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A B S T RAe T

Some problems of applied mathematics, for instance in the fields of

aerodynamics or electron optics, involve certain singular integrals

which do not exist classically. The problems can, however, be solved

pLovided that such integrals are interpreted as finite-part integrals.

Although the concept of a finite-part integral has existed for

about fifty years, it was possible to define it rigorously only by means

of distribution theory, developed about twenty-five years ago. But, to

the best of our knowledge, no quadrature formula for the numerical eva=

luation of finite-part integrals ha~ been given in the literature.

The main concern of this thesis is the study and discussion of.two

kinds of quadrature formulae for evaluating finite-part integrals in=

volving an algebraic singularity.

Apart from a historical introduction, the first chapter contains

some physical examples of finite-part integrals and their definition

based on distribution theory. The second chapter treats the most im=

portant properties of finite-part integrals; in particular we study

their behaviour under the most common rules for ordinary integrals.

In chapters three and four we derive a quadrature formula for equispaced

stations and one which is optimal in the sense of the Gauss-type quadra=

ture. In connection with the latter formula, we also study a new class

of orthogonal polynomials. In the fifth and.last chapter we give a

derivative-free error bound for the equispaced quadrature formula. The

error quantities which are independent of the integrand were computed

for the equispaced quadrature formula and are also given. In the case

of some examples, we compare the computed error bounds with the actual

errors.

(i)
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~esides this theoretical investigation df finite-part integrals,

we also computed - for several orders of the algebraic singularity

the coefficients for both of the aforesaid quadrature formulae, in

which the number of stations ranges from three up to twenty. In the

case of the equispaced quadrature fortnu1a,we give the weights and -

for int~ger order of the singularity - the coefficients for a numerical

derivative of the integrand function. For the Gauss-type quadrature,

we give the stations, the corresponding weights and the coefficients of

the orthogonal polynomials.

These data are being published 1n a separate report [18] which

also contains detailed instructions on the use of the tables.

(ii)
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C HAP T E R I

THE DEFINITION OF A FINITE-PART INTEGRAL

1.1 Historical introduction

.1.1.1 The concept "finite-part integral" (Lp. integral) was first

introduced by the French mathematician JACQUES HADAMARD in 1923.

In his book "Lectures on Cauchy's Problem in Linear Partial
\

Differential Equations" [9] he defined' a certain class of f.p.

integrals and also stated some of their main properties. The

study of non-parabolic linear partial differential equations of

second order with an odd number of variables had prompted him to

introduce this new type of integral.
In the following we give a brief survey of his reflections

on a specific example.
Given the equation for cylindrical waves (hyperbolic type)

F(u) ( 1 • 1 • la)

where u(x,y,t) is an unknown function (e.g~ the velocity poten=

tial) and c a constant (the velocity of sound in the gas), the de=

termination of u can be completed by the Cauchy-type conditions

u(x,y,O) u (x,y),
a

aua-t(x,y,O)

( 1 )

uI(x,y), (1.I.Ib)
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where Uo and u
l

are also assumed given.

The value of the solution function u at a given point

(x ,y ,t ) may be calculated by first finding the Green's function
000

v = v(x,y,t; x ,y ,t ) which is the solution of the adjoint equa=
000

tion G(v) = (because F is self-adjoint) F(v) = o(x-x )o(y-y )o(t-t ).0 0 0

(in modern notation) and then substituting v into the generalized

Green's formula

f f f [vF(u) - uG(v)] dxdydt
T

If [u dv - v du] dS, (S =
S dn dn aT) •

(l.l.lc)

HADAMARD assumed that if we draw the characteristic conoid from

the point (x ,y ,t ) as vertex, one nf its sheets will cut otita
000

certain (finite) portion S of S, and, together with S , be theo. 0

boundary of the portion T of our space (x,y,t). This geometric

condition is expressed by say~ng that we have to deal with the

interior problem. Under these assumptions it is well known that

for linear hyperbolic equations the integral on the right-hand side

of (I.I.Ic) has to be taken only over the base S and not over the.o

mantle of T.

In the particular example,

t = O.

he assumed that S ~s ~n the planeo

The significant feature of HADAMARD's method for solving

(1.I.Ia) - where for the sake of simplicity he assumed c = 1 - con=

sists in directly substituting the Green's function

v I
yf" where r ( I • 1 • 2)

Stellenbosch University http://scholar.sun.ac.za



....,3-

and r = 0 represents the equation of the characteristic

conoid with vertex (x ,y ,t),
000

into (1. Llc). Doing so, he at first found a meaningless impro=

per integral since the quantity under the integration signs

becqmes infinite in an impermissible manner. This fact had

also been previously recognized by other mathematicians. How:

ever, they were able to ~ and in fact forced to - solve the

Cauchy problem for the cylindrical wave equation by using other

kinds of functions for v. But such methods have one dec;isiye

drawback: not the solution itself is obtained direct as by

HADAMARD's method, but only an integral of the solution func=

tion.

We shall now show what actually happens when applying this

method.

Inserting the Green's function (1.1.2) together with the

initial conditions (I.I.Ib) 1.nformula (I.I.Ic) and then inte=

grating the left-hand side, we obtain, due to

G(v) = 8(~-x )&(y-y )&(t-t ),o 0 O.

21T U (x ,y , t )
. 0 0 0

f ul d 1III -- dxdydt + II [--. - Uo dn ~r]dxdy. (I.I.3a)
T If s If vio

dSince --d. n
a= eat, wheree has the value +1 if the useful half-

conoid 1.Sdirected towards the decreasing tIs (the case of t > 0)o

and -I 1.nthe contrary case, we have

d 1-- --
dn If

I t Io (l • 1•3b)
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irrespective of the s~gn of t .o
We see immediately that this ex=

pression yields a meaningless integral if it is inserted in

Nevertheless, HADAMARD was convinced he could find the

correct solution by this method, provided he could give meaning to

such "improper" integrals. This ,idea led him to conceive f.p.

integrals. In [ 9], he says: "I thought it is worth while

to attain this, though we cannot do so without introducing a

rather paradoxical notation which I shall now speak of".

Introducing his new kind of "improper" integrals, he starts

with a simple example corresponding to the previous Green's func=

tion, v~z.

b

f
A(x)

---'- dx.
Vb-x

( 1• I .4a)

Direct differentiation of this integral with respect to b yields

the absurb expression

b-!J A(x)

a (b-x) %
dx + [ A(X)]

Vb-x x=b
(1.1.4b)

a sum of two terms, the first of which has no meaning as con=

taining.an infinity of order % under the integral sign and the

second being evidently meaningless. HADAMARD remarks that there

are nevertheless two approaches for evaluating the derivative of

(1.1.4a).
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(I) Direct diff~rentiation (i.e. differentiation without any

transformation) would consist in replacing the real inte=

gral (1.1.4a) by half the complex integral taken along a

circuit consisting of two lines along ab,

a small circle around bl (s~e fig. below);

a b~_.--+

connected by

(2) In order to avoid complex quantities, he notices that

(replacing b by x in the upper limit) not the integral

in (1.1.4b) but the algebraic sum

xf A(y)

a (b-y) %
A(x)dy- 2.--

yb-x

approaches a perfectly definite limit when x approaches b.

Moreover, he says, the same takes place for

xf A(y)

a (b-y) %
dy + B(x)

yb-x
(1.1.5)

if B is any function of x, provided it is differentiable

(or at least satisfies Lipschitz's condition

IB(x2) - B(xl) I < KI x2-x
l
l, xl,x2 E [ a,b]), and such that

B(b) = -2A(b).

I Here A(x) is supposed to be analytic: a hypothesis which
is easily avoided since it is sufficient to suppose that
A(x) has a derivative.
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Indeed, if we integrate the integral ~n (1.1.5) by

parts and form the limit, we obtain

(1.1.6)A' (y) dy
y!b-y

a

x

- 2A(a)(b-a)~! - 2 lim f
x+b

under the above conditions on R(x}.

Furthermore, we notice the important property that the

result (1.1.6) is independent of the choice of this function

B. This is owing to the above assumptions made in regard

to B and the fact that the denominator is of a fractional

order, while a change of the function B (under our hypo=

thesis) would alter it by terms containing as factor

(b-x) to at least the first power, so that the corresponding

terms ~n the fraction would necessarily vanish for x = b.

Therefore, ~n order to calculate the limit of (1.1.5), we do

not even need to indicate what special function B we choose.

HADAMARD denoted that limit by "the finite part" of the

integral in (1.1.4b) and wrote it

~dX
a (b-x) %

The sign I being read "finite part of".

If A ~s analytic, this expression can equally well be

defined as half of the corresponding integral taken along

the circuit mentioried previously.
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The same symbol was similarly defined by HADAMARD for higher

orders 0.£ infinity, provided they always are fractional.

integral

The

b

J
_A_(_x--'-)_tdx,
(b-x)P+i.

a

p= 1,2,3, . ; .

~s meaningless, but he defined the quantity

. I A(x) dx
P+I(b-x) i

a

(l.l.7)

(the finite part of the integral in question):

(i) if A is analytic, as half of the corresponding integral

taken along the above-rnentioned circuit;

(ii) if A is supposed to have onlyp derivatives ~n the vicinity

of b, as the limit for x=b, of the sum

x

f
A(y) I dy + B(x) I ,

(b-y)P+i (b-x)p-i
a

B(x) being again any function bound by the conditions:

(a) that the limit in question must exist;

(b) that B must be differentiable p times, at least

in the vicinity of x = b.
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Again, the arbitrary choice of B has no influence on the value

of the limit obtained. We may say briefly that HADAMARD gave a

meaning to those "improper" integrals by removing "fractional

infinities" at b.
Of course, his concept may also be introduced for the

integral

11 dx, p= I ,2, 3 , .•. (1.1.8)

p being no longer necessarily equal to I, but still being

necessarily contained in (0,1). He also remarks that such

considerations would even hold good to a certain extent for

b

f
A(x) dx
(b-x)P

a

(1.1.9)

with p an integer. This integral could be reduced toa finite

value by adding the terms

B(x)---p-_-I + BI(x) in. (b-x).
(b-x)

(1.1.10)

There=
But then, he says, for p > I we could, by adding to B(x) terms

p-Iin (b-x) , modify the result in an arbitrary manner.

fore this result is not determined when we merely know the inte=

gral (1.1.9), but requires the additive terms (1.1.10) to be

given as well.
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HADAMARD also gave a simple method for calculating the

actual value of his f.p. integrals.

first finding

If=:
a (b-x) %

which is easily deduced from (1.1.6).

culate, for instance, the quantity

Gf.. A(X) I dx

(b-X)P+2
a

This method consists in

(1.1.11)

If we now want to cal=

we substract from A(x) its expansion ~n powers of (b-x) by

Taylor's formula up to the term in (b-x)p-l, which changes our

express~on into an ordinary integral; then we have to integrate

(according to our meaning) such terms as

I J dX
q
+!

a (b-x) 2

-1------~l , so that finally
(q-D (b-a)q-2

the value of which is

I ~~J•.A(x) I dx
(b-X)P+2

a

A(b)

(p-!)(b-a)P-!
+ ..• -

(-I)p~IA(P-l)(b)
I

(p-l)!!(b-a) 2
Al (x)

----I dx,
(b-X)P+2

a

(1.1.12)
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where

order of infinitesimals around b is not changed.

We shall return

(_I)p-IA(P-I)(b)
I

(p-l)!~(b-x)2
A' (b)

3 . p_03O + ••. +
(p';"z) (b-x) 2

A(b)
I -

(p-D (b-x)P-Z

to such properties in the next chapter.

as the example of (1.1.11) immediately shows.

I is changed into T, and finding an upper limit for the diffe=

f.p. integral from the knowledge of the sign of the function,

rence Ii-Ii, we can write (on account of the well-known expres=

Any property implying an inequality also requires due pre=

Replacing the function A by another A in (1.1.12), whereby

a derivative, finite and different from zero, such that the

is regular in b, i.e. one variable has with respect to the other

sion for the remainder of Taylor's series)

caution since we cannot conclude anything as to the sign of a

A(x) - [A(b) -A' (b)(b-x) + .•. + c-nP-1 A (p-l)(b) (b-x)p-l].
(p-l) !

Changing the variable is also permissible, provided the variable

identical to the rules applicable to ordinary integrals, as far
b c b

as equalities are concerned, for in~tance f = f + f aridso on ..
a .a c

grals, HADAMARD also stated some of their principal properties.

The rules for calculating a symbol such as (1.1.7) are generally

Besides introducing this method of actually evaluating f.p..inte=

B(x)

for B(x),

This is equivalent to using the former definition and taking,
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+ ••• +

+ JA(p-I)(b)-A(P-I)(b)L
ap-I

• I

where a. = 1/[ i! (p-i-D (b-a)P-~-2]
.~

upper limit for the modulus of the

(i=O,I, ...,p) and A is an
p

P-'tllderivative of A in (a,b).

(ii))such that Ii-II < £ when

If, for all £ > 0, there exists a set {o ,ol""'o} (0. > 0a p ~

for i=O,I, ...,p) and a function A (under our hypothesis (i) or
max IA(i)(x)-A(i)(x)1 < o.

~xE[a,b]
(i=O,I, ...,p), we call the value of our f~p. integral (1.1.7)

continuous with respect to the function A.

HADAMARD also extended his concept of f.p. integrals to

multiple integrals, using arguments similar to the above. In

this thesis we are, however, restricting ourselves to one-

dimensional f.p. integrals.

With HADAMARD's concept of f.p. integrals ~n mind, we return

to his method for solving the cylindrical wave equation.

Substituting (l.l.3b) into the right-hand side of (I.I.3a),

we obtain

21T u (x , y , t )
a a 0 JJ J L dxdydt +

T If

uJJ _Isir
o

dxdy - I t Io dxdy.

Introducing the polar coordinates x = x +r cos~, y = y +r sinpa a

(r

as

J (x-x )2 + (y-y )2 ), the latter f.p. integral can be written
o a
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I t Io
f
o

u rdro

As previously explained (see formula (1.1.12)), we have

I t Io
f
o

u rdro

It I
(u -~)r0

f 0 dr u---
(t2-r2) % I t I0 0

0

where u stands for the value of u at the extremity of the cor=o

responding radius, i.e.

u = u (x +It \coslP,y +It IsiIl\P).000 00.

Thus ~e finally obtain

2rr u ( x , y , t )
000 Jf f .L dxdyd t + f f r~

T If s If
o

I til. 2rr
- __ 0_. (u -~) rdrdlP+ f

31: 0r 2 0

which is indeed the correct solution of our Cauchy problem for the

cylindrical wave equation (see e.g. [24]).
We remark that HADAMARD succeeded in dealing with the equa=

tion for damped cylindrical waves in a very similar way.

Before we conclude this brief survey of his new type of

"improper" integrals; we consider a remarkable example of a f.p.

integral given by him in [ 9 ] .
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It is well known that the integral representation of the

Beta function B(w,z), wand z complex, v~z

1

f (1_t)w-1tz-1dt,
o

~s valid for all w,z with Re(w) > -1 and Re(z) > -1. HADAMARD

demonstrated the existence of ~ very similar integralrepresen=

tation which is valid even for certain real arguments ~-1.

He considered

q-1m+--
a 2 B(m+Lt),

+1&"
f xq~1(a-x2)m-!dx

-10: o .. (1.1.13)

where q ~s any positive integer and many integer ;;;.o. Starting
I

fromm=O, we obtain Lp. integrals containing (l...,t)n+2or
I(a_x2)n+2 (n a positive integer) ~n the denominator by diffe=

rentiation with respect to a (or by a classic integration by

parts, with respect to t, applied to the second form of the inte=.

gral). Doing so, we see that

I +Ia II q-2.
2

(i) f x:-~+! dx f
.t dtor I(l-t)n+2_/CX(a-x ) 0

zero when q is odd and q-1~s n>-- 2
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(ii) otherwise

q-l
q-l ~2 -n

x dx = a
( 2)n+!a-x

r(~)r(~-n)

r(q;1 -n)rO)
(I • 1 • 14)'

By expressing the Beta function of (1.1.14) in terms of r-func=

tions, it is possible to verify that the numerical factor will

be the same as in (1.1.13), except that m is changed into -n,

i.e. the factor is B(~-n'1)'

particular the relationship

If we set a = 1, we obtain in

II q-l [ I 5L - 1
t2

B(~-n'1)'f x dx f dtI n+1,
-1 (l-x2)n+z

0
(I~t) 2

I

n any positive integer.

This means that, for certain real arguments not greater than -1,

the value of the Beta function is given by the f.p. of the usual

integral definition.

1.1.2 When the theory of distributions had been established by LAURENT

SCHWARTZ, who first presented this theory in a course of lectures

given ~n the Seminar of the Canadian Mathematical Congress l.n

1949, it became possible to study Cp. integrals in a more gene=

ral way than HADAMARD did. This study led to quite a new inter=

pretation of those integrals.

L. SCHWARTZ published his theory of distributions in [28].

We shall here briefly repeat the results of that section of [28]
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where he treats f'.p. integrals from the point of v~ew of distri=

butions, and we assume the basic concept of the theory of dis=

tributions to be well known. Before going further, we explai~

the notation which will be used.

We choose DIRAC's "bra" and "ket" notation for distributions

and test functions. Accordingly, we denote a typical test

function as a whole (i.e. as a mapping, not as a set of values)

by if) (the symbol) is read "ket") ,and the set of all test

functions by V. We denote a typical distribution (i.e. any.

linear continuous functional on V) by (d (the syml;lOl ~s

read "bra") and denote the number which is the value of (d for

a specific if) by (d ,if) ("bra-c-ket"; hence bra and ket). If

this number is ;:;"0 for all if) E V such that if) (x) ;:;"0 for all x,

we call the distribution (d positive. If f (x) is an inte=

grable function, we may define the distribution (f "generated"
00

by f (x) by (f ,if) = f f (x)if) (x)dx for all if) E V.
_00

distribution is called regular.

Such a

We shall now see how f.p. integrals arose in L. SCHWARTZ's

theory of distributions.

He considered the function

f (x)

for x < 0

for x > 0

which is not defined at x = O. The derivative of this function

exists and is continuous in the open intervals (-<lO,O) and (0,+00).

Differentiation, in the sense of distribution theory, of the

Stellenbosch University http://scholar.sun.ac.za



-16-

distribution (f 'generated by f (x) yields

( f' ,if!) - < f,if! ') =

00

I if!, (x)x -!dx

o

00

= - lim I if!, (x)x -!dx,
E-+o

E

and applying integration by parts we obtain

< f' ,lfJ) = lim[ if!(E) +
E-+o 1£

00I if!(x)(-!

E

_1
x 2 )dx]

since if!(E) = if!(0) + O(E) for E-+O, we have finally

< f' ,if!)

00

= l.im IIif!(x) (-!
E-+b .

E

(1.1.15)

It 1S not difficult to see that the right-hand side of (1.1.15)

is exactly HADAMARD'sdefinition for the f. p. of

00 3f if!(x) (-1 x-i)dx;
o.

i.e. the value of this f.p. integral 1S equal

to the value of the derivative of < f on the test function if!) .

This fact rendered it possible for L; SCHWARTZto study f.p. inte=

grals from the point of view of distributions. He generalized

this concept of a f.p. integral 1n t4e following way.

Let g(x) be a function which is integrable. in the closed

interval [a+E,b] , E >0, but not in [a,b] . It could be tha t
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g(x) is the sum of a polynomial of I/(x-a) and a function hex)

which is integrable in [ a,b] :

g (x) = p[ 1/ (x-a)] + hex)
A

__r_
A
- + h(x).

(x-a) r

By a polynomial, he meant a sum of powers of monomials, in which

the exponents A may be complex, Re(X ) ;:;;. I, but not integers.
r r

Under this assumption, we can write

b

f g (x)dx
a+E

I(E) + F(E).

I(E), the lIinfinite partll of the integral, is a polynomial in ~

and has the form

I(E)
A Ar-I

=' ~ (J..)L 1\ -I E
r

whereas F(E) has a finite limit F for E -+ O. This quantity F 1S

the one which lIADAMARD calls the L p. of the integral
b
J g(x)dx and L. SCHWARTZ writes for it:
a

F Lp.

b

f g(x)dx
a

- L
A Ar-I
r (_1_)r-=T b-a
r a

h(x)dx.

His idea of generalizing the f.p. integral which still

contains a non-integer exponent is based on the following fact:

s1nce ~) is indefinitely differentiable, the function
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g (x)l,O (x) has the same properties on [ a,b] as g (x); ~n parti=

cular it ~s not integrable at x = a, and thus we may define the
b

fop. J g(x)l,O(x)dx.
a

But, s~nce g(x) ~s integrable everywhere on [a,b] except at

x = a, g (x) defines a distribution2 (g the value of which is

given by

b

fop. f g(x)l,O(x)dx.

a

If we assume the function g(x) to be zero outside a finite

interval [a,b] and to be not integrable at a finite number of

points a. E [a,b], we can write in a more general way~ .

00

f .p. fg (x)l,O (x)dx.

Replacing g (x) by our above-mentioned function f' (x), we see

.that the derivative of (f in the sense of distributions ~s

nothing else but the distribution generated by f " viz

00

f
_.l

f.p. l,O(x)(-! x 2)dx.
o

At this point, we also refer to the footnote 1 of chapter IV

(page 78).

2 L. SCHWARTZ calls such a distribution a pseudo-function.
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We now come to his most important statement about f.p.

integrals. We calculate~ still with the aforesaid function
b. A

g(x)~ the integral f g(x)(x-a) dx.
a

If we assume A to be

complex~ Re(A) > 0 and sufficiently large~ Ag (x)(x-a) is 1.n=

tegrable on [a,b] and thus that integral is an ordinary one.

We consider the (complex-valued) function F of the complex

parameter A as independent variable,

b

F(A) f g(x)(x~a)Adx
a

- L
A A -A-l

~_r_ (_1_) r
A -1..-1 b-a
r a

Ah(x)(x-a) dx. (1.1.16)

The first term in (1.1.16) is analytically continuable; it

1.Sa.meromorphic function of A in the whole complex plane with

a finite number of poles at the points A = A -1.
r

The second

term in (1.1.16) is holomorphic for Re(A) > 0 and continuous for

1..-+ O. Thus, F(A) is meromorphic for Re(A) > O~since the A 's
r

are not integers, and it is continuous for A -+ O.

limit, we obtain

Forming this

F(O)

b

+ I h(x)dx
a

b

Lp. f g (x)dx.
a

L. SCHWARTZ therefore found that aLp. integral invo1ving

a non-integer exponent can be considered as the analytic conti=

nuation of the function defined by an ordinary integral.
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This is a quite new interpretation of a f.p. integral.

But we remember that HADAMARD had previDusly g~ven an example,

'in connection with the Beta function, where such an interpreta= ..

tion ~s easily verified.

L. SCHWARTZ also made a very important remark which corres=

ponds to that of HADAMARD concerning the signs of a f.p. integral

and of the integrand involved. The previously mentioned function

f '(x) ~ 0 in its whole domain whereas the distribution (f' is

not necessarily ~ 0 for ~ ~ O. But this means that the signs

of (f ',~> (value of f.p. integral) and f'~ (integrand) may, ~n

general, differ.

The fact that the behaviour of f.p. integrals involving an

integer exponent is completely different, was also recognized.

We now assume some A 's to be integers and such that we can write
r

the previous function g(x) in the form

g (x)
A

L r A
r*I (x-a) r

Al
+ - + h(x).x-a

The quantity I(s) in this case ~s therefore

and thus

I(S)
A A -I

\ r (l) r + Al f~~
L. x-=T s c..r*I r

b
F Lp. J g (x)dx

a

A Ar-I b
(_1_. )

JI r
+ Al f~(b-a) + h(x)dx.x-=T b-ar*I r a
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Apart from the logarithmic term, the two most significant

properties of Lp. integrals involving an integer exponent are

the following:

(i) They are no longer invariant with respect to a change

of the variable. We shall return to this property 1.nthe

second section of the next chapter and h~re consider only a

simple example given by L. SCHWARTZ.

above definition that

]

Lp. f dx o.x
0

Transforming x by t x we obtain2'

Lp. J
dt - in 2.-t

0

It is clear from the'

(ii) F is not an analytic continuation of F(A) till A = o.
It 1.Simmediately seen that F(A) tends to 00 if A tends to

b
zero, whereas the f.p. f g (x)dx is the limit of F(X.)- A] IX.

a

for X. -+ O.

Concerning the last property, we remark that it is, neverthe=

less, possible to represent such f.p. integrats as an analytic

continuation by means of the concept of regularization and by

taking the residue at the pole of that continuation.

Before we come to our basic formula defining Lp. integrals,

we shall illustrate the occurrence of such integrals in practic~.
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1.2 Physical examples of finite part integrals

To g~ve a first example, we consider a simplified calculation of

the velocity potential of a wing. Here one usually separates

the thickness effects from the incidence effects by introducing

the concept of a very thin w~ng at incidence and adding the

thickness effects afterwards. The thin w~ng is then replaced

by a distribution of horseshoe vortices ~n the plane z = o.

The cross section through the tail of such a horseshoe

vortex is given in the figure below.

w

-r
R

E E

We have thus a pair of vortices, eEch vortex with an absolute

strength r, inducing a velocity distribution.

momentum B of the two vortices is equal 2 E r.

The total linear

The component of

the velocity in the z-direction (called downwash) is given by

w 1
2rr

(~y-E
r

y+E).
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Now, we ask for w if £ tends to zero, ~.e. the two vortices coincide.

Thereby, we requ~re the total linear momentum B to remain constant,
<

which means that as £ -+ 0 the vortex strength must tend to infinity.

Forming that limit process, we obtain for the downwash

lim w
£-+0+

= B 1im [_1 (_1_
2n 0 2£ y-££-+ +

1
y+£) ]

In this case, wbecomE!s infinite at the or~g~n.

since the w!ng ~s .idealized by a distribution of horseshoe

vortices, the downwash at any point T/ of the wing is given by

1
= 2rr f. p.

s

J
B(y)--- dy,

(Y-'11) 2-s

where the integral is taken over the span length 2s of the wing.

In order to obtain the correct value for w(T/), we have to

take the f.p. of the singular integral involved. But this fact

was not always recognized in the literature. TRUCKENBRODT, for

instance, evaluates such singular integrals in [ 32] in such a way

that he obtained the correct result; however, his method is

intuitive rather than mathematically founded. On the other hand,

MANGLER applied the concept of fop. integrals for the calculation

of the downwash ~n [21], but he did not define them properly.

As a second example, we consider the Newtonian p0t:ential of

a continuous mass distr{bution.
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Let there be glven a simple, piecewise smooth, space curve

c: x = xes), y = yes), Z = z(s), s the arc length, and further=

more let a continuous mass distribution "'I (s) be defined on C (such.,

a distribution is called line d~n~ity). Then

U(P) U(x,y,z) f
"'I (s) ds,
r

C

represents the Newtonian potential of that distribution glven on

C; r is the distance from the space point P(x,y,z). to the current

point of C. Thus, the above integral does not only depend on

the integration variable s, but also on the coordinates of P, and

is as a function of the latter continuous and arbitrarily often

continuously differentiable, provided that the point P does not

lie on C. Then, we can differentiate under the integral and

obtain the field vector

n.(x,y,z)
1

a.U
1 f

fL.
res) 1 ds,

r3C

i=1,2,3,

where fLi denotes the i-th component of the vector fL.

Now, we assume the point P to be on the curve C. Both

integrals above become then improper. If the singularity is

removable or integrable, i.e. "'I (P) vanishes in a neighbourhood of

P, then the limits of the integrals are still considered to define

the potential and the field vector resp~ctively. Of course,

this will essentially depend on the behaviour of the given dis=
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But since in general ~(P) * 0, these inte=

grals will not exist and then they must be interpreted as f.p.

integrals. We see that in this case the integrand for the
-Ipotential becomes singular as x and that for the field vector

-2as x
In practice, it can also be that higher order derivatives of

U (they form tensors) have to be calculated. Thus, the order

of the singularity of the integrand involved increases.

As last example we calculate the potential at any space

point P(x,y,h) induced by a constant charge density u on the

(x,y) plane.
Introducing polar coordinates such that the or1g1n coincides

with the x,y coordinates of P, the potential would be given by

U(P) bro

00

f r d 27foJ r2+h2

Jr2+h2 r =
o

00

o
"00" - .27foIhl,

which is meaningless since the above integral does not exist clas=

sically. We know thatU(P) 1S equal ~27fOlhl, thus in order to

remove the infinite term the singular integral must be inter=

preted 1n the sense of an f.p. integral. To calculate this

f.p. integral we first write the potential 1n the form

00

U I I I x dx
21TO h f.p. ---

o /x2+1

where x
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and then substitute l/y =.~ into the latter Lp. integral.

This yields, sinced(~x2+1 ) x dx/~x2+1 = - dy/y2,

u 21f a Ih I L P . 21f a Ih I L P .

which is indeed the correct value of the potential at P.

1.3 Direct definition of Lp. integrals within the framework
of distribution theory

Among the function with non-summable singularities at isolated

points, the most important in practice.are those with algebraic

singularities. These are functions which, as x approaches the

singular point x , increase according to some power of l/Ix-xl.
o . 0

In this thesis we shall consider only f.p. integrals which

involve such functions.
So far we have seen how f.p. integrals involving an algebraic

singularity of non-integer order were defined. In this section,

we shall give two general formulae defining f.p. integrals by

means of the concept of regularization (see e.g. 7 ]); one

formula each for the cases of an integer and a non-integer

exponent.
Since regularization is the ma~n concern of this section,

we repeat its definition fully. Let f (x) be a function locally

integrable ~n some neighbourhood of any x #: x, x a fixed, giveno 0

point. A ne.gufevUza;tiol1 of f (x) ~s any continuous linear func=

tional < d over V such that
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f f (x)tp(x)dx
[1]

whenever the closed interval [I] does not contain x and for allo

test functions tp)whose support - the closure of the set on

which they are not zero - is contained ~n the open interval I.
By means of any such regularization, we define a f.p. inte=

Let the function f (x) be locally integrable
I

over some neighbourhood of any x"*x , and let (f be any regula=o

rization of it. Then we define, for any interval [a,b] with

a < x < b, the n.P. -lluegfLa1 of f (x)tp(x)over [a,b] as
0,

bf f (x)tp(x)dx
a -00

00

J f (x)tp(x)dx. (1.3.1)
b

The symbol =f here denotes the f.p. integral and we shall use it

from now on throughout the thesis. The integrals on the right-

hand side of (1.3~1) are oidinary ones (since tp(x)

finite interval)~ one or both of them may vanish.

O'outside a

Whereas a

regularization is a distribution, i.e. a functional, the f.p. is

a number, the value of the corresponding functional on a specific

function. We remark that this latter function need not be a test

function; it is sufficient if it can be uniformly approximated by

test functions over a finite interval, and this is certainly

possible if, for instance, the function is continuous.

then take the limit of a sequence ~n (1.3.1).

We should
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Finally, we observe that, so far, our definition is not

unique (since the regularization is not unique). It ~s known

from distribution theory (see e.g. [ 7 ]) that two different

regularizations of the same function differ by some finite linear

combination of (o(k),. k=O,l, ..., i.e. by distributions concen=

trated at the singularity. If the order of the singularity is

non-integer, uniqueness can be achieved by requiring the (distri=

butional) derivative of the regularization of f(x) to be equal to

the regularization of the (ordinary) derivative of f (x). The

regularization defined in such a way commutes with differentia=

tion and is uniquely characterized by this property.

As a typical example of a function with the type of s~ngu=

larity under discussion, consider

j:-'t, for x> 0
-% (1.3.2)x+

for x < O.

The distribution generated by this function ~s not regular, s~nce

co

o

will, in general, diverge. _31:However, the function x 2 can be
+

regularized by the following method. We form the distributional

derivative of the (regular) distribution generated by the function
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r x""% for x> a
~1/2

=x 10
+

for x ~ a

and obtain

00

f x-% \p'(x)dx.
o

Integrating the last expression by parts, whereby we introduce a

limit process for the lower boundary, we have

00

- !2 f \p(x) -\p(a)
% dx.

x
o

It is easily seen that the latter integral now converges. In

view of the requirement regarding the derivative, stated above,

we can also write

00

(1.3.3)

and it is easily verified that the right-hand side of (1.3.3)

represents a regularization of the function x:%.

This same process of (distributional) differentiation can be
-%-ncontinued, yielding a regularization for x after n steps.
+

But we do not apply this process here in order to obtain,our

definition formulae for Lp. integrals since, if the order of

singularity were integer, it would yield a formula valid only

for integration intervals symmetric about the singularity.
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"Another method of obtaining the result of (1.3.3) is by

analytic continuation, and it is essentially this method we shall

use for finding our definition formulae. Before explaining the

definition.

underlying principle of the method, we introduce the following

Consider a distribution (fA depending on a para=

meter A running over some open region A in the complex plane.

Then (fA is called an analytic functional of A in A if (fA,I{)

~s an analytic function of A for all I{) E V.

Th~ analytic continuation method is the following. Let

f A (x) be a function (of x) locally integrable when A is~n some

region A of the complex plane, but ,not ~n general integrable

otherwise. Further, for A E A let (fA,I{) be analytic for every

Then with the function

rp) E D, and assume that it can be extended analytically to a

wider region A] independent of I{) •

f Ao(x) for Ao E A] - A we may associate the functional

obtained by analytic continuation of (fA ,1{) out of A.

words we shall write

In other

I f A (x)1{) (x)dx
o

a.c.
A-+A

o

If A (x)1{) (x)dx.

For instance, to define the distribution generated by the

function (].3.2) we shall consider the function

f ,A for x> 0x
Ax+

lo for x ~ o.
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For Re(A) > -I thts 1S the regular functional given by

OJ

(1.3.4)

Now (1.3.4) is a function which is obviously analytic in A, for

its derivative with respect to A is

OJ

fA x In. x .lP(x)dx.
o

Let us rewrite the right-hand side of (1.3.4) 1n the form

1

J xA [lP{x)-lP(O)]dx +

a

OJ

J
A lP(O)x lP(x)dx + --x+T

1

Here the first term is defined for Re(A) > -2, the second for all

A, and the third for A * -) . Thus the functional defined in

(1.3.4) can be analytically continued to Re(A) > -2, A.* -I, i.e.

the function (x:,lP) itself is, for every lP)E V, analytic for

ReU) > -2, except for A = -I where it has a simple pole, the

residue there being lP(O).

In particular, for A = -% we have

1

J x-% tlP(x)-lP(O)]dx +

a

OJ

J
_31:x 2 lP(x)dx - 2lP(0).

1

(1.3.5)

Stellenbosch University http://scholar.sun.ac.za



-32-

The right-hand side of (1.3.5) agrees with that of (1.3.3),

since 2 J
-%x dx. The extension of the definition to complex

values of A was thus performed in a manner consistent with the

previous definition for real A.

We may proceed similarly and continue

Re(A) > -n-l, A * -1,-2, ...,-n to obtain

(xA into the reg~on
+

00 1

oJ xA
,11 (x)dx oJ A't' X [l{J(x) - l{J(0) - x,p' (0) - ..• -

o o

00

n-l Jx l{J(n-l)(0)] dx +
(n-l) :

1

+ I l{J(k-I) (0)
k=l (k-l): Ol,+k) .

Ax l{J(x)dx +

(1.3.6)

Here aga~n the right-hand side regularizes the integral on

the left. This defines the distribution (xA for all+

A * -],-2, ...,-n.
In any strip of the form -n-] < Re(A) < -n, the equation

(].3.6) can be written in the simpler form

J xA [l{J(x) - l{J(0) - Xl{) , (0)
o

n-]
x l{J (n-l) (0)] dx,
(n-l):

(1.3.7)
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as follows from the fact that for 1 ~ k ~ n

00

f A+k-Idx x

1

-I
= A+k .

Equation (1.3.6) shows that when we treat A(x+,iP) as a function

of A, it has simple poles at A = -1,-2, ...,-n, and its residue

at A = -k is iP(k-I)(O)/(k-l):, k=I,2, ..•,n.

It is shown in [7] that the regularizatiop (1.3.6) com=
.. .. ( ( A) t' \ , ( A-I \ .~fmutes w~th d~fferent~at~on, ~.e.x+ ,iPI = II. x+ ,iPI .L

A * -1,~2, ... ,-n. Thus it g~ves exactly the Lp. required

by our definition based on regularization.

The regularization given by (}.3.7) enables us to evaluate

b A
any f.p. integral of the form f x iP(x)dx provided that A ~s

a

not a negative integer.

We now corneto the problem of finding a regularization of
-nx+ with n=I,2,3, .•. The method of arriving at such a regu=

larization is given in [7, p~ge 85] and therefore it is here

described only briefly.

In the neighbourhood of the pole A = -n, the previous

function A .(x+,iP) can be expanded ~n a Laurent series. To

obtain this expansion explicitly, we isolate the term that fails
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to converge at A = -n, viz l{J (n-l) (0)/[ (n-l) :(A+n)] . The re=
,,

maining (regular) part of this Laurent expansion is then an

analytic function of A m the strip IRe(A) + nl > 1. In parti=

cular, we are interested in the value of this regular part at

-nA = -n which we shall denote by < x ,l{J)
+

tion

so that by defini=

-n
< x ,l{J) -

+
lim{<xA

,l{J) - l{J (n-]) (0) /[ (n-1) : (A+n)]} .
+A-+-n

It follows then that

-n.
< x ,l{J)

+

00

J
-nx [l{J(x) -l{J(0) - ~'(O) - ••• -

a

n-I
- 0 (I-x) x l{J (n-I) (0)] dx

(n-l) :

(1.3.8)

where 0 (I-x) is equal to zero for x > I and equal to one for

We emphasize that <x-n is not the value of
+

A<x at+

A = -n, as <x: there has a pole and thus does not exist at

this point.
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Purely formally, all we have to do when setting A = -n in
A<x+ 1S to multiply the last term of the subtracted Taylor series

by e (I-x), so that it is set to zero when x > I. The essential

thing is that the integral in (1.3.B) does converge and that it

does represent a regularization of the function x-n (as 1S seen

by considering a ~(x) which vanishes 1n a neighbourhood of

x = 0). However, the question as to whether the regularization

(1.3.8) commutes with differentiation must be answered in the

negative (see [7] , page 87). Although we were able to establish
, . ..-na correspondence between the ord1nary funct10n x+ and a distri=

bution, we had to sacrifice the ordinary formula for the deriva=

tive. It is shown in [ 27] however, that it is possible to

define another regularization which commutes with differentiation,

but at the expense of losing the analytic connection to A<x •+
,Since in view of problems of physics we prefer this latter

property, we shall retain the above-mentioned definition.

By means of the regularizations (1.3.7) and (1.3.8) we can now

derive two definition formulae for f.p. integrals; one formula

each for the cases of an integer and non-integer exponent.

For practical purposes we introduce a notation for the re=

mainder of Taylor's series.

of Lagrange:

Explicitly, we shall use the form

R (x)
n .

~ (x) - [~(O) + ... + xn~ (n)(0) /n~]
x

f'(' )n (n+l)()dx-y .~ y y.
o
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Thus we can write, for instance ,

00

f
A-n

. x Rn-I (x)dx;

a

-1 < A < 6, n=I,2~ •.•

For the f.p. integral, according to (1.3.1), we have the expres=

s~on

r

f A-n . A-n
x tp(x)dx == (x+ ,tp)

a

00

- I
r

A-nx tp(x)dx

r 00

I
A-n n-I (k) f
x . Rn-I (x)dx - k~}tp (O)/k!].

A-n+k
dx x

a

r

- I
a

r

A-n n-I (k) A k . .
x R 1(x)d:x+ L tp. (O)r -n+ +1/[ (A-n+k+I )k!].

n- k=o

(1.3.9)

Proceeding ~n the same manner with the f.p. of

additional term,

-n .
(x+ we get one

r

fx -ntp (x)dx

a a

-n+k
x dx +

+ [.(n-I)(O)/(n-J)~l J x~Jdx

1

a

+ bl r tp(n-I)(O)/(n-'l)!. (1.3.10)

Obviously, the sum over k drops out in (I.3.IO) if n 1.

Stellenbosch University http://scholar.sun.ac.za



-37-

1.4 The general case

So far we have assumed the singularity to be at the origin, but

this is of course not necessary. In the following, we assume the

singular point to be at x = s, and consider the function.
o

r(X-S)A for x > s
A(x-s)
+ 1 0 for x < s.

For Re(A) > -1, this function generates a regular distribution of

the form

00

A( (x-s) ,.p}
+

f (x-s)A.p (x)dx,
s

(1.4.1)

which is analytic in A. It is easy to see that the same method

of analytic continuation as before may be applied to (I.4.1).

Instead of the equations (1.3.7) and (1.3.8) we here have the

regularizations

00

A«x-s) ,.p}. +

.and

J (x-S)A[.p(x) -.p (s) - (x-s).p'(s) - ... -
s

n-I(x-s) .p (n-I)(s)]dx,
(n-I) :

if -n-I < Re(A) < -n
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00

-n«x-s) ,l(!)
+

J (x-s)-~ tp(x) -tp (s) - (x-s)tp'(s) - ••• -
s

n-I
- ()(s+l-x) (x-s) tp(n-I) (s)]dx,

(n-l)~

where ()(s+l-x) 1S equal to zero for x > s+1 and equal to one for

x < s+l ..

If we set

n (n) . ,
R ( x, s) == '{J (x) - ['(J (s) +... + (x- s) tfJ ( S ) / n .] =
n .

( )n (n+I)( .)dx-y tp y y,

s

the equations corresponding to (1.3.9) and (1.3.10) are here

r

f A-n(x-s) tp(x)dx
s

r

J
A-n .(x-s) Rn_l(x,s)dx +

s

~I . .
+ L tp(k) (s) (r_s)A-n+k+I/[ (A-n+k+l)k:]

k=O
(1.4.2)
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r

J (x-s)-nRn_
1
(x,s)dx +

s

n-2\ (k) -n+k+l+ L <p . (s)(r-s) I[ (-n+k+1) k:] +
k=o

(n-l )+ in (r-s)<p (s)/(n-I)!

s < r.

(1.4.3)

(1.4.2) and (1.4.3) represent our definition formulae for the more

general case of a f.p. integral involving an algebraic singularity

at any point x s.
o

We now come to a generalization of f.p. integrals which con=

cerns the integrand function. If we consider only the definition

formulae (1.4.2) and (1.4.3) it 1.Sno longer necessary to assume

<p(x) to be a test function. Indeed, it is sufficient to take

instead of <p (x) any real function f (x) of the real variable x

satisfying the conditions

(i) f (x) E e 1.llan interval I containing [s,r]

(ii) f (x) E en 1.na neighbourhood U of x = s E I.

Under these conditions, the function f (x) can be represented for

any x E U by

f (x)
n-l

Lk=o
k (k)(x-s) f(s)/k! + R (x,s),. n

where R denotes the remainder of the Taylor s~ries.
n
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We see that it ~s thus possible to define the f.p. iIltegrals

r

f A-n(x-s) f (x)dx
s

and
rf (x-s)-n f (x)dx
s

by means of our definition formulae (1.4.2) and (1.4.3).

From now on, we shall consider exclusively f.p. integrals

which involve an integrand function ': n'
f (x) E C [ s, r] .

We now apply the above definition formulae to such f.p.

integrals.

Since we introduced a specifiG form of the remainder

Rn_l(x,s), i.e. the form of Lagrange, we can go further.

changing the order of integration, for -I < A < 0, yields

Indeed,

r

f
A-n(x-s) .Rn_1 (x,s)dx

s

[ I/(Il-I)!]
s y

A-n Il"-I(x-s) (x-y) dxdy.

We shall now show that the latter double integral can be almost

completely integrated elementarily. In order to do so we must

separate the cases A = 0 and -I < A < o.
former case and set

We start with the

r

I [I/(n-I)!] f f (n)(y) i dy,
s

where
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I = f
y

-:-41-

n-I(x-y) dx
x-s x-s

The integral I can easily be evaluated by means of the substitu=

tion t = (x-y)/(x-s). Thus we obtain

~
I = [

n-
I

2 k+1
1 r-y

k+1 (r-s)k=o
+ in y-sJ .r-s (1.4.4)

Insertirig (1.4.4) 1n the equation for I yields

s

L

n-2 r
[-I/(n..,.I)~]{I 1 k+1 f

k=o (k+I)(r-s)
. k+ 1 (n) .(r-y) f (y)dy+

r

+ J in (y-s) f (n)(y)dy -
s

r

- in (r-s) f f(n) (y)dy},
s

If we evaluate the first integral on the right-hand ~ide of

(I.4.5)

(1.4.5) sufficiently often by parts, the second one by the sub=

stitution t = (y-s)/(r-s), the third one directly and insert I

in (1.4.3) we finally obtain the formula
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_ f (n-l)(s) n;2
dx - (n-I)! in (r-s) + l

k=o [
(r_s)-n+k+1 .(k)
k! (-n+k+l) r (s)-

k! f (n-k-2)(r) +
k+l(n-l)!(r-s)

(1.4.6)

I . (n-I-m\ ]. .f ,s) +
(k+l-m):(r-:-s)m

I

+ (~=~): J f (n) [ (r- s ) t+s] in (I It) dt.

o

The rema~n~ng integral can, in general, not be .integrated ele=

mentarily but, if f (n) is known, the integral can be evaluated

numerically ~n a convenient way by a Gauss~type quadrature for=

mula (given e.g. in [ 30 ]).

For the case -I < A < 0, we again set

r

I [1/(n-I):] J f(n)(y) Idy,
s

where

r

I J A-n n-I. (x-s) (x-y) dx.

Integrating this integral (n~l) times by parts yields
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(-I)k(n_l) ~(r_syA-n+k+1 (r_y)n-I-k
k

(n-I-k)~ IT (m+l+A-n)
m=o

n A(-I) (n-I)! (y-s)+-~---~--
n-I
IT (m+ l+A-n)

m=o

(1.4.7)

We insert the right-hand side of (1.4.7) in the above expression

for I and obtain

n-I
I = L

k=o

r
(._I)k(.r_s)A-n+k+1 f '1" ()k (r_y)n- -£vf n (y)dy +
(n-I-k)~ IT (m+I+A-n) s

m=o

+

r
(_I)n f

n-I
IT (m+I+A-n)s

m=o

(y_S)A f (n) (y)dy. (1.4.8)

If we integrate the first integral in (1.4.8) (n~k-I) times by

parts and insert I in (1.4.2) we finally obtain the formula

r

f f (x~_A dx
(x-s)s

nIl { (_l)k(r~s)A-n+k+1
k=o (n-I-k) ~ IT (m+I+A-n)

m=o

[
nm-='/I(-I)m(n-k-I)! (r_s)n-k-m f (n-m) ( )

L (n-k-m)! . s +

+ (-I)n-k(n_k_l) ~ f (k) (r)] + (r_s)A-n+k+1 f (k) (S)J +
. k~(A-n+k+l)

I

+
(- 1) n (r- sl +l f A ()n-I t f n [(r-s)t+s]dt.
IT (m+I+A-n) 0

m=o
-I < A < 0

(1.4.9)
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Owing to the structure of the formulae (1.4.6) and (1.4.9) it

is clear that a Lp. integral can be evaluated by means of these

formulae only if the corresponding derivatives of f are known.

But even then, the computation can 'become cumbersome. It would

therefore be desirable to have a quadrature formula for the nume=

rical evaluation of such f.p. integrals. We shall present and

discuss two kinds of such quadrature formulae in chapters III

and IV.
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C HAP T E R II

PROPERTIES OF FINITE-PART INTEGRALS

In the first section of chapter I we mentioned that both HADAMARD and

L. SCHWARTZ noticed some very strange properties of f.p. integrals.

One we have observed is that if the integrand of a Lp. integral is

positive throughout the open integration interval, the value of the inte=

gral can nevertheless be negative. We also noticed (see page 21) that

a change of the integration variable yields a different result if ~ is an

integer. Therefore we may suppose that the standard classical rules for

integration do not, in general, apply to f.p. integrals.

In this chapter we shall study the behaviour of Lp. integrals when

subjected to the most common integration rules, and also their linearity

and continuity properties and properties concerning inequalities.

Thr9ughout, we shall require the integrand function to be of C~ s,r] so

that the definition formulae may be applied.

2.] The basic rules of classic integration applied to finite-part
integrals

From our definition formulae(] .4.6) and (1.4.9) it follows that

a f.p. integral is a linear functional.

Thus it is clear that

(a)

r k

f \' A-n
L (x-s) a.f . (x)dx

1. 1.

s i=]

k r
I f A-n -] < A ,;;;;0',= a. (x-s) f. (x)dx,

1. . 1.

i=] s a. real
1.

s < r

(45)
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holds for every (finite) linear combination of functions I. (x) •
1.

(b) We remember that up to now we always assumed the singular point

s to have a value smaller than that of the other interval end

point r. But this is only an apparent restriction since the

case r < s can easily be transformed to our standard case 1.n

the following way.

Given

s

f _I _(x~)- dx,
(s-x)n-A

r

r < s, -] < A < 0,

then by setting x =""y we can transform this f.p. integral to

-r

f. 1 (-y)--- ...••..'---- dy.
[ y _ (_s)]n-A-s

The latter f.p. integral now has the standard form since

-s < -r and its value is gl.venby our formulae.

(c) From the definition of a f..p. integral it follows that any

proper integral may also be considered as a f.p. integral.

We can therefore split up [s,r] into [s,a] and [a,r] and

can write (omitting the integrand)

with a between sand r,
s s a

where the latter integral 1.Snow proper.
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(d) For ordinary integrals there is the well-known rule that if the

integrand f ex) ;:'0m the integration interval [a,b], then
b
f f(x)dx;:'O.
a

1.Snot applicable as the following counterexample shows.

Assume f (x) in [ 0,1]. Then, for instance,

1

f dx
n-Axo

1 < 0 1..f -1 < ' ~. 0 d 2 3A-n+l A ~ an n=, ,•..

It 1.Salso not true here that the equality holds if and only

if the integrand vanishes almost everywhere in the integration

interval. In order to show this, we again take f (x) == 1 in

[0, 1] and calculate

1

f
o

dx
x 0,

1..e.the value of this f.p. integral is zero although the

integrand function is positive within the whole open-

integration interval.

(e) Furthermore, the classical rule that if f (x) ;:.g(x) in [a,b]
b b

then J f(x)dx;:'J g(x)dx is also not applicable to f.p. in=
a

tegrals.
a

As a counterexample we consider f (x) = x+ 1 and

g(x) == 1 and calculate

1

f' x+l
dx

x3o

1

f
o

dx - !2.
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(f) In general, we may also not apply the classic inequality
b b
If f(x)dxl « f I f{x)Idx to fop. integrals as ~s seen from
a a

the following example. Assume f (x):=;-] 1ll [0,1]. Then

Summarizing, we can say that as far as equalities are con=

cerned the common rules for ordinary integrals are also valid for

f.p. integrals but rules concerning inequalities are, in general,

not applicable to them.

2.2 Basic transformations of a finite integtation interval

Given any f.p. integral of the form

I(s,r)

r

f A-n(x,.-s) f(x)dx,
s

-] < A « 0, s < r (2.2.])

with f (x) E C~ s,r] .

We first consider the simplest transformation of a finite inte=

gration interval, i.e. pure translation. Assume that the interval

[s,r] is shifted by the distance a. Equivalently we can say that

this translation corresponds to a change of the variable of the

form y = xi a. With the new variable y, (2.2.1) becomes
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rIa

f A-n[y ~ (s:ta)] f(y+a)dy

s:t a

r' -Sf r-s,

r'

fs'

A-n ..
(y- s ' ) f (y+a) dy .

(2.2.2)

f(k)(y+a)/y=s' f(k)(s),

f (k) (y+a)/y=r' = f(k)(r)

and f (n)(y+a)/y=(r'-s')t+s' = /n)[ (r-s)t+s]

we see immediately that the application of the definition formula

(1.4.6) or (1.4.9) to (2.2.2) yields the value of I{s,r), 1.e.

I. I(SH,,",,') - I(s,<) I (2.2.3)

The f.p. integral (2.2.1) is therefore invariant with respect to

any pure translation of its integration interval.

Wenow consider a transformation of [s,r] consisting of a

translation and a scaling. Assume that the interval [s, r] is

transformed to [s' ,r'], s' < r'.

setting

This can be achieved by

y
(x-s)(r'-s')

r-s + s'. (2.2.4)

With the new variable y, the f.p. integral (2.2.1) becomes
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r'
I+:\-nf

( r-s ) :\-nr'-s' (y-s') f(y)dy,
s'

F(y) = f[(y-s')(r-s)+ s]
r' - s'

(2.2.5)

Forming the corresponding derivatives which occur 1n the definition

formulae we find that

F(k) (y)/y=s'
k

f(k)(s)( r-s )= r'-s'

(k) k
/k)(r)( r-s )F (y)/y=r' r'-s'

(n) n
f (n)[(r-s)t+s] .( r-s )F (y)/y=(r'-s')t+s' r'-s' .

Applying the formula (1.4.9) too(2.2.5) and uS1ng the above expres=

sions for the derivatives, we obtain the identity

l(s' ,r') r(s,r) -I < :\ <. 0, (2.2.6)

1.e. the value of the f.p. integral r :\-nf (x-s) f(x)dx, with
s

-I < A < 0, does not change if its integration interval [s,r] 1S

transformed to any finite interval [s',r '].

with that for ordinary integrals.

This property agrees

We now apply the definition formula (1.4.6) to (2.2.5), i.e.

we assume A to be zero, and again use the above expressions for

the derivatives. This yields the relation
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(n-I)f (s) r-s
I( s, r) - (n-l) ! -en. r' --s ' (2.2.7)

r
which means that the f.p. integral f (x-s)-nf(x)dx 1S not 1n=

s

variant with respect to a transformation of its integration inter=

val which involves a scalingl.

We thus have the important fact that our kind of f.p. integral

is invariant with respect to the general linear transformation

(2.2.4) only if the exponent 1S a non-integer. If the exponent 1S

an integer, the originalf.p.integral and the transformed one

differ by the term /n-l) (s)-en[(r-s)/(r'-s')] /(n-I)!, which stems

from the basic difference between the corresponding definition for=

mulae.

This behaviour has consequences for the evaluation of such

f.p. integrals by a quadrature formula which has been derived for

a certain fixed integration interval. In the following two

chapters, we shall give quadrature formulae which refer to the

-n(x-s) f(x)dx by these formulae, we must therefore set

integration interval [0, I].
r

of f
s

In order to compute the value I(s,r)

I(s,r)
/n-I )(s)

1(0, I) + (n-1) !. -en. (r-s) ,

1
where 1(0, I) 1S the value of f x-n f[ (r-s)x + s]dx.

o

It should be noted that the behaviour of "associated functions"
under a similarity transformation is similar to (2.2.7). See
e.g. [ 7, page 82] .
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2.3 Transformation of an infinite integration interval

Up to now we have considered f.p. integrals with a finite integra=

tion interval [s,r], s denoting the point where the integrand

becomes infinite in [s,r] . The situation is completely different

if we consider integrals with an unbounded integration interval

[r ,00] and which do not exist as classical improper integrals .

Thereby we assume that, as x-+oo, the integrand F(x) does not tend

td zero faster than l/x. Since by setting x = r/y such an integral

can be transformed to a f.p. integral of the form

o

orf
1

_ F(r/y) dy
2

Y

1

r f. fey) dy,
y2 r "* 0,

we say that the original integral also represents a f.p. integral

where the singularity is located at infinity.

Of course x = r/y is not the only transformation which changes

[r,oo] to a finite interval, but it is the simplest and certainly

admissible. F.p. integrals involving a singularity at 00 have in

fact the strange property that they are not invariant under any

arbitrary transformation which yields a finite integration inter=

val. We demonstrate this by the following example.

Consider the integral

I r=O
o

which does not exist classically, but can be g~ven a meaning if we

take the f.p. of the integral in question.
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In order to calculate (2.3.1) we use the transformation x=l/y

and thus obtain

00

I (2.3.2)

This integrand 1.S now singular at the origin and has a finite

1imit as y -+ 00. Splitting up the integrand',we can write

00 00.

I = f dy - I ~
y2 l+y2

o 0

(2.3.3)

where the latter integral is regular and equal to rr/2.

f.p. integral in (2.3.3) vanishes, we have

00

Since the

f~dXl+x2
o

- rr /2.

Instead of the above transformation, we now change the inte=

gration variable x in three different ways, viz

(i) x 1 - I,
Y

(ii) x J ]-z2
z

(iii) x = j2-t.
t

By means of these transformations, (2.3.1) changes to

(2.3.4)
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dZt (2.3.5)

and
2

I fvi="t2. t% dt respectively.
o'

(2.3.6) .

To calculate. (2.3.4) we can write

1

dy = f dy
y2 2

o Y

J

f
dy

.;...2y2- 2y + 1
o

-I _ arctan(2y-l) II
o

-I -n/2.

Applying the formula (1.4.6) to (2.3.S)t we obtain

o

and integration by parts yields

Z il1 Z

~ II + II -dz = - n /2.
o )1-z2

o .

(2.3.6) can be calculated by the formula (1.4.9) which yields
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We see that the tT~nsformations (ii) and (iii) yield the corr~ct

value of (2.3.1) but the transformation (i) does not, although all

three transformations are very similar.

This example shows that the transformation of a f.p. integral

with an infinite integration interval has to be chosen with great

caution.

To be on the safe side, it ~s recommended that the pure

reflection x = r/y be applied to the integration variable x.

2.4 The continuity of the finite-part integral as a functional

We remember that according to our first definition (1.3.1), a f.p.

integral was considered as a regularization of a certain distribu=

tion. From the definition of the regularization it thus follows

that a f~p. integral represents a continuous functional.

In order to free us from the restriction to test functions,

we said at the end of the previous chapter that the assumption

f(x) E en [s,r] is sufficient for the existence of the f.p.

integral under discussion. But then the question arises as to

whether this f.p. integral is still a continuous functional.

In the following we shall show that under certain assumptions

this.question may be answered in the.affirmative .

.For ordinary integrals we know that if a sequence of integrable

functions converges uniformly, the integral of this sequence is

equal the integral of the limit function. But for f.p. integrals,

the uniform convergence of a sequence of f.p. integrable functions

is not sufficient. We here need another definition of convergence,

the so-called strong convergence in en [ s,r] :

Stellenbosch University http://scholar.sun.ac.za



":56-

Definition

write

converge

Given a sequence {fv (x)}, where all fv (x) E en [s,r] ..

..we say that {f (x)} converges to f (x) in en [s ,r] and. . v . .

lim{ f (x)} = f(x), if the sequences {f (k) (x)} uniformlyv vv -too

(k)to f (x) for k=O, 1,2,•.•,no

Then

Alternatively we may say that we can, for every g1ven E > 0,

find an integer N which depends only on E but not on.x.E [s,r]

so that

k=O,1 ,2, ••• ,n,

for all v > N(E).

since

say that

Theorem

nf(x) E e [s,~, it is f.p ..integrable and ~e can

For any sequence {f (x)} which converges tov .
nf(x) 10 C [s, r] ,

r

lim f
v -too

S

A-n(x-s) f (x)dxv

r

f A-n(x-s) lim fv(x)dx,
v -too

s

-1 < A ~ 0, (2.4.1)

1.e. the f.p. integral is a continuous functional on ne [s, r]

and thus we may interchange the limit and the integral symbol.
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Proof

We consider only the case A = 0, S1nce the proof 1S the same for

lef.t-ha.nl dA*"O, and denote the integrals on the and right-hand sides

of (2.4.1) by I and I respectively.v

Then by means of the definition formula Kl.4.6) we can write

. . ~2
lu (n-l) (s) - t'n-I) (s)] .•• + I {[/ki (s) - f(k) (s)] •.. -

v . k=o v

- [f (n-k-2) (r) - t'n-k-2) (r)] ... +
v

+ k!
(n-l)!

k+1I [f
v
(n-l-m)(s)_f(n-1-m)(s)] ..• } +

m=o

+
1

r-s r {f,~n) [(r-s) t+s] - /n) [(r s) t+s] 1.11(l It) dt I ~
(n-I)! v

o

n-2
~ If

v
(n-1)(s)_/n-1)(s)I ... + L{lf;k)(s)_/k)(s)I •.• +

k=o

+ I f(n-k-2) (r) - t(n-k-2) (r) I ... +
v

+ k!
(n-1)!

k+II I f
v
(n-1-m) (s) - f(n-1-m) (s)I ..• }+

m=o

+
1

r-s J I f5n) [(r-s)t+s] - fen) [(r-s)t+s] 11.11(l/t)dt,
(n-l)! v

o

where the dots indicate the terms of (1.4.6) .ndependent of f v

and f.

According to the convergence of {f (x)}, all absolute valuesv

of the differences in the latter expression a e smaller.than some E.
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Therefore, II -II c~n be made arbitrarily sma 1, Le. lim I 1.v vv~
IThis proves our statement.

To ensure that the f.p. integrals of asquence

converge to.the Lp. integral of the limit fulction,

of functions

we had to re=

quire the strong convergence.

We.now consider a f.p. integral such that the integrand func=
. b' d'. h' .. l. bl 1 d dt10n, .eS1des depen 1ng on t e 1ntegrat10nvar1ae, a so epen s

d . d d ~ bl' h If'on a secon 1n epen ent var1a e, 1.e. we ave a unct10n

g (x)

r

f f(x,y)----,- dy,
(y-st-A

s

-) < A< 0; s < r. (2.4.2)

We ask under what assumptions on f 1S

Here y is the integration variable and x a

variable or a parameter.

when 1S the relation

se,ond

L)
independent

continuous and

. g' (x)

r

d f f(x,y) dy
dx (y_s)n-A

s

r

f d f(x,y).,
dX

s

dy
n~A(y-s) .•.

(2.4.3) .

valid, i.e. when may the differentiation be performed under the

integral symbol?

In the case of an ordinary integral, it is well known that if

f (x,y) is one~valued and continuous in the cllsed region .

R : a < x < S, s< y < r. then g(x) is cont'nuous in [a,S] .

If furthermore besides f (x,y), f x(x,y) also exists in Rand 1S
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continuous there, then g (x) ~s differentiabl ~n (a,S) and (2.4.3)

is satisfied.

These assumptions are not sufficient ..for f.p. integrals but

the following theorem holds.

Theorem

3k
If f (x,y) .and its partial derivatives k f (x,y) for k=l ,2,..•,n

3y I
are one-valued and continuous ~n the closed region R : a ~ x ~ B,
s ~ y ~ r, then g (x) given by (2.4.2) is conLnuous m [a,S] •

If furthermore besides f (x,y) and the .: f L,y) also the function

k 3y 1
f x(~,y) and its partial derivatives : k fx(X'j) for k=1,2, ...,n

exist in R and are continuous there, :hen g(x) ~s differentiable

in (a,B) and (2.4.3) is valid.

Proof

Firs.twe prove that under the above assuroptio s the furiction g (x)

is continuous. We have \

s

Ig(x+h) - g(x) I
r

If f(x+h,y) - f(x y) Idy.•n-;\
(x-s)

Applying either of the definitioriformulae (I 4.6) and (1.4.9)

to the latter f.p. integral, we obtain an inequality for

Ig (x+h) - g(x) I similar "to that for I I -II in ~he proof of
IJ

the pre=

v~ous theorem. The right~hand side of this "nequality is a sum

which coritains terms of the form
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akk f(x,y) I,
ay

k=O, 1, , ••• , n.

According to the theorem of uniform continuit, , there exists for
Iany g~ven number E > 0 a number aCE) > 0 which depends only on E

but not on x and y such that

ak k .1--- f(x+h,y) - ~ f(x,y)1 < E
ayk ay

for all [hi < o. Thus, for a suitable choic of E, the aforesaid

sum becomes arbitrarily small, i.e. limlg(x+hD - g(x) I = O.
h+o l

The function 9 (x) is therefore continuo s in [a,S].

In order to prove the second statement a the ~heorem, we

form

r

9 (x+h) - 9 (x) = f
s

f(x+h,y) - f(x,y)
, dy.

( .)n~1\x-s

Due to the mean value theorem of the differential calculus we have

f (x+h,y) ~ f(x,y)

Thus

h J (x+(}h , y) ,x o <{) < I.

s

I 9(X+h~ - g(x) _ f
r f (x+(}h!,y)- f (x,y)
. x I x.

(x-s)n~A
dy[. (2.4.4)
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the application of formula (1.4.6) or (1.4.9) to this latter fop.

integral again yields an inequality as in the first part of .the

probf;, the right-hand side isa sum containing terms of the form

akI-k f (x+t'}h,y)ay x
k=O , 1 ,2 , ••• , n.

k
Since ak f (x,y) (k=O,1 ,2, ... ,n) is also un formly continuous l.nay x , '

R, there exists for all £ > 0 a number 0(£) > 0 which is independent

of i and y such that

ak akI~ f (x~h,y) - ~ fx(x,y)\ < E,ay x ay

for all Ihl < o.

k= I , 1 ,2, ••. ,n (2.4.5)

In view of (2.4.5) the right-hand side 0 (2.4.4) can be made

arbitrarily small, and therefore

r=jlim g(x+h) - g(x)
h+o h

g'(x)
f (x, )
x' l dy.

(x-s) ~A
s

q.e.d.

At the end we still consider the two fun tions

and

g (s)

r

f ,f(x~ dx,
( ) +nx-s

s

s < r, o A < 1, (2.4.6)
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s

= f _f_(_x~_ dx,
r (s~x)/\+n

s > r, O~A< 1, (2.4.7)

with the singularity s as argument.

page 33) that the f.p. integrals 1n

with differentiatirin, i.e.

If 0 < Il < 1, we know (see
I(2.4.6) and (2.4.7) conrrnute

and

r

:: = f ;s
s

(
f(x) ... dX)

( )A+nx-s
(A+n)

s s

~~~f dds[(s~:~Ln dX] -(A+nl f d_~:X~n+1 dx.

In this case w~ may diUerentiate under th~ Jtegral symbol. .It
was previously mentioned that this conrrnutatioldoes not hold for

our definition of a f .p. integral with A = O. Therefore we ask

ourselves what happens if we differentiate

By means of the

s in that particular case.

We start with the differentiation of

definition formula (1.4.6) we can write

g and h with respect to

gl
r

dg - d fds ds.
s

f (x)
n

(x-s)
dx

/n)(s) _~+
(n-1)! In(r-s) . (n-1)!(r-s)
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n..,.2 ( .-ri+k+1 (k I) ( . )-n+k (k)
+ \' r-s) f + (s) - r-s

k
,. f (s)-

L {k~ (""n+k+l)
k=o

(k+I)~ /n-k-2)(r) +

(r-s) k+2

k~+---
(n-'-I) ~

k+Ir
m=o [

m'
m+1

. (k+I-m) ~(r-s)

/n-I-m)(s) +

+
I

m(k+l-m) ~(r-s)

f(u--m) (s) ] }

1 1
+ (n-I)! I

o
f(n)[ (r-s)t+s] iVl. t dt +

I
+ (::t)~~.(l-t) f(n+l)[ (r-s)tjS1tn(\It)dt.

Integrating the latter integral by parts and ecast~ng the sums over

k and m in a suitable way (we omit the procedlre here since it ~s

lengthy and merely contains elementary steps) tt follows that

r

d f {(x)
ds (x-s)n

s

r

dx = f ~ .(. {(x) dXJ
ds ( )nx-s

s

{(x) dx-
( )n+1x-s

s

if s < r.

(n)(s)

n! (2.4.8)

From (2.4.8) we see that the derivative (Withlrespect to s) of the

Lp. integral and the Lp. integral with the ifferentiated inte=

grand differ by the term /n) (s)/n!
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We come now to the differentiation of h(s). We remember that

~n order to apply our definition formula to the right-hand side of

(2.4".7)where s > r, we have to transform the f.p. integral in the

"following way (see also page 46), viz

s

=fh(s) f(x)

(s-x)n
r

dx =
-r

f f(-x)

[ x - (-s) n-s
dx.

We have thus for the derivative of h,

"-r

:~ = d~ f f(-x) dx.
[ x - (-8)] n-s

If we apply the formula (1.4.6) to the latter integral, differen=

tiate it with respect to s and recast that exp ession similarly as

in the former case, we obtain the relation

s
d f f(x) dx

ds (s-x)n
r

s

f"..i.. (f(X) dX) +
ds "( )ns-x

r

s
-n.f _f_(x_)_ (_I)n /n)(s)dx + ,

( )t1+1s-x
r

if s > r.

We consider now a special case of the above fO'rmulae.

For n = I, (2.4.8) and (2.4.9) become

(2.4.9)
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x-s

s
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r'

= f
s

f(x) dx - f' (s)
(x-S)2

(2.4.10)

s

-f
s

d f -f(x) dx.ds x-s
r

f(x) dx - f'(s). 2
(x-s)

r

(2.4.11)

respectively, where we take as upper boundary n, (2.4.10) a point

r' > r.

Subtraction of (2.4.11) from (2.4.10) Y1e ds (since the addi=

tional terms cancel)

r':s P.V. f
r

r'
f(x) dx = fx-s

r

f(x)
.2

(x-s)
dx r < s < r', (2.4.12)

where the integral on the left-hand side represents a Cauchy princi=

pal value integral. The statement of (2.4.12~ is remarkable. It

means that if we differentiate a Cauchy princi~al value integral

with respect to its singularity, we obtain aLp. integral. This

connects the theor'yof f .p. integral equations (with exponent two)

to the Hilbert transform theory; for further developments see

[ 27, chapter V] .
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C HAP T E RIll

AN INTERPOLATORY QUADRATURE FORMULA

The (numerical)evaluation of a f.p. integral by means of the definition

can be cumbersome, even if analytic functions a e involved. Further=

more, in many problems the integrand function, .(x), is not g1ven 1n

closed form but it may be possible to compute irs values at

arbitrary points. Thus we seek appropriate numerical procedures for

approximating the value of the f.p. integral I.l
In the following, we derive an interpolato y quadrature formula

based on equispaced stations, while the problem of finding a Gaussian-

type quadrature formula is treated in the next chapter.

3.1 Derivation of the formula

For simplicity, we consider the fop. integral

I

f
o

g (x)-x- dx;
x.

X real and ~. I

9 (x) E C[ A] I0, I]

0.1.1)

instead of the general form I. We assume thatN distinct points
x.E [0,1) are given by x. ;;,(i-I)/N, i=l, ,.~.,N.
1 1

Thus the
points are equally spaced in [0,1) and the first coincides with

the origin.

With these points as interpolation points, we form (for the

continuous function g(x» the interpolatio polynomial PN:-I(x) of

(66)
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degree N-I such that g(x.) = PN I(x.), i=1 2,...,N.
1 - 1

Then as an appro~imation to the f~p. ntegral (3.1.1), we set
, .

I

= f
o

-A-PN_I(x)x dx.

This integral is easily evaluated. In faet, by using the Lagrange

form for the interpolation polynomial

N

where

PN-J(x) =
i=1

<l>N I • (x)g x.),
- ,1 1

<I) • (x)
N-I,1 i=12, ... ,N

we obtain the quadrature formula

N

1 {g}
N

i=l

with the coefficients given by

w. q(x.),
l' 1

0.1.2a)

w.
1

I

f -A-x <I> .• (x)dx.
N-I ,1

o

O. 1 • 2b)

The N distinct points x. are called the quadrature points, or
1

nodes, or "stations", <indthe quantities ware called the qua=

drature coefficients or "weights".
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It ~s clear that the weights w. are completely determined by

points of the interval of i:tegra ton and by the interpola=

tion points x.; the weights are independ nt o,fthe integrand
, ~

function 9 (x). A quadrature formula of the form (3.1.2a and b)

is called an interpolatory formula.

We proved in section 2.2 that if ~ is an integer I ~s not scale-

invariant, but satisfies the relationship

o

r

f f (x)---x- dx
(x-s)

s

1-A- fl [( )] (A-- 1 ) ( )(r-s) J, r-\ t+s dt + . s . ll1lr-sl. (3.1.3)
t (A- -I) :

This strange property of f.p. integrals does not permit a direct

approximation of I by the formula (3.1.2a). In principle, I may

always (omitting the integrand) be split up into

s+1
f +

r

f (3.1.4)

s s+1

where the last integral ~s regular and may be evaluated by a stan='

dard method. Shifting the interval of the f.p. integral in
(3.1.4) to [0, J], the last term in (3.1.3) vanishes and we obtain

s+1

f
s

f (x) dx
A(x-s)

I
( f (Us)
j A-

to

tit. (3.1.5)

Applying (3.1.2a) to the right-hand side 0 (3.1.5), it therefore

follows that
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N r
I ~I w of (s+x 0) + f

f (x), dx. (3.1.6)~ ~ IA
i=1 s+1 (x-s) .

}..•., .

This method is inconvenient, however, for the following reasons:

firstly, two different quadratur~ formula are applied and thus

further function values have to becomputJd; secondly, if r is

close to the singularity s, the numerical value of the regular

integral can become very inaccurate.

If f (x) is known analytically, another method that can be

used is to differentiate f (x) formally and then use (3.I.3).
o () •• I. . 0to determ1Iie the A-I th der~vat~ve could st~ll be a labot.~ous

and difficult task. 1f f(x) is merely g1ven by a set of data

this method cannot be used. We shall therefore try to approxi=

mate f (A-I)(s) numerically by a formula JvolVing the same

(equally spaced) stations as were used in (3.1.2a).

Setting get) = f Kr-s)t+s] and diffe~entiating both sides

(A-I) times, we obtain for t=O

'f(A-I)(s)

Approximating g(A-I)(O) by

we obtain the formula

(r-s)I":Ag (A-1 ) (0).

p(A-ncO)N-I

N

Co g(x 0)
,~ ~

i=1

(3.1.7)

(3. I. 8a)
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with the coefficients given by

c..~
eJ> (A - I ) (0)
N-I, i . (3. I .8b)

Applying the formulae (3.I.2a) and (3.I.8a) for the approximation

of the right-hand side in (3.1.3) we obtain the quadrature formula

for A an inte.geJL

r

f f (x)
(x-sls

dx ::::::

N
I-A I(r-s) [w.+c.~ ~

i=1

(3.1.9)

Since a f.p. integral with a non:-integer power A .is scale-

invariant, (3.1.2a) may be used to approx.mate the integral

directly, i.e.

for A a Vl.oVl.-inte.geJL

r Nf I( X\ dx::::::(r-s)I-A I Wi f[ (r-s)(i-l)jN+s]
s (x-s) i=1

We remark that in the formulae

x. was replaced by (i-l)jN.~

0.1.9) a1 (3.1.10) the station
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3.2' COffiputationof the coefficients w. and c.-----------------1 ' 1

Since the interpolation points are of the form x. = (i-l)/N,
1

i=1,2, ... ,N, the coefficients w. and c. 0 the formulae 0.1.2b)
1 1

and (3.1.8b) can be written as

1

f -A <PN_1i(x)dxw. = x1 , ,

0

1 N

f -A n Nx-k+1 dx= x i-k
0 k=1

kfi

(-I) N-i
1 N

(~-l ) f -A n (Nx-k+ I) dx, i=I,2, .•• ,N= x(N~l): 1-1
0 k=1

k*i

and

c. = <P(A - I) ( 0 )
1N-I , i

0.2.1)

[

N
n

k=1
k#i

Nx-k+1
i-k ]

(A-I)

/x=O

'(_I)N-i (~_I)
1-1

(N-I) : [
~, (NX-k+I)]

k=1
k#i '

(A-I)

/x=O

i=1 ,2, •.. ,N. 0.2.2)

since the integrand function in (3.2.1) is a polynomial of degree

N"'71which is integrated over [0, I] , the weights w. will all be
1

rational numbers.
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From (3.2.2) i~ 1S clear that the coeff.cients c. ~re also
1

rational numbers. Though (3.2.1) and (3.2. ) are simple formulae,

it 'would be too laborious to use them for coJputing the w. and c...' j 1 1

We therefore chose an alternative indirect p ,ocedure, called the

method of.undetermined .coefficients, to deteline the coefficients
Ifor the formulae (3.1. 2a) and (3. I.8a) . This method is quite

practical for unequally spaced'stations as wlll as fairly large

values of N.

In order uniquely to determine the N unKnowns Wi (or ci)

associated with N fixed stations x., we set lp a linear system.

This cim easily be obtained by req:iring (3.J.2a), or (3.1•.8a),

b f 1 ... f __I..to. e exact or al polynom1als 0 degree ""N1-I, 1.e. the formu=.
2 N-Ilae are to yield the exact value whenever g(x) = l,x,x, •.•,x •

Writing out each of these conditions anl using the abbre=

viation .j-A (A-I)
[or (x ) /x=O = Amj] , we have

or

W 1x~ + w 2 x~ + ... + w xJ.. N N
(j =0, I, , •.. ,N-l ) , (3.2.3)

The coefficients ,m. are called moments and re g1ven by
A J .

1/(j+I-A) for j+I*A

and by

o otherwise
for the w.

1

(A-I): for j+I=A

o otherwise
fo the c .•

1
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The determinant of the linear system 0.Z.3) is the

Van der Monde determinant V, generated by the N equispaced sta=

ticinsxi' Since the stations are distinct,Jit follows that

V*O. Therefore (3.Z.3) may be solved uniqu ly for the N unknowns

w. (or c.) which may then be used in the forlulae (3.I.Za) or
~ ~

0.1.8a) .

The deter=

The rationality of the w. and c. in this case follows imme=

diately from the fact that th: matri: and thl right-hand side of

0.Z.3) consist of rational numbers. 1
Before a linear system is solved numeri ally, it is advanta=

geousto know something about the condition lf the matrix involved.

The usual criteria defining the condition nulber of a matrix by

means of certain eigenvalues can hardly be a~Plied in our case as
lit is too difficult to obtain reasonable estimates of those eigen=

But it is possible to estimate the[ratiO of the absolute

value of the determinant and the product of he Euclidean norms ofl .
all its row or column vectors. If this ratio is much smaller than I,

h .. 'd b .11. d.. d . [ hI. .t e matr~x ~s sa~ to e ~ -con ~t~one ,~.e. t e so ut~on ~s very
. . 11 ' .. h [ff.'sens~t~ve to sma errors occurr~ng ~nt e cre ~c~ents.

minant of O. Z.3) has the value (see [34] for example)

values.

I Vi (1.) (~) (1) (N-I)
NN N N

(1.) (~) (N-Z) N-IN N N.
(N-N2)/Z n (-i)! 0.2.4)N i=1

(1.) (N-3)
N N
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The product of the Euclidean norms 0 , for instance, the

column vectors of the matrix is

and thus greater than 1.

The ratio of IVI tb E can be estimated~ for instance, by

I "I . (N2-Nl/2
J£L<IVI«N-l)

E N

which is bad, even for a small N.

1S therefore rather ill-conditioned.

The inear system (3.2.3)

To solve (3.2.3) numerically, we fir t used some of the

known iterative methods as well as the direct method (triangular

decomposition) with iterative improvement of FORSYTHE and MOLER

[ 5 ] • But we found. the solution obtaine by one of these methods

not accurate enough; for instance not even ten significant digits

were correct with N > 10. The task we set ourselves was to find

the coefficients w., and c. to thirty significant
1 1

Ithe double word length of some modern cOfputers

this number of significant digits.

digits, since

comes close to

The safest way of ensuring that we shall obtain such a highly

accurate solution is to determine the raJional (exact) solution

first and afterwards to divide the numerJtors by their corresponding

denominators. The exact solution of (3.2.3) was computed by the

Gaussian elimination process, performed ~n rational arithmetic [17]
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w. were calculated for the powers~

X=I, 4/3, 3/2, 5/3, 2, 3, 4, 5 and in each case with N 3 (I) 20

equally spaced stations x. = (i-I)/N.~ T e coefficients for
(X-I)f . (s), c., were also computed for the same values of X and N,~

except of course the cases X < 2. Both coefficients, the w. and~

the ci' have been tabulated in [18] with a mantissa len&th of

thirty digits (the last one correctly rounded off).

3.3 General properties of the w. and c.---------------~----~
Apart from the rationality of the coefficients wi and ci,we

cannot unfortunately derive any further property from their

explicit representations (3.2.1) and (3.2.2) respectively.

To do so we should have to know explicitly the coefficients of
N

the polynomial n (Nx:....k+I).
k=1
kii

N-iOwing to the factor (-I) in (3.2.1) and (3.2~2) we may

.conjecture an alternating sign for thew. and c ..~ This con]ec=

ture was verified numerically ~n nearly 11 the computed cases.

From the formulae for w. and c. we dbserve that their abso=.

lute numerical values increa:e with~theJumber of stations, N,

and the value of the power X. The largJst absolute value of the

weights in the cases we have computed is of the order lOll and

that of the coefficients c. is of order 1012•~ Comparing the

we can say thatabsolute values of the corresponding w. and c.,
~ I ~

for A ~3 the coefficients ci are smallel by at

of magnitude, than the weights w.. Exactly the~

most one order

reverse is the.
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case when A = 4 or 5. Furthermore, we n tice that corresponding

w. and c. have opposite s1gns j
1 The

1
Varying sign and the. increasing absolute) value of the

coefficients w. and c. have consequences Jor the evaluation of

the scalar pro:ucts (~.I.2a)and (3.I.Sa) j In order to keep the

rounding-off error as small as possible dlring the computation of

these scalar products, the positive and nlgative terms should

be added up separately so that at the end the subtraction need

be performed only once. Nevertheless, since in most cases the

magnitude of the result will be much smaJer than that of the

w. and c. used, significant digits are lolt. We note that this
1 1 I

.loss is not caused by a rounding-off errot. Thus in general

the highest~order quadrature formula is nit numerically the most

accurate.
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C HAP T E R IV

THE OPTIMAL QUADRATURE FORMULA

In the previous chapter we showed that for N aritrarily fixed stations

x. we can find a quadrature formula of interpoll
1

.tory type which is
.~

exact for all polynomials of degree';;;;N-l. This requirement and the

interval of integration completely define the wlights w ..

In order to increase the precision of (3.1 j 2) .the :hoice of the

stations x. (i=lt2t ••• ,N) is still at our dispolal. We might hope that

for a suit:ble choice of these stations the deglee of precision can be

.increased by N and cause the quadrature formUlalto become exact for all.

polynomials of degree';;;;2N-I; this is the high st degree of precision

which can be obtained using N stations. Such ~ormulae are usually

called Gaussian quadrature formulae because the~ w'ere first studied by

Gauss [6] .

Under what circumstances a Gaussian-type f rmula for the f.p. inte=

gral

1

f g (x)
-).. dx;
x

o

)..real and ~ I, 9 (x)E cf )..] [ 0, J]

can be derived will be shown in the following.

4.1 The orthogonal polynomials associated with the optimal
quadrature formula

We write the above integral ~n the form

(7n
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1f W(x)g (x)dx
o

(4,1.0,1)

rently positive on [0 1 ],

. . ~ . 1and formally consider w(x) = (x as a weight function. The

possibility of constructing formulae with legree of precision

~ 2N-] (N is the numb~r of stations) is ClOSelY related to the

existence of polynomials of degree up to N which are orthogonal with

.respect to the weight fun~tion involved in the integrand, and the

most widely studied classes of orthogonal ,olynomials (such as for

instance the Legendre,. Tschebyscheff, Jaco i, Laguerre and Hermite

polynomials) are for weight functions WhiC~ are positive on the in=
Itegration interval (see, for example, []4,30;31]). The assumption

that w(x) be positive u, however, not neclssary to develop certain

fundamental properties of the quadrature flrmulae. For example

the fact that one cannot obtain a formula lxact for all polynomials

of degree higher than 2N-] is a consequenc of a certain determi=

nant condition and does not follow from th assumption W(x) > O.

On the other hand, most of the very import nt properties of Gaussian~

type formulae, such as the fact that all s ations x are real and

located within the integration interval, ale a cons~quence of this

assumption. 1 .
In our case, the symbolic weight func ion (x"""';\is only appa=

IThis follows immediately from

t x-Adx 1<: ::: : >
1 Since ';:A actually represents a distribuLon and not an ordinary

function we choose Dirac's "bra" notati6n for distributions (the
symbol ( is read "bra").
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Definition

Given a sequence of polynomials

P (x)
n

n h-Ix + a 1x + •. . + a.1x + a ,n- . 0 n=O, 1 ,2, ••• (4.1.0.2)

which - for any weight function w(x) integr ble over [a,b] and not

identically zero there - satisfy

b
J W(x)Pl(x)Pn(x)dx - 0
a

then the P (x) are said to form ann .

(lin; 1, ~O,I,2, ...), (4.1.0.3)
a<b

O!lthogo ai. !.> e.que.Vlc.e. on [ a, b]

with respect to the weight function W(x).

If w(x) > 0 in [ a,b] we know that such sequence exists, and it is

always possible, by multiplying each P (x) 1Y a suitable constant, to. n

obtain
b
J W(x)P~(x)P~(x)dx 0ln (the Kronecker symbol). (4.1.0.4)

A seque:ce of polynomials for which (4010001) holds 's called
ounOVlOfLmat.

We shall now investigate whether it i possible to construct a

unique sequence of polynomials which are or honormal with respect to

( X-A on [ 0,1 ]. To do so, we shall first lnalysethe Cram deter= .

minants closely connected with the existencl of such polynomials.

Also, we shall consider the use of the GrmnfSChmidt process of

orthonormalization to enable us to constructt those polynomials.
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In order to obtain a sequence of orthogo,a1po1ynomia1s associated

with a given weight function w(x) we conlider the real linear

space X consisting of the non"negative plwers of
2 n .. 1 . .x : I,x,x ,...,x ,... 1n wh1ch an 1nner IFoduct 1S g1ven. Th1s

inner product of any two elements x1and xJ of X is defined by
b

(x1,xJ) = f W(x)xi)dx; i,j=0,1,2, ...
a

It is well-known from the theory of orthogonal polynomials

(see, for example [3,12,14,31]) that a un.que and comp1ete2 se=
lb.

quence of orthogonal polynomials exists Jnd f w(x)[ P (x)l2dx f 0
na

if and only if the Gram determinants

(1,1) (I,x)

(x,J) (x,x)

.. . ...................,
1 1 1 1(x ,I) (x ,x) ... (x ,x )

1=0,1,2, ... (4.1.1.5)

are all different from zero. It is a1s known that then the
orthonormal polynomials are given by

....... ,. .

P*(x)
o

P*(x)
n

_1
(G ) 2

o

_1
(G IG) 2n- n

(I , I)

(x, I)

(xn-1 , 1)

(I,x)

(x,x)

n-l
(x ,x)

x

n(l,x )

h(x,x )

n-I n
(x ,x )

nx

n > O.

(4.1.1.6)

2
We call here a sequence of orthogonal p lynomials {P (x)},
n=0,1,2, ...,N, complete if n (the degre~ of the poly~ .
nomial ~(x» takes all values from Oup to N.
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The Gram matrix Gl = (gik) with gik = ( i~xk) (i~k=O,I, .•,l)is

the fundamental tensor of J( with respect to the basis 1,x,x2, •••

All "major subsets" of basis vectors (i.e. all sets

{x~1i=O, l, ... n with arbitrary 1) must be linearly independent.

From this it follows that Gl > q if w(x) is assumed to be posi=

tive. In this case it is always possible to find a un~que

and complete sequence of orthogonal pol~nomials. In our case,
-Athe metric generated in J( by (x is no longer positive definite

but indefinite, i.e. (x~,xJ) can be posvtive, negative or zero

depending on the vectors xi,xj and the JowerA' Our inner

product space J( is therefore a pseudo-EJclidean space [8

chapter XII] . J
It should be noted that the usual orm of a vector X E J(

exists if and only if (x,x) > o. Therelfore, we shall call

(x,x) in the following the inner prOdticJ of the vector x with

itself. As in the positive definite cJse two vectors x,y E J(

are called ouhogonM if (x, y) = o.

Definition

A basis ~. (i=I,2, ...,n) in J( ~s called OUh0l10hmM if~

where

E:.~

(~.,~.)
~ J

{

+1

-I

E:. o ..
~ ~J

(i=l, ... ,s)

(i=s+I, ...,n).
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Definition

A vector X E X ~s called no~atized if( ,X) = f1,

We remark that a vector which c~n b normalized need not

have a norm in the classical sense.

No theorem on the existence (or non1existence) of ortho=

gonalpolynomials in the case of an indefinite metric could be

found in the standard literature. The lnlY way to be assured

of the existence of the orthogonal pOlynlmi~ls here seems to be

to examine the Gram determinants Gl (l=ol1,2,.,.) themselves.

Before doing so, we shall still show the connection of Gl with

the coefficients of the orthogonal polyn mials. Taking [0, 1}

as [a,b}, (4.1.0.3) ~s obviouslyequival nt to
1 -;\ 1f x x P (x)dx = Q (0 ~ 1 < n; n=1,2, ...) and therefore - using

no

the abbreviation 1 ';\m. = f x~- dx - we can construct P (x) by
~ n

o

solving the system of simultaneous linear equations

m a
o 0

+m a =-mn-1 n-1 n

....................... ' ' .
+ maln n- = -mn+1 (4 .•1.1.7)

m 1a + m al + ....+ m2 2a 1 = -m2 .1n- 0 n n- n- n-

for the unknown coefficients of P (x). The quantities m.. . n ~

(identical to the above inner products) re generally called

moments or monomials.
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Examining (4.1.1.7) we see irnrnediatly that the system

determinant is in fact the Gram determinlnt G 1. Thus it ~sn-
clear why it is necessary and sufficient for the major Gram

determinants not to vanish in order that a un~que and complete

sequence of orthogonal polynomials shoul exist.

We now investigate the behaviour of the Gram determinants"

separating the 9ases when

(a) the power A is an integer and

(b) A is not an integer.

(a) A ~s an integer ~ 1

We write the inner products (moments)

1

f i+j-Adx ' x

o for i+j+l = A

o

i,j 0,1,2, ...
I/(i~j+I-A) otherwise

using the following scheme:

I A=SI A=41 A=31 A=2 I A=I

_1 _1 _1 -I 0 1 1
1+ 3 2 2 3

_1 _1 -I 0 1 1 1
3 2 2 "3 '4
1 -I 0 1 1 1 1-2 2 "3 '4 '5

-I 0 1 1 1 1 12 "3 1+ '5 6

0 1 1 1 1 1 1
(4~J .J .8}

2 "3 '4 '5 6 "7

1 1 1 1 1 1 1
2 "3 '4 '5 6" "7 '8

1 1 1 1 1 1 1 1
2" "3 '4 '5 6" "7 '8 9"
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(4.1.1.8) represents the Gram determinants

GI (l~a,l,Z, ...) bounded at the Ie t-hand side by the dashed

vertical lines for different XfS~ Owing to their structure,'

all determinants are of the Hankel type3 (see, for example,

the linear

[13 ]).

if X= I.

(4.1.1.7)

(seepage

We immediately deduce fr ,m (4.1.1.8) that G = a

In this case, the correslonding equati~n of
0

1S a.a = -I, which Yiells no finite solution

93) f:r the unknown coJficientao of P1(x), 1.e.

polynomial c.annotexist! Furthermore, it fol=

lows that P*(x) and therefore also P (x) cannot existo 0

either. But this is not the only case where a determi=

nant vanishes.

odd:

Consider for instance, .a GX_1 where X is

-1 -I a2

Gz -I a wh n X = 3.

aChiL by

a 1 1
2

In such a case we can always, interchanging the

columns (in the above example the irst and the last colum~

have to be interchanged) that GX_1 becomes a skew-symmetric

determinant. As we know from the theory of determinants

(see, for example, [ 13]), a skew-symmetric determinant of

odd order is equal to zero. In tlese cases, the corres=

ponding linear syst~s (4.1.1.7) h~e vanishing

determinants; the rows (columns) are linearly dependent

3It is easily seen from (4.1.1.8) lhat if , " 0 the major
Gram matrices are segments of the (infinite) Hilbert matrix,
which is a special type of Hankel matrix.
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and thus the rank of the system mat ix is less thanA.

But since the rank of th~ extended latrix is eqtialto ~ no

solution exists4• Thus we may conllude that the sequence of

orthogonal polynomials ]_scertainly not complete for odd

values of A.

No attempt will here be made to prove whether for an

arbitrary integer A the Gram determknants G1 vanish or not.

We constructed the orthogonal lOlynOmials APn(x) for

.A = 1,2,3,4,5 and n 1(1)2n (except the case~ n ~ A if A

is odd) numerically, ~.e. we solve the corresponding

linear equations (4.1.1.7) exactly y Gauss elimination

performed in a rational arithmetic [17] • We remark that

all coefficients of (4.1.1.7) are rational numbers and

therefore the solution - if it exists - must also be

rational. We thus obtained for each of A = 1,2,3,4,5 a set

of orthogonal polynomials AP20 conjisting of

exists a linear combination
n
I a.Q. = 0 such that at least

j=1 J J
one coefficient, say ai' ~s non-ze o. We now consider the

n
linear combination I a.Q. + b!t= 0, where the coefficient

j= 1 J J
jli

blO and!t denotes the right-hand side vector. With the
aid of the first linear combinatio~,this last equation can
be written as -a.Q. + b!t = o. Sirlce each column vector Q.

. ~ ~ I J
contains one zero component, but a]l components of !t are
non-zero, this equatiori is only sadisfied if a. = b = 0;
This is a contradiction and thust~e vectors ~

• I. •
Q1, ••• ,Q. I,Q. 1, ••• ,Q , !tare l~nearly ~ndependent and~- ~+ n
the extended matrix has the rank A.

4 • •Denot~ng the column vectors of the system matr~x by Q., there
J
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Po (x) ,PI (x) ,P2(x) ,... ,P20 (x) for even A,

Po (x) ,PI (x) ,... ,PI..-I (x),PI..+ 1(x) ,..• ,P20 (x) for odd A >

and P2(x) ,P3 (x) ,P4 (x) ,...,P20 (x) for A = L

We now want to normalize these polynomials, i.e. we construct

P*(x) from P (x) so that (P*,P*) = 1
1

I. In order to findn n . n n
the normalization, factors Akn ~or tre above set of orthogo=

nal polynomials, we computed + x-A Pn(x)] 2dx = 1 I/Ak~
o

again by rational arithmetic.

orthogonal polynom~als

The coefficients of the

AP2(x)'AP3(x)""'AP20(x) for A 2,4

and APA+I (x)'APA+2(x), ... ,AP20 (x) for A 1,3,5

including their normalization facto s are given ~n [ IS] .

(b) A > 1 and not an integer

.In this case the inner products are given by

1f xi+j-Adx
o

1/(i+j+I-A) i,j =0,1,2, .•.

and the Gram determinants G I.thus have the form. n-
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I I I
1-;\ 2-;\ n-;\

I I I
2-;\ 3-;\ n+I-;\ n= 1,2,3, ..• (4.1.1.9)

I I
n-;\ n+I-;\

I,
2n-I-;\

By interchanging the first column i (4.1.1.9) and its

immediate neighbour on the right (n I) times, then inter=

changing the second column and its immediate neighbour on

the right (n-2) times, and so on, till we interchange the

penultimate column and the last, we finally' obtain

I I I
n-;\ nJ 1-;\

G (_I)n(n-I)/2 I I (4.1.1.10)n-I n+I-;\ n-;\ 2--;\ .

I
20-1-;\

I
n-;\

Setting k = n~;\~ the matrix corres10nding to the determi=
nant in (4.1.1.10) can be written as

(u )rs

I I I
k k-I k-n+1

I I I
k+1 k k-n+2 (4.I•I•I1)

I
k+n-I

1
k+n-2

I
k

Stellenbosch University http://scholar.sun.ac.za



-88-

(4.1.1.11) may.be regarded a~ a seg ent of a generalized

Hilbert matrix; for if the columns are written in reversed

order and k is restricted to prisitiwe integer values

greater than n-l, the resultant matrix is a segment of the

Hilbert matrix [1/(i+j-I)] " COLL~R has represented [2] the

elements of the inverse of (4.1.1.11) explicitly, where

kis no integer within the range t(n-l) inclusive but is

otherwise arbitrary. Applying his formula with k defined

as above, we obtain for the inversJ of (4.1.1.11)

(-1)n+r-s-I

. 2n n-I
IT .. (k-I~-r) IT (k+s~~)

k=n+1 . k=o~--~--~--~(n-~-r+s) (r-l)! (n-r)! (s-I)!.(n-s)!

r,s 1,2, ... ,n. (4.1.1.12)

From (4.1.1.7) it follows that the coefficients of the ortho=

an-r

gonal polynomialsP .(x) are given iY
n I

- f (u )-1. lrrs mn+s-I 's=1

or, if we insert (4.1.1.12)

1,2, ... ,n

1 , 2 , ~ ••

an-r
(2n~A-r)(2n-I-~-r) ...(n+I-~lr)

(r-l)!(n-r)!

nI (_I)n+r-s (n-l+s-~)(n-2ts~~) ...(s-~)
s=1 (n-r+s-~)(n+s-l)(n-s)!(s-I)! (4. 1 . I. 13)
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This proves that for any nondntege , .\> ] a uniquely deter;::;

mined complete sequence of orthogonil polYnomials exists •.

The coefficients of these polynomia]s are given by (4.1,1.13)

and can thus be easily calculated. j
This concludes our examination of t e Gram determinants.

Before we turn our attention towards thelGram"'SChmidt process a

very important property of orthogonal po ynomials will be briefly

discussed.

Theorem 1

Let {P (x)} (n = 0, 1,2,.•.) be a un1que sequence of polynomials
n

which are orthogonal with respect to W(x) on [a,b] . Then any

three consecutive P (x) of {P (x)} are related by a recurS10n
n n

formula of the form

P (x)
n (x-S)P l(x) - y P 2(x),n n- n n- n=2,3,4, •.. (4.1.1.14)

x-S 1 and P (x) = 1.o

The coefficients Sn and Yn are given by

In,n-l
In-I,n-I

+ a .
u-l,n-2 (4. 1.1 .15)

In-l,n-l
I .. ,
n-2",n-2

(4.1.1.16)

b
where we have written f nI W(x)x P (x dx and an-l,n-2n,m ma
denotes the coefficient of the n-2 Pn_l(x).power x 1n
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A proof of this theorem is given ~n [30I, for instance.

A recursion formula similar to (4.1.1.14) also exists for the

corresponding sequence of orthonormal polynomials.

For any non-integer A> I, {Pn(x)} (n=0,1,2, ...) is utnque

and therefore (4.1.1.14) ~s valid.

mP (x) = x +
m

m
),

i=1
m-~a .x , we obtainm-~

I .n,n-I

In-I,n-I

In-2.,n-2

I n-I\ {(2rt-2-A-i)(2n-3-A-i}...(n-A-i)
2n-A + L (n-I-i):(i-I)!(Qn-A-i)

.i=1 I
n-I .\ (~I)n-IH-S (n-2+!-A) (n-3+s-A) ...(s-.\) }
L (n-1-i+s-1) (n-I+S-A) (n-I-s) !(s-I) !

s=1

n-11 . \ {(2n-2_A-i)(2n-3-A-~) .•.(n-A-i)
2n-I-A + .L (n-I-i): (i-I.):(2n-I-A-i)

~=I

n-I .\ (_I)n-I+~-s (n-2ts-A)(n-3+s-A) ...(S-A) }
s:1 (n-I-i+s~A)(n-l+s""A)(n-l-s):(s-I):

1 n~2I(2~4-1-i)(2n-5-1-l)...(n-l~-i)
2n-3-'A.+.f. (n-2-i): (i-I):[2n-3-A-i)~=I

n-2 .L (_I)n-2+~-s . (~-3rS-A)(n-4+s-A) ...(S-A) }.
s=1 (n~2-~+s-A)(n-2+s-A.)(n-2-s):(s-J):

Since (4.1.1.15) and (4.1.1.16) become extremely cumbersome in

our case, the orthogonal polynomials werl directly computed,

again using the rational arithmetic mentloned previously, by.
I(4.1.1.13) instead of applying (4.I.1.14D.

What can be said about the orthonorLal polynomials

A.P~(x) in this case?
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since G = l/(I"'A\ it is clear that (p* P*2 = "'1,o ' L o~ 0

.For n> 0 we consider (4.1.1.6).

sign, then (p* P*) = I for n;;;;':I.n, n

If a1 G1 (1;;;;':0) had the s~me

From [ 2 ], we do not only know the ~nverse of (4.1.1.11) but

also the value of the determinaI}t IursI, which is equal t05

(_I)n(n-I)/2{0!1! ... (_1)!}2
2 n-l n n-l ,2(k-n+ I)(k-n+2) ...(k-l) k (k+I) ,. ...(k+n-2) (k+n-l)

Thus

Gn-I
{O!I! ... (n-I)!}2

,2 n-I n n-I 2(I-A)(2-A) ...(n-I-A) (n-A) (n+I-A) ...(2n-2-A) (2n-l-A)

(n= 1,2,...). (4.1.1.17)

Assume i<A<i+ I (i= 1,2,...) then it is not difficult to see

from (4.1.1.17) that all Gn_1 where n-Ik
l

[(i-l)j2] + 1 have the
. i(i+l)j2same s~gn as (-1) . If I< A < t or 2 < A < 3, the

Go,G1,G2, ... are negative and therefore (P~,P~)= 1 for n;;;;':I.

The coefficients of the orthogonal po1yn mia1s

and their normalization factors are give in [18] .

We remember that the existence' of al complete sequence of

orthogonal polynomials for A = 2,4 was secured by solving the

linear systems (4.1.1.7). Thus we may apply the recursion

5 The formula in [2 ] contains a misprint:
n(n-l)j2replaced by (-I) , '.

n'(-I) should be
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formula (4.1.1.14) in these cases.

an integer

complete.

We ave shown that if.A is
I .

and odd, the sequence of orthogonal polynomials is not

The question as to whether ilthis case a recurs~on

formula exists at all will be treated la er ~n section 4.2 of this

chapter .'

4.1.2 The method by which a set of orthonormal polynomials {p*(x)} can

1 . n

be determined is a special case of a gen.ral procedure in which

an orthonormal set of functions is constlucted from an arbitrary

linearly independent set. This processliS known as the Gram-

SchIDidtorthonormalization method and ca be described in our case

as follows.

Given the 1nn:r product space K (Ser section

the elements I,x,x ,_,_ can be orthonormjlized by

* J I I IPo Po = Pol (Po~

PI x - (x,P:)P: and P~ P1/JI (p ,PI) I

4.\.1), then

setting

(4.1.2.1)

n-\
n \' n * * *x .- L (x ,Pk) Pk and P

k=o. n

such that

o ..
1]

i,j O,I,2~ ..• (4.1.2.2)

If the metric ~n (4.1.2.2) is positive 0 negative definite, i.e.

(p. ,p.) f. 0 (i = 0,1,2, ...), then a uniqu and complete sequence
~ ,1

of orthonormal polynomials (4.1.2.1), is obtained by the Gram-

Schmidt process. But our metric is indefinite and therefore

this procedure mayor may not work.
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I (I) 20 -

A = 2,4 -
the

In the following, ~e shall not con ider the cases

sequences {p~(x)} were already construCted for n =

but analyse the Gram-Schmidt process if A B odd; we showed that

then {p*(x)} is not complete.
n

Let us first consider the case A I.

We set, according to (4.1.2.1),

and p*(x)
o I/J I (I,I) I

I -IBut now we have (f ,f ) =f xdx
0. 0

o
0, 1.e. f 1S orthogonal too

itself (in a pseudo-Euclidean space, su h a vector is called a

light-vector) . Thus p*(x) cannot bedonstructed and the Gram-o

Schmidt procedure comes to an end. At this point, we modify the
procedure in the following way.

We introduce a linear polynomial
I(x) = x + a instead of. 0

I, while still allowing for another linear polynomialp (x)
o

PI (x) x + b •o Then we require

(4.1.2.3)

and 0, (4. I .2.4)

1.e. PI (x) and PI (x) are to beorthogon I to each other, but
neither is any longer a light-vector. Therefore we are now.able
to'continue the Gram-Schmidt process. For the time being we

shall assume that a and b exist; we s all return to this pointo 0

later.
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linear polynOOlials can be Trmalized

p~(x) p] (x)/,r~

p~(x) PI(x)IJI(PI,PI)1

by setting

(4.1;2.5)

(4.1.2.6)

The next steps ~n the orthonormalization procedure formally agree

with the Gram-Schmidt process if

p~(x) and P~(x).

setting

The quadratic
r~(x) a d rr(x} are

POlynoJial r~(x} is

replaced by

obtained by

and

P2(x)

p~(x)

(4.1.2.7)

A simple computation verifies that p~(x) ~s orthogonal
~* )and PI (x .

obtained by

For n > 2, the n-th orthonor al polynomial
to pr(x)
p*(x} isn

P (x)n

p*(x)n

(4.1,2.8}

In order to prove that Pn(x) given by (Ll

j
.1.2.8) is orthogonal to

p~(x),P~(x),p;(x)"",P~_I(x}, we proce d by induction. We
assume that for 2 ~ i ~n-I we hav~ proJed (p.,p~) ;:;0,

(P"P*I) = 0, (p.,p!) = 0 (the last equa lity h:ldS only if n> 3;
~ ~ J

then 2 ~ j < i). Then for 2 ~ j ~ n-I
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n-I
n (n * * (n ~*)~* \ (n *) * *)= (x - x .,PI)PI - x ,PI PI - L j 'Pk Pk'Pj

k=2 .

n-I
n*) (n*)( * *) (n ~ )(~* *) \ (n *)( ~ *)(x ,p. - x ,PI PI ,p.- x,P PI ,p. - L x 'Pk Pk,p'.

J J J . k=2. J

(xn ,p~) - (x~ ,p~) = O.
J . J

Replacing P; by pr or ~r 1n the above prrof yields (Pn,p1)
and (Pn,Pr) = 0 respect.ively and theiefote P~ (x) is indeed

gonal to pr(x),pr(x),p;(x)""'P~_I(x).

= 0

ortho=

We want to

we assumed their eX1S=

We have said nothing so far about t e parameters a and bo 0

occurring in PI(x) and PI(x);

tence so that (4.1.2.3) and (4.1.2.4) ar satisfied.

determine them now. From (4.1.2.4) it ollows that

a + b
o 0

+ 12 o. (4.1.2.9)

If we assume, for instance, a fixed, we can write
o

x + a
o (4.1.2.10)

and x - a
o

I
2 • (4.1.2.11)

We have a one-parameter family of pairs f polynomials; if one

member of a pair satisfies (4.1.2.10) an~ the other satisfies

(4.1.2. II) the two members are orthogonal.

Forming the inner product of PI(x) given by (4.1.2.10) with

itself yields
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2(a + D
o

(N~O) • (4.1.2.12)

The normalized polynomial P;(x) isther fore (we always take the

positive square root)

if N 1- O.

From (4.1.2.12) it now follows that (PI PI) vanishes if ao = -!.
Thus . h' . () . h . I 1£' .. 1 ..for a:: ~n;e:n:r:::::i:: :~rXan:':o:l. 's certa'n y pontm

From this fact and (4.1.2.11) it flllows immediately that

either (P!'P1) is positive and (~I'~I) 1s negative, or vice versa.

Therefore, setting a = -!, both lineal polynomials must beo

identical and represent a light vector

verified.
1 • This is easily

We now write P1(x) and~l(x) in a form such that the value

of their inner products with themselves acts as parameter.

we introduce a new parameter a instead f ao' such that
First

Then

a a +!.o

x + a - !

x-a-!,

(4.1.2.13)

(4.1.2.14)

(4.1.2.15)

1.e. ~I(x) is obtained fromp1(x) by merely writing -a instead of

a. (4.1.2.12) with (4.1.2.13) becomes 2a = 1N2, or
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a :!: ! N2
2 • (4.1.2.16)

Insertirig (4.1;2.16) 1n (4.1.2.14) and (4.1.2.15) we finally

obtain

PI (x) x + f(:!:N2
- !

2[ (4.1.2.17)
PI(x) x + H+N2 -!I

This representation of Pj(x) and p\(x) llearlY shows that if

(PI'PI) = +N2 then (P1,PI) = -N2 and vile versa. Assuming from

now on that (Pt,PI) = +N2 the normalizeri linear polynomials

needed in the modified Gram-Schmidt pro ess, are thus

P~ (x) x + !

x - 2
(4.1.2.18)

inserting these normalized linear polyn mials 1n (4.1.2.7), we

have

pz(x)

The same quadratic polynomial could also have been obtained by

solving the corresponding linear systeml (4.1.1.7), i.e.

!
2

_1
3

for the coefficients Co and c1 of P2(x) = x2 + c1x + C •
o
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The pseudo-Euclidean subspace spanned by the linear poly=

nomials P~ and p~ can be represented by the following graph

p*
I

(PI'p)) >0

J I
I'
"

Since the vectors PI and p} are sYmmetr"c with respect to the

light-cone (this is the set of all ligh -vectors) their sum and

difference respectively must yield two light-vectors. tt is' .

easily verified that these light-vectors are - apart from a

constant factor - identical with f} and fo•

We shall now briefly discuss the case A 3;

By the.Gram-Schmidt process we set

P (x)o

and obtain

p~(x) .;2.
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The next two steps yield

Since no~ (lZ,lZ) = 0, we have the same ituation as ~n the

previous caset i.e. lZ is a light~vector and the Gram-Schmidt

process comes to an end. It must again be modified to enable
• • () 3. 2us to cont~nue. We ~ntroduce P3 x = + aZx + a1x + ao

instead of P2(x) and still allow for ano~her.CUbiC polynomial

~3(x) = x3 + bzx
2 + b}x + boo Then we ~equ~re the orthogonality

conditions

0t (4..1.2.19a)

o (4. 1 .2 . 19b )

to be satisfied. Furthermore, none of the cubic polynomials
shall be orthogonal to itselft i.e.

and (4.I.Z.ZO)

From (4.I.Z.19a) follow the equations

I ao + a):2

a - aZ0

1 bo +b
l2

bo -b Z
I
:2 •
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In order to satisfy (4.1.2.19b) now, we merely need to require

If as before we assume a to be fixed,o obtain

o.

x3 + (a - ~)x2 + (- ~ a + 1):it+ a ,o .. 00 (4.1.2.21)

x3 + (- a -rt)x2 + ( ~ a +-fr)x + (-a -'--fG); (4.1.2.22)o . 0 0

i.e. a one-parameter family of pairs of cubic polynomials; each

two members of a pair satisfying (4.1.2.21) and (4.1.2.22) are

orthogonal.

If we form the inner product <P3'P]) with the aid of

(4.1.2.21) and set it equal to fN2 (N ~ 0) we obtain

..!1..(a + _1_) fN2,
6 0 52

1.e. if aD > - 5~' then (P3.P3) is posltive. and it is negative
for a .< - 1 S' h t' 1 ( ) . . 1 ho 52. ~nce t e constan ~n ~3 x ~s -ao - 26' we ere
have the same behaviour for the inner pJodu~ts of P3(x) and .
~ ( ) .... ( ) ~ ( )1 .P3 x as prev~ously w~th PI x and p] xI. Both cub~c polyno=
mials become identical and represent a light-vector f3if
ao

__ 1_
52.

Introducing a new parameter as before,

a a
o

+ _1_
52
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the equations corresponding .to (4.1.2.16), (4.1.2.}7) and

(4.1.2.18) are here

a :t _6_ N2
1 3

3 6 (- 2 9) 2 3 (- 2 35) 6 (- 2 1)X + - +N - - x - -,- +N - -' Xi + - +N --13 8 13 8' 13 ' 24'

Assuming from now on that (P3,P3)

cubic polynomials

+N2, we obtain the normalized

3 3 2 + __8_1
X - -52 X 1 04

+ 23
52

x3 - ..u.. x2 + l22. x - II
52 1041 52

by means of which the Gram-Schmidt process may be continued.

The polynomial pt(x) can now be obtained by setting

P4 (x)

pZ(x)

The same pseudo-Euclidean space is

previously by p* and ~*1'. 1 The sum

span1 d here by P; and ~;as .

or the difference of any pair
I

of vectors P3'~3 yields again a light-vebtor which is - apart from

a constant factor - identical with t3 or tZ'

Having analysed the Gram-Schmidt process for the examples

A = 1 and A = 3 it may be evident how thil orthonormalization

process has to be mo~ified for an arbitrlry odd A.
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Let A =2m+ 1 (m=O,1, ... ), then we assume the existence of a

pseudo-Euclidean subspace as in the exarnplewith A"= I, but now

spanned by the orthonormal polynomials p~(x) and p~(x).

construction of these polynomials will be given later. We

start"with the Gram-Schmidt process and continue until

This point will be reached since the Gram

determinant GA_1 vanishes. Up to this point, the orthonormal

polynomials P:'P~""'~~-2 were construtted. Now we modify

the process by introducing PI,.
A A A-ix + t aA_.x instead of

i=l I.

PA-1(x) while still allowing for another polynomial of degree

A'~ A-ix +L bA_.x
i= 1 I.

Then we require PI,. and PI,. to

satisfy the orthogonality conditions

o

o

o

(j~O.I ..... A-2)} (4.1.2.23a)

(4.1.2.23b)

but not to be orthogonal to themselves, I..e.

and

From (4.1.2.23a) follow the systems of linear equations
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In order to satisfy (4.1.2.23b) now, we merely need to requ1re.
A A-Ithat (PA'x +bA_Ix ) = 0, yielding

I
+ -- +A+I o.

Since the coefficients a, . and b, . are not uniqu.ely determined
/\-1 /\-1

by (4.1.2.24) we assume, for instance, that a is fixed.o

can express the remaini!).gcoefficients al,a2, ..• ,aA_I and

Then we

bo,bl, •..bA_1 by the parameter ao
the normalized polynomials p~ and

(we assumed the existence of

~~). By means of these

parameter-dependent expressions for the coefficients a, .,b, . we
/\-1 /\-1

obtain a one-parameter family of pairs of polynomials {PA'~A};

each two of a pair are orthogonal. Applying the same normaliza=

tion procedure as in the previous two examples, we finally obtain

p~(x) and ~~(x).

Now the Gram-Schmidt process may be continued by setting

;\+1
x

for the next element.
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4.1.3 Before we derive the optimal quadrature formula, we want to con=

sider the modified Gram-Schmidt process 1n the corresponding ma=

trix notation. We note that owing to our indefinite metric the ".,

eigenvalues of the Gram matrices are positive up to exactly one

negative eigenvalue.

With XT = {1,x,x2, ••• ,xn} and PT {* * *}. = P ,P1, ... ,pon the
modified Gram-Schmidt process can be written as

(4.1.3.1)

where Uis an almost upper triangular matrix, 1.e. the lower main

diagonal contains just one non-zero element (it must be remembered

that there are two orthonormal polynomials of degree A but none

of degree A-I). Since thep~ are normalized, we have
1

I . (4.1.3.2)

Denoting by C the matrix containing the coefficients of thep~,

Le. the "decomposition components" of the vectors p~ in the
1

basis {1,x;x2, ••• ,xn}, P can be represented by

P (4.1.3.3)

Inserting this expressitin for P in (4.1~3.1). it follows that

U
-IC .

f . C = U-II we 1nsert 1n

1S obtained, V1Z
(4.1.3.3) another representation of U
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i.e. U is the matrix of the "projection components" of the vec=

tors p~1n the basis {1,x,x2, ••• ,xn}.
1

TIt is clear that G = X X . From this.equation it follows

by the aid of (4.1.3.1) and (4.1.3.2) that

G

This means that if A 1S odd, the corresponding Gram matrix can

be decomposed 1n the following way:

G

V. I. Krylov [14] .

This decomposition is remarkably similar to that by Cholesky of

a symmetric and positive definite matrix.

4.2 Theory of the optimal quadrature

In this section we follow the development of the theory given by

The quadrature formula

1f x-A f(x)dx ""
a

N

Ii=1
w.f(x.),
1 1

(4.2.1)

for a fixed N, contains the 2N parameters w. and x. (i=1,2,...,N).
1 1

The problem 1S to select these parameters so that formula (4.2.1)
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will be exact for all polynomials up to the highest possi~le

degree (i.e. for all polynomials of degree <:k, where k is as

large as possible).

In the following, we shall only give the most important

theorems of the theory. These ,theorems concern the degree of

precision of the quadrature formula as well as the Christoffel-

Darboux relationship by means of which the weights w. can be very
~

conveniently computed.

Let us consider the polynomial p(x) = (x-x
l
)(x-x2) ...(x-xn)

with the stations x. of (4.2.1)as zeros, instead of ~onsidering~

the stations themselves. If we know the x., then we can easily
. ~

find the coefficients of p(x). Conversely, if we know the
n. n-Ipolynomial p(x) = x + a IX + .. , + a , then the roots ofn- 0

p(x) will give us the stations x ..~
The connection of this polynomial with the optimal quadraiure

formula is explained by

Theorem

If formula (4.2.1) ~s to be exact for all polynomials of degree

<:2N-I, then it ~s necessary and ~ufficient that (4.2.1) be i~ter=

.polatory and that the polynomial p(x) be orthogonal with respect
-Ato (x to all polynomials of degree < N.

The proof of this theorem is the same as that for the case

of a positive weight function and is therefore omitted here.

\.Jeonly remark that no formula (4.2.1) exact for all poly=

nomials of degree <: 2A-I exists for an odd A. We remember that
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in such a case the orthogonal polynomial of degree A-I was

replaced bya one-parameter family of polynomials of degree A. '
A-2Each polynomial of this family is orthogonal to I,x,...,x

(for A > I) and to a certain polynomial of the family, but it is

h I ),-1 d h' . I I f h hnot ort ogona to x an t ~s.:v~o ates a postu ate.o t e t eo=

rem. The above observation then.follows from taking that fact

into consideration in the proof of theorem I.

The question of the circumstances under which 2N-} is the

highest degree of precision for formula (4.2.I).is answered by

Theorem 2

-AIf ~(x) ~s orthogonal with respect to <x to all polynomials of

degree < N and if it can.be normalized (i.e. (p,p) -f0), then,

no matter how we choose the xi a'ndwi, (4.2.1) cannot be exact

for all polynomials of degree 2N.

Proof

For the polynomial j3(x)= [p(x)]2, which has degree 2N, the inte=

} -A-()d -fOb d () b normalizable.T x P x ..x ecause we assume p x toe
o

The quadrature sum \w.f(x.) is zero becausen(x.) = O.L ~ ~ . ~ ~

(4.2.1) cannot be exact for j3(x).
Hence

In order to calculate explicitly the weights ~n (4.2.1) the

Christoffel-Darboux relationship will be useful. The proof of

this relationship is based on the existence of recursion formulae

for a given sequence of orthonormal polynomials {p*(x)}. From

theorem 1 of section 4.1 we know th~t if A is integer and even 6r

not integer a recurs~on formula for the corresponding (complete).
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sequente of orthogonal polynomials exists. The recursion formula

for the sequence of orthonormal polynomials is in these cases

given by (see e.g. [31])

p* I(x)n+ (A x+B )Vl*(X) - CVl* I(x),n n '~n n/~n- . n ;" I. (4.2.2)

If ak and bk represent the coefficients of the terms of degree k

and k-I in p~(x) it can be shown that

A
n

B
n (

bn+1 _ bn).
aa 'n+1 n

Cn

a an+1 n-1
2

an
(4.2.3)

We remark that (4.2.2) and (4.2.3) rema~n valid for n=O if we de=

fin~ a ~ 1'1* = o.-I - '~-1

It was shown in the prev~ous section that for an odd power

A the corresponding ~equence of orthonormal polynomialscont~ins

no polynomial of degreeA-1, but two polynomials of degree A.

Thus the recursion formula (4.2.2) cannot hold for all poly=

nomials of the sequence.

Lemma

But we shall show

If A is odd and;" 3 and the corresponding sequence of orthonormal
1 . 1 . d d b * * * * -* * *po ynom~a s ~s enote y Po,P1, ...,PA-2,PA,PA,PA+1,..•,Pn'...

where both P~ and i3~are of degree.A (assuming (P~,P~) = +1),then

the following recursion formulae are valid:

(a) formula (4.2.2) with the coefficients g~ven by (4.2.3) for

n ;"A+2 and for 0 ~ n ~ A-3.

(b) P~+2(x) = (AA+lx+BA+1)P~+1(x) - CA+1i3~(x)-DA+1P~(x)
with the coefficients
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I
AA+I I/f

-\
xP\+2(x)P\+I(x)dxx

.'.
.~".

0

I
B\+I - A\+I f -'Ax [P~+I(x)} 2dxx

0

I (4.2.4)

GA+I -'"A\+I f -\ * ( ~*= x xP~+1 x)PA(x)dx
0

DhI

I
1 -\* *AA+I TX XPA+I(X)P\(x)dx.
o

coefficients

1

AA I/f
-A * ~*x xp\+I(x)PA(x)dx

0

I
B\ f -A ~* 2A\ x X[PA(X)] dx

0

I (4.2.5)
C AA f -\ ~* . *
A x xPA(x)p\(x)dx

0

I
D\ f -\ -* *= AA x. xP\(x)P\_2(x)dx.

0

with the coefficients
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1

f -A * *.~-1 1/' x xPA+l (x)Y-\ (x)dx
o

1

BA,.-1 - AA-l f x-AX[p{(x)] 2dx
o

with the coefficients

1

A>.._2 1/ fX-Axpt(X)Pt_2(X)dX
o

1

1/ f X-AXP~(X)P~_2(X)dX
o

o

. 1

.CA-2 = AA-2 f
o

If A 1 then (d) with P:1 - 0 ~s the last formula.

Proof

(4.2.7)

Assume n ~ A or 0 ~ n ~ A-3; then with Ag~ven by (4.2.3) it
n

follows that
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p* .1 (x) - A xp*(x)n+. n n

isa polynomial of degree at most n.

expanded as

~(x)

Hence,~(x) can be

(4.2.8)

By the orthogonality, however, we find that

I

f -A . *Cik x. ~(x)Pk(x)dx
0

I I

f -A * f -),xp~(x)P~(x)dx (4.2.9)x Pn+l(x)P~(x)dx- A xn
0 0

{ a for k = 0,I,...,n-2 if n~A+2 or 2 ~ n ~ 1..-3

a for k=O,I, ...,n-3 if A~n~A+L

Thus, setting Ci B, Ci I = -C and a 2 = -D we obtain then n n- n n- n
recursion formulae (a), (b) and (c). In principle, each coeffi=

cient of (4.2.4) and (4.2.5) 1S obtained in the same manner. In

order to determine BA+I (for instance) we multiply both sides of

the recursion formula (b) by P~+I(x). Then using the orthonor=

mality, the explicit representation for BA+I follows.

Since both p~ and p~ are of degree Athey may be interchanged

1n (c), yielding the recursion formula (d). The integral repre=

sentations of the coefficients (4.2.6) of (d) are obtained in the
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same manner as that described above.

So far we have constructed recursion formulae such that',on
the right-hand side the p~ (i=A,A+I, ...) is multiplied by a~

linear term. Our aim is to find further recursion formulae
*. .involving the product of a linear term and p. (~=0,1,...,A-2).
1.

.We know that both orthonormal polynomials which have the
Adegree A are of the fqrm x + ..• Therefore, the difference

p~ - j3~ represents a polynomial of degree at most A-:I.

If we choose AA-2 as in (4.2.3), it follows that

1.Sa polynomial of degree at most A-2. Therefore QA-2(x) can

be expanded as

By the orthogonality we find ~n the same manner as that used

above that

O.

Thus, setting BA-2 = BA-2 and BA-3= ~CA-2 we obtain the recurS1.on
formula (e) with the coefficients given by (4.2.7).

We have thus demonstrated the existence and validity of.the

recursion formulae (a) - (e) in the case of an odd A ~ 3. If

A = I, it is easily seen that formula Cd) ~s the final one

(r~membering our convention P~I = 0).

This completes the proof for all odd A.
q.e.d.
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(Christoffel-Darboux)

The orthonormal polynomials p* tP*] t....tP* ] satisfyo n+

a
~ [p~+] (x)P~(~) - p~(x)p~+] (0] t

n+1

(4.2.]1)

if A odd

n ~ 0 otherwiset

where a denotes the coefficient of n the orthonormal poly=x 1nn
nomial p*(x) and 9ik denotes the metric of the involved realn
linear space6

•

Proof

We consider the recurSlOn formula (4.2.2) and multiply both sides

by p~(~) (with arbitrary ~) to get:

(A x + B )V1*(x)n*(~)- C V1* ](x)V1*(~).n n I~n .. rn n'-n- I~n

Since this is an identitYt it holds if we interchange the argu=

mentsx and ~. Subtracting this interchanged form from the

original form aridmultiplying by A:1 yieldst with the aid of

(4.2.3)

(x-~) p* (x) p* (0n n.

-] .
An-1 [p~ (x)P~_1(~) - P~-1 (x)p~ (0] (4.2.12)

0ik in the case of the usual Euclidean spacet whereas
Ei6ik (see page 8]) for a pseudo-Euclidean space.
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We know that (4.2.2) is valid for all n ;;;;.0 if A is not odd.

Thus if we sum the identities (4.2.12) over 0,1,2, ..•,n all

terms, except the last cancel (for n=O, we use the convention

a_I = 0).

(4.2. II) .

This yields the Chriatoffel-Darboux relationship

If A is odd, we first assume n ;;;;.1..+2. Then, by the Lemma,.

the r~cursion formula (4.2.2) is valid and therefore also the

identity (4.2.12). By applying the procedure described above

to all feasible lower-order recursion formulae (b) - (e) similar

identities are obtained.

From (4.2.4) - (4.2.7) it 1S easily verified that

-AA+I/CA+I

AA+I/DA+I (4.2.13)

AA_l/DA_1 AA/DA'

If we now sum the identities over 0~1,2, ...,n all terms

except the laSt cancel, because of (4.2.3) and (4.2.13). This

last term represents the right-hand side of (4.2.11) and thus.the

Christoffel-Darboux relationship has also been proved for an odd

A. We remark that the above arguments remain valid for n;;;;'1..+1.

q.e.d.

Summarizing the statements of the theorems 1'-3we can say

that an optiIIlalquadrature formula for f.p. integrals exists.

Its degree of precision is 2N-I (N is the number of stations) and

the Christoffel-Darboux relationship is also satisfied.
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'We now finally discuss our ma~n problem, the actual con=

struction of the optimal quadrature formula. Let us consider

'the system of polynomials p:(x) (N=0,1,2, ...; but if \ is odd

we restrict N to the values ~ \+1) orthonormal with respect to

The roots of P:(x) will thus be the stations

x. (j=I~2, ...,N) which are to be used in the optimal quadrature
J

formula.

In ,the theory of Qrthogonal polynomials it is shown that if

the weight function is positive in the integration interval, the

roots of the corresponding orthogonal polynomials are real,

distinct and located within that interval.

No conditions governing the weight function were found in

the standard literature (for instance [3,12,14,30,31]) necessary

for such a behaviour of the roots.

In our case, the stations may therefore be located outside

the integration interval and even be complex.

Because (4.2~1) is of interpolatory type, the weights w. are
J

given by equation (3.1.2b) which here corresponds to

w.
J

1fx-\
o

P:(x)

* '(x-ex')PN (x.)
J J

dx (j=1,2, ...,N). (4.2.14)

In order to calculate w. by (4.2.14) we make use of theJ ' .

Christoffel-Darboux relationship (4.2.11) by substituting x. for. J

~ in the equation. After dividing by x-x. we obtain
J

N
L p~(x)g'kPk*(x.)~ ~ ~i,k=o

r:(x)p:+1 (xj
x-x.

J

Stellenbosch University http://scholar.sun.ac.za



-I 16:-

where aN is the coefficient of xN in p~(x). Let us multiply this,.
-Alast equation by x and integrate 1n the sense 6f f.p~ over

[0,1]. If A> I, the integral

1f x-Ap~(x)p~(Xj)dx
o

(4.2.15)

1S zero for k ~ 1 by the orthogonality of P~(x), and 1S 1 for

o

k = Oby the normality of p* (x).
o

tion we have

Hence we obtain

After carrying out the integra=

fl ":A P~(x)
x --- dx.x-x.

J

w.
J

1

p~' (xj)p~+ l(xj)
j=I,2, ..• ,N (4.2.16)

with N ~ A+I if A is odd, otherwise N ~ I.

We remember that in the case A = 1 there exists no polynomial

of degree zero which can be normalized. Thus by the orthogona=

lity of p~(x) (4.2.15) vanishes only for k ~ 2 and differs from
zero for k=O,I. It is easily shown that (4.2.16), however,
remains valid in this case.
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Let xj be any root of p~(x) (N ~2 S1nce A is odd).

With rt(x) and pt(x) given by (4.1.2.18) we obtain

-I * *x p, (x)g 'kPk(x, )dx
1 1 J

=

1

f x-I (x + 0 (xj + Odx
o

1
.[ -IT x (x- O(xj - Odx
o

1

f -Ix (x + xj - ~)dx
o

and thus (4.2.16) also holds for A = 1.

The above expression for w. can be changed slightly by making
J

use of the recursion relation (4.2.2) for orthonormal polynomials.

Let us substitute the root xj of r:{x) for x in (4.2.2). This

gives

with ~his relationshi~ we can write (4.2.16) 1n the form

I

p~' (xj )P~_I (xj)
j = 1 , 2, • • • , N • (4.2.17)

We remark that (4.2.17) 1S valid only for N ~ A+2, if A is odd.
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Because the formulae (4.2.16) and (4.2.17) were derived for.

any root of p~(x), they are valid even for a complex station

1n this case yielding a complex weight.

x. ,
J

With this explicit representation of the weights, we con=

sider the theory of the optimal quadrature for f.p. integrals as
closed. The next section contains a brief discussion of qua=

drature formulae with preassigned stations.

4.3 Quadrature formulae containing preassigned stations

In applied problems it may be convenient to use quadrature for=

mulae in which some of the stations are given in advance, while

the others are free and may be chosen by any criterion we wish.

Consider the quadrature formula

1f x-A f(x)dx ~
o

n

Ii=1
w.f(x.) +
1 1

m

L
j=1

a. f(y,)
J J .

(4.3.1)

1n which the ill stations YI""'Ym are prescribed in advance and

where the m + 2rt constants a., w. and x.are to be determined so
J 1 1

that (4.3.1) may be exact for polynomials of as high a degree as

possible.

We shall not develop a special theory of such quadrature

formulae here but give the following theorem showing the connec=

tion between this type of quadrature formula and the optimal ones.

Let us introduce the two polynomials

r2(x)

w(x)
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By counting the number of ways in which the coefficients a. and
J

w. can be chosen, we see that fo.rmula (4.3.I) can be made exact~

for polynomials of degree.';;;;n + m - I. This can be accomplished

by requiring that the formula be interpolatory. .In order to

achieve a higher degree of precision we have at our disposal only

the choice of the nodes x ..~

Theorem.

In order that formula (4.3.1) may be exact for all polynomials

of degree';;;;2n + m - I it is necessary and sufficient that it should

be interpolatory, and that the polynomial w(x) should be ortho=
-Agonal on [a,l] with respect to the weight ,function (x Q(x) to

every polynomial of degree < n.

A proof of this theorem, but involving a positive weight

function, can be found for instance in [ 14] .

be applied to our case and ~s thus omitted.

That proof may

Since formula (4.3.1) is interpolatory the coefficients w.
~

and a. have the following values:J .

1

f -A w(x)r2(x) dx i=I,2, ...,nw. x (x-x.)w' (x.)Q(x.)~ ~ ~ ~
0

1

f -A w(x)r2(x) dx j=1 ,2, ... ,m.a. x (x-y.)w(y.)r2'(y.)J
0 J J J

(4.3.2)

(4.3.3)

Another representation for the coefficients w. which is eas~er to~

use for computation than (4.3.2) can be obtained if we assume
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that there exists a unique system of polynomials 'ITk(x)

(k=O, I,...) forming an orthonormal system with respect to the

weight function <x-Ast(X) on [0, I] where 'ITk(x) has degree k.

Clearly~ ~he polynomial 'IT(x) differs from w(x) by only a
n

constant factor, so that

where

w.
1

I

'IT' (x~)st(x.) f p(x)
n 1 1 o

'IT (x)
n
x-x.

1

dx

p(x) -A<x st(x).

The ~ntegral in this expression was calculated in the previous

section uS1ng a different notation.

two expressions for this integral:

We obtained the following

If p(x)

o

'IT (x)
n
x-x.

1

dx
an+1

a'IT I(x.)n n+ 1

a
n

a I 'IT I(X')'n- n-:- 1

where a is the coefficient of xn 1n the polynomial 'IT(x).
n n

Thus

w.
1

an+1
a'IT'(x.)'IT.I(x.)n(x.)n n 1 n+ 1 1

a
n

a I'IT'(x.)'IT I(x.)st(x.) •n-n 1 n- 1 1

.(4.3.4)

If we compare (4.3.4) with the expressions (4.2.16) and (4.2.17)

for the weights of the optimal formula then it is clear that the

w. in (4.3.1) differ only by the factor I/st(x.) from the corres=1 . . . 1 .. .
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ponding weights ~n the quadrature formula with weight function
-Ap(x) = (x ~(x)

1f p(x)f(x)dx ~ ~rl
o

w.f(x.)
~. ~ (4.3.5)

which is exact for polynomials of degree ~ 2n-l.

We shall now discuss the quadrature formula withy 1 = 0 as .

the one preassigned station. In the classical theory of Gauss

integration the case with a single fixed station is mostly called

Radau integration7 [26]. If in what follows we speak of a

Radau-type formula we mean the quadrature formula (4.3.1) with

m = 1 and Y1 = 0 •

In the case of a Radau-type formula we have ~(x) = x and as

the previous theorem shows, we must determine the polynomial

w(x) orthogonal on [0,1] with respect to the weight function
. I-Ap(x) = (x to every polynomial of degree < n .(n is the number

of stations x.). Then the roots of w(x) are the stations x.~ ~

(i=I,2,...,n). It can immediately be recognized that the stations

of the Radau-type formula are identical -with those of the optimal
I-Aquadrature formula with the weight function p(x) = (x . The

weights of the Radau-type formula are simply related to those of

(4.3.5) by w. = w./x. (i=I,2,...,n).~ ~ ~

7 Some Russian authors, for instance
study of the cases with
(a) one single fixed station
(b) two fixed stations Yl=O,
to A. Markoff [ 22].

V.I. Krylov, attribute the
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In particular, we consider 'theRadau-type formula for A = I.

Here, p(x) = 1 and thus the stations are identical with the zeros

of the so-called shifted Legendre polynomials, or

X.
1

x~ + 1
1

2
(i=l ,2, ••. ,n) (4'.3.6)

where x~ denotes a zero of the classical L~ngendre.polynomial of
1

order n.

Denoting by w~ .theweights of the classical Gauss-Legendre
1

quadrature formula, we obtain for the corresponding weights

w. =
1

w~
1

x~ +
1

(4.3.7)

since (4.3.1) 1S exact for f(x)

n
I
i=1

1 we can write

w.
1

and together with (4.3.6) and (4.3.7) the Radau-type formula

n
L
i=1

w~
1

x~ +
1

x~ + 1
1. [f( 12) - [(0)]

follows, involving the stations and weights of the classical

G<;luss-Legendrequadrature formula. .w~ observe that the weights

given by (4.3.7) are positive becau~e the w~ are positive and
1 .

Ix~1 < I.
1
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This Radau-type formula Bthe only one among all possible

quadrature formulae with one preassigned station which is rel'ated.

to a classical quadrature formula. If A = 2;3,4,5 then the

corresponding Radau-type formula involves the stations and weights

of the optimal quadrature formu~a with the weight function
-I .-2. -3 -4p(x) = tx ,<x ,(x ,(x ; 1.e.the singularity of the weight

function decreases by one power when a Radau-type formula is

applied.

We next briefly investigate the second important case with

preassigned stations, viz the case when YI = 0 and Y2 = I are

fixed stations. In agreement, once more, with the theory of

Gauss integration we in this case call the quadrature formula

(4.3.1) the Lobatto-type formula [ 20].

Ther~ is a remarkable correspondence between the Lobatto- .

type formula and the classical theory of integral approximation

if A = I. We therefore here restrict our attention to

I
1 f(x) dx ~T x
o

n
alf(O) + a2f(1) + L

i=1
w.f(x.).
1 . 1

(4.3.7)

The corresponding S1(x) ~s equal to x(x-I). In order to

find the stations x. in (4.3.7) we have to determine that poly=
1

nomial which 1S orthogonal on [0, I] with respect to the weight

function p(x) = x-I to every polynomial of degree < n.

the linear .transformation x = (t+l)j2

Since by
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1 1 1

f .(x-I)f(x)dx J (I-x)f(x)dx - ! f (I-t)F(t)dt, (4.3.8)4

0 0 -I

it follows that

x~ +
. ~

xi = 2 (i';"I,2r ••• ,n). (4.3.9)

Let p(a,B)(x) (n=O,l, ...) be the general system of Jacobi poly=
n

nomials orthogonal on [-1,+1] with respect to the weight function

(l-x)a(l+x)B, then x~ in (4.3.9) denotes the i-th root of the~

special Jacobi polynomial p(l,O)(x).Atcording to (4.3.5)
n

and (4.3.8) the weights in (4.3;7) are given by

w.~
*w.~

*2 '1 - x.~

(4.3.10)

where w~ is the weight corresponding to x~.~ ~

Because (4.3.7) is exact at least for f(x) - 1 and f(x) x,

we have

n

Ii=l
w. (x. - 0- 1,~ ~ .

n
1 - I

i=1
w.x ..~ ~

Inserting theseexpress~ons together with (4:3.9) and (4.3.10)
in (4.3.7) we obtain the Lobatto-type formula
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I _w_t_ [Xt
2
-1 [(0) _

i= I l_x~2
1

x~+l
1

2
X~+I)]

f( I) + [ (+ '.-[(0) + ~(I)

These coefficients are given, for

involving the stations and weights derived from the special

Jacobi polynomials p(I,O)(x).

ins tance, in I 15 ] •

4.4 Computation of the stations and weights for the optimal qua=
drature formula

In principle, there are three possible methods of computing the

coefficients of the orthogonal polynomials: 1n the first place,

the recursion formula (4.1.1.14) could be used; secondly, the

Gram-Schmidt process could be applied (modified if A is an odd

integer); and thirdly the systems of linear equations (4.1.1.7)
could be solved. Since the first two methods involve the pro=

cess of integration they are inconvenient for practical purposes,

and thus we chose the third possibility.

It is well-known that such linear systems arising 1n

Gaussian-type quadrature are mostly rather ill-conditioned.

Indeed, using Some direct and iterative numerical methods for

linear system solving we observed a behaviour of the solution

similar to that obtained when computing the weights .for an inter=

polatory quadrature formula: 1.e. at most ten significant digits

of the solution were correct with N ~ 12, and this accuracy we

did not regard as sufficient. Therefore, to be on the safe side,

the linear systems for the coefficients of the orthogonal poly=

nomials were again solved exactly by the Gaussian elimination
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procesS performed 1n a tationalarithmetic [17) for the cases

A = 1,2,3,4~5 with N 2(1)20 (for A = 3,5 of cour~e N fA). It

was shown in section 4.1 that the coefficientS of the orthogonal

polynomials can be calculated explicitly by (4.1.1.13) if A is not

integer. With the aid of that formula and using a rational

arithmetic [17] 1n the cases A 4/3, %, % and N = 2 (1 ) 20, we

computed the coefficients precisely.

The next step was to determine the roots of .the orthogonal

polynomials. First, we found the approximate zeros of these

polynomials by one of the standard methods, the coefficients being

expressed merely to double precision accuracy and the calculations

being also carried out in double precision. Then, using the

exact (rational) representation of the polynomial coefficients

and applying a special multi-precision floating point arithmetic8,

the approximate zeros were refined to high accuracy by Newton's

method. It should be noted that the rate of quadratic conver=

gence of Newton's method is effective only if the number of

significant digits used is sufficient. We used 56 significant

digits .in order to be sure that the refined zeros would be cor'rect

to at least 31 significant digits.

Finally~ by means of (4.2.16) and (4.2.17), and again using

multi-precision floating point arithmetic, we computed the

corresponding weights.

The exact values of the coefficients of the polynomials, as

well as the stations and weights in floating point representation

8 The four basic operations involving real or complex. numbers
may be performed by this multi-precision floating point
arithmetic with an arbitrary number of digits. the method.
is based on' an integer arithmetic [17]
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to thirty significant digits (the last one correctly rounded

off) are given in [18] for A = I, V3' %, %, 2, 4.with

N = 2(1)20 and for A = 3,5 with N = A+I(I)20.

4.5 Properties of the stations and weights

According to a well-known theorem from the theory of orthogonal

polynomials, the stations of a Gaussian-type quadrature formula

are located within the integration interval if the weight func=

tion involved is non-negative there. To our kriowledge, ther~

is no theorem giving a necessary condition for the stations to

lie within the integration interval. Such a condition might be

very difficul t to find. In most of the literature on.Gaussian

quadrature (for instance [3,12,14,30]) it 1.S said that if the

weight function w(x) does not satisfy the assumption W(x) ;;;.0 on

the integration interval, the zeros of the corresponding ortho=

gonal polynomials (provided they exist) can also lie outside the

interval of integration or even be complex. In fact, for the

cases we have .computed the stations have the following behaviour:

and N 2 (l) 20:

one station 1.S negative but relatively close

to the origin (;> - o. 1601 ., ..) and all the

others are located within [0,11 '

A = 2,4 and N = 2(1)20:

there are A/2 pairs of complex. conjugate stations

and the real ones lie within [0,1].
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A+1(1)20:

there are [A/2] pans of complex conjugate stations,

one negative station but not as close to the origin.

as previously (~- 0.4113 ...) and the remaining

stations again lie within [0,1] .

In the theory of Gauss quadrature it 1.S shown that if the

weight function 1S non-negative in the integration interval then

all weights are positive. But this property of the weight func~

tion is again merely sufficient. In our case, we can expect

some weights to be negative or complex. Owing to the computed

values we observe that to a negative, positive or complex

station corresponds a negative, positive or complex weight.

Of course, the complex weights occur in complex conjugate pairs.

The absolute values of the real weights decrease as the absolute

values of the real stations increase and their orders vary
-1 8from 10 up to 10 The real and imaginary parts of complex

weights are of the same order of magnitude which increases with

A and N and lies between 10 and 108 in the computed cases.

Obviously, the application of the optimal quadrature formula

1S limited to Lp. integrals where the integrand function f(x) is

also defined outside the integration interval and where it can be

evaluated for complex arguments. This means that f(x) 1S either

given analytically or its value for points not located within the

interval and for complex arguments is computable by acertairi
procedure.

Stellenbosch University http://scholar.sun.ac.za



-129-

The value of the quadrature sum, in general, will be complex,

(unless the function satisfies f(~) = f(z)). The real part Of

this complex number can be considered a (real) approximation to

the fop. integral while the imaginary part gives an indication

of the error of the approximation.
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CHAP T E R V

A DERIVATIVE-FREE ERROR BOUND

5.1 Error estimates for f.p; integrals in general

The analysis of errors committed when regular integrals in one

dimension are evaluated by numerical integration rules has received

considerable attention. Most of the quadrature error bounds which

appear in the literatute can be classified as either derivative-

dependent or derivative~£ree. Derivative-dependent error bounds

express a bound of the error committed when approximate formulae of

integration are used, in terms of the higher deriv~tives of the

function operated upon . Such expressions for the error bound are

.valid for the dass of real functions which are sufficiently diffe:::;

rentiable, and the expressions are thus widely applicable. On the

other hand, they have several drawbacks. In the first place, since

the error terms applicable to different rules may contain different

orders of derivatives, there is .no common basis enabling the rules

to be compared with one another. Secondly, data on higher deriva=:=

tives may be unavailable or may be difficult to obtain. This may

be the case when operating with functions g~ven in closed form but

which.are highly composite.

OSSICINI in [25 ] gave a derivative-dependent error bound for

an interpolatory quadrature formula for f.p. integrals. In that.

paper the integrand function f is assumed to be E .Cn[-1,1]

.where [-1, 1] represents the integration interval and n ;;;.1 denotes

( 130)
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the number of stations. The given error bound contains an integral

involving /n)[ j +~(x~I)] (-1 < ~ < 1) as integrand. An error

bound of this form appears to have drawbacks where practical appli~" ..

cation is concerned.

Our aim IS therefore to find a derivative-free error bound for

f.p. integrals, by means of which the remainder can be bounded more

easily.

The integrand function f will be assumed to be analytic merely

in Iz-~I < ~ + £ (£ > 0), containing the basic integration interval

[0,1]. For this reason', we here restrict ourselves to an error

bound for the equispaced station quadrature formula. The applica=

tion of the optimal quadrature formula, however, would require f

to be analytically given in a larger region since some stations

are negative or complex in this case.

The basic work on derivative-free error bounds for errors

committed by the approximations of regular integrals, of derivatives

or of real functions was done by DAVIS [4] • His derivative-free

error .bound is of the form IEU)I ~ allfll.. Here f(z) (z = x+iy)

is required to be analytic In a disc containing the considered in=

terval'of the real axis, and to be continuou"8 on the boundary of the

disc. The quantity a depends solely upon the approximation rule

employed while the quantity IIfliisthe horm of f in the Hilbert

space of analytic functions. For certain classes of analytic func=

tions such derivative-free error bounds have been studied by seve=

ral authors: [1,11,19,23,29,33] Most of this work is restricted

to Gaussian quadr~ture rules.
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Since almost all assumptions maDe by the above authors are

violated by the behaviour of f.p. integrals, it is not.possible to

ap~ly any of their derivative-free error bounds. ".,". ~For this reason

we developed such an error bound with the aid of the general method

given in [ 4 ] .

Denoting by En(f) the error committed ~n the use of our inter=

polatory quadrature formula with n equally spaced stations, we shall

show in the following thatE (f) can be bounded in the form
n

IEn(f)1 <(J Tf.n,p ,q (5.1.1)

l~ which is deduced from the Holder inequality involved inI+-
q

p and q are parameters E I 1,00] and must satisfy the relationship
I
p

the derivation of (5~1.1). For p fixed, the quantity (J dependsn,p
merely on the n-point formula used, while T

f
depends only on the,q

integrand function f. It should be noted that due to the freedom

of choice of p (or q) there are - fora fixed nand f - different

possible values of d and Tf .n,p ,q Ideally, the best p (or q) is

that which minimiz.es these error quanti ties. But this problem is

not pursued here.

We shall derive (J and Tf by two different methods: then,p ,q

first is based on an analytical continuation of the integrand func=

tion f in the sense of Borel and thus simplifies the proof of

certain convergence properties. The other method dispenses with

any analytical continuation of f but involves some cumbersome esti=

mates for certain inequalities. In either case, we prove the

existence of the error quantities for two practically important
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values of p, v~z. p = ~ andp = 00. We then bring IT into a formn,p
suitable for computational purposes and g~ve some values of it for

different powers A and n = 3(1)20. After a few comments on the

computation of Tf ' we conclude both cases with an example; even=
. ,q

tually we compare the results.

Finally in this chapter we compare this analytic error bound

with a graphical method for finding the number of correct signifi=

cant digits. The reasons why we mention such a feasible graphical

method at all are that it is simple to apply and yields fairly

good results.

Before we turn our attention to the first method of obtaining

the error quantities we give the condition which must be satisfied

a priori by the integrand function fex) for both methods.

to obtain a derivative-free error bound for the remainder

We want

E (f)
n

n

Li=l
w.~ f(x. )~ (5.1 .2)

in the case when the interpolatory quadrature formula of chapter III

is used for approximation .

. The function fez) is assumed to be an analytic function of z,

regular in the disc I z ~ ~ I < ~ + E: (E: > 0) which c()ntains the inte=

gration interval [0, 1]; i.e.

f( z) (5.1.3)
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with

5.2 The first method of obtaining the error quantities

In the following, we prefer to use a simpler representation of

f(z) than that given in (5.1.3), namely

00

f( z) I bkzk (5.2.1 )
k=o

with

/k) (0) 00

bk I()(- ,'v-k= k: = :2) a.vv =k

This representation of f(z) is the essential feature. of this method.

But it is clear that by this change of .representation the conver=

gence radius of fez) is ~lso changed, i.e. the series in (5.2.1)

now converges absolutely and uniformly only for Izi < E., There=

fore (5.2. I) may not'be integrated termwise over [0,1] as will be

necessary.

following

In order to overcome this disadvantage we apply the

Theorem (method of analytic continuation 1n the sense of Borel)

Let f(z)
00

I akzk be convergent for Izi < r.
k=o

00

f e.-t F(zt)dt,
o

Then the integral

(5.2.2)
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00 k
I ak z , represents a radial analytic continua=

k=o r(1+k)

tion of fez) on a certain region ofsummability B(f,I).

A proof of this theorem 1S g1ven for instance in [10, page 83]

We illustrate the construction of such a region B(f,l) in ou~ case

by the, following graph.

iy

I
:2

x
•••

In the

In such a case, there can be only one

KI represents the convergence circle of the ser1es in (5. 1.3) • We'

know that at least one singular point must lie on KI• n SI is

such a point, fez) can be analytically continued 1n a radial direc=

tion by taking out a small sector with angle 6 around SI'

worst possible case, the convergence circle of the series 1n (5.2.1)

is K2 with the radius E.

singularity S2 on K2 and this must lie on the negative real axis at

-E. Again, taking out a small sector around S2~ the"radial analy=

tic continuation of fez) is rendered possible. This process may
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be continued for all singular points.of f(z); the remainipg part of

the complex plane is then the regwn of surmnability B (f, I) where.

(5.~.2)represents f(z). It is clear that the integration interval

[0,1] belongs to B(f,l) 10 any ~ase. Thus, the radial analytic.

continuation of (5.2.1) which has the form

00

f(z)
00 k

f e.-t[ I (tz)bk .] dt
k~k=o

o

(5.2.3)

may now be integrated termwise over [0,1] .

The error E (f) can be bounded as follows.
n

I

f f(x) dx -
. A

xo

n

Ii=1
w.f(x.)1~ ~

o 0

00 k
e.-t Lb (tx) dt]dx

k=o k k~ dtl

00

I f
o

k I
t bk .. f---r: [

o

k-Ax .dx- n kL w.x.]dt I.
i=l ~ ~

(5.2.4)

We remark that the last interchange of the order of summation

yielding (5.2.4) is admissible since

vergent in [0, I] .

k
\b (tz) . ~s uniformly con=
L k k~
k

Since the interpolatory quadrature formula has the degree of

precision n-l, where we require n ~ A ~ 1 (i.e. the number of stations

.~s not smaller than A), the differences in (5.2.4) vanish for
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Thus we can write

00 tn+kb

f
00

IEn(nl -t I n+k e kdtl (5.2.5)e. (n+k):k=o n,
6

where

1

f
n+k-A n n+ken,k x dx - I W.x. (5.2.6)

i=1 1 1
0

It should be noted that oW1ng to the above restriction on n the 1n=

tegral in (5.2.6) is now regular for any A. For n fixed, the

write e kn,

quantities e k (k=O,I,.•.) represent the errors of the quadraturen, ,
formula when integrating the powers xn+k (k=O,I,.••). We can thus

E (xn+k).
n

As we shall later see, the numerical behaviour of the quantities

'e has a far-reaching effect in that it determines the existencen,k
of a and therefore also that of the derivative-free error bound •. n,p

STENGER [ 29] showed for instance that in the case of a sym=

metric Gauss-type quadrature formula, e k > O.. n, In our case, it

is easily verified numerically that the e k do not have a constantn,

sign. 00

Also, the sequence {Ien,kl}k=o does not decrease mono=

tonically as one would perhaps be inclined to assume. But this

non-monotonic behaviour of Ien kl is not due to the f.p. quadrature;,
the previously mentioned symmetric Gauss-type formula was found to

exhibit similar behaviour.
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o

A tYRical graph illustrating the relationship between Ie kln,
I n+k-Ad .r x x is given below.and the higher-order moments m kn+

k ~ (with n fixed)k=O

It follows from (5.2.5) that

00 00

< J e-t Y.
o k=o

n+kt. b

I n+k I.
(n+k)! en,k dt. (5.2.7)

Assuming that the sequence {en k}oo ~s in [PCI < p < 00) we
, k=o

apply H~lder's inequality to (5.2.7) and obtain

00

< J e-t
o

tn+kb
I n+k
(n+k)! (5.2.8)

with I I-+-= I.P q

The last factor of the integrand in (5.2.8) is independent of

t and we can thus write the error bound in the form
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iE(nl<cr.T Jn n,pf,q

with the error quantitiea given by

In accordance with the Holder inequality for each pair of parameters

pand q the error quantities are expressed ~n a different norm which

we may still choose.

We shall now consider the important error quantity crn,p
It is easily seen from (5.2.9) that apart from the parameter

p, crn,pdepends solely upon the n-point quadrature formula used and

therefore can be computed oriceand for all.

With a v~ew to practical application we choose the following

two cases in particular:

(a) p = q = 2 which corresponds to the Euclidean norm of cr,L e.

00

L
k=o

(b) p = 00, q = 1 by which we obtain the supremum norm, L e.

(5.2.11)

crn,OO _ sup len,kl
k-O, 1, .•.

(5.2.12)
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The question whether cr .2and cr exist at .all ~s answered in then, n;co
following.

Since the integral as \Yell as the sum in (5.2.6) tend to zero

when k -+ co, the existence of cr is assured for all powers A.n,co
In order to examine the existence of cr 2.'we investigate then,

series I e2 k
k n,

1
Replacing J xn+k-Adx by the moment notation

0'

m we can rewrite (5.2.11) in the formn+k'

co co co

(5.2.13)

where Bk =
n

Ii=1
n+kW.x.~ ~

The value of m k is l/(n+k+l-A) which 'is certainly less than one. n+

ifn>A;;;':I. Thus the first series on the right-hand side in

(5.2.13) represents a general harmonic series which converges abso=

lutely. Since

with w
n
I Iw.l• 1 ~.~=

and y = max x. < 1,~~

Therefore the second and third

for I
k

series in (5~2.14) are also absolute=

','w yn+kL. is a convergentmajorant ser~es
k

the geometric ser~es

ly convergent and cr . 2 exists.n,
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Having. demonstrated the existence of cr for p::::2 and p = 00n,p
we shall discuss the numericaL evaluation of cr 2'n,

An expression such as (5.2.13) is obviously uI1suitable for

computing the numerical value of cr 2'n, We therefore recast each

series in (5.2.13) as follows.

If we add the terms ..., to the first

series \' m2. the new series represents Riemann's I'; func tion
L n+k'
k

I';(s)
00.

L. CS for s = 2.
i=1

()()

Lk=o

But 1';(2)- n2/6 and.we thus have

(5.2. 14)

Using the integral representation for the moments mn+k, the second .

.series can be written in the form

()() ()() 1 n
L mn+kBk L J n+k-Ad l. n+ky y W.X.

I. I.k=o k=o 0 i=1

I 00 n
! n-A I k

L
n+ky y W.x. dy

I. I.
0 k=o i=1

I tl ()()

f n-A
L

n
L

ky W.x. (x.y) dy
i=1 1.1.k=o I. ..

0

1 n
n-A n w.x.

f I 1.1. dy. (5.2.15)y 1 - X.y
0 i=1 1.

Recasting the third series in (5.2.13) 1.na similar way, ~e finally

obtain
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n-A 1 n . n
1T2 1 n-A n W.X. n n W.W. (X.X.)

02 L 2 f L
.~ ~ dy L L ~ J ~ J= (;- - - y +n,2 j=1 .2 i=1 I-x.y i=1 j=1 1 -x.X.

J .0 ~ ~J

(5.2.16) ,

This now is an expression containing easily computable finite sums.

We computed the quantities 0 2 and '0 for A=I,2and n=3()20.n, n,oo

Their values are given in the tables below (we remember that the

weights wi are gIven in [)8]).

n (5n,2 0n 00,

3 0,393 0,988E-)
4 0,289 0,559 E-)
5 0,266 0,465 E-)
6 0,223 0,336 E-I
7 0,210 0,296 E-)
8 0,)86 0,236 E-)
9 0,178 0,214 E-)

)0 0, )62 0, )80 E-)
) ) 0,156 0,166 E-1
)2 0,145 0,)45 E-)
13 0,140 0,135 E-)
)4 0, )32 0, )20 E-)
15 0,128 0, ))4 E-)
)6 0,121 0,103 E-)

, 17 0,118 0,976 E-2
18 0,113 0,893 E-2
19 0, 110 0,854 E-2
20 0, 106 0,789 E-2
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n crn,2 crn 00, .

3 0,817 0,500
4 0, 103 EI 0,430
5 0,743 0,306
6 0,910 0,297
7 0,698. 0, 252
8 0,835 0,230
9 0,662 0,187

10 0,781 0,190
I1 0,633 0, I59
I2 0,738 0, I62
13 0,608 0,138
14 0,704 0, I42
I5 0,587 0, I23
I6 0,6.75 0, I27
I7 0,568 0, III
I8 0,650 0,115
19 0,552 0, I0 I
20. 0,628 0, 105

A 2

According to these computed values one might guess that the

error quantitiescr ~ncrease with AI. Since the values of crn,p n,oo
are smaller than those of cr 2 they might yield a lower error boundn,
(see the following example). Comparing our error quantities with

those given in [ 29] for the classic Gauss-Legendre quadrature

formula, we observe that they are of the same order of magnitude.

We now discuss the second error quantityTt which fora,q
fixed q (i.e. any choice of p) depends merely on the given analytic

In order to pro~e it, one would have to know the order of magnitude
of the corresponding weights for arbitrary. A. At present this.
seems not to be feasible.
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.function f. It is r~latively easy to compute C5 , especially if. .n,p
p = 2 or p ==00, but it does not appear to be as easy to ~valuate
T
f
' .,q

It might be difficult to obtain an estimate of T . byf,q
developing a simpler expression not :involving the Taylor coeffi=

But we point out here that most of the derivative-freecients bk.

error bounds contain a factor similar to the serles ln T
f

.,q
However, in the case of an .arbitrary analytic function it does not

seem to be easier to compute or estimate the value of those fac==

tors than it is to calculate Tf •,q We shall return to this point

in the next section.

some analytic functions

In thein closed form.

How can the quantity Tf be computed ln practice? First we,q
need the derivatives of the given function f at the origin. For

f(k)(O) (k=0,1,2, ...) is known, perhaps

case of many analytic functions f(k)(O)

can be computed with the aid.of some symbolic string;"handling

rapidly owing to the denominator

2language . The series involved in Tf may converge mostly very,q
(n+k)! and thus only a few terms

need to be summed. The exponential integral itself can be con=

veniently computed by the classic Gauss~Laguerre quadrature for=
mula [ 30] .

Example i

We bounded the error caused by applying our 3-point, 10-pointand

20-point interpolatory quadrature formula to

2 e.g. FORMAC which. enables symbolic algebraicmanipolations to
be performed.
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1

f dx
X2 J-(-X--2-)-2-+-1

o

The quantities T and T 1 (corresponding top = 2 and p = (0) as
f,2 f,

well as the error bounds are g~ven below.

T f,2 °n,2 •Tf,2 Tf,1 a oo.Tf 1 Actualn n,. . , error
. .

.

3 0,18 E-I 0, IS E-I 0,24 E-l 0,12 E-I 0,10 E-I

10 0,33 E-4 0,26 E~4 0,44 E-4 0,84 E-5 0,25 E-6

20 0, II E-7 0,68 E-8 0,18 E-7 ,18 E-8 0,47 E-13

The actual error was computed by determining the difference be=

tween the values obtained by the definition formula and those

obtained by the quadrature formula. We see here that the values

of Tf ' in contrast to those of a , are almost independent of,q . .n,p
the parameter q. The error bounds computed with a are there=n,oo
fore smaller than those where a 2 is involved.n, Both error bounds

agree very well with the true error for the low-order quadrature

formula, whereas agreement becomes wors.e as.n increases.

5.3 The second method of obtaining the error quantities

The main difference between this method and the first is that we

do not consider any analytic continuation of f(2), but now directly
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substitute the ser1es of (5.1.3) 1n the error definition (5.1.2).

Doing so we obtain

1

If
-A co n co

I En (f) I L k I L a (x. - Ok,x a (x - 0 dx - w.
k=o k i=l 1 k=o k 1

0

1

I Y ak[f
'-A k n

w. (x. -Ok]x (x--Odx- L I .
i=l 1 1k=o . 0

Since the interpolatory quadrature formula has the degree of pre=

cision n-l, where we again requ1re n> A, the differences 1n the

last expression vanish for k=O,l, ...,n-l. Thus we.have

with

co

- I L
k=o

a' e .1n+k n,k (5.3.1)

1

en,k =f
o

-A n+kx (x - 0 dx-
n
L

i=l
(5.3.2)

It should be noted that in contrast to the preV10US coefficient

e k the integral in (5.3.2) is not regular.n, The meaning of en k',
is similar to that of e k'" n, It is easily seen from (5.3.2) that

for n fixed the quantity e k represents the error of the quadra=n,
ture formula employed when the polynomial (x - D n+k is integrated.

We can thus write e k = E [ (x- Dn+~ .n, n .

The numerical behaviour of e k is ,seen to be like that pre="n,
viously observed in the-case of e k' i.e. it does not have an,
constant sign and the sequence {Ie kl}co does not decrease mono=n, k=o
tonically.
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It follows from (5.3.1) that

00

(5.3.3)

If we assume the sequence {g k}')()to be in tP (I ~ p ~ 00) we may
n, k=o

apply Holaer's inequality to (5.3.3) ~nd obtain

~ 0" Tn,p f,q

where

(5.3.4)

T -f,q (5.3.5)

For practical purpose's ~e aga~n choose the Euclidean ahd supremum

norms for 0" ", ~.e.n,p

00

(a) p = q 2: 0'2 = L g2n,2 k=o n,k

(b). p 00, q = 1: 0' sup Ie kl.n,OO k=O, 1,2,... n,

(5.3.6')

(5.3.7)

In the following we shall show that both the quantities 0' 2 andn,
0' exist, but it will be more difficult to do this now than inn,OO .
the previous case. Setting

I

'\ = f X-A (x- Dn+kdx

o
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and

(5;3.6) can be written as

n

2.i=I
w.(x.-Dn+k
~ ~

00 00 00

L ~ - 2 I ~Bk + I B~.
k=o k=o k=o

(5.3.8)

If we can find a convergent major series for each ser~es ~n (5.3.8)
then the existence of a 2 ~s assured.n,

C . d . ( I ) n+k. f. d 1. hons~ er~ng x - 2 as ~ntegrand unct~on an app ..y~ng t e

definition formula for f.p. integrals where .Ais an integer .we can

estimate ~ in the following way.

A-2 -v' n+k-(A-v-2)I I [(A""I)~ (D . (n+k)(n+k-I) .•. (n+k-A+v+3) +
v =0

1 n+k- v
+ v!(v+I-A) (-D . (n+k)(n+k-I) ••• (n+k-v+I) +

v +1
+ v! \' I (~~)n+k-(A-I-P)(n+k)(n+k-I) •.. (n+k-A+Jl+2)] +

(A -1 )! . L (v+1-p ) !
IFO

Ilk A
+ (A-I)! (n+k)(n+k-I) .•• (n+k-A+I)J (t-Dn+ - {n(I/t)dt\ <

o

<

A
+ (A-2)! (Dk+I(n+k)A-IA) + (n+k) (Dn+k-A <

(A-I)! (A-I)!
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1 k A A k A A . k< (A-I)[ (A-I) (D (n+k) + (n+k) (D + (A-I) (n+k) (D ] +

Ak A k
+ (n+k) (D = (2A+I)(n+k) (D .

Thus we finally obtain

. A kI~I < (2A+I)(n+k) (D = uk' if A 1.S an integer.

We now apply the definition formula for a non-integer A, setting

A = [A]+P (0 <p < 1), and estimate.~ by

I
[ A] -1 1 '. . . n+k-v1\:1 = IIL v! (v +1-[ A] -p) (n+k) (n+k-I) ••• (n+k-v+I )(-D +

[ A] -1
+ L

v =0

(-1/
v

([ A ]-I-v )! II (T+ I-{ A ]-p )
T=O

(n+k)(n+k-I) •.•

1
. (k-{ '] 1) f (t __

2

1)n+k-[A] (I-t)[A] -v-Idt +.••• n+ 1\ +
o

(-I) [A]
+ [A] -1 (n+k) (n+k-I) .••

II (T+I-[A]~p)
T=O

.•• (n+k-[~ +1) } (t_!)n+k-[~ t-Pdtl <
o

(n+k) [A] (!).k+I + (n+k) [A] k+I< [ A] --'--- --'--- (D (l + [ " ]) •
p p [A]
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From the last expression it follows that

I~I < p -[.\] (I + 2[\])(n+k) [A](Dk+1 = vk' if \ H not an integer.

It is easily seen, for instance by applying the quotient criterion,

that the series EUk and EVk are convergent. Therefore the series

E~ and E~ are absolutely convergent for any .\.

We shall now demonstrate that EBkand EB~ are absolutely con=

verg~nt. Since

= I Iw. (x. - Dn+kl < I
i=11 1. i=1

the geometric ser1es

00

W L n)n+k, .with W
k=o

n
L Iw.l,
i=l .1

majorizes EBk and thus this series as well as EB~ are absolutely

convergent. This proves the existence of a 2'n, The existence

of a follows fromn,oo lim 1\ = 0 and
k-+oo

Having con=

vinced ourselves of the existence of a for p = 2 and p =00, wen,p
now treat their numerical evaluation.

It is inconvenient to use the expression (5.3.8) for computing

a .2'n, But we can rew'rite the right-hand side of (5.3.8) in such a

way that infinite series are no longer involved.

then similar to (5.2.16).

The result is
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We recast the first term in (5..3.8) ~nthe following way

1
00 00 1\fI '\ I -A( 0 I)n+kdy y - 2. Yo
k=o k=o

0

1 I, 00

f -An f -A n ~ ky 0 (y - D x (x - D L [ (x - D (y - Dl dxdy
k=o

000

1 1--f f [(x-D (y-D]n d dy
o 0 xAy~I-(x-I)(y-l)] x 0 •

o 0

The second and third terms ~n (5.3.8) may be treated ~nthe

same way, yielding

1 1
2

f
of [(x_!)(y_!)]nO = 2 2 dxdy -

n 2 A A, x y I 1-(x-I)(y-D]o 0

1

- 2f
o

n n
+ L L
i=1 j=1

w.w;[ (x.-D(x.--D]n
~ J ~ J

1 .:. (x.-D (x.-D
~ J

(5.3.9)

The error quantities (J 2 and (J 00 were evaluated for
o n, n, 0 0

A = 1,2,3,4,5 and n = 3(1)20 and the values obtained are given ~n

the tables below.
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crn,2 crnO),

3 0,691 E-1 0,556 E-1

4 0,929. E-2 0,729 E-2

5 0,661 E-2 0,507 E-2

6 0,101 E-2 0,753 E-3

7 0,730 E-3 0,532 E-3

8 0,118 E-3 0,838 E-4

9 0,865 E-4 0,597 E-4

10 0,145 E-4 0,974 E-5

11 0,107 E-4 0,698 E-5

12 0,184 E-5 0,116 E-5

13 0,136 E-5 0,836 E-6

14 0,238 E-6 0,141 E-6

15 0,177 .E-6 ..0,102 E-6

16 0,313 E-7 0,187 E-7

17 O~234 E-7 0,136 E-7

18 0,418 E-8 0,244 E-8

19 0,313 E-8 0,183 E-9

20 0,563 E-9 0,330 E:"'9

Stellenbosch University http://scholar.sun.ac.za



n

-153-

. 0 2. n, o
noo,

3 0,962 0,556

4 0,492 0,271

5 0,222 0,122

6 0,995 E-l .0,526 E-l

7 0,423 E-l 0,221 E..,.I

8 0,180 E"":I 0,908 E-2

9 0,746 E-2 0,371 E-2

10 0,310 E-2 0,156 E-2

11 0,126 E-2 0,637 E..•3

12 0,514 E-3 0,262 E-3 .

13 0,207 E-3 0,106 E-3

14 0,836 E-4 .. 0,428 E-4

15 0,334 E-4 0,171 E-4

16 0,134 E-4 0,686 E-5

17 0,532 E-S .0,271 E-5

18 0,212 E-5 0,108 E-5

19 0,839 E-6 0,424 E-6

20 0,333 E-6 0,167 E-6

A 2
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an,2 a
nCO,

3 0,279 E 0,141 E

4 0,231 E 0,118 E I

5 0,157 E 0,812

6 0,940 0,482

7 0,518 0,261

8 0,269 0,133

9 .0,134 0,670 E-I.

10 0,648E-I 0,325 E-l

II 0,305 E-I 0,154E-l

12 0,140 E-I 0,711 E-2

13 0,636 E-2 0,323 E-2

14 0,284 E-2 0,145 E-2

15 0,126 E-2 0,639 E-3

16 0,549 E-3 0,279 E-3

17 0,238 E-3 0,120 E-3

.18 0,102 E-3 0,516 E-4

19 0,437 E-4 0,219 E-4

20 0,185 E-4 0,925 E-5

A 3
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crn,2 crn 00,

4 0,461 E 0,216 E

5 0,447 E 0,211 E

6 0,370 E 0,180 E

7 0,268 E 0,131 E

8 0, 175 E 0,865

9 0, 106 E I 0,527

10 0,610 0,304

11 0,334 0,167

12 0,176 0,883 E..,.1

13 0,902 E-I 0,453 E-I

14 0,451 E-I 0,227 E-I

15 0,221 E-I 0, III E-I

16 0, 106 E-I 0,533 E-2

17 0;503 E-2 0,251 E-2

18 0,235 E-2 0,117 E-2

19 0,108 E-2 0,537 E-3

20 0,495 E-3 0,244 E-3

A 4
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a
nCO,

5 ' 0,811 E 0,359 E

6 0,821 E 0,362 E

7 0,763 E 0,340 E

8 0,633 E 0,296 E

9 0,474 E 0,226 E

10 0,327 E 0,158 E I

11 0,211 E 0,103 E

12 0,129 E 0,631

13 0,752 0,370

14 0,424 0,209

15 0,231 0,114

16 0,123 0,607 E-l

17. 0,640 E-l 0,315 E-l

18 0,326 E-1 0,160 E-l

19 0,163 E-1 0,797 E-2

20 0,805 E-2 0;391 E-2

It 5
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Comparing these error quantities for A = 1,2 with those given

1n the previous section, we notice a significant difference in the

order of magnitude. Since these 0" and a are considerablyn,2 n,oo

Clearly,

smaller, they might be preferable (see also the examples). In

addition, we notice that the order of magnitude of 0" is nown,p
almost independent 'of p.

At this point we consider the investigation of the quadrature-

dependent error quantity 0", as completed.n,p
We now come to the problem of calculating the corresponding

quantities Tf,2 and Tf,1 which depend on the integrand function

f(x), or more precisely, on the Taylor coefficients .~.

the sharpness of oux error bound will depend on how well the magni=

tudes of these Taylor coefficients can be estimated.

We were confronted with this problem before, in the preV10US

section, and it was suggested there that the ak could be computed

by some symbolic string-handling language. But ~part from this

numerical method, what other possibilities are there?

now involves no exponential integration we are here in

Since Tf'
,q,

a slightly

better position than previously.

estimated by
In fact, Tf,2 can be crudely

~ max I f(z)l.
I z_l I ~ 1. 2 2

(5.3. 10)

Although (5.3.10) looks very simple, it may, 1n practice, be

cumbersome to determine the maximum.
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In order to obtain bounds for Tf,1 we need an estimate of

Most of the estimates commonly used in the literature do

not involve that series but only the Taylor coefficients, as the

following examples show.

(a)

(b)

(c)

la kl < 2n+k max I f(z)l.
n+ Iz-!I=!

I a k I < 2n+k max. I f(z) + f(-z) I .
n+ \z-!\=!

This estimate ~s obtained from Cauchy's integral formula.

It is used in [ 29 ], for instance.

I a I < 2n+k inf { max I f(z) + f(-z) - q(z)I.},
n+k q EP I z-! I =! 2

where P denotes the class of all polynomials .of degree < n-J,

It is mentioned in [ 29] that this is a better estimate than

(b). Owing to the complexity of the expression, its practi=

cal utility might be very limited.

It,is clear that only for some very specific functions will

bounds for Tf,1 he obtained with the aid of one of the above esti=

mates. In the literature, one'can sometimes find examples of

error bounds without any indication of what function is involved,

it being assumed a priori that for instance

~s g~ven.

F := max I f(z) + f(-z) I
ml zl=r

But such examples can hardly be considered meaningful.
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Example 2

We consider the same f.p. integral discussed in the previous sec=

tion. The quantities Tf 2 and Tf I (corresponding to p = 2 and
" ,

p ;,00) as well as the computed error bounds are given below.

T a. .T T f, 1 a .T Actualn f,2 n,2 f,2 n,oo f,1 error
,

3 0,23 E-I 0,22 E- I 0,46 E-l 0,26 E- I 0, 10 E- 1

10 O~43 E-3 0,13 E- 5 0,79,E-3 0,12 E- 5 0,25 E- 6

20 0,58 E-6 0,19 E-12 0,12 E-5 0,20 E-12 0,47 E-13

Comparing the above error bounds with those obtained previously

we observe that the bounds are now considerably better for n= 10

and 20, but worse for n = 3. The reason is that Tf,1 and Tf,2

are here larger than before and thus the smaller error quantities

a 2' a ,affect only higher-order quadrature formulae.n, n,oo

5.4 General remarks

The main disadvantage of error bounds, whether clerivative-freeor

derivative-dependent, ~s that they are applicable only to functions

given analytically in closed form. Nevertheless, even if we know

the analytic form,of the function, it may in general be very diffi=

cult to estimate the value of the function-dependent term (a high-'
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order derivative at a point within the integration interval, 6r a

series of its Taylor coefficients).

For practical purposes it might th~refore be of advantag~ to

use, for instance, a graphical method to determine, the number of

correct significant digits~

A feasible graphical method ~s g~ven ~n [18] •

briefly describe the principle of this method here.

We shall

Let 9 (x) = (x-X)2 + y2; thus 9 (x) = 0 if x = X + iY.

We ran an extensive series of tests on the functions

f (x) = yg{X)
0

f1 (x) Ij..{g[;)

f 2 (x) l/g (x)

f (x) exp [1/g (x)].
00

These functions have increasingly worse singularities in the

complex.plane at X + iY : fo has a branching point, f1 has a pole

of first order, /2 a pole of second order and foo an essential

singularity. Of course the closer this singularity is to the

interval of integration, the worse are the results. We used our

interpolatory quadrature formula with n = 10,18 and computed

o

(i=O,I,2,00) (5.4.1)

for each A 1, 4/3, %, %, 2, 3 , 4, 5.
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Then for the 'function f 1 (x) - considered to be the most

instructive - we plotted curves on the complex plane X + iY con=

necting the points where equal numbers of correct significant

digits were obtained; we varied X = -1(0,25)2 and Y= 0(0,1)1

(omitting, of course, 0';;;; X';;;; 1 and Y= 0). The results which

the quadrature formula yielded were checked against the analytic

definition.of a f.p. integral (the graphs given in [18] refer

to the function fl(x)). The method of estimating the number

of correct significant digits will noVJbe demonstrated by an

example.

Example 3

Let an f.p. integral be g1ven where a function f(x) with a

simple pole is involved, for instance

1

f dx

x2 Jx + ~o

_I
The corresponding f(x) in (5.4.2) is (x +~) 2 and it has a pole of

first order at x = -~ • Since we are integrating from a to

and the singularity of f(x) is located at -~we may expect -

see the graph given below - ten correct significant digits with

n =18.

This graph consists of the curves of equal numbers of cor=

rect significant digits for (5.4.1) with fl(x) and n= 18. The

value of (5.4.2) yielded by our interpolatory quadrature formula

with 18 stations is -0,72938483052 ... and the corresponding error
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bound, uS1.ng°18,2 of the second method, is about 0,43 E-IO,

which means that ten significant digits of the approximation are

correct. If we check the result of the approximation against

the value of the definition formula for (5.4.2) we notice an

actual error of about 0,23 E-IO. In this case, both the results

of the graphical method and the analytic error bound agree very

well with the actual error.

to use the graphical method.

1.y

It is simpler and faster, however,

x

_.2. _}
1+ o 2

.We shall now describe a method by which the number of correct

significant. digits may be estimated using only the results of the

interpolatory quadrature formula.

In numerous applications of this quadrature formula it was

found that the results arE~very stable, i.e. the accuracy attained

Stellenbosch University http://scholar.sun.ac.za



':'163-

increased. regularly with the number of stations used. This fact

was made use of to devise a simple practical method of estimating

the number of correct significant digits.

We consider, for instance, the application cif4""", 8- and

16-point interpolatory quadrature formulae to a given integral.

It is obvious that in this case for all three quadrature formulae

togetheroply the stations of the 16-point formula are needed.

Therefore three different numerical results maybe obtained by'

merely sixteen function evaluations. But - using our tables

with N = 3(1)20 - we can find two further ways of applying three

different formulae while performing a minimum number of function

evaluations.

Th.e second possibility is to use a 5-, 10-, 20"'point formula

and the third involves a 6-, 9-, 18-point formula (we omit the

3-point formula since its precision is too low). In practice

the last possibility seems to be the most promising since it con=

tains neither avery low-order nor a very high-order formula.

The advantage of applying such a triplet of N-point formulae

when numerically evaluating an integral is clear. Instead of

computing only one scalar product by the function values and the'

corresponding weights, three scalar products can be computed at

the expense of merely using some more weights but no additional

function values. Assuming the stability of the numerical results

the number of correct digits may then be estimated by comparing the

three values obtained and noting the convergence.

Before concluding this chapter, we compare the values of our

error bounds with the result of a derivative-free bound for regular

integrals.
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,
To do.so, we.apply a 4-point and 8-point Gauss-Legendre

quadrature formula to

1
f dx

o J (x-2) 2 + 1

and bound the errors committed by the error coefficients g1ven 1n

[29 ] • In order to be fair, the corresponding function-dependent

computed to the same precision as those of example 2. The

resul ts.obtained are given below.

0 T f, 2 °n,Z.Tf,2 0 T °oo.Tf 1 Actualn n,2 noo f,1 n, , error,

4 0,30 0,29 E-3 0,87 E-:4 0,61 E-I 0,32 E-3 0,20 E-4 0,16 E- 7

8 0,16 0,28 E-6 0,45 E-7 0,17 E-I 0,27 E-6 0,48 E-7 0,50E-14
.

Comparing the error bounds with the corresponding actual errors

here and in examples 1 and 2 (involving the same function), we see

that the errors of the f.p. integral approximations ~re f~r better

bounded. In those examples, the relative deviation of the error

bound from the actual error is at most about 0,14 E+6 while here

the maximum relative deviation of the error bound is ~ 0,96 E+7.
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It thus seems that.- at least as far as derivative-free error

bounds are concerned - f.p. integral formulae behave better than

their classical counterparts.
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CON C L U S ION

We studied finite-part integrals which involve an algebraic singularity.

We defined such integrals first by a regularization of a certain distri= .

bution and then generalized this definition so that we need not be

restricted to test functions.

It was shown that the corrnnonrules for ordinary integration as far

as they concern equalities are also valid for finite-part integrals.

But we noticed that the standard rules concerning inequalities are not,

in general, applicable. Furthermore we found the strange property

that finite~part integrals with an integer exponent are not invariant

under a scaling of their finite integration interval.

underline~ the pe~uliarity of these integrals.

This fact

In order to derive a Gauss-type quadrature formula for the numer1=

cal evaluation of finite-,part integrals we had to study a new class of

orthogonal polynomials which are in a certain case elements of a
,.

pseudo-Euclidean space. The proof of the validity bf the Christoffel-

Darboux formula is the main result of our investigation concerning the

optimal quadrature form~la.

For the equispaced quadrature formula we gave two kinds of

derivative-free error bounds.

yielded fairly good results.

Their application to several examples

In a further study of finite-part integrals, we shall investigate

such integrals which involve a logarithmic or a trigonometric singula=

rity. In particular, we shall focus attention on quadrature formulae.

for these kinds of finite-part integrals.
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A PHYSICAL EXAMPLE ON THE NUMERICAL EVALUATION
OF FINITE-PART INTEGRALS

The following example arose in a project which is at present undertaken
by the National Research Institute for Mathematical Sciences (NRIMS) of
the CSIR,Pretoria. The main concerns of this project are potential
problems occurring in electron optics. This physical example was the
first where we practically applied the numerical quadrature of finite-
part integrals and it was not available at the time the Ph.D. thesis [4]
was submitted to the University of Stellenbosch.

Work upon this project is still in progress and it will presumably
be finished during 1976. It is intended to publish the results.

The general physical problem
Given a rotati ona lly symmetri eel ectrode and an integrab 1e surface cha :"i,?
density a on it which does not depend on the rotation angle. Then the
problem consists in finding the potential ~ together with its first and
second derivatives. Of particular interest are the values of these
derivatives on the electrode itself. In order to compute them one has
to introduce finite-part integrals.

Our present computer program calculates the potential and its first
(partial) derivatives on the electrode. For testing purposes we chose
the shape of the electrode such that the potential is analytically known,
and we shall demonstrate essentially the numerical quadrature of finite-
part integrals in this special case.

The special case
Given an infinite plane electrode containing a circular hole of radius 1,

2/ .
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supp'ose the electric fields above and below this electrode at infinity
are constant and the potential is zero on the plate (electrode); see
Fi g. 1.

z

R

~

ac/J / = 1az. z =00

Fi g. 1

r

From these assumptions, the potential c/J and the surface charge density a

on the electrode can be analytically found by introducing cylindrical
coordinates (see e.g. [1]) as

( R ) z z [ () 1/]c/J ,z = I + i arct~n u + u , (1)

where

and a(r) = ~ [arctan 1/-1 + 1// r2-1], r > 1.
2Tf

Example
We want to compute the first derivative of c/J in tangential direction on
the electrode, i.e. lim ~.

z-+o

3/ .
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In our case, ~ represents the potential of a single layer. We know
from potential theory that if a single layer is traversed in the normal
direction the values of the potential and its derivatives in the

. d~ _ d~
11m_ ~ - ~ / Z=z-+o a 00

it follows immediately that ~k/z = 0 = O.

tangential directions are continuous. This means that lim ~k =
z -+ 0+

From the analytic expression (1) for the potential

In order to calculate numerically ~k/z=o we must also consider an
upper electrode (to take into account the far field boundary condition
~~ /z =00 = 1 in this case) the charge density on which is 02 = -1/4n.

With this fictitious upper electrode we have

d~ a~1 a~2
/ - / +-/aR z = 0 - --aJ< Z= 0 d R z = 0 (3 )

where ~1 and ~2 are the potentials produced by the surface charge
densities 0(r) and 02' If we differentiate the integral representation
of a potential 4J(R,z) produced by a given charge density 0(r) (see [2, 3])

.with respect to R and let z tend to zero, we obtain

00

= 2 f 0(r)r [ E(k) (r+R) - K(k)] dr, R > 11 R(r+R) r-R (4)

where K(k) is the complete elliptic integral of the first kind,
E(k) is the complete elliptic integral of the second kind,

with 4rR
(r+R)2 (k the modulus).

We remark that the elliptic integrals arise from the integration
around the z-axis. The kernel of (4), i.e. the integrand without 0(r)r
represents a Green's function and is classically not integrable at the
point r = R. We can, however, obtain the correct value Of; /z = 0 by

4/ .
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taking the finite-part of the integral (symbol f) in (4).

For z = a we can write

K(k) = K1(k) + in [ lifr~R?)2 ] (5)

where
~ ----2j1-k sin a

K1(k) = f1+k sin a do.
o

is a regular integral.

Inserting the corresponding surface charge densities (2) and 02

respectively in (4) together with (5) we have for the lower electrode

8<P1 -1 00 12 !2 E(k)
8R / z = 0 = 7~[arctan Ir'--l + l/lr'--l] R(r-R) dr +

100 12.!2
+ 2" f [arctan Ir'--l + l/lr'--l] [K1(k) +

IT 1

+ in l{+1)2 ] . r d r
r-R R(r+R)

and for the upper electrode

8<P2 _ -1 00 E(~)r_ 1 00 r
aR / z = 0 - 2IT f ~ dr + 2IT f- R( r+R) [K1 ( k) +o 0

. . 2

+ In i{r~:() ] dr .

(6)

(7)

By the substitution r = l/x, the infinite integration interval of (6)

may be transformed to [0,1]. Furthermore, if we split up the integrands

we obtain

1 1 ll.-x2 E(k1). dx 1 E(k1) dx
= - ;Z { ~ arctan (-. -x-)R(l-Rx) 7 + ~ Rx(l-Rx)~

5/ .
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. 2
1 Q K1(k1)+in(1+VRX) dx

- ~ arctan ( l~X ) R(l+Rx) ;Z
1 K1(k1)+in(1+/RX)2 1 ~

- f ------------====--- dx - f arctan (/l-x~)in 1 dx
o Rx(l+Rx) l1-x2. 0 x IT=RXT Rx2(1+Rx;

1 1 dx
- ~ in IT=RXT Rx(l+Rx)~ }

2 4Rxwith k = --~1 (1+Rx)2

(8)

Separating [0,1] from the integration interval in (7) and applying the
same substitution as before to the remaining (infinite) interval yields

8<P2. _ 1 1 _El~ 1 E(k1) dx
8R Iz = 0 - - 2TI { J RfX=RT dx + f R(l-Rx) -Z -

o 0 x

- } [K (k)+in -cq + f)21 x-Ro

1 K1(k1)+in(1+/RX)2 dx
- f R(l+Rx) .-Z

o x

x dx-R(x+R)

1 1 dx
- f in Tf=RXT ---}.o I~-"AI Rx2(1+Rx)

(9 )

We note that all integrals in (8) except the last must be taken in the
sense of finite-part otherwise they are meanin~less.

The last integral in (8) is only apparently singular at x = o. This
is easily seen if we write it in the form ; f(x) dx and consider

o x
f(x)/x =0. Since f(o) = 0 the constant term of the Taylor series of
f(X) vanishes and thus that integral is integrable at x = o.

In (9), there are three finite-part integrals, the other integrals
exist classically.

6/ .
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We recognize two singular locations in the finite-part integrals of
(8) and (9): the origin and the point x = l/R. The first singularity
originates from the unbounded interval in (6) and (7) (see [4, page 52]),

it corresponds to the point r = 00 before the transformation and is merely
due to the fact that the electrode is infinite, whereas the second was
already located at the finite point r = R before the change of the
integration variable. We remember that this singularity is due to the
kernel of the integral in (4) and must be expected.

Besides these singularities at which the integrand is not cl'assically
integrable there are integrable singular points at x = l/R and at x = 1.
The former represents the logarithmic singularity of the term in rrhxr
and the latter is a singularity of 1/;l-x2 which stems from o(r).

Altogether we have four singularities located at three different
points. Thus for the numerical evaluation of each integral in (8) and
(9) we have to split up the integration interval [0,1] in a suitable way.
We shall illustrate this only by the first integral in (8), viz

1 A-i E( k1) dx
f arctan ( x ) R(l-Rx) -Z .
o x

In order to compute this integral we divide [0,1] as follows.,

f.p. f.p. f.p.
I •reg. reg.

0 a b l/R c 1

Thus (10) can be written as (omitt ing the integrand)

a b l/R c 1
f + f + f + f + f
0 a b l/R c

(10)

7/ .

Stellenbosch University http://scholar.sun.ac.za



7

a sum of three finite-part integrals and two regular integrals.

Splitting up the interval of all singular integrals in (8) and (9)
in a similar way we obtain 14 finite-part integrals. Then the remaining
32 integrals are either regular or are improper integrals of the first
kind (unbounded integrand).

Our program computes each finite-part integral by the interpolatory
quadrature formula with equispaced stations. The integrals involving a
logarithmic singularity are numerically evaluated by the special Gaussian'
type formula1 and all other integrals by the standard Gauss-Legendre
formula.

We performed several runs where R varied between 1,5 and 10 and
obtained for the total sum ~: = ~ / of the above-mentioned 46aR z = 0

-6integrals values whose order of magnitude is 10 , i.e. six correct
significant digits. In these runs, we took 32 stations for the Gaussian
type formulae and 16 equispaced stations for each finite-part integral.
In order to check the quality of the finite-part quadrature, we repeated
some runs using the 8-, 12- and 20-point formulae. With the 12-point
formula, ~ was still correct up to six significant digits, whereas the 8-
and 20-poiritformulaeyielded for ~ two significant digits less. One
would expect a loss of digits with these formulae since the accuracy of
the former is too low (compared with the complicate integrand) and the
weights of the latter are very large (see also the remark in [4, page 76J

Before concluding this example we briefly comment the problem of an
error bound. In order to apply the derivative-free error bound given in
[4] to a finite-part integral one needs the Taylor coefficients ai of the

11 This formula approximates r In(l)f(x) dx (see e.g. [5])
o x

8/ .
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integrand function involved or at least a bound of .L lail or {.L ai }2.
1=0 1=0

But for this example both, the coefficients themselves or the bound of
one of those series, are (unfortunately) practically not obtainable.
Therefore the numerical evaluation of the error bound expression becomes
so unwieldy as to make the error bound illusory.
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