
Multi-objective Optimisation using Agent-based

Modelling

Chris Franklin

Thesis presented in fulfillment of the requirements for the degree of Master of

Science of Industrial Engineering at Stellenbosch University

Study leader: J Bekker

December 2012

mailto:chrisefr@gmail.com


Declaration

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof

(save to the extent explicitly otherwise stated), that reproduction and publication

thereof by Stellenbosch University will not infringe any third party rights and

that I have not previously in its entirety or in part submitted it for obtaining any

qualification.

Copyright c©2012 Stellenbosch University

All rights reserved

i

Stellenbosch University http://scholar.sun.ac.za



Abstract

It is very seldom that a decision-making problem concerns only a sin-

gle value or objective. The process of simultaneously optimising two

or more conflicting objectives is known as multi-objective optimisation

(MOO). A number of metaheuristics have been successfully adapted

for MOO. The aim of this study was to investigate the feasibility of

applying an agent-based modelling approach to MOO.

The (s, S) inventory problem was chosen as the application field for

this approach and Anylogic used as model platform. Agents in the

model were responsible for inventory and sales management, and had

to negotiate with each other in order to find optimal reorder strate-

gies. The introduction of concepts such as agent satisfaction indexes,

aggression factors, and recollection ability guided the negotiation pro-

cess between the agents.

The results revealed that the agents had the ability to find good

strategies. The Pareto front generated from their proposed strategies

was a good approximation to the known front. The approach was also

successfully applied to a recognised MOO test problem proving that

it has the potential to solve a variety of MOO problems.

Future research could focus on further developing this approach for

more practical applications such as complex supply chain systems,

financial models, risk analysis and economics.
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Opsomming

Daar is weinig besluitnemingsprobleme waar slegs ’n enkele waarde of

doelwit ter sprake is. Die proses waar twee of meer doelwitte, wat in

konflik staan met mekaar, gelyktydig optimiseer word, staan bekend

as multi-doelwit optimisering (MOO). ’n Aantal metaheuristieke is al

suksesvol aangepas vir MOO. Die doelwit van hierdie studie was om

ondersoek in te stel na die lewensvatbaarheid van die toepassing van

’n agent gebasseerde modelerings benadering tot MOO.

As toepassingsveld vir hierdie benadering was die (s, S) voorraad

probleem gekies en Anylogic was gebruik as model platform. In die

model was agente verantwoordelik vir voorraad- en verkope bestuur.

Hulle moes onderling met mekaar onderhandel om die optimale bestel-

ling strategieë te verkry. Konsepte soos agentbevrediging, aggressie

faktore en herinneringsvermoëns is ingestel om die onderhandeling

tussen die agente te bewerkstellig.

Die resultate het gewys dat die agente oor die vermoë beskik om met

goeie strategieë vorendag te kom. Die Pareto fronte wat gegenereer is

deur hul voorgestelde strategieë was ’n goeie benadering tot die bek-

ende front. Die benadering was ook suksesvol toegepas op ’n erkende

MOO toets-probleem wat bewys het dat dit oor die potensiaal beskik

om ’n verskeidenheid van MOO probleme op te los.

Toekomstige navorsing kan daarop fokus om hierdie benadering

verder te ontwikkel vir meer praktiese toepassings soos komplekse

voorsieningskettingstelsels, finansiële modelle, risiko-analises en eko-

nomie.
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Chapter 1

Introduction

A short background on the project is provided in this chapter. The objectives of

the project and an overview of the layout of this document are also given.

1.1 Project Background

Agent-based modelling (ABM) has become very popular for modelling and un-

derstanding complex systems. The characteristics of agents make this a useful

tool to model the complex social interactions found in humans. ABM has been

applied increasingly often in the field of social sciences, where the agents represent

people and agent relationships represent the processes of social interaction. The

interactions relating to negotiation between agents are of specific importance to

this project because of its potential to model the human decision-making process.

Everyday decision-making often comprises of conflicting objectives that need

to be optimised. Humans have the ability to weigh up different alternatives

and perform a simple trade-off analysis whenever they encounter these problems.

During this process it is almost as if two or more alter-egos negotiate with each

other to come up with a solution that is satisfactory to all of them. This process

of simultaneously optimising two or more conflicting objectives is known as multi-

objective optimisation (MOO).

1
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1.2 Project Objectives

There are numerous different metaheuristics available that can be used in multi-

objective optimisation. The purpose of this study is to determine if agent-based

modelling can be used as a metaheuristic for multi-objective optimisation. Multi-

ple agents are created, each representing one of the conflicting objective functions.

The agents need to negotiate with each other in order to generate solutions that

are attractive to all of them. A satisfaction index, which drives their negotiation,

is defined for each of the agents.

Inventory management often provides an appropriate context for multi-objective

optimisation. In the theoretical (s, S) inventory problem the vendor is confronted

with two conflicting objectives. He needs to keep his inventory costs as low as

possible, but keep enough inventory in stock to ensure that his service level is

adequate. This inventory problem has therefore been selected as the context in

which the agent-based approach to multi-objective optimisation is applied in this

study.

An agent-based model of the inventory problem was developed in Anylogic.

In addition to the basic inventory problem functionality, the model contains two

agents – a sales manager and inventory manager – responsible for the two objec-

tive functions. A simulation model was developed to determine if the agents are

capable of finding good solutions. The success of the approach is determined by

making use of a set of performance metrics. Possible application areas for the

research are highlighted and the potential for further research identified.

1.2 Project Objectives

The following project objectives have been identified for this research:

• The primary aim of the project is to investigate if it is feasible to use agent-

based modelling as a metaheuristic for multi-objective optimisation.

• Establishing a knowledge of agent-based modelling at the Department of

Industrial Engineering, Stellenbosch University.

2
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1.3 Overview of the Document Structure

• Providing input into the study leader’s research in multi-objective optimi-

sation.

1.3 Overview of the Document Structure

The diagram in Figure 1.1 serves as a road map to the study, explaining how the

document is structured. It will appear at the beginning of every chapter to help

the reader find his way through the document.

Figure 1.1: Road map of the document.

This chapter provided background information, an introduction to the problem

studied and objectives of the study. In Chapter 2 a brief overview of multi-

objective optimisation is given, with specific focus on a few important definitions

relating to it. Chapter 3 provides an outline of the basic concepts relating to

modelling and simulation. The reader is thereafter introduced to agent-based

modelling as presented in Chapter 4, and examples of its use in multi-objective

optimisation is given in Chapter 5. The focus then shifts to inventory problems in

3
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1.3 Overview of the Document Structure

Chapter 6 which have been identified as the application area in which the agent-

based approach to multi-objective optimisation is evaluated. The agent-based

model developed for this purpose is described in detail in Chapter 7. Chapter

8 describes how the performance of the approach can be measured and different

scenarios compared. In Chapter 9 the results of the study are presented and

analysed. Finally, conclusions are drawn from the study.

4
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Chapter 2

Multi-objective Optimisation

In everyday decision-making, it is very rare for us to encounter problems where

only one objective is concerned. This chapter aims to provide the reader with

a brief introduction to multi-objective optimisation. A number of important

definitions pertaining to MOO will be described. A summary of the different

metaheuristics available for MOO will also be given.

5
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2.1 Introduction to Multi-objective Optimisation

2.1 Introduction to Multi-objective Optimisa-

tion

Optimisation and decision-making methods presented in graduate courses are

usually focussed on linear programming techniques where only a single objective

is optimised. However, in real-world decision-making a trade-off generally needs

to be made between conflicting objectives. To complicate matters further these

objectives are often measured in different units.

200 400 600 800 1 000

1

2

3

4

5

Cost per Night ($)

S
ta

r
R

at
in

g

Figure 2.1: Hypothetical trade-off scenario in choosing a hotel.

A classic example of this can be found in a tourist choosing a hotel for the night

(Branke et al., 2008). Hotel rooms are available with the cost per night ranging

between $100 for a one-star hotel and $1000 for a five-star hotel, as shown in

Figure 2.1. If cost is the only objective to be taken into account, the tourist will

choose the one-star hotel. However, it is expected that the one-star hotel is less

comfortable than a higher rated hotel. If the tourist is very rich and comfort is

his only concern, then the five-star hotel will be his optimal choice. The tourist

however has many other options between these two extremes, but he will have

to consider a trade-off between cost and comfort. In this example there are two

three-star hotels that each charge a different rate. The one costs $400 per night

6
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2.1 Introduction to Multi-objective Optimisation

and the other $500. By considering both objectives it is clear that the $400 hotel

is optimal in this case. These trade-off solutions provide a clear front on the

objective space. This front is known as the Pareto front and the set of solutions

is called the Pareto approximation set.

Multi-objective optimisation is defined as the process of simultaneously opti-

mising two or more conflicting objectives which are subject to certain constraints.

The terms multi-objective or multi-criteria indicate that the notion of optimality

is quite ambiguous in these problems because decisions which optimise one objec-

tive do not necessarily optimise the others. There are two general approaches to

multi-objective optimisation (Konak et al., 2006). The first approach is to com-

bine all the individual objectives into a single function by using techniques such

as the weighted sum method. The problem can then be solved by simple linear

programming. The problem with this approach is that it is often very difficult to

precisely and accurately choose the weights to apply to the different objectives.

As in the above example of the hotels, the stars cannot be simply converted into

a monetary value. The second general approach is to determine an entire Pareto

optimal solution set of non-dominated alternatives.

The following definitions pertaining to Pareto optimality are defined by Coello

Coello (2009):

Definition 1: Given two vectors u and v ∈ IRm, then u ≤ v if ui ≤ vi for

i = 1, 2, . . . ,m, and that u < v if u ≤ v and u 6= v.

Definition 2: Given two vectors u and v ∈ IRm, then u dominates v (denoted

by u ≺ v) if u < v.

Definition 3: A vector of decision variables x∗ ∈ Ω (Ω is the feasible region)

is Pareto optimal if there does not exist another x ∈ Ω such that f(x) ≺ f(x∗).

Definition 4: The Pareto approximation set P∗ is defined by P∗ = {x ∈
Ω|x is Pareto optimal}.

Definition 5: The Pareto front P∗T is defined by P∗T = {f(x) ∈ IRn|x ∈ P∗}.

7
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2.2 Metaheuristics for Multi-objective Optimisation

2.2 Metaheuristics for Multi-objective Optimi-

sation

There are a number of metaheuristics that have been successfully adapted for

multi-objective optimisation. A summary of the metaheuristics identified by

Bekker (2012) is given in Table 2.1.

Metaheuristic Author Summary

Evolutionary algorithms (Coello Coello, 2009) Inspired by natural selection in the bio-

logical world, poor solutions are weeded

out from a population of solutions.

Simulated annealing (Kirkpatrick et al., 1983) Locates a good approximation to the

global optimum of a given function in

a large search space.

Tabu search (Glover & Laguna, 1997) Enhances the performance of a local

search method by using memory struc-

tures that describe the visited solutions.

Once a potential solution has been de-

termined, it is stored in a tabu list so

that the algorithm does not visit that

possibility repeatedly.

Ant systems (Dorigo, 1992) Inspired by real ants foraging for food,

an optimal route is established by an

increasing number of artificial ants fol-

lowing the same route.

Particle swarm optimisa-

tion

(Kennedy & Eberhart, 2002) Iteratively tries to improve a candidate

solution with regard to a given measure

of quality, simulating the movement of

organisms in a flock of birds or a school

of fish.

Hill climbing techniques

(extended to MOO)

(Weise, 2008) A single solution is initially created.

Thereafter it attempts to improve the

solution by incrementally changing a

single element of the solution.

Differential evolution (Storn & Price, 1997) Optimises a problem by creating a new

candidate solution through a combina-

tion of existing ones.

8
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2.3 Concluding Remarks: Chapter 2

Metaheuristic Author Summary

Artificial immune systems (Bersini & Varela, 1991) Exploits the immune system’s charac-

teristics of learning and memory to

solve a problem.

Memetic algorithms (Moscato, 1989) Population-based approach for problem

search with separate individual learning

or local improvement procedures.

Evolution strategy (Beyer & Schwefel, 2002) Search operators are applied in a loop,

with a sequence of iterations (genera-

tions) continued until a termination cri-

terion is met.

Firefly algorithm (Yang, 2008) Inspired by the flashing behaviour of

fireflies where brighter flashes attract

others, the algorithm associates the

brightness with the objective function.

Table 2.1: Metaheuristics for multi-objective optimisation.

2.3 Concluding Remarks: Chapter 2

A brief overview of multi-objective optimisation was presented in this chapter.

The purpose was to introduce the reader to this research field and explain some

of the important definitions related to it. Different metaheuristics that can be

applied in MOO were also summarised.

In the next chapter the focus turns to modelling and simulation, and how it

can be effectively applied in a decision-making process.
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Chapter 3

Modelling and Simulation

Modelling and simulation is a powerful tool which can be used to assist with

complex decision-making. An overview of modelling and simulation will be given

in this chapter. A number of different approaches and paradigms will be discussed

and an outline given of the general steps to be followed during a simulation study.
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3.1 Introduction to Modelling and Simulation

3.1.1 What is Modelling and Simulation?

A simulation model is a simplified representation of a real-world system. From

a practical viewpoint, Kelton et al. (1998) describes simulation as the process

of designing and creating a computer model of a real or proposed system. The

purpose of the model is to conduct a number of virtual experiments to gain a

better understanding into the behaviour of the system.

3.1.2 Why Use Simulation Modelling?

George Box expressed a very important concept of simulation modelling (Box &

Draper, 1987):

Essentially, all models are wrong, but some are useful.

A model that provides a sufficient representation of reality has many benefits.

Some of the main uses of simulation identified by Banks (1999) and Kelton et al.

(1998) are described below:

• It provides users with practical feedback regarding the effectiveness and

efficiency of a design before the system is constructed. The typical cost of

a simulation study is often significantly lower than the cost for redesign or

modifications to a system after design.

• It allows the user to evaluate alternative designs and to explore new control

philosophies, operating procedures and methods.

• Simulation helps to establish where the constraints lie in the system to

ensure that it is properly managed.

• The significance of certain parameters can be determined by performing a

sensitivity analysis.

• It enlightens the user why certain phenomena are occurring in the real

system.
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• Models where animation is provided can be used as an effective means for

illustrating concepts relating to the system.

3.2 Simulation Modelling Approaches

According to Kelton et al. (1998) a simulation model can be classified along the

following three dimensions:

Static versus Dynamic A system can be modelled independent of time, or

with time playing a significant role. A static simulation model describes

the behaviour of a system at a specific point in time. On the other hand,

a dynamic simulation model simulates the changing behaviour of a system

over a period of time. Although static models can be developed in a spread-

sheet, specialised software is often required to develop dynamic models.

Deterministic versus Stochastic Very few real-world systems are completely

free from the influence of random variation. A simulation model that is

deterministic ignores this randomness. A stochastic simulation model uses

random values from statistical distributions in some of its parameters to

make provision for random variation in the system. It is often necessary

to run multiple replications of the same scenario in a stochastic model to

ensure that the results and findings are statistically relevant.

Discrete versus Continuous The way that the model deals with changes in

the state of the system is another way in which a model can be classified.

As described by Banks (1999) the system state variables are the collection

of all the information needed to define what is happening within the system.

The contrast between discrete models and continuous models is based on

the variables that are needed to track the state of the system. In a discrete

model the changes in the system state variables occur only at specific points

defined as event times. The system state variables in continuous models are

defined by differential or difference equations that change continuously over

time.
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3.3 Modelling Paradigms

A number of different modelling paradigms exist, each preferable to a relevant

area of application. Borshchev & Filippov (2004) distinguish between the follow-

ing modelling paradigms:

Systems Dynamic Modelling System dynamic modelling is a useful tool to

determine how organisational structure, amplification in policies and time

delays in decisions and actions interact to influence the success of the busi-

ness. A system dynamic model describes the system as a number of causal

loops and stock-flow diagrams that represent the relationships between the

variables in the model. From a mathematical point of view the model con-

sists of a system of differential equations.

Dynamic Systems Modelling Dynamic systems modelling can be seen as a

mathematical representation of the dynamics between the inputs and the

outputs of a dynamic system. Graphical modelling languages like Matlab-

Simulink are typically used with the model, consisting of a number of state

variables and differential equations of various forms.

Discrete Event Modelling The operation of a system is represented as a chrono-

logical sequence of events in discrete event modelling. The state changes

in the model occur over randomly spaced discrete points in time and takes

place as a result of activity times, delays, and entities that compete for

system resources.

Agent-based Modelling In an agent-based model, agents are used to model

behaviour at an individual level, with the global behaviour emerging as a

result of their behaviour rules and interactions. Agent-based modelling is

the preferred modelling paradigm used in this study and will be described

in detail in Chapter 4.
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3.4 Steps in a Simulation Study

The following steps are suggested by Law & Kelton (1991) to perform a simulation

study:

1. Problem Formulation and Definition: Ensure that there is a clear under-

standing of the problem, the goals, purposes and expectations of the study.

2. Planning : Compile a project plan taking into account personnel, hardware,

software, funding, and time requirements.

3. Defining the Boundaries of the Study : The boundaries determine what is

included and excluded from the model. The purpose is primarily to simplify

the study by reducing the amount of detail required.

4. Conceptualisation: Pseudo-code or block diagram format is used to con-

struct the proposed model in order to gain a better understanding of the

model, to establish the first order logic of the model, and to verify the level

of detail and assumptions.

5. Preliminary Experiment : This step comprises the establishment of the level

of confidence for the confidence intervals, model time span, input variables,

measures of performance, data requirements, entity definitions, entity at-

tributes and model resources.

6. Parameter Selection: Select the parameters that will be investigated to

obtain the desired information.

7. Input Data Requirements : Collect and process the input data required for

the study.

8. Translation of the Model to a Simulation Language: Develop the computer

simulation model.

9. Verification: Debug the model to ensure that the computerised model works

correctly.
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10. Validation: Confirm that the model is an adequate representation of the

real world system.

11. Rework : The model is reworked in order to address the potential problems

identified during the verification and validation steps. It is an iterative

process which is repeated until the model is of an acceptable standard.

12. Initial run: A set of replications of the base case is run which can be used

for statistical analysis.

13. Statistical Analysis : Determine the preliminary confidence intervals to de-

termine the number of replications required.

14. Model Execution: Execute the production runs.

15. Documentation: The study needs to be documented from the start. At this

point the results, interpretations and conclusions are added.

16. Implementation, Maintenance and Monitoring : The results are implemented

and maintained and feedback is obtained from the client to evaluate the

success of the study.

3.5 Application Areas

Simulation is very versatile with many different application areas:

• Manufacturing systems

• Health care

• Military

• Mining

• Transportation systems

• Construction systems

• Supply chains and logistics
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• Business process re-engineering

• Computer system performance

• Communications

• Environmental studies

• Financial decision support systems

3.6 Concluding Remarks: Chapter 3

In this chapter the reader was introduced to a few basic concepts regarding mod-

elling and simulation. It was shown that simulation modelling is a powerful

problem-solving tool to assist with system design and to analyse ”what-if” sce-

narios.

In the next chapter the reader will be introduced to a specific modelling

paradigm – Agent-based modelling.
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Chapter 4

Agent-based Modelling

In the previous chapter an introduction was given into modelling and sim-

ulation. Various different modelling paradigms were described. This chapter

focusses on one of these paradigms, namely agent-based modelling. The chap-

ter starts off with an overview of agents, which includes a review of literature

on negotiations between agents. Thereafter the basic principles of agent-based

modelling are discussed. Some background on the history of ABM is provided,
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with specific reference to previous applications in social sciences and supply chain

management. Finally, the basic steps in building an agent-based model are de-

scribed.

4.1 Agents

4.1.1 Definition of an Agent

The term agent has a diverse range of definitions in different fields of study.

The agents relevant in this study – as applied in agent-based modelling – are

commonly referred to as software agents in computer science. Although there

is no universal agreement on the precise definition for this type of agent, most

researchers agree with Wooldridge & Jennings (1995) that any object, computer

system, or program can be classified as an agent if it has the following properties:

1. Autonomy : It should have some control over its actions and should work

without human intervention.

2. Social ability : It should be able to communicate with other agents and/or

with human operators.

3. Reactivity : It should be able to perceive and react to changes in its envi-

ronment.

4. Pro-activeness : It should have reasoning capacity and be able to learn from

experience. It should not only respond in reaction to certain stimuli, but it

should take initiative as part of a more complex goal directed behaviour.

There are a few other attributes of agents which are generally agreed to be

optional. Ingham (1999) lists the following optional attributes:

1. Adaptation: Agents may attempt to adapt themselves to better suit their

new or changing environment to deal with new or changing goals. An agent

usually follows a set of predefined rules and then applies them. Casti (1997)

and Papazoglou (2001) argue that for an agent to be deemed intelligent it
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also requires an additional high-level set of “rules to change the rules”.

The base-level rules are applied in response to the environment, while the

high-level rules enable the agent to learn and adapt to changes in the envi-

ronment.

2. Mobility : Agents may in some instances move from one system to another.

Gupta et al. (2001) makes use of mobile agents to facilitate access to data

required for improved supply chain decision making. In their system, mobile

agents act as local representatives for remote services and provide interac-

tive access to data they accompany.

3. Cooperation and collaboration: Agents may in some circumstances work

together due to a specific event, or in order to achieve a specific goal. Each

agent usually benefits from this cooperation.

4. Negotiation: Agents may be able to negotiate with each other, usually in

some form of cooperation. Cooperation and negotiation between agents will

be discussed in further detail in the next section.

4.1.2 Cooperation and Negotiation Between Agents

Agents are able to do more than just communicate; they are able to cooperate

and negotiate with each other. Numerous research have been focussed on these

complex social interactions between agents. Multi-agent software was developed

by Sycara (1998) that allows agents to collaborate with each other to manage

information. The agents form adaptive teams to solve decision-making and infor-

mation management tasks delegated by users. The work of Axelrod (1997) shows

that sustainable cooperative behaviour between agents can be established by ap-

plying a simple tit-for-tat strategy of reciprocal behaviour towards individuals.

Wong et al. (1997) introduces the Concordia infrastructure for the develop-

ment and management of mobile agent applications for accessing information –

anytime, anywhere and on any device. The infrastructure extends the notion of

simple agent interaction with support for agent collaboration, which in this case

allows the agents to interact and modify external and internal agent states.
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Raiffa (1982) developed a basic model for bilateral negotiation between au-

tonomous agents. The negotiations are based on a set of mutually influencing

two parties, multiple issues negotiations, where offers and counter-offers are gen-

erated by linear combinations of simple functions. Faratin et al. (1998) builds on

the work of Raiffa, introducing the framework for a service-oriented negotiation

model. The model defines a range of strategies and tactics that agents can employ

to generate initial offers, evaluate proposals and offer counter proposals.

Krishna & Ramesh (1998) present an approach for designing intelligent agents

that are capable of negotiating on behalf of their human counterparts and then

suggest market strategies that the human counterpart can implement. They

detail a new negotiation protocol that does not require the agents to share any

trustworthy information.

Chapelle et al. (2002) makes use of agent satisfaction measures to facilitate co-

operation between agents. Two generic agent satisfaction measures are defined:

Personal satisfaction, which evaluates the progression of the agent’s actions, and

interactive satisfaction, which evaluates the effect of the neighbouring agent’s ac-

tions on the agent’s task. Reinforcement learning is used to ensure that the agents

learn to select behaviours that are well adapted to their neighbours’ activities.

State diagrams, first introduced by Booth (1967), are often used in agent-based

models to provide a graphical representation of the behaviour of the different

agents. It provides a clear and intuitive approach to model negotiation and

cooperation between agents (Kendall et al., 1996).

4.2 Characteristics of an Agent-based Model

According to Sanchez & Lucas (2002) an agent-based model is a model where

multiple entities sense and stochastically respond to conditions in their local

environments, mimicking complex large-scale system behaviour. Agents are used

to represent the entities that interact with each other and to the environment
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according to a set of rules that govern their actions and decisions (Chatfield

et al., 2007).

One of the key characteristics of any agent-based model is that it is decen-

tralised (Garifullin et al., 2007). The focus is placed on the individual behaviour

rules of the agents, with the global behaviour emerging as a result of many indi-

vidual activities. Bonabeau (2002) uses a simple game as an example to explain

this emergent phenomenon:

Protector game: The game is played with a group of 10–40 people in the

audience. Each member i in the audience randomly selects two individuals, person

Ai and person Bi. They are instructed to move so that they always keep person

Ai between them and Bi so Ai is their protector from Bi. Everyone in the

room will walk about in a seemingly random fashion. They are then instructed

to move so they always keep themselves inbetween Ai and Bi, thereby making

themselves the protector. The result is quite remarkable: The whole room will

almost instantaneously implode with everyone clustering in a tight knot. In this

example simple individual rules are defined for the agents which lead to clear

collective behaviour from the group. Small changes in the rules can make a

dramatic impact on the global behaviour of the system. The group’s collective

behaviour is an emergent phenomenon.

Agent-based modelling has become a popular tool to model and understand

complicated systems. It is one of the most natural methods to simulate sys-

tems that contain entities which exhibit complex behaviour. It enables one to

realistically predict the global impact of small changes in individuals’ behaviour.

Therefore it is often used in the following application areas (Bonabeau (2002):

1. Flows : Evacuation, traffic, and customer flow management.

2. Markets : Stock market, shopbots and software agents, and strategic simu-

lation.

3. Organisations : Operational risk and organisational design.
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4. Diffusion: Diffusion of innovation and adoption dynamics.

In a passage in the fantasy novel by Pratchett (2007) a fictional device, the

Glooper, is described. He provides a very unique explanation of what an agent-

based model can be used for:

“Mr. Hubert believes that this device is a sort of crystal ball for

showing the future,” said Bent, and rolled his eyes.

“Possible futures. Would Mr. Lipstick like to see it in operation?”

said Hubert, vibrating with enthusiasm and eagerness.[...]

“The Glooper, as it is affectionately known, is what I call a quote anal-

ogy machine unquote. It solves problems not by considering them as

a numerical exercise but by actually duplicating them in a form we

can manipulate: in this case, the flow of money and its effects within

our society become water flowing through a glass matrix the Glooper.

The geometrical shape of certain vessels, the operation of valves and,

although I say so myself, ingenious tipping buckets and flow-rate pro-

pellers enable the Glooper to simulate quite complex transactions. We

can change the starting conditions, too, to learn the rules inherent in

the system. For example, we can find out what happens if you halve

the labour force in the city by the adjustment of a few valves, rather

than by going out into the streets and killing people.”

“A big improvement! Bravo!” said Moist desperately, and started to

clap. No one joined in.

Similar to the Glooper, an agent-based model can give the user the ability to

understand the dynamics of complex systems.

4.3 Background on Agent-based Modelling

Heath & Hill (2010) consider the origins of agent-based modelling to lie hundreds

of years back when scientists first began discovering and attempting to explain
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the emergent and complex behaviour seen in nonlinear systems. Scholars such

as Macal & North (2006) believe that it has its direct historical roots in com-

plex adaptive systems concerning the question of how complex behaviours arise

in nature among myopic, autonomous agents. Chatfield et al. (2007) argues that

the concepts of agent-based modelling were developed out of a sub-field of dis-

tributed artificial intelligence work which focussed on the coordination of multiple

autonomous or semi-autonomous agents (Bond & Gasser, 1988). In fact, agent-

based modelling has its roots in various different fields of study including eco-

nomics, system dynamics, computer science, management science, social science,

game theory and traditional modelling and simulation. Agent-based modelling

draws on these fields for its theoretical foundations, its conceptual world view

and philosophy, and for applicable modelling techniques.

Some application areas of agent-based modelling are discussed next.

4.3.1 Agent-based Modelling in the Social Sciences

Agent-based modelling has been growing in recognition and popularity over the

past thirty years, specifically driven by its increased application in the field of

social sciences. In these applications agents represent people, and agent rela-

tionships represent processes of social interaction (Gilbert & Troitzsch, 1999).

One of the first social agent-based models was developed by Schelling (1978) who

studied housing segregation patterns, trying to determine if segregated settle-

ment patterns would still emerge if most of the population was colour-blind. His

model proved “that patterns can emerge that are not necessarily implied or even

consistent with the objectives of the individual agents”.

4.3.2 Agent-based Modelling of Supply Chains

Supply chain management intrinsically deals with coordination between different

business entities, which makes an agent-based model, based on explicit communi-

cation between the agents, a natural choice for supply chain management. Agents

are able to capture the distributed nature of supply chain entities (e.g. customers,
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manufacturers, inventory managers etc.) in order to mimic their business be-

haviours and to collaboratively plan the supply chain operations. According to

Fox et al. (2000) an agent-based model of a supply chain will have the following

features:

1. Distributed : The functions of supply chain management are divided among

agents.

2. Dynamic: Each agent performs its functions asynchronously as required.

3. Intelligent : Each agent is an expert in its function applying artificial intel-

ligence and operations research problem-solving methods.

4. Integrated : Each agent is aware of and can access the functional capabilities

of other agents.

5. Responsive: Each agent can ask for information from or a decision from

other agents.

6. Reactive: An agent is able to respond to events as it occurs.

7. Cooperative: An agent can cooperate with other agents to find a solution.

8. Reconfigurable: The supply chain system must be reconfigurable for differ-

ent scenarios.

A review of scholarly literature yields a number of examples where agent-based

models were applied in supply chain management. Swaminathan et al. (1997)

developed a multi-agent framework to enable rapid development of customised

decision tools for supply chain management. Their work focusses on building a

supply chain library of agents and control elements which could be used when

developing a new model of a supply chain.

Julka et al. (2002) also developed a framework for modelling, monitoring and

managing supply chains. The framework is specifically developed for application

in the supply chain of a refinery and is focussed on providing decision support.
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The work of Verdicchio & Colombetti (2002) explores how social contracts

between companies in a supply chain can be modelled. The authors refer to

these set of rules as commitments that a company makes with respect to others.

Chen et al. (2008) presents an inventory scheduling model for a supply chain

system based on an agent-oriented Petri net. A conceptual framework for agent-

based modelling of distributed supply chains is proposed by De Santa-Eulalia

et al. (2008). Their work also includes specific methods for understanding and

modelling simulation problems at the initial phase of the modelling effort.

Valluri & Croson (2005) uses agent-based modelling to study the performance

of a supplier selection model.

An interesting application of a multi-agent system in supply chains is high-

lighted in the work of Pan et al. (2009) on reorder decision-making in the apparel

supply chain. In their model they make use of an inventory manager agent

who is responsible for controlling inventory and making decisions about reorder

strategies and price setting. A client agent collects sales information from their

market, forecasts the future customer demand and provides feedback to the in-

ventory manager. The authors apply fuzzy knowledge to determine reorder points

by taking into consideration the market changes and fashion trends. A genetic

algorithm is applied to forecast the reorder volume with the aim of minimising

the total cost in the supply chain. The model considers fashion trends, seasonal

distribution, sales records, and point of sales data to adapt to the changing mar-

ket. An important contribution of their work is proving how information sharing

between entities in the supply chain can be used to optimise reorder strategies.

4.3.3 Agent-based Modelling as a Tool for Multi-objective

Optimisation

Agent-based modelling has been applied quite effectively in the field of multi-

objective optimisation. A review of the literature on this topic is described in

Chapter 5.

25

Stellenbosch University http://scholar.sun.ac.za



4.4 Building an Agent-based Model

4.4 Building an Agent-based Model

There are a number of modelling platforms available which can be used for agent-

based modelling. Some of the most popular ones identified by Allan (2009) and

Gilbert & Bankes (2002) are:

• ABLE

• Anylogic

• Breve

• Cougaar

• iGen

• JADE

• LSD

• MASON

• Netlogo

• RePast

• SDML

• SugarScape

• Swarm

• VisualBots

• Xholon

• Zeus

Macal & North (2006) expands on the standard model building tasks identified

in Chapter 3 by identifying the following steps required for agent-based modelling:

1. Agents : Identify the agent types and other objects (classes) along with their

attributes.

2. Environment : Define the environment the agents will live in and interact

with.

3. Agent Methods : Specify the methods by which agent attributes are updated

in response to either agent-to-agent interactions or agent interactions with

the environment.
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4. Agent Interactions : Add the methods that control which agents interact,

when they interact, and how they interact during the simulation.

5. Implementation: Implement the agent model in computational software.

4.5 Concluding Remarks: Chapter 4

The purpose of this chapter was to introduce the reader to agents and agent-based

modelling. A review of literature on ABM showed many different applications in

social sciences and supply chain management. Of specific interest to this study

was the work of Pan et al. (2009) which investigated how ABM could be applied

to assist with reorder decision-making in the apparel supply chain. The chapter

concluded with a list of modelling platforms for ABM and basic steps to be

followed when constructing such a model.

The application of ABM in multi-objective optimisation will be discussed in

the next chapter.
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Chapter 5

Agent-based Modelling in

Multi-objective Optimisation

In Chapter 2 a summary was given of some metaheuristics that can be ap-

plied to multi-objective optimisation. The attention in this chapter is shifted to

how agent-based modelling – described in Chapter 4 – can be applied in multi-

objective optimisation. The chapter starts off with an overview of scholarly liter-
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ature on the application of ABM in MOO. The suitability of an ABM approach

to MOO is also discussed.

5.1 Review of Literature on Agent-based Mod-

elling in Multi-objective Optimisation

A literature survey on applications, where agent-based modelling is used as a

metaheuristic in multi-objective optimisation, reveals limited research on the sub-

ject. In most instances where these two fields of study meet, MOO is employed

to improve the accuracy and performance of agent-based models.

5.1.1 Multi-objective Optimisation as a Calibration Tool

for Agent-based models

Running an agent-based simulation is quite easy, but the analysis is often more

difficult. Terano & Naitoh (2004) list the following difficulties:

1. The model becomes too complex to be manually calibrated for accuracy

2. There are few similarities between the simulation results and the real-world

phenomena

3. The results are too difficult to interpret

4. It is difficult to validate the parameters of the model after the simulation

MOO is a valuable tool that can be used to address the first two issues.

For example, in the research of Terano & Naitoh (2004) they develop an agent-

based model to explore optimal marketing strategies for a specific market. The

customers are represented by agents with different purchasing attitudes. In order

to ensure that the model is an accurate representation of the real system, they

make use of genetic algorithms to tune the agents’ parameters.
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In another theoretical application Rogers & von Tessin (2004) use a multi-

objective evolutionary approach to calibrate an agent-based model of a financial

market.

The objective functions to be optimised in both these examples are the mean

and the variance of the simulated model with respect to the real data.

5.1.2 Multi-objective Optimisation of Emerging Behaviour

in Agent-based Models

In a research paper by Narzisi et al. (2006) the authors propose the use of multi-

objective evolutionary algorithms (MOEAs) to optimise the emergent global be-

haviour in agent-based models. They apply their research to the selection of

emergency response plans in disaster management. A comprehensive agent-based

model was developed to simulate large-scale urban disasters. The system param-

eters at the local level of the agent behaviour rules must be tuned in order to

achieve some desirable global objectives. The multiple objectives to be optimised

are the following: Minimise the number of casualties, fatalities, the average ill-

health of the population, and the average waiting time at the hospital, and max-

imise the average time taken by a person to die, and the utilization of resources

at the different locations. Economic, legal and ethical issues also contribute to

the objective functions. Two well-known MOEAs, the Nondominated Sorting

Genetic Algorithm II (NSGA-II) (Deb et al., 2000) and the Pareto Archived Evo-

lution Strategy (PAES) (Knowles & Corne, 2000), were applied to estimate the

Pareto front of the problem.

The Gantt diagram’s optimisation in the job-shop scheduling problem can be

considered an NP-hard problem (Graham, 1966). Cardon et al. (2000) developed

a dynamic agent-based model to simulate the behaviour of entities that collabo-

rate to optimise the Gantt diagram. Multiple objectives exist in that the delay

and the advance of the set of jobs need to be minimised. Genetic algorithms are
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used to determine a set of good heuristics for a given benchmark and new sched-

ules obtained with agent negotiations. The study has opened up an interesting

research area by introducing genetic patrimony to agents.

5.1.3 Agent-based Modelling as a Heuristic in Multi-objective

Optimisation

There are very few instances in literature where agent-based heuristics were used

in multi-objective optimisation. In most of these instances the heuristics are

not necessarily purely agent-based, but often have its roots in other classical

approaches.

Socha & Kisiel-Dorohinicki (2002) present an agent-based evolutionary ap-

proach to search for a Pareto optimality set within a multi-objective optimisation

problem. In their agent-based approach the evolution process is decentralised, al-

lowing the search space to be intensively explored to find the Pareto front. A

valuable outcome of their research is showing how the introduction of the crowd

principle discourages the agents from creating large bunches of similar solutions

at some points of the Pareto front. The algorithm of the crowd mechanism is the

following:

1. One of the agents (Agent A) initiates the communication by requesting the

solution from another agent (Agent B).

2. Agent B presents its solution to the problem to Agent A.

3. Agent A then compares its solution to the one obtained and calculates

the similarity level of the two solutions described as a distance (in square

metric) between the two solutions.

d(xA, xB) =
Nc∑
i=0

|xAi − xBi | (5.1)

with Nc the number of dimensions of the problem, xAi the i-th coefficient of

the solution owned by Agent A and xBi the i-th coefficient of the solution

owned by Agent B.
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4. Agent A checks if the other solution is to be considered similar, i.e. if the

distance computed in the previous step is less than the crowding factor. If

so, Agent A receives some energy from Agent B. The flow of energy causes

that some of the similar agents are more likely to be eliminated.

An algorithm based on reinforcement learning was developed by Mariano &

Morales (2000) for use in multi-objective optimisation. A family of agents is

assigned to each objective function. Each agent proposes a solution for the ob-

jective function to which it is assigned. They leave traces while they construct

solutions considering the traces made by other agents. The proposed solutions

are evaluated for Pareto optimality. The algorithm is able to produce a relatively

good approximation of the Pareto front for a wide range of multiple objective

optimisation problems reported in the literature.

5.2 Suitability of an Agent-based Approach to

Multi-objective Optimisation

Although the agent-based approaches to multi-objective optimisation reviewed in

the previous section all find their roots in other metaheuristic approaches, agent-

based modelling – as a stand-alone technique – also has the potential to be an

effective metaheuristic.

Humans are continuously faced with decisions that need to be made which

involve multiple criteria. Whether we are investing, choosing a career or even

deciding what to have for dinner, we are very rarely faced with problems which

concern only a single objective. Humans have the instinctive ability to do trade-

off analysis in everyday decision-making.

Therefore, if some of the basic elements of the human decision-making pro-

cess can be modelled, such a model should be able to perform multi-objective

optimisation. As shown in Chapter 4, the characteristics of agents lend itself

to the realistic modelling of complex social interactions as found in humans. It
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is therefore the researcher’s view that agent-based modelling can be used as a

metaheuristic to perform multi-objective optimisation.

5.3 Concluding Remarks: Chapter 5

In this chapter some previous applications of agent-based modelling in multi-

objective optimisation, and vice-versa, were reviewed. At the end of the chapter

specific focus was given to the decision-making capabilities of agents. The chapter

concluded with the researcher’s view on why an agent-based approach is suitable

for multi-objective optimisation.

In the next chapter inventory problems will be discussed, with specific focus

on the inventory problem on which the agent-based multi-objective optimisation

is applied.

33

Stellenbosch University http://scholar.sun.ac.za



Chapter 6

Inventory Problems

The previous four chapters were focussed on the concepts of agent-based mod-

elling and multi-objective optimisation. The purpose of this study is to determine

if an agent-based modelling approach can be used as a metaheuristic for multi-

objective optimisation. The inventory problem has been identified as a suitable

subject area to which this approach is applied. In this chapter several examples

of inventory problems will be discussed. The specific inventory problem, on which
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the agent-based multi-objective optimisation is applied, will also be described.

6.1 Introduction to Inventory Problems

6.1.1 Inventory Management

Inventory management is one of the most important functions of supply chain

management. According to Coyle et al. (2002) managing inventory involves the

following four fundamental questions:

1. When should an order be placed from an upstream supplier and/or their

plants

2. How large should each order be

3. Where the inventory should be held

4. What specific line items should be available at specific locations

Inventory Level
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ic
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Figure 6.1: Relationship between inventory level and customer service level.

Inventory decision-making usually has a major impact on issues regarding cost

and customer service requirements. There is a general relationship between the

amount of inventory in stock and customer service levels as illustrated in Figure
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6.1. It highlights the fact that it is often necessary for a business to increase

its investment in inventory before it will be able to achieve a desired customer

service level.

The key to successful inventory management is balancing the supply of inven-

tory with the demand for inventory (Coyle et al., 2002). It would be ideal for a

company to have enough inventory to meet the demands of its customers with-

out losing any sales due to inventory stockouts. On the other hand, the company

does not want to have too much inventory on hand because of the cost of carrying

inventory.

6.1.2 Description of a Basic Inventory Problem

Inventory problems are used to model a basic inventory management system.

Inventory problems contain a vendor, or a similar type of agent, that needs to

supply a number of customers with a single product or commodity. There are

often variabilities associated with the customer arrival rate and individual de-

mands. Stochastic lead times – the time it takes between placing an order and

the inventory replenishment – must also be taken into account.

There are costs associated with keeping products in stock (holding costs) and

a fixed cost is incurred every time an order is placed. In some inventory problems

backorders are allowed whenever a product runs out of stock. These backorders

however come at a higher cost for the vendor than normal orders. These costs

are typically referred to as shortage costs (Iglehart, 1963).

The main responsibility of the vendor in inventory problems is to manage the

inventory level in order to keep the total inventory cost as low as possible. Back-

order costs or shortage costs are applied to penalize the vendor from having a low

service level as a result of running out of stock. Keeping a sufficient inventory

level, yet minimising the inventory cost, are the key factors that the vendor needs

to keep into consideration. The vendor manages the inventory level by applying
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a specific replenishment strategy. The replenishment strategy specifies the inven-

tory level at which the vendor needs to place a new order, as well as the number

of units that needs to be ordered.

6.2 Variations on the Basic Inventory Problem

There are several variations to the basic inventory problem described in 6.1.2. A

few of these variations will be discussed in this section.

6.2.1 Deterministic Inventory Problems

In deterministic inventory problems it is possible to make optimal inventory de-

cisions because the demand is known in advance. The classic economic order

quantity (EOQ) model was developed for these cases by Harris (1913). In an

EOQ model a fixed order quantity is automatically ordered once the inventory

drops below a predetermined level, the reorder point. This approach is sometimes

referred to as a two-bin system (Coyle et al., 2002). When the inventory in the

first bin is empty, the firm places an order. The amount of inventory in the sec-

ond bin represents the number of items required until the new order arrives. This

implies that the firm will reorder or produce stock when the amount of inventory

on hand decreases to some predetermined level.

6.2.1.1 Basic EOQ Model

In the basic EOQ model the demand is deterministic and occurs at a constant

rate. There is also a zero lead time for each order. Shortages and backlogged

inventory are not allowed. The economic order quantity (EOQ), which minimises

the total cost can be calculated with

q∗ = (
2KD

h
)
1
2 (6.1)

where D is the number of units demanded per year, K is the order cost and h is

the inventory holding cost per unit per year.
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6.2.1.2 EOQ Model with Quantity Discounts

Suppliers sometimes reduce the unit purchasing price when large orders are

placed. These price reductions are known as quantity discounts. The order points

where a price change occurs is referred to as price break points, b1, b2, ..., bk−1.

Winston (2004) suggests that beginning with the lowest price, the order quantity

that minimises the total annual costs for each price should be calculated, e.g.

bi−1 ≤ q∗i < bi. q
∗
k, q
∗
k−1, ... should be calculated until one of the q∗i ’s is admissible.

This will mean that q∗i = EOQi. The optimal order quantity will therefore be

the member of q∗k, q
∗
k−1, ..., q

∗
i with the smallest total cost.

6.2.1.3 Continuous Rate EOQ Model

In a company where goods are internally produced, it is not always possible to

produce, for example, 5 000 trucks in one instance. Therefore, it is not always

appropriate to work with the traditional EOQ model where the assumption is

that each order arrives at the same instance. The Continuous Rate EOQ Model

is more appropriate to use in these scenarios. The demand is still assumed to be

deterministic and shortages are still not allowed. It is assumed that a firm can

produce goods at a rate of r units per time period. In any period of length t,

the firm can produce rt units. Winston (2004) defines that the optimal run size,

which is equal to the economic order quantity, can be calculated using

EOQ = (
r

r −D
)
1
2 (6.2)

where D is the annual demand for the product.

6.2.1.4 EOQ Model with Backorders

Inventory shortages are often a reality, and there are costs associated with not

being able to meet demand on time. Sometimes these costs can be directly

calculated, for example when a sale is lost or backorders are made at a premium

price. Shortage costs can however take the form of a loss of future goodwill which

cannot be calculated so easily. In an EOQ model where backorders are allowed

and no sales are lost, let s be the cost of being one unit short for one period of

time. We define q as the order quantity and q −M as the maximum shortage
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that occurs under an ordering policy. The optimal order policy, where the total

cost is minimised, can be determined with

q∗ = (
2KD(h+ s)

hs
)
1
2

M∗ = (
2KDs

h(h+ s)
)
1
2

Maximum shortage = q∗ −M∗. (6.3)

6.2.2 Stochastic Inventory Problems

In the inventory problems described in 6.2.1 conditions of certainty existed with

regards to the demand and the lead time. This is however quite unrealistic and

does not represent the usual operating situation for most firms. Coyle et al.

(2002) mentions a few factors which could lead to the demand and lead time

being uncertain, or stochastic:

Demand variations The demand for a product could vary depending on weather,

social needs, psychological needs and many other factors.

Order processing time variations Order processing is not necessarily always

a smooth process. Problems with order systems, or even poor corporate

governance could create undesirable backlogs.

Transit time variations The lead time can also be influenced by transit time

variations as a result of traffic, breakdowns and general delays.

Damage Inventory lost in transit or damaged could result in a stockout situa-

tion.

Some examples of inventory problems where stochastic demand and lead times

are involved are discussed next.
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6.2.2.1 The News Vendor Problem

Inventory problems where q is the predetermined order quantity, a demand of

d units occurs with probability p(d), and a cost c(d, q) is incurred, are often

called news vendor problems (Winston, 2004). A vendor must decide how many

newspapers to order each day from the newspaper plant. If he orders too many

papers he will be left with worthless papers at the end of the day. If he does not

order enough he will run out of stock, lose out on possible profit, and disappoint

customers. Marginal analysis can be used to solve these problems. If it is assumed

that F (q) = P (D ≤ q) is the demand distribution function, it can be shown that

F (q∗) ≥ cu
co + cu

(6.4)

where cu is the understocking cost and co is the overstocking cost.

6.2.2.2 EOQ Model with Uncertain Demand and Lead Time

Determining the optimal order strategy for an EOQ model where the demand

and the lead time are random will now be discussed. For this model it is assumed

that demand can be backlogged. In addition to the earlier variable definitions,

the following is also defined:

D = the annual demand, with mean E(D), variance var D and

standard deviation σD

cB = the cost incurred for each unit short

X = the demand during lead time, with mean E(X), variance var X and

‘ standard deviation σX

Winston (2004) shows that the expected cost is minimised by q∗ and r∗ given

by

q∗ = (
2KE(D)

h
)
1
2

P (X ≥ r∗) =
hq∗

cBE(D)
. (6.5)

40

Stellenbosch University http://scholar.sun.ac.za



6.2 Variations on the Basic Inventory Problem

If we assume that demand cannot be backlogged, thus all stockouts result in

lost sales, the reorder point is calculated differently. Let cLS = the cost incurred

for each lost sale. The expected cost is minimised by q∗ and r∗ given by

q∗ = (
2KE(D)

h
)
1
2

P (X ≥ r∗) =
hq∗

hq∗ + cLSE(D)
. (6.6)

6.2.2.3 Other Stochastic Inventory Problems

There are many other examples of stochastic inventory problems. Clark & Scarf

(1960) investigate how the inventory policies for a multi-echelon inventory system

can be optimised. This system consists of a supply chain containing several

entities. Different lead times and stock in transit are also taken into account in

this model. The Clark-Scarf model analyses the system under periodic review,

whereas Bodt & Graves (1985) introduce continuous-review control policies. Chen

(2000) generalises the Clark-Scarf model to derive optimal policies for multi-

echelon systems where the materials flow in fixed batches between the entities.

Baker & Urban (1988) evaluate an interesting inventory system in which the

demand rate of the product is a known function of the inventory level. The

model assumes that the probability of making a sale decreases as the inventory

level decreases, thereby lowering the ”attractiveness” of the product for the cus-

tomer. Giri & Chaudhuri (1998) extend the work of Baker and Urban to include

a deterioration function to model perishable items.

6.2.3 MIT Beer Game

The MIT Beer Game is a simulation game developed by the Systems Dynamic

Group at the Massachusetts Institute for Technology, under the guidance of For-

rester (1999). It has subsequently been used in numerous undergraduate and

postgraduate courses to demonstrate key principles of inventory management

across a supply chain.
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6.2.3.1 Description

The game involves a simple production and distribution system for a single brand

of beer. There are four players in the supply chain, which are sequentially ar-

ranged:

• Manufacturer

• Distributor

• Wholesaler

• Retailer

Beer is produced by the manufacturer and delivered downstream through the

supply chain until it reaches the external customer. Each of the four players

has to fulfill incoming orders of beer by placing orders from its next upstream

supplier. The players are not allowed to communicate with each other. The

only information they are allowed to exchange is the order amount. There is no

transparency as to what the other players’ inventory levels or actual customer

demand is, and only the retailer knows the external demand of the customer.

Each player incurs both inventory holding costs, and penalty costs for back-

logged items. The primary aim for each player is to keep his total inventory cost

as low as possible. The optimal strategy is therefore to keep the inventory as low

as possible without running into backlog.

The forecast-driven distribution system found in the Beer Game leads to an os-

cillation demand magnification developing upstream. This phenomenon is known

as the Bullwhip Effect and is caused by three underlying problems:

A lack of information Due to the fact that only order amounts are conveyed

upstream through the supply chain, information about the customer de-

mand is quickly lost. With no actual customer data available, forecasting

relies only on incoming orders at each player.
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The supply chain structure The structure of the supply chain prolongs the

lead time. It therefore takes longer for an order to travel upstream and the

subsequent delivery to travel downstream, which aggravates the Bullwhip

Effect.

A lack of cooperation Each agent tries to optimise his inventory costs locally.

Some agents employ batch ordering which also aggravates the Bullwhip

Effect, because very little can be derived about actual customer demand

from such orders.

6.2.3.2 The Use of Agents in the Beer Game

Kimbrough et al. (2002) investigated the effectiveness of computers, in the form

of artificial agents, in playing the Beer Game. They replaced human players with

artificial agents playing the Beer Game to see if artificial agents could learn and

discover good and efficient order policies in supply chains. By learning rules via

genetic algorithms it was found that individual agents were able to find fully co-

operative solutions, even in stochastic situations. The artificial agents were even

capable of better performance than undergraduate and postgraduate students.

6.3 Inventory Policies

In all of the inventory problems defined in 6.2.1 and 6.2.2 the assumption was

made that an order could be placed at exactly the time that the inventory level

reached the reorder point r. A reorder quantity q was also determined. This is

known as an (r, q) Continuous review policy.

Suppose that a demand occurs for more than one unit at a specific time. It

may then happen that an order could be triggered at an inventory level which is

lower than the reorder point r. For example, assume that the current inventory

level is 30 and r = 25. If a customer demand for 10 units arrives, the order will

only be placed once the inventory level is 20. The calculations for the reorder

quantity will not necessarily minimise the annual cost. It may even be possible
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for the order replenishment to fail to raise the inventory level above the reorder

point.

In situations where the demand is often greater than one unit it has been shown

that an (s, S) Continuous review policy is optimal (Arrow, 1958) and (Scarf,

1960). In this policy an order is placed once the inventory level is less than or

equal to s. The size of the reorder is calculated to ensure that the inventory

level will be raised to S, assuming zero lead time. If a (25, 50) policy were to be

implemented for example, and the inventory level were to suddenly drop from 30

to 20, an order would be placed for 50− 20 = 30 units.

Iyer & Schrage (1992) show historical demand data can be used to directly

generate inventory control parameters for use in future inventory control. Instead

of fitting a distribution model to the historical demand data, they provide a

polynomial time algorithm to solve the (s, S) inventory problem.

6.4 Formulation of the Inventory Problem used

in this Study

An inventory problem with an (s, S) review policy was used in this study to in-

vestigate the feasibility of applying an agent-oriented approach to multi-objective

optimisation. The formulation, assumptions, and parameters of this specific in-

ventory problem will be discussed in this section.

A single, discrete commodity is sold to customers who arrive according to a

Poisson process, with a mean arrival rate of λ = 2. The interarrival times of

the customers are thus exponentially distributed with parameter β = 0.5h. It is

further assumed that the demand of customer i is distributed b20 ·beta(2, 1)c and
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the order lead time is unif(1h, 2h). The following notation applies:

It = Inventory level at time t when customer i arrives

I0 = Starting inventory at time 0

S = Required inventory level after reordering

s = Reorder point

SL = Service level

STi = Stockout experienced by customer i

Di = Demand of customer i

NC = Number of customers arriving in period T

i = Customer number at time t

The service level is calculated with

SL =

NC∑
i=1

(Di − |STi|)

NC∑
i=1

Di

100%. (6.7)

Stockouts are calculated using

STi = min(0, It −Di). (6.8)

Further assumptions:

1. The system operates for 8 hours per day, i.e. T = 8h. The inventory at the

end of the day is carried over to the following day.

2. The initial inventory is I0 = 100 units

3. No backlog is allowed in this system. If Di > It and It > 0, the customer

takes It units and after that It becomes 0. If It = 0 and a customer arrives,

It remains 0, but the stockout is adjusted according to (6.8). When the

replenishment quantity arrives then It ← It + S.

4. The following costs apply:

(a) The cost to reorder S items is R100/order.

(b) The overall holding cost per item is R10/item/day.
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This formulation will be used for further analysis.

6.5 Concluding Remarks: Chapter 6

Several examples of inventory problems were described in this chapter. The

formulation of the inventory problem to be used in this study was also given.

In the next chapter the application of ABM and MOO to the inventory problem

will be described.
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Chapter 7

Application of ABM and MOO

to the Inventory Problem

The inventory problem formulated in Section 6.4 presents a good opportunity

for the application of multi-objective optimisation by making use of agent-based

modelling. In this chapter an overview will be given into the agent-based model

developed for this purpose. The technical design of the model will be described
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in detail.

7.1 Model Overview

In Section 6.4 an inventory problem was formulated describing a system whereby

a single, discrete commodity is sold to customers. The customers arrive accord-

ing to a Poisson distributed arrival rate, each having a specific demand for the

commodity. The formulas for determining the inventory cost and service level

were also given.

The vendor in this inventory problem is faced with two conflicting objectives.

He needs to keep the inventory level as low as possible to minimise the total

inventory cost. However, he also needs to keep enough inventory in stock to be

able to maintain a high service level. Therefore, in order to ensure successful

inventory management, the vendor’s inventory replenishment strategy needs to

be optimised by making use of multi-objective optimisation.

The nature of this inventory problem lends itself to apply an agent-based mod-

elling approach to the multi-objective optimisation. For the purpose of this study

it is assumed that there are two agents, each with its own agenda relating to each

of the objectives of the vendor. These agents, an inventory manager and a sales

manager, are employed by the vendor to assist him with finding the ideal inven-

tory replenishment strategy. The inventory manager is responsible for keeping

the inventory costs as low as possible. The sales manager on the other hand

tries to keep the customers happy by ensuring a high service level. These two

managers are considered to be intelligent agents, able to make informed decisions

based not only on facts, but also emotion. They negotiate with each other to

come up with an inventory replenishment strategy that will meet the needs of

the business.

The negotiation process between the inventory manager and sales manager is

driven by each of their emotional states, represented by satisfaction indexes in

the model. For example, if the last few replenishment strategies that had been
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applied resulted in extremely high inventory costs, the inventory manager will

become very dissatisfied. The next time they need to decide on a new strategy

the inventory manager will be quite aggressive in his negotiation and will strive

to lower the re-order quantity and re-order point quite significantly. Likewise, if

the sales manager is used to being able to achieve a high service level, but this

has suddenly taken a dip, he will have a high incentive to ensure that the service

level improves again.

The human factor involved in decision making is modelled by making use of

these intelligent agents. The feasibility of the agent-based approach to multi-

objective optimisation can be explored in this model by experimenting with dif-

ferent scenarios and agent logic.

7.2 Model Platform

In Section 4.4 a list of modelling platforms available for agent-based modelling

was given. Anylogic (www.anylogic.com, cited on 18 August 2012) was selected

as the platform most suitable for this inventory problem. Anylogic was developed

by a Russian software company, XJ Technologies. One of the unique features of

Anylogic is that it allows the user to combine various different simulation mod-

elling paradigms in the same model. The four paradigms that Anylogic facilitates

are Discrete-Event, Agent-Based, System Dynamics, and Dynamic Systems. Fig-

ure 7.1 provides an overview of these paradigms.

Anylogic’s multi-method functionality provides a high degree of flexibility dur-

ing model development as different processes within the same system can often

be more effectively modelled by different paradigms. The agent-based approach

in Anylogic can be applied without difficulty by making use of state diagrams.

An example of an agent’s state diagram is given in (Figure 7.2) where each block

represents a state through which the agent loops during the model.
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Figure 7.1: Paradigms in simulation modelling on an abstraction level scale (Bor-

shchev & Filippov, 2004).

Figure 7.2: State diagram for an agent in Anylogic.
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7.3 Technical Design

The inventory model developed in Anylogic consists of different objects interact-

ing with one another. The interaction between the customers and the vendor

forms part of the business transaction taking place when the customer arrives

at the store. The vendor periodically interacts with his inventory manager and

sales manager, which are intelligent agents, to review and make changes to the

current inventory replenishment strategy. All these interactions are controlled by

state diagrams, representing the decision making functions of the objects, and by

messages which are transmitted between the objects.

7.3.1 Customer and Vendor Interaction

The model is driven by the periodic arrival of customers at the vendor’s business.

Each of these customers have a specific demand for the vendor’s merchandise. If

the vendor has enough inventory on hand to meet the customer’s demand, the

transaction is completed and the merchandise is handed over to the customer

who leaves the store satisfied. However, if the number of units in stock is lower

than the demand, the last few units are sold to the customer and the remainder

of the demand is treated as a lost sale, impacting the service level of the vendor.

The possibility also exists that the vendor experiences a complete stockout during

which the customer cannot be serviced at all.

7.3.2 Inventory Replenishment

An inventory replenishment strategy governs all inventory related decision-making

of the vendor. The vendor checks the inventory level after every customer trans-

action. If the inventory level is equal to or lower than the reorder point specified

by the current replenishment strategy, and an order for new merchandise has not

yet been placed, the vendor orders a number of units quantified by

OrderSize = S − It (7.1)
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where S is the reorder quantity of the current replenishment strategy and It

is the current inventory level. Once an order has been placed there is a lead time

before the inventory is available at the vendor’s store.

7.3.3 Inventory Replenishment Strategy Review

After a predetermined number of reorders the vendor needs to review and possibly

make changes to the current replenishment strategy.

In the model 30 random strategies are initially attempted by the vendor to

get a few benchmark points which the inventory and sales managers can use to

understand what constitutes a successful strategy. These random strategies are

s = round(200 ∗ U1) (7.2)

S = round(200 ∗ U2) (7.3)

where s is the reorder point, S is the reorder quantity, U1 and U2 are uniformly

distributed random values between 0 and 1. The value of s needs to be higher

than that of S because the reorder quantity cannot be a negative value. These

values are returned to the vendor and implemented as the new replenishment

strategy.

Once the initial sample of strategies has been populated, the vendor starts to

consult with his inventory and sales managers through an interaction agent to

determine the new replenishment strategies. The interaction agent is a theoretical

agent that has been introduced into the model to facilitate the interaction between

the vendor and his inventory manager and sales manager. The interaction agent

also facilitates the negotiation process between the inventory manager and the

sales manager. One of the core responsibilities of the interaction agent is to keep

a database of all previous replenishment strategies applied by the vendor. This

information is vital to the inventory manager and sales manager to assist them

with making informed decisions on future replenishment strategies.
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The following process is followed:

1. Populate the Pareto approximation set, P∗, containing the most feasible

strategies that have been attempted up to this point in time.

2. For each strategy in P∗:

(a) Make this strategy the currentBenchmark.

(b) Determine the satisfactionIndex for both the inventory manager and

the sales manager.

(c) Allow the manager with the lowest satisfaction to choose the new re-

plenishment strategy.

(d) Implement the new strategy and wait for the next strategy review

meeting.

(e) Determine if the new strategy is now the new currentBenchmark.

(f) Repeat Steps (b) to (e) until 10 new strategies have been attempted.

3. Repeat Steps 1 and 2 for nit iterations, whereafter the replication is com-

plete and the model terminates.

7.3.3.1 Pareto Approximation Set

The interaction agent identifies the Pareto approximation set containing all ac-

ceptable solutions from the current strategy database. This represents the most

feasible strategies that have been attempted up to this point in time. Definitions

pertaining to Pareto optimality were presented in Section 2.1 on 6.

7.3.3.2 Satisfaction Index and Recollection Ability

The satisfaction index of the inventory manager SIIM and the sales manager

SISM are parameters that represent each of their emotional states and dictates

how aggressively they will negotiate during the next strategy review. They have

a recollection ability ε which means that their satisfaction is dependent on the

success of the last few strategies that have been implemented, as well as the

current benchmark strategy. This means that the agents will take ε number of
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negotiation rounds before they disregard a strategy that had a negative effect on

their respective objectives.

For example, if the inventory cost of the last few strategies was much higher

than the benchmark, the inventory manager will become upset about it. The

next time he meets with the sale manager, he will be determined to lower the

reorder point and reorder quantity used for the new strategy.

In order to implement these principles, the satisfaction indexes need to be

quantified, and the following notation applies:

SIIM = Satisfaction index of the inventory manager

SISM = Satisfaction index of the sales manager

SLbm = Service level of the benchmark strategy

SL0 = Service level of the current strategy

SL1 = Service level of the previous strategy

SLε = Service level of ε strategies back

Cbm = Total inventory cost of the benchmark strategy

C0 = Total inventory cost of the current strategy

C1 = Total inventory cost of the previous strategy

Cε = Total inventory cost of ε strategies back

The satisfaction index of the inventory manager is calculated with

SIIM =

x

ε∑
n=0

(ε− n+ 1)(100)(
Cbm − Cn

Cbm

)

ε∑
n=0

n

(7.4)
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and with

SISM =

ε∑
n=0

(ε− n+ 1)(100)(
SLbm − SLn

SLbm

)

ε∑
n=0

n

(7.5)

for the sales manager.

The agent with the lowest satisfaction index will have the upper hand during

the next strategy review session and will be able to choose the new reorder point

and reorder quantity to be implemented. The lower the agent’s satisfaction index,

the more aggressive he will be in choosing the new strategy. The range of change

ς of the new strategy is calculated by a step function shown in Figure 7.3. In

Section 8.4.2 an agent aggression factor will be introduced which will scale this

step function.

−30 −20 −10 0 10 20 30

5

10

15

Satisfaction Index

Range of Change ς

Figure 7.3: Impact of Satisfaction Index on Reorder Strategy.

Two random integer values, is and iS are generated from a uniform distribution

between 0 and ς which are then used to increase or decrease the previous strategy’s

reorder point s′ and reorder quantity S ′ with s = s′ − is and S = S ′ − iS if the

inventory manager chooses the new strategy, or with s = s′+is and S = S ′+iS

if the sales manager chooses the new strategy.
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A practical example of how the satisfaction indexes are used to determine the

new strategy will now be given:

1. Assume that the inventory manager’s satisfaction index (-12.76) is lower

than the sales manager’s satisfaction index (2.35). Therefore the inventory

manager will be able to choose the new strategy.

2. From Figure 7.3 it can be seen that ς = 8.

3. The two random integer values, is and iS are calculated by rounding off

uniform(0, 8). Assume that the samples generated are is = 3 and iS = 6.

4. The inventory manager prefers a lower reorder point and reorder quantity, so

the new strategy’s parameters are calculated with s = s′−3 and S = S ′−6.

7.4 Concluding Remarks: Chapter 7

The purpose of the inventory model described in this chapter is to determine

if it is possible to make use of an agent-based modelling approach to perform

multi-objective optimisation. Through the interaction between the inventory

manager and sales manager a number of different replenishment strategies will be

attempted. The performance of these strategies will indicate if these intelligent

agents have the ability to effectively reason between two conflicting objectives,

thereby achieving good results with few evaluations.

The technical design of the agent-based inventory model was described in detail

in this chapter. An overview was given into the architecture of the model, dis-

cussing the role of the customer, vendor, inventory manager and sales manager.

In Section 7.3.3 important concepts such as the satisfaction index of the agents

were explained. This forms the backbone of the negotiation process between the

inventory manager and the sales manager.
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Chapter 8

Results and Analysis

The inventory model described in Chapter 7 was developed to determine if it

is feasible to apply an agent-based approach to multi-objective optimisation. In

this chapter, the performance measures identified for the purpose of this study are

discussed. The evaluation method to be used for comparing different scenarios

is also described. At least 100 independent replications of various scenarios were

run to ensure that the results are statistically plausible. The results from these
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simulation runs are analysed in this chapter.

8.1 Important Terms

There are a few important terms relating to the model that first need to be

clarified in order to interpret the results. Some of the terms may have been used

before, but are now formally defined in Table 8.1.

Term Description

Strategy A specific (s, S) reorder strategy attempted

by the vendor.

Negotiation iteration One iteration is completed every time the

Pareto approximation set is repopulated, as

described in Section 7.3.3.

Scenario Each ”what-if” scenario contains a unique

set of parameters which are fixed throughout

the run, e.g. Agent aggression.

Replication 100 replications of each scenario is run to en-

sure that variability in the model is taken

into account when the results are analysed.

Table 8.1: Important terms.

8.2 Performance Measures Used to Test the Per-

formance of the Agent-based Approach

The performance of the agent-based approach, and different scenarios relating

to it, can be evaluated by making use of a set of metrics discussed in Bekker

& Aldrich (2011). The Pareto front created by the replenishment strategies at-

tempted, PK , and the true Pareto front of the inventory problem, PT , are re-

quired to use these metrics. PT was obtained (see Figure 8.1) by running the

inventory model for all replenishment strategies where s = {1, 2, ..., 200} and

S = {s, s+ 1, ..., 200}.
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Figure 8.1: True Pareto front for the inventory problem.

The following performance measures are proposed:

1. The hyper-volume indicator IH (Coello et al., 2007) measures the portion

of objective space that is weakly dominated by an approximation set A and

is to be maximised. In this document IH will be referred to as “hyper-

area” since the problem presented here has two objectives. The objective

space must be bounded, or a strictly dominated reference point must be

provided. A simple example is shown in Figure 8.2, with maximisation

Pareto set {(50, 50), (100, 80), (500, 90)}, IH = 173 500 and the reference

point at (2000, 0). Intuitively, one can see that the IH indicator measures

spread and proximity (“closeness”) of the approximation set to the true

Pareto front.

The hyper-area difference ∆IH is considered to be the absolute value of the

difference between hyper-area indicator for PT and the hyper-area indicator

for PK , where the same reference point is used.

2. Generation distance (GD) (Coello et al., 2007), which measures the average

distance between PK and PT . It is defined as

GD ,
(
∑|PK |

i=1 d
2
i )

1
2

|PK |
(8.1)
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Figure 8.2: Example of a hyper-area and reference point.

with di the Euclidean distance between solution value i of PK and the

closest member in PT to the solution i. When PK = PT , then GD = 0.

3. Spacing (SP ) (Coello et al., 2007), which numerically describes the spread

of the vectors in PK . It is defined as

SP ,

√√√√ 1

|PK | − 1

|PK |∑
i=1

(d− di)2 (8.2)

and

di = min
j

K∑
k=1

|f i
k(x)− f j

k(x)| (8.3)

with i, j = 1, . . . , |PK |, K the number of objectives, and d is the mean of all

di. The members of the approximation front are equally spaced if SP = 0.

The true Pareto front is not required for this test measure.

4. Maximum Pareto front error (ME) (Coello et al., 2007), which measures

how well two vector sets conform in terms of shape and distance apart. It
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is determined with

ME , max
j


min

i

(
M∑
k=1

|f i
k(x)− f j

k(x)|2
)1/2


 . (8.4)

5. The convergence CV (Deb & Jain, 2002) is a running indicator calculated

while executing a MOO algorithm. F(t) is the non-dominated set of pop-

ulation t. The smallest normalised Euclidean distance from each point i

in F(t) to the true Pareto set PT is calculated, with fmax
k and fmin

k the

maximum and minimum function values of objective k in PT :

di =
|PT |
min
j=1

√√√√ K∑
k=1

fk(i)− fk(j)

fmax
k − fmin

k

(8.5)

Now calculate the convergence CV by averaging the normalised distance

for all points in F(t) with

CV =

∑|F(t)|
i=1 di
|F(t)|

. (8.6)

8.3 Scenario Comparison

All the performance measures listed above will be used to evaluate the perfor-

mance of the agent-based approach. However, Knowles et al. (2006) showed that

although these performance measures give a good indication of the quality per-

formance of the algorithm, not all of them are suited to comparing algorithms.

As recommended by Knowles et al. (2006) the hyper-area difference ∆IH will be

used for this purpose as it is Pareto compliant and quite simple to estimate.

At least 100 independent replications of each scenario must be run in the model

to ensure that the results are statistically significant. ∆IH will be calculated for

each of these replications. It is proposed that box plots are used as a visual rep-

resentation of the results for each scenario. First created by Tukey (1977), box

plots are commonly used to display the distribution of a batch of data. The in-

terpretation of a box plot is also relatively straightforward with the configuration

shown in Figure 8.3.
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Figure 8.3: Configuration of a box plot.

The box itself represents 50% of the data set. The lower boundary of the box

indicates the 25th percentile of the data, and the upper boundary locates the

75th percentile. The median of the data set is indicated by a line within the box.

The whiskers of the plot indicate where the lower and upper limits of the data

set lie.

The different scenarios can be compared by visual inspection of the box plot.

The plot will not only show which results can be expected for each of the scenarios,

but will also indicate the spread of the results. This allows the researcher to

identify which scenarios give the best results. An example of how the box plot

will be used in this study is given in Figure 8.4. Note that fictitious data is used

in this example. The base scenario – in this case Scenario 2 – will always be

highlighted in red.
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Figure 8.4: Hyper-area indicators for different scenarios (Illustrative).

In this illustrative example it can be seen that Scenario 5 is most likely to yield

the lowest hyper-area difference. The mean hyper-area difference for Scenario 3

is lower than that of Scenario 2, but the variability in its results is very high.

Therefore, if consistency in the hyper-area difference between replications is of

importance then the researcher might prefer Scenario 2 rather than Scenario 3.

The quality indicators to be used for the performance evaluation of the agent-

based approach to multi-objective optimisation were identified and described.

The suggested approach to do the scenario comparison was also discussed. In

the next section these quality indicators will be applied to the results from the

inventory model.
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8.4 Results from Inventory Model

The detail results from the base case scenario will now be presented. Several other

scenarios were also run to determine the sensitivity of some of the parameters

pertaining to the agents. The results from these scenarios are also analysed. The

chapter ends off with a table summarising the results from all the scenarios.

8.4.1 Base Case

The base case scenario was run with all the default parameters used as described

in Chapter 7. The approximate Pareto front obtained from one of the replications

from the base case is shown in Figure 8.5.
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Figure 8.5: Base Case Pareto front.

The visual representation of the Pareto scenarios from the base case shows that

the front produced by the agent-based approach is a good approximation of the

true front. The focus now turns to the sensitivity of the model to the parameters

that define the agents’ behaviour. Attributes like the aggression and recollection

ability of the agents are adjusted to determine if they have any effect on the

performance of the approach. The effect of changes in the number of negotiation

iterations is also investigated.
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8.4.2 Agent Aggression Sensitivity

The aggression of the agents has a major influence on the negotiation process

during the replenishment strategy reviews. The aggression factor τ controls how

aggressively the inventory manager or sales manager wishes to change the current

strategy. A default aggression factor, τ = 1, was utilised in the base case which

yielded a range of change ς as shown in Figure 7.3. The default values for ς can

be simply multiplied with the new aggression factor to get ς for these scenarios.

An example of the ς-plot for τ = 4 is given in Figure 8.6, which now scaled the ς

presented in Figure 7.3.
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Figure 8.6: Range of Change for τ = 4.

The sensitivity of the model to the agents’ aggression was determined by run-

ning scenarios for τ = {0.25, 1, 2, 4, 6}. The Pareto fronts obtained from a selected

representative run for each of these scenarios are shown in Figure 8.7.
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Figure 8.7: Approximated Pareto fronts for various levels of agent aggression.
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The different aggression scenarios can be compared by looking at the box plot of

the hyper-area differences as shown in Figure 8.8. It is clear that scenarios, where

the agents have a higher aggression factor, yield a lower hyper-area difference. It

is also very interesting to note that if τ ≤ 4, the agent-based approach is able to

achieve better Pareto Front approximation sets. A likely explanation for this is

that the lower aggression factors did not allow the agents to be persuasive enough

in their negotiations with each other.
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Figure 8.8: Hyper-area difference for aggression sensitivity.
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8.4.3 Agent Recollection Ability Sensitivity

The negotiation process between the inventory manager and sales manager is

driven by their satisfaction indexes, as described in Section 7.3.3.2. The agents’

recollection ability ε is a measure of their ability to also take their satisfaction dur-

ing the last few strategies into account when choosing a new strategy. Scenarios

have been run for ε = {0, 2, 3, 5}.

The Pareto fronts obtained from a selected representative run for each of these

scenarios are shown in Figure 8.9.
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Figure 8.9: Approximated Pareto fronts for various levels of agent recollection

ability.
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In Figure 8.10 one can see that the model performs slightly better in the sce-

narios where 0 < ε < 1. Therefore, the agents’ ability to recall the outcome of

the previous strategies does assist them in choosing more optimal strategies in

the future. There is however no significant difference in the performance of the

scenarios where ε = {1, 2, 3}.
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Figure 8.10: Hyper-area difference for recollection sensitivity.
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8.4.4 Negotiation Iteration Sensitivity

The number of negotiation iterations nit, as described in Section 7.3.3, and de-

fined in Table 8.1, determines how many times the Pareto approximation set is

repopulated. In the base case nit = 3, which means that the agents will negoti-

ate through three Pareto approximation sets before the model terminates. The

sensitivity of the number of negotiation iterations was determined by running

scenarios for nit = {1, 2, 3, 4, 5}.

The Pareto fronts obtained from a selected representative run for each of these

scenarios are shown in Figure 8.11.
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Figure 8.11: Approximated Pareto fronts for various levels of negotiation iteration

sensitivity.
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From Figure 8.12 it is clear that the number of negotiation iterations plays a

big role in the performance of the approach. If nit = 1 the agents do not have

enough time to learn from previous strategies to improve their performance. More

negotiation iterations are required in order to achieve a better PF approximation.
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Figure 8.12: Hyper-area indicators for negotiation iteration sensitivity.

It must however be noted that as nit increases, the number of strategies at-

tempted during each run also increases (see Figure 8.13). A higher number of

strategies attempted will naturally lead to better approximate Pareto fronts.
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Figure 8.13: Average number of strategies attempted in negotiation iteration

sensitivity scenarios.

8.4.5 Summary Results

A summary of the quality indicator values obtained from the simulation runs are

shown in Table 8.2.
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8.5 Concluding Remarks: Chapter 8

The purpose of this chapter was to present the results and findings from the

simulation runs assessing the various agent parameters. A few important concepts

required to interpret the results were first explained in this chapter. A set of

performance measures was identified and applied to evaluate the output of the

runs. The base case scenario, in which all the model parameters were set to all its

default values, indicated that the agents have the ability to find good strategies.

The front obtained from the base case showed that the agent-based approach can

create a good approximation to the known front.

Other scenarios were also run to determine the sensitivity of the approach to

the parameters that define the agents’ behaviour. The following parameters were

investigated:

• Aggression factor τ of the agents – a measure of how aggressive they are

during negotiations

• Recollection ability ε of the agents – a parameter determining how many

previous strategies have an influence on the satisfaction of the agents

• Negotiation iteration sensitivity nit – the number of times the Pareto ap-

proximation set is repopulated during each run

It was revealed that the aggression factor τ , which is an important feature of

the negotiation process between the inventory manager and sales manager, has a

significant influence on the performance of the model. Higher aggression factors

enabled the agents to come up with better strategies more consistently. The

default aggression factor applied in the base case did not give the agents enough

persuasive capacity, which resulted in somewhat weak negotiation skills.

The recollection ability ε of the agents does assist them to find better strategies.

The scenario where the agents only consider their current satisfaction resulted in a

slightly worse performance than the other scenarios. Although it is recommended

75

Stellenbosch University http://scholar.sun.ac.za
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to introduce recollection ability to the agents, the length of the recollection ability

does not have any significant impact on the outcome.

The negotiation iteration sensitivity nit scenarios revealed that a higher number

of negotiation iterations produces much better strategies. This indicates that the

agents need to go through enough negotiations so that they can learn from the

previous strategies attempted. It was highlighted though that more strategies are

attempted in the scenarios with higher negotiation iterations.
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Chapter 9

Further Application of ABM and

MOO

The purpose of this study is to determine if an agent-based modelling approach

can be used as a metaheuristic for multi-objective optimisation. The inventory

problem was identified and described in Chapter 6 as a suitable subject area to

which this approach could be applied. The technical design of the agent-based
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model developed for the inventory model was described in Chapter 7. The results

and findings from the model in Chapter 8 proved that it is possible to apply an

agent-based approach to optimise multiple objectives in an inventory problem.

However, applying the approach successfully to a single problem does not nec-

essarily imply that it will work under different circumstances. In this chapter

the approach will be applied to standard MOO test problems. The results from

the model will be analysed using the hyper-area indicator described in Chapter

8 in order to determine the robustness of the approach. The performance of the

approach will also be compared to the performance of a commercial optimiser for

the same two test problems.

9.1 Formulation of the Test Problems

Coello Coello (2009) suggested several test problems that can be used to evaluate

the performance of a MOO algorithm. The MOP3 maximisation function and

the MOP6 minimisation function were selected as suitable test problems for this

study. Both problems have two objective functions, disconnected and asymmetric

regions in solution space, and complex Pareto front shapes. The true Pareto front

is known for both problems.

The MOP3 maximisation function can be formulated with

f1(x, y) = −[1 + (A1 −B1)
2 + (A2 −B2)

2]

f2(x, y) = −[(x+ 3)2 + (y + 1)2]

A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 1.5 cos 2

B1 = 0.5 sinx− 2 cosx+ sin y − 1.5 cos y

B2 = 1.5 sinx− cosx+ 2 sin y − 0.5 cos y (9.1)

where −π ≤ x and y ≤ π.
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The MOP6 minimisation function can be formulated with

f1(x, y) = x

f2(x, y) = (1 + 10y)[1− (
x

1 + 10y)
)2 − x

1 + 10y)
sin(12πx)] (9.2)

where 0 ≤ x, y ≤ 1.

9.2 Approach Followed for Solving the Test Prob-

lems

The same ABM MOO approach that was described in Chapter 7 was used to solve

these test problems. An agent was assigned to each of the objective functions

with the goal of optimising it. After each new strategy evaluation the agents

had to negotiate in order to decide on the next strategy to be implemented. The

outcomes of the previous evaluations affected the agents’ satisfaction indexes and

therefore influenced their negotiation style.

The Pareto approximation set was once again populated with all the acceptable

solutions from the current strategy database and contained all the benchmark

solutions.

9.3 Evaluating the Performance of the Test Prob-

lems

The quality of the solutions found by the agent-based MOO approach is com-

pared to the performance of the MOO genetic algorithm (GA) of Matlabr. The

Matlabr MOO GA is a commercial product based on the NSGA-II algorithm of

Deb et al. (2000). The hyper-areas for 1000 replications of the model per test

case is calculated using the ABM approach and the MOO GA algorithm. The

hypothesis suggested by Bekker (2012) and described below is tested by making

use of the standard two-sample t-test. The basic null hypothesis of the test states

that the data in the two test sets are independent random samples from normal
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9.3 Evaluating the Performance of the Test Problems

distributions with equal means and unequal, unknown variances. The alternative

hypothesis states that the means from the ABM MOO approach is greater than

the mean of the Matlabr MOO GA. A significance level of 5% is assumed and

the one-sided right-tail hypothesis test formulated by:

H0 : mi
AIH
≤ mi

MIH

H1 : mi
AIH

> mi
MIH

(9.3)

where mi
AIH

is the mean of the approximation sets produced by the ABM

MOO approach of the i -th test problem, and mi
MIH

the mean of the Matlabr

approximation sets.

The rejection of the null hypothesis in favour of the alternative hypothesis will

show that the ABM MOO approach produced higher quality solutions than the

algorithm of Matlabr.

The results from the test problems are presented next.
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9.4 Test Problem Results

The Pareto front obtained from a replication of each of the test problems are

shown in Figure 9.1 and 9.2.
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Figure 9.1: Pareto Front for MOP3 (Max).
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Figure 9.2: Pareto Front for MOP6 (Min).
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It was found that the ABM MOO approach in general created larger hyper-

areas than the Matlabr algorithm was able to achieve. The boxplots showing the

ABM MOO and Matlabr hyper-areas are presented in Figure 9.3 and 9.4.
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Figure 9.3: Box plot for the hyper-area comparison for the MOP3 test problem.
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Figure 9.4: Box plot for the hyper-area comparison for the MOP6 test problem.
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The results of the hypothesis tests for the MOP3 and MOP6 problems using

the hyper-area indicator are shown in Table 9.1. The hypothesis is rejected for

both problems. Therefore it is found that the ABM MOO approach is superior

to the Matlabr algorithm for these problem instances.

Test Problem h-value p-value CI low CI upper t-stat Outcome

MOP3 0.0032 1.9853 ∞ 2.7351 Reject

MOP6 0.0029 0 ∞ 2.7651 Reject

Table 9.1: Outcomes of the hypothesis tests for the test problems.

9.5 Concluding Remarks: Chapter 9

In this chapter it was proven that an agent-based approach to multi-objective

optimisation can generate good quality solutions for two recognised MOO test

problems. The solutions were of a higher quality than the solutions generated by a

commercial optimiser from Matlabr. This proves that the ABM MOO approach

has the potential to be effectively applied in a variety of different MOO problems.

The following chapter provides a conclusion for the study and suggests future

research opportunities.
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Chapter 10

Conclusions and Project

Summary

This study investigates the feasibility of making use of an agent-based approach

to multi-objective optimisation by applying it to the (s, S) inventory problem.

A literature study was presented to review the work that had been done in

terms of agent-based modelling in multi-objective optimisation. Although the

two research fields have been used together before, there were few instances in

the literature where a pure agent-based approach was applied to MOO.

The characteristics of agents lend themselves to the modelling of the negotiation

processes between conflicting parties. By considering multi-objective optimisa-

tion as a negotiation between two parties, each with their own objective, the

potential therefore exists for agent-based modelling to do multi-objective optimi-

sation.

The (s, S) inventory problem, which is well-known in the Industrial Engineering

domain and formulated in Section 6.4, was identified as a suitable environment in

which the approach could be evaluated. An agent-based model of the inventory

problem was developed in Anylogic, with two agents responsible for the two

conflicting objectives – minimising inventory cost and maximising service level.

84

Stellenbosch University http://scholar.sun.ac.za



The simulation model was run to determine if the agents have the capability to

find good solutions.

Several performance measures were identified to analyse the performance of

the approach. The difference in hyper-area was used as a measure in order to

compare the performance of different scenarios.

The results and analysis revealed that:

• The human decision-making process can be effectively modelled by making

use of the negotiation abilities of agents.

• Agent-based modelling can be used as a metaheuristic for multi-objective

optimisation.

• Care should be taken to ensure that the agents are aggressive enough in

their negotiations, otherwise they will not be able to achieve the desired

results.

• Providing the agents with the ability to remember their satisfaction during

the previous strategy’s implementation allows them to find better solutions.

The agent-based approach to MOO was also successfully applied to a recognised

MOO test problem and benchmarked against a commercial optimiser further

proving the ability of the algorithm to generate meaningful solutions.

This study provided insight into how a multi-objective optimisation can be

performed on a theoretical textbook problem by making use of agent-based mod-

elling. Future research in this field could focus on further developing this meta-

heuristic for more practical applications. Possible application areas include com-

plex supply chain systems, financial models, risk analysis and economics.
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