
Quantitative assessment of fire and 
vegetation properties in simulations with 
fire-enabled vegetation models from the 
Fire Model Intercomparison Project 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., 
Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, 
G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. 
S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., 
Voulgarakis, A. and Yue, C. (2020) Quantitative assessment of 
fire and vegetation properties in simulations with fire-enabled 
vegetation models from the Fire Model Intercomparison 
Project. Geoscientific Model Development, 13 (7). pp. 3299-
3318. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-13-
3299-2020 Available at http://centaur.reading.ac.uk/95599/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.5194/gmd-13-3299-2020 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


Publisher: European Geosciences Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Geosci. Model Dev., 13, 3299–3318, 2020
https://doi.org/10.5194/gmd-13-3299-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantitative assessment of fire and vegetation properties in
simulations with fire-enabled vegetation models from
the Fire Model Intercomparison Project
Stijn Hantson1,2, Douglas I. Kelley3, Almut Arneth1, Sandy P. Harrison4, Sally Archibald5, Dominique Bachelet6,
Matthew Forrest7, Thomas Hickler7,8, Gitta Lasslop7, Fang Li9, Stephane Mangeon10,a, Joe R. Melton11,
Lars Nieradzik12, Sam S. Rabin1, I. Colin Prentice13, Tim Sheehan6, Stephen Sitch14, Lina Teckentrup15,16,
Apostolos Voulgarakis10, and Chao Yue17

1Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology,
Garmisch-Partenkirchen, Germany
2Geospatial Data Solutions Center, University of California Irvine, Irvine, CA 92697, USA
3UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
4School of Archaeology, Geography and Environmental Science, University of Reading, Reading, UK
5Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand,
Private Bag X3, WITS, Johannesburg, 2050, South Africa
6Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
7Senckenberg Biodiversity and Climate Research Institute (BiK-F), Senckenberganlage 25,
60325 Frankfurt am Main, Germany
8Institute of Physical Geography, Goethe University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
9International Center for Climate and Environmental Sciences, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing, China
10Department of Physics, Imperial College London, London, UK
11Climate Research Division, Environment and Climate Change Canada, Victoria, BC V8W 2Y2, Canada
12Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
13AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystem and the Environment,
Department of Life Sciences and Grantham Institute – Climate Change and the Environment, Imperial College London,
Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
14College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
15ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
16Climate Change Research Center, University of New South Wales, Sydney, NSW 2052, Australia
17Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ,
Université Paris-Saclay, 91198 Gif-sur-Yvette, France
anow at: Data 61, CSIRO, Brisbane, Australia

Correspondence: Stijn Hantson (hantson.stijn@gmail.com)

Received: 17 September 2019 – Discussion started: 8 January 2020
Revised: 6 June 2020 – Accepted: 22 June 2020 – Published: 17 July 2020

Published by Copernicus Publications on behalf of the European Geosciences Union.



3300 S. Hantson et al.: FireMIP model evaluation

Abstract. Global fire-vegetation models are widely used to
assess impacts of environmental change on fire regimes and
the carbon cycle and to infer relationships between climate,
land use and fire. However, differences in model structure
and parameterizations, in both the vegetation and fire com-
ponents of these models, could influence overall model per-
formance, and to date there has been limited evaluation of
how well different models represent various aspects of fire
regimes. The Fire Model Intercomparison Project (FireMIP)
is coordinating the evaluation of state-of-the-art global fire
models, in order to improve projections of fire characteris-
tics and fire impacts on ecosystems and human societies in
the context of global environmental change. Here we per-
form a systematic evaluation of historical simulations made
by nine FireMIP models to quantify their ability to repro-
duce a range of fire and vegetation benchmarks. The FireMIP
models simulate a wide range in global annual total burnt
area (39–536 Mha) and global annual fire carbon emission
(0.91–4.75 Pg C yr−1) for modern conditions (2002–2012),
but most of the range in burnt area is within observational
uncertainty (345–468 Mha). Benchmarking scores indicate
that seven out of nine FireMIP models are able to represent
the spatial pattern in burnt area. The models also reproduce
the seasonality in burnt area reasonably well but struggle to
simulate fire season length and are largely unable to repre-
sent interannual variations in burnt area. However, models
that represent cropland fires see improved simulation of fire
seasonality in the Northern Hemisphere. The three FireMIP
models which explicitly simulate individual fires are able to
reproduce the spatial pattern in number of fires, but fire sizes
are too small in key regions, and this results in an under-
estimation of burnt area. The correct representation of spa-
tial and seasonal patterns in vegetation appears to correlate
with a better representation of burnt area. The two older fire
models included in the FireMIP ensemble (LPJ–GUESS–
GlobFIRM, MC2) clearly perform less well globally than
other models, but it is difficult to distinguish between the re-
maining ensemble members; some of these models are bet-
ter at representing certain aspects of the fire regime; none
clearly outperforms all other models across the full range of
variables assessed.

1 Introduction

Fire is a crucial ecological process that affects vegetation
structure, biodiversity and biogeochemical cycles in all veg-
etated ecosystems (Bond et al., 2005; Bowman et al., 2016)
and has serious impacts on air quality, health and economy
(e.g. Bowman et al., 2009; Lelieveld et al., 2015; Archibald
et al., 2013). In addition to naturally occurring wildland fires,
fire is also used as a tool for pasture management and to
remove crop residues. Because fire affects a large range of
processes within the Earth system, modules which simulate

burnt area and fire emissions are increasingly included in
dynamic global vegetation models (DGVMs) and Earth sys-
tem models (ESMs) (Hantson et al., 2016; Kloster and Lass-
lop, 2017; Lasslop et al., 2019). However, the representation
of both lightning-ignited fires and anthropogenic fires (in-
cluding cropland fires) varies greatly in global fire models.
This arises due to the lack of a comprehensive understand-
ing of how fire ignitions, spread and suppression are affected
by weather, vegetation and human activities, as well as the
relative scarcity of long-term, spatially resolved data on the
drivers of fires and their interactions (Hantson et al., 2016).
As a result, model projections of future fire are highly uncer-
tain (Settele et al., 2014; Kloster and Lasslop, 2017). Since
vegetation mortality – including fire-related death – is one
determinant of carbon residence time in ecosystems (Allen et
al., 2015), differences in the representation of fire in DGVMs
or ESMs also contributes to the uncertainty in trajectories of
future terrestrial carbon uptake (Ahlström et al., 2015; Friend
et al., 2014; Arora and Melton, 2018). Improved projections
of wildfires and anthropogenic fires, their impact on ecosys-
tem properties, and their socioeconomic impact will there-
fore support a wide range of global environmental change
assessments, as well as the development of strategies for sus-
tainable management of terrestrial resources.

Although individual fire-enabled DGVMs have been eval-
uated against observations, comparisons of model perfor-
mance under modern-day conditions tend to focus on a lim-
ited number of fire-related variables or specific regions (e.g.
French et al., 2011; Wu et al., 2015; Ward et al., 2016;
Kloster and Lasslop, 2017). Such comparisons do not pro-
vide a systematic evaluation of whether different parame-
terizations or levels of model complexity provide a better
representation of global fire regimes than others. Likewise,
none of the Coupled Model Intercomparison Projects that
have been initiated to support the Intergovernmental Panel on
Climate Change (IPCC) process (CMIP; Taylor et al., 2012;
Eyring et al., 2016) focus on fire, even though several of the
CMIP models simulate fire explicitly. The Fire Model In-
tercomparison Project (FireMIP) is a collaborative initiative
to systematically evaluate state-of-the-art global fire models
(Hantson et al., 2016; Rabin et al., 2017).

The FireMIP initiative draws on several different types
of simulations, including a baseline historical simulation
(1700–2013 CE) and sensitivity experiments to isolate the re-
sponse of fire regimes to individual drivers, as well as sim-
ulations in which fire is deliberately excluded (Rabin et al.,
2017). While the sensitivity and exclusion experiments pro-
vide valuable insights into model behaviour (Teckentrup et
al., 2019; Li et al., 2019), the baseline historical simulation
provides an opportunity to assess how well the models sim-
ulate modern conditions. Model–model differences could re-
flect differences in the treatment of fire, ecosystem processes
or how fire interacts with other aspects of the land surface in
an individual model. Evaluation of the baseline simulations
needs therefore to include evaluation of ecosystem processes
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and diagnosis of interactions between simulated vegetation
and fire.

Systematic model evaluation can also serve another pur-
pose. The analysis of future climate and climate impacts
is often based on results from climate and impact model
ensembles (e.g. Kirtman et al., 2013; Collins et al., 2013;
Warszawski et al., 2013), and these ensembles are also be-
ing used as a basis for impact assessments (e.g. Settele et al.,
2014; Hoegh-Guldberg et al., 2019). However, there is in-
creasing dissatisfaction with the idea of using the average be-
haviour of model ensembles without accounting for the fact
that some models are less reliable than others (Giorgi and
Mearns, 2002; Knutti, 2010; Parker et al., 2013), and many
have called for “the end of model democracy” (e.g. Held,
2005; Knutti, 2010). Although there is still considerable dis-
cussion about how to constrain models using observations,
and then how to combine and possibly weight models de-
pending on their overall performance or performance against
a minimum set of specific criteria (e.g. Eyring et al., 2005;
Tebaldi et al., 2005; Gleckler et al., 2008; Weigel et al., 2008;
Santer et al., 2009; Parker, 2013; Abramowitz et al., 2019), it
is clear that results from systematic evaluations are central to
this process.

A number of papers have examined specific aspects of the
FireMIP baseline simulations. Andela et al. (2017) showed
that the FireMIP models do not reproduce the decrease in
global burnt area over the past 2 decades inferred from anal-
ysis of version 4s of the Global Fire Emission Database
(GFED4s) data product. In fact, four of the models show
an increase in burnt area over the period 1997–2014. Al-
though the remaining five models show a decrease, their
mean decrease is only about one-tenth of the observed rate
(−0.13± 0.56 % yr−1, compared to the observed trend of
−1.09±0.61 % yr−1). However, the observed global decline
of burnt area derived from satellite data is strongly dominated
by African savanna ecosystems; the spatial pattern of trends
is very heterogeneous, and the satellite record is still very
short, which raises issues about the robustness of these trends
(Forkel et al., 2019b). Li et al. (2019) compared modelled
and satellite-based fire emissions and concluded that most
FireMIP models fall within the current range of observational
uncertainty. Forkel et al. (2019a) compared the emergent re-
lationships between burnt area and multiple potential drivers
of fire behaviour, including human caused ones, as seen in
observations and the FireMIP models. They show that, al-
though all of the models capture the observed emergent rela-
tionships with climate variables, there are large differences in
their ability to capture vegetation-related relationships. This
is underpinned by a regional study using the FireMIP mod-
els over China that showed that there are large differences in
simulated vegetation biomass, hence in fuel loads, between
the models (Song et al., 2020). These results make a focus
on benchmarking both simulated fire and vegetation partic-
ularly pertinent. Forkel et al. (2019a) showed that some of
the FireMIP models, specifically those that include a rela-

tively strong fire suppression associated with human activ-
ities (Teckentrup et al., 2019), were able to reproduce the
emergent relationship with human population density. How-
ever, the treatment of the anthropogenic influence on burnt
area has been identified as a weakness in the FireMIP mod-
els (Andela et al., 2017; Teckentrup et al., 2019; Li et al.,
2019; Forkel et al., 2019a), mainly due to a lack of process
understanding.

In this paper, we focus on quantitative evaluation of model
performance using the baseline historical simulation and
a range of vegetation and fire observational datasets. We
use the vegetation-model evaluation framework described by
Kelley et al. (2013), with an extended set of data targets to
quantify the fire and vegetation properties and their uncer-
tainties. We identify (i) common weaknesses of the current
generation of global fire-vegetation models and (ii) factors
causing differences between the models and (iii) discuss the
implications for future model development.

2 Methods

2.1 Model simulations

The baseline FireMIP simulation is a transient experiment
starting in 1700 CE and continuing to 2013 (see Rabin et
al., 2017, for description of the modelling protocol and the
sources of the input data for the experiments). Models were
spun up until carbon stocks were in equilibrium for 1700 CE
conditions (equilibrium was defined as < 1 % change over a
50-year time period for the slowest carbon pool in each grid
cell) using land use and population density for 1700 CE, CO2
concentration for 1750 CE, and recycling climate and light-
ning data from 1901 to 1920 CE. Although the experiment
is fully transient after 1700 CE, annually varying values of
all these forcings are not available until after 1900 CE. Cli-
mate, land use, population and lightning were regridded to
the native grid of each model. Global fire–vegetation mod-
els ran with either dynamic or prescribed natural vegetation
(Table 1), but all used observed time-evolving cropland and
pasture (if simulated) distribution.

Nine coupled fire–vegetation models have performed the
FireMIP baseline experiments. The models differ in com-
plexity, representation of human impact and vegetation dy-
namics, and spatial and temporal resolution (Table 1). A
detailed description of each model is given in Rabin et
al. (2017). Most of the models ran simulations for the full
period 1700–2013, but CLASS–CTEM, JULES–INFERNO,
MC2 and CLM simulated 1861–2013, 1700–2012, 1902–
2009 and 1850–2013 respectively. This slight deviation from
the protocol does not affect the results of all but one model
presented here as we only analyse data for the present-day
period (2002–2012). For MC2, the 2002–2009 time period
was used for analysis, which might influence the results for
this model.
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Table 1. Brief description of the global fire models that ran the FireMIP baseline experiments. Process indicates models which explicitly
simulate ignitions and fire spread. A detailed overview can be found in Rabin et al. (2017).

Model Dynamic Fire model Human suppression Spatial resolution Temporal Reference
biogeography type of fire spread/ (long × lat) resolution

burnt area

CLM No Process Yes 2.5◦× 1.9◦ Half hourly Li et al. (2013)
CLASS–CTEM No Process Yes 2.8125◦× 2.8125◦ Daily Melton and Arora (2016)
JULES–INFERNO Yes, but without fire feedback Empirical No 1.875◦× 1.245◦ Half hourly Mangeon et al. (2016)
JSBACH–SPITFIRE No Process Yes 1.875◦× 1.875◦ Daily Lasslop et al. (2014)
LPJ–GUESS–SPITFIRE Yes Process No 0.5◦× 0.5◦ Daily Lehsten et al. (2009)
LPJ–GUESS–GlobFIRM Yes Empirical No 0.5◦× 0.5◦ Annual Smith et al. (2014)
LPJ–GUESS–SIMFIRE–BLAZE Yes Empirical Yes 0.5◦× 0.5◦ Annual Knorr et al. (2016)
MC2 Yes Process No 0.5◦× 0.5◦ Monthly Bachelet et al. (2015)
ORCHIDEE–SPITFIRE No Process No 0.5◦× 0.5◦ Daily Yue et al. (2014)

2.2 Benchmarking reference datasets

Model performance was evaluated using site-based and re-
motely sensed global datasets of fire occurrence, fire-related
emissions and vegetation properties (Fig. 1; Fig. S1 in the
Supplement). We include vegetation variables (e.g. gross
primary productivity, GPP; net primary productivity, NPP;
biomass; and leaf area index, LAI) because previous analy-
ses have indicated that they are critical for simulating fire oc-
currence and behaviour (Forkel et al., 2019a; Teckentrup et
al., 2019), and there are global datasets available. We did not
consider parameters such as soil or litter moisture because,
although these may have an important influence on fire be-
haviour, globally comprehensive datasets are not available.
All datasets are plotted in Fig. S1. We used multiple datasets
as targets for variables where they were available in order to
take into account observational uncertainty.

Ideally, model benchmarking should take account of un-
certainties in the observations. However, observational un-
certainties are not reported for most of the datasets used here
(e.g. vegetation carbon). While it would in principle be pos-
sible to include uncertainty for example by down-weighting
less reliable datasets (e.g. Collier et al., 2018), determin-
ing the merits of the methods used to obtain observational
data is rather subjective, and there is no agreement as to
which is more reliable if multiple reference datasets exist
for the same variable (e.g. burnt area). Furthermore, some of
the datasets (e.g. emissions) involve modelled relationships;
there has been little assessment of the impact of the choice of
model on the resultant uncertainty in emission estimates (e.g.
Kaiser et al., 2012). While we use multiple datasets when
available (e.g. for burnt area, where there are extremely large
differences between the products and they may all underesti-
mate the actual burnt area; Roteta et al., 2019), in an attempt
to integrate observational uncertainty in our evaluations, it
seems premature to incorporate uncertainty in the benchmark
datasets in a formal sense in calculating the benchmarking
scores.

The following datasets were used for model evaluation:

– Burnt area

Five global burnt fraction products were used in this
study (Fig. S1). We used the fourth version of the
Global Fire Emissions Database (GFED4) for 1997-
2013, which uses the MCD64 burnt area MODIS-based
product in combination with an empirical estimation of
burnt area based on thermal anomalies when MODIS
data were unavailable (Giglio et al., 2013). We also in-
cluded a version where the MCD64 burnt area prod-
uct was merged with the small fire detection approach
developed by Randerson et al. (2012; GFED4s). The
third dataset is the MODIS burnt area product MCD45,
which is the only burnt area product not using MODIS
thermal anomalies within its burnt area detection al-
gorithm (2002–2013) (Roy et al., 2008). The fourth is
the FireCCIv4.0 dataset based on MERIS satellite data
(Alonso-Canas and Chuvieco, 2015), available for the
period 2005–2011. The fifth is the FireCCI5.1 dataset
based on MODIS 250m imagery (Chuvieco et al.,
2018).

– Fire emissions.

Carbon emission by fires is estimated within the Global
Fire Assimilation System (GFAS) based on satellite-
retrieved fire radiative power (FRP) (Kaiser et al.,
2012). Here we use the global GFAS data for the period
2000–2013.

– Fire size and numbers.

Estimates on mean size and number of fires can be pro-
duced using a flood-filling algorithm to extract individ-
ual fires (Archibald et al., 2013). Here we use the data
as produced by Hantson et al. (2015) from the MCD45
global burnt area product (Roy et al., 2008). Only large
fires ≥ 25 ha (1 MODIS pixel) are detected, with a con-
siderable underestimation of fires <∼ 125 ha. There-
fore, a direct comparison with modelled fire numbers
and size is meaningless, but evaluation of the spatial pat-
tern in fire numbers and fire size can be performed.

Geosci. Model Dev., 13, 3299–3318, 2020 https://doi.org/10.5194/gmd-13-3299-2020
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– Vegetation productivity.

We use multiple datasets for vegetation productivity,
both measurements from site locations and global up-
scaled estimates. The site-level GPP dataset is from
Luyssaert et al. (2007), and the site-level NPP combines
these data with data from the Ecosystem Model-Data
Intercomparison (EMDI; Olson et al., 2001) databases.
Sites from managed or disturbed environments were not
used. A recent compilation of NPP site-level estimates
was compiled by Michaletz et al. (2014). The mean of
observations was taken when more than one measure-
ment was available within a 0.5◦ grid cell. We also use
upscaled FLUXNET GPP data (Jung et al., 2017; Tra-
montana et al., 2016). Kelley et al. (2013) showed that
the spreading of data between FLUXNET site observa-
tions in such upscaling artificially improved model per-
formance, probably because it used similar input data
and methods, which might emulate functional relation-
ships used within DGVMs. Hence scores obtained by
Jung should not be interpreted as true “benchmarking
scores” but could help inform differences between mod-
els in relation to scores obtained from other compar-
isons like burnt area (See Fig. S1).

– Carbon in vegetation.

A global dataset on aboveground vegetation biomass
was recently produced by combining two existing
datasets – Saatchi et al. (2011) and Baccini et al. (2012)
– using a reference dataset of field observations and es-
timates (Avitabile et al., 2016). However, this dataset
only considers woody biomass, and to be able to analyse
vegetation carbon also for areas without tree cover we
used the dataset generated by Carvalhais et al. (2014),
which combined the Saatchi et al. (2011) and Thurner
et al. (2014) biomass datasets while providing a best es-
timate for herbaceous biomass.

– Leaf area index (LAI).

We use the MODIS LAI product MCD15, which gives
global LAI values each 8 d (Myneni et al., 2002) and
the LAI dataset produced based on AVHRR (Claverie
et al., 2016). The mean LAI over the period 2001–2013
is used for benchmarking.

2.3 Model evaluation and benchmarking

We adopted the metrics and comparison approach specified
by Kelley et al. (2013) as it provides a comprehensive scheme
for the evaluation of vegetation models. This protocol pro-
vides specifically designed metrics to quantify model perfor-
mance in terms of annual-average, seasonal and interannual
variability against a range of global datasets, allowing the
impact of spatial and temporal biases in means and variabil-
ity to be assessed separately. The derived model scores were
compared to scores based on the temporal or spatial mean

value of the observations and a “random” model produced
by bootstrap resampling of the observations.

Normalized mean error (NME) was selected over other
metrics (e.g. RMSE) as these normalized scores allow for di-
rect comparison in performance between variables with dif-
ferent units (Kelley et al., 2013). NME is more appropri-
ate for variables which do not follow a normal distribution,
and it has therefore been used as the standard metric to as-
sess global fire model performance (e.g. Kloster and Lasslop,
2017; Kelley et al., 2019; Boer et al., 2019). NME is defined
as

NME=
∑
Ai |obsi − simi |∑
Ai
∣∣obsi − obs

∣∣ , (1)

where the difference between observations (obs) and simu-
lation (sim) are summed over all cells (i) weighted by cell
area (Ai) and normalized by the average distance from the
mean of the observations (obs). Since NME is proportional
to mean absolute errors, the smaller the NME value, the bet-
ter the model performance. A score of 0 represents a perfect
match to observations. NME has no upper bound.

NME comparisons were conducted in three steps follow-
ing Kelley et al. (2013):

– Step 1 is as described above.

– Step 2 is with obsi and simi replaced with the difference
between observation or simulation and their respective
means, i.e. xi→ xi − x̄, removing systematic bias and
describe the performance of the model around the mean.

– Step 3 is where obsi and simi from step 2 were divided
by the mean deviation, i.e. xi→ xi/ |xi |. This removed
the influence of bias in the variability and described the
models ability to reproduce the spatial pattern in burnt
area.

To limit the impact of observational uncertainties in the ref-
erence datasets on the comparisons and as NME can be sen-
sitive to the simulated magnitude of the variable, we mainly
focus on benchmarking results after removing the influence
of biases in the mean and variance (step 3). However, com-
parisons of steps 1 and 2 are given in Table S1 in the Supple-
ment.

To assess a model’s ability to reproduce seasonal patterns
in a variable, we focused on seasonal concentration (roughly
equivalent to the inverse of season length) and seasonal phase
(or timing) comparisons from Kelley et al. (2013). This uses
the mean seasonal “vector” for each observed and simulated
location based on the monthly distribution of the variable
through the year, whereby each month, m, is represented by
a vector in the complex plane whose direction (θm) corre-
sponds to the time of year, and length corresponds to the
magnitude of the variable for that month as follows:

θm = 2 ·π · (m− 1)/12. (2)

https://doi.org/10.5194/gmd-13-3299-2020 Geosci. Model Dev., 13, 3299–3318, 2020
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A mean vector L is the average of the real (Lx) and imagi-
nary (Ly) parts of the 12 vectors (xm).

Lx =6mxm · cos(θm)

Ly =6mxm · sin(θm) (3)

The mean vector length by the annual average describes the
seasonal concentration (C) of the variable, while its direction
(P ) describes seasonal timing (phase) as follows:

C =

√
L2
x +L

2
y

6mxm
(4)

P = arctan
(
Lx

Ly

)
. (5)

If the variable in a given cell is concentrated all in 1 month,
then, C is equal to 1, and P corresponds to that month. If
burnt area is evenly spread throughout the year, then con-
centration is zero, and phase is undefined. Where the phase
of a cell is undefined in either observations or simulation,
then it was not used in the comparison. Likewise, if a cell
has zero annual average burnt area for either observations or
simulation, then that cell is not included in the comparisons.
Concentration was compared using NME step 1. Phase was
compared using the mean phase difference metric (MPD):

MPD=
1
π
6iAi · arcos

[
cos

(
Psim,i −Pobs,i

)]
/6iAi . (6)

MPD represents the average timing error, as a proportion of
the maximum phase mismatch (6 months).

Seasonality metrics could not be calculated for three mod-
els (LPJ–GUESS–GlobFIRM, LPJ–GUESS–SIMFIRE–
BLAZE, MC2), either because they do not simulate the
seasonal cycle or because they did not provide these outputs.
We did not use FireCC4.0 to assess seasonality or interan-
nual variability (IAV) in burnt area because it has a much
shorter times series than the other burnt area products.

Model scores are interpreted by comparing them to two
null models (Kelley et al., 2013). The “mean” null model
compares each benchmark dataset to a dataset of the same
size created using the mean value of all the observations. The
mean null model for NME always has a value of 1 because
the metric is normalized by the mean difference. The mean
null model for MPD is based on the mean direction across all
observations, and therefore the value can vary and is always
less than 1. The “randomly resampled” null model com-
pares the benchmark dataset to these observations resampled
1000 times without replacement (Table 3). The randomly re-
sampled null model is normally worse than the mean null
model for NME comparisons. For MPD, the mean will be
better than the random null model when most grid cells show
the same phase.

For comparison and application of the benchmark metrics,
all the target datasets and model outputs were resampled to a

0.5◦ grid. Although some models were run at a coarser reso-
lution, the spatial resolution at which the benchmarking was
performed had only a limited impact on the scores (Fig. S2),
which does not affect conclusions drawn here. Each model
was compared to each reference dataset except in the few
cases where the appropriate model output was not provided
(e.g. LAI in ORCHIDEE, GPP in MC2). Only the models
which incorporate the SPITFIRE fire module provided fire
size and number results.

3 Results

3.1 Modern-day model performance: burnt area and
fire emissions

The simulated modern (2002–2012) total global annual burnt
area is between 39 and 536 Mha (Table 2). Most of the
FireMIP models are within the range of burnt area esti-
mated by the individual remotely sensed products (354 to
468 Mha yr−1). LPJ–GUESS–GlobFIRM and MC2 simulate
much less burnt area than that shown by any of the prod-
ucts, and CLASS–CTEM simulates more than shown by any
of the products. However, use of the range of the remotely
sensed estimates may not be a sufficient measure of the un-
certainty in burnt area because four of them are derived from
the same active fire product (Forkel et al., 2019a), and re-
cent work suggests that they may all underestimate burnt area
(Roteta et al., 2019). Thus, we cannot definitively say that the
apparent overestimation by CLASS–CTEM is unrealistic.
With the exception of MC2 and LPJ–GUESS–GlobFIRM,
the models realistically capture the spatial patterns in burnt
area (Figs. 1 and 2) and perform better than either of the null
models irrespective of the reference burnt area dataset (Ta-
ble 3). CLM (NME: 0.63–0.80) and ORCHIDEE–SPITFIRE
(0.70–0.73) are the best performing models. All the FireMIP
models correctly simulate most burnt area in the tropics (24–
466 Mha yr−1) compared to observed values in the range of
312–426 Mha yr−1 (Table 2). The simulated contribution of
tropical fires to global burnt area is in the range of 56 % to
92 %, with all models except ORCHIDEE–SPITFIRE simu-
lating a lower fraction than observed (89 %–93 %). This fol-
lows from FireMIP models tending to underestimate burnt
area in Africa and Australia, although burnt area in South
American savannas is usually overestimated (Table 2). All of
the FireMIP models, except LPJ–GUESS–GlobFIRM, cap-
ture a belt of high burnt area in central Eurasia. However, the
models overestimate burnt area across the extratropics on av-
erage by 180 % to 304 %, depending on the reference burnt
area dataset. This overestimation largely reflects the fact that
the simulated burnt area over the Mediterranean basin and
western USA is too large (Table 2, Fig. 2).

The FireMIP models that include a subannual time
step for fire calculations (CLM, CLASS–CTEM, JULES–
INFERNO, JSBACH–SPITFIRE, LPJ–GUESS–SPITFIRE,
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Figure 1. Reference datasets, the mean of all models and the percent of models for which the estimate falls within 50 %–200 % of the (mean)
reference data are presented for a set of fire relevant variables. Results for the following variables are given as follows: (a) fraction burnt
area, (b) seasonal timing of burnt area (as measured by mean phase), (c) burnt area season length (as measured by seasonal concentration),
(d) fire C emissions (g C m−2 yr−1), (e) vegetation carbon (Mg ha−1) and (f) leaf area index (LAI) (m2 m−2). Stippling in the second column
indicates where variance between models is less than the FireMIP model ensemble mean. Purple in the third column indicates cell where the
majority of the FireMIP models produce poor simulations of the variable, while green areas indicate that the majority of the FireMIP models
perform well for that aspect of the fire regime.

ORCHIDEE–SPITFIRE) generally reproduce the seasonal-
ity of burnt area (Fig. 3), particularly in the tropics. The
models capture the timing of the peak fire season reasonably
well, with all of the models performing better than mean null
model for seasonal phase in burnt area (Table 3). The models
also frequently perform better than the random null model,
with all models performing better against GFED4. How-
ever, all of the FireMIP models perform worse than mean
null model for seasonal concentration of burnt area, inde-

pendent of the reference burnt area dataset. The observations
show a unimodal pattern in burnt area in the tropics, peak-
ing between November and the end of February in the north-
ern tropics and between June and the end of October in the
southern tropics (Fig. 3). The models also show a unimodal
pattern in both regions. However, all the FireMIP models
except ORCHIDEE–SPITFIRE show a ∼ 2-month delay in
peak burnt area in the northern tropics, and the period with
high burnt area is also less concentrated than observed. Some
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Table 2. Simulated and observed burnt area (Mha) for the period 2002–2012 for the globe and for key regions including the northern
extratropics (NET; >30◦ N), the southern extratropics (SET;> 30◦ S), the tropics (30◦ N–30◦ S), the savanna regions of Africa (18◦W–40◦ E,
13◦ N–20◦ S), the savanna region of South America (42–68◦W, 9–25◦ S), the Australian savanna (120–155◦ E, 11–20◦ S), the agricultural
band of central Eurasia (30–85◦ E, 50–58◦ N), the Mediterranean basin (10◦W–37◦ E, 31–44◦ N) and the western USA (100–125◦W, 31–
43◦ N). Data availability for FireCCI40 is limited to 2005–2011 and for MC2 to 2002–2009.

Global NET Tropics SET S American African Australian Central Mediterranean Western
savanna savanna savanna Eurasia basin USA

GFED4s 468 39 426 4 18 295 35 8.5 1.3 1.0
GFED4 349 27 319 3 14 218 34 5.2 0.8 0.9
MCD45 348 33 312 4 13 232 25 7.0 2.0 0.9
FireCCI40 345 23 320 2 8 237 25 6.8 1.1 0.8
FireCCI51 387 37 347 3 14 230 38 10.2 1.3 1.1
CLM 454 77 362 15 36 194 15 7.9 9.3 3.4
CLASS–CTEM 536 41 466 28 46 172 20 2.0 4.3 9.5
JULES–INFERNO 381 76 292 13 26 128 23 5.0 11.0 7.7
JSBACH–SPITFIRE 457 114 318 25 21 166 17 15.5 9.5 9.7
LPJ–GUESS–GlobFIRM 39 14 24 1 3 7 3 0.6 0.6 0.5
LPJ–GUESS–SPITFIRE 393 99 280 14 51 135 2.8 12.5 14.5 6.1
LPJ–GUESS–SIMFIRE–BLAZE 482 86 381 15 72 146 27 3.4 7.9 14.9
MC2 97 40 54 3 2 17 2 0.9 5.0 2.2
ORCHIDEE–SPITFIRE 471 16 435 19 13 246 81 2.4 2.4 0.3

Figure 2. Simulated versus observed burnt fraction (% yr−1) for
the present day (2002–2012), where “combined” indicates the mean
of the different burnt area datasets considered. Stippling indicates
where variance between burnt area datasets is less than the observed
ensemble mean.

models (ORCHIDEE–SPITFIRE, LPJ–GUESS–SPITFIRE)
estimate peak burnt area ∼ 1–2 months too early in the
southern tropics, while others simulate a peak ∼ 1 month
too late (JULES–INFERNO, CLM, CLASS–CTEM) or have
a less concentrated peak (JSBACH–SPITFIRE, JULES–
INFERNO) than observed. The seasonality of burnt area
in the northern extratropics shows a peak in spring and a
second peak in summer. Only CLM reproduces this double
peak, while all of the other FireMIP models show a single
summer peak. Most of the models simulate the timing of
the summer peak well. The only exception is LPJ–GUESS–
SPITFIRE, which simulates the peak ∼ 2–3 months too late.
The observations show no clear seasonal pattern in burnt area
over the southern extratropics, although the most prominent
peak occurs in December and January. All the FireMIP mod-
els, except LPJ–GUESS–SPITFIRE, reproduce this midsum-
mer peak. LPJ–GUESS–SPITFIRE shows little seasonality
in burnt area in this region.

The FireMIP models have problems representing IAV in
global burnt area, with some models (CLASS–CTEM, MC2)
worse than the random model and most models performing
worse than the mean for most of the target datasets (Table 3).
However, there is considerable uncertainty in the observed
IAV in burnt area (Fig. 4), and the scores are therefore de-
pendent on the reference dataset considered, with generally
worse scores for FireCCI5.1 and GFED4s compared to the
other datasets. Observational uncertainty is most probably
underestimated as the burnt area products are not indepen-
dent, since they all rely on MODIS satellite imagery. Despite
the failure to reproduce IAV in general, most of the models
show higher burnt area in the early 2000s and a low in 2009–
2010 after which burnt area increased again (Fig. 4).
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Table 3. Benchmarking scores after removing the influence of differences in the mean and variance for each individual global fire model
for key fire and vegetation variables. A lower score is “better”, with a perfect score equal to 0. The full table with all benchmarking scores
is presented in Table S1 in the Supplement. LPJ–G: LPJ–GUESS. Cell are coloured blue if the benchmarking score is lower than both null
models, yellow if lower than 1 null model and red when higher than both null models.
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The spatial patterns in simulated fire-related carbon emis-
sions are in line with the reference data, with most FireMIP
models except LPJ–GUESS–GlobFIRM, MC2 and LPJ–
GUESS–SPITFIRE performing better than the mean null
model. CLM, JULES–INFERNO and JSBACH–SPITFIRE
are the best performing models with NME scores< 0.8. Sea-
sonality in fire emissions mimics the results for burnt area
with good scores for seasonal phase, but all models perform
worse than the mean null model for seasonal concentration.
CLM is the only FireMIP model to explicitly include peat-
land, cropland and deforestation fires, which contribute 3 %,
3 % and 20 % respectively of the global total emissions an-
nually (van der Werf et al., 2010), but it nevertheless does
not perform better than JULES–INFERNO and JSBACH–
SPITFIRE in representing the spatial pattern of fire carbon
emissions.

Only three models (JSBACH–SPITFIRE, LPJ–GUESS–
SPITFIRE, ORCHIDEE–SPITFIRE) provided information
about simulated numbers and size of individual fires. All
three models performed better than the mean null model in
representing the spatial pattern in number of fires but worse
than the mean model for fire size (Table 3). While the spatial
pattern in simulated fire number is in agreement with obser-
vations over large parts of the globe, models tend to over-
estimate fire numbers in dryland areas such as Mexico and
the Mediterranean basin (Fig. 5). None of the three models
simulate cropland fires, and so they do not capture the high
number of cropland fires (Hall et al., 2016) in central Eura-
sia (Table 2). Models simulate smaller fires than observed
in areas where burnt area is large and where models tend to
underestimate burnt area, especially in the African savanna
regions (Fig. 5).

3.2 Present-day model performance: vegetation
properties

Fire spread and hence burnt area is strongly influenced
by fuel availability, which in turn is affected by veg-
etation primary production and biomass. Simulated spa-
tial patterns of GPP compare well with estimates of GPP
upscaled from FLUXNET data (Jung et al., 2017), with
scores (0.39–0.67) considerably better than both null mod-
els. However, performance against site-based estimates of
GPP (Luyssaert et al., 2007) are considerably poorer (1.09–
1.49) and worse than the mean null model. Only LPJ–
GUESS–SPITFIRE, LPJ–GUESS–SIMFIRE–BLAZE and
ORCHIDEE–SPITFIRE perform better than the random null
model. There is no clear relationship between model scores
for the two datasets; models performing better when com-
pared to the Jung dataset do not necessarily show a higher
score when compared to the Luyssaert GPP dataset. The two
GPP datasets are very different. The upscaled FLUXNET
dataset is a modelled product but has global coverage (see
Methods), while the Luyssaert dataset has local measure-
ments but only at a limited number of sites, largely concen-

trated across the northern extratropics. Thus, the better match
between the FireMIP models and the upscaled FLUXNET
dataset may reflect the broader spatial coverage or the fact
that climate and land-cover data are used for upscaling.

Only the upscaled FLUXNET data provide monthly data
and can thus be used to assess GPP seasonality. The FireMIP
models are able to represent the seasonal peak timing in GPP,
with all models performing better than the mean and random
null models. However, models have difficulty in representing
the length of the growing season, with the scores for seasonal
concentration in GPP (1.08–1.23) above the mean null model
but below the random null model for all FireMIP models.

Model performance is better for site-level NPP than site-
level GPP. All of the FireMIP models perform better than
the mean null model, independent of the choice of refer-
ence dataset (Table 3), except for CLASS–CTEM against the
Luyssaert dataset. JULES–INFERNO, JSBACH–SPITFIRE
and MC2 are the best-performing models.

The FireMIP models generally capture the spatial pattern
in LAI, with all models performing better than the mean null
model (0.44–0.81), independent of the reference dataset con-
sidered. JULES–INFERNO has the best score for both refer-
ence datasets. Although the overall global pattern in LAI is
well represented in all the FireMIP models, they have more
trouble representing LAI in agricultural areas such as the
central USA or areas with low LAI such as drylands and
mountain areas (Fig. 1).

The FireMIP models perform well in representing the spa-
tial pattern carbon in vegetation (Table 3). All nine models
perform better than the mean null model, independent of ref-
erence dataset, with ORCHIDEE–SPITFIRE having the best
scores. Generally, the models are able to simulate carbon in
tropical vegetation and the forested regions in the temperate
and boreal region reasonably well but struggle across most
dryland systems (Fig. 1).

3.3 Overall assessment

Our evaluation suggests that LPJ–GUESS–GlobFIRM and
MC2 produce substantially poorer simulations of burnt area
and its interannual variability than other models in the
FireMIP ensemble. These are both older models, developed
before the availability of global burnt area products (in the
case of LPJ–GUESS–GlobFIRM) or calibrated regionally
and not designed to run at global scale (MC2). While the
other models perform better in simulating fire properties,
there is no single model that outperforms other models across
the full range of fire and vegetation benchmarks examined
here. Model structure does not explain the differences in
model performance. Process-based fire models (see Table 1)
appear to be slightly better able to represent the spatial pat-
tern in burnt area than empirical models (mean score of 0.87
and 0.94 respectively), but this difference is largely the result
of including GlobFIRM in the empirical model ensemble; re-
moving this model results in a mean score of 0.87 for these
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Figure 3. Simulated and observed seasonality (2002–2012) of burnt area (% of annual burnt area per month) for (a) northern extratropics
(> 30◦ N), (b) northern tropics (0–30◦ N), (c) southern tropics (0–30◦ S) and (d) southern extratropics (> 30◦ S). The mean of all the remotely
sensed burnt area datasets is shown as a black line, with the minimum and maximum range shown in light grey.

Figure 4. The range in interannual variability in burnt area for the
years 2001–2012 for all models and burnt area datasets which span
the entire time period (GFED4, GFED4s, MCD45, FireCCI51). Re-
sults from the individual FireMIP models, as well as the observa-
tional minimum-maximum values, are plotted.

models. The intermodel spread in scores within each group
is much larger than the difference between the two types of
model. Only one empirical model simulates fire seasonality,
but this model performs worse than each of the process-based
models, independent of reference dataset considered. There

is no difference in the performance of process-based and em-
pirical models with respect to IAV in burnt area, seasonal
phase in burnt area or fire emissions.

The FireMIP simulations include three models in which
versions of the same process-based fire module (SPITFIRE)
are coupled to different vegetation models. These three mod-
els produce a wide range of benchmarking scores for burnt
area, with mean benchmarking scores of 0.79, 0.85 and 0.72
for JSBACH, LPJ–GUESS and ORCHIDEE respectively.
There are also large differences between these models in
terms of other aspects of the fire regime (Table 3). As there
are only moderate differences between the different SPIT-
FIRE implementations (Rabin et al., 2017), this suggests that
the overall difference between the models reflect interactions
between the fire and vegetation modules.

Models using prescribed vegetation biogeography (CLM,
CLASS–CTEM, JSBACH–SPITFIRE, ORCHIDEE–
SPITFIRE) represent the spatial pattern of burnt area better
than models with dynamic vegetation (JULES–INFERNO,
LPJ–GUESS–SPITFIRE, LPJ–GUESS–GlobFIRM, LPJ–
GUESS–SIMFIRE–BLAZE, MC2), with respective mean
benchmarking scores across all burnt area datasets of
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0.79 and 0.97. This difference is still present even when
LPJ–GUESS–GlobFIRM and MC2 are not included (0.90).
It seems likely that models using prescribed vegetation
biogeography have a better representation of fuel loads
and flammability. This can also partially be seen in the
positive relationship between the benchmarking scores of
vegetation carbon and burnt area spatial patterns for at least
the GFED4, FireCCI4.0 and FireCCI5.1 burnt area reference
datasets (mean of R2

= 0.31; range of 0.19–0.38). Areas
where the FireMIP models represent vegetation carbon
poorly coincide with some of the regions where models have
trouble representing the spatial pattern of burnt area such as
dryland regions (Fig. 1). Although there is no relationship
between GPP/NPP and burnt area benchmarking scores,
there is a positive relationship between simulated burnt area
scores and the seasonal concentration of GPP (R2

= 0.30–
0.84) and, to a lesser extent, the seasonal phase of GPP
(R2
= 0.09–0.24). Models which correctly predict the

seasonal pattern of GPP/NPP, which has a strong influence
on the availability of fuel, are more likely to predict the burnt
area correctly. This supports the idea that the seasonality of
vegetation production and senescence, is among the chief
drivers of the interactions between vegetation and fire within
each model. However, since fires combust some of the
vegetation and hence reduce fuel loads, fire occurrence also
influences the seasonality in vegetation productivity. This
may partly explain the varying strength of the correlations
between the seasonal concentration and phase and the
burnt area. Although both GPP/NPP and burnt area are
affected by climate conditions, the emergent relationships
between simulated and observed climate and burnt area
are generally similar across the FireMIP models (Forkel
et al., 2019), whereas the emergent relationships between
vegetation properties and burnt area are much less so. This
indicates that fire models could be improved by improving
the simulated fuel availability by a better representation of
the seasonality of vegetation production and senescence.

Fire carbon emission benchmarking scores are strongly re-
lated to the burnt area performance (R2 > 0.85 for GFED4s
and MCD45 and > 0.45 for FireCCI4.0 and GFED4). This
indicates that simulated burnt area is the main driver of fire
emissions, overriding spatial patterns in fuel availability and
consumption. However, the benchmarking scores for the spa-
tial pattern in burnt area are better overall than those for fire
carbon emissions.

Models that explicitly simulate the impact of human sup-
pression on fire growth or burnt area (CLM, CLASS–CTEM,
JSBACH–SPITFIRE, LPJ–GUESS–SIMFIRE–BLAZE) are
better at representing the spatial pattern in burnt area com-
pared to models which do not include this effect (0.85 and
0.93 respectively). In the case of the three process-based
models (CLM, CLASS–CTEM, JSBACH–SPITFIRE) this is
most probably because the spatial pattern in fire size is better
represented (Table 3).

CLM is the only model that incorporates cropland fires
(Table 1), and it is also the only model which captures the
spring peak in burnt area in the northern extratropics asso-
ciated with crop fires (e.g. Le Page et al., 2010; Magi et al.,
2012; Hall et al., 2016). This might also contribute to the
good overall score of CLM for spatial pattern of burnt area.

4 Discussion

There are large differences in the total burnt area between the
FireMIP models, with two models (LPJ–GUESS–GlobFIRM
and MC2) falling well outside the observed range in burnt
area for the recent period. In the case of LPJ–GUESS–
GlobFIRM, this is because GlobFIRM was developed before
global burnt area products were available, resulting in a gen-
eral poor performance (Kloster and Lasslop, 2017), in com-
bination with the fact that structural changes were made to
the vegetation model without a commensurate development
of the fire module. In the case of MC2, this probably reflects
the fact that MC2 was developed for regional applications
but was applied globally here without any refinement of the
fire model. The other FireMIP models used the burned area
datasets to develop and tune their models. They therefore
capture the global spatial patterns of burnt area reasonably
well, although no model simulates the very high burnt area
in Africa and Australia causing a general underestimation of
burnt area in tropical regions and overestimation in extrat-
ropical regions. The analysis of a limited number of models
suggests that process-based fire models do not simulate the
spatial patterns in fire size well (Table 3). In particular they
fail to represent fire size in tropical savannas (Fig. 5), most
probably because they assume a fixed maximum fire duration
of less than 1 d (Hantson et al., 2016) while savanna fires are
often very long-lived (e.g. Andela et al., 2019). Our results
suggest that process-based fire models could be improved by
a better representation of fire duration. Although none of the
FireMIP models simulate multiday fires, there are fire models
that do (e.g. Pfeiffer et al., 2013; Le Page et al., 2015), which
could therefore provide a template for future model develop-
ment. New parameterizations would need to incorporate as-
pects of natural and anthropogenic landscape fragmentation
which limit fire growth (e.g. Pfeifer et al., 2013; Le Page et
al., 2015; Kelley et al., 2019). Indeed, our results show that
models that include a human limitation on fire growth repre-
sent the global spatial pattern in burnt area and fire size bet-
ter. The recently generated Global Fire Atlas (Andela et al.,
2019) includes aspects of the fire behaviour (e.g. fire spread
rate and duration) that offer new opportunities to examine
and parameterize fire.

Vegetation type and stocks are input variables for the fire
models, influencing fire ignition and spread in the process-
based models and determining simulated burnt area in the
empirical models. The occurrence of fire can, in turn, af-
fect the vegetation type, simulated vegetation productivity
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Figure 5. Reference datasets and mean of three models for number of fires and mean fire size. Model output is adapted so that mean and
variance coincide with observations as the total values are not directly comparable. Stippling indicates where variance between models is
less than the model ensemble mean.

(i.e. GPP, NPP) and hence the amount and seasonality of fuel
build-up. Our results indicate that intermodel differences in
burnt area are related to differences in simulated vegetation
productivity and carbon stocks. Seasonal fuel build-up and
senescence is an important driver of global burnt area. Fur-
thermore, we find that models which are better at represent-
ing the seasonality of vegetation production are also better
at representing the spatial pattern in burnt area. These results
are consistent with the analysis of emergent relationships in
FireMIP models, which shows the need to improve processes
related to plant production and biomass allocation to improve
model performance in simulating burnt area (Forkel et al.,
2019a). While there are spatially explicit global estimates re-
garding carbon stocks in live vegetation, there is limited in-
formation about carbon stocks of different fuel types and how
these change between seasons and over time (van Leeuwen
et al., 2014; Pettinari and Chuvieco, 2016). Furthermore, fuel
availability could be substantially affected by livestock den-
sity and pasture management (Andela et al., 2017). While
improved representation of land management practices could
improve the representation of fire, the lack of high-quality
fuel availability data currently limits our ability to constrain
simulated fuel loads.

The FireMIP models generally do not simulate the timing
of peak fire occurrence accurately and tend to simulate a fire
season longer than observed. This might be related to the rep-
resentation of seasonality in vegetation production and fuel
build-up. However, human activities can also change the tim-
ing of fire occurrence (e.g. Le Page et al., 2010; Rabin et al.,
2015), and so an improved representation of the human influ-
ence on fire occurrence and timing could also help to improve
the simulated fire seasonality. The importance of the anthro-
pogenic impact on fire seasonality is especially clear in the

northern extratropics (e.g. Archibald et al., 2009; Le Page et
al., 2010; Magi et al., 2012), where the only model that ex-
plicitly includes crop fires (CLM) is also the only model that
shows the bimodal seasonality. Thus, the inclusion of anthro-
pogenic fires could help to improve model simulations. How-
ever, this requires a better understanding of how fire is used
for land management under different socioeconomic and cul-
tural conditions (Pfeiffer et al., 2013; Li et al., 2013).

Global interannual variability in burnt area is largely
driven by drought episodes in high biomass regions and fuel
buildup after periods of increased rainfall in dryland areas
(e.g. Chen et al., 2017). Previous analysis has shown that
the FireMIP models are relatively good at representing emer-
gent climate–fire relationships (Forkel et al., 2019a); hence
it seems plausible that fuel build-up and its effect on subse-
quent burnt area is not well represented in the models and that
this is the reason for the poor simulation of IAV in burnt area.
This is in line with our findings and the findings of Forkel et
al. (2019a) that fire models are not sensitive enough to previ-
ous previous-season vegetation productivity.

The spread in simulated global total fire emissions is even
larger than for burnt area, but fire emissions largely fol-
low the same spatial and temporal patterns as burnt area
(Fig. 1, Table 3). However, the benchmark scores for emis-
sions are worse than those for burnt area. This reflects the
fact that emissions are the product of both errors in simulated
vegetation and burnt area. Furthermore, spatial and tempo-
ral uncertainties in the completeness of biomass combustion
will affect the emissions. While improvements to vegetation
and fuel loads are likely to produce more reliable estimates
of emissions, an improved representation of the drivers of
combustion completeness in models will also be required
for more accurate fire emission estimates. Only one of the

https://doi.org/10.5194/gmd-13-3299-2020 Geosci. Model Dev., 13, 3299–3318, 2020



3312 S. Hantson et al.: FireMIP model evaluation

FireMIP models (CLM) includes cropland, peatland and de-
forestation fire explicitly, albeit in a rather simple way. Our
analyses suggest that this does not produce an improvement
in the simulation of either the spatial pattern or timing of car-
bon emissions. However, given that together these fires rep-
resent a substantial proportion of annual carbon emissions, a
focus on developing and testing robust parameterizations for
these largely anthropogenic fires could also help to provide
more accurate fire emission estimates.

Our analysis demonstrates that benchmarking scores pro-
vide an objective measure of model performance and can be
used to identify models that have a might negative impact on
a multimodel mean and so exclude these from further anal-
ysis (e.g. LPJ–GUESS–GlobFIRM, MC2). At the moment,
a further ranking is more difficult because no model clearly
outperforms all other models. Still, some FireMIP models are
better at representing some aspects of the fire regime com-
pared to others. Hence, when using FireMIP output for future
analyses, one could weigh the different models based on the
score for the variable of interest, thus giving more weight to
models which perform better for these variables.
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Appendix A

Table A1. Data availability for reference datasets.

Variable Dataset Data access

Burnt area GFED4 https://www.globalfiredata.org/data.html (Giglio et al., 2013)
GFED4S https://www.globalfiredata.org/data.html (Randerson et al., 2012)
MCD45 Upon request to the author (Roy et al., 2008)
FireCCI40 https://geogra.uah.es/fire_cci/ (Alonso-Canas and Chuvieco, 2015)
FireCCI51 https://geogra.uah.es/fire_cci/ (Chuvieco et al., 2018)

Fire emissions GFAS https://apps.ecmwf.int/datasets/data/cams-gfas/ (Kaiser et al., 2012)
Fire size and number Hantson https://zenodo.org/record/3564818#.Xelidi2ZOcY (Hantson et al., 2019)
GPP Luyssaert Upon request to the author (Luyssaert et al., 2007)

Jung https://www.bgc-jena.mpg.de/geodb/projects/Home.php (Jung et al., 2017)
NPP Michaletz https://static-content.springer.com/esm/art%3A10.1038%2Fnature13470/MediaObjects/

41586_2014_BFnature13470_MOESM39_ESM.xlsx (Michaletz et al., 2014)
Luyssaert Upon request to the author (Luyssaert et al., 2007)
EMDI http://gaim.unh.edu/Structure/Intercomparison/EMDI/validationdata2/ (Olson et al., 2001)

LAI MCD15 https://doi.org/10.5067/MODIS/MCD15A2H.006 (Myneni et al., 2002)
AVHRR https://www.ncei.noaa.gov/data/avhrr-land-leaf-area-index-and-fapar/access/ (Claverie et al.,

2016)
Carbon in vegetation Avitabile http://lucid.wur.nl/datasets/high-carbon-ecosystems (Avitabile et al., 2016)

Carvalhais Upon request to the author (Carvalhais et al., 2014)
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Code and data availability. The benchmarking code is archived
at https://zenodo.org/record/3879161#.Xtq-py-z2fU (last access:
5 June 2020) (https://doi.org/10.5281/zenodo.3879161, Kelley,
2020), which also contains the code to produce the figures presented
here. The FireMIP model output is archived at https://zenodo.org/
record/3555562#.Xell3C2ZOcY (last access: 22 November 2019)
(https://doi.org/10.5281/zenodo.3555562, Hantson et al., 2019).
Data availability for each reference dataset is provided in Table A1.
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