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Summary

The importance of host genetic factors in susceptibility for human immunodeficiency

virus (HIV) infection and disease progression to acquired immunodeficiency

syndrome (AIDS) has been shown with the identification of a 32 base pair (bp)

deletion in the coding region of the human CC chemokine receptor 5 gene (eeR5).

CCR5 serves as a cellular receptor for HIV entry and together with the CD4+

molecule, facilitates the infection of host target cells. The eeRS deletion mutation,

which results in the formation of a truncated receptor, is associated with resistance to

HIV-1 infection when found homozygously and slower disease progression to AIDS

when found heterozygously. Together with this "protective" genetic variant, two

single nucleotide polymorphic (SNP) sites within the coding region of CC chemokine

receptor 2 (eGR2-V641) and 3' untranslated region (3'UTR) of the CXC chemokine,

stromal derived factor-1 ~ (SOF1-3'A) genes, have been associated with influencing

disease proqression to AIDS. To date, screening of genetic variants in the GeRS,

eGR2 and SOF1 genes has been largely restricted to Caucasian population groups

and it is thus not clear whether certain mutations and/or SNPs are relatively specific

to individual population groups or rarely observed in Africans.

In this study, comprehensive mutation detection assays were designed for the entire

coding regions of the eeRS and eeR2 genes and a partial region of the 3'UTR of

SOF1, to identify both known and novel "protective" or "causative" mutations and/or

SNPs, which may playa role in genetic susceptibility to HIV-1 infection, within a

predominantly African population. The eeRS, eeR2 and SOF1 mutation detection

assays, based on DGGE (denaturing gradient gel electrophoresis), allowed for the
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complete analysis of 10, 5 and 30 individuals per denaturing gel, respectively. The

study cohort consisted of approximately 100 HIV seropositive patients and 150 HIV

seronegative controls from the diverse ethnic groups of South Africa. Several novel

mutations and SNPs with a possible African origin were identified. These novel

mutations or collectively occurring novel SNPs may have a significant effect on the

normal functioning and expression of chemokines and chemokine receptors and thus

influence host susceptibility to HIV-1 infection and/or disease progression to AIDS.
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Opsomming

Die belangrikheid van gasheer genetiese faktore by vatbaarheid vir menslike

immuniteitsgebrek virus (MIV) infeksie en siekteprogressie na die verworwe

immuniteitsgebrek sindroom (VIGS) is aangetoon deur die identifikasie van 'n 32

basis paar (bp) delesie in die koderende streek van die menslike ee chemokien

reseptor (CCR5) geen. eeR5 dien as 'n sellulêre reseptor vir MIV toegang en saam

met die eD4 molekule, fasiliteer dit die infeksie van gasheer teikenselle. Die eCRS

delesie mutasie, wat lei tot die vorming van 'n afgekapte reseptor, word geassosieer

met weerstand teen MIV-1 infeksie wanneer dit homosigoties voorkom en met

vertraagde progressie na VIGS wanneer dit heterosigoties voorkom. Saam met

hierdie "beskermende" genetiese variant, is daar twee enkel nukleotied polimorfiese

(ENP) setels in die koderende streek van die ee chemokien reseptor 2 (CeR2-V641)

en 3' ongetransleerde streek van die exe chemokien, stromaal afgeleide faktor-1 p

(SOF1-3'A) gene, wat siekte progressie na VIGS beïnvloed. Tot dusver, is die sifting

van genetiese variante in die CCRS, CCR2 en SOF1 gene hoofsaaklik beperk tot die

Kaukasiër populasie groepe en dit is dus onduidelik of sekere mutasies en/of ENPs

spesifiek tot verskillende populasie groepe behoort, en of dit selde in Swart populasie

groepe waargeneem word.

In hierdie studie is omvattende mutasie opsporings toetse ontwerp vir die volledige

koderende streke van die CCRS en CCR2 gene en 'n gedeelte van die 3'

ongetransleerde streek van die SOF1 geen om beide bekende en nuwe mutasies

en/of ENPs, wat 'n rol mag speel in genetiese vatbaarheid vir MIV-1 infeksie, in 'n

oorheersende Swart populasie te identifiseer. Die CCRS, CCR2 en SOF1 mutasie
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opsporings toetse, gebaseer op DGGE (denaturerende gradiënt gel elektroferese), is

gebruik vir die volledige analise van 10, 5 en 30 individue onderskeidelik. Die studie

groep het bestaan uit ongeveer 100 HIV seropositiewe pasiënte en 150 HIV

seronegatiewe kontroles, afkomstig vanuit die diverse etniese groepe in Suid-Afrika.

Verskeie nuwe mutasies en ENPs met 'n moontlike oorsprong in Swartmense, is

geidentifiseer. Hierdie nuwe mutasies of ENPs wat saam voorkom kan 'n

betekenisvolle effek hê op die normale funksionering en uitdrukking van chemokiene

en chemokien reseptore en dus 'n invloed hê op die gasheer se vatbaarheid vir MIV-

infeksie en/of progressie na VIGS.
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Chapter 1

General Introduction
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1.1. Human Immunodeficiency Virus (HIV) and Acquired

Immunodeficiency Syndrome (AIDS)

Acquired immunodeficiency syndrome (AIDS) was first diagnosed in 1981, in a few

homosexual men [Morbidity and Mortality Weekly Report, 1981a; Morbidity and

Mortality Weekly Report, 1981b], but it has spread beyond this risk group and now

includes sexually active heterosexual individuals, intravenous drug users, infants,

health care workers and haemophiliacs. In 1983 it was clearly demonstrated that the

human immunodeficiency virus (HIV) is the infectious agent that causes AIDS [Barre-

Sinoussi et aI., 1983; Gallo et aI., 1983; Gelman et aI., 1983]. HIV slowly attacks the

immune system, thus destroying the body's defence against other infections and

malignancies that eventually cause AIDS and death.

HIV belongs to the lentivirus family of retroviruses. Lentiviruses are complex

retroviruses with several accessory or regulatory genes. Two distinct types of HIV

are known, namely HIV-1 and HIV-2. The two HIV types are distinguished on the

basis of their genome organisations and phylogenetic relationships with other primate

lentiviruses. HIV-1 is divided into three groups M (major), N (novel or non-M-non 0)

and 0 (outlier). Group M viruses are the most widespread group of HIV-1 and are

further subdivided into 10 subtypes (A - 0, F - K). HIV-2 is comprised of 6 diverse

subtypes (A - F) [Los Alamos HIV database (hiv-web.lanl.gov)] (see Figure 1). The

most common HIV type is HIV-1, with HIV-2 being more prevalent in West Africa

[Clavel et aI., 1987; Kanki and De Cock, 1994]. It has also been found that HIV-2

results in a much slower disease progression to AIDS than HIV-1 [Marlink et aI.,

1988; Markowitz, 1993; Marlink et al., 1994].
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HIV

I
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I

GROUPS
I I

I N I I 0 I

SUBTYPES/CLADES SUBTYPES/CLADES

r I I I I I I I I I

r
I I I I r I

A B D F G H J K A B C D E F

Most prevalent subtype in South Africa

Figure 1. HIV-1 is divided into three groups M, Nand 0 and Group M is further subdivided into 10 subtypes (A - D, F - K). The most prevalent

HIV-1 subtype in South Africa is subtype C. HIV-2 is comprised of six diverse subtypes (A - F).
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1.1.1. HIV infection and AIDS in South Africa

Of the estimated 36.1 million worldwide HIV infections, 25.3 million are found in sub-

Saharan Africa [UNAIDS, December 2000 (www.unaids.org)]. The AIDS epidemic in

South Africa is on the increase and at the beginning of the new century, with an

estimated total of 4.7 million HIV infected individuals and thus 11,6% of the total

population, South Africa has the largest number of individuals living with HIV/AIDS in

the world. Approximately 2.5 million women (15 to 49 years), 2.2 million men (15 to

49 years) and 106 109 children (0 to14 years) are infected with HIV. Furthermore the

different geographical areas of South Africa show variation in the percentages of HIV

infected individuals, with the Kwazulu Natal Province having a prevalence of 36.2%

and the Western Cape Province having a prevalence of 8,7%. Studies of HIV

seropositive women attending antenatal clinics across South Africa form the basis for

provincial and national HIV/AIDS estimates [Department of Health, South Africa,

2001].

South Africa has two independent and distinct HIV-1 epidemics. The first HIV-1

epidemic started in the early 1980s and has remained mainly restricted to

homosexual males (subtype B and D), while the second, more predominant HIV-1

epidemic started in the late 1980s and has spread rapidly among heterosexuals

(subtype C) [Engelbrecht et aI., 1995; Williamson et aI., 1995; van Harmelen et aI.,

1997; Moodley et aI., 1998]. Previous studies show that although there is evidence

of diverse HIV-1 subtypes in South Africa, HIV-1 subtype C is the most commonly

found HIV-1 subtype in all the different provinces of South Africa [Engelbrecht et aI.,

1995; Engelbrecht et aI., 1998; Moodley et aI., 1998; Engelbrecht et aI., 1999;

van Harmelen et aI., 1999] (see Figure 1). Presently, subtype C constitutes 56% of

4
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all circulating subtypes of HIV-1 group M viruses in the world [Esparza and

Bharmarapravati, 2000] and is the most spread HIV-1 subtype worldwide [UNAIDS,

December 2000 (www.unaids.org)]. The main mode of transmission of the HIV-1

subtype C in South Africa is via heterosexual intercourse [van Harmelen et ai., 1997]

and the key factors which playa role in the spread of the virus is the country's large

migrant workforce, high rates of sexually transmitted diseases, thriving commercial

sex worker industry and poverty [Bredell H et ai., 1998; Moodley et ai., 1998; Cohen,

2000a].

Multiple factors are responsible for influencing an individual's susceptibility to HIV-1

infection and/or disease progression to AIDS. It has been suggested that the

average interval of eight to ten years between HIV-1 infection and disease

progression to AIDS is shorter in Africa, when compared to the rest of the world

[Grant et al., 1997, Cohen, 2000b]. Besides poor socioeconomic factors (insufficient

medical treatment and poverty) and viral factors, it's possible that host factors

(immunological and genetic) may play an important role in susceptibility to HIV-1

infection and/or disease progression to AIDS within certain African ethnic groups of

South Africa.

1.1.2. Disease progression to AIDS

The course of HIV infection involves a number of stages and the progression to AIDS

does not follow a specific or defined path. A drop in the level of host cells expressing

CD4 molecules at their surfaces, such as CD4+ T lymphocytes and CD4+

macrophages, indicates a decrease in immune functioning and progression to a new

disease stage. CD4 molecules are surface glycoproteins, which promote immune
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responses, such as antibody production. The viral load (amount of virus in the

bloodstream) is very high at the point of seroconversion and drops transiently during

seroconversion, but only to rise again during the symptomatic phase of HIV infection.

Thus measuring the CD4+ cell count and/or the amount of viral load is an indication

of how long an individual is infected with HIV (Figure 2) [Reviewed in Daar, 1998;

Arnaout et aI., 1999; Phair, 1999].

CD4 cells

Seroconversion Viral load •••••••••••

! Asymptomatic Symptomatic AIDS~.~----------~~~.~------~~~.~--_.~..• •• •• •....-~: ~
"e 1000 : \
e :.. .
! ...-•••••••••••••o • 02..----------------------------~

Infection

1
••••••••••••••••••••

•••••••••••••••
500

Time in years

coe
fnco"Cc.co ..£&

-fne.~.- c.>0
CJ
«za:::

Figure 2. The CD4+ cell count and/or the amount of viral load is an indication of the individual's

disease progression to AIDS.

HIV disease can be divided into the following stages: asymptomatic infection; early

symptomatic infection (CD4+ count of more than 500 cells/mm3 and low viral load);

middle symptomatic infection (CD4+ count of 200-500 cells/mrrr'): late symptomatic

infection (CD4+ count of 50-200 cells/mrrr' and high viral load); and advanced HIV
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disease (AIDS) [Vlahovet a/., 1998; Centers for Disease Control and Prevention

(www.cdc.org)]. HIV seropositive patients are classified into groups, depending on

their rate of disease progression to AIDS. For the studies presented in this

dissertation, the HIV seropositive individuals were classified as follows: slow

progressors are individuals who develop AIDS within 10-12 years after infection;

normal progressors are individuals who develop AIDS within 5-10 years after

infection; and fast progressors are individuals who develop AIDS within 2-5 years

after infection. We also find asymptomatic individuals who after 10-12 years have a

CD4+ count of more than 500 cells/rnrrr', a very low viral load and show no

symptoms of progressing to AIDS. These HIV seropositive individuals are referred to

as long-term non-progressors (LTNPs) [Lifson et a/., 1991; Magierowska et a/., 1999]

(see chapter 2.2). HIV seropositive patients are also grouped into four (I - IV) clinical

stages, depending on their specific AIDS-related clinical symptoms [World Health

Organisation (www.who.int)].

HIV-1 tropism (preferences for specific host target cells) has been associated with

disease progression. Viruses that infect mainly macrophages and to a lesser degree

T-Iymphocytes are termed macrophage tropic (M-tropic) or non-syncytium inducing

(NSI) and are normally present during the early or asymptomatic stages of HIV-1

infection [Roos et a/., 1992; Schuitemaker et a/., 1992; Connor et a/., 1993; Zhu et

a/., 1993], while viruses that infect mainly T-Iymphocytes are referred to as T cell line

tropic (T-tropic) or syncytium inducing (SI) and are normally present during the late or

symptomatic stages of HIV-1 infection [Tersmette et a/., 1988; Tersmette et a/.,

1989].
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Most HIV seropositive patients experience a shift in viral tropism, which results in the

conversion of the NSI phenotype to the SI phenotype. This conversion is usually

associated with the onset of rapid disease progression to AIDS [Tersmette et a/.,

1988; Tersmette et a/., 1989; Schuitemaker et a/., 1992; Connor et a/., 1993].

Several studies indicate that the shift in viral tropism, which is largely related to

changes in co-receptor usage, is due to mutations in the viral envelope (env) gene

(see chapter 1.2.3.) [De Jong et a/., 1992; Fouchier et a/., 1992; Shioda et a/., 1992;

Connor et a/., 1996; Speck et a/., 1997; Connor et a/., 1997; Verrier et a/., 1999]. A

recent study by Treurnicht et a/., 2001, suggests that subtype C isolates from South

African HIV seropositive individuals, remain phenotypically NSI due to the lack of

sequence variation in the viral env gene.

In addition to viral load and viral env genetic variants, other viral factors have been

found to influence and thus predict the rate of disease progression to AIDS. These

include mutations identified in the gag gene (encodes for the viral capsid and matrix

proteins) [Huang et aI., 1998], po/ gene (encodes for the viral reverse transcriptase)

[Merigan et a/., 1996] and viral regulatory or accessory genes, namely ner[Deacon et

a/., 1995; Kirchhoff et a/., 1995; Salvi et a/., 1998; Rhodes et a/., 2000], vir, vpr, vpu,

tat [Michael et a/., 1995] and rev [Iversen et a/., 1995].
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1.2. Chemokines and Chemokine Receptors

Chemokines and chemokine receptors play pivotal roles in the genesis, regulation,

maintenance and functioning of the host's immune system. Immunity is the ability of

the host to defend itself against infectious agents, foreign cells and abnormal host

cells. Two types of immunity exist namely, "innate immunity" (non-specific immunity)

and "acquired immunity" (specific/adaptive immunity). "Innate immunity" is present at

birth and is the main, first-line defence against invading organisms. It is

characterised as being present for life, having no specificity and no memory.

"Acquired immunity" is the antithesis of innate immunity, as it is absent at birth, has

specificity and memory. Various leukocytes (white blood cells) play vital roles in

immunity. These include granulocytes (neutrophils, eosinophils and basophils),

monocytes and lymphocytes [Craps and Basie, 1993; Mader, 1996; Peakman and

Vergani, 1997; Playfair and Chain, 2001].

Granulocytes are derived from the bone marrow and obtained their name from the

large numbers of granules present in their cytoplasm. They constitute approximately

65% of all leukocytes and differentiate into neutrophilis, eosinophils and basophils,

which all circulate in the blood. Neutrophils, short-lived phagocytic cells whose

granules contain numerous bactericidal substances, are the most common

leukocytes of the blood. Eosinophils are leukocytes with large granules that contain

highly basic or 'cationic' proteins, important in killing large parasites. Basophils are

important for inflammatory responses and have large granules, which contain heparin

and vasoactive (blood vessel active) amines [Craps and Basie, 1993; Peakman and

Vergani, 1997; Playfair and Chain, 2001].

9
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Bone marrow-derived monocytes are the largest nucleated cells of the blood and

constitute approximately 5 - 10% of all circulating leukocytes. Monocytes develop

into macrophages when they migrate into tissues and become the chief resident

phagocyte of the tissues. Several specific forms of macrophages exist, including

alveolar macrophages in the lung, Kupffer cells in the liver, mesangial cells in the

kidney, microglial cells in the brain and osteoclasts in bone [Craps and Basie, 1993;

Peakman and Vergani, 1997; Playfair and Chain, 2001].

Lymphocytes are closely associated with the lymphatic system and constitute the

remaining 25 - 35% of leukocytes. They are divided into 2 subgroups, namely B

and T lymphocytes, present in the blood at a ratio of approximately 1:5.

B lymphocytes (bone marrow-derived) are involved in antigen recognition and as

plasma cells in tissues they secrete antibodies into the blood. T lymphocytes

(thymus-derived) do not produce antibodies, but are directly involved in distinguishing

and attacking cells that bear antigens. A few T lymphocytes are referred to as T

helper (Th) cells and playa vital role in regulating immune responses by secreting

cytokines (small non-antigen-specific protein molecules). Th cells are further

subdivided into Th1 and Th2 cells on the basis of which cytokines they secrete. Th1

cells are important for driving T cell-mediated immunity or delayed hypersensitivity,

while Th2 cells are involved in antibody production. Another type of immune cell,

derived from the bone marrow, is a dendritic cell. Dendritic cells, found in blood,

lymph nodes, bone marrow and tissues, have a specialised function in the activation

and priming of lymphocytes. The immune system is thus composed of specialised

leucocytes with organised structures and distinct functions [Craps and Basie, 1993;

Mader, 1996; Peakman and Vergani, 1997; Playfair and Chain, 2001].

10
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1.2.1. Chemokines

Chemokines, small polypeptides of generally 8-14 kilodaltons (kDa) in size, are a

complex superfamily of chemoatlractant cytokines secreted during inflammatory

responses to recruit and mediate migration of different subsets of leukocytes from the

circulation to sites of infection or injury [Oppenheim et ai., 1991; Schall, 1991; Miller

et ai., 1992; Lindley et a/., 1993; Baggiolini et ai., 1994, Murphy, 1994; Schall et ai.,

1994]. It has been discovered that the functioning of chemokines is however no

longer restricted to cell attraction and migration, as chemokines are multifunctional

and have been shown to play a role in regulating various aspects of the host's

immune defence system such as, facilitating angiogenesis (the formation and

differentiation of blood vessels) [Baggiolini et a/., 1997; Rollins, 1997], modulating

hematopoiesis (the formation of blood or of blood cells) [Broxomeyer et ai., 1989;

Rollins, 1997], induction and enhancement of T helper 1 (Th1) and T helper 2 (Th2)-

associated cytokine responses [Loetscher et ai., 2000], dendritic cell maturation

[Sozzani et a/., 1998], B [Forster et al., 1994] and T [Vicari et a/., 1997] lymphocyte

development, and suppressing HIV-1 infection [Cocchi et ai., 1995].

All identified chemokines can thus be divided into two functional groups namely, the

"inflammatory chemokines" and the "homing (homeostatic) chemokines". The

"inflammatory chemokines" are expressed by different types of cells in most tissues

and facilitates the migration of leukocytes during an inflammatory response that

arises during the invasion of the body by pathogenic organisms. The "homing

chemokines" are produced by specific areas of lymphoid tissue and play an important

role in the development, maintenance and functioning of the host's immune system

[Baggiolini et ai., 2000].
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Most chemokines are closely related in primary amino acid sequence, secondary and

tertiary structures [Oppenheim et al., 1991; Rollins, 1997] Similarity in the genes

encoding for these chemokines suggest that they arose by duplication of an ancestral

gene [Baggiolini et ai., 1994]. Chemokines share the same basic structural features;

a relatively short disordered amino-terminus prior to the first cysteine residue is

attached to the rest of the molecule by disulphide bonds between the first and third

and second and fourth cysteine residues, which stabilises three antiparallel B-pleated

sheets that form the core and provide a flat base over which the carboxy-terminal a-

helix of 20 - 30 amino acids extends. The chemokines are thus identified by

characteristic sequence elements that give rise to certain structural motifs (three 13-

sheets and a a-helix) [Baggiolini et a/1994; Rollins, 1997].

Presently, more than 40 human chemokines have been identified [Yoshie et ai.,

2001]. Chemokines are grouped into four subfamilies based on the arrangement of

the first two of four highly conserved amino-terminal cysteine residues (see Figure 3):

1. CXC chemokines - They have a single amino acid residue separating the first

and second conserved cysteine residues and are also named the a-

chemokine family [Schall, 1991].

2. CC chemokines - They have the first two conserved cysteine residues

immediately adjacent to each other and are also named the l3-chemokine

family [Schall, 1991].

3. C chemokines - They lack two of the four conserved cysteine residues as

only the second and fourth cysteine residues are preserved and are also

named the V -chemokine family [Kelner et ai., 1994].
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4. CX3C chemokines - They have three intervening amino acids between the

first two conserved cysteine residues and are also named the ó-chernokine

family. Unlike all other chemokines, the CX3C chemokines have an

extracelIuair stalk and cytoplasmic domain region, which is separated by a

transmembrane (TM) segment [Bazan et al., 1997; Pan et a/., 1997].

Chemokine subfamily Structure

1. CXC chemokines

2. CC chemokines

3. C chemokines

T

4. CX3C chemokines

Cytoplasmic domai

70-80 amino acids 241 amino acids

Figure 3. Chemokines are grouped into four subfamilies based on the arrangement

of the first two of four highly conserved amino-terminal cysteine residues (Adapted

from Ward and Westwiek, 1998). Chemokines are not drawn to scale.

Although there are 15 CXC and 24 CC known chemokines, there is only one member

each from the C chemokines and the CX3C chemokines that has been identified thus

far [Yoshie et al., 2001]. The CXC and CC chemokine subfamilies thus form the two

major groups of chemokines. Generally, the CXC chemokines are principally involved

in the activation of neutrophils, while the CC chemokines do not activate neutrophils,
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but stimulate multiple other cell types, namely monocytes, lymphocytes, basophils

and eosinophils [Clark-Lewis et a/., 1995; Baggiolini et a/., 1997; Rollins, 1997].

Furthermore, most of the genes encoding for the CXC and CC chemokines cluster at

human chromosome 4 and 17, respectively [Baggiolini et a/., 1994; Rollins, 1997].

The recent identification of novel CXC and CC chemokines however revealed that

most of these newly discovered chemokines are highly specific for lymphocytes and

also attract dendritic cells [Yoshie et a/., 1997]. It was also discovered that their

genes are mapped to different chromosomal loci when compared to the "classical",

CXC and CC chemokines gene clusters at chromosomes 4 and 7 [Yoshie et a/.,

2001]. The CXC chemokines have thus now been divided into 2 groups based on

the presence or absence of a glutamic acid-leucine-arginine (ELR) motif preceding

the first cysteine. The chemokines with the ELR motif are the "classical" chemokines

and attract neutrophils [Schall et a/., 1994], while the non-ELR motif chemokines

attract activated lymphocytes [Taub et a/., 1993, 1995; Liao et a/., 1995]. Similarly,

while classical" CC chemokines attract monocytes, some of the recently identified

novel CC chemokines are specific for lymphocytes and dendritic cells and do not

attract monocytes [Yoshie et a/., 1997; Zlotnik et a/1999].

In the past, chemokines were named randomly and no specific system was used.

Some chemokines have been included with the interleukins, which are cytokines that

function as potent intracellular messengers (e.g., interleukin-8, IL-8). Other

chemokines were given names describing a function (e.g., monocyte chemotactic

protein-1, MCP-1) or named according to the cell type that secretes the chemokine

(e.g., stromal derived factor-1, SDF1). A new nomenclature system has been

14

Stellenbosch University http://scholar.sun.ac.za



recently proposed for the chemokine ligands and indicates the chemokine

subfamilies (CXC, CC, C and CX3C) followed by L (for ligand) and serial numbers

(e.g., IL-8 is CXCL8, MCP-1 is CCL2 and SDF1 is CXCL 12) [Zlotnik and Yoshie,

2000]. Due to the relatively recent implication of the new nomenclature system, in

this dissertation the old names have been used, followed by the new nomenclature in

brackets.

1.2.2. Chemokine receptors

Chemokine receptors are proteins that belong to a large, functionally diverse family

of receptors that contain seven hydrophobic domains that are suggested to be

transmembrane helices, which span the cell membrane and signal by coupling to

heterotrimeric guanosine 5'-triphosphate (GTP)-binding proteins found inside the cell.

They are thus designated seven-transmembrane domain, G protein-coupled

receptors [Baggiolini et al., 1994; Horuk, 1994, Murphy, 1994]. The function of

chemokine receptors involves their binding to a variety of chemokines. The direct

interaction between the chemokine receptors and chemokines mediates the multiple

cellular effects or biological functions of specific chemokines in the host's immune

system [Schall, 1991; Oppenheim et al., 1991; Baggiolini et al., 1994; Horuk, 1994;

Murphy, 1994; Baggiolini et al., 1997].

Structural features of the chemokine receptors include an extracellular amino-

terminus containing negatively charged residues that may be involved in ligand

binding, and a cytoplasmic carboxy-terminus containing a serine and threonine-rich

region that may be a target for phosphorylation by G-protein-coupled receptor

kinases after ligand binding. The seven transmembrane spanning a-helical domains
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of the chemokine receptor contain conserved pralines, while three intracellular and

three extracellular loops are composed of hydraphilic amino acids. Disulfide bonds

formed by highly conserved cysteine residues are found between the first and

second extracellular loop and between the amino-terminus and third extracellular

loop. All chemokine receptors also have an amino acid sequence, DRYLAIVHA, in

the second intracellular loop domain. The presence of one or two N-linked

glycosylation sites is also observed in various chemokine receptors [Horuk, 1994;

Murphy, 1994; Strader et al., 1994; Baggiolini et al., 1997; Rollins, 1997].

Chemokine receptors are classified according to the specific chemokines that they

bind and the chemokine nomenclature thus indicates the ligand subfamilies (CXC,

CC, C, CX3C) followed by R (for receptor) and then a serial number based on the

chronological order in which the chemokine receptor was identified (e.g., CXCR4)

[Zlotnik and Yoshie, 2000]. Presently, there are six CXC chemokine receptors, 11

CC chemokine receptors, one C chemokine receptor and one CX3C chemokine

receptor that have been cloned and characterised [Yoshie et al., 2001]. Similarly to

the chemokine genes, chemokine receptor genes were mainly mapped at specific

loci on chromosomes 2 and 3 [Murphy, 1994; Baggiolini et al., 1997; Rollins, 1997],

but some of the recently identified chemokine receptors map to completely different

chromosomal loci [Yoshie et al., 2001].

Various studies regarding structure-function relations have been performed to

understand the ligand requirements for binding and the functional activation of

specific cell surface receptors [Horuk, 1994]. It has been suggested that chemokines

have two sites of interaction with their chemokine receptors, namely the amino-
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terminal region and the core structure (antiparallel ~-pleated sheets) that follows the

second cysteine residue. The initial interaction thus takes place between the core

region of the chemokine and the extracellular domain of the chemokine receptor,

which then facilitates further binding of the amino-terminal of the chemokine for

receptor activation [Clark-lewis et al., 1995].

It has been observed that "inflammatory chemokines" and their chemokine receptors

have highly promiscuous ligand-receptor relationships and thus a single chemokine

receptor can exhibit overlapping ligand specificities by recognising more than one

chemokine, or conversely, a single chemokine can bind more than one chemokine

receptor [Murphy, 1994; Baggiolini et a/., 1997; Rollins, 1997]. "Homing chemokines"

however are selective for their chemokine receptors and thus have more specific

ligand-receptor relationships [Yoshie et a/., 1997; Zlotnik et a/., 1999; Zlotnik and

Yoshie,2000].

1.2.3. Role of chemokine and chemokine receptors in HIV-1 entry

The first indication that chemokines playa role in HIV-1 infection came from a study

done by Cocchi et a/., 1995, who showed that the CC or ~-chemokines, RANTES

(regulated on activation normal T cell expressed and secreted) (CCl5), MIP-1 a

(macrophage inflammatory protein alpha) (CCl3) and MIP-1 ~ (macrophage

inflammatory protein beta) (CCl4), secreted by CD8+ cells (cytotoxic T cell

lymphocytes), could act as potent inhibitors by preventing infection by M-tropic or NSI

HIV-1 viruses. later studies showed SDF1 (CXCl12) act as an inhibitor of T-cell

tropic (T-tropic) or syncytium inducing (SI) HIV-1 viruses and also possibly influence

viral replication [Bleul et a/., 1996a; Oberlin et aI., 1996].
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The discovery that specific chemokine receptors, expressed in various cells, serve as

HIV-1 co-receptors (see Table 1) [Alkhatib et aI., 1996; Choe et aI., 1996; Deng et aI.,

1996; Doranz et aI., 1996; Oragie et aI., 1996; Feng et al., 1996], further emphasised

the importance of understanding the precise way in which chemokines influence

HIV-1 pathogenesis. Chemokines could suppress or even prevent HIV-1 infection by

either direct competition with the virus for binding to the chemokine receptors (see

Figure 4) or by downregulating the biosynthesis of the chemokine receptors [Bleul et

aI., 1996a; Oberlin et aI., 1996; Samson et aI., 1996a; Combadiere et aI., 1996;

Raport et aI., 1996; Amara et aI., 1997]. Elevated levels of chemokines have been

observed in exposed yet uninfected individuals and has been associated with

delaying the disease progression to AIDS in HIV seropositive patients [Paxton et aI.,

1996; Paxton et aI., 1998; Ullum et aI., 1998].

After the identification of the CD4 molecule as the primary receptor for HIV-1

[Dalgeish et aI., 1984; Klatzman et aI., 1984], it became evident that an additional co-

receptor was required for infection. Subsequently, several studies identified this

additional co-receptor as a chemokine receptor [Alkhatib et al., 1996; Choe et al.,

1996; Deng et aI., 1996; Doranz et aI., 1996; Oragie et aI., 1996; Feng et aI., 1996].

There are multiple sites on chemokine receptors, especially in their amino terminus

and extracellular loops, which can interact with the virus. Contact sites vary

depending on the specific virus infecting the target cell and specific chemokine

receptor utilised for entry. An example is the amino terminus of CCR5 (CC

chemokine receptor 5), including aspartic acids at position 2 and 11 and a glutamic

acid at position 18, which is required for M-tropic HIV-1 env and membrane fusion

[Oragie et aI., 1998] (see chapter 2.2.1).
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Entry of HIV-1 into target cells is a multistep process, which requires the virally

encoded env protein complex to interact with the CD4 molecule and subsequently,

the specific chemokine receptor on the target cell surface. The HIV-1 env protein

complex is initially synthesised as a precursor, glycoprotein (gp) 160, which is then

extensively glycosylated and proteolytically cleaved by a cellular convertase into a

surface subunit, gp120 and a transmembrane subunit, gp41 [Earl et aI., 1991; Willey

etal.,1988].

Structural analysis have shown that gp120 contains five hypervariabie loop structures

(VI - V5) [Starcich et aI., 1986] and several studies show that the V3 loop of gp120

plays a critical role in determining fusion specificity [Chesebro et aI., 1991; Hwang et

aI., 1991; Hwang et aI., 1992]. HIV-1 viruses selective for macrophages therefore

have a different sequence in the third hypervariabie (V3) loop of gp120 than those

HIV-1 viruses selective for lymphocytes. Single amino acid changes in the V3 loop

have been shown to alter chemokine receptor utilisation [De Jong et aI., 1992;

Fouchier et aI., 1992; Shoida et al., 1992; Speck et aI., 1997; Verrier et aI., 1999].

The first amino terminus of gp41 contains a hydrophobic, glycine-rich "fusion" peptide

that is necessary for the fusion of the cellular and viral membranes [Moore et al.,

1993; Sattentau et aI., 1995; Lapham et aI., 1996].

HIV-1 infection is thus initiated by high affinity binding of the viral env gp120 to a CD4

molecule on the surface of the target cell [Dalgleish et aI., 1984; Klatzmann et aI.,

1984; Maddon et aI., 1986, Lasky et aI., 1987]. This results in the formation of a

CD4-gp120 complex, which induces a conformational change in the viral envelope to

enable gp120 to bind to the chemokine receptor [Trkola et aI., 1996; Wu et aI., 1996;
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Speck et al., 1997, Kwong et al., 1998; Rizzuto et al., 1998]. This further results in

the exposure of the hydrophobic amino-terminal "fusion" peptide of viral env gp41 for

eventual virus-host cell fusion [Moore et al., 1993; Sattentau et al., 1995; Lapham et

al., 1996] (see Figure 4).

D
Chemokine

OR

HIVenvelope

Figure 4. HIV entry is initiated by the interaction of the virion envelope glycoproteins,

gp120 and gp41, with two cellular host receptors, of which one is a CD4 molecule

and the other, a chemokine receptor, whose natural ligands are specific chemokines.

Two principle co-receptors have been described, namely CCR5 for HIV-1 M-tropic or

NSI viruses [Alkhatib et al., 1996; Choe et al., 1996; Oeng et al., 1996; Oragic et al.,

1996] and CXCR4 for HIV-1 T-tropic or SI viruses [Feng et al., 1996]. There is thus a

current model for co-receptor usage by different viruses. M-tropic or NSI viruses

(termed R5 viruses) infect macrophages, monocytes and T lymphocytes by utilising

the C04 molecules and CCR5 or "less efficient" co-receptors, such as CCR2, CCR3
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as co-receptors for entry [Alkhatib et al., 1996; Choe et al., 1996; Deng et al., 1996;

Oragie et al., 1996]. T-tropic or SI viruses (termed X4 viruses) infect T-Iymphocytes

by utilising CD4 molecules and CXCR4 as co-receptors for entry [Feng et aI., 1996].

The T-tropic or SI viruses may also show dual tropism (termed R5X4 viruses) and

can thus utilise both CXCR4 and CCR5 as co-receptors and other additional

chemokine receptors, such as CCR2 and CCR3 for entry [Choe et al., 1996; Doranz

et al., 1996; Simmons et al., 1996; Berger et al., 1998] (see Table 1 and Figure 5).

Table 1. The main chemokine receptors involved in HIVentry, their biological

ligands, cell expression and utilisation by specific HIV strains.

Receptor Ligands ReferencesExpression Viruses

CCR5 RANTES (CCl5),
MIP-1a (CCl3),
MIP-1 r3 (CCl4)

CXCR4 SDF1 (CXCl12)

CCR2 MCP-1 (CCl2),
MCP-2 (CCl8),
MCP-3 (CCl7),
MCP-4 (CCL 13),
MCP-5 (CCL 12)

CCR3 Eotaxin (CCL 11),
MCP-2 (CCl8),
MCP-3 (CCl7),
MCP-4 (CCL 13),
RANTES (CCl5)

I -309 (CCL 1)CCR8

Monocytes, microglia,
Th 1 cells, memory T
cells, dendritic cells

Neutrophils, monocytes,
microglia, Th1 and Th2
cells, naive Tcells, B
cells, dendritic cells

Basophils, Monocytes,
Th1 and Th2 cells,
dendritic cells

Eosinophils, basophils
monocytes, microglia,
Th2 cells, dendritic cells

Monocytes, B cells, Th2
cells, dendritic cells

R5,
R5X4,
HIV-2,

R5, X4,
R5X4,
HIV-2,

R5X4,
HIV-2

R5X4,
HIV-2

R5X4,
HIV-2

Samson et al., 1996a;
Deng et al., 1996;
Oragie et al, 1996;
Doranz et al., 1996

Bleul et al., 1996a;
Oberlin et al., 1996;
Feng et al., 1996

Charo et al., 1994;
Doranz et al., 1996

Ponath et al., 1996;
Daugherty et al., 1996;

Choe et al., 1996;
Doranz et al., 1996

Tiffany et al., 1997,
Rucker et al., 1997
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Early HIV disease Late HIV disease

Other chemokine receptors SDFl is the natural ligand
e.g. CCR2, CCR3 for CXCR4

<, <,
CCR5/CXCR4

/

Figure 5. Schematic illustration of the current model for co-receptor usage by

different viruses.
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Chapter 2

Study aim and overview
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2.1. Study aim

The aim of the study involved firstly, the designing of comprehensive mutation

detection assays, based on denaturing gradient gel electrophoresis (DGGE) (see

chapter 2.3), for the entire coding regions of the eeRS and eeR2 genes, as well as

the 3' untranslated region (3' UTR) of the SOF1 gene, for genetic analysis. The

reason for this specific approach was due to most previous studies having been

restricted to the genes mentioned above, but mainly focusing on Caucasian

populations. The second part of the aim was thus to identify and determine the

distribution of previously reported and novel mutations of the eeRS, eeR2 and

SOF1 genes, which may play a role in host genetic susceptibility to HIV-1

pathogenesis within a South African population. Our South African population with

it's diverse ethnic groups (described in chapter 3) is ideal for the identification of

African-related protective or causative novel mutations, which can be used in

association studies. Mutations that occur at an allelic frequency of 0.01 or greater,

within a specific population group, are referred to as single nucleotide polymorph isms

(SNPs). It is likely that HIV-1 pathogenesis has a multifactorial nature and we

therefore cannot exclude the possibility that SNPs in a large number of so-called

'weaker genes" could collectively determine an individual's "risk profile" for

susceptibility to HIV-1 infection and/or disease progression to AIDS.
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2.2. Host susceptibility to HIV-1 infection and/or progression AIDS

Although most people are susceptible to HIV-1 infection, there are a few rare

individuals who remain uninfected despite high-risk exposure to the virus. These

"exposed yet uninfected" persons have been identified and include commercial sex

workers [Rowland Jones et ai., 1995; Fowke et ai., 1996; Plummer et ai., 1999],

discordant couples who have unprotected sex [Clerici et aI., 1992; Langlade-

Demoyen et ai., 1994; Beretta et ai., 1996; Mazzoli et ai., 1997; Bernard et ai., 1999,

Goh et aI., 1999; Stanford et aI., 1999], babies of HIV seropositive mothers

[Rowland-Jones et ai., 1993; De Maria et ai., 1994], intravenous drug users

[Barcellini et al., 1995], health care workers who have had neediestick injuries with

HIV-infected blood [Clerici et ai., 1994; Pinto et ai., 1995; Bernard et ai., 1999] and

haemophiliacs who have received HIV contaminated blood products [O'Brien and

Dean, 1997a; Zagury et al., 1998, Salkowitz et al., 2001].

Another observation is that the disease course and clinical outcome of HIV-1

infection varies widely among individuals, even those infected from a common source

[Liu et al., 1997]. The median time from HIV-1 infection to the development of AIDS

is generally eight to ten years, but approximately 5-10% of HIV seropositive

individuals are defined as being long-term nonprogressors because they remain

asymptomatic in the absence of treatment, have normal CD4 cell counts and low or

undetectable viral loads for ten years or longer [Lifson et ai., 1991; Sheppard et ai.,

1993; Cao et ai., 1995; Munoz et ai., 1995; Pantaleo et ai., 1995; Rinaldo et ai.,

1995; Haynes et ai., 1996; Learmont et ai., 1999; Magierowska et al., 1999].

Conversely, approximately 10% of all HIV seropositive individuals (as observed in

some people of African-ethnic origin) display rapid disease progression and develop
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AIDS within five years after HIV-1 infection [Phair et aI., 1992; Haynes et al., 1996;

Grant etal., 1997;Cohen,2000~.

Numerous studies have indicated that susceptibility for HIV-1 infection and the rates

of HIV-1 disease progression are determined by certain parameters, which include

viral characteristics and host immunological and genetic factors. The role of host

factors in susceptibility to HIV-1 infection and/or disease progression to AIDS has

been advanced by the discovery of HIV-1 suppressive chemokines [Cocchi et al.,

1995]. HIV-1 suppressive chemokines have been identified as the natural ligands for

the HIV entry coreceptors, namely specific chemokine receptors, and can thus

modulate the efficiency of HIV-1 infection (discussed in chapter 1) [Bleul et al.,

1996a; Oberlin et al., 1996; Samson et al., 1996a; Combadiere et al., 1996; Raport et

al., 1996; Amara et al., 1997].

Elevated levels of the ~-chemokines, RANTES (CCL5), MIP-1a (CCL3) and MIP-1 ~

(CCL4) and low expression of CCR5 have been associated with relative resistance to

M-tropic HIV-1 infection of CD4 lymphocytes from persons who remain uninfected,

despite multiple high-risk sexual exposures [Paxton et al., 1996; Paxton et al., 1998].

An overproduction of MIP1 ~ (CCL4) has also been associated with slower disease

progression to AIDS [Ullum et al., 1998]. The importance of host genetic factors has

thus been underscored by the identification of mutations in genes encoding specific

chemokines (eg. SDF1 (CXCL 12) and RANTES (CCL5)) and chemokine receptors

(egs. CCR5 and CCR2), which are associated with influencing host susceptibility to

HIV-1 infection and/or disease progression to AIDS (see chapters 3 to 5).
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There are other determinants influencing host genetic susceptibility for HIV-1

infection and/or disease progression to AIDS. Of this host genetic factors include

certain human leucocyte antigen (HLA) allelic distributions of the human major

histocompatibility complex [Carrington et al., 1999a; Hendel et al., 1999] and genetic

variants identified in the mannose binding protein (MBP) [Garred et al., 1997], vitamin

D receptor (VDR) [Hili et al., 1998], interleukin-4 (IL-4) [Nakayama et al., 2000],

interleukin 1 (IL-1) [Witkin et al., 2001], haptoglobin [Delanghe et al., 1998] and

natural resistance-associated macrophage protein 1 (NRAMP1) [Marquet et al. 1999]

genes.

2.2.1. CC chemokine receptor 5 (CCR5)

CCR5 is a seven transmembrane G-coupled protein consisting of 352 amino acids

and belongs to the CC or ~-chemokine receptor family. The natural ligands for CCR5

are the ~-chemokines, RANTES (CCL5), MIP-1a (CCL3) and MIP-1~ (CCL4),

[Samson et al., 1996a]. The second extracellular loop of CCR5 has been shown to

be the principal determinant for ligand selectivity [Samson et al., 1997], while

residues in the CCR5 amino terminus [Blanpain et al., 1999a; Zhou et al., 2000] and

disulfide bonds that stabilise the extracellular loops of CCR5 [Blanpain et al., 1999b]

are required for high-affinity ligand binding.

CCR5 is considered the principle co-receptor for M-tropic or NSI strains of HIV-1 and

together with the CD4 molecule, it facilitates HIV-1 entry during the asymptomatic

phase of infection [Alkhatib et al., 1996; Choe et al., 1996; Deng et al., 1996; Dragic

et al., 1996]. Various chemokine receptors have been found to be involved in HIV-1

infection in vitro, but only CCR5 has been clearly shown to have a role in sexual
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transmission of the virus [Berger et al., 1999; loetscher et al., 2000]. The expression

and functioning of the CCR5 protein at the cell surface may thus be an indication of

an individual's susceptibility to HIV-1 infection and/or disease progression to AIDS.

Initially, determinants of CCR5 co-receptor function were identified using human and

murine CCR5 and/or CCR2B chimeras, but the results from several studies were

difficult to interpret collectively due to differences in chimeric constructs, HIV-1

isolates and the detection systems that were used to test the role of CCR5

extracellular domains in co-receptor function [Atchison et al., 1996; Rucker et al.,

1996; Alkhatib et al., 1997; Bieniasz et al., 1997; Doranz et al., 1997; Picard et al.,

1997; Wang et al., 1999]. All the studies did however prove that multiple domains of

CCR5 are involved in co-receptor activity and that it's amino terminus plays a vital

role in mediating membrane fusion and facilitating entry of various HIV-1 isolates.

Site-directed mutagenesis studies have provided a more informative understanding

of the determinants of CCR5 co-receptor function. Negatively charged and tyrosine

residues in the amino terminus of CCR5 (Asp-2, Tyr-2, Tyr-10, Asp-11, Tyr-14, Tyr-

15 and Glu-18) have been shown to be important in gp120-CCR5 binding and virus

entry [Doranz et al., 1997; Dragic et al., 1998; Farzan et al., 1998; Rabut et al., 1998;

Blanpain et al., 1999a]. A few other residues of the CCR5 amino terminus that have

also been found to be involved in co-receptor function are Ser-6, Ser-7, lIe-9, Asn 13,

Gln-21 and lys-22 [Farzan et al., 1998; Rabut et al., 1998; Blanpain et al., 1999a].

Residues in the extracellular loops (ECls) of CCR5 that were found to influence co-

receptor function include, Gln-93 in ECl 1 [Kuhmann et al., 1997]; Gly-163 in the

transmembrane helix 4/ ECl 2 junction [Siciliano et al., 1999]; Tyr-184, Ser-185 and
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Arg-197 in ECl 2 [Doranz et aI., 1997; Ross et aI., 1998]; and Asp-276 and Gln-280

in ECl 3 [Doranz et al., 1997; Farzan et al., 1998]. The residues 184 and 185, as

well as residues 197 and 276, have to be substituted simultaneously in order to

disrupt fusion and entry of HIV-1 [Doranz et aI., 1997; Ross et aI., 1998].

The human eeR5 gene was cloned from a human genomic DNA library based on it's

similarity to a murine CC chemokine receptor clone [Samson et aI., 1996a]. eeR5 is

located at band position p21 of chromosome 3 [Liu et al., 1996] and comprises four

exons and two introns. Exons 2 and 3 are not interrupted by an intron and exon 4

contains the entire eeR5 open reading frame (ORF), which is 1056 base pairs (bp)

in length (see Figure 1). eeR5 also shows dual promoter usage, with the presence

of a weak promoter upstream of exon 1 and a strong downstream promoter, which

includes the intronic region between exon 1 and 3 [Mummidi et aI., 1997].

CCR5 (chromosome 3p21)

eCR5 coding region

(1056bp)

Intron 1 Intron 2

3'5' (1903bp)
~

56bp 2245bp57bp 233bp

Figure 1. CCR5 is organised into four exons and two introns and exons 2 and 3 are

not interrupted by an intron. Exon 4 contains the entire CCR50RF. Black blocks

represent the non-coding regions and the grey block represents the coding region.

Exons and introns are not drawn to scale.
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Previously identified mutations in the eeR5 gene, include a 32bp deletion

(CeR5~32), which results in C-terminal residues being translated out of frame and

the formation of a truncated protein that is not expressed at the cell surface, so HIV-1

is unable to bind and infect target cells [Liu et al., 1996; Samson et al., 1996b]. The

eeR5~32 comprises nucleotides 794 to 825 of the eDNA sequence and results in a

reading frameshift after amino acid 174, inclusion of 7 novel amino acids and

truncation at codon 182 [Liu et aI., 1996]. The truncated CCR5 protein thus lacks the

last three of seven putative transmembrane regions as well as regions involved in

G-protein coupling and signal transduction [Samson et al., 1996b].

Individuals homozygous for eeR5~32 seem to have a highly protective effect against

HIV-1 infection [Liu et aI., 1996; Samson et al., 1996b; Dean et aI., 1996; Huang et

aI., 1996; Zimmerman et aI., 1997], although a few exceptions to the rule have been

reported. These exceptions include individuals who are infected with viruses that

utilises CXCR4 as a co-receptor [Biti et aI., 1997; Balotta et aI., 1997 O'Brien et al.,

1997b; Theodorou et al., 1997]. Heterozygosity for eeR5~32 has been shown to

offer partial protection and is associated with delaying the progression to AIDS by 2-4

years in HIV seropositive individuals [Liu et al., 1996; Samson et aI., 1996b; Dean et

al., 1996; Huang et aI., 1996; Zimmerman et aI., 1997].

eCR5~32 is however largely confined to the Caucasian population (allelic frequency

= 0.092) and rarely observed in Africans [Samson et aI., 1996b; Huang et aI., 1996;

Martinson et aI., 1997]. Haplotype studies indicate that eeR5~32 originated

approximately 700 years ago (range 275 - 1875 years) at a single point in

Northeastern Europe [Libert et al., 1998; Stephens et al., 1998]. It has been
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suggested that the selective pressure caused by the bubonic plague could account

for the high prevalence of eeR5f132 in the Caucasian population [Stephens et al.,

1998]. It has also been hypothesised that the Vikings disseminated CeR5f132 in

Europe during the eighth to the tenth century [Lucotte and Mercier, 1998; Lucotte,

2001]. A recent study by Sullivan et aI., 2001 shows that HIV is providing a selective

pressure for eeR5f132.

Other genetic variants, which may also influence the functioning and expression of

the CCR5 protein at the cell surface and thus affect HIV-1 infection and/or disease

progression to AIDS, have been identified in both the eeR5 promoter [Kostrikis et aI.,

1998; Martin et aI., 1998; McDermott et aI., 1998; Mummidi et al., 1998] and coding

regions [Dean et al., 1996; Ansari-Lari et aI., 1997; Carrington et aI., 1997; Quillent et

al., 1998; Carrington et al., 1999b; Petersen et aI., 2001], in a number of different

population groups.

A recent study by our group, using an African-based population, resulted in the

identification six previously reported (including eeR5f132) and seven novel mutations

in the coding region of eeR5 (see Figure 2) [Petersen et aI., 2001] (see chapter 3).

Considering the structural features of CCR5 and the eeR5 mutations we identified,

we can suggest that besides eeR5f132, two novel eeR5 mutations could influence

the expression and functioning of CCR5. These include a non-conservative mutation

at codon 2 (D2V), which lies in the CCR5 amino terminus and a nonsense mutation

at codon 225 (R225X), which results a premature stop codon and the formation of a

truncated CCR5 protein.
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Amino terminus

Intracellular

Figure 2. Schematic illustration of the human CCR5 protein. A recent study by our group resulted in the identification of previously reported

(indicated by the blue shaded amino acid residues) and novel (indicated by the red shaded amino acid residues) eeR5 mutations within an

African-based population group [Petersen et ai., 2001] (see chapter 3). The starting site of eeR51132 is indicated at amino acid residue 185.
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Limited functional studies have been done for a few of the reported eeR5 mutations

[Howard et al., 1999; Blanpain et ai., 2000]. Howard et ai., 1999, investigated six

eeR5 mutations located between amino acid residues 1 and 100. Three of these

variants, 112T, C20S and A29S, are expressed on the cell surface, but do not allow

ligand binding. The 112T and C20S variants were also found to lack co-receptor

function, while the A29S supported HIV-1 infection. The remaining three variants,

142F, L55Q and A73V, were all found to have co-receptor function, but their ligand

binding affinities for specific chemokines were altered.

Another study investigated the functional consequences of 16 eeR5 mutations

described in various population groups. Ten of these variants (112L, 142F, R60S,

A73V, S215L, R223Q, ~K228, G301V, A335V and Y339F were found to result in

functional responses similar to that of the normal CCR5 protein. The remaining six

variants (C20S, A29S, L55Q, C101X, C178R and FS299) were found to alter either

the expression, ligand binding affinities or co-receptor functioning of CCR5. The

C101X and FS299 variants resulted in poor expression of CCR5 at the cell surface

and thus an alteration in responses to chemokines. The C20S, C178R and A29S

variants altered chemokine ligand binding affinities, while the L55Q variant resulted in

the inability to mediate co-receptor function [Blanpain et ai., 2000].

The functional analysis differs for some of the eeR5 mutations (C20S, A29S, 142F,

L55Q and A73) investigated in both of the studies mentioned above. Further

functional studies are thus required for eeR5 mutations, so that their possible effects

on CCR5 expression, ligand binding and co-receptor functioning can be fully

elucidated and confirmed.
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2.2.2. CC chemokine receptor 2 (CCR2)

CCR2, classified as a CC or ~-chemokine receptor, is utilised as an additional co-

receptor by a minority of dual-tropic HIV-1 strains, however at a much lower

efficiency than CCR5 and CXCR4 [Doranz et al., 1996]. The amino terminus of

CCR2 is vital for co-receptor function [Rucker et al., 1996; Frade et al., 1997). The

natural ligands for CCR2 include the ~-chemokines, monocyte chemoattractant

protein (MCP)-1(CCl2), 2 (CCl8), 3 (CCl7), 4 (CCL 13) and 5 (CCL 12). MCP-1

(CCl2) and MCP-3 (CCl7) have been shown to inhibit HIV-1 replication of both M-

tropic and T-tropic viruses [Reviewed in Kalinkovich et al., 1999; lee and Montaner,

1999]. The CCR2 amino terminus is an important determinant for chemokine

selectivity and high-affinity ligand binding [Monteclaro and Charo, 1996; Monteclaro

and Charo, 1997]. The first extracellular loop of CCR2 also contains a high-affinity

ligand-binding site and is essential for receptor activation [Han et al., 1999).

The cloning of the CCR2 gene resulted in the identification of it's 2 isoforms, CCR2A

and CCR28 [Charo et aI., 1994), which are the result of alternative splicing of a

single gene. CCR2A (374 amino acids) and CCR28 (360 amino acids) only differ in

their carboxyl tails and are both functional seven transmembrane G-coupled proteins.

The predominant isoform, CCR28, is expressed at the cell surface and in the

cytoplasm, while CCR2A is mainly found in the cytoplasm due to cytoplasmic

retention signals in it's carboxyl tail [Wong et aI., 1997).

The CCR2 gene, located at band position p21 of chromosome 3 and 17 kilobases

(kb) from the CCR5 gene [Daugherty and Springer, 1997), spans about 7kb and is

organised into 3 exons and 2 introns. Exon 2 and part of exon 3 contain the CCR2A
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coding region, while the entire coding region for CCR28 is found within exon 2 [Wong

et aI., 1997] (see Figure 3). The 5' untranslated region of the CCR2 gene plays an

essential role in transcriptional activation and tissue specific expression of CCR2

[Yamamoto et aI., 1999].

CCR2 (chromosome 3p21)

CCR2B coding region CCR2A coding region

(1083bp) (1125bp)

5'

r -1200bp-85bp -1900bp
Intron 1 Intron 2

(-3000bp) (-260bp)

Figure 3. CCR2 has two gene transcripts. The coding region for CCR2A is found in

exon 2 and part of exon 3, while exon 2 contains the entire coding region for CCR2B.

Black blocks represent the non-coding regions and the grey blocks represent the

coding regions. Exons and introns are not drawn to scale.

A common genetic variant has been identified in the first transmembrane domain of

the CCR2 gene. It results in a conservative amino acid change from valine to

isoleucine at codon 64 (CCR2V641) [Smith et aI., 1997a]. Although the mechanism

by which the CCR2V64I SNP influences HIV pathogenesis still needs to be

elucidated [Lee et al., 1998; Mariani et al., 1999], it was found to delay the onset of

AIDS in seroconverter patients by 2-4 years in both the heterozygous and
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homozygous state, but does not offer any resistance to HIV-1 infection [Smith et a/.,

1997a; Smith et al., 1997b; Anzala et al., 1998; Kostrikis et a/., 1998; Rizzardi et a/.,

1998]. Some studies, however, do not confirm the effect of the CCR2V64I SNP on

disease progression [Michael et a/., 1997; Eugen-Olsen et a/., 1998; loannidis et a/.,

1998].

Allelic frequencies for the CCR2V64I SNP range from 0.1 to 0.25 in different

population groups [Smith et a/., 1997a; Michael et a/., 1997; Williamson et a/., 2000]

and it's effect is more apparent in Africans when compared to Caucasians [Mummidi

et a/., 1998]. Initially, it was suggested that the CCR2V64I SNP is in linkage

disequilibrium with the CCR5!132 mutation, but it was shown that the CCR2V64I SNP

occurs invariably on a chromosome with the wildtype CCR5 allele [Kostrikis et a/.,

1998]. The CCR2V64I SNP has however been found to be in linkage disequilibrium

with the 59653-T promoter variant of CCR5 [Kostrikis et a/., 1998; Martinson et a/.,

2000], but the functional significance of this finding is unknown.

A second CCR2 SNP has been previously reported and involves a silent mutation

(AAC - AAT) occurring at codon 260 (CCR2N260) [Genbank database

(www.ncbi.nlm.nih.gov)]. Previously, our group found the T allele to occur at a much

higher allelic frequency than the commonly reported C allele within the South African

population groups [Petersen et a/., 2001]. Recently, novel CCR2 mutations and

SNPs have been identified and are discussed in chapter 4. Further investigations

regarding the potential effect of CCR2 gene variants, could ultimately result in a

better understanding of the precise role of CCR2 in HIV-1 entry.
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2.2.3. Stromal derived factor-1 (SDF1) (CXCL 12)

SDF1 (CXCL 12), a member of the CXC or a-chemokine family, is the natural ligand

for the HIV-1 co-receptor CXC receptor 4 (CXCR4) and suppresses infection of T-

tropie or SI viruses [Bleul et al., 1996a; Oberlin et al., 1996] by down-regulating

CXCR4 surface expression and thus interfering with HIV-1 fusion and entry [Amara

et a/., 1997; Signoret et al., 1997]. The SDF1 amino terminal residues 1 to 8 forms

an important receptor-binding site, but only residues 1 and 2 are required for receptor

activation. Residues 12 to 17, located in the loop region, also form a vital receptor-

binding site and it has been proposed as an important initial docking site of SDF1

with CXCR4 [Crump et al., 1997]. The carboxy terminus of SDF1 has no function in

receptor binding and activation, but does enhance the biological activity of the SDF1

amino terminus [Luo et al., 1999]. SDF1 is an extremely efficacious chemoattractant

for a variety of cells, including T-Iymphocytes and monocytes [Bleul et al., 1996b] and

also plays a fundamental role in development [Nagasawa et al., 1996].

The SDF1 gene, approximately 10 kb in length, was cloned from mouse bone

marrow stromal cells and encodes 2 isoforms, namely SDF1 a (89 amino acids) and

SDF1 p (93 amino acids). The SDF1 p protein has four additional amino acid residues

in the carboxy terminus [Tashiro et al., 1993; Nagasawa et al., 1994]. The first 21

amino acid residues of the SDF1a and SDF1 p proteins form an amino acid-cleaved

signal peptide and a SDF1a form processed at the carboxy terminus to generate a 67

residue protein has been purified [Bleul et al., 1996b]. The SDF 1a and SDF 1P

isoforms are encoded by three and four exons, respectively and are the result of

alternative splicing of a single SDF1 gene. Although most of the CXC chemokines
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are located on the long arm of chromosome 4, the SOF1 gene is an exception and

it's location is at band q11 of chromosome 10 [Shirozu et aI., 1995] (Figure 4).

SDFI (chromosome lOgll)
SDF1a coding region

(267bp)

SDF1f3 coding region

(279bp)

5'
Exon 3 Exon 41--...,....-...., Exon 2 f--....--....,

-3000bp140bp 118bp -1500bp

Intron 1 Intron 2 Intron 3

(-5000bp)
SDF1-3'A

Figure 4. SDF1 has 2 gene transcripts, SDF1 a and SDF1 f3. The coding regions for

SDF1a and SDF1 f3 are found within exons 1 to 3 and exons 1 to 4, respectively.

Black blocks represent the non-coding regions and the grey blocks represent the

coding regions. The lengths of intron 1 and 2 are unknown. Exons and introns are

not drawn to scale.

A common SNP of the SOF1f3 gene transcript, designated SOF1-3' A, has been

identified at position +801(counting from the ATG start codon) in the 3' UTR and

involves a G to A transition [Winkler et ai., 1998]. The SOF1-3' A SNP has been

observed in different population groups at allelic frequencies ranging from 0.06 to

0.26, occurring more frequently in Caucasians when compared to Africans [Mummidi

et ai., 1998; Winkler et aI., 1998; Williamson et aI., 2000]. The presence of the

SOF1-3' A SNP in the homozygous state has been associated with delaying the rate

of disease progression to AIDS, while the SOF1-3' A SNP in the heterozygous state
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has no effect on disease progression to AIDS [Hendel et al., 1998; Martin et aI.,

1998; Winkler et aI., 1998]. It was thus hypothesised that the SNP, in a potential

regulatory region, upregulates the biosynthesis of SDF1, making the protein more

highly available to compete with HIV-1 for binding to the CXCR4 chemokine receptor,

and thereby blocking infection of the host cells by the T-tropic/SI viruses [Winkler et

aI., 1998]. This hypothesis was tested in vitro and the results indicated that the

SOF1-3' A SNP does not affect SDF1 RNA synthesis or translation of the SDF1

RNA, which suggests that the 3'UTR region does not regulate SDF1 expression

[Arya et al., 1999].

Various studies have however shown that the SOF1-3' A SNP in the homozygous

state is not consistently associated with delaying the progression to AIDS, but rather

rapid disease progression to death [Mummidi et al., 1998]; prolonged [van Rij et al.,

1998] or decreased [Srambilla et aI., 2000] survival after AIDS is diagnosed; low CD4

cell counts [Salotta et aI., 1999]; and no effect on disease progression [Meyer et aI.,

1999]. The SOF1-3' A SNP in the heterozygous state has also recently been

associated with an increase in HIV-1 vertical transmission from mother to child [John

etal.,2000].

Further studies of large and informative study cohorts are thus important to

determine specific associations between the SOF1-3' A SNP and susceptibly to HIV

pathogenesis, which could ultimately result in a better understanding of the

functioning of SDF1. A pilot study was performed to determine the allelic frequencies

of the SOF1-3' A SNP within a South African population and is presented in

chapter 5.
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2.3. Mutation Detection

The identification of mutations that influences host genetic susceptibility of an

individual to develop a particular disease has resulted in the need for mutation

detection, which today forms the main focus of many research studies. A variety of

specific mutation detection methods are available for use, but they differ in a number

of ways, most importantly being their reliability and sensitivity to detect genetic

variants. The ideal mutation detection method should have 100% sensitivity and

specificity with no false positives or negatives, allow for the screening of large DNA

sequences, not involve the use of hazardous reagents, not require time-consuming

or intensive manual labour and be cost-effective.

DNA sequencing [Sanger et aI., 1977; Maxam and Gilbert, 1977] is a common direct

screening method that is used for the identification of genetic variants and although it

has a mutation detection rate of virtually 100%, it involves intensive labour and great

expenses when performing mutation detection on a large scale. There are however

several indirect pre-screening mutation detection methods available for the

identification of genetic variants. Direct sequencing is only then used to determine

the precise location of mutations detected using an indirect pre-screening method.

Future advances in mutation detection include DNA chip technology [Lipshutz et al.,

1995; Ginot, 1997], which involves the hybridisation of labelled test single-strand

DNA to a microarray of known oligionucleotides on glass or silicon chips. The

presence of a mutation is signalled by differing patterns of hybridisation between the

wild-type and test DNA. This technique requires great expertise and presently it is

very costly due to the use of specific equipment.
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2.3.1. Pre-screening methods of mutation detection

Polymerase chain reaction (PCR), which involves the amplification of DNA fragments

and the formation of heteroduplexes between the wild-type and mutant DNA strands,

usually forms the basis of indirect pre-screening mutation detection methods [Mullis

and Faloona, 1987 Saiki et a/., 1988]. A few commonly used pre-screening mutation

detection methods with their main respective advantages and disadvantages are

shown in Table 1.

2.3.1.1. Denaturing gradient gel electrophoresis (DGGE)

Denaturing gradient gel electrophoresis (DGGE) is the pre-screening mutation

detection method we used for the identification of previously reported and novel

genetic variants in the entire coding regions of the CCR5 and CCR2 (CCR2A and

CCR2B) genes and for the partial analysis of the 3' UTR of the SDF1 f3 gene

transcript. Our reasons for selecting this particular pre-screening mutation detection

method was based on it's main advantages (discussed below) when compared to the

advantages of other pre-screening mutation detection methods (Table 1).

DGGE, developed in 1983 by Fischer and Lerman, is a PCR-based method and

involves the differential melting behaviour of double-stranded DNA molecules in an

increasing concentration gradient of denaturants (urea and formamide, UF) at a fixed

and elevated temperature. The melting behaviour is highly sequence-dependant and

is thus determined by the composition and order of nucleotide base pairs within a

DNA fragment. The principles of DGGE are shown in Figure 5. As the double-

stranded DNA fragment passes through the denaturing gel, it will melt and undergo a

conformational change, which results in it's electrophoretic mobility being reduced as
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Table 1: A few of the indirect pre-screening mutation detection methods that are commonly used for the identification of genetic variants.

Pre-screening method Advantages Disadvantages References

Restriction fragment length ~olïmor~hism (RFLP) analïsis: Simplicity in use and cost-effective. Incomplete digestion of the Parry et al., 1990;
Involves the use of restriction endonucleases with recognition Allows rapid mutation detection. restriction endonucleases may give Reviewed in
sites in DNA sequences for the detection of mutations. Requires the use of equipment false positive or negative results. Pourzand and

available in most laboratories. Can only be used for the detection Cerutti, 1993.
of specific sequence variants.

Single-stranded conformation ~olïmor~hism (SSCP) analysis: Versatile and does not require any Only 80% mutation detection rate Orita et al., 1989;
Is based on the fact that a mutation results in a conformational expertise. Allows rapid mutation for DNA fragments up to 300bp in Reviewed in
change of the single-stranded DNA, which is then observed as detection. Requires the use of length. Efficiency of method Cotton et al.,
an electrophoretic mobility shift. equipment available in most depends on a number of 1998.

laboratories. experimental conditions.

Chemical cleavage of mismatch (CCM): Involves the use of Sensitivity for mutation detection is Involves the use of hazardous Cotton et al.,
chemical agents for cleavage and thus detection of single base +/- 99%. Can be used to analyse chemicals and the % mutation 1988; Youil et al.,
mismatches in the target DNA, which is hybridised to a single- DNA fragments which are more than detection rate can be reduced if low 1995; Reviewed
standed radiolabelled DNA probe. An adaptation of this 1kb in length (up to 1.5 - 1.8 kb) quality chemicals are used. in Ellis et al.,
method is enzyme mismatch cleavage (ECM), which utilises 1998.
T4 endonuclease VII for the detection of mutations.

Denaturing gradient gel electro~horesis (DGGE) analysis: Is 100% mutation detection rate for Standardising of assays is a time- Fischer and
based on the differential melting behaviour of the wild-type and fragments up to 500bp in length. consuming procedure. Extra costs Lerman, 1983;
normal DNA fragments within an urea/formamide-denaturing Rapid mutation detection and clear for the use of with GC-clamped Reviewed in van
gradient gel. Less used adaptations of this method include, visualisation of mutations. Theory for primers. Expertise is required. Orsouw, 1998;
constant denaturing gel electrophoresis (CDGE), temperature the entire concept. Wu, 1999; Hayes,
gradient gel electrophoresis (TGGE) and two-dimensional 1999b;
(2-D) DNA electrophoresis.

I

Denaturing high-~erformance liguid chromatogra~hï (DHPLC) Sensitivity and specificity of mutation Sensitivity of the method is Underhill et al.,
analysis: Involves detection of mutations by chromatography detection exceeds 96%. DNA dependant on temperature. Under 1997; Liu et al.,
and thus the observation of differential retention signals for the fragments as large as 1.5kb in length completely denaturing conditions, it 1998; Reviewed
wild-type and mutant DNA. can be analysed. is not possible to resolve C to G in Xiao and

transversions. Homozygous Oefner, 2001.
mutations cannot be detected
indirectly.
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depicted on the schematic representation of a DGGE time-travel gel (a gel that is

loaded with the same amplified product at hourly intervals) [Figure 5B]. The

introduction of a guanine and cytosine (GC)-rich fragment (GC-damp) to the 5' end

of one of the primers prevents total strand dissociation during fragment amplification

[Myers et a/., 1985a]. The GC-damp also allows for the detection of all mutations,

including single base changes, which makes DGGE a powerful pre-screening

method with virtually 100% mutation detection sensitivity [Sheffield et al., 1989;

Abrams et al., 1990]. A heteroduplexing step, which involves denaturation and

renaturation of the wild-type and mutant DNA and thus the formation of mismatched

heteroduplexes, also further enhances the mutation detection sensitivity of DGGE

[Myers et al. 1985b; Figure 5A]. Mismatched heteroduplexes have a lower stability

than the homoduplexes and thus always melt earlier within the denaturing gel. This

results in heterozygous mutations being visualised as four bands (two

heteroduplexes and two homoduplexes), while homozygous mutations are visualised

as a single "shifted" DGGE band [Figure 5C]. DGGE has an advantage over other

electrophoretic-based pre-screening methods by having a mutation detection rate of

100% for DNA fragments up to 500bp in length. However, it is at a disadvantage to

the cleavage-based pre-screening methods, which allow for the detection of

mutations in DNA fragments more than 1kb in length.

The design of a successful DGGE-assay is thus dependant on the melting profile of

the DNA, the chosen DGGE primers, application of heteroduplexing and the type of

gel system used. Using the melt 87 computer program [Lerman and Silverstein,

1987] and considering the conditions for improved DGGE mutation detection

previously described by Wu et al., 1998, DGGE primers are designed and a single
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melting domain is determined for the DNA fragment. In some cases, the "single"

melting domain of the DNA fragment can only be achieved by certain primer

modifications, involving the addition of TlA or G/C tails and changing the position and

length of the GC-clamp. These adaptations were included in our assay designs. The

time-consuming procedure that is used to design the DGGE assay and the extra

costs for the GC-clamped primers may be regarded as a disadvantage.

The amount of denaturant (UF) that is required for optimal melting of the DNA

fragment can be theoretically calculated using the following formula: % UF = [(melting

temperature - buffer temperature) x 100 I 32]. Additional factors such as the buffer

composition and concentration, and the electrophoretic voltage used, are not taken

into consideration when applying the formula above, but can also influence the

melting behaviour of the DNA fragment. The use of a specific gel system and the

choice of a single set of experimental conditions (egs. gel composition, temperature

and voltage), as opposed to SSCP which requires more than one gel condition, could

be based on conditions previously described for improving DGGE analysis [Hayes et

al., 1999a].

Heteroduplexing is important for the detection of mutations involving C/G to G/C

transversions and 1 bp deletions or insertions as homoduplexes may have the

sameIsimilar melting behaviour and result in mutations being missed [Myers et al.

19S5b]. Using DGGE, it thus possible to identify the different mutations by their

specific banding pattern. Verification of commonly occurring mutations can be

achieved by the mixing of samples with similar DGGE banding patterns, followed by

heteroduplexing and electrophoresis on a denaturing gel. Only samples showing
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additional heteroduplex bands are subjected to sequencing and therefore the

repeated sequencing of a specific mutation is avoided [Guldberg and Guttier, 1993].

This is an important advantage for SNP analysis in large study cohorts.

Considering the advantages of DGGE, which include high mutation detection

sensitivity; a theoretical framework that explains the principles of the method; the

easy visualisation of mutations; the possibility to confirm commonly occurring

mutations by mixing and heteroduplexing and the application of this method in large-

scale analysis, it was chosen to perform comprehensive mutation detection analysis

for the respective studies discussed in chapters 3, 4 and 5.
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Figure 5. A. PCR amplification of DNA fragments for DGGE using a GC-clamped primer, followed by
a heteroduplexing step, which involves denaturation and reannealing to form a wild-type homoduplex,
a mutant homoduplex and heteroduplexes. B. The principles of DGGE are depicted as a time-travel
DGGE-gel (Myers et al., 1987). C. The detection of mutations by electrophoresis through a
increasing denaturing gradient, where the wild-type and mutant DNA have different melting profiles.
1) wild-tvoe. 2) homozvaous mutant. 3) heterozvaous mutant (Adapted from Haves. 1999b).
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Objectives: Previous studies have indicated that most CC chemokine receptor 5

(eeRS) gene mutations are either relatively specific to different population groups or

rarely observed in Africans. The objective of this study was therefore, 1) to develop a

comprehensive mutation detection assay for the entire coding region of the eeRS

gene and 2) to identify novel mutations, which may play a role in genetic

susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, within the

diverse South African population.

Design: The study cohort consisted of 103 HIV seropositive patients and 146 HIV

seronegative controls of predominantly African descent.

Methods: We designed a mutation detection assay for the entire coding region of the

eeRS gene, which included amplification of part of the coding region of the eeR2

gene. The assay, based on denaturing gradient gel electrophoresis (DGGE), allows

for the complete analysis of 10 individuals per denaturing gel.

Results: The use of the eeRS-DGGE assay led to the identification of seven novel

and six previously reported mutations. All novel mutations, including a common

polymorphism at codon 35, occurred exclusively in non-Caucasians, indicating

possible African origin.

Conclusion: We present a comprehensive DGGE mutation detection assay for the

entire coding region of the eeRS gene. Application of this assay resulted in the

identification of novel eeRS mutations, which may have a significant effect on the

normal functioning of CCR5 and thus contribute to host variability and susceptibility

to HIV-1 infection and/or progression to acquired immune deficiency syndrome

(AIDS) within this population.

Keywords: CCR5, DGGE, novel mutations, HIV-1 susceptibility, South Africa
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Introduction

Various chemokine receptors have been identified as co-receptors necessary for the

cellular infection of the human immunodeficiency virus (HIV) [Deng et a/., 1996;

Dragic et al., 1996; Doranz et a/., 1996; Feng et al., 1996]. The GG-chemokine

receptor 5 (GGR5), a seven transmembrane G-coupled protein, consists of 352

amino acids and binds the p-chemokines RANTES, MIP-1a and MIP-1p [Samson et

al., 1996a]. It is also recognised as the principle co-receptor for the macrophage-

tropic (M-tropic) strains or nonsyncytium-inducing (NSI) strains of HIV-1 and

facilitates fusion of the viral envelope protein with the GD4
+ molecules during the

asymptomatic phase of infection [Deng et a/., 1996; Dragic et a/., 1996; Alkhatib et

a/., 1996; Ghoe et aI., 1996]. The GGR5 cell surface expression may therefore have

a direct influence on the individual's variability and susceptibility to HIV-1 infection.

The CCR5 gene, located at band p21 of chromosome 3 [Liu et a/., 1996], consists of

4 exons and 2 introns, of which exon 4 contains the entire open reading frame (ORF)

[Mummidi et a/., 1997]. The most widely studied CCR5 mutation is a 32 base pair

deletion (CCR5.6.32) within the coding region, which results in premature termination

of translation and the formation of a truncated protein [Liu et a/., 1996; Samson et a/.,

1996b]. Individuals homozygous for the CCR5.6.32 mutation have been shown to

display protection against HIV-1 infection, although this protection is not absolute.

Heterozygous carriers display partial protection against HIV-1 infection and evidence

exists that a single deletion mutant in HIV seropositive individuals may slow

progression to acquired immune deficiency syndrome (AIDS) [Liu et a/., 1996;

Samson et a/., 1996b; Dean et a/., 1996; Huang et a/., 1996; Zimmerman et a/.,

1997]. Population surveys have shown that the CCR5.6.32 mutation is largely
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confined to Caucasians (allele frequency of 0.092) and is extremely rare in Africans

[Samson et al., 1996b; Huang et aI., 1996; Martinson et al., 1997]. This suggests

the presence of other possibly protective/causative mutations in the African

populations and underscores the importance of comprehensive eeRS mutation

analysis in the diverse South African populations. Several other genetic variants in

the eeRS coding region have been described. However, their role in HIV-1 infection

or progression to AIDS could not be deduced, due to the low allelic frequencies of

these mutations in the population groups studied [Dean et al., 1996; Ansari-Lari et

aI., 1997; Carrington et aI., 1997; Quillent et aI., 1998; Carrington et aI., 1999b].

In this study, we describe a comprehensive eeRS mutation detection assay for the

entire coding region of the gene, using denaturing gradient gel electrophoresis

(DGGE). DGGE, developed by Fischer and Lerman in 1983, is a polymerase chain

reaction (PCR)-based method and is believed to be the most powerful of the pre-

screening methods of mutation detection currently available. The technique involves

the differential melting of double stranded DNA molecules in a gradient with an

increasing concentration of urea and formamide (UF). The addition of a guanine and

cytosine (GC)-rich fragment (GC-damp), introduced during fragment amplification,

prevents total strand dissociation and allows for the detection of single base

mutations, making DGGE virtually 100% sensitive [Sheffield et al., 1989; Abrams et

aI., 1990].

Using this assay, 103 HIV seropositive patients and 146 healthy controls were

screened for mutations in the coding region of the eeRS gene. Our results obtained

in the unique South African population are presented in this study.
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Methods

Sample population

Blood samples were drawn from 103 HIV seropositive patients (35 male; 68 female)

residing in the Western Cape of South Africa (Tygerberg Hospital and Woodstock

Chapel Street Community Health Clinic). Disease progression of the majority of

these individuals was unknown. Blood samples from 146 HIV seronegative controls

(56 male; 91 female) were obtained from the Western Province Blood Transfusion

Service, South Africa. The study cohort consisted of Africans, predominantly Xhosa

(70 HIV+ and 64 HIV-), Coloureds (26 HIV+ and 72 HIV-), and to a lesser degree

Caucasians (7 HIV+ and 2 HIV-) and Asians (8 HIV-). An additional nine

seronegative "high-risk" commercial sex workers of Zulu descent were obtained from

KwaZulu-Natal, South Africa. In this study, "African" refers to South Africans of

central African descent; "Coloured" refers to individuals of mixed ancestral descent,

including San, Khoi, African Negro, Madagascan, Javanese and European origin;

and "Caucasian" refers to South Africans of European descent, mainly Dutch,

French, German and British origin. Informed consent for the study was obtained

from all participants. The Ethics Review Committee of the University of Stellenbosch

approved the study protocol.

Primer Design

DGGE PCR primers (Table 1) were designed for the entire coding region, including

the donor/acceptor splice site of intron 3/exon 4, of the CCR5 gene, using the melt 87

computer program [Lerman and Silverstein et al., 1987] and conditions described by

Wu et aI, 1998. The region to be analysed was divided into six overlapping PCR

fragments (A to F). In order to prevent complete strand dissociation during
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amplification, a GC-rich-fragment (GC-clamp) was added to the 5' end of one of the

primers in each primer set. An additional stretch of 10 GC or AT nucleotides were

added to either the 5' end of the non-clamped primer (fragment B) or between the

GC-clamp and the primer (fragments C and D), respectively, to ensure a single

melting domain and thus optimal mutation detection of the fragments (Table 1).

Table 1. CCR5 primer sets and experimental conditions for peR amplification and DGGE.

Temperature (0C)

Fragment Amplimers,5'-3' Size (bp) Melting Annealing

A [40GC]TGGAGGGCAACT AAATACAT 196 67 54

CGATTTGCTTCACATTGATT

B [10GC]A TTATACATCGGAGCCCTGC 280 74 60

[40GC]AGCAT AGTGAGCCCAGAAGG

C [40GC][10AT]CTGGCCATCTCTGACCTGTT 332 73 60

GATGATTCCTGGGAGAGACG

D [40GC][10AT]ACTTGGGTGGTGGCTGTGTT 276 72 60

CATTTCGACACCGAAGCAGA

E TCATGGTCATCTGCTAGTCG 192 72 58

[40GC]GGTGTTCAGGAGAAGGACAA

F [40GC]TTCTCTTCTGGGCTCCCTAC 390 74 60

GTCACCAGCCCACTTGAGTC

bp, base pair
GC-clamps used were as follows: [40GC] CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG

[10GC] CGCCGCCGCG
AT-stretch used was as follows: [10AT] TATMTATTA
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DNA amplfication

Genomic DNA was extracted using conventional methods and amplified using the

DGGE primer sets listed in Table 1. Each PCR reaction mixture of 50 J.l1 in total

volume contained 100 ng of genomic DNA, 0.1 mM of each deoxyribonucleoside

triphosphate (dNTP), 20 pmol of each primer, 2.5 mM of a 10 x Mg+ reaction buffer

and 0.5 units of DNA Taq polymerase (Boehringer Mannheim). Amplification was

performed using the following cycling conditions; an initial denaturation at 96°C for 3

minutes, followed by 32 cycles of denaturation at 96°C for 45 seconds, annealing for

1 minute (annealing temperatures shown in Table 1), and elongation at 72°C for 1

minute. The last cycle was followed by an additional extension step of 72°C for 10

minutes. Amplicons to be subjected to DGGE analysis required an additional

heteroduplexing step, which involves denaturation at 96°C for 10 minutes, followed

by renaturation for 45 minutes at the annealing temperature of the amplification. The

amplified products were checked by electrophoresis of 5 J.l1 (10%) of each sample in

a 2% agarose gel.

Denaturing gradient gel electrophoresis (DGGE)

The DGGE conditions were optimised using conditions previously described for

broad-range DGGE analysis [Hayes et al., 1999a]. The six amplicons were pooled

into three groups (group 1: fragments A, D and C; group 2: fragments E and Band

group 3: fragment F) and electrophoresed in a 9% polyacrylamide gel containing a

30% to 70% urea and formamide (UF) denaturing gradient (100% UF = 7mol/L urea

per 40% deionised formamide), at 59°C for 110 volts overnight. Gels were stained

with ethidium bromide and photographed under an UV transilluminator. The optimally

designed CCR5-DGGE assay allows for the complete analysis of 10 patients per

denaturing gel (Figure 1).
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Figure 1. DGGE banding pattern of 6 pooled amplicons of 10 patients covering the entire

coding region of the CCR5 gene. The 30%-70% UF/9% PM denaturing gel was

electrophoresed at 59°C for 110 volts overnight and visualised by staining with ethidium

bromide. Lanes 1-10 contains group 1 (fragments A, D and C); lanes 11-20, group 2

(fragments E and B) and lanes 21-30, group 3 (fragment F). The multiple bands depicted for

fragment E are explained in further detail in fig. 2a. Individuals in lanes 13 and 19 are

heterozygous for the codon 35 polymorphism (fragment B) and the individual in lane 24 is

heterozygous for the codon 335 polymorphism (fragment F).

DNA sequencing and mutation confirmation

Amplified products showing aberrant DGGE banding patterns were subjected to

automated sequencing using a non-GC-clamped primer and the dye terminator

sequencing kit of Applied Biosystems (www.appliedbiosystems.com). Confirmation

of commonly occurring polymorph isms were performed by mixing samples showing

similar DGGE banding patterns, followed by a heteroduplexing step before

electrophoresis on a denaturing gel [Guldberg and Gutier, 1993]. Samples showing

additional heteroduplex bands were subjected to sequencing.
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Statistical analysis

Allele frequencies were determined by allele counting. Testing for significance of

heterogeneity in mutation frequencies among HIV seropositive and HIV seronegative

subjects were based on the Fisher's exact test. The Hardy - Weinberg principle was

applied to measure the maintenance of the allelic frequency for the eeR5 mutations

in the closely matched HIV seropositive and HIV seronegative African population.

The statistical calculations are shown in appendix 3.

Results

Application of the eeR5-DGGE assay presented in this study, resulted in the

identification of seven novel point mutations and six previously reported mutations as

listed in Table 2, according to the codon in which they occur.

Of the seven novel mutations detected in this study, four may ultimately result in

structural changes of the CCR5 protein. The first, a nonsense mutation at codon 225

(CGA-TGA), results directly in the formation of a truncated protein due to the

conversion of the amino acid Arginine to a premature stop codon. Both the codon 2

(GAT-GTI) and codon 225 (CGA-CM) mutations result in a non-conservative amino

acid change (replacement of an amino acid by another with different chemical

properties), from an Aspartic acid to a Valine, and an Arginine to a Glutamine,

respectively. The fourth mutation at codon 107 (CTC-TIC) although resulting in a

conservative amino acid change (Leucine to Phenylalanine), involves the inclusion of

an aromatic side chain, which may have structural and/or functional implications. All

the individuals who presented with the codon 107 (CTC-TTC) mutation, also

presented with the codon 225 (CGA-TGA) mutation and no individual was found to
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have only one of the two mutations. The remaining three novel mutations were all

silent mutations occurring at codons 35, 89 and 162, respectively. A high allelic

frequency for the codon 35 (CCG-CCA) polymorphism was detected in both the HIV

seropositive and HIV seronegative individuals from African and Coloured descent

and occurred in a homozygous state in a single HIV seropositive Coloured female.

This novel polymorphism was totally absent in Caucasians. Due to the low numbers

of Caucasian individuals in the study cohort, further screening of 28 Caucasians for

the codon 35 polymorphism confirmed the absence of this mutation in this population

group. All the above mentioned novel mutations were found exclusively in individuals

from African or Coloured ethnic background.

The six previously reported mutations observed in this study, include the most

commonly studied CCR5Ll32 mutation at codon 185. This deletion mutation was

observed heterozygously in one HIV seropositive Coloured and one Caucasian and

in five HIV seronegative Coloureds, while it was absent in the Africans studied.

Three non-conservative mutations at codons 55 (Leucine to Glutamine), 223

(Arginine to Glutamine) and 339 (Tyrosine to Phenylalanine), all previously reported

by Ansari-Lari et aI, 1997, were observed in one HIV seropositive Caucasian, one

seronegative Coloured and one seronegative African, respectively. The silent

mutation at codon 75, previously reported by Carrington et aI, 1997, was found to be

present in one HIV seropositive African. The codon 335 polymorphism, involving an

amino acid change from Alanine to Valine, has also been previously reported by

Ansari-Lari et aI, 1997 and in our study we detected this polymorphism in four HIV

seropositive and four seronegative individuals of African and Coloured descent.
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Table 2. CCR5 mutations detected in 103 HIV seropositive patients and 146 HIV seronegative

controls, ordered according to the codon in which they occurred.

Allele freguency

Mutation Base change Fragment Africans Coloureds Caucasians

HIV+ HIV - HIV+ HIV - HIV+ HIV-

(n = 140) (n = 128) (n = 52) (n =144) (n = 14) (n = 4)

D2V* GAT-GTT A 1(.007) 0 0 1(.007) 0 0

P35* CCG-CCA B 6(.043) 9(.070) 9(.173) 10(.069) 0 0

L55Q CTG-CAG B 0 0 0 0 1(.071) 0

875 TCT-TCC B 1(.007) 0 0 0 0 0

Y89* TAT-TAC C 0 0 0 1(.007) 0 0

L107F*# CTC-TTC C 1(.007) 2(.016) 1(.019) 0 0 0

P162* CCA-CCG D 1(.007) 0 0 0 0 0

.0.32(185) D 0 0 1(.019) 5(.035) 1(.071) 0

R223Q CGG-CAG E 0 0 0 1(.007) 0 0

R225X*# CGA-TGA E 1(.007) 2(.016) 1(.019) 0 0 0

R225Q* CGA-CAA E 0 0 0 1(.007) 0 0

A335V GCA-CTA F 4(.029) 2(.016) 1(.019) 2(.014) 0 0

Y339F TAC-TTC F 0 1(.008) 0 0 0 0

n, number of alleles; HIV+, seropositive; HIV-, seronegative

* Novel mutation identified in this study

# Mutations occurring together in patients

No mutations detected in 8 Asian HIV seronegative controls
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In fragment E, as depicted in Figure 2a, all HIV seropositive and seronegative

individuals presented with additional DGGE bands, lower (L) and/or upper (U), in

combination with the normal (N) eeRS band. Heteroduplex bands at a low

percentage of urea and formamide (UF) were also noted. Excision of these aberrant

bands from the gel, followed by direct sequencing, revealed 11 nucleotide variations

occurring in the lower band and an additional twelfth variation was included in the

upper band. Blasting the mutant sequence, using the Genbank database

(www.ncbi.nlm.nih.gov), revealed that this sequence forms part of the chemokine

receptor 2 (eeR2) gene, including codons 217 to 267 (Figure 2b). The

polymorphism at codon 260 (MC to MT) of the eeR2 gene showed an allelic

frequency of 0.62 for the T nucleotide and 0.38 for the C nucleotide within our

population group. All mutations occurring within fragment E were confirmed as being

eeRS mutations by recognition of the DGGE band intensities and confirmation by

excision of additional heteroduplex bands from the gel followed by direct sequencing.

Discussion

In this study, we describe a comprehensive and efficient mutation detection assay for

the entire coding region of the eeRS gene. This assay, based on DGGE with its

virtual 100% sensitivity, allows for the complete analysis of 10 patients per

denaturing gel. We applied this assay to screen for possible novel eeRS sequence

variants in a predominantly African and Coloured HIV seropositive and HIV

seronegative cohort from South Africa. Most studies. to date have restricted their

analysis to the eGRSLJ.32mutation, which although fairly common in Caucasians, is

extremely rare in the African populations. Comprehensive analysis of the GeRS

gene is, therefore, of vital importance in the diverse South African population.
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Figure 2. Fragment E of the GGR5 gene. A) DGGE banding pattern of the GGR5 fragment

E, in combination with codons 217 to 267 of the GGR2 gene. All samples (lanes 1-3) are

homozygous normal (N band) for the GGR5 gene. Samples were either homozygous or

heterozygous for the GGR2 codon 260 polymorphism. Lane 1, homozygous 260- T (U band);

lane 2, homozygous 260-C (L band); and lane 3, heterozygous 260-CIT (U and L

homoduplex and heteroduplex bands). Additional GGR5/GGR2 heteroduplex bands melt at a

low percentage of denaturant in the DGGE gel, due to the high number of nucleotide

mismatches. B) GGR5 and GGR2 gene sequences amplified using DGGE fragment E

primer set (arrows). The codon 260 (AAC/AAT) polymorphism of GGR2 is in indicated in

bold.
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Using the described assay, seven novel eeR5 mutations were identified in the

African and Coloured populations. No novel mutations were identified in the

Caucasian or Asian populations, although numbers were small. Novel mutations at

codons 107 and 225 (CGA-TGA), which occur simultaneously, and at codons 2 and

225 (CGA-CM), may affect the functioning of CCR5 and thus provide possible

protection against HIV infection and/or progression to AIDS. One cannot, however,

exclude the possibility that the three novel 'silent' mutations (codons 35, 89 and 162)

detected in this study, affect disease progression by altering regulatory elements that

affect RNA splicing [D'Souza ef al., 1999, Lorson ef aI., 1999]. The novel codon 35

polymorphism (CCG to CCA), occurring at an allelic frequency of 0.06 and 0.1 in the

African and Coloured populations, respectively, and its absence in Caucasians,

indicates this polymorphism has a definite African origin. The closely matched HIV

seropositive and HIV seronegative African population are in Hardy - Weinberg

equilibrium for the codon 35 polymorphism. No significant association was observed

for both the African (P = 0.4273) and Coloured (P = 0.0516) HIV seropositives

compared to the HIV seronegatives. Sample numbers are however small and the

significance of the codon 35 polymorphism thus warrants further investigation. The

Coloured female homozygous for the polymorphism showed normal disease

progression (progression to AIDS within 8 to 10 years after HIV infection). Due to the

lack of clinical information regarding disease progression of majority of the HIV

seropositive patients, the potential consequences of the different novel mutations

could not be evaluated and no significant associations could be made. It is,

therefore, necessary to obtain updated reports on the disease progression of all the

HIV seropositive patients.
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The CCR5L132 mutation, generally restricted to Caucasians, was found to be absent

in the 134 Africans studied, while it occurred at an allelic frequency of 0.03 in the

Coloured population. The presence of this deletion mutation in the Coloured

population may be a reflection of the possible admixture with people of Caucasian

descent [Martinson et al., 1997]. The presence of the CCR5L132 mutation in

Coloureds also provides evidence that no genetic incompatibility between ethnic

groups exists for this mutation [Kantor and Gershoni, 1999]. The two HIV

seropositive individuals, heterozygous for the CCR5L132 mutation, include an

asymptomatic (seven years after infection) Coloured male and an asymptomatic

Caucasian male with long-term non-progression (15 years since date of infection).

The polymorphism at codon 335 was only observed in Africans (allelic frequency of

0.02) and Coloureds (allelic frequency of 0.02). This supports previous studies,

which suggest that the polymorphism has an African origin with an allelic frequency

of approximately 0.03 and is rarely observed in Caucasian populations [Ansari-Lari et

al., 1997; Carrington et al., 1997; Carrington et al., 1999b]. The mutations at codons

55, 75, 223 and 339 were found at low allelic frequencies.

Within the nine "high-risk" seronegative commercial sex workers of Zulu descent, no

possibly protective mutations were found within the coding region of the CCR5 gene.

As this assay does not include the promoter region, the remaining 5' and 3' end

untranslated regions and the intronic sequences, we cannot exclude the possibility

that some significant mutations occurring in these regions may have been missed.

Although this study cohort is small, our findings suggest that other factors (including

the possibility of alternative gene involvement) may provide protection against HIV-

infection within this population group.
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Due to the high degree of sequence homology between the eeR5 and eeR2 genes,

part of eeR2 was simultaneously amplified using the eeR5 fragment E primer set.

Therefore, this assay also allows for comprehensive analysis of codons 217 to 267 of

the eeR2 gene. In our study, the T-allele of codon 260 (AAC to AAT) was found to

occur more frequently (0.62) than the commonly reported C-allele (0.38). No

statistically significant differences in allelic frequencies for this polymorphism were

observed and no additional eeR2 sequence variants were detected.

The relatively high frequency of novel mutations observed in the African and

Coloured populations demonstrates the effectiveness of the eeR5-DGGE assay and

importance of comprehensive eeR5 gene analysis in populations where the

eCR5.Lj32 mutation is rare. The recently admixed Coloured population of South

Africa may, therefore, represent a valuable candidate population for the identification

of genes/mutations underlying susceptibility to HIV/AIDS within the African context.

Future analysis on the effect of the novel mutations on the functioning of CCR5, will

result in a better understanding of this chemokine receptor and may contribute to the

development of HIV therapeutic and preventative measures that focus on the

interaction of HIV with the host proteins.
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Background: A single nucleotide polymorphism (SNP) at codon 64 in the CC

chemokine receptor 2 gene (CCR2V641), has been associated with a dominant effect

of delaying disease progression from human immunodeficiency virus-1 (HIV-1)

infection to acquired immunodeficiency syndrome (AIDS).

Objectives: To design a comprehensive mutation detection assay for the entire

coding region of the CCR2A and CCR2B gene transcripts and to identify novel

mutations and SNPs, within our predominantly African-based population, which could

influence an individual's susceptibility to HIV-1 infection and/or progression to AIDS.

Design: The study cohort consisted of 102 HIV seropositive patients and 144 HIV

seronegative controls from the diverse South African population.

Methods: A mutation detection assay, based on denaturing gradient gel

electrophoresis (DGGE), was designed for the entire coding region of both the

CCR2A and CCR2B transcripts, including all relevant splice site junctions. The assay

allows for the complete analysis of 5 individuals per denaturing gel.

Results: Application of the CCR2-DGGE assay resulted in the detection of two

previously reported CCR2 polymorphisms, namely CCR2V64I and CCR2N260, and

11 novel mutations, including seven SNPs occurring at high allelic frequencies within

specific population groups of South Africa.

Conclusion: The large number of novel mutations / SNPs identified, using the

CCR2-DGGE assay, indicates the importance for comprehensive analysis of all

candidate genes in host susceptibility to HIV-1 infection, specifically in the under-

studied African-based populations.

Key words: CCR2, novel SNPs, novel mutations, DGGE, HIV-1 susceptibility,

South Africa
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INTRODUCTION

The discovery of specific chemokine receptors acting together with CD4 molecules

as cellular co-receptors for human immunodeficiency virus (HIV) entry [Deng et a/.,

1996; Dragic et a/., 1996, Doranz et a/., 1996; Feng et a/., 1996], has led to major

interest in host factors involved in HIV-1 infection. Furthermore, the study of host

genetic factors has been advanced by the identification of mutations and single

nucleotide polymorph isms (SNPs) in genes encoding chemokines and chemokine

receptors, which seem to be associated with susceptibility to HIV-1 infection and / or

progression to acquired immune deficiency syndrome (AIDS) [reviewed in O'Brien

and Moore, 2000; Hogan and Hammer, 2001].

CC-chemokine receptor 2 (CCR2) has two isoforms, namely CCR2A and CCR2B

[Charo et a/., 1994], which are both functional seven transmembrane G-coupled

proteins. CCR2A is found almost exclusively in the cytoplasm, while the predominant

isoform, CCR2B, is expressed at both the cell surface and in the cytoplasm [Wong et

a/., 1997]. The CCR2 protein binds p-chemokines monocyte chemoattractant protein

1 to 5 (MCP-1 to 5) [reviewed in Kalinkovich et a/., 1999] and also acts as an

additional co-receptor during cellular infection of a few HIV-1 virus strains [Doranz et

a/., 1996]. Located at band p21 of chromosome 3 [Daugherty and Springer, 1997],

the CCR2 gene comprises 3 exons and 2 introns, spanning approximately 7kb. The

coding region for CCR2A is found in exon 2 and part of exon 3, while exon 2 contains

the entire coding region of CCR2B. The two isoforms thus differ only in their carboxyl

tails, as a result of alternative splicing of a single gene [Wong et a/., 1997].
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A common SNP has previously been reported in the first transmembrane region of

CCR2 and involves a G-A transition at codon 64, resulting in a conservative amino

acid change from valine to isoleucine [Smith et al., 1997a]. Studies have shown that

the CCR2V64I SNP in both the heterozygous and homozygous state does not offer

any resistance to HIV-1 infection, but is associated with delaying progression to AIDS

by two to four years [Smith et al., 1997a; Smith et ai., 1997b; Michael et ai., 1997;

Kostrikis et ai., 1998]. Population surveys indicate that the CCR2V64I SNP occurs at

an allelic frequency of 0.10 to 0.25 within specific ethnic groups [Smith et ai., 1997a;

Michael et ai., 1997] and it's effect seems to be more apparent in Africans than in

Caucasians [Mummidi et ai., 1998].

Given the fact that CCR2 is only used by a minority of HIV-1 strains for entry into the

host cells [Doranz et ai., 1996], the underlying mechanism by which the CCR2V64I

SNP influences disease progression still needs to be elucidated. Results from

various studies indicate that the CCR2V64I SNP does not affect both CCR2 and

CCR5 expression or co-receptor activity [Lee et ai., 1998; Mariani et aI., 1999]. It is

therefore possible that the CCR2V64I SNP either exerts a subtle effect on CCR2

function that cannot be detected, or it is linked to an unidentified mutation in a gene

that is known or not yet known to be associated with HIV pathogenesis. It has been

shown that the CCR2V64I SNP is linked to a specific CCR5 promoter variant

(59653-T) [Kostrikis et ai., 1998; Martinson et ai., 2000] and this finding requires

further investigation.

A second CCR2 SNP occurring at codon 260 (AAC-AA T) and resulting in a silent

mutation (CCR2N260) has been reported in the Genbank database
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(www.ncbi.nlm.nih.gov). No association studies with HIV-1 infection or disease

progression have been performed. In a previous study, our group observed the T

allele to occur more frequently than the commonly reported C allele within the South

African population [Petersen et al., 2001]. We cannot exclude the possibility that

susceptibility to HIV-1 infection and/or disease progression to AIDS could be the

result of a combination of common, but weaker genetic events that collectively

determine the "risk profile" of an individual. Comprehensive mutation analysis of the

CCR2 gene is thus important for identifying novel mutations that may have a possible

protective or causative effect, or novel SNPs for inclusion in association studies of

large study cohorts.

This study involved the design of a comprehensive mutation detection assay for the

entire coding region of both CCR2 gene transcripts (CCR2A and CCR2B), based on

denaturing gradient gel electrophoresis (DGGE). DGGE is believed to be the most

powerful of the polymerase chain reaction (PCR), gel-based mutation detection

assays currently available. The use of the CCR2-assay led to the identification of

novel mutations and SNPs in 102 HIV seropositive patients and 144 HIV

seronegative controls from a diverse South African population.

METHODS

Blood samples

The study cohort consisted of 102 HIV seropositive patients (34 male; 68 female) of

who most are presently residents in the Western Cape of South Africa (Tygerberg

Hospital and Woodstock Chapel Street Community Health Clinic). The disease

status was unknown for the majority of these patients. Also forming part of the study
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cohort, were 144 HIV seronegative healthy controls (56 male; 88 female) who are all

blood donors for the Western Province Blood Transfusion Service, South Africa. The

individuals participating in this study included Africans, predominantly Xhosa

(69 HIV+ and 62 HIV-), Coloureds (26 HIV+ and 72 HIV-), and to a lesser degree

Caucasians (seven HIV+ and two HIV-) and Asians (eight HIV-). The various

population groups have been previously defined in Petersen et a/., 2001. Informed

consent for the study was obtained from all participants. The Ethics Review

Committee of the University of Stellenbosch approved the study protocol.

Primer Design

Using the melt 87 computer program [Lerman and Silverstein, 1987] and conditions

for selecting appropriate PCR fragments [Wu et ai., 1998], DGGE PCR primers

(Table 1) were designed for the entire coding region, including the intron/exon

boundaries of both transcripts of the CCR2 gene. The coding region of CCR2B

(codons 1 to 361) and most of the coding region of CCR2A (codons 1 to 313),

contained in exon 2, was divided into six (A - F) overlapping amplicons. An

additional amplicon "G" was designed to include the remaining coding region (exon

3) of CCR2A (codons 314 to 375). The addition of a GC-rich-fragment to the 5' end

of one of the primers in each primer set prevents complete strand dissociation during

amplification. Additional stretches of GC or AT nucleotides were added to either the

5' end of the non-clamped primer (fragments B, C and E) or between the GC-damp

and the primer (fragment D), to ensure a single melting domain for optimal detection

of all mutations (Table 1).
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Table 1. CCR2 primer sets and experimental conditions for peR amplification and DGGE.

Temperature (0C)

Fragment Amplimers,5'-3' Size (bp) Melting Annealing

A [40GC]TGCTT ATGTGGTGCCAGACT 335 72 58

TGAACACCAGCGAGTAGAGC

B [6GC]TGA TTA TGATTACGGTGCTCC 384 72 58

[40GC]CGA TTGTCAGGAGGATGATG

C [40GC]GCTGTATCACATCGGTT ATT 268 73 55

[8GC]GCCACAGACATAAACAGAA T

D [40GC][1 OAT]TGGCTGTGTTTGCTTCTGT 220 70 55

CGAGTAGCAGATGACCATGA

E [5GC]CCACACA ATA ATGAGGAACA 284 73 55

[40GC]TGGTGCTTTCACAGTT ACTC

F ACCTTCCAGGAATTCTTCG 346 74 55

[40GC]ACAA TCAAACTGCTCCTCGT

G TGTCTGGATCTGAGCTGGTT 333 73 58

[40GC]TCCAAAGCAGAGATCTGTCAT

bp, base pair
GC-clamps used were as follows: [40GC], CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG

[8GC], CGCCGCCG
[6GC], CGCCGC
[5GC], CGCCG

AT-stretch used was as follows: [1OAT],TATAATATTA

DNA amplification

Genomic DNA was isolated from peripheral blood leukocytes using conventional

methods and amplified using DGGE primer sets, specific for each amplicon (A - G)

(Table 1). With a total volume of 50f.l1,each peR reaction mixture contained 100 ng

of genomic DNA, 0.1 mM of each deoxyribonucleoside triphosphate (dNTP), 20 pmol
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of each primer (except for fragment B which required only 10 pmol of each primer),

2.5 mM of a 10 x Mg2
+ reaction buffer and 0.5 units of DNA Taq polymerase

(Boehringer Mannheim, Mannheim, Germany). Amplification was performed using a

Perkin Elmer 9600 thermocycyler (PE Applied Biosysytems) and the PCR cycling

conditions were as follows; an initial denaturation at 96°C for 3 minutes, followed by

32 cycles of denaturation at 96°C for 45 seconds, annealing for 1 minute (annealing

temperatures shown in Table 1), and elongation at 72°C for 1 minute 20 seconds.

The last cycle was followed by an additional extension step of 72°C for 7 minutes.

For optimal DGGE analysis, amplification was followed by a heteroduplexing step,

which involves denaturation at 96°C for 10 minutes, followed by renaturation for 45

minutes at the annealing temperature of the amplification. The amplified products

were checked using electrophoresis, where 5111(10%) of each sample was resolved

on 2% agarose gel.

Denaturing gradient gel electrophoresis (DGGE)

Optimised DGGE conditions were achieved by considering the conditions previously

described for the improvements of broad-range DGGE analysis [Hayes et a/., 1999a].

DGGE was performed using the Ingeny phorU-2 system (www.ingeny.com). The

seven amplicons were electrophoresed in six lanes (fragments C and D were pooled)

of a 9% polyacrylamide gel containing a 30% to 70% urea and formamide (UF)

denaturing gradient (100% UF = 7moi/L urea per 40% deionised formamide), at

59.5°C for 110 volts overnight. The gels were stained with ethidium bromide and

photographed under an UV transilluminator. Thus the CCR2-DGGE allows for the

complete analysis of 5 individuals per denaturing gel.
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DNA sequencing and mutation confirmation

Automated sequencing of amplified samples showing aberrant DGGE banding

patterns was performed using a non-GC-clamped primer and the dye terminator

sequencing kit of Applied Biosystems (www.appliedbiosystems.com). The commonly

occurring SNPs were verified by mixing samples showing similar DGGE banding

patterns, followed by a heteroduplexing step before electrophoresis on a denaturing

gel [Guldberg and Gutier, 1993]. Samples showing additional heteroduplex bands

were subjected to sequencing for the exact determination of the sequence variants.

Statistical analysis

Manual allele counting was used for calculating allele frequencies. Tests for

significance of heterogeneity in the frequencies among HIV seropositive patients and

seronegative controls for both the mutations and SNPs were performed by means of

Fisher's exact test for 2X2 contingency tables. The Hardy - Weinberg principle was

applied to measure the maintenance of the allelic frequency for the CCR2 SNPs in

the closely matched HIV seropositive and HIV seronegative African population. The

statistical calculations are shown in appendix 3.

RESULTS

The CCR2 primer sets and experimental conditions for PCR amplification and DGGE

analysis are shown in Table 1. Using our CCR2-DGGE assay, we identified 11 novel

mutations and two previously reported mutations as shown in Figure 1 and listed in

Table 2, according to the intron I codon in which they occur.

72

Stellenbosch University http://scholar.sun.ac.za



Table 2. CCR2 mutations detected in 102 HIV seropositive patients and 144 HIV seronegative controls, ordered according to the intron/codon in which they occurred.

Allele frequency

Base DGGE

Mutation change Fragment Africans Coloureds Caucasians Asians

HIV+ HIV- HIV+ HIV- HIV+ HIV- HIV-

(n=138) (n = 124) (n = 52) (n =144) (n = 14) (n = 4) (n = 16)

Int1 -57a/g *.a,b A-G A 14(0.101) 13(0.105) 3 (0.058) 10 (0.069) 0 0 0

Int1 -43g/a *,a,b G-A A 3 (0.022) 5 (0.040) 3 (0.058) 3 (0.021) 0 0 0

V52 *,a,b GTG -GIT B 0 0 1 (0.019) 1 (0.007) 0 0 0
V63 *,a,b GTC - GIT B 1 (0.007) 1 (0.008) 5 (0.096) 5 (0.035) 2 (0.143) 0 1 (0.063)

V641 a,b GTC -ATC B 18 (0.130) 21 (0.169) 1 (0.019) 25 (0.174) 0 1 (0.250) 2(0.125)

S223 *,a,b TCG - TCA E 0 0 0 1 (0.007) 0 0 0

R233Q *,a,b CGA-CAA E 0 0 0 2 (0.007) 0 0 0

N260a,b AAC -AAT E 75 (0.543) 79 (0.637) 30 (0.577) 97 (0.674) 10 (0.714) 2 (0.500) 11 (0.688)

L283 *,a,b CTG - CIT F 6 (0.043) 3 (0.024) 1 (0.019) 4 (0.028) 0 0 0

T287M *,a,b ACG -ATG F 0 4 (0.032) 1 (0.019) 0 0 0 0

P339*,a CCA-CCG G 21 (0.152) 18 (0.145) 2 (0.038) 5 (0.035) 0 0 0

T348 *,b ACG -ACA F 0 0 1 (0.019) 6 (0.042) 1 (0.071) 0 0

G355E*,a GGA-GAA G 2 (0.014) 1 (0.008) 0 0 0 0 0

n, number of alleles; HIV+, seropositive;HIV-, seronegative; Int, intron

* Novel mutation identified in this study

a Mutation identified in CCR2A

b Mutation identified in CCR28
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Frag A

1 2 3

Frag B

1 2 3 4

Frag E

1 2 3 4 5

Frag F

1 2 3 4

Frag G

1 2 3

Figure 1. Aberrant DGGE banding patterns for all thirteen CCR2 gene mutations identified and listed in Table 2, according to the fragment

(Frag) in which they were found. No mutations were identified in fragments C and D. Lane 1 of all the fragments represents the DGGE banding

pattern of a normal control. Mutants are depicted as follows; Frag A: lanes 2, heterozygous for the CCR2 Int1 -57a/g SNP; and lane 3,

heterozygous for CCR2 Int1 -43g/a SNP; Frag B: lane 2, heterozygous for the CCR2V64I SNP; lane 3, heterozygous for the CCR2V63 SNP;

and lane 4, heterozygous for the CCR2V52 mutation; Frag E: lane 2, heterozygous for the CCR2R233Q mutation; lane 3, heterozygous for the

CCR2S223 mutation; lane 4, heterozygous for the CCR2N260 SNP; and lane 5, homozygous for the CCR2N260 SNP; Frag F: lane 2,

heterozygous for the CCR2L283 SNP; lane 3, heterozygous for the CCR2T287M SNP; and lane 4, heterozygous for the CCR2T348 SNP;

Frag G: lane 2, heterozygous for the CCR2P339 SNP; and lane 3, heterozygous for the CCR2G355E mutation.
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Seven of the 11 novel mutations occur at an allelic frequency of greater than or equal

to 0.01 and thus appear to be SNPs within our unique South African population. Of

these seven SNPs, two are found within intron 1 and involve an a to g change at

position -57 base pairs (bp) and a g to a change at position -43bp downstream from

the acceptor splice site, respectively. Four of the SNPs are silent mutations and are

observed at codons 63, 283, 339 (CCR2A) and 348 (CCR2B), while another SNP at

codon 287 (ACG - ATG) involves a non-conservative amino acid change

(replacement of an amino acid by another with different chemical properties) from

Threonine to Methionine, which could result in changing the functional structure of

the CCR2 protein. Except for the SNP at codon 63, which was observed in all the

different population groups and the SNP at codon 348 (CCR2B), which was present

in the Coloured and Caucasian population groups, the rest of the SNPs were found

exclusively in Africans and / or Coloureds.

The remaining four novel mutations include two silent mutations at codons 52 and

223, which were found in two Coloureds (one HIV+ and one HIV-) and one HIV

seronegative Coloured, respectively, and two non-conservative mutations at codon

233 (CGA - CM) and codon 355 of CCR2A (GGA - GM). These non-conservative

amino acid changes, could ultimately affect the structure of CCR2. The mutation at

codon 233, which was observed homozygously in one HIV seronegative Coloured,

involves an amino acid change from Arginine to Glutatmine, while the codon 355

(CCR2A) mutation, found in three Africans (two HIV+ and one HIV-), results in an

amino acid change from Glycine to Glutamic Acid.
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The commonly occurring SNP at codon 64 (GTC - ATC), results in a non-

conservative amino acid change from Valine to Isoleucine [Smith et aI., 1997a]. The

CCR2V64I SNP was observed homozygously in four HIV seronegative controls (one

African, two Coloureds and one Asian) and heterozygously in both the HIV

seropositive patients and HIV seronegative controls of all the different South African

population groups. For the previously reported silent SNP at codon 260 (MC -

MT), it was found that the T allele occurs at a higher allelic frequency than the C

allele in the entire South African study cohort.

DISCUSSION

This study involved the design and use of a comprehensive mutation detection assay

for the entire coding region of both gene transcripts of CCR2 (CCR2A and CCR2B),

for the identification of novel and previously reported mutations and SNPs in both

HIV seropositive and HIV seronegative individuals in a predominantly African-based

population from South Africa. The assay, based on DGGE, allows for the complete

analysis of 5 patients per denaturing gel. Previous studies have been restricted to

the analysis of the CCR2V64I SNP in different population groups and thus

comprehensive analysis of CCR2 is important and ideal in our diverse South African

study cohort.

Novel mutations and SNPs were identified in all the different population groups

represented in this study. The novel mutations at codons 233 and 355 (CCR2A), and

the novel SNP at codon 287, all result in non-conservative amino acid changes,

which may change the structure of the CCR2 protein and thus affect it's functioning.

The novel silent mutations (codons 52, 223) and SNPs (63, 283, 339 (CCR2A) and
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348 (CCR2B)), as well as, the two novel intronic SNPs (Int1 -57a/g and Int1 -43g/a)

could all possibly influence gene expression and/or RNA splicing by altering

regulatory elements [D'Souza et ai., 1999, Lorson et ai., 1999]. The significance of

all these mutations on the functioning of CCR2 requires further investigation.

The SNP at codon 63 was detected in all the population groups, while the SNP at

codon 348 (CCR2B) appears to have a Caucasian origin as it was only observed in

Coloureds and Caucasians. Three of the novel mutations (codons 52, 223 and 233)

were found exclusively in the Coloured population. Due to the relatively recent

admixture within the people of Coloured descent, it is not certain whether these rare

mutations have an African or Caucasian-based origin. Although the number of

Caucasians included in this study are small, the novel mutation at codon 355

(CCR2A) and the novel SNPs at Int1 -57a/g, Int1 -43g/a and codon 287, seem to be

African-related. Due to insufficient information regarding the clinical status of the HIV

seropositive patients, no significant associations with the novel mutations or SNPs

and HIV-1 susceptibility and/or rates of disease progression to AIDS could be made.

The commonly reported CCR2V64I SNP, which has an allelic frequency ranging from

0.10 to 0.25 within specific populations [Smith et ai., 1997a; Michael et ai., 1997],

was observed in all the South African population groups with allelic frequencies of

0.149 in the Africans; 0.133 in the Coloureds; and although numbers are small, 0.056

in the Caucasians and 0.125 in the Asians. It is known that the presence of the

CCR2V64I SNP heterozygously and homozygously is associated with delaying

disease progression to AIDS, provided that the patient's date of HIV-1 infection is

more or less known [Smith et al., 1997a; Smith et al., 1997b; Michael et ai., 1997;

77

Stellenbosch University http://scholar.sun.ac.za



Kostrikis et a/., 1998]. Most of the HIV seropositive patients forming part of our study

cohort do not have known dates of HIV-1 infection and thus no associations could be

made. However, a significant decrease in the frequency of the mutant allele was

noted in the HIV seropositives, when compared to the HIV seronegative control

group for the Coloured population (P = 0.0034).

The observation that the T allele of the CCR2N260 SNP occurs at higher frequencies

within all the population groups in this study, confirms our previous data [Petersen et

a/., 2001]. This is contrary to recent data, which suggests that the C allele occurs

more frequently in Caucasians, Africans and Hispanics residing in America [Clark et

a/.,2001].

Although expression of CCR2A is mostly restricted to the cytoplasm [Wong et a/.,

1997], we included the CCR2A transcript in our analysis. The reason for this was the

possibility of identifying novel African-related SNPs within CCR2A, which although

does not singly lead to susceptibility, may in combination with other weaker genetic

events lead collectively to determining disease status. The African-associated SNP

identified at codon 339 of the CCR2A transcript is currently under investigation by our

group in a large cohort of patients of known disease progression to determine the

significance of this SNP in combination with other identified African-associated SNPs.

The closely matched HIV seropositive and HIV seronegative African population are in

Hardy - Weinberg equilibrium for all the African-associated CCR2 SNPs.
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The large number of novel mutations, especially novel SNPs, identified in our South

African study cohort, with it's diverse population groups, is an indication of the

efficiency of the described CCR2-DGGE assay and also emphasises the importance

of screening for mutations, other than the CCR2V641, in different population groups.

Further studies are required to determine the underlying mechanisms of the CCR2

novel mutations and SNPs identified, so that it's possible effects on influencing host

susceptibility to HIV-1 infection and / or developing AIDS can be understood more

clearly.
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Background: The CXC chemokine, stromal derived factor 1 (SDF1), is the natural

ligand for the human immunodeficiency virus-1 (HIV-1) co-receptor, CXC chemokine

receptor 4 (CXCR4). A single nucleotide polymorphism (SNP), SDF1-3' A, has been

previously identified in the 3' untranslated region (3' UTR) of the SDF1 B transcript

and is associated with influencing disease progression when found homozygously.

Objectives: To determine the allelic frequencies of the SDF1-3' A SNP within the

different South African population groups.

Design: The South African study cohort consisted of 104 HIV seropostive patients

and 196 HIV seronegative healthy controls

Methods: A mutation detection assay, based on denaturing gradient gel

electrophoresis (DGGE), was designed for part of the SDF1 B-3' UTR.

Results: We identified the commonly reported SDF1-3' A SNP as well as 2 novel

mutations. The SDF1-3' A SNP was observed in both the HIV seropositive patients

and HIV seronegative controls of all the South African population groups, but with a

higher allelic frequency in the Caucasians and Coloureds.

Conclusion. Two of the HIV-seropositive patients of whom the disease progression

is unknown were homozygous for the SDF1-3' A SNP, while 10 patients with widely

variant disease progression were heterozygous for this polymorphism. No

association with HIV-1 susceptibility and/or disease progression to AIDS could thus

be made. However, the high allelic frequency of the SDF1-3' A SNP in both the HIV

seropositive patients and HIV seronegative controls warrants further investigation of

larger and informative study cohorts to analyse the effect of the SDF1-3' A SNP on

the surface expression and functioning of the SDF1 protein.

Keywords: SDF1, SNP, novel mutations, HIV-1 susceptibility, South Africa
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INTRODUCTION

The observation of specific chemokines acting as inhibitors of human

immunodeficiency virus-1 (HIV-1) infection and also possibly influencing viral

replication [Cocchi et ai., 1995], was further underscored by the discovery that these

chemokines are the natural ligands for chemokine receptors, which serve as

necessary co-factors for HIV-1 entry. It is thus possible that chemokines suppress

HIV-1 infection, by either direct competition with the virus for binding to, the

chemokine receptors, or down-regulation of the chemokine receptors [Bleul et al.,

1996a; Oberlin et al., 1996; Samson et ai., 1996; Combadiere et ai., 1996; Raport et

al., 1996].

The CXC - chemokine, stromal cell-derived factor 1 (SDF1 or CXCL 12), is the natural

ligand for the HIV-1 entry co-factor CXC chemokine receptor 4 (CXCR4) and inhibits

infection by T cell line tropic (T-tropic) or SI syncytium-inducing (SI) virus strains

[Bleul et ai., 1996a; Oberlin et al., 1996] by interfering with the use of CXCR4 by

HIV-1 [Amara et al., 1997; Signoret et ai., 1997]. It has been found that the SOF1

gene, located at band q11 of chromosome 10, encodes for two isoforms, namely

SDF1a (89 amino acids) and SDF1~ (93 amino acids), which is the result of

alternative spiicing of a single gene [Tashiro et ai., 1993; Nagasawa et ai., 1994;

Shirozu et aI., 1995]. The first 21 amino acid residues of the SDF1a and SDF1~

proteins form an amino acid-cleaved signal peptide [Bleul et ai., 1996b]. Three and

four exons contain the coding regions for SOF1a and SOF1{3, respectively. The

SOF1{3 gene transcript thus has an extra exon, which encodes for four additional

amino acids [Shirozu et al., 1995].
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A study by Winkler et al. in 1998, led to the identification of a commonly occurring

single nucleotide polymorphism (SNP) in the 3' untranslated region (3' UTR) of the

SDF1 {3 gene transcript, which involves a G to A transition at nucleotide position +801

(counting from the first nucleotide of the ATG start codon). Allelic frequencies for the

SNP range from 0.06 to 0.26 within various population groups, occurring more

commonly in Caucasian populations [Mummidi et a/., 1998; Winkler et a/., 1998;

Williamson et a/., 2000]. The SNP has been shown to be associated with delaying

the onset of acquired immune deficiency syndrome (AIDS) when found in the

homozygous state [Hendel et a/., 1998; Martin et a/., 1998; Winkler et a/., 1998] and

the simplest hypothesis for this recessive protective effect was that the SNP results

in the up-regulation of SDF1 biosynthesis, making it more available to compete with

HIV-1 for binding to CXCR4 and thus blocking T-tropic or SI variants from emerging

[Winkler et a/., 1998]. Ayra et a/., 1999 has tested this hypothesis and the results

indicate that the SNP does not affect the regulation of SDF1 expression.

Other studies however suggest that the SDF1B-3' UTR-B01G-A (abbreviated SDF1-

3' A) SNP, when found homozygously in HIV-infected individuals, is not associated

with a protective effect, but rather associated with accelerated progression to death

[Mummidi et a/., 1998]; prolonged [van Rij et a/., 1998] or decreased [Brambilla et a/.,

2000] survival after AIDS is diagnosed; low CD4 cell counts [Balotta et a/., 1999]; and

no effect on disease progression [Meyer et a/., 1999]. The study cohorts used in the

studies mentioned above consisted of predominantly Caucasians. A recent study

has also shown an association between the SDF1-3' A SNP in the heterozygous

state and increased vertical HIV-1 transmission from mother to child in an African

study cohort [John et a/., 2000]. All the findings mentioned above emphasises the
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need for further studies, so that a clear correlation can be made between the SOF1-

3' A SNP and HIV-1 pathogenesis.

This study included the design and application of a comprehensive mutation

detection assay for part of the 3' UTR of the SOF1f3 gene transcript, using denaturing

gradient gel electrophoresis (DGGE) and allowed for the screening of the SOF1-3' A

SNP in a South African study cohort, consisting of 103 HIV seropositive patients and

194 HIV seronegative controls. Our results are presented in this study.

METHODS

Study cohort

104 HIV seropositive individuals (35 male; 69 female) formed part of the study cohort

and they are all patients of either Tygerberg Hospital or Woodstock Chapel Street

Community Health Clinic, both in the Western Cape of South Africa. The disease

progression for most of these patients remains unknown. The study cohort also

consisted of 192 HIV seronegative healthy individuals (78 male; 114 female) and

these control samples were obtained from the Western Province Blood Transfusion

Service, South Africa. The population groups represented in this study include

Africans, predominantly Xhosa (70 HIV+ and 63 HIV-), Coloureds (26 HIV+ and 73

HIV-), Caucasians (seven HIV+ and 48 HIV-) and Asians (eight HIV-). There was

also one HIV seropositive female of whom the population group is unknown. The

different population groups have been previously defined in Petersen et aI., 2001.

Informed consent was obtained from all the study participants. The Ethics Review

Committee of the University of Stellenbosch approved the study protocol.
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Primer Design

A DGGE PCR primer set was designed for part of the 3' UTR of the SOF1 f3 gene

transcript, using the melt 87 computer program [Lerman and Silverstein, 1987] and

considering conditions previously described for the improvements of selecting

appropriate DGGE PCR primers [Wu et al., 1998]. Primers used were as follows;

SDF1-3'AF: GTGAAGGCnCTCTCTGTGG and SDF1-3'AR: [40GC]GTGGACACA

CATGATGATGG. To prevent complete strand dissociation during amplification and

ensure a single melting domain for optimal detection of all mutations, a GC-rich-

fragment was added to the 5' end of the reverse primer (40GC-clamp as previously

published in Petersen et aI., 2001).

DNA amplification

Using conventional methods, genomic DNA was extracted and amplified using a

single DGGE primer set. Each PCR reaction mixture had a final volume of 50 J.!Iand

contained 100 ng of genomic DNA, 0.1 mM of each deoxyribonucleoside

triphosphate (dNTP), 10 pmol of each primer, 2.5 mM of a 10 x Mg2+ reaction buffer

and 0.5 units or of DNA Taq polymerase (Boehringer Mannheim). Amplification was

performed using a Perkin Elmer 9600 thermocycyler (PE Applied Biosysytems) and

the following PCR cycling conditions; an initial denaturation at 96°C for 3 minutes,

followed by 32 cycles of denaturation at 96°C for 45 seconds, annealing at 56°C for 1

minute and elongation at 72°C for 1 minute 20 seconds. Following the last cycle was

an additional extension step of 72°C for 7 minutes. For heteroduplex formation, the

PCR products were subjected to denaturation at 96°C for 10 minutes, followed by

renaturation for 45 minutes at 56°C. Electrophoresis was used to check the amplified

products, where 5J.!1(10%) of each sample was resolved on 2% agarose gel.
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Denaturing gradient gel electrophoresis (DGGE)

Optimal DGGE analysis was achieved using previously described conditions for

broad-range mutation detection by DGGE [Hayes et a/., 1999a]. Amplified PCR

products were electrophoresed in a 9% polyacrylamide gel with a denaturing gradient

of 45% to 85% urea and formamide (UF) (100% UF = 7moi/L urea per 40% deionised

formamide), at 60°C for 110 volts overnight, using the Ingeny phorU-2 system

(www.ingeny.com). The gels were stained with ethidium bromide and photographed

under an UV transilluminator.

DNA sequencing and mutation verification

Automated DNA sequencing was performed for amplified samples showing aberrant

DGGE banding patterns, using a non-GC-clamped primer and the dye terminator

sequencing kit of Applied Biosystems (www.appliedbiosystems.com). To verify the

commonly occurring SOF1-3' A SNP, samples with similar DGGE banding patterns

were mixed and subjected to heteroduplex formation before electrophoresis on a

denaturing gel [Guldberg and Guttier, 1993]. Samples showing additional

heteroduplex bands were subjected to sequencing.

Statistical analysis

The allelic frequencies of the SOF1-3' A SNP were determined by manual allele

counting. Testing for significance of heterogeneity in the frequencies among HIV

seropositive patients and HIV seronegative controls for the SOF1-3' A SNP was

based on Fisher's exact test for 2x2 contingency tables. The Hardy - Weinberg

principle was applied to measure the maintenance of the allelic frequency for the

SOF1-3' A SNP in the closely matched HIV seropositive and HIV seronegative

African population. The statistical calculations are shown in appendix 3.
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RESULTS AND DISCUSSION

The previously reported SOF1-3' A SNP and two novel mutations were detected

using the SOF1 B-3' UTR-DGGE assay and are shown in Table 1 and in Figure 1,

according to the nucleotide position at which they occur.

Table 1. Allelic frequencies of SDF1{3 mutations detected in 104 HIV seropositive patients and

192 HIV seronegative controls, ordered according to the nucleotide position at which they

occurred.

Allele frequency

Mutation Africans Coloureds Caucasians Asians Unknown

HIV+ HIV - HIV+ HIV- HIV+ HIV- HIV- HIV+

(n = 140) (n = 126) (n = 52) (n =146) (n = 14) (n =96) (n = 16) (n = 2)

nt +801 G-A 7 (0.050) 1 (0.008) 4 (0.076) 27 (0.185) 3 (0.214) 27 (0.281) 2(0.125) 0

nt +875 A-T * 0 0 0 0 0 0 0 1 (0.500)

t.8 ( nt +916) * 0 0 0 0 0 1 (0.010) 0 0

* Novel mutation identified in this study

n, number of alleles; nt, nucleotide position; t. , deletion

Lanes: 1 2 3 4 5

Figure 1. DGGE banding pattern for the SDF1{3 gene mutations detected in this study.

Lane 2, normal control; Lane 1 and 3, Individuals heterozygous and homozygous for the

SDF1I3-3' UTR G-A (nt +801) SNP, respectively; Lane 4, Individual heterozygous for the

SDF1{3-3' UTR A - T (nt +875) mutation and Lane 5, Individual heterozygous for the SDF1{3-

3' UTR 8bp deletion (nt +916).
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The segment of the 3' UTR of SDF1B screened in this study is highly conserved in

sequence and the extent of conservation suggests that it may serve as a target for

cis-acting factors, which could influence transcription, biosynthesis, transport, stability

and splicing [Winkler et aI., 1998]. Thus the previously described SDF1-3' A SNP as

well as the 2 novel mutations, in a potential regulatory region, could have an effect on

the expression or functioning of the SDF1 protein. The assay used in this study only

includes part of the SDF1B-3' UTR, so therefore we cannot exclude the possibility

that novel significant mutations could occur within the remaining 5' and 3' UTRs, the

coding region and the intronic sequences of both SDF1a and SDF1{3 transcripts.

The first novel mutation identified in this study involves an A to T change at

nucleotide position +875 (counting from the first nucleotide of the ATG start codon)

and was found in a HIV seropositive female of whom the population group is

unknown. The second novel mutation, detected in a HIV seronegative Caucasian

female, involved an eight base pair (8bp) deletion starting at nucleotide position +916

(Figure 2).

B

SDF1 wild-type SDF1 A8bp mutation

Figure 2. A) Sequence for the SOF-1 wildtype. The black arrows indicate the 8bp that form the

deletion mutation, starting at nucleotide position +961. B) Sequence for the SOF1 ~8bp mutation

in the homozygous state. The black arrow indicates the start of the deletion mutation.
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The SOF1-3J A SNP was observed in both the HIV seropositive patients and HIV

seronegative controls from all the different population groups. Two of the HIV

seropositive patients, an African female and a Caucasian male, were homozygous

for the SNP, but the disease status is unknown for both these individuals. The

SOF1-3J A SNP was found heterozygously in 10 HIV seropositive patients of which

two, three, one and four had slow, normal, fast and unknown disease progression,

respectively. Nine HIV seronegative controls were homozygous for the SOF1-3J A

SNP, while the SOF1-3J A SNP was found heterozygously in 39 HIV seronegative

controls.

The SOF1-3J A SNP was found to occur at a much higher allelic frequency in the

Caucasians (0.273), Coloureds (0.157) and Asians (0.125) compared to the Africans

(0.030). These findings are similar to the allelic frequencies previously reported

[Winkler et al., 1998; Mummidi et ai., 1998; Williamson et ai., 2000]. A higher allelic

frequency for the SOF1-3J A SNP was however observed in the African HIV

seropositive patients (0.050) when compared to the closely matched African HIV

seronegative controls (0.008) and the significance of this finding will have to be

investigated further. Both the HIV seropositive and HIV seronegative African

population are in Hardy - Weinberg equilibrium for the SOF1-3J A SNP. The high

allelic frequency of the SOF1-3J A SNP in the Coloured population group may be the

result of admixture with persons of Caucasian descent [Martinson et al., 1997].

The two HIV seropositive individuals who have the SOF1-3J A SNP in the

homozygous state both lack clinical information, while the 10 HIV seropositive

individuals who are heterozygous for the SOF1-3J A SNP display widely variant

clinical outcomes (slow, normal and fast disease progression). Thus no significant

89

Stellenbosch University http://scholar.sun.ac.za



associations with disease progression could be made. However, the identification of

the SOF1-3' A SNP at significant allelic frequencies in both the HIV seropositive

patients and HIV seronegative controls of different population groups, raises the

importance for determining the underlying mechanism of the SOF1-3' A SNP and

how it influences susceptibility to HIV-1 infection and/or disease progression to AIDS.

Due to the inconsistent results observed between various studies, it is necessary that

larger cohorts with detailed clinical information are screened to not only determine

the effect of the SOF1-3' A SNP, but to more fully understand the functioning of

SDF1, which could contribute to HIV therapy and vaccine development.
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Chapter 6

Discussion
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DISCUSSION

Host susceptibility to HIV-1 pathogenesis varies widely amongst individuals [Liu et

al., 1997] and is determined by certain parameters, which include viral characteristics

and host immunological and genetic factors. The existence of individuals remaining

uninfected, despite repeated exposure to HIV-1 and the observation of HIV-1 infected

long-term non-progressors (see chapter 2.2.) suggested that genetic factors play an

imp_?rtant role in determining an individual's susceptibility to HIV-1.

Linkage analysis and association studies are two experimental methods used to

identify and investigate genetic variants in human disease. Linkage analysis involves

the study of family pedigrees to compare inheritance patterns of genetic variants,

which could serve as markers for identifying the location of a specific disease gene.

It is often quite difficult to collect large families to effectively apply linkage analysis.

The application of linkage analysis to complex traits (not determined by a single gene

locus) could also be problematic as a pedigree model (diagram showing ancestral

relationships and transmission of genetic traits in a family) that explains the pattern of

inheritance will be hard to find. Association studies involve the use of a case-control

or cohort strategy of unrelated individuals to indicate correlations of genetic variants

with a disease phenotype. It is however fundamental that the study cohort consists

of matched and well-defined ethnic groups to observe significant associations that

are not bias due to continuous population admixture [Lander and Schork, 1994;

Taylor et aI., 2001].

Several association studies based on the comparison of unrelated HIV-1 infected and

uninfected individuals from specific population groups have resulted in the
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identification of genetic variants, which are associated with influencing host

susceptibility to HIV-1 infection and/or disease progression to AIDS (see chapter

2.2.). To date, the analysis of these variants in genes such as eeR5, eeR2 and

SOF1, have been largely restricted to Caucasian populations. The South African

population consists of a number of diverse well-defined African ethnic groups

(described in chapter 3), which is ideal for identifying previously reported and novel

eCR5, eeR2 and SOF1 mutations and determining whether certain mutations are

relatively specific and rarely or commonly observed within different population

groups.

Comprehensive mutation detection assays, based on DGGE (see chapter 2.3), were

thus designed for the entire coding region of the eeR5 gene (see chapter 3), the

entire coding region for both transcripts of the eeR2 gene (eeR2A and eeR2B)

(see chapter 4), and part of the 3' UTR region of the SOF1f3gene transcript (see

chapter 5). The cess, ccnz and SOF1 DGGE assays, allowed for the complete

analysis of 10, 5 and 30 individuals per denaturing gel, respectively. DGGE, which is

believed to be the most powerful of the gel-based pre-screening mutation detection

methods currently available, is highly sensitive and allowed for the detection of both

previously reported and novel genetic variants of the eeR5 (see chapter 3), eCR2

(see chapter 4) and SOF1 (see chapter 5) genes within a diverse South African

population.

Although an association between a single gene and host susceptibility to

HIV-1 infection and disease progression to AIDS has been shown with the eeR5ll.32

mutation, which is largely restricted to Caucasian populations [Liu et aI., 1996;
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Samson et al., 1996b], it is likely that host susceptibility to HIV-1 infection and/or

disease progression to AIDS in other population groups may not be the result of a

single genetic variant, but due to a large number of polymorphic sites (SNPs) that

collectively determine an individuals "risk profile". The identification of these SNPs

(single base mutations occurring at an allelic frequency of 0.01 or greater), which are

relatively stable due to a low rate of recurrent mutation, are thus important as they

may contribute to elucidating the role of host genetic factors in HIV-1 pathogenesis

within various population groups [Lander and Schork, 1994; Gray et al., 2000;

Sachidanandam et al., 2001].

Association studies, with a large sample size, where cases of disease are defined

and compared to matched controls from the same population, are the most ideal for

detecting the possible effects of genetic variants. Thus an important factor to

consider when performing association studies is population admixture (Coloured

population), particularly when there are great differences in both the ethnic admixture

of cases of disease and controls and allelic frequencies based upon ethnicity.

Determining the role of host genetic factors in susceptibility to HIV-1 infection and/or

disease progression to AIDS thus involves the investigation of whether a particular

allele occurs at a significantly higher frequency among HIV seropositive individuals

with known disease progression when compared to preferably "high risk" uninfected

population-matched individuals. Taking into consideration the difficulty of selecting a

population-matched control group, an "internal control", consisting of HIV-1 infected

individuals and their families, should also be considered for determining specific

allelic distributions and possible associations within a population [Lander and Schork,

1994; Taylor et al., 2001].
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The South, African sample cohort, analysed for the studies presented in chapters 3,4

and 5, consisted of approximately 100 HIV seropositve patients (see appendix I), 144

to 196 seronegative healthy controls and nine seronegative "high-risk" commercial

sex workers, all of predominantly Coloured (mixed ancestry) and African (Xhosa)

descent. The majority of HIV seropositive individuals of the sample cohort had

incomplete clinical information as only 43 HIV-infected individuals had informative

clinical data regarding sexuality, CD4 count, disease progression and clinical staging

(see appendix I - Table 1). The clinicians involved in the study, considered CD4

counts and clinical staging for the classification of these 43 HIV seropositive patients

into specific groups based on their rate of disease progression to AIDS [World Health

Organisation (www.who.int)] (see chapter 1.1.2). The HIV seronegative controls of

the sample cohort are all blood donors and it is not known whether any of these

individuals have been previously exposed to HIV-1. Due to confidentiality,

information regarding the health status and age of the HIV seronegative controls is

also unknown.

It is evident that the study cohort forms the all-important basis for association studies

and that the sample group representing the diverse South African population groups

in the studies presented in chapters 3, 4 and 5 is not ideal. These studies should

therefore be considered as pilot investigations for the identification of mutations and

SNPs that should be further analysed in larger African ethnic groups, consisting of

HIV-seropositive patients with known disease status and preferably "high-risk" HIV-

seronegative controls.
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Future prospects

A spectrum of SNPs have been identified in the pilot studies presented chapters 3, 4

and 5 and they provide a suitable basis for further investigation of larger and

informative African-based study cohorts, to develop a possible model of polygenic

contribution (small additive effects of multiple mutations and/or SNPs) to HIV/AIDS

susceptibility. Due to the lack of clinical information regarding the majority of our HIV

seropositive individuals, no significant disease associations could be made with any

of the SNPs identified in chapters 3, 4 and 5 when analysed both individually (see

appendix I - Table 2) and collectively (see appendix I - Table 3). Future intentions

are to screen at least 300 HIV seropositive patients (including slow, normal and fast

progressors) from diverse African ethnic groups of South Africa and to compare the

allelic distribution of specific SNPs in a number of genes that are associated with

HIV-1 pathogenesis to a population matched HIV-seronegative control group. The

selected SNPs include: CCR5P35, CCR5Y335 (see chapter 3), CCR2 Int1-57a/g,

CCR2 Int1-43g/a, CCR2V63, CCR2V641, CCR2L283, CCR2AP339, CCR2BT348

(see chapter 4) and SDF1-3'A (see chapter 5).

It is possible that a few of the mutations and/or SNPs identified in the studies

presented in this dissertation (see chapters 3, 4 and 5) may be in linkage

disequilibrium with each other or with genetic variants of other known and/or

unknown candidate genes involved in influencing host susceptibility to HIV-1 infection

and disease progression to AIDS. Linkage disequilibruim is the tendancy of specific

combinations of alleles at linked loci to occur together on the same chromosome

more frequently than would be expected by chance and is the result of selection for

specific alleles, mutation, random genetic drift (chance variation of allelic frequencies
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from one generation to the next) and population admixture. The significance of

linkage disequlibrium is shown using chromosomal haplotype analysis, which

identifies combinations of alleles as genetic markers associated with susceptibility to

infection or disease. SNPs with no functional consequences, such as CCR5P35,

CCR5Y339 (see chapter 3), CCR2V63, CCR2V641, CCR2L283, CCR2AP339,

CCR2BT348 (see chapter 4), can thus also act as genetic markers for identifying

possible candidate genes, which are directly involved in determining susceptibility for

infection and disease [Peterson et al., 1995; Huttley et al., 1999; Clark et al., 2001;

Sachidanandam et al., 2001]. Further studies involving the identification of

informative haplotypes for susceptibility to HIV-1 infection and disease progression to

AIDS within different population groups is thus essential.

Besides association studies, research efforts to investigate and determine the

underlying mechanisms of identified genetic variants, which may influence host

susceptibility to HIV-1 infection and/or disease progression to AIDS, are also required

[Howard et al., 1999; Blanpain et al., 2000; Lee et al., 1998; Mariani et al., 1999].

Our group has recently started with studies determining the functional consequences

of a few naturally occurring CCR5 mutations. These mutations include CCR5D2V,

CCR5L 107F, CCR5R225X and CCR5R225Q (see chapter 3). The possibility that

specific mutations/SNPs within genes encoding for chemokines and chemokine

receptors may playa regulatory role in HIV-1 pathogenesis will provide a clear

understanding of the host response to HIV-1 and raises the prospect of therapeutic

intervention by targeting and disrupting the complex interaction between HIV-1 and

the host target cells during viral entry.
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Appendix I

HIV seropositive cohort
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· . Table 1. The HIV seropositive cohort for the respective studies presented in this

dissertation consisted of 103 individuals from three different South African population

groups. Limited clinical information regarding the HIV seropositive individuals was

provided by clinicians and is summarised below.

Population groups

African Coloured Caucasian

(n = 70) (n = 26) (n = 7)

Gender Male - 21 Male - 8 Male - 6

Female - 49 Female -18 Female -1

Sexuality Heterosexual - 45 Heterosexual - 21 Heterosexual - 3

Homosexual - 1 Homosexual - 1 Homosexual - 3

Unknown - 24 Unknown - 4 Unknown -1

CD4 count < 200 - 15 <200 -12 <200 - 2

(cells/mm3) 200 to 500 - 23 200 to 500 - 6 200 to 500 - 4

} 500 - 6 } 500 - 8 } 500 - 0

Unknown - 26 Unknown - 2 Unknown - 1

Disease Slow - 3 Slow - 5 Slow - 1

progression Normal- 10 Normal- 5 Normal- 0

Fast - 13 Fast - 4 Fast - 2

Unknown - 44 Unknown - 12 Unknown - 4

Clinical stage Stage I - 10 Stage 1-5 Stage 1-0

Stage II - 2 Stage II - 3 Stage II - 3

Stage III - 11 Stage III - 12 Stage III - 2

Stage IV - 6 Stage IV - 4 Stage IV - 0

Unknown - 41 Unknown - 2 Unknown - 2

n = Number of HIV seropositive individuals representing each of the population groups.

Clinical staging - World Health Organisation (WHO) (www.who.int).

134

Stellenbosch University http://scholar.sun.ac.za



Table 2. The HIV seropositive cohort for the respective studies presented in this dissertation consisted of 43 individuals with known

disease progression. SNPs identified in these 43 HIV seropositive individuals of different population groups are shown below for

determining possible disease associations.

Population groups

Africans Coloureds Caucasians

( n =26) (n= 14) (n = 3)

Mutation Disease progression

Slow Normal Fast Slow Normal Fast Slow Normal Fast

CCR5P35 1 - Hetero 1 - Hetero 1- Hetero 2 - Hetero 2 - Hetero 1 - Hetero - - -

CCR5Y335 - - 1 - Hetero 1 - Hetero - - - - -

CCR2 Int1-57a/g - 1 - Hetero 1 - Hetero - 2 - Hetero - - - -
CCR2lnt1-43g/a - - - - - 1 - Homo - - -

CCR2V63 - - - - - 1 - Hetero - - -
CCR2V64I 1- Hetero 3 - Hetero 4 - Hetero - - - - - -
CCR2L283 - 1 -Hetero 1 - Hetero - - - - - -

CCR2AP339 1 - Homo 4 - Hetero 1 - Homo 1- Hetero 1 - Hetero I

- - - -

3 - Hetero I

-CCR2BT348 - - - 1 - Hetero - - 1 - Hetero - -

SDF1-3'A - - 3 - Hetero 2 - Hetero 1 - Hetero - - - -
------

n, number of individuals with known disease progression; Int, intron; Homo, Homozygous for SNP; Hetero, Heterozygous for SNP.
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Table 3. 43 HIV seropositive individuals with known disease progression formed part of the HIV seropositive cohort for the

respective studies presented in this dissertation. The analysis of SNPs occurring collectively within the 43 HIV seropositive

individuals of different population groups are shown below for determining possible disease associations.

HIV Population Disease CCRS CCRS CCR2 CCR2 CCR2 CCR2 CCR2 CCR2A CCR2B
patient group progression P35 Y335 Int Int VG3 VG41 L283 P339 T348 SDF13'A

-57a/g -43g/a
1 African Slow + - - - - - - - - -
2 Coloured Slow - - - - - - - - - +
3 Coloured Slow + - - - - - - - - -
4 Coloured Slow + - - - - - - - + +
5 Coloured Slow - - - - - - - - - -
6 African Slow - - - - - - - ++ - -
7 Caucasian Slow - - - - - - - - + -
8 African Slow - - - - - + - - - -
9 Coloured Slow - + - - - - - - - -

10 African Normal - - - - - - - + - -
11 Coloured Normal - - - - - - - + - -
12 African Normal - - - - - + - - - -
13 Coloured Normal + - - - - - - - - -
14 African Normal - - - - - - - - - -
15 Coloured Normal - - + - - - - - - +
16 Coloured Normal - - - - - - - - - -
17 Coloured Normal + - + - - - - - - -
18 African Normal - - - - - - - - - -
19 African Normal - - + - - - - + - -
20 African Normal - - - - - + - - - -
21 African Normal - - - - - + - - - -
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HIV Population Disease CCRS CCRS CCR2 CCR2 CCR2 CCR2 CCR2 CCR2A CCR2B
patient group progression P35 V335 Int Int V63 V641 L283 P339 T348 SDF13'A

-57a/g -43g/a
22 African Normal - - - - - - + + - -
23 African Normal + - - - - - - - - -
24 African Normal - - - - - - - + - -

25 African Fast - - - - - - - + - -
26 Caucasian Fast - - - - - - - - - -
27 Caucasian Fast - - - - - - - - - -
28 Coloured Fast + - - - - - - - - -
29 African Fast - - - - - - - + - -
30 African Fast - - - - - - - + - -
31 Coloured Fast - - - - - - - + - -
32 African Fast - - - - - - - ++ - -
33 African Fast - - - - - + - - - -
34 Coloured Fast - - - - + - - - - -
35 Coloured Fast - - - ++ - - - - - -
36 African Fast - - - - - - - - - +
37 African Fast - - - - - + - - - -
38 African Fast - + - - - + - - - -
39 African Fast + - - - - + - - - -
40 African Fast - - - - - - + - - +
41 African Fast - - - - - - - - - -
42 African Fast - - - - - - - - - +

43 African Fast - - + - - - - - - -

Int, intron; ++, homozygous for SNP; +, heterozygous for SNP; -, no SNP.
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Appendix II

Chemical stock solutions and Kits
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Al Stock solutions used for agarose gel electrophoresis and DGGE

• Agarose electrophoresis

1) 5X TBE - buffer (5 Litres)

272.5 grams

139 grams

14.5 grams

Tris

Boric Acid

EDTA

Fill up to 5 litres with distilled water.

2) 1X gel electrophoresis loading buffer (25 millilitres)

22.7 millilitres

0.168 grams

0.125 grams

0.125 grams

Formamide

EDTA

Xylene cyanol

Bromophenol blue

Fill up to 25 millilitres with distilled water .

• DGGE

1) 20X TAE - buffer (10 litres)

969 grams

544 grams

Tris - HGI

NaAc

74.5 grams EDTA

Adjust pH to 8.0 with NaOH (300-350ml) and fill up to 10 litres with distilled water.

2) 9% polyacrylamide (9% PAA) (1 litre)

25 millilitres 20 X TAE

225 millilitres 40% polyacrylamide (acryl: bisacryl = 37.5: 1)

Fill up to 1 litre with distilled water.
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3) 90% UF /9% polyacrylamide (1 litre)

25 millilitres 20 X TAE

225 millilitres

378 grams

360 millilitres

40% polyacrylamide (acryl: bisacryl = 37.5: 1)

Urea

Formamide (deionised)

Fill up to 1 litre with distilled water.

4) 10X gel electrophoresis loading buffer (500 millilitres)

1.25 grams

125 grams

Bromophenol blue

Ficoll400

10 millilitres 0.5M EDTA

Fill up to 500 millilitres with distilled water

B) Kits used for DNA extraction and DNA sequencing

• DNA extraction

1) OiAamp DNA mini kit (www.qiagen.com)

• DNA sequencing

1) OiAquick peR purification kit (www.qiagen.com)

2) DyeEx spin column kit (www.qiagen.com)

140

Stellenbosch University http://scholar.sun.ac.za



Appendix III

Statistical analysis
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Statistical analysis

Statistics is the science of collecting, analysing, presenting and interpreting

mathematical data. As geneticists it is important to consider the mathematical

aspects of the ways in which genes are inherited and to determine how 'normal' and

'mutant' genes are distributed in various population groups. Statistical analysis was

performed for the respective studies presented in this dissertation and involved the

calculation of allelic frequencies and the use of the Fischer exact tests for 2x2

contingency tables to test for a possible significance of heterogeneity in frequencies

among HIV seropositive and HIV seronegative individuals for both mutations and

SNPs.

1) Allelic frequency

Individuals can carry only two different alleles of a given gene. Therefore, a group of

individuals in various populations can carry a large number of different alleles, giving

rise to a reservoir of genetic diversity. The allelic frequency is thus the measurement

of the proportion of individuals in a population group carrying a particular allele. The

formula for calculating allelic frequencies is as follows:

Allelic frequency = The total no of a specific allele in a population

The total no of alleles in a population

The allelic frequencies have been calculated for all mutations and SNPs identified in

both the HIV seropositive and HIV seronegative sample groups for the respective

studies presented in chapters 3,4 and 5.
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Example 1: SDF1-3'A SNP (see chapter 5)

The HIV seropositive African population group consists of 70 individuals, where 64

individuals are homozygous for the wild-type allele (NN), 5 individuals are

heterozygous for the wild-type and mutant alleles (MN) and 1 individual is

homozygous for the mutant allele.

Allele genotype

MM MN NN Total

No of individuals 64 5 1 70

No of N alleles 128 5 0 133

No of Malleles 0 5 2 7

Total no of alleles 128 10 2 140

Allelic frequency of the N allele in the population = 133/140 = 0.95

Allelic frequency of the M allele in the population = 7/140 = 0.05

2) Fisher exact test

The Fisher exact test is a commonly used test to determine statistical significance.

The application of the Fisher exact test for a 2x2 contingency table is a test of

association between mutually exclusive categories of one variable (given in the rows

of table) and mutually exclusive categories of another variable (given in the columns

of table). This specific statistical method thus tests the null hypothesis (no

association exists between the two variable categories) against a two-sided (both

variable extremes are specified) alternative hypothesis (the two variables are

associated) by calculating the exact probabilities of all 2x2 contingency table of

observed frequencies where marginal totals are kept the same. A derived probability
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level for the test is then calculated by summation. It is always necessary to consider

a threshold of significance, which is the risk taken in rejecting the null hypothesis.

The usual value chosen for a significance level is 0.05. An explanation of the test is

as follows:

a
c

b

d

a +b

c +d

a+c b+d n

Consider a 2x2 contingency table of observed frequencies with marginal (row and

column) totals, and n is the sum of the observed frequencies, a + b + C + d. The

probability is calculated using the formula:

p = (a + b)! (c + d)! (a + c)! (b + d)! I N! a! b! c! d!

The formula is used repeatedly for all 2x2 contingency tables with the same marginal

totals. All the probabilities thus obtained which are less than or equal to the initial

probability, including the initial probability itself, are summed to obtain the total

derived probability. The null hypothesis is rejected if this total derived probability is

less than the significance level (usually 0.05) that has been chosen.

Using the GraphPad InStat computer program, the Fisher exact test for 2x2

contingency tables was applied to test the significance of CCR5, CCR2 and SDF1

mutations and SNPs within the African, Coloured and Caucasian population groups.

The degree of significance is defined as: not significant, when the P value is greater

than 0.05; significant, when the P value is 0.01 - 0.05; very significant, when the P

value is 0.001 - 0.01; extremely significant, when the P value is less than 0.001.
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Example 1: CCR5P35 SNP (see chapter 3)

African population

HIV+ HIV - Total

GGR5 wild-type 134 119 253

GGR5P35 6 9 15

Total 140 128 268

n = no. of alleles

P = 0.4273 (not significant)

Coloured population

HIV+ HIV - Total

GeR5 wild-type 43 134 177

GGR5P35 9 10 19

Total 52 144 196

n = no. of alleles

P = 0.0516 (not significant)
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Example 2: CCR5A335V SNP (see chapter 3)

African population

HIV+ HIV - Total

cess wild-type 136 126 262

CeRSA335V 4 2 6

Total 140 128 268

n = no. of alleles

P = 0.6859 (not significant)

Coloured population

HIV+ HIV - Total

cces wild-type 51 142 193

CCRSA335V 1 2 3

Total 52 144 196

n. = no. of alleles

P = 1.0000 (not significant)

146

Stellenbosch University http://scholar.sun.ac.za



Example 3: CCR2V641 SNP (see chapter 4)

African population

HIV+ HIV - Total
CCR2 wild-type 120 103 223

CCR2V64I 18 21 39

Total 138 124 262

n = no. of alleles

P = 0.3906 (not significant)

Coloured population

HIV+ HIV - Total
CCR2 wild-type 51 119 170

CCR2V64I 1 25 26

Total 52 144 196

n = no. of alleles

P = 0.0034 (very significant)

Caucasian population

HIV+ HIV - Total
CCR2 wild-type 14 3 17

CCR2V64I 0 1 1

Total 14 4 18

n = no. of alleles

P = 0.2222 (not significant.)

Sample numbers for Caucasian HIV+ patients and HIV - controls are however small.
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Example 4: CCR2N260 SNP (see chapter 4)

African population

HIV+ HIV - Tota!

CCR2 wild-type 63 45 108

CCR2N260 75 79 154

Tota! 138 124 262

n = no. of alleles

P = 0.1331 (not significant)

Coloured population

HIV+ HIV - Tota!

CCR2 wild-type 22 47 69

CCR2N260 30 97 127

Tota! 52 144 196

n = no. of alleles

P = 0.2374 (not significant)

Caucasian population

HIV+ HIV- Tota!

CCR2 wild-type 4 2 6

CCR2N260 10 2 12

Tota! 14 4 18

n = no. of alleles

P = 0.5686 (not significant)

Sample numbers for Caucasian HIV+ patients and HIV - controls are however small.
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Example 5: CCR2P339 SNP (see chapter 4)

African population

HIV+ HIV - Total

CCR2 wild-type 117 106 223

CCR2P339 21 18 39

Total 138 124 262

n = no. of alleles

P = 1.0000 (not significant)

Coloured population

HIV+ HIV- Total

CCR2 wild-type 50 139 189

CCR2P339 2 5 7

Total 52 144 196

n = no. of alleles

P = 1.0000 (not significant)
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Example 6: SDF1-3'A SNP (see chapter 5)

African population

HIV+ HIV - Total

SDF1 wild-type 133 125 258

SDF1-3'A 7 1 8

Total 140 126 266

n = no. of alleles

P = 0.0692 (not significant)

Coloured population

HIV+ HIV - Total

SDF1 wild-type 48 119 167

SDF1-3'A 4 27 31

Total 52 146 198

n = no. of alleles

P = 0.0768 (not significant)

Caucasian population

HIV+ HIV - Total

SDF1 wild-type 11 69 80

SDF1-3'A 3 27 30

Total 14 96 110

n = no. of alleles

P = 0.7544 (not significant)
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3) Hardy - Weinberg equilibrium (HWE)

The Hardy - Weinberg principle is applied to measure the maintenance of allele

frequencies in a large population with random mating (not considering partner's

genotype) and the absence of selection for a specific genotype, mutation, migration

(diffusion of alleles across racial and geographical boundaries) and random genetic

drift (the increased transmission of a specific allele to offspring by chance).

Determining whether a specific population is in Hardy - Weinberg equilibrium (HWE)

is thus important for association studies conducted in large study cohorts.

Example 1: Investigating whether the 70 African HIV seronegative controls are

in HWE for the CCR5P35 SNP (see chapter 3).

Observed {n = 70} Expected { n = 70}

NIN = 64 NIN = 64.11 (p2 x 70)

NIM = 6 NIM = 5.76 (2pq x70)

MIM = 0 MM = 0.13 (q2 x70)

n = number of individuals

N = wildtype allele; M = mutant allele

Incidence of wild-type allele = 2(NN) + NM I Total no. of alleles

= [2(64) + 6]/140

P = 0.957

Incidence of mutant allele = 2 (MM) + NM I Total no. of alleles

= [2(0) + 6]/140

q = 0.043

The observed and the expected values correspond closely and therefore the

population is in equilibrium.
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• Mould RF. Introductory medical statistics. Third edition. lOP Publishing Ltd,

London 1998.

• Rees DG. Essential statistics. Third edition. Chapman and Hall, London 1998.
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