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Abstract 

Principal components analysis (PCA) of waveforms and functional PCA (fPCA) are 

statistical approaches used to explore patterns of variability in biomechanical curve data, with 

fPCA being an accepted statistical method grounded within the functional data analysis (FDA) 

statistical framework. This technical note demonstrates that PCA of waveforms is the most 

rudimentary form of FDA, and consequently can be rationalised within the FDA framework of 

statistical processes. Mathematical proofing applied demonstrations of both techniques, and an 

example of when fPCA may be of greater benefit to control over smoothing of functional principal 

components is provided using an open access motion sickness dataset. Finally, open access software 

is provided with this paper as means of priming the biomechanics community for using these methods 

as a part of future functional data explorations.  
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PCA of Waveforms and Functional PCA: A Primer for Biomechanics 

Introduction 

Principal component analysis (PCA) is a classical multivariate statistical technique used for 

dimension reduction in human movement data (Deluzio et al., 1997). When applied to entire curves or 

time-series in biomechanics, it has been referred to as PCA of waveforms (Deluzio and Astephen, 2007; 

Deluzio et al., 1997; Landry et al., 2007), and has been used to transform time-series data into a smaller 

set of linear combinations, referred to as principal components (PCs), that account for most of the 

variability in the original data. These linear combinations demonstrate different patterns of variation 

present in the original time-series data. Similarly, the application of Functional Data Analysis (FDA) 

has also become common in biomechanics, particularly functional PCA (fPCA) (Dona et al., 2009; Kipp 

and Harris, 2014; Ryan et al., 2006; Warmenhoven et al., 2017). fPCA is an extension of PCA of 

waveforms tailored for use with functional data. While both methods aim to achieve the same analytical 

outcome, there is limited theoretical or experimental evidence demonstrating the similarities 

and differences between these techniques in biomechanical literature. This technical note bridges this 

gap, providing mathematical descriptions of both methods, supporting statistical literature and 

concurrent exemplar applications on two datasets via two separate experiments: Experiment 1 (Exp. 

1): a direct comparison of PCA and fPCA is carried out using an open access gait data dataset to 

demonstrate equivalence of methods; Experiment 2 (Exp. 2): the potential benefit of using fPCA, 

smoothing of functional principal components (fPCs) rather than the raw data, is demonstrated 

using a motion sickness posturography dataset. Associated software (Matlab and R) is also supplied 

as supplementary information for the biomechanics community to use PCA and fPCA.  

Datasets 

Dataset 1 (DS1): Similarities in PCA of waveforms and fPCA were demonstrated 

experimentally (in Exp. 1) through application of both approaches to a data-set on children's gait 

collected (Olshen et al., 1989). The dataset is also openly available at www.functionaldata.org and 

consisted of 39 male children participating in walking, with a single gait cycle for each child. For 

http://www.functionaldata.org/


demonstrational purposes, only the knee joint angle was analysed and only the first two modes 

of variation were explored.  

Dataset 2 (DS2): Demonstration of smoothing fPCs (in Exp. 2) was undertaken using an open 

access dataset that examined the relationship between reported susceptibility to motion sickness 

and postural control, where postural fluctuations while standing quietly were related to motion 

sickness history. PCA was originally conducted on the power spectrum density (PSD) curves for 

antero-posterior (AP) and medio-lateral (ML) axes of centre-of-pressure (CoP) measures during a 

static posture task. These curves were composed of amplitudes sampled at successive frequency 

values, which like time-points are not independent, thus making this scenario similar to PCA applied 

to time-series data. This data set was selected due to the combination of low and frequency content 

displayed along the PSD waveforms (Laboissière et al., 2015). 

Statistical Techniques 

PCA of Waveforms 

A comprehensive mathematical description of PCA can be found in the 

supplementary information provided with this article. Briefly, PCA consists of an orthogonal 

transformation that converts the p variables (in this case time points) into p new uncorrelated 

principal components. The principal components are mutually uncorrelated in the sample and are 

arranged in decreasing order of their sample variances. The principal component model is Z = UtX 

where the columns of U = u1, u2, . . ., up are called principal component loading vectors, and are the 

eigenvectors of the covariance matrix of X (which is defined as the original data matrix). The 

eigenvector matrix is orthonormal; therefore, the principal component model can be inverted so 

that, X = UZ. That is, the original data can be reconstructed from the principal components. The 

principal component score (PC score) vectors, zi (which represent the columns of Z), are composed 

of the coefficients which measure the contribution of the principal components to each individual 

waveform. In this way, the original waveform data for a particular subject is transformed into a set of 

PC scores that measure the degree to which the shape of their waveform corresponds to each feature. 



As fPCA is mathematically an extension of PCA of waveforms for use with functional 

data, several preliminary steps are required prior to application. An initial step usually involves 

representing each time-series as a function using a suitably chosen basis expansion and then 

smoothing these functions, with these processes being linked. The choice of expansion is often 

dependent on the properties of the data being analysed (inclusive of B-splines, Fourier series, 

wavelets, etc.).  

For spline basis functions, the interval over which a function is divided for approximation 

(with these referred to as breakpoints or knots) can be identified prior to analysis. The derived 

functions are smoothed by adding a roughness penalty to the fitting procedure, with the influence of 

the roughness penalty controlled through a smoothing parameter ‘λ’. This penalty ensures that the 

smoothness of each fitted curve is controlled by minimising the penalised residual sum of squares 

term, where fit to the data is balanced by the smoothness of the resulting curves (Dona et al., 2009; 

Ramsay and Silverman, 2005). Generalised cross-validation (GCV) is often used as a starting point 

for determining possible values of λ before a final subjective choice is made (Ramsay and Silverman, 

2005).  

When applying fPCA computationally, it is necessary to convert functional data to a finite 

number of dimensions (i.e. data points), rather than analyse infinite dimensional object (i.e. 

mathematical functions). For fPCA, one way of reducing the infinite dimensional eigenequation to a 

discrete or matrix form is to express each function xi as a linear combination of k basis functions Ф. 

These are often used when practically implementing fPCA. 

An fPCA then consists of an orthogonal transformation that converts these curves 

now represented in the functional domain to a new set of uncorrelated principal component 

functions. In fPCA, eigenfunctions rather than eigenvectors are used to represent principal components 

(also referred to functional principal components or fPCs). Similar to PCA of waveforms, fPC 

scores measure the degree to which the shape of their waveform corresponds to each feature, 

with a comprehensive mathematical description for deriving fPCs and fPC scores being 

provided in the supplementary material.  

Smoothing fPCs 

We can evaluate the effectiveness of smoothing fPC’s from their ability to represent unseen 

data; we might expect roughness in the fPCs to reflect random variation in the data that was used to 



obtain them and that might therefore be different in new data. Smoothing over this roughness will 

then let us more closely match unseen data (Silverman, 1996).  To obtain a smoothed fPCA, control 

over the roughness of the fPCs is accounted for by a roughness penalty. The amount of smoothing is 

controlled by a smoothing parameter (α), which is applied to the roughness penalty (Ramsay and 

Silverman, 2002). A cross-validation (CV) process was trialled for a grid of values for α ranging from 

1e-12 to 1e-1, to assess performance for smoothing fPCs (Ramsay and Silverman, 2005). Practically, 

this involved examination of the ability to approximate a test set of held-out curves using 1, 2, 3, 4 or 

5 principal components at different values of α.  That is, linear regression was performed to predict the 

value of the held-out curves from the smoothed principal components and summed the squared error 

associated with this reconstruction (Ramsay and Silverman, 2005). 

Results 

Exp. 1 

For fPCA a roughness penalty was selected using GCV (see Figure 1), with a range of possible 

values of λ being trialled, before a final choice was made (λ = 3). Given the GCV criterion relates 

directly to estimating the predictive error for different values of λ, a starting point for selecting λ is the 

smallest GCV value of those trialled. No additional smoothing was applied before applying PCA of 

waveforms.  

The first two modes of variation are displayed in Figure 2 (top and middle subplots). Positive 

scoring curves for both PCs and fPCs are illustrated by the plus (+) signs, and negative scorers are 

indicated by the minus (−) signs. These plots show clear descriptive similarities between the two 

techniques. Positive scorers on the first mode of variation (PC1 and fPC1) demonstrated greater knee 

flexion through the first half of the gait cycle, with this switching to a reduction in knee angle 

displacement leading into peak knee flexion angle (~75% of the gait cycle). The reverse was true for 

negative scorers for both approaches. For the second mode of variation (PC2 and fPC2), positive scorers 

demonstrated a consistently greater knee flexion angle across the whole cycle, with the reverse being 

true for negative scorers.  



Scores for both PCA of Waveforms and fPCA were nearly identical (bottom two subplots; 

Figure 2). This was consistent across both the first and second modes of variation, where R2 values of 

0.99 were noted between PC and fPC scores for both components. It is likely any subtle differences 

between PCA of Waveforms and fPCA in the correlation between scores is attributable to the smoothing 

during function fitting for fPCA. 

Exp. 2  

For all of 1, 2, 3, 4, or 5 fPCs, test-set reconstruction error was lower at some positive value 

of alpha compared with performing no smoothing.  To choose smoothing parameters, we applied 

cross-validation to the original training data (results displayed in Figure 3), leaving one curve out in 

turn for each smoothing parameter value and measuring our ability to represent it from principal 

components estimated from the remaining data. Using the value of alpha chosen by cross 

validation, we find an improvement in test set performance for all but using 2 principal components 

(see Table 1).  

In the case of 4 principal components, representation error decreased by 14%.  Thus, 

smoothing has benefits both for visual interpretation as well as for representing future data. 

How much improvement is obtained will depend on the smoothness of the underlying functional 

data, but it may be substantial. A demonstration of a smoothed and un-smoothed PC can be found in 

Figure 4, with an exemplar comparison for the first two PCs being demonstrated in Figure 5.  

Discussion 

Why do we consider movements as functional data rather than time-series? 

Functions are viewed as time-continuous stochastic processes. When evaluated at some 

regular grid of points, t1, ... , tp, we can get a time-series x1(t1), ... , xi(tp) in discrete time, resembling a 

classical time-series process. However, it is also possible to evaluate the time-continuous process, 

x1(t), at some other (finer or rougher) grid t1, ... , tk, where k is a different total number of points to p. 

As such, denoting x1(t1), ... , xi(tp) as a time-series process philosophically could be viewed as 

confusing, given the majority of literature related to time-series analysis methods considers their 

application in discrete rather than continuous time.  



In practice, PCA of waveforms applies PCA to the time series of observations with 

no smoothing applied. This makes PCA of waveforms one method of implementing fPCA as 

already demonstrated in the biomechanics literature (Liebl et al., 2014), and as the results from Exp 

1 show. However, the representation of biomechanics data as functions provides considerable 

advantages when going beyond the application of fPCA. This includes incorporating data taken at 

different temporal resolutions, across different sampling rates, with the possibility of incorporating 

data from multiple sources. It also allows for the analysis of derivatives – velocity or acceleration – 

and the alignment of, or analysis of, the timing of events between curves. 

Why incorporate smoothing as a part of the analysis process? 

Since the mid 1980’s splines have been suggested as a useful alternative for smoothing 

and processing biomechanical data (Woltring, 1985). Woltring identified that optimally regularized, 

natural quintic spline functions were useful for smoothing and differentiation up to at least the 

second derivative, but admitted that a potentially better approach would be to use B-splines, which 

are more stable than the piecewise polynomials (i.e. quintic splines). B-splines are integrated into 

the analysis framework for applying fPCA as demonstrated in the present study. Further to 

this, there are demonstrated benefits for using spline based smoothing approaches for handling 

curve endpoint distortions (Zin et al., 2020). Vint and Hinrichs (Vint and Hinrichs, 1996) 

compared four popular smoothing methods, Butterworth digital filter, Fourier series, cubic spline, 

and quintic spline, in terms of root mean squared (RMS) residual errors of acceleration in endpoint 

regions using a modification (Lanshammar, 1982) of Pezzack et al.’s (Pezzack et al., 1977) raw 

angular displacement data. Quintic splines produced the most accurate acceleration values, which 

were close to the endpoints the original (Pezzack et al., 1977) dataset, when compared to the other 

three methods. One cautionary note, is that B-splines may not be suitable for all types of data in 

human movement, and FDA offers a suite of other options for function fitting depending on the 

properties of the data (i.e. Fourier and wavelet approaches) (Ramsay and Silverman, 2005; 

Warmenhoven et al., 2017). Finally, as demonstrated within the current study, smoothing fPCs rather 

than the raw data can lead to more interpretable modes of variability (see Figure 3) and also more 

accurate reconstruction of the original signals (Table 1).  

Software 



This demonstration was conducted using the Matlab software (provided from 

www.functionaldata.org). For researchers looking to explore the application of PCA or fPCA on their 

own data, supplementary files with R and Matlab code are available with this article, and comprehensive 

tutorials in Markdown (R) and Publisher (Matlab) are available at: 

https://github.com/johnwarmenhoven/PCA-FPCA.  

Conclusion 

Theoretically and experimentally, PCA of waveforms was demonstrated as a form of 

fPCA, providing very similar results to fPCA of functional data represented by a basis expansion 

(i.e. B-Splines). PCA of waveforms can therefore be viewed as a part of the FDA family of statistical 

processes, as the most basic form of fPCA. There are however benefits to using fPCA, which have 

been outlined, with B-splines also being demonstrated as a useful expansion process for human 

movement data. It should also be noted that equivalence of statistical methods occur commonly in 

applied research, with examples in biomechanics already being demonstrated in the equivalence of 

statistical non-parametric mapping and FDA hypothesis testing (Warmenhoven et al., 2018). 

Importantly this article provides the biomechanics community with tutorials that accompany this 

article for applying these techniques in future research. 
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Figure Captions 

Figure 1. GCV for selection of λ as a smoothing parameter for function fitting using B-splines. 

Figure 2. The first (top) and second (middle) modes of variation for PCA of Waveforms and fPCA. 

Scores (bottom) for both approaches are also compared. 

Figure 3. Cross validation on the original training data (first subplot), leaving one curve out in turn 

for each smoothing parameter and measuring our ability to represent it from principal components 

estimated from the remaining data (using the summed squared error of reconstruction). This was then 

validated on a test-set (second sub-plot). 

Figure 4. The original spectral density curves from experiment 2 (first subplot), with the an 

unsmoothed PC1 (second subplot) and smoothed PC1 (third subplot) using a smoothing parameter 

derived via CV. 

Figure 5. PC1 and PC2 from experiment 2 unsmoothed (subplot1), and smoothed using the 

smoothing parameter derived via CV (subplot 2). 

Figure Legends
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Table 1. Summed the squared error (SSE) associated with reconstruction of unsmoothed and CV alpha selected smoothed 

fPCs. Bold indicates better error in each instance. 

1 fPC 2 fPCs 3 fPCs 4 fPCs 5 fPCs 

No smoothing 0.219 0.169 0.159 0.155 0.129 

CV selected alpha 0.210 0.170 0.139 0.134 0.125 

Table
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