✓, so their ‘locations’ move during optimization. We avoid this by fixing
the locations of ↵ and �, and modify the distribution by varying the weights, p(↵,�|✓). With a coarse
grid this would be problematic, but as the grid resolution increases, the ability to move the category
locations becomes irrelevant. The appropriateness of these computational simplifications is dealt with
further in the Discussion section.

The value of each conditional likelihood p(x
i

|↵,�, T ,⇧,N ) depends on the values of ↵ and �, the
branch lengths, the equilibrium frequencies, and the nucleotide model. Every time existing random e↵ects
methods compute the marginal likelihood for a specific set of parameter values, the conditional likelihoods
need to be calculated for every value of ↵ and � for each site, often ruling out the use of random e↵ects
models on large alignments. Our approach exploits the fact that, if we use all three shortcuts described
above to estimate the branch proportions T̂ , nucleotide substitution rates N̂ , and equilibrium frequencies
⇧̂ in advance, and we use fixed positions of ↵ and � for modeling our selection parameters, then the
conditional likelihoods p(x

i

|↵,�, T̂ , ⇧̂, N̂ ) only need to be computed once, rather than every time we
compute the marginal likelihood. As can be seen in equation 2, with these precomputed conditional
likelihoods, the marginal likelihood is now dependent only upon the probability masses of each ↵ and �

pair, p(↵,�|✓), and can thus be computed very quickly, reduced to matrix algebra. This is much faster
than recalculating all the conditional likelihoods each time, and allows us to consider models with a much
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finer discretization of the selection parameter space than existing random e↵ects methods, in a fraction
of their runtimes.

2.3 Dirichlet hyperprior

The distribution of the selection parameters ↵ and � will di↵er from one gene to another, and needs to be
informed by the data, so we cannot fix it in advance. Nor do we want to assume some parametric form
for the distribution, since that limits the flexibility of the method, and could bias inference. Further,
estimating 400 category weights as free parameters by maximum likelihood would be overparameterized,
so the naive empirical Bayes approach is unhelpful here. Instead, we adopt an approximate hierarchical
Bayesian approach (also called Bayes empirical Bayes; Yang, Wong and Nielsen, 2005) and integrate over
the uncertainty in the category weights.

To achieve this, we introduce a distribution over our ↵,� grid that does not assume any parametric
form, letting each of the ↵,� categories have a separate weight (for a k ⇥ k grid, we can represent each
distribution over ↵ and � by the k

2-vector  = ( 1,1, 1,2, ..., k,k�1, k,k

) where  
i,j

is the weight of
the i-th ↵, j-th � category). In general  will have a very large number of dimensions, so we cannot
straightforwardly evaluate the integral. Instead we assume a symmetric Dirichlet hyperprior distribution
over  , and use MCMC to drawn samples from an approximate the posterior distribution.

2.4 MCMC sampling

To perform the MCMC sampling, we implemented the Metropolis algorithm in HyPhy. We begin in a
random initial state, where all of the  

i,j

are drawn from the Dirichlet hyperprior. To propose a change
to  , we first randomly pick two elements (uniformly). We sample our perturbation from a uniform
distribution between 0 and 0.01, and add this to the first element and subtract it from the second.

To decide whether to accept or reject a proposed state, we draw a from a uniform (0,1) distribution,
and accept the state when:

a <

p(X| t+1)p( t+1)
p(X| t)p( t)

(6)

where the p( ) values are obtained from the Dirichlet distribution, and p(X| ) is just the likelihood
(equation 2), but calculated from our precomputed conditional likelihoods using matrix multiplication.
The resulting MCMC chain can be computed extremely e�ciently, completing millions of iterations in a
few minutes, which is su�cient to produce almost identical site posteriors on separate runs.

The full hierarchical Bayesian calculation of site-specific posterior distributions over ↵,� would require
running a separate MCMC chain for each site, leaving out the contribution of the data at that site when
estimating the site-specific prior over ↵,�. That site-specific prior estimated from all the other sites
would then be used to compute the site posterior distribution over ↵,�. However, as the number of sites
increases, the e↵ect of leaving out a single site diminishes, and so, as a further approximation, we run a
single chain for all sites.

We asses MCMC convergence using potential scale reduction factors (PSRFs) and e↵ective sample
size (Gelman et al., 2003) computed for the posterior probabilities of positive selection for each site.
For all datasets tested, an MCMC chain length of 2⇥ 106 with the first half discarded as burn-in yields
good convergence (assessed by running 10 MCMC chains in parallel from random starting positions) with
PSRFs close to 1 and e↵ective sample sizes over 100 for most sites.
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Table 2: Comparative performance of FEL and FUBAR on simulated data. The rate of false positives
(FP) and power are reported for a fixed nominal test p-value of 0.05 for FEL, and a posterior threshold
of 0.9 for FUBAR. To achieve a fair comparison between tests with di↵erent measures of evidence, power
is also shown for the p-value or posterior threshold that achieves FP of 0.05, estimated empirically from
the distribution of p-values or posteriors on the subset of sites evolving neutrally.

Simulation FP : Power Power at FP= 0.05
FEL FUBAR FEL FUBAR

Encephalitis virus env
!

+ = 1.25 0.01:0.03 0.00:0.01 0.04 0.10
!

+ = 1.5 0.00:0.03 0.00:0.02 0.09 0.14
!

+ = 1.75 0.00:0.03 0.00:0.04 0.08 0.17
!

+ = 2 0.00:0.05 0.00:0.07 0.13 0.24
!

+ = 3 0.00:0.09 0.00:0.20 0.19 0.38
!

+ = 5 0.00:0.19 0.00:0.44 0.34 0.60
!

+ = 8 0.00:0.28 0.00:0.60 0.50 0.74
!

+ = 12 0.00:0.34 0.00:0.67 0.54 0.82
!

+ = 16 0.00:0.38 0.00:0.77 0.63 0.85
Vertebrate Rhodopsin
!

+ = 1.25 0.01:0.07 0.00:0.04 0.07 0.12
!

+ = 1.5 0.01:0.08 0.00:0.08 0.08 0.18
!

+ = 1.75 0.01:0.13 0.01:0.15 0.14 0.26
!

+ = 2 0.01:0.19 0.01:0.27 0.13 0.37
!

+ = 3 0.01:0.32 0.01:0.57 0.34 0.59
!

+ = 5 0.01:0.48 0.01:0.80 0.51 0.88
!

+ = 8 0.01:0.67 0.01:0.96 0.74 0.98
!

+ = 12 0.00:0.71 0.00:0.99 0.80 1.00
!

+ = 16 0.00:0.76 0.00:0.99 0.88 1.00
Camelid VHH
!

+ = 1.25 0.01:0.11 0.01:0.09 0.06 0.09
!

+ = 1.5 0.02:0.19 0.01:0.20 0.14 0.21
!

+ = 1.75 0.01:0.34 0.01:0.42 0.26 0.53
!

+ = 2 0.01:0.51 0.01:0.60 0.48 0.62
!

+ = 3 0.01:0.74 0.01:0.74 0.64 0.78
!

+ = 5 0.01:0.93 0.01:0.95 0.93 0.97
!

+ = 8 0.01:0.98 0.01:0.99 0.98 0.99
!

+ = 12 0.01:0.97 0.01:1.00 0.97 1.00
!

+ = 16 0.02:0.99 0.03:1.00 0.99 1.00

3 Results

3.1 Power and false positive rates

To assess the statistical properties of FUBAR, we compared power and false positive rates between
FUBAR and FEL, using a collection of simulated alignments where the values for ↵ and � varied from
one site to another. The data were simulated over phylogenies estimated from 3 empirical datasets of
varying size: 23 Encephalitis virus env sequences, 38 vertebrate rhodopsin sequences, and 212 camelid
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Figure 1: These plots depict the execution times for FEL and FUBAR while varying the number of codon
sites (top) and number of taxa (bottom).

VHH sequences (see Murrell et al., 2012b, for details).
Table 2 demonstrates the superiority of FUBAR over FEL. At a posterior threshold of 0.9, FUBAR

achieves very low false positive rates on data that was simulated under neutrality, and has superior power
in 22/27 configurations. To achieve a fair comparison between tests with di↵erent measures of evidence
– p-values vs. posteriors – the thresholds of both were adjusted so that FEL and FUBAR both achieve
false positive rates of 0.05 on neutral data. This makes the superiority of FUBAR even clearer. FUBAR
has greater power in every case, and the di↵erence is sometimes substantial, with FUBAR having over
twice the power of FEL in some configurations.
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3.2 Speed comparisons

Random e↵ects likelihood methods are typically very computationally intensive and very di�cult to
parallelize, precluding their use on very large alignments with many sequences. Fixed e↵ects methods are
faster and typically parallelized, so FEL was used as a comparator to get an estimate of the e�ciency gains
enjoyed by FUBAR. A very large HIV-1 env alignment was obtained from LANL, stripped of gaps and
subsampled to create alignments of varying size. To investigate how computation time increases with the
number of sites, we sampled 100 taxa randomly from the env alignment, and created 5 alignments with
50, 100, 200, 400 and 800 randomly sampled codon sites. To investigate how computation time increases
with taxa, we fixed the number of sites to 200 and sampled alignments with 25, 50, 100, 200, 400 and
800 taxa. All phylogenies were estimated with FastTree 2 (Price, Dehal and Arkin, 2010) using the GTR
nucleotide model. FEL and FUBAR were compared on a computing cluster, with the analyses running in
parallel on 10 nodes each. FUBAR was consistently faster than FEL across all tested alignments. As can
be seen in figure 1, FEL took from 3.3 times longer (214 seconds for FEL vs 65 seconds for FUBAR) for
the smallest alignment, to 19.5 times longer (1 hours 2 minutes for FEL vs 3 minutes for FUBAR) for the
largest alignment, with the relative disparity increasing uniformly with alignment size. REL, using only
3 categories each for ↵ and �, which we did not run on all the alignments, took 22 minutes 25 seconds
for the smallest alignment and 35 hours 29 minutes for the largest.

3.3 Robustness to model misspecification

Before FUBAR, random e↵ects models typically used a small number of categories to capture variation
from one site to another. We wanted to investigate how empirical Bayesian inference behaves when the
model is misspecified, and, in particular, when the model is too simple to accommodate the data, since
this is almost universally true of most models for real datasets. An extreme example of this is PAML’s
M2a model (Wong et al., 2004), which allows 3 categories for �/↵. To investigate the impact of this kind
of model misspecification upon inference, we simulated 1000 sites using a constant ↵ = 1 but with �

taking values of 0.2 (50%), 1 (30%), 3 (10%) and 11 (10%). This models a situation with no synonymous
rate variation, where most sites were under purifying or neutral selection, and a smaller proportion of
sites were under either weak or strong selection. This is a small violation of PAML’s M2a model, whose
alternative model allows 3 categories: 1 purifying, 1 neutral and 1 positive selection category. We were
particularly interested in the weak selection category, where the true ! (= �/↵) for all sites was 3.

PAML’s !+ (its only category with ! > 1) must attempt to accommodate both the ! = 3 and
the ! = 11 sites, and the resulting maximum likelihood estimate (MLE) is 7.6. For any given prior,
the posterior P (M

!

1)/P (M
!

+) is proportional to P (D
i

|M
!

1)/P (D
i

|M
!

+), so, when posteriors for either
neutral or positive selection are calculated under this model, the ratio of the likelihood evaluated at ! = 1
and the likelihood evaluated at ! = 7.6 is the relevant contribution from the data at that site. The true
peak of the likelihoods for most sites of interest is between these values, declining to either side. For
some sites, the likelihood at ! = 1 is higher than at ! = 7.6, but the reverse is true for other sites.

The true value is between PAML’s two available options. The model restrictions preclude detecting all
such sites with confidence (which would be optimal, since all have a true ! = 3). Under these conditions
we would hope, from an inferential procedure, that the posteriors would reflect substantial uncertainty.
Instead, what we observe is 42% of sites show either strong evidence for selection, with posteriors > 0.90,
or, critically, strong evidence against selection, with 41% of sites showing posteriors < 0.1. Very few sites
show moderate posteriors - the uncertainty we would hope for from a slight model misspecification.

FUBAR, with its dense conditional likelihood grid, is capable of learning the presence of both ! > 1
categories in the data, evaluating the likelihood much closer to the expected peak near ! = 3. The results
are much more sensible. Of sites simulated under a true ! of 3, 81% were detected with posteriors > 0.90.
The mean posterior across all sites with true ! = 3 was 0.93, vs M2a’s 0.52. Under FUBAR, no sites
show evidence against positive selection. Figure 2 shows the distribution of the posteriors for both M2a
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Figure 2: Inference using Bayes’ rule under mispecified models. The smoothed histogram depicts the
density of posteriors for sites simulated under a true ! = 3 (see text for description of the simulation).
PAML’s M2a (the red curve) confidently identifies positive selection in nearly half of these sites, but also
declares strong evidence against positive selection in half. FUBAR, on the other hand, detects most of
the sites, and doesn’t appear to su↵er the same overconfidence problem.

and FUBAR.

3.4 Empirical example - Influenza A H

To demonstrate the use of FUBAR, we analyzed a collection of global human IAV haemagglutinin subtype
3 (H3) sequences from the NCBI Influenza Virus Database (http://www.ncbi.nlm.nih.gov/genomes/
FLU/). The influenza haemagglutinin glycoprotein (HA) mediates the entry of the virus into cells, and is
the target of neutralizing antibodies. We reconstructed the phylogeny (see figure 3) for 3142 sequences
using FastTree 2 (Price, Dehal and Arkin, 2010). The FUBAR selection analysis (which was restricted
to using 10 nodes, just as for the timing comparisons) took one and a half hours. Figure 3 shows the
distribution of � � ↵ across HA, with the mode at mild purifying selection (� < ↵), and with a minority
of sites under positive selection (� > ↵). We use ��↵ rather than the posterior P (� > ↵) because, with
so many sequences, the posteriors can confidently report positive selection even when it is very weak, and
so we examine the estimated magnitude of positive selection instead. As a measure of the magnitude of
selection, �/↵ is very skew, but � � ↵, with neutrality at 0, is more amenable to visualization. All sites
described below are codon sites, as opposed to sites in each subunit, unless stated otherwise.

Codon sites under positive selection are almost exclusively localized to the globular head. Using
� �↵ > 1 as a working definition of strong positive selection, 11 codons were identified. Of these, 7 sites
(154, 161, 173, 210, 241, 242, and 245) are clustered in and around the receptor binding site and fall
broadly within 2 of the classical, major antigenic regions (regions A and B; Caton et al., 1982) - these
“regions” are called “sites” in the influenza literature, but we use “regions” here to prevent confusion.
Sites 66 and 69 fall broadly within region C (with site 61 located in close proximity). The remaining site
under strong positive selection (19; HA1 site 3), is not part of the crystallized structure, but would likely
lie near the base of the membrane-proximal stem. In contrast to regions A, B and C, region D is not
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under similarly strong positive selection, suggesting that it may represent a more sub-dominant target
for neutralizing antibodies.

The majority of sites under strong purifying selection are located within the membrane-proximal stem.
Antibodies to the HA stem are less common, but have nevertheless been shown to be able to mediate
neutralization by inhibiting viral fusion with the host cell (Okuno et al., 1993; Varecková et al., 2003).
This is consistent with the identification of broadly cross-reactive antibodies that target this region (Sui
et al., 2009; Ekiert et al., 2009; Wang et al., 2010; Corti et al., 2011), and reinforces the haemagglutinin
stem as an attractive target for influenza vaccines.

Interestingly, site 553 (HA2 site 208) is under extremely strong purifying selection (��↵ = �23.5022),
although its function is not clear.

Of sites in the globular head under strong purifying selection, sites 181, 203, 234, and 238 are clustered
together in the quaternary structure at the protomer interface of the globular head, potentially repre-
senting a more accessible target for cross-neutralizing antibodies. While site 181 represents an N-linked
glycosylation site which could potentially shield this region from antibody binding, it is also conceivable
that the glycan may contribute to epitope formation. Several potent and broadly cross-neutralizing HIV
antibodies (PG9/PG16-like and PGT-128-like antibodies) are dependent on both a peptide and a glycan
component for binding (McLellan et al., 2011; Pejchal et al., 2011), providing a precedent for this mode
of recognition.

4 Discussion and Conclusion

Traditionally, phylogenetic models of evolution have employed computational shortcuts to speed up like-
lihood optimization. One widespread example involves the equilibrium frequencies: an estimate of the
equilibrium frequency parameters, ⇧̂, is often counted directly o↵ the sequence data, invoking a station-
arity assumption to reduce the number of parameters that need to be optimized (Kosakovsky Pond et al.,
2010). This works because inference under the model is seldom very sensitive to the typical magnitude
of the deviations of these quick-and-dirty calculations from the actual maximum likelihood estimates.
Another example is that estimates of the nucleotide substitution rates, N̂ , may be calculated using a
simpler model – such as a codon model that does not allow site-to-site variability in selection intensity –
and then fixed for the optimization of the more complicated model (Kosakovsky Pond and Frost, 2005).
This works for the same reason as the shortcut estimate ⇧̂: inference is not a↵ected.

A less common shortcut estimates the branch proportions under a simple model and fixes them,
although the overall tree length is still allowed to vary. This is adopted in the fixed e↵ects models of
Kosakovsky Pond and Frost (2005). However, the acceptability of this approximation is implicit in the
standard Bayes empirical Bayes approach of Yang, Wong and Nielsen (2005): Bayes empirical Bayes
acknowledges that uncertainty exists about the MLEs for parameters, but that only some parameters
a↵ect site-specific empirical Bayesian inference of positive selection. For parameters that matter, distri-
butions over these parameters are specified, and the uncertainty about these parameters is integrated out.
Parameters deemed not to a↵ect inference are left at their MLEs. Branch lengths, as well as nucleotide
substitution rates and equilibrium frequencies, count among the latter. If a parameter matters little
enough for uncertainty around the MLE to be ignored, then using a shortcut estimate from a simpler
model should also be admissible.

FUBAR uses a precomputed grid of conditional likelihoods, which relies on the same set of com-
putational shortcuts as the fixed e↵ects models: the branch lengths, nucleotide substitution rates and
equilibrium frequencies must all being fixed in advance, using estimates from simpler models. Standard
REL models do not need to take these shortcuts (although they sometimes do for computational reasons),
but are computationally constrained to use a di↵erent shortcut: a much coarser discretization over the
↵,� space. FUBAR takes shortcuts when estimating unimportant parameters to avoid shortcuts when
estimating important ones.
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Figure 3: Top: The H3 phylogeny with 3142 coding sequences. Middle: The smoothed histogram of ��↵
across H3, with the greatest density at mild purifying selection (� < ↵), and fewer sites under positive
selection (� > ↵). The notches depict sites with posteriors greater than 0.9 for positive (red) or purifying
(blue) selection. Bottom: The inferred ��↵ values mapped to the HA protein (PDB 3ZTJ; Corti et al.,
2011), displayed from two viewpoints. Red regions with stronger diversifying selection are likely involved
in immune escape. These primarily occur on the “head” of the protein, with mostly purifying selection
on the membrane proximal stem. See text for further detail.
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Random e↵ects inference allows one to learn the distribution of selection parameters from the align-
ment, and lets this distribution influence site-wise inference. It is interesting to contrast the performance
of M2a and FUBAR with a FEL analysis of the 4 category simulation in section 3.3. FEL, which does
not learn a prior distribution, has poor performance compared to FUBAR, detecting only 33 of 100 sites
with �/↵ = 3 at the p < 0.05 level (which also gives 8 false positives on the neutral or purifying sites,
compared to FUBAR’s 2 false positives). But FEL, lacking an ↵,� prior, reflects the uncertainty appro-
priately, and, while it fails to detect many sites, it never becomes overconfident in the incorrect result,
unlike PAML’s M2a. So, where site specific inference is not constrained by any kind of shared prior, the
uncertainty is large and the power is low. But, when it is constrained incorrectly, inference can be both
confident and wrong at the same time, which is positively misleading. When the distribution over ↵ and
� is learned correctly, however, the uncertainty around the ↵,� estimate for each site is substantially
reduced, since the prior distribution imposes appropriate constraints over which ↵,� values are probable.
This allows FUBAR a substantial increase in power over both FEL and M2a for this example. While
the simulating distribution used in this example might be extreme, it serves to illustrate that a correctly
learned informative distribution substantially improves inference.

Methods proposed up until now all have unrealistic constraints: some assume no synonymous rate
variation, others confine sites to a small number of classes, and most assume independence from one site
to another. These restrictive assumptions almost guarantee that they will be unable to capture the true
data generating distribution. Some restrictive assumptions are more harmful than others, so systematic
examination of their individual and collective e↵ects is recommended. Here, we have shown with the
example in 3.3 that an overly coarse grid can be very misleading when violated. Our Bayesian method
approximates the ↵,� distribution as flexibly as the grid resolution allows, and is computationally cheap
due to shortcuts that are mild when compared with the coarse discretizations assumed by existing random
e↵ects methods.

The methodology behind FUBAR can be applied to other models. DEPS (Kosakovsky Pond et al.,
2008) and EDEPS (Murrell et al., 2012a) model amino acid evolution, and detect directional selection -
where the substitution rate towards a particular amino acid is elevated - using a random e↵ects approach
with 1 neutral and 1 positive selection category. This could benefit from a grid-based implementation,
allowing a large number of non-neutral categories, which should improve the statistical performance of
the method, while achieving speedups similar to those observed in FUBAR. Methods that accommodate
site-to-site variability in many parameters, such as MEME (Murrell et al., 2012b) and MEDS (Murrell
et al., 2012a), may not be amenable to grid-based approaches, however, because the number of grid points
grows exponentially in the number of dimensions that vary from site to site.
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Abstract

Models of protein evolution currently come in two flavors: generalist and specialist. Generalist models (e.g. PAM, JTT, WAG)
adopt a one-size-fits-all approach, where a single model is estimated from a number of different protein alignments.
Specialist models (e.g. mtREV, rtREV, HIVbetween) can be estimated when a large quantity of data are available for a single
organism or gene, and are intended for use on that organism or gene only. Unsurprisingly, specialist models outperform
generalist models, but in most instances there simply are not enough data available to estimate them. We propose a
method for estimating alignment-specific models of protein evolution in which the complexity of the model is adapted to
suit the richness of the data. Our method uses non-negative matrix factorization (NNMF) to learn a set of basis matrices from
a general dataset containing a large number of alignments of different proteins, thus capturing the dimensions of important
variation. It then learns a set of weights that are specific to the organism or gene of interest and for which only a smaller
dataset is available. Thus the alignment-specific model is obtained as a weighted sum of the basis matrices. Having been
constrained to vary along only as many dimensions as the data justify, the model has far fewer parameters than would be
required to estimate a specialist model. We show that our NNMF procedure produces models that outperform existing
methods on all but one of 50 test alignments. The basis matrices we obtain confirm the expectation that amino acid
properties tend to be conserved, and allow us to quantify, on specific alignments, how the strength of conservation varies
across different properties. We also apply our new models to phylogeny inference and show that the resulting phylogenies
are different from, and have improved likelihood over, those inferred under standard models.
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Introduction

Empirical models of protein evolution, as pioneered by Dayhoff
and colleagues [1,2], have found wide use across varied domains:
sequence alignment [3], phylogenetics [4], and as baseline models
against which positive selection is detected [5]. These models
describe molecular evolution at the amino acid level by
quantifying the relative substitution rates between different amino
acids. Such rates are an aggregation over multiple distinct
phenomena: the structure of the genetic code, which renders
some mutations less likely to occur; and differences in the
physicochemical properties of the amino acids themselves, which,
along with the environment of the organism, will determine which
substitutions are deleterious, tolerated or adaptive.

The original approach by Dayhoff et al. used a maximum
parsimony procedure to reconstruct the ancestral sequences and
phylogeny for a collection of protein families and counted the
amino acid substitutions across this phylogeny. Their PAM (point
accepted mutation) matrices were derived from rates of amino acid
exchange estimated from these counts. Jones et al. [6] automated a
similar procedure which ran on a much larger dataset, producing
the JTT amino acid rate matrix. A further refinement to these

‘‘counting’’ methods was contributed by Kosiol and Goldman [7].
Whelan and Goldman [8] made use of a maximum likelihood
approach which, unlike the counting methods mentioned above,
finds the amino acid substitution matrix while simultaneously
optimizing the branch lengths of the phylogeny, thus incorporating
the possibility of multiple substitutions taking place along any
given branch. In constructing their WAG matrix, they applied an
approximation of this technique to a large dataset.

The above models are generalist in that they use the same set of
relative amino acid exchangeabilities for all genes and all
organisms. However, since these exchangeabilities can vary
considerably between genes and/or organisms, researchers have
also constructed specialist models. Such models are estimated from
– and intended for use on – a specific gene, organism or genetic
code. Adachi and Hasegawa [9] estimated an empirical amino
acid substitution rate matrix for mitochondrial DNA-encoded
proteins, using the maximum likelihood method on a dataset
consisting of mtDNA-encoded sequences from vertebrate species.
Yang et al. [10] used a similar technique to derive a substitution
rate matrix from the mtDNA mammalian dataset of Cao et al.
[11]. Both of these are intended for use only on mitochondrial
sequences. Dimmic et al. [12] optimized an amino acid
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substitution rate matrix via maximum likelihood, using a set of
retroviral pol protein sequences. Nickle et al. [13] derived two
substitution rate matrices with maximum likelihood, each using
different HIV protein sequence datasets. The first matrix
(HIVwithin) was derived by applying maximum likelihood to
pairs of within-individual protein sequences, while the second
(HIVbetween) made use of a set of consensus sequences obtained
from a population of individuals. In all cases, specialist models fit
alignments for their particular system better than generalist
models.

Specialist models are better than generalist ones, but specialist
models simply don’t exist for most alignments. If the alignment is
very large, one can estimate a fully parameterized general
reversible model (often referred to as REV), which involves
estimating 190 parameters. With most alignments, however, this
will be severely over-parameterized. Computational biologists who
want to analyze a single alignment for which a specialist model has
not been constructed are therefore forced to resort to using a
generalist model. This is the problem we seek to address:
constructing alignment-specific models of protein evolution
without over-fitting, allowing the model to be just as complex as
the data justify.

We investigate a compromise between generalist and specialist
models by first extracting, from a large dataset, the important
dimensions of variation in amino acid substitution rates, and then
using these to constrain our models. We propose the following
three step approach: First, we estimate a separate REV amino acid
rate matrix for each of a number of reasonably large alignments.
These provide a library of specialist models, each with 190 rate
parameters. Second, we apply non-negative matrix factorization –
a dimensionality reduction technique – to find a smaller set of
‘basis’ rate matrices, whose non-negative weighted combinations
best approximate the original REV estimates. Finally, for a new
alignment (which is not contained in the original dataset and may
be relatively small), we model the amino acid rate matrix as a
weighted combination of our set of basis matrices. During this final
step, we optimize over both the number of combination weights
and their values. NNMF is thus used to approximate the space of
useful models, reducing the number of parameters required to
explore it. Rate matrices for specific alignments are estimated by
searching within this lower-dimensional parameter space.

The basis matrices obtained by our NNMF procedure are
interesting in that they reveal a set of components from which the
eventual rate matrices are comprised – each alignment-specific
rate matrix is the sum of positive multiples of the basis matrices. By
measuring, for each basis matrix, the correlation between the
amino acid exchangeabilities and the strength of the different
physicochemical properties of the amino acids being exchanged,
we obtain an indication of how the degree of conservation of the
different properties varies between different alignments.

Using a separate test dataset, we show that models estimated
through our procedure outperform existing models in terms of
Akaike’s information criterion (AIC) on all but one of 50
alignments tested. Finally, we use our models to infer phylogenies
and show that this leads to phylogenetic trees that are structurally
different and have higher likelihood than maximum likelihood
trees obtained using standard methods.

Methods

We start by briefly reviewing phylogenetic models of protein
evolution. Substitutions along every branch of a phylogenetic tree
are described by a continuous time Markov process, defined by an
instantaneous rate matrix, Q. The elements qij are the rates of

substituting amino acid i with amino acid j. From the rate matrix
Q and the length of a branch in the phylogeny, t, a transition
probability matrix for that branch can be calculated using the
matrix exponential:

P(t)~eQt: ð1Þ

The constraint qii~{
P

Vj=i qij is required for Q to be a valid
Markov process generator. The (ij) elements of P(t) describe the
probabilities of substituting amino acid i with amino acid j after
time t. With these transition probabilities along the branches of a
phylogeny, the likelihood of an alignment can be calculated using
Felsenstein’s pruning algorithm [4].

We assume the Markov process is reversible: that is, Q can be
decomposed into the product of a symmetric matrix S and a
diagonal matrix P, where the elements of the diagonal of P, pj ,
are the equilibrium frequencies for the jth amino acid in the
Markov process defined by Q~SP, with

P
j pj~1. Throughout

this paper we adopt a common approximation by estimating the
equilibrium frequencies pj as the empirical amino acid frequencies
counted across all sites in the alignment.

S is the 20|20 symmetric amino acid exchangeability matrix.
Given the symmetry and the constraints on the diagonal elements,
this leaves 190 parameters that need to be specified to define the
model of protein evolution over a given phylogeny. Our focus in
this study is the estimation of these parameters.

Estimating reversible protein models
To characterize the important dimensions of relative substitu-

tion rate variation, we first estimate a general reversible (REV)
model – where the 190 parameters of S are estimated by
maximum likelihood – from each of a large number m of large
alignments. We use the procedure described in [13] to estimate a
REV model for each alignment. For computational reasons we use
a single rate class, ignoring site-to-site amino acid rate variation
(although we show that this can be added at a later stage of our
procedure).

Non-negative matrix factorization
Non-negative matrix factorization (NNMF) is a tool for

dimensionality reduction [14,15] of datasets in which the values,
like the rates in the rate matrix S, are constrained to be non-
negative. Instead of applying it to data, we use it to reduce the
dimensionality of our models. We start by arranging the
parameters of each specialist REV model into a vector of
dimension n~190. The set of m such vectors combine to form a
n|m matrix V (Figure 1, Table 1) representing the full set of
specialist rate matrices. For a given factorization rank r%n, the
NNMF procedure now finds an n|r matrix W and an r|m
matrix H such that WH&V . This is done by minimizing an
objective function: we chose to minimize the sum of squared
differences between WH and V .

W now represents a set of r basis matrices: each column
contains the 190 parameters of a single basis matrix, and the S
matrix for any of the training alignments can be reconstructed
(approximately) by forming a weighted sum over these basis
matrices. The weights in this sum are stored in the column of H
corresponding to the training alignment in question. One way of
interpreting the factorization is that the set of basis matrices in W
captures the dimensions of important variation between different
rate matrices representing the training alignments, so that they
form a set of components out of which any of the rate matrices can
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be built up. Our key assumption is that this will also be the case for
alignments not in the training dataset: after paying the fixed cost of
learning the 190|r parameters in W from the training dataset,
we propose to represent any alignment using only r weight
parameters instead of 190 independent rate parameters (Figure 2).

NNMF proceeds by an iterative algorithm, converging on a local
minimum of the sum of squared error. It is thus potentially sensitive
to initial conditions. To ensure decent performance, we began with
20 different random initial conditions and optimized the factoriza-
tion for 2000 iterations each. The best resulting factorization was
then further refined for an additional 5000 iterations.

Fitting basis models to new data: optimizing over
combination weights

Given a collection of r basis exchangeability matrices, Bi (the
columns of W arranged as a reversible rate matrix), their
associated weights, wi, where i goes from 1 to r, a combined
exchangeability matrix S is parameterized by:

S~
Xr

i~1

wi|Bi ð2Þ

We add the constraint that
P

i wi~1: since rate and time are
confounded, and since the branch lengths are free parameters, this
does not entail loss of generality. With a new test alignment (that was
not included in the original factorization over the training data) and a
collection of basis rate matrices, we can now optimize the weights wi

(and branch lengths) to obtain the maximum likelihood combined
model for the alignment. This is in contrast to model selection
approaches such as ProtTest [16] which select a single model from a

collection of existing models. Importantly, the combined model can
itself be represented as a single numeric rate matrix, and can thus be
used by any application that allows for custom amino acid rate
matrices, such as HyPhy [17], PAML [18] or PhyML [19].

The flagship method presented in this paper applies this
approach to our NNMF-estimated basis matrices (we refer to this
method as ‘‘NNMF’’). We also introduce a method that uses the
same mixture approach, but differs from NNMF, in that it uses a
collection of existing numeric rate matrices for its basis matrices ,
and we name the resulting model the ‘Mixture of Existing Rates’
(MOER) model. For any given test alignment, both models use
mixture components that are fixed in advance, but NNMF obtains
these by factorizing a large dataset, while MOER uses existing
‘‘average’’ model estimates. The models we chose to combine in
MOER are those available by default in the HyPhy software
package: Dayhoff, JTT, WAG, rtREV, mtMAM, mtREV,
HIVwithin and HIVbetween. For both NNMF and MOER, the
equilibrium frequencies used when modeling the test alignments
are estimated from the amino acid counts.

These are also the fixed rate models we use as a comparison for
NNMF and MOER to asses the performance of our methods,
since they are standardly used in the literature. Under a fixed rate
model, the branch lengths are optimized to maximize the
likelihood, but the exchangeability matrix itself has no flexibility.
Each fixed rate model is a special case of MOER, when the
weights for all but a single matrix go to 0. MOER will thus always
obtain better likelihoods than any single fixed-rate model, but our
model comparison measure will penalize against the extra
parameters if they prove unnecessary.

Selecting the optimal factorization rank for a given
alignment

The NNMF decomposition requires the specification of a
factorization rank: the number of basis matrices to be estimated.
Since the optimal number of basis matrices for a new alignment
depends on the details of that alignment – larger alignments can
justify more parameters – no single factorization will suffice. Instead,
we obtain factorizations for a range of different ranks. To select the
best NNMF model for each new alignment, we maximize the
likelihood function for every rank, and select the model with the best
(minimum) AICc(Akaike’s information criterion with a small sample
correction [20]) score, which prevents over-fitting by penalizing the
inclusion of additional parameters:

AICc~{2Lz2pz
2p(pz1)

n{p{1
ð3Þ

Figure 1. Non-negative matrix factorization.
doi:10.1371/journal.pone.0028898.g001

Table 1. Interpretation of the matrix factorization in Figure 1.

m Number of training alignments

n Number of parameters per rate matrix (190)

r Number of basis matrices

Column of V Specialist REV model corresponding to one training alignment

V Library of specialist REV models

Column of W One basis matrix

W Set of r basis matrices

Column of H Set of weights with which to combine basis matrices to obtain model for one training alignment

H Set of weights for training dataset

doi:10.1371/journal.pone.0028898.t001
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where L is the log-likelihood, p is the number of parameters and n is
the number of observations. Counting the number of observations is
not straightforward: taking the total number of characters in the
alignment is problematic because amino acids at the same site are
extremely correlated. (If one were to do this, one could add
duplicate sequences which would increase the number of observa-
tions without being at all informative.) Instead, we use the number
of sites as the number of observations. This can lead to problems
when branch lengths are included as parameters, because as the
number of branches approaches the number of sites (specifically,
when p~n{1), the second order term becomes undefined. This is
not just a theoretical concern: it actually occurs for one of our test
alignments. To remedy this, we exclude branch lengths from our
model parameter count. Excluding branch lengths as parameters
when extra taxa are not counted as extra observations makes
intuitive sense: adding taxa increases the number of branch length
parameters to be estimated while providing the required informa-
tion to estimate those parameters, but is not correspondingly
informative for estimation of the other model parameters. For
further discussion of these issues, see [21].

Phylogeny comparison
To determine whether improvements in model fit would make a

difference to the topology of the inferred phylogeny, we compared
the best NNMF model to WAG, the existing amino acid model
with the best overall fit on our 50 test alignments. We constructed
50 phylogenies using WAG, and 50 using the best NNMF model.
Topology search was performed in PhyML [19] with nearest-
neighbor interchange plus subtree pruning and regrafting, and we
disallowed rate variation due to computational restrictions. We
compared topologies under the Robinson-Foulds symmetric
difference [22] using PHYLIP [23].

Data
Training and test alignments were selected from the Pandit

database [24], with the selection based on the size of the
alignments (Figure 3). For our training dataset (293 alignments
in total) we used all alignments with number of sequencesw50,
alignment lengthw200 and number of sequences|alignment
lengthw15000, with the exception of one very large alignment
(number of sequences|alignment length~989720) that exceeded
our computational resources. The number of sequences per
alignment ranged from 51 to 797, with a median of 95 and an
inter-quartile range (IQR) of 77. The alignment length ranged
from 201 to 1767, with a median of 339 and an IQR of 230.75. All
trees used to train the models were also obtained from the Pandit
database.

We then adjusted our size criteria to yield a test dataset
containing the 50 ‘‘next largest’’ alignments: number of
sequencesw45, alignment lengthw195, number of sequen-
ces|alignment lengthw11800, but excluding all training align-
ments. The number of sequences per alignment ranged from 46 to
182, with a median of 51 and an IQR of 12. The alignment length
ranged from 196 to 926, with a median of 249 and an IQR of 207.
Trees were again obtained from the Pandit database.

Implementation
HyPhy [17] was used to estimating the original 293 REV

models from the Pandit alignments, using code from [13]. The
non-negative matrix factorization was performed in Matlab.
Optimizing over basis matrix combination weights for all
factorization ranks was performed in HyPhy, as was the
comparison of protein models. HyPhy Batch Language (HBL)
code for optimizing over combination weights is available online
(www.cs.sun.ac.za/ bmurrell/nnmf/), along with the basis matri-

Figure 2. Learning models of protein evolution with NNMF. A schematic overview of the procedure.
doi:10.1371/journal.pone.0028898.g002
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ces. A web script for converting from this output to a rate matrix
that is usable by PAML and PhyML is also available at the same
url.

Results

The basis matrices
We first consider the set of basis matrices obtained on the

training alignments. Figure 4 shows that, as expected, the sum of
squared errors decreases as the number of basis matrices increases.
To investigate the first few sets of basis matrices, we use the Stanfel
classification [25] of amino acids according to their physicochem-
ical properties. Figure 5 shows the basis matrices obtained for the
first 5 ranks, with the amino acid ordering chosen so as to group
amino acids with similar properties together. We observe that,
when one or two rate classes are used, the larger rates (darker
squares) occur more frequently within the same class than between
classes. Thus these rate matrices capture the fact that, on average,
physicochemical properties tend to be conserved.

As more rate matrices are added, the variation between
different alignments becomes better resolved. By the third
factorization (r~3), a basis matrix occurs with larger rates
(involving Cysteine) occurring between classes. This reflects that,
in some alignments, these rates are accelerated while in other
alignments they are not: the NNMF analysis indicates that
whether these rates are high or low is an important dimension
of variation across the training alignments. We also notice that the
exchangeabilities of Cysteine with other amino acids are not
elevated independently: in alignments where the Cystei-
ne<Histidine exchangeability is elevated, the Cysteine<Leucine
and Cysteine<Arginine exchangeabilities also tend to be elevated.
This may reflect that the properties under conservation in these
alignments, along with the relative importances of these properties,
differ from those used to define the Stanfel classification; rather
than speculating about the underlying biochemistry, we restrict
ourselves to pointing out that the set of basis matrices provides a
far richer description of amino acid exchangeability, and how this
varies between alignments, than can be achieved by classifying the
amino acids into a predefined set of non-overlapping categories.

With r~5 we see that Tryptophan has increased exchange-
ability with most other amino acids in a subset of alignments. It

would be interesting to establish the underlying causes of such
effects; for now we merely note that they are easily observable.
Inspection of the basis matrices for larger values of r would lead to
many similar observations.

Figure 6 displays the correlations of the rates in the basis
matrices for the first 5 factorizations with 5 amino acid properties
(chemical composition, polarity, volume, isoelectric point and
hydropathy). The values for these properties were obtained from
[26]. Here we are correlating the rate of substitution between two
amino acids with the difference between their values of the
relevant property. As expected, negative correlations predominate:
amino acids with larger differences are less frequently exchanged.
The horizontal black line (at 20.169) indicates the threshold for
significant negative correlation (pv0:01, one-tailed correlation
test, n~190). The relationships between the chemical properties
and the basis matrices clearly vary across the factorizations. For
instance, the fifth basis matrix for r~5 (which as we saw
corresponds to an elevation of the overall exchangeability of
Tryptophan) corresponds with significant conservation of polarity,
isoelectric point and hydropathy (evidently, exchanging Trypto-
phan for another amino acid does not affect these properties very
much on average), but no conservation of chemical composition or
volume (Tryptophan substitutions do affect these properties).

NNMF consistently yields better models than other
approaches

For each of the 50 Pandit test alignments, we optimized the
weight vectors and computed the AICc scores for the first 40
factorizations (from 1 to 40 basis matrices; we stopped at 40
because finding weights by maximum likelihood is computation-
ally intensive, taking, for example, 2 to 3 hours to get up to 40
with datasets of around 600 codons and 50 sequences, but taking
substantially longer as larger numbers of basis matrices are
considered). The number of basis matrices that minimized the
AICc was dependent on the alignment. This optimal number
ranged from 11 to 40, with a median of 30.5 and an interquartile
range (IQR) of 11. Figure 7 shows the distribution of the optimal
number of basis matrices for the best NNMF model across all 50
test datasets.

From the 50 test datasets, we also computed AICc scores for the
MOER model, as well as for each named amino acid model
implemented in HyPhy, the REV model and the REV 1-step
model (which fixes to 0 the rates of all amino acid substitutions that
require more than one nucleotide change). Following Burnham
and Anderson [27], we compute DAICc scores, which are the

Figure 3. Selecting the larger Pandit alignments. Each blue dot
represents an alignment in the Pandit database. The green region
covers the alignments used in the training set, and the thin red region
covers those in the test set.
doi:10.1371/journal.pone.0028898.g003

Figure 4. Convergence of NNMF. The sum of squared error
decreases as more basis matrices are included.
doi:10.1371/journal.pone.0028898.g004
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AICc scores for each model minus the best AICc for that dataset.
The best model will thus have DAICc~0. Models with
DAICcw10 have ‘‘essentially no support’’ [27]. Table 2 summa-
rizes the frequency of each model’s DAICc scores. The NNMF
procedure for finding models appears to consistently outperform
the others, obtaining the best AICc on 49 of 50 datasets. REV won
on a single alignment, which, unsurprisingly, was the largest
alignment and thus able to justify the full 190 rate parameters. The
best NNMF model on this dataset had a DAICc of 0.34, which
indicates that it has only slightly less support than REV.

Our approach of selecting the factorization rank using AICc is
equivalent to selecting the best of the 40 NNMF models under
consideration. Such a model selection step arguably gives NNMF
an unfair advantage over the other models; although it is not
standard procedure in the AIC literature, it may be more correct
to add a penalty to the AICc scores of NNMF. Though not strictly
appropriate for this context, a Bayesian argument can be used to
estimate the appropriate size of this penalty: if we are comparing
NNMF as a whole procedure against a single other model and we
distribute the prior probability for NNMF uniformly over the 40

NNMF candidate models, we would introduce a penalty of at most

{ log
1

40
&3:7 to the resulting marginal likelihood for the NNMF

procedure. This would amount to a maximum AICc penalty of
approximately 7.4 to the scores for NNMF. Applying this penalty
in Table 2 does not substantially affect the results. Furthermore, if

we fix the number of basis matrices used (we picked 20) for all
alignments, we still outperform WAG (the best overall fixed model)
on all alignments with a median AICc improvement of 225 points.
This is despite removing the model’s ability to adapt its complexity
to suit the data. That the improvement remains is not surprising:
even a fixed amount of flexibility is better than none, as long as it
does not require too many parameters for any particular
alignment.

It is also interesting to look at the AICc scores excluding the
NNMF models (Table 3). Here we see MOER finding the best
model most often (21/50 times), with WAG a close second (15/50)
and REV and REV 1-step next with 8/50 and 6/50 respectively.
Predictably, most of the specialist models (mtMAM, mtREV 24,
HIVwithin and HIVbetween) perform badly on datasets they were
not intended for, with the exception of rtREV, which outperforms
both JTT and Dayhoff (38, 10 and 2 wins respectively).
Interestingly, in [13], rtREV was outperformed by generalist
models WAG and JTT on HIV alignments containing the reverse
transcriptase protein.

The use of constant rates across sites is an unrealistic
assumption. It is possible to incorporate rate variation in a
Random Effects Likelihood (REL) framework, where the rate at a
site is modeled as a random draw from a discretized distribution.
This incurs additional computational expense proportional to the
number of rate categories used. To demonstrate that our results
hold when rate variation is incorporated into all models, we

Figure 5. NNMF basis matrices. The set of NNMF basis matrices obtained for ranks ranging from 1 to 5. Amino acids are ordered according to
their Stanfel classification [25]. Rates are indicated in grayscale, with pure white being a rate of zero and pure black being the maximum rate in the
matrix.
doi:10.1371/journal.pone.0028898.g005
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randomly selected 10 test alignments and accounted for rate
variation using a discretized gamma distribution with 4 rate
categories. Table 4 displays the results for these 10 datasets. The
conclusions are unchanged, and NNMF yields the best models for
all 10 alignments.

NNMF models yield different phylogenies with better
likelihoods

The Robinson-Foulds distance between the trees found using
the WAG matrix and those found using the best NNMF model
ranged from 0 to 98, with a median of 19 and an IQR of 24. This
shows that the choice of model makes a difference to the estimated

phylogeny. The NMMF phylogenies also have much higher
likelihoods (and lower AICc scores) than the phylogenies estimated
using WAG. When using maximum likelihood as a criterion for
optimizing phylogenies, topologies and models that yield higher
likelihoods should be preferred. This is not direct evidence that the
NNMF procedure leads to more accurate trees (which would be
difficult to demonstrate for a convincingly large sample), but it
does suggest that we should expect such an improvement.

Bigger differences in likelihoods predict bigger differences in
phylogenies. Figure 8 shows the relationship between the mean
log-likelihood improvement per site for a given alignment and the
Robinson-Foulds distance between the two resulting topologies.
There is a strong positive correlation with r~0:657, p~2|10{6

(randomization test with 106 replicates). The slope of the best
fitting line is 38:1, indicating a Robinson-Foulds distance increase
of &38 for each log-likelihood per-site improvement.

Discussion

Model selection tools such as ModelTest [28] and its amino acid
counterpart ProtTest [16] have been widely adopted for selecting
the best fitting models for a given alignment. In this paper we show
that, rather than simply selecting the best from a list of existing
models, models of protein evolution can be tailored to specific
alignments. Our NNMF framework has two primary strengths: 1)
the model complexity adapts to fit the alignment, and 2) the
dimensions along which the model can vary and the trajectory
along which the complexity increases have been learnt, at least
approximately, from a large collection of real alignments.

Since NNMF finds higher quality exchangeability matrices, we
should expect it to benefit any application that uses such matrices.
In this paper, we demonstrate an impact on phylogeny inference.
Although we don’t demonstrate it here, these rate matrices can
also be used to construct scoring matrices for sequence alignments.

Figure 6. NNMF basis matrices correlate with amino acid properties. The correlations between amino acid properties and the basis matrices.
The horizontal black line (at 20.16867) indicates the threshold for significant negative correlation (pv0:01, one tailed, n~190).
doi:10.1371/journal.pone.0028898.g006

Figure 7. Distribution of the optimal number of basis matrices.
The number of basis matrices that minimized the AICc across 50 test
alignments.
doi:10.1371/journal.pone.0028898.g007
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A procedure for doing this, along with software for generating the
scoring matrices, is outlined in [13]. Given that an alignment is
required before NNMF can be used, an iterative procedure, in
which a guide alignment obtained from a standard scoring matrix
is used to estimate an NNMF model, would have to be adopted. A
scoring matrix based on this model can then be generated to refine
the alignment.

Using more basis matrices
On our test alignments, we explored up to 40 basis matrices.

This choice was motivated by computational considerations. The
histogram of the optimal number of basis matrices for each dataset
(Figure 7) suggests that using more basis matrices could lead to
further improvement on some alignments. We provide basis
matrices for the first 100 factorizations, so users can explore as
many dimensions as their computational restrictions allow. It is
worth pointing out that, when the number of basis matrices
becomes 190, the NNMF model is equivalent to the REV model.
This justifies the interpretation of the procedure as interpolating
between a model with no flexibility and a fully flexible one.

Other approaches
CodonTest [26] is a recently proposed approach to solving a

similar problem using a different approach, but at the codon
rather than amino acid level. A genetic algorithm is used to find an
optimal number of non-synonymous rate classes, as well as an
assignment of particular non-synonymous substitution rates to
these classes. The difference in the ‘level’ of modeling (codon vs
protein) is superficial: applying our approach to codon models
would be straightforward, though at some extra computational
expense. The approach of CodonTest is different, in that it
explores a much larger space of possible parameter clusters. While
the difference in levels prevents direct comparison, we expect the
NNMF approach to gain some additional leverage over that of
CodonTest, because the set of subspaces it explores is learnt from a
collection of training alignments, while CodonTest does not
incorporate this prior information.

During the final preparation of this manuscript we became
aware of recent work by Zoller and Schneider [29] in which a

similar problem is tackled using an approach based on
dimensionality reduction, again in the context of codon models
rather than amino acid models. They used principal components
analysis (PCA) to estimate a set of basis matrices, and, as in our
approach, constructed their final model as a linear combination of
these basis matrices. PCA has the advantage of being more
computationally efficient than NNMF, but it lacks the non-
negativity constraints. It is thus possible that certain linear
combinations of PCA basis matrices will yield rates that are
smaller than 0. Zoller and Schneider [29] circumvent this problem
by explicitly resetting all negative rates to 0. That their model is
applied to codon level data prevents a direct comparison, but
future work will surely necessitate comparing different methods of
dimensionality reduction for this task. We see their work as an
encouraging sign that there is fertile ground for applying
dimensionality reduction to phylogenetic models of evolution.

Practical recommendations
Our NNMF approach can be applied whenever a numeric

model of amino acid evolution is required. The following
procedure would appear sensible: First, estimate a guide tree
using a fixed protein model. Then use the NNMF HBL program
to find the best NNMF model. At this point, the model could be
used to re-estimate the guide tree and iterate the NNMF
procedure. Since each iteration should improve the model
selection criterion (which is also bounded), this procedure should
converge. Finally, the output can be converted to the form
appropriate for the remaining analysis (phylogeny estimation,
alignment etc). Some publicly available empirical rate matrices are
provided with a fixed set of equilibrium frequencies. Importantly,
our NNMF procedure used the empirical amino acid frequencies,
and there are no such frequencies associated with any of our rate
matrices, so any applications requiring equilibrium frequencies
should use either the empirical frequencies, or estimate the
equilibrium frequencies by maximum likelihood.

Rate variation may be introduced at any step. To save
computation, one could use the NNMF HBL script without rate
variation to obtain a rate matrix, and subsequently introduce rate
variation. With more computational resources, rate variation can

Table 2. DAICc scores for all models.

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

NNMF 49 1

MOER 1 7 18 20 3 1

REV 1 2 4 7 4 6 5 21

REV-1 step 7 28 15

Equal Input 14 27 9

Dayhoff 8 25 16 1

JTT 2 11 24 12 1

WAG 6 16 23 5

rtREV 2 21 23 4

mtMAM 11 30 9

mtREV 24 11 30 9

HIVwithin 16 26 8

HIVbetween 6 29 14 1

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t002
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be included while optimizing over the combination weights. It is
an open question whether including rate variation when
estimating the original REV models (before the NNMF step)
would significantly improve subsequent steps that also include rate
variation. Results reported in [26] suggest that rate variation
should be mostly orthogonal to estimating the relative substitution
rates.

An approximate solution to a harder problem
Learning basis matrices by NNMF can be seen as an approxima-

tion to a more computationally challenging problem. It is possible to
express the likelihood function for the factorization directly:

P(Djh)~ P
m

i~1
P(Dij

Xr

j~1

wij|Bj) ð4Þ

where Di is the ith alignment in the training set, the likelihood
within the sum is computed, as usual, using Felsenstein’s pruning
algorithm [4], and h is the full collection of parameters, including
weights and basis matrices. In this formulation, the rates in the
basis matrices Bj and the combination weights wij could all be

optimized numerically to maximize the overall likelihood on the
training data. However, obtaining this optimal solution would be
computationally challenging – our NNMF procedure approxi-
mates this by finding separate REV models that maximize the
likelihood on each alignment, and then finding the factorization
that most closely recovers these REV models in the mean square
error sense. The implicit assumption is that this factorization will
also yield good likelihoods. The computational saving relative to
the full solution occurs in part because the REV models can be
optimized separately for each training alignment.

Table 3. DAICc scores without NNMF.

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

MOER 21 2 6 7 2 4 2 5 1

REV 8 1 2 2 4 2 6 4 21

REV-1 step 6 1 4 4 18 13 4

Equal Input 18 24 8

Dayhoff 1 2 13 24 9 1

JTT 2 6 13 23 6

WAG 15 2 3 3 3 7 4 2 5 6

rtREV 1 3 18 18 9 1

mtMAM 17 25 8

mtREV 24 24 19 7

HIVwithin 1 17 24 8

HIVbetween 8 31 11

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t003

Table 4. DAICc for all models with gamma rate variation (4 categories).

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

NNMF 10

MOER 1 3 4 2

REV 1 1 8

REV-1 step 9 1

Equal Input 7 2 1

Dayhoff 1 2 7

JTT 2 4 4

WAG 1 5 4

rtREV 2 6 2

mtMAM 8 2

mtREV 24 8 2

HIVwithin 6 3 1

HIVbetween 3 6 1

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t004
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Future avenues for research
Estimating a model of evolution that is specific to a single

alignment clearly improves on the generalist approach. It is still,

however, an incredibly coarse approximation to reality. The
constraints and selective pressures on each site are most likely
unique, but estimating a model for each site would be intractable,
both computationally and statistically. Goldman et al. [30] took early
steps in this direction, allowing the model of evolution to vary from
site to site by using a Hidden Markov Model to capture the
correlational structure across sites. Lartillot and Philippe [31]
introduce a model that allows each site to belong to one of a number
of classes, which differ in their equilibrium frequencies. A Dirichlet
process prior is adopted to accommodate uncertainty about the
number of classes, as well as the assignment of sites to classes. Le and
Gascuel [32] also allow the substitution matrices to vary across sites.
In their approach, they assume a small number (2 or 3) of distinct
substitution processes, and their model treats each site as a random
draw from one of these processes. This works well when clues about
which process belongs to which site are available, but when the whole
procedure is unsupervised the optimization appears to be difficult and
sensitive to initial conditions [32,33]. Developing unsupervised
approaches for estimating such models with larger numbers of
distinct processes is an intriguing avenue for future research.
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