
 

Thisani, SK, Kallon, DVV and Byrne, PA

 Geochemical classification of global mine water drainage

http://researchonline.ljmu.ac.uk/id/eprint/14323/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Thisani, SK, Kallon, DVV and Byrne, PA (2020) Geochemical classification 
of global mine water drainage. Sustainability, 12 (24). ISSN 2071-1050 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


sustainability

Article

Geochemical Classification of Global Mine
Water Drainage

Sandisiwe Khanyisa Thisani 1,* , Daramy Vondi Von Kallon 1 and Patrick Byrne 2

1 Department of Mechanical and Industrial Engineering Technology, University of Johannesburg,
Doornfontein 2092, South Africa; dkallon@uj.ac.za

2 School of Biological and Environmental Sciences, Liverpool John Moore’s University, Liverpool L3 3AF, UK;
P.A.Byrne@ljmu.ac.uk

* Correspondence: sandisiwe.thisani@gmail.com

Received: 3 September 2020; Accepted: 13 November 2020; Published: 8 December 2020 ����������
�������

Abstract: This paper evaluates the geochemical distribution and classification of global Acid Mine
Drainage (AMD) sources. The geochemical compositions of AMD from 72 mine water sites in
18 countries across 6 continents were referenced from literature. The secondary data were analysed for
statistical distribution and mine water classification against the Hill (1968) framework. The research
found that the global mine water displayed geochemical concentrations within 2%, 11%, 5%, 9% and
8% of the aluminium, sulphate, acidity, total iron and zinc distribution ranges, respectively, at the
75th percentile. The study also found that 46%, 11.1% and 2.7% of mine water sites met the criteria for
Class I, Class II and Class III of the Hill (1968) framework, respectively, while the remaining 40% of
sites were omitted by the framework’s geochemical specifications. The results were used to optimise
the Hill (1968) framework. The revised framework was proposed for effective AMD geochemical
classification, regulation and remediation.

Keywords: Acid Mine Drainage (AMD); geochemical classification; mine water geochemistry; mine
water characteristics

1. Introduction

The formation of Acid Mine Drainage (AMD) water streams is a naturally occurring phenomena
and occurs in suitable environments where oxygenated water comes into contact with sulphide
minerals in the presence of aerobic microorganisms [1–3]. Large-scale commercial mining operations
enabled by technological advancements and the growing economic need for mineral resources has
resulted in significant increases in the volumes and toxicity of AMD generated globally [4,5]. This is a
result of the fragmentation of rocks during mining operations leading to increased surface area of rock
faces with an abundance of sulphide minerals [4,6]. AMD streams are typically characterised by low
pH and high concentrations of heavy metals and sulphate [7,8]. The geochemical processes leading to
the formation of AMD can be summarised into four interdependent reactions as defined in Equations
(1)–(4) [9,10].

2FeS2(s) + 2H2O + 7O2(aq) = 2Fe2+ + 4SO2−
4 + 4H+ (1)

4Fe2+ + 4H+ + O2 = 4Fe3+ + 2H2O (2)

Fe3+ + 3H20 = Fe(OH)3(s) + 3H+ (3)

FeS2(s) + 14Fe3+ + 8H2O = 15Fe2+ + 2SO2−
4 + 16H+ (4)

The decant of AMD from mine tailings, of abandoned mines in particular, poses serious
environmental hazards including the contamination of rivers, destroyal of aquatic life, bioaccumulation
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of toxic metals by organisms and plants, impairment to biodiversity and damaging natural
habitats [2,11–13]. The release of AMD and the associated pollution poses long-term environmental
hazard due to sulphide mineral rich mine sites being able to continue generating AMD centuries
after commercial mining operations have ceased [6,14]. This long-term effect coupled with the
severity of pollution has made AMD one of the greatest environmental challenges associated with
the mining industry globally [5,15,16]. Prevention of AMD formation is the most ideal solution and
may be achieved using techniques such as coating of the exposed mine rock surface and creating
oxygen barriers to prevent the dissolution and oxidation of sulphide minerals respectively [17,18].
However, the majority of AMD is associated with abandoned or closed mining sites where the ground
water table has risen inside of mine shafts and pits allowing for exposure to sulphide minerals [19–21].
Once AMD is formed in these abandoned and closed mining sites the process is difficult to control and
remediation is the most immediate solution [17]. Figure 1 shows the effects of abandoned mine AMD
on the surrounding environment.
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In 2010, a total of 6152 abandoned mines were identified in South Africa [22,23]. In the United States,
it has been estimated that there are more than 500,000 abandoned or closed mines affecting 25,000 km of
water streams [24,25]. Australia has recorded more than 50,000 abandoned mines [26] and in the United
Kingdom, the number of abandoned mines is estimated to be over 2000 [18,27]. Many of these and other
abandoned mines across the globe continue to generate AMD leading to numerous scholarly works on
the remediation of the pollutant to limit environmental degradation [6,17,28–34]. Conventional pH
correction has been the most widely implemented AMD remediation technique globally due to its
operational simplicity, low capital investment costs, and scalability [6,35]. However, this remediation
method, like any other, has its limitations. The selection of suitable remediation methods for
mine water sites remains a critical task for local governments and organisations managing AMD
streams. The suitability of an AMD remediation technique is influenced by many site-specific factors
including the AMD geochemical composition, AMD flow rates, topography and site location amongst
others [17,34,35].

Over the past three decades, mine water management has become a key regulatory and policy
requirement in many mining nations to counter the environmental hazard posed by AMD [36–39].
Legal frameworks governing mine water differ by jurisdiction and typically include discharge permits,
tailing storage and post-mine closure obligations [40]. To avoid uncertainty amongst stakeholders and
adverse effects on the environment, classification frameworks for AMD have been proposed to indicate
the contaminant levels and geochemistry of AMD streams [38,41]. These classification frameworks have
proven useful for site rehabilitators and environmental regulators in decision making [42]. The most
prominent classification method is the Global Acid Mine Drainage (GARD) guide [36]. The GARD
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guide is a simple classification framework that uses pH and Total Dissolved Solids (TDS) as primary
indicators for AMD categorisation [36,43]. Other AMD categorisation methods include the Water
Accountability Framework (WAF), which uses pH, TDS and coliforms [44,45], the Gray Acid Mine
Drainage Index (AMDI), which uses pH, SO4, Fe, Zn, Al, Cu and Cd [46,47] and the framework by Hill
(1968), which classifies AMD using acidity, SO4, pH, Al and Fe concentrations [36,48].

The use of existing mine water classification frameworks has been limited to specific regions due to
practical limitations and the high geochemical variability of global mine water [45,49,50]. Some practical
limitations of existing frameworks include the criteria used for classification and the frameworks’
applicability to mine waters generated from vastly different rock geology and environmental
conditions [47,51]. The high geochemical variability of global mine water sources requires additional
research to improve mine water classification frameworks for global adoption. An ideal global AMD
classification framework would enable mine water regulation and site rehabilitation while being simply
understood, comprehensively specified and applicable to any mine water system. The framework
by Hill (1968) remains one of the most comprehensive yet simple AMD geochemical classification
methods available today and was therefore evaluated and optimised for AMD categorisation in this
study. Table 1 shows the Hill (1968) framework.

Table 1. Acid mine drainage classification [48] adopted from [36].

Class Class Description Thresholds

Class I Acid mine drainage pH = 2.0–4.5
Acidity = 1–15 g/L

Fe2+ = 500–10,000 mg/L
Fe3+ = 0 mg/L

SO4 = 1–20 g/L
Al = 0–2000 mg/L

Class II Partially oxidised
and/or neutralised

pH = 3.5–6.6
Acidity = 0–1 g/L

Fe2+ = 0–500 mg/L
Fe3+ = 0–1.000 mg/L

SO4 = 500–10,000 mg/L
Al = 0–20 mg/L

Class III Neutral and not
oxidised

pH = 6.5–8.5
Acidity = 0 mg/L

Fe2+ = 0–500 mg/L
Fe3+ = 0 mg/L

SO4 = 500–10,000 mg/L
Al = 0–2000 mg/L

Class IV Oxidised and
neutralised/alkaline

pH = 6.5–8.5
Acidity = 0 mg/L

Fe2+ = 0 mg/L
Fe3+ = 0 mg/L

SO4 = 500–10,000 mg/L
Al = 0 mg/L

The Hill (1968) framework was developed based on distance of AMD streams from the original
AMD sources [36,48]. Naturally occurring neutralisation and oxidation processes take place over the
distance travelled by a stream, which affects the AMD stream’s quality until a completely oxidised and
neutralised stream is achieved. In this framework, the greater the class number the better the water
quality with the AMD stream at the mine source being presented as Class I and the fully oxidised and
neutralised AMD stream presented as Class IV [36,48]. The Hill framework indicates the pollution
potential of an AMD stream and the level of oxidation and/or neutralisation required to achieve Class
IV. This framework accounts for metals Fe2+ and Al, which tend to fully precipitate within the neutral
pH range resulting in the neutralised and oxidised Class IV being specified with dissolved Fe2+, Al and
acidity concentrations of zero. However, the framework does not include an indicator species of the
cytotoxic metals present in AMD, which can cause serious ecological damage and require alkaline
conditions to effectively precipitate as metal hydroxides. These cytotoxic metals, which include zinc
(Zn), nickel (Ni), lead (Pb), arsenic (As) and cadmium (Cd), all tend to precipitate at pH greater than
8.5 [52]. The presence of these cytotoxic metals in AMD influences the selection of AMD treatment
technology and the ecological pollution potential of AMD, therefore understanding their concentration
distribution in global AMD sources is essential for AMD categorisation [33].

This paper evaluates the geochemical distribution and classification of global AMD sources
using secondary data. The Hill (1961) framework was evaluated as a categorisation baseline.
Cation Zn2+ was added to the analyses as an indicator species for the cytotoxic metals present in AMD.
The geochemical compositions of AMD from 72 mine sites from 18 countries across 6 continents were
referenced from literature. The dataset was analysed for statistical distribution with the results used to
propose improvements to the Hill framework for effective global AMD classification. The resulting
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improvements to the framework were proposed to enable effective mine water remediation decision
making and legislative governance.

2. Research Methodology

Chemical composition data of AMD from mine sites across the world were gathered from
literature to form an indicative global AMD sample dataset. Secondary data were gathered for
mine water sites in Africa, Asia, Europe, North America, Oceania, and South America. In each
continent, with the exception of Oceania, three major mining countries were selected, and in each
country, four AMD sites were randomly selected. In Oceania, due to the limitation of mining nations,
two countries (Australia and New Zealand) were added to the dataset with four AMD sites selected
in each country. Additionally, four mining sites from major mining nation Russia were added to
complete the dataset. The referenced dataset comprised of coal, cupper (Cu), diamond, gold (Au),
iron (Fe), lead (Pb), nickel (Ni), pyrite, rare earth minerals (REMs), silver (Ag), tin (Sn), uranium (U)
and zinc (Zn) ore mines. The data were comprised of the highest concentrations of acidity, Al, pH,
SO4, total Fe and Zn recorded in the referenced literature for each site. Table 2 shows the referenced
sites, countries located, mineral ores mined and the literature references. The global AMD dataset’s
geochemical distribution range was analysed using quartile interval scales and distribution plots.
The global AMD dataset was also analysed for classification in the Hill (1968) framework. The analysis
results gathered were used to propose an optimised Hill (1968) framework for effective mine water
geochemistry classification.

Table 2. Global AMD sites.

No Country Minerals Sites References

1 Australia

Au Mount Ida Goldfield

[18,53–55]
Sn Jumna mine

Ag Montalbion mine

Au, Cu Mount Morgan mine, Arnold’s Gully

2 Brazil

Coal Coal mining area southern Brazil, Pedras stream

[56–60]
Au Iron Quadrangle, Velhas river basin

U Osamu Utsumi uranium mine, Pocos de Caldas

Coal Coal mine in Figueira municipality, State of Paraná

3 Canada

Zn, Cu, Pb, Ag Mattabi Mine

[61–66]
Fe Lorraine mine site

Zn, Au, Ag Les Mines Gallen

Au Doyon mine, Québec

4 China

Coal Xingren mine

[65–68]
Rare earth metals Sitai mine

Cu Tongling mine

Pyrite Xiang Mountain sulphide mine

5 Chile

Cu Active copper mine

[69–73]
Cu Chuquicamata porphyry copper mine

Cu, Au Punta del Cobre belt

Cu Andean mountain mines—Azufre River
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Table 2. Cont.

No Country Minerals Sites References

6 Germany

U Konigstein mine

[74–78]
Coal Lusatian Lignite District

U Gessenhalde near Ronneburg, Thuringia,

Lignite Mine pit, Lake Bockwitz, south of Leipzig

7 Ghana

Ag Tarkwa gold-mining district

[79–82]
Ag Lower Offin basin

Ag Lower Pra Basin

Ag Iduapriem Gold Mine

8 Japan

Au Tomitaka

[83–86]
Coal Hokutan Horonai coal mine

As Honshu

As Nishinomaki

9 Mexico

Ag, Zn, Pb Taxco Mining Area

[87–90]
Zn, Pb, Cu, Ag, Au Estado de Mexico

Cu Buenavista del Cobre Mine

Ag Huautla mine

10 Morocco

Au, Ag, Cu Tiouit mine

[91–94]
Cu, Mo, W Azegour mine

Pb Zeïda mine

Pyrrhotite ore Kettara mine site

11 New
Zealand

Coal Mangatini stream

[95–99]
Coal Stockton coal mine—Mangatini stream catchment

Coal Stockton Denniston Plateau

Cu, Pb, Zn Tui Mine

12 Russia

Coal Levikha mine

[100–103]
Coal Berikul tailing

Cu, Zn Ursk tailings, Kemerovo region

Coal The Kizel Coal Basin

13 South
Africa

Au Western basin

[104–106]
Au Witwatersrand basin

Au Central Basin

Coal Witbank

14 Peru

Zn, Pb, Ag, Bi, Cu Polymetallic Cerro de Pasco deposit

[107–111]
Ag, Cu, Pb, Zn Kingsmill Tunnel, Central Andes

Ag, Au, Cu Rio Santiago Stream, Cordillera Negra

Cu, Zn Antamina mine

15 South
Korea

Cu Ilgwang

[112–115]
Coal Donghae mine area

Coal Dogye coal mine

Au, Ag Kwangyang
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Table 2. Cont.

No Country Minerals Sites References

16 Spain

Ag, Au, Cu, Fe, Pb, Tn Iberian Pyrite Belt (from 25 mines)

[116–119]
Ag, Au, Cu, Fe, Pb, Tn Odiel River basin

Ag, Au, Cu, Fe, Pb, Tn Tinto river

Cu, Fe, Zn Peña de Hierro, Riotinto area

17
United

Kingdom

Cu Parys Mountain copper mine

[24,51,120–122]
Coal Yorkshire colliery

Coal Derbyshire colliery

Sn, Cu Wheal Jane

18 United
States

Coal South Carolina

[25,123–125]
Coal Solomon Creek, Pennsylvania

Cu Racoon Creek, Ohio

Cu Friendship Hill

3. Results and Discussions

3.1. Geochemical Distribution of the Global AMD Dataset

Figure 2 shows box and whisker plots of the pH, Al, SO4, acidity and total Fe distribution for the
global AMD referenced dataset. The dataset distribution ranges were 0.5 to 7.6 for pH, 350 mg/L to
56,240 mg/L for SO4, 0.6 to 12,240 mg/L for total Fe, 4 to 38,342 mg/L for acidity and 0.01 to 17,689 mg/L
for Al. The large distribution ranges indicate the high degree of AMD chemistry variation across the
sites and illustrate the complexity of developing classification frameworks for global mine water. It was
found that the distribution of Al, SO4, acidity and total Fe data was heavily skewed towards the bottom
end of the total range with the fourth quartile (upper 25th percentile) accounting for more than 80% of
the total range. The 75th percentile data distribution for Al, SO4, acidity and total Fe were determined
to be within the initial 2%, 11%, 5% and 9% of the total range, respectively. This finding suggests that
the majority of global mine water sites can be classified within a narrow geochemical range.
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Figure 2. Box plots of the geochemical distribution of global AMD sources.

The pH distribution was more symmetrical with a median pH of 3.0 and maximum pH of 7.55.
The observed circum-neutral pH range of between 6 and 7.55 may be attributed to the presence
of Neutral Mine Drainage (NMD) sites in the referenced global AMD dataset. NMD has been
distinguished as an independent mine water effluent due to its unique characteristics [36]. Mine water
from five sites in the referenced dataset may be characterised as NMD. These sites displayed high
geochemical concentrations with ranges between 0 to 8000 mg/L for SO4, 0 to 1200 mg/L for total Fe
and between 0 to 800 mg/L for Al. The 75th percentile data distribution for pH was determined to be
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within the initial 49% of the distribution range. Table 3 summarises the quartile interval scales of the
global AMD dataset’s geochemical composition.

Table 3. pH, Acidity, Al, total Fe and SO4 global distribution summary.

Distribution pH Acidity Aluminium Sulphate Total Iron

25th percentile (Q1) 0–2.6 0–215 mg/L 0–11 mg/L 0–1217 mg/L 0–40 mg/L
50th percentile (Q2) 2.6–3.1 215–712 mg/L 11–56 mg/L 1217–2444 mg/L 40–209 mg/L
75th percentile (Q3) 3.1–4.0 712–1788 mg/L 56–343 mg/L 2444–6081 mg/L 209–988 mg/L

Figure 3 shows a box and whisker plot of the concentration distribution of Zn from the referenced
dataset. Figure 4 shows a distribution plot of pH vs. zinc for the referenced dataset. The concentration
of Zn at the first quartile exceeded the agricultural irrigation and safe permissible discharge limit for
industrial effluents of 1 mg/L, respectively [41,125]. In total, 95% of the mine water data exceeded the
safe environmental discharge limits of Zn. The total data distribution range for Zn was between 0 to
1912 mg/L. The dataset distribution of Zn was also found to be heavily skewed towards the bottom end
of the range. The 75th percentile data distribution for Zn was determined to be within the initial 8% of
the total range. Table 4 summarises the distribution range of the Zn dataset by quartiles. The sample
frequency was greatest between the pH range of 2.0 and 4.0, which accounted for 78% of total site data.
The highest concentrations of Zn were found between pH 3.0 and 4.0.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 16 
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Table 4. Zn global distribution summary.

Distribution Zinc

25th percentile (Q1) 0–5 mg/L
50th percentile (Q2) 5–25 mg/L
75th percentile (Q3) 25–152 mg/L

3.2. Classification of the Global AMD Dataset Using the Hill (1968) Framework

Figure 5 shows the distribution of Al, SO4, acidity and total Fe concentrations vs. pH with the data
displayed against the Hill (1968) framework’s classifications. Approximately 75% of the referenced
global mine water sites had pH values between 2.0 and 4.5. This pH range is categorised as Class I
AMD in the Hill (1968) framework. When evaluating the dataset distribution against the entirety of
the Hill (1968) framework it was found that only 46% of the mine sites met the criteria for Class I AMD.
The other 29% of sites within the Class I pH range exceeded the specification limits for either Al, SO4,
acidity or Fe.

Figure 5. Dataset distribution against Hill (1968) framework.

A total of 11.1% of the mine sites met the criteria for Class II and 2.7% of the sites met the criteria
for Class III. The referenced sites in Class II and Class III were comprised of the five mine water sites
considered to be NMD. The remaining 40% of the referenced mine water sites were outside of the
Hill (1968) framework. Of the referenced sites outside of the Hill (1968) framework 10.7% exceed the
20,000 mg/L SO4 upper limit for Class I AMD, 23.6% were below the 500 mg/L Fe limit and/or below
the 1000 mg/L SO4 lower limit for Class I AMD and 4.2% were below the pH 2 limit for Class I AMD.
The classification percentage of the global AMD dataset against each geochemical parameter of the
Hill (1968) framework is summarised in Table 5.
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Table 5. Global AMD distribution on Hill (1968) framework.

Classification
AMD Geochemistry Distribution

Acidity vs. pH Total Fe vs. pH Aluminium vs. pH Sulphate vs. pH

Class I 53.3% 46% 76.2% 69.5%
Class II 20% 12% 11.1% 11.1%
Class III 10% 4% 2.7% 4.2%
Class IV - - 1.6% -
Outliers 16.7% 38% 22.2% 15.2%

3.3. Evaluation of Results and Framework Optimisation

As mentioned in the introduction, an ideal AMD classification framework would enable mine
water regulation and site rehabilitation while being simply understood, comprehensively specified
and applicable to any mine water system. The Hill (1968) framework provides a good geochemical
categorisation baseline for mine water sources; however, the framework’s classification omits some
mine water sites as shown in this study. In addition, the cytotoxic metal ions Zn, Pb, As, Co and
Ni are not allowed for in the framework, which can limit the ability to conceptualise remediation
solutions and AMD ecological hazards when making use of the framework. The framework required
optimisation to increase applicability to global mine water sources and improve data comprehension
for decision making.

Class I specifications of the Hill (1968) framework limit the upper geochemical concentrations of
AMD. These specifications were all well exceeding by some sites in the global AMD dataset, which were
highly acidic and highly contaminated. The highly contaminated and highly acidic sites accounted
for 11.1% of the total mine water dataset in this research. The mine waters from these sites are highly
toxic when considering geochemical composition and they require extensive remediation processes to
neutralise, oxidise, precipitate solids, and manage sludge. The researchers propose the inclusion of a
Class 0 into the framework, which can categorise these highly acidic and highly contaminated AMD
mine waters.

For Class I of the framework, a total of seven sites had acidity concentrations below the 1000 mg/L
lower limit and were therefore unclassifiable. The highest omissions on Class I, totalling 23.6%, were as
a result of the lower limit of 500 mg/L on Fe2+ and the lower limit of 1000 mg/L for SO4. The researchers
propose a reduction of the lower limits for Fe2+, SO4 and acidity to cater for the vast geochemical
variation amongst Class I AMD sites.

The results for Zn showed that the highest concentrations were between pH 3.0 and 4.0 while 75% of
the Zn samples had a total concentration below 153 mg/L. The Zn concentration distribution was found
to be highly variable across all pH and acidity ranges of the mine water sites. The researchers proposed
adding a simple category for Zn2+ at the bottom of the framework. The proposed categorisation
includes a category for concentrations up to the discharge limit of 1 mg/L represented as low (L),
concentrations up to the dataset median of 25 mg/L represented as medium (M), and concentrations
exceeding the dataset median represented as high (H).

Class II and Class III of the Hill (1968) framework were considered effective at categorising the
global AMD referenced dataset with all but one site unclassified. Table 6 shows the proposed optimised
Hill framework based on the discussed findings and proposal.
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Table 6. Proposed Optimised Hill Framework.

Class Class Description Thresholds

Class 0 ** Highly concentrated and
acidic mine drainage **

pH = 0.5–3 **
Acidity = 5–45 g/L ** Total Fe = 1000–12,000 mg/L ** SO4 = 10–60 g/L **

Al = 1000–18,000 mg/L **

Class I Acid mine drainage pH = 2.0–4.5
Acidity = 0–15 g/L **

Fe2+ = 0–10,000 mg/L **
Fe3+ = 0 mg/L

SO4 = 0–20 g/L **
Al = 0–2000 mg/L

Class II Partially oxidised and/or
neutralised

pH = 3.5–6.6
Acidity = 0–1 g/L

Fe2+ = 0–500 mg/L
Fe3+ = 0–1.000 mg/L

SO4 = 500–10,000 mg/L
Al = 0–20 mg/L

Class III Neutral and not oxidised pH = 6.5–8.5
Acidity = 0 mg/L

Fe2+ = 0–500 mg/L
Fe3+ = 0 mg/L

SO4 = 500–10,000 mg/L
Al = 0–2000 mg/L

Class IV Oxidised and
neutralised/alkaline

pH = 6.5–8.5
Acidity = 0 mg/L

Fe2+ = 0 mg/L
Fe3+ = 0 mg/L

SO4 = 500–10,000 mg/L
Al = 0 mg/L

Category ** L = Zinc ≤ 1 mg/L** M = Zinc ≤ 25 mg/L ** H = Zinc > 25 mg/L **

** indicate the revisions proposed to improve the framework.

4. Conclusions

This paper investigated the geochemical distribution and classification of 72 global mine water
sites from 18 countries across 6 continents using quartile interval scales and distribution plots. The Hill
(1968) framework was tested for global mine water classification and results were used to propose
improvements to the framework. The research found that the global mine water displayed geochemical
concentrations within 2%, 11%, 5%, 9% and 8% of the Al, SO4, acidity, Fe and Zn total distribution
ranges, respectively, at the 75th percentile. The Hill (1968) framework was found to be inefficient
at global mine water categorisation with 40% of the referenced mine water sites being omitted from
the classification’s specifications. To contribute towards effective global mine water classification for
regulators and mine water remediators, the following revisions were proposed by the researchers to
optimise the Hill (1968) framework:

1. The addition of Class 0 to the framework for highly acidic and high concentration baring
AMD. The research results found that 11% of the referenced mine water sites exceeded
Class I specifications. Class 0 is proposed as an addition to aid policy makers identify
these sites as uniquely contaminated mine waters and aid remediators to identify suitable
remediation techniques.

2. Revisions to Class I to enable the classification of all the geochemical variations of non-neutralised
and unoxidised mine water sources. The research results showed that 38.7% of non-neutralised
and unoxidised referenced mine waters did not meet the specification of the original Class I of
the Hill (1968) framework. The proposed revisions comprised of changes to the lower limits of
Fe2+, acidity and SO4 concentrations to enable the classification of all mine water sources.

3. The addition of an indicator species for cytotoxic cation AMD contaminants Zn, Ni, Pb, As and
Cd. Zinc was selected as the indicator species for these contaminants with a categorisation of low,
median and high proposed for classification. The proposed addition of Zn will enable regulators
and mine water remediators to greater understand the environmental impacts of the AMD source
and the mine water remediation requirements.
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