Reinforcement Learning
for Routing in
Communication Networks

Walter H. Andrag

Thesis presented in partial fulfilment
of the requirements for the degree of
Master of Science
at the University of Stellenbosch

Supervisor: Prof Christian W. Omlin
April 2003

Stellenbosch University http://scholar.sun.ac.za

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own
original work and has not previously in its entirety or in part been submitted at any

university for a degree.

Signature: Date:

Stellenbosch University http://scholar.sun.ac.za

Abstract

Routing policies for packet-switched communication networks must. be able to adapt
to changing traffic patterns and topologies. We study the feasibility of implementing
an adaptive routing policy using the Q-Learning algorithm which learns sequences of
actions from delayed rewards. The Q-Routing algorithm adapts a network’s routing
policy based on local information alone and converges toward an optimal solution. We
demonstrate that Q-Routing is a viable alternative to other adaptive routing methods
such as Bellman-Ford. We also study variations of Q-Routing designed to better explore
possible routes and to take into consideration limited buffer size and optimize multiple

objectives.

ii

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Die roetering in kommunikasienetwerke moet kan aanpas by veranderings in netwerk-
topologie en verkeersverspreidings. Ons bestudeer die bruikbaarheid van 'n aanpasbare
roeteringsalgoritme gebaseer op die “Q-Learning”-algoritme wat dit moontlik maak om
'n reeks besluite te kan neem gebaseer op vertraagde vergoedings. Die roeteringsalgo-
ritme gebruik slegs nabygelée inligting om roeteringsbesluite te maak en konvergeer na
'n optimale oplossing. Ons demonstreer dat die roeteringsalgoritme 'n goeie alternatief
vir aanpasbare roetering is, aangesien dit in baie opsigte beter vaar as die Bellman-Ford
algoritme. Ons bestudeer ook variasies van die roeteringsalgoritme wat beter paaie kan
ontdek, minder geheue gebruik by netwerkelemente, en wat meer as een doelfunksie

kan optimeer.

iii

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I would like to sincerely thank my supervisor, Prof. C. W. Omlin, for all the inspiration,

assistance and funding he provided.

This work was also made possible by funding from the South African National Research
Foundation, Telkom-Siemens Centre of Excellence for ATM and Broadband Networks
and their Applications and the Harry Crossley Scholarship Fund.

v

Stellenbosch University http://scholar.sun.ac.za

Contents

1 Introduction 1
1.1 Motivation e 1
1.2 Problem Statemento 1
1.3 PremiSes v o i e e e 2
1.4 Hypotheses 2
1.5 Technical Objectives 3
1.6 Methodology 3
1.7 Achievements 4
1.8 Thesis Organization. 5

2 Routing in Communication Networks 6
2.1 The Routing Problem 6

2.1.1 Performance Criterion 8
2.1.2 Decision Time oo 8
2.1.3 DecisionPlace oL 9
2.1.4 Network Information Source 9
2.1.5 Routing Information Update Timing 9
2.2 Conventional Routing Strategies 10

Stellenbosch University http://scholar.sun.ac.za

221 Flooding
2.2.2 Random Routing
223 FixedRouting o o
2.2.4 Adaptive Routingo
2.2.5 Link-State Routing
2.2.6 Distance-Vector Routing
2.3 Mobile Agents
2.3.1 Active Networks
2.3.2 Social Insect Metaphors
2.4 SUMMATY o o it e e e e e e e

Reinforcement Learning

3.1 Value Functions
3.2 Temporal-Difference Learning
3.3 Q-Learning
34 TD(A) Learning
3.5 Q(A) Learning Lo
3.6 Convergence Properties of Q-Learning
3.7 Exploration vs Exploitation
3.8 Summary e e

Q-Learning for Traffic Routing

4.1 Optimization of Packet Delivery Time
411 Q-Routing
4.1.2 DRQ-Routing o

vi

Stellenbosch University http://scholar.sun.ac.za

41.3 CQ-Routing 39
414 CDRQ-Routing, . 42
4.1.5 Probabilistic CDRQ-Routing 44
4.2 Finite Buffer Size L 48
4.3 Optimization of Multiple Objectives 50
4.4 SUMIATY . .« « v v v v e e e e e e e e e e 59
Conclusion 61
5.1 Conclusion e 61
5.2 Future Work 62
5.2.1 Realistic Simulationso L. 62
5.2.2 Improved Routing L 63

vii

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Design elements of a routing strategy .

4.1 The parameters used in the simulations

viii

Stellenbosch University http://scholar.sun.ac.za

List of Figures

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

The agent-environment interaction. 16
Estimating V™ with TD(0)., 20
Estimating Q* with Q-Learning. 22
Estimating V7 with TD(A). .« o o o oveee e e e 23
Watkins’s Q(A) algorithm. oL 24
The British Synchronous Digital Hierarchy (SDH) network topology. . . 32

Average packet delivery times for network load 1.2 for the SDH network
topology. 34

Average packet delivery times for network load 2.2 for the SDH network
topology. e 34

Average packet delivery times for network load 3.2 for the SDH network
topology. e 35

Average packet delivery times of Bellman-Ford for high network load for

the SDH network topology. Error bars show standard deviations. . .. 36

Average packet delivery times of Q-Routing for high network load for
the SDH network topology. Error bars show standard deviations. . .. 36

Comparing the average packet delivery times of Q-Routing and DRQ-
Routing for network load 2.0 for the SDH network topology. 37

Comparing the average packet delivery times of Q-Routing and DRQ-
Routing for network load 3.0 for the SDH network topology. 38

ix

Stellenbosch University http://scholar.sun.ac.za

4.9 Comparing the average packet delivery times of Q-Routing and DRQ-
Routing for network load 4.0 for the SDH network topology.

4.10 Comparing the average packet delivery times of Q-Routing and CQ-
Routing for network load 2.0 for the SDH network topology.

4.11 Comparing the average packet delivery times of Q-Routing and CQ-
Routing for network load 3.0 for the SDH network topology.

4.12 Comparing the average packet delivery times of Q-Routing and CQ-
Routing for network load 4.0 for the SDH network topology.

4.13 Comparing the average packet delivery times of Q-Routing, CQ-Routing,
DRQ-Routing and CDRQ-Routing for network load 2.0 for the SDH
network topology.

4.14 Comparing the average packet delivery times of Q-Routing, CQ-Routing,
DRQ-Routing and CDRQ-Routing for network load 3.0 for the SDH
network topology. Lo

4.15 Comparing the average packet delivery times of Q-Routing, CQ-Routing,
DRQ-Routing and CDRQ-Routing for network load 4.0 for the SDH
network topology.

4.16 The variance function of Equation 36 for § of 0.2, 0.4, 0.6 and 0.8. . . .

4.17 The Average Packet Delivery Time for the SDH network for network
load 1.5; $0f0.2,04,06and 0.8.

4.18 The Average Packet Delivery Time for the SDH network for network
load 3.0; of 0.2,04,06and 0.8.

4.19 The Average Packet Delivery Time for the SDH network for network
load 4.5; 80£0.2,04,06and 0.8.

4.20 The Congestion Risk of Equation 38 for 8 of 3, 6 and 15.
4.21 The 13 node network topology used for the finite buffer simulation.
4.22 Average packet delivery time for low load.

4.23 Number of packets dropped for low load.

46

47

47

49

o0

ol

o1

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

Stellenbosch University http://scholar.sun.ac.za

Average packet delivery time for medium load. 52
Number of packets dropped for medium load. 52
Average packet delivery time for highload. 53
Number of packets dropped for high load. 53
The network topology for the 36 node grid. 54

The average packet delivery time for single versus multiple objective

optimization for the 36 node grid for differing 55
Details of the steady state behaviour of Figure 4.29. 56

The average cost for single versus multiple objective optimization for the

36 node grid for differingo oo oo 56
The average packet delivery time for single versus multiple objective

optimization for the BT SDH network for differingo. 57
Details of the steady state behaviour of Figure 4.32. 57

The average cost for single versus multiple objective optimization for the
BT SDH network for differingo 58

The average saving of multiple objective optimization of cost and delivery
time for the BT SDH network versus ov. 58

xi

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Motivation

Modern communication networks must cope with ever increasing demands on network
resources. The range of services offered leads to both regular and less predictable
traffic patterns. Adaptive routing is able to respond to changing traffic patterns and
topology, thus providing efficient use of network resources. In networks characterized
by a constantly changing topology, adaptive routing is essential. Adaptation may be
necessary in traditional networks due to failures of links or nodes; in mobile ad-hoc
networks, mobile routers are able to move randomly, thus constantly and unpredictably

changing the network topology.

In order to adapt routing to changing network conditions, a centralized routing strategy
needs information about the status of all nodes and links in the network. However,
this information transmission overhead consumes valuable network resources. This
highlights the need to make distributed routing decisions based on locally available

information only.

1.2 Problem Statement

A packet-switched communication network can be modeled as a set of nodes and inter-
connecting links. Data is exchanged over these communication links as a sequence of

packets. In general, nodes are not fully connected; thus, the packets must pass through

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

intermediate nodes. The route is the sequence of nodes along which a packet travels to
its final destination. In most networks, there may be more than one route between pairs
of nodes. The routing problem consists of finding the optimal route between source and
destination nodes, where the optimal route is the one that delivers packets to their final

destination in the shortest time possible.

1.3 Premises

The premises of the packet routing domain which we believe make adaptive routing

indispensable are as follows:

1. A network is a highly dynamic environment in which traffic patterns may be

unpredictable and links or nodes may fail.

2. A central routing mechanism which has global information about the state of the

network is generally not feasible because of the overhead involved.
3. Thus, we need a good routing policy which

(a) uses only local information and

(b) minimizes average packet delivery time.

1.4 Hypotheses

Machine learning covers a broad field of methods concerned with the ability of programs
to learn from experience, thereby improving their performance. We wish to test the

following hypotheses in this thesis:

1. Machine learning is a viable alternative to static routing because

(a) it can adapt to changing environments, i.e. changes in traffic patterns or

network topology;

(b) we can learn from experience, i.e. past traffic and routing patterns.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

2. Reinforcement learning is a field in machine learning concerned with programs
taking optimal action sequences so as to achieve a goal. Reinforcement learning

is well-suited for adaptive routing because
(a) it is goal-oriented, i.e. actions are to be learned with a desired outcome. The
goal of routing is to deliver packets with minimum delay.

(b) Reinforcement learning allows to acquire a policy, i.e. a sequence of actions
that lead to a desired outcome. Actions in routing are propagation of packets
to a neighbouring node, and the desired outcome is the delivery of packets

to their intended final destination.

(c) Reinforcement learning algorithms are able to learn policies from delayed
rewards. We only know whether a good route was chosen for a packet once

it has reached its destination.

(d) Reinforcement learning algorithms can adapt to changes in the environment.
As traffic patterns change, or nodes or links fail, a routing policy will have

to adapt.

1.5 Technical Objectives

The objectives we set out to achieve in our investigation are as follows:

1. Implement a distributed adaptive packet routing algorithm which minimizes the

average packet delivery time, while using only locally available information.

2. Compare the performance of the adaptive routing policy to standard routing al-

gorithms.
3. Improve the adaptive routing mechanism to discover new routes.

4. Extend and test the algorithms under more realistic scenarios including nodes

with finite buffer size and optimization of multiple objectives.

1.6 Methodology

We will use the following methodology for achieving our technical objectives:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1. Q-Learning is a reinforcement learning algorithm that is able to learn an optimal
sequence of actions in an environment which maximizes rewards received from
the environment. Q-Routing is an implementation of Q-Learning, which is able
to distributively route packets in a network. Each node is able to make a routing
decision using only locally available information. The reward received is the packet

delivery time; thus, the goal is to minimize the average delivery time of all packets.

2. We will empirically evaluate the routing algorithms by simulation and compare
their performance under different traffic loads and network topologies. We will
use the average packet delivery time and the average number of dropped packets

as the performance measure.

3. We will investigate possible performance improvements to Q-Routing designed
to increase the exploration ability of the algorithm, which enables the discovery
of new routes in the network. This improvement is made possible by adding a

probabilistic component to routing decisions.

4. We will consider more realistic network scenarios: networks with finite buffers and

networks where there are multiple objectives to be optimized:

(a) Previous work explored the performance of Q-Routing in networks with infi-
nite packet buffers. We will examine the more realistic case of finite buffers.
Congestion control is achieved by avoiding nodes with a high level of conges-
tion.

(b) We will also examine the performance of a new routing algorithm, able to
optimize multiple possibly conflicting objectives, e.g. packet delivery time

versus cost. We examine the implications of this trade-off.

1.7 Achievements

We have learned the following from our investigation:

1. Q-Routing is able to route packets minimizing the average delay while only using

local information.

2. Q-Routing compares well with standard routing algorithms. In particular, it

converges to a more stable routing policy than our version of the distributed

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

Bellman-Ford algorithm.

3. We demonstrated the efficiency of new path discovery of a proposed algorithm

based on probabilistic exploration.

4. Two extended algorithms were also shown to perform well in more realistic net-

work scenarios:

(a) In networks with limited buffers, the algorithm is able to perform congestion

control, dropping fewer packets at overloaded nodes.

b) An improved routing algorithm is also able to optimize multiple objectives.
J

However, competing objectives may establish a trade-off.

1.8 Thesis Organization

In Chapter 2, we discuss the routing problem in more detail and look at some of the
approaches used to solve it. Chapter 3 discusses the field of reinforcement learning,
presenting techniques of solving reinforcement learning problems. In Chapter 4, we
present the simulation results of the comparison between different routing algorithms
by evaluating performance under various scenarios. Conclusions and directions of future

research are presented in Chapter 5.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Routing in Communication

Networks

In this chapter, we examine the routing problem and investigate different approaches
that have been proposed for solving it. We define the routing problem, and discuss
the general requirements of routing algorithms. Network routing is very complex; thus,
we discuss some of the characteristics that differentiate between different routing algo-

rithms.

2.1 The Routing Problem

We consider a communication network [27; 15] as a undirected weighted graph G =
(N, L) with a set of nodes N, and a set of bidirectional links L, connecting the nodes.
Each link has a capacity and a user-defined associated cost. We define a path as a
sequence of nodes connecting a source to a destination node. There may be multiple
paths between sources and destinations. The genéral routing problem consists of finding
the optimal path between source and destination nodes satisfying some performance

criterion.

We will discuss the routing problem in the context of packet switching. In a packet-
switched network, data is broken up into a sequence of packets which are sent from node
to node until the destination is reached. The routing decision at each node consists of

deciding to which neighbouring node to send a packet.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 7

A routing algorithm has the following requirements [27]:

Correctness

Simplicity
o Efficiency

o Robustness

Stability

Fairness

Optimality

The correctness of a routing algorithm refers to the fact that it must route all packets
to the correct destinations. Simple routihg algorithms are also preferred, as they have
less routing overhead, which in turn increase the efficiency of the network. All packet
routing schemes have a certain amount of processing and transmission overhead, which
may negatively impact the efficiency of the network. The benefits of overheads must

be balanced with the decrease in efficiency caused.

Some of these requirements are in competition with each other, e.g. robustness and
stability. A routing algorithm is said to be robust when it is able to adapt to node or
link failures and changes in network load conditions. When an overload is detected in
a section of the network, traffic is rerouted to less congested regions. If the routing
algorithm responds too quickly, these less congested regions will in turn become con-
gested. The routing algorithm is called unstable if it continually shifts the load between
different sections of the network. On the other hand, if the network adapts too slowly,

packets may be dropped at congested nodes.

There also exists a trade-off between optimality and fairness: if a certain performance
criterion favours the exchange of packets between nearby nodes, the throughput may
be increased. This may appear unfair to nodes with a high proportion of long-distance
traffic.

We briefly discuss the various design elements that contribute to a routing strategy as
presented in [27] (see Table 2.1).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 8
Performance criterion Network information source
Number of hops ' None
Cost Local
Delay Adjacent nodes
Throughput Nodes along route
All Nodes
Decision time
Packet Network information update timing
Session Continuous
Periodic
Decision place Major load change
Each node (distributed) Topology change

Central node (centralized)
Originating node (source)

Table 2.1: Design elements of a routing strategy

2.1.1 Performance Criterion

A routing policy has to decide to which neighbouring node to forward a packet to based
on some performance criterion. The simplest choice is to select the neighbour which is
on the minimum hop path to the packet’s destination. A more general approach is to
assign a link cost to each link and to select the minimum cost path. The specific cost
metric used determines the optimal path. If the link cost is inversely proportional to
the link capacity, the least-cost path maximizes the throughput whereas it minimizes

the average packet delay when the link cost is the measured link delay.

Other possible cost metrics are reliability, load and communications cost. The metric
can also be a combination of several performance criteria; i.e. the optimal route over

multiple objectives.

2.1.2 Decision Time

The decision time of routing decisions refer to two types of packet-switched networks.
In a datagram packet switching network, each node makes a routing decision for each
incoming packet. However, there is another approach, called wvirtual-circuit packet
switching, where the routing decision is made only once per session. If a source node

wants to communicate with a destination node, a virtual-circuit between source and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 9

destination is established. After the connection has been set up, each node selects
the neighbour based on the virtual-circuit identifier. Thus, all subsequent packets of a

session will follow the same route through the network.

2.1.3 Decision Place

The decision place refers to where routing decisions are made. In centralized routing,
there is a central control node which collects information from the network and com-
putes routing tables which are distributed to all nodes. The problem with this approach
is that the controlling node is a single point of failure. Distributed routing algorithms
make routing decisions at each node; thus, they are more robust. In source routing

algorithms, the originating node selects the route through the network.

2.1.4 Network Information Source

Most routing algorithms utilize some information about the network topology, traffic
load or link cost. Distributed routing may utilize information available locally to the
node such as the cost of each link. Nodes may also make routing decisions based
on information from neighbouring nodes, or all nodes on a path. Centralized routing
makes use of information from all nodes. Some algorithms do not use any network state

information, e.g. flooding and random routing.

2.1.5 Routing Information Update Timing

If the routing strategy uses locally available information, routing updates are continu-
ous. For all other strategies that make use of network information, routing information
updates are made periodically in order to adapt to changing network conditions. The
accuracy of information depends on how frequently the information is updated. Thus,
with more accurate information, better routing decisions are made. However, informa-

tion updates consume valuable network resources.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 10

2.2 Conventional Routing Strategies

Network routing is a very complex problem and many different approaches to solving
it have been proposed. We briefly discuss some of the routing strategies used, ranging

from the simple to the more complex adaptive routing strategies.

2.2.1 Flooding

Flooding [27] is simple routing strategy whereby each node forwards a packet to each
of its neighbours, except the node where the packet came from. Nodes do not need any
information about the network topology beyond their immediate neighbours. Packets
need a sequence number and the destination node embedded in their headers so that
a destination node can discard duplicate packets. Forwarded packets which return to
a previously visited node must also be discarded; otherwise, the number of packets in
circulation will increase without bound. Another way to accomplish this is for each
packet to have a hop count which is incremented at each node, and discarded when a

predetermined limit is reached.

Since all possible routes between source and destination are tried, a packet is guaranteed
to reach the destination if it is reachable; thus, flooding is very robust. It has been used
in military networks where link or node failures may frequently occur [15]. Another
property of flooding is that at least one packet will travel along the shortest route. This
may be used in some networks to set up virtual-circuits. Because all nodes directly or
indirectly connected to the source node are visited, flooding can be used to distribute

important information (e.g. routing information) to all nodes.

The biggest disadvantage of flooding is of course the high level of network bandwidth

that is wasted on duplicate packets.

2.2.2 Random Routing

Another simple, robust routing strategy is that of random routing [27], where each
node randomly selects the node to forward a packet to, excluding the node where the
packet came from. Although this strategy will in general not select the shortest path,

it generates less traffic than flooding. A refinement of this technique is to select an

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 11

outgoing link with a probability proportional to the data rate of the link. This strategy

attempts to ensure a good traffic distribution.

2.2.3 Fixed Routing

Fixed routing — also called static shortest path routing — computes least-cost paths for
all origin-destination nodes in the network. From these fixed paths, routing tables are
computed and sent to each node. As the least-cost paths are computed once, the link
costs cannot be based on dynamic variables such as traffic. Instead, the network is

designed based on an anticipated traffic distribution.

Fixed routing is simple and it is very effective in reliable networks with stable load.
The disadvantage is that it does not react to congestion or node failures, or unforeseen

traffic patterns.

2.2.4 Adaptive Routing

In order to increase efficiency, adaptive routing methods dynamically alter routes when
node or link failures are detected or when congestion develops. For a network to adapt
to these changes, it needs to collect and exchange network state information between
nodes, such as delay or throughput [26]. The optimality of the new routes depends
on the quality of the network information, which necessitates an increased information
exchange. However, there exists a trade-off between the quality of information and
the overhead: overhead consumes network resources, which may degrade the overall

network performance.

A serious problem with adaptive routing is that it may become unstable if a routing
policy reacts too quickly to congestion [15; 27; 14]. If the adaptive routing redirects
most traffic away from the congested part of the network, congestion may develop
elsewhere; thus, traffic will again shift to a different part of the network. This oscillation

will continue indefinitely if not properly managed by the routing algorithm.

As it takes time for the network information to reach relevant nodes, there is never a
true picture of the network state. Temporary routing loops [11; 7] can develop, where
packets circulate through the network until all nodes have consistent routing tables.

This looping wastes bandwidth and increases delay.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 12

Although adaptive routing is complex, it is widely used as it improves the network

performance, and helps in congestion control.

2.2.5 Link-State Routing

Link-state routing [26] is a distributed, adaptive routing algorithm where each node
maintains a view of the whole network topology with a cost for each link. To update
their view of the current network state, nodes regularly broadcast the link costs of
outgoing links to all other nodes using flooding. Each node uses its view to calculate the
shortest paths to all destinations with Dijkstra’s algorithm. Each node needs storage

space proportional to O(N?), where N is the number of nodes in the network.

Open Shortest Path First (OSPF) is the link-state routing protocol used in the Inter-
net [11]. Instabilities are avoided by disseminating the link cost information quickly,
and by representing the link-costs by a slowly changing measure of average link uti-
lization [26; 27]. Rapid link cost dissemination can be achieved if routing packets
have higher priority than data packets. Routing loops are still possible, but since they

disappear in time proportional to the diameter D of the network, they are short-lived.

2.2.6 Distance-Vector Routing

Distance-vector routing is another distributed, adaptive routing approach based on
the Bellman-Ford algorithm [10; 26]. Each node maintains a set of distances to all
destinations via each of its neighbours. Thus, the storage needed at each node is
proportional to O(N x e), where e is the average number of neighbours of each node in
the network. Each node routes an incoming packet to the neighbour with the minimum

distance to the destination.

Nodes update their distance tables by exchanging distance-vectors with their neigh-
bours. The distance-vector a node transmits consists of the current shortest distance
from a node to each destination. Upon receiving a distance-vector, a node computes a
new distance table by selecting the minimum between the current and received short-
est distances. If the distance table changes, the node will again broadcast its newly
computed distance-vector to all neighbours. This asynchronous update mechanism

converges to the shortest distances for all connected pairs of nodes [7).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 13

The original ARPANET used the distributed Bellman-Ford algorithm; however, it
was replaced in 1979 by a brute-force link-state algorithm because of several draw-
backs [27; 7]. It was found to react slowly to failures and link cost changes. The
problem is that the distances exchanged between nodes may contain paths with loops.
The looping of packets wastes bandwidth and is called the bouncing effect. If the net-
work is disconnected, the algorithm does not even terminate; this is also referred to as

the counting-to-infinity problem.

Mechanisms to overcome these problems have been proposed which use various node
coordination techniques, diffusing computations and maintaining only loop-free paths
[7; 11; 1; 26]. These techniques all eliminate long-lived loops, and some also eliminate
short-lived loops. However, these techniques all have increased communication overhead

to differing degrees.

2.3 Mobile Agents

As the network and its traffic are a highly dynamical system, it has been argued that
mobile software agents are a good approach for adaptive routing in such a complex,
inherently distributed environment [16; 6]. The use of multiple cooperating agents
may facilitate a high level of availability, adaptability and fault-tolerance in modern
communication networks. Mobile agents may also serve useful in design, abstracting

the interactions between entities in a complex system.

2.3.1 Active Networks

The new approach of active networks enable nodes to execute custom code embedded in
packets. This allows packets to route themselves and perform computations at network
nodes on the route [31; 16]. In addition to routing, this approach also allows flexible
incorporation of new services into a network without the need to redesign the network

infrastructure [31].

The chief problems facing active networks are ensuring the security and scalability of
the networks. Before executing mobile code, the node must trust the code. One way of
doing this is with Proof-Carrying Code (PCC) [22]. The mobile code includes a formal

proof of its properties, which the processing node can verify. The question is whether

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 14

the increased flexibility justifies the extra overhead of per packet execution, and how

well this paradigm scales to very large networks.

2.3.2 Social Insect Metaphors

Ant-colony optimization is a method of solving combinatorial optimization problems
inspired from the foraging behaviour of ants [6]. In nature, ants are able to find the
shortest distance to a food source by laying trails of pheromones. A large collection of
ants cooperate on a task by this indirect form of communication through the environ-

ment, called stigmergy.

Adaptive distributed route discovery is performed by artificial software ants that explore
the network [25; 6]. Throughout the network, ants are launched to randomly selected
destination nodes. These ants share the queues at nodes with data packets, and record
the experienced delay which is used for updating the routing tables. Each ant can be
thought of as performing a single Monte Carlo experiment on the actual network, and
the result is the experienced delay. The system as a whole performs parallel Monte
Carlo experiments with exploration biased towards more useful regions of the state

space [6].

The resulting routing is very robust as it does not depend on individual ants, but rather

on the collective behaviour of the entire ant colony.

2.4 Summary

The aim of packet-switched networks is to make more efficient use of network resources
by forwarding packets between nodes on a hop-by-hop fashion. The routing decision
at each node consists of deciding which neighbour to send a packet to. We discussed

the simple routing strategies of flooding, random routing and fixed routing.

Adaptive routing increases the efficiency of a network by redirecting traffic away from
congested areas or dynamically changing routes in networks characterized by a con-
stantly changing topology. Adaptive routing strategies have to avoid oscillations in the
network which arise if they adapt too quickly to congestion. We discussed the two

classes of adaptive routing algorithms: link-state, and distance-vector algorithms.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. ROUTING IN COMMUNICATION NETWORKS 15

Mobile software agents may prove helpful in managing the complexity of distributed,
dynamic networks. We discussed the potential of active networks, where packets route
themselves by executing code on a router. The emergent behaviour exhibited by ant
colonies also offer valuable insight into optimization of a complex dynamical system.
Promising results have already been obtained by routing based on a collection of simple

ant-like software agents.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3
Reinforcement Learning

A broad range of learning problems can be cast into the reinforcement learning frame-
work [13; 20]. Broadly stated, reinforcement learning is the problem of learning to
achieve a goal through interaction in a dynamic environment. The learning entity which
is responsible for taking actions is called an agent. The agent continually interacts with
the environment by taking actions, and receiving rewards and state information, as
shown in Figure 3.1. The goal of the agent is to experiment with different action

sequences in order to maximize the reward received over time.

An important aspect of reinforcement learning algorithms is that they are able to learn
from delayed rewards. In some problems, an agent has to execute a specific sequence of
actions before it receives a reward. To learn such a sequence, an agent has to overcome
the problem of temporal credit assignment, i.e. an agent has to decide which states in
the action sequence were responsible for the received reward. Reinforcement learning

algorithms therefore are concerned with finding the optimal sequence of actions through

state action

Environment

Figure 3.1: The agent-environment interaction.

16

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 17

trial-and-error interactions in an environment that maximizes the received reward over

time.

Reinforcement learning algorithms differ from supervised learning algorithms in that
they are not trained on input/output pairs specifying which action is the best at each
state. Instead, they are guided to the goal by the rewards received. In other words,
the reward received after each action fully specifies the problem to be solved. Another
difference to supervised learning is that a task often has no separate training and testing

phases. Instead, some tasks require continual learning throughout an agent’s life.

3.1 Value Functions

We can formulate the reinforcement learning task an agent faces as a Markov decision

process (MDP) [13]. A finite Markov decision process is characterized by:

e 3 finite set of states 5,
e 2 finite set of actions 4,
e a reward function R: S x A — R, and

e a state transition function T : S x A x S — R, where T'(s, a, ') is the probability

of advancing from state s to s’ when taking action a.

The model is called Markov if the transition probabilities T" are independent of previous
states and actions. Thus, the next state is specified probabilistically by the transition
function T and the current state and action alone. Note that the model is a nondeter-

ministic MDP because the actions are chosen probabilistically.

At each time step ¢, an agent observes the state s; and takes action a;. The environment
responds by returning a reward r;; = R(s;, a;) and the next state s,4, with probability
T (ss, at, St+1). This process is repeated continually until the agent achieves its goal, or

indefinitely for non-episodic tasks.

The policy 7 (s, a) of an agent is a mapping of each state s and action a to the probability
of taking action a in state s. The goal of an agent is to improve its policy by maximizing

the cumulative reward, also called the ezpected return, the agent receives over time.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 18

There are different ways of calculating the expected return R;, based on the specific
task the agent has to solve. Some tasks can be broken up into a series of episodes or
trials, where each episode ends in a terminal state. At the end of each episode, the
agent is reset to a starting state. In such episodic tasks, we obtain the expected return

by summing the total received rewards over a finite horizon A:
h
R, = Z Tttk+1 (1)
k=0

Some tasks never end; thus, the above sum may be infinite. This problem may be
solved by discounting future rewards:
o0
Ry = Z ’)’th+k+1, (2)
k=0
where 7 is the discount rate and 0 < v < 1. In our discussions, we will focus exclusively
on this case, which is called the discounted infinite horizon case. Episodic tasks can
also be handled by this definition of expected return by introducing an absorbing state
which is entered just after the terminal state. The only transition from the absorbing

state is to itself, with an associated reward of zero.

Most reinforcement learning algorithms are based on estimating value functions that
estimate the utility of states. The value or utility of a state is the future reward, or
return, that an agent can expect. As the future rewards depend on which actions an
agent takes, the value function depends on the particular policy the agent follows. The
value V7(s) of a state s under policy 7, is the expected return by following policy 7
from state s:

V™(s) = Ex{Ry | st = s}, (3)
where E,{} denotes the expected return when policy 7 is followed. For the discounted
infinite horizon case, we have:

V7™(s) = Ex {i Vererke1 | se = 3} - (4)

k=0
The optimal value function V* is attained by maximizing V'™ for all states:
V*(s) = max V" (Vs). (5)

The optimal policy is defined as the policy corresponding to the optimal value function

in the maximization above:
m* = argmax V7™(Vs). (6)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 19

In a MDP, we have a model of the environment dynamics in the form of state transition
probabilities T" and the reward function R; thus, we can use the dynamic programming
technique called value iteration to find the optimal value function. Once we have the
optimal value function, we can obtain the optimal policy 7* by choosing, in each state,
the action that results in the maximum value function of all the immediate successor

states:
m*(s) = argmax V" (s'), (7)

where s’ is the successor of state s.

In reinforcement learning problems, an agent generally does not have access to the
environment dynamics in the form of the transition probabilities T'; thus, we cannot
use dynamic programming techniques. In the next sections, we examine reinforcement
learning methods based on dynamic programming !, where we do not have access to the
environment dynamics. Instead, an agent has to learn from the environment through

the rewards experienced by taking different actions.

3.2 Temporal-Difference Learning

We now turn our attention to the problem of learning the optimal policy without perfect
knowledge of the environment. The only way we can learn about the environment is
to explore it by taking actions, observing the reward and use the experience to update
the value function. One way of solving the problem is to incrementally estimate the
value function V™ as we encounter each new state. We denote this approximate value

function by V.

The class of temporal-difference learning [28] algorithms update the current estimate
V (s;) by using the value function estimates of temporally successive states. Temporal-
difference methods are called bootstrapping methods, because they update estimates
based on other estimates. By looking one step ahead at the value function of the next

state, we can update the current value function estimate as follows:
V(St) «— V(St) + OZ[TH_1 + ’YV(SH-I) - V(St)], (8)

where « is the step size parameter.

!Barto and Sutton [30] present a unified view relating dynamic programming, Monte Carlo, and temporal-
difference methods for solving reinforcement learning problems.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 20

Initialize V' (s) arbitrarily, 7 to the policy to be evaluated
repeat for each episode:
Initialize s
repeat for each step in episode:
choose action ¢ in state s from policy 7
take action a; observe reward 7, and next state s’
V(s) «+ V(s) +afr+4V(s) —V(s)]
s+ s
until s is terminal

Figure 3.2: Estimating V™ with TD(0).

The algorithm, called TD(0) for reasons we will see shortly, is shown in Figure 3.2.
Recall that the value function V(s) is the expected return of following policy 7 from
state s. Thus, the TD(0) algorithm predicts the reward an agent will receive by following
policy 7 from state s. It has been shown that TD(0) converges with probability 1 to
V™ for any fixed 7 with an appropriate choice of «. If we denote ay(a) as the step size
parameter after the kth selection of action a, a suitable choice is ax(a) = 1. This follows
from the well-known result in stochastic approximation theory giving the conditions for

convergence with probability 1 as:

i ar(a) = 00 and g:la,%(a) < 00. (9)

Although this is a useful theoretical result, the step size decrease above is seldom used
in practice [30]. Instead, a constant step size ax(a) = o is used. This may be so for
two reasons: first, the convergence is often slow or needs considerable tuning for a
satisfactory convergence rate; second, in non-stationary environments, convergence is
undesirable as the reward function R may change over time, thus, we want our learned

policy to continually change in response to the latest received rewards.

3.3 Q-Learning

In the previous section, we saw how TD(0) can be used for predicting the expected
reward of a particular policy 7 by estimating the value function. In this section, we

look at the control problem; we want to find the optimal policy 7*.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 21

If the agent knows the transition probabilities T" of the environment, it can choose the
action that leads to the successor state with the combined maximum value function
(Equation 7) and immediate reward. The problem is that we generally do not have
a model of the environment; thus, we do not know which actions take us to which
states. The solution is to define a new value function Q7 (s, a), defined as the value of
taking action a in state s while following policy m. This new value function is called

the action-value function, and V™ (s) the state-value function.

We define Q*(s, a) as the expected return of taking action a in state s, and following

the optimal policy from then on. Thus, we can write Q*(s, a) in terms of V*(s):
Q*(s,a) = E{res1 + 7V (s141) | st = 5,0, = a} (10)
Recall that V*(s) is the value of taking the best step initially, so we also have:
V*(s) = max Q*(s,a), (11)
which enables us to write Equation 10 recursively:

Q*(s,a) = E{riy1 + ’Ymaﬁ}XQ*(StH; a') | st =s,a; = a}. (12)

Whereas TD(0) is used to predict the expected return of states while following policy
7, Q-Learning [34] incrementally estimates the optimal action-value function Q*(s, a).

The update rule is given by:

Q(st,a1) + Q(st, 1) + O‘[7"t+1 + 7y max Q(st41,a) — Q(ss, as)]- (13)

The Q-Learning algorithm shown in Figure 3.3 converges to the optimal action-value
function Q* with probability 1 under the same conditions for a as in TD(0), provided
each state-action pair is tried infinitely often. We will prove the conversion results in a

later section.

In the Q-Learning algorithm, we must select actions based on a suitable exploration
strategy derived from (). Any strategy that guarantees that each state-action pair will
be tried infinitely often will suffice. One of the simplest strategies is e-greedy, where
an agent chooses the action with maximal Q-value in that state with probability 1 — e
and a random action with a small probability e. When an agent chooses an action
with maximum Q-value, it is ezploiting previously stored information, whereas random
actions result in ezploration. We will discuss the tradeoff between exploration and

exploitation in Section 3.7.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 22

Initialize Q(s,a) arbitrarily
repeat for each episode:
Initialize s
repeat for each step in episode:
choose action @ in state s using exploration policy derived from Q
take action a; observe reward r, and next state s’
Q(s,a) + Q(s,a) + ofr + ymaxy Q(s',a") — Q(s, a)]
s+ g
until s is terminal

Figure 3.3: Estimating Q* with Q-Learning.

Q-Learning is called an off-policy learning algorithm because it converges to the optimal
value function independent of the exploration policy being followed. In other words, the
details of the particular exploration strategy do not influence the value function, but
only the rate of convergence. There is also an on-policy Q-Learning algorithm called
SARSA [30], in which the exploration strategy is taken into account. However, both
algorithms converge to the same value function when e, the probability of exploration,

decreases towards zero.

3.4 TD()\) Learning

The TD(0) learning method we studied previously is a special case of a class of temporal-
difference learning methods called TD(A), with A = 0. In the update rule of TD(0)
(Equation 8), we look ahead one step to the value function of the next state. The

update moves the estimate closer to the target value of estimated return:
R{Y =11 + 1Vi(sem). (14)
We can generalize the target to the case of n steps, also called the corrected n-step
truncated return:
R = repy + rge + Vs o+ 9" opn + Y Vi(St4n)- (15)
It can be shown [30] that the expected value of the corrected n-step truncated return is

an improvement over the current value function as an approximation to the true value

function. This is called the error reduction property.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 23

Initialize V' (s) arbitrarily, and e(s) =0 for all s € S
repeat for each episode:
Initialize s
repeat for each step in episode:
choose action a in state s from policy «
take action a; observe reward r, and next state s’
§—r+4V(s)-V(s)
e(s) «e(s)+1
For all s:
V(s) «+ V(s) + ade(s)
e(s) « yxe(s)
s+ s
until s is terminal

Figure 3.4: Estimating V™ with TD(X).

The idea of the TD()) algorithm due to Sutton [28] is to use a weighted average of
n-step returns as the target for the value function update. The update is towards a

return called the A return:

R = (1-N) Y 7R, (16)
n=1

where each n-step return is weighted by A»~! and 0 < A < 1. This weighted average

also has the error reduction property. The value function update becomes:

V(ss) < V(ss) + a[R) — V(s.)]. (17)

This update rule is problematic as it uses at each step information of states many steps
in the future. Using the concept of eligibility traces, we can change the update rule
into an incremental version. The eligibility trace e;(s) is a variable which keeps track
of how recently a state has been visited. At each time step, the eligibility trace of the

state just visited is incremented by 1 and all the other states decay with a factor yA:

Nt if 5 s;
al={ el Eer)
yAe_1(s) +1 if s = sy,

for all s € S.

The eligibility trace records how eligible a state is to undergo change. Thus, it is a
method of solving the temporal credit assignment problem by crediting states which

occurred recently more than those which occurred a long time ago.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 24

Initialize Q(s,a) arbitrarily, and e(s,a) = 0 for all s,a
repeat for each episode:
Initialize s,a
repeat for each step in episode:
take action a; observe reward r, and next state s’
choose action a’ from s’ using policy derived from Q
a* « argmax; Q(s',b) (if o' ties for the max, then a* + a’)
o1+ 7Q(sl7a*) - Q(57a)
e(s,a) + e(s,a) +1
For all s, a:
Q(s,a) + Q(s,a) + ade(s,a)
ifa' =a*
then e(s,a) « yXe(s,a)
else e(s,a) + 0
s« s
a+a
until s is terminal

Figure 3.5: Watkins’s Q(A) algorithm.

The one-step TD error between the current and the next state is:

O = Tea1 +YVals41) — Ve(se)- (19)

Eligibility traces specify how much to update other states based on the one-step error.
The eligibility traces effectively distribute the error to the states in proportion to how
recently they were visited. At each step of the TD(\) algorithm, each state is updated

towards the product of the one-step error and its eligibility:

Vir1(s) = Vi(s) + ade(s), for all s € S. (20)

Figure 3.4 shows the online tabular version of TD(A) which has been proven [9; 28] to
converge to V* with probability 1.

3.5 Q()) Learning

By modifying TD(A) to learn the action-value function @*, we can change Q-Learning

into a multi-step version. Watkins [33; 30] and Peng [23] proposed two slightly different

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 25

versions, differing in the way they handle exploratory actions. We follow Watkins’s

approach.

We replace the state-value function estimate V'(s) with the action-value function esti-
mate Q(s,a) in the update rule of TD(A). The eligibility trace e;(s,a) is also changed

to be a function of state-action pairs.. We now have for the update:

Qis1(s,a) = Qi(s, a) + adei(s, a), (21)

where
0 = rep1 + ymax Qu(seer, @) — Qulss, ar). (22)

The algorithm for Q(A) can be found in Figure 3.5. When selecting an exploratory
action, the eligibility trace for that state and action is set to zero. This is done because
this is an off-policy algorithm, where we approximate the greedy policy while following
an exploratory policy. Thus, we cannot give credit to states where we take a non-greedy

action. Setting the eligibility trace to zero precludes these states from being updated.

3.6 Convergence Properties of Q-Learning

As we have stated in Section 3.3, the Q-Learning algorithm converges to the optimal
action-value function Q*. By relating the Q-Learning algorithm to a theorem in stochas-
tic approximation theory, Jaakkola et al [12] prove the convergence of Q-Learning in the
case of an non-deterministic MDP. We will prove [20] the simpler case of a deterministic
MDP. .

In a deterministic MDP, the step size parameter « in Equation 13 may be set to 1. The
proof consists of showing that the error between the estimated and actual Q-values is

reduced by at least a factor «y after an update by the new update equation:

| Q(s4,a1) & 1441 + Y max Q(st41,a). (23)

Theorem 3.1 (Convergence of Q-Learning for deterministic Markov deci-
sion processes). Consider an agent in a deterministic MDP with bounded rewards
| R(s,a) |< ¢ Vs,a for some constant c. Assume that Q(s,a) is initialized with ar-
bitrary finite values for all s and a and that the agent updates Q(s,a) according to
Equation 23 with 0 <y < 1. Let Qn(s, a) denote the value function estimate after the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 26

n-th update. If each state-action pair is visited infinitely often, Qn(s,a) will converge

to the optimal value function Q*(s,a) as n — oo, for all s, a.

Proof. As each state-action transition occurs infinitely often, we can consider consecu-
tive intervals during which each state-action transition has occurred at least once. The
proof shows that the maximum error is reduced by at least a factor after each such
interval. Let Q,, represent the value function estimates after n updates, and let A,, be

the maximum error of Qy,:

An = H;%X | Qn(‘S)a) - Q*(S,CL) |

Let s’ denote the next state if the agent follows action a in state s. For any table
entry Qn(s, a) that is updated in iteration n + 1, the magnitude of the error of the new

estimate Qp11(s,0) is

| Qn+1(s’ a) - Q*(S, a) l

[+ ymax Qu(s',0)) - (r + Y max Q°(s',a) |

v | max Qn(s', ') — max Q*(s, a') |
a’ a’
Y max | QTL(SI’ a’,) - Q*(s’7al) |
a
~ max | Qn(s",a’) _ Q*(SH,CL’) |
a

S”, ’

IA

IA

The first inequality follows because for any two functions f; and f; we have:

| max fi(a) — max fo(a) | < max| fi(a) - fo(a) |
The second inequality introduces a new variable s” over which we perform the maxi-
mization. This inequality is legitimate because the maximum value will be at least as
great when we allow this additional variable to vary. Note that the last inequality is

exactly the definition of our maximum error 4, thus we have:

\ Qn—i—l(saa) - Q*(s,a) l < 'YAn

This means that the error after updating Qn41(s,a) for any s,a is at most y times
the maximum error in the @, table, A, . The largest error in the initial table A is
bounded, because Qq(s,a) and Q*(s,a) are bounded. After the first interval during
which each s, a pair is visited, the largest error in the table will be at most vA,. After
k such intervals, the error will be at most v*Ay. Since each state-action pair is visited
infinitely often, the number of such intervals is infinite, so k& — co. Because v < 1, we

have A,, — 0 as'n — 0o, which proves the theorem. O

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 27

3.7 Exploration vs Exploitation

When an agent has to act optimally in an unknown environment, it has to balance the
two opposing objectives of exploration and exploitation. In order to find an optimal
control policy, the agent has to sufficiently explore the environment. However, explo-
ration is typically an expensive operation; thus, it is sensible for the agent to exploit
the information it has already learned. If the agent only exploits, it may not find the
optimal policy; if it just explores, it wastes too much time exploring parts of the state
space which are irrelevant to the task at hand. In other words, we have to both explore
and exploit. The question arises of when to explore and when to exploit, which defines
the trade-off which most reinforcement learning algorithms have to solve. Thrun [32]

examines this trade-off and presents techniques for balancing each objective.

There are two major types of exploration methods: directed and undirected exploration.
Undirected exploration is based on randomness, e.g. an agent may take a random action
with a uniform probability distribution. On the other hand, directed exploration tech-
niques estimate the exploration utility of actions, and choose actions which maximize

the expected information gained by exploration.

The simplest method for undirected exploration selects actions from a uniform proba-
bility distribution. This results in a random walk over the state space and makes no
use of previously learned information. With e-greedy action selection, an agent selects
the action with maximum value function most of the time, but with a small probability

€ it selects a random action with uniform probability distribution.

One problem with the e-greedy method is that it selects exploratory actions with equal
probability; thus, bad and good actions are equally likely. In some tasks where the agent
receives large negative reinforcement for bad actions, it may be better to weight the
probability distribution — e.g. Gibbs or Boltzmann distribution — as a function of the
action-values already learned. This is called softmaz action selection. The probability

of selecting action a is given by:
Qs,0)/7
Shencs) €QEDT

P(a|s) = (24)
where A(s) is the set of actions available in state s, and 7 is the “temperature” param-
eter. With a high temperature, all actions are almost equally probable, whereas lower

temperatures give more weight to actions with higher Q-values. Typically, learning is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 28

started with a high temperature and is then gradually reduced over time. This anneal-
ing schedule encourages exploration in the beginning of learning and gradually shifts

to an increasingly greedy policy.

In all of the reinforcement learning algorithms we have discussed so far, convergence to
an optimal policy was guaranteed as long as each state-action pair was visited infinitely
often. The simple undirected exploration techniques satisfy the convergence criterion,
but they may not be as efficient as directed exploration where specific knowledge guides
the exploration. These are heuristic techniques, as it is not known in advance if an

action will improve an agent’s exploration knowledge.

One of the proposed heuristic techniques selects actions which have been selected less
frequently [5], so called counter-based exploration. Each state-action value has a counter
which is incremented each time the particular state-action sequence has been encoun-
tered. Using these counters, the neighbouring state which has been selected the least

number of times will be selected.

Another technique, recency-based ezploration, selects actions which were taken less

recently [30; 29] by recording the time since the last action was taken.

Error-based exploration favours actions which have shown to have a high prediction
error [21; 24]. The assumption is that states with high prediction error have not been
sufficiently explored. The efficiency of this method depends on the accuracy of the

prediction error.

Q-Learning can perform directed exploration based on a purely exploitative policy
by setting all initial values to an overestimate of the value of each state-action pair.
Exploitation will then select unexplored actions because of the high value of taking
such an action. Over time, this ensures that all state-action sequences are followed.
The exploration is gradually decreased as the estimated value function converges to the
true value function. The only problem with this technique is that it works well only
in stationary environments. As the reward function changes over time in a dynamic
environment, convergence to one policy is not desirable; thus, this method is often used

in combination with other exploration techniques.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. REINFORCEMENT LEARNING 29

3.8 Summary

The reinforcement learning problem is a general framework in which an agent interacts
with an environment by executing actions and receiving rewards. The agent’s goal is to
maximize the rewards received over time. Most reinforcement learning algorithms can
learn from delayed rewards by estimating future rewards, while continuously interacting
with the environment. The value function is this estimated future reward for each state

which the agent is attempting to learn.

The learning task can be formalized by using the theory of Markov decision processes,
which can be used to solve sequential decision optimization problems. Reinforcement
learning algorithms are related to dynamic programming approaches to solving Markov
decision processes. The difference is that, in general, reinforcement learning algorithms
do not have a model of the environment; instead, they learn from the environment from

experience.

Q-Learning is a reinforcement learning algorithm which is able to learn the optimal
control policy without having prior knowledge of the environment. It uses temporal
difference methods for estimating the value function of the current state-action pair by
using the value function of the next state. By updating more than one state through
the concept of eligibility traces, the reinforcement learning algorithm may learn more
efficiently. This is one of the basic mechanisms for temporal credit assignment. Eligi-
bility traces are especially useful when rewards are delayed by many steps, or when a

task does not completely satisfy the Markov property.

All of the reinforcement learning algorithms discussed have been proved to converge
to the optimal value function with probability 1, provided that all states are updated

infinitely often.

We also discussed the importance of exploration in learning the optimal control policy.
There is a trade-off between exploration and exploitation which has to be addressed in

all reinforcement learning algorithms.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4
Q-Learning for Traffic Routing

In this chapter, we examine Q-Learning for routing packets in a network, and compare
its performance with the Shortest Path and Bellman-Ford routing algorithms. We

proceed to study variations of Q-Learning designed to improve the routing performance.

4.1 Optimization of Packet Delivery Time

We consider the problem of routing individual data packets to their destination nodes
on a path, minimizing some objective function, e.g. the average packet delivery time,

or the total cost.

4.1.1 Q-Routing

Q-Routing [19; 2] is a distributed, adaptive, on-line routing algorithm that uses the

Q-Learning framework.

In Q-Routing, each node decides which neighbouring node to forward packets to in order
to minimize the average packet delivery time based solely on local information. This is
important because, as networks grow in size, the amount of routing information to be
transmitted becomes significant, and may impact on the overall network performance.
Each node has to store routing information in order to make the routing decision. This
routing information needs to be updated continuously to reflect the current network

state.

30

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 31

The time a packet takes to reach its destination node consists of the total transmission
delay on intermediate links, and the total waiting time in queues at the intermediate
nodes. The routing information at each node is stored in a Q-table as the estimated
travel time from each neighbouring node to each destination node. As a packet is sent,
the receiving node sends the estimate for the remaining travel time for this packet back
to the sending node. This estimate is then used by the sending node as a reinforce-
ment signal to update the corresponding Q-value. After an initial learning period, the
Q-values converge to the actual estimates; the stored network state will more closely

represent the actual network state, resulting in better performance.

Each node z maintains a table of Q-values Q;(y, d) where y € N(z), the set of neigh-
bours of node z, and d € V, the set of nodes of the network. Each Q-value represents
the estimated time for a packet to reach its destination d, from node y, ezcluding the
waiting time in 3’s queue. If the Q-values represent the current state of the network,
the best choice is to send the packet to the neighbouring node with the least estimated

delivery time for destination d. This is a local greedy policy.

Thus, if node z receives a packet P(s,d) with source s and destination d, it selects
the neighbouring node y from the vector of Q-values, Q,(x,d), for which the Q,(y, d)
value is minimum. The packet is then sent to node y where the best estimate Q, (2, d)
is computed and sent back to node z. Node z then updates its Q-value Q,(y,d). The
estimate @y (2, d) sent back from node y represents the estimated time for a packet to
travel from y to d. This means that the estimated travel time from z to d equals the
estimate from y plus the transmission time §, between x and y, and the waiting time,

¢y in queue y as shown in the next equation:
Est(y,d) = Qy(2,d) + ¢, + 6, (25)
where @, (2, d) is the minimum estimated delivery time from node y to d:

Qy(2,d) = min) Qy(z,d). (26)

zeN(y

The Q-value of the sending node z is updated as follows:

Qz(y,d) = Qz(y,d) +n;(Est(y,d) — Qz(y,d)), (27)

where 7 is the learning rate.

If enough packets are sent to each node and the traffic pattern remains stationary,

the Q-values will converge to their optimum values, because the Q-Learning algorithm

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traflic Routing 32

Figure 4.1: The British Synchronous Digital Hierarchy (SDH) network topology.

converges to the optimal policy, as proved in the previous chapter. The overhead
of Q-Routing is minimal compared to other distributed routing algorithms, such as
Bellman-Ford. Each node just has to send an estimate to the node from which it
received the packet. If this estimate is small compared to the packet size, the estimate

transmission becomes negligible.

We ran simulations on the network topology of the British Synchronous Digital Hierar-
chy (SDH) [25] of Figure 4.1 with low, medium and high network loads. We compared
the performance of Q-Routing to that of Bellman-Ford and static Shortest Path rout-
ing. In all cases, the results show the average over 25 runs. All node buffers were of

length 200 to ensure that no packets were dropped.

We generated packets with a uniform random distribution. At each simulation time
step, each node generates a packet with a probability p with a random destination
node. If there are n nodes in the network the overall load in the network is L =n x p

packets generated per simulation time step.

For Q-Routing we found empirically that a learning rate of ny = 0.95 resulted in good
routing performance. The Shortest Path routing algorithm routes packets on the route

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 23
2 I ! T T T T T
Q-Routing
Bellman-Ford -------

=T Shortest Path -------- -
18 | |
16 H |

[

£

l_

= 14 | |

2

g 12 { |

g

g 10 |

o

s .

@ 8/ |

g |

< !
6 | |
4 | |
2T YT P

° I I L L L 1 L

0 1000 2000 3000 4000 5000 6000 7000 8000
Time

Figure 4.2: Average packet delivery times for network load 1.2 for the SDH network topology.

with the minimum number of hops to the destination.

We selected the average queue length as a metric for comparing link costs in the
Bellman-Ford algorithm. Because the queue lengths fluctuate, distance vectors at all
nodes are always out of date and thus only estimated distances. For this reason, we
need to update distances towards an estimated value by using a step size parameter,
or learning rate. Empirical results showed that for Bellman-Ford a learning rate of 0.9

gives good results.

Normally, Bellman-Ford sends a distance vector V, of its current shortest distances
for all possible destinations to each of its k neighbours. In order to fairly compare
Bellman-Ford and Q-Routing, both algorithms must send the same amount of routing
information over the network. We accomplished this by having Bellman-Ford send the

distance vector to a neighbour only after n packets were sent to that neighbour.

Figure 4.2 shows the performance of the three routing algorithms for low load L = 1.2
packets per time step. From the figure, it is clear that the static Shortest Path routing
performs the best. Bellman-Ford has a lower initial peak than Q-Routing, but after

time step 1000 there is not much difference between the three algorithms.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing , 24
7 ' ' T T T T
Q-Routing
Bellman-Ford -------
Shortest Path --------
£ -
£
[
2
[
=2 |
I
o
g
[}
o
s -
[N
o
g
2
< —
:
A 1":,
Vi |
“V_
0 l I . L L 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time

Figure 4.3: Average packet delivery times for network load 2.2 for the SDH network topology.

With medium load of 2.2 packets per time step (Figure 4.3) performance is similar
to that of low load, except that the peaks of Q-Routing and Bellman-Ford are higher

during the training phase. Shortest Path routing is still superior.

Figure 4.4 shows the performance with a load of 3.2 packets per time step. Here, we see
that static Shortest Path routing begins to break down, as the average packet delivery
time increases linearly up to time step 2000, after which it settles. Even though the
buffers could store 200 packets, buffers still overflowed, dropping an average of 4 packets
every 50 time steps. Q-Routing has the lowest average packet delivery time, but it has
a higher initial peak during the training phase. It also converges about three times

faster than Bellman-Ford.

Under low load conditions, the minimal hop path is the optimal route and the static
Shortest Path routing algorithm performs best. Under high loads, node buffers fill up,
and the shortest routes become congested, increasing the delay of packets on those
routes. The adaptive routing algorithms perform better by diverting traffic away from

the congested nodes.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 35

140 T T T T T

Q-Routi'ng
Bellman-Ford -------
Shortest Path --------
120 .
o 100 |
£
|...
fa
D
= 80 |
[
[a]
2
o
o 60 |
[
o
o
2
< 40 |
20 e |
0 : 1 _1 _________ et [T : E¥ad Z=nacmcesecs
0 1000 2000 3000 4000 5000 6000 7000 8000

Time

Figure 4.4: Average packet delivery times for network load 3.2 for the SDH network topology.

Figure 4.5 shows the average packet delivery time of Bellman-Ford over a longer dura-
tion of 40000 time steps, with error bars corresponding to 1 standard deviation. This
shows long term instability caused by routing loops. Temporary routing loops occur
because updates to routing tables take time to propagate through the network, causing
routing tables to be adjusted using information that may be out of date. There are
methods that maintain loop-free paths, or use predecessor information to eliminate the
performance problems associated with Bellman-Ford [11; 7]. The ARPANET initially
used the Bellman-Ford algorithm, but it was replaced in 1979 by a brute force link

state algorithm as a result of long-lived loops. [1]

Figure 4.6 shows that Q-Routing does not have the long term instability problems

associated with Bellman-Ford under high load conditions.

4.1.2 DRQ-Routing

In Q-Routing, there is one Q-value update for each packet hop through the network.
In Dual Reinforcement Q-Routing [18] (DRQ-Routing), there is an additional Q-value
update for each packet hop. As node z sends a packet P(s,d) to node y, it appends

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 36

140 T T T T T

j Bellman-Fc;rd —t—

120

-
o
o

Average Packet Delivery Time

s s%ha 5 : -
35000 40000

5000 10000 15000 20000 25000 30000
Time

Figure 4.5: Average packet delivery times of Bellman-Ford for high network load for the SDH
network topology. Error bars show standard deviations.

140 [- x ' : ' Q-Routing —+—

120 fif 1
100 fi 1
ol |

60 4

Average Packet Delivery Time

20 H J

0 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000

Time

Figure 4.6: Average packet delivery times of Q-Routing for high network load for the SDH
network topology. Error bars show standard deviations.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 37

70 T T T T T T T

60

[# H 3]
(=] o [=3

Average Packet Delivery Time

N
o

o 1 1 1 1 1 H i
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.7: Comparing the average packet delivery times of Q-Routing and DRQ-Routing for
network load 2.0 for the SDH network topology.

Q:(2,s), which is the estimated travel time to reach the source from node z, to the
packet. The receiving node, y, then updates the Q,(z, s) value. This is called backward
exploration as the updates are performed in the reverse direction of travel. The update

rule is:
Qy(,5) = Qy(z,) + m(Est(z, s) — Qy(z, 5)), (28)

where 7, is the backward learning rate.

This heuristic aims at improving the efficiency because, with one packet delivery, it
estimates the best packet delivery path in both directions simultaneously. The overhead
of DRQ-Routing is twice that of Q-Routing; however, it is negligible if the packet size

is large in comparison with the extra estimates which have to be sent.

Figures 4.7 to 4.9 shows the results for network loads of 2.0, 3.0 and 4.0 packets per
time step respectively for the 30 node SDH network. The forward learning rate, 7y
and backward learning rate, 7, were both set to 0.9 in order to compare the relative

performance of the two algorithms. Results show the average over 25 simulation runs.

In all cases, the results show that DRQ-Routing learns a good routing policy much

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traflic Routing

Average Packet Delivery Time

160

140

120

100

80

60

IS
=)

20

0 500 1000 1500 2000
Time

2500

3000

3500

4000

38

Figure 4.8: Comparing the average packet delivery times of Q-Routing and DRQ-Routing for
network load 3.0 for the SDH network topology.

Average Packet Delivery Time

300

250

50

Q —_—
DRQ -------
1] 1 T 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Time

4000

Figure 4.9: Comparing the average packet delivery times of Q-Routing and DRQ-Routing for
network load 4.0 for the SDH network topology.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 39

faster than Q-Routing.

4.1.3 CQ-Routing

A Q-value estimates the packet delivery time from a node, via its neighbour, to a des-
tination. In Q-Routing, there is no measure of how close a Q-value is to the actual
delivery time. The idea of Confidence-based Q-Routing [17] (CQ-Routing) is to attach
a confidence measure to each Q-value to determine how much to update a particular
Q-value. Confidence values range between 0 and 1 to reflect the accuracy of the corre-
sponding Q-value. A value of 0 means the Q-value does not reflect the current network

state, whereas a value of 1 denotes a completely reliable Q-value.

As a node sends a packet to a neighbour, the neighbour sends a confidence value Ceg
together with the Q-value, back to the sending node. This confidence value depends on
how recently an update to this Q-value occurred. The learning rate 7y , of Equation 27
now becomes a function of the value C.,, and the old confidence value C,4 at the

sending node.

The learning rate function proposed by Kumar [17] is:
n(Colda Cest) = max(cesta 1- C'old) (29)

This results in a high learning rate when confidence in the old Q-value C,y is low or

when confidence in the transmitted Q-value estimate Cg; is high.

The Q-value update rule of Equation 27 is replaced by:

Q:(y,d) = Qo(y, d) + n(Ci(y, d), Cy(2,d)) x (Est(y,d) — Qu(y,d)) (30)

The confidence values are updated continuously to reflect the accuracy of the corre-
sponding Q-values. Base case Q-values of the form @.(y,y) represent the constant
transmission delay ¢ between node z and its neighbour and destination y. Thus, the
corresponding C,(y,y), are not updated as they have a constant value of 1, i.e. there

is full confidence in the corresponding Q-value.

Whenever a Q-value is updated according to Equation 30, the corresponding confidence

estimate is updated as follows:

Cy(y, d) = Ca(y, d) + n(Cz(y, d), Cy(2,d)) x (Cy(2,d) — Ci(y, d)) (31)

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 40

70 T T T T T T T

Average Packet Delivery Time

o 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.10: Comparing the average packet delivery times of Q-Routing and CQ-Routing for
network load 2.0 for the SDH network topology.

All other confidence values which were not updated in the last time step, except the
base cases, must decay with time, reflecting that the information of the Q-value is
getting out of date:

Cu(y, d) = ACa(y, d), (32)

where) is a constant decay factor between 0 and 1 and C, decays exponentially.

Figures 4.10 to 4.12 shows the results for network loads of 2.0, 3.0 and 4.0 packets per
time step, respectively, for the 30 node SDH network. For CQ-Routing the confidence
decay factor A was set to 0.99 and the learning rate for Q-Routing was 0.9. Results

show the average over 25 simulation runs.

CQ-Routing has a faster convergence time than Q-Routing, especially for medium and

high network loads where there are more of a difference.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 41

160 T T T T T T T

140

-
N
o

-
o
(=

60

Average Packet Delivery Time
[0
o

&

20

O | - H 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Time

Figure 4.11: Comparing the average packet delivery times of Q-Routing and CQ-Routing for
network load 3.0 for the SDH network topology.

300 T T T T T T T

Q —_
€Q -

250 4
£

= 200 B
el
[
2
©
[a]

© 1580 i
X
Q
©
o
Q
[=]
g

g 100 1

50 —

0 1] T
0 500 1000 1500 2000 2500 3000 3500 4000

Time

Figure 4.12: Comparing the average packet delivery times of Q-Routing and CQ-Routing for
network load 4.0 for the SDH network topology.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 42

4.1.4 CDRQ-Routing

When we add confidence values to DRQ-Routing, we obtain Confidence-based Dual
Reinforcement Q-Routing [17] (CDRQ-Routing). This combines the benefits of adap-
tive learning rates of CQ-Routing, and dual direction exploration of DRQ-Routing into

one algorithm.

In the forward direction of exploration, the Q-value update of the sending node z is the
same as the update rule of CQ-Routing (Equation 30). In the backward exploration

direction, the Q-value update of the receiving node y is:

Qy(x,5) = Qy(z,5) + 1(Cy(2,5), Cu(2,5)) x (Est(z,5) — Qy(s,5)), (33)

where 1(Cy(z, s),Cz(2, s)) is the learning rate function of Equation 29, and E'st(z, s)
represents the current estimated travel time from node z to the source node s (Equa-

tion 25), including the queuing delay at node z.

The corresponding confidence value update at the receiving node is:

Cy(z,5) = Cy(z, 5) + n(Cy(x, 5), Cs(2, 5)) X (Ca(2,5) — Cy(g, 5)) (34)

The confidence values in the forward direction is updated by Equation 31 and all
remaining confidence values which were not updated are adjusted according to Equa-
tion 32.

Figures 4.13 to 4.15 show the results for network loads of 2.0, 3.0 and 4.0 packets
per time step respectively for the 30 node SDH network. For CDRQ-Routing, the
confidence decay factor A was set to 0.99. The results show the performance of CDRQ-
Routing together with CQ-Routing, DRQ-Routing and Q-Routing of the previous three

sections. Results show the average over 25 simulation runs.

The results show that by combining CQ-Routing and DRQ-Routing into CDRQ-Routing
improves the convergence time, especially for higher loads. It also shows that the im-
provement of DRQ-Routing is more drastic than that of CQ-Routing, relative to normal
Q-Routing.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traflic Routing 43

70 T T T T T T T

60

(A H [6)]
o o o

Average Packet Delivery Time

n
o

10

0 L 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.13: Comparing the average packet delivery times of Q-Routing, CQ-Routing, DRQ-
Routing and CDRQ-Routing for network load 2.0 for the SDH network topology.

160 T T T T T T T

140

120

100

80

60

Average Packet Delivery Time

40

20

1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.14: Comparing the average packet delivery times of Q-Routing, CQ-Routing, DRQ-
Routing and CDRQ-Routing for network load 3.0 for the SDH network topology.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 44

300 T T T T T T T

250

200

150

100

Average Packet Delivery Time

50

1 1 T
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.15: Comparing the average packet delivery times of Q-Routing, CQ-Routing, DRQ-
Routing and CDRQ-Routing for network load 4.0 for the SDH network topology.

4.1.5 Probabilistic CDRQ-Routing

The confidence values used in CQ-Routing are used to decide by how much to update
a Q-value; they do not influence the routing decisions directly. This section introduces
an extension to CQ-Routing which uses the confidence values to make probabilistic
routing decisions. The resulting algorithm is called Probabilistic Confidence-based Dual
Reinforcement Q-Routing (Probabilistic CDRQ-Routing) proposed by Kumar [17].

When a node x makes a routing decision with CDRQ-Routing, it selects the neighbour
with the minimum Q-value from the vector @.(x,d). Probabilistic CDRQ-Routing
instead selects the neighbour y with minimum randomly generated Q-value, Q' (y, d).
This randomly generated Q-value is taken from the Gaussian probability distribution
with the mean equal to Q,(y,d), and the variance depending on some function of the

confidence value C(y, d).

The Gaussian probability distribution is chosen because the probability of generating
a value near the mean Q-value is high for small variance, and is more spread out for

higher variance. The variance function v(C) must be chosen such that the variance is

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 45

0000

B=
B=
B=
B=

Variance

0 | I S STty
0 0.2 04 0.6 0.8 1

Confidence

Figure 4.16: The variance function of Equation 36 for 8 of 0.2, 0.4, 0.6 and 0.8.

0 when the confidence value is 1, resulting in a randomly generated value equal to the
original Q-value. When the confidence value is low, the Q-value may be inaccurate;
thus, we need to increase the variance, which leads to a large deviation of the randomly

generated Q'-value.

Kumar suggested the function v(C) = & — 1 which gives infinite variance values for

confidence values of 0. This problem can be remedied by adding an offset 8 to the

numerator, and a constant k:)
C)=——+k 35
v(©) C+p (35)

We can solve for the constant k& by noting that, for a confidence value equal to 1, we

need the variance to be 0 i.e. v(1) = 0. This yields k = i:r_lﬁ Substitution of k£ results
in:
1 1

O = E 1+ s

(36)

Figure 4.16 shows the variance function of Equation 36 for different values of 3.

The aim of Probabilistic CDRQ-Routing is to overcome the hysteresis effect [8; 19]
of Q-Routing. This effect occurs when the network load is lowered after a period

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 46
35 T T T T T
CDRQ ——
PrCDRQ, p=2 -------
PrCDRQ, B = 4 -+
30 PrCDRQ, =6 - i
PrCDRQ, p=8 -~
o 25 .
£
-
>
[
2 20 i
[F]
o
g
s
a 15 4
()]
(=]
©
g
< 10 -
5 -
0 1] 1 L 1
0 500 1000 1500 2000 2500 3000

Time

Figure 4.17: The Average Packet Delivery Time for the SDH network for network load 1.5;
B of 0.2, 0.4, 0.6 and 0.8.

of high load, but the routing policy fails to adapt to the new optimal path. This
occurs because routes are selected based on minimum Q-values; thus, routes which
previously have shown to result in high delivery times are not selected. Consequently,
the Q-values of these routes are not updated to reflect the new network state. To
overcome this problem, we need to periodically send packets over what appear to be

suboptimal routes; i.e. we need to explore.

Exploration is encouraged by introducing randomness in Q-values which have not been
updated in a while. As the confidence in a Q-value decreases over time, there is a non-
zero probability that another route will be explored. There is an important trade-off

between exploration and exploitation to be considered, as discussed in Section 3.7.

Simulations were run on the SDH network (Figure 4.1) for low (1.5), medium (3.0) and
high (4.5) network load with £ equal to 0.2, 0.4, 0.6 and 0.8. All node buffers were of
sufficient length that no packets were dropped during any simulation. The results show

the average packet delivery time of 25 runs.

As can be seen from Figures 4.17 to 4.19, Probabilistic CDRQ-Routing learns a suitable

routing policy faster than CDRQ-Routing, especially for low and medium network

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 47

120 T T T T T T T v 1

100

Average Packet Delivery Time
[=23
o
T

20

Rtk

o
T

O 1 1 1 1 1 1 J 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Figure 4.18: The Average Packet Delivery Time for the SDH network for network load 3.0;
B of 0.2, 0.4, 0.6 and 0.8.

300 T T T T T T T T T
CDRQ ——
PrCDRQ, =2
PrCDRQ, p=4
PrCDRQ, =6
250 PrCDRQ,B=8 - .

n
[=]
[=]

Average Packet Delivery Time
g g

50

0 1 1 1 1. L 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Figure 4.19: The Average Packet Delivery Time for the SDH network for network load 4.5;
B of 0.2, 0.4, 0.6 and 0.8.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 48

loads. This shows that the extra exploration pays off in the training phase, without
incurring a performance penalty after convergence. It can also be seen that the choice

of the parameter 3, which controls the maximum variance is not critical.

4.2 Finite Buffer Size

Realistic networks have buffers of finite size; thus, queue utilization at nodes needs to
be considered in addition to packet delivery time. If buffers become full, congestion
develops and packets may be dropped. This section explores a congestion control
scheme which addresses this problem [4]. The routing algorithm now also needs to
consider the number of packets waiting in queues; thus, we need to modify the equations

for updating Q-values.

Let B, be the buffer size of node = and let ¢, be its current queue length. We can
define a congestion risk function g(#) that depends on the how full the queue is.
The congestion risk is the risk of dropping a packet that is sent through node z. The
following function for calculating the congestion risk has been proposed [18]:
o
gs(a) = m, (37)

where 6 controls the rate of growth of the congestion risk g.

One practical problem with Equation 37 is that it grows to infinity as « tends to 1. By
utilizing a maximum congestion risk value, it becomes impossible to discriminate be-
tween different queue utilizations above the cutoff congestion risk value. The following

smooth function has a maximum value of 1 at & = 1:
go(e) = o, (38)

where 6 controls the rate of growth of the congestion risk g. Figure 4.20 shows the
congestion risk for § = {3, 6, 15}.

We add a term to the routing update equation for calculating the new packet delivery

time estimate which reflects the congestion risk of using a node:

Est(a,b) = Qu(5,) + g + 8+ - go(L0%)) (39)

where the congestion control scaling factor w determines the extent to which the routing

algorithm penalizes full queues. Ax(g,) is the average queue length of node a over a

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 49
1 v T T T
Theta =3 —— /
Theta =6 ------- /
Theta = 15 -+
08 .
% 06 f A
o / {
=4
2
7
@
(=]
s
8 o4} .
02} .
0 el) UL I
0 02 0.4 0.6 08 1
Alpha

Figure 4.20: The Congestion Risk of Equation 38 for 6 of 3, 6 and 15.

moving window of length A. Using the average queue length has the effect of delaying
the congestion control by the window size parameter A, so that the algorithm does not

react too quickly to bursty traffic.

For our experiments, we used the network topology shown in Figure 4.21. This network
has node 8 on the shortest route between nodes 7,10,12 and 9,11,13, respectively; thus,
we can expect congestion to develop at node 8. The queues at all nodes were of
length 15. We generated network traffic uniformly across the network during the initial
training phase. From time step 1500, we generated additional traffic between nodes 7
t0 9, 10 to 11, and 12 to 13, respectively. Results are shown averaged over 25 simulation

runs.

Load | w | 6 | Window size (A)
14 413 1
1.8 8|5 10
20 (12| 7 50
16| 9 100
20 | 12

Table 4.1: The parameters used in the simulations

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 50

Figure 4.21: The 13 node network topology used for the finite buffer simulation.

An exhaustive search over all combinations of parameters shown in Table 4.1 was
performed. The simulations with the lowest number of dropped packets for low (1.4),
medium (1.8) and high (2.0) loads are shown in Figure 4.22 to Figure 4.27.

In all cases, the average packet delivery time of CDRQ-Routing with Congestion Control
is initially higher, but not too different from normal CDRQ-Routing. In Figures 4.23,
4.25 and 4.27 we can see that considerably less packets are dropped with our congestion

control scheme.

4.3 Optimization of Multiple Objectives

In realistic networks, costs such as use of a link and processing at nodes also need to be
considered in addition to packet delivery time. Since our routing algorithm also needs
to consider the cost of using a link, we need to change the meaning of Q-values [3].
Q-values are now the combination of the estimated delivery time and the estimated

delivery cost.

The Q-value update rules are the same as for CDRQ-Routing of Section 4.1.4, but the

calculation of Est(a,b) of Equation 25 now includes an extra cost term. We propose

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing

Dropped packets

12

' ' No Conlgestion Control
11

w =16, Theta =9, window=1 -

10 :
2 ‘:
oL
> \
o !
2 i
® 8 \
a \
g :
° \
[=2]
o
g 6
5
4
3
0 500 1000 1500 2000 2500 3000 3500 4000
Time
Figure 4.22: Average packet delivery time for low load.
1.8 T T T T T T T
No Congestion Control
w =16, Theta=9, window=1 -------
16 -
14 F .
12 .
1k i
08 I .
/\ /\ 1 ’I,“‘l s 1 1 1
1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.23: Number of packets dropped for low load.

o1

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing

Average Packet Delivery Time

Dropped packets

20

18

-
o]

pry
S

10

T T
No Congestion Control

w =12, Theta = 5, window = 100 -------

] 500 1000 1500 2000 2500 3000 3500

16

10

Time

Figure 4.24: Average packet delivery time for medium load.

No Conlgestion Control
w =12, Theta = 5, window = 100 -------

D\
A ;N\
N N\ ~ AP W AN PN / -,

1 ~ e Npean en Nyt VS [N e PN L7 s

0 500 1000 1500 2000 2500 3000 3500

Time

Figure 4.25: Number of packets dropped for medium load.

4000

52

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing

4000

22 T T 1 T T T T
No Congestion Control
,‘. w =8, Theta = 9, window =50 -------
20/t
i
]
18 i
|
e !
£ 16 ;‘
2 4
] f
2 \
D 14 |
Q {
g 12
® 1
=] \
g !
8
6
4 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Time
Figure 4.26: Average packet delivery time for high load.
30 T T T T T - T
No Congestion Control
w =8, Theta = 9, window = 50 -------
25
20
(2}
2
Q
8
- 15 F
(7
a
[*%
o
o
10
5 F
\‘/\\,"\ A At NAY l‘\ s A IA\ l’\‘\
R N W N VAN Vg AN N (VA RNIN
0 ! 1 hd y 1 [My ko 1 -
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.27: Number of packets dropped for high load.

53

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 54

Figure 4.28: The network topology for the 36 node grid.

to update these estimates as follows:
Est(a,b) = Qu(2,b) + ¢u + 0 + « - Cost(a, b), (40)

where Cost(a,b) is the cost of using the link between a and b, and « is the factor

determining how much to take the cost into consideration.

We conducted experiments on two networks: a 36 node grid due to Boyan and Littman
[19] (Figure 4.28), and the 30 node British Telecom SDH network depicted in Figure 4.1.
In all the experiments, the average packet delivery time of every 50 time steps was
measured and averaged over 50 simulation runs. The queues at all nodes were of

sufficient length so that no packets were lost in any simulation.

Link costs of one unit were assigned to all the links in the network in Figure 4.28,
except between node 18 and 19, where the cost was 2, and between node 12 and 25
where the cost was 50 units. The load was fixed at 1.8 packets generated per time step,
and the confidence decay factor was arbitrarily set to 0.9. The average delivery time is
shown in Figure 4.29. When o = 0 the cost is ignored, i.e. routing decisions are made

based only on the single objective of minimizing packet delivery time.

We observe a linear increase in both the maximum delivery time, and the time to
convergence with respect to a. Details of the steady state behaviour is shown in Fig-
ure 4.30.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. QQ-Learning for Traffic Routing 55
160 T Y T T T
apha=0 ——
alpha=0.2 -------
alpha=0.4 --------
alpha = 0.6~
[
£
a. =
(4]
2
o©
©
‘q;", .
Q
fu]
Q
[}]
o
g i
g
<
e
2000 3000 4000 5000 6000

Figure 4.29: The average packet delivery time for single versus multiple objective optimization
for the 36 node grid for differing a.

Figure 4.31 shows the average cost for o between 0 and 0.6. Comparing Figures 4.30
and 4.31 reveals the trade-off between delay and cost. Between time steps 1000 and
4000, the average packet delivery times increase slightly for « = 0.4 and a = 0.6, but

the delivery costs decrease.

This illustrates the trade-off that exists when attempting to simultaneously optimize
competing objective functions. As can be seen, this network is very unbalanced and
the shortest paths between most of the nodes between the two clusters are along the
expensive link between node 12 and 25. The packets can either follow the short path
and have a low delivery time, but high cost, or travel via the long route and increase

the delivery time and decrease the cost. This explains the observed trade-off.

In the SDH network depicted in Figure 4.1, link costs were randomly assigned so
that ten percent of the links were on average ten‘times as expensive as the remain-
ing links. The network load was set at 3.0 packets generated per time step. Fig-
ures 4.32 through 4.34 show that the multiple objective optimization again has a longer
learning period, but this time the average cost and the delivery times are less. Intu-
itively, this can be explained by observing that this network is more balanced, i.e. there

are more alternative routes to choose from, while still avoiding costly links.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 56

14 H

101 -

Average packet delivery time

R

0 1 1 J 1 1
o] 1000 2000 3000 4000 5000 6000

Time

Figure 4.30: Details of the steady state behaviour of Figure 4.29.

3000 T T T T T

alpha=0 ——
alpha=0.2
alpha=0.4
alpha=0.6 -

2800

2600

2400

2200

Average cost
= n
o] o
Q o
o o

1600

s
A 3 A s

/ AW
FAYAY \ A iy

" AN
P NP
S-et NS S VN

A
A
N - - ’ \,
AR -, AN e 4 N NP A
Vs e VN S A AN N e
y / 5 AV \ L/

1400

1200 b

1000

800 1 1 1 1 i
0 1000 2000 3000 4000 5000 6000

Time

Figure 4.31: The average cost for single versus multiple objective optimization for the 36 node
grid for differing «.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 57
70 T T T T . . .
alpha=0 ——
alpha=0.4 -------
alpha=0.8 - .
60 - alpha = 1.2 -~ |
50 | |

H
o
T

Average packet delivery time
©w
(=]
T

n
(=)
T

10 H

0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.32: The average packet delivery time for single versus multiple objective optimization
for the BT SDH network for differing «.

8 T T T T T T T
alpha=0 ——
alpha=0.4 -------
alpha=0.8 --
alpha = 1.2 e
7k E

Average packet delivery time
(4]
T
1

2 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.33: Details of the steady state behaviour of Figure 4.32.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 58

14000 T T T T T T
alpha=0 ——
alpha=0.4
13000 alpha=0.8 J
alpha=1.2 -
12000
11000
.. 10000
1%
Q
(4]
S 9000
o
I
8000
7000
6000
5000
4000 1 1 1 1 L i 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 4.34: The average cost for single versus multiple objective optimization for the BT
SDH network for differing a.

0.3 T T T T -
cost saving —+—
delivery time saving ------
025 .
02 -
o
£
> 015 |- —
& X
k] . i
= AN [» X
2 b S Py TN x
8 o1f /% X\%‘ o N A i
i / X VWX
X X v X
x % \;{ \
3 X
X ¥
0.05 | AN % ,?f i
¥ *¥x NS
VAL XL x
WA AR X
PRV Xy A
ARYAN WA VA
0 AN R O VY i
VR Ly
N b3
-0.05 1 1 1) X
0 0.5 1 15 2 25
alpha

Figure 4.35: The average saving of multiple objective optimization of cost and delivery time
for the BT SDH network versus a.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 59

Figure 4.35 shows the savings in terms of cost, and in terms of delivery time as a

function of a’s.

We have demonstrated that there is a trade-off between packet delivery time and av-
erage cost if links are priced differently. If there are alternative routes that are equally
expensive in terms of number of hops, but unequal in cost, the new routing algorithm
can save about 25 percent of the cost and 10 percent on the average packet delivery

time.

4.4 Summary

In this chapter, we examined the distributed, adaptive traffic routing algorithm called
Q-Routing. It is a distributed algorithm, as each node maintains a Q-table for estimat-
ing the average delivery time via its neighbours to all destinations. These delivery time
estimates are incrementally updated based on local information of neighbouring nodes.

Each node routes the packet to the neighbour with the minimum estimated delay.

Results showed that Q-Routing was able to route packets more efliciently at higher
network loads than the static Shortest Path algorithm. We also found Q-Routing to
be more stable than a straightforward implementation of the distributed Bellman-Ford

algorithm, using average queue length as metric.

CDRQ-Routing is an enhancement over Q-Routing which uses dual direction explo-
ration and confidence values in updating Q-value estimates. These enhancements re-

sulted in faster learning speeds and improved routing performance.

Probabilistic CDRQ-Routing is a further enhancement to CDRQ-Routing which at-
tempts to find new faster paths by increasing the amount of exploration, based on the
confidence of a Q-value. This method proved to be promising as it converged faster
than normal CDRQ-Routing during the training phase.

All the routing algorithms we discussed earlier assumed infinite packet buffers at all
nodes. In realistic networks, this assumption no longer holds; thus, we considered the
problem where nodes have finite buffers. We extended CDRQ-Routing to also consider
queue utilization by using a congestion risk function. Our congestion control method
dropped considerably less packets without increasing the average packet delivery time

appreciably.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Q-Learning for Traffic Routing 60

We also considered the case of minimizing the multiple objectives of packet delivery

time and cost. Results showed that in general there is a trade-off between these two

objectives.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we investigated the use of reinforcement learning algorithms for routing
packets in communication networks. Adaptive routing policies are needed in networks
with unpredictable changes in traffic patterns and network topologies. We showed that
Q-Routing, based on the Q-Learning algorithm, is a viable approach for distributed
adaptive routing in dynamic networks. Moreover, this adaptive routing algorithm uses
only local information in making routing decisions. This means less network resources

are wasted in propagating global network state information across the network.

Simulation results suggest that the performance of Q-Routing is superior to that of the
distributed Bellman-Ford routing algorithm. We found that Q-Routing converged to a
more stable routing policy than Bellman-Ford at high traffic loads.

Confidence-based dual reinforcement Q-Routing (CDRQ-Routing) is an extension of
Q-Routing which uses confidence values in updating Q-values in both the forward and
backward direction. CDRQ-Routing converges much faster than Q-Routing with little

extra overhead.

Probabilistic CDRQ-Routing is a further enhancement to CDRQ-Routing where routing
decisions are made probabilistically. Taking exploratory actions improves the chances
of finding new routes. The level of exploration is increased if the confidence in Q-values
at a node are low. Making exploratory moves only when the confidence is low is

important, as unnecessary exploration may degrade performance. Empirical results

61

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. CONCLUSION 62

show that probabilistic CDRQ-Routing finds good routing policies faster than normal

CDRQ-Routing without wasting valuable network resources.

We also investigated two routing algorithms designed to improve performance in more
realistic networks. Most network nodes have limited buffer capacity and as buffers
on popular routes fill up, congestion develops. Our new routing algorithm is able to
perform congestion control by rerouting traffic to less loaded regions of the network.
The result is that our routing algorithm drops much fewer packets. The other enhanced
routing algorithm is able to optimize the multiple objectives of minimizing packet

delivery time and cost.

5.2 Future Work

We showed that the various Q-Routing algorithms are viable alternatives to standard
distance-vector routing algorithms. To make an even stronger argument, work is needed
in obtaining more realistic simulations and improving the routing algorithm perfor-

mance. We will shortly discuss some of the ideas that might contribute to this work.

5.2.1 Realistic Simulations

More accurate simulation results may be obtained by experimenting with more realistic
network and traffic models. In our investigation of the routing algorithms, all network
nodes and links were identical. In a more realistic heterogeneous network, the processing
speeds at nodes and link capacities can be different, and need to be incorporated into
the model. This is one area where multiple objective optimization may be useful, since

it is reasonable that fast nodes and links are more expensive.

The traffic model can also be improved to achieve more realistic simulations. Traffic
must be generated with more realistic spatial and temporal distributions to evaluate
routing performance under various dynamic load conditions. To illustrate the robust-
ness, the routing performance also needs to be evaluated under different node and
link failure scenarios. Another improvement will be to consider the use of different
traffic classes with different requirements and priorities. This would allow the routing

algorithm to drop low priority packets if congestion develops.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. CONCLUSION 63

5.2.2 Improved Routing

The routing performance may be improved by a few additions to the routing algorithms.
Encoding prior knowledge of a few good routes into the initial Q-values is one way of
improving the convergence time of (3-Routing. This should result in less unnecessary

exploration.

The recovery of Q-Routing after node or link failures can be improved by sending special
routing packets from nodes near failed network components. These routing packets
should have higher priority than data packets thus ensuring the fast propagation of the
information of the failed nodes. This is likely to shorten the duration of the bouncing
behaviour of packets between two nodes with inconsistent routing tables, by updating

their routing tables to avoid the loop between them.

The routing policy of Q-Routing depends on the traffic distribution, i.e. it is data
driven. The result is that areas of the network with very little traffic may not be ex-
plored sufficiently. Another idea is to generate independent routing packets which ex-
plore routes in the network and update routing tables, similar to the ants in AntNet [6].
Data packets are then routed according to the routing tables which the exploring rout-

ing packets continually update.

AntNet can be seen as a parallel replicated Monte Carlo system [6]. Barto and Sut-
ton [30] argue that a first-visit Monte Carlo simulation system is equivalent to TD())
with A = 1. On the other hand, Q-Learning is a control method based on TD(0), i.e.
A = 0. It would be interesting to see how good the performance would be of an ant-like
Q(XA)-Routing algorithm with 0 < A < 1. This new algorithm could retain the best
properties of both algorithms.

Q(M)-Routing could for example converge faster than Q-Routing, at the expense of
extra routing overhead. Upon receipt of a packet at a destination, a routing packet
containing the whole route taken, can be sent back to the origin node. The relevant
routing table entry at each node along the way can then be updated. This record
of the route taken can be seen as an eligibility trace. To limit the routing overhead,
these special packets may only be sent periodically, or if the local network conditions

changed.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1]

2]

8]

[5]

[6]

C. Alaettinoglu and A. U. Shankar, “Stepwise assertional design of distance-
vector routing algorithms”, in IFIP Protocol Specification Testing and Verification,
pp. 399-413, 1992.

W. H. Andrag and C. W. Omlin, “Distributed intelligent multi-agents for telecom-
munication network management”, in Proceedings of the 2nd Annual South African

Telecommunications, Networks and Applications Conference (Sept 1999), Durban,
South Africa, 1999.

W. H. Andrag and C. W. Omlin, “Optimization of multiple objectives in telecom-
munication networks using intelligent agents”, in Proceedings of the 3rd Annual
South African Telecommunications, Networks and Applications Conference (Sept
2000), Cape Town, South Africa, 2000.

W. H. Andrag and C. W. Omlin, “Q-Learning for adaptive congestion control in
networks with finite buffer size”, in Proceedings of the 4th Annual South African
Telecommunications, Networks and Applications Conference (Sept 2001), Wild
Coast, South Africa, 2001.

A. G. Barto and S. P. Singh, “On the computational economics of reinforcement
learning”, in Connectionist Models, Proceedings of the 1990 Summer School (D. S.
Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds.), pp. 35-44,
Morgan Kaufmann, 1990.

G. D. Caro and M. Dorigo, “Antnet: Distributed stigmergetic control for commu-
nications networks”, Journal of Artificial Intelligence Research, vol. 9, pp. 317-365,
1998.

64

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 65

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves, “A loop-
free Bellman-Ford routing protocol without bouncing effect”, ACM SIGCOMM,
pp. 224-237, 1989.

S. Choi and D. Yeung, “Predictive Q-routing: A memory-based reinforcement
learning approach to adaptive traffic control”, Advances in Neural Information
Processing Systems, vol. 8, pp. 945-951, 1996.

P. Dayan and T. Sejnowski, “T'D(\) converges with probability 17, Machine Learn-
ing, vol. 14, pp. 295-301, 1994.

L. Ford and D. Fulkerson, Flows in Networks. Prentice-Hall Inc., 1962.

J. J. Garcia-Luna-Aceves and S. Murthy, “A path-finding algorithm for loop-free
routing”, ACM Transactions on Networking, vol. 5, pp. 148-160, 1997.

T. Jaakkola, M. 1. Jordan, and S. P. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms”, in Advances in Neural Information
Processing Systems (J. D. Cowan, G. Tesauro, and J. Alspector, eds.), vol. 6,
pp. 703-710, Morgan Kaufmann Publishers, Inc., 1994.

L. P. Kaelbling and M. L. Littman., “Reinforcement learning: A survey”, Journal
of Artificial Intelligence Research, vol. 4, pp. 237-285., 1996.

F. Kelly, “Modelling communication networks, present and future”, in Philosoph-
ical Transactions of the Royal Society, pp. 437-463, 1996.

A. Kerschenbaum, Telecommunications Network Design Algorithms. McGraw-Hill,
1993.

K. H. Kramer, N. Minar, and P. Maes, “Tutorial: Mobile software agents for
dynamic routing”, Mobile Computing and Communications Review, vol. 3, no. 2,
pp. 12-16, 1999.

S. Kumar, “Confidence based dual reinforcement Q-routing: an on-line adaptive
network routing algorithm”, Master’s thesis, University of Texas at Austin, 1998.

S. Kumar and R. Miikkulainen, “Dual reinforcement Q-routing: An on-line adap-
tive routing algorithm”, in Proceedings of the Artificial Neural Networks in Engi-
neering Conference, (St. Louis, USA.), pp. 231-238, 1997.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 66

[19] M. L. Littman and J. A. Boyan, “A distributed reinforcement learning scheme
for network routing”, in Proceedings of the 1998 International Workshop on Ap-
plications of Neural Networks to Telecommunications., (Hillsdale NJ), pp. 45-51,
Lawrence Erlbaum Associates, 1993. :

[20] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[21] A. W. Moore, Efficient Memory-based Learning for Robot Control. PhD thesis,
Trinity Hall, University of Cambridge, England, 1990.

[22] G. Necula, “Proof-carrying code”, in Proceedings of the 24th Annual ACM Sym-
poswum on Principles of Programming Languages, pp. 106-119, ACM Press, 1997.

[23] J. Peng and R. J. Williams, “Incremental multi-step Q-learning”, in International
Conference on Machine Learning, pp. 226-232, 1994.

[24] J. Schmidhuber, “Adaptive confidence and adaptive curiosity”, Technical Report
FKI-149-91, Technische Universitat Munchen, Germany, 1991.

[25] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Ant-based load
balancing in telecommunications networks”, Adaptive Behavior, vol. 5, pp. 169-
207, 1997.

[26] A. U. Shankar, C. Alaettinoglu, I. Matta, and K. Dussa-Zieger, “Performance com-
parison of routing protocols using MaRS: Distance-vector versus link-state”, in
Proc. 1992 ACM SIGMETRICS and PERFORMANCE 92 Int’l. Conf. on Mea-
surement and Modeling of Computer Systems, (Newport, Rhode Island, USA),
p. 181, 1-5 1992,

[27] W. Stallings, Data and Computer Communications. Prentice-Hall International,
5 ed., 1997.

[28] R. Sutton, “Learning to predict by the methods of temporal differences”, Machine
Learning, vol. 3, pp. 9-44, 1988.

[29] R. S. Sutton, “Integrated modeling and control based on reinforcement learning
and dynamic programming”, in Advances in Neural Information Processing Sys-
tems (R. P. Lippmann, J. E. Moody, and D. S. Touretzky, eds.), vol. 3, pp. 471-478,
Morgan Kaufmann Publishers, Inc., 1991.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 67

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[31] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden, “A Survey
of Active Network Research”, IEEE Communications Magazine, vol. 35, pp. 80-86,
1997.

[32] S. B. Thrun, “The role of exploration in learning control with neural networks”,
in Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches (D. A.
White and D. A. Sofge, eds.), (Florence, Kentucky), Van Nostrand Reinhold, 1992.

[33] C. Watkins, Learning from Delayed Rewards. PhD thesis, Cambridge University,
1989.

(34] C. Watkins and P. Dayan, “Q-learning”, Machine Learning, vol. 8, pp. 279-292,
1992.

	andrag_reinforcement_2003
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080

