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ABSTRACT

Some problems of applied mathematics, for instance in the fields of
aérodynamics or electron optics, inrolve Certain,singulér integrals
which d0‘nét exist classically.  The problems can,vhowever, be solved
kprovided that such integrals-are interpreted as finite-part inregrals.

Although the concept of a finite—part‘integral has existed for
about fifty years; it was pdssible to define it rigorously only by means
of distribution theory, deﬁeloped about twenty—-five years égo. But, to
the best of‘our'knowledge, no quadrature formqla.for'the numerical eva=
lﬁation of finite-part integrals has beenrgivén in thé‘literature.

Tﬁe main concern of this thesis is»the,study_and discﬁssion of two
kiﬁds of.éuadrature formulae‘for evaluating finite—part-intégrals in= |
 volving an algébraic singularity.

Apart from a historical introduction,bthe first cha?ter contains
some physical examples of finite-part integrals and their definition
Baséd on distribution theory. The second chapter treats the most im=
portant properties of finite-part integrals; in particular we study
their behaviour under the most common rules for ordinary integrals.

In chapters three and four we derive a quadrarure formula for equispaced .
stations and one which is optimal in the sense of the Gauss—tyée quadra=
fture. Iﬁ connecrion ﬁith the latter formula, we_alsb study a new ciasé
of orthogonal polynomials. In the fifth and last chapter we give a
deriyarive—free error bound for the equispaced duadrature,fprmula. ‘The
 error quantities which.are independent of the integrand were computed
for the equispaced quadrature formuia and are also givén;. In the case
of some‘examples, Wevcompare-the computed error bounds with the actual

' errors. |

(1)
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Besides this theoretical invéstigatioﬁ of finite-part integrals,
we also computed - for'several.orders of the‘algebraic singularity.—v
the;coefficients for both of fhe:aforesaid quadrature formulae, in-
which thé number of statioﬁs ranges from three up tQ>twenty; In the
qasé of the equispaced quadrature formula? we giyguthe Weighfs ana -
for integer order of the singularity - the goefficienﬁs for a numerical
derivative of the integrand function. For the Gauss;type.quadrature,
we give.the statiéns, the cdrresponding wéights.and the coéfficients of
the orthogonal polynoﬁials. |

- These data -are being published in é separate repdrt [ 18] which

~ also contains detailed instructions on the use of the tables.
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NOTATION

jﬁ(x-xo) Diraé'sﬁdelta function

0(x-—xo) ' step function

II..., f.p. [..., % ‘ finite-part integrals

o) ' ..a test function as a mappiggs
D -the.se;_éf all test functiohs
| (d . S a distribﬁtion
-{d,» - _ the vélue'of (d fbrva épecific )
'f(x),g(y),h(t);F(x),... ‘  real valued fuﬁcgipns
| X, Ystye.. ' reél'variéblés- 

Ln | : natpial’logafithm

 Cn [s,r] , épace of functions which are n times con=

tinuously differentiable in.[s,r]

‘Re(X) ' . ~_fea1 part of fhe complex magnitude A
Rn(x) ' remainder of Taylor's series
ST ' | a éingular, a regular point of an\iﬁtegrénd
Cy Ly X ) real vectors
A,B,a,béu,B, ) real céefficients
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Gn . Gram determinant
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| £9’21’£2’£3 ' : >light vectors
En(f? error of a quadraturé fdrmﬁla
Gn,p L error quantity independgnt of the integraqd '
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CHAPTER 1

THE DEFINITION OF A FINITE-PART INTEGRAL

Historical introduction

Thé‘concept "finite—part.integral" (f.p. integral) was first

introduced by the French mathematician JACQUES HADAMARD in 1923.

~In his book "Lectures on Cauchy's Problem in Linear Partial

Differential Equations' [ 9] :hé define& a certain class of f.p.
intégréis and also stated some of their main properties.‘ The
study of non—parabolic linear partial différential equations of
secondvofaer with an odd nﬁmber of variables hédvprompted him to
introduce this.new_type of integral.

In the folléwihg wé give a brieflsurvey.of his reflections
on a specific example.

Given the equation for cylindrical waves (hyperbolic type)

92 22 '32 : '
Fu) = &8 . 270 1970 ryvt) - (1.1.13)
9 x? ay2 c2 92 '

where u(x,y,t) is an unknown function (e.g. the velocity poten=

tial) and c¢ a constant (the veloecity of sound in the gas), the de=

termination of u can be completed by the Cauchy—typeiconditiohs
(%,7,0) = u_( Ou (y,7,0) = u,( 1.1.1b
ulx,y, ) - uO X,Y), a—E X,Ys ) = 11] XQY)) o ( ol )

(1)
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.where u0 and Uy aré also assumed given.

The value of the soldtion function u‘at a given point
(Xé’yo’to) may be calculéted by f}rst finding fhe’Green's function
v = v(x,y,t; xo,yo,to) which is tﬁe solutiqﬁ'of tﬁe adjoint‘equa=
tion G(v) = (because F is self-adjoint) F(v) = 8(x-x_)6(y-y_)8(t=t )
(in modern notation)vand,tﬁen substitutiﬁg v into the generalized

Green's formula

[[] [vF(u) - u6(v)] dxdydt = [f [ugl_ v du
- T g - n

E‘] dS,. (S = a‘T).

(l.lflc)

HADAMARD assumed that if we draw the characteristic conoid from
the point (Xé’yo’to) as vertex, Qne of its sheets will cut out a
certain (finite)'portion So of S, and, together with So’ be the
boundary of the portion T of our space (x,y,t). This geometri@
condition is expressed by saying that we have to deal with the
interior problem. Under these assumﬁtions it is well known that
for linear hyperbolic equations thevintegral on the right-hand side
of‘(l.l.lc) has to-be taken only‘overithe base-Sb‘and not over the-
maﬁtle of T.

In the particular example, he assumed that SO is iﬁ the plane
=0,

The significant featuré’of HADAMARD's method for solving
(l.l.la).— where for the sake of simplicity he assumed c=1 - con=

sists in directly substituting the Green's function

1 TR P '
Al ‘where ' = (to t)? - (x xo)2 (y YO)2 (1.1.2)
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and ' = 0 represents the equation of the characteristic'

conoid with vertex (Xo’yo’tb)’

into (l1.1.1c). Doing so, he at firét‘found a meéningless impro=
per integral since the quantity under the integration.sigﬁs
bbedqﬁés infinite in én impermissible manner. ,This fact had
also beep'previéusly récognized by éther mathematicians. How=
ever, they were able to - and.in fact forced‘fo - solve the
Caucﬁy_problem for the_c?lindrical wave equation by ﬁsing other
kiﬁds of functions for v. But such methods have one decisive
drawgack: not the solutioﬁ'itseif is obtained direct as by
HADAMARD'S'method,'but only an integral of the solution func=
tion.

We shall now show what actualiy happens when applying this
method. |

Inserting fhe Green's function (1.1.2) together with the
initial conditioné (1.1.1b) in formula (1.}.l1c¢) and then inte=
grating the 1eft~hand.side, we obtain, due to

6(v) = 8Gx,)8(yy)8(emt ),

' . Uy I
2t u(x ,y ,t ) = fff-—— dxdydt + ff [—~-u —] dxdy. (1.1.3a)
. o°"o’ o ! ) o dn
_ T VT 5 /T

2

. d _
Since — = ¢ 3t

= , where ¢ has the value +1 if the useful half-

conoid is directed towards the decreasing t's (the case of t, > 0)

and -1 in the contrary case, we have

, ' (1.1.3b)
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irrespective of_tﬁe sign 6f'to.' We see immediately that this ex=
pression yields a meaningless integral if if is inserted in
(1.1.3a). Nevertheleés, HADAMARD was qonvinced he could find the
correct solution by this method,‘prOVided he could give megning to.
such "improper" integrals. This idea led him to conceive f.p.
integrals. | Inn [ 91, he saysﬁ "I thought-it.is worth while

to attain this, though we cannot do so wifhout introduciﬁg a
.Arather parédoxical notation which I shail-now épeék of".

Introducing his néw-kiﬁd of "improper"»integrals; he starts -

with a simple example corresponding to the previous Green's fgﬁc=

tion, viz.

b , _
J AG gy o (1.1.4a)
Vb o

Direct differentiation of this integral with respect to b yields

the absurb expression

b . .
_%--J A ax + [_f}ﬁ)_] i . (1.1.4b)
a (b—x)B/2 | Vb-x x=b L o
a sum of two terms, the first of which has no meaning as con=
taining.an infinity of -order 3% under the integral sign and the
second being evidently meaningless. HADAMARD remarké that there
are nevertheless two approaches for evaluating the»derivative‘of

(1.1.4a).



(1

(2)
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Direét differentiation (i.e. differentiation without any
transformation) would consist in replacing the real inte=
gral (l.1.4a) by half the complex integral taken along a

circuit consisting of two lines along ab, connected by

a small circle around b! (see fig. below);

a

: 5
— _*_._{}_

In order to avoid complex quantities, he notices that
(replacing b by x in the upper limit) not the integral

in (1.1.4b) but the algebraic sum

X

J A(y) gy - 2 AG
_ vV b=-x

a y)

approaches a perfectly definite limit when x approaches b.

Moreover, he says,_the same takes place for

X
f A(Y) dy + -2 (1.1.5) .
a __y) vV b—x

if B is any function of x, provided it is differentiable
(or at least satisfies Lipschiﬁz’s condition
IB(xz)-B(x1)| < K]xz—xll, X15%, € {a,bl), and such that

B(b) = -2A(b).

! Here A(x) is supposed to be analytic: a hypothesis which
is easily avoided since it is sufficient to suppose that
. A(x) ‘has a derivative.
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Indeed, if we integrate the integral in (1.1.5) by

parts and form the limit, we obtain

X
- 2A(a)(b—a)"% -2 1lim [ AG) 4y - (1.1.6)
x*b a v b~y -

uﬁdgr the ébove conditioné»on B(X).

Furthermore, we notice the important propefty that the
result (1.1.6) is independent of the choice of thisAfunctidn
B. This is.owing to the above assumptions made'in_regard
to B and the fact that‘the denominagor is of a fréctional
order, while a change of the function B (under our hypo=
thesis) would alter it by terms containing as 'factor
(b—x) to at least the first péwer, S0 that.the corresponding
terms in the fraction would necéssarily vanish for x=b.
Thefeforg, in order to calculate the iimit of (1.1.5), werdo
not even need to indiéate_ﬁhét special function B we choose.

HADAMARD denoted that limit by "the finite part' of the

integral in (1.1.4b)'and'wrote it

A(X) dx

QJ%U"

—x)

The sign I ' _being read "finite part of".
"If A is analytic, this expre581on can equally well be
defined as_half of the correspondlng integral taken along

the circuit mentioned previously.
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The same symbol was similarly defined by HADAMARD for higher
orders of infinity, provided they always are fractional. The

integral

b . _
[ A(X)+_ dx, ‘ p¥1,2,3,.;.
RGO .

.is meaningless, but he defined Ehe'quantity

I=‘[——A(i)—rdx | (1.1.7)

1_\Pt3
a (b—x)

(the finite part of the integral in qﬁestion):

(i) if A is analytic, as half of the corresponding integral
taken along the above-mentioned circuit;
(ii) if A is supposed to have only p derivatives in the vicinity

‘of b, as the limit for x=b, of the sum

X : _
J v-A(y)+— ay + —BG)__
L ()P (b-x)P72

B(x) being again any function bound by the conditions:
'(a) that the limit in question must exist;
(b) that B must be differentiable p times, at least

in the vicinity of x=b.
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Again, the arbitfary choice of B has no influence on the value
of the limit obtained. We may say briefly that HADAMARD gave a
ﬁeaning to those "impfoper"'infegrals By removing "fractional
.infinities" at b.

Of course, his concept may also be introduéed for the

integral

b _
j _AG) Cdx,  p=1,2,3,... . (1.1.8)
a

(b-x) P

¢ being no longer necessarily equal to 3}, but still being
necessarily contained in (0,1). He also remarks that-such

considerations would even hold good to a certain extent for

b o ' A :
- JA—(XL dx C1.1.9)
jef o

with p an integer. This integral could be reduced to a finite

value by.adding-the terms

B(x)

(b-x) P! * B (x) 2n (bx) . c (1.1.10)
-X ]

But then, he says, for p > 1 we coﬁld, by adding to B(x) terms
in (b—x)pnl, modify the result in an arbitrary manner; There=
fore this result is not determined when we merely know the‘inte=
- gral (1.1.9), but requires the édditive terms (1.1.10) to be

given as well.
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HADAMARD aléo gave a simple method for calculating the

actual value of his f.p. integrals}_ This method consists in

l b | : ' ,
J 2. - (1.1.11)

2 (bex) b VPa

~first finding

,Which is easily deduced from (1.1.6). If we now want to- cal=

culate,. for instance, the quantity

‘'we substract from A(x) its expansion in powefs of (b—x) by

. N —- 1 . . . . .
Taylor's formula up to the term in (b-x)P , which changes our
expression into an ordinary integral; then we have to integrate

(according to our meaning) such terms as

a (b- x)q+

b

-1
(q=3) (b-a) 972

' b -
I A(x) dx = - A(b)

) ()P (p=}) (b-a)P ™

the value of which is -

, 8o that finally

T =

L. T

(<1yP 1A 1) (3 TI A, ()
- I

(p-1) !} (b-a)?2 T 9% (1.1.12)

(b-x)P"2

(RS
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where

(p-1) _
A GO = A~ [A®D) ~AT () (bmx) + oo+ (D ! éf——T7$El (b-0)P7'] .

This is equivalent to using the former definition and taking,
for B(x),

. ' ' o _ >P"1 (p-1)
B(x) = A(b) r - A’ (b) P Gl b S fb) .

—1 oy !
-0 -H -0 (-1} (b-x)*

Besides introducing this method of actually evaluating.f.p, inte=
_grals; HADAMARD also stated some of their principal properties.
The rules for calculating a symbol such as (1.1.7) are generally

identical to the rules applicable torbrdinary integrals, as far -

, , b c b
as equalities are concerned, for instance f = f + f and so on,
a ‘¢

Changing the variable ie alse.permiesible, provided the variable
is regular in b, i.e. one variable has.with respect to the other
a derivative, finite and‘differentvfrom zero, such that the
order of infinitesimals around b is not’cﬁanged.

Any property impiying aﬁ inequality ayso requires due pre= .
caution since we cannot conclude anything as to the sign of a
f.p. integral from the knowledge of the sign of the‘function,
ae the example of (1.1.11) immediately shows. We shall return
to such propertles 1n.the next chapter

| Replacing the function A by another A in (1. ].12), whereby
I is changed into i, and flndlng,an‘upper limit for the d1ffe=.
rence |T—I|, we can write (on account of the well-known expres=

sion for the remainder of Taylor's series)
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13-1| < HORIOINNINORNCIN

o : a
o 1

o+

~(p~1 (p=1) .. KA
LR a0y | (A
n o o b
p-! _ P
' ' il , .
where a, = 1/[i!(p—i-%)(b—a)p 177 (i=0,1,...,p) and Ap is an
upper limit for the modulus of the p-th derivative of A in (a,b).
"If, for all € > 0, there exists a‘setv{So,Gl,.;.,Gp} (6i >0
for i=0,1,...,p) and a function A (under our hypothesis (i) or

(ii)) such thaf li-II < € when max Ig(i)(x)—A(i)(x)l < §.
. : kel a,b] , » i

(i=0,1,...,p), we call the value of our f.p. integral (1.1.7)
continuous'with respect to the function A. |

HADAMARD aléo éxtended hié_concépt of f.p.'infegfals to
multiple integrals, using arguments similar t§ the abové. In
this thesis we are, however, restricting ourselves to one-
dimenéional'f.p. intégrais.

With HADAMARD'S concept of'f.p. integrals in mind, we return
to his method for solving the cylindrical wave équation.

Substitutiﬁg (1.1.3b) into the right-hand side of (].1.3a);

we obtain

' _ u1 u
on | ux_,y_,t ) = f{f /é dxdydt + [f /——_F— dxdy - |t_| l [| —= axdy.

3
r SO SOF/Z

Introducing the polar coordinates x = X_*fr cosy, y = v tr siny

(r = \/(x—x-o)z-r(y—yo)2 ), the latter f.p. integral can be written

"~ as



AT
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el
2 ° uordr
J dy .
ST
o o (t%-r? f
. o .
‘As previously explained (see formula (1.1.12)), we have
e, el |
: u rdr (uo-u)r -
= ) dr - s
3 3 v
o (t(z)—r2 N e (t(z)—r2 h ltdl

where u stands for the value of u, at the extremity of the cor=

responding radius, i.e.
u = + F o+ ing).
u uo(xO |tolcos¢, Y, .|t0|s )

Thus we finally obtain

27
T L i,
2m l%(Xo’yo’to) = IJ‘J’ F.:_‘ dxdydt +IJ’ _;‘ - :/ (uo_u) rdrdy + I udy ,
: T S0 r ?- o

- which is indeed the'correct solution of ouf Cauéhy problem for thé
~cylindrical wave equation.(See e.g. [24 1).

We remark that HADAMARD succeeded in ‘dealing with the equa=
tibnifof damped cylindrical waves in a very similar way.

Before we conclude this brief survey of his new type of
"improper' integrals, we consider a femarkable example.of a f.p.

integral given byvhim in [ 91.
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It 1s well_known that the intégral representation of the

Beta function B(w,z), w and z complex, viz

1 o
I (l—t)w—ltz_ldt, ,

o

is valid for all w,z with Re(w) > -1 and Re(z) > ~1. HADAMARD
‘demonstrated the existence of a very 31mllar 1ntegra1 représené
tation which is valid even for certain real arguments < -1.

He comsidered

1 q-2 ' ' q-1 -
q=1,. 2\m3 mt =5 2 Coo m—3 7
J %1 (OL"X ) de = Q J t » (]_t) Zdt' =0 B(m+2’2)’
' o

g (1.1.13)

where q is any positive integer and m any integer = O. Starting

. . . . +1
from m=0, we obtain f.p. integrals containing (]-ft)n 2 or

n+} . . . . . .
(a-xz) 2 (n a positive integer) in the denominator by diffe=
rentiation with respect to 0 (or by a classic integration by
parts, with respect to t, appiied to the second form of the inte=.

gral). Doing so, we see that

+o »l] 4=
q-1 - 2 _
(1) J————-rdx or J_—Tdt
_/”(a—x ) . (1-g) "2

is zero when q is odd and n > !
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(i1) otherwise
l7+f& 47! ’ q;—]_‘n F(SZ—I)F(%;H) 8019y ( : 3
dx =a - - Zsm) e 1.1.14)
- (-2 rd-mragy

By expressing the Beta‘fqnction-of (1.1.14) in terms of.F—func=
tions,‘if_is possible to:Qerify thaf'the numerical factor will
‘be the same as in‘(].l.13), except that'm is:changgd into -n,
i.e. the factor is B(%—ﬁ,%&. If we set a=1, wé obtain in .

particular the relationship

a_
L 1 E 1
f —rdx = I £ dt = B(}-n,d),
(] 2)n+§ (l_t)n+§; ’ 2
-1 o .'

n any positive integer.

This means that, for certain real arguments not greater than -1,
the value of the Beta function is given'by the f.p. of the usual

integral definition.

I.1.2 When the theory of'distributions had been established by.LAURENT
SCHWARTZ,‘who.first presented this theofy in ‘a course of lectures
given in the Seminar of the Canadian.Mathematical Congreésvin
»1949, it becéme possible to study f.p. integrals in a more géne=
ral wayvthan HADAMARb did. This study led to quite'a new int¢r=
pretation of those integrals.

L. SCHWARTZ published his theory of distributions in [ 28 .

We shall here briefly repeat the results of that section of [ 28]



Stellenbosch University http://scholar.sun.ac.za

_15_

where he treats f.p. integraié.from the pointvof view of'diétri=
butions, and we assume tﬁe.basic concept of the theory of dis= ‘

tributions to be well known. Beforé,gbing further, we explaiq :
the notation which will be used.

We choose DIRAC's "bfa" and "ket" no£ation for distributions
and test fupctionsf Accordingiy; we deﬁote a typiéal test
fﬁﬁétion.as a whole (i.e; as a mapping, not as a set of valués)
by ¢ (the symbol ? islréad "ket"), and the set of éll test
functioﬁs by D. We denote a typical distribution (i.é.:anyA
linear bontinuous functional on D)'by (d (thé symbol ( is
read I"Bra") and denote the number thch is the value of (d for
a specific ¢ by (d,p ("bra—c—ket";.'henée bra and ket).. If
this number is = 0 for all o) € Disuch that Q(i) Z 0 for all x,
we call the distribution (d positive. if f(x)vié aﬁ inte=

grable function, we may define the distribution ¢ f "generated"
) 5
by f(x) by (f£,9 = [f(x)¢o(x)dx for all @ € D. Such a
distribution is called regular.
We shall now see how f.p. integrals arose in L. SCHWARTZ's

theory of distributions.

He considered the function

IO for x < 0

f(x) = '

ll//? for x>0

which is not defined at x=0. The derivative of this function

exists and is continuous in the open intervals (-»,0) and (0,+»).

Differentiation, in the sense of distribution theory, of the
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distribution (f genératéd by f (x) yields

CE',0

: -1
~-{f,p" ='¥~J o' (x)x %dx
)

1

[o9]
. - : _ _l N
- 1im J o' (x)x *dx,
' ore ) B

- and appiying integration by parts we obtain

. ) _3 )
(f',9) = Linf £4E) 4 f ¢ (x) (-3 x 2)dx]
' e /g e S

Since v(g) = v (0) + 0(g) for €-*0,-wé have finally

_3 - —1 - o
CE',9 ='1in1[J¢(x)(—% x 2)dx +¢(0)e 2] . (1.1.15)
4 €0 : . :
. A

It is not difficult to see that the right-hand side of (1.1.15)

. is exactly HADAMARD's definition for the f.p. of
-f ¢ (x)(~% x 2)dx; 1i.e. the value of this f.p. integral is equal
Ne . ' .

to the value of the derivative of (f on the test:function e) .
This faét repdered it possible for L. SCHWARTfod study f.p. inte=
grals from the point of view of distributions. He generalized
thié concept of a f.p. integral in thé following way. |

Let g (x) be a function whiéh.is integrable in the closed

interval [ a+e,bl, € > 0, but not in [ a,b] . It could be that
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g(x) 1s the sum of a polynomial of'l/(x?a) and a function h(x)

which is integrable in [a,b]:

B

Cg(x) = P[1/(x=a)] + h(x) = z——r—i— + h(x).

(x-a) ©

By a polynomial, he meant a sum of powers of monomials, in which
the exponents Ar imay be complex, Re(Ki) > 1, but not integers.

- Under this assumption, we can write

b
f g(x)dx = I(e) + F(g).

a+¢c

I(e), the "infinite part" of the integral, is a polynomial in é

and has the erm

A -1
T 1 r

I(E) = ZA o (_) s

€
r

whereas F(€) has a finite limit F for €~0. This quantity F is

the one which HADAMARD calls the f,p. of the integral

) : .
_f g (x)dx and L. SCHWARTZ writes for it:
a .
b A AT B
F = f.p. J g(x)dx = = z K:T (—b:;) + f h(x)dx.
8 a a .

His idea of generalizing the f.p. integral which still
contains a non—-integer exponent is based on the following fact:

since ¢) 1is indefinitely differentiable, the function



Stellenbosch University http:/scholar.sun.ac.za

_18_.

g (x)¢ (x) has the same properties on [a,b]l as ¢(x); 1in partis=

cular it is not integrable at x=a, and thus we may define the
f.p. ,f g (x)y (x)dx.
- a

But, since g (x) is integrabie everywhere on [ a,b] except at

2

x=a, g(x) defines a distribution (g the value of which is

given by
b .
(g0 =‘f.p; J g (x)¢ (x)dx.
v » !

If we assume the function ¢(x) to be zero outside a finite
interval [ a,b] and to be not integrablé at a finite number of

points a; € [a,bl, we can write in a more general way
[ee]
(g,» = f.p. J-g(x)¢(x)dx,
) —00

Replacing ¢ (x) by our above-mentioned function f'(x), we see
"that the derivative of (f in the sense of distributions is

nothing else but the distribution_generated.by fr, viz
[eo]
D D
(f',0) = f.p. p(x)(f% x 2)dx.
. o :

At this point, we also refer to the footnote 1 of chapter IV

- (page 79).

2 L. SCHWARTZ calls such a distribution-a pseudo—function.
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We now come to his most important statement about f.p.

integrals. We calculate, still with the aforesaid function -

b .
i g(x)(x—a)Ang If we assume X to be -
a ,

g(x), the integral

complex; Re(}) > 0 and sufficiently large, g(X)(X—a)A_is in=
tegrable on [ a,b] and thus that integral is an ordinary one.
We consider the (cdmplex—valued) function F of the complex

parameter A as independent variable,

b
FOV) J g (x) (x-a) dx
. a

A | AA—x¥1' b \
= -l oo &) + J h(x) (x-a)"dx. (1.1.16)
r .
a

The first tefm in (1;1.16) is analytically cdntihuable; it
is a meromorphic function of A in the whole complex plane with
a finite numbgr of pélés at the points } =.Ar-1' The second
term in (1.1.16) is holomorphic for Re()\) > 0 and continuous for
A => 0. Thus, F(X) is meromorphic fof Ré(%) > 0, since the Ar's
are notbintegeré, and it is continuous for A - 0. Forming this

1limit, we obtain

AL A B F
F(O) = - z X;:T-(E:E) + J h(x)dx = f.p. J g (x)dx.
' a - a

L. SCHWARTZ therefore found that a f.p. integral involving
a non—integer exponent can be considered as the analytic conti=

nuation of the function defined by an ordinary ihtegrai.
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This is a q&ite new.intefpretation of a f.p. intégral.
But we remember'that HADAMARD had previously given an example,
'in connection with thé Beta function, ﬁheré such an interpreta=: -
fion is easily verified.

L. SCHWARTZ also made a vefy.important remark whichvcofres= '
ponds to that of HADAMARD concerning the signs of a f.p. integral
and of the integrand involved. - The pre?iouélyjmentioned function
_Hf'(x) < Obin its whole domain whereas the distribution (f' is
Vnot necessarily'< 0 for v = 0. But this means that thé signs
. of (f',9 (value of f.p.'integral) and f'¢ (integrand) may, in
generél, differ. |

The fact that the behaviour of f.p. integrals involving an
.integer exponent is completely different, was also recognized.

We now assume somé Xr'svto be integers and such tﬁat we can write
the previous funcﬁion g (x) in the form
A | A
g(x) = ) L T +.xja + h(x).
#1 (x-a)' ¢ :

The quantity I(g) in this case is therefore

and ﬂms

r
1t
+h
o]
S
o
—
il
~
o
™

- - LR Ln(b-a) -
= ﬁ{&] Ar_].(_a) + A Ln(b-a) +

A A1 \ b
I h(x)dx.
a



Stellenbosch University http://scholar.sun.ac.za

..2]...

Apart from the logarithmic term, the two most significant
properties of f.p. integrals involving an integer exponent are .

the following:

(i) They are no longer invariant with'respect to a change
of the variable.‘ vWe.shall return to‘this property in the
secondsection of the next chapter and here coﬁsfder only a
simpie example given by L. SCHWARTZ . It is clear from thé 

above definition that

dx

‘f.p. ?:= 0._

0 —— =

Transforming x by t = %, we obtain

nof K

1

d = e
IT— fn 2.
(o]

" (ii) F is not an analytic continuation'of F(A) till A =_0.

It.is immediately seen that F()\) tends to © if X\ tends to

» v b ‘
zero, whereas the f.p. f g (x)dx is the limit of F(A)-jAl/X
: a

for A = 0.

Concerning the last property, we remark that it is, neverthe=
less, possible to represent such f.p. integrals as an analytic
confinuation'by means of the conéept'of regularization-éﬁd by
taking the resiaue at the pole of tﬁaﬁ continuation.

Before we come to ouf basic formula‘defining f.p. integrals,A

we shall illustrate the occurrence of such integrais in practice.
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Physical exampies of finite part integrals

To give a first example, we. consider a -simplified calculation of -

- the velocity potential of a wing. Here one usually separates

the thickness effects from the incidence effects by introducing
the conéept of a very thin wing at incidence and adding the
thickness effects afterwards. The thin Wing-is then replaced
by a distribution of horseshoe wortices in the.plane z = 0.

The éross section'tﬁrough the tail of such a Horseshoe:

vortex is given in the figure below,

wi

_We have thus a pair of vortices, each vortex with an absolute

strength I', inducing a velocity distribution. The total linear
momentum B of the two vortices is equal 2eTl'. The component of

the velocity in the z-direction (called downwash) is given by
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Now, we ask for w if € tends to zero, i.e. the two vortices coincide.
Thereby, we require the total linear momentum B to remain constant,
which means that as € + O the vortex strength must tend to infinity.

Forming that limit process, we obtain for thévdpwnwash

lim w = 2 linm [o (o2 = 1] = o = (@) =
Tr.
>0+, >0+ .
In this case, w becomes infinite at the origin.
Since the wing is idealized by a_distribution of horseshoe

vortices, the downwash at any point n of the wing is given by

s
w(n) ::Lf.p. __B._(_.y._)_dy’
oo (yn)?
-5

whefe the integral is taken Qvér the span length 2s of the wing.

In order to obtain the correct'value for»w(n), we have to
take the f.p. of the singular integral invélved, But this fact
was not always recognized in fhe literature. TRUCKENBRODT, for
instance, evaluates such singulai integrals in [ 32] in such a way.
thaﬁ he ébtained the>correct result; deeVer, his method is
intuitive rather than mathematically founded. On'the other'hénd,
MANGLER applied the concept of f.p. iﬁtegfals for fhe calculation
of the downwash in [21], but hé did not define thgm'properly.

As a second example, we consider;the Newtoniah potential . of

a continuous mass distribution.
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Let there be given a simple, piecewisé smooth, space curve
C: x = X(s), y = v(s), z = z(s), s the arc length, and'further='
more let a continuous mass distribution v (s) be defined on C (such}

a distribution is called line density). Then

U(P) = U(X,Y,Z) =T f'y(rS) ds;.
: C

repfesents~the Newtonian potential of that distribution givgn on
C; r is the distance from the space point P(x,y,z) to the curfent
point of C. Thus, the:abové integral does not:only depend on

the iﬁtegration variable s, but also on the coordinates of P, and
is as a function of the latter continuous and arbitrarily often
continﬁously differentiable, provided that the point P does not
lie on C. Then, we can differentiate under the integral and

obtain the field vector

n. :
§;(x,7,2) = aiu' = J ¥ (s) —:— ds, i=1,2,3,
. b r 7 .
Where ni denotes the i-th component of the‘vector n.

Now, -we assume the point P to be on the.curve.C. Both
integralé above become then improper. If the siﬁgularity is
femovablé‘df integrable, i.e. 7(P) vanishes in a neighbourhood of
P, then the limits of the integrals afe still cénsidered.to define
the potential and the field vector respectively. of cdﬁrsé,

this will essentially depend on the behaviour of the given di$=
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tribution density ﬁ. But since in general v(P) # 0, these inte=
grals will not exist aﬁd then they'must be interpréted as f.p.
Adntegrals. We see that in thistase the integrand for the
pétential becomes singﬁlar as x—1 and that for fhé field vector
as x~2.

In practice, it can also be that higher order derivatives of
U.(they form tensors) have to be calculatéd. Thus; the order
‘6f the singularity of_théAintegrand involved increases.

As last example we calculate the potential atvaﬁy_space
point P(x,y,h) induced'by‘a constént chargé density o én the
(x,v) ﬁléne.

Introducing polar coordinates such that the origin coincides

with the x,y coordinates of P, the potential would be given by

[oo]

U(P) = 2mo J — L dr = 2ro/r2+h? | = "o —'2no|h|;

rVr2+h2 ' o
o) : ) )

which is meaningless since the above integral does not exist clas=
sically. We know that U(P) is eqﬁal -2n0|h|, thus in order to
remove the infinite term thé singqlar integral must be inter=
preted in the sense of an f.p. integral. ‘To calculate this-

f.p. integral we first write the potential in the form

B o0}
U= 2ﬂb|h| f.p. J X dx , where x = r/|h|,
o

x2+1
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\

‘and then substitute I/Y =

This yields, since d(Vx%+1 ) = x dx/Vx%+1 = - dy/y?,

241 into the latter f.p. integral.

o 1
'U=21r0|h| f.p. Jﬂ=2nalh|'f.p. J—d—z=—21r0|h|,
] g2 O.yz A _

which is indeed the correct value of the potential at P.

Direct definition of f.p. integrals within the framework
of distribution theory ' g

Among the function with non-summable singularities at .isolated

points, the most importantvin practice.are thqse with algebraic
éingularities. These are functions which, as x approacheé the
singular point.xo, increase aécording to some powgf of 1/|g-xo|. '
In this thesis we éhall consider only f.p. integrals Whiéh
involve such functions.

So far we have seén how f.p. integrals involving an algebraic
singularity of non-integer order were defined. In this section,
we shall give twb general formulae defining f.p. integrals by
means of the concept of regularization (see e.g. [ 71); onme
férmula-each for the cases of an integer_éﬁd‘a non—integer
exponent.

Since regularization is the main concern of this secfion,
we repeat its definition fully. Let f (x) be a function locally

integrable in some neighbourhood of any x%ﬁxo, X a fixed, given

. _point. A negulanization of - f (x) 1s any continuous linear func=

tional (d over D such that
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(dw = f f ()¢ (x)dx .
o
whenever the élosed inter?all[T]vdoes not.céntain X and for ali
test functions @) whose support - the closure of thé set onv
which tﬁey are not zefo - is containedvin the open interval I.
By means of any such fegularization,‘we define arf.p; inte¥
gral as féllows. Let the function f (x) be locally integrable
. : / :
over some ﬁeighboufhood of any_x?ﬁxo, and let (£ bé anyvregu1a=

rization of it. Then we define, for any interval [a,b] with

a< x_ <b, the §.p. integrnal of f (x)e(x) over [a,b] as

b . a © _ .
f f(x)¢(k)dg =({f,p =~ f f (x)¢ (x)dx - [ f(x)w(x)dx. (1.3.1)
a ' —o b ' -

The symbol % here denotes the f.p. integral and we shall use it

from now on throughout the thesis. The integrals on the fight%

hand side of (1.3.1) are ordinéry ones (since ¢ (x) 0 outside g3
finite interval); one or both of them may vanisﬁ. Whereas a
régularization is a distributioh, i.e. a functionai, the f.p. is
a number, the value of the»correspondiﬁg functional on a Speqific
function. We remark that this latter function need not be a test
function; it is sufficient»if.it gan-be uniformly approximated by
test functions over a finite interval, and this is certainly.

possible if, for instance, the function is continuous. We should

then take the limit of a sequence in (1.3.1).
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Finally, we observe thét, so far, our definition is not
unique (since the reguiérization is not unique):_ It is known
from distribution theory (see e.g. [ 7 1) that two different
regularizations éf the same function differ by some finité linear

(s &)

combination of N k=0,l,..., i.e. by distributions concen=
trafed at thé singularity. If thé Qrder of the singularity is
nbn;intéger, uniqueness can be achieved by requiring the (distri=
‘butional)'derivative of the regularizatidﬁ of f(x) ﬁo.be equal to
the regularization Qf thé (ordinary) derivative of 'f&x).- The
regularization defined 'in such a way commutes with differentia=
tion and‘is uniquely characterized by this‘broﬁerty.

As a typical example of a function Witﬁ the type of ‘singu=
larity under discussion, consider |

-3 :
X for x>0

x 2 = (1.3.2)

0 . for x <0,

The distribution generated by this function is not regular, since

3
[ x e v (x)dx
o .

. _ 3
will, in general, diverge. However, the function x+v/2

can be
regularized by the following method. = We form the distributional

derivative of .the (regular) distribution generated by the function
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o X 2 for x>0
s
X, T =N
LO for x<0
‘and obtain
(o]
1 _1 1
((X+ &)',¢> = - (x+ &,w) = - [ x o ¢! (x)dx.
5

‘Integrating the last expression by parts, whereby we introduce a

limit process for the lower boundary, we have

=1 ; _ .
<(X+.b)"¢> == J ££§2—§££91 dx.
X
o

It is easily seen that the latter integral now converges. In
view of the requirement regarding the derivative, stated above,

we can also write

e f'fléiL;ﬁ3gzl ax Sy
(o]

and it is easily verified that the right—hénd side of (1.3.3) .
5 ,
/o

.represents a regularization of the function X, o

© This same process of (distributional) differentiation can be

. . . . . - -n
continued, ylelding a regularization for X, P

after n’steps.
But we do not apply this process here in order to obtain our
definition formulae for f.p. integrals since, if the order of

singularity were integer, it would yield a formula valid only

for integration intervals symmetric about. the singularity.
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Another methéd of obtaining the result of (1.3.3) ié by
analytic continuation, and it is essentially this méthod we shall
use for finding our definition formulae; Before explaining the
uﬁderlying principle of the methéd, we introduce the following
defiqition. Consider a distribution .(fk depending on a para=
meter X‘running over some open region A in the complexvpiane.
Then (fx is called an analytic functidnai'of A in A»if’ <fk’¢)
is an analytic function of X\ for all w)Ié 0.

- The analytic contiﬁuation method is the following. =~ Let -
fx(x) be a function (of x) lqcally integrable when X is-in some
regionvA of the complex plane, but not in generél integrable
otherwise. = Further, for A € A_lét (fx,é)‘be_analytic'for every
v € D, and assume that it can be extended analyfically to a:
wiaer region Ai indeﬁendent of Q). Then with the;function

fy (x) for A € A —A we may associate the functional (£ ")
Ao ) 1 o Ao

obtained by analytic continuation of ~<fk’¢> out of A. " In other

words we shall write

A
o

f fx (x)y (x)dx =.a.c. f fA(x)w(x)dx.
o A ’ _

For instance, to define the distribution generated by the

function (1.3.2) we shall cdnsider the-function

o xk for x>0
A=

Xy
’ 0 for x < 0.
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" For Re(}) > -1 this is the regular functional given by
xh 0 = J x"p (x)dx. (1.3.4)
. ) 7
Now (1.3.4) is a function which is obviously analytic in ), for
its derivative with respect to ) is

f x)\ n x ¢ (x)dx.
(o]

Let us rewrite the right-hand side of (1.3.4) in the form

1 ' el
f [ (x) 0 (0)} dx + fxxw (x)dx + wx(f]) A

o 1

Here the first term is defined for Re(X)I> ;2, the second for ali
A, and the third for X # -1, Thus the funcfional defined in
(1.3.4) can be analytically continued to Re(X) > -2, X.# -1, i.e;
the function (xi,¢)Aitse1f is, for every ¢) € D, analytic for
Re()) > -2, except for A = -1 where it has a simple pole, the

residue there being ¢(0).

" In particular, for A = =% we have
1 ' o
_3 _3 _3
(x50 =J X Lo (x) ¢ (0)] ax + f x 2 g (x)dx - 20(0). (1.3.5)

o 1
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The right-hand side of (1.3.5) agrees with that of (1.3.3),

[ee)

: -3 : _
since 2 = J X &dx. The extension of the definition to complex

- values of A was thus performed in a manner consistent with the
previous definition for real A.
We may proceed. similarly and continue <x+ into the region

Re(A) > -n—-1, X # ~1,-2,...,-n to obtain.

oo 1 . .
L) ?‘f K 0 (x)dx - J X [o(x) = 0(0) = w'(0) = ... -

¢ 0y ax +f ¥ o (odx +
1

n-1
X

- __(n—'l )T

L ()
[CHE

+

(1.3.6)
k=1

Here again the right—hand side regularizes theAintegral'on
the left. This defines the distribution (xi fofAéll |
A F —1,—2,,..,;n. |

| In any:strip_of the form -n-1 < Re()\) < -n, the equation
. (1.3.6) can be written in thé simpler form
< n-1

oo = [ 5 100 =0 = '@ - - Er e WD @1,

(o]

(1.3.7)
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“as follows from the fact that for 1 <k <n

0

J x>‘+k_]dx = L .

i

Equation (1.3.6) shows that when we treat v(xi,w) as a function

of A, it has simple poles at A =-1,-2,...,-n, and its residue

at A = -k is o F D)y k-1, k=1,2,...,n.
It is shown in [ 7] that the regularization (1.3.6) com=

mutes with differentiation, i.e. ((xﬁ)i,w) = A (Xi—]

) if
A ¢v—l;r2,...,—n; Thus it gives exactly the f.b. required
b& our-definitioh based én regularization. |
The regularization given by (1.3;7) enables us fo_évaluate
. . b |
" any f.p. integral of the form f xxw(x)dx provided that A is
' a
not a negative integér.
We now come to the problem of finding a regularization of
_ x:n with n=1,2,3,...  The method of arriving at such a regu=
1arization is given in [7, page 85] and ﬁherefore it is here‘

described only briefly.

" In the neighbourhood of the pole A = -n, the previous

. Ao . .
function (x+,¢> can be expanded in a Laurent series. To

obtain this expansion explicitly, we isolate the term that fails
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to converge at X.= -n, &iz w(n_])(O)/[(n—l)!(A+n)]. " The re=
maining (regular) part of this Laurent éxéansion,is thén én'
analytic functiqn of A in the sfrip IRe(X) + nI > 1. In parti=
cular, we are interested in tﬁe valué of this regular part at

'A = -n which we shall denote by (x:n,w); so that by defini=

tion

(x M = lim 0 —‘é(“'”(O)/[ (n=1) ! (A+n)1 }.
* A-n : o :

It follows then that

<X:n;¢>' = J x D le(x) - 9(0) = x'(0) -~ ... -

[¢]

0 | _xn_1 (n-1)
- 0 (1-x) TE:TTT‘¢ S(0)] ax

(1.3.8)

where 6 (1-x) is equal to zero for x}> 1 and equal to one for
b. ) ‘ . - . A
x < 1. We emphasize that (x+n is not the value of Vx+ at

A : : )
A = -n, as (x+ there has a pole and thus does not exist at

this point.
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Purely formgily, ali we have to do when settiﬁg A =-n in
Qxi.iS'to muitiply the last term df the subtracted Tajlor series
by v@(l-x), so that it:is.set to zero when x > 1. The e;sentia1’
thing is that the integral in_(l.3.8) does converge and that it
does repfesent.a‘regularization of thé function x ° (és is seen
by considering a w(x) which vanishes in a ﬁeighbourhooa of
x = 0). - Howevé?,:the question as to whether the regulérization
_(].3.8) coﬁmutes with differentiation muét be. answered in the
bnegative (see [7] , page 87)5 Although we were able to -establish
a correspondence between the.ordingfy fun'ctionvx;n and a distri=
bution; we had to sacrifice the ordinary formula éor the deriva="
tive. It is shown in [ 27] however, fhat it.is possible to
define another regularization which c§mmutés ﬁitﬁ-differentiation,
but at the expenserf losing the analytic connection to (x+.

" Since . in viéw of problems of physics we prefer this iatter
properﬁy, Qe shall retain the above-mentioned definition.

By means of the'reguiarizations (1.3.7) and (1.3.8) we can now ‘
derive two definition formulae for f.p. integrals; one formuia
each for tﬁe casés Qf an inteéer and non—integer exponent.

For-bractical purposes we introduce a notation.for ;he re=
mainder of Taylor's series. Explicitly, Qe shall.use the form
of Lagrange: | |
1

. . X
B0 =06 - [0 ¢ e P @/mi = [ e ™ ey,
) |
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\

Thus we can write, for instance.

(Xk—n’¢) = { xx_nR (x)dx; -1 <X <0, n=1,2,...
+ n—1 o .
o .

For the f.p. integral, .according to (1.3.1),Vwe have the exprés= '

sion

[s.0]

r | _
% xk—nw(x)dx = <xi—n,@X - J xqup(x)dx =
) r -
r n-1 . <
= [ kanR (x)dx - Z'[w(k)(O)/k!] I'xk_n+kdx =
n—1 K=o o
o : : r

L S n—1 _ ’

J xx_an_](x)dx_+ 7080y L enskr 1)K
S ' k=0 '

(o] .

(i.3.9)

. ; L n : ' '
Proceeding in the same manner with the f.p. of (x+ we get one

additional term,

t R . n~-2 *

f:x'“w<x>dx - f KR Godx - 1 (e )/ [ gy s
k=0 '

(o] fo) . Y

I -
+ 10 @ 0y / a1y 1] J lax
|

A n—2 '
- f KPR Godx + ) e @ L ok R+
n k=o v _
0 .
+ n r w(n-l)(O)/(n—l)! . (];3.10)

Obviously, the sum over k drops out in (1.3.10) if n = 1.
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\

1.4 The general case -

So far we have assumed the singularity to be at the origin, but
this is of course not necessary. In the following, we assume the

singular point to be at X, =S, and consider the function.

[(x—s)k for x> s

(x=s), = 4 .
' .0 for x <'s.

- For Re()\). > -1, this function generates a regular distribution of

the form

[oo]

((x-s)i,w) = J (x—s)x‘w(x)dxg - - (1.4.1)

S

which is analytic in A. It is easy to see that the same method
of analytic continuation as before may be applied to (1.4.1).

. Instead of the equations (1.3.7) and (1.3.8) we here have the

regularizations

( (x—s)i,w = I (x—S)k[‘P(X) —p(s) -~ (x=s)'(s) — ...~

| .n-1 -
- e e,

if —ﬁ?1v< Re(}) < -n

-and »



Stellenbosch University http:/scholar.sun.ac.za

-38-

((k—s):n,w) = I (x-s) Mo (x) - 9(s) = (x=s)¢'(s) = ... -
s - o
y )™

o b '
= 0 (s+1-x) CEE w(n ])(s)]dx,

where 0 (s+1-x) is equal to zero for x > s+1 and equal to one for

x < s+l.-
- If we sef
R (x,8) = 0(x) — [9(s) +... (x-5)% M (s)/n1] =

X
= ;%—f ()™ O () ay,
S

the equations corresponding to (1.3.9) and (1.3.10) are here

r r _
% (x—S)A—n¢KX)dX = J (x-S)A—an_l(X,S)dx +
S

s

g A-n+k+1
+ .

1
RO
k=0 .

/I (A—n+k+1)k!]

(1.4.2)
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r r :
j( (x-5) o (x)dx = J Gems) TR (x,8)dx +
s ' s | '

Z (k)(S)(r )r_l+k+1/[ (-n+k+1)k!] +

o0 (r=s)0 D () /(n=1)! - (1.4.3)

(1.4.2) andv(1f4.3) represent our définitipn formulae fof thé more
general case of a f.p. integfal involving an aigebraic singularity
at any point X = s. | |

We now come‘to a generalization of f.p. ihtégralé which con=.
cerns.the,integrand function.. If Qe consider only the definitipn
formulae (1.4.2) and (1.4}3) it is no longer necessary to assume -
p(x) to be a test function. Iﬁdeed, it is sufficient to take
iﬁstgad of ¢(x) any réal‘function f(x) of the real variable x

satisfying the conditions

(i) f(x) € C 1in an interval I containing [s,1]

(ii) f(x) € C" in a neighbourhood U of x = s € I.

Under these conditions; the function f (xX) can be represented for

any x € U by

n-1 - ‘ '
Fao = 7 e O/ ¢ R (9,
k=0 .

where Rn denotes the remainder of the Taylor series.
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We see that it is thus- possible to define the f.p. integrals
/

r T
{ (x—s)}\_n f(x)dx | and % (x—s)—n f(x)dx |
s ' s

by means of our definition formulae (1.4.2) and (1.4.3).
From now on, we shall consider exclusively f.p. integrals.

which involve an integrand,fuﬁction_ f(x) € ct [s,r] .

We now apply the above definition formulae to such f.p. -
integrais.

Since we introduced a specific form of the remainder
Rn;l(x,s), i.é{ the form of Lagrange, we can go further.  Indeed,

changing the order of integration, for -1 < X < 0, yields

r r r
[ (st)k—an_l(X,S)dx = [1/(ﬁ—1)!]_J f(n)(y) J'(x—s)x_n(x—y)n_ldkdy.
s

S ) Yy

We shall now show that the latter double integral>can be almost
completely integrated'elementarily.  In order to do SO'Qe.must
separate the caseé A =0 and -1 <A <Q0. We start with';hé
former case and set
_ ‘ r .
I =[1/(-1)!] [f(“)(y-) 1 4y,

S

where '
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T n-i
E - J (x~y) dx .
' x-S x-S
y

The integrél T can easily be evaluated by means of the substitu=

tion t = (x~y)/(x-s). Thus we obtain
N 1 .kt _ '
I=-17 —— & +wm 2}, (1.4.4)
Kk ' :

Insefting (1.4.4) in the equation for I yields

n-2 o T ’

[-1/(-1)11 ] L

: : k+1_(n)  _
T : [ (r-y) °f (y)dy +
Koo (k+1)(r—s)k+] : .

r .
* J 2 (y-s) ™ (yyay -
)
) . T - ’
= Zn (r-s) J f(n)(y)dy}. : (1.4.5)
. S

If we evaluate the first integral on the right—hand side of
(1.4.5) sufficiently often by parts, theksecqnd one by'the sub=
stitution t = (y-s)/(r-s), the thifd one directly and insert I

in (1.4.3) we finally obtain the formula
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r ’ :
e ‘ n=2 —n+k+1
f (x) _f (s) e T ms) (k) _
1( IR I DY (e kzo e L (8)
K!

§ (k2 0y

(n—l)!(r—s)k+1

' k+i ' o
k! 1 -, (n~1-m
+ (n_])! f : )(S) +

o (k+1-m)! (r-5)"

i
Jf @ (z-s)exsl tn (1/0)at.

[¢)

-5

MR CEIDN

The remaining integral can, in general, not be .integrated ele=

mentarily but, if f(n)

(1.4.6)

is known, the integral can be evaluated

numerically in a convenient way by a Gauss=type quadrature for=

mula (given e.g. in [.30 1).

For the case -1 < A-< 0, we again set

. _ r
I=[1/(n-1)}] ff(“)(y) Idy,"
A
-where
r
I= J (x—s)x—n(x—y)n—ldx.

S

Integrating this integral (n#l) times by parts yields
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i ='n§] (~1)k(nfl)!(r—s)k7n+k+1(r—y)n_1_k . (—i)n(n—l)!(y-ij
: ' k ' n-1 .
k=o (a0l T (melsA-n) T (o+1+A-n)
m=0 - . m=o-

(i.4.7)

We insert the right-hand side of (1.4.7) in the above expression

forII and obtain

n-1 Kk, O-mtk+l 5 .
1= Z (-1) (r si J (r—y)n_l ]&f(n)(y)dy N
A k=o (n- ~k)! T (m+1+k—n) s -
: m=0
n r .
+;:,—(—'—‘—1——J - 1 P pay. T (.4.8)
I (mtl+i-n)s ’

' m=0

If we integréte the first integral in (1.4.8) (n-k-1) times by

parts and insert I in (1.4.2) we finally obtain the formula

r

(x) = ni] (-1) (r )k n+k+1
(x-s)n_x k=0 k
s ' : (n— —k)' I (m+1+)-n)

m=0

n-k ,_,\M, . sy, _D7k-m '
| oty e

(oo Atk
+ D e f(k)‘ﬂ] %‘@—)f(%)} :

)
T (m+1+)-n)

m=0

| A+]] '
( ]) (r= J t f(n)[(r—s)t+s]dt.
o]

-1<A<0

(1.4.9)
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" Owing to the stfucfure_bf the formulae (1.4.6) and (1-459) it
. 1s clear that a f.p. intégral can be eValuated by means of these '
formulae only if the cofreépbnding derivatives of f are known.
Bﬁt even then, the computatiohAcén"become'cumbersome. It would
therefbre be desirable to have a quadratﬁré formula for the nﬁme=
rical evaluation-of such f.b. integrais, _Wé shall present and
discuss two kinds of such quadrature formulae in chapters III

and 1V,
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CHAPTER II

PROPERTIES OF FINITE-PART INTEGRALS -

In the first section of chapter I we mentioned that both HADAMARD and

L. SCHWARTZ noticed some very strangé properties of f.p. integréls.

One we have observed is that if the integrand of a f.p. integrallis
positivé throughout the open intégration interval, the value of the inte=
gral can nevertheless be negative. We also noticéd-(see pagé 21) that

a change of the integration variable yiel&s a different result if ) is an
integer.“AThéfefore we may suppose that the Standard'classical rules for
integration do not, in general, apply to f.p. inﬁégrals},

In this chapter we shall study the behaviour of f.é{ integfa1§ when
subjected to the most comﬁon integration ruies, and aléo tﬁeir linearity
_and continuity properties and properties conéerning ineqqalitiés.
Thréughout, we shall require the integrand fumnction to‘be of‘Cn[s,r] S0

that the definition formulae may be applied.

2.1 The basic rules of classic integration applied to finite-part
integrals '

From our definition formulae (1.4.6) and (1.4.9) it follows that
a_f.b. integral is a linear functional.

Thus it is clear that

r k k r

(a) 7( I Ges) g Godx = ] “i]( (x-)"f  (ydx, -1 <A <0,
s i=1 _ i=1 s ' .o, real

. i

s<r

(45)
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“holds for every (finite) linear combination of functions fi(x).

(b) We remember that up to now we always assumed the sihgqlar,point
| s to have a value Smallér.than that of the other interval end
" point r. But this is only an apparent restriétidﬁ since the
case r < s can easily be transformed’to our standard case in
the following way.

Given

S ’ o :
%-—ﬂ’i)——dx, r<s, =-1<Ar<o0,

a (s—x)n—k 4

then by setting x=-y we can transform this f.p. integral to

-r
f f (-y) 4y,
Jly= oA

The latter f.p. integral now has the standard form since

-s < -r and its value is given by our formulae.

(¢) From the definition of a f.p. integral it follows that any
~ proper integral may also be considered as a f.p. integral.
. We can therefore split up [s,r] into [s,a] and [ a,r] .and

can write (omitting the integrand)
r a r , )
: % =.§ + J , with a between s and r,
s s a

where the latter integral is now proper.
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For ordinaryvintegrals'theré is the well-known rule that if the —

integrand f(x).>v0 in the integratibn interval [ a,b], then
5 | | v . .

f f(x)dx = 0. But in the case of a f.p. integral, this rule
a . v

is not applicable as the following counterexample shows.

1 in[0,1]1. Then, for instance,’

Assume f (%)

o

]( dx}\: I <o if -1 <A<0 and n=2,3,...
n-— o : '

(o]

A-n+l

It is also not true here that the equality holds if and omnly

if the integrand vanishes almost everywhere in the integration

interval. In order to show this, we again take f(x) = 1 in

[0,1] and calculate

1

$ 2o,
X

‘0 :

i.e. the value of this f.p. integral is zero although the
integrand function is positive within the whole open-

integration interval.

Furthermore, the classical rule that if f(x) =¢g(x) in [a,b]

b b :
then f f(x)dx = f g (x)dx 1is also not applicable to f.p. in=
a a . : :

tegrals. As a counterexample we consider f (x) = x+1 and

g(x) = 1 and calculate

1 1
x+1

fote- -t
X

(o] . . (o]
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(f) 1In general, we may>also‘not apply the classic inéquality

b ' b '
|[ f(x)dx| < | f(x)|dx to f.p. integrals as is seen from
a - a o _ ‘
the following example. Assume f(x).E -1 in [O,i], Then
1
I% “dX| = ]’
y X2
0o
- 1
but % 131| dx = -1.
: x?

(o}

Summarizing, we can say that as far as equalities are c‘onv=
cerned the common rules for ordinary integrals are also valid for
f.p. integrals but rules concerning inequalities are, in general,

not applicablé to them.

Basic transformations of a finite integration interval

Given any f.p. integral of the form
o ) v _

I(s,r) = % (x—s)x_nf(x)dx, -1<A<0,  s<r C(2.2.1)

s ' ' o

with f(x) € C'[s;r].

We first consider the simplest transformation of a finite inte=
grétidn interval, i.e. pure translétion,' Assume- that the interval
[s,r] 1s shifted by the distance a.r ‘Equivalently we cén say that

this translation corresponds to a change of the variable of the

-form y = xt a. With the new variable y, (2.2.1) becomes
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v ‘rta : r'
Hﬂaﬁhﬂ=={IYf(ﬁaﬂkﬂﬂﬁaﬁy=% (- PrEady.
sta s' B (2.2.2)
A_According to
r'-s' = r-s,
f (k) (y;a)/y=sv =f(k)(3),

f(k)(y¥a)/y=r' = f‘k)(r)
and .f(n)(y;a)/y=(r'¥s')t+s' =vf(n)[(rf8)t+s]

we see immediately that the application of the definition formula

(1.4.6) or (1.4.9) to (2.2.2) yields the value of I(s,r); i.e.

: I(sié,rta) é I(s,T) . ©(2.2.3)

The f.p. integral (2.2.1) is therefore invariént with respect to
any pure translation of its integration interval.

We now consider a transformation of | s,1] cohsiéting of a
trahglation and a scaling.. Assume that the interval [s;r] is
trénéformed to [s',r']; As' <r'. ‘This can be achieved by

setting

_ ) (@'msh)
r—=s

.(2.2;4)

With the new variable Y, the f.p. integral (2.2.1) becomes
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. r—s I+A-n | X—n: '
I(s',x") = (=) 7( (y=s")" F(Ndy, (2.2.5)
: : 4 ‘ S .
:'where
Fiy) = f[ﬁi;é—léﬁiil s

. Forming the correspouding derivatives which occur in the definition

formulae we find that

i

k
=2y W)

Y —s

F (3 /y=s"

N
(E==2) R

r —s

FO ) ry=r

,(—f—sT) FO (pmg) trs]

r —s

F(n)(y)/y=(f'—5')t+5'

| Applying the formula (1.4.9) to (2.2.5) and using the above expres=

sions for the derivatives, we obtain the identity

I(s',r') = I(s r) -1 <X <O0, : »(2.2.6)'
- 3 : A-n '
i.e. the value of the f.p. integral % (x-s) f(x)dx, with-
-1 v

-1 < < 0, does not change if its:integration interval [S,r] is
traﬁsformed to any finite intérval [s',r']. This property agrees
with that for ordinary integréls.

We now apply the definition férmula (1.4.6).to (2;2.5), i.e.
we assume A to be zero, and again use the above expressions for

the derivatives. This yields the relation
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(n 1)( )En r-s

(n 1 s (2.2.7)

CI(s',r') = I(s,1) -

. which means that the f.p. integral % (x—s)—nf(x)dx is not in=
. s

variant with respect to a traﬁsformation,pf its integration inter=
val Whicheinvolres a scaling'. |

- We thus have the importént»fadt that our kind of'f.p. ihtegral
isvinvariant witﬁ respect to the general linear transformation
: (2 2.4) only if the exponent is a non—integer. If the exponent is
an 1nteger, the original f. p..1ntegra1 and the transformed one
differ by the term f(n 1)(s)ﬁn [ (- s)/(r -s! )]/(n—l)' which stems
from the basic difference between the correspondlng definition for=
melae.

This behaviour ﬁas consequences for the evaluatfon of such

f.p. integrals by a euadreture formee rhich has been derived for
~a certain fixed integration interval. In the following two
chapters, we shall gfve quadrature'formulae which refer to the

integration interval [0,1]. In order to cempute'the value I(s,r)

of f (x—s) (x)dx by these formulae, we must therefore set

(n 1)(S)

I(s,r) = I(O?l) + ——TE—TST—

2n (r-8),

“where I(0,1) is the value of f x 0 f[ (r=-s)x + s] dx.
. o :

1. It should be noted that the behaviour of "associated functions"

under a similarity transformation is similar to (2.2.7). See
.17, page 82].
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2.3 Transformation of an infinite integration interval

Up to now we Bave:conSideredlf.p. integrals with a'fiﬁite integra=
tioﬁ interval [s,r], s denoting tﬁe point’whefe'thé integrand
becomes infinite in [ s,r]. Tﬁe situation isvcompletely_differentb
if we consider integraié with an unbounded integration intervgl
[r,w].and which do not exist as classical improper .integrals.
Thereby we-a53ume'thét,_as x+®, the integrand F(x) does not .tend
to zero faétér than 1/x. | Siﬁce by setting x=?r/y éuch an integral

can be transformed to a f.p. integral of the form

0 _ ] o
ef - Fem S f 1Dy, L xo,

‘wé say that the original ihtegral also represents a f.p. integral
whérextheksingularity is 16cated at infinity.

of coufse x=1/y is not the only‘tfansformation which changes
[r,] to a finite interval, but it is the simplest and certainly
admissiblé. F.p. integrals involving a .singularity at o« have in
fact the strange propefty that they are mot invarianf under any
arbitrary transformation which yields a finite integratioh inter=
vai.  We demonstfate this by the following example.

Consider the integral

x2 . -
1=f dx, . r=0 o (2.341)

which does not exist classically, but can be given a meaning if we

take the f.p. of the integral in question.
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In order to calculate (2.3.1) we use the transformation x=1/y

and thus obtain

I = f 4y O (2.3.2)
. L YEU+y?) |

This integrand is now singular at the origin and has a finite
ll . N

limit as y->. Splitting up the integrand, we can write

I= % dy _ J dy | (2.3.3)
o} ' '

where the latter integral is regular and equal to n/2. Since the

f.p. integral in (2.3.3) vanishes, we have

Instead of the above transformation, we now change the inte=

gration variable x in three different ways, viz

, i
(i) x=—=-1,
) y
—?
(ii) x = L 2,
(iii) x =2t

By means of these transformations, (2.3.1) changes to

1 o
I:%_gl:_yL.d—y,

(2:3.4) .
yi+(1-y)? y :

o
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and

2 .
I, = | VE—td espectively
= Ty t respectively.
t
o

To célculate-(2.3.4) we can write

1 ' B 1 o
. ‘=j(y2+(1-y)2-y2 dy _ j(‘sll v_j _dy
1 » ,
Y U-yE oyt Dyt ) 2yt-2y e
1 .
= -1 - arctan(2y—-1) = =1 - "/2-

Appiying'the formula (1.4.6) to (2.3.5), we obtain

1

12 = - f a2 (V1-22) nzdz

dz?

and integration by parts yields

(2.3.5)

(2.3.6)
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'We see that’the praﬁsformations (ii) and (iii) yield the‘corrgct
value of (2.3.1) but the transforﬁatioh (i) does ﬁot, althoqgh all.
three transformations are:very Similar.

This example-shoﬁs that the transfofmation’of a f.p. integral
with an infinite integratién interval has- to be chosen with great
caution.-

To Ee on the Safe.side? it is recommendéd that the pure

reflection x =r/y be applied to the integration variable x.

_ The continuity of the finite-part integral as a functional

We remember that according to our first definition (1.3.1),‘a f.p.

integral was considered as a regularization of a certain distribu=

tion. From the definition of the regularization it thus follows

that a f.p. integral fepresents a continuous functional.

In order to free us from the restriction to test functions,

‘we said at the end of the previous chapter that the assumption

f(x) Ean [s,r] is sufficient for the existence of the f.p.

integral uﬁder discuséion. But then the question arises as td
ﬁhethér this f.p. integral is still ajcdntihﬁbus functional.

In the following we shall show that under éertain assumptions
this. question may be answered in the affirmative.

. For ordinary integrals we know that if a sequence of integrable

‘functions converges uniformly, the integral of this sequence is

"equal the integral of the limit function. But for f.p. integrals,

the uniform convergence of a sequence of f.p.‘integrable functions

is not sufficient. We here need another definition of convergence,

: . n
the so-called strong convergence in C [s,r]:
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Definition

_Given a:sequence {fv(x)}, where all fV(x) e c” [s,r].  Then

"‘we say that '{fu(x)} converges to f (x) in ¢t [s,r] and write

1im{fv(x)} = f(x), if the sequences {f:k)(x)} unifdrmly converge
p 00 . ' _ C

to f(k)(x) for k=0,1,2,...,n.

Alternatively we may say'that we can, for every given € >0,
find an integer N which depends only on € but not on x. € [s,r] =

. so that
_lf(uk)(x) - f(k)(x_)l <€, k=0,1,2,...,n,

for all » > N(g).

Since f(x) € ct [s,r}, it is f.p. integrable and we can

say that
- Theorem

For any sequence {fb(x)} which converges to f(x) in Cn'[s,r],:

r r .
lim % (x-s)k_nfv(x)dx = % (x-5)"™ 1im f (x)dx, S <A <0, (2.4.1)
S o

P >0 P >0

i.e. the f.p. integral is a continuous functional on' Cn_[s,r]

and thus we may interchange the limit and the‘intégral symbol.
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Prdof

We consider only the case A =0, since the'prq

A#0, and denote the integrals on the left-ha

of

(2.4.1) by IV'and_I respectively.
Then by means of the definition formula
- ' n-2 »
-1 , -1 k
11-1) = |1, PPy - 1P e T
: ‘ . k=0

) [fjn—k—Z)(r)_Tf(nfk;Z)(r)]... .

v . k+1 _ e
o I U T St
: m=0

+

e f {f(n)[(r ~s)tés] -f(n)[(r

n-2 '
e Y

k=0

< |17 (6) - 10D ),
+ | fV(n—k—Z) (r) - f(n—k_z) (r) l It

o kel ' ._ _
i o
m=o0

f(n)[(r s)t+s]-f(n)[(r

+

T f |

where the dots indicate the terms of (1.4.6)
and f.
According to the convergence of '{fv(x)}

of the differences in the latter expression a

ar.sun.ac.za

of 1s the 'same for

nd and right-hand sides
(1.4.6) we can write

' (s) - 1% (e
(s)]...} +

~s)t+s]dn(1/)de| <

(s) - f ). +

(s)]...} +

~s)t+s] [£n(1/t)dt,

independent of fv

, all absolute values.

re smaller than some €. -
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Therefore, lIVFI| can be made arbitrarily smal

. y :
This proves our statement.

1, i.e. lim I = I.
psw

To ensure that the f.p. integrals of a sequence of functions

converge to - the f.p. integral of the limit function, we had to re=

quire the  strong convergence.

We now consider a f.p. integral such that

the integrand func=

tion, besides depending on the integfation‘variable, also depends

on a second independent variable, i.e. we have a function

. r :
g(x) = f —iizil%r dy, -1<A<0;-
L (y=s)" |

s<r. (2.4.2)

Here y is the integration variable and x a second independent

variable or a parameter.
We ask under what assumptions on f is ¢

when 'is the rélation

(x) continuous and

ox- |

‘valid, i.e. when may the differentiation be pe
" integral symbol?
In the case of an ordinary integral, it i

f(x,y) is one-valued and continuous in the clo

: (2.4.3) .
(y—s)nﬁl :

rformed under the

s well known that if

sed region

R:a<x<B, s<y<r then ¢g(x) is continuous in {a,f}.

If furthermore besides f(x,y), fx(x,y)'also

exists 'in R and 1is
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continuous there, then ¢(x) is differentiable in (a,B) and (2.4.3)

is satisfied. .
" These assumptions are not sufficient. for

~ the following'theorem holds.

Theorem
. . : 4 k
If f(x,y) and its partial derivatives f—jzf
. . 3y

f.p. integrals but

X,Y) for.k=f,2,;..,n

are.one-valued and continuous 1in the closed region R:a<x<8,

s < y < r, then ¢(x) given by (2.4.2) is con

tinuous in [0,B] .-

. . k
- If furthgrmore besides f (x,y) -and the 'iiE-f~x,y) also the function
o k%Y
' fx(x,y) and its partial derivatives ——E-fx(x,y) for k=1,2,...,n
. : . ‘ 3

exist in R and are continuous there, then g¢(x) is differentiable

in (a,B) and (2.4.3) is valid.

Proof

First we prove that under the above assumptions the furction ¢ (x)

is continuocus. We have

\.S

(x=s)" M

. |
lg Geh) - g (0| = |{ fGerh,y) = I Gx
- 8

Applyiﬁg either of the definition formulae (1
" to the latter f.p. integral; we obtain an ine
|g(x+h)—-g(x)l gimilar‘to that fof IIV—i{ in
vioué theoremf The right-hand side of tﬁis

L4
which cornitains terms of the form

,Y) dYI .

.4.6) and (1.4.9)
quality for
the proof of the pre=

inequality is a sum




Stellenbosch University http://scholar.sun.ac.za

_60_

ak

Byk

Ik
5 f
ay

| (x+h,y) - fx,)],  k=0,1,
According to the theorem of uniform continuit
any given number € > 0 a number §(g) > 0 whic

but not on x and y such that

-f(X+.h:y)‘ -

8k

= fey| <
Yy .

o Bk
o

oy

for all»lh| < §. Thus, for a suitable choic

sum becomes arbitrarily small, i.e. 1im[g(x+h
: h+o

The function ¢ (x) is therefore continuo
In order to prove the second statement o
. form

r
f(X+haY) - f(X,Y

o

esTl.

y, there exists for

h depends only on €

e of €, the aforesaid
- g(x)| = o.
us in [a,B].

f the thedrem, we

) dy.

g (x+h) - g(x) = jL

(x-

s)?”k

" Due to the mean value theorem of the differen

tial calculus we have

<9<,

»Y) — fx(x,y)'

f Gerh,y) = fG,y) = hf_(x#dh,y), O
'Thus
r . Yr |
|9(x+h)"9(x) _ % fx(X’Y) ay| = | %«fx(X+0h
b (x=s)"A 7 (
S . S

e dy|. (2.4.4)
X—8) . '
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The application of formula (1.4)6) or (1.4.9)

integral again yields an inequality as in the

Bk Bk _ -
= £ Gehy) - S fL ey ], k0,
9y _ dy
ak' ' S
Since % fx(x,y) (k=0,1,2,...,n) is also uni

oy .
R, there exists for all € > 0 a number §(g) >

- of x and y such that
2k , 5*
|- f(x#9h,y) - = f G,y)| <€, k=
k "x k “x .
9y oy _ :
for all |h| < §.
In view of (2.4.5) the'rightfhand.side of

 arbitrarily small, and therefore

r

to this latter f.p.
first part of ‘the

proof;. the right-hand side is a sum containing terms of the form

formly continuous in

0 which is independent

1,2,...,n (2.4.5)

(2.4.4) can be made

_ : f &,y
i L0600 gy L Xy,
h>o : (x—s)nﬁk '
s _ .
q.e.d
At the end we still consider the two functions
r :
g(s) = % .f(xi dx, s<r, 0xAx<1, (2.4.6)
+n
(x-s)

and
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s .
his) = %‘——i£§l¥~ dx, s> r, 0<

' with the singularity s as argument. If 0 < A

A<, (2.4.7)

< 1, we know (see

page 33) that the f.p. integrals in (2.4.6) and (2.4.7) commute

with differentiation, i.e.

r v" r
g_gjt_d_[__fgg__dx] =(m)§_
S

" and

(x7s)

f(x)

pu— dx.

ftx)

S : : S

dh _ { d [ f(x) L »

s % —d—s [—m -dx] = —()\+n) % ———m dx.
r ) r )

] —X)

~In this case we may differentiate under the integral symbol. It

. was previously mentioned that this commutation does not hold for

" our definition of a f.p. integral with A =0.

Thefefore we ask

ourselves what happens if we differentiate ¢ and h with respect to

s in that particular case.
 We start with the differentiation of g (s

_ definition formula (1.4.6) we can write

(nT

.
A o (n)

dg_d [ fx) . (s —g) - d
as‘d—s']t“”—dx‘-‘ﬁfm“"”“ 0 e

“ (x~s)

5) . By means of the

Ds)

! (r-s) -
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(r —s) n+k+1
k.(—n+k+1)

-+

X {

_ (k+l)!f f(n—kgé)k

(.r-S)k+2

k! k+1

}

F D gy -

r) +

m:

“(n-1)! m¥o

.
(k+1-m) ! (r-s)"

R
(n-1)!

-+

-

Q -

r—s

(n-1)!

4+

Integrating the latter integral by parts and r

(k+1=m) ! (r-s)

f(num)(s) }

m+1

s)t+s] fnt

(1-t) F I sy et

(r-'-S)—n_+k
| k!

1 (s -

FTI ™ ()

4

dt +

s]8n(1/t)de.

ecasting the sums over

k and m in a suitable way (we omit the procedure here since it is

' lengthy and merely contains elementary steps) it follows that
T T . » (n) S
d f(X) ax = 4+ 4| LG g o 4 $S)»
ds (x—s)n ds ( _S)n n..
s s SR
r ' -
e (n) _
:11%4@_dx — _L__;'._g_ﬂ (2.4.8)
n+l .
(x~s)
8
if s<r.

From (2.4.8) we see that the deriva

f.p. integral and the f.p. integral

grand differ by the term f(n)(s)/n!

tive (with

with the

respect to s) of the

differentiated inte=
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We come now to the differentiation of h(s). We remember that
in order to appiy'our definition formula to the right-hand side of
(2.4.7) where s > r, we have to transform the f.p. integral in the

following way (see also page 46), viz

-r

. » s ‘ . -
sy = L g jLJL-&-___ dx.
. L (s=07 2lx=(=s?
We have thus for the derivative of h,
-r _
%=i% fx)
ds ds ' R xe
T [ x- (=s)]

If we apply the formula (1.4.6) to the latter |integral, differen=
tiate it ﬁith respect to s and recast that expressiOn similarly as’

~in the former case, we obtain the relation

s . s ' i 5
4 % FG) gy = % R I SN A Gl DT A ©)
ds (5=x)" ds (s=x)" _ n.
r r
R S '
. % 1 N G Dl A O (2.4.9)
(s- )n+l © m! T
r X .
if s > r.

. We consider now a special case of the above formulae.

For n=1, (2.4.8) and (2.4.9) become
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S _ 'r
_d_jL CI NP =7( JLCIF
ds‘ B : (x-s)2 :
‘8 s ‘
and
s s
PR O N
. ds x-S 2
(x~s)
T r

respectively, where we take as upper boundary

r'>r.,

vSubtraction of (2.4.11) ffom (2.4.10) yie

tional terms cancel)

- d
1< BV

where the integral on the left—hapd sidé repre
pal vaiue integra1. The statement of (2.4.12
means that if we differentiate a Cauchy princi
with respect to its singularity, we obfain aif
connects the theory'ofAf.p; integralvequations

. to the Hilbert transform theory; . for further

[ 27, chapter V].

r <

r.sun.ac.za

f1(s) (2.4.10)

f1(s) (2.4.11)

in. (2.4.10) a point

lds (since the addi=

s < r', (2.4.12)

sents a Cguéhyiﬁrinci=.
isvremarkable. it
pal value integfal

.p; ihtegral. ‘This"

(with exponént two)

developments see
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CHAPTER IIT

'AN INTERPOLATORY "QUADRATURE "FORMULA

The (nﬁmerical)evaiuatiqn of alf.p. integral by| means of the definition
can be cumbérsome, even if analytic funétions»are invblved. Further=
more, in’many ﬁroblems'the integrand function, f(x), is nbt given in
'cloéed form but it may be possible to compute its Yalues at:
arbitrary péinté}v Tﬁus we séek approﬁriate numérical proéedures for
épproximating the Value of the f;p._intégral'l.
In the following, we derivevan intérpolaféfy quadrature'formula”
based on equispaced stations, while tﬁe problem| of finding a Gaussién—

type quadrature formula is treated in the next chapter.

3.1 Dérivation of the formula

For simplicity, we consider the f.p. intégral

1

} g(;) dx; A real and = 1 B (3.1.1)
% .
© 'g(x)eCH] [[0,1]
- instead of the general form I. We assume.that'N‘distinct points

xi‘E [Q,l) are given by xg = (i—l)/N, i=1,2,...,N. vThﬁs the
. points are edually spaéed in [O,I)Iaﬁd the|first goiﬁcides with
the origin. |
With theée points as interpolation pblnts, we form'(fof the

continuous function g(x)) the interpolation polynomial PN_](X) of

(66)
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degree N-1 such;that g(xi) = PN—J(Xi)’ i=1

Then as an approximation to the f.p.

1
I {9} =P (x)x—xdx
N N-1 ' .
' o
This ihtegral is easily evaluated. In fal

“form for the interpolation polynomial

N-1 "N-1,
' i=1
where
' N (x—xk)
b (x) =TT e 5 . =
Py-1,1(® TT_ Gemx ) .
k=1
k#i

we obtain the quadrature formula

. N |
1N{g} = z v, g(xi),'

i=1.

with the coefficients given by

The N distinct points X are called the qua

nodes, or '"'stations', and the quantities W

drature coefficients or "weights'.

r.sun.ac.za -

b2, ...,N.

Lntegrél (3:1.1), we set

‘t, by using the Lagrange

(3.1.2a)

(3.1.2b)

drature points, or

are called the qua=
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‘It is clear that. the ﬁeights W, are c
the end pointé of.the:intervai.of integrat
“tion points xi;. the weightslgre independe
function g(x). A Quadrature formula of t
is called an interpdlatory formula.
We prerdbin.section 2.2 that if A is

invariant, but satisfies the relationship

_¥ I

This strange property of f.p. integrals'do

—Lizli-dx = (r—s)‘—} % ﬂLKE:E%EiEL dt + i
S (st) o] . t

approximation of I by the formula (3.1.2a)

always (omitting the integrand) be split u

I

1

s+1]

For

S s

where the last integral is regular énd may|
dard method. Shifting the iaterval of th

(3.1.4) to [0,1], the last term in (3.1.3)

s+ . } :
f(x) S f (t+s)
{ —___—X'dx B T R
(x-s) t
s o :

Applying (3.1.2a) to the right-hand side o

follows that

MO

r.sun.ac.za

ompletely determined by
ion and by the interpoia=
nt of the integrénd

he form (3.1.2a and b)

an ‘integer I is not scale-

r—sl. (3.1.3)
(-1)!

es not permit a direct

. In principle, I may

p into.

(3.1.4)

be evaluated by a stan="
e f.p. integral in
vanishes and we obtain

(3.1.5)

£ (3.1.5), it therefore
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N |
I = z wif(s+xi) +

i=1

[

V_S+

This method is inconvenient, however, for

firstly, two different quadrature formulad

further function values have to be compute

close to .the singularity s, the numerical

integral can become very inaccurate.

If‘f(x) is,kndwﬁ analytically, anbthé
used is to differentiéte f(x) fofmall& and
to determine the (A-1)th derivative could
and diffidﬁlt task. If f(x) is merely'gi
this methéd cannot be used. 'Wevshéll thé

mate f(k_])(s) numerically'by a formula in

(equally spaced) stations as were used in

Setting g (t) = f [(r-s)t+s] and differ

(A-1) times, we obtaiﬂ for t=0
FOD () 2 (my A OD)
. _Approximating g(x_l)(O) by

nyled = Py

we obtain the formula

_ N v
DN{g} = z Fig(xi)

i=1

1'(X—S)

ar.sun.ac.za -

dx. (3.1.6)

A

the following reasons:
.are applied and thus
d; secondly, if r is

value of the régular-"

r_ﬁethdd that‘éan be
then use (3.].3).' But
still be a labotrious
ven By a set of data
refofe‘ﬁry to approxi=
volving thevsame.
(3.1;2a).

entiating both sides

(0). (3.1;7)

(3.1,8&)‘




Stellenbosch Universityhttp://scholar.sun.ac.za

.. —70_
with the coefficients given by

c. =&
1

Nei,1 (O R (3.1.8b)

Applying the formulae_(3.1.2a) and (3.1.8a) for the approximation

of the right-hand side in (3.1.3)'we obtain the quadrature formula

for X an’integen

r ) _ N ‘. .
f L& gy~ (ems) ] Twgre, tnlr-s|/OF 1 AL (ems) (=1 /]

WA
s (x-s) _ i=1

(3.1.9)
Since a f.p. integral with avnonfinteger power A is scale-
invariant, (3.1.2a) may be used to approximate the integral

directly, i.e.

for A a non-integen

r v N : i
jﬁig—x)—k ax® (=)' ] w FL ) G-/l | (3.1.10)
S (x-s) ' =1 | _ .

, We remark that in the formulae (3;149) and (3.1.10) the station

X, was replaced by (i—l)/N.
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3.2 ‘Computation of ‘the coefficients w, and c,

Since the interpolation points are of the|form X, ='(iff)/N,
-i=1,2,...,N, the coefficients w, and c; of the formulae (3.1.2b)

and (3.1.8b) can be written as

1 N
_ L - Nx-k+1 dx
% ik 7
o ' k=l ;
k#F1i
. 1 N ,
N-1 : .
-1 N-1 A .
((Nzl)' (i—]] % x  TT (Nx-k+1)dx, |i=1,2,...,N.  (3.2.1)
: ' o - k=1 '
k#i
and
L a1
o =% (O
g (-1)
| o Nxokel
il i-k _
k=1 :
k#i /%0
. N 70D .
(IR T N I
=2 ()| TT (Nx-k+1) C, i=1,2,.0 0N L (3.2.2)
(N_l)l - -l : . )
R k=1 '
Tkt /x=0

Since the integrand function in (3.2.1) is a polynomial of degree
N-1 which 1is intégrated over.[ 0,1] , the weights W will all be

rational numbers.
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~From (3.2;2) it is clear that the coefficientS'ci are also’
rational numberé.._ Thoggﬁ (3.2.1) and (3.2.2) are simple formulae,
i£~wou1d be too laborious to use thém fof conmuting the w, aﬁd.ci.
'_We.therefore chose an alternative indirect procedure, called the
me thod of:undetermined coefficients, to'deterﬁiﬁé the coefficients
for ﬁhe formulae (3,].2a) and (3.1.8;). This method is quite
) pracﬁical.for unequally spaced stations as well as fairly lafgé
values of N,'j |

In 6tder uniquely_to determing the N unknowns W (or ci)

associated with N fixed statiops"xi, we set up a linear system.
This cén”easily be obtainéd by requiring (3.)}2a), or (3.];8a),
to Bé exact for.all polyndmials of degree_< N;], i.e; the formu=
lae are to yield the exact value Whehgver‘ g x)”=.l,x,x2,...,xN~I.
Writing out each. of théée.copditions:and.using the abbré%

| Loy < iy
viation % x3 dx==>\mj [or (XJ )

(A=1)_

/x=0 Amj]’ we have

] g L b A (3=0,1,2,...,8-1),  (3.2.3)

Il
=

or clx{-+c2xg +.L.-tch§ = >\mj'.

The coefficients Amj are called moments and are given by

1/(3+1-1)  for j+I#A

for the w.
1

=
I

0 otherwise
and by

(A-1)! for j+l=)

=
]

A - ~ for the ci.
0 otherwise
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- The determinanf of ;he'linear system (3.
Van der Monde.determinaﬁt v, generéted_by the
tions Xooo Since the stétions'aré distinét,
V#d.' Therefore (3.2.3) may be solved unique
wi'(o? ci)'which may then be used inithe forn
(3.1.8a).

The rétionality of the wi’and éi in this
diétely from thé‘factrthat the matri% aﬁd the
(3.2.3) consist of rational numbers.

Befofe a linear system is_sblved numeric
geous t§'know something about the condition ¢
The usual criteria defining the condition nﬁn
means of'gertain eigénvalues.can hardiy'bé aj
it is>too difficult fo.obtain reasoﬁable esti
values. But it is possible to estiméﬁe the
value of the determinant and the product of 1
all its row or cqiumn vectofs. If this rat:

the matrix is said to be ill-conditioned, 1i.¢

sensitive to small errors occurringAin the coefficients. ~The deter=
minant of (3.2.3) has the value (see { 34] fqr example) _
Gl 10,203 N-1
WVl = @R - &
1,2y N-2 :
Cﬁ)(ﬁ) . (_3r0 : - N-1 :
o N /20 T =i (3.2.4)
Ci=1 | -
1 N-3
(ﬁ) .. (—ﬁ—)
1y
&)

ar.sun.ac.za

2.3) isrthe “

N equispaced‘sta=.
it follows that

ly for the‘N.unknownS'

wlae (3.1.2a) or

case follows imme=

3 right—hand side of

rally, it is advanta=
f the matrix involved.
nber of a matrix by
)plie& in our case as
Lmates of thosé elgen=

ratio of the absolute

the Euclidean norms of
io is much smaller than 1,

>, the solution is very
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\

The product of the Euclidea

column vectors of the matrix is

ar.sun.ac.za

n norms of, for instance, the

and. thus greater thad 1.

The ratio of |V| to E can be estimat

(N?-N
v N-1
< Nl
e < IV < &
which is bad, even for a small N. The

is therefore rather ill—cohditioned,

To solve (3.2.3) nUmerically; wé fir
known iterative methodé as well as theldi
décompdsition) with iterative improvement
[51. But we found‘the'solutidn obtaine
ngt accurate enéUgh; for instance not ev
were correct with N > 10. The task we s
the coefficients wivand c; to thirty sigp
;he déuble wérd 1éngth of some modern co
this number of significant digits.

The safest way of ensuring that we s
accurate solution is to determine the rat
first and afterwards to divide the numera
The exact solution of (3.

denominators.

Gaussian elimination process, performed i

ed, for instance, by

/2

linear system (3.2.3)

stbused-some of the
rect.methoa-(triangular'
of FORSYTHE and MOLER

d by one of these methods
en ten_significant digiﬁs
et ourselves wés to fiﬁd
ificant digits, since

mputers comes close to

hall obtain such a highly
ional (exact) solufioq

tors by their.corfesponding
2.3) was computed By the

n rational arithmetic [17].




3.3

~except of course the cases A < 2.

- explicit representations (3.2.1) and (3;2

the polynomial TT (Nx-k+1).

" conjecture an alternating sign for the'wi

lute numerical values increase with the. n

- Stellenbosch University htfp://schbl:ar.sun.ac.za-
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The weights 'wi were calculated fo
A=1, “/3, /2, ®/3, 2, 3, 4, 5 and in eac
])(s), c,;s were also computed for the
Both

the cs have been tabulated in [18] with

r the powers

h case with N = 3(1)20

" equally spaced stations x, = (i-1)/N.  The coefficients for

f ()\.‘

same values of A and N,.
coefficients, the W and

a mantissa length of

thirty digits (the last one correctly rounded off).

General properties of the W and c;

Apart from the rationality of the coefficlients W and s, we

cannot unfortunately derive any further property from their

To do so we should have to know expliciti

‘N
k=1
k#i

Owing to the factor (—])N_l in (3.2.

ture was verified numeriéally in nearly a

Frém the formulae for’wi aﬂd pi wé o
and the value of the power A. The large
weighté in thé cases we have computed ié
ﬁhat of the coefficients c; is of oraer 1
absolute values of the corresppnding w.oa
for A<3 thevcoefficients c, are smallen

of magnitude, than the weights W -Exac

.2) respectiveiy.

v the.coefficients of

1) and (3.2,2)Awé may -
and cie This,conjec=A
11 the computed cases.
bserve ghat their abso="
umber of sfatipns, N,
st-absolﬁte value of the
of the Qraer 10'! and
02, Compafing fhe
nd ;s we can say that

, by at most one order

tly the reverse is the -
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case when A = 4 5r 5.‘ Furthermore, we ng
4wi and ci have opposite signs.

The varying sigﬁ and the increasing
coefficients W and ci_have coﬁsequences £
the scalar products (3.1.2a) and (3.1.8a)
rounding-off error as small as possible-du
these scglar products, thé positive and ne
be added up separately so that at the énd
be performed only once. Nevertheless, s1

magnitude of the result will be much small

v, and s used, significant digits are los

tice that corresponding -

absqute) value of thé:
or the evaluation of
.'Iﬁ or&er to kéep the
ring the computation of
gative terms should
the subtraction need:
nce in most cases the
er than that of the

t. We note that this

"loss -is not caused by a rounding-off error. Thus in general

the highest-order quadrature formula is not numerically the most

accurate.
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CHAPTER 1V

THE OPTIMAL QUADRATURE FORMULA -

Iﬁ the pxevious chapter we showed thaf for N art
xi we can find a quadrafure fofmula of interpolz
exact for all"polynomials of degrée < N-t. Thi
intet?éi of ihtegration‘completely define the‘we

.In_ofder to increase the precision of (3.1
étatidns X (i=1,2,...,N) is still ét our dispos
for a suitable choice of these stations the degt
_increased by N and cause thé quadrature formula
"polynomials of degree < 2N-1; this is the'highe
" which can be obtained uéing N-étations. Such f
cailed Gaussianbquadratﬁre'formglae‘betauée they
Gauss [6].

Under what circumstances a GausSian?type fq
' gral

(x)
A

X

<o

dx; A real and

1
o
can be derivéd will be shown in the following.

4.1 The orthogonal polynomials associated with

ar.sun.ac.za

itrarily fixed stations
itory type which is

S re@uirement and the
2ights W

2) the choice of the

sal. ‘We mightvhope that
ree df précision‘can be
‘to become exact for all-
st degree of pfecisioﬁ
:ormulae‘are usﬁally

/ were first studied by

prmula for the f.p. inte=

>1, gyed Mo,

the optimal

quadrature formula

We write the above integral in the form

(77)
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y
% w(x)g (x)dx

0

énd formally,consider_w(x) =_(xhx'as a welg
possibility of comstructing formulae with d
< ZN—I (N is the‘numbgr of stations) is ¢l
existence -of polynomials of degree up té N
.fespect to the weight fuﬁction involved in
most widely studied classes of orthogonal
instance the Legendre,’Tschebyécheff, Jacot
polyndﬁials):aré for weight functions whick
tegration interval (see, for.exaﬁple, []4;3
that w(x) be positive is, however,_notvnece
fundamental properfies of the quadrature'fc
the fact that one cannot obtéiﬁ a fofmula ¢
:of degree higher thanVZN;lvis a consequence
nant condition and does nét follow from the
On the other hand,imostAof the very iméortc
type formulae, such as ﬁhe fact that all s
located within the integration interval; at

assumption.
In our case, the symbolic weight‘func

rently positive on fo,1 ];. This follows

.

% X—Adx

(o}

=0 for A

l <0 for A>

: . - . .

! Since x actually represents a distribu
function we choose Dirac's '"bra" notati
symbol { 1is read "bra').

ar.sun.ac.za

(4,1.0,1)

ht functioni{ The

légreg of precision

oéely related to the
which are orthogonal with
the integrand; a.md.the
olynomials (such as for
1, Lagﬁerré and Hermite’

L aré positiVé on the in=
0,31]1). The assumption
asséry fo dévelop ceftain
)rmulae.  For example -
>xact for-éll_polynomials

of a certain determi=

D

assumption w(x) > 0.

D

ant properties of Gaussian-
are real and

rations X

re a consequence of this

PRI W ' -
tion (x = 1s only appa=

immediately from

1.

tion.and not an ordinary
on for distributions (the
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Definition

Given a sequence of polynomials

. _ .n n—1 _
Pn(x) =x +a X *o..taxta, n=0,1,2,... (4.1.0.2)

whiéh - for any weight function w(x) integrable over [ a,b] and not

identically zero there - satisfy

b . ' - _
y w(x)P, (x)P_(x)dx = 0 (1#n; 1,n=0,1,2,...), - (4.1.0.3)

a : a<b

then the Pn(x) are said to form an_'onthogo_aﬂ Aéqaence on | a,b]
with respect to the weight function w(x).
If w(x)>0 in [ a,b] we know that such a seqﬁence exists, and it 1is

always possible, by'multiplying each Pn(x) by a suitable constant,. to

obtain
b _ o
f w(x)PI(x)Pz(x)dx = 8, (the Kronecker symbol).  (4.1.0.4)
-a _ . '

A sequence of polynomials for which (4.1.0.4) holds is called

ornthonormal .

We shall now investigate whether it ié‘ppssible to construct a
unique:sequénce of polynomials which are orthbnormal with respect to
(x—A'on.[ 0,11. To do sb, we shall-fifst analyse the CGram deter=
minants closely connected with the existence of such polynomials.
Also, we shall consider the use of the GramtSchmidt process of

orthonormalization to enable us to construct those polynomials.
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In order to obtain a sequence of orthogonal poiynomials associated
with a given weight function w<x) we consider the real linear
' sbace ﬂ’consisting of the hon*negative:pcweré'bf
X i l,x,x?,...,xn,;.; in which an inner-pfoauct is given. This
inner product of any two. elements xi>and Xj of ﬂ’is definéd by
(xi,xj) = ? w(x)xixjdx; i,j=0,i,23.;. |
3 ‘

It is weli—known from the theory of orthogonal polynomials

(see,»for example [3,12,14;&]) that a unique and complete? sé=

. b . .
quence of orthogonal .polynomials exists and f W(x)[Pn(x)]zdx #0
a : .

if and only if the Gram determinants

(L1 (L0 . (xh)

(1) (%) .o. (x,x0) .
G, = o | | 1=0,1,2,... - (4.1.1.5)

L R A I R R R I N S S S )

R DI R L)

~are all different from zero. It is also known that then the

“orthonormal polynomials are given by

PP = (6 )72,

(LD, L (,xD
‘P*(Xj C @ é )_% A (x, 1) (x,x) | (x,xn) o
. n-1n" B P , ’
' (xn—],l) ( n-l’ ) (Xn*l?xn)
1 p:e gn

(4.1.1.6)

2 .
We call here a sequence of orthogonal polynomials {Pn(x)},_
n=0,1,2,...,N, complete if n (the degree of the poly=
nomial_g(x)).takes all values from O up|to N.
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"Tﬁe Gram matri# Gl = (gik).with g = (
the fundamental tensor of ¥ with respect
All "major subsets"iof basis vectors (i.
{xi|i=0,1,;..'1} ‘.ﬂi'th arbitrary 1) must b
frgm this it follows that G1 > Q if w(x)
tive. VIn this case it is always possib
and complete seqﬁence_ofléfthogonal poly
the metric génerated_in ¥ by (x—x is ﬁo

L . . i ] .
but indefinite, 1.e. (x ,XJ) can be posi

J_and the p

&epending on the veétors‘xi,x
product space ﬂ:is therefore a pseudo-Eu
chapter XII].

It should bé noted that the. usual n
" exists if and only if- (x,x) > 0. There
(x,x) in the foilowing the inner product
itself. As in the positivé definite ca

are called onthogonal if (x,y) = 0.

Definition

A basis ei (i=],2;...,n) in { is called

(ei,ej) = Eidij

where

+1 (i=1,...,s

-1 (i=s+1,...

r.sun.ac.za

shed

<555 (1,k=0,1,..,1) is

2

to the basis yX, X%, 0
e. all sets
e lineafly independent.
is assumed to be posi=
le to find a unique
nomials. In our case,
1oﬁger»positive‘définite
tive, negétive or éero
Our inher

ower A.

clidean space [8
orm of a vector x € ¥
fore, we shall call
of the vector

X with

se two vectors X,y € I

onthonormal if
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Definition

A vector X € ¥ is called nommalized if (x,x) = %1,

We remark that a vector which can be

have a norm in the classical sense.

- No theorem on the existence (or non

normalized need not

~existence) of ortho=

gonal-polynomials in the case of an indefinite metric could be

~ found in the standard literature.

of the existence of the orthogonal polyn

"to examine the Gram determinants Gi (1=0

~ Before doing so, we shall still show the

the coefficients of the orthogonal polyn

as [a,b], (4.1.0.3)
B }
£ x

(o}

is obviously.équival

>\xlpn(x)dx 0 (0<1< nj n=1,2,..

1.
.. 1-A
the abbreviation mi = % X dx - we can
o v

.solving the system of simultaneous linea

m a + m,a, + .. + a
oo 171 n-1 n-1
m.a + m.a, + + M a
1o 21 n n-l
m a +ma, + . +tm a
o nl -2n—-2 n-

for the unknown coefficients of Pn(x).
(identical to the above inner products)

moments or monomials.

The only way to be assured

omidls here seems to be

,1,2,...) themselves.

1
Taking [ 0,1]

connection of G, with

omials.

ent to

.) and therefore - using

construct Pn(x) by

equations

(4.1.1.7)
] 3

The quantities m,

are generally called
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Examining'(é.l.].7) we see immediat
determinant is in fact the Gram determin
clear why it is necéssary'and sufficieﬁt
determinants not to vanish in order that

sequence of orthogonal polynomials shoul

We now lnvestigate the'behaviour of
separdting the cases when
the power A is an.integer and

(a)
(b)

A is not an integer.

(a) .. ) is an integer = 1

We write the inner products (moment

1 0
(x*,x) = % x¥+JfAdx =
° 1/ (i+j+1-)
i,j =

0,1,2,...

using the following scheme:

s)

ely that the system

ant G__ Thus it is

1° -
for the major Gram
a unique and complete

d exist.

the Gram determinants,

for i+j+1=2A

) otherwise

A=5 | A=4 | A=3 | a=2 | A=

L L | | !

! 1 | 1 ! 1 ! l ' 1 1
T S T R L R SRR
SN | -1 | o IRUEE I E R
U g |-t | o] 1 IR TR
L o |1 | Ly oLy .
---:oll‘%'%lééé-%

l L 1 1 ' 1 | 1 1 1 i
...|]|2|3|4 5 3 7 8
...|§|%|%|%:é~%%%-

I .

(4.1.1.8)



Stellenbosch University http://scholgr.sun.ac.za

_84_

(4.1.1.8) represents the Gram

determinants

Gl (1=0,1,2,...) bounded at the left-hand side by the dashed

vertical lines for different A's.
all determinantsbare.of the Hankel|

{13 1).

We immediately deduce from (4.1.1.8) that GO

Owing to their structure, -
type’ (see, for example,
0

~if A=1." In this caée, the corresponding equation of

(4.1,1.7) is O.a0

-1, which yields no finite solution

(see page 93) for the unknown coefficient ao_of Pl(x); i.e.

‘the linear polynomial cannot exist
lows that P:(x) and therefore also
either.- But this is not the only

nant vanishes.

odd:

N

Consider for instance,

Furthermore, it fol=
Po(x) cannot exist
case where a determi=

a G, . where X\ is

A-1

when A = 3.

In such a case we can always, achieve by interchanging the

columns (in the above example the first and the last column

A-1.

As we know from the

have to be interchanged) that G
determinant.

.(see, for example, [’]3]‘), a skew-

L
> ]

becomes a skew-symmetric
.theory of determinants

ymmetric determinant of

odd order is equal to zero. In these cases, the corres=

- ponding linear systems (4.1.1.7) h

determinants; the rows (columns)

?It is easily seen from (4.1.];8)
Gram matrices.are segments of the
which is a special type of Hankel

ave vanishing

are linearly dependent

that if A = 0 the majorA

(infinite) HiIbert_matrix;
matrix. '
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and thus the rank of the system mat

rix is<less than A.

But since the rank of the extended matrix is equal to A no

‘solution existé“.- Thus we may con
orthogonal ﬁolyndmials is éértainly
values of A. |

NO'attemptvwill here be made t
arbitrary integer A
the orthogonél

We' constructed

A

fl

1,2,3,4,5 and n 1())20.(excep
is Qdd) Vnumerically, i.e. we‘solye
1inear.equations (4.1.1.7) exactly
_perforﬁed in a rational arithmetié
~all coefficienté of (4.1.1.7) are r
therefore fhe solution - if it exis
We thus obtained for ed

rational.

P

AF20 cons

of orthogonal polynomials

Denoting the column vectors of the
, n
exists a linear combination 2 a.c.
273
. J=
“one coefficient, say ass is non-zer

n
" linear combination’ z a.c. + bxr 0
| L3S
]

j#i
b#0 and 2 denotes the right-—hand si
aid of the first linear combination
be written as‘-aici + bn 0. Sin

contains one zero component, but al
non-zero, this equation is only sat
This is a contradiction and thus th
cl,.. ..,cn,,nare lineag

.

i+1°°
the extended matrix has the rank A.

«sC. c
b 1_1’

the Gram determ

clude' that. the sequence of

not complefe for odd

o prove whether for an

ipaﬁts G1 vanish or not.
polynomials XPn(x) for
t the cases n = A ifiAA;
d the correspondiﬁg

by Causs éliminatioh
[17].  We remark that
atioﬁél ﬁumbers aﬁd

ts - muét alsovbe

ch of A = 1,2,3,4,5 a set

isting of

system matrix by cj3 there
= 0 such that at least

o. We now consider the

, where the coefficient

de vector. With the
, this last equation can
ce each column vector cj

1 components of 4 are
isfied if a. = b = 0.
e vectors

irly independent and




(b)

.P;(x) from Pn(x) s0 that'(PE;P;) =

- Yy
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Po(x)’Pl(x)’PZ(X)""’PZO(X)

Po(x>’P1<X)’r-°’Px-1(X?’?x+1(¥)

and Py (), P3(x),P, (1) 5Py ()

We now want to normalize these polynomials, i.e. we

for even A,

,...,PZO(X) »fOr 6dd A >

for

construct

T 1. In order to find

the normalization factors Akn for the above set of orthogo=

1

.0

thus

and the Gram determinants Gn—f

nal polynomiais,-we computed % x—k Pn(x)]zdx = % ]/Ak;
5 .

again by rational arithmetic.® The| coefficients of the

4 orthogonal polynomiéls
>\Pz(x),>\?73(z«:),...',>\on(x)' for ) A= 2,4

and APA+](X)’APA+2(X)""’AP20(X) for A = 1,3,5

inciuding their normalization factofrs are given in [ 181].

A > 1 and not an integer
"In this case the inner products are|l given by

. N |
(x*,x1) = % Iy = 1712 1,7=0,1,2,...

have the form




W
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By interchanging the first:column i
immediate neighbbﬁr on‘thé right (n
éhanging the second column and its
- the right (n~2) times, and so on, t

penultimate column and the last, we

G = (1)

Setting k = n—), the matrix corresp

nant in (4.1;1.10) can be writfen as
\
1 1 i
k k-1 k-n+1
1 1 1
(u ) = k+1 k- k—n+2
1 1 1
k+n-1 k+n-2 k

- —87-

1 i
I=x 2-x "
1
2= 3-A

1 1
n-A n+l-A °t

=
I

n-A. n-1-A T

n(n-1)/2 ] 1
n+l-X n—\ :

1 1

2n=1-A 2p-2

1,2,3,..

finally obtain

(4.1.1.9)

n (4.1.1.9) and its
—1) times, then inter=
immediéte neighbour on

i1l we iﬁterchahge the -

(4.1.1.105

(‘4;1..1.11)
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(4.L.1.]1> may,be‘fegardedvas a seg
Hilbert matrix; for if the columns
order and k- is restricted to pdsiti
greater than n-1, tﬁe»resultant mat
Hilbert matrix [ 1/(i+j-1)].
.element§ of the inverse of<(4.].1.
k is no integer within the raﬁge g(
Applying ﬁis

otherwise arbitrary.

‘as above, we obtain for the inverse

2n
T (k-
k=n+1"

ment of a generalized
are written in reversed
ve 1integer values

rix is a segment of the -

COLLAR has represented | 2] the

11) explicitly, where
n-1) inclusive but 1is
formula'with k defined |

of (4.1.1.11)"

n—1
I (k+s=A)
k=0

A-1)

(n—l-r+§)(r—1

From (4.1,1,7) it.fpliqws that the

gonal polynomiéIS-Pﬁ(x) are given b

or, if we insert (4.1.].12)

J,n.

_ (2n=A-1) 2n-1-A-1) ... (a+1-A1T)

)!(n—r)!(s-l)!(n—s)! ?

(4.1.1.12)

coefficients of the ortho= .

y

a

n-r (r-1) ' (n-1)!

§ (_])n+r—s (n-1+s-X) (n-2-

+s=A)...(s~A)

(4.1.1.13)

oo (n~-r+s-A) (n+s-)

)(n—s)!(Sfl)!




Stellenbosch University http://schola]

This proves that for any nonrinteger

o -89-
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A > 1 a uniquely deterw

mined complete sequence of orthogondl polynomials exists.. -

The coefficients of these polynomials are given by (4.1.1.13)

and can thus be easily calculated.

This concludes our examination of the Gram determinants.

Before we turn our attention towards the

Gram~Schmidt process a

very important property of orthogonal polynomials will be briefly

discussed. -

Theorem 1

. Let {Pn(x)} (n=0,1,2,...) be a uniqué:

which are orthogonal with respect to w(x)

sequence of polynomials

on [a,b]. Then any

three consecutive Pn(x):of-{Pn(x)} are related by a recursion

formula of the form

Pn(X)

~and

PI(X) x—Bi

The coefficients'Bn‘and

(x=B )P _ (x) =y P__,(x),

Po(g) = 1.

Yn are given by |

n=2,3,4,... (4.1.1.14)

(4.1.1,15)

where we have written In m

denotes the coefficient of the power x"

: n,n—1
8:._;_-}-&‘ .
n VIn—l,n—l n~l,n
v = In—l,n-—]
B
SR
b

f w(x)xnpm(x)dx and a_

a

n-1,n-2

in P
n—1

(x).
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A proof of this theorem is given in

A recursion formula similar to (4.1.1.14]

corresponding sequence of orthonormal pol

For any non-integer A > 1, {Pn(x)}

and therefore (4.1;1.14) is valid.

Inse

r.sun.ac.za

[301, for instance.
also exists for the
Lynomials,

(n=0,1,2,...) ig unique

srting (4.1.1.13) in

Cm . _
P (x) = x° + X a _ixm—l, we obtain
m Ly m
n-1 , . ' . .
I . N Z {(Zn-Z—A—l)(Zn—S-Afl e (nmA-1)
o=l T Ik T L G-T-1) T (1-1) T(Zn-A-1)
ni](~])n—l+i—s (n-2+5-) (n=34s\) . (s
o © (n-I-1i+s=A) (n-T+s-)A) (n-1-s) ' (s-1)!
: o ;+n§1'{(2n—2ex-i)(2n-3—x—i).‘.(n—x—i)
n-tn-1 T Zoon L T @D TG T 1A D)

1 (n—Z

}

}.

ni (_])n;]+i—s +g-2) (n=3+s=-7)...(s=A)
as1 (n—1-i+srA) (n=1+s=2) (n-1-s) i (s—1) !
. _ 1 _anz;[(2n—4—k—i)(2n-5—A—i).;;(n—L—A—i)
n-2,n-2 2n—3*k"i¥] : (n-2-1) ' (i-1) !(2n=-3-1-1i)
n=2 . | o
z (_l)n—2+1-s (n-3#s-A) (n—4+s-A) ... (s=}A)
s=1 ' (h‘Z’i+s-X)(nf2+s—X)(n—2-s)!(s—l)!

Since (4.1.1.15) and (4.1.1.16) become e
our case, the orthogonal polynomials wer

again using the rational arithmetic ment

(4.1.1.13) insréad of applying (4.1.71.14).

What can be said about the orthonort

. ‘ ) S
APn(X) in this case?

xtremely cumbersome in

o

directly computed,

ioned previously, by

mal polyﬁomials
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Since GO_ 1/(1~X) it is clear that

For n > 0 we consider (4.1.1.6). If al

sign, then (P; P:) =1 for n = 1.
From [ 2 ], we do not only know the

also the value of the determinaqt-lurs|,

(@D 2000

r.sun.ac.za

* = -
(POfPE) = -l

1 G, (1>0) had the same

inverse of (4.1.1.11) but

which is equal to’

1—1)1}2'

(k=n+1) (kmn+2) 2. G- P Gy ™)

Thus

B 01 ... (o=

G

. (k+n=2) % (k1)

1)!}2

n—1

02 1m0 () P

(n=1,2,..

Assume i<A<i+1 (i=1,2,...) then it i

from (4.1.1.17) that all G ., where n-l
same sign as (1) (1172 If1<A<
,G],Gz,... are negative and therefore

¢
-0

The coefficients of the orthogonal polyn

B!

>

-0 L 2n-2-0) 2 (2n-1-0)

(4.1.1.17)

s not difficult to see

.[(i—l)/Z] + 1 have the

2 or 2<A<3, the

(P;,P;) =1 for n'> 1.

omials

WPo sy Pa(x), ey Poa(x)  for M=%, *%h, %
and their normalization factors are given.in [18] .
We remember that the existence of a éomplete sequence of

orthogonal polynbmialé for A = 2,4 was s

linear systems (4.1.1.7). Thus we may

5

replacéd by (_])n(p—])/Z‘

ecured by

apply the

The formula in [2 ] contains a misprint:

solving the

recursion

(-1)™ should be




" complete.
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formula (4.].].14)'in these cases.

We have shown that if X 1is

an integer and odd, the sequence of orthogonal polynomials is not .

The question as to whether in this case.a recursion

formula exists at all will be treated later in section 4.2 of this

chapter.

The method by which a sef of orthonormal pplyﬁomials {P;(x)} can

be determined is a special case of a general procedure in which

an orthonormal set of functions is constructed from an arbitrary

1inéarly independent set.  This proéess

is known as the Gram-

Schmidt orthonormalization method and can be described in our case

as follows.

_Given the inner product space 4 (sce séction 4.1.1), then

the elements ],x,xz,... can be orthonorm

Tf the metric in (4.1.2.2) is_posi;ive o

(e #0 (1=0,1,2,..0), then a uniqu

of orthonormal polynomials (4.1.2.1). is
Schmidt process. But our metric is. ind

this procedure may or may not work.

alized by setting

oy * ’ T
Py = | Py = PN 100 )]
P, =‘x_—-v(x,p;))9’:) and PT = pl/fl_@,,ml
k . C(4.1.2.1)
O Y v
Pn = x‘-kzo(x st)pk and Py = pn/ I(Pn,Pn)l
. such that.
* k| ' P ‘ ‘ "
I(pi,pj)l = Gij i,j = 041,2,... (4.1.2.2)

i negative'definite, i.e.
e and complete sequence
obtained by the Gram-—

efinite and therefore
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N

In the following, we shall not cons
the sequences {p;(x)} were already const
but analyse the Gram-Schmidt process if

then {p;(x)} is not complete.

Let us first consider the case X =

We set, according to (4.1.2.1),
PG =L =1
and p:(x) = 1N |(,D] .

But now we have (KO,KO) =

itself (in a pseudo-Euclidean space, sud
light-vector).  Thus p:(x) cannot be ¢
At

Schmidt procedure comes to an end.

procedure in the following way.

We introduce a linear polynomial ¢
po(x) = 1, while still allowing for. anot
p](x) = x-fbor Then we require

PP £0,  (BHB)

and _(pl,ﬁl) =0,
i.e.Ap](x) and ﬁ](x) are to be orthogona
neither is any longer a light—vecfor.
to continue the Gram-Schmidt process.
shall assume that'ao and b0 exist; ‘we s

later.

r.

rructed for n

sun.ac.za

ider the cases A = 2,4 -

:lkl)ZO -

.

A 1s Oddj we showed that

|i.e. KO is orthogonal to

h a vector is called a
onstructed and the Gram-
this point, we modify the
instead of.

()

= x+a
[¢)

her linear polynomial

# 0 (4.1.2.3)

(4.1.2.4)

1 to each other, but
Therefore we are now- able
For the time being we

hall return to this'point
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The two linear.polYnomials can be n

prea = p I [y,

]

HORENOVATCHE]
The next steps in the orthonormalization
. with the Gram-Schmidt process if pz(x) a
pT(x) and ﬁT(x). The quadfatic polynom

setting

Py(x) = x* = ,p]p} - (
and P3G = Py N [ (00,01 |

A simple computation verifies that'p;(x)
and ﬁ?(x). For n > 2, the n—th orthonor

obtained by

pn(*),= X' = &CLphpt - TLENDRE
PEG) = p N [ (o e )]

In order to prove that'hn(x) given by (4

*

: * Sk *
_ P](X),pl(X),PZ(X),,.. ]

Y

(x), we‘procee
assume that for 2 < i < n-1 we have prov
(pi,ﬁT) = 0, (pi,pg) = 0 (the last equal

then 2 < j < 1). Then for 2 < j < n-l

r.sun.ac.za

ormalized by setting

)| (4.1:2.5)

)| . (46.1.2.6)
procedure formally agree
nd pT(x) are replaced by

ial p;(x) is obtained by

x? 5P, (4.1.2.7)

is orthogonal‘to'pT(x)

mal polynomial p:(x) is

1

nF .
- kzz(x?)p;)p;, (4.{,2i8)

.1.2.8).is orthogbnal to
d by induction. We

ed (Pi,PT) .=' '0’ .

ity ‘holds only if n > 3;
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n—1

* NP2 S L B IS I - ok N
(pyoP}) = =G pPPT = (LB - kzzﬁ

I

(xn,P§)-(xp,P§) = 0.

Replaciﬁg p; by pT or ﬁT in the above pr
and (hn,ﬁT) =0 respéctively and therefo
génaibto p?(x);ﬁ?(x)?p;(x),},.,P;_I(X)-
| .. We havé said nothing so far about t
occurring.in p](x) and ﬁl(x); actually
tencévso.that (4.1.2.3) and (4.1.2.4) ar

determine them now. From (4.1.2.4) it

[V}
+
on
+
Nt
"
(o]

If we assume, for instance, a_ fixed, we

I
% .
+
2]

by (x) =

and : ﬁ](x) =x-a - 1,

We have a one;paraméter family of pairs’
.mémber of a pair satiéfiéé (4;1.2.16) an
(4.1.2;1]) the twb'members are drthogdﬁa

Forming the inner product of pl(x)

~itself yields

X, PR pgsPY)

1

' . ) n— . .
0D oky _ * kN _ o Ty o %y n % * %
GP3) = GLPT) (PR = G B (B - kzz(x P PleoP3)

sof yieldé (pn,p?) =0

re p;(x) is indeed ortho=

he parameters a and b
o o o

we assumed their exis=

e gsatisfied. We want to

follows that

(4.1.2.9)
can write

(4.1.2.10)

(4.1.2.11)

of polynomials; if one
d the other satisfies
1.

given by (4.1.2.10) with
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-1 '2 .
X _(x~+ao) dx

(0P =

|

The normalized polynomial pr(x) is there

positive square root)
P =L ray i
1 N "o

From (4.1.2.12) it now follows that (p],

Thus the inner product of pl(x) with 1ts

 for”a0 > -4 and negative for any a <
From this fact and (4.1.2.11) it fa
either (p‘,p]) is positive and (ﬁ],ﬁ]) ]

Thefefore, setting a
identical and represent a light vector £
verifiéd.

We now write pl(x) and'ﬁl(x)Ain'a
of theirkinﬁer p?oducfs-with

themselves

we introduce a new parameter & instead ¢

= | 1
a=a_  + ;.
Then
PO = x +a-
Pl = x -~ a -4,

i.e. ﬁl(x)-is obtained from pi(x) by me1

a. (4.1.2.12) with (4.1.2.13) becomes

2(a_+14) = N3
O .

r.sun.ac.za

(N =>0). (46.1.2.12)

fore (we always take the

N #o0.

p])»vaniShes if a i
elf 1is ceftainly positive

1
4
11lows immediateiy that

s negative, or vice versa.

-1, both linear polynomials must be

% This is easily

form such that the wvalue

acts as parameter. First
»f éo’ such that
(4.1.2.13)
(4.1.2.14)

(4.1.2.15)

rely writing -a instead of

2a = £N?, or
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a =t LN,

Inserting (4.1:2.16) in (A.T.2.14) and

obtain

x + 1EN? - )

P, ().

prx) = x + JGN2 - |

(4;112.16)

4.1.2.15) we finally '

> (4.1.2.17)

- This representation of'p](x) and ﬁ](x) clearly shows that if -

(p],pl) = +N? then (ﬁl,ﬁ]) = -N? and vice versa. Assuming from

now on that (p ,p,) = +N® the normalized linear polynomials
PP

needed in the modified Gram—Séhmidt.pro:ess, are thus.

1
* g

It
VIS

_ pT(x)

1]
o]
Sl

P} (x)

(4.1.2.18)

Inserting these normalized linear polynomials in (4.1.2.7), we

have
py(x) = ¥ = x4

The same quadratic polynomial could als

solving the corresponding linear system

for the coefficients c, and cl'of pz(x)*

L1

12

o have been obtained by _

(4.1.1.7), i.e.

= x" +c. X+ c .
)




Stellenbosch University http://scholar.sun.ac.za

- -98-

The pseudo—Euclidean subspace spanned by the linear p61y=

nomials p? and ﬁT can be represented by |the following graph

N

"*
Py

>0

S AN

Since the vectofs pi and ﬁl.are symmetric with respect to the
.light~pone (this is the set of all light-vectors) their sum and
difference respectively must yield two light-vectors. If is-
.. easily verified thét these.light—veCtoré.are,— apatt-from a‘
coﬁétant factor - identical with Kl_and 20;

We shall now briefly diécuss the case \ = 3.

By the Gram-Schmidt process we set

1]
—

pO(X)

and obtain

p? (x) ,1/V/T?],1)] = V2.
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~ The next two stéps'yield
P (x) = x-2
P =1/ V2 (x2)
‘and N
P, (x) =£2.=‘x2 - $x '+

Since néw (32,32) = O,‘wé'have_the same
previous case, 1i.e. Kzlis a 1ight‘vector
prqceés comes to an gnd.' It must again
us to;continue. We introduce ps(x) =
instead of pz(x) andAstill allow for ano
53(x} = x° +'b2x2 + bix + bo} Thenuwe

conditions
(b351) =0, (pg,0) =0, (By,1)

to be satisfied. Furthermore, none of

shall be orthogonal to itself, i.e.
- (pyppy) # 0 and  (By,P,

From (4.1.2.19a) follow the'equations

3 a +a, = ]
a -a, = 3
%bd+b] = 1
- = 1
b, b, = 1.

Fa

r.sun.ac.za

situation as in the
‘and the Gram-Schmidt

be modified to enable

x> + a.x? +ax+a
2 -1 0

ther cubic polynomial

require the orthogonality

-0, (ﬁ3,x) =0, (4.1.2.19a)

(4.1.2.19b)

the cubic polynomials

) # 0; - (4.1.2.20)
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:In order_to'satisfy (4.1.2.19b) now, we

~ that (p3,x3-+b232) = 0, yielding

43 (ay+by) +b(ay tagd

2) *
to be fixed,

‘If as before we assume ao

3
X

* (é -Hx? o+ (- -ao~+])x

Py ()

3
X

by () +(-a -7px" + (fa

o
i.e. a one-parameter family of pairs of
two members of a pair satisfying (4.1.2
orthogonal.

If we form‘the-inner product‘(p3,p,

(4.1.2.21) and set it equal to tN2 (N >

130, 41y = +)2
6 (ao + 52) =N,

i.e. if a, > - g%y then (p3,p3) is posi

L

for a_'< - 55,  Since the constant in f

have the same behaviour for the inmer pr

V p3(x) as prev1ously w1th Py (x) and p (x).

|

mials become identical and represent a 1

- L

57

.a =
[o]

Introducing a new parameter as befq

s L
52

a
0.

5. (x) is -a
(%) o

sun.ac.za

e

@

merely need to require

we obtain

(4.1.2.21)

*'30’

+E3D)x + (ma_=55); (4.1.2.22)

cubic polynomials; éach

2]) and (4.1.2.22) are

) with the aid of

0) we obtain

tive, and it is negative

we here

T 262
oducts of p3(x) -and
Both cubic polyno=

ight—vector £3 if

re,
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N

the eqdations-corresponding'to (4.1.2.16

(4.1.2.18) are here

a = £ N2
ﬁ3(X).= x° +.f%(iN2f-%)x2 - f%(£N?-%§)x
By = x4 S - B - (A -39y

. Assuming from now on that (p3,p3) +N?
cubig polynomiéls ' ‘

E O S

ﬁ;(g) = xgb- %% xé + %%3

by means of which the Gram-Schmidt proce

‘The polynomial pZ(x) can now be obtained

P, (x)

= =GRy = GpDp] - G

ppeo = p V1 wop) ]
Thé same pseudo—Euclidean spéce is.spann
previéusly’by pT and ﬁ?. Thé sum or th
of vectors p3,ﬁ3 yiélds again a light-ve
a constant factor — identical with'ﬂ3 or

Having analysed the Gram-Schmidt pr

A=1and A=3 it may be evident how thi

process has to be modified for an arbitr

), (4.1.2.17) and

b N -
+ 1—%_(11\]2 —;_l.q—)j.
we obtain the‘qormalized
x +‘§%
x - 25
52

ss may be continued.

by setting

NS I e N

ed here by pg and'ﬁg as -
e difference of any pair
ctor which is - apart from

22.
ocess for the examples

s orthonormalization

ary odd A.
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Let A =2m+ (m=0,1;...), then we assume the existence of a

pSeudo—Euclidean subspace as in the example with X = 1, but now

E

spanned by thg orthonormal polynomials_p;(x) énd'ﬁ;(x)f The '

construction of these polynomials will be given later. We:

sfar;"with the'Gram—Séhmidt prOcesé énd continue'until
 (bX_],pX_])‘$ 0. This point will be reached'since the Gram
deterﬁinant G -1 vaﬁighe;. 'Up to this point, the orthonormal

p\
polynomials pz,pT,..;,p;_z were éonstrdCted; -wa,we modify

- . .
ayoiX instead of
p ATt

1| 1>

the process by introducing px = x +
_ ‘ ;
px_](x) while still allowing for anbther polynomial of degree

. A . —_—
A :_ﬁk(x) = x + '2 b, .x" ~. Then we requife,pk and ﬁk to

satisfy the orthogonality conditions

(py,x'y =0 o -

N (3=0,1,...,22) > | (4.1.2.23a)
(ﬁ)\sxj) =0
(oyoPy) =0 o B (4.1.2.23b)

.. but not to be orthogonal to themselves,vi.e.

From (4.1.2.23a) follow the syétéms of linear equatibhs
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o

>\ -
2 a, . i T O
i1 A-1 (173 1) j+1

(3=0,1,...,1-2) (4.1.2.24)"
1 1 ' ’

Pr-i (T30 34

I ~13

i=1

In order to satisfy (4.1.2.23b) now, we merely need to require

- that (pk,xk~+bx_lxkf]) = 0, yielding

_—
| i G < 0

o
>
|
—‘l——|
> —
+
I ~1>
[os)
T
LR .
— -
ll
-t
L d
+
>
-+
+
i o~1>

Since.the_coefficients.'ax_i and bx_ are not uniquely determined

by (4.1.2.24) we assume, for instance, that ao is fixed.:i Then we

can express the remaining coefficients a],a ©3y and

99

b ,b

o l""bk-l by the parameter a, (we assumed the existence of -

the normalized polynomials pi and ﬁ;)i By means of these

pafaméter—dependent expressions for the coefficients ay_;oby_; we

obtain a onerarameter-family of pairs of polynomials»{px,ﬁx};

‘each two of é pair.are ortﬁogqnal. Applying the’same normaliza=

tion procedure as‘iﬁ,the ﬁrevious two examples, we finally obtain

p;(x) and ﬁ;(x)._ | .
Now the.Gram-Schmidt process may bé continued by setting

A+l ~*.

A+1 A+l =
:P;)P; f (X ,PA)P;

AS2 A+l
Pre () = x - kzo(x SPIP  (x

P30 = oy Yy 00,

for the next element.



1.3
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‘Before we derive the optimal quadrature formula, we want to con=

sider the modified Gram-Schmidt process in the corresponding ma=
trix notation. We note that owing to our indefinite metric. the
eigenvalues of the Gram matrices are positive up to exactly one.
negative eigenvalue.
. T | . on T . o
with X~ = {1,x,x*,...,x } and P =={p;,p?,...,p;} the

modified Gram-Schmidt process can be written as
X" = PU  (4.1.3.1)

where U'is an almost upper triangular matrix, i.e. the lower main
diagonal contains just one non-zero element (it must be remembered
that there'are two orthonormal polynomials of dégfee A but none

of degree A-1). Since the'p; are normalized, we have
T - ‘
PP =1 . . _ (4.1.3.2)
Denoting by C the matrix containing the coefficieﬁts-bf the,p;,

i.e. the "decomposition components' of the vectors pz in the

basis {1,x;%2,...,x"}, P can be represented by

P=clx. L (4.1.3.3)

Inserting this expression for P in (4.1.3.1), it follows that

If we insert C = U_] in (4;1.3.3) another representation of U

‘is obtained, viz
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i.e. U is the matrix of the "projection components" of the vec=
tors p;.in the basis {l,x;xz,.;.,xn}.
It is clear that G = XX'. From this equation it follows -

by the aid of (4.1.3.1) and (4.1.3.2) that

"~ This means that if A is odd, the corresponding Gram matrix can

be decomposed in the following way:

This decomposition is remarkably'similar torthét by Cholesky of

a symmetric and positive definite matrix.

Theory of the optimal quadrature

‘In this section we follow the developmeﬁt of the théory given by

- V.I. KryIOV'[la]. The quadrature formula

! ) N ~ :
f x “fodx~ ) w f(x)), (4.2.1)
. i=1

0 I '

for a fixed N, contains the 2N parameters . and X, (i=1,2,...,N).

The problem is to select these parameters so that formula (4;2.1)
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‘will be éxact'for all polynomials up to the highest possible .
degree (i.e. fof all polynomiéls”of degree < k, where k is as_qﬁ
large as poésiblej.

In the'following,lwe shail énly give the most important:
theoreﬁs of the theory. These',theorems concern the dégfée of-.
precision of the quadrature formula asiwell as the Christoffel-
Darboﬁx‘relationship by means of which'the'weights W, can be very
conveniently computed.

" Let us consider the polynomial p{x) = (x—x])(x-x2>...(k—xn)
'withithe ;tations xi of (4.2:1)as éeros, instead of'considefing
the stations themselves. ‘If we know the X5 then we can easiiy
fiﬁd the coefficients of.p(x). Conversely,.if we:khow the
polyhgmialvp(x)_= X+ a _(x ¢ ;.. + ao; theq the foots'of
p(x) will give us tﬁe'staﬁiops Xo.

The connection bf this polynomial with thé optimal quadrature

formula is explained by

Theorem 1

If formula (4;2.1) is to be exact for all polynomials of degree
< 2N-1, then it is hecessary and sufficient that (4.2.1) be iﬁter=
~polatory and that the polynomial p(x) be orthogonal with respect

to (ka to all polynomials of degree < N,

. The proof of this theorem is the same.as that for the case
of a positive weight function and is therefore omitted here. ..
We only remark that no formula (4.2.1) exact for all poly=

nomials of degree < 2A-1 exists for an odd A. ~ We remember that
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ip such a case the.orthégonal polyﬁomial of dégree A-1 was:
replaced by a one-parameter family of polynomials beAegree X.?:~
‘Each polynémial of this family is orthogonal to l,x,...,vxk—2

(for A > 1) and to a certain polynomial of the family, but.it is"
not orthogonal to XA_] and thiswviolateé a postulate'of'the.theo=.
~rem. The above observation then follows from taking that fact
into cbﬁsiderétion in the éroof of theorem 1.

The question of the circumstances under which 2N~1 is the

highest degree of precision for formula (4.2.1)'13 answered by

" Theorem 2

If p(x) is orthogonal with respedt to <k—A to all polynomials of
. degree < N and if it can be normalized (i.e. (p,p) # 0), then,
ho matter how we choose the X and4wi, (4.2.1) cannot be exact

for all polynomig}s of degreé 2N.

Proof

For the polynomial'ﬁ(x) = [ p(x)]?, which has degree 2N, the inte=

1 . . :
gral f x xﬁ(k)dx # 0 because we assumed p(x) to be normalizable.
) . ‘

The quadrature sum Zwif(xi) is zero_becausevp(xi) = 0. Hénce'

V (4.2.L) cannot be exact for px).

in order to calculate explicitly the-weighfé in (4.2.1) the
Christbffel—DarbouX relationship'wiilvbe useful. Tﬁe proof of
this relationship is based on the éxistence'of ?eéursidn‘formulae
for‘a given sequence of orthonormal polynomials {p*(x)}.-' From
theorem | of section 4.1 we know that if A is integer and even or

not‘integér a recursion formula for the corresponding (complete).
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-sequence of orthogonal polynomials exists.  The recursion formula
for the sequence of orthonormal polynomials is in these cases

given by (see e.g.'f31])
qﬂw)=mﬁ+%m3@—cf;ﬁm,‘n>m. (4.2.2)

1f ak and bk represent the_coeffieients of_the ferms of degree k

and k-1 in p;(x) it can be shown that.

n+l 441 (Pnel n) 241301
B = , € =

a.
n n

We remark that (4.2.2) and'(4.2.3) remaln.valid fer n=0 if we de=
fine'a;] =bpf] =0.

It was sthn in the previous section that for an odd power
A the eorresponding sequence-of orlhonormal polynomiale'contains‘-
no polynomlal of degree A-1, bﬁt two éolynomials of degree A
Thus the recursion formula (4 2.2) cannot hold for all poly=

nomials of the sequence. " But we shall show

Lemma

~If X is odd and = 3 and the correspondihg sequence of orthonormal
; polynomials is denoted by p*;p?,...,p; 2,p;,ﬁ;,p§+],...,p*,...
where both px and px are of degree ‘A (assuming’ (px,px) = +1) then
the’ follow1ng recursion formulae are valld

. (a) formula (4.2. 2) with the coeff1c1ents given by (4.2, 3) for

2 A+2 and for O n < A-3.

* _ * _ =k _ * '
®) Prag () = (2 By PPy 00 7 Gy PR () 7Dy ) ()

w1th the coeff1c1ents
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b

Mar =1/ % x Cxpy,, (0pY, | (R dx
o
. 1 .
. .

BA+1 =T AA+1 % X XIP;+1(X)]2dg

1 | o ' > _ (4.2.4)
p L X x ok :
C')\+] o A)\+] % X 'Xp)\_‘_l(x)p)\(x)dx

O ' .

i .
‘DX+] = AA+] T x XPA+](X)PA(X)dxf

o

(c) P;+](X) = (AAX.+BX)ﬁ;(X) - Cxp;(x)i— ka;_é(x)_with the

coefficients

1
Y - L
A = 1/ f xMupd, | GOPE G dx

o]

X—Ax[ﬁ;(x)]zdx

e}
>
]
>
>) . .
R

| | > (4.2.5)
X_XXﬁ;(x)P;(X)dx

(@}
>
[
>
>
L O -

o
>
1}
o=
>
O “—tH——

xfxxﬁi(x)P;_z(x)dx.

N i WL I WO R N S COR

with the coefficients
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1 |
By = ‘/jL X_kxyofﬂ(x)p;(x)dx Y

1
B o=-a 4 xIprGol
A=l =1 - Py X

¢}

e (4.2.6)
-1 = 7 MG
i , |

_)\ :

D-1 7 A % x #Pi(X)Pi_Z(x)dx. |
-0 . . ]

(&) pEO = PR = (& _yx + By_p) PE(0) - ¢y bt ()
with the coefficients

_ 1
R .
N2 = 1/ % g xP;(X)p;—Q(X)dX

(o}

g
|

1
1/ % Xnkxpi(x)p;_z(x)dx‘

(e}

. (4.2.7) -

_ [
o Ak 2
Bx_z = _AX~2 % X X[Px_z(x)] dx B
o .

1 .
B . — '_>\ * F'3
C)\_2 = A>\__2 % X xpk_z(x)Px_3(x)dx.
o) ' -

CIfF A =1 then'(d) with pfl =0 ié thellast formula.

Proof

Assume n = A or 0 < n < A-3; then with An~given by (4.2.3) it o

_follows that
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PI";H’(X) - Anxpz(X) = Q_ ()

1s a polynomial of degreé'at most m. Hence,’Qn(X) can be

expanded as

Q (x) = anp;(x) + an—lp;-l(_x) ‘+: '

oy BY (%) +oc>\_]p;*\(x)»fonx__‘zp;_z.(x) oo ta pr(x).

(4.2.8).
By the orthogonality, however, we find that
l.
o, = X?AQn(x)p*(x)dx
k ' k
"0
1 » 1
- =A% * - A =A% *
= % X pn+](x)pk(x)dx An % X xpn(x)pk(x)dx | (4.2.9)
o _ o . .
0 for k=0,I,...,n-2 if n=2X+2 or 2<n< A3
0 for k=0,1,...,n-3 1if AsSn < A+1.
Thus, setting o, = B_, a = -C_and o = =D we.obtain the
n . n n-1 n n-2 n

) reéursion formulae (a), (b) and (c). in.principle, each coeffié
cient of.(4.2.4) and (4.2.5) is obtained in the same manﬁer.. In
Qrder.to determine BA+1 (fof instance) we multiply Sqth sides gf
vthe recursion formula (b) by p;;l(x)._ Then using the orthpnor=

“ mality, the explicit representation for B follows.

A+l
Since both p; and ﬁ; are of degree A they may be interchanged

in (c), yielding the recursion formula (d). The integral repre=

" sentations of the coefficients (4.2.6) of (d) are obtained in the
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same mennerlas thatmdeseribed above.

So far we have_cohstructed reeqrsiom formulae euch thet'eﬁ
the right-hand side the p? (i=A?A+1,...) is multiplied by a
linear term. Oer eim is to find further recursien formulae
1nv01v1ng the product of a linear term and p*b(l 0 l,..;,k-2).

‘We know that both orthonormal polynomials which have the
degree X are of the form xx+ e Iherefore, the.drfference
p;-—ﬁi represents a pelynomiel of degree atvmostrkfl.

'if we choose Ak—é as in (4.2.3); it follows that

*v_"’* . '
Py = By () = A 2XPx o (x QA 2 (x

is a polynomial of degree ar most A-2. Therefore QA—Z(X) can

be expanded as
= @ * | - *
Qop () = By gy p (0 + By_gpy_3(x) + e+ B p (0. (4.2.10)

By the orthogonality we find in the same manner as that used

above that

. B)\_
By = By = oo =By, = O
Thus; setting BK—Z = B>\_2 and BX_3'=‘fCX_2_we ebtain the recursion

formula (e) with'the coefficients givenvby 4.2.7).

'We,have_rhus demonstrated the existence aﬁd validity of.the
recursion formulae (a) - (e) in the case of an odd A =2 3. . If
A=1, it is easily seen that fermula (d) . is the.fiﬁal one
(remembering our convention pf] = 0).

This completes the proof for all odd'X.



Stellenbosch University http://scholar.sun.ac.za

113

‘Théorem 3 '(Christoffél—Darboux)

" The orthonormal polynomials p;,p?,{.f,p2+]_satisfy'

a

[P (X)P (E) - b, (X)P (E)],

a n+1 n+1l

n
(x-8) ) pi(0)g; () = T—

i,k=o0 n+l

(4.2.11)
n=> At if A odd

"n=0 otherwise,

whére-an'denotes the coefficient of x" in the orthonormal pbly=
nomial p:(x) and 955 denotes the metric of the involved real

linear space®.

Proof

We. consider the recﬁrSion formula (4.2.2) and‘multiply-botﬁ-sides

by p;(g)' (wifh arbitrary £) to get:
o COPR(E) = (A x+BIPAGIPL(E) = C p* | GIBEED.

Since this is an identity, it holds if we interchange the argu=
ments x and £. = Subtracting this interchanged form from the
original form and multiplying by A;].yiélds) with the aid of
(4.2.3)

n+l

(x- E)p (OPEE) = A7 [pt, | PEE) - pEeOPE, ()] =

;_1[p;<x>p;_l<a>-p§_1<x>p§<g>1. .(4.?.1?)v

9k = ‘in the case of the usual Euclidean space, whereas
= g, % ~ (see page 81) for a pseudo-Euclidean space.
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We know that (Z.z,z) is valid for all n > 0 if A is not odd.
Thus if we sum the identities (4.2.12) over 0,1,2,...,n all -
terms, except the iést' éaqéel (for ﬁ=0, we ﬁse the conVentiod»-
é_] = 05.. Thisbyields the ChriStoffEI—Darboux relationéhip
(4.2.11). |

‘If A is ddd, we firs; assume n = A+2.‘ Thén,;by the‘Lemma;_
the récﬁrsion fofmula (4J2;2) is validrand‘gherefore also the
identity (4.2.12). - By applyingAthe ﬁrocedure described above
to all feasibie'lower—order recursipn formﬁlaé (b) - (e) similarl

identities are obtained.

From (4.2.4) - (4.2.7) it is easily verified that

.
AT A O
Ak~l = AA+]/DA+1 o g (4;2']3)
Aysp T AL /DLy = A /Dy | )

If we now sum thelidentities ovér-O;l?é,..;,ﬁ all terms
except the iasc caﬁcel, because of (4.2.3) and'(4.2.13), E ihis-
last term repfesents.the right—hand side of (4.2.11) aﬁd.thus‘the |
Christoffel—Darbéux relationship hés>also beeﬁ proved'for an odd

A We remark that the above arguments remain valid for n =2 A+1,
. q.e.d.
Summarizing the statements of the theorems 1-3 we . can say
that an optimal quadrature formula for f.p. integrals exists.
Its degree of precision is 2N-1 (N is the number of statiomns) and

the Christoffel-Darboux relationship is also satisfied.



e

Stellenbosch University http://scholar.sun.ac.za

-115-

‘We now fiﬂally diséuss our main problem, the actual con=

struction of the qptimal quadrature formula. = Let us consider
"the system of poiynomials:pg(x) (N=O;l,2,...;- bﬁt if A is odd.;
"we restrict N to.the vélues = A+l)_ortﬁonofmalvwith respect to
(x_k on [0,1]. The roots of pg(x) will thué be‘the,stations

Xj (j=],2,...,N) which are to bé.gsed in the optimal qua@rature'
formula.

In{thé theory of arthogonal polyﬁomials'it is shéwn that if
the weight function is positive in the integration'interval,_the.
rootévof the cbrresponding orthogonal polynomials are real, |
disfinct and located Qithin that interval.

.No conditions géverning the weighf function were found in
the standard literature (for instance [3312;14,30,31]) necessat?
for such a behaﬁiour of the roots.

In our casé, the stations may‘therefore be 1o¢ated outside
the iﬁtegratidn interval and even be complex.

" Because (4.2.1) is of interpolatory-type, the ﬁeights wj afe

given by equation (3.1.2b) which here corresponds to

_ pR(x) : - ‘
w, =4y AT dx  (G=1,2,...,0).  (4.2.14)

In order to calcuiate wj by (4.2.14) we make usevof the

Christoffel-Darboux relationshib (4.2.11) by substituti_ng‘xj for

& in thevequation. After dividing by‘x—xj we obtain
: ‘ ' * *
N % . aN pN(X)pNH(Xj
Z‘ pi(x)gikpk(xi) T T3 X~X
i,k=0 N N+1 ]
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| o, ' - N . . . i
where ay 1s the coefficient of x in p;(x). Let us multiply this,.
. A y . o
last equation by x = and integrate in the sense of f.p. over

[0,1]. IfA>1, the integral

1 | o
% X—AP;(X:)PI”;(XJ-')dX . - (4.2.15)

(o}

is zero for k > 1 by the orthogonality of p;(x),’and is 1 for
k=0 by the normality of p:(x). After carrying out the integra=

" tion we have

-

a (%)

_ N -A PN
P=-= ,pN+1(Xi) %.x 5 dx.
N+1 ) J
o] .
Hence we obtain
- - | ~
N+1 1. . N
w = - T §=1,2,..05N  (4.2.16)

‘with N = K+l.if A is odd, otherwise N = 1.

We fémember that in the ca§e A =1 there exists no polyhomiall
of degree-zero which can be normalized. .Thus by.the ofthogbna=
lity of p;(x) (4.2.15) vanishes only for kA? 2 and differé from
zer§ for k=0,1. It is easily shown that (4.2.16), however,

remains valid in this case.



-

Stellenbosch University http://scholar.sun.ac.za

-117-

Let X; be any root of p%(x) (N> 2 since A is odd).
With p?(x)'and ﬁT(x) given by (4.1.2.18) we obtain

] . i v _
x o (x)g.. p* (x.)dx = \ X T(x 1) (x, + 1)dx =
P )G 43Py O¥ IRy
o _

1
%x"‘(x—%xxj - Dax
o]

1
= % X—l(x + X, - 3)dx
0

and thus (4.2.16) also'hoids for A= 1.

The above expression for v, cén be changed s}ightly by making
use of the recursion relation (4.2.2) for orthbnormalvp01Ynomials.
Let us substitute the foot Xj of p§(x) for x in (4.2f2). This

gives
2% ' * =
aNpN+I(Xj) + aN+laN—]pN—l(Xj) = 0.

" With this relationship we can write (4.2.16) in the form ,

, a. - ,
v, = N L §=1,2,.. N, (4.2.17)

_ E ] *
N-1 g (xj)pN;l(xj)

We remark that (4.2.17) is valid only for N = A+2, if A\ ié odd.
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Because the formulae (4.2.16) and (4.2.17) were derived for.
any root of p;(x)3 they are valid even for a complex station Xj’
in this case yielding a complex weight.

With this explicit representation of the weights, we con=

- sider the theory of the optimal quadrature for f.p. integrals as

closed. - The next section contains a brief discussion of qua=

dréture formulae with preassigned stations.

- Quadrature formulae containing preassigned stations

In applied problems it may be convenient to use quadrature for=
mulae in which some of the stations are given in advance, while
the others are free and may be chosen by any criterion we wish.

Consider the quadrature formula

- . n m :
{ x " f(x)dx =~ Zl wif(xi) + jzl ajf(yj)- 4.3.1)

in which the m stations y. ,...,y are prescribed in advance and
- 1 >m .7
where the m+ 2n constants aj, W, and X, are to be determined $o -

that (4.3.1) may be exact for polynomials of as high a degree‘as

" possible.

- We shallrnotvdevelop a special theory of such Quadfature
formulae here but give the following theorem showing the connec=
tion between this type of quadrature formula -and the optimal ones.

Let us introduce the two ﬁolynomials
) = (x-yp) «.. (x-y)

.Q(x) = (x-—xl) .o (x-;xn).'
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By céuﬁting.the number of ways in which the coefficients a; and
w, can be chbsen, we see ﬁhat ermula (4.3.1) cén be made,exagt-v
~ for polyﬁomials of degree < p-+nf—1. vThis can be accomplfshéd
by requiring that the formula be inﬁéfpolafory. 'In‘order to
.achieve a higher dégreevof precisidnvwe have at our disposaivdniy

the choice of the nodes X, .

Theorem

In order that formuia (4.3.1) may be exact for'all pquhomials

of degree < 2n+m-1 it is necessary_énd"éufficient that it should
bevinterpolatory, aﬁd thaf the polynomial w(x) sﬁquld be ortho= ;
gonal on {0,1] with respect to-the weightafuncﬁion (X—AQ(X) to

every polynomial of degree < n.

A'proof of this ﬁheorem, but involving a positive weigﬁt_.f
functioﬁ, can be_fbund for instance in [14].  That prqbf may
be applied to our case and is thus omitted. |

| Since formula (4.3.1) is interpolatory'Fhe‘coefficients W

and,ajbhavé the following values:

] .
_ % -2 w(x)Q(x)
Wi— X

(x—xi)w‘.(xi)ﬂ(xi)

dx  i=1,2,...,n  (4.3.2)

0
1
~A w(x)(x)
3 ) (x yj)w(yj)ﬂ (yj)

dx j=1,2,...,m. “(4.3.3)

Another representation for the coefficients W, which is easier to

use for computation than (4.3.2) can be obtained if we aséume
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that there exists a unidue systém of polyndmials ﬁk(xj
(k=0,1,...) forming_an 6rthonorma1»systgm with'respect:tovtheif
weight function {x_kQ(x) on [0,1] where ﬂk(x).has degree k.
Clearly, the polynomiélvﬂn(x) differs froﬁ_w(x) by only a 

constant factor,. so that

o | |
R | ﬂn(x)
Vi T ﬂé(xi)Q(xi) % p(x) x—xi"dx :

)
where

o(x) = <X_AQ(X).

- The integral in this expression was calculated in the previous
section using a different notation. We obtained the following

two expressions for this integral:

ﬂn(x) o a a
.-% o (x) X=X dx = am (x.) T a -
: . i n n+l 717

n—lﬂnfl(xi)
o

where an is the coefficient of %" in the~polynomiél ﬂn(x).
Thus

a a
n+l n

P MG T [ GORGY A TG GG

n+l

(4.3.4)
If we compare (4.3.4) with the éxpressions (4.2.16) and (4.2.17)
for the weights of the optimal formula then it is clear that the

W, in (4.3.1) differ only by the factor I/Q(xi) from the corres=
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ponding weights in the quadrature formula with weight function

p(x) = (X—AQ(X)

1 L .
. n . | .
% p(x) f(x)dx =~ ') - ﬁif(xi) (4.3.5)
. i=1 -

(o}

Which>is‘éxact for polynomials of degreé < 2n-1.

We shall now discuss the quadratﬁre formula with y]==0 as
the one preéssigned stétion. In the claSSiéal thédry'of.Gauss
integfatioﬁ the case Qith_a.single fiked station is mostly called
Radau integration’ [26]. If iﬁ what follows we speak of a
Radau—type_formula we mean_the'quadrature fppmula (4.3.1) with
m=1 and y, =0.

In tﬁe case_qf a Radau-type formula we have Q(x)'= x and as

the previous theorem sﬁows, we must determiné’the'polynomial

w(x) orthogonal oﬁ [0,1] with respect tpjthe welght function

p(x) - (x]_x to every polynomiai of degfee < n,(n_is‘the number

of stations Xi)' Then thé rootsrof w(k)'are'the statioﬁs X,
(i=],2,...,n);' It can immediately be recognized that the stations
of the Radau—type.fdrmula are.identical with thése'of the oftimal,

" quadrature formula with the weight function p(x) = (x]_x. The
weights of the Radau-type formula are simply related to those of

(4.3.5) by W, o= v’“\ri/xi (i=1,2,..7,n).

7 Some Russian authors, for instance V.I. Krylov, attribute the
study of the cases with :

(a) one single fixed station y =0 and

(b) two fixed stations y]=0, y2=] '

to A. Markoff [ 221]. T
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In particular, we consider the Radau-type formula for A =1,
Here, p(x) = 1 and thus the stations are identical .with the 2eﬁo$ '

of the so-called shifted Legendre polynomials, or -

X, = ——— " ¢ (i=1,2,...,0) 0 (4.3.6)

where xz denotes a zero of the classical Lengendre polynomial of °

order n.
*

Denoting by wi.the weights of the classical Gauss-Legendre

quadrature formula, we obtain for the corresponding ‘weights

oW I |
wi=—— . . (4.3.7)
' ¥+ 1 '
i
Since (4.3.1) is exact for f(x) = 1 we can write
n
ap =<~ 1w
. i=1

1 ‘ * * |
- n W, X, +1
,f K9 g~y Ly [ L .] - F(O)]
i=1 x%* + 1 U
(o] 1 -

follows, involving the stations and weights of the élasSical'
 Gauss-Legendre quadrature formula. . We observe thét the weights
given by (4.3.7) are positive because the wz are positive and

*
Ixil <1.
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This'Rada;—type_fotmula is ‘the only one among all poséible
quadrature formulae with one preassigned statioﬁ which is éelated*‘
.:to a classical quadfatufe'formula; If A = 2,3,4,5 then the
correspoﬂding Radau—type formulaiinvol§es the.stgtions and weights.'
of thé optimal ‘quadrature formu%a wiﬁh_the weight function

—],(x_z;(xf3 _4; ‘i.e. the singularity of the weight

p(x) = {x , {x
.functioh decreases by.one bower when a Radau-type formula ig
applied. | |
| We next briefly investigate the éecoﬁd important case with
preggsigned stationé, viz fhe case when y]==0 ahd'y2= 1 are -
»fixed.stations. In agreement, once ﬁore; with the theory'of.
Gauss integratiqh we in this case call the éugdrature formula
(4.3}1) the Lobatto—-type formula [ 20 ].‘

‘There is a remarkable correspondence bgtween the Lobatto-~

type formula and the classical theory of integral approximation

if-A=1. TWe therefore here restrict our attention to

1 ) :
% “XX) dx ~ a]f(O)'v * az_f('_l) +
(0]

1

)

1,‘wif(>fi)- (4.3._7.)

The correspondinglﬁ(x) is equal to x(x~1). In_order to

. find the stations xivin (4.3.7)»we.have to determine that poly=
nomial which is orthogonal on [0,1] with respect to the weight
function b(x) ; x=1 to every poiynomial of degree < n. Since by

the linear transformation x = (t+1)/2
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1 o _
I (x-1) f(x)dx = -

0.

. 1
(I-x) f(x)dx = - { f (1-t)F(t)dt, - (4.3.8)

0 =

‘it follows that

s x? + 1 » : '
X, =5 (1=1,2?...,n). _ (4.3.9)
: (o, B) a1 ' erar . -
Let Pn (x) (n=0,1,...) be the general system of Jacobi poly=.

nomials orthogonal on [ ~1,+1] with respeét to the weight function
(l—x)u(l+x)6; then x;'in (4.3.9)'denotes the i-th root of the
special Jacobi polynomial Pil’o)(x). -ACCordihg to (4.3.5)

and (4.3.8) the weights in (4.3.7) are given by
w,om—— o (4.3.10)

where'w;'is the weight corresponding to xz.

Because (4.3.7) is exact at least for f(x) = I and f(x) = x,
we have
n .
a, = _2 wi(xi-]) -1, .
1=1
n
1=1

Inserting these-expressions together with (4(3.9) and.(4.3.10)

in (4.3.7) we obtain the Lobatto-type formula
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1 : * : * * - o '
f(x). n wi Xi- Xi+1« _ xifl _ ‘

jﬁ_—. dx ~ ) — 10) - —— 1(1) +f { —1 | -1 + £(1)

. - - . N _ : . .

ihvolving the stations'ahd_weights derived from the special
Jacobi polynomials-P(]’O)(x). - These coefficients are given, for

instance, in [15:].v

Computation of the stations and weights for the optimal qua=
drature formula ' '

Invprinciple,.there'are thrée‘possible methods bf computipg the
cbefficientsvof the drthogonai polynomials: in the first place,
the recursion formula (4.1;1.14) could‘bé used; secondly, the
Gram—Schmidt process could be applied (modifiéd.if A is an odd
integer); énd ﬁhirdly the systems of linear gqﬁations-(4.].i.7)
could be solved;‘ -Sinée the.first.two methods involve théipr6=

cess of integration they are inconvenient for practical purposes,

and thus we chose the third possibility.

It is well-known that such linear systems arising in
Gaussian—-type quadrature are mostly rather ill-conditioned.

Indeed, using some direct and iterative numerical methods for’

" linear system solving we observed a behaviour of the solution

similar to that obtained when computing the weights for an inter=
polatory'quadrature formula: i.e. at most ten significant .digits

of the solution were correct with,N,> 12, and this accuracy we

did not regard as sufficient. Therefore, to be on the safe side,

the linear systems for the coefficients of the orthogonal poly=

nomials were again solved exactly by the Gaussian elimination
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\

‘process performed in a rational arithmetic [17] for the cases

A =.1;2,3,4,5 witth 2(1)20 (for X = 3,5 of coursé N‘¢VA);V It
was shown in sectioﬁ 4.1 that:the coéfficients'of the orthégonal'
polynomials can be calculatgd explicitly by (4;1.1;13)‘if A is not
integér. With the éid of tha; formula and using a rational
grithmetic [17] in the cases A = ﬁ@, %é, % and N = 2(1)20,>we
_coméuted the coefficients ﬁrecisely.

The next step was to deterﬁine tﬁé_roots of~the.ofthogona1
polynomials.  First, we found the approximate zeros of these
polynomials by one of the_sfahdara,méthods, the coefficients being
expféséed»merély té double precision accuracy én&ithé caléplations
being also carried out-in‘double precision.‘. Then, using the
exact (rational) repfesentation of‘the pblynomial coefficients
and applying a s#ecial multi-precision floating.point arithmefice,
the approximate‘zeros wére réfined‘td high accurécy by Newton's
method. It should be noted that the rate‘of quadratic conver=
gence of Newton's methoavis.effective’oniy if the nﬁmber’of
significant digits used is sufficienf. We used 56 Signifiéaﬁp
digits .in order to be sure fhat the refined zeros would Be cofrégt
to at least 31 significant digits.

Finally, by means of (4.2.16) and (4.2.17), ana again using
multi-precision fioating point arifﬁmétié, we computed the
cbrresponding weights. | |

Tﬁe exact values of the coefficientsvofithe'ﬁolynomials, as

well as the stations and weights in>f10ating pointArepfesentation_

8 The four basic operations involving real or complex.numbers

may be performed by this multi-precision floating point
arithmetic with an arbitrary number of digits. The method
is based on- an integer arithmetic [17].
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“to thirty significant digits'(thellast one correctly rounded

off) are given in {18} for X =.1, %g, 3&, %@,»2, 4-with

N = 2(1)20 and for A = 3,5 with N = A+1(1)20.

Properties of the stations and weights

According to a well-known theorem from the theory of orthogonal
polynomials, the stations of a Gaussian-type quadrature formula
are located within the integration interval if the weight func=

tion involved is non-negative there. To our knowledge, there

" is no theorem giving a necessary condition for the stations to

lie within the integraﬁion interval. Such a condition might be
véry_difficult to find. . In most of thePlifefature on,Gaussién
quédfature (for'instance [3,12,14,30]) it ié saia that if the

welght fqnction'W(x)_doéé not satiéfy the assumption W(x)=0 on
the iﬁtegrétion interval, the zeros of the‘corresponding ortho=
gonal polynomials (prévided they ékist) can also lie outside the
intefval of intégration or evenibe complex. :In fact, for the .

cases we have computed the stations have the following behaviour:

A=1,"%,%,%  ad N =2(1)20:

one station is negative but relatively close
to the origin (= - 0.1601 ,...) and all the

others are located within [ 0,17.

A= 2,4 “and N = 2(1)20:

there are A/2 pairs of complex. conjugate stations

and the reél ones lie within [0,1].
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A =3,5  and N = A+1(1)20:

there are [ A/2] pairs of complex conjugate stations, .
one negative station but not as close to the origin .
‘as previously (= - 0.4113 ...) and the rémaining‘

stations égain_lie within [0,1].

FInﬂtﬁe theory of Gauss quadrature it_is_éhownvthat if the
weight function 1is noﬁfnégative in the integrafion iﬁtefval then. .
all wgights are positive. »But“this property of the weight func=
tion is again merely sufficient. 1In our casé, we can expect
some weigbts to be negati&e or complex; Owing to the computed
values ﬁe observe thét to a negative, positiyé or complex
station cofresponds a negative, positive or.cbmpléx weight.
Of_cdurse, the complex'weights occur 1in éomplex'conjugate pairs.
The absolﬁte values of the real weights decrease ‘as the absoluté
:valueé.of.the real stations inérease and their order$ vary-
1from'10-;_up to f08. The real and imaginary parts of complex
weights are of‘fhéfsame order of magnitude which increases with
A and N and lies betweeg 10 and f08 in the computed cases.

Obviously, the'application of the optimal quadrature formuia
_ vis limited to f.p. integrals where the integrand funcﬁion f(x) is
also defined outside the integration interyal and'wherg it can be
évaluéted for cdmplex‘argumenfs, .This méans fhat f(x) is_either'
given analytically or its value for points not located within thé.
intervél and for complex afguments.is-computablé by a Certaiﬁ

procedure.
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The value of the quadrature sum, in general, will be complex

(unless the function satisfies f(g)v= f(z)). The real part:of .

this complex number can be considered a (réal) approximation to
the f.p. integral while the imaginary part gives an indication

of the error of the approximation.
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CHAPTER V

A DERIVATIVE—FREE ERROR BOUND

5.1 Error.estimates for f.p. integrals in general

The ahalyéis of errors committed when_fegular integralsvin one
dimension are'eValuafed by'numerical'integration'rﬁleé has received'
céhsiderable attention. Mést of the quadrature efrof béunds which
appear inAthe_literature'éan_be classified as either derivati&e-
dependent or derivative-free. Defivative—depehdént‘error bounds
express_a'Bouna of the error eommitted.when épproximate'fqrmulae of
.integration are used, in terms of ﬁhe Higher,derivatives of thel
function oberated upon. Suéh expréséions for the error bound are
-valid for the class of real functions which é;e sufficiently diffe=
~ rentiable, and the expfessiqns are thus widely applicable. On'ﬁhe
) 6ther hand, they have several drawbacks. 'In.the fifst place, since
the’erfor terms applicable to different rules ﬁay_contain"different
orders 6f derivatives, there 'is no common basis enabling thé rules
to be compafed with one another. Secdndly,»data on highér deriva?
tiygé may be unavailaﬁle or may be diffiéultfto ob;ain. This may
be.the case Qhen operating with funcfions givenbin_closed_form but
which are highly composite. | |
0SSICINT in [ 25 j gave a derivative-dependent error bound.fdf
an interpolatory quadrature formulé forif.p. integrals. In that-
paper_the integrand function f is assumed to be € ‘Ch[€171]

‘where [ -1,1] represents the integration interval and n > | denotes

(130)
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the number'pf stations. The giVeh error bound contains an integral
involving ﬂn>[,;+ E(x=1)] (-1 < € < 1) as integrand. - An error
bound of this form appeafs fo have drawbaéks where'practiqal appli== .
ca#ion'is concerned.

Our aim is therefore to find a @érivative-free errér bound fof»
f.pﬂ‘integrals, by means of which the remainder can be boundea more.
easiiy. |

'The'integrand function.f will be éssuﬁed to be analytic merély
in |z-4| <1 + € (e>0), containing the bésic'igtegratidn interval
f0,11. TFor this feason; we heré‘restrict ourselves to an error
bound fd? the equispaced station quadrature formula. The applica=
tion of the optimal quadrature formula,‘hOWéver, would require f
to be analytically given in a larger region since some stations
are negative or compiex in this casé. |

The basic work bn‘derivétive~free'error bounds for errors
committed by the apprbiimations of regulér integrals, of derivatives
or of real functions was doﬁe'by DAVIS [4] .« His derivative-free
error bound ‘is of the form ]E(f)| <,0HfH.J Here f(z)‘ (z = x+iy)
is required to.be énalyticvin a disc containiﬁg the considered.in=’
térvalsof the real axis; and to be continucus on_the bqundary of the
disc. The quantity ¢ depends solely upon tﬁe approximation rule
employed while the quantity (fll is the norm of f in the Hilbert
space'of analyﬁic functions. For certéin ;laéses of ‘analytic func=
tions such derivative-free efror boﬁnds have been-studi?d by seve=
rai aﬁthors: [1,11,]9,23,29,33] . Most of this work is restriéted.

to Gaussian quadrature rules.
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- Since almost‘éil assumptions made by tﬁe above authors are
viblated»by the behaviour of f.p. infegrals, it is nét,possible:to
apply ény,df‘their derivétive-freé érror bounds. ° For this reason;§
.weideveldped such:an.error bound with the aid of ﬁhe general method
givén in[ 4 1.

V_Denqﬁing by En(fj the error committed in the use of our inter=
_ polatory quadfature formu1a with n equélly spaced stations, wé shall
shbw in the following tﬁat.En(f)_can.be b&unded_ih‘the form -

|E-n(f)|<'onp "rf s : | (5,1.1)'

p and q are parameters € [ I,¢] and must satisfy the relationship

] 1

— + = = 1, which is deduced from the Holder inequélity involved in

)
Nal

the derivation of (5.1.1). For p fixed, the quantity o, p

E]

depends

.-merely on the n-point formula used, while T vdepends'only.on the

f,q
integrand function f. It should bé noted that due to the freedom
of choice_bf p (or q) théfe:are - for a fixed n and.f‘-_differgnt
POssible_&élues.of Gh,b and Tf,q' Ideally, thé best p (or q) is
that which minimizes fheSe erforvquantities. But this;problemvis
not pursuea here.

We shall derivé 6n,p and Tf,q by two diffefentvmethods; the
first is based on an aﬁalYtical continuafion of thé ihtegrqnd func=
tion_f in the sense of Borel and thus simplifies thé proof of
‘ cefﬁain convefgence propérties. Thé other method'dispénées With
any analytical continuation. of f but involves some cumberste esti=

mates for certain inequalities. In either case, we prove the

existence of the error quantities for two practically important
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- values of P, viz._p‘= {1 and p = ®, " We then bring o P into a form

>
suitable for computational purposes and give some values of it fdr
different powers A and n>= 3(1)20. After a few éOmménts on the
coﬁ?utation-of Tf’q,.we conclude both cases with an example; eve§= .
tually we compare the reSults.

Finally in this chapter we compare this analytic error bound
with a graphical method'for‘fiﬁding the numbgr of correct signifi=
caht digiﬁs; The reasons why we méntioﬁ éuch a feasible graphical
method at.a11 are that it is simple to apply and.yields fairly
good results, | | |

Beféré we. turn our attention to the firsg method of obtaining
the error quantities we givé the conditionvﬁhich must be satisfied-v
a priofi‘by the integrand function f(x) for Both methods. We want
to obtain a derivati&e-free error bound for the remainder

’ i n
E_(f) =7L HE) g - ¥ w, i (5.1.2)

X i=1

.0

in the case when the interpolatory quadrature formula of chapter III
is used for approximation.

" The function f(z) is assumed to be an analytic function of z,

Nf=—

regular in the disc Iz;-%l < 3+ e (> 0) which contains the inte=

gratién'interval [O,i]; i.e.

8

[ = § aG-DY z-il<i+e  (5.1.3)
. k=0 :
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. - N
with ay = l4—E§il

The first method of obtaining the error quantities -

- In the following, we prefer to use a simpler representation of

f(z) than that givenvin (5.1.3), namely

f(2) = % ‘bkzk (5.2;1)
- k=0 '
with
(k) ©
_f ) v, ,_ -k
b= L0 T oy
. v =k '

This reptesentation of f(z) is the essential feature of this method.

_But it is clear that by this change of .representation the conver=

gence radius of f(z) is also changed, i.e. the series in (5.2.1)
now converges absolutely and uniformly only for |Z| < g... There=
fore (5.2.1) may not be integrated termwiée 6ver [0,1] as will be

necessary. In order to overcome this disadvantage we apply the

Vfoliowing

Theorem . (method of analytic continuation in the sense of Borel)

e~ 8

Let f(z) = >akzk be convergent for.|z| < r. Then the integral
. k=0 ' : V
[ ¢t Fztyde, (5.2.2)

o
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k

F(z) = J a =2 dial analvtic continua=
where (z) a T+ represents a radial analytic continua

0~ 8

k=o-

tion of f(z) on a certain region of summability B(f,1).

A proof of this theorem is'given for instance in [10, page 83].{
‘We illustrate the construction of such a region B(f,l)vin our. case

by the,followiﬁg graph.

iy

K]repreéents the cénvergence circle of the series in (5.1.3). We~

lf. If 31,15

such a point,Af(z) can be analytically continued in a radial direc=

know that at least one singular point must lie on K

tion by taking out a small sector with angle § around $ In the

e
worst possible case, the convergence circle of the series in (5.2.1)
is K2 with the radius €. In such a case, there can be only one

singularity 82 on K2 and this must lie on the negative real axis at

-€. Again, taking out a small sector aroundFSZ, the radial analy=

tic continuation of f(z) is rendered possible. This process may
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be continued for éli singular points.-of f(z); the remaining paft_of
the comﬁlex plane is then the. region of_summébility B(f,1) whefe‘
(5.2.2) representé f(z).n It is cleér that the.integration.inter§al
' [0,?] be1ongs to B(f;j)_in any case. Thus, the radiailanalytiC'

continuation of (5.2.1)'which has the form

T e K - |
f(z) = f Y b E2yae (5.2.3)

k=0

may now be integrated termwise over [0,1].

The errorfEn(f) can be bounded as follows.

A 1 : :
]En(f)l ‘% f(x) dx - z W, f(x. )I
. _ 5

x i=1

] . .
k n @ (tx.)
-\ ~t (tx) -t i
=|7£x[fe Zbkk!dt]dx—.ZwJe b dt|
=0 1=1 k .
o
) k 1 .
© tb : ' n
-t 3 k k-2 k ' ~
= I.I e ) " [ % x dx - .2 wixi]dtl. ' (5.2.4)
. k=0 o 1=] ,

We remark that the last interchange of the order of summation

pp (£
)

X k ki

yielding (5.2.4) 1is admissible since is uniformly con=

vergent in { 0,1].
Since the interpolatory quadrature formula has the degrée of
precision n-1, where we require n = A > 1 (i.e. the number of stations

is - not smaller than A), the differences in (5.2.4) vanish for
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k=0,1,...,n-1. Thus we can write

L ® - n+k, . ' ‘ : o

0 b
‘ _ -t n+k -
|En(f)| = | [ e 2 T en,kdt (5.2.5)
S k=0 - _ ,
: o
where'
1 n

n+k—-\A . _n+k : -

e k= J x0T dx E vixg e (5.2

It should be noted that owing to the aBove>restfiction on n the in=
tegral in (5.2.6) is now regular for any A. - For n fixed, the

_quantities eh‘k (k=0,1,...) represent the errors of the quadrature
b

formula when integrating the powers xn+k (k=0,1,...). We can thus

. n+k
write e = E (x
n n

A8 )

As we shall later see, the numerical behaviour of the quantities
A has ‘a’ far-reaching effect in that it determines ‘the existence
n, _ _

of on and therefore also that of the derivative-free error bound.

bl

STENGER [ 29 ] showed for instance that in the case of a sym=

metric Gauss-type quadrature formula, ek > 0. In our case, it
o ’ . . N

is_eaéily'verified numerically that the ek do not have a constant
. . 2 ) .

. [se]
sign. Also, the sequence {Ien,kl}k=o

does not decrease mono=

tonically as one would perhaps be inclined to assume. But this

' non-monotonic behaviour of.]en kl is not due to the f.p. quadrature;
> ) ’ ’

the previously mentioned symmetric Gauss—type formula was found to

exhibit similar behaviour.
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A typlcal graph 111ustrat1ng the . relatlonshlp between Ie k]

o
and the hlgher—order moments Mok f xn+k >\dx is given below.
o : '

k=0 ~ k ~ (with n fixed)

It follows from (5.2.5) -that

n+k
< -t o t n+k ' : '
|E_ (N <fe " § | CTR) en’kldt. : (5.2.7)
o k=0 ‘
Assuming that the sequence.{en k}oo is in P (1 < p <) we
' k=0

.apply Halder's_inequality to (5.2.7) and obtain

n+k 1/q 1/p
Lo o t b q oo P .
el <[ T I | Iole | dt (5.2.8)
o k= - k= ’
with il + 1. 1.
. P q

The last factor of the integrand.in (5.2.8) is independent -of

t and we can thus write the error bound in the form
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IEn(f)l < %o T'f.,q‘f“

with the error quantities giveﬁ by

o 1/p ' -

_ P

A [kzo'le“’kl ] N (5.2.9)
and -
n+kb

: o -, G q : . -

- -t n+k : .
L £ e [kzol———.(“*k)’ | ] dt: | . (5.2.10) .

.In_accordance with the HBldef inequality for each pair of parameters
p and q fhe error quantities aré expressed iﬁ a differenf norm which
we may still choose.
We shall nowACoﬁsider the important error quantity On,pf
It is easily seen from (5.2.9) that apart from the parameter
P» On,p depgnds solely upon the n-po?nt quadrature formula used and
therefore can be computed once and fér all.

With a view to ‘practical application we choose the following -

two cases in particular:

(a) p=q=2 which corresponds to the Eucii@ean norm ofFO, i.e.
o) _ ) ) .
2 _ 2 . .
o Z e | G211
(b) p=w, q=1 by which we obtain the supremum norm, i.e.

Ry = sup ‘]e

- ] (5.2.12)
n, k=0,1, n,k L
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The question whether 0 9 and 0w exist at all is answered in the
’ L

following.

Since the integrél as well as the sum in (5.2.6) tend to zero

when k>, the éxistence of On « 18 assured for all powers X.
?

In order to examine the existence of On 9s We investigate the
. H ’

1
. . o -\ .
series z_eg K Replacing f xm'-k dx by the moment notation
M, We can rewrite (5.2.11) in the form .
2 - 2 - A 2 :
0n,2 kz M Zomm_kBk +.kzo By (5.2.13)
n
S n+k
where | Bk = Z LIRS

" The value of mﬁ+k is 1/(n+k+1-\) which is certainly less than one
if n > Xv>A1. ~Thus the first series on the right-hand side in
(5.2.13) represents a general harmonic series which converges abso=

lutely. Since

n ’
B < T lw [ < w ™,
o i=1 - -

_ n _
with - W= Y |w.| and y = max x, <1,

B - _n+k |, . L
the geometric series §~w y 1s a convergent majorant seriles for.z Bk'
) " _ .
- k

Therefore the secbnd and third series in (5.2.14) are also absolute=

1y convergent and o, exists.

»2



Stellenbosch University http://scholar.sun.ac.za

-141-

_Having-demonstfated the existence of On’ for p=2 and p=©

b

we shall discuss the numerical evaluation of Gn 9
. ? )

An expreséion such as (5.2.13) 1is bb?iously unsuitable for

* computing the numerical value of o

9 We therefore recast'each
s , _

series in (5.2.13) as follows.

If we add the terms l,-JE, cos to the first

2 E ’(n—>\)2
series Z m§+k, the new series represents Riemann's & function
k ' ' :
[} . .
T(s) = § i ° for s=2. But 5(2) =n%/6 and we thus have
i=] : : '

s g4 : ' . .
m =g 2 . (5.2.14)
=0 - i= . . .

Using-the'integral representation for the moments m;

o the second

- series can be written in the form

oo © oo 1 | n
: : n+k—-\ n+k
LomgBe = L Jy "y ) owpxg
k=0 - k=0 o 1=]
, e N v
o k=0 i=1 T
l n-A ¢ o k,:
=[y L owex ] (xy)dy
o i=1 k=0
. - n. wW.X. . .
) Tfé;l— dy. : © (5.2.15)
o i=p 7% o -

Recasting the third series in (5.2.13) in a similar way, we finally

obtain
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| s w? n=A 1 | } n;K ? wixg ? E Wiwj(xixj)n..
o2 ,=>~- 1) —=-2[y = dy + ) —=
LA O IR A S L
(5.2.16) °

This now is an expression containing easily computable finite sums.

n,2 and=0n’oo for A=1,2 agd n==3(1)20.:'

We computed the quantities o
Their values are given in the tables below (we remember that the

we_ightswi are given'in [18]).

n _gn,Z o Gn,w
3 0,393 10,988 E-1
4 10,289 0,559 E-1
5 0,266 10,465 E-1
6 0,223 0,33 E-I
7 0,210 | 0,296 E-1 -
8 0,186 0,236 E-1
9 0,178 0,214 E-1
10 0,162 . | 0,180 E-1
1 0,156 0,166 E-1
12 0,145 0,145 E-1
13 0,140 '0,135‘E41
14 ‘ 0,132 0,120 BE-1 .
15 0,128 0,114 E-1
16 ' 0,121 0,103 E-1
17 | . 0,118 , 0,976 E-2
18 0,113 0,893 E-2
19 0,110 0,854 B-2
20 | 0,106 | 0,789 E-2
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" n,2 o %oy
3 0,817 - 0,500
" 0,103 El I 0,430
5 0,743 0,306
6 0,910 | 0,297
7 0,698. h 0,252
8 0,835 . 0,230
9 0,662 0,187 . -
10 0,781 0,190
11 0,633 o 0,159
12 0,738 0,162
i3 0,608 | - 0,138
14 0,704 - 0,142
15 0,587 10,123
16 0,675 0,127
17 0,568 0,111
18 0,650 ' 0,115
19 0,552 0,101
20. 0,628 | 0,105
A =2

According to these computed values one'might guess that the
error quanritiee'on, increase with AT; Since the Qa}ues'of gn’m
are smalier than those of On,Z they might‘yield a 1ower.errorvboun&
(See tHe.fo11owing example). Comparing our error quantities.with
those giyen in[ 29] for the classic Gauss-Legendre quadrature
formula, we observe that they are of the same order'of magnitude.

VWe now discuss the second error- quantity T thch for a

f,

fixed q (i.e. any choice of p) depends merely on the given analytic -

1 In order to prove it, one would have to know the order of magnltude

of the corresponding weights for arbltrary Al At present this
seems not to be feasible. : '
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function f. It is relatively easy to éompute o p,_especiélly if

P=2 or p=%, but it does not appear to be as easy to evaluate

T
Ry

i;'might be difficultlto obtain aﬁ éstihateiof‘Tf’d by
developing a‘simpler eXpression not :.involving the Taylor coeffi=
- cients bk' But we point'out here that most of the derivative-free
error bouﬁdé.contaiﬁ a faﬁpor similar to ﬁhe seriesvin Tf’d...
However, in the case of an arbitrary analytic function it does nbt
seem to be éasier to compute'or estimate the value ofrthosé fac=
tors than it.isbto éalcﬁlate Tf,q' ' We shall return to this point»
in ﬁhe next séction.

How can'thé quantity Tf,q bevcompgted in prgéticé? 'First we
need the4derivatives of the giveh function f at the origin. For
~ some analytic functions f(k)(O) (k=0,1,2,...) is.known, Perhabs
in clngd form. Inithe case of many analytic functions f(k?(b)
can be computed with the‘aid.of some ‘symbolic stringfﬁandling
1angﬁage2. ‘The series involved in Tf - may converge mostly‘very

; : _ s .

rapidly bwing to the denominator‘(n+k)!.and thus only a few terms
need to be'éummed. The exponentiél iﬁtegral itself‘can be con=
venientiy cbmputed by'the classic Gauss4Lagu¢rre quadratﬁré»for=

mila [ 301,
Examplé 1

" We bounded the error caused by applying our 3-point, 10-point and

20-point interpolatory quadrature formula to

2 e, g FORMAC which enables symbolic algebralc manlpolatlons to

be performed.
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‘ 1

: | dx
f xz\/(x-2)2,+ .

The quantities T and Tf'] (corresponding to p=2 and p=w) as
R ’ ) s . . B

‘well as the error bounds are given below.

. . : D I L | Actual
- n Tso | %n,2° %2 o | %nyet Ti error
3| 0,18 E-1| 0,15 E-I | 0,24 E-1 | 0,12 E-1 | 0,10 E-1 -
10| 0,33 E=4| 0,26 E=4 | 0,44 E-4 | - 0,84 B=5 | 0,25 E-6
20| 0,11 E-7| 0,68 B=8 | 0,18 E~7 | ,18 E~8 | 0,47 E~13

of T

The actual error was computed by determining the difference be=
tween the_vaiues obtained'b& the definition formuia and those
obtained by the quédrature formula. =~ We see here thaﬁ the valﬁes

| p? are aimost indgpeﬁdent of‘_

fsq

the parameter q..

, in éontrast to those of o,
BT )

The error bounds computed with o, é are there=
. . b - . *

fore smaller than those where o 1s involved. Both error bounds

n,2

agree véfy‘wellvwith the true error for the low-order quadrature

formula, whereas agreement becomes worse as n increases.

The second method of obtaining the error quantities

The main difference between this method and the first is that we

do not consider any analytic continuation of f(z), but now directly
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substitute the.seriés of (5.1.3) in the error definition (5;1.2).

Doing'so we obtain
| 1 | L
E (D] = I% ,x'A ) a, ( - 1)kax - ;Z W. Z a

0

'_ - n
_ak[jL X )\(x-ﬂ%)kdxbf izl wo (x; - %’).k] | .
[¢] o

~ Since theAinterpolatofy quadrature formula has the degree of pre=
cision n-1, where we again require n > A, the differences in the

last expression vanish for k=0,1,...,n-1. Thus we have

‘lEn(f)l = | Z an#ken;kl o (5.3.1).
. k=0 .
“with
! n
~ A n+k n+k )
. f x (x-H""4 izl v (=D (5.3.2)
0 ' -

It should be noted that in contrast to the previous coefficient

e the integral in (5.3.2) is not regular.. The meaniﬁg'of e

_ n,k .~
K It is easily seen from (5.3.2) that.

n,k

is similar to that of e
B ) b4

for n fixed the quantity én represents the error of the quadra=

»K

" ture formula employed when the polynomiél (x-—%)n+k is integrated.

‘ B . ~ 1 n+
e wri = -3 .
We can thus .r te en,k En[(x ) .k]
The numerical behaviour of én K is .seen to be like that pre="
. b .
viously observed in the case of e 1o i.e. it does not have a
. b

m .
I} " does not decrease mono=

constant sign and the sequence {|&
. » n,k' k=g

“tonically.
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It follows froﬁ (5.3.1) that

o)

[En(f)] < kZ ENPCRE (5.3.3)

If we assume the sequence {& .}

0 . . ' p(]< < a ’ .
n,k’k=o tO b€ in 4 P S ®©) we may

- apply Haldgr's inequality to (5.3.3) and obtain

lEn(f)| < o Tra

-where

o ={1le 0By L (5.3.4)

= (] fa_ 19 . ' (5.3.5)
k= _

faq 2]

For practical purposes we again choose the Euclidean and supremum

norms for ¢_-:, i.e.
2

N = = . . 2 = a2 . . "
(a) "' p q 2: 0n,2 Z en,k o (5.3.6)
k=0 .
(b). p=oo, q= 1: o = . sup |é vl. (5.3.7) .
? k=0,1,2,... ’
In the following we shall show thét both the qUantities Gn 2 and

Ol o exist, but it will be more difficult to do this now than in
3 .

the previous case. Setting

A

‘ 1
Ak _ %'x— (xf-é)n+kdx

(o}
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: _ n
L : g - L n+k
and - o Bk'_ 'X wi(xi-%)
1=] :
(5:3.6) can be written as
[oe] [ee] o0}
2 = - 2
op o= 1 A -2 aB + [ B
=0 k=0 k=0

.ac.za

(5.3.8)

~ If we can find a convergent major series for each series in (5.3.8)

then the existence of On 9 is assured.
. _ , _

Considering (x-—%)n+k as integrand function and applying the

definition formula for f.p. integrals where A\ is an integer we can

estimate Ak in the following way.

A=2

‘ |Ak' =3 [?XE%%T (%)n+k?(va_2?(n+k)(n+k-l).;.(n+k—A+V+3) +
V=0 . .

1

: n+k-v
toroaTy OB

v
v! + 1

n+k-(A-1-
()\ 1)! 2 (V+]_u)l (_2)

+

+

' 1
TETyT (R0 (ko) (akehs 1) [ (=)
.. . . . O
(-2)t

1< a-n L=yt

O-2)0
(K .

(n+k)

K+1 A-1

+

(3 )

n+k-\

O 2ot ¢ (12 (a2

n+k— X

(n+k) (n+k- 1) (ﬁ+k—v+l),+,

u)(n+k>(n+k—])."(n+k—k+;&2)] .

Ln(1/t)dt] {'
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< 0Dl D@’ + @' O« oy @0t (h +

e ()F = @D (oD,

Thus we fi_nal ly obtain

,‘ lAkl < (2>\*-‘1)(h+k)>\(%)k =u, if X 1is an integer.

We now apply the definition formula for a non—integer A, setting

A=[A]+p (0<p <1), and estimate'Ak by

[Al-1 I

2 n+k-v
25" YW+1-[A]l-p)

(@) (k1) o (k= 1) ()P 4

N

14

o | |
(=1) (n#k) (n+k=1) .

—= |
(A1) T (T A ]p)

' T=0

‘...(I‘H'k—[ >\] +]) f (t_%)n-‘-k—[)\] (]_t)[A]—V-]dt +
[0} .

(-n™
[A] -1
M (t+1=[A] =)
=0

+

(n+k) (n+k-1) ...

. : 1 - v
e (n+k=[A] +1) f (t—%)mk_[)\] t—pdt <
o

VI (Al |
<[] ﬁﬂi%}——— X . ﬁﬂi%%T——-(%)k+‘<1 S,
P
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-From the last expression it follows that

|A£| < p_[A](]-+2[k])(n+k)[A](%)k+] = Vi if A is not an integér.
It is easily seen, for instance by applying the quotient criterion,
that the series Zuk and ka are convergent. Therefore the series
ZAk and ZAi'are absolutely convergent for any A.

We shall now demonstrate that_ZBk>and ZBi are absolutely con=

vergent. Since

n n|w.|
_ _ 1Dtk v 1
|By | lz vl =) < izl'zmk ’
‘the gebmetric series
© +k o n .
W z (%)n , with W= 2 |Wi|,

k=0 i=1

majorizes IB, and thus this series as well as £B? are absolutely

k k
convergent. This proves the existence of O o The existence
. b . -
of 0. follows from 1lim Ak =0 and 1lim B, = 0. Having con=
n, koo R |

vinced ourselves of the existence of On P for p=2 and p=%, we
. ) ’ ’

now treat their numerical evaluation.

It is. inconvenient to use the expression (5.3.8) for computing
'qn‘Z' - But we can rewrite the right-hénd side of (5.3.8) in such a
3 . .

way that infinite series are no longer involved. The result is

thén similar to (5.2.16).
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' We recast the first term in (5.3.8) in the following way

8

n+k
i -

o k=0

il &~
I o~1 8

k

=%y”%y-9“f}€Nx—%f‘zLu-%)@—%nkmmy.
k=0 .
A SO

11 . ,
% % xlix_%)(y—')]  axdy.
0 o XY TG DT

' The second and third terms in (5.3.8) may be treated in the

~same'way,uyié1ding

) dxdy =

)| -
% [G=§) G-D1"
$ Y U-h 6-h1

O'—Hﬁ—'

wl( )
! (Y“‘)(X -1 )

‘n n wiwj[(xi-g)(x.—L)]n

Ly .
i=1 j':l 1 - (Xi—%)(x _-)

(5f3.9).

The error quantities o, 9 and 0 were evaluated for
) . ’ LI . ’

A= 1,2,3,4,5 and n = 3(1)20 and the values obtained are given in

the tables below.
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n '_On,Z Gr1,00
E 0,691 E-1 10,556 B-1
4 6,929 E-2 0;729 E-2
5 0,661 E-2 0;507-E—2
B 0,101 E-2 0,753 E-3
7 0,730 E-3 0,532VE¥3
8 0,118 E~3 : 0,838 E-4
9: 0,865 E-4 ‘0,597 E-4
10 0,145 E~4 " 0,974 E-5
1 0,107 E-4 0,698 -E~5
12 0,184 E-5 0,116 E-5
13 0,136 E-5 16,836.E46
14 0,238 E-6 0,141 E-6
15 0,177 E-6 _Vogloz E-6
16 0,313 E-7 0,187 E~7
17 0,234 E-7 0,136 B
18 0,418 E-8 0,244 E-8
i9 0,313 E-8 0;183>E~9.7‘
20 E-9 0,3301E49\
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n .On,Z 0n,<>°
3 0,962 0,556
§ 0,492 0,271
5 0;222 0,122
16. 0,995'E—1 0,526 E-1
7 0,423 E-1 0,221 E-1
8 0,180 E-1 0,908 E-2
9 0,746 E-2 0,371 E=2
10 10,310 B-2 0,156 E-2
1 0,126 B2 0,637 E-3
12 0,514 E-3 0,262 E-3
13 0,207 E-3 0,106 E-3
14 ) 0;836 E-4 . 10,428 E-4
15 ’_0,334'E—4 0.171 E-4
16 0,134 E-4 0,686 E-5
17 0,532 E-5 0,271 E-5
18 0,212 E-5 0,108 E-5
19 0,839 E-6 0,424 E~6
20 0,333 E-6 0,167 E-6




-Stellenbosch University http://scholar.sun.ac.zé '

0,925

| ‘154; .

n .2 O,

-3 0,279 E 1 0,141 E 1
4 0,231 E I 0,118 E 1
5 0;15} Eil :0,812

6 '0,940 0,482
7 o,sfs' 0;26i
8 0,269 0,133

9 0,134 | _0,670,E—1
10 0,648 E-1 0,325 E-1
1 0,305 B-1 0,)541E—1'
12 0,14Q'E41 0,711 E-2.
13 0,636 E-2 0,323 E-2

14 | 0,284 E-2 0,145 E~2.

15 0;126”E-2 0;639 E-3
i6 0,549 E-3 0,279 E-3
17 ' 0,238:E—3. 0,120 -3

18 0,102 B3 0,516 E-b
19 0,437 E-4 0,219 B4
20 0,185 E~4 E-5
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n 02 O
4 0;461 E 1 o,zfe E 1
5 0,447 E 1 0,211 E I
6 0,370 E 1 0,180 E 1
7 0,268 E 1 0,131 E |
8 0,175 E | 0,865 |
9 0,106 E 1 04527
10 0,610 0,304
1 0,334 0,167
12 0,176 0,883 E-1
13 0,902'E-1 0,453 E-1
14 0,451 E-1 0,227 E-1
15 0,221 E-1 0,111 E-1
16 0,106 E-1 0,533 E-2 -
17'_ 0,503 E-2 0,251 E-2
18 0,235 E-2 0,117 E=2
19 0,108 E~2 0,537 E-3
20 0,495 B-3 0;244 E-3
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n 'on.,2 an’w
5° 0,811 E 1 0,359 E 1
6 0,821 E 1 0,362 E 1
7 0,763 E 1 0,340 E 1
8' 0,633 E 1 0,296 E 1
9 0,474 E 1 0,226 E 1
10 0,327 E 1 0,158 E 1
11 0,211 E 1 0;103 E 1
12 0,129 E 1 .d,631‘
13 0;752. 0,370
14 0,424 0,209
15 - 0;231_' 0,114
16 0,123 0,607 E-1
17 ' o,64d E—l. 0,315 E-1
18 -'0,326 E-1 0,160 E-1
19 0,163 E-1 0,797 E-2
,26, 0,805 E-2 0,391 B-2
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Comparing these error quantities for A=1,2 with those given
in the previous section, we notice a significant difference in the

 order of magnitude. Since these 9. 9 and © are considerably
. : ) . .

, s
sﬁaller,.they might-Be préferable (seevalgé the examples); In
addiﬁioﬁ, we noticevﬁhat’the order of magnitude of G is‘now_

L _ o : . ’
almost independent'of P.

.At this point_wé cbnéidef the investigation‘of the quadrature-
_‘Qépéﬁdent error quantity’éﬁ’p as completea.

We now come to the problemvof calculating the corresponding
_ qugntiﬁieé.Tf’z anq Tf,i which depehd on the integrand‘function.
f(x), df mofe.precisely, on the Taylor_coefficieqté-ak; Clearly,
the sharpness of our error bound will depeﬁd on- how well the magni=-
tudes of thesevTaqurvcoefficieﬁts can be estiﬁated.

We were confronted with this problem before, in the previous -

K could be computed‘

section, and it was suggested there that the a
by some;symbolic strihg—héndling language.  But apart from this

nqmerical method, wha? qther posgibilities'are there? Since»Tf,q
now involves no exponential integration we are here in a siightly
better position thgn previously, In fact, Tf,Z can Be Crudély
estimated by

1
2

N

max If(z)l. : ' (5.5.10,

el 1
I.‘ ARy

T, < {7 |a]?)

Although (5.3.10) looks very simple, itnmay, in ﬁractiée,-be

cumbersome to determine the maximum.
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In order to obtain bounds for Ti we need an estimate of"
. : b

Zlak . Most of the estimates commonly used in the literature do
not involve that series but only the Tajlor coefficients, as the

fbllowing exampies_éhow.

(a) - Ian+k| <:2n+k. méx_llf(z) .

: z273| =3 :
(b) Ian¥k| < Wtk maT }|f(z)45f(—z)|._
' : z=}|=3 o

This estimate is obtained from Cauchy's integral formula.

It is used in [ 29'], for instance.

© la,,| <2 1@ 216D -y,

inf { max

n+k qu IZ—%l'—'%

where P denotes the class of all polyhomials-qf‘degrée < n-1.
It is mentioned in [ 291 that this is a better estimate than
(b).  Owing to the complexity of the expression, its practi= -

cal utility might be very limited.

It.is clear tﬂat.only for some very spégific functioné will
bounds for Tf,] be ébtained with the aidAof one of the above esti¥
mates. In the 1ite?ature; one can somefimés find examples of
error bounds withqut any indication of what function is involved?

it being assumed a priori that for instance Fm := max |f(z);+f(—z)|
: ‘ '12 =r

‘is given.  But such examples can hafdly be consideredbmeaningful.



5.4

Stellenbosch University http:/scholar.sun.ac.za

=159~

 Example 2 -

We consider the same f.p. integral discussed in the previous sec=

tiom. The quantities Tf 9 and'Tf 1 (corresponding to p=2 and
’ 2 .

p=«) as well as the computed error bounds are given below.

- . . Actual
o Tf.,2 Qn,Z.Tf,Z Tf,l Gn,m Tf,] error
31 0,23 E-1| 0,22 E-1 || 0,46 E=1 | 0,26 E- 1 | 0,10 E- 1
104 0,43 E-3| 0,13 E~-5 [|0,79 E-3 | 0,12 E- 5§ 0,25 E- 6 |
20 || 0,58 E-6 | 0,19 E-12 | 0,12 E-5.| 0,20 E-12 | 0,47 E-13

Comparing the above error boundé with those obtained previously

‘we observe that the bounds are now considerably better for n=10

and 20, but worse for n=3. The reason is that Tf i and Tf 2'
. . o ’ 3
are here larger than before and thus the smaller error quantities

o] o afféct-only higher—order quadrature formulae.

’
n,2 n,®

General remarks

The main disadvantage of error bounds, whether derivative-free or
derivative~dependent, is that they are applicable only to functions’
given analytically in closed form. Nevertheless, even if we know

the analytic form of the function, it may in general be véry diffi=

cult to estimate the value of the function-dependent term (a high—
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© order derivative at a.boint within. the integration interval, ér a
‘series of its Taylor coéfficienﬁs).

For'ﬁractiCal purposes it might fhérefore be of advaﬁtage to
ﬁée, for instance, a graphical method to dgtermine, the number of
cérrect'significant digits,

| A feasible gtaphical.method i; given in.[18]. " We shall -
Briéf1y describe thé_principle of this method hefe;
Let g(x) = (x=X)? + ¥2; thus g(x) = 0 if x = X+ iV,

We ran an extensive series of tests on the functions

f;)(X) = Vg (x)
_ f](X) = 1/Vg(x) -

f,(x) = 1/g ()

fG) = expli/g (Ol .

These functions ha&e iﬁcreésing1y worse singularities in the
 c§mp1ex.p1ane'at X‘i'iy : fo ﬁgs a branching point, fl hés aipole:‘
of first order, fz.avpole of second order aqd f, an essential
singularity. Of.cogrSe the closer ‘this singularity is to the

interval of integration, the worse are the results.. We used our

interpoiatory quadrature formula with n=10,18 and computed

f. ) o '
% —— dx (1=0,1,2,%) - (5.4.1)
X . .
o .

for each X =1, “4, %, %, 2, 3; 4, 5.
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Then for the function f](x) —,considered to be the most v
inétructive - we plotted curves on the complex plane X + iy con=
necting the points where equal numbersvdf correct signifiéant
digits.were obtained; we'varied X = -1(0,25)2 and Y .= 0(0,1)1
(omitting, of course, O <X<1landV=0). IThe results which
the quadrature formula yielded weré ghecked.against the énélytic
definifion-of a f.p;.integral.(the graphs éiven in [18] refef,
tb.the'funttion fl(x)).  The method of éstimatihg the pumber
>of corfect sighificant digits will now be demonstréted by an

example.
Example 3

Let an f.p. integral be .given where.a’function f(x) with a-

simple pole is involved, for instance

1
f dx
o x2Vx+ 2

Nof—

The corregéonding f(x) in (5.4;2) is (x-+§)_ and it has a pdle‘of
first order at x = -2 .  Since we are integrating from ovvto 1
and_the singularity of f(x) is located at ;g,we may expéct -
see the_graph gi?en below - ten correct significant digits with
n = 18, | | |

This.graph cbnsiéts of the éufves of equal ‘numbers ofbcqr=
rect significant digits for (5.4.1) with fl(x) and_n_f 18. The
yalue of (5.4.2) yieldéd by our interpolatory quadrature formula

~with 18 stations is -0,72938483052... and the corresponding error
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bound, using 9.8 é of the second method, is about‘0,43 E-10,

s . .
which means that ten significant digits of -the approximation are
correct. If we check the result of the approximation against

tﬁe value of the definition formula for (5.4.2) we notice an-

actual error of about 0,23 E-10. 1In this case, both the results

of the gréphical method and the anélytic error bound agrée very

well with the actual error. It is simpler and faster, however,

to use the graphical method.

f\g‘\ .
~\\\\\E\\ 10 .
6

NN

/)

4\ N\
NN\

I~

W

"We shall now describe a method by'which the number of correct
significant, digits may be estimated using only'the results of the
interpolatory quadrature formula.

In numerous applications of this quadrature formula it was

found that the results are very stable, i.e. the accuracy attained
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increased.regularly with the number of étafions used. This fact
was made use of to deQige a simple practical method of esfimating
the number of correct significant digité.

We considér, for instance, the application of 4-, 8- and:
164point interpolatory‘quadrature formulae to a‘given.integral.

It is obviouskthat in this case fo;_all three éuadrature formulae
togéthef.only the stations»df'the 16;pbint fbrmﬁla are needéd.
Therefore three differenf‘numeficai results may be thainéd by
merely sikteen function evaluations,. But - using our tablés
-witth 3(1)20 - we can find two further ways of applying three
dlfferent formulae while performlng a minimum number of functlon
evaluations.

The second possibility is to uge:a 5?; ]O;,AZO?point formula
énd-the third involves a 6-, 9—,'18—point forﬁula-(We omit the
3-point formula siﬁce its preciSién is too low). 1In practice
the lastvposSibility seems to be thé most'promising‘since it con=
tains'neitherva very low-order nor a very.high—order formula.

The-advantage‘of-applying such a triplet of ﬁ—poiﬁt formulaé
when numerically ‘evaluating an integra1 is clear. . Instead of |
computing only one séalar product by the'functioﬁ values and:the"
éorresponding weights, three scalar products can beAcomputed at
the expense of merely using some moré wéights but no additioﬁal
function vaiues. Assuming the étabiiityIOf the numerical results
tﬁe.number of corfect:digits may then be.eétimated by comparingbthe
three Qalues obtained and noting the convergence..

Befére concluding this chapter, we comparglthe Qélues of our
errof bounds with the résuit of a derivatiVe—ffee bound for reéulaf‘

integrals.
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To do " so, we»épply a 4-point and S—point'Gauss-Legendre

quadrature formula to

1

[ ==
o Vi(x=2)?+1

dx

and bound the errors cdmmitted by the error coefficients given in

[29.]. In order to be fair, the corresponding function-dependent

: L _ : : _ —5 _
quantities Tf,1 = §|32n+2k|_and Tf,z = \/i(a2n+2k)  were

computed to the same precision as those of example 2. The

results obtained are given below.

. ' ' . Actual .
'Gn,Z Tf,2 On,Z'Tf,Z 0n,oo Tf,l , 0n,'°°'Tf,] error
0,30 0,29 E-3| 0,87 E=4 || 0,61 E-1|.0,32 -3 0,20 E-4 | 0,16 E- 7
0,16 | 0,28 E-6 | 0,45 E~7 || 0,17 E~1| 0,27 E-6 | 0,48 E~7 || 0,50 E-14

Comparing the error bounds with the corresponding actual errors

here and in examples 1 and 2 (involving the same function), we see

that the errors of the f.p. integral approximations‘aré far better

bounded.

In those examples, the relative deviation of the error

bound from the actual error is at most about 0,14 E+6 while here

the maximum relative deviation of the error bound is = 0,96 E+7.
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"It thus seems that - at leastas far as derivative-free error
bounds are concerned - f.p. integral formulae behave better than

their classical counterparts.
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CONCLUSTION

We studied finite-part integrals which involve an algebraic‘singularity.
_We'defined‘such integrals first by a regularization of a certain distri="
bution and then generalized this definition so that we need not be

restricted to test functions.

,

It.was shoWn that the coﬁmon.rules forvofdinary iﬁtegraéion as faf
as‘they.concern equalities are also valid for>finifé-p§rt’integfals,
_But we'nétiéed thét the standard'rules céncerning inequalifiesvare'nqt,
in general; apbiicaﬁle. Furthermore.we found the strange property
that finite-part integrals with an integer exponent afe not invariant'
‘under a scaling of £heif finite integration inferVal. This fact
underlines. the peéﬁliarity of these integrals. .

In order to deri&e a-Gauss-type quadréture formula for the numeri=
cal evaluation of finiteﬁpaft iﬁtegrals,we had to study a new class of
prthogonal polyhomials which are iﬁ a certain case eleménts of a
pséudé—Euclidean space. The proof of the validity of the Chrisfoffel—'
Darboﬁx formula is the main result of our investigation concerning. the
optimal.quadrature formula.

For the eqdispaced quadrature formulg we gave two kiﬁds of
deriVative—free error bounds. Their application to_several»exampleé-
yiélded.fairly good results. ” |

In a_further study of.finiﬁe—part integrals; We'shail'investigate
such integralé“whiCh involve a'logarithmic or a tfigonometric singuia=
rity. Inrparticular, we shall focus attenfion on quadraturé férmulae.

for these kinds of finite-part integrals.
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A PHYSICAL EXAMPLE ON THE NUMERICAL EVALUATION

OF FINITE-PART INTEGRALS

The'following example arose in a project Which is at present undertaken
by the Natfona] Research Institute for Mathematical Sciences (NRIMS) of
the CSIR, Pretoria. The main concerns of this project are potential
problems occurring in electron optics. This physical example was the

- first where we practically applied the numerical quadrature of finite-
part integrals and it was not available at the time the Ph.D. thesis [4]

was submitted to the University of Stellenbosch.

Work upon this project is still in progress and it will presumably

be finished during 1976. It is intended to publish the results.

The general physical prob]em'

Given a rotationally symmetric electrode and an integrable surface cha::
density o on it which does not depend on the rotation angle. Then the
problem consists in finding the potential ¢ together withlits first and
second derivatives. Of particular interest are the values of these
derivatives on the electrode itself. In order to compute them one has

to introduce finite-part integrals.

Our present computer program calculates the potential and its first

_(partia]) derivatives on the e]ectrode. For testing purposes we chose

the shape of the electrode such that the potential is analytically known,
and we shall demonstrate essentially the numerical quadrature of finite-

part integrals in this special case.

-The special case

Given an infinite plane electrode containing a circular hole of radius 1,
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suppose the electric fields above and below this electrode at infinity
~are constant and the potential is zero on the plate (electrode); see

Fig. 1.

Vs

| Fig. 1

From these assuhptions, the potential ¢ and the surface charge density o
on the electrode can be ana]ytica]]y.found by introducing cylindrical

coordinates (see e.g. [1]) as

I N

o(R,z) = §-+ larctan (u) + 1/u] | - (1)

=]

where ' u =-v/%(R2+22—1) + %/{R2+22—1)2 +i4z2 s R>1

2T

and - a(r) = ij? [arctan v rz-l + 1/ r2-1], r> 1.

Example .

We want to compute the first derivative of ¢ in tangentia]ldirection on

. -
the electrode, i.e. 1lim IR -

Z>0



Stellenbosch University http://scholar.sun.ac.za

3
In our case, ¢ represents the potential of a single Tayer. We know
from potential theory that if a single layer is traversed in the normal

direction the values of the potential and its derivatives in the

tangential directions are continuous. This means that Tim %

. + oR
3 3 z>0
Tim R SR /z- . From the ana]ytic expression (1) for the potential
z+0" B - :
it follows 1mmed1ate1y that /
In order to calculate numerically 3¢ / we must also consider an

'Upper electrode (to take into account the far f1e1d'boundary condition
g%—/zz=w = 1 in this case) the charge density on which is gy = -1/4mw.

With this fictitious upper electrode we have

where 91 and ¢é are the potentials produced by the surface charge
densities o(r) and Ty If we differentiate the integral fepresentation
of a potential ¢(R,z) produced by a given charge density o(r) (see [2, 3])

.with respect to R and let z tend to zero, we obtain

- K(K)] dr, R > 1 (4)

where  K(k) is the complete elliptic integral of the first kind,

E(k) is the complete e]]ﬁptic 1ntégra1 of the second kind,

with k2 = _ﬂIB_?_ (k the modulus).

(r+R)

We remark that the elliptic integrals arise from the integration
around the z-axis. The kernel of (4), i.e. the integrand without o(r)r
represents a Green's function and is classically not 1ntegrab1e at the

point r = R, We can, however obtain the correct value of /Z__0
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taking the finite-part of the integral (symbol #) in (4).
For z = 0 we can write
o (/r +/R z

m

. . . 7 '
- 1-k s
where Kl(k) = f \/ 512 g do. is a regular 1ntegra1

-~
—
-~
~—
il

. Inserting the corresponding surface charge densities (2) and g,

respectively 1n‘(4) together with (5) we have for the lower electrode

1(X)
-/, - f [arctan /rl-1 4 1/Vr —1] dr +
oR “z=0 WZ 1 _T__—T |

+ 4%-f farctan /rz—l +'1//r2-1][K1(k) + (6)
7 1 . o

| W +/R)%, ¢

+ En =3 ) R(r+R) dr

and for the upper electrode

) -1 % E(K)r 1%y
Tﬂff/z =0 71 i R{r-Ry 4" * 7E'i R{r+R) [Ky(k) +
| (7)
(/?—+\/E 2
+An S I dr

By the substitution r = 1/x, the infinite integration ﬁnterva] of (6)

may be transformed to [0,1]. Furthermore,~1f we split up_the integrands

we obtain
994 y 1 . ; . ‘ : ﬁ_XZ) E(kl)' dx ; E(kl) dx
- - = arctan (- + -
R 7z w0 COXRARG 2 Ry (1-Rx VA2
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1 O Kk (RO

- ¥ arctan (5) TR =7
0 i X
1 Kl(k1)+zn(1+/ﬁ§)2 1 f 2 ”

- f 5 dx - f arctan ( ” ‘)Enll-Rxl 7 ‘
0 Rx(1+Rx) v1-x2 0 Rx"(1+Rx
1 :
It 1 dx } 8)

o TR Rx(1+Rx )/1-x2

. 2 - 4Rx
with k =
' L (1+Rx)
Separating [0,1] from the integration interval in (7) and applying the

same substitution as before to the remaining (infinite) interval yields

%, 1 L Ex LoE(ky) gy
SR /2207 "7 { £ R{x-R) 4% + i R{I-Rx) 2 B
! (& + R)Z x
- [ 1K (k)+Ln XoR] RTXTR) dx - (9)
0 oo .
' 2
) ; Ky (kp)+en (1R ) ; 1 dx .
0 R{1+Rx) ;?. o Tl—RXl. Rx2(l+Rx)

We note that all integrals in (8) except the last must be taken in the
sense qf'finite—part otherwise they are meaningless.
The Tast integral in (8) is only apparently singular at X = O._'This
. , ] '
is easily seen if we write it in the form f f(x) %? -and consider
‘ 0
1f("x)/x':0 . Since f(o0) = 0 the constant term of the Taylor series of

f(x) vanishes and thus that integral is integrable at x = 0.

In (9), there are three finite-part integrals, the other ihtegra]s

exist classically.
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We recognize two singular Tocations in the finite-part integrals of"
(8) and (9): the origin and the point x = 1/R. The first singularity
originates from the unbounded interval in (6) and (7) (see [4,.page 52] ),
it corresponds to the point r = = before the transformation and is merely
due to the fact that the e]ectrdde is infinite, whereas the second was
already located at the finite poinf r = R before the chénge of'the
integration variable. We remember that this singularity is due to the

. kernel of the integral in (4) and must be expected.

Besides these singu1akit1es at which the integrand is not classically
integrable there are integrab]e singular points at x = 1/R and at x = 1.

‘ . e . ’ 1
The former reprgsents the logarithmic singularity of the term £n TI=RX]
and the Tatter is a singularity of 1//1-x2 which stems from a(r).

A1tdgether we have four singularities located at three different
points. Thus for the numerical evaluation of each integral in (8) and
(9) we have to split up the integration interval [0,1] in a suitable way.
We shall illustrate this only by the first integral in (8), viz

1 N-xZ. Elkp) gy

| é arctan (. < ) R(lfoj';? . (10)

‘In.ordek;to Compute this ihtegra] we divide [0,1] as follows.

f.p. f.p..r f.p.

I — Py
L . i hd
reg. : reg.

0 a b 1/R c 1
Thus (10) can be written as (omitting the integrand)

1/R ¢

a b 1.
f+ 0+ F+f 4+,
0 a b 1/R c.
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a sum of three finite-part integrals and two reqular integrals.

Splitting up: the interval of all singular integrals in (8)'and (9)
in a similar way we obtain 14 finite-part integrals. Then the remaining
32 integrals are either regular .or are improper integrals of the first

kind (unbounded integrand).

Our program computes each finite-part infegra] by the interpolatory
~quadrature formula with equispaced stations. The integrals involving a
logarithmic singularity are numerically evaluated by the special Gaussian:
type formu]a1 and all other integrals by the standard Gauss-Legendre

formula.

We performed several runs where R varied between 1,5 and 10 and

obtained for the total sum Z: = %%-/Z of the above-mentioned 46

=0
integrals va]ues'whose order of magnitude is 10—6, i.e. six correct
significant digits. In these runs, we took 32 stations for the Gaussian
type formulae and 16 equfspaced stations for each finite-part integral.
In order to check the quality of the finite-part quadrature, we repeated
some runs‘using the 8-, 12- and 20-point formulae. With the 12-point
fofmu]a, T was stf]] correct up to six significant digits, whereas the 8-
and ZOquiﬁt' .formulae yielded for T two significant digits Tess. One
wou]d expect a loss of digits with fhese:formulae sfncé the accufacy of

the former is too low (compared with the complicate integrand) and the

weights of the Tatter are very large (see also the remark in [4, page 76]

Before concluding this‘ekamp1e'we briefly comment the problem of an
error bound. In order to apply the derivative-free error bound given in

[4] to a finite-part integral one needs the Taylor coefficients ai_of the

1 This formula approximates fvzn(%df(x) dx (see e.g. [5])
0
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o« [0}

integrand function involved or at least a bound of I la1| or { a;
=0 i=0

2

o=

}2.

But for this example both, the coefficients themselves or the bound of
one of those series, are (unfortunately) practically not obtainable.

‘Therefore the numerical evaluation of the error bound expression becomes
so unwieldy as to make the error bound illusory.
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