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Abstract 

Context: There are serious deficiencies in the current tests and criteria available 

for the diagnosis of diabetes. A novel screening method for the earlier and more 

efficient detection of type 2 diabetes would be a significant clinical advance. 

 

Objective: The hexosamine biosynthetic pathway (HBP) usually acts as a fuel 

sensor and its activation leads to O-GlcNAcylation of target proteins in a glucose-

responsive manner. O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are 

responsible for O-GlcNAc addition and removal, respectively.  As higher HBP flux is 

linked to insulin resistance/type 2 diabetes, we hypothesized that increased O-

GlcNAcylation of leukocyte proteins can detect the onset of pre- and overt diabetes.   

 

Materials and methods: 74 participants from Bellville and Stellenbosch (Western 

Cape, South Africa) were recruited and characterized as normal, pre-diabetic or 

diabetic. Leukocytes (granulocytes and lymphocytes) isolated from study subjects 

were evaluated for O-GlcNAcylation, OGA and OGT expression by flow cytometry, 

immunofluorescence microscopy and Western blotting.  

Results: Leukocyte O-GlcNAcylation increased in both pre-diabetic and diabetic 

individuals, with leukocyte sub-population data showing the greatest sensitivity. 

OGA expression and O-GlcNAc/OGA ratios elevated in parallel with increasing 

glucose concentrations. OGT expression did not significantly change for any of the 

study subjects investigated.   
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Conclusions: The initial and significant increases in leukocyte O-GlcNAcylation 

demonstrate great potential for the earlier detection of pre-diabetic and diabetic 

individuals. OGA expression and O-GlcNAc/OGA ratios may also have diagnostic 

value. Together our data show strong promise for eventual diagnostic utility and the 

more efficient detection of type 2 diabetes.   
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Uitreksel 
 

Die konteks: Daar is ernstige tekortkominge in die huidige toetsing en kriteria vir 

die diagnose van diabetes. ŉ Nuwe metode vir die vroeë en meer effektiewe 

opsporing van tipe 2 diabetes sal beduidende kliniese voordeel inhou.  

 

Doelstelling: Onder normale omstandighede tree die heksosamienbiosintetiese pad 

(HBP) as energie sensor op, en die aktivering daarvan gee aanleiding tot O-

GlcNAsetilering van proteïene in ŉ glukose-afhanglike wyse. O-GlcNAs transferase 

(OGT) en O-GlcNAse (OGA) is onderskeidelik verantwoordelik vir O-GlcNAs 

toevoeging en verwydering. Aangesien hoër HBP fluks verband hou met 

insulienweerstandigheid /tipe 2 diabetes, stel ons ŉ hipotese voor dat opsporing 

van verhoogde O-GlcNAsilasie van leukosietproteïene, die aanvang van pre-diabetes 

en diabetes kan voorspel. 

 

Materiale en metodes: 74 vrywillige deelnemers van Bellville en Stellenbosch (Wes 

Kaap Provinsie, Suid Afrika) is gewerf en gekarakteriseer as normaal, pre-diabeties 

of diabeties. Leukosiete (granulosiete en limfosiete), uit bloed van deelnemers 

geïsoleer, is vir O-GlcNAsilasie, OGA en OGT uitdrukking deur vloeisitometrie, 

immunofluoressensie-mikroskopie en Western blotting, ondersoek. 

Resultate: Leukosiet O-GlcNAsetilering is verhoog in beide pre-diabetiese en 

diabetiese individue, met leukosiet sub-populasie wat die mees sensitiewe data 

gelewer het. OGA uitdrukking en O-GlcNAs/OGA verhoudings in parallel verhoog 

tot ŉ toename in glukose konsentrasies. OGT uitdrukking het nie betekenisvol 

verander in enige van die individue wat ondersoek is nie. 
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Gevolgtrekkings: Die vroeë en betekenisvolle toename in leukosiet O-

GlcNAsetilering toon groot potensiaal vir die vroeë opsporing van pre-diabetiese en 

diabetiese individue. OGA uitdrukking en O-GlcNAs/OGA verhoudings het ook 

moontlik diagnostiese waarde. Ons data toon belowende resultate vir die gevolglike 

diagnostiese waarde en ŉ meer effektiewe opsporing van tipe 2 diabetes. 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

vii 
 

Acknowledgements 
 

I thank my supervisor, Prof Essop, for his loyalty, wisdom, motivation and 

guidance. Prof, thank you for all the unbelievable opportunities and for allowing me 

to grow and learn on my own terms. You have provided me with the foundation and 

skills necessary to pursue new challenges, and for this I am truly grateful.  

 

To the best parents in the world, thank you for your unwavering support and love, 

there are no words to describe how much both of you mean to me and how much I 

appreciate everything you do for me (which is too much).  

 

To the love of my love, thank you for your unconditional love and support, and for 

being the most dependable person in my life. I am indebted mostly to you! 

 

To H and Megan, thank you for all the laughs and the Buzz coffees. I am so happy 

to have been able to share this experience with you. To Thomas, thank you for 

being a true friend and for teaching me so many valuable life lessons. 

 

To the best research group, CMRG, thank you for being an unbelievable support 

system and for always being willing to help out! To my fellow colleagues, for 

empathy when western blots didn’t work and jealousy when they did.  Thank you 

for making the lab a fun place to work in. 

 

To Catrina, thank you for putting a smile on my face every single morning. I will 

truly miss you. 

 

Thank you to Ithemba labs and the Bellville-South team (particularly Ryan, Alain 

and Macharia) for help with subject recruitment, without your assistance this 

project would not have been possible. 

 

Thank you to the NRF, the Harry Crossley Foundation and the Ernst & Ethel 

Eriksen Trust for the generous financial support. 

Stellenbosch University http://scholar.sun.ac.za



   
 

viii 
 

Table of Contents  

 

 

Declaration ............................................................................................................. ii 

Abstract ................................................................................................................. iii 

Uitreksel ................................................................................................................. v 

Acknowledgements .................................................................................................vii 

List of Figures ...................................................................................................... xiii 

List of Tables ......................................................................................................... xvi 

Nomenclature....................................................................................................... xvii 

 

Introduction ................................................................................................... 1 
 

1.1 The global burden ...................................................................................................... 1 

1.2 Diabetes and its insidious complications ........................................................... 4 

1.3 The diagnosis of diabetes ........................................................................................ 6 

   1.3.1 The history of diabetes diagnosis ........................................................................ 6 

   1.3.2 Comparisons, cut-off’s and controversies ......................................................... 8 

   1.3.2.1  OGTT and impaired glucose tolerance (IGT) versus FPG and impaired   

    fasting glucose (IFG) ...................................................................................... 8 

   1.3.2.2 The official authorization of HbA1c.................................................... 10 

   1.3.2.3  Comparisons between the diagnostic yields of each test ................... 11 

   1.3.2.4  The predicting efficiency of each diagnostic test ............................... 12 

   1.3.2.5  The current criteria for the  diagnosis of diabetes ............................. 13 

   1.3.3 Shortcomings of current diagnostic tests ........................................................ 14 

   1.3.3.1  The oral glucose tolerance test ......................................................... 14 

   1.3.3.2  Glycosylated hemoglobin assay ....................................................... 15 

   1.3.3.3  The fasting plasma glucose test ....................................................... 15 

1.4 The etiology of type 2 diabetes ........................................................................... 16 

   1.4.1 Hyperlipidemia ..................................................................................................... 16 

   1.4.2 Insulin resistance and compensatory hyperinsulinemia .............................. 20 

   1.4.3 Hyperglycemia ...................................................................................................... 22 

1.5 Hyperglycemia-induced oxidative stress production ............................... 24 

   1.5.1 Mitochondrial superoxide production .................................................... 25 

Stellenbosch University http://scholar.sun.ac.za



   
 

ix 
 

   1.5.2 Additional sources of oxidative stress .................................................... 27 

1.6 Hyperglycemia-mediated mitochondrial superoxide production activates 

alternative glucose-utilizing pathways ........................................................... 28 

   1.6.1 Pentose phosphate pathway (PPP) .......................................................... 31 

   1.6.2 Polyol pathway ....................................................................................... 32 

   1.6.3 AGE formation ....................................................................................... 33 

   1.6.4 Activation of PKC ................................................................................... 34 

   1.6.5 Hexosamine biosynthetic pathway (HBP) ............................................... 35 

   1.6.6 Summary of damaging pathways activated by hyperglycemia ................ 36 

1.7 Overview of the HBP ................................................................................. 39 

1.8 Involvement of the HBP in insulin resistance and cardiac pathologies..41 

1.9 The O-GlcNAc modification ......................................................................... 44 

1.10 Regulation of the HBP ............................................................................. 46 

   1.10.1 OGT ..................................................................................................... 46 

   1.10.2 OGA ..................................................................................................... 47 

1.11 The diagnostic utility of O-GlcNAc ......................................................... 48 

1.12 Summary of research problem ................................................................ 49 

1.13 Hypothesis ............................................................................................... 50 

1.14 Aims and objectives ................................................................................ 51 

 

Materials and Methods .............................................................................. 52 
 

2.1 Subject recruitment .................................................................................. 52 

2.2 Characterization of subjects ..................................................................... 53 

2.3 Sample  collection ..................................................................................... 54 

2.4 Leukocyte isolation ................................................................................... 55 

   2.4.1 Histopaque ............................................................................................ 56 

   2.4.2 Manual isolation .................................................................................... 56 

2.5 Investigation of HBP flux .......................................................................... 57 

   2.5.1 Flow cytometry ...................................................................................... 57 

   2.5.1.1 O-GlcNAcylation ............................................................................... 57 

   2.5.1.2 OGT ................................................................................................. 58 

   2.5.1.3 OGA ................................................................................................. 58 

   2.5.2 Immunofluorescence microscopy ...................................................................... 58 

   2.5.2.1 O-GlcNAcylation ............................................................................... 58 

   2.5.2.2 OGT ................................................................................................. 59 

Stellenbosch University http://scholar.sun.ac.za



   
 

x 
 

   2.5.2.3 OGA ................................................................................................ 60 

   2.5.3 Western blotting .................................................................................... 60 

   2.5.3.1 Protein extraction and quantification................................................. 60 

   2.5.3.2 Sample preparation.......................................................................... 60 

   2.5.3.3 SDS PAGE and Western blot analysis ............................................... 61 

2.6 Differentiation of leukocyte subtypes ...................................................... 62 

2.7 Determining the effect of insulin on HBP flux ......................................... 63 

   2.7.1 Cell culture ............................................................................................ 63 

   2.7.2 Experimental groups ............................................................................. 64 

   2.7.3 Western blotting .................................................................................... 66 

   2.7.3.1 Preparation ...................................................................................... 66 

   2.7.3.1 Western blot analysis ...................................................................... 66 

   2.7.4 Immunofluorescence microscopy ........................................................... 67 

   2.7.4.1 Preparation ...................................................................................... 67 

   2.7.4.1 Immunofluorescence staining ........................................................... 67 

2.8 Statistical analysis .................................................................................... 67 

 

Results ............................................................................................................ 69 

 
3.1 Leukocyte flow cytometric scatter properties and differential CD45 

intensity define two major leukocyte populations ........................................ 69 

3.2 Differential O-GlcNAc modification between different leukocyte 

populations ...................................................................................................... 70 

3.2 Similar OGA expression between different leukocyte populations ......... 72 

3.3 Determination of O-GlcNAcylation by means of flow cytometry and 

immunofluorescence miscroscopy .................................................................. 74 

   3.3.1 Increases in leukocyte O-GlcNAcylation with increased fasting blood 

   glucose levels (ADA) ........................................................................................ 74 

   3.3.2 Increased  O-GlcNAc modification with elevated fasting blood glucose 

   concentrations (WHO) ..................................................................................... 76 

   3.3.3 Leukocyte O-GlcNAcylation increases with rising HbA1c levels .............. 78 

3.4 Determination of O-GlcNAcylation by Western blotting .......................... 80 

3.5 Investigation of OGA expression by flow cytometry and 

immunofluorescence miscroscopy .................................................................. 82 

   3.5.1 Differential expression of O-GlcNAcase (OGA) between healthy, pre 

   diabetic and diabetic individuals (ADA characterized) ............................................ 82 

   3.5.2 Differential OGA expression between normal, pre-diabetic and diabetic 

Stellenbosch University http://scholar.sun.ac.za



   
 

xi 
 

   subjects (WHO characterized) ......................................................................... 84 

   3.5.3 OGA is differentially expressed between normal, pre-diabetic and diabetic 

   subjects when characterized by HbA1c levels ................................................. 86 

3.6 Evaluation of OGA expression by Western blotting ................................. 88 

3.7 Investigation of OGT expression by flow cytometry and 

immunofluorescence microscopy ................................................................... 90 

3.8 Examination of OGT expression by means of Western blotting .............. 91 

3.9 Determination of O-GlcNAc/OGA ratios ................................................... 92 

   3.9.1 Elevated O-GlcNAc/OGA ratios in pre-diabetic and diabetic individuals 

   (ADA criteria) .................................................................................................. 92 

   3.9.2 O-GlcNAc/OGA ratio increases in pre-diabetes and diabetes (WHO 

   criteria) ........................................................................................................... 94 

   3.9.3 Leukocyte O-GlcNAc/OGA ratio increases with rising HbA1c levels: ...... 95 

3.10 Discrepancies between diagnostic tests and defining criteria .............. 96 

   3.10.1 Discrepancies between FPG and HbA1c ............................................... 96 

   3.10.2 Discrepancies between WHO and ADA ................................................. 97 

3.11 Characterization of study population .................................................... 98 

3.12 “True” normal, pre-diabetic and diabetic individuals ......................... 100 

   3.12.1 The investigation of O-GlcNAcylation between “true” normal, pre-diabetic 

   and diabetic individuals ................................................................................ 101 

   3.12.2 Analyzing OGA expression between “true” normal, pre-diabetic and 

   diabetic individuals ...................................................................................... 102 

   3.12.3 Determining O-GlcNAc/OGA ratios for “true” normal, pre-diabetic and 

   diabetic participants ..................................................................................... 103 

3.13 The inaccuracy of FPG (Case study) ..................................................... 104 

3.14 Investigation into the combination of insulin and fasting plasma 

glucose levels ................................................................................................. 105 

   3.14.1 Characterization into glucose/insulin groups .................................... 106 

   3.14.2 O-GlcNAcylation and O-GlcNAc/OGA ratio differs between 

   glucose/insulin groups ................................................................................. 106 

3.15 Determining the effect of insulin on HBP flux..................................... 108 

   3.15.1 Immunofluorescence microscopy ....................................................... 108 

   3.15.2 Western blotting .............................................................................................. 110 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

xii 
 

Discussion ................................................................................................... 112 
 

4.1 Differential O-GlcNAc modification between diverse leukocyte sub-

populations .................................................................................................... 113 

4.2 Pre- and diabetic individuals display increased leukocyte O-

GlcNAcylation ................................................................................................ 115 

4.3 Differential leukocyte OGA expression between healthy, pre-diabetic and 

diabetic individuals ....................................................................................... 119 

4.4 OGT expression did not significantly change for any of the study 

recruits investigated ..................................................................................... 122 

4.5 Elevated O-GlcNAc/OGA ratios in pre-diabetic and diabetic individuals

 ........................................................................................................................ 124 

4.6 Summary of main findings ...................................................................... 124 

4.7 Further analysis into O-GlcNAc’s diagnostic utility .............................. 126 

   4.7.1 Discrepancies between diagnostic tests and defining criteria ............... 126 

   4.7.2 Characterization of our study population ............................................. 129 

   4.7.3 The value of insulin in diabetes diagnosis ............................................ 131 

   4.7.4 The effect of insulin on HBP flux .......................................................... 135 

4.8 Matters in need of consideration ............................................................ 137 

4.9 Evaluation of techniques employed ....................................................... 142 

4.10 Shortcomings ........................................................................................ 143 

4.11 Future research ..................................................................................... 144 

 

Conclusion ...................................................................................................... 146 

 
References........................................................................................................... 148 

Supplemental Data ............................................................................................. 171 

Appendix ............................................................................................................. 174 

 
 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

xiii 
 

List of Figures 
 
 
Figure 1.1  A bar graph representing the increasing prevalence of diabetes from 

1998 to 2004 to 2012, and the projections made in each of these years 
for  2025 and 2030. 

 
Figure 1.2  World maps presenting the global distribution of male and female 

deaths caused by CVD. 
 
Figure 1.3  Proposed examples of mechanisms for hyperlipidemia-induced insulin 

resistance.  
 
Figure 1.4  Metabolic abnormalities of diabetes are interlinked and lead to a self-

perpetuating vicious cycle.  
 
Figure 1.5  Mitochondrial electron transport chain under physiological conditions 

versus during hyperglycemia. 
 
Figure 1.6  Hyperglycemia-induced mitochondrial superoxide production inhibits 

GAPDH and leads to the up-regulation of five alternative glucose 
metabolizing pathways. 

 
Figure 1.7  Schematic representation of the pentose phosphate pathway. 

Figure 1.8  Schematic diagram of the polyol pathway. 
 
Figure 1.9  Diagram depicting the formation of AGEs. 
 
Figure 1.10  Schematic illustrating the activation of PKC.  
 
Figure 1.11  A summarized schematic representation of the pathophysiology and 

development of type 2 diabetes as reviewed in sections 1.1-1.6.  
 
Figure 1.12  A schematic representation of the HBP. 
 
Figure 1.13  The dynamic attachment and cleavage of O-GlcNAc by OGT and OGA, 

respectively. 
 
Figure 2.1  Subject characterization according to fasting plasma glucose (ADA, 

WHO) and HbA1c levels. 

Figure 2.2  Collection of blood samples for clinical data and for molecular 
analysis. 

Figure 2.3  Isolation of leukocytes using Histopaque®-1077 and Histopaque®-
1119. 

Stellenbosch University http://scholar.sun.ac.za



   
 

xiv 
 

Figure 2.4  Schematic representation of experimental treatment groups used for 
Western blotting and immunofluorescence microscopy. 

 
Figure 3.1  Diverse physical properties and differential CD45 fluorescence allow 

for the identification of leukocyte sub-populations (flow cytometry).  
 
Figure 3.2  Differential display of O-GlcNAc signal between different leukocyte 

populations (flow cytometry and immunofluorescence microscopy).  
 
Figure 3.3  Identical display of OGA signal between different leukocyte 

populations (flow cytometry and immunofluorescence microscopy).  
 
Figure 3.4  Increased O-GlcNAcylation of leukocyte proteins in ADA characterized 

pre-diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).  

Figure 3.5 Increased O-GlcNAcylation of leukocyte proteins in WHO characterized 
pre-diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).  

Figure 3.6 Increased O-GlcNAc modifications in pre-diabetic and diabetic 
leukocytes when characterized according to HbA1c levels (flow 
cytometry and immunofluorescence microscopy).  

Figure 3.7  Western blot analysis of O-GlcNAcylation in normal, pre-diabetic and 
diabetic individuals. 

Figure 3.8  Differential leukocyte OGA protein expression in ADA-defined pre-
diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).   

Figure 3.9  Differential leukocyte OGA protein expression in WHO defined pre-
diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).   

Figure 3.10 Differential leukocyte OGA protein expression in pre-diabetic and 
diabetic individuals characterized by HbA1c levels (flow cytometry and 
immunofluorescence microscopy).   

Figure 3.11 OGA western blot analysis in normal, pre-diabetic and diabetic 
individuals. 

Figure 3.12  OGT expression in the total leukocyte population of normal, pre-
diabetic and diabetic participants. 

Figure 3.13  Western blot analysis of OGT protein levels in normal, pre-diabetic 
and diabetic individuals. 

Figure 3.14  O-GlcNAc/OGA ratio is increased in pre-diabetic and diabetic 
individuals characterized by ADA diagnostic criteria (flow cytometry).   

Figure 3.15  Elevated O-GlcNAc/OGA ratio in pre-diabetic and diabetic individuals 
characterized by WHO diagnostic guidelines (flow cytometry).   

Figure 3.16 Increased O-GlcNAc/OGA ratio in leukocytes when characterized 
according to HbA1c levels (flow cytometry).  

Stellenbosch University http://scholar.sun.ac.za



   
 

xv 
 

Figure 3.17  Differences in O-GlcNAcylation between groups established from 
discrepancies between HbA1c and FPG.  

Figure 3.18 Differences in O-GlcNAcylation between groups established from 
discrepancies between WHO and ADA diagnostic criteria.  

Figure 3.19 Percentage of population characterized as normal, pre-diabetic and 
diabetic according to A: ADA criteria B: WHO guidelines C: HbA1c 
levels.  

Figure 3.20 Percentage of population characterized as normal, pre-diabetic and 
diabetic according to all three criteria (ADA, WHO, HbA1c). 

Figure 3.21 Increased O-GlcNAcylation in leukocytes of “true” diabetic individuals. 

Figure 3.22 OGA protein expression in leukocytes of “true” diabetic individuals. 

Figure 3.23 O-GlcNAc/OGA ratio evaluated in leukocytes of “true” diabetic 
individuals. 

Figure 3.24 Percentage of Bellville-South population characterized according to 
glucose/insulin groups. 

Figure 3.25 O-GlcNAcylation levels and O-GlcNAc/OGA ratios compared to 
glucose/insulin groups. 

Figure 3.26  Effect of insulin on O-GlcNAcylation under low glucose culturing 
conditions (5.5 mM) in H9c2 cells (immunofluorescence microscopy). 

Figure 3.27  Effect of insulin on O-GlcNAcylation under high glucose conditions 
(25 mM) in H9c2 cells (immunofluorescence microscopy).  

Figure 3.28 Western blot analysis of O-GlcNAcylation in insulin-treated H9c2 cells 
cultured under high and low-glucose conditions. 

Fig. A1 O-GlcNAcylation is moderately elevated in the total white blood cell 
population of individuals with varying degrees of “normal” fasting 
plasma glucose levels. 

Fig. A2 O-GlcNAcylation is moderately elevated in granulocytes and 

lymphocytes of individuals with varying degrees of “normal” fasting 
plasma glucose levels. 

Fig. B1 OGA expression in total leukocyte population of ADA defined pre-
diabetic, diabetic and severely diabetic subjects versus normal 
individuals. 

Fig. B2 OGA expression in total leukocyte population of WHO defined pre-
diabetic, diabetic and severely diabetic subjects versus normal 
individuals. 

 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

xvi 
 

List of Tables 

Table 1.1 Amendments made by the WHO and ADA to diagnostic criteria during 
1985-2003.  

 
Table 1.2  The current ADA and WHO diagnostic criteria for OGTT, FPG and 

HbA1c. 
 
Table 2.1  Baseline characteristics of recruited individuals. 

 
Table 2.2  Primary and secondary antibodies used for Western blotting analysis. 

 

  

Stellenbosch University http://scholar.sun.ac.za



   
 

xvii 
 

Nomenclature 

β cell:   Beta cell 

ADA:   American Diabetes Association 

AGE:   Advanced glycation end products  

AMP:   Adenosine monophosphate 

AMPK:  5′-AMP-activated protein kinase 

ARV:   Antiretroviral  

ATP:   Adenosine triphosphate 

BSA:   Bovine serum albumin 

(CaMKIV):  Calcium calmodulin-dependent protein kinase I V  

CoQ:   Coenzyme Q 

CVD:            Cardiovascular diseases 

DAG:   Diacylglycerol 

EDTA:  Ethylenediaminetetraacetic acid  

ETC:   Electron transport chain 

FAD:   Flavin adenine dinucleotide (oxidized) 

FADH2:  Flavin adenine dinucleotide (reduced) 

FBS:   Fetal bovine serum 

FFA:   Free fatty acid 

FITC:  Fluorescein isothiocyanate 

FPG:   Fasting plasma glucose 

FSC:   Forward angle light scatter 

Stellenbosch University http://scholar.sun.ac.za



   
 

xviii 
 

G-6-P:  Glucose-6-phosphate 

G6PD:  Glucose-6-phosphate dehydrogenase 

GAPDH:  Glyceraldehyde-3-phosphate dehydrogenase 

GFAT:  Glutamine:fructose-6-phosphate aminotransferase 

GlcN-6-P:  Glucosamine-6-phosphate 

GLUT4:  Glucose transporter 4 

GSH:   Glutathione (reduced) 

GSPx:  Glutathione peroxidase  

GSSG:  Glutathione (oxidized) 

H2O:   Water 

H2O2:  Hydrogen peroxide 

HAT:   Histone acetyl transferase 

Hb:   Hemoglobin 

HbA1c:  Glycated hemoglobin 

HBP:  Hexosamine biosynthetic pathway 

HGC:   High glucose control 

HGHI:  High glucose high insulin 

HGLI:   High glucose low insulin 

HGMI:  High glucose medium insulin 

HGPC:  High glucose positive control 

HOMA:  Homeostasis model assessment  

IDF:   International Diabetes Federation 

IFG:   Impaired fasting glucose 

IGT:   Impaired glucose tolerance 

IRS-1:  Insulin receptor substrate 

LGC:   Low glucose control  

LGHI:   Low glucose high insulin 

Stellenbosch University http://scholar.sun.ac.za



   
 

xix 
 

LGLI:   Low glucose low insulin 

LGMI:  Low glucose medium insulin 

LGPC:  Low glucose positive control 

MGEA5:  Meningioma expressed antigen 5  

MnSOD:  Manganese superoxide dismutase 

NAD+:   Nicotinamide adenine dinucleotide (oxidized) 

NADH:  Nicotinamide adenine dinucleotide (reduced) 

NADP+: Nicotinamide adenine dinucleotide phosphatase (oxidized) 

NADPH: Nicotinamide adenine dinucleotide phosphatase (reduced) 

NCD:   Non-communicable disease 

NCOAT:  Nuclear cytoplasmic O-GlcNAcase and acetyltransferase 

NEFA:  Non-esterified fatty acids 

NFΚ-B:  Nuclear factor kappa-beta 

O2
-:   Superoxide 

OGA:   O-GlcNAcase 

O-GlcNAc:  O-linked-N-acetylglucosamine  

OGT:   O-linked β-N-acetylglucosaminyl transferase  

OGTT:  Oral glucose tolerance test 

PARP:  Poly(ADP-ribose) polymerase 

PBS:   Phosphate buffered solution 

PDH:   Pyruvate dehydrogenase  

PenStrep:  Penicillin-Streptomycin solution 

PFK:   Phosphofructokinase  

PtdIns(3,4,5)P3: Phosphatidylinositol 3,4,5-triphosphate  

PI3K:   Phosphatidylinositol 3-kinase 

PKC:   Protein kinase C  

PMSF:  Phenylmethanesulfonyl fluoride 

PPP:   Pentose phosphate pathway 

Stellenbosch University http://scholar.sun.ac.za



   
 

xx 
 

PTEN:  Phosphatase and tensin homolog deleted on chromosome 10 

PUGNAc: O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N- 

                    phenylcarbamate 

QUICKI:  Quantitative insulin sensitivity check 

RIPA:   Radioimmunoprecipitation 

ROS:   Reactive oxygen species 

SDS:   Sodium dodecyl sulphate 

SDS-PAGE:  SDS-polyacrylamide gel electrophoresis 

SEM:   Standard error of the mean 

SERCA2a:  Sarcoplasmic calcium ATPase 

SGLT:  Sodium-glucose co-transporter 

SSC:   Linear 90° light scatter  

T2DM: Type 2 diabetes mellitus 

TBS:   Tris buffered saline 

TBS-T:  TBS-Tween  

TCA:   Tricarboxylic acid  

TPR:   Tetratricopeptide repeats  

UCP:   Uncoupling proteins 

UDP:   Uridine diphosphate 

UDP-GlcNAc:Uridine diphosphate N-acetyl glucosamine 

UTP:   Uridine triphosphate 

WBC:   White blood cell 

WHO:   World Health Organization

 

Stellenbosch University http://scholar.sun.ac.za



   
 

1 
 

Introduction 
Diabetes is an escalating health crisis and global affliction. For example, someone 

dies approximately every 7 seconds from diabetes-associated effects [1]. The rapidly 

increasing incidence and prevalence of Type 2 diabetes mellitus (T2DM) has 

emerged as one of the most pressing medical concerns of both developed and 

developing countries [1, 2]. Furthermore, at a high-level summit hosted by the 

United Nations General Assembly in September 2011, it was proclaimed that 

diabetes and other non-communicable diseases (NCDs) had reached “epidemic 

proportions” [3]. Diabetes can lead to a wide-range of health issues, it is one of the 

world’s largest contributors towards mortality, disability and economic expenditure, 

and it is also associated with the exacerbation of poverty and hunger [4-6]. The 

resulting burden on society, government, health care systems and the economy is 

devastating and it is therefore imperative to address such complications with 

urgency. 
1.1 The global burden 

The global diabetes healthcare expenditure amounted to an enormous $465 billion 

in 2011. Moreover, since diabetes results in a significant loss of economic growth 

and labor throughput, diabetes-induced mortality and disability rates are a global 

concern [1, 7]. Non-communicable diseases account for 63% of total deaths 

worldwide, of which the largest fraction is due to diabetes, cardiovascular diseases 

(CVD), cancer and chronic respiratory diseases [4]. Diabetes is responsible for ~4.6 

million deaths per annum, and although more prevalent in low-income countries, 

1. 
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no country or community is unscathed [1, 8]. The International Diabetes 

Federation (IDF) estimated that 366 million people currently suffer from diabetes 

(85-95% of these being type 2 diabetes), and predictions indicate that this number 

will surge to 522 million by 2030 [1]. Moreover, the harsh reality of these alarming 

statistics is that this may be an underestimation (Figure 1.1). In support, 

predictions made for the year 2025 (300 million) and the year 2030 (366 million) 

have already been exceeded [8, 9]. This exacerbates existing concerns regarding 

current estimations as it is very likely that these numbers will further escalate 

within the next few decades (Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A bar graph representing the increasing prevalence of diabetes from 
1998 to 2004 to 2012, and the projections made in each of these years for  2025 
and 2030. As the estimations made for 2030 in 1998 and 2004 have already been 
surpassed, the prevalence by the year 2030 is unknown (black bar). (Generated 
from statistics obtained from [1, 7-9]). 
 

Closer to home the situation is just as dire, with ~14.7 million diabetic cases 

reported in sub-Saharan Africa, and following a rapid upward trajectory [1, 7]. In 

fact, the IDF forecasts a doubling in the prevalence of diabetes in Africa between 
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the years 2011 and 2030 [7]. This is the alarming truth of an illness fuelled by 

obesity, physical inactivity, poverty, urbanization, hazardous lifestyle changes and 

socio-economic stressors [10, 11].  

 

Obesity is the major contributing factor towards type 2 diabetes and glucose 

dysregulation, and it is predicted that by the year 2030 almost 2 billion people will 

be overweight [12]. Obesity is an established health challenge of the affluent 

nations as well as an emerging and rapidly increasing issue in non-industrialized 

countries [13]. Lower income countries additionally suffer from a “dual-burden” of 

both obesity and malnutrition [14]. With urbanization on the rise, poorer 

populations are limited to cheap, nutrient-deprived, carbohydrate and fat-dense 

foods that lead to malnourishment and/or an abundance of calories and 

subsequent weight gain [14, 15]. However, in India and certain Asian countries 

where the prevalence of obesity is relatively low, rates of type 2 diabetes are 

unexpectedly high [10, 16]. Here this is attributable to rapid socio-economic 

developments, physical inactivity and nutritional transitions resulting in greater 

abdominal obesity and increased insulin resistance, i.e. a “normal-weight, 

metabolically obese” phenotype [10].  

 

Together, the previous discussion shows that the dynamics of type 2 diabetes are 

ever changing. Historically it was a condition largely prevalent in Western 

populations, but it now presents on a global scale [10]. Formerly known as an 

affliction of the rich, it is now similarly a severe problem within developing nations 

[15]. Furthermore, while it classically manifested in adults, type 2 diabetes is 

currently also an austere health challenge for younger people [17]. Thus it is 

emphatic that type 2 diabetes is a health issue of considerable dimension and 

governments worldwide are rightfully concerned since its phenotype is closely 
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linked to several additional debilitating illnesses, with multiple economic and 

societal influences [3]. 

1.2 Diabetes and its insidious complications  

Cardiovascular diseases (CVD) remain the leading cause of deaths worldwide 

(Figure 1.2) [18]. Diabetes is closely associated with CVD and vascular 

complications are the primary cause of morbidity and mortality in diabetic sufferers 

[19, 20]. For example, it is the cause of mortality on more than 65% of diabetes-

associated death certificates [21]. This illustrates that such associated vascular 

complications present a formidable challenge facing individuals with diabetes. 

Patients with diabetes have an increased risk for several CVD and the progression 

of cardiac dysfunction may lead to coronary artery disease, hypertension, 

atherosclerosis, myocardial infarction and cerebrovascular disease [22-25]. Diabetic 

patients have an approximate 2- to 4-fold higher mortality rate compared to non-

diabetics, this is with parallel vascular disease history [21]. Moreover, type 2 

diabetes can elicit negative effects on cardiac structure and function in the absence 

of hypertension and coronary artery disease, a condition established as the diabetic 

cardiomyopathy [25-27]. 
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Figure 1.2 World maps presenting the global distribution of A: male and B: female 
deaths caused by CVD [18]. 

 

Diabetes is also associated with lower extremity amputation, retinopathy, 

neuropathy, several cancers, degenerative disorders and blindness [21, 23, 28-30]. 

Furthermore, it can exacerbate tuberculosis and HIV/AIDS, two of the world’s most 

rampant infectious diseases [1, 31].  

This compelling information therefore underscores the need for the early detection of 

type 2 diabetes. Undiagnosed or delayed diagnosis of diabetes often causes the 

progression of many of the above-mentioned diabetic complications [1]. Therefore, our 

premise is that the inefficient diagnosis of diabetes is a major role-player contributing 

to such costly and debilitating consequences. 

A

. 

B

. 
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1.3 The diagnosis of diabetes 

Although current interventions are affordable and widely available, millions remain 

under-diagnosed and are disabled and/or die due to this illness every year [1, 32]. 

For example, 25% of patients diagnosed with diabetes have already carried the 

disease for 4-7 years, and at the time of diagnosis present with established micro- 

and macrovascular complications [33]. This situation is even more alarming for the 

African continent where a massive 78% of diabetic individuals are undiagnosed and 

innumerable children die without ever being diagnosed [1]. 

To support the urgent need for a global response to this epidemic, we aim to 

emphasize the importance of increased detection of diabetes, and more importantly of 

the pre-diabetic condition. We will firstly focus on providing a useful, informative 

overview of the diagnosis of diabetes. Here we aim to provide clarity regarding the 

current status of diabetes diagnosis and to, more importantly, utilize this to serve as 

a practical platform with which to aid improved diagnosis and the delay of 

complications. We also aim to place the existing diagnostic criteria into prognostic 

perspective, thereby providing context and precision regarding current strategies that 

are effective. Here we will also highlight areas where advances should be targeted to 

best further the field of diabetes diagnosis. 

1.3.1 The history of diabetes diagnosis 

The earliest known evidence of diabetes is recorded in 1552 BC (on Egyptian 

papyrus), and is described as an illness resulting in frequent urination [34]. The 

timeline of its diagnosis starts as early as 600 BC when Surutus, the father of 

Indian medicine, diagnosed this condition as “diabetes” [34]. From around 500 BC, 

a physician’s positive diagnosis relied upon the level of agility and fortitude 
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exhibited by ants toward a specimen of urine [35-38]. Up until the eleventh 

century, diagnosis was confirmed by the characteristic sweet taste of a diabetic’s 

urine. This was the task of individuals referred to as “water tasters” who had the 

unenviable job to drink the patient’s urine. It was at this time in history when the 

Latin word “mellitus” (honey) was coined as part of the term “diabetes” [38-40]. 

 

During 1797 an English military doctor, John Rollo, demonstrated the presence of 

surplus sugar in urine and in the blood [34]. It was only in the early 1800s when 

researchers technologically advanced the diagnosis of diabetes through the 

development of the first chemical tests capable of measuring urinary sugar levels 

[38, 41, 42]. This was further advanced when Benedict (in 1907) formulated a novel 

method based on the reduction of alkaline copper solutions to detect urinary sugar 

[43].  

 

The first observations of blood sugar at specific intervals after the ingestion of a test 

dose were made by Bang (1913) and his co-workers (discussed in [44]). 

Subsequently, various innovations were made between 1925 and the 1970s that 

allowed for accurate and easy blood glucose detection [38, 45, 46]. These included 

plasma “glucose brackets”, dextrostix®, and the daily mean fasting plasma glucose 

test [38, 47, 48]. During 1965 the World Health Organization (WHO) made the first 

formal request for the clinical diagnosis of diabetes to be based on the oral glucose 

tolerance test (OGTT) (reviewed in [49]). Inception of the glycated hemoglobin 

(HbA1c) test occurred in 1977. However, despite the fact that HbA1c was routinely 

used by physicians for glucose monitoring and primarily for prognostication, it was 

not yet recognized as an official diagnostic tool (reviewed in [32]). Following several 

debates and controversies regarding HbA1c’s utility and standardization (to be 

further discussed in section 1.3.2), it was officially endorsed as a first-line 

diagnostic test during 2009 (more than 30 years after its initial description)[50].  
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The present day criteria for the diagnosis of type 2 diabetes include FPG, HbA1c 

and OGTT tests [49]. This is based on the 2010 American Diabetes Association 

(ADA) guidelines and the 2011 WHO addendum report [49]. 

1.3.2 Comparisons, cut-off’s and controversies 

Indubitably, the field of diabetes diagnosis has made significant scientific advances 

since the utilization of ants’ attraction towards sugar. However, there is an on-

going debate and lack of consensus regarding both the preferred screening method 

for the detection of diabetes as well as organization-specific characterization 

criteria. These longstanding controversies regarding cut-off’s, diagnostic yield and 

predictive value, along with comparisons between the various tests will be reviewed 

and summarized below. 

1.3.2.1  OGTT and impaired glucose tolerance (IGT) versus FPG and 

impaired fasting glucose (IFG) 

The ADA has historically more strongly supported the FPG test [48]. By contrast, 

the WHO favored the OGTT and endorsed it as their only diagnostic test until 1980, 

and their principal test until 2011 [49, 51]. For the most part of the 1900s, 

increased mortality rates due to microvascular complications placed specific 

emphasis on the earlier detection of diabetes (reviewed in [52]). Due to the FPG test 

considered unable to detect glycemic dysregulation early enough, the OGTT was 

considered the best available screening test [48]. 

 

During 1997 the ADA proposed that the classification of diabetes be made 

primarily through FPG and that the diagnostic threshold be lowered from 7.8 to 7.0 

mmol/L, the cut-off value recommended by WHO at that time (Table 1.1) [53]. The 
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IFG category was intended to be analogous with IGT (2-hour blood glucose during 

an OGTT in range 7.8-11.1 mmol/L) (Table 1.1), and to similarly identify patients at 

risk of developing hyperglycemia-induced complications and/or diabetes [54]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Amendments made by the WHO and ADA amendments to diagnostic 
criteria for the period 1985-2003 [53-56]. 

 

However, studies confirmed discordance between the new FPG categories 

recommended by ADA and the longstanding OGTT criteria accredited by the WHO 

[53]. For example, in the DECODE (Diabetes epidemiology: collaborative analysis of 

diagnostic criteria in Europe) study, only 40% of individuals with newly diagnosed 

diabetes met the FPG threshold values, 31% fulfilled only OGTT criteria, and only 

28% satisfied both sets of diagnostic criteria [57]. It was soon observed that IFG 

and IGT could not be used interchangeably, and studies showed that FPG and 

OGTT each identified a different subset of diabetic individuals [56].  

1985 WHO guidelines 
OGTT: 

Normal:  <7.8 mmol/L 

IGT:        7.8-11.0 mmol/L 
Diabetic: ≥11.1 mmol/L 

FPG: 

Normal:  NA 

IFG:        NA 
Diabetic: ≥7.8 mmol/L 

1997 ADA criteria 
OGTT: 

Normal:   NA 

IGT:        NA 
Diabetic: NA 

FPG: 

Normal:  <6.1 mmol/L 

IFG:        6.1-6.9 mmol/L 
Diabetic: ≥7.0 mmol/L 

1999 WHO guidelines 
OGTT: 

Normal:   <7.8 mmol/L 

IGT:        7.8-11.0 mmol/L 
Diabetic: ≥11.1 mmol/L 

FPG: 

Normal:  <6.1 mmol/L 

IFG:        6.1-6.9 mmol/L 
Diabetic: ≥7.0 mmol/L 

2003 ADA criteria 
OGTT: 

Normal:  <7.8 mmol/L 

IGT:        7.8-11.0 mmol/L 
Diabetic: ≥11.1 mmol/L 

FPG: 
Normal:  <5.6 mmol/L 
IFG:        5.6-6.9 mmol/L 
Diabetic: ≥7.0 mmol/L 
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In 1999 the WHO adjusted their FPG cut-off value to match that of the ADA (Table 

1.1). However, they still strongly encouraged use of the OGTT [54]. Although 

patients diagnosed exclusively by means of OGTT displayed worse prognostic 

outcomes regarding retinopathy and mortality, diagnoses made solely with FPG 

would fail to detect ~30% of diabetic individuals [56]. In keeping with the constant 

tussle between the ADA and WHO, the ADA revised their criteria in 2003 to include 

the use of the OGTT test in their diagnostic guidelines. Moreover, the IFG category 

was lowered to 5.6-6.9 mmol/L in an attempt to more easily identify those 

individuals at high risk for developing diabetes (Table 1.1) [55]. 

 

Taken together, the above discussion emphasizes the complexities of defining 

diabetes and the need for recurrent modifications with the availability of new and 

relevant information. At this juncture we cannot accurately validate which test (FPG 

vs. OGTT) is more efficient at diagnosing diabetes, as each test has its merits. It 

seems as if IGT and IFG, commonly referred to as “categories of increased risk for 

diabetes” or “pre-diabetes” reflect different scopes of the glycemic response, i.e. not 

essentially differing regarding specificity, sensitivity or predictive significance [49, 

54]. For that reason it is not surprising that the combination of FPG and OGTT 

undoubtedly provides greater value than either test is capable of providing alone [54]. 

However, in practice this is not always feasible. 

1.3.2.2 The official authorization of HbA1c 

The ADA officially endorsed the use of HbA1c for the diagnosis of diabetes during 

June 2009 [58]. This step together with existing controversies pertaining to FPG 

and OGTT, further fuelled differences within the field of diabetes diagnosis. An 

International Expert Committee appointed by the ADA proposed an HbA1c 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 1. INTRODUCTION 
 

11 
 

diagnostic cut-off value of ≥ 6.5% to efficiently detect diabetes, additionally 

amending the pre-diabetes category (IFG and IGT) to include an HbA1c in the range 

of 5.7-6.4% [59].  

 

The HbA1c test assays the attachment of glucose to various amino groups of 

hemoglobin throughout the 120 day lifespan of an erythrocyte, and thus reflects a 

2-3 month glycemic control condition [60-62]. Moreover, fasting is unnecessary for 

the ensured accuracy of the test, thereby favoring the implementation of HbA1c 

[32]. In contrast, HbA1c has several limitations (to be discussed in more detail in 

section 1.3.3). Here principal issues include the lack of standardization and large 

global inconsistencies [32]. In light of this the WHO remained sceptical by 

indicating that the role of HbA1c in the effective diagnosis of diabetes was not 

established enough, thereby refuting its use as an official diagnostic test [56]. The 

resulting disputes regarding HbA1c’s implementation encouraged investigation into 

its utility, sensitivity and specificity compared to existing glucose-based screening 

tests [63-66].  

1.3.2.3  Comparisons between the diagnostic yields of each test 

Studies investigating differences between diagnostic tests generally confirmed a 

reasonable agreement of HbA1c with FPG and OGTT [67, 68]. Although the 

performance of HbA1c was similar to that of FPG and OGTT, a cause of concern 

was that the HbA1c cut-off points employed differed between studies [49]. For 

example, in a study analyzing the HbA1c diagnostic utility it was deduced that a 

cut-off as high as 6.5% resulted in the lowest accuracy of diabetes detection [69]. In 

fact, it detected less than 33% of individuals with undiagnosed diabetes versus FPG 

diagnostic thresholds [70]. Thus although the HbA1c threshold of 6.5% yields high 

specificity, its sensitivity is meagre and considerably limiting [62, 71].  
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The OGTT, although more cumbersome than FPG and HbA1c, can identify a 

greater number of diabetic individuals than either of the other tests alone [49]. FPG 

has less variability and increased reproducibility compare to OGTT, but it is known 

to be influenced by psychological stress and the duration of fasting [72, 73]. 

Moreover, OGTT and FPG only gauge a single moment of glycemia and this might 

be fallacious due to the chronic and complex nature of hyperglycemia [73]. 

 

By contrast, HbA1c is a precise, stable measurement that captures an individual’s 

average glycemic status. Moreover, HbA1c lacks the problem of adherence to 

stringent fasting conditions required for OGTT and FPG [73, 74]. Furthermore, 

HbA1c has the lowest intra-individual variability of these three methods [72]. 

However, HbA1c is strongly influenced by ethnicity and age, and the discrepancies 

observed in diagnostic yield are most conspicuous with the diagnosis of non-

Hispanic whites [49, 75]. 

1.3.2.4  The predicting efficiency of each diagnostic test 

The differences in predicting outcomes are more subtle. Here FPG, OGTT and 

HbA1c have been shown to be equally efficient at predicting the development of 

diabetic complications [76]. However, some studies reported HbA1c to have greater 

sensitivity and specificity for retinopathy and nephropathy [77], and also providing 

improved predictive value for cardiovascular risk compared to FPG [78]. 

 

During 2011 the WHO validated HbA1c as an official diagnostic test to the 

conventional means of diabetes diagnosis [51]. Here HbA1c was endorsed as an 

additional and not as an alternative diagnostic test. Although the diabetic threshold 

value of 6.5% was adopted, the WHO indicates that an HbA1c level below 6.5% 
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does not exclude the diagnosis of diabetes. Moreover, they indicate (in contrast to 

the ADA) that insufficient evidence revokes any formal endorsement for the 

interpretation of HbA1c values below 6.5% [51]. 

 

It must be noted that discordances discussed are most likely due to tests reflecting 

different facets of glucose homeostasis, making it difficult to compare diagnostic 

competences (discussed in [79]).  

1.3.2.5  The current criteria for the  diagnosis of diabetes 

 

Regardless of the on-going and apparent controversies regarding both the 

diagnostic tests as well as the cut-off criteria characterizing each of these tests, the 

2010 ADA recommendations and the 2011 WHO addendum report allow for the 

diagnosis of diabetes to be confirmed using either HbA1c, FPG or OGTT [49]. Of 

note, these guidelines do not endorse one particular test as the preferred method of 

detection [49]. Cut-off values are continually refined and threshold value 

discrepancies have significantly improved. Despite such progress the present 

diagnostic tests remain discordant and the current diagnostic criteria (represented 

in Table 1.2) retain incongruities that may have negative implications. 
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Table 1.2 The current ADA and WHO diagnostic criteria for OGTT, FPG and HbA1c 
[49, 54, 56]. 

1.3.3 Shortcomings of current diagnostic tests 

In addition to the apparent discordances discussed above, each screening method 

contains several idiosyncrasies (technicality and performance) that further impede 

the efficient detection of diabetes. 

1.3.3.1  The oral glucose tolerance test 

The OGTT is often referred to as the gold standard for the detection of diabetes 

(reviewed in [80]). It should be remembered, however, that it acquired gold 

standard status not because of its efficiency, but because of its longstanding 

application in a range of different studies (reviewed in section 1.3.2) [81]. However, 

the OGTT has several methodological and biological shortcomings. For example, it 

requires the patient to be available for more than 2 hours, has the highest intra-

individual variability and the lowest reproducibility of current available tests [72]. 

Since it has been demonstrated that the rate of glucose absorption differs between 

male and females, this further limits OGTT’s use in clinical practice [82]. 

 2010 ADA 
CRITERIA 

2011 WHO 
CRITERIA 

OGTT 
                            Normal: 
                                  IGT: 
                           Diabetic: 

 
<7.8 mmol/L 

7.8-10.9 mmol/L 
≥11 mmol/L 

 
<7.8 mmol/L 

7.8-10.9 mmol/L 
≥11mol/L 

FPG 
                            Normal: 
                                  IFG: 
                           Diabetic: 

 
<5.6 mmol/L 

5.6-6.9 mmol/L 
≥7.0 mmol/L 

 
<6.1 mmol/L 

6.1-6.9 mmol/L 
≥7.0 mmol/L 

HbA1c 
                            Normal: 
                     Pre-diabetic: 
                           Diabetic: 

 
<5.7% 

5.7-6.4% 
≥6.5% 

 
Not specified 
Not specified 

≥6.5% 
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1.3.3.2  Glycosylated hemoglobin assay 

HbA1c (or A1c) is regularly used to assess an individual’s average glucose 

metabolism (reviewed in [83]). Although it is accredited as a highly specific method 

for the diagnosis of diabetes, its sensitivity is limiting and it is therefore not as 

effective in identifying pre-diabetes (reviewed in [84]). The costs of HbA1c assays 

are also greater than glucose-based tests, making worldwide implementation and 

uniformity a challenging prospect [73, 74]. Moreover, it is an insufficient detection 

tool for gestational diabetes (discussed in [49]) and it also does not reflect 

variability, but only mean glycemia [85]. Various factors can lead to 

misinterpretation of HbA1c assay results, including certain hemoglobinopathies, 

iron deficiency, ageing, ethnicity and antiretroviral drugs (ARVs) (reviewed in [49, 

59, 73]). These factors significantly hamper the expediency of the HbA1c test, 

especially in countries where the prevalence of such comorbidities is high. For 

example, South Africa is a distinctively multi-ethnic country with the highest global 

prevalence of HIV and AIDS [59, 86]. Indeed, an analysis performed on the 

application and utility of HbA1c within the South African setting concluded that it 

should not be used for the diagnosis of diabetes in this instance [74]. 

1.3.3.3  The fasting plasma glucose test 

The fasting plasma glucose test is a simple, inexpensive and standardized tool that 

is implemented on a frequent basis (reviewed in [49]). However, it fails to indicate 

daily glycemic fluctuations as it reflects only a single facet of glucose metabolism. 

Both the fasted and postprandial states are entirely excluded as possible role 

players when employing this test (discussed in [87]). This limitation can result in a 

lack of reproducibility and may result in day-to-day variation of results [72]. 

Additionally, certain factors such as pre-analytical stability [88, 89], and the 
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patients’ stress and activity levels may interfere with the precision of FPG (reviewed 

in [73]). 

It is clear from reviewing the current status of diabetes diagnosis (sections 1.3.2 and 

1.3.3), that the investigation into a new diagnostic tool for the earlier, equally 

sensitive and more efficient detection of type 2 diabetes (with fewer shortcomings 

and complexities) would be a significant advance. This is the primary objective of this 

thesis and therefore the remainder of this review represents, in detail, the thought 

process undertaken to successfully conceptualize and investigate a potentially novel 

diagnostic tool for the detection of type 2 diabetes.  

1.4 The etiology of type 2 diabetes 

The best place to begin our investigation is with an exposition of the three 

metabolic disturbances characteristic of diabetes, i.e. they are hyperlipidemia, 

insulin resistance and compensatory hyperinsulinemia, and hyperglycemia [90]. 

1.4.1 Hyperlipidemia 

Insulin usually stimulates increased uptake and subsequent storage of glucose 

(stored as glycogen in liver and muscles, and as triglycerides in adipose tissue), 

along with the inhibition of lipolysis and glycogenolysis in adipose tissue and the 

liver, respectively [91]. Insulin resistance can be defined as the reduced 

responsiveness of the adipose, muscle and liver cells to the effects of insulin [92]. 

Hyperlipidemia usually presents with elevated blood levels of non-esterified fatty 

acids (NEFAs) and triglycerides (reviewed in [90]). NEFAs play a large role in the 

development of insulin resistance [93-95] and several theories exist to explain how 

free fatty acids can induce decreased insulin sensitivity [96]. 
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For example, Randle et al. (1963) proposed that insulin resistance associated with 

obesity is due to elevated fat oxidation [97-99]. The glucose-fatty acid cycle 

hypothesis is based on increased acetyl-CoA/CoA and NADH/NAD+ ratios 

decreasing the activity of pyruvate dehydrogenase (PDH) which results in elevated 

intracellular citrate levels. Increased citrate level inhibits phosphofructinase (PFK), 

a rate-limiting glycolytic enzyme, leading to an accumulation of glucose-6-

phosphate (G-6-P). This in turn results in the inhibition of hexokinase II activity, 

causing elevated intracellular glucose concentrations and decreased glucose uptake 

through glucose transporter 4 (GLUT4) [97](Figure 1.3 A).  

 

 

 

 

 

 

 

 

Figure 1.3 Examples of proposed mechanisms for hyperlipidemia-induced insulin 
resistance. A: The Randle hypothesis as described in the text (1). Elevated fat 
oxidation leads to increased acetyl-CoA/CoA and NADH/NAD+ ratios inactivating 
PDH, (2) resulting in increased citrate levels (3). Inhibition of PFK leads to an 
accumulation of G-6-P, which results in the inhibition of hexokinase II, (4) 
increasing glucose concentrations and (5) decreasing glucose uptake via GLUT4.  
 
 
 
Numerous studies have since challenged the Randle hypothesis [94, 100-102]. For 

example, an opposing theory by Shulman et al. (2000) suggests that the increase in 
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fatty acid metabolites (diacyglycerol, fatty acyl CoAs, ceramide) disturb the normal 

functioning of the insulin signaling pathways by activating protein kinase C (PKC) θ 

[91]. Here PKC θ initiates a serine/threonine cascade leading to the subsequent 

phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1). The 

successive association of IRS-1 with phosphatidylinositol 3-kinase (PI3K) is 

dependent on the phosphorylation of threonine amino groups. Therefore serine-

phosphorylated IRS-1 alters the functional properties of the insulin signaling 

pathway, resulting in decreased GLUT4 translocation to the sarcolemma and 

attenuated glucose uptake into the cell (Figure 1.3 B) [91, 103]. Several rodent and 

human studies support this theory [101, 102, 104, 105]. 

 

Increased fatty acid metabolites can also alter insulin signaling pathways through 

an alternative mechanism [90]. The PI3 kinase/Akt-1 pathway plays a pivotal role 

in ensuring efficient insulin action, and the phosphorylation and subsequent 

activation of Akt-1 is essential for the regulation of GLUT4 [106]. The activation of 

Akt-1 is dependent on the production and phosphorylation of phosphatidylinositol 

3,4,5-triphosphate (PtdIns(3,4,5)P3) [107]. NEFAs, however, can act as natural 

ligands for peroxisome proliferator-activated receptor (PPAR), a transcriptional 

modulator which is capable of up-regulating the phosphatase and tensin homolog 

deleted on chromosome 10 (PTEN) [108]. The subsequent up-regulation of PTEN 

results in the dephosphorylation of PtdIns(3,4,5)P3 and therefore promotes the loss 

of insulin sensitivity through the inhibition of Akt-1 activation (Figure 1.3B) [90]. 

 

An additional fatty acid-induced mechanism that promotes insulin resistance is the 

attenuation of insulin receptor (IR) gene expression [109]. It is postulated that 

palmitate can inhibit IR expression, thus decreasing IR protein levels in insulin-
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dependent target cells [109]. Decreased IR gene expression is possibly due to PKC 

phosphorylation (various isoforms) (Figure 1.3B) [110]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 B: Three additional examples of proposed mechanisms by which fatty 
acid metabolites reduce insulin sensitivity as described in the text (1). PKCθ leads 

to the phosphorylation of serine instead of threonine residues on IRS-1, disturbing 
the insulin signaling pathway and resulting in decreased GLUT4 translocation. (2). 
Up-regulation of PTEN results in the dephosphorylation of PtdIns(3,4,5)P3 and the 
inhibition of Akt-1 activation (3). Fatty acid-induced attenuation of IR gene 
expression. PDH, pyruvate dehydrogenase; PFK, phosphofructokinase; G-6-P, 
glucose-6-phosphate; PKC, protein kinase C; PI3K, phosphatidylinositol 3-kinase; 
IRS-1, insulin receptor substrate-1; (PtdIns(3,4,5)P3), phosphatidylinositol 3,4,5-
triphosphate; PTEN, phosphatase and tensin homolog deleted on chromosome 10; 
IR, insulin receptor. 
 
 
The discussed examples of mechanisms by which hyperlipidemia induces insulin 
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altering cellular insulin signaling pathways and thereby contribute to insulin 

resistance and compensatory hyperinsulinemia [90]. 

1.4.2 Insulin resistance and compensatory hyperinsulinemia 

It should be noted that, in addition to the lipid-induced insulin resistance already 

discussed, the pathophysiology of insulin resistance can also be caused by 

mitochondrial dysfunction, glucocorticoids, inflammation, oxidative stress (refer to 

section 1.5) and the hexosamine biosynthetic pathway (HBP) (to be discussed in 

section 1.7)[111-113]. Moreover, evidence shows that surplus glucose itself can 

play a significant role in the development of insulin resistance through the down 

regulation of 5′-AMP-activated protein kinase (AMPK), a key enzyme responsible for 

elevated GLUT4 translocation (especially during exercise) [114]. 

Insulin resistance may precede full-blown diabetes by more than a decade 

(discussed in [90]). This condition is therefore of a progressive nature and as the 

severity of insulin resistance increases, pancreatic beta cells are required to secrete 

increased amounts of insulin in an attempt to maintain glucose homeostasis [115]. 

During the early stages of insulin resistance such compensatory increases in 

insulin concentrations are adequate to maintain normal glucose homeostasis [116, 

117]. This in turn results in a normoglycemic hyperinsulinemic state, i.e. 

individuals are insulin resistant but display fasting plasma glucose levels in the 

normal range [116, 118, 119]. It must be noted that mild increases in blood glucose 

levels do occur, but due to concentrations remaining within the normal 

classification range, this typically remains unnoticed (discussed in [115]). 

 

Due to the progressive loss of insulin sensitivity, the ability of the pancreas to 

secrete the large amounts of insulin required to maintain glucose homeostasis 
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becomes hampered (discussed in [120, 121]. Moreover, hyperinsulinemia has an 

independent and pathogenic function in the development of insulin resistance [92, 

122] which leads to a pre-diabetic (IGT/IFG) setting that is initially characterized 

by hyperinsulinemia and hyperglycemia (discussed in [123, 124]). Due to prolonged 

insulin resistance, hyperinsulinemia and glucolipotoxicity, the function of 

pancreatic beta cells begin to decline, and although still elevated, insulin levels 

begin to descend [115, 125]. 

 

The pre-diabetic states (IFG and IGT) are heterogeneous, and although isolated IFG 

and IGT are both insulin resistant conditions [126], differences occur with regard to 

the exact site of decreased insulin sensitivity. Here IFG principally presents as 

hepatic insulin resistance, while IGT is predominantly characterized by muscle 

insulin resistance [127, 128]. 

 

IFG and IGT also differ in their pattern of insulin release. The kinetics of insulin 

secretion (biphasic) is vital to understand the implications of insulin resistance 

[129]. The first phase has a duration of only 15 minutes and is a rapid release of 

insulin (peaks at 2-4 minutes in response to a hyperglycemic stimulus)[130]. First 

phase insulin is pre-formed and stored in granules within the beta cell [130]. The 

second phase of insulin secretion is gradual and increases progressively for up to 3 

hours [129]. Individuals with isolated IFG experience a defect in their early-phase 

insulin response. However, IGT patients exhibit decreased first phase insulin 

secretion and a major deficiency in the second phase of insulin release [127]. This 

helps to elucidate variances in glucose levels between the two pre-diabetic states. 

Glycogenolysis in the liver together with a deficit in the early phase of insulin 

release result in excess hepatic glucose output, thereby leading to the elevated 

fasting plasma glucose levels observed in IFG [127]. By contrast, decreased muscle 
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glucose uptake together with blunted late phase insulin secretion is responsible for 

the post-prandial hyperglycemia (PPG) during IGT [127]. Individuals with combined 

IFG/IGT experience both hepatic and muscle insulin resistance [127]. 

 

During the latter stages of insulin resistance, the steady decline in insulin secretion 

correlates with further elevations in hyperglycemia, raising glucose concentrations 

into the diabetic glucose range [123]. Type 2 diabetes is characterized by severe 

hyperglycemia and significantly reduced insulin levels [131]. This translates into 

diminished insulin secretion that together with the insulin sensitivity deficiency 

results in a severe level of glycemic dysregulation [132]. In patients with 

established overt diabetes, complete beta cell failure takes place and such 

individuals therefore require insulin therapy [120]. 

1.4.3 Hyperglycemia 

To summarize, increased insulin resistance, compensatory hyperinsulinemia, beta 

cell dysfunction and the subsequent decrease in insulin secretion lead to aberrant 

glucose metabolism. Diminished insulin sensitivity in adipose tissue impairs the 

suppression of lipolysis, elevating fatty acid metabolites and thereby further 

impairing insulin resistance (reviewed in [115, 133]). Hepatic insulin resistance 

results in decreased glycogen production as well as a defect in the inhibition of 

gluconeogenesis [134]. Moreover, a critical consequence of insulin resistance is 

reduced insulin-mediated muscle glucose uptake [132, 135]. Collectively, this 

contributes toward abnormal glucose homeostasis and various severities of 

hyperglycemia (IGT/IFG/Diabetes) [115, 120]. 
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Glucose uptake is regulated by both insulin-dependent as well as insulin-

independent mechanisms [132]. Due to the hydrophilic nature of glucose, specific 

glucose transport proteins are used to facilitate glucose uptake [132]. Here GLUT1 

and GLUT4 are the two major isoforms responsible for whole body insulin-

stimulated glucose disposal [132]. GLUT1 is predominantly expressed in 

erythrocytes, kidney and colon, while expressed at very low levels in muscle, liver 

and adipose [132, 136]. GLUT4 is thus the major transporter responsible for 

insulin-stimulated glucose clearance by the major disposal sites (i.e. muscle and 

adipose) [136, 137]. GLUT 2 is the major transporter in the liver [137]. More 

recently, sodium-glucose co-transporters (SGLTs) have been identified to play an 

important role in glucose transport during hyperglycemia [138]. However, GLUT4 

translocation is reduced with insulin resistance [139] (as discussed in section 

1.4.1), and therefore insulin-dependent glucose uptake is decreased [132]. 

 

The failure in efficient glucose uptake by the liver, muscle and adipose results in 

elevated blood glucose concentrations (hyperglycemia) (as discussed in sections 

1.4.2 and 1.4.3).  Consequently, glucose uptake is increased through insulin-

independent mechanisms (reviewed in [140]). This therefore augments glucose 

metabolism in insulin-insensitive tissues [140]. Insulin-independent glucose 

clearance occurs due to plasma glucose exerting a mass action effect (discussed in 

[132]). Various other GLUT isoforms are also involved in the facilitative diffusion of 

glucose down its concentration gradient [132]. After uptake, increased glycolytic 

flux triggers greater oxidative stress production thereby leading to downstream 

metabolic defects. This will now be discussed in more detail in the sections to 

follow. 
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The exact mechanisms of hyperlipidemia, hyperinsulinemia and hyperglycemia are 

still not completely clear and there is still some controversy with respect to the role 

and significance of these mechanisms in the context of type 2 diabetes 

pathophysiology. However, it is evident that complex relationships exist between 

these three metabolic abnormalities. Moreover, when summarizing the above 

discussion into a schematic diagram and presented together in Figure 1.4, the 

severity of the situation is further emphasized by their interactions leading to a 

positive feedback loop which further exacerbates metabolic dysregulation  (refer to 

Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Metabolic abnormalities of diabetes are interlinked and lead to a self-
perpetuating vicious cycle. AMPK, 5′-adenosine monophosphate activated protein 

kinase; IGT, impaired glucose tolerance; IFG, impaired fasting glucose. 

1.5 Hyperglycemia-induced oxidative stress production 

The generation of oxidative stress occurs due to an imbalance between rates of 

oxidant production and its scavenging [141]. Hyperglycemia increases glucose 
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levels which feed into metabolic pathways and this in turn a) enhances oxidative 

stress and b) impairs antioxidant defences [142]. Moreover, such generated 

oxidative stress is now recognized as a major contributor to several diabetic 

complications that include micro- and cardiovascular pathologies (reviewed in [140, 

143, 144]).  

1.5.1 Mitochondrial superoxide production 

The mitochondrion is the principal source of hyperglycemia-induced oxidative 

stress (reviewed in [145]). Under normal physiological conditions the tricarboxylic 

acid (TCA) cycle and oxidative phosphorylation (mitochondrial electron transport 

chain) generate energy through pyruvate oxidation. Electron transfer takes place 

through mitochondrial complexes I, III and IV, and produces a proton gradient by 

moving protons into the intermembrane space [146]. Subsequently, protons re-

enter the mitochondrial matrix thereby driving ATP synthase and mitochondrial 

ATP production [142]. Uncoupling proteins can control the magnitude of the proton 

gradient by converting the extruded protons into heat, thereby ensuring that the 

ATP production rate remains constant (Refer to Figure 1.5A). In this manner the 

electron transport chain can precisely regulate ATP levels under physiological 

conditions [147]. 

 

Mitochondrial superoxide (O2
•-) is usually produced at complex I and III, which is 

then scavenged by superoxide dismutase (SOD) and glutathione peroxidase (GSPx) 

[148]. More recently, complex II has also been associated with superoxide 

production [149]. However, with hyperglycemia increased glycolytic flux results in 

elevated glucose-derived pyruvate entering the TCA cycle [146]. More pyruvate is 

therefore oxidized, which augments NADH and FADH2 levels and thus increases the 
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intermembrane proton gradient until a threshold is reached [150]. Under these 

conditions a blockage at complex III results with a corresponding accumulation of 

electrons at coenzyme Q (CoQ) [151]. Surplus electrons are accordingly donated to 

oxygen, thereby overproducing mitochondrial superoxide (represented in Figure 

1.5B) (reviewed in [152]). Increased free fatty acid (FFA) oxidation leads to greater 

mitochondrial ROS production (specifically superoxide) and activation of UCPs 

[153]. The resulting increase in proton export will eventually cause mitochondrial 

uncoupling (reviewed in [154]). This hypothesis confirms that superoxide formation 

is the major source of hyperglycemia-induced mitochondrial ROS and therefore 

most relevant to our study due to its specific downstream detrimental effects (to be 

described in section 1.6). However, it should be noted that superoxide is not the 

only ROS type produced by mitochondria (discussed in [153, 155]). For example, 

manganese superoxide dismutase (MnSOD) reduces superoxide to hydrogen 

peroxide (H2O2) which is usually detoxified by catalase into H2O and oxygen 

(reviewed in [156]). However, catalase activity is inhibited under hyperglycemic 

conditions and thus H2O2 can be converted into various alternative ROS forms 

[153]. 
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Figure 1.5 Mitochondrial electron transport chain under physiological versus 
hyperglycemic conditions. A: Under normal conditions a well-controlled proton 
gradient drives the production of ATP via ATP synthase. B: During conditions of 
hyperglycemia, increased glycolytic flux increases the availability of electron donors 
(NADH, FADH2) entering the mitochondrial ETC. The voltage gradient across the 
intermitochondrial membrane is up-regulated leading to defects in electron transfer 
and ultimately the production of superoxide. FAD: Flavin adenine dinucleotide 
(oxidized),FADH2: Flavin adenine dinucleotide (reduced), NAD+ :Nicotinamide 
adenine dinucleotide (oxidized), NADH: Nicotinamide adenine dinucleotide 
(reduced), UCPs: Uncoupling proteins, CoQ: Coenzyme Q,O2

•-:superoxide. 

1.5.2 Additional sources of oxidative stress 

Although the mitochondrion is the primary source of hyperglycemia-induced 

oxidative stress, smaller amounts of oxidative stress are produced through other 

metabolic pathways (reviewed in [146]). For example, increased glucose flux can 

lead to oxidant production via the non-enzymatic glycation of proteins and the 

enhanced activity of aldose reductase and PKC (reviewed in [157]). These 
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alternative metabolic pathways are various off-shoots of the glycolytic pathway and 

will be discussed in detail in section 1.6.  

1.6 Hyperglycemia-mediated mitochondrial superoxide production 

activates alternative glucose-utilizing pathways 

The majority of glucose that enters the cell is typically metabolized via glycolysis. 

However, additional non-oxidative glucose metabolizing pathways also play a role in 

the metabolism of glucose under normal conditions [146]. During hyperglycemia 

flux through alternative glucose-utilizing pathways increases, thereby diverting 

excess glucose supply [143]. Up-regulation of four of these pathways is strongly 

implicated in hyperglycemia-induced vascular damage and various diabetes-related 

pathologies [158, 159]. 

 

There is a unifying hypothesis that the hyperglycemia-induced activation of non-

oxidative glucose pathways is triggered by a single upstream mechanism: the 

overproduction of mitochondrial superoxide [152, 160]. An important aspect of 

such superoxide-induced up-regulation is the elevation of poly(ADP-ribose) 

polymerase (PARP) activity, a nuclear enzyme involved in DNA repair [161, 162]. 

Here the proposal is that overproduction of mitochondrial superoxide (described in 

section 1.5.1) results in the breakage of DNA strands, thereby inducing the 

activation of PARP [163]. PARP produces polymers of ADP ribose, leading to its 

targeted modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a 

key glycolytic enzyme [164]. GAPDH activity decreases as a result of such a 

modification (Figure 1.6) [142]. This in turn leads to the accumulation of glycolytic 

intermediates upstream of GAPDH, resulting in the up-regulation of five non-

oxidative glucose utilizing pathways, namely the pentose phosphate pathway (PPP), 
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polyol pathway, the formation of advanced glycation end-products (AGE), activation 

of PKC, and the HBP (Figure 1.6) (reviewed in [143, 146, 153]). The main focus of 

this study is the assessment of HBP flux in response to various degrees of 

hyperglycemia (Figure 1.6). 

 

Of note, although the up-regulation of PKC, AGE, polyol and HBP is activated 

primarily through the hyperglycemia-induced superoxide pathway discussed [152], 

higher substrate availability during hyperglycemia can also increase pathway flux 

independent of GAPDH inhibition. 
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Figure 1.6 Hyperglycemia-induced mitochondrial superoxide production inhibits 
GAPDH and leads to the up-regulation of five alternate glucose metabolizing 
pathways. (1) Hyperglycemia increases glycolytic flux and elevates mitochondrial 
ROS production        (2). Superoxide increases PARP activity which inhibits GAPDH 
activity      (3). Upstream metabolites accumulate and glucose flux is increased via 
alternative glucose-utilizing pathways (     PPP), (    HBP), (    PKC), (     AGE),           
(  Polyol) G-6-P:Glucose-6-phosphate; F-6-P:Fructose-6-phosphate; TCA: 
Tricarboxylic acid; ETC: Electron transfer chain; PARP: poly(ADP-ribose) 
polymerase GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; AGE: Advanced 
glycation end-products; PPP: pentose phosphate pathway, PKC: Protein kinase C; 
HBP: Hexosamine biosynthetic pathway.  

1. 
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1.6.1 Pentose phosphate pathway (PPP) 

Of the non-oxidative pathways that are up-regulated under hyperglycemic 

conditions, increased PPP flux is not considered harmful since it generates NADPH 

(and thereby contributes to intracellular sources of reducing equivalents) [165, 

166]. This pathway consists of both an oxidative and non-oxidative phase [167]. 

The oxidative phase results in the production of NADPH through the conversion of 

glucose 6-phosphate to ribulose-5-phosphate (Figure 1.7) (discussed in [168]). As 

discussed, NADPH plays a key and beneficial role in glucose metabolism, as the 

scavenging activity of various antioxidants are dependent on its availability [140]. 

This is therefore a likely way how the PPP plays a protective role during oxidative 

stress conditions.  

 

Transketolase is the rate-limiting enzyme of the non-oxidative PPP (Figure 1.7) 

[142]. Under normal conditions it converts pentose phosphates into glycolytic 

intermediates, however, it can also perform the reverse reaction [169]. Thus 

transketolase is able to decrease the concentration of glycolytic intermediates 

(fructose-6-phosphate and glyceraldehyde-3-phosphate) [146]. Interestingly, PPP 

up-regulation can divert glucose flux away from the four “harmful” non-oxidative 

pathways and as a result has sparked several research ventures that investigate 

this potential beneficial role [170]. Although the advantages of the PPP may not 

always outweigh the detrimental effects of the four non-oxidative pathways, it 

provides great promise for a future therapeutic target (e.g. transketolase activators) 

(discussed in [146]). Thus the PPP provides an opportunity for a regulated 

metabolic reconfiguration, thereby serving as the cells’ defense mechanism in 

response to a) increased oxidative stress and b) the up-regulation of the following 

four “damaging” pathways [166]. 
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Figure 1.7 Schematic representation of the pentose phosphate pathway. 

1.6.2 Polyol pathway 

During normoglycemia ~3% of glucose enters the polyol pathway (discussed in 

[153]). Here aldose reductase typically functions to reduce aldehydes that are toxic 

to the cell and thereby inactivate sugar alcohols (polyols) (Figure 1.8) [171]. 

However, during hyperglycemic conditions aldose reductase additionally reduces 

glucose (with reducing power of NADPH) to sorbitol [171]. Aldose reductase is 

present in cell types vulnerable to the effects of hyperglycemia, including the retina, 

glomerulus, nerves and vascular cells (tissues widely associated with damage in 

type 2 diabetes) [172]. Sorbital dehydrogenase thereafter oxidizes sorbital into 

fructose, with the loss of NAD+ (Figure 1.8) [173]. Therefore increased flux through 

the polyol pathway leads to the depletion of NADPH, an essential cofactor for 

reduced glutathione (GSH), a key intracellular antioxidant (Figure 1.8) [174]. Thus 

under conditions of hyperglycemia and oxidative stress reduced NADPH availability 

aggravates the imbalance between oxidant production and antioxidant activity. 

Oxidative phase 

Non-oxidative 
phase 

NADPH 

Glucose-6-phosphate 

Ribulose-5-phosphate 

Xylulose-5-phosphate Ribulose-5-phosphate 
 

+ Sedoheptulose-7-
phosphate 

Glyceraldehyde-3-
phosphate 

 

+ 
Erythrose-4-phosphate Fructose-6-phosphate 

Transketolase 

Transaldolase 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 1. INTRODUCTION 
 

33 
 

This renders the cell defenseless and even more susceptible to the damaging effects 

of ROS [146]. Hyperglycemia-induced up-regulation of the sorbital pathway elicits 

additional negative effects such as decreased myoinositol uptake and an increased 

production of vasodilatory prostaglandins [146]. 

 

 

 

 

 

 

Figure 1.8 Schematic diagram of the polyol pathway (Reproduced from [142]). 

1.6.3 AGE formation 

Glucose together with other glycating compounds is able to react non-enzymatically 

to form AGEs [142]. The auto-oxidation of glucose, decomposition of the Amadori 

(an isomerization rearrangement) product, and the fragmentation of 

glyceraldehyde-3-phosphate result in the formation of reactive intracellular 

dicarbonyls: glyoxal, 3-deoxyglucosone and methylglyoxal, respectively (Figure 1.9) 

[146, 175]. Subsequently, dicarbonyls are able to react spontaneously with amino 
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groups of proteins to form AGEs (Figure 1.9) [147]. Augmented glucose 

concentrations and elevated glycolytic flux result in increased AGE production and 

it is particularly prevalent in the liver, kidneys and erythrocytes of individuals with 

type 2 diabetes [176]. 

 

 

 

 

 

 

Figure 1.9 Diagram depicting the formation of AGEs. 

The formation of AGE precursors harm target cells by three mechanisms, i.e. 1) 

altering the functional properties of target proteins, 2) interfering with matrix-

matrix and matrix-cell interactions, and 3) AGE binding to their cell surface 

receptors, i.e. receptors of AGE (RAGE) (reviewed in [147, 177]. The latter 

mechanism results in the generation of intracellular ROS, that can increase the 

production of the transcription factor NFκ-B and further elevate ROS production 

[176]. Moreover, RAGE-induced cytosolic ROS can promote the production of 

mitochondrial superoxide in the kidneys of diabetic rats [178], reinforcing a positive 

feedback loop of sustained oxidative stress production and its subsequent damage.  

  

1.6.4 Activation of PKC 

Excess glucose can directly increase the activation of PKC either through the de 

novo synthesis of diacylglycerol (DAG), activation of phospholipase C or the 

inhibition of DAG kinase (Figure 1.10) [179, 180]. Moreover, there is some evidence 

that surplus glucose can indirectly increase PKC levels. One proposed mechanism 
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is that interactions between AGEs and their receptors can enhance PKC activity 

[181]. 

 

 

 

 

 

 

 

Figure 1.10 Schematic illustrating the activation of PKC (adapted from [140]). 

 

PKC activation can also increase oxidative stress by stimulating the activity of 

NADPH oxidase (Figure 1.10). This decreases NADPH/NADP+ ratios thereby 

decreasing NADPH availability and triggering oxidative stress (reviewed in [140]). 

This can occur by decreased GSH regeneration and subsequent glutathione 

scavenging activity, and also by the attenuation of catalase activity (H2O2 

detoxification enzyme) (reviewed in [140]). Augmented PKC activity is also 

associated with functional changes to vascular cells, the expression of growth 

factors and alterations of specific basement membrane proteins [153]. 

1.6.5 Hexosamine biosynthetic pathway (HBP) 

The HBP is known to be an overflow pathway of glycolysis as well as a nutrient or 

fuel sensor that (under normal circumstances) utilizes approximately 3% of the 

total glucose available to the cell [182, 183]. Glutamine:fructose-6-phosphate 

aminotransferase (GFAT) is the rate-limiting enzyme of the HBP and responsible for 

the catalytic conversion of fructose-6-phosphate to glucosamine-6-phosphate [184]. 
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A series of successive reactions result in the post-translational modification of 

target proteins by addition of an O-GlcNAc moiety. During hyperglycemia increased 

O-GlcNAcylation of target proteins is strongly associated with the onset of CVD and 

insulin resistance [185]. Moreover, the increased production of glucosamine-6-

phosphate inhibits the activity of glucose-6-phosphate dehydrogenase (G6PD), the 

rate-limiting enzyme of the PPP [186]. This inhibition ultimately leads to a decrease 

in NADPH/NADP+ ratios since G6PD activity involves the reduction of NADP+ to 

NADPH [140]. The HBP therefore plays a role in mitigating the PPP and the 

beneficial role it plays in boosting intracellular defenses. The decreased availability 

of NADPH attenuates intracellular antioxidant capacity and further contributes to 

ROS production (decreased GSH and catalase activity) [140]. 

1.6.6 Summary of damaging pathways activated by hyperglycemia 

There are four major pathways involved in the pathogenesis of diabetic 

complications [146]. Hyperglycemia leads to the production of mitochondrial 

superoxide which inhibits GAPDH, resulting in the accumulation of upstream 

glycolytic intermediates (Figure 1.6). The various intermediates are shunted into 

four glucose-utilizing pathways (polyol, AGE, PKC and HBP) that can lead to 

cellular damage. Increased flux through such pathways lead to higher ROS 

production and the weakening of antioxidant defenses, in addition to various other 

damaging effects. Intracellular ROS production is additionally implicated in further 

perpetuating mitochondrial superoxide production [187]. Moreover, HBP activation 

is associated with the development of insulin resistance and several vascular 

complications associated with diabetes (to be discussed in more detail in section 

1.8) [188]. The full impact of these pathways as well as the exact mechanisms 

linking their upregulation to the progression of diabetic complications is not 
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completely understood. However, it is clear that the interactions and effects of 

these pathways are interlinked and further contribute and aggravate the self-

perpetuating vicious cycle of metabolic defects illustrated in Figure 1.4. Thus in 

turn this leads to the exacerbation of the detrimental effects associated with the 

progression of diabetes (summarized in Figure 1.11). 
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Figure 1.11 A summarized schematic representation of the pathophysiology and 

development of type 2 diabetes as reviewed in sections 1.1-1.6. This illustration 

emphasizes that, when put together, complex relationships exist between all the 

etiologies previously described. Additionally, it highlights the severity of various 

interlinking interactions as it yields a feed-forward system of progressive metabolic 

dysfunction. 
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Due to the strong association of the HBP with type 2 diabetes and insulin resistance 

and its ability to regulate cellular activities according to the nutritional environment of 

the cell, we investigated the utility of hyperglycemia-induced HBP up-regulation as a 

novel marker for insulin resistance/type 2 diabetes. Since this is the main focus of 

the current thesis, we will now proceed by focusing specifically on the HBP and its 

various cellular responses, beginning with a detailed overview of the pathway. 

1.7 Overview of the HBP 

The HBP is a cellular fuel-sensing pathway mediating an appropriate response in 

accordance with the nutritional status of the cell [189]. Moreover, the HBP is an 

integration of a variety of metabolic inputs (amino acid, glucose, fatty acid and 

nucleotide metabolism) (refer to Figure 1.12), enhancing its nutrient/glucose 

sensing abilities [190]. Under physiological conditions ~2-3% of total glucose is 

metabolized via the HBP. However, HBP flux may differ between diverse cell types 

[2]. 

 

The HBP shares its first two steps with glycolysis (conversion of glucose to glucose-

6-phosphate (G-6-P), and the conversion of G-6-P to fructose-6-phosphate (F-6-P), 

at which point the HBP becomes independent (Refer to Figure 1.12) [188, 191]. 

GFAT is the rate-limiting HBP enzyme and is responsible for the catalytic 

conversion of F-6-P into glucosamine-6-P (GlcN-6-P) (Figure 1.12) [2]. A series of 

successive reactions result in GlcN-6-P being converted into uridine diphosphate N-

acetyl glucosamine (UDP-GlcNAc), the end-product of the HBP (Figure 1.12) [192]. 

A negative feedback loop exists at both the enzymatic production of GlcN-6-P and 

the HBP end-product (UDP-GlcNAc) [2]. Subsequently, UDP-GlcNAc serves as a 

substrate for the attachment of a single N-acetylglucosamine (O-GlcNAc) to serine 
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and threonine residues of certain nuclear and cytoplasmic proteins [188]. O-GlcNAc 

is dynamically attached and removed under tight regulation of two conserved 

enzymes, O-linked β-N-acetylglucosaminyl transferase (OGT) and β-N-

acetylglucosaminidase (OGA), respectively [191, 193]. The interplay between these 

highly conserved enzymes is termed O-GlcNAc cycling, i.e. the catalyzed 

addition/removal of O-GlcNAc from proteins without any degradation of the 

polypeptide [192]. 

 

During either type 2 diabetes, or nutrient excess, the amount of F-6-P available to 

enter the HBP increases and as a consequence there is enhanced intracellular O-

GlcNAcylation of target proteins [183, 194]. Moreover, glucosamine can be 

funnelled into the HBP (bypassing GFAT) thus further elevating O-GlcNAcylation 

(refer Figure 1.12).  Surplus glucose flux into the HBP and the concomitant 

increase in O-GlcNAcylation are implicated in the development of insulin resistance 

and various cardiovascular pathologies commonly associated with type 2 diabetes 

(reviewed in [192-194]). 
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Figure 1.12 A schematic representation of the HBP (adapted from Hart, 2011). The 
HBP (represented by     and      ), converts glucose into UDP-GlcNAc where OGT 
and OGT catalyse the attachment and removal of the O-GlcNAc moiety, respectively 
An advantage of the HBP is that it integrates additional metabolic inputs such as    
(      amino acid metabolism), (       fatty acid metabolism), and (      nucleotide 
metabolism). G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate; 
GFAT,glutamine:fructose-6-phosphate amidotransferase; GlcN-6-P, Glucosamine-
6-phosphate; GlcNAc-6-P, GlcNAc-6-phosphate; GlcNac-1-P, GlcNAc-6-phosphate; 
UTP, uridine triphosphate; UDP-GlcNAc, uridine diphosphate GlcNAc, OGT, O-

linked β-N-acetylglucosaminyl transferase ; OGA, β-N-acetylglucosaminidase.                                                     
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1.8 Involvement of the HBP in insulin resistance and cardiac pathologies 

The association between the HBP and the development of insulin resistance was 

first described by Marshall et al. (1991) in rat adipocytes [195]. These authors 

found that GFAT inhibition resulted in attenuation of the glucose-responsive 

desensitization of GLUTs [195]. Since then, several studies have supported the 

involvement of the HBP in the development of insulin resistance. For example, it 

was shown that GFAT overexpression in both skeletal muscle and adipose cells 

lead to the development of insulin resistance [196, 197]. Akimoto et al. (2007) 

found elevated O-GlcNAcylation and OGT levels with a concurrent deterioration of 

pancreatic insulin secretion in a rat model of type 2 diabetes [198]. Moreover, 

global O-GlcNAcylation in 3T3-L1 adipocytes lead to increased insulin intolerance 

[199] and the in vivo infusion of excess glucosamine has also been implicated in 

decreased sensitivity towards insulin in skeletal muscle [200]. A study conducted 

on rat adipocytes found that increased HBP flux decreases glucose uptake through 

the activation of PKC (see Figure 1.3) [201]. Furthermore, the overexpression of 

OGT has been implicated in the development of insulin resistance by altering 

GLUT4 transporters [202]. Additionally, a correlation has been found between a 

polymorphism in the O-GlcNAcase (OGA) gene and type 2 diabetes in Mexican-

Americans [203], and in vitro studies show that OGA inhibition triggers insulin 

resistance [199]. It is therefore apparent, from several lines of evidence, that O-

GlcNAcylation and the enzymes that regulate this post-translational modification are 

associated with insulin resistance. However, exactly how does this happen? 

 

O-GlcNAcylation is a post-translational modification remarkably analogous to 

protein phosphorylation (reviewed in [204]). Due to their similarities, an extensive 

interplay exists between O-GlcNAcylation and phosphorylation and numerous 
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phosphorylation sites can indeed be O-GlcNAcylated [192]. The reciprocal 

occupancy between these two nucleocytoplasmic modifications plays an important 

role especially when O-GlcNAcylation is elevated. Here increased O-GlcNAcylation 

may influence/disrupt several vital phosphorylation reactions required for efficient 

signaling of various kinase cascades involved in intracellular function [192]. It 

should also be noted that the crosstalk is not strictly reciprocal and that certain 

target proteins can be concomitantly phosphorylated and O-GlcNAcylated [205]. 

Moreover, even adjacent O-GlcNAcylation sites may influence the phosphorylation 

of fundamental kinases [205]. 

 

The insulin signaling pathway is an example of an essential kinase-dependent 

cascade that is vulnerable to disruption by O-GlcNAcylation. Numerous studies 

found that increased O-GlcNAcylation attenuates the insulin-stimulated 

phosphorylation of IRS-1 and Akt and enhances the covalent attachment of O-

GlcNAc to key regulatory components upstream of GLUT4 translocation. This 

includes IRS-1, PI3K, Akt and GLUT4 itself and eventually results in diminished 

glucose disposal [193, 205-207]. Furthermore, O-GlcNAcylation of proteins within 

the beta cells can affect insulin secretion [208] and O-GlcNAcylation of 

mitochondrial proteins may lead to mitochondrial dysfunction and insulin 

resistance [209]. 

 

Numerous studies confirm the direct involvement of O-GlcNAcylation in the 

development of insulin resistance, and these include different insulin-sensitive 

tissues such as muscle, liver and fat (reviewed in [192, 210]). 
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These studies therefore demonstrate that hyperglycemia-induced HBP activation 

and the subsequent increased O-GlcNAcylation has far reaching adverse effects in 

the onset of insulin intolerance. Moreover, numerous studies correlate increased O-

GlcNAcylation with various vascular pathologies commonly associated with the 

development of type 2 diabetes [206, 211-213]. For example, increased O-

GlcNAcylation contributes to cardiomyopathy through prolonged calcium transient 

decays and the down-regulation of the vital sarcoplasmic calcium ATPase 

(SERCA2a) [214]. Moreover, O-GlcNAcylation of key electron transport chain 

proteins can also result in cardiomyocyte mitochondrial dysfunction [215], while O-

GlcNAc modified cardiac contractile proteins are proposed to contribute to diabetic-

related malfunction in heart muscle [216]. Increased O-GlcNAcylation is also 

strongly associated with various cancers, aging, AIDS, and neurodegenerative 

diseases such as Alzheimers disease [182, 217]. 

 

We can thus infer from the above discussion that the role O-GlcNAcylation, OGT and 

OGA play in regulating insulin signaling and diabetes-associated cardiovascular 

diseases is robustly established. This correlation is vital in contributing to the 

potential diagnostic value of O-GlcNAc.  

1.9 The O-GlcNAc modification 

This novel protein-saccharide linkage was first described by Torres & Hart (1984) in 

lymphocytes [218]. It results in the dynamic attachment of a single sugar moiety 

(GlcNAc) to the hydroxyl groups of serine and threonine residues of nuclear and 

cytoplasmic proteins [219]. It is therefore essentially an alternative type of 

glycosylation [205]. Glycosylation is the enzymatic attachment of saccharides to 

site-specific molecules such as proteins and lipids [205]. However, O-GlcNAcylation 
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is an O-linked glycosylation owing to the addition of the carbohydrate to the 

hydroxyl oxygen of target proteins [205]. 

O-GlcNAcylation has emerged as an important post-translational modification with 

great interest due to its association with numerous critical biological functions, and 

also its implication as a pathogenic contributor to the progression of various 

diseases [219, 220]. A property unique to O-GlcNAcylation is that the saccharide 

linkage is not further extended or replaced by any other sugars as is the case for 

other types of glycosylation [205]. More significantly, this single monosaccharide 

modification has the ability to cycle several times at a time-scale similar to that of 

phosphorylation and can regulate cellular signaling dependent on substrate 

availability [221-223]. 

O-GlcNAc modification is ubiquitous and occurs in simple life forms e.g. protozoa 

up to higher mammals [220]. Thus far studies have shown that more than 1,500 

proteins are O-GlcNAcylated and these include nearly every functional class [205]. 

Moreover, O-GlcNAcylation is essential and plays a significant role in many aspects 

of cellular metabolism such as transcription, translation, cytoskeletal assemblies, 

apoptosis, signaling and energy metabolism (reviewed in [188, 190, 205, 224]). 

However, the chronic elevation of O-GlcNAc in response to an overstimulation by 

nutrient stimuli leads to the alteration of both function and associations of target 

proteins, contributing to the pathology of diseases such as type 2 diabetes 

(reviewed in [190, 193, 225]). Interestingly, O-GlcNAcylation is regulated under the 

stringent control of only two enzymes, OGT and OGA, compared to the 

phosphorylation signaling network that is sustained by more than 500 kinases and 

phosphatases [188]. 
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1.10 Regulation of the HBP 

O-GlcNAcylation is robustly regulated by the concerted actions of two highly 

conserved enzymes i.e. OGT and OGA [190, 223, 225]. OGT is responsible for the 

catalytic attachment of O-GlcNAc to the hydroxyl residues of target proteins while 

OGA catalyzes hydrolysis of the glycosidic bond to remove O-GlcNAc from modified 

proteins (Figure 1.13) (reviewed in [188, 205, 226]). 

 

 

 

 

 

 

 

Figure 1.13 The dynamic attachment and cleavage of O-GlcNAc by OGT and OGA, 
respectively (Adapted from [225]). HAT, histone acetyl transferase; OGT, O-GlcNAc 

transferase; OGA, O-GlcNAcase; TPR, tetrotricopeptide repeats. 

1.10.1 OGT 

The human OGT gene is located at q13 on the X chromosome [225]. Originally, 

OGT was isolated from rat liver and it was evident that OGT existed as a 

heterotrimer consisting of two 110 kDa subunits and one 78 kDa subunit [227]. 

However, it has since been shown that the p110 subunit is capable of performing 

its catalytic activity independent of the p78 unit. Furthermore, the p78 splice 

variant is only expressed in the liver, kidney and muscle (discussed in [228, 229]. 

OGA 

OGT 
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Therefore in other tissues that lack the p78 subunit it is expressed as a 

homotrimer comprising three 110 kDa subunits [227, 230]. The 110 kDa subunit is 

structured as two major domains bridged by a nuclear localization sequence [188, 

225]. The N-terminal domain consists of several tetratricopeptide repeats (TPR) 

while the C-terminals encompass the catalytic domain (refer to Figure 1.13) 

(reviewed in [188, 225]). The exclusive substrate specificity of OGT is generally 

attributed to the TPR domains. However, the regulation of OGT activity is becoming 

increasingly complex and several aspects of its substrate specificity are still poorly 

understood [231]. Less is known regarding the structural properties of the C-

terminus, although its catalytic power was confirmed by Lubus & Hanover (2000) 

[232]. OGT knock-out models reveal that OGT is essential for life due to its 

significant role in efficient growth and responsiveness towards extracellular stimuli 

[233]. 

1.10.2 OGA 

The OGA gene is located at 10q on chromosome 24 [221]. OGA exists as a 106 kDa 

heterodimer complex comprising two subunits: a 54 kDa α and a 51 kDa β subunit 

[234]. The structural characteristics of OGA include a caspase-3 cleavage site that 

links O-GlcNAcase to an intrinsic histone acetyl transferase (HAT) domain [188] 

(See Figure 1.13). The single OGA gene in mammals is annotated as meningioma 

expressed antigen 5 (MGEA5) [226]. In humans the MGEA5 gene encodes nuclear 

cytoplasmic O-GlcNAcase and acetyltransferase (NCOAT), a larger protein (130 kDa) 

within which the OGA enzyme resides [235]. 
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1.11 The diagnostic utility of O-GlcNAc 

In order to ensure the development of a practical and clinically useful diagnostic 

tool for diabetes, specific O-GlcNAc modified target proteins within the blood 

become the fundamental interest.  

 

Erythrocytes are considered one of the simplest cells found within the bloodstream 

of the human body [87]. However, this deceivingly simple cell boasts a complex 

proteome consisting of intricate cellular processes [236]. Moreover, a recent study 

by Park et al. (2010) detected numerous O-GlcNAc protein sites in the erythrocyte 

proteome, and observed differential regulation of total O-GlcNAcylation between 

normal and diabetic samples [80]. 

 

As far as we are aware, Park et al. (2010) was the very first study to investigate the 

diagnostic utility of O-GlcNAc [80]. However no study has thus far investigated 

human leukocyte O-GlcNAcylation in a pre- and full-blown diabetic setting. By 

investigating leukocytes we hoped to gain additional insights and further advance 

the field of diabetes diagnosis with this novel premise. Since O-GlcNAc protein sites 

are found in both granulocytes and lymphocytes this broadens the scope of our 

investigation and potentially increases valuable outputs. Leukocyte proteins are 

therefore a suitable candidate for our initial and exploratory investigation into the 

diagnostic utility of O-GlcNAc in search of an eventual novel diagnostic marker for 

the earlier detection of type 2 diabetes.  
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1.12 Summary of research problem 

Type 2 diabetes presents a formidable challenge due to its epidemic prevalence as 

well as its association with numerous adverse effects [237]. Individuals with 

diabetes are highly vulnerable to various CVD and several non-vascular conditions 

e.g. certain cancers, renal, digestive and infectious diseases [29]. It is estimated 

that 33% of individuals suffering from diabetes are unaware they are saddled with 

this disorder [84]. 

Although significant improvement has been made in the field of diabetes diagnosis, 

complexities and uncertainties still exist regarding the preferred diagnostic tests 

and the most efficient threshold values to be used during assessment [49]. 

Moreover, currently available tests for the diagnosis of diabetes have several 

shortcomings. As delayed diagnosis leads to significant increases in morbidity 

and mortality, a novel screening method for the earlier and more efficient 

detection of type 2 diabetes would be a significant clinical advance.  

The diabetic phenotype is strongly associated with hyperlipidemia, 

hyperinsulinemia and hyperglycemia [90]. Hyperglycemia leads to the elevation of 

intracellular oxidative stress, primarily through the mitochondrial production of 

superoxide [146]. Hyperglycemia-induced oxidative stress results in the increased 

activation of five non-oxidative branches of glycolysis, including the HBP. 

Augmented flux through the HBP leads to the dynamic, post-translational 

attachment of O-GlcNAc moieties to serine and threonine residues of numerous 

nuclear and cytoplasmic proteins [192]. The HBP is an overflow pathway of 

glycolysis and a powerful consequence of this pathway is that O-GlcNAc 

modification is dependent on the availability of glucose, inaugurating the HBP as a 
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“fuel sensor” capable of regulating cellular activities according to the nutritional 

environment of the cell. This leads us to our hypothesis… 

1.13 Hypothesis 

As O-GlcNAc modification of target proteins is subject to intracellular glucose 

availability, the extent of O-GlcNAcylation may be a useful tool to assess glucose 

metabolism of individuals with both subtle and overt glucose dysregulation [27, 

188, 192]. Moreover, chronically elevated HBP flux is maladaptive and is strongly 

linked to the onset of insulin resistance and various vascular pathologies 

associated with type 2 diabetes [188]. O-GlcNAc moieties are dynamically attached 

and removed from target proteins under the robust control and combined efforts of 

OGT and OGA, respectively [26, 238]. Since O-GlcNAc protein sites are found in 

granulocytes and lymphocytes, we hypothesize that increased O-GlcNAcylation of 

leukocyte proteins in the pre-diabetic and diabetic milieu could potentially 

represent a novel diagnostic marker for the earlier detection of type 2 

diabetes.  
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1.14 Aims and objectives 

• To recruit subjects and obtain blood samples representing a range of blood 

glucose levels, from normal to pre-diabetic and diabetic. 

 

• To characterize individuals according to the ADA and WHO’s classifications, 

with both FPG and HbA1c criteria 

 

• Determine the level of total protein O-GlcNAcylation in the leukocytes of 

different subjects investigated in this study 

 

• Investigate the expression of the HBP’s regulatory enzymes (OGA and OGT) 

in the leukocytes of all study subjects 

 

• Explore HBP flux in the different leukocyte sub-populations (granulocytes 

versus lymphocytes), independently from total leukocyte samples 

 
 

• To execute a simple, concise, exploratory phase of a novel project with the 

primary aim to determine if there is impetus for further investigation with 

the eventual aim to offer diagnostic utility 

 

• To further develop the field of diabetes diagnosis by providing an overview of 

the current status of the field, providing clarity regarding to the on-going 

flaws, and likewise highlighting various discrepancies and the ensuing 

effects of such inconsistencies. With this we hope to underscore the 

importance of efficient diagnosis and to make a significant contribution to 

the success of future endeavors focusing on the advancement of diagnosing 

diabetes.
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Materials and Methods 
2.1 Subject recruitment 

 

 

 

 

 

Participants (n=74) were recruited from two closely located urban areas, i.e. 

Bellville (n=59) and nearby Stellenbosch (n=15) (Western Cape, South Africa).  

Baseline characteristics of recruited subjects are summarized in Table 2.1. All 

enlisted participants were informed about the clinical study (verbally or via e-mail) 

and provided with a written consent form explaining all the aims and procedures.  

Study volunteers could withdraw from the study at any point without any 

explanation required.  This study was approved by the Committee for Human

Total of 36 individuals 
excluded from the study. 

2. 

Initial recruitment 
(n=110) 

Viable recruits 
(n=74) 

Difficulties with 
blood drawing 

Problems with Flow 
cytometer 

Missing baseline 
values 
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Research at Stellenbosch University and was conducted according to the ethical 

guidelines and principles of the International Declaration of Helsinki, South African 

Guidelines for Good Clinical Practice and the Medical Research Council (MRC) 

Ethical Guidelines for Research in South Africa (Reference numbers: N09/03/090 

and N09/06/168).  

 

 
Table 2.1 Baseline characteristics of recruited individuals. 
 

*Values expressed as mean ± SEM 

2.2 Characterization of subjects  

Due to the ongoing debate and lack of consensus regarding both the preferred 

screening method for the detection of diabetes as well as organization-specific 

characterization criteria (discussed in section 1.3.2), we categorized subjects 

according to both ADA and WHO classifications (FPG and HbA1c criteria). The 

WHO’s criteria do not make a distinction between normal and pre-diabetic 

individuals when interpreting HbA1c levels. We thus used the ADA’s 

recommendations for HbA1c while for FPG levels, two sets of criteria (WHO, ADA) 

were implemented. Each individual was therefore characterized into one of three 

groups (normal, pre-diabetic, diabetic) according to three different criteria i.e. a) 

ADA FPG, b) WHO FPG, and c) HbA1c (ADA) (Refer Figure 2.1). 

 Normal Pre-diabetes Diabetes 

Sample size 27 16 31 

Age (years)* 53.4 ± 2.4 57.6 ± 4.0 61.7 ± 1.6 

Gender (M/F) 6/21 6/10 11/20 

Fasting glucose (mmol/L)* 4.9 ± 0.07 6.1 ± 0.09 11.4 ± 0.75 

HbA1c (%)* 6.1 ± 0.2 6.2 ± 0.09 9.1 ± 0.4 
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Figure 2.1 Subject characterization according to fasting plasma glucose (ADA, 
WHO) and HbA1c levels. 

2.3 Sample  collection  

Whole blood samples were collected from volunteers under fasting conditions by 

venipuncture. Here blood tubes were collected into four sodium fluoride/potassium 

oxalate vacuette and one ethylenediaminetetraacetic acid (EDTA) tubes for each 

volunteer (Greiner Bio-one, Kremsmünster, Austria). Clinical data collected include 

measurements for FPG, and HbA1c levels (two blood tubes sent to Pathcare labs 

Pty Ltd. [Stellenbosch, South Africa]). For molecular studies (flow cytometry, 

immunofluorescence microscopy, Western blotting), the three remaining blood 

tubes were immediately centrifuged at 1000 x g at 4°C for ten minutes (Beckman 

Coulter Allegra X-22R centrifuge, Sigma-Aldrich, Steinheim, Germany), and 

separated into plasma, leukocytes and erythrocytes.  

 

Pre-
diabetic 

 

Normal 

 

T2DM 

<5.6 mmol/L                    5.6-6.9 mmol/L                  >7 mmol/L 

<6.1 mmol/L                     6.1-6.9 mmol/L                   >7 mmol/L 

<5.5 %                            5.5-6.5 %                        >6.5 % 

ADA criteria 

WHO criteria 

HbA1c 

 

Blood glucose levels 
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Figure 2.2 Collection of blood samples for clinical data and for molecular analysis. 

2.4 Leukocyte isolation 

Initially, two alternative methods of leukocyte isolation were tested and compared. 

Isolation using Histopaque®-1077 and Histopaque®-1119 (Sigma-Aldrich, St. 

Louis, MO), and manual isolation with a pipette both yielded a pure leukocyte 

sample (tested by flow cytometry). The Histopaque method, however, was time-

consuming and more costly. We therefore opted for isolating leukocytes manually 

since it also offered increased efficiency. Details of both isolation techniques are 

described in sections 2.4.1 and 2.4.2 of this thesis. 

 

 

 

 

FPG HbA1c  

Pathcare 

Flow cytometry 

Western 
blotting 

Immunofluorescence 
microscopy 

Molecular studies 

Stellenbosch University http://scholar.sun.ac.za



 CHAPTER 2. METHODS AND MATERIALS  
 

56 
 

2.4.1 Histopaque 

3 ml of Histopaque®-1119 was added to a sterile 15 ml plastic “Falcon” tube (BD 

Biosciences, San Jose, CA), onto which another 3 ml of Histopaque®-1077 was 

carefully layered. Thereafter 4 ml of whole blood was cautiously added to the 

Histopaque double layer. After centrifugation at 700 x g for 30 minutes at room 

temperature leukocyte samples were obtained by aspirating cells from layer A and 

layer B (Figure 2.3).  

 

 

 

 

Figure 2.3 Isolation of leukocytes using Histopaque®-1077 and Histopaque®-1119. 

2.4.2 Manual isolation 

After centrifugation (1000 x g at 4°C for 10 min), the plasma from each blood tube 

was discarded and the white buffy layer carefully isolated (using a pipette) from the 

layer of erythrocytes. To ensure a purified leukocyte sample, residual erythrocytes 

(still found within buffy coat) were lysed by adding 1x BD FACS lysing solution (BD 

Biosciences, San Jose, CA), which lyses erythrocytes but not leukocytes, followed 

by centrifugation for 5 min at 500 x g at room temperature. The pellet was 

thereafter washed twice with cold PBS and split into three fractions, i.e. leukocytes 

from one tube were rapidly stored at -80°C for Western blotting, while the 
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leukocytes from the remaining two tubes were promptly processed for flow 

cytometry and immunofluorescence microscopy.  

2.5 Investigation of HBP flux 

Here we determined the extent of leukocyte O-GlcNAcylation and the expression of 

OGT and OGA, key HBP regulatory enzymes. Leukocyte total O-GlcNAcylation was 

evaluated by using three alternative techniques, i.e. flow cytometry, 

immunofluorescence microscopy and Western blotting. 

2.5.1 Flow cytometry  

2.5.1.1 O-GlcNAcylation 

Leukocytes (suspended in PBS) were permeabilized by addition of 500 µl of 10x BD 

FACS permeabilizing solution (BD Biosciences, San Jose, CA) for 5-10 min at room 

temperature. Cells were thereafter incubated on ice for 20-30 min with a 1:500 

dilution of O-GlcNAc primary antibody (CTD 110.6, Santa Cruz Biotechnology, 

Santa Cruz, CA). Samples were subsequently centrifuged 500 x g at 15°C for five 

min, followed by 1 x PBS washing. After gentle resuspension, the sample was 

incubated for ten min on ice with a 1:200 dilution of goat anti-mouse 

allophycocyanin (APC) secondary antibody (Invitrogen, Carlsbad, CA). Cell 

suspensions were thereafter centrifuged at 500 x g for five min and the pellets 

resuspended in 500 µl PBS before analysis using a FACS Aria flow cytometer (BD 

Biosciences, San Jose, CA).  We typically analyzed 10,000 cells per experiment and 

the signal quantified by determining the geometric mean of fluorescence for each 

specific cell population (protocol modified from [239]). 
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2.5.1.2 OGT 

The determination of OGT expression with flow cytometry was completed as 

described in section 2.5.1.1. However, we instead employed the following primary 

and secondary antibodies: 

Primary antibody: O-linked N-acetylglucosamine transferase (OGT) (Abcam, 

Cambridge, MA); 

Secondary antibody: Anti-rabbit FITC secondary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA). 

2.5.1.3 OGA 

We determined OGA expression by flow cytometry as described in section 2.5.1.1. 

However, we instead employed the following primary and secondary antibodies: 

Primary antibody: NCOAT L-14 (nuclear cytoplasmic O-GlcNAcase and 

acetyltransferase) (Santa Cruz Biotechnology, Santa Cruz, CA); 

Secondary antibody: Anti-goat FITC secondary antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA) 

2.5.2 Immunofluorescence microscopy 

2.5.2.1 O-GlcNAcylation 

The leukocyte fraction was fixed with 6% formaldehyde/PBS for 30 min and 

resuspended in PBS. We subsequently seeded 100 µl of cell suspension per well of 

8-well Nunc™ cover glass chambers (Nalge Nunc, Rochester, NY), followed by 24 

hours incubation at 37°C. Leukocytes were washed three times with 100 µl cold 

PBS before being permeabilized with methanol (-20°C) for 2 min. After the 
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chambers were left to air dry for 20 min, non-specific sites were blocked with 5% 

donkey serum (in PBS) for 30 min at room temperature. The cells were then 

incubated for 90 min at 37°C in 1:250 dilution of O-GlcNAc primary antibody (CTD 

110.6, Santa Cruz Biotechnology, Santa Cruz, CA) in PBS containing 5% donkey 

serum. The chambers were thoroughly washed (4-5x) with 100 µl cold PBS before 

incubation with 1:250 dilution of Texas Red anti-mouse secondary antibody 

(Invitrogen, Carlsbad, CA) for 45 min in the dark at room temperature. Thereafter, 

the chambers were washed with cold PBS (4-5x) before adding 50 µl of a 1:200 

dilution of Hoechst in PBS (Sigma, St. Louis, MO) for 10 min.  Cells were 

subsequently viewed using an Olympus CellˆR fluorescence 1 X 81 inverted 

microscope (Olympus Biosystems, Hamburg, Germany) and images were acquired 

with an F-view II camera with 60x magnification (Olympus Biosystems, Hamburg, 

Germany) (protocol modified from [240]). A Xenon-Arc burner (Olympus 

Biosystems, Germany) was used as a light source, and images were excited with 

the 572 nm (TxRed), 492 nm (FITC), and 360 nm (DAPI) excitation filters. Emission 

was collected using a UBG triple-bandpass emission filter cube. The Cell^R imaging 

software (Olympus Biosystems, Germany) was used for background subtraction, 

image processing and signal quantification. 

2.5.2.2 OGT 

OGT expression was evaluated by immunofluorescence microscopy as described in 

section 2.5.2.1. However, we instead employed the following primary and secondary 

antibodies: 

Primary antibody: O-linked N-acetylglucosamine transferase (OGT) (Abcam, 

Cambridge, MA); 

Secondary antibody: Anti-rabbit FITC secondary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA). 
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2.5.2.3 OGA 

The determination of OGA expression with immunofluorescence microscopy was 

completed as described in section 2.5.2.1, but with modifications i.e. with the 

substitution of the following primary and secondary antibodies: 

Primary antibody: NCOAT L-14 (nuclear cytoplasmic O-GlcNAcase and 

acetyltransferase) (Santa Cruz Biotechnology, Santa Cruz, CA); 

Secondary antibody: Anti-goat FITC secondary antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA) 

2.5.3 Western blotting   

2.5.3.1 Protein extraction and quantification 

Frozen leukocyte samples were thawed and sonicated for 10 sec in order to disrupt 

the cell membranes and expose the contents of the cell (refer to Appendix for 

complete lysate preparation protocol). The samples were then centrifuged at 4°C at 

2500 x g for 10 min. We quantified protein using the Bradford protein 

determination method [241](see Appendix for complete protocol). 

2.5.3.2 Sample preparation 

Aliquots diluted in sample buffer and containing 20 µg of protein were prepared for 

all samples. The sample buffer used contained 850 μl 3x sample buffer and 150 μl 

mercaptoethanol (3x sample buffer: 0.5 M Tris, pH 6.8, 0.2 ml 0.5% bromophenol 

blue, 2.5 ml glycerol, 10% SDS and distilled water). A complete protocol for sample 

preparation is included in the Appendix. 
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2.5.3.3 SDS PAGE and Western blot analysis 

Samples were boiled for 5 min (Refer to Appendix), loaded onto Bio-Rad Mini-

Protean® TGX™ –Pre-cast gels (Bio-RAD Laboratories, CA), and subjected to 

sodium dodecyl sulphate polyacrylamide gel electrophoresis. 4 μl of protein marker 

ladder (Bio-RAD PlusProtein™ Dual Color Standards, USA) was loaded in the first 

lane. Samples were run for 25 min at 250 V (constant) and 400 mA. Thereafter, 

proteins were transferred onto a 0.2 µM PVDF using the Bio-Rad Trans-Blot® 

Turbo™ Transfer system V1.02 (Bio-RAD Laboratories, CA). Proteins were 

transferred for 12 min at 15 V and 0.5 A. After transfer, membranes were washed 

three times (duration of wash: 5 min) in Tris Buffered Saline-Tween-20  (TBS-T) 

before blocking against non-specific binding in 1% (w/v) bovine serum albumin 

(BSA) in 0.1% TBS-T for 15 min at room temperature. After blocking, the 

membranes were washed three times in TBS-T and incubated overnight at 4°C with 

1:1000 of the appropriate primary antibody (see Table 2.2). The following day the 

membranes were thoroughly washed in TBS-T and incubated in 1:4000 of the 

appropriate secondary antibody (See table 2.2) for 60 min at room temperature. 

The membranes were again washed with TBS-T (3 x 5 min) before evenly adding 1 

ml of KPL LumiGLO (KPL Inc, MD) over each membrane for one min. The 

membrane was developed using the Bio-Rad Chemidoc™ MP Imaging system (Bio-

RAD Laboratories, CA). Bio-Rad Image Lab™ Software version 4.0 (Bio-RAD 

Laboratories, CA) was used to quantify Western blots  through volume analysis. 
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Table 2.2 Primary and secondary antibodies used for Western blotting analysis. 
*We wish to thank the Gerald Hart laboratory, Johns Hopkins and the NHLBI 
P01HL107153 Core C4 for providing the OGT (AL28) and CTD 110.6 antibodies. 

2.6 Differentiation of leukocyte subtypes 

We employed flow cytometry to distinguish between granulocytes and lymphocytes 

and used a gating strategy with both scatter and fluorescence parameters.  Since 

the FACS Aria flow cytometer measures linear forward light scatter (FSC) and linear 

90° light scatter (SSC), it allowed separation of leukocytes according to size and cell 

granularity, respectively. A fluorescent-conjugated marker present in all leukocytes 

(CD45) (Abcam, Cambridge, MA) was employed to define leukocyte sub-groups.  We 

conjugated CD45 to either a FITC or APC fluorescent probe, followed by two-color 

immunofluorescence. Here leukocyte samples were stained with CD45-FITC or 

CD45-APC ± either of O-GlcNAc-APC, OGA-FITC or OGT-FITC. The accurate 

identification of granulocytes and lymphocytes was completed by using a 

SSC/CD45 scatter plot (granulocytes: high SSC, low CD45 signal; lymphocytes: low 

SSC, high CD45 signal). The relative amounts of O-GlcNAc, OGA and OGT could 

also be determined within the different leukocyte populations. We typically 

analyzed 10, 000 cells per experiment and the signal quantified by determining the 

 Primary antibody Secondary antibody 

O-GlcNAc O-GlcNAc (CTD 110.6, 
Santa Cruz Biotechnology, 
Santa Cruz, CA*) 

      Goat anti-mouse antibody 
      (31440, Thermo Scientic, 
      Rockford, IL) 

OGT OGT (AL28 *)       Goat anti-rabbit HRP (611 1302,    
      Rockland Immunochemicals, 
      PA) 

OGA NCOAT L-14 (Santa Cruz 
Biotechnology, Santa Cruz, 

CA) 

 

β-Actin β-actin (4976S, Cell 
Signalling Technology, 
Boston, MA) 

      Goat anti-rabbit HRP (611 1302,    
      Rockland Immunochemicals, 
      PA) 
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geometric mean of fluorescence for each specific cell population (protocol modified 

from [242]). 

2.7 Determining the effect of insulin on HBP flux 

Due to an interesting finding in our study (refer to Results section 3.14.2), we decided 

to investigate (cell culture model) whether insulin could have an effect on the extent of 

O-GlcNAcylation. To our knowledge, no literature has elucidated this before. We 

employed Western blotting and immunofluorescence microscopy for this analysis. 

2.7.1 Cell culture 

Experiments were performed using an H9c2 rat cardiomyoblast cell line (Sigma-

Aldrich, Steinheim, Germany), a precursor to cardiomyocytes. Cells were cultured 

in T75 culture flasks (75 cm2 flasks, Greiner Bio One, Germany) at 37˚C (5% CO2, 

95% air) in Dulbecco Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, Steinheim, 

Germany) supplemented with 10% fetal bovine serum (FBS) (Gibco Invitrogen, 

Carlsbad, CA) and 1% Penicillin-Streptomycin solution (PenStrep) (Gibco 

Invitrogen, Carlsbad, CA). Two groups of H9c2s were cultured, i.e. a high glucose 

group in 25 mM DMEM (simulating hyperglycemia), and a low glucose group in 5.5 

mM DMEM (simulating normoglycemia). 

Cells proliferated in T75 flasks until they reached 80% confluency (between three 

and four days), after which they were split. The latter was accomplished by washing 

the cell monolayer with warm phosphate buffered saline (PBS) followed by 

incubation with 4 ml trypsin (Sigma Chemical Co., St Louis, MO) at 37°C for four 

min. Trypsinized cells were then neutralized with DMEM, counted with a 

hemocytometer and centrifuged at 500 x g for 3 min before seeding into appropriate 
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treatment T25 flasks (Western blotting) or cover glass chambers 

(immunofluorescence microscopy). 

2.7.2 Experimental groups  

High glucose cells and low glucose cells were each split into five experimental 

groups, resulting in a total of ten groups (Figure 2.4). For Western blotting, ten T25 

flasks were seeded (one flask per group) as indicated in Figure 2.4. For 

immunohistochemistry, two 8-well Nunc™ cover glass chambers (Nalge Nunc, 

Rochester, NY) were used. Low glucose and high glucose cells were seeded in 

separate chambers, and in each chamber the insulin-treated groups were seeded in 

duplicate. Each chamber contained a control group and a dye control (DC) group. A 

dye control group (no primary antibody) was added when performing 

immunofluorescence staining to ensure antibody specificity. 

 

 

 

 

 

 

 

Treatment: 

Group: 

Low glucose H9c2 
cells (LG) 

High glucose H9c2 
cells (HG) 

H9c2s 

Low–dose 
insulin (LI) 

Medium-
dose insulin 

(MI) 

High-dose 
insulin (HI) 

Positive 
control (PC) 

Control 
(C) 

0.1 µM 
insulin 

No 
treatment 

1.0 µM 
insulin 

10 µM 
insulin 

50 µM 
PUGNAc* 
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Figure 2.4 Schematic representation of experimental treatment groups used for 
Western blotting and immunofluorescence microscopy. LGC, low glucose control; 
LGLI, low glucose low-dose insulin; LGMI, low glucose medium-dose insulin; LGHI, 
low glucose high-dose insulin; LGPC, low glucose positive control; LGDC, low 
glucose dye control; HGC, high glucose control; HGLI, high glucose low-dose 
insulin; HGMI, high glucose medium-dose insulin; HGHI, high glucose high-dose 
insulin; HGPC, high glucose positive control; HGDC, high glucose dye control. 

*PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N 
phenylcarbamate) is an inhibitor of OGA (the removal of O-GlcNAc moieties), and is 
therefore a valuable positive control in Western blotting. 

Western blotting 
(T25 flasks) 

LGC 

HGC 

LGLI 

HGLI 

LGMI 

HGMI 

LGHI 

HGHI 

LGPC 

HGPC 

Microscopy 
(2 x 8-well 
chambers) 

LGC 

LGDC 

LGLI 

LGLI 

LGMI 

LGMI 

LGHI 

LGHI 

HGC 

HGDC 

HGLI 

HGLI 

HGMI 

HGMI 

HGHI 

HGHI 
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2.7.3 Western blotting  

2.7.3.1 Preparation 

On day 1, H9c2s were trypsinized from T75 flasks, and 500, 000 cells were added 

to ten T25 flasks (see Figure 2.4). On day 3, the medium was refreshed, and on day 

4 the experiment took place. All medium in the flasks were substituted with serum- 

free medium for three hours prior to treatment. A period of serum starvation is 

necessary before insulin treatment in order to stimulate the translocation of GLUT4 

to the sarcolemma after insulin treatment. One hour prior to insulin treatment, the 

positive control groups were treated with PUGNAc (CarboGenLabs, Aarau, 

Switzerland). Thereafter, the appropriate doses of insulin (Figure 2.4) were added to 

the insulin treatment flasks for 20 min before harvesting the cells. Serum-free 

DMEM was removed from all flasks and cells were washed with cold PBS and 

immediately put on ice. In order to extract cellular proteins, 1 ml of modified 

radioimmunoprecipitaion (RIPA) buffer was added to each flask for 10 min (RIPA: 

pH 7.4, containing: Tris–HCl 2.5 mM, EDTA 1 mM, NaF 50 mM, NaPPi 50 mM, 

dithiothreitol 1 mM, phenylmethylsulfonyl fluoride (PMSF) 0.1 mM, benzamidine 1 

mM, 4 mg/ml SBTI, 10 mg/ml leupeptin, 1% NP40, 0.1% SDS and 0.5% Na 

deoxycholate) (refer to Appendix). Adhering cells were then harvested from the 

surface of the flask using a cell scraper (See Appendix for complete cell harvesting 

protocol), and lysates were stored at -80°C for future analysis by Western blotting. 

This experiment was repeated three times for statistical power. 

2.7.3.1 Western blot analysis 

Identical to protocol described in section 2.5.3. 
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2.7.4 Immunofluorescence microscopy 

2.7.4.1 Preparation 

On day 1, H9c2s were trypsinized from T75 flasks, and 150, 000 cells were added 

to each well of the 8-well Nunc™ cover glass chambers (Nalge Nunc, Rochester, NY) 

(see figure 2.4). On day 3, the medium was refreshed, and on day 4 the experiment 

took place. All medium in the wells were substituted with serum-free medium for 

three hours prior to treatment. A period of serum starvation is necessary before 

insulin treatment in order to stimulate the translocation of GLUT4 to the 

sarcolemma after insulin treatment. After three hours, the appropriate doses of 

insulin were added to the insulin treatment wells for 20 min before harvesting the 

cells. Serum-free DMEM was removed from all wells and cells were washed with 

cold PBS and immediately fixed with 6% formaldehyde/PBS for 30 min. The 

protocol for immunofluorescence O-GlcNAc staining was executed directly after the 

30 min fixation period. 

2.7.4.1 Immunofluorescence staining 

Identical to protocol described in section 2.5.2.1, however, for the dye control, no 

O-GlcNAc primary antibody was added. 

2.8 Statistical analysis 

All values are presented as the mean ± standard error of the mean (SEM). One-way 

analysis of variance (ANOVA) was used to determine differences between normal, 

pre-diabetic and diabetic subjects, followed by two Bonferroni post hoc tests. A 

Bonferroni test that compared all pairs of columns (denoted with *) and a 
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Bonferroni test comparing selected pairs of columns (denoted with #) was 

performed with each analysis. All statistical analyses were performed using 

Graphpad Prism version 5.01 (Graph pad Software Inc, USA). P values < 0.05 were 

accepted as significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

69 
 

Results 

3.1 Leukocyte flow cytometric scatter properties and differential CD45 

intensity define two major leukocyte populations 

We employed flow cytometry to measure a) light scatter properties and b) CD45 

fluorescent intensity in the total leukocyte sample. Firstly, FSC and SSC properties 

separated the total white blood cell population according to physical characteristics 

(size and cell granularity, respectively) [243]. The diverse physical properties of 

leukocyte sub-populations allowed two main sub-groups to be distinguished from 

one another and from cellular contaminants, namely  lymphocytes (green) and 

granulocytes (blue) (Figure 3.1A).  

To confirm these findings, we also measured the mean CD45 fluorescence 

intensity. CD45 is a marker found on all leukocytes, but with varying intensity 

within different leukocyte sub-groups [243]. Additionally, since CD45 is absent 

from erythrocytes, it is an ideal marker for the accurate differentiation between 

white blood cell (WBC) sub-types [244]. The leukocyte sample was plotted on a 

SSC/CD45 axis and again the two sub-populations were gated. Lymphocytes 

(green) exhibited a low SSC and a high CD45 signal intensity versus a low CD45 

fluorescence and high SSC characteristic of granulocytes (blue) (Figure 3.1B). 

These  data were robustly supported  by a SSC/FSC scatter plot demonstrating a 

stronger CD45 signal (red) in lymphocytes (green) compared to  granulocytes (blue) 

(Figure 3.1C).  Thus our flow cytometric protocol allows us to distinguish two 

leukocyte sub-populations with great accuracy. 

3. 
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Figure 3.1 Diverse physical properties and differential CD45 fluorescence 
allow for the identification of leukocyte sub-populations (flow cytometry).  
A. A representative histogram illustrating a total leukocyte population separated 
into two gated leukocyte sub-types based on forward light scatter (FSC) and linear 
90° light scatter (SSC) properties (lymphocytes: green, granulocytes: blue). B. The 
same cell population (refer A above) plotted as side scatter (SSC) versus CD45 
intensity. Variable CD45 fluorescence highlights the two gated leukocyte 
populations. C. The forward scatter (FSC) and side scatter (SSC) of the sample 
reflecting differences in the mean intensity of CD45 (red).  
 

3.2 Differential O-GlcNAc modification between different leukocyte 

populations   

The accurate distinction between leukocyte sub-populations allowed us to 

investigate the relative degree of O-GlcNAcylation in lymphocytes compared to 

granulocytes. Here we found a greater O-GlcNAc fluorescence intensity in the 

granulocytes (blue peak shifted far to the right) compared to the lymphocyte 

population (green peak) (Figure 3.2A). The SSC/FSC scatter plot confirmed this and 

A. B. 

C. 
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demonstrated increased O-GlcNAc signal (red) in granulocytes (blue) compared to 

lymphocytes (green) (Figure 3.2B). Quantification of these data showed that O-

GlcNAcylation was 32.0 ± 4.9% higher in the granulocytes versus the lymphocytes 

(p<0.001)(Fig. 2C).  To confirm these interesting findings, we also performed 

immunofluorescence microscopy analysis and found increased O-GlcNAc 

fluorescence (red) in granulocytes (Fig. 2D) versus lymphocytes (Fig. 2E).  
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Figure 3.2 Differential display of O-GlcNAc signal between different leukocyte 
populations (flow cytometry and immunofluorescence microscopy).  
A:Leukocyte histograms and corresponding scatter plot in granulocytes (blue peak) 
compared to lymphocytes (green peak). B. The forward scatter (FSC) and side 
scatter (SSC) reflecting O-GlcNAc fluorescence (red) in granulocytes (blue) 
compared to lymphocytes (green). C. Bar graph representing mean intensity of O-
GlcNAc staining in granulocytes versus lymphocytes (n=74, ***p<0.001). D. 
Representative image of neutrophil granulocyte (blue) stained for O-GlcNAc (red). E. 
Representative image of lymphocyte (blue) stained for O-GlcNAc (red) 
(magnification: 60 x). AU: Arbitrary units.Values are displayed as mean ± SEM.  

 

3.2 Similar OGA expression between different leukocyte populations   

 
We also analyzed the relative OGA expression in the different leukocyte 

populations. Here we essentially found identical OGA fluorescence intensity in the 

granulocytes (blue peak) compared to the lymphocyte population (green peak) 

(Figure 3.2A). The SSC/FSC scatter plot confirmed this and demonstrates similar 

OGA signal (red) in granulocytes (blue) and lymphocytes (green) (Figure 3.2B). 

Quantification of these data showed that OGA differed by less than 0.5% between 

leukocyte sub-populations (Fig. 2C). Immunofluorescence microscopy analysis 

confirmed these findings as no clear differences in OGA fluorescent intensity were 

visible (refer Figures 3.3D and 3.3E for a representative image of OGA staining in 

granulocytes and lymphocytes, respectively).  
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Figure 3.3 Identical display of OGA signal between different leukocyte 
populations (flow cytometry and immunofluorescence microscopy).  
A. Leukocyte histograms and corresponding scatter plot in granulocytes (blue peak) 
compared to lymphocytes (green peak). B. The forward scatter (FSC) and side 
scatter (SSC) reflecting OGA fluorescence (red) in granulocytes (blue) compared to 
lymphocytes (green). C. Bar graph representing mean intensity of OGA staining in 
granulocytes versus lymphocytes (n=74). D. Representative image of neutrophil 
granulocyte (blue) stained for OGA (green). E. Representative image of lymphocyte 
(blue) stained for OGA (green) (magnification: 60x). AU: Arbitrary units. Values are 
displayed as mean ± SEM.  

D. E. 

Granulocyte Lymphocyte 

A. 

B. C. 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 3. RESULTS 
 

74 
 

3.3 Determination of O-GlcNAcylation by means of flow cytometry and 

immunofluorescence miscroscopy 

We next investigated the degree of O-GlcNAc modified proteins in the leukocytes of 

normal, pre-diabetic and diabetic individuals. Individuals were characterized as 

normal, pre-diabetic or diabetic according to 3.3.1) ADA FPG levels, 3.3.2) WHO 

FPG criteria, and 3.3.3) HbA1c levels. 

3.3.1 Increases in leukocyte O-GlcNAcylation with increased fasting blood 

glucose levels (ADA)    

Subjects characterized according to ADA criteria showed increased O-GlcNAcylation  

in their total leukocyte sample. Diabetic individuals exhibited an enhanced O-

GlcNAcylation of 28.9 ± 6.2% versus normal subjects (p<0.01)(Figure 3.4A). 

However, we found no significant changes between pre-diabetic and normal 

subjects (Figure 3.4A). When independently examining granulocytes, the 

differences in O-GlcNAcylation were more prominent, and significant increases of 

32.4 ± 4.4% and 47.6 ± 5.8% were found in individuals with pre-diabetes and 

diabetes, respectively (Figure 3.4B). Lymphocytes similarly showed a robust 

increase in O-GlcNAc intensity for diabetic individuals (32.4 ± 5.8%)(p<0.01), while 

there was a significant difference between pre-diabetic and diabetic lymphocytes 

(20.6 ± 5.3%) (Figure 3.4C). These findings were confirmed with our population 

fluorescence data, where a greater mean O-GlcNAc fluorescence intensity was 

observed in the pre-diabetic group (blue peak shifted to the right), indicating 

augmented O-GlcNAcylation.  Moreover, we also observed greater O-GlcNAcylation 

between pre-diabetic and diabetic individuals (green peak shifted to the right) 
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(Figure 3.34E).  Our flow cytometric data were confirmed with immunofluorescence 

microscopy where the fluorescent signal was quantified in the total leukocyte 

population (Figure 3.4E). Representative images illustrate greater O-GlcNAc signal 

(red) in the leukocytes (blue) of diabetic subjects compared to healthy individuals 

(Figure 3.4F). 
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Figure 3.4 Increased O-GlcNAcylation of leukocyte proteins in ADA 
characterized pre-diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).  

A: O-GlcNAcylation in total leukocyte population of pre-diabetic and diabetic 
subjects versus normal individuals (n=62, ###p<0.001, **p<0.01 vs. normal group). 
B: Granulocyte O-GlcNAcylation levels (n=51, ##p<0.01, ###p<0.001, **p<0.01, 
***p<0.001 vs. normal group). C: Lymphocyte O-GlcNAcylation levels (n=54, 
##p<0.01, $p<0.05 vs. pre-diabetic group, **p<0.01 vs. normal group). D: Peak shifts 
of total leukocyte population fluorescence data show O-GlcNAcylation for normal 
(red), pre-diabetic (blue) and diabetic individuals (green) E: Quantification of O-
GlcNAc signal intensity with immunofluorescence microscopy in the total leukocyte 
population (n=25, *p<0.05 vs. normal group). F: Representative images from 
immunofluorescence microscopy performed for pre-diabetic, diabetic and normal 
individuals. Leukocytes were stained for O-GlcNAc (red) and Hoechst dye (blue) 
(magnification: 60x). AU: Arbitrary units. Values are expressed as mean ± SEM. 

3.3.2 Increased  O-GlcNAc modification with elevated fasting blood glucose 

concentrations (WHO)   

O-GlcNAc modified protein levels were next investigated in individuals 

characterized by WHO guidelines. Here, significant increases in O-GlcNAcylation 

were found in individuals with both pre-diabetes and diabetes, respectively (Figure 

3.5A). However, we found no significant changes between pre-diabetic and diabetic 

subjects (Figure 3.5A). For granulocytes, we found that O-GlcNAc modified protein 

levels were higher in pre-diabetic (24.4 ± 7.8%)(p<0.05), as well as in diabetic 

leukocytes (24.7 ± 4.9%)(p<0.01), versus the normal group (Figure 3.5B). This 

result was intensified in the lymphocytes as increases in O-GlcNAc modification of 

F. 

Normal Pre-diabetic Diabetic 

E. 
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49.1.4 ± 15.1% (p<0.01) and 44.9 ± 6.9% (p<0.001) were found in pre-diabetic and 

diabetic individuals, respectively (Figure 3.5C). These findings were confirmed with 

our population fluorescence data, where a greater mean O-GlcNAc fluorescence 

intensity was observed in the pre-diabetic group (blue peak shifted to the right), 

compared to the normal group (red peak) (Figure 3.5D).  Our flow cytometric data 

were supported by immunofluorescence microscopy where O-GlcNAc fluorescent 

intensity was quantified in the total leukocyte population. However, although 

changes were observed, it did not reach statistical significance (Figure 3.5E). 

Representative images display a greater O-GlcNAc signal (red) in the leukocytes 

(blue) of diabetic subjects compared to healthy individuals (Figure 3.5F). 
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Figure 3.5 Increased O-GlcNAcylation of leukocyte proteins in WHO 
characterized pre-diabetic and diabetic individuals (flow cytometry and 
immunofluorescence microscopy).  

A: O-GlcNAcylation in total leukocyte population of pre-diabetic and diabetic 

subjects versus normal individuals (n=62, ##P<0.01, ***p<0.001, **p<0.01 vs. 

normal group). B: Granulocyte O-GlcNAcylation levels (n=48, ##p<0.01, ###p<0.001, 
**p<0.01, *p<0.05 vs. normal group). C: Lymphocyte O-GlcNAcylation levels (n=53, 
###P<0.001, ***p<0.001, **p<0.01 vs. normal group). D: Peak shifts of total 

leukocyte population fluorescence data show O-GlcNAcylation for normal (red), pre-
diabetic (green) and diabetic individuals (blue) E: Quantification of O-GlcNAc signal 
intensity with immunofluorescence microscopy in the total leukocyte population 
(n=25, no significant differences). F: Representative images from 
immunofluorescence microscopy performed for pre-diabetic, diabetic and normal 
individuals. Leukocytes were stained for O-GlcNAc (red) and Hoechst dye (blue) 
(magnification: 60x) AU: Arbitrary units. Values are expressed as mean ± SEM. 

3.3.3 Leukocyte O-GlcNAcylation increases with rising HbA1c levels 

When next characterized our study subjects according to HbA1c levels and 

therefore determined their respective O-GlcNAcylation levels. For the total leukocyte 

sample we recorded an elevation of 21.3 ± 4.7% in the mean intensity of O-GlcNAc 

between normal and diabetic samples (p<0.05)(Figure 3.6A). Although slight 

increases were observed, granulocyte O-GlcNAcylation yielded no significant 

differences (Figure 3.6B). However, lymphocytes displayed robust increases in O-

GlcNAc intensity for diabetic individuals (46.3 ± 6.2%)(p<0.001). Additionally, a 

significant difference in lymphocyte O-GlcNAc levels were observed between pre-

diabetic and diabetic lymphocytes (30.6 ± 5.5%) (Figure 3.6C). These findings were 
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confirmed by our population fluorescence data, where a greater mean O-GlcNAc 

fluorescence intensity was observed in the pre-diabetic group (blue peak shifted to 

the right), compared to the normal group (red peak) (Figure 3.6D).  

Immunofluorescence microscopy data showed a slight increase between pre-

diabetic and diabetic individuals (Figure 3.6E), although this was not statistically 

significant. Representative images display a greater O-GlcNAc signal (red) in the 

leukocytes (blue) of diabetic subjects compared to pre-diabetic individuals (Figure 

3.6F). 
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Figure 3.6 Increased O-GlcNAc modifications in pre-diabetic and diabetic 
leukocytes when characterized according to HbA1c levels (flow cytometry and 
immunofluorescence microscopy).  

A: O-GlcNAcylation in total WBC population-prediabetic and diabetic subjects 
versus healthy individuals (n=57, #p<0.05).B: Granulocyte O-GlcNAcylation levels 
(n=51, no significant differences observed). C: Lymphocyte O-GlcNAcylation levels 
(n=54, ###p<0.001, $$p<0.01 vs. pre-diabetic group, **p<0.01 vs. normal group). D: 
Peak shifts of total leukocyte population fluorescence data show O-GlcNAcylation 
for normal (red), pre-diabetic (green) and diabetic individuals (blue) E: 

Quantification of O-GlcNAc signal intensity (immunofluorescence microscopy) in 
the total leukocyte population between pre-diabetic and diabetic individuals (n=24, 
no significant differences). F: Representative images from immunofluorescence 
analysis performed for pre-diabetic and diabetic individuals. Leukocytes were 
stained for O-GlcNAc (red) and Hoechst dye (blue) (magnification: 60 x). AU: 
Arbitrary units.  Values are expressed as mean ± SEM. 

3.4 Determination of O-GlcNAcylation by Western blotting 

To support our flow cytometric and immunofluorescence data, we additionally 

analyzed global O-GlcNAcylation levels by Western blotting (Figure 3.7A). Here total 

leukocyte O-GlcNAc protein levels were increased in the diabetic samples compared 

to the normal groups (Figure 3.7B). Although marked increases were observed 

between normal and pre-diabetic and pre-diabetic and diabetic leukocytes, these 

differences were not statistically significant (Figure 3.7B). 
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Figure 3.7 Western blot analysis of O-GlcNAcylation in normal, pre-diabetic 

and diabetic individuals. 

A: Representative O-GlcNAc blot B: Bar graphs show volumetric quantification of 
O-GlcNAc levels in pre-diabetic and diabetic groups versus the normal group 
(normalized to β-actin)(n= normal [9], pre-diabetic [15], diabetic [12]; #p<0.05). AU: 
Arbitrary units. Values are expressed as mean ± SEM. 
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3.5 Investigation of OGA expression by flow cytometry and 

immunofluorescence miscroscopy  

Here we investigated OGA protein levels in the leukocytes of normal, pre-diabetic 

and diabetic individuals. Individuals were once again characterized as normal, pre-

diabetic or diabetic according to 3.5.1) ADA FPG levels, 3.5.2) WHO FPG criteria, 

and 3.5.3) HbA1c levels. 

3.5.1 Differential expression of O-GlcNAcase (OGA) between healthy, pre-

diabetic and diabetic individuals (ADA characterized)   

 

These OGA expression data exhibits a moderate decrease (not statistically 

significant) in the total leukocyte population of pre-diabetic individuals (Figure 

3.8A).  Moreover, OGA protein levels were modestly increased in diabetic 

individuals (not statistically significant) versus the pre-diabetic group (Figure 3.8A).  

Granulocytes displayed a 13.3 ± 2.4% (p<0.001) higher OGA expression in diabetic 

subjects and could significantly distinguish between pre-diabetic and diabetic 

subjects (10.9 ± 2.3%) (Figure 3.8B).  An identical pattern was observed in the 

lymphocytes where even greater differences were found compared to granulocytes. 

Here lymphocyte OGA expression increased by 19.3 ± 3.1% (p<0.001) in diabetic 

subjects, and was significantly different between pre-diabetic and diabetic subjects 

(14.9 ± 3%) (Figure 3.8C). The mean OGA fluorescence intensities demonstrated 

increased OGA expression in the diabetic leukocytes (green peak) compared to the 

normal group (red peak) (Figure 3.8D). OGA protein levels were also determined by 

fluorescence microscopy where a modest increase was observed in diabetic 

individuals. However, this was not statistically significant (Figure 3.8E). 
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Representative images display a markedly increased green fluorescent signal (OGA 

expression) in the leukocytes of diabetic subjects (Figure 3.8F).  
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Figure 3.8 Differential leukocyte OGA protein expression in ADA-defined pre-
diabetic and diabetic individuals (flow cytometry and immunofluorescence 
microscopy).   

A: OGA expression in total leukocyte population of pre-diabetic and diabetic 
subjects versus normal individuals (n=62). B: OGA protein levels in granulocytes 
(n=56, ##P<0.01, ###p<0.001, $$p<0.01 compared to pre-diabetic group, ***p<0.001 
vs. normal group). C: OGA expression in lymphocytes (n=49, ##P<0.01, ###p<0.001, 
$$p<0.01 compared to pre-diabetic group, ***p<0.001 vs. normal group).  D: Peak 
shifts of total leukocyte population for healthy (red peak), pre-diabetic (blue peak) 
and diabetic subjects (green peak).E: Quantification of OGA fluorescent intensity in 
the total leukocyte population between normal, pre-diabetic and diabetic 
individuals (n=25, no significant differences).  F: Representative images from 
immunofluorescence microscopy. Leukocytes were stained for OGA (green) and 
Hoechst dye (blue) (magnification: 60 x). AU: Arbitrary units. Values are expressed 
as mean ± SEM.   

3.5.2 Differential OGA expression between normal, pre-diabetic and 

diabetic subjects (WHO characterized)  

 

We next investigated OGA expression in individuals characterized by the diagnostic 

criteria of the WHO. We found no significant differences in OGA protein levels for 

total leukocyte sample (Figure 3.9A). OGA expression was, however, increased in 

the granulocyte population, i.e. increases of 10 ± 4.5% (p<0.05) and 14.3 ± 4.5% 

(p<0.001) was observed between the normal and pre-diabetic group, and between 

normal and diabetic individuals, respectively. There was no statistical significance 

between the pre-diabetic and diabetic groups (Figure 3.9B). Elevated OGA 

expression was also observed in the lymphocytes, with an increase of 18.8 ± 3.4% 

Normal Pre-diabetic Diabetic 

E. F. 
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(p<0.001) found in diabetic samples compared to normal individuals. Lymphocyte 

OGA data could additionally distinguish between pre-diabetes and diabetes, with 

an increase of 10.2 ± 3.2% (p<0.05) observed in the diabetic group versus pre-

diabetic individuals (Figure 3.9C). The mean OGA fluorescence intensities 

demonstrated increased OGA expression in the diabetic leukocytes (green peak) 

compared to the healthy leukocytes (red peak) (Figure 3.9D). The fluorescent 

intensity of OGA was determined and quantified using immunofluorescence 

microscopy (total leukocyte sample) and a slight increase (not statistically 

significant) was observed in the diabetic group (Figure 3.9E). Representative images 

display elevated OGA fluorescent signal (green) in the diabetic leukocytes (Figure 

3.9F). 
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Figure 3.9 Differential leukocyte OGA protein expression in WHO defined pre-
diabetic and diabetic individuals (flow cytometry and immunofluorescence 
microscopy).   

A: OGA expression in total leukocyte population of pre-diabetic and diabetic 
subjects versus normal individuals (n=61). B: OGA expression in granulocytes 
(n=57, ###p<0.001, #p<0.05, ***p<0.001 vs. normal group). C: OGA protein levels in 
lymphocytes (n=50, ###p<0.001, #p<0.05, ***p<0.001 vs. normal group).  D: Peak 
shifts of total leukocyte population for healthy (red peak), pre-diabetic (green peak) 
and diabetic subjects (blue peak).E: Quantification of OGA fluorescent intensity in 
the total leukocyte population between normal, pre-diabetic and diabetic 
individuals (n=26, no significant differences).  F: Representative images from 
immunofluorescence microscopy. Leukocytes were stained for OGA (green) and 
Hoechst dye (blue) (magnification: 60 x). AU: Arbitrary units. Values are expressed 
as mean ± SEM.   

3.5.3 OGA is differentially expressed between normal, pre-diabetic and 

diabetic subjects when characterized by HbA1c levels 

 

When participants were categorized according to HbA1c levels, we found that 

diabetic individuals presented with a reduction in leukocyte OGA expression (13.4 

± 2.8%) (p<0.05) (Figure 3.10A). Granulocytes displayed higher OGA expression in 

diabetic subjects (12.6 ± 2.1%) (p<0.05) and distinguished between pre-diabetic 

and diabetic subjects (12.5 ± 2.1%) (p<0.001) (Figure 3.10B).  Likewise, OGA 

expression in lymphocytes of diabetic subjects was significantly elevated (16 ± 

2.5%) and slightly more sensitive than for granulocytes.  For the latter we also 

found a significant difference between pre-diabetic and diabetic subjects (Figure 

3.10C). Population fluorescence data show increased OGA fluorescence intensities 

F. 
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in the diabetic leukocytes (green peak) (Figure 3.10D). OGA protein levels were also 

determined using fluorescence microscopy and OGA signal was quantified in pre-

diabetic and diabetic blood samples only. A modest increase was observed in the 

diabetic individuals (not significant) (Figure 3.10E). Representative images support 

flow cytometry results, i.e. green fluorescent signal (OGA expression) augmented in 

the leukocytes of diabetic subjects compared to pre-diabetic individuals (Figure 

3.10F).  
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Figure 3.10 Differential leukocyte OGA protein expression in pre-diabetic and 
diabetic individuals characterized by HbA1c levels (flow cytometry and 
immunofluorescence microscopy).   

A: OGA expression in total leukocyte population of pre-diabetic and diabetic 
subjects versus normal individuals (n=59, 

#
p<0.05)). B: OGA protein levels in 

granulocytes (n=50, ###p<0.001, #p<0.05, $$$p<0.001 compared to pre-diabetic 
group, *p<0.05 vs. normal group). C: OGA expression in lymphocytes (n=44, 
#p<0.05, $p<0.05 compared to pre-diabetic group).  D: Peak shifts of total leukocyte 
population for healthy (red peak), pre-diabetic (blue peak) and diabetic subjects 
(green peak).E: Quantification of OGA signal intensity in the total leukocyte 
population between pre-diabetic and diabetic individuals (n=25, no significant 
differences).  F: Representative images from immunofluorescence microscopy. 
Leukocytes were stained for OGA (green) and Hoechst dye (blue) (magnification: 60 
x). AU: Arbitrary units. Values are expressed as mean ± SEM.   

3.6 Evaluation of OGA expression by Western blotting 

Here we aimed to support our findings by determining the OGA protein levels in 

normal, pre-diabetic and diabetic individuals by Western blotting analysis (Figure 

3.11A). Volumetric quantification detected a highly significant increase in OGA 

expression in the pre-diabetic individuals versus normal individuals. Additionally, a 

significant increase was observed in the diabetic participants versus the normal 

group. However, an unexpected decrease in OGA protein levels was observed in the 

diabetic group versus the pre-diabetic group (Figure 3.11B). 
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Figure 3.11 OGA western blot analysis in normal, pre-diabetic and diabetic 

individuals. 

A: Representative OGA blot B: Bar graphs show volumetric quantification of OGA 
protein levels in pre-diabetic and diabetic groups versus the normal group 
(normalized to β-actin)(n= normal [4], pre-diabetic [5], diabetic [5]; ###p<0.001, 

##p<0.01, $p<0.05 compared to pre-diabetic group, ***p<0.001, **p<0.01 compared to 

normal group). AU: Arbitrary units. Values are expressed as mean ± SEM. 
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3.7 Investigation of OGT expression by flow cytometry and 

immunofluorescence microscopy 

We additionally measured OGT protein levels using flow cytometry and 

immunofluorescence microscopy. However, unlike O-GlcNAc and OGA 

determinations, we experienced great technical difficulties to consistently quantify 

OGT levels. As a result of the poor reproducibility, the sample numbers available 

for analysis were very small.  Due to the variability and unreliable nature of the 

OGT antibody, we did not quantify OGT expression in leukocyte sub-populations, 

nor did we have a sample size big enough to quantify OGT protein levels with 

immunofluorescence microscopy.  

We did, however, investigate the expression of OGT in the total WBC population. No 

significant differences in OGT expression was observed between normal, pre-

diabetic or diabetic individuals when characterized by ADA guidelines (Figure 

3.12A), WHO recommendations (Figure 3.12B) or HbA1c levels (Figure 3.12B). Our 

flow cytometric data were qualitatively confirmed by immunofluorescence 

microscopy, i.e. no visible differences were detected between images (Figure 3.12D).  
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Figure 3.12 OGT expression in the total leukocyte population of normal, pre-

diabetic and diabetic participants. 

A: OGT protein levels in subjects characterized according to ADA criteria (n=24). B: 

The expression of OGT in participants defined as normal, pre-diabetic and diabetic 

according to the diagnostic guidelines of WHO (n=21). C: OGT expression in 

individuals characterized by HbA1c levels (n=27) D: Representative images from 

immunohistochemistry. Leukocytes were stained for OGT (green) and Hoechst dye 

(blue). AU: Arbitrary units. Values are expressed as mean ± SEM. 

3.8 Examination of OGT expression by means of Western blotting 

After obtaining an alternative OGT antibody (AL 28) (Gerald Hart Laboratory, Johns 

Hopkins), we also investigated leukocyte OGT expression by Western blotting 

(Figure 3.13A). Although great variability still occurred, a significant increase in 

OGT protein levels were observed in the pre-diabetic individuals compared to the 

normal group (Figure 3.13B). 
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Figure 3.13 Western blot analysis of OGT protein levels in normal, pre-

diabetic and diabetic individuals. 

A: Representative OGT blot B: Bar graphs show volumetric quantification of OGT 
protein levels in pre-diabetic and diabetic groups versus the normal group 
(normalized to β-actin)(n= normal [7], pre-diabetic [8], diabetic [8]; #p<0.05). AU: 
Arbitrary units. Values are expressed as mean ± SEM. 
 

3.9 Determination of O-GlcNAc/OGA ratios 

 

Due to the differential O-GlcNAcylation and OGA expression observed between 

normal, pre-diabetic and diabetic subjects, we decided to perform an analysis of the 

O-GlcNAc/OGA ratios for flow cytometric data. We therefore explored whether any 

changes in this ratio would occur between subjects when characterized by ADA 

criteria, WHO recommendations, and HbA1c levels. 

3.9.1 Elevated O-GlcNAc/OGA ratios in pre-diabetic and diabetic 

individuals (ADA criteria) 

The investigation of the O-GlcNAc/OGA ratio in the total leukocyte population 

yielded a significant increase of 32.9 ± 6.5% in the diabetic individuals versus the 

normal group (Figure 3.14A). The differences in O-GlcNAc/OGA ratio between 
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normal and diabetic participants were more prominent in the granulocyte 

population, with an increase of 31.8 ± 3.5% (p<0.01). Moreover, granulocytes could 

distinguish between normal and pre-diabetic individuals, with a difference of 28.5 ± 

5.3% (p<0.01) detected between these two groups (Figure 3.14B). However, 

lymphocytes displayed decreased sensitivity with a slight but statistically 

insignificant increase in the diabetic group compared to the pre-diabetic and 

normal subjects (Figure 3.14C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 O-GlcNAc/OGA ratio is increased in pre-diabetic and diabetic 
individuals characterized by ADA diagnostic criteria (flow cytometry).   

A: O-GlcNAc/OGA ratio in total leukocyte population of pre-diabetic and diabetic 

subjects versus normal individuals (n=53, ##p<0.01, *p<0.05 vs. normal group). B: 

O-GlcNAc/OGA ratio in granulocytes (n=50, ###p<0.001, **p<0.01 vs. normal group). 

C: Lymphocyte O-GlcNAc/OGA ratio (n=55).  Values are expressed as mean ± SEM. 
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3.9.2 O-GlcNAc/OGA ratio increases in pre-diabetes and diabetes (WHO 

criteria) 

For the total white blood cell population we found significant increases in the O-

GlcNAc/OGA ratio of 37.1 ± 11.9% and 36.8 ± 6.6% for pre-diabetic and diabetic 

individuals, respectively (Figure 3.15A). No differences were observed in the 

granulocytes between any of the three groups (Figure 3.14B). However, in the 

lymphocytes, O-GlcNAc/OGA ratio increased in the pre-diabetic group (28.3 ± 

15.5%), as well as in the diabetic group (23.9 ± 7%), compared to healthy 

individuals (Figure 3.15C). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Elevated O-GlcNAc/OGA ratio in pre-diabetic and diabetic 
individuals characterized by WHO diagnostic guidelines (flow cytometry).   

A: Total WBC sample’s O-GlcNAc/OGA ratio in pre-diabetic and diabetic 
participants versus normal individuals (n=53, ###p<0.001, ##p<0.01, 
**p<0.01,*p<0.05 vs. normal group). B: O-GlcNAc/OGA ratio in granulocytes 
(n=51). C: Lymphocyte O-GlcNAc/OGA ratio (n=52, #p<0.05). Values are expressed 
as mean ± SEM. 
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3.9.3 Leukocyte O-GlcNAc/OGA ratio increases with rising HbA1c levels:   

For total leukocyte sample we recorded a highly significant elevation (68.5 ± 5%) in 

the O-GlcNAc/OGA ratio between normal and diabetic samples (Figure 3.16A). 

Additionally, differences were detected between normal and pre-diabetic individuals 

(42.7 ± 8.6%) (p<0.05) as well as between pre-diabetic and diabetic subjects (18.1 ± 

5.6%) (p<0.05) (Figure 3.16A).  Granulocyte O-GlcNAc/OGA ratios showed no 

significant differences even though slight increases were observed (Figure 3.16B). 

However, lymphocytes displayed significant increases in O-GlcNAc/OGA ratios in 

diabetic individuals (25.4 ± 5.9%) compared to pre-diabetic participants (Figure 

3.16C). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Increased O-GlcNAc/OGA ratio in leukocytes when characterized 
according to HbA1c levels (flow cytometry).  

A: O-GlcNAc/OGA ratio in total WBC population- prediabetic and diabetic subjects 
versus healthy individuals (n=50, ###p<0.001, #p<0.05, ***p<0.001 vs. normal 
group).B: Granulocyte O-GlcNAc/OGA ratio levels (n=49, no significant differences 
observed) C: Lymphocyte O-GlcNAc/OGA ratio’s (n=49, #p<0.05, $p<0.05 vs. pre-
diabetic group). Values are expressed as mean ± SEM. 
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3.10 Discrepancies between diagnostic tests and defining criteria 

An important aspect in the field of diabetes diagnosis, and thus for our study, are 

the current incongruities between existing diagnostic tools and organization-

specific criteria (as discussed in the Introduction section 1.3.2). We therefore 

decided to evaluate the severity of these discrepancies in our study population. 

3.10.1 Discrepancies between FPG and HbA1c 

The FPG criteria for defining diabetes, both WHO and ADA, is >7 mmol/L. Likewise, 

an HbA1c of >6.5% is diagnosed as diabetes (refer to Table 1.3). After carefully 

examination of our data, we found that 13.6% of our study population was either 

>7 mmol/L, <6.5% or <7 mmol/L, >6.5%.  

Next, the levels of O-GlcNAcylation in these two groups were evaluated, as well as 

for the other possibilities, i.e. <7 mmol/L, <6.5% and >7 mmol/L, > 6.5%. The 

results indicated a significant increase between <7 mmol/L, <6.5% and >7 mmol/L, 

<6.5%. Also, significant differences were observed between >7mmol/L, <6.5% and 

<7 mmol/L, >6.5%; >7 mmol/L, <6.5% and >7 mmol/L, > 6.5%, along with <7 

mmol/L, <6.5% and >7 mmol/L, > 6.5% (Figure 3.17). 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 3. RESULTS 
 

97 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Differences in O-GlcNAcylation between groups established from 
discrepancies between HbA1c and FPG.  

(n=73, ##p<0.01, #p<0.05,*p<0.05 vs. <7 mmol/L, <6.5%. AU: Arbitrary units. 
Values are expressed as mean ± SEM. 

3.10.2 Discrepancies between WHO and ADA 

As discussed, the WHO and ADA both define diabetes with an FPG >7.0 mmol/L. 

However, their respective normal and pre-diabetic classifications result in a specific 

range of glucose concentrations (5.6-6.0 mmol/L). This results in dissimilar 

characterization, i.e. individuals that fall within this glucose range will be classified 

as “normal” according to WHO, but “pre-diabetic” according to ADA guidelines. We 

investigated our data and found that 12.9% of our study population fell into this 

glucose range. 

We next investigated O-GlcNAc modified protein levels in the 5.6-6.0 mmol/L group 

by comparison to the ADA normal (<5.6 mmol/L), WHO normal (<6.1 mmol/L), 

ADA pre-diabetic (5.6-6.9 mmol/L) and WHO pre-diabetic (6.1-6.9 mmol/L) groups. 

Here we identified significant differences between ADA normal and pre-diabetic 

groups, and WHO normal and pre-diabetic groups. Interestingly, O-GlcNAcylation 
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could distinguish between the ADA normal group and WHO pre-diabetic group, as 

well as between the WHO pre-diabetic group and the 5-6-6.1 mmol/L group (Figure 

3.18). 

 

 

 

 

 

 

 

Figure 3.18 Differences in O-GlcNAcylation between groups established from 
discrepancies between WHO and ADA diagnostic criteria.  

(n=62, ###p<0.01, ##p<0.01, #p<0.05,**p<0.01 vs. ADA normal), $$p<0.01 vs. (WHO 
pre-diabetic), €p, 0.05 vs 5-6-6.0 mmol/L. AU: Arbitrary units. Values are 
expressed as mean ± SEM. 

3.11 Characterization of study population 

We next examined whether the above inconsistencies had any effect on the 

characterization of our recruited subjects. When subjects were characterized 

according to ADA criteria, almost a third of the population were in the normal 

group, with 46.8% of individuals characterized as diabetic and 22.1% as pre-

diabetic (Figure 3.19A). When WHO guidelines were implemented to characterize 

individuals, the diabetic group understandably remained the same, but the normal 

group increased to 41.5% of the population, leaving only 11.7% of individuals 

characterized as pre-diabetic (Figure 3.19B). By contrast, characterization 
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according to HbA1c levels decreased the normal group to a small 10.9% of the 

study population, with the diabetic group making up more than half of the 

individuals (56.7%), and the pre-diabetic group comprising 31.5% of subjects 

(Figure 3.19C).  

 

Figure 3.19 Percentage of population characterized as normal, pre-diabetic 

and diabetic according to A: ADA criteria B: WHO guidelines C: HbA1c levels.  
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3.12 “True” normal, pre-diabetic and diabetic individuals 

The significant differences between ADA, WHO and HbA1c in the characterization 

above (section 3.11) lead us to determine how many individuals are “true” normal, 

pre-diabetics and diabetics. In other words we ascertained how many individuals 

are characterized as normal, pre-diabetic or diabetic by all three guidelines.  

We discovered that 10% of the population was normal according to all three 

guidelines (<5.6 mmol/L; <5.7%), 8.75% were true pre-diabetics (6.1-7 mmol/L; 

5.7-6.5%), and 42.5% of recruited subjects were true diabetics (>7.0 mmol/L; > 

6.5%). This means that 38.75% of the study participants may be categorized into 

alternative groups, i.e. dependent on which criteria are implemented (grey section 

in pie chart) (Figure 3.20). 

Figure 3.20 Percentage of population characterized as normal, pre-diabetic 

and diabetic according to all three criteria (ADA, WHO, HbA1c). 
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3.12.1 The investigation of O-GlcNAcylation between “true” normal, pre-

diabetic and diabetic individuals 

We subsequently determined the flow-cytometric O-GlcNAc levels for the “true” 

normal, pre-diabetic and diabetic individuals and no significant differences were 

found in the total leukocyte population (Figure 3.21A). However, for both the 

granulocytes and lymphocytes there were significant increases of 36.7 ± 5.9% and 

63.6 ± 8.5%, respectively, between normal and diabetic individuals (Figure 3.21B 

and Figure 3.21C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Increased O-GlcNAcylation in leukocytes of “true” diabetic 
individuals. 

A: O-GlcNAcylation in total WBC population (n=49) B: Granulocyte O-GlcNAcylation 
levels (n=37, #p<0.05) C: Lymphocyte O-GlcNAc protein levels (n=37, ##p<0.01, 
*p<0.05 vs. normal group). AU: Arbitrary units. Values are expressed as mean ± 
SEM. 
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3.12.2 Analyzing OGA expression between “true” normal, pre-diabetic and 

diabetic individuals 

OGA expression amongst these individuals yielded more sensitive results. In the 

total leukocyte population there were significant differences detected between 

normal and pre-diabetic individuals (decrease of 17.9 ± 3.5%), as well as between 

normal and diabetic subjects (decrease of 15.7 ± 3%) (Figure 3.22A). By contrast, 

OGA expression was significantly increased in the granulocytes of diabetics 

compared to normal subjects (Figure 3.22B). Moreover, for lymphocytes increases 

of 8.7 ± 7.1% (p<0.05) and 16.2 ± 2.6% (p<0.01) were found in the pre-diabetic and 

diabetic groups, respectively (Figure 3.22C). 
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Figure 3.22 OGA protein expression in leukocytes of “true” diabetic 
individuals. 

A: Total leukocyte population’s OGA expression (n=31, #p<0.05) B: Granulocyte 
OGA protein levels (n=34,##p<0.01, *p<0.05 vs. normal group ) C: OGA expression 
in the lymphocytes(n=35, ###p<0.001, #p<0.05, **p<0.01 vs. normal group). AU: 
Arbitrary units. Values are expressed as mean ± SEM. 

3.12.3 Determining O-GlcNAc/OGA ratios for “true” normal, pre-diabetic 

and diabetic participants 

The O-GlcNAc/OGA ratios distinguish between normal and pre-diabetic and 

between normal and diabetic individuals. Here our data show a significant increase 

in the pre-diabetic (68.5 ± 1.6%) and diabetic (70.3 ± 9.7%) groups compared to 

normal subjects (Figure 3.23A). However, no differences were detected for 

granulocytes or lymphocytes (Figure 3.23B and Figure 3.23C). 

 

 

 

 

 

 

 

B. C. 

A. 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 3. RESULTS 
 

104 
 

 

 

 

 

 

 

 

 

 

Figure 3.23 O-GlcNAc/OGA ratio evaluated in leukocytes of “true” diabetic 
individuals. 

A: O-GlcNAc/OGA ratio in total WBC population (n=31, ##p<0.01, #p<0.05, **p<0.01 
*p<0.05 vs. normal group) B: Granulocyte O-GlcNAc/OGA levels (n=34) C: 
Lymphocyte O-GlcNAc/OGA ratio’s (n=35). AU: Arbitrary units. Values are 
expressed as mean ± SEM. 

3.13 The inaccuracy of FPG (case study) 

Due to our study’s reliance on FPG, a specific case study must be noted:  two, very 

healthy and fit male subjects were specifically recruited with the intention of 

obtaining valuable control data. The analysis of O-GlcNAcylation took place blindly 

and we did not have access to FPG values until after O-GlcNAcylation levels were 

finalized. As expected, both men presented with relatively low O-GlcNAc levels in 

terms of other study recruits. However, the test results confirmed FPG levels of 6.3 

and 6.4 mmol/L, thereby characterizing both men as pre-diabetic (according to 

both WHO and ADA standards). Due to the health conscious nature of both 

individuals, five year FPG records were available for us to scrutinize. Here we found 

that the most recent reading (performed less than a month prior to our reading) 

showed that the individuals presented with FPG values of 5.4 and 4.3 mmol/L. 

This translates into a discrepancy of 0.9 and 2.1 mmol/L, respectively. After 

averaging the five year record for each individual, we calculated that their FPG’s 

B. C. 
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were 5.4 and 5.1 mmol/L, respectively. Our calculations confirmed that if these two 

recruits were included in the pre-diabetic group, then their lower O-GlcNAc levels 

would have skewed the mean O-GlcNAcylation reading, and resulted in a smaller 

difference between normal and pre-diabetic groups. 

3.14 Investigation into the combination of insulin and fasting plasma 

glucose levels 

Individuals in our study were recruited through two sources, Stellenbosch and an 

existing Bellville-South diabetic study. The latter had the resources to measure the 

participants’ insulin levels, and therefore we gained access to this data for a subset 

of our recruited individuals (n=55). We decided to investigate the insulin levels in 

combination with the glucose levels, and characterize our population according to 

glucose/insulin groups. We retained our three groups for FPG: normal, pre-diabetic 

and diabetic (ADA criteria was used in order to include more individuals in the pre-

diabetic group), and we also established two insulin groups. The healthy insulin 

reference range is between 2.1 and 10 µU/mL, and therefore we included a normal 

insulin (2.1 and 10 µU/mL) and a high insulin (>10 µU/mL) group (a low insulin 

group was not necessary since no individuals presented with insulin values < 2.1 

µU/mL). When combined, these two variables resulted in a total of six groups: 

Normal glucose normal insulin (NGNI); Pre-diabetic glucose normal insulin (PGNI); 

Normal glucose high insulin (NGHI); Pre-diabetic glucose high insulin (PGHI); High 

glucose high insulin (HGHI); High glucose normal insulin (HGNI). 
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3.14.1 Characterization into glucose/insulin groups 

10.9% of individuals presented with NGNI while a similar number (9.1%) were 

characterized with PGNI and NGHI. Moreover, 14.5% fell into the PGHI group while 

the majority of participants were classed into the HGHI category (40%). Finally, 

16.4% of the study population presented with HGNI (refer to Figure 3.24) 

 

 

 

 

 

 

 

 

Figure 3.24 Percentage of Bellville-South population characterized according 

to glucose/insulin groups. NGNI: Normal glucose normal insulin; PGNI: Pre-

diabetic glucose normal insulin; NGHI: Normal glucose high insulin; PGHI: Pre-

diabetic glucose high insulin; HGHI: High glucose high insulin; HGNI: High glucose 

normal insulin (n=55). 

3.14.2 O-GlcNAcylation and O-GlcNAc/OGA ratio differs between 

glucose/insulin groups 

We next evaluated O-GlcNAcylation levels for each glucose/insulin group. Here we 

observed a significant decrease in O-GlcNAc modified leukocyte proteins in NGHI 

compared to NGNI (-37.6 ± 9.3%), while significant increases of 54.1 ± 12.9% and 

80.2 ± 12.1% were detected in HGHI and HGNI, respectively (versus NGHI) (Figure 

3.25A). 
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We also investigated the O-GlcNAc/OGA ratios between the different groups and 

found a similar pattern. The O-GlcNAc/OGA ratio decreased by 61.1 ± 14.3% in the 

NGHI group versus the PGNI category, while significant increases were detected in 

HGHI and HGNI, respectively (versus NGHI) (Figure 3.25B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 O-GlcNAcylation levels and O-GlcNAc/OGA ratios compared to 

glucose/insulin groups. 

A: Degree of O-GlcNAcyaltion versus various glucose/insulin groups (n=55, 
**p<0.01, *p<0.05) AU: Arbitrary units. B: O-GlcNAc/OGA ratio (n=55, **p<0.01, 
*p<0.05). Values are expressed as mean ± SEM. 
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3.15 Determining the effect of insulin on HBP flux 

Due to the interesting findings in section 3.12, we decided to evaluate the effect of 

three different doses of insulin (0.1 µM, 1 µM, 10 µM) on O-GlcNAc modified protein 

levels under high (25 mM) and low glucose (5.5 mM) culturing conditions (H9c2 rat 

cardiomyoblast cell line). We performed the analysis using immunofluorescence 

microscopy and Western blotting. 

3.15.1 Immunofluorescence microscopy 

Fluorescence microscopy was used as a qualitative technique. Under low glucose 

(LG) culturing conditions, the only visible difference in O-GlcNAcylation is a distinct 

decrease in the high insulin group (10 µM) (Figure 3.26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dye control  Basal control 

0.1 µM Insulin 1 µM Insulin 
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Figure 3.26 Effect of insulin on O-GlcNAcylation under low glucose culturing 

conditions (5.5 mM) in H9c2 cells (immunofluorescence microscopy).  

Representative images from immunohistochemistry (qualitative). H9c2s were 

stained for O-GlcNAc (red) and Hoechst dye (blue). A: Dye control B: Basal control 

C: 0.1 µM insulin treatment D: 1 µM insulin treatment E: 10 µM insulin treatment. 

 

An identical pattern was observed for cells cultured under high glucose conditions, 

with the only noticeable difference being reduced O-GlcNAc fluorescent signal in 

the high insulin group (10 µM) (Figure 3.27). 

 

 

 

 

 

 

 

Dye control Basal control 

0.1 µM Insulin 1 µM Insulin 

10 µM Insulin 
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Figure 3.27 Effect of insulin on O-GlcNAcylation under high glucose 

conditions (25 mM) in H9c2 cells (immunofluorescence microscopy).  

Representative images from immunohistochemistry (qualitative). H9c2s were 

stained for O-GlcNAc (red) and Hoechst dye (blue). A: Dye control B: Basal control 

C: 0.1 µM insulin treatment D: 1 µM insulin treatment E: 10 µM insulin treatment. 

3.15.2 Western blotting 

We next employed Western blotting analysis as a quantitative technique to 

investigate changes in O-GlcNAcylation in response to varying  insulin levels 

(Figure 3.28A). We compared high glucose and low glucose cells in the following 

groups: LGC: Low glucose control; LGLI: Low glucose low insulin; LGMI, Low 

glucose medium insulin; LGHI: Low glucose high insulin; LGPC: Low glucose 

positive control; HGC: High glucose control; HGLI: High glucose low insulin; HGMI: 

High glucose medium insulin; HGHI: High glucose high insulin; HGPC: High 

glucose positive control (refer to materials and methods section 2.7) No significant 

differences in O-GlcNAcylation were detected between any of the groups (Figure 

3.28B). 

 

10 µM Insulin 
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Figure 3.28 Western blot analysis of O-GlcNAcylation in insulin-treated H9c2 

cells cultured under high and low-glucose conditions. 

A: Representative O-GlcNAc blot B: Bar graphs show volumetric quantification of 
O-GlcNAc levels compared to low glucose control (LGC) group (normalized to β-
actin) (n=3).  AU: Arbitrary units. Values are expressed as mean ± SEM. 
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Discussion 
Type 2 diabetes remains under-diagnosed despite the availability of several 

diagnostic tests [32]. There are several obstacles that impede successful detection 

of diabetes. These include various limitations of the current diagnostic assays 

(section 1.33), incongruities between alternative diagnostic approaches and 

significant variation between organization-specific characterization criteria (section 

1.3.2). Due to the significant vulnerability of diabetic patients to a plethora of 

cardiovascular and non-vascular diseases [29], we propose that the augmented 

detection of diabetes, and its precursor, pre-diabetes, would allow for: a) delayed 

progression of these complications, b) earlier and more extensive treatment 

opportunities, c) improved prognostic outcomes and d) the enhanced focus on 

successful preventative strategies. Together this provides impetus for the 

development of novel prognostic assays subject to fewer complexities. For example, 

hyperglycemia-induced HBP flux is linked to insulin resistance and associated with 

metabolic defects responsible for the progression of diabetes (reviewed in [188, 

192]). Since O-GlcNAcylation of target proteins is subject to intracellular glucose 

availability (discussed in [193]), we hypothesized that the extent of O-GlcNAcylation 

is a useful tool to assess glucose metabolism of individuals with both subtle and 

overt glucose dysregulation, thereby representing a novel marker for the increased 

efficiency and earlier diagnosis of diabetes. 

 The main findings of this study are: 1) Differential O-GlcNAc modification between 

diverse leukocyte sub-populations; 2) Pre- and diabetic individuals display 

increased leukocyte O-GlcNAcylation; 3) Differential leukocyte OGA

4. 
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 expression found in diabetic subjects; 4) OGT expression did not significantly 

change for any of the study recruits investigated 5) Elevated O-GlcNAc/OGA ratios 

in pre-diabetic and diabetic individuals. 

4.1 Differential O-GlcNAc modification between diverse leukocyte sub-

populations  

The major principle of flow cytometry (our fundamental technique) is its ability to 

determine the properties of individual particles in solution [245]. The forward and 

side scatter channels separate cells according to size and granular content, 

respectively [243]. Moreover, CD45 is an antigen present in all WBCs but expressed 

in varying magnitude between separate leukocyte lineages [244]. Our data confirm 

that the combination of flow cytometric light scattering properties and 

simultaneous quantification of CD45 surface antigen expression can be used for 

the accurate identification of leukocyte sub-populations [242] (Figure 3.1).  

 

Due to the accurate differentiation of leukocyte sub-populations, we initially 

compared the degree of O-GlcNAcylation in lymphocytes compared to granulocytes. 

Interestingly, granulocytes exhibited markedly higher levels of O-GlcNAc modified 

proteins compared to lymphocytes (Figure 3.2). This, to our knowledge, is a unique 

observation and we found no previous literature comparing O-GlcNAcylation in 

leukocyte sub-populations.  Moreover, OGA expression was essentially identical in 

the granulocytes and lymphocytes (Figure 3.3), thereby adding to the perplexity of 

this finding.  What is the importance of the disparity in O-GlcNAc modification 

between granulocytes and lymphocytes?   Since no differences in OGA expression 

occurred (Figure 3.3), this remains unclear, but investigation into their respective 
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roles within the immune system allows us to propose possible explanations for 

these unique results.  

 

An immediate thesis why neutrophils displayed greater O-GlcNAcylation may relate 

to research showing that O-GlcNAc plays a significant role in the efficient execution 

of the neutrophil’s response towards infection [246]. Previous research work 

provided evidence that neutrophil motility and signaling also depend on O-GlcNAc 

modification [240]. However, further investigation uncovered that O-GlcNAcylation 

also plays a central role in the regulation and activation of T and B lymphocytes 

[247]. These data therefore support the notion that O-GlcNAcylation is actively 

involved in the proper functioning of neutrophils and lymphocytes. But to what 

extent does it play a role? Diverse proteins are present within the lymphocytes and 

neutrophils [248, 249], and it is likely that neutrophil proteins not shared with 

lymphocytes are potential O-GlcNAc targets. Moreover, since several proteins 

present in both sub-populations are expressed in varying amounts [250] there is a 

strong possibility that neutrophils perhaps have a larger quantity of specific O-

GlcNAc modified proteins.  

 

Another factor to consider here is that O-GlcNAc cycles (as previously mentioned) 

[190]. More importantly, O-GlcNAc cycling occurs at different rates for various 

proteins [87] and hence such variation may also result in the differences we 

observed between granulocytes and lymphocytes. Finally, previous research work 

found that neutrophils displayed higher levels of oxidative stress compared to 

lymphocytes [251]. Since oxidative stress is responsible for HBP activation 

[142](refer Introduction section 1.6), it is likely that varying O-GlcNAcylation found 

is simply the direct result of differential ROS production between lymphocytes and 

neutrophils. 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 4. DISCUSSION 
 

115 
 

 

Although significant advances have been made in the development of specific and 

sensitive methods to quantify the extent and identity of specific O-GlcNAcylation 

sites [252, 253], these techniques are only in their infancy. This is therefore a 

major reason for the limited progress to fully elucidate the functional role(s) of O-

GlcNAc [246]. We therefore propose that determination of site-specific O-GlcNAc 

modification in neutrophils and lymphocytes is vital in clarifying its differential 

response, and also in providing firm evidence to support our proposals made here. 

 

O-GlcNAc moieties are dynamically attached and removed from target proteins under 

the robust control of two conserved enzymes, OGT and OGA, respectively [230, 254]. 

In order to fully investigate the diagnostic value of O-GlcNAcylation, we subsequently 

explored the degree of O-GlcNAc modified proteins and OGA/OGT expression in sub- 

and total leukocyte populations of recruited individuals. With this broad scope, we 

set out to further advance our understanding of O-GlcNAcylation in pre- and overt 

diabetic individuals, with the eventual aim to offer diagnostic utility. For this study 

normal, pre-diabetic and diabetic individuals were distinguished with both ADA and 

WHO FPG defining criteria, as well as the ADA’s recommended HbA1c levels.  

4.2 Pre- and diabetic individuals display increased leukocyte O-

GlcNAcylation  

Hyperglycemia increases O-GlcNAcylation through increased HBP flux [192, 221]. 

Indeed, several cell-based and animal studies showed increased O-GlcNAcylation in 

response to augmented glucose levels [168, 209, 215, 221, 255-257]. We therefore 

proposed a “translation” of this response into the clinical setting and hypothesized 

increased O-GlcNAc modified protein levels in pre-diabetic and diabetic individuals. 
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Differences between ADA, WHO and HbA1c characterizations were subtle. However, 

for all three categories O-GlcNAcylation increased with higher glucose and HbA1c 

levels (Figure 3.4-3.6).  

 

For the total leukocyte population, diabetic individuals exhibited increased 

leukocyte O-GlcNAcylation (characterized according to ADA fasting glucose and 

HbA1c levels), but could not distinguish between pre- and overt diabetic subjects 

(Figure 3.4A and 3.6A). However, O-GlcNAc-modified protein levels increased in 

diabetic and pre-diabetic individuals versus the normal group (WHO criteria) 

(Figure 3.5A). These data clearly illustrate how the sensitivity of O-GlcNAc is 

affected when participants are alternatively characterized, thereby highlighting the 

repercussions of discordant diagnostic threshold values. Since the WHO pre-

diabetic recommendations only include individuals with a FPG of >6.1mmol/L, O-

GlcNAcylation of pre-diabetic groups is in a higher range compared to the ADA, 

emphasizing its ability to distinguish between normal and pre-diabetic individuals.  

 

The leukocyte sub-typing further strengthened the total WBC population data and 

provided additional insights in this regard, i.e. granulocyte O-GlcNAcylation (ADA 

and WHO) differentiated between normal and diabetic individuals more 

significantly than in the total leukocyte population. More importantly, the vital 

distinction between normal and pre-diabetic subjects was also achieved (Figure 

3.4B-3.5B).  Furthermore, when recruits were characterized according to ADA FPG 

and HbA1c levels, the degree of lymphocyte O-GlcNAcylation allowed for 

differentiation between healthy and diabetic subjects, and also pre-diabetic and 

diabetic individuals (Figure 3.4C and 3.6C).  
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We found that differences within the leukocyte sub-type data are statistically more 

robust versus the total leukocyte population.  It is reasonable to postulate that 

such variations in sensitivity are due to differences in gating accuracy (flow 

cytometry).  Since both lymphocyte and granulocyte populations can be gated and 

therefore defined with much higher precision compared to the total leukocyte 

sample, this results in greater reproducibility. By contrast, the total leukocyte 

population may include erythrocytes and other debris, potentially making gating 

more variable between samples and thereby decreasing sensitivity.   

 

Nevertheless, these results strongly validate the highly sensitive nature of O-GlcNAc 

modification in response to nutrients and cellular stress (hyperglycemia). 

Collectively O-GlcNAc-modified protein levels were, although not concurrently, able 

to differentiate between normal and pre-diabetic, normal and diabetic, and pre-

diabetic and diabetic individuals.  

 

Although flow cytometry was employed as our principal technique, O-GlcNAcylation 

was additionally investigated with immunofluorescence microscopy and Western 

blotting (Materials and methods section 2.5.2 and 2.5.3). We found a significant 

increase in O-GlcNAcylation in diabetic individuals (ADA criteria) when employing 

microscopy (Figure 3.4E). However, increases observed for the other categories 

(WHO and HbA1c) were not statistically significant (Figure 3.5E and 3.6E). Several 

problems were experienced when executing immunofluorescence microscopy that 

could justify the large variation and therefore the loss of statistical power.  

 

Troubleshooting formed a large part of this technique, and as a result, very few 

suitable images were available for quantification. The two major problems we 

experienced were: a) the fixation of cells, and b) the lack of adherence of leukocytes 
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to the chambers. Firstly, upon microscopy analysis we found that cell morphology 

was completely distorted. Further optimization uncovered the fixative agent as the 

culprit, and as a result we employed 6% formaldehyde/PBS solution as a 

substitute to the 1:1 methanol/acetone fixative (commonly used in alternative 

protocols). In support, a study performed by Hoetalmans et al. (2001) showed the 

complete loss of intracellular integrity when using methanol:acetone versus 

formaldehyde [258]. Our modified approach resulted in the conservation of 

leukocyte morphology and a significant improvement in image quality. 

Secondly, the lack of adherence and subsequent loss of cells resulted in a poor 

representation of the total leukocyte population. As a result of the small quantity of 

adhering cells, the majority of the images could only be used as a qualitative 

measure of O-GlcNAcylation. Here we typically analyzed 50-100 cells (per sample) 

for quantification versus 10, 000 cells by flow cytometry. This therefore clearly 

highlights the disparity in quantitative power between these two techniques. 

Nevertheless, despite these difficulties, subtle differences were still detected and the 

qualitative images yielded visible differences (representative of several images) in 

support of our flow cytometric data (Figure 3.4-3.6F). 

No distinctions were made between alternative threshold values or leukocyte sub-

types when Western blotting was employed. Here we also experienced technical 

difficulties. The protein concentrations isolated from leukocytes were very low and 

as a result not many samples could be analyzed. However, the remaining samples 

were subjected to SDS-PAGE and volumetric analysis detected a significant 

increase in O-GlcNAc modified proteins in the diabetic samples (Figure 3.7). We 

propose that more sensitive changes were not detected due to the considerably 

lower sample sizes available.  
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Together these data clearly illustrate how HBP flux increases in response to excess 

glucose availability (pre-diabetic and diabetic individuals). Our findings therefore 

firmly support, with strong statistical power and three alternative techniques, the 

original premise of utilizing this as a novel diagnostic marker. 

4.3 Differential leukocyte OGA expression between healthy, pre-diabetic 

and diabetic individuals  

OGA catalyzes the removal of O-GlcNAc and, together with OGT, is responsible for 

regulating O-GlcNAc levels (reviewed in [193, 220]). OGA catalyzes the glycosidic 

bond between O-GlcNAc and target proteins, and previous work identified its 

supportive role for O-GlcNAcylation in the progression of type 2 diabetes (reviewed 

in [193, 259]). For example, mutations and splice variants of the OGA gene are 

associated with the onset of diabetes [203, 260]. Although the results for OGA 

expression include variances in sensitivity between the three characterizing 

categories, they all follow the same major trend, i.e. increased OGA expression in 

diabetic individuals.  

 

For our total leukocyte data, diabetic individuals (HbA1c characterized) displayed 

significantly decreased OGA expression (Figure 3.10A). This was not surprising 

since we expected increased O-GlcNAcylation (refer Discussion section 4.3) to be 

accompanied by lower expression of the enzyme responsible for its detachment. 

However, OGA protein levels did not show any significant differences for subjects 

characterized according to FPG levels (ADA and WHO criteria) (Figure 3.8A and 

3.9A). Interestingly, when re-categorized i.e. normal, pre-diabetic, diabetic (7-8 

mmol/L) and severely diabetic (9-23 mmol/L), decreased OGA expression was 
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detected in diabetic individuals (WHO and ADA) and thus supported our 

observations with HbA1c (See Fig. B1 and B2 in Supplemental data, pg 173). 

 

Conversely, the sub-population data (granulocytes and lymphocytes) revealed 

greater OGA expression in diabetic individuals compared to normal and pre-

diabetic subjects (Figure 3.8B, 3.8C, 3.9C, 3.10B, 3.10C). Our supplemental data 

also (in part) support these findings as we found increased OGA expression in 

severely diabetic versus diabetic individuals (See Fig. B1 and B2 in Supplemental 

data, pg 173). These data were originally not included in the Results chapter of this 

thesis due to the atypical nature of making a distinction between diabetic (7-8 

mmol/L) and severely diabetic individuals (9-23 mmol/L). However, due to the 

statistical significance of these differences and the seemingly contradictory results 

earlier obtained, we are of the opinion that these data are of great value. It also 

emphasizes the shortcomings of narrow boundary cut-off values (7-8 mmol/L) and 

its influence in potentially skewing the data.  

 

Our findings are in agreement with previous work that found higher OGA 

expression in pre- and overt diabetic subjects [80]. Here the authors argued that 

augmented OGA levels in erythrocytes may represent an adaptive response [80]. It 

is well established that O-GlcNAc plays a major role in modulating proteins upon 

stress, regulating protein stability and the activity of enzymes to preserve cellular 

function [194, 261]. It is therefore rational to suppose that in response to chronic 

O-GlcNAcylation, cells would attempt to restore stability and the function of the cell 

by increasing OGA protein levels. Moreover, studies that pharmacologically or 

genetically increased O-GlcNAcylation observed undesired elevations in OGA 

expression [262, 263], therefore also supporting the concept of an adaptive 

response. Although our data remains inconclusive regarding the timepoint at which 
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such an adaptive response commences (requires further investigation), it supports 

the notion that increased leukocyte OGA expression in diabetic subjects is an 

attempt to diminish overall O-GlcNAcylation and thereby blunt its potential 

damaging effects. 

 
OGA protein levels were also determined with immunofluorescence microscopy. 

Due to O-GlcNAcylation matching difficulties we did not detect any significant 

differences (Figure 3.8E and 3.9E and 3.10E). However, marked observational 

differences in OGA signal was reported when implementing immunofluorescence as 

a qualitative tool (Figure 3.8F and 3.9F and 3.10F). Here it must also be noted that 

there was a considerable discrepancy between “normal” and “pre-diabetic” 

classifications for HbA1c versus FPG characterized individuals. In fact, analysis of 

raw data ascertained that only 10.9% of the population was classified as “normal” 

according to HbA1c guidelines versus 31.1% and 41.5% by ADA and WHO criteria, 

respectively (further details to be discussed in section 4.8 of this thesis). Such 

conflicting characterizations resulted in too few control images available for 

quantification and hence the representation of only two groups in Figure 3.6E and 

3.10E.  

 

With Western blotting analysis increased OGA expression was detected in pre-

diabetic and diabetic samples versus controls (Figure 3.11). Here diabetic 

individuals displayed significantly decreased OGA protein levels, suggesting 

perhaps the early initiation of an adaptive response with an ensued stabilization of 

this reaction in the diabetic group. However, such analysis was performed on a 

relatively small sample size (n=4-5) and these results should therefore be carefully 

interpreted. 
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Our data therefore suggest that, although uncertainty exists regarding when 

exactly the proposed adaptive response is initiated, OGA upregulation in diabetic 

subjects is statistically robust (Figure 3.8B,C,D; 3.9B,C,D; 3.10B,C,D). These 

observations encourage further investigation since increased OGA expression may 

also offer diagnostic utility.  

4.4 OGT expression did not significantly change for any of the study 

recruits investigated 

OGT is an evolutionarily conserved, soluble enzyme that is ubiquitously expressed 

in all multi-cellular eukaryotic organisms (reviewed in [191]).  Its regulatory role is 

executed via an O-linkage and subsequent addition of a single O-GlcNAc moiety 

onto serine/threonine amino acid residues present in nuclear, cytoplasmic and 

mitochondrial proteins [227, 232, 264]. 

 

Since we found increased O-GlcNAcylation we expected a concomitant elevation in 

OGT levels, the enzyme responsible for the attachment of O-GlcNAc [219]. However, 

we found that OGT expression did not significantly change with pre- or overt 

diabetes (Figure 3.12). Park et al. (2010) also reported unchanged OGT protein 

levels with diabetes, thus supporting our data [80]. This may too represent an 

adapttive response. In order to protect the cell from the damaging consequences of 

increased HBP flux, leukocytes may be attempting to not over-modify proteins with 

the O-GlcNAc saccharide under conditions of chronic hyperglycemia (diabetes). 

However, Park et al. (2010) emphasized that the question whether OGT enzymatic 

activity in erythrocytes could be altered by increased glucose concentrations 

remains elusive [80].  This issue therefore also needs consideration in our leukocyte 

model. 
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Our results were further enlightened by findings illustrating that OGT is not only 

regulated by the concentration of its substrate (UDP-GlcNAc) [246], as this reaction 

is too gradual to initiate fleeting alterations in O-GlcNAcylation [247]. In fact, 

previous studies found that OGT is activated through alternative mechanisms that 

include phosphorylation by calcium calmodulin-dependent protein kinase IV 

(CaMKIV) [265] and its binding to inositolphosphate lipids [266]. Moreover, it is 

essential to recognize that although OGT is encoded by a single gene [191], this 

deceivingly simple enzyme is indeed rather complex. For example, it has three 

different isoforms, it can be post-translationally modified by several kinases, and 

OGT itself can also be O-GlcNAcylated [219, 224, 228, 267]. These complexities also 

need to be considered when investigating changes in OGT in response to 

hyperglycemia. 

 

We experienced great difficulties to quantify OGT levels and we believe this is most 

likely due to the variability of the polyclonal antibody used (Abcam 50270, 

Cambridge, MA). Hence our sample size is not large enough to make any firm 

conclusions. We also explored use of an alternative OGT antibody (AL 28), obtained 

from Gerald Hart’s Laboratory (Johns Hopkins University, Baltimore, USA) for 

Western blotting analysis. Although we detected a significant increase in OGT 

protein levels in diabetic subjects (Figure 3.13), variability and small sample size 

number (n=7-8) were still major concerns. Larger sample sizes and further 

optimization are therefore required to improve confidence in such data and also to 

ensure statistical accuracy. 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 4. DISCUSSION 
 

124 
 

4.5 Elevated O-GlcNAc/OGA ratios in pre-diabetic and diabetic individuals 

An important objective of our exploratory study was to extensively investigate the 

diagnostic utility of O-GlcNAcylation. Due to the differential O-GlcNAcylation and 

OGA expression observed between healthy, pre-diabetic and diabetic subjects, we 

next determined the O-GlcNAc/OGA ratio. This is a unique ratio proposed by our 

laboratory and here the idea is to further broaden diagnostic utility. 

Our results conclusively demonstrated that O-GlcNAc/OGA ratios increased with 

higher glucose and HbA1c levels in sub- and total leukocyte populations (ADA, 

WHO, HbA1c) (Figure 3.14-3.16). Despite variation in sensitivity, O-GlcNAc/OGA 

ratios could distinguish between normal and pre-diabetic, pre-diabetic and diabetic 

as well as normal and diabetic individuals. Thus increases in O-GlcNAc/OGA ratios 

may also provide an additional diagnostic avenue to be further explored. 

4.6 Summary of main findings 

Together our data validate the strong association between hyperglycemia (pre-

diabetes and diabetes) and increased HBP flux, as well as its considerable potential 

for diagnostic value. The link between increased O-GlcNAcylation, OGA expression 

and O-GlcNAc/OGA ratios and the severity of glucose dysregulation is supported by 

solid statistical data and therefore represents a significant stride in improved 

diagnosis of diabetes.  

 

In light of slight variations between some of our findings we are of the opinion that 

the following points should be considered: 
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1) Further investigations into O-GlcNAcylation of proteins found in granulocytes 

and lymphocytes are required to elucidate subtle differences in sensitivity. 

Moreover, determination of O-GlcNAcylation sites should provide valuable insight 

regarding the identity of specific proteins that are targeted in this process. 

However, these subtle differences may also be mitigated with an increase in 

population size.  

 

2) It is important to note that the sample size of the pre-diabetic group was usually 

the lowest in this study. This is perhaps linked to one of the exact motivations for 

our study: the earlier detection of diabetes.  Pre-diabetic individuals are difficult to 

identify with the current diagnostic tools [84] and are therefore the most difficult to 

recruit. We believe that the lower sample size considerably hampers statistical 

power and could explain subtle differences in pre-diabetic lymphocyte and 

granulocyte O-GlcNAcylation and OGA expression, and the uncertainty regarding 

when exactly the OGA adaptive response occurs. 

 

3) Discrepancies between alternative defining criteria (ADA vs. WHO), and between 

diagnostic approaches (FPG vs. HbA1c) affected the characterization of our 

participants (to be further discussed in section 4.7.2). This may elucidate 

incongruities observed in our study, e.g. decreased OGA expression in HbA1c-

characterized individuals [Figure 3.10]).  

 

4) We are compelled to investigate the accuracy of our novel tool by characterizing 

study subjects based on the exact inaccuracies of tools we are aiming to 

advance/replace. We are of the opinion that such inaccuracies (especially with 

fasting plasma glucose) may also impact on the sensitivity of our assays and the 
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subtle discrepancies in statistical power between significant groups (normal vs. 

pre-diabetic or pre-diabetic vs. diabetic).  

 

5) Although the alternative techniques employed (immunofluorescence microscopy 

and Western blotting) lacked strong statistical power, this is most likely due to 

their qualitative nature and/or the various technical difficulties incurred. It did 

nevertheless corroborate our flow cytometric data and thereby further strengthen 

our intriguing findings.  

4.7 Further analysis into O-GlcNAc’s diagnostic utility 

4.7.1 Discrepancies between diagnostic tests and defining criteria 

Crucial matters of concern in the field of diabetes are the various limitations of 

current diagnostic tools (reviewed in [49]). Not only are there discrepancies between 

preferred screening methods and alternate diagnostic thresholds, each diagnostic 

test have several idiosyncrasies that hamper the effective diagnosis of diabetes 

(extensively reviewed in the Introduction section 1.3.2 of this thesis). For example, 

results from FPG and OGTT tests have poor reproducibility and short-term 

variability in glycemic measurements [72]. OGTT is impractical and its utilization 

therefore limited in clinical practice and it is often used only to further evaluate 

individuals that already present with IFG or HbA1c levels between 5.7-6.4% [268]. 

HbA1c is affected by ethnicity, age, numerous erythrocyte anomalies and cannot be 

used for the diagnosis of gestational diabetes [269, 270]. Furthermore, differences 

between alternative diagnostic approaches in terms of diagnostic yields and 

predictive capacity further perpetuate the inefficient diagnosis of type 2 diabetes 

[271-273].  
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The abovementioned complexities formed a major part of the motivation for the 

inquisition into a novel marker for the more proficient detection of diabetes. 

Ironically, the exact complexities we were aiming to mitigate impeded the efficient 

characterization and investigation into O-GlcNAc’s diagnostic utility. How could we 

accurately test O-GlcNAc’s prognostic value without a recognized consensus 

regarding the definition of pre-diabetes, or which diagnostic approach was best at 

detecting it? Therefore the characterization of our study population into “three 

groups” became a relatively complex problem. Since OGTT tests were not feasible 

due to its cumbersome nature, this reduced our ability to comprehensively assess 

glucose metabolism in our participants. This double-edged sword intensifies the 

need for increased simplicity and efficacy in the field of diabetes diagnosis. 

However, we enhanced the scope of our study by characterizing recruited individuals 

according to FPG (WHO and ADA criteria) and HbA1c. This proved valuable for the 

context of our study (and for diabetes diagnosis in general) as: 1) we could more 

extensively investigate our novel tool and determine its value in three current 

diagnostic settings; 2) it underscored these discrepancies and the need for 

advancements in this field; and 3) it provided an opportunity to assess discrepancies 

between diagnostic tests (and their consequences) in our recruited study population. 

 
The WHO and ADA both define diabetes on the basis of a fasting glucose 

concentration above 7 mmol/L [49]. An HbA1c level of >6.5% is also used for the 

diagnosis of diabetes [274]. Our results indicated that 13.6% of study recruits were 

either >7 mmol/L, <6.5% or <7 mmol/L, >6.5%. A recent study investigating 

HbA1c’s utility in six different countries also detected major discordances [275]. 

Here the probability of individuals presenting with an FPG >7 mmol/L also meeting 

the HbA1c criteria of >6.5% varied between 17-78% [275]. These data exemplifies 

the repercussions of discordant criteria and the potential for misdiagnosis if either 
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the FPG, or HbA1c tests, are independently implemented.  However, the dilemma is 

that for most countries it is not feasible to screen for diabetes with more than one 

test due to costs and availability (reviewed in [74]).  

 
We therefore aimed to determine whether O-GlcNAcylation differentiated between 

these groups and analyzed O-GlcNAc levels of individuals representing: <7 mmol/L, 

<6.5%; >7 mmol/L, <6.5%; <7 mmol/L, >6.5%; and >7 mmol/L, > 6.5%. As 

expected, O-GlcNAc was significantly increased in the >7 mmol/L, >6.5% group 

(diabetic according to both sets of criteria) versus the <7 mmol/L, <6.5% group 

(normal by both sets of criteria). However, there was a significant difference in O-

GlcNAcylation between the inconsistent groups (>7 mmol/L, <6.5%) and (<7 

mmol/L, >6.5%) (Figure 3.17).  These data thus further enhance O-GlcNAc’s 

potential for diagnostic advantage and highlight its ability to reflect improved 

dynamic ranges of glycemia. This is a clearly favorable advance in light of the 

current status of diabetes diagnosis.  

We next investigated discrepancies between FPG organization-specific criteria in 

our data. The WHO and ADA have a specific range of glucose concentrations (5.6-

6.0 mmol/L) that allow for alternative classifications (refer to Results section 

3.10.2). We found that 12.9% of our recruited individuals presented with glucose 

levels in this range. Thus they were characterized as normal according to WHO 

guidelines, but pre-diabetic according to the ADA criteria. After reviewing the 

literature, we could not find any studies investigating the ramifications of this 

differential characterization in a large-scale population. However, some studies 

showed that individuals presenting with FPG values of 5.6-6.0 mmol/L are 

associated with an increased risk for diabetes [54, 276]. 

We evaluated and compared O-GlcNAcylation levels in this group (5.6-6.0 mmol/L) 

versus the ADA normal (<5.6 mmol/L), ADA prediabetic (5-6-6.9 mmol/L), WHO 

Stellenbosch University http://scholar.sun.ac.za



  CHAPTER 4. DISCUSSION 
 

129 
 

normal (<6.1 mmol/L) and WHO pre-diabetic (6.1-6.9 mmol/L) groups (Figure 

3.18). Here we found significant increases in O-GlcNAc levels between ADA normal 

and pre-diabetic individuals, and WHO normal and pre-diabetic subjects. 

Moreover, there was a significant increase in O-GlcNAc modified proteins in the 

WHO pre-diabetics versus the ADA normal participants. Interestingly, the 

significant distinction between the (5.6-6.0 mmol/L) and the WHO pre-diabetic 

group could further strengthen O-GlcNAc’s diagnostic probability. This together 

with the differentiation between <7 mmol/L, >6.5% and >7 mmol/L, <6.5% could 

contribute towards a more simplified diagnostic strategy. 

4.7.2 Characterization of our study population 

Due to the discrepancies discussed above, we also determined the effect of such 

inconsistencies on the distribution of normal, pre-diabetic and diabetic individuals 

in each category of characterization. The 31.1% of “normal” individuals classified 

by ADA guidelines increased to 41.5% when characterized by WHO criteria, owing 

to the (5.6-6.0 mmol/L) group previously discussed. Furthermore, a mere 10.9% of 

individuals were classified as “normal” when characterized according to HbA1c 

levels (Figure 3.19). This analysis helps to explain differences in the specificity of O-

GlcNAcylation, OGA, and O-GlcNAc/OGA ratios between alternatively categorized 

groups. Nevertheless, the range of “normal” individuals between 10.9-41.5% is 

disconcerting.  

Significant discrepancy also occurred between pre-diabetic groups, i.e. 22.1% of 

subjects were defined as “pre-diabetic” by ADA criteria compared to the 31.5% by 

HbA1c levels. The lowest proportion of pre-diabetes was presented in the WHO 

group (11.7%). The diabetic group remained the most constant as ADA and WHO 

criteria are identical in their classification of diabetes. Here 46.8% of subjects were 
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classed as “diabetic” compared to 57.6% according to HbA1c (Figure 3.19). These 

considerable differences between categories of characterization, particularly with 

regard to the normal and pre-diabetic groups, are a great concern. We believe these 

are the exact groups in which the most uniformity should exist as to most 

optimally improve prognostic strategies/outcomes and for the earlier 

detection/treatment of hyperglycemia-related complications. 

After investigating the proportion of individuals characterized as normal, pre-

diabetic or diabetic according to all three sets of characterization (“true”), we found 

that a significant proportion (38.75%) of our recruited participants remained 

uncharacterized (Figure 3.20). This effectively translates into more than a third of 

our study population being characterized into alternative groups when 

characterized by the separate sets of criteria. 

We therefore evaluated if statistically stronger results would be obtained with the 

analysis of O-GlcNAcylation, OGA and O-GlcNAc/OGA ratios between only the 

“true” normal, pre-diabetic and diabetic individuals. Although significant increases 

in O-GlcNAcylation, OGA and O-GlcNA/OGA ratios were detected (Figure 3.21, 

3.22, 3.23), the differences were not more sensitive than our current data. 

However, due to the elimination of essentially ~40% of our recruited individuals, 

the sample sizes were even further diminished and likely the explanation for the 

lack of robust statistical power. It would be interesting to compare the sensitivity of 

a “true” population of a more comparable size to the statistical strength of our 

collective data.  

A further concern is the actual inaccuracies of the specific test results used for the 

characterization. The case study presented (refer Results section 3.13) 

demonstrated the inaccuracy of a once-off fasting glucose measurement. Two 

individuals’ FPG values differed by 0.9 and 2.1 mmol/L, respectively, from the 
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once-off reading compared to the five-year average reading. Thus these recruits 

were incorrectly identified as being pre-diabetic. Moreover, our calculations 

confirmed that if these two individuals were included in our pre-diabetic group, 

their lower O-GlcNAc levels would have skewed the mean O-GlcNAcylation 

calculated. This in turn would have resulted in a smaller difference between normal 

and pre-diabetic groups, thereby misrepresenting O-GlcNAc’s diagnostic 

competence.  

These data collectively epitomize the need for uniformity and standardization 

between tests and criteria, and also emphasize the difficulties we faced when 

attempting to best characterize our population. It is reasonable to speculate that 

these discrepancies could additionally have influenced our statistics and skewed 

the data to our detriment, desensitizing the differences observed and falsely 

weakening our results. However, we are of the opinion that this is a further 

testimony to the robust nature of O-GlcNAc, i.e. despite these inconsistencies we 

still obtained propitious results.   

4.7.3 The value of insulin in diabetes diagnosis 

The characteristic hallmark of type 2 diabetes, particularly pre-diabetes, is insulin 

resistance. As earlier reviewed, hyperglycemia is preceded by compensatory 

hyperinsulinemia [121]. During the early stages of insulin resistance the 

compensatory increases in insulin concentrations are capable of maintaining 

normal glucose levels. The concern therefore is that although insulin resistant, 

these individuals display FPG levels in the normal range and hence could be 

overlooked [116, 118]. 
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Hyperinsulinemia is a mutual characteristic of Mexican Americans [277], Pacific 

Islanders [125] and African Americans [278], all ethnic groups with a high 

prevalence of diabetes (reviewed in [123]). Moreover, a study determined (follow-up 

period of 24 years) that basal insulin was the most competent predictor for the 

development of type 2 diabetes [116]. The most effective preventative strategy for 

diabetes should surely rely on the earliest intervention, and the point at which 

insulin levels rise prior to increased glucose concentrations seems most opportune. 

Therefore, O-GlcNAc’s diagnostic worth may be criticized as its value has been 

shown to be reliant on increasing glucose levels. If we were to truly scrutinize the 

utility of O-GlcNAc we would have to ask: would a marker detecting increasing 

insulin levels, as opposed to glucose levels, instead be a more significant advance? 

 

The immediate answer to this question is with an alternative one: why are insulin-

based tests not currently employed as primary diagnostic strategies?  Neither the 

IDF, WHO or ADA endorses any measures of insulin-resistance as official 

diagnostic or screening avenues [1, 4, 49]. The truth is that insulin resistance is 

elusive and thus diagnosis based on insulin resistance is clinically challenging 

[279]. Insulin testing is also expensive and the hyperinsulinemic-euglycemic clamp 

is impractical and not clinically accessible. Moreover, indices such as the 

homeostasis model assessment (HOMA) and quantitative insulin sensitivity check 

index (QUICKI) require measurement of both serum insulin and glucose levels, and 

depend upon variably complex calculations [279]. Thus serum insulin levels are 

poor indicators of insulin resistance and confer no clinical benefit [280], and this 

explains why general medical practice often excludes measures of insulin 

resistance.  
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Nevertheless, we could then ask: should mastering the shortcomings of such 

insulin tests be a priority over enhancing glucose-based tests? Is the duration of 

the normoglycemic-hyperinsulinemic state extensive enough to warrant concern?   

 

We believe not. The state at which normal glucose concentrations are maintained 

by compensatory insulin secretion is short-lived as the pancreatic beta cells’ ability 

to counteract the ever-increasing glucose and lipid levels is feeble [121]. Even in the 

early stages of hyperinsulinemia, mild increases in blood glucose levels do occur. 

However, due to concentrations remaining within the normal classification these 

subtle increases go unnoticed [115]. It is also proposed (hyperglycemia-pancreatic 

exhaustion hypothesis) that the pathology of diabetes includes a prolonged period 

of hyperglycemia and hyperinsulinemia (reviewed in [123]). This therefore helps to 

dispel concerns regarding increases in glucose being dependent on complete beta 

cell failure and therefore once established complications have already occurred. 

Thus although elevations in blood glucose occur after an initial rise in insulin 

levels, such increases occur early enough to waiver concerns regarding O-GlcNAc’s 

dependence on the assessment of glucose metabolism. The pressing concern is 

therefore not the late-stage of glucose elevations, but the inability of the current 

tools to detect these increases prior to the onset of afflictions [84]. Therefore, it 

would be a significant step forward if O-GlcNAc could improve on this aspect. 

 

Even if the limitations of detecting hyperinsulinemia were overcome, the accurate 

interpretation of insulin values would be particularly challenging.  For example, the 

progression of pre-diabetes to diabetes would be envisioned by decreased insulin 

levels. However, the predicament is that although insulin levels are decreasing due 

to beta cell failure, this decline is progressive and the insulin concentrations 

remain high (relative to normal) [125, 281]. In fact, after gaining access to insulin 
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values for a subset of our individuals, we characterized our population according to 

glucose/insulin groups (refer Results section 3.14). When comparing the pre-

diabetic and high glucose (diabetic) groups, the highest percentage of individuals 

were classified into the high insulin groups (PGHI, HGHI in Figure 3.24). We also 

found that for the HGNI group no diabetic subjects had insulin values <2.1 µU/mL. 

This illustrates that even during the later stages of glucose dysregulation insulin 

levels are simply relatively lower but remain “high” according to the reference 

ranges. This further depicts difficulties involved in interpreting relative changes in 

insulin values. In light of such problems and impracticalities of insulin 

measurements and increases in glucose occurring early enough [279, 280], we 

believe improving glucose-based assessments (e.g. O-GlcNAcylation) remains a 

promising avenue and provides a platform for significant advances to be made in 

diabetes diagnosis. 

 
The perfect scenario for diabetes diagnosis would therefore ideally be an indirect, 

sensitive marker for elevations in both glucose and insulin levels. Could O-GlcNAc 

possibly make strides towards achieving this? Several in vitro and in vivo studies 

(reviewed in Introduction section 1.8) have validated O-GlcNAcylation as a 

roleplayer in regulating insulin signaling (reviewed in [193, 226]). The proposed 

model is that increased UDP-GlcNAc (due to enhanced HBP flux) upregulating O-

GlcNAcylation and causes insulin resistance [184, 199, 202]. Therefore, it would be 

reasonable to hypothesize a link between O-GlcNAc metabolism and insulin levels.  

We next determined if any changes in O-GlcNAcylation levels and/or O-

GlcNAc/OGA ratios took place between the glucose/insulin groups. To our delight, 

there were significant differences in O-GlcNAcylation as well as in O-GlcNAc/OGA 

ratios between the (NGNI) and (NGHI) groups (refer Figure 3.24). This finding is 

particularly promising as the differentiation between glucose levels in the same 
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range (but with varying degrees of insulin) is the exact differentiation required for 

the earliest point of detection. Furthermore, previous work we performed in the 

earlier stages of our project demonstrated that O-GlcNAc could distinguish between 

varying levels of “normal” glucose metabolism. Of note, O-GlcNAcylation increased 

in the 4.8-5.5 mmol/L and 5.6-6.3 mmol/L groups compared to the 4.0-4.7 

mmol/L, although not statistically significant (refer Fig. A1 and A2 in Supplemental 

data, pg 171-172). This demonstrates that O-GlcNAc may offer exceptional worth to 

detect subtle increases in glucose accompanied by early insulin resistance that 

usually remains unnoticed.  

Although further studies are required to support these data, our findings indicate a 

possible link between O-GlcNAc and the detection of early elevations in glucose and 

insulin levels in the habitually concealed “normoglycemic hyperinsulinemic” 

condition, thereby contributing the ideal attributes of a novel prognostic tool. 

4.7.4 The effect of insulin on HBP flux 

To our knowledge there is very little literature elucidating the effects of insulin on 

the HBP. Thus we desired to additionally investigate insulin’s influence on the HBP 

to potentially shed light on the differential O-GlcNAcylation observed between the 

various glucose/insulin groups (Figure 3.25). 

 

We employed an H9c2 cardiomyoblast cell line model (refer Materials and Methods 

section 2.7.2), and determined the effect of different doses of insulin (0.1 µM, 1 µM, 

10 µM) on O-GlcNAcylation with fluorescence microscopy and Western blotting. 

Here immunofluorescence analysis (qualitative) visually detected decreased O-

GlcNAcylation in the high insulin groups, with both low glucose and high glucose 

treated cells (Figure 3.26 and figure 3.27). This demonstrates that high insulin 
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levels may play a role in decreasing O-GlcNAcylation. However, this result was not 

confirmed by Western blotting where we found no differences in O-GlcNAcylation 

between any of our experimental groups (Figure 3.28). However, the sample size 

used for both immunofluorescence microscopy and Western blotting were relatively 

small and insulin values were only acquired for a subset of our population. 

 

The utilization of a cardiomyoblast cell-line may also not have been the most 

pertinent choice in the context of our study. The reason being that, unlike 

leukocytes, heart and muscle cells are insulin sensitive [208]. Several studies have 

demonstrated increased O-GlcNAcylation within heart muscle in diabetic models 

(reviewed in [190]) and although skeletal muscle is the major site of insulin 

resistance, it is less evident if identical mechanisms are present in cardiac muscle 

[90]. Moreover, hyperglycemia-induced activation of the HBP can result in 

myocardial cell death [168]. However, our hypothesis is based on the fact that 

insulin-dependent tissues (muscle, fat and liver) have a reduced capacity for 

glucose uptake (due to insulin resistance), resulting in hyperglycemia (pre-diabetes 

and diabetes), increased glucose uptake and subsequent HBP flux by insulin 

insensitive tissues [140]. Therefore, a cardiomyoblast cell line would likely display 

decreased glucose uptake in pre- and diabetic settings and therefore be an 

unsuitable model for our specific aim. We propose that these data be cautiously 

interpreted and that further studies be conducted in an insulin-independent cell 

line.  
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4.8 Matters in need of consideration 

The following points of discussion are important for the context of this study and 

require attention: 

1) We have provided strong evidence demonstrating O-GlcNAc’s sensitive 

assessment of glucose metabolism in individuals with both subtle and overt glucose 

dysregulation. However, what exactly is the level of O-GlcNAcylation representing in 

terms of an individual’s glucoregulatory status? For example, FPG represents a 

single facet of glucose metabolism (reviewed in [87]) and HbA1c reflects average 

blood glucose levels over the half-life period of erythrocytes (~2 months) [282]. Due 

to sensitive measures of O-GlcNAcylation only recently becoming more facile 

(reviewed in [192, 204]), certain aspects regarding O-GlcNAc’s regulation are still 

poorly understood [228]. We can therefore only speculate regarding the features of 

glucose metabolism represented by O-GlcNAcylation. 

O-GlcNAcylation is a more specific and regulated modification versus non-

enzymatic glycation [87]. Moreover, the principal purpose of O-GlcNAcylation is the 

regulation of cellular activities in response to nutrients and cellular stress (e.g. 

hyperglycemia) [188, 223]. Therefore we propose that if exposed to sustained 

hyperglycemia (pre- and full-blown diabetes), increased leukocyte O-GlcNAcylation 

would reflect a chronic measurement of glucose metabolism as opposed to the 

glucometabolic status of a single time point. In support, Wang et al. (2009) 

hypothesized that alterations in erythrocyte O-GlcNAc-modified proteins would be 

capable of monitoring the history of glucose changes [87]. For this reason we also 

propose that O-GlcNAcylation would remain stable during acute bouts of 

hyperglycemia and could thus potentially also be utilized under non-fasting 

conditions (a major advantage of a diagnostic tool).  
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However, would O-GlcNAc’s measure of glycemia be restricted to the various 

lifespans of WBCs? The lifespans of erythrocytes play a major role in HbA1c testing 

due to the slow, irreversible non-enzymatic reaction between glucose and 

hemoglobin [283]. However, an advantage of O-GlcNAcylation is that it is a 

reversible reaction [205] and therefore the various lifespans of leukocytes are not a 

concern. Unlike HbA1c, O-GlcNAcylation is regulated under the tight control of 

OGT and OGA [191, 226]. A valuable advantage is therefore that it can be 

dynamically attached and removed from proteins (cycling) dependent on nutrient 

availability [190, 225]. Therefore if an individual’s glucose dysregulation improves 

(e.g exercise intervention), then O-GlcNAcylation would change and stabilize at a 

reduced level. This was supported by a study that observed decreased O-

GlcNAcylation levels in swim-exercised mice [284]. In light of this it may be possible 

that O-GlcNAcylation would provide an accurate estimation of both the severity and 

period of glucose dysregulation [87]. Although it is imperative that this aspect be 

validated in future studies, we believe it reasonable to speculate that O-

GlcNAcylation levels reflect stable, average measures of glycemia that can reflect 

fluctuations in broader and more dynamic ranges compared to current diagnostic 

tests. 

 
2) It has recently been debated whether the detection of pre-diabetes is a 

worthwhile strategy [285]. This is an important matter for discussion as the 

impetus for this study (in part) was improved detection of pre-diabetes.  What is 

pre-diabetes exactly?  Pre-diabetes is defined as having IFG or IGT (refer Table 1.2) 

as this indicates a high risk for the development of diabetes [286]. Moreover, pre-

diabetic individuals are at significant risk for micro- and macrovascular 

complications, independent of its progression to full-blown diabetes [286-288]. The 

determinants for the progression to diabetes are different in individuals with 
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isolated IFG and IGT [128] and post-prandial hyperglycemia is an independent risk 

factor for cardiovascular pathologies [57]. This highlights not only the necessity for 

pre-diabetes to be detected, but also the differentiation between the alternative 

glucose intolerance categories. 

 

We believe that diabetes is not necessarily a definitive state, i.e. it should not only 

be considered as a condition that exists above a certain glucose threshold, but 

rather as a continuum of glucose dysregulation. The diagnosis of diabetes is to 

some extent arbitrary, a spectrum from health to diabetes, with the concurrent 

shift between low and high risk as glucose levels gradually increase [274]. Why 

define diabetes then? The inability to define diabetes efficiently has been the major 

issue since diabetes’ description over 2000 years ago [50] and the fact that glucose 

is a continuous risk factor is most likely the reason for the on-going struggle and 

lack of consensus regarding its definition.  The current scenario is that one trip 

across the Atlantic may cure or cause diabetes based on incongruities between 

definitions [50]. Defining diabetes has proven so difficult due to the continuum of 

severity lacking a finite point at which pathologies arise and medical intervention 

should commence [32]. Nevertheless, diagnostic cut-off values are required, and we 

encourage the continued and frequent revisions of criteria for both “pre-diabetic” 

and “diabetic” conditions in hope for the earlier and more standardized detection of 

glucose dysregulation.  

 

3) We have extensively reviewed and highlighted the numerous and serious 

deficiencies and discordances with current diagnostic tests and defining-criteria. 

The poor compliance between HbA1c assays and glucose-based assessments is the 

result of such tools identifying distinct facets of glucose homeostasis. Therefore 

each test has its own technical merits as well as advantages in different aspects of 
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diabetes diagnosis (refer to Introduction section 1.3) [49, 289]. In light of this, 

choosing a single test for the most effective diagnosis is not plausible and therefore 

the current status of diabetes is considerably complex. A point of criticism might be 

that the proposal for the addition of another diagnostic tool will result in further 

intricacies, ambiguity and confusion.  

It is likely that advancing a new marker from scratch could with time result in a 

more optimal endpoint than advancing well-established diagnostic tools. In 

support, the current screening assays have all been introduced and advanced over 

several decades and yet retain numerous shortcomings (reviewed in [32, 81]). By 

contrast, investigation into the utility of O-GlcNAcylation, even in its infancy, shows 

great promise for improved sensitivity and the differentiation between pre-diabetes 

and diabetes.  

The ultimate goal would, however, be the implementation of a single diagnostic 

test. We believe that O-GlcNAcylation could be that test. Although further studies 

are required to support our results, our preliminary data demonstrated that a) the 

extent of O-GlcNAcylation is highly sensitive towards increased glucose 

concentrations, 2) O-GlcNAc metabolism is likely associated with both glucose and 

insulin levels, 3) O-GlcNAc could distinguish discordances between both WHO and 

ADA FPG criteria, as well as between FPG and HbA1c tests. Furthermore, the 

robust regulation by OGT and OGA and the stimuli-responsive nature of O-GlcNAc 

may allow for the dynamic and stable glucometabolic assessment. Moreover, the 

strong association between O-GlcNAcylation and diabetes-associated complications 

indicates the potential for powerful predictive capacity [192, 193, 290]. The 

integration of these aspects could therefore contribute to a more simplified 

diagnostic approach.  
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4) We would lastly like to raise awareness regarding the importance of translational 

studies such as this one. The phrase “bench to bedside” is a term often used and 

heard, but is it truly implemented? The understanding of disease mechanisms and 

the innovation of biomedical advances in the laboratory is only the first step, 

though equally important is the actual movement of such innovations into real-

world medical practice [291]. Huge amounts of time and funding are spent on 

broadening the understanding of intricate biological mechanisms and pathways 

underlying diseases, but far less focus is applied to the utilization of this knowledge 

toward advances that will actually improve the quality of life of those millions 

burdened by illness [292]. Why is this the case? It could be due to translational 

studies receiving less funding than basic science projects [293] as well as the fact 

that careers in science are competitive and associated with prestige and status 

[294]. Nevertheless, the limited attention devoted towards the transformation of 

basic science into clinical applications is a matter of concern, and the need for 

patient-orientated translational research is imperative for the reduction in health 

disparities and the improvement of global human health [295]. However, recent 

initiations by organizations such as the NIH to promote translational science are 

encouraging [296]. 

In our study we could utilize the changes in global O-GlcNAcylation without having 

to interpret the effects of these changes. Although the extensive investigation into 

these changes are vital, several studies are already determining this and we could 

therefore specifically focus on simply using such changes for the primary aim of 

clinical advantage. We are of the opinion that this strategy significantly increased 

the ‘translation potential’ and is particularly relevant due to the extreme severity of 

diabetes, thereby supporting the urgent need for a global response to this epidemic.  
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Although the importance of translational research has been increasingly 

recognized, in our experience the relationship between medical practitioners and 

scientists is considerably poor. The success of such studies rely on the integration 

between clinicians and researchers and therefore the severe lack of interest by 

health-care professionals contributed great difficulties toward the effective 

execution of this study. However, the initial/exploratory phase of our translational-

motivated study epitomizes the tremendous potential of basic scientific knowledge 

and we encourage more studies to employ similar tactics. 

4.9 Evaluation of techniques employed 

The successful investigation into O-GlcNAc’s diagnostic potential was accomplished 

with the implementation of four different techniques i.e. flow cytometry, 

immunofluorescence microscopy, Western blotting and cell culture. We have shown 

that the application and optimization of several techniques provided a vital 

platform to: a) corroborate our findings and ascertain its validity, thereby improving 

the statistical potency of our results; and b) enhance knowledge, develop practical 

skills, and improve overall understanding of fundamental principles underlying 

contributions to clinical sciences. 

 

Determination of O-GlcNAcylation levels has traditionally been executed via 

Western blotting [252]. More recently, immunofluorescence microscopy also 

effectively identified O-GlcNAc modified proteins [240]. However, both Western 

blotting and immunofluorescence microscopy are technically demanding, time-

consuming and provide only qualitative information [239]. Thus the 

implementation of sensitive, quantitative and simple tools for O-GlcNAc detection 

are lacking (reviewed in [190]) and flow cytometry is a good option to fill this void 
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[239]. Here we argue that flow cytometry is a rapid, and more quantitatively 

resourceful approach as it can easily analyze thousands of single particles/cells. 

Moreover, it is able to distinguish/separate cells into populations (as seen with our 

leukocyte data) based on up to 20 alternative variables [245]. Since the scope of 

such technology may have significant impact on clinical research, we employed it 

as our principal technique. Furthermore, since the development of novel diagnostic 

tools should ensure that analyses are clinically practical, i.e. accurate, quantitative 

and time-efficient, it is our opinion that a flow cytometric-based method provides 

diagnostic utility. 

4.10 Shortcomings 

As in all research, our study had limitations:  

- The lack of 2-hour glucose concentrations resulted in the inability to 

distinguish between IFG and IGT.  

 

- Insulin levels were only acquired for a subset of study recruits. 

 

- Variability between flow cytometric data when samples were analyzed on 

different days or after the flow cytometer was serviced. This resulted in the 

loss of data and accounts for sample sizes not being identical throughout the 

Results section. 

 

- Inadequate information regarding subjects’ lifestyle choices and family 

history of diabetes, etc. 

 

- Information on glucose-lowering medications was unavailable and the 

possibility of participants being on medication was not taken into 

consideration. 
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- Did not distinguish between different ethnic groups. This could prove 

important as alternative ethnic-specific reference ranges could result in 

increased sensitivity and specificity.  

 
- Important factors such as gender and HIV status was not taken into 

consideration. 

4.11 Future research 

Future plans to enhance this study include the following: 

- Most importantly, further investigations need to include a considerably 

greater sample size.  Although our preliminary studies show great promise, 

the only approach to robustly determine whether O-GlcNAcylation is 

sensitive and specific enough to have significant value as a diagnostic tool, is 

with a much larger clinical sample size. 

 

- The time-frame and stability of O-GlcNAcylation needs to be elucidated. We 

propose a long-term follow-up study where the same individuals are 

assessed for O-GlcNAcylation at various time intervals and under fasting as 

well as non-fasting conditions. 

 

- Insulin, FPG, HbA1c and OGTT glucose levels need to be assessed for all 

individuals as to better determine the association of O-GlcNAc with insulin 

and the various categories of impaired glucose metabolism.  

 

- To statistically establish O-GlcNAc reference ranges and to calculate its 

sensitivity and specificity. Also, to compare such O-GlcNAc criteria versus 
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HbA1c, fasting and 2-h post-load plasma glucose criteria in diagnosing 

diabetes in a large population of volunteers. 

 

- To perform genetic analysis of OGA, OGT and GFAT expression in normal, 

pre-diabetic and diabetic individuals. Moreover, to analyze genes involved in 

the PPP, polyol and PKC pathways (also upregulated by hyperglycemia) to 

determine if these genes are differentially expressed with changes in glucose 

levels (this is currently being pursued by our research group). 

 

- Determine site-specific O-GlcNAcylation in leukocytes and its various sub-

populations using mass spectrometry.  

 

- Determine the effect of immune-system disorders such as leukemia and 

AIDS on leukocyte O-GlcNAcylation.  
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Conclusion 
 

Our initial investigation into the diagnostic utility of O-GlcNAcylation shows 

considerable potential. The early and significant increases in leukocyte O-

GlcNAcylation (particularly leukocyte sub-populations) demonstrate the sensitive 

assessment of glucose metabolism in individuals with both subtle and overt glucose 

dysregulation. Elevations in OGA expression and O-GlcNAc/OGA ratios in pre-

diabetic and diabetic individuals may also offer diagnostic worth. O-GlcNAc’s 

detection potential was analyzed in total and sub-groups of leukocytes, thereby 

broadening the scope for several site-specific diagnostic opportunities.  

 

This study has provided further clarity regarding the current status of diabetes 

diagnosis and also analyzed various discrepancies between current diagnostic tests 

and organization-specific cut-off values. Such analysis highlighted not only the 

critical need for improvements in the field, but more importantly provided a 

possible solution. Here our O-GlcNAc data show favorable results despite such 

discrepancies. O-GlcNAc’s prognostic advantage was further enhanced by findings 

exhibiting sensitive changes in O-GlcNAcylation in response to subtle glucose 

elevations. We also identified a possible association with insulin levels.  

 

O-GlcNAc has several attributes that favor its diagnostic abilities. It is therefore 

reasonable to speculate that this reversible, stimuli-responsive and tightly 

regulated modification could represent stable, average measures of glycemia 

reflecting fluctuations in broad and dynamic ranges. The strong association 
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between O-GlcNAcylation and various diabetes-associated pathologies indicate 

predictive capabilities, further strengthening its potential for prognostic power.  

 

O-GlcNAc is therefore a credible candidate in the search for a novel marker that 

exhibits increased simplicity and the earlier and more efficient detection of type 2 

diabetes. It must be re-iterated that this is a preliminary and exploratory study. We 

are not proposing that O-GlcNAcylation now be rolled out as a diagnostic tool as the 

field of O-GlcNAcylation is still in its infancy. However, our novel findings provide a 

strong impetus for further investigation with a much larger sample size and holds 

potential for eventual diagnostic utility. In conclusion, our study shows great 

promise for the contribution of significant advances in diabetes diagnosis and the 

eventual mitigation of this epidemic’s devastating burden. 

 
 

“…remember that what you now have was once among the 

things you only hoped for.” – Epicurus (341 BC - 270 BC) 
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Supplemental Data 
Increased O-GlcNAcylation with increasing degrees of “normal” glucose 

metabolism:  
 

O-GlcNAcylation was assessed in individuals with varying degrees of “normal” 

glucose levels. Although differences were not significant, O-GlcNAcylation increased 

moderately from (4.0-4.7) to (4.8-5.5), (4.8-5.5) to (5.6-6.3) and from (4.0-4.7) to 

(5.6-6.3) (Fig. A1). Moreover, an identical pattern was observed in both the 

granulocytes and lymphocytes where modest increases in O-GlcNAc-modified 

proteins were observed (Fig. A2). It should be noted that the standard error was 

large due to relatively small sample sizes employed.  

 

 

 

 

 

 

 

 

Fig. A1 O-GlcNAcylation is moderately elevated in the total white blood cell 
population of individuals with varying degrees of “normal” fasting plasma glucose 
levels. AU: Arbitrary units. Values are displayed as mean ± SEM.  
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Fig. A2 O-GlcNAcylation is moderately elevated in granulocytes and lymphocytes of 
individuals with varying degrees of “normal” fasting plasma glucose levels. AU: 
Arbitrary units. Values are displayed as mean ± SEM. 
 

Increased OGA expression in severely diabetic compared to diabetic 

individuals: 
 

The raw OGA data (WHO and ADA) made a clear distinction between diabetic and 

severely diabetic individuals. When employing ADA criteria we determined that OGA 

expression decreased (not statistically significant) in the total leukocyte population 

in pre-diabetic individuals, and significantly decreased in diabetic subjects (Fig. 

B1). However, for the latter it was only apparent for individuals presenting with 

glucose levels between 7 and 8 mmol/L. Moreover, OGA protein expression differed 

significantly between diabetic (7-8 mmol/L) and severely diabetic individuals (9 - 

23mmol/L), thus distinguishing between the two groups (Fig. B1). Here OGA 

protein levels decreased by 22.6 ± 4.7% in diabetic subjects, while significantly 

Granulocytes 
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elevated (26.9 ± 4.7%) in severely diabetic individuals versus diabetic subjects (Fig. 

B1). We observed an identical pattern when employing WHO criteria (Fig. B2). 

 

 

 

 

 

 

 

 

 

 

Fig. B1 OGA expression in total leukocyte population of ADA defined pre-diabetic, 
diabetic and severely diabetic subjects versus normal individuals (n=62, #p<0.05). 
AU: Arbitrary units. Values are displayed as mean ± SEM.  
 

 

 

 

 

 

 

 

 

 

Fig. B2 OGA expression in total leukocyte population of WHO defined pre-diabetic, 
diabetic and severely diabetic subjects versus normal individuals (n=61, #p<0.05). 
AU: Arbitrary units. Values are displayed as mean ± SEM.  
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Appendix 

Lysate preparation: 

 
 Cell lysates, if frozen, should be defrosted slowly, on ice and kept on ice 

where possible for the remainder of the protocol. 

 More PMSF can be added before cell lysates are sonicated using a Misonix S-

4000 minisonicator (Misonix Inc, Farmingdale, NY). 

 Sonicate lysates at an amplitude of 10, 3x5 seconds per sample, interspersed 

with 5 second intervals (5 seconds sonication, followed by 5 seconds rest, on 

ice if possible). 
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Bradford protein quantification:  

Bradford reagent (5x concentrated): 

 Dilute 500 mg of Coomassie Brilliant blue G in 250 ml 95% ethanol. 

 Add 500 ml of phosphoric acid before mixing thoroughly. 

 Make up to one liter with distilled H2O (dH2O). 

 Filter and store at 4°C. 

Bradford working solution: 

 Dilute stock in a 1:5 ratio with dH2O. 

 Filter using 2 filter papers (at the same time). 

 Solution should be a light brown color. 

Bradford method: 

 Thaw 1 mg/ml BSA stock solution. 

 Thaw protein samples if in -80°C freezer. Keep on ice at all times. 

 Make up a working solution of 100 µl BSA:400 µl dH2O. Vortex mixture. 

 Mark 7 microfuge tubes for the standards as well as tubes for the samples to 

be tested. 

 Now add BSA and water to marker microfuge tubes as follows: 

 

Blank: 0 µl BSA 100 µl dH2O 

2 µl protein: 10 µl BSA 90 µl dH2O 

4 µl protein: 20 µl BSA 80 µl dH2O 

8 µl protein: 40 µl BSA 60 µl dH2O 
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12 µl protein: 60 µl BSA 40 µl dH2O 

16 µl protein: 80 µl BSA 20 µl dH2O 

20 µl protein: 100 µl BSA 0 µl dH2O 

Each sample: 0 µl BSA 95 µl H20 5 µl of sample protein 

 

 Briefly vortex all the tubes. 

 Now add 900 µl of Bradford reagent to each microfuge tube. Vortex again. 

 Let the solutions stand for ~5 minutes (switch on the spectrophotometer in 

the meantime). 

 Read absorbencies, twice each, at 595 nm. 

 If sample values fall outside the range of the highest standard then dilute 

with RIPA buffer. 

 Make use of Excel to make a linear plot of absorbencies and then calculate 

the amount of each sample to be added to aliquots. 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



   
 

177 
 

Sample preparation:  

 Begin by setting beaker of water to boil. 

 Remember to keep protein samples on ice at this point. 

 Make up a stock solution containing 850 µl of sample buffer and 150 µl of 

mercaptoethanol. 

 Vortex the solution. 

 Calculate the number of sample sets needed, each containing one 

representative of each protein sample. 

 Add sample buffer to each aliquot (do so under the fume hood to avoid 

exposure to harmful fumes). 

 Add a volume of sample buffer equal to 1/3 of the final volume. 

 Now add the amount of sample calculated previously to each respective 

microfuge tube. 

 Punch small pin size hole in each tube then place in boiling water to stand 

for a period of 5 minutes. 

 Spin tubes for a moment (~5 seconds) using the tabletop centrifuge. 

 Samples can now be stored at -80°C. 
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Use of samples: 

In the case that samples have been stored in the -80°C freezer: 

 Start by bringing a beaker of water to the boil. 

 Remove samples from the freezer. 

 Make sure that small pin size holes have been punched in the top of each 

tube. 

 Place in boiling water for a period of 5 minutes. 

 Spin down momentarily (20 seconds) on the tabletop centrifuge (take care 

not to over centrifuge, especially if samples have been obtained from tissue. 

 Samples can now be used for Western blotting. 
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Modified RIPA Buffer: 

A 100 ml modified RIPA buffer contains: 

- 50 mM Tris-HCl (790 mg of Tris in 75 ml distilled water and 900 mg of NaCl and 

pH made 7.4 using HCl). 

- 10 ml of 10% NP-40 [final concentration 1%] 

- 2.5 ml of 10% sodium deoxycholate [final concentration 0.25%] 

- 1 ml of 100 mM EDTA pH 7.4 [final concentration 1 mM] 

- Protease inhibitors (which include:) 

 500 μl of 200 mM phenylmethylsulfonyl fluoride (PMSF) [final concentration 

1 mM] 

 100 μL of leupeptin (1 mg/ml water) [final concentration 1 μg/ml] 

 80 μL of SBT1 (5 mg/ml water) [final concentration 4 μg/ml] 

 100 μL of benzamidine (1 M) [final concentration 1 mM] 

- Protein phosphatase inhibitors 

 500 μL of 200 mM activated sodium orthovanadate (Na2VO3) [final 

concentration 1 mM] 

 500 μL of 200 mM NaF [final concentration 1mM] 

- 1 ml Triton X-100 

This buffer is then made up to a final volume of 100 ml with distilled water and 

stored at -20°C. 
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Cell harvesting: 
 

 Cells are washed with ice cold PBS. 

 Add PMSF to RIPA buffer to a final concentration of 1 mM  

 Add ~350-500 µl RIPA to each T25 flask and leave for 10 minutes. 

 Use a cell scraper to lift the adhering cells from the surface of the 

flask. 

 Transfer the cell lysates into microfuge tubes and either proceed with 

the protocol. Alternatively, store the lysates at -20°C for no longer than 

2 weeks, or at -80°C for longer-term storage. 
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