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Abstract 

 

Background and aims: Given the unexplored potential of physical activity to reduce the 

progression of cerebral small vessel disease (cSVD), the purpose of this study was to 

prospectively (across 9-year follow-up) examine the relation between (baseline) physical 

activity and the (clinical and imaging) consequences of the whole spectrum of cSVD. 

Methods: 503 Patients with cSVD from the RUNDMC study were followed for 9 years. 

Physical activity was assessed using a questionnaire in 2006, 2011 and 2015. Clinical events 

(i.e. all-cause mortality, cerebrovascular events (by stroke subtype) were collected with a 

structured questionnaire. Patients underwent MRI scanning for the assessment of MRI-markers 

of cSVD (i.e. white matter hyperintensities, lacunes and microbleeds) and microstructural 

integrity of the white matter at three timepoints.  

Results: The mean age at baseline was 66 (SD 9.0) years; 44% were women. A higher baseline 

physical activity level was independently associated with a lower all-cause mortality (HR: 0.69, 

95%CI: 0.49-0.98, p=0.03) and incidence of cerebrovascular disease (HR: 0.58, 95%CI: 0.36-

0.96, p=0.03). However, we found no relation between physical activity and incident lacunar 

stroke or progression of MRI markers of cSVD. 

Conclusions: Whilst regular physical activity was not related to the progression of MRI 

markers of cSVD across a 9-year follow-up, results from our study prove that high levels of 

physical activity in patients with cSVD are associated with a lower all-cause mortality and 

lower incidence of cerebrovascular events.  

 

  



Landman 3 
 

3 
 

Introduction  

Cerebral small vessel disease (cSVD) refers to a group of several pathological processes 

affecting the small arteries, arterioles, capillaries and venules of the brain.1-3 Patients with cSVD 

are at an increased risk of clinical symptomatic cerebrovascular disease (i.e. stroke and transient 

ischemic attack (TIA)) and vascular dementia, ultimately causing (long-term) disability and 

mortality4, 5. Given the small size of these affected vessels, they cannot be visualized in-vivo 

individually. However, the presumed consequences of cSVD can be visualized on conventional 

MRI and diffusion tensor imaging (DTI) ranging from generalized brain atrophy, white matter 

hyperintensities (WMH) and lacunes of presumed vascular origin to lower microstructural 

integrity 6, 7.  

Unfortunately, there is no proven effective treatment to attenuate the progression of cSVD, 

which emphasizes the need for the identification of new treatable targets. Given its ability to 

improve vascular risk factors that are related to cSVD8, 9, physical activity (PA) may potentially 

be an effective strategy in preventing clinical events and/or progression of cSVD. In support of 

this hypothesis, one study has found better microstructural integrity (i.e. higher fractional 

anisotropy (FA) and lower mean diffusivity (MD)) and fewer white matter hyperintensities 

(WMH) in physically active cSVD patients compared to their sedentary peers10. An important 

limitation of this latter study was the cross-sectional nature, which complicates the 

determination of direction of causality. Moreover, the effects of PA likely take a long period 

(i.e. months to years),8, 9 highlighting the need to examine the impact of PA on clinical events 

and progression of  cSVD disease using a longitudinal design.  

 

Aims and hypothesis 
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Therefore, the aim of this study was to examine both the cross-sectional and prospective (across 

9-year follow-up) relation between baseline PA and the development of clinical events and MRI 

markers of cSVD to assess progression of the disease. We hypothesized, following the results 

from cross-sectional observations, that higher levels of PA are also longitudinally related to 

fewer clinical events,  slower progression of MRI markers of cSVD and better preservation of 

white matter (micro)structure.  

  

Methods 

Study population 

Patients with cSVD were included for the Radboud University Nijmegen Diffusion tensor and 

Magnetic resonance imaging Cohort (RUNDMC) study, a prospective study that investigates 

risk factors and clinical consequences of cSVD. Inclusion of these individuals was performed 

in 2006, with follow-up measurements in 2011 and 2015. All participants signed an informed 

consent form. The study has been approved by the relevant ethical committee (CMO Arnhem-

Nijmegen). 

In 2006, patients with symptomatic cSVD referred to the Department of Neurology of the 

Radboud university medical centre (Radboudumc) between October 2002 and November 2006 

were selected for participation. Inclusion criteria were 1) age between 50 and 85 years, and 2) 

established cSVD, either based on neuroimaging (WMH and/or lacunar infarcts) or on a lacunar 

syndrome >6 months after the event. Exclusion criteria were 1) dementia (American Psychiatric 

Association, 2000); 2) Parkinson(ism); 3) intracranial haemorrhage; 4) life expectancy of < 6 

months; 5) intracranial space occupying lesions; 6) (psychiatric) disease interfering with 

cognitive testing or follow-up; 7) recent or current use of acetylcholine-esterase inhibitors, 

neuroleptic agents, L-dopa or dopa-agonists/antagonists; 8) non-SVD related white matter 
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lesion mimics (e.g. multiple sclerosis); 9) prominent visual or hearing impairment; 10) language 

barrier; and 11) MRI contra-indications or known claustrophobia. From 1,004 invited patients, 

727 were eligible for participation. Ultimately, 525 individuals agreed to participate and signed 

informed consent. A total of 22 individuals were excluded during these tests, as exclusion 

criteria were found during this visit. Complete information, including a cerebral MRI scan, was 

obtained for 503 individuals. These participants reported (a combination of) symptoms 

consisting of TIA or lacunar syndrome (n=219), cognitive disturbances (n=245), motor 

disturbances (n=97) and/or depressive symptoms (n=100). Baseline characteristics and vascular 

risk factors for all patients were extracted from the RUNDMC database.  

 

Assessment of physical activity 

Physical activity was prospectively assessed in 2006, 2011 and 2015 with a questionnaire that 

has been proven valid and useful in other large studies11, 12. Subjects reported the average 

amount of time per week during the past year spent on the following physical activities: running 

(>10 km/hour), jogging (<10 km/hour), walking outdoors, racquet sports, swimming, cycling, 

aerobic fitness, other vigorous activities (e.g. vacuum cleaning) and low intensity exercise (e.g. 

yoga, stretching). A metabolic equivalent (MET) value was assigned to each physical activity 

following accepted guidelines13, which allowed for the calculation of the total volume of 

physical activity. For this purpose, physical activity (in METhours) was calculated by 

multiplying its associated MET-value by the time (in hours) this physical activity was 

performed per week. This resulted in a total MET-score for each participant representing the 

total volume of physical activity. Thereafter, patients were divided into active (50% most active 

participants, based on baseline MET-score) and inactive participants (50% least active 

participants) based on median-split to allow for dichotomized analysis. 
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Clinical events 

Clinical events consisted of all-cause mortality and incidence of cerebrovascular events (i.e. a 

composite endpoint consisting of all TIA’s, ischemic strokes, hemorrhagic stroke and vascular 

dementia). Cerebrovascular events were thereafter divided by cause of stroke (lacunar events 

(i.e. lacunar TIA and lacunar stroke) and other causes of stroke (e.g. large artery disease or 

cardio-embolic origin)). All incident events were actively retrieved from patients during follow-

up and verified using information from patient records. From participants who were not 

available for follow-up assessment, medical records were reviewed; in addition, their general 

practitioner and medical specialists were contacted for information on clinical events and their 

cognitive status. The onset of clinical events was defined as the date on which the event was 

diagnosed by either the general practitioner or medical specialist. The diagnosis of dementia 

was based on the Diagnostic and Statistical Manual of Mental Disorders (IV)14. Vascular 

dementia was based on NINDS-AIREN criteria15 and probable Alzheimer’s disease was based 

on the NIA-AA criteria16. All events were adjudicated by a panel of two neurologists (AMT 

and FEdL). 

 

MRI protocol 

MRI images were acquired at 3 time points (2006, 2011 and 2015) on a 1.5 tesla scanner (2006: 

Siemens [Munich, Germany], Magnetom Sonata; 2011 and 2015: Siemens, Magnetom 

Avanto). The protocol included a 3-dimensional T1 magnetization-prepared rapid gradient-

echo sequence (voxel size 1.0 X 1.0 X 1.0 mm), a fluid-attenuated inversion recovery (FLAIR) 

sequence (voxel size 1.0 X 1.2 X 5.0 mm, interslice gap 1.0 mm; follow up: voxel size 1.2 X 

1.0 X 2.5 mm, interslice gap 0.5 mm) and a diffusion tensor imaging (DTI) sequence (repetition 
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time/echo time = 10.100/93 milliseconds; voxel size 2.5 X 2.5 X 2.5 mm). Full acquisition 

details have been described previously17.  

 

Assessment of MRI-markers for cSVD.  

cSVD was rated according to the Standards for Reporting Vascular Changes on neuroimaging 

(STRIVE) criteria7. The presence of WMHs, lacunes and microbleeds was manually assessed 

for each patient, which allowed for the generation of an SVD score as previously described18. 

Because periventricular space data was not available, this score is based on the presence of 

WMHs (with >1 Fazekas score), lacunes and cerebral microbleeds (for each: 0= not present, 

1=present). The SVD score therefore had a range from 0 to 3. Additionally, WMH volume was 

calculated by a semiautomatic segmentation method which has been described in detail 

elsewhere19. Segmentations were visually checked for errors by a trained rater who was blinded 

to clinical information. Total WMH volume was calculated by summing the segmented areas 

multiplied by slice thickness. Intracranial volume was determined by summing the total volume 

of grey matter, white matter and cerebral spinal fluid. Finally, to account for interscan effects, 

relative WMH volume (adjusted for baseline intracranial volume) was calculated for each 

individual patient. WMH volume, SVD score and number of microbleeds and lacunes were 

assessed for each patient in 2006, 2011 and 2015, allowing the determination of changes in 

these MRI-markers over time. 

 

Assessment of microstructural integrity.  

DTI pre-processing was described in detail in a previous article10. After pre-processing, the 

volume-averaged fractional anisotropy (FA) and mean diffusivity (MD) were calculated in the 

white matter lesions (WMLs) and in normal appearing white matter (NAWM). All images were 
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visually checked for motion artefacts and co-registration errors. For the DTI analysis, 440 

subjects were included after additional exclusion of 63 patients because of excessive motion 

artefacts or the presence of territorial infarcts. These data were imported into the RUNDMC 

database and extracted for analysis in 2019.  

 

Statistical analyses 

Analyses were performed using RStudio (R Core Team (2019))20. All MRI based outcome 

measures were checked for normality to decide for parametric or non-parametric analyses. 

Statistical significance was set at P<0.05.  

To examine the prospective relation between PA and clinical events, we first examined the 

association between baseline PA and all-cause mortality and incidence of cerebrovascular 

events using a cox proportional regression analysis. Patients who died were censored. Second, 

we analysed the cross-sectional relation between baseline PA and MRI-markers of SVD (i.e. 

SVD score, lacunes, microbleeds, and WMH volume) and white matter microstructure (i.e. MD 

and FA) with either linear or logistic regression, when appropriate. Third, the association 

between baseline PA and changes in MRI-markers and white matter microstructure (for each 

participant) during 9-year follow-up was investigated with linear mixed models. Linear mixed 

models were performed using the lme4 package21 with random intercept and an interaction term 

for group and time to investigate the relation between baseline PA and progression of cSVD.  

All statistical analyses were first performed univariate (with only the PA group as independent 

variable), followed by a multivariate analysis with adjustment for possible confounders at 

baseline (i.e. age, gender, level of education, normalized total brain volume, executive function, 

and cardiovascular risk factors (hypertension, body mass index (BMI), diabetes mellitus, use 

of lipid lowering drugs and smoking status). 
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Results 

Table 1 presents the baseline characteristics of the 503 patients, divided into the physically 

active and inactive group. Compared to the inactive group, the active group was significantly 

younger, had a higher total brain volume, had a lower prevalence of hypertension and diabetes, 

and a lower systolic blood pressure and BMI (table 1). The 9-year follow-up clinical data was 

available for all patients. Complete MRI data was available for 282 patients (figure 1). 

Participants reported a median METhours/week of 97 (IQR: 78-136) and 37 (IQR:22-48) in 

respectively the active and inactive group. In both groups, the total MET-score decreased 

significantly across the 9-year follow-up (P<0.001), but total MET-score remained significantly 

higher in the active group than the inactive group (table 1).  

 

Baseline physical activity and the risk of cerebrovascular events 

During 9-year follow-up 92 patients died (32 in the active group vs 60 in the inactive group). 

A higher baseline PA was independently associated with a lower all-cause mortality (adjusted 

HR: 0.69, 95%CI: 0.49-0.98, p=0.03) (Figure 2). Furthermore, 74 patients were diagnosed with 

a cerebrovascular event (26 in the active group vs 48 in the inactive group). A higher baseline 

PA was independently associated with this composite incidence of all cerebrovascular events 

(adjusted HR: 0.58, 95%CI: 0.36-0.96, p=0.03). However, when divided into lacunar (n=12 vs 

15, HR: 0.83, 95%CI: 0.38-1.83, p=0.65) and non-lacunar events (n=10 vs 18, HR: 0.77, 

95%CI: 0.34-1.73, p=0.53), there was no significant association between baseline PA and the 

risk of the causes of stroke.  

 

Baseline physical activity and MRI-markers for cSVD, at baseline and at follow up  
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Cross-sectionally the SVD-score was significantly lower in the active group (median: 1 vs 2, 

p=<0.01), which was mainly due to a lower presence of lacunes in the physically active group 

(OR: 0.46, 95%CI: 0.30-0.67, p=<0.001). After correction for confounders, this difference 

disappeared (Table 2). WMH volume at baseline was significantly lower in the active group 

compared to the inactive group (median: 3.0 ml vs 4.5 ml, p=0.03). However, after adjustment 

for confounders this association disappeared (Table 2). Finally, with linear mixed models no 

independent relation was found between PA and the cSVD-related MRI-markers across 9-year 

follow-up (Table 3). There was no independent association between PA and any of the markers 

of microstructural integrity, both at the cross-sectional and prospective level (Table 4 and Table 

5).   

 

Discussion 

We found that higher volumes of baseline PA in patients with cSVD related to a lower all-cause 

mortality and reduced incidence of all cerebrovascular events compared to patients with a lower 

baseline PA, across 9-year follow-up. However, we found no such association with lacunar 

stroke and MRI markers for cSVD.  

It is well established that a higher PA can act as an effective strategy for prevention of 

(progression of) cardiovascular disease in various clinical populations 22-25. To date, however, 

the longitudinal association between PA and clinical outcomes and MRI markers of SVD has 

never been explored in cSVD patients. The long follow-up of 9-years allowed us to detect the 

clinical impact of baseline PA, which confirmed our hypothesis that higher levels of PA at 

baseline is strongly associated with better clinical outcome (mortality and cerebrovascular 

events). This observation fits with the observation that prolonged adherence to high levels of 

PA is required for clinical benefits8. Curiously, we did not find an association between physical 
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activity and stroke subtype (i.e. lacunar events and other causes of stroke). However, the results 

of this sub analysis might be underpowered due to the low incidence of these stroke subtypes 

(27 lacunar events and 28 other causes of stroke respectively). Taken together, our data provide 

strong support for the relation between high levels of PA and protective clinical benefits in 

patients with cSVD, even after the diagnosis is made. Contrary to our hypothesis, higher PA 

volumes were not associated with the (clinical) presentation of cSVD (i.e. lacunar events, MRI-

markers of cSVD). Although higher WMH volumes were present in patients with high levels 

of PA at baseline, this appeared to be confounded by age and total brain volume. Our 

observations are in contrast with others that report an association between PA and both MRI-

markers and microstructural integrity in healthy older adults and cSVD patients10, 26, 27. 

However, these previous studies were cross-sectional, in which reverse causality may have 

played a role in explaining the observations. The fact that the relation between PA and WMH 

volume and SVD-score disappeared upon correcting for potential confounders, but also 

across/over time, highlights the importance to adjust for these factors and to adopt a prospective 

design. These observations suggest that other factors, independent from PA, may be more 

important contributors to the progression of MRI markers of cSVD in symptomatic cSVD 

patients.  

Our finding that individuals with higher volumes of PA showed a lower incidence of 

cerebrovascular events, without affecting markers of cSVD (i.e. lacunar events or MRI 

markers), raises questions about the potential underlying mechanisms. A frequently discussed 

explanation for the protective effects of PA on cardiovascular health is that the repeated increase 

in perfusion of large arteries28, results in improved cardiovascular health and a lower incidence 

of cardiovascular disease and all-cause mortality. Several studies have provided strong evidence 

for a role of perfusion in protecting against clinical events in large and resistance arteries28. 

However, protective mechanisms of the brain (e.g. cerebral autoregulation) seem to limit 
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increases in cerebral perfusion in small cerebral arteries during exercise.29 Although previous 

evidence shows that higher PA is related to an increased cerebral perfusion30, the relative 

increase in perfusion of the brain during PA is modest compared to other organs, such as the 

heart31-33. Possibly, this may explain our observation that physical activity protects against 

cardio- and cerebrovascular morbidity, whilst no protective effects are found in the (small) 

arteries of the brain. To further investigate this hypothesis studies are required to better 

understand the causal impact of PA on microvascular perfusion and relate this to clinical 

outcome  

 

Strengths and limitations.  

Strong elements of this study include its large sample size and prospective design. Furthermore, 

a structured assessment of physical activity and risk factors was used and all associations were 

corrected for possible confounders which have been described to be strongly related to cSVD 

progression and brain structure34. However, some methodological issues need to be considered. 

Firstly, due to the observational nature of this study it is impossible to determine a causal 

relation and therefore results should be considered with caution. To further investigate our 

promising results, we would recommend to initiate a randomized clinical trial to investigate the 

causal effects of PA in patients with cSVD. Several early phase trials that incorporate exercise 

intervention to reduce the progression of cSVD are currently underway35. Secondly, although 

structured questionnaires were used to assess physical activity, the amount of METhours/week 

reported may not reflect the exact amount of energy expended. Overestimation of PA with the 

use of questionnaires is a common finding. However, it is still a frequently used, feasible and 

valid method for the assessment of PA in large sample studies, especially to detect changes over 

time36. Therefore, to be able to make a more reliable distinction between “active” and “inactive” 

we made the decision to dichotomize the data for our analyses.  
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Conclusion 

Whilst regular physical activity was not related to the progression of MRI markers of cSVD 

across a 9-year follow-up, results from our study prove that high levels of physical activity in 

patients with cSVD are associated with a lower all-cause mortality and lower incidence of 

cerebrovascular events. This work supports the importance for increasing levels of physical 

activity in the clinical management of cerebrovascular disease, that should first be proven in 

clinical trials. 
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Figure Legends 

Figure 1: Flowchart of the RUNDMC study 

 

 

 

 

Figure 2: The effect of higher PA on clinical events 
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Tables 

Table 1. Baseline characteristics 

 

Characteristic  

Active 

(N=251) 

Inactive 

(N=252) 

 

P-value 

Age – yr 64.2  (±8.6) 67.0 (±8.7) <0.001 

Male sex 138 (55%) 146 (58%) 0.51 

Education† 228 (91%) 226 (90%) 0.66 

Total brain volume – ml 1076 (±79) 1046 (±79) <0.001 

Medical history    

           Atrial fibrillation 15 (6%) 25 (10%) 0.10 

           Hypertension 172 (69%) 197 (78%) 0.014 

           TIA 44 (18%) 60 (24%) 0.08 

           Ischemic stroke  57 (23%) 56 (22%) 0.90 

           Hemorrhagic stroke 4 (2%) 4 (2%) 1.00 

           Myocardial infarction 13 (5%) 22 (9%) 0.12 

           Diabetes Mellitus 20 (8%) 46 (18%) 0.001 

Medication use    

           Antihypertensive drugs 117 (47%) 154 (61%) 0.001 

           Statins  114 (45%) 123 (49%) 0.45 

           Beta-blockers 81 (32%) 100 (40%) 0.08 

Systolic blood pressure – mmHg 138 (±19) 143 (±22) 0.013 

Diastolic blood pressure – mmHg 78 (±9) 78 (±10) 0.74 

BMI – m/kg2 26.5 (±4.1) 27.8 (±4.0) <0.001 

Alcohol intake – U/wk 7.3 (8.5) 8.4 (10.0) 0.19 

Smoking status     

           Never 75 (30%) 74 (29%) 0.90 

           Former 139 (55%) 140 (55%) 0.56 

           Active 37 (15%) 38 (15%) 0.92 

Executive functioning* 0.06 (±0.75) -0.07 (±0.77) 0.046 

Gaitspeed (m/s) 1.36 (±0.24) 1.18 (±0.32) <0.001 

Total MET-score 2006 – METhours/wk 97 [76-136] 37 [22-48] <0.001 

Total MET-score 2011 – METhours/wk (n=361) 65 [40-96] 34[17-59] <0.001 

Total MET-score 2015 – METhours/wk (n=296) 45 [26-82] 22 [9-40] <0.001 

Values are mean (± standard deviation), number (percentage) or median [interquartile range]. 

Abbreviations: TIA= Transient ischemic attack BMI = Body mass index; MET=Metabolic equivalent.  

† Beyond primary education  

* Based on the score of four cognitive tasks (i.e. fluency animals, fluency jobs, STROOP test and verbal 

series attention task). 
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Table 2. The effect of physical activity on MRI-markers – cross-sectional 

The reference group is the inactive group. All multivariate analyses were performed with correction for possible confounders at baseline. 

† For WMH volume a β is reported, all other outcomes are odds ratios.  

  

 Univariate    Multivariate   

MRI marker cSVD β or OR† 95% CI P-value  β or OR† 95% CI P-value 

WMH volume (ml) -1.88 -3.35 – -1.06 0.03  -1.05 -1.73 – 1.55 0.82 

Microbleeds present 0.76 0.47 – 1.22 0.25  0.88 0.53 – 1.44 0.60 

Lacunes present 0.45 0.30 – 0.67 <0.001  0.52 0.33 – 0.81 <0.01 

SVD score (0-3) 0.70 0.45 – 0.87 <0.01  0.84 0.54 – 1.11  0.16 
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Table 3. The effect of physical activity on MRI-markers – longitudinal 

 

 

 

 

 

 

 

 

 

 

The reference group is the inactive group. All statistical analyses were performed with correction for possible confounders at baseline. 

 

  

Variable Fixed effect estimate 95% CI P-value 

WMH volume -0.04 -2.31 –2.23  0.97 

Group*Year 2011  0.13 -1.02 – 1.29  0.82 

Group*Year 2015 -0.25 -1.51 –0.99 0.68 

    

Microbleeds (n) -0.18 -0.77 – 0.41 0.55 

Group*Year 2011  0.14 -0.26 – 0.53 0.50 

Group*Year 2015 -0.14 -0.58 – 0.29 0.52 

    

Lacunes (n) -0.18 -0.42 – 0.05 0.14 

Group*Year 2011  -0.02 -0.15 – 0.11 0.76 

Group*Year 2015 -0.17 -0.32 – -0.03 0.02 

    

SVD score (0-3) -0.13 -0.28 – 0.03 0.12 

Group*Year 2011  0.04 -0.05 – 0.13 0.38 

Group*Year 2015 -0.04 -0.14 – 0.06 0.44 
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Table 4. The effect of physical activity on microstructural integrity – cross-sectional 

The reference group is the inactive group. All multivariate analyses were performed with correction for possible confounders at baseline. 

  

 Univariate    Multivariate   

Parameter β 95% CI P-value  β 95% CI P-value 

MD in WMLs (*10-3) -13.7 -32.2 – 4.82 0.15  -10.6 -28.7 – 7.40 0.25 

MD in NAWM (*10-3) -6.72 -15.9 – 2.54 0.15  -5.02 -11.7 – 1.62 0.14 

FA in WMLs (*10-3) -2.01 -11.5 – 7.49 0.68  -3.63 -13.2 – 5.93 0.46 

FA in NAWM (*10-3) 4.77 0.48 – 9.05 0.03  3.55 -0.55 – 7.64 0.09 
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Table 5. The effect of physical activity on microstructural integrity – longitudinal 

 

 

 

 

 

 

 

 

 

  

The reference group is the inactive group. All statistical analyses were performed with correction for possible confounders at baseline. 

 

Variable Fixed effect estimate 95% CI P-value 

MD in WMLs -0.01 -0.03 – 0.01 0.35 

Group*Year 2011  0.001 -0.03 – 0.03 0.94 

Group*Year 2015 -0.0005 -0.03 – 0.03 0.97 

    

MD in NAWM -0.005 -0.015 – 0.005  0.32 

Group*Year 2011  0.0008 -0.011 – 0.012 0.88 

Group*Year 2015 0.004 -0.007 – 0.016 0.43 

    

FA in WMLs -0.003 -0.013 – 0.007 0.60 

Group*Year 2011  0.001 -0.010 – 0.012 0.82 

Group*Year 2015 0.002 -0.008 – 0.014 0.63 

    

FA in NAWM 0.003 -0.005 – 0.012 0.43 

Group*Year 2011  -0.0007 -0.011 – 0.010 0.88 

Group*Year 2015 -0.0002 -0.010 – 0.010 0.97 


