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Abstract 13 

Understanding the ecological factors that drive animal density patterns in time and space is key to 14 

devising effective conservation strategies. In Tanzania, most chimpanzees (~75%) live outside 15 

national parks where human activities threaten their habitat’s integrity and connectivity. Mahale 16 

Mountains National Park (MMNP), therefore, is a critical area for chimpanzees (Pan troglodytes 17 

schweinfurthii) in the region due to its location and protective status. Yet, despite its importance 18 

and long history of chimpanzee research (>50 years), a park-wide census of the species has never 19 

been conducted. The park is categorized as a savanna-woodland mosaic, interspersed with riparian 20 

forest, wooded grassland, and bamboo thicket. This heterogeneous landscape offers an excellent 21 

opportunity to assess the ecological characteristics associated with chimpanzee density, a topic 22 

still disputed, which could improve conservation plans that protect crucial chimpanzee habitat 23 

outside the park. We examined the influence of fine-scale vegetative characteristics and 24 

topographical features on chimpanzee nest density, modeling nest counts using hierarchical 25 

distance sampling. We counted 335 nests in forest and woodland habitats across 102 transects in 26 

13 survey sites. Nests were disproportionately found more in or near evergreen forests, on steep 27 

slopes, and in feeding tree species. We calculated chimpanzee density in MMNP to be 0.23 28 

ind/km2, although density varied substantially among sites (0.09 - 3.43 ind/km2). Density was 29 

associated with factors related to the availability of food and nesting trees, with topographic 30 

heterogeneity and the total basal area of feeding tree species identified as significant positive 31 

predictors. Species-rich habitats and floristic diversity likely play a principal role in shaping 32 

chimpanzee density within a predominately open landscape with low food abundance. Our results 33 

provide valuable baseline data for future monitoring efforts in MMNP and enhance our 34 

understanding of this endangered species’ density and distribution across Tanzania. 35 
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36 

Introduction 37 

Wildlife populations are experiencing a global decline in what has become a sixth mass extinction, 38 

a phenomenon primarily driven by human-mediated activities such as habitat destruction, 39 

overexploitation, and a rapidly changing global climate [1,2]. Obtaining baseline data and 40 

monitoring populations over space and time are essential for guiding and evaluating the 41 

effectiveness of conservation strategies [3]. Population density and abundance estimates are useful 42 

indicators of population status [4] and capacity for long-term survival [5]. Identifying ecological 43 

factors associated with species’ density can inform conservation and management bodies by 44 

helping guide the prioritization of conservation areas and enhancing our understanding of the 45 

potential consequences of environmental change.    46 

Chimpanzees (Pan troglodytes) are threatened across their distribution [6], with habitat 47 

destruction and degradation, hunting, and disease as some of the leading threats to their survival 48 

[7,8].  In Tanzania, 90% of the country’s chimpanzees occur in the Greater Mahale Ecosystem 49 

(GME) where suitable habitat is being lost and fragmented by expanding human settlements, 50 

agriculture, logging, and cattle herding [8–10]. Research shows that chimpanzee density ranges 51 

from 0.1 – 3.7 ind/km2 across sites in the GME [11,12] and that the potential decrease in 52 

chimpanzee density between 2007 and 2014  is correlated with habitat loss [10], demonstrating 53 

the value of baseline data and repeated surveys to track population trends. Chimpanzees in 54 

savanna-woodland mosaics like the GME already live at relatively low densities (Table 1), 55 

accentuating the need to identify and protect areas critical towards chimpanzee conservation in the 56 

region.    57 

58 
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Table 1. Comparison of chimpanzee density estimates reported from surveys using nest 59 

count methodologies. 60 

Location Vegetation type 
Elevation 

(m) 

Average 

rainfall (mm) 

Density 

estimate 

(ind/km2) 

Source 

Forest dominated landscapes 

 Budongo (Uganda) 
Semi-deciduous 

forest 
1000 - 1600 1,620 1.8 - 1.9 [13] 

 Gombe (Tanzania) 
Tropical forest 

mosaic 
766 - 1623 1,495 2.5 [14] 

 Kahuzi Biega (Dem. Rep. Congo) Montane rainforest 2030 - 2350 1,586 0.1 [15] 

 Kalinzu (Uganda) 
Moist evergreen 

forest 
1000 - 1500 1,150 - 1,400 2.8 - 4.7 [16] 

 Kibale (Uganda) 
Semi-deciduous 

forest 
1100 - 1600 1,395 2.4 [17] 

 Kibira (Burundi) Montane rainforest 1600 - 2600 > 2,000 0.5 [18] 

 Nouabale-Ndoki (Republic of Congo) 
Semi-evergreen 

forest 
330 - 600 1,728 1.8 [19] 

 Nyungwe (Rwanda) Montane rainforest 1600 - 2900 1,744 0.4 [20] 

 Odzala (Republic of Congo) 
Semi-evergreen 

forest 
300 - 600 1,957 0.3 - 0.4 [19] 

 Tai (Ivory Coast) Lowland rainforest 100 - 400 1,800 0.8 - 1.8 [21] 

Open vegetation dominated landscapes 

 Fongoli (Senegal) 
Savanna woodland 

mosaic 
- < 1,000 0.4 [22] 

 Haut-Niger (Republic of Guinea) 
Savanna woodland 

mosaic 
- 1,300 0.9 [23] 

 Issa Valley (Tanzania) 
Savanna woodland 

mosaic 
900 - 1800 1,200 0.3 [24] 

 Mbam-Djerem (Cameroon) 
Forest - woodland - 

savanna mosaic 
650 - 930 1,900 0.3 [25] 

 Mt. Assirik (Senegal) 
Savanna woodland 

mosaic 
100 - 300 954 0.1 [26] 

61 

Mahale Mountains National Park (MMNP) is the largest national park where chimpanzees 62 

in Tanzania reside and is a refugee that offers protection from common threats to them (e.g., 63 
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poaching) and their habitat (e.g., settlement expansion) within the GME.  While one community 64 

in the park (M group) has been the focus of long term study for decades [27], a comprehensive 65 

survey of MMNP has never been conducted, resulting in a lack of baseline data on chimpanzees 66 

distribution and density in the park . These data are crucial given the present threat of isolation and 67 

increased human disturbance the park faces from road development and growing human 68 

settlements along its periphery, which could impact animal movement and increase human 69 

encroachment [28]. Furthermore, an investigation into the drivers of chimpanzee density and 70 

abundance in the region is lacking. Previous short and geographically restricted surveys in the park 71 

have revealed variation in chimpanzee density between some areas. However, they did not 72 

consider the effect of ecological factors [29], such as dominant vegetation type or species diversity 73 

– known to be important drivers in other populations [5,30]. MMNP is an ideal landscape to74 

address this topic as variation in density may arise from its immense topographic and vegetative 75 

heterogeneity. Moreover, while numerous studies have contributed on the subject of chimpanzee 76 

distribution and density patterns [7,19,23,25], few have quantitatively assessed density correlates 77 

for those living in savanna-mosaics [30,31], a habitat type often deemed marginal for the species 78 

with distinct ecological challenges (e.g., thermoregulatory stress, hydration, low fruit abundance) 79 

[31,32]. 80 

Animal species naturally exhibit variability in their densities in response to differences in 81 

ecological variability (e.g. vegetation, topography, predation) [33,34].  Food availability, generally 82 

influenced by vegetation structure and composition, is one of the most fundamental influences on 83 

species density, distribution, and ranging (rodents [35]; primates [36]; birds [33]; reptiles [37]), 84 

and chimpanzees are no exception [38]. As a highly frugivorous species, chimpanzees depend on 85 

the presence and distribution of fruiting trees for feeding [39,40], as well as suitable trees for 86 
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constructing nightly nests [41–43]; thus, resource abundance, especially that of fruit-bearing trees, 87 

can be used to predict chimpanzee density [44]. In particular, the abundance of fruit trees from 88 

species that provide food during periods of fruit scarcity can be one of the most critical factors 89 

influencing and limiting chimpanzee density [38] as it helps reduce the intensity of seasonal shifts 90 

in fruit availability [45,46]. Similarly, floristic diversity can have a strong effect on chimpanzee 91 

density [5,38,47] when it helps chimpanzees sustain their dietary requirements throughout the year 92 

[38,48]. For chimpanzees living in marginal habitats that often have lower overall fruit abundance 93 

and diversity and likely face more frequent or pronounced periods of resource scarcity [5], 94 

chimpanzee density may be more closely related to diversity than to overall food abundance 95 

[32,49]. Yet, the influence of floristic diversity on chimpanzee density varies across sites, even 96 

between different savanna-mosaics [30,49], and highlights the need for more data on this topic. 97 

Aside from the abundance and diversity of fruit trees, increased food patch size (e.g., tree size) 98 

may also help alleviate constraints from food scarcity in resource-poor areas [50], although this 99 

topic remains unexplored. The incorporation of fine-scale vegetation data into density models can 100 

assess the potential mechanisms driving variation in chimpanzee density [5,31,38,51].  101 

Chimpanzees do not uniformly utilize the landscape in time or space [52,53]; thus, the 102 

inclusion of ecological factors related to land cover and topography, often obtained from remote-103 

sensing data, is valuable for modeling species density and distribution [51,54]. In open, dry 104 

landscapes, chimpanzees disproportionately rely on riparian forests for food [40,55], nesting 105 

[26,56], and shade [53]. Previous research in the GME suggests an association between forest 106 

cover and chimpanzee density[57]. Elevation and slope can also be important predictors of 107 

chimpanzee distribution and habitat suitability [7,51,58,59] because they can influence 108 

chimpanzee nest site selection [56,60]. However, other potentially useful and readily available 109 



7 

topographical variables [61] remain understudied. For example, topographic heterogeneity could 110 

be valuable for predicting chimpanzee density and distribution because of the positive relationship 111 

between topographic heterogeneity and species richness [62,63], as well as other factors like slope 112 

[61]. While chimpanzees likely respond to the availability of essential resources (e.g., food, water, 113 

nesting materials) in space and time rather than biophysical variables like percent forest cover or 114 

topographic heterogeneity, these variables can serve as insightful proxies. By incorporating both 115 

fine and broad-scale biotic and abiotic metrics within density models, we can better understand the 116 

ecological factors associated with chimpanzee density, as well as the value of remotely sensed data 117 

necessary for large-scale predictive models.  118 

This study examines the relationship between chimpanzee density and specific vegetative 119 

characteristics and topographical features across the MMNP landscape. To evaluate possible 120 

associations, we employed a hierarchical distance sampling (HDS) approach [64] that allows for 121 

explicit consideration of covariate influence on both the density and detection processes to more 122 

precisely model chimpanzee density patterns [65]. We predicted chimpanzee density to be higher 123 

in areas with 1) greater fruit abundance and diversity, 2) high topographic heterogeneity, and 3) 124 

more evergreen forested vegetation (includes all available forested vegetation types, i.e., riparian, 125 

lowland, and montane forests). We aim to provide baseline data on chimpanzees and their habitat 126 

(e.g., an evaluation of resource availability) in MMNP and fixed sites widely distributed across 127 

the park that can help future efforts to monitor, identify, and evaluate potential changes. MMNP 128 

is arguably the most critical area for chimpanzee conservation in Tanzania because of its size, 129 

location, and protective status; therefore, it is imperative that an assessment of this endangered 130 

species in the park (spatially) extends well-beyond the long-term research of a single community. 131 

Additionally, as a protected area, data from MMNP can serve as a point of comparison and provide 132 
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insight for what to expect in the absence of human activity in the GME.  For extra-park 133 

chimpanzees that face a more perilous future than those living inside park boundaries, we hope 134 

these data will allow for greater understanding of population shifts that may arise from future 135 

environmental change and better inform conservation bodies in their determination of valuable 136 

chimpanzee habitat outside of national parks.    137 

138 

Methods 139 

Study area 140 

MMNP covers 1,517 km2 of rugged terrain along Lake Tanganyika in western Tanzania (Fig 1). 141 

Part of the Albertine Rift, MMNP is home to numerous endemic and threatened plant and animal 142 

species [66]. The park also hosts the Mahale Mountains Chimpanzee Research Project, which 143 

along with the Gombe Stream Research Center based in Gombe NP 180km north, is one of the 144 

longest-running chimpanzee research projects in Africa, now in its 7th decade [14,27].  145 

MMNP is a mosaic of closed (i.e., forest) and open (e.g., woodland, grassland) vegetation 146 

types [67]. Although the northwestern region contains large blocks of continuous evergreen forest, 147 

the park is otherwise dominated by miombo and bamboo woodlands and intersected by strips of 148 

riparian forest. Elevation in the park ranges from 780 – 2,460 m above sea level, and the park 149 

exhibits two distinct seasons: a rainy season from October to mid-May, and a dry season, from 150 

mid-May to September.  151 

152 

Fig 1. Map of MMNP and its position within the GME and Tanzania. The 13 survey sites 153 

visited during the current study are indicated with their letter name. Land cover 154 
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classification courtesy of Holly E. Copeland (University of Wyoming) who sourced the data 155 

from USGS/NASA Landsat imagery. 156 

157 

Study design 158 

We collected data in MMNP from March 2018 – January 2019 along 102 transects at 13 survey 159 

sites (sequentially labeled sites A – M). Considering feasibility and the average community home 160 

range sizes previously reported in MMNP [12], we determined a survey site size of   25 km2. To 161 

facilitate the random site selection, we superimposed a 5 x 5 km grid over our study area, MMNP, 162 

and randomly selected grid cells (sites) using QGIS software [68]. Within each site, line transects, 163 

each 1 km long, were positioned according to a random start point and spaced >1 km apart. 164 

Transects were orientated in a north to south direction, perpendicular to the drainage system.  165 

We obtained all necessary permits from the Tanzania Wildlife Research Institute, Tanzania 166 

Commission for Science and Technology, and Tanzania National Parks and complied with all 167 

relevant regulations while conducting research within a national park and on a protected species.  168 

169 

Distance sampling 170 

Chimpanzees build nests daily for rest and sleep, allowing researchers to indirectly estimate 171 

chimpanzee density using a standing nest crop count method [13]. Walking at a pace of 1 km/hour, 172 

survey teams recorded all chimpanzee nests observed along transects. To help us evaluate habitat 173 

conditions and the level of human encroachment in the park, we also recorded observations of 174 

human presence and activity  (e.g., cut trees, snares). Following the standardized distance sampling 175 

protocol [69], we recorded the perpendicular distance between the center of each observation (e.g., 176 

nest) and the transect line using a Nikon Laser Rangefinder 550AS or measuring tape (for distances 177 
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<25m). For each observation, we recorded the GPS position, vegetation type, canopy cover (%), 178 

understory cover (%), and slope (flat, mild, moderate, steep). Vegetation types included:  montane 179 

and lowland forests (forests not restricted to riparian zones), riparian forest (forests formed along 180 

watercourses), miombo woodland (discontinuous canopy of deciduous trees dominated by 181 

Brachystegia sp., Julbernardia sp., and Isoberlinia with grass understory),  bamboo woodland 182 

(woodland with bamboo dominated understory), bamboo thicket (dense bamboo stands with scarce 183 

to no trees), wooded grassland (dominated by grasses with isolated shrubs and trees), grassland 184 

(scarce to no woody plants), and swamp. Forests were distinguished as closed or open canopy, 185 

with closed-canopy forests showing >50% canopy cover. We also recorded the tree species and 186 

age class of each nest. Nest age class was determined according to the state of nest decay based on 187 

leaf decomposition [70]: (1) leaves green and nest solid; (2) leaves wilted but nest solid; (3) some 188 

leaves lost and nest structure disintegrating; and (4) only the nest frame and <5% of leaves 189 

remaining.  190 

 191 

Vegetation survey 192 

In conjunction with our chimpanzee census, we conducted a vegetation survey at each survey 193 

site with a trained botanist familiar with the plants of western Tanzania. The vegetation survey 194 

followed a belt transect design that utilized the same transects as our chimpanzee survey. We 195 

sampled five 100m x 5m plots, spaced 100m apart, along each transect. We measured and 196 

identified all trees and lianas >10cm diameter at breast height. We also identified and recorded 197 

vegetation type, canopy cover, and understory cover transitions continuously along transects to 198 

assess the proportion of different vegetation characteristics along each transect. 199 

 200 
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Statistical analysis 201 

Predictor variables 202 

We determined predictor variable values at the transect level to correspond with our chimpanzee 203 

nest counts. Predictor variables derived from our vegetation survey included: forest cover (i.e., the 204 

proportion of forested habitat encountered along each transect) and several proxies of chimpanzee 205 

food availability: total basal area, mean basal area, and diversity of feeding tree species. We 206 

identified the feeding tree species that contributed to our predictors from published literature from 207 

three long-term field sites in Tanzania: Gombe [51,71], MMNP [39], and the Issa Valley [40]. 208 

While total basal area represents overall potential food abundance, mean basal area addresses the 209 

possible influence of tree size as a food patch [31,72]. These variables also correspond to nesting 210 

resources as chimpanzees in the GME prefer nesting in feeding species [41,43] and large trees 211 

[60]. We calculated tree species diversity using the Shannon diversity index that accounts for the 212 

richness, relative abundance, and evenness of species [73]. We also included topographical 213 

predictors using Shuttle Radar Topography Mission satellite imagery (30 m resolution; 214 

http://earthexplorer.usgs.gov): elevation; steep slopes (proportion of slopes along each transect 215 

>20 degrees) [59]; topographic heterogeneity. We used terrain ruggedness to determine the degree216 

of topographic heterogeneity, reflecting the amount of local elevation change according to the 217 

mean difference in elevation between neighboring raster cells [61].  We also included survey site 218 

as a nominal covariate to account for potential variation in nest detectability or density among sites 219 

that cannot be explained by the other variables included in our models [74].  220 

We z-transformed all quantitative covariates to ease model convergence and achieve 221 

estimate comparability [75]. We examined the collinearity of predictor variables at the outset of 222 

our analysis using Pearson product‐ moment correlation coefficient and Spearman rank 223 
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correlation coefficient. We considered variables highly collinear and potentially problematic when 224 

coding our models if test statistics were ≥ 0.7 or < -0.7 [76]. We subsequently prevented highly 225 

collinear covariates from occurring in the same model [75]. We then constructed a global model 226 

of the final covariates, from which all future models were based (Table 2).  227 

Additionally, we evaluated the overall variability of ecological factors across sites by 228 

conducting a series of Kruskal-Wallis non-parametric analysis of variance (ANOVA) tests. 229 

Moreover, we assessed the relationship between topographic heterogeneity and other ecological 230 

characteristics, such as overall species richness and slope, using p-values obtained from the 231 

Pearson correlation coefficient test in order to confirm whether the trends generally associated 232 

with topographic heterogeneity also exist in MMNP (e.g., positive correlation between 233 

topographic heterogeneity and slope). We set the alpha level to identify p-value significance at 234 

<0.05 for all tests. 235 

236 

Table 2. The hypothesized relationship between chimpanzee density and the covariates used 237 

to model the detection and density processes within our HDS models. Covariate influence on 238 

the detection and density of chimpanzees were examined during model building and are 239 

reported as positive or negative (+/-) or not available (n/a). 240 

Habitat variables 
Variable 

effect 

Hypothesized relationship with the detection and 

abundance processes 

Detection covariates 

   Survey site n/a 
Control for disparities that may arise from differences in the 

seasonal conditions experienced among sites. 

  Forest cover - 
Greater tree density and foliage can reduce detectability 

because of reduced light or obstructing/camouflaging nests. 

  Steep slopes + 
Steep terrain increases detectability as it leads to naturally-

broken canopy [77]. 
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Density covariates     

  Survey site n/a 

Representative of the variability in biotic and abiotic factors 

between sites given that each location is a discrete area 

sampled. 

  Elevation n/a 
Possible proxy for weather conditions [78] and vegetation 

[67] that influence habitat use.  

  Forest cover + 
Forests are disproportionately used in dry landscapes, 

offering food [40] and nesting [56] resources. 

  Total basal area + 
Higher values indicate a greater abundance of food sources 

related to both the quantity and size of feeding tree species. 

  Mean basal area + 
Larger trees are generally associated with greater fruit 

production.  

  Diversity + 

Higher feeding tree species diversity can reduce the 

incidence of fruit seasonality and potentially offer greater 

resource availability in time and space [79]. 

  Steep slopes + 
Associated with suitable chimpanzee habitat [58,59] and 

nesting sites [60].  

  Topographic heterogeneity + 

Correlated with slope [61] and associated with 

topographical features that can influence vegetation [63] 

and may impact food and nesting resources.  

 241 

Hierarchical distance sampling 242 

We performed all analyses using R version 3.4.2 statistical software (R Core Team, 2017). We 243 

included only nests aged 1-3 in our analysis as age four nests were considered decayed [13].  We 244 

modeled observations of nests as a multinomial hierarchical coupled logistic regression [65], 245 

whereby the regression modeling the state (i.e., nest density) process is conditional on the 246 

regression modeling the detection (i.e., how animals are detected) process, accounting for 247 

imperfect detection. We applied this framework using the function ‘gdistsamp’ in the R package 248 

‘unmarked’ [80]. Following Buckland et al. [69], we defined a truncation distance of 52 m by 249 

assessing the plotted distance frequency distribution and removing outliers from the dataset, which 250 

provide little information towards estimating the detection probability. Continuous distances were 251 
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grouped into four-meter intervals to smooth heaping but retain detail. To describe nest abundance 252 

at the transect level, we used a negative binomial distribution commonly used to describe count 253 

variation in the presence of over-dispersion [65]. To verify the regression assumption of 254 

independence, we tested for spatial autocorrelation using Moran’s I test [76]. 255 

We first tested and compared the performance of different detection functions (half-norm, 256 

hazard-rate) on our null model, retaining the detection function with the lowest Akaike Information 257 

Criterion (AIC) [81]. Transect-specific covariates were then incorporated into the detection and 258 

density sub-models using a log-link function. We selected our ‘best’ detection model via AIC 259 

comparison and held this sub-model constant while we incorporated and compared density models. 260 

Using a combination of stepwise regression and theoretical knowledge, we tested density models 261 

and ranked them using corrected AIC (AICc) [81]. We evaluated the goodness of fit of the top-262 

ranked model using parametric bootstrapping, simulating 1000 datasets from the fitted model, and 263 

defining a function that returned three fit-statistic (chi-square, Freeman-Tukey, sum of squares 264 

errors). For parameter estimates, we employed a multimodel based inference approach where we 265 

quantified the uncertainty that each model is the best model through the computation of model 266 

weights. We report averaged-model predictions based on models with an AICc∆<4 as these 267 

models have greater empirical support [81]. We also calculated predictor weight on a scale of 0-268 

1 to estimate each covariate’s relative importance by summing the AICc weights for each model 269 

in which that variable appears [82] and report the significance of predictors for the top-ranked 270 

model [82].  271 

272 
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Conversion of nest density to chimpanzee density 273 

We used correction factors to convert estimates of nest density to chimpanzee density (ind/km2)  274 

by incorporating nest production and decay rates (Chimpanzee density = nest density / (nest 275 

production rate * mean nest decay rate) [83]. We used a nest production rate of 1.1 nests/day from 276 

previous research [13], calculated according to the number of nests built per day, the proportion 277 

of nest builders, and re-use. For decay rate, we utilized all available decay rates from the GME 278 

[84–86], computed following Plumptre et al. [70]. As factors such as weather and topography 279 

affect nest decay [87], we determined the decay rate of each survey site according to location 280 

(lakeshore vs. inland), sampling season (e.g., dry vs. wet), and the proportion of open vs. closed 281 

vegetation types. As climate conditions change as one travels inland from the lake, we applied 282 

decay rates based on lake proximity. All sites within 6 km of the shoreline were considered to be 283 

within the lakeshore zone as this area encompasses lakeshore decay rate study locations [84,85]. 284 

Lakeshore decay rates estimate 49 (dry season) and 76 days (wet season) for nests in closed 285 

vegetation and 126 days for nests in open vegetation (wet season) [84,85]. Unfortunately, no 286 

lakeshore decay rate is available for open vegetation during the dry season, so, we calculated a rate 287 

of 167.9 days by applying the proportional difference in decay rate observed between seasons in 288 

inland open vegetation (33% increase) to the lakeshore wet season rate. For inland sites, we applied 289 

decay rates estimated by Stewart et al. [86] from the Issa Valley: 83.3 (dry) and 118.9 days (wet) 290 

for closed vegetation; 185.5 (dry) and 139.2 (wet) for open vegetation. 291 

292 

Results 293 

Transects passed through a mixture of vegetation types and consisted of 20% forested (closed-294 

canopy 5%, open-canopy 15%) and 80% open (miombo woodland 30%, lowland bamboo 295 
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woodland 30%, grassland/swamp 14%, bamboo thicket 7%) vegetation (Fig 2). Closed-canopy 296 

forests showed the greatest diversity, density, and basal area of trees >10cm DBH, although, for 297 

feeding tree species, miombo woodlands displayed greater species richness and diversity (Table 298 

3). We observed minimal human presence and activity throughout the park (0.10 observations/km 299 

vs. 14.5 observations/km for wildlife), with observations recorded along only 6% of transects and 300 

at five sites. Most observations revealed only human presence (e.g., campsites, trails) and did not 301 

indicate a specific activity, although there was some direct evidence of wildlife poaching (0.01 302 

snares/km).   303 

304 

Fig 2. Graph showing vegetation type percentages observed at each site. We distinguish 305 

forests according to canopy cover (open forest <50% coverage; closed-canopy > 50%). 306 

“Other” includes non-wooded vegetation types (e.g., grassland, swamp).  307 

308 

Table 3. Overview of important vegetation types found in MMNP and utilized by 309 

chimpanzees for nesting. 310 

Open-canopy 

forest 

Closed-canopy 

forest 

Miombo 

woodland 

Bamboo 

woodland 

All species 

No. of species 95 95 149 19 

Diversity (Shannon Index) 3.5 4.7 3.8 2.4 

Tree density/ha 76 237 190 5 

Basal area/ha 4.9 14.5 3.8 2.4 

Feeding species 

No. of species 40 52 56 10 
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Diversity (Shannon Index) 3.0 3.6 5.3 1.3 

Tree density/ha 38 122 118 3 

Basal area/ha 2.7 6.6 5.6 0.1 

 311 

We recorded 335 nests, but following truncation and the removal of age four nests, which 312 

were considered decayed according to our definition, only 263 nests were included in our analysis 313 

[70]. Of these nests, 34% were found in forests (closed-canopy 8%, open-canopy 26%) and 66% 314 

in open vegetation (miombo 46%, bamboo 19%, wooded grassland 1%). Nests were 315 

disproportionately observed on steep slopes (>20 degrees), with  56% of nest locations found on 316 

steep slopes even though steep slopes accounted for only 14% of transect terrain. We found nests 317 

in >33 tree species, but we observed the majority (51%) in only four species: Julbernardia 318 

globiflora, Brachystegia spiciformis, B. bussei, and Xylopia parvaiflora. Feeding tree species 319 

accounted for  78% of the nesting species utilized by chimpanzees in MMNP and 94% of all 320 

nesting trees we recorded. We identified at least 259 different species of trees during and 321 

vegetation survey, of which 83 species are used for feeding by chimpanzees [39,40,51,71] (S1 322 

Table).  323 

We found that steep slopes and topographic heterogeneity were highly correlated (rp < -324 

0.93, df = 100, P < 0.001) and coded models accordingly. We also found a significant positive 325 

correlation between topographic heterogeneity and overall tree species richness (rp = 0.20, df = 326 

100, P = 0.05), but not feeding tree species (rp < 0.001, df = 100, P = 0.98). Non-parametric 327 

ANOVA tests revealed significant differences among sites for all ecological characteristics 328 

considered in our models (elevation: F2, 12 = 80.6, P < 0.001; forest cover:   F2, 12 = 59.8, P < 0.001; 329 

total basal area:  F2, 12 = 72.5, P < 0.001; mean basal area:  F2, 12 = 46.1, P < 0.001; diversity: F2, 330 
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12 = 53.0, P < 0.001; steep slopes: F2, 12 = 30.1, P = 0.003); topographic heterogeneity: F2, 12 = 331 

41.0, P < 0.001) (Table 4).  Moran’s I test confirmed the independence of our samples, showing 332 

no spatial autocorrelation between nest counts (Moran’s I = 0.04, p = 0.02). 333 

334 

Table 4. Chimpanzee density estimates with 95% confidence interval (CI) and mean 335 

covariate values for each sample site.  336 

Site 
Topographic 

heterogeneity 

Forest 

cover 

Total 

basal area 

(m2/ha) 

Mean 

basal area 

(m2/ha) 

Shannon 

diversity 

index 

Chimpanzee 

density 

(ind/km2) 

Chimpanzee 

density (ind/ 

km2) 95% CI 

A 9.13 57% 10.60 0.05 2.00 3.43 1.36 - 8.67 

B 7.23 86% 11.91 0.07 2.13 3.24 1.23 - 8.74 

C 4.62 42% 7.22 0.04 2.34 0.54 0.30 - 0.97 

D 3.93 2% 6.89 0.05 1.22 0.10 0.06 - 0.20 

E 3.09 2% 4.51 0.04 1.75 0.08 0.04 - 0.14 

F 5.46 4% 6.52 0.07 1.56 0.20 0.12 - 0.32 

G 5.51 11% 1.42 0.06 0.97 0.11 0.06 - 0.21 

H 4.44 13% 1.10 0.04 1.33 0.09 0.05 - 0.16 

I 3.57 15% 3.27 0.04 1.63 0.09 0.05 - 0.16 

J 5.55 5% 0.48 0.01 1.35 0.11 0.06 - 0.20 

K 7.12 23% 2.98 0.04 1.39 0.39 0.23 - 0.65 

L 5.79 10% 5.31 0.06 1.89 0.34 0.22 - 0.53 

M 4.04 4% 7.47 0.07 1.95 0.21 0.12 - 0.36 

337 
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Covariate influence on density and detection 338 

The hierarchical modeling approach that we applied allowed us to derive a model that performed 339 

better than null models that did not consider covariate effects on detection or density. The results 340 

of our bootstrapped goodness of fit test confirmed that our top-ranked model exhibited good fit 341 

with our data (Chi-square: x2 = 0.26; Freeman-Tukey: q = 0.23; sum of squares: SSE = 0.27).  Of 342 

the models we tested, only eight models contributed towards the cumulative AICc weight (Table 343 

5), and predictor weights differed considerably in their relative importance and contribution 344 

towards density estimates: topographic heterogeneity (0.98), total basal area (0.63), diversity 345 

(0.55), forest cover (0.53), mean basal area (0.16), steep slopes (0.03), elevation (0), site (0). 346 

Covariates included in the top-ranked model exhibited a significant effect on chimpanzee density 347 

(topographic heterogeneity: p < 0.001; total basal area: p < 0.001) (Fig 3). Our results estimate 348 

chimpanzee density at 0.23 ind/km2 (0.16 – 0.35 95% CI) across all MMNP, but estimates varied 349 

significantly among sites (F2, 12= 58.23, P < 0.001), ranging from 0.09 – 3.43 ind/km2.  350 

351 

Table 5. The weight and AICc value of each model contributing to our chimpanzee density 352 

predictions. All models include our best detection sub-model (p) but vary by density sub-353 

model (λ).   354 

Model AICc 
Model 

weight 

Cumulative 

weight 

λ(heterogeneitya + TBAb) p(site) 751.44 0.21 0.21 

λ(heterogeneity + forest cover + diversityc) p(site) 751.89 0.17 0.38 

λ(heterogeneity + forest cover + TBA) p(site) 752.00 0.16 0.53 

λ(heterogeneity + TBA + diversity) p(site) 752.37 0.13 0.66 
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λ(heterogeneity+ MBAd + diversity) p(site) 752.52 0.12 0.79 

λ(heterogeneity + forest cover + TBA + diversity) p(site) 753.33 0.08 0.87 

λ(heterogeneity + forest cover) p(site) 753.95 0.06 0.93 

λ(heterogeneity + forest cover + TBA + MBA + diversity) p(site) 754.6 0.04 0.97 

a Topographic heterogeneity 355 

b Total basal area 356 

c Shannon diversity index 357 

d Mean basal area 358 

359 

Fig 3. Predictor variable plots from the top-ranked model of nest density 360 

(a) Plot of coefficient estimates (circles) presented with 95% CI (vertical lines), confirming their361 

significance (because CI does not cross zero); (b) response curves of predicted nest density against 362 

topographic heterogeneity and (c) total basal area. 363 

364 

Discussion 365 

MMNP is home to one of the longest-running research studies of any single chimpanzee 366 

community (Nakamura et al. 2015). Yet, in>50 years of research and 35 years since the park’s 367 

creation, there was no park-wide census of one of its most charismatic speciesuntil the current 368 

study. Given the park’s protective status, limited human encroachment, and that it’s located within 369 

the GME where the greatest number of Tanzania’s chimpanzees occur, MMNP is a key area for 370 

chimpanzee conservation. Chimpanzees were present throughout the ecologically diverse park 371 

and we found that characteristics related to food and nesting resources are strongly associated with 372 
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chimpanzee density, resulting in significantly variable densities that ranged from 0.09 – 3.43 373 

ind/km2 among 13 sites.  374 

375 

Vegetation type 376 

Our results are consistent with those from other chimpanzee surveys (see Table 1), showing 377 

that across the savanna-woodland mosaic of MMNP, chimpanzees exist at a relatively low density 378 

of 0.23 ind/km2. Like other sites dominated by open vegetation [23,25,30], forests are an important 379 

vegetation type in MMNP. Our results show that chimpanzees disproportionately use forests for 380 

nesting and that there is a positive association between forest cover and chimpanzee density. Sites 381 

located in the park’s northwestern region exhibit the most forest cover and the highest chimpanzee 382 

densities (e.g., site B = 3.24 ind/km2), with densities 6 – 38 times greater than woodland dominated 383 

sites that characterize the remainder of the park. These findings support observations from 384 

previous researchers that this region of MMNP hosts a high density of chimpanzees [29], which 385 

they largely attributed to high food availability [88]. Our study provides empirical support for this 386 

assertion by demonstrating that the northwest region hosts the greatest basal area of feeding 387 

species. Furthermore, Site B coincided substantially with the home range of M-group. Based on 388 

the direct identification of community members, M-group density has varied over the years, 389 

ranging from 2.6 – 3.7 ind/km2 from 1996 – 2012 [12] and 3.5 ind/km2 during the study period. 390 

Similarities between these independent metrics of density validate our methodology and analysis 391 

for estimating chimpanzee density.  392 

In a primarily open landscape, non-forested vegetation types inevitably provide crucial 393 

resources for chimpanzees (Fig 4). Regionally, chimpanzees derive much of their food [40,55] and 394 

nesting species [41,43] from miombo woodlands, and several results from our study indicate the 395 
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value of this vegetation type in MMNP. For example, chimpanzee density seems to fluctuate with 396 

the availability of miombo woodland when survey sites have the same amount of forest cover, e.g., 397 

site G (10% forest, 0% miombo, 0.11 ind/km2) vs. site L (11% forest cover, 34% miombo, 0.34 398 

ind/km2). Additionally, chimpanzee density was positively associated with the basal area and 399 

diversity of feeding tree species, reflecting the importance of species-rich habitats like miombo 400 

woodlands that display a comparatively high diversity and abundance of feeding tree species. This 401 

contrasts findings from the savanna-forest mosaic of Lagoas de Cufada Natural Park (Guinea‐402 

Bissau), where chimpanzee nest abundance was negatively correlated with the basal area of food 403 

plant species that is indicative of dense forests. The relatively greater importance of basal area than 404 

forest cover showcases the necessity of resources across the landscape. These results are likely 405 

driven by the highly seasonal nature of the GME [27,40,89] that results in the variable use of 406 

different vegetation types over the year. Previous research describes chimpanzee reliance on 407 

woodlands during the dry season when forest fruits are less abundant [40]. Moreover, the density 408 

of feeding tree species in MMNP (5.3 m2/ha, SD = 3.5) is low in comparison to other chimpanzee 409 

sites where similar data are available, e.g., Kibale National Park (Uganda) (7.6 – 9.9 m2/ha for top 410 

10 fruit species only) [5], and likely compels chimpanzees to seek resources wherever available. 411 

Therefore, areas with a diversity of vegetation types (Fig 4) capable of supplying a  greater 412 

abundance and diversity of resources are likely advantageous for chimpanzees in MMNP.  413 

 414 

Fig 4. Selection of vegetation types observed in MMNP, illustrating its mosaic landscape.  415 

(a) lowland closed canopy forest; (b) miombo woodland; (c) grassland; (d) lowland bamboo 416 

woodland (Photos courtesy of A.C.). 417 

 418 
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Fruit availability 419 

Our results support similar findings from other locations [19,38,90] that floristic differences 420 

between sites play a pivotal role in density variability. In addition to the significant, positive effect 421 

of total basal area, the mean basal area of feeding trees had a positive, albeit relatively weak, effect 422 

on chimpanzee density in our models and demonstrates the value of large food trees, with 423 

presumably greater amounts of food, for chimpanzees living in a primarily open landscape. 424 

However, this finding may also be influenced by chimpanzee preference for nesting in large trees, 425 

as shown by previous research conducted in the GME [43,60]. Our analysis also confirmed the 426 

importance of floristic diversity for this species in MMNP, with our models demonstrating a 427 

positive correlation between chimpanzee density and feeding tree species diversity. In addition, 428 

our results showed that topographic heterogeneity, the most important predictor in our models, 429 

adheres to the positive trend generally shown between heterogeneity and species richness [62]. 430 

This suggests the importance of species-rich areas for chimpanzees, which may also provide 431 

diverse resources from food items not analyzed during this study (e.g., herbaceous growth, 432 

insects). The importance of diversity for chimpanzees in MMNP, compared to other chimpanzee 433 

sites, may be the result of both necessity and functionality. Resource diversity may be more 434 

valuable for chimpanzees living in low fruit abundance areas like MMNP, where an ability to 435 

diversify their diet allows individuals to compensate for low food density and maintain their 436 

nutritional needs. Potts et al. (2011) examined two adjacent communities in Kibale and found that 437 

Kanyawara chimpanzees (who live at a lower density than their Ngogo neighbors) demonstrate 438 

greater dietary diversity than Ngogo chimpanzees that live in an area with a significantly greater 439 

abundance important food species. For frugivorous animals, floristic diversity is advantageous 440 

when it reduces the fluctuation of fruit availability across seasons [90]. Thus, a diversity of plants 441 
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that all produce fruit simultaneously is not functionally equivalent to species diversity that helps 442 

diminish fruit scarcity, e.g., via asynchronous fruiting [38]. That MNNP has comparatively low 443 

food availability likely explains the importance of feeding tree species abundance, size, and 444 

diversity towards chimpanzee density. Future research that includes an investigation into the 445 

phenology of chimpanzee food resources is necessary to evaluate if and how chimpanzee density 446 

shifts with the availability of different resource functional classes (e.g., fallback food). 447 

448 

Nesting trees 449 

The ecological characteristics of sleeping sites inherently drive our assessment of chimpanzee 450 

density patterns in MMNP due to our use of chimpanzee nests for our analysis. The significant 451 

correlation between total basal area and chimpanzee density is, therefore, likely related to nesting 452 

resources and not only food. In the savanna-woodland mosaic of MMNP, where tree density is 453 

low compared to forest-dominated sites, chimpanzees may strategically utilize feeding species. 454 

Nesting in feeding trees may help individuals reduce travel costs and energy expenditure [91] and 455 

defend key resources from frugivorous competitors [42]. Likewise, as topographic heterogeneity 456 

is positively correlated with slope, the significance of this variable in our models is likely partially 457 

driven by our finding that chimpanzees in MMNP prefer to nest on steep slopes.  Chimpanzee 458 

preference for nesting on steep slopes is unlikely to be the byproduct of where preferred nesting 459 

trees are located since most trees from nesting species (69%) were not found on steep slopes. 460 

Instead, a preference for nesting on steep slopes may reflect an alternative motivation, such as 461 

vocal communication [92], or predator defense as steep slopes may provide a better view of the 462 

surrounding habitat and taller trees [56,60]. Large carnivores, such as leopards (Panthera pardus) 463 

and lions (P. leo), are found across MMNP (Chitayat, unpublished data) and the GME [93], and 464 



25 

are a well-documented threat to chimpanzees [94,95]. Yet,  steepness was a relatively unimportant 465 

predictor in our models (predictor weight = 0.03), especially in comparison to topographic 466 

heterogeneity, whose association with density extends beyond chimpanzee preference for nesting 467 

on steep slopes. Research regarding the impact of predation pressure on chimpanzee density and 468 

distribution is needed for greater clarification. Future models could benefit from the incorporation 469 

of additional ecological predictors like predator density and other factors that may impact sleeping 470 

site selection, such as proximity to water sources [56] and microclimate [86]. Moreover, because 471 

our research was limited to one visit per survey site, we could not assess the seasonal effects often 472 

reported to influence chimpanzee nesting patterns, habitat use, and ranging within the GME 473 

[12,40,43,56]. Future research would benefit from collecting data during both the wet and dry 474 

seasons to determine if the patterns we observed in this study are consistent across the annual 475 

cycle. 476 

477 

Conclusions 478 

Our study offers the first comprehensive density data on chimpanzees within a key conservation 479 

area in Tanzania. Our results show that survey site estimates are highly variable and dependent on 480 

the to ecological conditions of the site, with topographic heterogeneity, forest cover, and food 481 

availability demonstrating positive associations with chimpanzee density across the MMNP 482 

landscape. With this information, conservation and management bodies are better equipped to 483 

identify and prioritize suitable chimpanzee habitat within the GME. For instance, based on our 484 

finding that site-wide food availability is more important than forest cover availability, we 485 

recommend that conservation practitioners take a landscape approach that considers the 486 

importance of species-rich habitats and overall habitat diversity, particularly the availability of 487 
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miombo woodlands. Moreover, our data do not assess the full extent of these chimpanzees’ range 488 

but instead, where they sleep, which can be up to nine km from where they range during the day, 489 

as observed at Issa Valley (personal communication). Thus, we recommend that conservation 490 

practitioners consider other chimpanzee habitat use indicators, e.g., travel paths [96], habitat 491 

connectivity [59], to encapsulate the habitats necessary for their continued survival fully.  492 

Outside the park, the destruction and degradation of habitat from human activities threaten 493 

chimpanzee viability across western Tanzania by altering habitat composition and availability and, 494 

consequently, chimpanzee resources and connectivity [54,59,97]. This threat is compounded by 495 

land conversion for agriculture that often occurs close to rivers where riparian forests are found. 496 

Additionally, while we are encouraged by the limited anthropogenic activity we observed in 497 

MMNP, present threats just outside the park (e.g., road development, urban expansion, and 498 

growing human population size) that place even protected areas at risk [9], threatening them with 499 

human encroachment and eventual isolation. Additionally, the SARS-CoV-2 pandemic may 500 

exacerbate conservation threats if it results in reduced funding for protected areas and an increase 501 

in poverty that places greater pressure on the park [98]. The pandemic’s associated illness 502 

(COVID-19) also brings into sharper focus the risk of disease transmission our closest living 503 

relatives face when living in close proximity to humans. To track potential changes in chimpanzee 504 

density and their habitat, we recommend re-visiting MMNP survey sites, and extra-park locations, 505 

at regular intervals (at least every five years) in accordance with Tanzania’s national chimpanzee 506 

conservation action plan [99]. We hope our results from MMNP can serve not only as a baseline 507 

for MMNP but a point of comparison for the region to help researchers identify the impacts of 508 

human activities more precisely outside of the national park. Chimpanzees are a resilient species 509 

and can persist successfully in human-modified landscapes [26,52,57] when they are not directly 510 
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exploited through hunting and appropriate conservation actions are taken to promote their 511 

longevity [100]. Through continued monitoring efforts and the development of well-informed 512 

management strategies that do not only react to population declines but adequately anticipate 513 

population vulnerability, we can hopefully ensure the long-term persistence of chimpanzees in the 514 

GME and Tanzania.  515 
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