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ABSTRACT This paper solves the finite-time bounded tracking control problem for fractional-order 

systems. Firstly, by taking the fractional derivative on state equations and error signals, a fractional-order 

error system is constructed, and the error signal is taken as the output vector of the error system. Secondly, 

a state feedback controller is introduced into the error system, and the disturbance signal of the error system 

is the combination of the fractional derivative of disturbance signals and desired tracking signals. Thus, the 

original problem is converted into the input-output finite time stability problem of the closed-loop error 

systems. Thirdly, based on the linear matrix inequalities (LMIs), the sufficient conditions which ensure the 

finite-time bounded tracking for the desired tracking signals are derived. Therefore, the finite-time bounded 

tracking controller of the original system is obtained. Finally, simulation results elucidate the effectiveness 

of the controller.  

INDEX TERMS Finite-time bounded tracking, fractional-order systems, error systems, linear matrix 

inequalities. 

I. INTRODUCTION 

A fractional calculus equation is to generalize calculus 

orders from an integer domain to a real or complex domain. 

The systems, represented by fractional calculus equations, 

are called fractional-order systems. Many practical systems 

are described by fractional differential equations because it 

can better represent the essential characteristics and 

dynamic behaviors of practical systems [1-3]. For example, 

by adopting the fractional order, the memory phenomenon 

of the mechanical system with viscous damping structures, 

is particularly easy to be demonstrated [2]. The genetic 

characteristics in microbial fermentation process can be 

better depicted by employing fractional-order system [3]. In 

recent years, the theory of fractional-order control systems 

has captured many scholars' attention and achieved fruitful 

results [4-6]. Sakthivel et al. solved the robust fault 

estimation-based synchronization problem for a class of 

fractional-order multi-weighted complex dynamic networks 

subject to external disturbances [4].  Sakthivel et al. in [5] 

considered the output tracking control problem and 

disturbance rejection performance for a class of fractional-

order T-S fuzzy systems with time-varying delay and 

external disturbances. More interesting results in this field 

can be found in [6]. It is well known that stability is usually 

the first problem to be considered and solved in the analysis 

and design of a system. Therefore, many scholars have 

investigated the stability theory of fractional-order systems. 

Li et al. researched the stability for a type of fractional-

order nonlinear systems based on Lyapunov direct method 

[7]. N'Doye et al. discussed the problem of robust 

stabilization for uncertain descriptor fractional-order 

systems [8]. HosseinNia et al. explored the stability of 

fractional order switched systems [9]. Zhao et al. gave the 

stability criterion of fractional-order positive switched 

systems by using the fractional-order Lyapunov function 

[10].  

It is worth noting that most of the research analyzing the 

stability of fractional order systems, are mainly 

concentrating on Lyapunov stability which exposes the 

behaviors of systems in an infinite time interval. However, 

in some practical problems, engineers pay more attention to 

the dynamic behaviors of systems in a fixed time interval. 

Meanwhile, excessive state value is not allowed. For 

instance, the circuit would be damaged, if the voltage is too 

high in a boost circuit system [11]. Hence, Dorato and 

Weiss and Infante proposed the finite time stability (FTS) 
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to reflect the characteristic that the state of the system does 

not exceed a given range in a finite time [12-13]. Moreover, 

if there are external disturbances in the system, FTS can be 

extended to finite-time bounded (FTB) [14]. In order to 

discuss the input-output behavior of system over a finite 

time interval, Amato et al. presented the input-output finite 

time stability (IO-FTS) in 2010 [15]. Currently, the 

research on FTS, FTB and IO-FTS has been spread from 

ordinary integer-order systems to fractional-order systems 

[16-19]. By utilizing the generalized Gronwall inequality, 

Lazarević and Spasić investigated the FTS problem of 

fractional-order delay systems and gave the sufficient 

conditions for the system to be FTS [16]. Ma et al. 

contributed the definition of FTS and FTB for fractional-

order linear systems [17]. The IO-FTS problems of normal 

and singular fractional-order linear systems were solved, 

and the design methods of state feedback controller were 

presented in [18]. Subsequently, Liang et al. investigate the 

problem of IO-FTS for fractional order positive switched 

systems [19]. 

In practical engineering applications, there are plenty of 

tracking problems. Consequently, tracking control is always 

one of the research hotspots in the control field. At present, 

there are numerous important research results in tracking 

control, for example, optimal tracking control [20-21], 

adaptive tracking control [22-23], tracking control based on 

iterative learning [24], etc. In addition, Kohler et al. 

proposed a nonlinear model predictive control scheme for 

tracking of dynamic target signals by utilizing reference 

generic offline computations [25]. In order to keep track of 

a time-varying steady state target, an output feedback 

model predictive control for fuzzy systems was presented in 

[26]. Li et.al investigated event-triggered tracking control 

for a class of nonlinear systems with disturbances [27]. In 

some tracking problems, scholars sometimes desire that the 

output of system can always remain within the specified 

neighborhood of the desired tracking signal in a finite time. 

For instance, the robot is expected to move along the 

planned path in a given period of time [28]. In view of this, 

the concept of finite-time bounded tracking, which reflects 

the characteristic that the output within a given threshold of 

the desired tracking signal in a finite time, is proposed in 

[28-29]. However, to the best of authors’ knowledge, the 

research on the finite-time bounded tracking still stays in 

the ordinary integer-order system. None of the study, about 

the finite-time bounded tracking of fractional-order system, 

has achieved so far. The problem of the finite-time bounded 

tracking for fractionalorder systems is very challenging. 

One reason is that fractional order systems have more 

complex dynamic behaviors than integer-order systems.  

Another reason is that the existing methods and conclusions 

about finite-time tracking of integer-order systems cannot 

be directly applied to fractional order systems. Therefore, 

this article proposes and solves the finite-time bounded 

tracking problem for a class of fractional order systems. 

The contributions of this research are summarized as 

follows: 1) The finite-time bounded tracking control is 

extended to the fractional order systems for the first time; 

2) a finite-time bounded tracking controller is designed for 

a type of fractional order systems; 3) the conception, 

method and conclusion of this article can be applied to the 

integer-order systems directly.  

Notations:
m n

A R


  means that A  is an m n  real 

matrix; I  denotes the identity matrix; 0Q  ( 0Q  ) 

represents that Q  is a negative (positive) definite matrix; 

0Q   ( 0Q  ) represents that Q  is a negative (positive) 

semidefinite matrix.  

II. PRELIMINARIES 

In this section, some basic notions and properties for 

fractional calculus are reviewed. For further details, please 

refer to [1].  

The left-sided Riemann-Liouville fractional integral with 

order 0   of the integrable function ( )x t  is defined as  

0
0

11
( ) ( ) ( )

( )

t

t t
t

I x t t x d
 

  


−
= −


 , 

where R  , 
0

t t
I


 is the integral operator of order   on 

0
[ , ]t t , 

1

0
( )

t
e t dt





− −

 =   [1], p.69.  

Because the Caputo derivative is the most frequently used 

in control engineering, this article adopts the Caputo 

fractional derivative, which is defined as 

0
0

1 ( )1
( ) ( ) ( )

( )

t
C n n

t t
t

D x t t x d
n

 
  



− −
= −
 −

 , 

where n  is a positive integer, ( )x t  is a differentiable 

function with the order n , 1n n−    [1], p. 92. 

Property 1 (Theorem3.16 in [4]): Caputo fractional 

derivative is a linear operator, that is, for any constant 
1
 , 

2
 ,  

0 0 0
1 1 2 2 1 1 2 2

[ ( ) ( )] ( ) ( )
C C C

t t t t t t
D x t x t D x t D x t

  
   + = + . 

Property 2 (Lemma 2.22 in [1]): Letting 0  , ( )x t  be 

an order n  differentiable function, the relationship 

0 0

1

( )0

0

0

( )
( ( )) ( ) ( )

!

kn

C k

t t t t

k

t t
I D x t x t x t

k

 

−

=

−
= −   

is obtained, here 
(0 )

( ) ( )x t x t= , 1n n−   .  

In addition, this paper needs utilize the following lemmas.  

Lemma 1 [30]: Let 0 1  , ( )
n

x t R  be a vector of 

differentiable function. Then, when 
0

t t , there is  

0 0 0

( ) ( ) ( ) ( ) ( ( )) ( )
C T T C C T

t t t t t t
D x t Px t x t P D x t D x t Px t

  
 +   ,  

where 
n n

P R


  and 0P  .  
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Lemma 2 (Lemma 2.8 in [31]): Consider the matrix 

11 12

12 22

T

S S
S

S S
=
 
 
 

, in which both 
11

S  and 
22

S  are invertible 

and symmetric matrices. The following conditions are 

equivalent:  

(i) 0S  ;  

(ii) 
22

0S  , 
1

11 12 22 12
0

T
S S S S

−
−  ;  

(iii) 
11

0S  , 1

22 12 11 12
0

T
S S S S

−
−  .  

III. PROBLEM DESCRIPTION AND ASSUMPTIONS 

Consider a fractional-order system as follows: 

0
0

( ) ( ) ( ), ( ) 0

( ) ( )

C

t t
D x t Ax t Ew t x t

y t Cx t


= + =

=





,   (1) 

where 0 1  ; ( )
n

x t R , ( )
p

y t R , and ( )
q

w t R  

denote the state vector, the output vector, and the disturbance 

input, respectively; moreover, 
n n

A R


 , 
p n

C R


 , and 
n q

E R


  are known constant matrices.  

The definition of IO-FTS for system (1) is showed as 

follows.  

Definition 1: The three scalars 
1

0c  , 
2

0c  , 
0

T t , 

and two matrices 0Q  , 0   are given. Under the initial 

value condition 
0

( ) 0x t = , system (1) is referred to as IO-

FTS with respect to 
1 2

( , , , , )c c Q T , if  

0

1 2

[ , ]

sup ( ) ( ) ( ) ( )
T T

t t T

w t Qw t c y t y t c


      
0

[ , ]t t T  .  

Remark 1: Definition 1 is slightly different from the one in 

[18]. In fact, two definitions can be transformed with each 

other if the appropriate parameters are selected.  

Then, Definition 1 is extended to discuss the finite-time 

bounded tracking of system (1). The finite-time bounded 

tracking means that the output ( )y t  of (1) always remains in 

a given neighborhood of the desired tracking signal 

( )
p

d
y t R  under certain conditions. The difference between 

the desired tracking signal and the output signal is defined as 

the error signal ( )e t  , that is 

( ) ( ) ( )
d

e t y t y t= − .      (2) 

The strict definition of finite-time bounded tracking for 

System (1) is as follows: 

Definition 2: Given three scalars 
1

0c  , 
2

0c  , 
0

T t , 

two matrices 0Q  , 0  , and initial condition 
0

( ) 0x t =  , 

the outputs of system (1) complete finite-time bounded 

tracking for ( )
d

y t  with respect to 
1 2

( , , , , )c c Q T , if 

0

1 2

[ , ]

sup ( ) ( ) ( ) ( )
T T

t t T

w t Qw t c e t e t c


     
0

[ , ]t t T  . 

Remark 2: Particularly, ( ) 0
d

y t  , the finite-time bounded 

tracking degenerates to the IO-FTS. 

Let us consider the fractional-order system  

 0
0

( ) ( ) ( ) ( ), ( ) 0

( ) ( )

C

t t
D x t Ax t Bu t Ew t x t

y t Cx t


= + + =

=





, (3) 

where 0 1  ; ( )
n

x t R  denotes the state vector, 

( )
m

u t R  is the control input vector, ( )
q

w t R  represents 

the disturbance vector, ( )
p

y t R  means the output vector; 

n n
A R


 , 

n m
B R


 , 

n q
E R


 , and 

p n
C R


 denote known 

constant matrices. 

 The assumptions on the desired tracking signal ( )
d

y t  and 

disturbance signal ( )w t  of system (3) are presented as 

follows.  

Assumption 1. ( )
d

y t  is a piecewise continuous 

differentiable function with 
0

( ) 0
d

y t =  , and satisfies 

0

2
1

0

1 11

[ , ]

( )
sup ( ) ( )

(2 )

T

d d

t t T

T t
y t Q y t c





−



−


 −

 
 
 

, 

where 
1

p p
Q R


  and 

11
c  are a given positive matrix and 

number, respectively. 

Assumption 2. ( )w t  is a piecewise continuous 

differentiable function and satisfies 

0

2
1

0

2 22

[ , ]

( )
sup ( ) ( )

(2 )

T

t t T

T t
w t Q w t c





−



−


 −

 
 
 

, 

where 
2

q q
Q R


  and 

22
c  are a given positive matrix and 

number, respectively. 

Remark 3: According to Assumption 1 and 2, it follows 

that ( )
d

y t  and ( )w t  are not differentiable at some isolated 

points. At this juncture, the one-sided derivative of ( )
d

y t  and 

( )w t  are taken. 

The objective of this study is to design a controller for 

system (3) so that the output ( )y t  of (3) completes finite-

time bounded tracking for ( )
d

y t  under certain conditions. 

IV. DESIGN OF THE CONTROLLER 

The method of the constructing error systems in [32-33] is 

implemented to solve the problem. Firstly, a fractional-order 

error system is constructed so that the error signal is included 

in the state vector.  

Taking the order   Caputo derivative on both sides of the 

state equation of (3), and utilizing Property 1, the following 

will be obtained: 

0 0 0 0 0

( ( )) ( ) ( ) ( )
C C C C C

t t t t t t t t t t
D D x t A D x t B D u t E D w t

    
= + + . (4) 

By applying 
0

C

t t
D


 to both sides of (2), it follows that 

0 0 0 0 0

( ) ( ) ( ) ( ) ( )
C C C C C

t t t t t t d t t t t d
D e t D y t D y t C D x t D y t

    
= − = − . 

(5) 
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Upon combining (4) and (5), one can acquire 

0 0 0 0

( ) ( ) ( ) ( ) ( )
C C C C

t t t t t t t t d
D z t Az t B D u t E D w t G D y t

   
= + + + , 

(6) 

where 

0

( )
( )

( )

p n

C

t t

e t
z t R

D x t


+
= 
 
 
 

, 
( ) ( )

0

0

p n p n
C

A R
A

+  +
= 
 
 
 

, 

( )
0

p n m
B R

B

+ 
= 
 
 
 

, 
( )

0
p n q

E R
E

+ 
= 
 
 
 

, 

( )

0

p n p
I

G R
+ 

−
= 
 
 
 

. 

Since the output ( )y t  and the desired tracking signal 

( )
d

y t  are known, ( )e t  can be taken as the output of (6), that 

is, the following output equation can be introduced for (6).  

( ) ( )e t Cz t= ,   (7) 

where   ( )
0

p p n
C I R

 +
=  .  

Combining (6) and (7) yields 

0 0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( )

C C C C

t t t t t t t t d
D z t Az t B D u t E D w t G D y t

e t Cz t

   
= + + +

=





. 

(8) 

(8) is the error system of system (3). 

It is interesting to note that if a state feedback controller 

0

( ) ( )
C

t t
D u t Kz t


= .  (9) 

can make the closed-loop system of (8) IO-FTS, then the 

output of (3) completes finite-time bounded tracking for 

( )
d

y t . The gain matrix K  of (9) will be given in the 

following.  

Introducing (9) to (8) results  

0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( )

C C C

t t t t t t d
D z t A BK z t E D w t G D y t

e t Cz t

  
= + + +

=





, (10) 

which is the closed-loop system of (8). Note that compared to 

system (1), there is one more term 
0

( )
C

t t d
G D y t


 . Let us treat 

0

( )
C

t t d
D y t


 as a disturbance, and integrate 

0

( )
C

t t
D w t


 and 

0

( )
C

t t d
D y t


 together to form a new disturbance vector 

0

0

( )
( )

( )

C

t t d

C

t t

D y t
w t

D w t




=
 
 
  

 . In this case, (10) can be written as 

0

( ) ( ) ( ) ( )

( ) ( )

C

t t
D z t A BK z t Ew t

e t Cz t


= + +

=





, (11) 

where   ( ) ( )p n q p
E G E R

+  +
= .  

Remark 4: Treating 
0

( )
C

t t d
D y t


 as an external disturbance 

leads to some conservatism in the result. From the point of 

view of mathematics, this method is reasonable. The problem 

of finite-time bounded tracking control for a part of desired 

tracking signals can be solved by adopting this method. 

(11) has the same form as (1). Thus, the theory and method 

of the IO-FTS for fractional-order system can be adopted as a 

reference. The first critical theorem of this research is given 

as following.  

Theorem 1: For  
0
,t t T  , there is 

2
( ) ( )

T
e t e t c  , 

that is, system (11) is input-output finite time stability with 

respect to 
1 2

( , , , , )c c Q T , if under Assumption 1 and 2, 

there exists a matrix 0P   such that  

0

T T T

T

PA A P PBK K B P PE

E P Q

+ + +


−

 
 
 

 (12) 

and  

2

1 0

( 1)
0

( )

T c
C C P

c T t


 +
 − 

−
, (13) 

where 
1 11 22

c c c + , 
1

2

0

0

Q
Q

Q

 
 
 

= , and 
0

( ) ( )
C

t t
D u t Kz t


= .  

Proof: The quadratic form 
T

V z Pz=  is constructed based 

on the positive definite matrix P  satisfying (12) and (13). 

Taking the fractional derivative of V  with regard to time t  

along the trajectory of (11) and considering Lemma 1, one 

can obtain  

( )

( )

0 0

0 0

(11)
( ( ) ( ))

( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

C C T

t t t t

T C C T

t t t t

T

T

T T T T

T T T

T T

T T T

D V D z t Pz t

z t P D z t D z t Pz t

z t P A BK z t Ew t

A BK z t Ew t Pz t

z t PA A P PBK K B P z t

w t E Pz t z t PEw t

z t w t

PA A P PBK K B P

 

 

=

 +

= + +

+ + +

= + + +

+ +

+ + +

  =

( )

( )0

( ) ( )

( )

( )

( ) ( )

T

T T

T T T

T

T

z tPE

w tE P

z t w t

z tPA A P PBK K B P PE

w tE P Q

w t Qw t

+ + +

−

+

   
   

  

  

   
   

  

=

(14) 

By using (12), the following will be established 

0
(11)

( ) ( )
C T

t t
D V w t Qw t


 .  (15) 

Based on the assumption of zero initial conditions, the 

following is obtained 

0 0 0
( ( )) ( ) ( ) 0

T
V z t z t Pz t= = .  
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Integrating both sides of (15) with respect to order   from   

to 
0

t  and taking t  Property 2 into account, it can be achieved 

that 

0
0

11
( ( )) ( ( ) ( )) ( ) ( ) ( )

( )

t
T T

t t
t

V z t I w t Qw t t w Qw d
 

   


−
 −


= . 

(16) 

Now let us estimate the upper bound on the right side of (16). 

Because of 
0

0

( )
( )

( )

C

t t d

C

t t

D y t
w t

D w t




=
 
 
  

, 
1

2

0

0

Q
Q

Q

 
 
 

= , there is  

0 0 0 0
1 2

( ) ( ) ( ( )) ( ) ( ( )) ( )
T C T C C T C

t t d t t d t t t t
w t Qw t D y t Q D y t D w t Q D w t

   
= + , 

 
0
,t t T   (17) 

Consider the two terms in the right of (17). For the first 

term, it is known from Assumption 1 that ( )
d

y t  has only the 

first kind of discontinuity at most. Thus, ( )
d

y t  is a bounded 

function. Moreover, the relation ( )t



−

−  of   remains its 

sign in 
0

[ , ]t t . Therefore, according to the integral mean 

value theorem in p. 352 of [34], there exists a point 

0
[ , ]t t   such that  

0 0

1

0

( ) ( ) ( ) ( )

1
( ) ( ).

1

t t

d d
t t

d

t y d t d y

t t y

 



     




− −

−

− = −

= −
−

 
  

 

Then  

0
0

1
0

1
0

1
( ) ( ) ( )

(1 )

1
( ) ( )

(1 ) (1 )

1
( ) ( ).

(2 )

t
C
t t d d

t

d

d

D y t t y d

t t y

t t y

 





  



 




−

−

−

−
 −

−
−  −

−
 −

=

=

=

 

Therefore,  

0 0

0

0

1

1 1

0 1 0

2
1

0

1

[ , ]

2
1

0

1

[ , ]

( ( )) ( )

1 1
( ) ( ) ( ) ( )

(2 ) (2 )

( )
sup ( ) ( )

(2 )

( )
sup ( ) ( ).

(2 )

C T C

t t d t t d

T

d d

T

d d

t t

T

d d

t t T

D y t Q D y t

t t y Q t t y

t t
y Q y

T t
y t Q y t

 

 







 
 

 




− −

−



−



− −
 −  −

−


 −

−


 −

   
   
   

 
 
 

 
 
 

=

Based on Assumption 1, the following will be obtained  

0 0
1 11

( ( )) ( )
C T C

t t d t t d
D y t Q D y t c

 
 .      (18) 

Similarly, if Assumption 2 holds, it is known that the second 

term on the right side of (17) satisfies  

0 0
2 22

( ( )) ( )
C T C

t t t t
D w t Q D w t c

 
 .   (19) 

Merging (17), (18), and (19), the following can be achieved 

11 22 1
( ) ( )

T
w t Qw t c c c +  .  (20) 

By putting (20) into (16), one can obtain the upper bound 

of (16) which is the upper bound of ( ( ))V z t  , as follows:  

0

0

1

1 1 01

1
( ( )) ( ) ( ) ( )

( )

( )
( )

( ) ( 1)

t
T

t

t

t

V z t t w Qw d

c t tc
t d







   


 
 

−

−

 −


−
 −
  +



 =

 

1 0
( )

( 1)
.

c T t




−


 +
         (21) 

Because of ( ) ( )e t Cz t= , considering (13) and (21), when 

 
0
,t t T  , one can get  

2 2

1 0 1 0

2

( ) ( ) ( ) ( )

( 1) ( 1)
( ) ( ) ( ( ))

( ) ( )

.

T T T

T

e t e t z t C Cz t

c c
z t Pz t V z t

c T t c T t

c

 

 

 = 

 +  +
 =

− −



 

The proof is completed.  

Nevertheless, the inequality (12) of Theorem 1 is not LMI, 

so (12) cannot be tackled by LMI toolbox in MATLAB. By 

converting (12) into LMI, one acquires the second theorem 

of this article.  

Theorem 2: If under Assumption 1 and 2, there exists 

matrices 0L   and Y  satisfying  

0

T T T

T

AL LA BY Y B E

E Q

+ + +


−

 
 
 

,  (22) 

and  

2

1 0

1

( 1)

( ) 0

Tc
L LC

c T t

CL





−

 +
−

− 

−

 
 
 
  

,          (23) 

then system (3) achieves the finite-time bounded tracking for 

( )
d

y t  with respect to 
1 2

( , , , , )c c Q T . Moreover, the gain 

matrix 
1

K YL
−

=  and 
0

( ) ( )
C

t t
D u t Kz t


= .  

Proof: It only need prove that if the conditions of this 

theorem are true, the conditions of Theorem 1 are also true. 

The congruent transformation is implemented on the matrix 

on the left of (12) by pre-multiplying an invertible matrix   
1

( , )diag P I
−

 and post-multiplying the transpose of this 

matrix. Due to the fact that the congruent transformation 

remains the positive definiteness of a matrix, (12) is 

equivalent to  
1 1 1 1

0

T T T

T

AP P A BKP P K B E

E Q

− − − −
+ + +


−

 
 
 

.   (24) 
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Denoting 
1

L P
−

= , 
1

K YL
−

=  , it can be seen that (24) 

becomes (22), which implies that (12) is satisfied if and only 

if (22) hold.  

Pre- and post-multiply the left side of (13) by an invertible 

matrix L  and its transpose (namely, L ), respectively. 

Similarly, for the reason that congruent transformation 

remains the positive definiteness of a matrix, (13) is 

equivalent to  

2

1 0

( 1)
0

( )

T c
LC CL LPL

c T t


 +
 − 

−
.  

Because of 
1

L P
−

= , 0  , the inequality above can be 

rewritten as 

1 12

1 0

( 1)
( ) 0

( )

Tc
L LC CL

c T t


 − − +
− − − 

−
. (25) 

In view of 
1

0
−

−  , according to Lemma 2, (25) and (23) 

are equivalent. Consequently, (13) is true if and only if (23) 

is established. Moreover, 0L   if and only if 0P  . Thus, 

Theorem 2 is proved.  

Further, we consider the control input of (3). The third 

crucial theorem of this paper is as follows:  

Theorem 3: If there exist matrices 0L   and Y  satisfying 

(22) and (23), besides, Assumption 1 and 2 are true, i.e., the 

conditions of Theorem 2 are satisfied, the control input of (3) 

can be taken as  

0
0

( ) ( ) ( ) ( )
e t t x

u t K I e t K x t u t


= + +     

0

1

0
( ) ( ) ( ) ( )

( )

t
e

x
t

K
t e d K x t u t


  



−
= − + +


 ,  (26) 

where
1

K YL
−

=  , L  and Y  are determined by (22), (23) and 

0L  ,  
e x

K K K= . Under control law (26), the output 

( )y t  of (3) can achieves finite-time bounded tracking for 

( )
d

y t  with respect to 
1 2

( , , , , )c c Q T .  

Proof: If the conditions of Theorem 2 are true, the 

controller of (8) is 
0

( ) ( )
C

t t
D u t Kz t


= , which is also a control 

input of system (3). Divide K  into  
e x

K K , where 

m p

e
K R


  , 

m n

x
K R


 . At this time, 

0

( ) ( )
C

t t
D u t Kz t


=  can 

be written as  

0 0

( ) ( ) ( )
C C

t t e x t t
D u t K e t K D x t

 
= + .  

Integrating both sides of the above equation with   from 

0
t  to t  and employing Property 2, the following will be 

established  

0
0 0

( ) ( ) ( ) ( ( ) ( ))
e t t x

u t u t K I e t K x t x t


− = + − .    (27) 

Shifting 
0

( )u t  to the right side of the equal sign in (27) and 

considering the initial condition 
0

( ) 0x t = , (26) can be 

derived. This proof completes.  

Remark 5: In (26), 
0

1
( ) ( )

( )

t
e

t

K
t e d


  



−
−


  represents the 

integrator which is fractional; ( )
x

K x t  means a state feedback; 

0
( )u t  is the initial value of the control input. The proper 

selection of 
0

( )u t  can accelerate the tracking speed of the 

output signal to ( )
d

y t . Generally, 
0

( ) 0u t = .  

Remark 6: In fact, all the concepts, methods and 

conclusions in this paper can be directly applied to ordinary 

integer-order systems. It is only necessary to rewrite system 

(3) into ordinary integer-order system and take 1 =  in 

derivation and conclusion. Therefore, the ordinary integer-

order system can be treated as a special case of this paper. 

V. NUMERICAL SIMULATION 

In this section, two examples are presented to illustrate the 

effectiveness of the proposed controller design. 

Example 1: Consider the following numerical academic 

example  

 

0

1 1 0 1 0.5

( ) 1.5 0.3 0.6 ( ) 1.5 ( ) 3 ( ), (0) 0

0.5 1 1 3 4

( ) 4 0 0 ( )

C

t

B EA

C

D x t x t u t w t x

y t x t



− − −

= + + =

− −

=

      
      
      
           




(28) 

Take =0.8 , I= , 
1

1c = , 
2

5c = , 10T = . The desired 

tracking signal is taken as  

0, 2

( ) 0.5( 2), 2 4

1, 4

d

t

y t t t

t



= −  









. (29) 

By letting the weight matrix 
1

0.3Q = , simple calculation 

gives that  

0

2
1

0

1 11

[ , ]

( )
sup ( ) ( ) 0.2235 0.65

(2 )

def
T

d d

t t T

T t
y t Q y t c





−



−
  =

 −

 
 
 

 . 

The disturbance signal is  

( ) 0.1cos(2 ) 0.3w t t= + .  (30) 

Assume that the weight matrix is 
2

1Q = , then the following 

can be obtained   

0

2
1

0

2 22

[ , ]

( )
sup ( ) ( ) 0.1192 0.35

(2 )

def
T

t t T

T t
w t Q w t c





−



−
  =

 −

 
 
 

. 

At this time, 
1

2

0 0.3 0

0 0 1

Q
Q

Q
= =
   
   

  
, 

11 22 1
1c c c+ =  .  

Considering Theorem 3 and employing the LMI toolbox in 

MATLAB, the following will be established  
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0.6092 0.9340 0.5863 1.0742

0.9340 3.2686 1.9925 4.9718

0.5863 1.9925 30.2468 11.7315

1.0742 4.9718 11.7315 47.8437

L

−

− − −
=

−

−

 
 
 
 
 
 

, 

 7.2440 5.2602 17.4902 8.1969Y = − . 

Furthermore, 

 1
26.3911 9.8987 0.7441 0.7899K YL

−
= = − ,  

26.3911
e

K = ,  

 9.8987 0.7441 0.7899
x

K = − .  

 
FIGURE 1.  The output response of (28) with disturbance signal (30). 

 

 
FIGURE 2.  The trajectory of  ( ) ( )

T

e t e t . 
Figures 1 and 2 depicts the output response and the 

trajectory of ( ) ( )
T

e t e t  of system (28), respectively. It can 

be observed from Fig. 2 that in the time interval [0,10] , 

always ( ) ( ) 5
T

e t e t  , which illustrates that under the 

action of the designed controller, system (28) realizes finite-

time bounded tracking for ( )
d

y t  with respect to 

(1, 5, , ,10)Q I .  

Furthermore, in order to compare the performance of the 

designed controller on different order, we change the 

parameter   while keeping the other parameters. Take 

=0.6 , =0.75 , =1  (when =1 , (28) is an ordinary 

integer-order system), then it can be verified that the above 

three values satisfy the condition of Theorem 3. The output 

responses of different order systems and the corresponding 

trajectory ( ) ( )
T

e t e t  are showed in Fig. 3 and 4 

respectively.  

 
FIGURE 3. The output response with different orders. 

 

 
FIGURE 4. The trajectory of ( ) ( )

T

e t e t  with different orders. 

It can be seen from Figures 3 and 4 that the closed-loop 

system achieves finite-time bounded tracking for ( )
d

y t  with 

respect to (1, 5, , ,10)Q I  under different fractional orders. 

Moreover, the tracking performance of the system with 

higher order is better than that of low order. 

 

Example 2: Let us consider the viscoelastic system, which 

can be described by the following fractional differential 

equations [35] 

0

1 2

1 2

( ) ( ) ( ) ( ) ( )

(0) , (0)

C

t t
mx t D x t x t u t w t

x a x a

  + + = +

= =





   (31) 

where m ,  ,  , and   represent mass, damping coefficient, 

elastic coefficient, and disturbance coefficient, respectively; 
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1
a  and 

2
a  are constants; ( )x t  is the displacement function; 

( )u t  denotes the control input; ( )w t  is the disturbance input.  

Selecting a set of state variables 

1
( ) ( )x t x t= , 

1 2

2 0
( ) ( )

C

t
x t D x t= , 

3
( ) ( )x t x t= , 

3 2

4 0
( ) ( )

C

t
x t D x t= , 

one can get  

1 1

2 21 2

0

3 3

4 4

0 1 0 0 0 0
( ) ( )

0 0 1 0 0 0
( ) ( )

( ) ( )0 0 0 1 0 0
( ) ( )

1
( ) ( )0 0

C

t

x t x t

x t x t
D u t w t

x t x t

x t x t
m m m m

  

     
        
        
   = + +     
        
        − −             

 

The output of system (31) is ( )x t . Letting 0.25m = , =0.5 , 

=0.25 , = 2.5 − , 
1 2

0a a= = , we have 

1 2

0
( ) ( ) ( ) ( )

( ) ( )

C

t
D x t Ax t Bu t Ew t

y t Cx t

= + +

=





, (32) 

where 

1

2

3

4

( )

( )
( )=

( )

( )

x t

x t
x t

x t

x t

 
 
 
 
 
 

, 

0 1 0 0

0 0 1 0

0 0 0 1

2 1 0 0

A =

− −

 
 
 
 
 
 

, 

0

0

0

4

B =

 
 
 
 
 
 

, 

0

0

0

10

E =

−

 
 
 
 
 
 

,  1 0 0 0C = . 

The initial state is  (0) 0 0 0 0
T

x = . 

Let I= , 
1

1c = , 
2

1c = , 10T = . The desired tracking 

signal is chosen as  

( ) 0.25sin( )
d

y t t=   (33) 

Select the weight matrix 
1

1Q = . We have 

0

2
1

0

1 11

[ , ]

( )
sup ( ) ( ) 0.7958 0.9

(2 )

def
T

d d

t t T

T t
y t Q y t c





−



−
  =

 −

 
 
 

 

The disturbance signal is  

( ) 0.15w t = .        (34) 

Take the weight matrix 
2

1Q =  . By calculating, it follows 

that 

0

2
1

0

2 22

[ , ]

( )
sup ( ) ( ) 0 0.1

(2 )

def
T

d d

t t T

T t
w t Q w t c





−



−
=  =

 −

 
 
 

 

Note that 
1

2

0 1 0

0 0 1

Q
Q

Q
= =
   
   

  
,  

11 22 1
1c c c+ = = . 

In light of Theorem 3, applying the LMI toolbox in 

MATLAB, the matrices L  and Y  are obtained. 

0.2705 1.0472 3.9490 25.3661 266.3576

1.0472 24.3566 224.8731 646.6073 3703.5708

3.9490 224.8731 4095.5383 26707.7103 46612.4840

25.3661 646.6073 26707.7103 328081.8163 903495.6571

266.3576 3703.5708 46

L

− −

− −

= − − − −

− −

−

   

 

  

 612.4840 903495.6571 27377626.9659

 
 
 
 
 
 
 −  

 

 927.4067 11609.1630 226784.3353 6850753.6251 590813.1649Y = − − −  

On this basis, the gain matrix K  is calculated:   

 139556.0037 30524.9445 3661.1341 275.0819 9.8459K = − − − − −  

Figure 5 shows the closed-loop output curve of system 

(32). Figure 6 is the trajectory of ( ) ( )
T

e t e t . 

 
FIGURE 5. The output response of (32) with disturbance signal (34).  
 

 
FIGURE 6. The trajectory of ( ) ( )

T

e t e t .  

As it can be seen from Figure 5, under the action of the 

designed controller, the output signal of system (32) is 

always within the neighborhood of the desired tracking 

signal in a given time interval. Meanwhile, it can be observed 

from Fig. 6, in the time interval  0,10 , ( ) ( )
T

e t e t  remains 

in the specific threshold. This indicates that system (32) 

realizes finite-time bounded tracking for ( )
d

y t  with respect 

to (1,1, , ,10)Q I .  

This paper studies the finite-time bounded tracking of 

fractional-order systems, while previous literature studied the 
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input-output finite time stability. In fact, if output of system 

(3) tracks the zero vector, in other words, let ( ) 0
d

y t  , then 

result of this paper is input-output finite time stability of the 

fractional-order system. The coefficient matrix and 

parameters in Example 2 are still adopted. The disturbance 

signal is taken as ( ) 0.2 sin( )w t t= . We compare the result of 

this paper with those in reference [18]. The output of the 

closed-loop system in this paper is denoted as 
1
( )y t  and the 

output of the closed-loop system in reference [18] is denoted 

as 
2
( )y t . Figure 7 is the output curve obtained by using the 

controller designed in this paper. Figure 8 shows the output 

response obtained by utilizing the method in [18]. By 

comparing Figures 7 and 8, it can be observed in the order of 

magnitude of the vertical axis that the control effect of this 

paper is better than that of reference [18]. 

 
FIGURE 7. The output obtained by the control method in this paper. 

 

 
FIGURE 8. The output obtained by the control method in reference [18]. 

VI. CONCLUSION 

This article designs a finite-time bounded tracking controller 

for a type of fractional-order system. By constructing the 

error system in the preview control theory, the original 

problem is transformed into an IO-FTS problem. Then, the 

finite-time bounded tracking controller is acquired by 

utilizing the LMI. Theoretical results and numerical 

simulation demonstrate that under the action of the designed 

controller, the output of the original system realizes finite-

time bounded tracking for desired tracking signal under 

certain conditions. Due to the aging of components and the 

delay of measurement, the system model often has the 

characteristics of uncertainty and delay. Therefore, the 

proposed finite-time bounded tracking control approach can 

be extended to other models, such as uncertain systems and 

delay systems and so on, which can be a good topic for 

further investigation. 
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