
A comparison of two different model
checking techniques

J.J.D. Bull

THESIS PRESENTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT THE UNIVERSITY OF STELLENBOSCH.

Supervised by: Prof. P.J.A. de Villiers

December 2003

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work and has not previously in its entirety or in part been submitted at any university for a

degree.

11

Stellenbosch University http://scholar.sun.ac.za

Abstract

Model checking is a computer-aided verification technique that is used to verify properties

about the formal description of a system automatically. This technique has been applied

successfully to detect subtle errors in reactive systems. Such errors are extremely difficult to

detect by using traditional testing techniques. The conventional method of applying model

checking is to construct a model manually either before or after the implementation of a

system. Constructing such a model requires time, skill and experience. An alternative method

is to derive a model from an implementation automatically.

In this thesis two techniques of applying model checking to reactive systems are compared,

both of which have problems as well as advantages. Two specific strategies are compared in

the area of protocol development:

1. Structuring a protocol as a transition system, modelling the system, and then deriving

an implementation from the model.

2. Automatically translating implementation code to a verifiable model.

Structuring a reactive system as a transition system makes it possible to verify the control flow

of the system at implementation level-as opposed to verifying the control flow at abstract

level. The result is a closer correspondence between implementation and specification (model).

At the same time testing, which is restricted to small, independent code fragments that

manipulate data, is simplified significantly.

The construction of a model often takes too long; therefore, verification results may no longer

be applicable when they become available. To address this problem, the technique of auto-

mated model extraction was suggested. This technique aims to reduce the time required to

construct a model by minimising manual input during model construction.

A transition system is a low-level formalism and direct execution through interpretation is

III

Stellenbosch University http://scholar.sun.ac.za

feasible. However, the overhead of interpretation is the major disadvantage of this technique.

With automated model extraction there are disadvantages too. For example, differences

between the implementation and specification languages-such as constructs present in the

implementation language that cannot be expressed in the modelling language-make the

development of an automated model extraction tool extremely difficult.

In conclusion, the two techniques are compared against a set of software development consid-

erations. Since a specific technique is not always preferable, guidelines are proposed to help

select the best approach in different circumstances.

IV

Stellenbosch University http://scholar.sun.ac.za

Summary in Afrikaans

Modeltoetsing is 'n rekenaargebaseerde verifikasietegniek wat gebruik word om eienskappe

rakende 'n formele spesifikasie van 'n stelsel te verifieer. Die tegniek is al suksesvol toegepas

om subtiele foute in reaktiewe stelsels op te spoor. Sulke foute word uiters moeilik opgespoor

as tradisionele toetsings tegnieke gebruik word. Tradisioneel word modeltoetsing toegepas

deur 'n model te bou voor of na die implementasie van 'n stelsel. Om'n model te bou

verg tyd, vernuf en ervaring. 'n Alternatiewe metode is om outomaties 'n model van 'n

implementasie af te lei.

In hierdie tesis word twee toepassingstegnieke van modeltoetsing vergelyk, waar beide tegnieke

beskik oor voordele sowel as nadele. Twee strategieë word vergelyk in die gebied van protokol

ontwikkeling:

1. Om 'n protokol as 'n oorgangsstelsel te struktureer, dit te moduleer en dan 'n imple-

mentasie van die model af te lei.

2. Om outomaties 'n verifieerbare model van 'n implementasie af te lei.

Om 'n reaktiewe stelsel as 'n oorgangsstelsel te struktureer maak dit moontlik om die kon-

trolevloei op implementasie vlak te verifieer-in teenstelling met verifikasie van kontrolevloei

op 'n abstrakte vlak. Die resultaat is 'n nouer band wat bestaan tussen die implementasie en

die spesifikasie. Terselfdetyd word toetsing, wat beperk word tot klein, onafhanklike kodeseg-

mente wat data manupileer, beduidend vereenvoudig.

Die konstruksie van 'n model neem soms te lank; gevolglik, wanneer die verifikasieresultate

beskikbaar word, is dit dalk nie meer toepaslik op die huidige weergawe van 'n implementasie

nie. Om die probleem aan te spreek is 'n tegniek om modelle outomaties van implementasies

af te lei, voorgestel. Die doel van die tegniek is om die tyd wat dit neem om 'n model te bou

te verminder deur handtoevoer tot 'n minimum te beperk.

v

Stellenbosch University http://scholar.sun.ac.za

'n Oorgangsstelsel is 'n laevlak formalisme en direkte uitvoering deur interpretasie is wesenlik.

Die oorhoofse koste van die interpreteerder is egter die grootste nadeel van die tegniek. Daar is

ook nadele wat oorweeg moet word rakende die tegniek om outomaties modelle van implemen-

tasies af te lei. Byvoorbeeld, verskille tussen die implementasietaal en spesifikasietaal=-soos

byvoorbleed konstrukte wat in die implementasietaal gebruik word wat nie in die modeler-

ingstaal voorgestel kan word nie-vrnaak die ontwikkeling van 'n modelafieier uiters moeilik.

As gevolg word die twee tegnieke vergelyk teen 'n stel van programatuurontwikkelingsoorweg-

ings. Omdat 'n spesifieke tegniek nie altyd voorkeur kan geniet nie, word riglyne voorgestel

om te help met die keuse om die beste tegniek te kies in verskillende omstandighede.

VI

Stellenbosch University http://scholar.sun.ac.za

Acknow ledgements

I want to thank the following people:

• My supervisor, Pieter de Villiers, for guidance and encouragement in my studies.

• All the people who participated in countless debates regarding topics in this thesis,

especially Frank, Jacques, Riaan and Willem.

• My family and friends for their support.

vn

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract III

Summary in Afrikaans V

Acknowledgements VII

1 Introduction 1

2 Concepts and applications of model checking

2.1 The model checker SPIN ...

2.2 Internal mechanisms of SPIN

2.3 Applications of SPIN

2.3.1 Automated Model Extraction

3

4

9

11

16

3 A transition system approach

3.1 Implementing Protocols as Transition Systems

3.3.1 An overview of the TCP protocol .

21

22

23

28

..... 31

31

32

3.2 The Alternating Bit Protocol

3.2.1 Discussion.

3.3 The TCP Protocol

3.3.2 A Transition System Specification for TCP

vin

Stellenbosch University http://scholar.sun.ac.za

3.3.3 Identifying states, actions and events . 34

3.3.4 Constructing the Model 37

3.3.5 Simulating the TCP Model 44

3.3.6 Verifying the TCP Model 44

3.3.7 Deriving an implementation . 47

3.4 Summary 52

4 Automated Model Extraction

Alternating bit protocol implemented in LF

54

55

58

62

4.1

4.2

4.3

From LF to Promela

Application to TCP

5 Comparison of Approaches 72

A A Transition system model 75

B Alternating bit implemented in LF 81

C Alternating Bit Translated 87

IX

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

The production of reliable, concurrent software is a formidable task. One major problem is

that race conditions that are caused by the timing of specific events are difficult to repro-

duce during testing. The problem has been studied extensively. For example, specialised

testing techniques have been developed to allow a user to control the execution of concurrent

processes. Another approach is to design concurrent programming languages that enable a

compiler to check for commonly occurring programming errors. Yet another strategy involves

the use of manual verification techniques and software tools that can detect subtle errors in

designs.

One particularly successful verification technique is model checking. A model checker is a

computer aided verification tool that can verify, without human assistance, that a formal

specification (a model) of a system has certain desirable properties. The basic idea is to

explore the reachable state space of a model to check a given correctness claim. To analyse

a complex concurrent system, millions of states must be stored in main memory. Because

a single state may occupy several hundreds of bytes, the amount of memory available on

typical workstations becomes a limiting factor. Fortunately, several techniques have been

developed to reduce the memory requirements. It is possible to reduce state sizes by using

compaction techniques. Also, it is often unnecessary to explore all execution paths to verify

a given correctness claim. These techniques and others led to the development of powerful

model checkers that can be used to verify complex concurrent systems.

A model checker can be used in different ways. A verified model can be developed first and

an implementation derived from it, or a verification model can be derived from an exist-

ing implementation-a process that can be partially automated. In this thesis two specific

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

techniques are compared.

1. The more traditional approach: to construct and verify a model before the implementa-

tion phase. Specifically, the model and implementation are both structured as transition

systems. This strategy makes it possible to verify the control flow of the implementation

directly as opposed to verifying the control flow of the model.

2. Automated model extraction, using a simple technique proposed by Holzmann [28]. A

parser for a specific implementation language is used to extract the control flow and a

lookup table is used to remove irrelevant detail by replacing fragments of implementation

code by abstract equivalents.

Thesis outline

The model checker SPIN was selected for this project because it is powerful and well docu-

mented [20]. The principles on which SPIN is based are discussed in Chapter 2. In addition,

three typical industrial applications of SPIN are discussed to outline different strategies and

to point out problems to be expected.

In Chapter 3 the technique of constructing a verified model and then deriving an implemen-

tation from it is discussed. The technique was applied to develop verified versions of the

Alternating Bit and TCP protocols. Subsequently, the relatively new technique of automated

model extraction was applied to the same two protocols. A model extraction tool was devel-

oped to derive verification models from existing implementation code. The outcome of this

experiment is discussed in Chapter 4.

Experience gained from the two experiments is discussed in Chapter 5. The two techniques

are compared in terms of ease of use, effectiveness and limitations.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Concepts and applications of model

checking

Several techniques have been developed to detect and eliminate defects in concurrent systems.

Protocol engineering is one area where significant progress has been made. For example,

formal specification languages such as SDL, Estelle and Lotos help to eliminate defects due

to ambiguity in protocol descriptions.

Although formal descriptions are valuable, verification is needed to detect defects such as

deadlock, unspecified receptions and duplicate messages in protocols. To help eliminate such

defects, various computer aided techniques have been developed. Model checking is a par-

ticularly successful example of a computer aided verification technique that can be used to

detect subtle defects in protocol specifications.

Popular specification languages such as SDL, Estelle and Lotos were not designed to support

model checking. Although model checkers have been developed for subsets of these lan-

guages, it is difficult to handle the infinite structures supported by these languages efficiently.

Specialised languages were therefore designed and adapted to simplify model checking. For

example, SPIN-the model checker used for this project-accepts specifications written in

Promela.

A model checker can be used in different ways to detect defects in protocol specifications.

First, a model of a protocol can be constructed and verified before any code is written.

Alternatively, a model can be derived from an existing implementation. Yet another option is

to automatically generate models during the implementation process. This approach makes

it possible to detect coding defects and provide useful feedback to programmers during the

3

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 4

implementation phase.

This thesis describes and compares two different styles of using a model checker. SPIN was

used for the experiment because it is one of the most powerful model checkers available.

Moreover, the algorithms used as well as various applications of SPIN are described in detail

in the literature [7, 20, 33, 39, 44, 45, 49, 55]. Apart from that, valuable practical know-how

regarding the SPIN model checker is distributed via the regular SPIN workshops [26]. A

similarly detailed comparison of different styles of using a model checker and the relative

merits of different approaches could not be found in the literature. The following techniques

were investigated:

1. Verified models were constructed manually and used to derive implementations.

2. Automatic generation of models from implementation code.

2.1 The model checker SPIN

The model checker SPIN has been developed by Holzmann and was originally designed as a

tool to verify computer protocols [20, 23]. In addition, SPIN has been used to verify widely

different systems such as a micro-kernel [11], a flood surge control system [49] and even a

business model [32]. Industrial case studies such as [44, 49, 28] illustrate the value of a tool

such as SPIN in practical situations.

To verify a system, a model must be constructed. A model is an abstract representation of the

behaviour of a system and should not include irrelevant detail. When using SPIN, models are

described in the modelling language Promela (PROcess MEta LAnguage). The language has

a C-like syntax and supports control structures loosely based on Dijkstra's guarded command

notation [10]. An online reference manual for Promela is available at [15].

The well-known Alternating Bit protocol [3] will be used for illustrative purposes and specif-

ically to introduce Promela as a notation for modelling protocols. Figure 1 shows a simple

state diagram that describes the protocol.

The Sender process starts in state ° and moves to state 1 by sending a message with a con-

trol bit labelled 0. An acknowledgement is then expected from the Receiver process. If an

acknowledgement is received correctly, the control bit is altered to 1 and the procedure is

repeated. Error management involves retransmission of messages. The Receiver process op-

erates in similar fashion but to simplify the presentation message corruption is not supported,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 5

!dl ?al ?aO !dO

error

Sender

laO

Receiver

Figure 1: A state diagram for the Alternating Bit protocol. The symbols "!" and "?" are
used to indicate the action of sending and receiving a message respectively.

only message loss.

Figure 2 shows a Promela model for the Alternating Bit protocol. There are three processes:

sender, receiver and init. The init process is scheduled first and will usually create ad-

ditional processes. The keyword run is used to create an instance of a process as shown in

lines 48 and 49. Processes communicate by means of shared variables or message channels.

In this example, the sender and receiver processes communicate via two channels linkin and

linkout. Promela supports synchronous and asynchronous message passing. If the size of the

buffer associated with a channel is zero, synchronous message passing is specified. This is

indicated by "[0]" in the channel declarations.

The basic types bit (one bit), byte (one unsigned byte), short (a signed 16-bit value) and int

(a signed 32-bit value) are supported in Promela. Structured types such as arrays and records

are also supported. Control flow within a process is specified with the two constructs do ... od

and if ... ti. The construct if ... ti is used for selection. The selection structure shown in lines

8-15 has three command sequences, each preceded by a double colon (lines 9, 11 and 13).

Only one of the command sequences will be executed at a time. A command sequence can

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 6

be selected only if its guard-the first command in the sequence-is executable. If more than

one guard is executable, one of the command sequences is selected non-deterministically and

if no guard is executable, the process blocks.

The functionality of the do ... od construct is similar to that of the if ... fi construct, except

that the guards are re-evaluated indefinitely. Termination of a do ... od construct must be

specified explicitly with a break command.

SPIN can be used in one of two modes to analyse the model. First, a model can be simulated.

The simulator interprets Promela commands on the fly and displays communication between

processes in the form of a message sequence chart. Figure 3 shows a message sequence chart

for the Promela code in Figure 2. The three vertical lines represent (from the left) execution

sequences of the init, sender and receiver processes. A labelled arrow indicates a message

transmission. The label indicates the channel number and the value(s) of the data element(s)

of a message. The two values in the rectangular boxes are line numbers in the Promela code

indicating the corresponding receive (top value) and send (bottom value) commands.

Simulation mode is used as a quick check to determine whether a model behaves as intended.

The purpose is to eliminate major errors and in this respect the SPIN simulator is a valuable

design tool.

Verification mode is used to determine whether a model satisfies a given correctness claim.

If the correctness claim is violated, a counter example-an execution sequence leading to an

error state-is generated. A counter example is normally displayed as a message sequence

chart. An important and simple correctness claim to verify is deadlock freedom. SPIN

automatically checks for deadlock (invalid end states), even if no explicit correctness claim is

specified. Another simple correctness claim to verify is an assertion violation. The Promela

asser tfboolean.condit.ion) command is always executable. If the boolean condition of an

assert command does not hold, an error is reported during the verification process.

The temporal logic LTL is used in SPIN to describe more advanced properties that should

hold along every execution path of a model. The logic extends propositional logic by adding

a number of temporal operators. These include the unary operators 0 (Finally) and 0

(Globally) and the binary operator U (Until). A useful property that should hold for the

Alternating Bit protocol can be stated as follows: If a message is sent, it should eventually

be acknowledged. This property is described by the formula

P -t Oq

where pand q are defined as Data == 0 and Data == 1 respectively. The variable Data

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING

byte Data;

proctype sender(chan linkin; chan linkout) {
bit control, status;

4 Data = 0;
status = 0;
do
.. 1 --t

if
.. linkout ! status, Data --t

10 skip
11 .. linkout ! 1 - status, Data --t..
12 skip 1* Corrupt the message *1
13 .. 1--t..
14 ski P 1* Lose the message *1
15 fi;
16 linkin? control;
17 if
18 :: control == status --t
19 status = 1 - status;
20 Data++
21 :: else --t
22 skip
23 fi
24 od
25

26 proctype receiver(chan linkout; chan linkin) {
27 bit control, status;
28 byte data;

29 status = 0;
30 do
31 .. linkin? control, data --t
32 if
33 :: control == status --t
34 linkout ! control;
35 status = 1- status;
36 printf(" Data : %d", data)
37 .. else --t 1* Message was corrupted *1
38 linkout ! 1 - status
39 fi
40 :: timeout --t 1* Resent previous acknowledge *1
41 linkout ! 1 - status
42 od
43 }

44 init {
45 chan linkin = [0] of {bit};
46 chan linkout = [0] of {bit,byte};
47

48 run sender(linkin, linkout);
49 run receiver(linkin, linkout)
50 }

7

Figure 2: A Promela model for the Alternating Bit protocol.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 8

Figure 3: A message sequence chart generated by SPIN's simulator for the Alternating Bit
protocol (Figure 2).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 9

I proctype sender(chan linkin; chan linkout) {
bit control, status;
byte lose, corrupt;
Data = 0;
status = 0;
do
:: 1 -t

if
:: linkout ! status, Data -t

10 corrupt--;
11 lose--
12 :: corrupt < 2 -t /* Corrupt the message */
13 linkout ! 1 - status, Data;
14 corrupt++
15 :: lose < 2 -t 1* Loose the message * /
16 lose++
17 fi;
18 linkin? control;

Figure 4: The sender process of the Promela model shown in Figure 2 changed to eliminate
the strong fairness problem.

will only be incremented if a message is successfully acknowledged after transmission.

SPIN can be used to show that this property is violated for the given model. The counterex-

ample produced is an example of an unfair execution sequence. It shows that it is always

possible to select the two guards in lines 11 and 13 of the model as shown in Figure 2. This

is considered unfair because the guard in line 9 could also be selected when the other two

guards are selectable. One way to eliminate the problem is to change the sender process as

shown in Figure 4. The two variables lose and corrupt are used to ensure that the verifier

does not always select the guards in line 12 and 15.

In [14, Chapter 0] Francez defined several different versions of fairness. Weak fairness requires

that any transition that is permanently enabled must be executed eventually. On the other

hand, strong fairness requires that any transition that is enabled infinitely often must be

executed infinitely often. SPIN supports weak fairness. However, selecting this option when

verifying the model described above will not solve the problem. The reason is that none of the

transitions (lines 9, 12 or 15) is permanently enabled because selection of anyone immediately

disables the others.

2.2 Internal mechanisms of SPIN

SPIN is an automaton-based model checker. Both the model (description of the behaviour

of the system) and the property to be checked are represented as finite automata on infinite

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 10

execution sequences. These are known as Buchi automata. The synchronous product of these

two automata describes all legal execution sequences. Correctness properties in SPIN are

described as temporal logic formulas and these are converted into Biichi automata. However,

instead of representing a correctness claim directly as a Biichi automaton, it is negated first.

This means that the corresponding Biichi automaton now describes an error pattern. The

synchronous product of this automaton (corresponding to the negated correctness claim) and

the automaton that represents the system behaviour now describes all execution sequences

that violate the given property. Introductions to the theory of automata-based model checking

can be found in either Bérard [4], Clarke [13J or Peled [42J.

The central problem of model checking is that some models simply generate too many states.

This is known as the state explosion problem. In practice, the most serious limitation is

the amount of main memory that is available because this determines how many previously

visited states can be stored.

Three of the most successful techniques used in SPIN to combat the state space explosion

problem are:

1. Bit-state hashing: In 1988 Holzmann introduced the technique of bit-state hash-

ing [19J. The basic version of this technique (single-bit hashing) uses all available

memory to store a large bit-array. Every generated state is hashed to an index in the

table and the bit at that position is set to one. If the bit is already set, it is concluded

that the state has already been visited. The disadvantage of this technique is that hash

collisions can occur. This means that errors may be missed because search paths are

terminated prematurely. Using several independent hash functions may seem like an

obvious solution to this problem. The idea is to terminate the search only if all bits,

corresponding to every hash function, are set. This strategy was analysed by Wolper

in [54J. Holzmann concluded that the best approach is to use two independent hash

functions and two bits per state [29J.

2. Partial order reduction:

This technique reduces the amount of work during model checking by eliminating paths

that lead to the same states simply by scheduling processes in a different order. There-

fore, instead of constructing the full state graph, a reduced state graph is constructed.

Some of the first work on partial order reduction was done in the late eighties and early

nineties by Valmari, Godefroid and Wolper [17, 50J. Which paths are preserved during

the reduction process depend on the property being checked.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 11

Partial order reduction was added to SPIN in 1994. Holzmann and Peled introduced a

static reduction algorithm which performs the computations needed to apply partial

order reduction before the search, instead of during the search. This approach was

shown to have significant advantages over dynamic reduction techniques [27].

3. State compaction: As the speed of processors increased, it became possible to em-

ploy algorithms that use a little more processor time to save memory. During 1995, a

state compression technique called collapse mode, was added to SPIN. The technique

exploits the observation that the local variables of each process will be assigned only

a relatively small number of distinct values which are called local states. A much

larger number of states is produced by the numerous ways in which these local states

are combined to obtain global states. With state compaction, each local state vector

component is stored separately in a local hash table. The compressed global state vec-

tor consists of the index numbers of the local state vector components in the local hash

tables. The global state vector is then again hashed to a global hash table.

The collapse mode in SPIN requires the user to specify an upper bound on the index

number range for the local state vector components. The required guess of the range

prohibited this method from being promoted to the default compression mode in SPIN.

A revised method, called Recursive Indexing, was later added that stored both the

component index-number and the number of bytes used per component index in the

global state vector. With this technique it is not required to specify an upper bound on

the number of component indexes. Holzmann states that the recursive indexing method

is a relatively simple and robust method that can give good reductions, in return for a

doubling or tripling of the run-time costs [21].

2.3 Applications of SPIN

This section is a discussion of how SPIN was used to verify two different protocols, illustrating

the approach of applying model checking manually. The two examples were chosen for the

following reasons:

1. Both examples are complex, well documented protocols.

2. The first example illustrates how model checking is typically used to verify a specific

property of a protocol.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 12

3. The second example illustrates how model checking was used to verify the design of a

life-critical system in actual use.

A third example, described in Section 2.3.1, illustrates a different approach: Derivation and

verification of a model from implementation code. This approach is called automated model

extraction.

High Performance Error Control Protocol

HTPNET is a protocol designed to exploit higher communication bandwidth while maintain-

ing low error rates [7]. The lower error rates led to a design where synchronisation packets

are periodically sent between data packets-as opposed to a design where each data packet

contains synchronisation information. The protocol was verified but not implemented. For a

rough estimation of the protocol's complexity, it is compared to the rather complex Transmis-

sion Control Protocol (TCP) [47]. HTPNET and TCP have similar connection management

techniques, the three-way handshake and graceful termination. The main difference between

the two protocols is the error detection strategy.

The authors described only one model consisting of four processes: two hosts, a transmitter

and receiver, and two processes to handle error correction. Two message channels were used

to connect the transmitter and the receiver, simulating a full-duplex network. The model

focused on the error correcting protocol. The connection management techniques were left

out to produce a tractable model.

The model was verified using assertion violations and end labels. An iterative method was

followed where the model was first verified under error-free conditions and then against a

network losing packets at random. Under error-free conditions the model was verified using an

exhaustive analysis. With the introduction of a lossy connection, the state space was increased

dramatically. The increase was such that an exhaustive search could not be performed with

the available memory To reduce memory usage, SPIN's super-trace feature was used. This

uncovered an error after inspecting more than forty million states. With the super-trace

option only 5MB of memory was used to detect the error. According to the authors an

exhaustive search would have required more than 6336MB of memory.

Summary

The authors followed a verification approach where a manually constructed model was verified

first before the implementation phase began. Unfortunately the protocol was only verified and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 13

not implemented. It is therefore not clear how the correctness of an implementation would

be influenced by the verified model. It is however possible to argue about the relationship

between the model and a possible implementation if the structure of the model is studied.

The Promela code shown below is an excerpt from the model.

1 do
2 errcnt_to_host[l]?white, °
3 Cr_state == ° && errcnt_to_host[l]?[red]) _>
4 errcnt_to_host[l]?red,O _>
5 r_state = 1
6 Cr_state == ° && errcnt_to_host[l]?[blue]) _>
7 assert CO)
8 Cr_state == 1 && errcnt_to_host[l]?[blue]) _>
9 errcnt_to_host[l]?blue,O;
10 break
11 Cr_state 1 && errcnt_to_host[l]?[red]) _>
12 assertCO)
13 od;
14 end:
15 do
16 errcnt_to_host[l]?white,O
17 errcnt_to_host[l]?red,O _> assert CO)
18 errcnt_to_host[l]?blue,O _> assertCO)
19 od

This code is central to the receiver host process. The sender process sends three different

colour coded messages in the following order: one red message, one blue message and ran-

domly inserted white messages. The receiver process accepts the sent messages and aborts

the process if a message is received that is out of order (lines 7, 12, 17 and 18). Popular

implementation languages used in industry, such as C, do not support or resemble the code

shown in this example. It is difficult to imagine how a designer will use the model as a guide

for a detailed design. The logical consistency of the protocol was verified but the model does

not serve as a structural guide for the implementation. It is therefore still possible for a

designer to introduce subtle coding errors.

The authors verified the model for deadlock, liveloek and assertion violations. No mention

is made of any LTL formulas that were checked. This gives the impression that the protocol

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 14

was verified insufficiently. However, Holzmann advises that when a model is built, the first

step should be to decide which correctness properties are relevant. The model should then

be constructed to capture the behaviour of the system necessary to prove the correctness

properties chosen in the first step [24]. The completeness of the verification phase therefore

depends on whether the identified properties were verified.

In this example the relevant property identified by the authors was the protocol's ability to

deliver messages in the correct order over a lossy connection. They argued that it suffices to

use only three distinctly numbered messages to efficiently verify the mentioned property. The

model was specifically constructed to verify this one particular property. The property being

verified is captured in the logic of the model and it is therefore not required to specify LTL

formulas.

Finally, subtle errors were detected in this protocol. One particular error was detected only

after visiting more than forty million states using SPIN's super-trace technique. This is

because the error only emerges after a consecutive loss of state synchronisation packets under

conditions where no data packets are sent. It would be extremely difficult, and most unlikely,

to reconstruct this particular error trace manually and would probably not have been detected

if conventional testing techniques were used.

A Storm Surge Barrier Control System

SPIN was used in the verification efforts of a concurrent system called BOS (Dutch: Beslis

en Ondersteunend Systeem). The BOS system is responsible for the correct functioning of

a movable storm surge barrier built near the Hook of Holland in the Nieuwe Waterweg.

The system consists of several subsystems communicating with one another using different

protocols. The operational system consists of 200 kLOC (thousand Lines Of Code) and an

additional 250 kLOC for simulators, test systems and supporting software [16, 37, 38, 49].

A combination of Promela and Z was used to specify the system. The control flow was

expressed in Promela and data manipulation in Z. Models of each subsystem were then con-

structed using the Promelaj'Z specifications: The control flow was left as is and the Z specified

data manipulation fragments were translated to Promela code. Most of the validation models

consisted of three or more processes: one process to model the interface, another process

to model the environment and one or more control processes. The models built were kept

as close as possible to the specifications, but some features had to be simplified to produce

tractable models. For example, the BOS process (the process responsible for the decision

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 15

making) communicates with the BESW process (the process that performs the task issued)

by means of polling. When a command is issued, polling requests are used to wait for the

completion of the issued command. This mechanism was replaced by waiting for a variable

to reach a certain value.

An incremental approach was followed: Initially a design and an environment were verified

with no error behaviour. Some error behaviour was then introduced and after each successful

verification run more were added. The models were only checked against a restricted set of

properties which included the absence of live-lock and deadlock.

Summary

The general model checking approach in this example is similar to that of the previous ex-

ample: Both the protocols were verified before the implementation phase began. However,

this example has two noticeable differences compared to the previous example. The first is

that the system was implemented and not just verified, and the second has to do with the

rationale behind the structure of the models.

The fact that the system was implemented enables one to determine how the design phase

was influenced-if influenced at all-by the models. To determine the amount of influence,

the structure of the models should first be examined. The structural design of a model is

determined by one of two things: A model is either constructed to capture the control flow

of a system necessary to verify identified properties, or a model is constructed to find the

correct structure for a design.

If a model is built for the purpose to verify an identified property, only code that is needed

to verify the property is added to the model. This means that unnecessary code is omitted

from the model and the probability of building a tractable model is increased. However, in

producing such models it is often required to use advanced abstraction techniques. The use of

abstraction techniques lead to models that are difficult to read and understand-especially if

a model was constructed by someone else. As with the previous example, the authors were not

concerned with the structural design of the protocol, only in the correctness of the protocol's

procedure rules. This led to a model design that had little resemblance to the specification.

A model constructed to find the correct structure for a design limits the chances of a designer

adding errors to the system through a faulty design. Although this approach seems ideal,

there are two potential problems: First, it may be difficult to find the correct structure and

still produce a tractable model, and second, the model may not be verified sufficiently. It

is often impossible to construct a tractable model that captures all the behaviour of a large

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 16

system. Such a system should be divided into smaller parts. How this is done and how models

are produced that sufficiently capture the behaviour of the system, requires experience.

The second problem is inherent to testing and verification. In [40] Myers argues as follows:

... testing is a destructive process. In other words, it is extremely difficult, after a

programmer has been constructive while designing and coding a program, to sud-

denly, overnight, change his or her perspective and attempt to form a completely

destructive frame of mind toward the program.

It is therefore advisable to appoint an independent test team to perform the testing phase

in a software project. This is also true when applying model checking (with the goal to

find the correct structure of a design). Building a model is a constructive art, verifying it is

destructive.

In this example the verification team tried to structure the models as closely as possible to

the specifications. This implies that they were not only concerned with the logical correctness

of the protocol's procedure rules but also with the structure of the design.

According to the authors, the models were checked against a restricted set of generic prop-

erties such as progress properties and the absence of deadlock and live-lock. As with the

previous example, the use of model checking in this project uncovered many errors, ambigu-

ities, inconsistencies and examples of incompleteness that would have been difficult to find

with conventional testing methods. The authors state that most errors were found during

manual analysis of the specifications. Some errors were found during simulation. Even so, a

few errors remained undetected and were only revealed during model checking. This shows

that although a model checker cannot guarantee the correctness of a system, it is a particularly

effective tool to uncover those errors that are rarely found by analysis of the specifications

and conventional testing methods.

2.3.1 Automated Model Extraction

The examples described in the previous section illustrated how model checking is applied

manually. This approach has several disadvantages and Holzmann states three important

negative issues when following this approach in [28]:

1. Constructing a model manually requires time, skill and experience. It is therefore

difficult to perform this type of verification during the design and development phase,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 17

when verification results are most beneficial. For this to be possible, the effort to

construct a model must be considerably smaller than the development effort itself.

2. When verification results become available, chances are that they apply only to older

versions of the code, which may no longer be of interest to the designers.

3. Manually constructed models can themselves be flawed, possibly hiding real errors and

often introducing artificial errors. The latter can be detected and corrected, the former

cannot.

Constructing a model to find the correct structure for a design, as described in the last

example of the previous section, contains yet another potential problem: There exists no

formal derivation method leading from a verified specification to an implementation. A coder

following a complicated model as an implementation guideline may err in his/her derivation

from the modelling language to the implementation language.

A current focus of research is the automatic derivation of models from source code. A direct

approach is to develop a translation tool that can translate a given implementation language

to a tractable model in some modelling language. AX (Automaton eXtractor) is an example

of an extraction tool [28, 25, 31]. This tool translates programs written in ANSI-standard C

to Promela models. Other approaches on applying automated model extraction are discussed

in Chapter 4.

AX consists of a scanner, parser, lookup table and a file containing a model template. Figure 5

is a schematic representation of how the different components are combined to produce a

model. First, a model template is constructed manually. This template contains an outline

for the required data declarations and an outline of the required process declarations. A

lookup table is then constructed manually. This table contains entries that are mappings

from C statements to statements in Promela. Each entry defines the abstract Promela code

associated with the corresponding C statement(s). Finally, the C source code is given as input

to the scanner. The scanner and parser will extract the control flow from the source code.

The rest of the detail is added to the model using the lookup table and model template.

The PathStar Access Server

The PathStar Access Server is a system that supports call processing, telephone switching and

data connections in an lP network. The system consists of several software modules and one of

these modules, the call processing module, was verified with the AX tool. The call processing

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 18

Source
(C)

~ Step 3

Step 2 Scanner Step I

Lookup &
ModelParser

table

~

template

Promela

Figure 5: Schematic representation of the model extraction process.

module was developed over a period of nine months and the complete system was developed

over several years. According to the authors this is the largest commercial product that has

been verified using software model checking up to the time of the publication (1999) [28].

The authors started the extraction process after the first C implementation of the call pro-

cessing module was available. A lookup table and model template were constructed and the

first model was produced. The model was verified and errors found were reported to the im-

plementation team. With each update of the source code a new model was produced ready for

verification. Small changes that were made in the source code required little or no updating

of the lookup table. With a few exceptions, each update required no more than five minutes.

With major changes in the source code the update of the lookup table required only a few

hours.

Each version produced until the release of the call processing code was verified using the ex-

traction tool and every model extracted was checked against the same set of LTL properties.

A database was constructed that contained over one hundred properties. Apart from the

properties, the database also contained additional information such as the result of a verifi-

cation run, the values of environment variables and other information necessary to perform a

verification run for a specific property.

Summary

The automated model extraction approach followed in this example proved to be successful in

finding errors fast and effectively during the implementation phase. The success can mainly

be attributed to the structure of the design and the format of the implementation code. The

design of the system was structured such that the central code related to call processing-

the code verified-was concentrated in a single high-level procedure. This procedure could

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 19

be studied and verified separately from the remainder of the code. This means that it was

possible to construct a meaningful, tractable model without the need to include behaviour

from the rest of the system that would have increased the number of reachable states.

The implementation code was structured as a state machine. The state machine executes

transitions which consist of a source state, guard condition, actions and destination state. This

type of code structure separates the control flow from data manipulation: The control flow is

specified by (source state, guard condition, destination state) triples and data manipulation

is performed in the actions. The lookup table contains entries that specify mappings from

source statements-that manipulate data-to statements in the modelling language. The

construction of the lookup table is therefore simplified because all the data manipulation

code is contained in the actions. In Chapter 3 the approach of separating control flow from

data manipulation is discussed in detail.

Three factors contributed to minimise the time spent verifying the validity of each property:

1. The construction of a model was partially automatic. The only manual tasks performed

were to construct a lookup table and a model template.

2. SPIN always generates a model-specific verifier in C for a complete specification which

consists of a part for LTL and a part for Promela. To save time in compiling a complete

verifier for each property in the database, the authors added an option to SPIN to

separately generate and compile the LTL code from the model code. The generated

and compiled LTL code is therefore reused which, according to the authors, reduced the

compilation time for all properties from minutes to seconds.

3. An iterative search refinement procedure was followed to find errors as quickly as pos-

sible. Initially the bit-state search option was used with a small hash table. If no errors

were found, the size of the hash table was doubled. The authors claim that errors typi-

cally showed up in the first few iterations of a search. Properties that were likely to be

satisfied were the only ones that had gone through the entire iteration process, from a

fast approximation to an exhaustive search.

The authors report that during the development of the code several errors were discovered

by the implementation team that they could not reproduce. These errors were uncovered

with SPIN by specifying the pattern of events that had proceeded each observed error. With

the help of the error traces that SPIN generates, each error could be diagnosed and repaired.

In this example model checking thus did not only serve as an verification method to verify

abstract properties, but also as means to diagnose errors.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. CONCEPTS AND APPLICATIONS OF MODEL CHECKING 20

Only the positive results were discussed in this section, but there are several problems that

can arise when this particular method is applied. For instance, the code in this example

was structured to facilitate the setup of the lookup table because data manipulation code

was contained in units called actions. If the source code had been written such that the

data manipulation and control flow code were not easily separable, the setup of the lookup

table would have become a difficult and time-consuming task. In Chapter 4 these issues are

discussed in more detail.

Protocols in embedded systems

In the last two sections it was shown how SPIN was used to verify protocols in practice. In

the rest of this thesis the scope is narrowed to focus specifically on protocols in embedded

systems.

Embedded systems are often produced for the mass market and have little memory and

relatively slow CPUs to keep costs down. This means that the software on such systems

should be optimised for speed and memory usage. Also, finding errors in the software before

releasing a large number of systems can lead to significant cost reduction.

A well known method for implementing protocols is to structure the design of a protocol as a

transition system. In the next chapter we will illustrate how this approach can be combined

with manually applied model checking to implement reliable protocols in embedded systems.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

A transition system approach

In this chapter an approach to apply model checking manually is discussed. The technique

followed restricts the design of a system to a formal structure. In [24] Holzmann suggests

the following guidelines when applying the model checking approach where a design is first

verified and then implemented:

1. First identify which correctness properties are relevant, and require formal proof.

2. Second, study the essence of the solution that is used in the application to secure the

behaviour of interest (that is to say, the behaviour that determines correctness with

respect to the properties selected in the first step).

3. Finally, construct an executable abstraction for the application that has enough expres-

sive power to capture the essence of the solution and no more.

In general it is difficult to apply step 3 during verification of a realistic size system because

the amount of detail could lead to an intractable model. Abstraction techniques are therefore

required to reduce the size of the state space. Applying abstraction techniques often lead to

models that have little resemblance to the actual structure of the implementation. It may

therefore be meaningless to use the model as a structural guideline for coding.

To relate models and implementations more closely, we have suggested to structure both

a specification and its implementation as a transition system [34]. The restriction on the

structure allows for the separation of control flow and data manipulation as will be discussed

in the next section.

21

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 22

3.1 Implementing Protocols as Transition Systems

In [1] Arnold defines a transition system as a quadruple A = (8, T, a, jJ) where:

• 8 is a finite or infinite set of states,

• T is a finite or infinite set of transitions,

• a and jJ are two mappings from T to 8 which take each transition t in T to the two

states a(t) and (3(t), respectively the source and the target of the transition t.

A transition t with source 5 and target 5' is written t : 5 -----7 5'. Several transitions can have

the same source and target, i.e., the product mapping (a, (3) : T -----7 8 x 8 is not necessarily

injective. A transition system is finite if 8 and T are finite.

Execution of a given transition system starts in a well-defined initial state from which differ-

ent states are reachable by executing transitions. A finite set of possible events is associated

with each transition and the occurrence of one or more of these events is said to enable the

corresponding transition. Only enabled transitions are executable. The graphical representa-

tion of a transition system, also called a reachability graph, consists of nodes which represent

unique system states and edges which represent transitions between states. A unique action

is executed in response to each event. An action is a small, independent code fragment that

implements operations that may modify the system state.

Since a transition system is such a low-level formalism, it is suitable for direct execution

through interpretation. The behaviour of a transition system is uniquely defined by its current

state and its transition relation. A table driven approach is used to store the transition

relation. This approach allows for a compact representation of the transition relation without

adding too much overhead for interpretation.

The implementation of the table driven approach consists mainly of four parts:

1. Two global variables, State and Event.

2. An interpreter.

3. A transition table.

4. Actions.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 23

The variable State is used to keep track of the current system state and variable Event is

used to keep track of the event that has happened most recently. Typically, the events of a

protocol can be classified into two categories: external events (such as interrupts) and internal

events (such as checksum errors). An action can be seen as a procedure that has no formal

parameters. Most importantly, it executes independently and is atomic. The purpose of an

action is to modify system data and to assign a new value to the Event variable. The new

value indicates which event occurred during the execution of the action. A transition table

entry contains an event number, a pointer to the associated action, a new state number and

a pointer to a chain of alternative events (zero if none) that could happen in the state.

The interpreter, which combines the four parts discussed above, works as follows: the current

state number is used as an index into the table to retrieve the appropriate table entry. If the

first element in the chain of events corresponds to the event that has happened, the appro-

priate action is executed immediately. Otherwise, the chain is followed until the appropriate

action is located or the end of the chain is reached (which signifies an error).

Structuring a protocol as a transition system is not an unfamiliar practice and specifications

of protocols are often presented in the form of a transition system. The transition system

structure is also suitable for verification: a model checker explores the reachability graph of

a given transition system to detect subtle errors in its behaviour. With this approach the

system is verified at implementation level because the model and the implementation have

the same structure. Finally, testing is simplified because it is restricted only to actions. An

action is a small code fragment that does not depend on external events.

3.2 The Alternating Bit Protocol

Assembly language is generally viewed as an impractical implementation language for large

systems mainly because the code becomes unmanageable. However, such low-level code opti-

mises execution speed and memory usage. Such optimisations are typically required on small

embedded systems with little memory and relatively slow CPUs.

We have implemented the Alternating Bit protocol in assembly language to illustrate how

the proposed technique can be used to implement small, manageable and optimised embed-

ded systems. Also, the simplicity of the protocol is ideal to illustrate the principles of the

approach without introducing complex procedure rules. Other issues illustrated include the

estimation of memory requirements, the overhead imposed by interpretation, and to what

extent verification at the implementation level is possible.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 24

error

Sender

!al !aO

error

!aO

Receiver

Figure 6: Transition system describing a simple version of the Alternating Bit protocol.

The first step in following the proposed technique is to identify the states, events and actions

of the protocol. This step is simplified if the description of a protocol is expressed as a

reachability graph, where nodes represent states and edges transitions. Figure 6 shows a

reachability graph for the Alternating Bit protocol that was defined in Section 2.1. Each

edge is labelled with an action that is associated with the transition. In the sender the

label !dO represents sending data message 0 and ?aO represents receiving acknowledgement

O. Each transition must have an enabling event. For example, five events are identified for

the sender: data message 0 was sent (event I), acknowledge message 0 was received (event

2), data message 1 was sent (event 3), acknowledge message 1 was received (event 0) and an

error occurred (event 4).

Using the reachability graph in Figure 6 as guideline, the entries of the transition table for both

the receiver and the sender can be determined. Figure 7 shows a schematic representation

of the transition table for the Receiver process. The labels ei, Si and a, represent the event

number, the next state and a pointer to the action associated with the event respectively.

The fourth label of an entry, which is either a -1 (for none) or an arrow, indicates the next

event associated with the current state.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 25

o eO sI aO -1

el s2 al

e2 s3 a2 -1

e3 sa a3

e-4 sa a3 (\._

e-4 s2 al

2

3

4

5

Figure 7: A schematic representation of the transition table for the Receiver process of the
Alternating Bit protocol.

To represent the table as compactly as possible, all the entries-except the first one-that are

associated with a state, are stored consecutively in memory. The last entry of a list associated

with a state is indicated by a negative event number. For example, in Figure 7 entry 4 in the

table is the second entry associated with state 1 and it is also the last entry in the list (e-4

indicates a negative event number).

Next, a Promela model must be constructed. The model for this protocol consists of a

process to represent the sender, a process to represent the receiver and a third to represent

the communication link. The transition table and the interpreter are combined in the model

using a single Promela do ... od construct. The translation from the schematic representation

of the transition table in Figure 7 to the Promela code shown in Figure 8 is a trivial exercise.

Actions are modelled using Promela macro definitions. The Promela code for the action that

corresponds to the ?dO label in the receiver of Figure 6 is shown in Figure 9.

The communication link is modelled as a separate process. Generally this is not a good ap-

proach: to reduce the size of the state space the behaviour of a communication link should

be modelled in the processes that communicate over the link. However, the goal with the

transition system approach is to relate the model and the implementation as closely as pos-

sible. The complete model is presented in Appendix A. This model was verified against

correctness properties such as freedom from deadlock and correct behaviour if messages are

lost or corrupted.

The final step is to translate the verified model to the implementation language. In this

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 26

od

proctype Receiver(chan link.in, link.out) {
do
:: (state == 0) && (event == 0) -+

state = 1; RActionOO
:: (state == 1) && (event == 1) -+

state = 2; RAction10
:: (state == 2) && (event == 2) -+

state = 3; RAction20
(state == 3) && (event == 3) -+
state = 0; RAction30

(state == 1) && (event == 4) -+
state = 0; RAction30

:: (state == 3) && (event == 4) -+
state = 2; RAction10

Figure 8: The Receiver process in the Promela model of the Alternating Bit protocol.

fi \
:: timeout -+ \

event = 4 /* indicates error event */ \

1* Receive data packet 0 * /
#define RActionOO \

if \
:: SeriaUn ? data -+ \

if \
:: data == 0 -+ \

event = 1 1* indicates that data packet 0 was received * \
:: else -+ \

event = 4 1* indicates error event */ \

fi

Figure 9: Promela code for the actions of the receiver process that corresponds to the ?dO
label of the receiver in Figure 6.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 27

1 ActionO:
2 ;(* This action sends data packet dO *)

;Action returns3 jmp Interpreter

4 Action1:
5 ;(* This action waits for the acknowledgement aD *)

6 jmp Interpreter ;Action returns

7 Interpreter:
8 lea edi, [Transition Table-l-esi-Blf'ind the first record in the list

9 mov word si, [di + 2] ;Enters next state

10 jmp [di + 4) ;Jump to the action

11 jmp $;Endless loop if error occurs

12 ;(*---------*)5tate 0
13 TransitionTable dw 0 ;Event

dw 1 ;Next state
dw ActionO ;Action to execute
dw addrl ;Next Field

17 ;(*---------*)5tate 1

14

15

16

18 ;(*---------*)
19 addrl dw -4 ;Event
20 dw 3 ;Next state
21 dw Action2 ;Action

Figure 10: Assembler code for the sender process of the Alternating Bit protocol.

example it was possible to translate the code manually, but the task should be automated

for more complex systems to eliminate errors and to save time. The control logic of the

interpreter-as described in the previous section-is simple and its implementation required

only 26 lines of assembly code (Lines 7 to 11 in Figure 10 shows the outline of the interpreter

implemented in assembly language). The transition table was also easily translated. Lines 12

to 21 in Figure 10 show the outline of the transition table for the sender process implemented

in assembly language.

The actions for data manipulation must also be coded manually. The danger is that errors

may slip in, but the advantage is that the code can be optimised for efficiency. Also, the task

is simplified by using the Promela code of each action as guideline during the implementation.

Furthermore, it is possible to test each action separately. The functionality of each action is

specified by providing a precondition-postcondition pair and standard techniques like equiv-

alence class analysis and boundary value analysis are useful to derive effective test cases for

each action [35].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 28

The transition system structure simplifies testing of each code fragment. The system is simply

initialised to enable the particular action to be tested. It is then useful to display the result

of each action and check it against the specification. For example, the action that performs

sending a packet in the sender process has the following precondition-postcondition pair:

• Precondition: The Event variable must be equal to AckReceived .

• Postcondition: The send buffer is filled with data, the control bit and checksum are

added and the event variable is set to indicate that a packet was sent.

Debugging code that displays the contents of the send buffer and the values of the control

bit, the checksum field and the event variable was added to the action. The action was then

executed by assigning the appropriate values to the State and Event variables. The final step

was to examine the output displayed. A reactive system implemented in the traditional way

is significantly more complex to test since it involves control flow analysis, coverage analysis

and unpredictable external events.

The experience gained with this experiment showed that the transition system approach

consists of several stages. The actual size of each action can be determined only after the

translation process from the model to the implementation language has been completed. In

this example, the implementation sizes of the actions used to send and receive messages were

identified as being too large: Both these actions include computing a checksum. It is less

error-prone to test the action of computing a checksum separately. Each of the mentioned

actions were divided into two separate actions: an action for sending/receiving data and an

action for computing the checksum. The revised transition graph for the receiver is shown in

Figure 11. Updating the model, verifying it and translating the code required little time and

effort.

3.2.1 Discussion

Verifying and implementing the Alternating Bit protocol structured as a transition system

revealed three key points:

1. Memory estimation

The formality of the transition system design allows for the memory requirements to be

estimated rather accurately even before an implementation is attempted. Memory is needed

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 29

!al

error error

error error

!aO

Receiver

Figure 11: A revised transition graph for the receiver process of the Alternating Bit protocol.

for the following entities:

• The code for the interpreter. The control logic of the interpreter stays the same for

any system implemented using this approach. The amount of memory required for the

interpreter depends on the implementation language used and the architecture of the

target machine. In this example the interpreter required only 57 bytes implemented in

assembly language on the IBM PC.

• The transition table. The transition table can be seen as a table of records. There

are two types of records: the first, consisting of four fields, is used to store the first

event-action pair associated with the current state. It also contains a field for the next

state and a pointer to possible additional entries of a second record type. The second

record type contains information about other events that may also occur in the current

state. This record type contains only fields for the event, the next state and a pointer

to the associated action. The pointer field to a next record is not required because the

rest of the records associated with the current state are stored sequentially.

For the implementation of the Alternating Bit protocol each field was implemented

using 16 bits. This should be enough to represent the number of states and events for

rather complex protocols. Exactly how many entries are required in the transition table

can be determined from the specification of the protocol. One entry is needed for each

transition.

• Code to implement the actions. Each action is a small code fragment and exactly how

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 30

much memory will be required is determined by the complexity of each action. The

number of actions are known from the reachability graph. Multiplying this by the

average memory requirements per action provide a reasonable estimate for planning

purposes. A complex protocol can reach hundreds of different sates and, depending

on the environment, may involve hundreds of different actions. Therefore, memory

requirements are mostly determined by the number of transitions and actions.

The final argument presented in the previous section suggested that large actions be

divided into smaller fragments to facilitate testing. This fragmentation does influence

the memory estimation. For each new action an entry must be added to the transition

table. Still, for this example, each entry does not occupy more that 8 bytes and a first

approximation will not differ much from the final version.

• Global memory areas for data storage. Memory areas are needed to store packets, var-

ious counters, etc. The amount of memory needed depends on the particular protocol.

• Memory for the run-time system. It is possible to implement device drivers in the same

fashion as protocols, interrupts simply representing events and the driver itself a number

of states and actions. This approach was not followed in the experiment, however. The

drivers needed to support the protocol were implemented in the traditional way as part

of the supporting environment.

2. Reliable code

The transition system approach improves the reliability of the code for several reasons:

• Computer-aided techniques, such as model checking, can be used to check specifications

to detect subtle errors. In fact, model checking can be used to verify the flow of control

at the code level because a table driven implementation technique is used.

• It is feasible to test the code that implements the actions thoroughly, as shown in

Section 3.2. In comparison, if traditional implementation techniques are used, it is

difficult to reach the same level of test coverage even when using sophisticated test

tools. With the proposed technique control flow analysis is unnecessary because that is

done automatically during verification.

• Specifications in the form of verified models can be translated automatically into im-

plementations where the only manual coding required is to implement the actions that

manipulate data. Because this technique is so simple, manual translation was used

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 31

to develop the implementation for the Alternating Bit protocol, but automating this

process involves little more than parsing the verified model and generating a transition

table to drive the interpreter. The input to such a translation tool would be a verified

model written in Promela.

3. Maintainable code

Finally, the transition system approach allows for easily maintainable code. Descriptions of

protocols as transition systems are easy to understand. The verified model documents the

control structure of the system and if anything must be changed, it is simple (and advisable)

to recheck the model before the transition table is modified. If the details of an action must

be changed, it is also simple to rerun the tests for that action. This approach ensures that

the current version of the implementation always correlates to the specification/design.

3.3 The TCP Protocol

To investigate how the transition system approach would scale for larger applications, it

was decided to model the Transmission Control Protocol (TCP). The control logic and data

manipulation of the protocol are reasonably complex and a typical implementation in C-

such as the UNIX version-consists of more than 4000 lines of code [48, Chapter 24]. For this

example, C was used as implementation language to simplify interfacing with the underlying

Internet Protocol (lP) in a UNIX environment.

3.3.1 An overview of the TCP protocol

TCP is a connection-oriented, sliding window protocol. A TCP process-which is a TCP

implementation being executed-progresses through three phases: connection establishment,

data transfer and connection termination. Each of these phases can be studied independently

and a short summary of each is presented:

1. Connection establishment phase: The TCP protocol uses sequence numbers for control

flow. Each byte in the user data sent is associated with a unique sequence number.

Sequence numbers are used to detect lost, old or duplicate packets and to govern the

amount of data that each TCP process can manage during a connection. The sequence

number range of user data starts from a computed initial number and two TCP processes

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 32

that want to communicate should know each other's initial sequence number before data

is being transfered.

To exchange initial sequence numbers, TCP makes use of what is called the "three-way

handshake". The "three-way handshake" symbolises the notion of three synchronisation

packets that are sent between two TCP processes to establish a connection: The first

packet sent to a receiver TCP process contains the initial sequence number of the sender

TCP process. The second packet sent acknowledges the first packet sent and also

carries the initial sequence number of the receiver TCP process. The third packet sent

acknowledges the reception of the receiver's initial sequence number. Once the "three-

way handshake" is completed a connection is established.

2. Data transfer phase: During this phase the bulk of the user data are transferred and

each message sent should be acknowledged. The TCP protocol uses a form of flow

control called the sliding window protocol. It allows for a sending TCP process to

transmit multiple messages before it stops and waits for an acknowledgement. This

leads to faster data transfer since the sender process does not have to stop and wait for

an acknowledgement each time a message is sent.

Messages that get lost in the network are retransmitted using a retransmission timeout.

An acknowledgement time is associated with each message sent. If a message sent is

not acknowledged before its retransmission timeout, the message gets retransmitted.

Duplicate messages are also easily dealt with. If the sequence number of a message

received has already been acknowledged, the received message is considered a duplicate

and is ignored.

3. Connection termination phase: A connection is terminated using four packets: two pack-

ets that indicate the termination requests of each side and two packets to acknowledge

each of the termination requests.

In the sections to follow the three phases of the protocol will be discussed in more detail.

Each section first describes the detail of a particular phase and then a discussion follows of

how the phase is added to a transition system structured model.

3.3.2 A Transition System Specification for TCP

A TCP process interfaces on one side with user or application processes and on the other side

to a lower level protocol such as the Internet Protocol. A minimum TCP user interface must

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 33

Source Port Destination Port

Sequence Number

Acknowledgment Number

gf~:t I Reserved 1~1~1~1~1~12 Window

Checksum Urgent Pointer

Options I Padding

Figure 12: The format of the TCP segment header.

provide the following operations: open, send, receive, close, status and abort. The interface

with the lower-level protocol is left unspecified, but calls such as send and receive are assumed

to send and receive information over a network.

A message in the TCP protocol is called a segment. A segment consists of a header followed

by the user data. The protocol uses sequence numbers for control flow and each data octet

(a byte) in the segment is assigned a sequence number. The sequence number field in the

header, shown in Figure 12, specifies the sequence number of the first data octet in the

segment. Using the length of the segment, a cumulative acknowledgement mechanism is

employed. The acknowledgement of sequence number X indicates that all octets up to but

not including X have been received.

The sequence number range starts from a precomputed initial segment sequence number

(ISN). This number is computed to prevent segments from one incarnation of a connection

being used while the same sequence numbers may still be present in the network from an

earlier incarnation. To ensure that a segment does not carry a sequence number which may

be a duplicate of a previous connection, a TCP process must wait a maximum segment

lifetime upon recovering from abnormal termination, before sequence numbers are assigned

to segments. It is assumed that the maximum segment lifetime on a network will not exceed

a few milliseconds.

A cycle through the possible values of a 32-bit variable is used for the sequence number

range-referring to both the acknowledgement number and the sequence number shown in

Figure 12. This means that a connection with a transmission speed of 100 megabits/second

will take 5.4 minutes to use all of the 232 octets of sequence number range. The large sequence

range ensures that a sequence number is not re-used before it has been acknowledged because

the maximum segment lifetime is only a few milliseconds.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 34

Additional control information is passed between two communicating TCP processes by means

of the control bits in the header. The bits are defined as:

• URG: This bit indicates to the receiving user process that in some point further along in

the data stream that the receiver is currently reading there is urgent data. On receiving

this bit, the process should take action to handle the urgent data as quickly as possible.

• ACK: A segment containing this bit indicates that the sending TCP process is acknowl-

edging received data.

• PSH: Usually a TCP process will wait for enough data to fill the user data buffer, but

when this bit is set all data received should immediately be pushed through to the

receiving user.

• RST: If a TCP process receives this bit it should delete all the information currently

associated with the connection and close the connection.

• SYN: If this bit is set it means that the information in the received packet should be

used to initialise a new connection.

• FIN: This bit indicates that there is no more data coming from the sender TCP process.

3.3.3 Identifying states, actions and events

The informal specification [9J describes the TCP protocol as a state machine. Figure 13

shows a reachability graph for the protocol. Eleven states and ten events are identified in the

specification. The states are:

• CLOSED - There exists no connection.

• LISTEN - A TCP process is waiting for a connection request from any remote TCP

process.

• SYN_SENT - A TCP process is waiting for a matching connection request after having

sent a connection request.

• SYN_RECEIVED - A TCP process is waiting for an acknowledge on a connection request

after having both received and sent a connection request.

• ESTABLISHED - There exists an open connection between the two TCP processes. This

is the normal state for data transfer.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 35

1-passi~e -ope~ -I
1

1 create TCB 1_______ J

CLOSED

r------
1 Close :
1 delete TCB 1
I

J

r-------I

1 rev SYN 1

: snd SYN,ACK :

SYN_RCVD

1 rev ACK of SYN 1

1 No action 1
1 1

1 CLOSE 1
1 1

1 snd FIN 1

r------I
1 Close 1

1 1
1 Delete TCB 1

LISTEN
1------1
1 Send 1

1 sndSYN 1______ J

SYN_SENTï-----1

1 rev SYN 1

1 sndACK 1

r--------
1

1 rev SYN,ACK 1

1

1 snd ACK 1I--------~
______ J

ESTAB
ï - - - - -I

1 rev FIN 1

1 sndACK 1

1_ _ _ _ J

1 CLOSE 1

1 1

1 snd FIN 1

FIN_WAITl

r--------I

1 rev ACK of FIN 1

1

1 No action

1- - - - - -I

1 rev FIN 1

1 sndACK 1
I J

CLOSE_WAIT

1 CLOSE 1

1 1

1 snd FIN 1

CLOSING LAST_ACKFIN_WAIT2

TIME_WAIT

r--------I

1 rev ACK of FIN 1

: No action :

r--------I

1 rev ACK of FIN 1

1

1 1
1 rev FIN 1

1 snd ACK 1
I J

No action 1

1 Time Wait Timeout 1 1 I
1 - 1

,----'------, 1 delete TCB 1

CLOSED

Figure 13: A reachability graph for the TCP protocol. The solid boxes represent the states.
The top line of the dotted line boxes indicates the event and the bottom line the action
associated with the event.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 36

• FIN_WAITl - A TCP process is waiting for a connection termination request from a re-

mote TCP process, or an acknowledge of the connection termination request previously

sent.

• FIN_WAIT2 - A TCP process is waiting for a connection termination request from a

remote TCP process.

• CLOSE_WAIT - A TCP process is waiting for a connection termination request from a

local user.

• CLOSING - A TCP process is waiting for a connection termination request acknowl-

edgement from a remote TCP process.

• LAST _ACK - A TCP process is waiting for an acknowledgement of the connection ter-

mination request previously sent to a remote TCP process.

• TIME_WAIT - A TCP process is waiting for sufficient time to pass to allow for a remote

TCP process to receive the acknowledgement of its connection termination request.

A TCP process progresses through the states mentioned above in response to the following

events. The events are grouped into three parts:

1. User Calls

• Active Open or Passive Open: A user specifies an Active Open call if the user

wants to synchronise immediately with another TCP process. A Passive Open call

allows for a TCP process to listen for any incoming connections.

• Send: The Send call causes the data contained in a user buffer to be sent.

• Receive: The Receive call passes available data received from a sender to a user.

• Close: This call causes a TCP process to end a connection.

• Abort: This call causes a TCP process to abort a connection.

• Status: A TCP process will return information on the current status of the con-

nection if a user specifies a Status call.

2. Arriving Segments

• SegmenLArrives: This event indicates the arrival of a packet. Several tests are

performed on a packet to test its correctness. For example, the packet's checksum is

computed, its sequence number is compared against the current receiving window

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 37

Figure 14: An action A fragmented into actions Band C by adding event e.

and the control bits included in the packet's header are evaluated to determine the

current state of the sender TCP process.

3. Timeouts

• User.Timeouis: A user can specify a time limit on the delivery of data to the

destination.

• Retransmission_Timeout: Each packet should be acknowledged before the Retrans-

mission.Timeout otherwise the packet is resent.

• Time- WaiL Timeout: After both TCP processes have sent their final packets the

processes must wait the period of the Time- WaiL Timeout before the connection

can enter the closed state. This is to ensure that a TCP process can retransmit its

final packet in case the packet gets lost.

It is possible to implement a TCP protocol structured as a transition system using only the

states, events and actions identified in [9]. However, some of the actions will be too complex,

consequently complicating the testing phase. The actions that were identified as being too

large were divided into smaller fragments. An action is divided into fragments by adding extra

events to the specification. For example, Figure 14 shows how an action A is fragmented into

actions Band C by adding event e. A total number of 21 events resulted from fragmenting

actions that were too complex and a transition table consisting of 186 entries was defined.

3.3.4 Constructing the Model

As mentioned, the behaviour of TCP can be divided into three phases: the connection estab-

lishment phase, the data transfer phase and the connection termination phase. Each of these

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 38

phases can be studied independently. In our approach of constructing a transition system

structured model, each of these three phases was added separately. But before these phases

are described, the global data structures of the protocol are defined.

Global Variables and Data Structures

Information on a connection is kept within a data structure called the transmission control

block (TCB). The TCB holds information such as the initial segment sequence number (ISN),

the initial received segment sequence number (IRS), the window size and other information

required to control the behaviour of the protocol. Information about a connection is trans-

mitted between two TCP processes by means of the TCP header that is included in each

segment. The necessary information needed to fill a TCB is derived from the data in each

segment header. The TCB structure was implemented using the Promela typedef definition

(Shown in Figure 15). All the variables were declared as bytes to keep the state vector as

small as possible.

The final model consists of five processes: two user processes, each communicating with a

TCP process, and two TCP processes which in turn are connected to an lP process. Eight

message channels were declared: two for the communication between a user process and a

TCP process and two for the communication between a TCP process and the lP process.

The message type of a channel declared for communication between a TCP process and the

lP process represents a TCP segment. It is declared as:

chan TCPltoIP = [0] of { byte, byte, byte, byte, byte };

The first four bytes of the message type represent the segment header and the final byte

represents the data buffer. Only four fields of the TCP header are included in the model: the

sequence number, the acknowledgement number, the control flags and the window field. As a

first experiment we have decided to implement only a basic implementation of TCP and the

urgent pointer and options field were not included in the model. With the global variables

and structures defined, the behaviour of the three phases can be added to the model.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 39

1 typedef TCBType {
byte ISS, SND_UNA, SND_NXT, SND_WND;
byte IRS, RCV_NXT;
byte SEG_SEQ, SEG_ACK, SEG_WND;
byte SEG_LEN, SND_WL2, SND_WL1;
byte SEG_CTL;
byte Smss, Rmss, Rent, Sent;
byte Rfst, Rist, Sfst, Slst:
byte Cwin;

10 byte Sbuf [BufSize];
11 byte Rbuf [BufSize],
12 }

Figure 15: The TCB record structure of TCP implemented in Promela using a typedef
definition.

Connection Establishment

A connection between two TCP processes can be established as a result of two different

scenarios. The first scenario is when two users wanting to communicate both issue an Active

Open call (The difference between an Active Open and a Passive Open call was described

in Section 3.3.3). Synchronisation packets are sent immediately and if no errors occur a

connection is established. The second is when one user issues an Active Open call after

the other has issued a Passive Open call. This type of connection establishment describes

a typical client/server relationship: The server issues a Passive Open call waiting for an

incoming request of a client who has issued an Active Open call.

The following example illustrates how a client TCP process (TCP _A) and a server TCP

process (TCP _B) establish a connection where the user at the client side issued an Active

Open call and the user at the server side issued a Passive Open call. The two TCP processes

advance through the states of the reachability graph shown in Figure 13. It is also assumed

that no errors occur during the connection setup.

The two TCP processes start with TCP _A in the CLOSED state and TCP _B in the LISTEN

state. TCP _B is already in the LISTEN state because the user at the server side issued a

Passive Open call.

When the user at the client side issues an Active Open call, TCP _A will send a synchro-

nisation packet and it will enter the SYN_SENT state (Sending a synchronisation packet

means that the SYN bit is set in the segment header). On receiving this packet TCP _B

sends an acknowledge of the synchronisation packet (SYN and ACK bits set) and enters the

SYN_RECEIVED state. If TCP _A receives the packet sent by TCP _B it enters the ES-

TABLISHED state. The user on the client side can now send data and TCP _B will enter

the ESTABLISHED state on receiving the next packet sent. The connection is now in the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 40

ESTABLISHED state and the "three-way handshake" is completed.

Two important design issues for the model are identified in the connection establishment

phase:

1. The communication between a user process and a TCP process: The channel

declaration shown below is used for the communication between the mentioned pro-

cesses.

chan UltoTCPl = [0] of { byte, byte };

The first byte of the message type is used for the commands that a user may issue

to a TCP process, and it is also used for the result that a TCP process returns on a

command issued to it. The second byte is used for user data from a user process to a

TCP process and vice versa. It was chosen to model the communication between the

two processes such that when a user process issues a command to a TCP process it will

block until the TCP process replies.

2. Recording of events in a TCP process: The outline of a TCP process is shown

in Figure 16. The outer do ... od construct is used as an infinite loop and the inner

do od construct is used to combine the interpreter and the transition table. The

if fi construct is used to record external events such as: user commands (Lines 4 to 5),

arriving segments (Lines 6 to 8), pending requests (Lines 9 to 13) and retransmission

timeouts (Lines 14 to 15).

Data Transfer

Once a connection has been established, user data can be transmitted between the two sides.

The major issue of this stage is sequence numbers. The following concepts relate to sequence

numbers:

• The receive window size: The TCP protocol uses a form of flow control called

a sliding window protocol. The sliding window protocol can be visualised as shown in

Figure 17. The numbers 1 through II represent data octets. The receiving TCP process

advertises a number that indicates how many data octets it is willing to accept. This

number is called the offered window and it depends on the availability of user buffer

space at the receiver side.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH

1 do
(1) -t
if
.. Userln?Event, UData -t

skip /* Test if user made a call */
IPin7TCB.SEG_SEQ, TCB.SEG_ACK,

TCB.SEG_CTL, TCB.SEG_WND, IPData -t
Event = SegmentArrives

.. (CloseCallQ == TRUE) && (State == ESTABLISHED) -t
10 Event = CIoseCaII;
11 CloseCallQ = FALSE
12 .. (UserWaitsData == TRUE) && (TCB.Rent > 0) -t
13 Event = ReturnData2User
14 :: timeout -t
15 Event = RetransTimeout
16 fi:
17 do
18 (State == CLOSED) && (Event == OpenCailP) -t
19 State = LISTEN;
20 AetionO()
21 (State == LISTEN) && (Event == OpenCailP) -t
22 /* State = LISTEN; */
23 Aetion4()

24 :: else -t
25 break
26 ad
27 ad

Figure 16: The outline of a TCP process implemented in Promela.

41

offered window

(advertised by receiver)

usable window

6 8 9 10

can not send until

window moves

2 3 4 5 7 Il

sent and sent, not ACKed

Figure 17: Visualisation of the TCP sliding window protocol.

acknowledged can send when possible

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 42

In this example the offered window covers octets 4 through 9, which means that the

receiver process has acknowledged all octets up to and including number 3, and has

advertised a window size of 6-the window size is relative to the acknowledged sequence

number. The sender process computes its usable window before each send command

is issued to the underlying protocol. Over time the sliding window moves over higher

ordered sequence numbers as the receiver process acknowledges data [47].

• Retransmission of data: One of the reliability methods of TCP is the acknowledge-

ment of data octets sent: a receiving TCP process must acknowledge the data that

was sent from a sending TCP process. However, segments sent can get lost. The TCP

protocol recovers from segments lost by using a timer to force the retransmission of

segments.

Fundamental to the retransmission timeout of TCP is the measurement of the round-

trip time (RTT). The RTT is the time it takes for an octet to go from a sending TCP

process to a receiving TCP process and back. The retransmission timeout is typically

computed using the RTT in an algorithm specified by Karn [36].

• Old or duplicate segments in the network: These type of segments are easily

dealt with in the protocol. A TCP process keeps track of the sequence number that it

expects next using the variable RCV.NXT. If a connection is established with an IRS of

a, RCV.NXT is set to a+ 1. If the segment arrives with sequence number equal to a+ 1

and the length of the segment is b, RCV.NXT is set to RCV.N XT + b. A TCP process

only accepts the octets in a segment that has a sequence number greater or equal than

its RCV.NXT value.

The send and receive buffers of a TCP process are implemented in the model as arrays of

bytes with two elements each (Shown in lines 10 and 11 of Figure 15). Using buffers with

only two elements keeps the model tractable while allowing for the verification of the various

control flow concepts.

The Promela timeout statement becomes enabled only when every other statement in the

system is blocked. This property of the timeout statement can be used for an elegant

implementation of the retransmission timeout in a model structured as a transition system.

For example, suppose the lP process chooses to lose a packet sent by a TCP process. All the

processes in the model will then become blocked: the two TCP processes will wait for input

from each other, the two user processes will wait for a reply from the TCP processes and the

lP processes will wait for input from any of the two TCP processes. The timeout statement

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 43

will then become executable and the Event variable will be set to indicate a retransmission

timeout (Shown in lines 14 and 15 of Figure 16).

Connection Termination

A connection is terminated when one of the users issue a Close call. To successfully terminate

a connection, four segments are required: two segments that indicate the termination requests

of each side and two segments to acknowledge each of the termination requests.

Continuing with the example sketched in the connection establishment stage, the steps to

terminate a connection are as follows: The user at the client side starts the termination phase

by specifying a Close call. Upon receiving this call TCP _A will send a finishing packet

(FIN bit is set) and enters the FIN_WAIT state. TCP _B enters the CLOSE_WAIT state on

receiving the packet and sends two packets in succession. First an acknowledge is sent for

the finishing packet and then TCP _B sends its own finishing packet. On receiving the first

packet from TCP _B, TCP _A enters the FIN_WAIT2 state and when the second packet is

received, TCP _A enters the TIME_WAIT state. TCP _A sends a final packet to acknowledge

the finishing packet of TCP _B and enters the CLOSED state. On receiving this packet

TCP _B also enters the CLOSED state and the connection is closed.

As with any protocol, abnormal termination is a possibility. The TCP protocol recovers from

abnormal termination by using a timeout that is specified by the user in an Open call. If data

are not successfully delivered to the destination within the timeout period, the connection is

aborted.

Similar approaches to those used in the previous stages were used to add the connection

termination stage to the model. A final important feature regarding the memory issues of a

transition system structured model is the use of the Promela d.step feature. This feature is

used to execute the statements within its scope in one indivisible step. lts use reduces the

number of possible interleavings for the statements of a model, therefore causing a reduction

in the state space and ultimately a reduction in memory use. The statements within the scope

of a d.step must be deterministic, may not jump to labels outside its scope and statements

other than the first may not block.

The d.suep feature can be used in most of the actions of a transition system structured model,

except for those that contain message passing statements (these statements may block). It

is however possible to use the d.step feature such that the message passing statements are

excluded as shown in Figure 18.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 44

#define ReturnToUser() \
User Outlêvent, UData; \
d..step { \

UData = NoAction; \
Event = NoEvent \

Figure 18: An Action of the TCP model implemented in Promela with the d.step feature
added.

Two different models-where the d.suep feature was used in one of the models only-were

verified using the same LTL formula. SPIN used 50 Megabytes to verify the model with the

d.step feature added compared to 64 Megabytes to verify the model without the feature

added.

3.3.5 Simulating the TCP Model

Using SPIN in simulation mode, each phase of the protocol was debugged before the next was

added. This method revealed trivial errors and gave insight into the model. For example, the

simulator was used to track the values of the State variables of the two TCP processes as

they progressed through the different phases.

Figure 19 shows a window containing a message sequence chart and a window that displays

the values of the global and local variables for each process at the end of a simulation run.

It is a simple exercise to locate the action which executed incorrectly if a run ends with the

two TCP processes not in the correct states.

The output shown in Figure 19 shows that both the TCP processes ended in the ESTAB-

LISHED state-the bold black arrows indicate the State variables of the two TCP processes.

This is the desired result for the connection establishment phase. With the model in this

form, the next phase can be added.

3.3.6 Verifying the TCP Model

Holzmann suggested in [24] that the first step of the verification process should be to identify

correctness properties that are relevant and require formal proof. This should also be the

first step when following the transition system approach. Holzmann then suggests that an

executable abstraction should be constructed that has enough expressive power to capture

the essence of the solution, and no more. With the transition system approach one of the

goals is to find the correct structure for a system and a model structured accordingly could

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH

" '!'CP (2) 200
'!'Cp (2), State = 4 (Established = 4)
'!'CP (2) ,Stop = 0
'!'CP (2) ,'!'CE, Connection = 1
'!'CP (2) :'!'CE. uein • 43
'!'CP (2) ,TeE. IRS = 40
TeP(2):TeE.ISS = 40
TeP(2),TeB.RCIINXT - 41
TeP(2) ,TeB.RbufIOI - 0
TeP(2) :TeB.RbufI1) - 0
TCP (2) :TCB. Rent -
TCP (2) ,TCB. xr e t. •
TCP (2) ,TCB.R19t •
TCP (2) ,TCB. ~99 •
'mP (2) '!'CB SEO AC~ 41
TCP (2) ,TCB. SEO-CTL - 18
TCP (2) ,TCB. SEO-LW - 1
TCP (2) ,TCE. SE~-SEQ - 40
TCP (2) .TCB. S!G-IOOJ 2
TCP (2) .TCE. SND-NXT 41
"lW (2) ,TeB. SND-1INA 41
TCP (2) .TeB. SND-WLl 40
'!'CP (2) :'!'CB. SND-WL2 40
TCP (2) TeE SND-WNIl 1
TCP (2) :TeE. ShuflO) 0
TCP (2) .TeB Shuf Il) - 0
TCP(2):TeB.Sent • 0
TeP(3) 'Event - 200
TCP (3) State - 4 ... (Established = 4)I TCP (3) ,Stop - 0

Save in: lar.out a

45

i.nit::

....~~.~

Figure 19: Two windows that show the message sequence chart (right) and the local and
global variables for all processes (left) of a simulation run of the TCP protocol implemented
in Promela.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 46

have more expressive power than required for the identified properties.

In this experiment the two user processes were implemented in a client/server relationship.

The client process first connects to the server process after which the client process sends a

series of data packets to the server. The client process then closes the connection. This setup

encapsulates the three stages of the protocol.

The first and simplest property verified was to check for the absence of deadlock. Spin used

36MB to show that the model is deadlock free. The modest memory usage results from the

structure of the model that limits the number of possible paths. Only actions set the Event

variable and the actions executed depend on the environment constructed in the model. Also,

actions are atomic and testing for the occurrence of new external events only occurs after the

completion of an action, therefore reducing the number of possible interleavings. However, a

model that is deadlock free can still contain safety and liveness errors. For this experiment

we used a liveness property, which is discussed next, to determine whether all three phases of

the protocol complete correctly.

The auxiliary variable UIEnd is used to indicate the completion of the client user process

(Shown in Lines 3 and 14 of Figure 21). This variable is used in the LTL formula: Op, where

p is defined as:

#define pUlEnd == TRUE.

The symbol "0" represents the temporal operator "finally". Spin revealed a subtle error when

this property was verified: If the client TCP process sends a synchronisation segment before

the server TCP process has entered the LISTEN state, the connection willlivelock. The error

trace is shown in the message sequence chart of Figure 20. The first step in correcting the

error was to locate only those actions that form part of the error trace. This is easily done

by following the trace of the State and Event variables in the simulation output shown in

the window on the left side of Figure 20.

Studying the selected code, it was found that the action responsible for retransmission con-

tained the error: When a TCP process is in the CLOSED state and a segment is retransmitted,

only the SYN bit should be set. In all other states the SYN and ACK bits should be set.

The ACK bit should not be set during the retransmission of a packet in the CLOSED state

because the packet selected for retransmission is the first packet that was sent to establish a

connection. Clearly this packet cannot acknowledge any received packets because no packets

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 47

preparing t.r a iL p Le aee vai t; done
·"Pll. c uu Ldn L t md ~'L;;IlI' (l~!lUI.,J!

2 proe 0 (: 'tru t·) Line 2416 "pan in:' (at.at.e 1) I Lr un
IP(TCPltoIP. IPtoTCPl, 'rCp2toIP, IPtoTCP2)n
4 proe IJ (:1.tlit:) Lme 2411 "pM_in" (~tate 2) [{run

IfItoerpreter (Il'toTCPl, TCpl toIP, UI toTCPl, TCPl t.Q1J1) I
(n.:~ge 7b5Sc no; !~~teIPceter) line 746 'pan_in" (,tace 1)

<n:~g. 1&5~\100; !5~cerpreter) line 149 'pan_in" (state 2)

(1t.:~9. 1~~Cno! ~~t.rpret.er) line 150 'pil_in" (ttatt 3)

<n:~ge ,K59cno; ~~terpretsr) line 151 'pan_in" (8t8U! 4)

6 proe 1 (Int.er pre tar) line 152 'pan_m" (e teee 5)
cner qe 1059 nov 1!17OS9)
8· proe 1 (lntorpretsr) line 755 'pan_in" (state 6)

10 proe I] ('wit,) line 2418 "pan_w" [e t.e t e 3) [Lr un
Interpreter (IPt.oTCP2, TCP2t.oIP. U2toTCP2, TCP2t.l1U2») J
12· proe 2 (Interpreter) line 748 'pan an'' (e tece 1)

(nerge 1OS!) nou '2) -
<~;~ge 7~~Cno; ~5~terpret.er) line 749 'pMl_in" (s t.ate 2)

(~;rqe 1&59cno; ~~tetPreter) line 750 'pan_in" (~tate)

(;;rge 1b59\.0; ~~terprner) line 151 'pan_in" reeeee 4)

<!;rge 1b59Cno; ~~~9~pret.er) line 752 'pan_in" (sute S)

14 proe 2 (l,:,t.rpt'llter) lin. 755 ·PM._in" (,tate 6)
16 proe 0 (:lnit.:) line 2419 "pani.n" (atate 4) (([t1J1

ueer i (TCPltouL OltoTCP1») I
16 proe 0 (:init,) line 2420 "pan_ln" (atate 5) ((run

Usu2 (TCP2toU2, U2toTCP2) (
20: proe '" (U!ler2) llne 652 'pan_in' (state 1)
22, proe 4 (Uee(2) Line 653 'pan_ln' (state 2)

IReturn2U .. OJ

IU,erWait,Da.ta. '" 01

ICloatC~llQ .. OJ

(State :I: Ol

(Event .. 200J

[(11[

[Retum2U .. 0]

Iueeraec t enet.e "' 0]

(Clo~eCc.110 • OJ

(State .. Ol

1f:'Qent = 200]

[(11[

(<Ulta, 0]
[li2End • OJ

slm out 083f J Cancef

Figure 20: Two windows that show the message sequence chart (right) and the simulation
output (left) of an error trace produced by Spin.

have yet been received. In our implementation the ACK bit was always included. This error

would have been difficult to detect with conventional testing methods.

3.3.7 Deriving an implementation

The translation from the TCP model into C consisted of three main steps: The implemen-

tation of the interpreter, the translation of the transition table and the translation of the

actions. In this example the interpreter and the transition table were combined using if- and

switch-statements, maintaining the same structure as used in the Promela model. The code

fragment showed in Figure 22 illustrates this technique.

Figure 23 shows how the model code that is used to test for new events (top half of the figure)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 48

1 proctype Userl(chan TCPin, TCPout)
2 {

UIEnd = FALSE;
Event = OpenCailA;
TCPoutl Event, data;
TCPin?Event, data;
data = 7;
do
:: data < 11 -t

10 Event = SendCaii;

11 Event = CIoseCaii;
12 TCPoutiEvent, data;
13 TCPin7Event, data;
14 UIEnd = TRUE
15

Figure 21: A user process in the TCP Promela model.

do
:: TRUE -t

if
.. (expression 1) -t

(expression2) __,

fi
do
.. (Sate == StateValuel) && (Event == EventValuel) __,

(Sate == StateValuel) && (Event == EventValue2) -t

ad
ad

while (TRUE) do {
if (expression 1) {

else
if (expression2) {

}
switch (State) {

case StateValuel:
switch (Event) {

case EventValuel:

case EventValue2:

} }

Figure 22: The translation of the Promela if ... ti and do... od constructs into equivalent C
code.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 49

1 do
:: (1) --)

if
:: timeout --)

Event = RetransTimeout
:: IPin?TCB.SEG_SEQ, TCB.SEG_ACK,

TCB.SEG_CTL, TCB.SEG_WND, IPData -t
Event = SegmentArrives

(UserWaitsData == TRUE) && (TCB.Rent > 0) -t
10 Event = ReturnData2User

11 fi;

while (TRUE) {
12 if (RTimerB == TRUE)
13 Event = RetransTimeout;
14 else {
15 if ((PortlsSet == TRUE) && ((n = ReeeiveBuf(TCB[C] --) Soekfd)) != -1)
16 && ((BufSize - TCB[C] --) Rent) > n))
17 Event = SegmentArrives;
18 else {
19 if ((UserWaitsData == TRUE) us: (TCB[C] -tRent> 0)
20 Event = ReturnData2User;

21

22 }

Figure 23: The Promela code that is used to test for the occurrence of new events (top-half)
translated to equivalent C code (bottom-half).

is translated into equivalent C code (bottom half of the figure). The three guards shown in

lines 4, 6 and 9 are used to test for the occurrence of a retransmission timeout, the arrival of

a segment or whether a user is waiting for data.

The transition table was implemented using nested switch-statements, one to compare the

Event variable and others to compare the State variable associated with each event. This

method of implementation was used because the average size of an action is rather large

and therefore the overhead added by the interpreter to the execution time of an action was

considered negligible. Also the close relation between the Promela do ... od construct and

the switch-statement of C simplified translation. Figure 24 shows an excerpt of the transition

table implemented in Promela (top half of the figure) and the translated C code (bottom half

of the figure). Lines 6 and 19 are commented out for efficiency reasons (The state does not

change).

It is a simple exercise to derive the code for the actions following the code of the model

as guideline. Additional code was added for the manipulation of data-buffers and detail

regarding the environment. Figure 25 shows how an action in the model (top half of the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH

I do
2 :: (State == CLOSED) && (Event == OpenCallP) -t

State = LISTEN;
4 ActionOO
5 :: (State == LISTEN) && (Event == OpenCallP) -t

/* State = LISTEN; */
Action4()

.: (State == SYNSENT) && (Event == OpenCallP) -t

:: (State == CLOSED) && (Event == OpenCallA) -t

10 while(Event != NoEvent) {
11 switch (Event) {
12 case OpenCallP :
13 switch (State) {
14 case CLOSED:
15 State = LISTEN;
16 Actionof):
17 break;
18 case LISTEN:
19 /* State = LISTEN; */
20 Action4();
21 break;
22 case SYNSENT :

23

24 break;
25 case OpenCallA :
26 switch (State) {
27 case CLOSED:

50

Figure 24: An excerpt of the transition table of the TCP protocol implemented in Promela
(top-half) and the translated C code (bottom-half).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH

1 #define Action l lf) \
d.step { \

if \
:: UserWaitsData == 0 -+ \

UserWaitsData = 1; \
Event = NoEvent \

:: else -+ \
Ulnfo = INSRES; (* INSufficient RESources *) \
Event = ReturnToUser \

10 fi \
11

12 void Action 110 {

13 if (UserWaitsData == 0) {
14 UserWaitsData = 1;
15 Event = NoEvent;
16 }

17 else {
18 SRBuf-+Result = MyTCP .Error:
19 SRBuf-+ErrorNum = INSRESC; (* INSufficient RESources *)
20 Event = Return ToUser;
21

22

51

Figure 25: An action of the TCP protocol implemented in C. The C-code in the bottom-half
is derived from the Promela code in the top-half.

figure) corresponds to an action in the implementation (bottom half of the figure). The

action shown is used to queue a receive request from the user process if no data are available.

Only one receive request is queued (Lines 4 to 6). If the user process issues a second request

an error message is returned (Lines 7 to 9). The code in the implementation is similar to the

code in the model. In the model the variable Ulnfo is returned to the user process (Line 8)

and in the implementation the structured type SRBuf is returned (Line 18 to 19).

Procedures were used to implement actions in the implementation. This simplifies the code

used to perform low-level operations. Also, the relative sizes of the actions were considered

large enough such that the addition of the overhead of a procedure call would not have an

huge influence on performance.

The errors discovered during the implementation phase were all related to data manipulation

and interfacing with lP. This means that the errors were confined to detail within the actions

which should be detected in the testing phase, as explained in Section 3.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 52

Performance evaluation

A simple file transfer utility was implemented to test the TCP implementation. Files were

sent from one computer to another on a subnet using only a hub to connect the two com-

puters. Small files, less than 5KB were successfully transmitted with no noticeable difference

in transfer rate compared to the Linux TCP implementation. However, for larger files the

transfer rate was unacceptable. For example, the average transfer rate for a 100MB file was

18kilobits per second. The same file transfered with the Linux TCP implementation has an

average transfer rate of 930kilobits per second.

The main reason for the slow transfer rate is that data buffers are copied unnecessarily. The

transition system structured TCP was implemented as a user process on Linux. This process

interfaces with the Linux lP process on the one side and with a user process on the other side.

Data buffers are copied from the lP process to the TCP process and then to the user process.

While copying takes place between the TCP process and the user process, no lP packets

are accepted by the TCP process. This causes the receiver process to drop packets and the

sender process to retransmit. The high retransmission rate consumes a large percentage of

the bandwidth.

The problem could be alleviated by either implementing the TCP process as part of the

kernel protocol stack, removing the copying of data between processes [41, Chapter 9], or

using separate threads to handle insertions and removal from the TCP buffer. However, an

optimal implementation was not the goal of this experiment.

3.4 Summary

In this chapter the technique to structure both a model and an implementation of a protocol

as a transition system was discussed. The technique was illustrated using the Alternating Bit

protocol and the more complex TCP protocol.

Embedded systems that are mass produced usually have little memory and relatively slow

processors to minimise costs. Assembly language-which is usually considered too low level

(impractical) for development-is then considered to optimise both memory use and speed.

The Alternating Bit example showed that the transition system approach can be used to

implement small protocols in assembly language. The technique improves the reliability and

maintainability of assembly code for several reasons:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A TRANSITION SYSTEM APPROACH 53

• Flow of control is verified at code level.

• Actions that are small, independent code fragments can be tested easily and thoroughly.

It is also possible to automatically translate the outline of a verified model into an implemen-

tation, leaving only the detail of the actions for manual coding. Furthermore, this approach

combines the design and verification phases. There is no need to build a separate model-

which often requires a considerable amount of time and skill to construct-to verify a design.

The time spent on the design phase now also includes verification. The time spent to construct

a model is often used as a criticism against model checking.

It was also shown that the technique scales for larger systems and the TCP protocol was used

for this illustration. The same benefits that were identified for the Alternating Bit example

in Section 3.2.1 also apply to the TCP example.

With the transition system approach, restriction on the structure of a design is used to couple

verification and implementation more closely. The gain in correctness, however, leads to a

decrease in efficiency-because of the overhead of the interpreter. The major drawback,

however, is that not all systems are structured as transition systems. In the next chapter the

automatic derivation of models from arbitrarily structured implementations will be discussed.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Automated Model Extraction

Transition systems provide a rigorous basis for the translation of verified models into imple-

mentation code. The reverse-the derivation of models from implementation code-is also

possible, as mentioned in Chapter 2. In fact, Holzmann showed that the process of extracting

models from suitably structured C programs can be partially automated. However, not all im-

plementations can be structured as transition systems because the overhead of interpretation

is not acceptable.

The translation of arbitrarily structured Promela models into C code has been investigated

by Lomer and Serhrouchni [46]. Unfortunately, there is an inherent problem with this ap-

proach: Models contain too little detail to allow derivation of efficient implementation code.

In contrast, derivation of models from arbitrarily structured implementation code seems fea-

sible because the removal of detail is simpler. What is needed is an effective mechanism for

abstraction. We decided to investigate to what extent Holzmann's table-driven technique

would also work for arbitrarily structured code written in a process-based implementation

language. A process-based language was chosen to maintain a close similarity between the

implementation and the modelling language. The idea is to retain the basic structure of an

implementation and to replace irrelevant implementation detail by higher-level abstractions.

The language used for the experiment is called LF [51]. It has a similar structure to Promela

and supports processes and message passing. In addition, essential operations needed to

program at the hardware level are supported. The language will be introduced by describing

an implementation of the alternating bit protocol. This example will then be used to illustrate

application of the table-driven technique.

54

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 55

Figure 26: Communication between the processes of the Alternating Bit protocol implemented
in LF.

1 PROCESS Sender(IN ackmsg : MsgChan; OUT datamsg : MsgChan; IN gendatamsg : MsgChan);
2 VAR

DataMsg : MsgType;
4 AckMsg : UINT8;

Control Bit : UINT8;
6 BEGIN

Control Bit := 0;
WHILE TRUE DO

gendatamsg? data(DataMsg);
10 DataMsg.Bit := ControlBit;
11 REPEAT
12 datamsg I data(DataMsg);
13 ackmsg ? ack(AckMsg)
14 UNTIL AckMsg = DataMsg.Bit;
15 Control Bit := 1 - Control Bit
16 END
17 END Sender;

Figure 27: LF code for the sender process of the alternating bit protocol.

4.1 Alternating bit protocol implemented in LF

The alternating bit protocol was described in Chapter 2. To keep the discussion as simple as

possible, the protocol is implemented as cooperating processes on the same computer. The

Sender process transmits data messages to the Receiver process which displays each message

as it is received. The structure of the implementation is shown in Figure 26.

The Sender process is shown in Figure 27. Processes in LF communicate by sending mes-

sages over channels. Channels are created dynamically and can be passed to other processes

via parameters. Three channel variables of the same type are passed to process Sender

(line 1). Process Sender receives acknowledgements from the channel referenced by port

variable ackmsg, sends data messages to the Receiver process via the channel referenced

by port variable datamsg and receives new data from process GenNewData via the channel

referenced by port variable gendatamsg. The reserved words IN and OUT are used to indicate

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 56

the direction of transfer. For example, process Sender is only allowed to send messages on

the channel referenced by variable datamsg.

The three port variables in line 1 all reference channels of type MsgChan, which is declared

as:

TYPE
MsgChan [data(MsgType), ack(UINT8)];

A channel can be used to transmit different types of messages and each type is associated with

an alphabet symbol. In the declaration shown above, the alphabet symbol ack is associated

with an unsigned 8 bit integer and the alphabet symbol data is associated with the user

defined type MsgType. An alphabet symbol is used to indicate the type of a message in a

communication command.

In lines 3 to 5 local variables DataMsg, AckMsg and ControlBit are declared. Variable

DataMsg is used for receiving messages from process GenNewData and to send the data re-

ceived from process GenNewData to process Receiver. Variable AckMsg is used for receiving

acknowledgements from the Receiver process and variable ControlBit is used to store the

sequence bit of the last packet sent.

The Sender process starts by initialising the control bit (line 7) and then enters an infinite

loop, repeating the following steps: After receiving new data from process GenNewData (line 9),
it sets the control bit of the new message and then sends the new message to the Receiver

process. For each message sent, an acknowledgement is expected and if an error occurs,

the message is retransmitted (lines 11 to 15). Finally, when the correct acknowledgement is

received, the control bit is changed and the sequence of steps are repeated.

The standard esp style notation for message passing is used in LF. For example, line 9

specifies that data should be received from the channel referenced by gendatamsg and placed

into the variable DataMsg of type MsgType~which is associated with the alphabet symbol

data.

The Receiver process is shown in Figure 28. This process receives messages sent by the

Sender process via the channel referenced by variable datamsg and send acknowledgements

via the channel referenced by variable ackmsg (line 1). The two local variables, SenderMsg

and ControlBit are used to receive data sent by the Sender process and to test if a received

message is valid.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 57

1 PROCESS Receiver(IN datamsg : MsgChan; OUT ackmsg : MsgChan);
2 VAR

SenderMsg: MsgType;
Control Bit : UINT8;

5 BEGIN
Control Bit := 0;
WHILE TRUE DO

REPEAT
datamsg ? data(SenderMsg);

10 ackmsg I ack(SenderMsg.Bit)
11 UNTIL SenderMsg.Bit = Control Bit;
12 Control Bit := 1 - Control Bit;
13 (* Display received data *)
14 END
15 END Receiver;

Figure 28: LF code for the receiver process of the alternating bit protocol.

1 PROCESS GenNewData(OUT datamsg : MsgChan);
2 VAR

NewDataMsg : MsgType;
Counter: INT32;
Data: UINT8;

6 BEGIN
WHILE TRUE DO

Counter := 1;
Data := 0;

10 WHILE Counter <= DataSize DO
11 NewDataMsg.Data[Counter] := Data;
12 Data := Data + 1;
13 Counter := Counter + 1
14 END;
15 datamsg ! data(NewDataMsg)
16 END;
17 END GenNewData;

Figure 29: LF code for the process in the alternating bit protocol used to generate new data.

The Receiver process also starts by initialising its control bit and then enters an endless

loop. It keeps receiving and acknowledging messages until the control bit received is equal to

its local control bit. If a message is accepted, the local control bit is changed and the received

data displayed.

Three other processes that form part of the LF alternating bit protocol implementation are

GenNewData, WriteInt and WriteString. Numerical values and strings are displayed using

the two processes Wri teInt and WriteString. Process GenNewData is used to generate new

data. lts code is shown in Figure 29. The process repeatedly fills a data buffer with a series

of integers and sends a message containing the buffer to the Sender process. Communication

in LF is synchronous and the command in line 15 will block until process Sender accepts the

message.

The five processes discussed above are instantiated in an initial process called Ini t shown in

Figure 30. The command NEW is used to create various channels between processes (lines 7

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 58

1 PROCESS Init;
2 VAR

ckmsg : MsgChan;
datamsg : MsgChan;
gendatamsg : MsgChan;

6 BEGIN
NEW(datamsg);
NEW(ackmsg);
NEW(gendatamsg);

10 GenNewData(gendatamsg);
11 Sender(ackmsg, datamsg, gendatamsg);
12 Receiver(datamsg, ackmsg)
13 END Init;

Figure 30: LF code for the Ini t process of the alternating bit protocol.

to 9). The complete implementation is listed in Appendix B.

It should be noted that the packets sent between the Sender and the Receiver processes do

not contain a message header or a checksum field. These two fields should be added in a real

implementation but were left out for the sake of clarity.

4.2 From LF to Promela

Most constructs in LF can be translated directly to Promela. These include loops, alternative

commands, most assignments, basic types and most structured types such as records and

arrays. Since this subset sufficed to implement the alternating bit protocol, generation of a

Promela model was an almost trivial exercise.

A number of abstractions can be applied to the alternating bit implementation which in-

clude the removal of processes WriteString and WriteInt-these processes are used only

for output-and the simplification of the message type sent between the sender and receiver

processes. The abstractions performed on the implementation code can be specified as a map-

ping from LF code to Promela code. For example, the processes WriteString and WriteInt

map to empty Promela statements and all communication statements associated with these

two processes map to the Promela skip statement.

The type of a data message is declared as:

TYPE

MsgType

Data

RECORD

ARRAYDataSize OF UINT8;

Bit : UINT8

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 59

LF L2P Promela

Tokens Matched String

Abstraction - Binary I-- Token
File Tree r-- Recognizer

Lookup Module

Figure 31: A schematic representation of the L2P translation tool.

END;

The record type consists of a total of 512 bytes: variable Data which is an array of 511

(DataSize) bytes and the 1 byte Bit variable. Only variable Bit is used for control flow and

variable Data is abstracted to an array of two bytes. With a two byte buffer it is still possible

to verify indexing. The code maps to:

#define DataSize 2

typedef MsgType {
byte Data [DataSize] ;
byte Bit

}

With manually defined mappings and the source code as input, it is in this case possible

to construct a tool that automatically translates the LF source code to a tractable Promela

model. Such a tool should consist of rules to translate LF code that need not be abstracted

and a lookup mechanism to generate Promela code from the manually defined mappings.

Influenced by the success of the translation tool that Holzmann described in [28], we decided

to construct a similar tool. Our tool, called L2P (LF to Promela), consists of a parser that

contains simple translation rules and a lookup model which is used for the lookup mechanism.

The structure of the tool is shown in Figure 31.

The lookup module consists of an abstraction file, a binary tree and a token recogniser. The

LF part of a manually defined mapping is placed in the binary tree and the Promela part of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 60

the mapping is placed in the abstraction file. A binary tree is used for pattern recognition

because it simplifies the recognition of substrings. For each accepting path (string) in the

binary tree there must be an entry in the abstraction file.

For example, Figure 32 shows how the constant declaration

DataSize = 511;

is placed in the binary tree and the Promela part,

#define DataSize 2

in the abstraction file. The line of cod~ listed in the top of the figure shows an input command

to the tool. The code specified between the first pair of quotes is placed in the binary tree.

The code is broken up into nodes as shown in the box labelled Binary Tree. Each node in the

binary tree has a delimiter field. If a match is found in the tree, the delimiters in the first and

last nodes of the match are used to find the corresponding Promela code in the abstraction

file.

In this example the node with its token field equal to DataSize has a delimiter field equal

to PROMSTART1. A delimiter name comprises of the prefix PROMSTART followed by an

numerical value which is increased by one for each delimiter added. The node with its token

field equal to ";" has a delimiter field equal to PROMSTART2. If the declaration

DataSize = 511;

is recognised in the input, the two delimiters will be used to substitute the Promela code that

was automatically generated by the tool with the Promela code

#define DataSize 2

The model generated for the alternating bit protocol is listed in Appendix C. This model

was verified for the absence of deadlock and correct behaviour under packet loss. To verify

correct behaviour under packet loss, the model was modified to include a lossy channel.

The success of this translation effort is due to the following:

1. There is a close correspondence between LF and Promela,

2. no low-level operations were used and

3. only a subset of LF was used.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION

insert("DataSize = 511;","PROMSTARTI ", "PROMSTART2");

Binary Tree

1
Token: DataSize Token: = Token: 511 Token: ;
Delimiter: -- Delimiter: r------ Delimiter: r------ Delimiter:
PROMSTARTI None None PROMSTART2

Abstraction File

PROMSTARTI

#define DataSize 2

PROMSTART2

Figure 32: A schematic representation of the lookup module.

61

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 62

The TCP protocol was used again to investigate whether this technique would scale to verify

more complex protocols.

4.3 Application to TCP

In general the following constructs in LF can be translated directly to Promela:

• Assignments: The syntax of an LF assignment is Pascal like and a Promela assignment

is C like. It is only required to change the assignment symbol from ":=" to "=" during

the translation of an assignment statement .

• If-construct: Unlike Pascal an IF-EL5IF-ELSE construct is supported in LF. The out-

line of this construct is shown below: .

IF condition1 THEN
statements1

ELSIF condition2 THEN
statements2

ELSE
statements3

END

The code is translated to Promela code as follows:

if

condition1 ->
statements1

:: condition2 && !(condition1) ->
statements2

:: !((condition1) && (condition2)) ->
statements3

fi

• Repetitive constructs: The LF WHILE construct is also translated easily:

WHILE condition DO
statements

END

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 63

This code is translated to:

do
condition -)

statements
:: ! (condition) -)

break
od

LF also supports a REPEAT-UNTIL construct:

REPEAT
statements

UNTIL condition

The REPEAT-UNTIL construct is translated to the Promela do ... od construct:

bool auxiliaryVar = 0;

do
(condition) I I CauxiliaryVar

statements;
auxiliaryVar 1;

:: ! ((condition) I I (auxiliaryVar
break

0) -)

0» -)

od

The auxiliary variable auxiliary Var is used to ensure that the statements within the

body of the construct are executed at least once, simulating the behaviour of the LF

code .

• Message passing: As described in Section 4.1, LF channels are referenced via port

variables. Different types of messages are associated with a channel type by means

of alphabet symbols. Alphabet symbols are used to perform runtime type checking:

Because multiple types of messages can be sent over the same channel, send and receive

commands are matched using alphabet symbols. This approach of message passing is

also followed by Joyce [5].

In the code shown below a channel type channelType is declared with two alphabet

symbols.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 64

00 TYPE
01 channelType [a(UINT32), bJ;

02 VAR
03 OUT portl : channelType;
04 IN port2 : channelType;
05 varl : UINT32;
06 BEGIN
07 portl a Cvar l);

08 portl b',
09 port2 ? b',
10 port2 ? a Cvar l);

The alphabet symbol a is associated with a 32-bit unsigned integer and alphabet symbol

b has no type associated it. If an alphabet symbol has no type associated with it, it is

called a signal. Signals are used for synchronisation and involve no copying of data. In

lines 03 and 04 instances of channelType are declared. The equivalent Promela code is:

00 chan portl_a [OJ of {int};
01 chan portl_b [OJ of {bit};
02 chan port2_a [OJ of {int};
03 chan port2_b [OJ of {bit};
04 int varl;

05 portl_a varl;
06 portl_b I :,
07 port2_b ? 1;
08 port2_a ? varl;

Only one type of message can be associated with a Promela channel. It is therefore

required to declare a Promela channel for each alphabet symbol in an LF channel

type, shown in lines 00 to 03. Signals are translated to channels of type bit (Lines 01

and 03). Fields in a Promela communication statement can be constants. For the receive

operation to be executable, the value of all message fields that are specified as constants

must match the value of the corresponding fields of the message on the channel. This

notion is used to translate LF communication statements that involve signals (Lines 06

and 07).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 65

• Process instantiation: Instantiation of processes in LF and Promela is similar. The

only difference is the keyword run that precedes the process name in Promela. For

example, process DummyProcess is instantiated in LF as:

DummyProcess(var1, var2);

and in Promela as:

run DummyProcess(var1, var2);

• Select construct: LF supports a SELECT construct that has the same behaviour as

the Promela if ... fi construct. The outline of a SELECT construct is shown below:

SELECT guard1 THEN
statements1

[J guard2 THEN
statements2

END

This code is translated to:

if

guard1 -)
statements1

:: guard2 -)
statements2

fi

The LF SELECT construct also supports selective reception of messages. A selective re-

ceive is implemented as a guard in a SELECT construct that consists of a communication

statement with an optional boolean expression. The boolean expression refers to the

variables used in the communication. The following example illustrates this concept:

SELECT port1 ? a(var1) & (var1) 0) THEN
statements1

[J port2 ? a(var2) THEN
statements2

END

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 66

The communication statement in the first line will only be executed if the value of the

message on the channel is greater than zero. Because Promela does not support condi-

tional reception direct translation is not possible. This feature could be simulated by

an additional process but in general, this would increase the number of states generated

significantly. Simulation can be achieved by adding an extra process that evaluates the

contents of messages sent by a sender process. This process tags a message depending

on its contents by adding a constant field to the message. The tagged message is then

send to the receiver process which uses the tag (constant field) to select the appropriate

code to execute .

• Pointers: This construct supported in LF cannot be translated directly to Promela.

A restricted approach is to simulate a heap. It was showed in [18] how the dynamic

creation of objects in Java can be simulated in Promela. An array of records is used to

model the data area of a class. Each record in the array represents the data area of a

created object. An index variable is used to indicate the next open slot. Visser et al.

also followed this approach to translate C++ code to Promela [43].

This approach can also be used to simulate pointers that point to data objects. An

array of records must be constructed for each object type to which a pointer can refer.

However, this approach increases the state space dramatically. LF supports type casting

which means that a pointer can point to objects of different size. This additional

complication is likely to render this approach impractical.

In most cases it is best to abstract pointer usage rather than simulating it. The use of

abstract data types facilitates pointer abstraction. The building blocks used in LF to

implement abstract data types are processes. A queue is typically implemented as an

abstract data type.

Consider the example shown in Figure 33. Process Q is an abstract data type for a

queue. Operations on the queue are performed by sending messages to process Q. Note
that a new queue is created for each instance of the process. This is similar to multiple

instances of an object.

Lines 3 to 8 are the type definitions required. The type Node is the data type which

is manipulated. The process Q provides two operations on the queue: Insertion is

provided for by the first guard (Line 15) and removal is provided for in the second

guard (Line 22). The initialisation of the queue is implicit as it takes place immediately

after the instantiation of an instance of process Q (Line 13). Notice the selective receive

used in the second guard to test if the queue is not empty (Line 22).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION

1 PROGRAM List;
2 TYPE

Node = POINTER TO NodeDese;
NodeDese = RECORD

next: Node;
b: UINT8

END;

QDesc = [node(Node) J;

9 PROCESS Q(IN enQ : QDesc; OUT deQ : QDesc);
10 VAR
11 new,root : Node;
12 BEGIN
13 root := NIL;
14 WHILE TRUE DO
15 SELECT enQ 7 node(new) THEN (* insert operation *)
16 IF root = NIL THEN
17 root := new
18 ELSE
19 new. next := root;
20 root := new
21 END
22 [J deQ ! node(root) & root # NIL THEN (* remove operation *)
23 root := root I.next
24 END
25 END
26 END Q;

27 PROCESS Control;
28 VAR
29 i : UINT8;
30 n : Node;
31 OUT enQ : QDesc;
32 IN deQ : QDesc;
33 BEGIN
34 i := 0; NEW(enQ); NEW(deQ);
35 Q(enQ,deQ);
36 WHILE i < 20 DO
37 NEW(n);
38 n~.b := i:
39 n" .next := NIL;
40 enQ I node(n);
41 INC(i,l)
42 END;
43 deQ ? node(n);
44 WHILE n # NIL DO
45 deQ ? node(n)
46 END
47 END Control;

48 BEGIN
49 Control
50 END List.

Figure 33: A queue implemented as an abstract data type in LF.

67

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 68

The LF implementation can be translated to Promela code as shown in Figure 34. The

queue is represented as a circular buffer (Line 2). Variable head (Line 6) represents

the root pointer variable in the LF code and -1 is used to represent a NULL pointer

(Line 37). How the rest of the translation was done should be clear. Notice that the

structure of the implementation also allowed for a simple and effective means to remove

the selective receive used in the implementation code.

In the light of the preceding discussion direct translation seems feasible. An implementation

of TCP in LF, written by an independent programmer, was selected to investigate whether

this holds true for more complex protocols. The implementation consists of 820 lines of

LF code and a total of 12 processes communicating over several different channels. The

implementation is rather small compared to the UNIX implementation of the protocol which

consists of more than 4000 lines of C code [48, Chapter 24]. The reason is that the LF

implementation is a basic TCP implementation and does not support all the features of the

UNIX implementation.

Despite the apparent similarity between LF and Promela, the translation was not successful

for two reasons:

1. The SELECT construct with conditional reception was used extensively in the code.

2. Pointer usage was not confined to operations within abstract data types.

An investigation revealed that it would be possible to restructure the selected TCP imple-

mentation to support direct translation. This would entail the following:

• All complex data structures should be represented as abstract data types. Code struc-

tured accordingly facilitates translation because a complex data structure implemented

as a process-which may contain pointer manipulation code-can easily be replaced by

a more abstract version in a model. For example, the TCP data buffer can be imple-

mented as an abstract data type. An outline of a possible implementation of such an

abstract data type is illustrated below:

PROCESS Segmente
(* Channels declared for communication to other processes *));

VAR
DataBuffer ARRAY Buff Size OF CHAR;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 69

I #deline Maxitems 30

2 short List[Maxltems];

4 proctype Q(chan enQ, deQ) {
short item;
short head, tail;

head = 0; tail = head + 1;
List[head] = -1;
do

10 :: enQ ? item --t

II if
12 :: tail != head --t

13 List[tail - 1] = item;
14 tail = (tail % Maxitems) + 1
15 :: else
16 Ii
17 :: deQ 1 [head] --t

18 List[head] = -1;
19 if
20 (head + 1) % Maxitems 1= tail --t

21 head = (head + 1) % Maxitems
22 :: else
23 Ii
24 od
25

26 proctype Control(chan deQ, enQ){
27 short i:

28 do
29 .. i < 20 --t

30 enQ 1 i:
31 i++
32 :: else --t

33 break;
34 od:
35 i = 0;
36 do
37 .. i != -1 --t..
38 deQ ? i
39 :: else
40 break
41 od
42

43 init{
44 chan enQ = [0] of { int};
45 chan deQ = [0] of { int };

46 run Q(enQ, deQ);
47 run Control(deQ, enQ);
48

Figure 34: A model of the LF implemented queue shown in Figure 33.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 70

(* Other local variable *)

BEGIN
WHILE TRUE DO

SELECT (* Receive new data *) THEN

[J (* Compute a checksum *) THEN

[J (* Retrieve control bits *) THEN

[J (* Retrieve sequence number *) THEN

[J (* Retrieve acknowledgement number *) THEN

(* other possible operations on data *)

END
END

END DataBuffer;

A process that uses the abstract data type issues commands to the Segment process and

each of these commands is serviced by one of the operations in the SELECT construct.

An option in the SELECT construct that proves too difficult for translation can now

easily be substituted with functionally equivalent Promela code.

• Separate control flow from data manipulation. In Chapter 3 it was shown how the

control flow of the TCP protocol can be implemented as a transition system. This can

be implemented as a separate control process in LF. The control process interacts with

other processes that are responsible for data manipulation.

Although it was considered unnecessary to develop a new implementation especially to support

verification, it is obvious that this should be possible:

• Models of comparable complexity have been verified using SPIN. For example, the

DEOS kernel [53J and the multiprocessor real-time kernel described in [6J.

• In Chapter 3 it was shown that the control structure of TCP is simple enough to be

verified by SPIN.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. AUTOMATED MODEL EXTRACTION 71

• The main problem with the original TCP implementation is the unrestricted use of

pointers. This problem could be eliminated by restructuring the data manipulation

code as discussed above.

The key to success seems to lie in the structure of software. In practice, however, most

implementations are so complex that it is difficult to adhere to the stated guidelines. Pointers

are often used in unrestricted ways, little use is made of abstraction and designs have no

clear separation between data manipulation and control flow. Consequently, the goal of

several research groups is to devise methods for supporting model extraction in general. For

example, Visser et al. have developed a model checker targeted at verifying unrestricted

Java code [52, 53]. Since abstraction is so important, program slicing, data abstraction and

component restriction are used by the Bandera group to make model checking feasible for

larger systems [8, 12]. Moreover, simple techniques such as encapsulating C statements to

execute as one atomic block can be surprisingly effective [30]. Finally, the concept of a boolean

program (only Boolean variables are allowed), and a model checker for Boolean programs,

made it possible to verify device drivers consisting of several thousands of lines of C code [2].

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Comparison of Approaches

In this thesis two different strategies for using model checking in practice are compared:

manual construction of models versus automated model extraction. The comparison was

focused on protocols which are often used in embedded systems. For the manual approach the

system was structured as a transition system. This was implemented by a simple interpreter,

a transition table and small code fragments-called actions-associated with each transition.

Automated model extraction was investigated by implementing a lookup table technique

proposed by Holzmann [28].

It seems reasonable to expect that the quality of software will be influenced by different

development methods. However, it cannot be concluded that one of the methods considered

will always be preferable in practice. Therefore, the influence of each method on software

quality should be judged by taking various important issues into account as discussed in what

follows. In this way it is usually possible to select the best approach in specific circumstances.

Small embedded systems

Resources such as memory are limited in most embedded system environments. If execution

speed is not of utmost importance, the transition system approach should be considered. If

the amount of memory is severely limited, for example for simple devices targeted at the mass

market, low-level coding is sometimes essential. Even in this case, it was shown in Chapter 3

how the transition system approach can be used to verify control flow directly and to simplify

testing of data manipulation code. This strategy has the following advantages:

72

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. COMPARISON OF APPROACHES 73

• Low-level coding can save a significant amount of memory and reduces the overhead

inherent in interpretation. In this respect it is most important to represent data struc-

tures as compactly as possible, which is difficult to accomplish when using high-level

languages.

• The structure imposed by a transition system allows direct verification of control flow.

• Code for data manipulation is clearly separated from the control flow code. Each data

manipulation code fragment is isolated from the rest of the system in such a way that

testing is simplified.

Complex protocols

In less restricted environments, where complex protocols are needed, it is advisable to use

a high-level programming language to simplify code maintenance. The transition system

approach is recommended if the overhead of interpretation is acceptable. It is possible to

translate a verified model structured as a transition system into reasonable efficient imple-

mentation code by following the techniques described in Chapter 3. Most important is to

avoid the overhead of copying messages and to structure the transition table in such a way as

to optimise selection of the most important transitions. In addition, it helps to keep actions

as simple as possible to simplify testing. The advantages of this approach are the same as

discussed above although the overhead of interpretation can be significant.

Performance critical applications

Sometimes reasonably complex protocols must be implemented in performance critical ap-

plication areas. If the overhead imposed by the transition system approach is unacceptable,

unrestricted coding techniques combined with automated model extraction is recommended.

The main advantage is the immediate feedback provided to programmers during implemen-

tation. However, this approach is only feasible if code for control flow is clearly separated

from data manipulation code. As discussed in Chapter 4, this can be accomplished by imple-

menting complex data structures as abstract data types. This allows detailed manipulation

of fields in data messages to be encapsulated to support abstraction when deriving a model.

Although the removal of such detail is important to ensure tractable models, it should be

remembered that many defects may hide in such details. Testing is therefore essential to

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. COMPARISON OF APPROACHES 74

check the correctness of the code not included in the generated models. Fortunately testing

of such code is simplified by the structure imposed by using abstract data types. Because op-

erations associated with each data structure are implemented as procedures, a small amount

of overhead is unavoidable.

Future work

Software tools could be developed to support the transition system approach. For example, a

program is needed to translate verified models automatically into the format of an executable

transition system. Such a tool could be made to generate test cases to test all data manip-

ulation code. In addition, execution of such tests could perhaps be partially automated. In

practice, unstructured code is often encountered. Research to verify such code may help to

strengthen the case for formal methods, but if such code could ever be verified, remains an

unanswered question. Moreover, whether completely unstructured code should be tolerated

in a society where computers are becoming more important in regulating our daily lives, is

an open question.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

A Transition system model

A model for the Alternating Bit protocol as a transition system:

/* --- */
Macro Definitions

Sender
/*---*/

/* Send data packet 0 */
#define SActionO() \

Serial_Out! 0; \

event = 1

/* Receive acknowledgement 0 */
#define SActionl() \

Serial_In? data; \
if \

data -- 0 -> \
event = 2 \
else -> \
event = 6 \

fi

/* Send data packet 1 */

75

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. A TRANSITION SYSTEM MODEL 76

#define SAction2() \
Serial_Out! 1; \
event = 3

/* Receive acknowledgement 1 */
#define SAction3() \

Serial_In? data; \
if \

data 1 -) \
event = 0 \
else -) \
event = 6 \

fi

/* --- */
/* Macro Definitions */

Receiver
/*---*/

/* Receive data packet o */
#define RActionO() \

if \

Serial In ? data -) \
if \

data -- 0 -) \
event = 1 \
else -) \
event 6 \

fi \
timeout -) \

event = 6 \

fi

/* Compute checksum */
#define RAction1() \

if \

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. A TRANSITION SYSTEM MODEL 77

1 -) \
event = 2 \
else -) \
event = 6 \

fi

/* Send acknowledgement 0 */
#define RAction2() \

Serial_Out! 0; \

event = 3

/* Receive data packet 1 */
#define RAction30 \

if \
Serial In ? data -) \
if \

data 1 -) \
event = 4 \
else -) \
event 6 \

fi \
timeout -) \

event = 6 \

fi

/* Compute checksum */
#define RAction4() \

if \
1 -) \

event = 5 \
else -) \
event = 6 \

fi

/* Send acknowledgement 1 */
#define RAction5() \

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. A TRANSITION SYSTEM MODEL 78

Serial_Out 1; \
event = 0

/*---*/

proctype InterSend(chan Serial_In, Serial_Out) {
byte data;
short event, state;

state O',
event O',
do

(state == 0) && (event 0) -)

state = L:,
SActionO()
(state == 0) && (event 6) -)

state = 3;
SAction2()
(state == 1) && (event 1) -)

state = 2;
SActionl ()
(state == 2) && (event 2) -)

state = 3;
SAction2()
(state == 2) && (event 6) -)

state = L:,
SActionOO
(state == 3) && (event 3) -)

state = 0;
SAction3()

od
}

proctype InterReceive(chan Serial_In, Serial_Out) {
byte data;
short event, state;

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. A TRANSITION SYSTEM MODEL 79

state o·,
event 0;

do

(state == 0) && (event 0) ->
state = 1·,
RActionO ()

(state == 1) && (event 1) ->
state = 2;

RActionl ()

(state == 1) && (event 6) ->
state = 0;

RAction5()

(state == 2) && (event 2) ->
state = 3;

RAction2()

(state == 2) && (event 6) ->
state = 0;

RAction5 ()

(state == 3) && (event 3) ->
state = 4;

RAction3()

(state == 4) && (event 4) ->
state = 5;

RAction4()

(state == 4) && (event 6) ->
state = 3;

RAction2 ()

(state == 5) && (event 5) ->
state = 0;

RAction5 ()

(state == 5) && (event 6) ->
state = 3;

RAction2 ()

od

}

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. A TRANSITION SYSTEM MODEL 80

bit a;
proctype Serial_LinkCchan AltiIn, AltiOut, Alt2In, Alt20ut) {

do
Alt1In ? a -)
if
i -)

skip
i -)

a = i - a·,
fi;
Alt20ut ! a
Alt2In ? a -)
if
i -)

AltiOut ! a
i _)

skip
fi

od
}

init {

chan Alt1toSerial
chan Alt2toSerial =
chan SerialtoAlti

/* corrupt the message */

/* Lose message */

rn of { bit };
[i) of { bit };
[i) of { bit };

chan SerialtoAlt2 = [i) of { bit };

run Serial_LinkCAltitoSerial, SerialtoAlti, Alt2toSerial, SerialtoAlt2);
run InterSend(SerialtoAlti, AltitoSerial);
run InterReceiveCSerialtoAlt2, Alt2toSerial);

}

Stellenbosch University http://scholar.sun.ac.za

Appendix B

Alternating bit implemented in LF

MODULE AlternatingBit;

CONST
DataSize 511;

TYPE
DisplayPage = ARRAY 2000 OF RECORD

char,attrib : UINT8
END;

IntType = RECORD
x UINT32;
w UINT16

END;

MsgType = RECORD
Data: ARRAY Datasize OF UINT8;
Bit: UINT8;

END;

MsgChan = [data(MsgType), ack(UINT8)];
IntChan = [a(IntType)];
TString = ARRAY 32 OF UINT8;

81

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. ALTERNATING BIT IMPLEMENTED IN LF 82

TDispReq = [s(TString)];
Array2 = ARRAY 12 OF UINT8;

PROCESS WriteString(IN r TDispReq);
(*

Basic display server
*)

VAR
x,y,z,i,j : UINT32;
s : TString;
vp : DisplayPage AT $Ob8000;
curPos : UINT16;

BEGIN
i := 0; WHILE i < 2000 DO vp[i] .char
x:= 0; y := 0;

WHILE TRUE DO

32; INC(i,l) END;

r ? s(s) ;

i := 0;

WHILE (s[i] # 0) & (i < 32) DO
IF (s[i] 10) (s[i] = 13) THEN (* CR or LF *)

y := y+l; x := 0;
IF Y > 24 THEN Y := 0 END

ELSIF sri] = 8 THEN (* backspace *)
IF x > 0 THEN

x := x-l;
vp[(y*80)+x] .char := 32

END
ELSIF sri]

j := 0;

WHILE j < 9 DO

9 THEN (* htab *)

vp[(y*80)+x] .char := 32;
INC (j,1); INC (x,1);
IF x >= 79 THEN

x := 0; y - y+l ;
IF Y >= 24 THEN Y 0 END

END

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. ALTERNATING BIT IMPLEMENTED IN LF 83

END
ELSE

vp[(y*80)+x] .char
END;

s [i]; INC(x,1)

IF x >= 79 THEN
x := 0; y := y+l;

x := 0; y := y+l;
IF Y >= 24 THEN Y := 0 END

END;
INC(i ,1); curPos := SHORT((y*80)+x);
PORTOUT($3d4,$e); PORTOUT($3d5,SHORT(curPos DIV $100));
PORTOUT($3d4,$f); PORTOUT($3d5,SHORT(curPos MOD $100))

END
END

END WriteString;

PROCESS WriteInt(IN IntC IntChan; OUT scr TDispReq);
VAR

Intl : IntType;
i, w: UINT16;
x: UINT32;
xO : UINT32;
a: Array2;
s: TString;

BEGIN
WHILE TRUE DO

IntC? a(Intl);
x := Intl.x;
w := Intl.w;

xO := x;
i := 0;

REPEAT
a[i] := SHORT(SHORT((xO MOD 10) + 48));
xO := xO DIV 10;
i := i + 1

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. ALTERNATING BIT IMPLEMENTED IN LF

UNTIL xO = O·,
s [0] := 32;
s [1] 0;

WHILE w > i DO
ser ! s(s) ;

DEC(w, 1)

END;
s [0] - 45;

IF x < o THEN
ser ! s(s)

END;
REPEAT

DEC(i,l) ;

s [0] : = a [i];
ser! s(s)

UNTIL i = 0
END

END Writelnt;

84

(* "-" *)

PROCESS GenNewData(OUT datamsg MsgChan);
VAR

NewDataMsg : MsgType;
Counter INT32;
Data UINT8;

BEGIN
WHILE TRUE DO

Counter := 1;
Data := 0;
WHILE Counter <= DataSize DO

NewDataMsg. Data [Counter]
Data := (Data + 1) % 10;

Data;

Counter := Counter + 1
END;
datamsg data(NewDataMsg)

END;
END GenNewMsg;

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. ALTERNATING BIT IMPLEMENTED IN LF 85

PROCESS Receiver(IN datamsg : MsgChanj OUT ackmsg : MsgChanj
OUT DispInt : IntChanj OUT DispStr : TDispReq)j

VAR
SenderMsg: MsgType;
ControlBit : UINT8;
s : TStringj
Int1 : IntType j

BEGIN
ControlBit O·,
WHILE TRUE DO

REPEAT
datamsg? data(SenderMsg)j
ackmsg ! ack(SenderMsg.Bit)

UNTIL SenderMsg.Bit = ControlBitj
ControlBit := 1 - ControlBitj
(* Display received data *)

END
END Receiverj

PROCESS Sender(IN ackmsg : MsgChan; OUT datamsg MsgChanj
IN gendatamsg : MsgChan)j

VAR
DataMsg : MsgTypej
AckMsg : UINT8j
ControlBit : UINT8j

BEGIN
ControlBit := OJ
WHILE TRUE DO

gendatamsg? data(DataMsg)j
DataMsg.Bit := ControlBitj
REPEAT

datamsg! data(DataMsg);
ackmsg ? ack(AckMsg)

UNTIL AckMsg = DataMsg.Bit;
ControlBit := 1 - ControlBit

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. ALTERNATING BIT IMPLEMENTED IN LF 86

END
END Sender;

PROCESS Init;
VAR

ackmsg : MsgChan;
datamsg : MsgChan;
gendatamsg : MsgChan;
IntC : IntChan;
srq : TDispReq;

BEGIN
NEW(srq);
WriteString(srq);
NEW(IntC);
WriteInt(IntC, srq);
NEwe datamsg);
NEwe ackmsg);
NEwe gendatamsg);
GenNewData(gendatamsg);
Sender(ackmsg, datamsg, gendatamsg);
Receiver(datamsg, ackmsg)

END Init;

BEGIN
Init

END AlternatingBit.

Stellenbosch University http://scholar.sun.ac.za

Appendix C

Alternating Bit Translated

A model for the Alternating Bit protocol translated with the L2P tool:

#define DataSize 2

typedef MsgType {
byte Data[DataSize];
byte Bit

}

proctype GenNewData(chan datamsg) {
MsgType NewDataMsg;
int Counter;
byte Data;

do
1 -)

Counter 1·,
Data = 0;

do
Counter <= DataSize -)

NewDataMsg.Data = Counter;
Data = (Data + 1) % 10;
Counter = Counter + 1

87

Stellenbosch University http://scholar.sun.ac.za

APPENDIX C. ALTERNATING BIT TRANSLATED 88

:: !(Counter <= 2) ->
break;

od;
datamsg NewDataMsg

:: 1(1) ->
break

od
}

proctype Receiver(chan datamsg; chan ackmsg) {
MsgType SenderMsg;
byte ControlBit;
bool MyRepeatTest1;

ControlBit
do

o·,

1 ->
MyRepeatTest1 0;

do
(MyRepeatTest1 == 0) I I !(SenderMsg.Bit

datamsg ? SenderMsg;
ackmsg ! SenderMsg.Bit;
MyRepeatTest1 = 1

:: (MyRepeatTest1 1) && (SenderMsg.Bit
break

ControlBit) ->

ControlBit) ->

od;
ControlBit 1 - ControlBit;
printf ("Data %d\n", SenderMsg. Data)

:: ! (1) ->
break

od
}

proctype LossyChan(chan sndln; chan sndOut; chan recvln; chan recvOut){
MsgType DataMsg;
byte AckMsg;

Stellenbosch University http://scholar.sun.ac.za

APPENDIX C. ALTERNATING BIT TRANSLATED 89

do
sndln ? DataMsg -)

if
recvOut
skip

DataMsg

fi
:: recvln ? AckMsg -)

if
sndOut
skip

AckMsg

fi
od

}

proctype Sender(chan ackmsg; chan datamsg; chan gendatamsg) {
MsgType DataMsg;
byte AckMsg;
byte ControlBit;
bool MyRepeatTest2;

ControlBit 0;
do

1 -)

gendatamsg ? DataMsg;
DataMsg.Bit = ControlBit;
MyRepeatTest2 = 0;

do
(MyRepeatTest2 == 0) I I ! (AckMsg

datamsg ! DataMsg;
do

DataMsg.Bit) -)

ackmsg ? AckMsg -)
break

:: timeout -)
datamsg ! DataMsg

od;

Stellenbosch University http://scholar.sun.ac.za

APPENDIX C. ALTERNATING BIT TRANSLATED 90

MyRepeatTest2 = 1
:: CMyRepeatTest2

break
1) && CAckMsg DataMsg .Bit) -)

od;
ControlBit

:: !(1) -)

break

1 - ControlBit

od
}

proctype Init() {
chan recvln = [OJ of { byte };
chan recvOut = [OJ of { MsgType };
chan sndOut = [OJ of { byte };
chan sndln = [OJ of { MsgType };
chan gendatarnsg = [OJ of { MsgType };

run GenNewDataCgendatarnsg);
run Sender(sndOut, sndln, gendatarnsg);
run Receiver(recvOut, recvln);
run LossyChanCsndln,sndOut,recvln,recvOut);

}

init {
run Init ()

}

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[IJ A. Arnold. Finite Transition Systems. International Series in Computer Science. Prentice

Hall, 1994.

[2J T. Ball and S.K. Rajamani. The SLAM Project: Debugging System Software via Static

Analysis. In In Proc. of the 29th Annual ACM SIGPLAN-SIGACT Symposium on prin-

ciples of Programming Languages, pages 1-3, Portland, 16-18 June 2002.

[3J K.A. Bartlet, R.A. Scantlebury, and P.T. Wilkenson. A Note on Reliable Full-Duplex

Transmission over Half-Duplex Links. In Communications of the ACM 12(5), pages

260-261, 1969.

[4J B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen,

and P. McKenzie. Systems and Software Verification: model-checking techniques and

tools. Springer-Verlag, Berlin Heidelberg New York, 2001.

[5J P. Brinch Hansen. Joyce-A Programming Language for Distributed Systems.

Software-Practice and Experience, 17(1):29-50, January 1987.

[6J T. Cattel. Modelization and Verification of a Multiprocessor Realtime OS Kernel. In

Proceedings 7th International Conference on Formal Description Techniques, pages 35-

50, Bern, Switzerland, October 1994.

[7J Toong Shoon Chan and Ian Gorton. Formal Validation of a High Performance Error

Control Protocol Using SPIN. Software-Practice and Experience, 26(1):105-124, January

1996.

[8J James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.

Pásáreanu, Robby, and Hongjun Zheng. Bandera: Extracting Finite-state Models from

Java Source Code. In International Conference on Software Engineering, pages 439-448,

2000.

91

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 92

[9] Marina del Rey. Transmission Control Protocol, RFC0793, September 1981. (Available

through electronic mail: mail to rfc-info@ISI.EDU).

[10] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New

Jersey, 1976.

[11] G. Duval and J. Julliand. Modeling and Verification of the RUBIS JL-Kemel with

SPIN. In In Proceedings of SPIN95, the First International Workshop on SPIN, INRS-

Télécommunications, Montréal, Quebec, Canada, October 1995.

[12] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S. Pásáreanu,

Robby, Hongjun Zheng, and W Visser. Tool-Supported Program Abstraction for Finite-

State Verification. In International Conference on Software Engineering, pages 177-187,

2001.

[13] Clarke Edmund M., Jr., Oma Grumberg, and Doron A. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, London, England, 2000.

[14] N. Francez. Fairness. Springer-Verlag, Inc., New York, 1986.

[15] Rob Gerth. Concise Promela Reference. Language reference, June 1997. (Available at

http://spinroot.com/spin/Man/Quick.html).

[16] W. Geurts, K. Wijbrans, and J. Tretmans. Testing and formal methods - Bos project

case study. In EuroSTAR '98: 6th European Int. Conference on Software Testing, Analysis

& Review, pages 215-229, Munich, Germany, November 30 - December 11998. Aimware,

Mervue, Galway, Ireland.

[17] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. In 6-th IEEE

Symposium on Logic in Computer Science, pages 406-414, Amsterdam, 15-18 July 1991.

[18] Klaus Havelund and Jens Ulrik Skakkezek. Applying Model Checking in Java Verification.

Lecture notes in computer science, 1680:216-231, 1999.

[19] Gerard J. Holzmann. An Improved Reachability Analysis Technique. Software Practice

and Experience, 18(2):137-161, February 1988.

[20] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1991.

[21] Gerard J. Holzmann. State Compression in SPIN: Recursive Indexing and Compres-

sion Training Runs. In R.Langerak, editor, Proceedings of the 3th International SPIN

Workshop, Twente University, The Netherlands, April 1997.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 93

[22J Gerard J. Holzmann. State Compression in SPIN: Recursive Indexing and Compres-

sion Training Runs. In R.Langerak, editor, Proceedings of the 3th International SPIN

Workshop, Twente University, The Netherlands, April 1997.

[23J Gerard J. Holzmann. The SPIN Model Checker. IEEE Transactions on Software Engi-

neering, 23(5):279-295, May 1997.

[24J Gerard J. Holzmann. Designing Executable Abstractions. In Proceedings of Formal

Methods in Software Practice, Clearwater Beach, Florida, USA, March 1998. ACM Press.

Invited keynote address.

[25J Gerard J. Holzmann. Logic Verification of ANSI-C code with SPIN. In SPIN model

checking and software verification, pages 131-147. Lecture Notes in Computer Science

1885, Springer Verlag, August 30 - September 1 2000.

[26J Gerard J. Holzmann. ON-THE-FLY, LTL MODEL CHECKING with SPIN, January

2003. (Available at http://spinroot.com/spin/whatispin.html).

[27J Gerard J. Holzmann and D. Peled. An Improvement in Formal Verification. In Proceed-

ings: FORTE 1994, pages 177-191, Berne, Switzerland, October 1994.

[28J Gerard J. Holzmann and Margaret H. Smith. Software Model Checking: Extracting

Models from Source Code. In FORTE/PSTV Conference, Beijing, China, October 1999.

[29J Gerhard J. Holzmann. An Analysis of Bitstate Hashing. In Proceedings of the 15th

Symposium on Protocol Specification, Testing and Verification, pages 301-314, London,

1995. Chapman & Hall.

[30J G.J. Holzmann. From Code to Models. In Proc. 2nd Int. Conf. on Applications of

Concurrency to System Design, pages 3-10, Newcastle upon Tyne, U.K., June 2001.

[31J G.J. Holzmann and M.H. Smith. Automating Software Feature Verification. Bell Labs

Technical Journal, 5:72-87, April- June 2000.

[32J W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. van der Stappen. Model Check-

ing for Managers. In Theoretical and Practical Aspects of SPIN Model Checking, pages

92-107. Lecture Notes in Computer Science 1680, Springer Verlag, July 5 - September

24 1999.

[33J Guoping Jia and Susanne Graf. Verification Experiments on the MASCARA Protocol.

In Proceedings of the 8th Spin Workshop, Toronto, Canada, May 2001.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 94

[34] J.J.D. Bull and P.J.A. de Villiers. Using SPIN to verify Protocols at the Implementation

Level. In Paula Kotzé, John Barrow, and Lucas Venter, editors, Proceedings of SAICSIT

2002, pages 195-204, Port Elizabeth, South Africa, September 2002. ACM International

Conference Proceedings Series.

[35] P.C. Jorgensen. Software Testing: A Cr·aftsman's Approach. CRC Press, Inc., 1995.

[36] Phil Karn and Craig Partridge. Improving Round-Trip Time Estimates in Reliable Trans-

port Protocols. A CM Transactions on Computer Systems, 9(4) :364-373, 1991.

[37] Pim Kars. Experience using Spin and Promela in the Design of a Storm Surge Barrier

Control System. In In Proceedings of SP IN9S, the First Inter·national Workshop on

SP IN, INRS- Télécommunications, Montréal, Quebec, Canada, October 1995.

[38] Pim Kars. The Application of Promela and Spin in the BOS Project. In Proceedings of

the 2nd SPIN Workshop, Rutgers University, New Jersey, USA, August 1996.

[39] Paolo Maggi and Riccardo Sisto. Using SPIN to Verify Security Properties of Crypto-

graphic Protocols. In Proceedings of the 9th SPIN Workshop, Grenoble, France, April

2002.

[40] G.J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

[41] Craig Partridge. Gigabit Networking. Addison-Wesley Professional Computing Series.

Addison-Wesley Publishing Company, Inc, One Jacob Way, Reading, Massachusetts

01867, 1994.

[42] Doron A. Peled. Software Reliability Methods. Texts in Computer Science. Springer-

Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010 USA, 2001.

[43] John Penix, Willem Visser, Eric Engstrom, Aaron Larson, and Nicholas Weininger. Ver-

ification of Time Partitioning in the DEOS Scheduler Kernel. In 22nd Inter·national

Conference on Software Engineering, pages 488-497, June 2000.

[44] T. Ruys and R. Langerak. Validation of Bosch' Mobile Communication Network Ar-

chitecture with SPIN. In In Proceedings of SPIN97, the Third International Workshop

on SPIN, University of Twente, Enschede, The Netherlands, April 1997. (Also available

from URL:http:j jnetlib.bell-Iabs.comjnetlibjspinjws97 jruys.ps.Z.).

[45] F. Schneider, Steve M. Easterbrook, John R. Callahan, and Gerard J. Holzmann. Vali-

dating Requirements for Fault Tolerant Systems using Model Checking. In Proc. Inter-

national Conference on Requirements Engineering, ICRE, pages 4-14, Colorado Springs,

Co., USA, April 1998.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 95

[46] Siegfried Loffier and Ahmed Serhrouchni. Creating Implementations from Promela Mod-

els. In Proceedings of the 2nd SPIN Workshop, Rutgers University, New Jersey, USA,

August 1996.

[47] Richard W. Stevens. TCP lIP Illustrated: The Protocols, volume 1 of Addison- Wesley

professional computing series. Addison-Wesley Longman, Inc., One Jacob Way, Reading,

Massachusetts 01867, 1994.

[48] Richard W. Stevens. TCP lIP Illustrated: The Implementation, volume 2 of Addison-

Wesley professional computing series. Addison-Wesley Longman, Inc., One Jacob Way,

Reading, Massachusetts 01867, 1998.

[49] Jan Tretmans, Klaas Wijbrans, and Michel R. V. Chaudron. Software Engineering with

Formal Methods: The Development of a Storm Surge Barrier Control System - Revisiting

Seven Myths of Formal Methods. Formal Methods in System Design, 19(2):195-215, 2001.

[50] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Proceedings of

the 10th Iniernationol Conference on Application and Theory of Petri Nets, volume II,

pages 1-22, Bonn, West Germany, 1989.

[51] F.A. van Riet. LF: A Language for Reliable Embedded Systems. Master's thesis, Depart-

ment of Computer Science, University of Stellenbosch, Stellenbosch 7600, South Africa,

November 2001.

[52] W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - Second Generation of

a Java Model Checker. In In Proc. of Post-CAV Workshop on Advances in Verification,

Chicago, Illinois, July 2000.

[53] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In In Proc. of

the 15th International Conference on Automated Software Engineering (ASE), Grenoble,

France, September 2000.

[54] P. Wolper and D. Leroy. Reliable Hashing without Collision Detection. In Proceed-

ings Computer-Aided Verification, LNCS 693, pages 59-70, Elounda, Crete, June 1993.

Springer- Verlag.

[55] Clement Yuen and Wei Tjioe. Modeling and Verifying a Price Model for Congestion

Control in Computer Networks Using PromelajSpin. In Proceedings of the 8th Spin

Workshop, Toronto, Canada, May 2001.

Stellenbosch University http://scholar.sun.ac.za

