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Summary
/

Harmonic mixers are capable of extended frequency operation by mixing with a harmonic of the 

LO (local oscillator) signal, eliminating the need for a high frequency, high power LO. Their 

output spectra also have certain characteristics that make them ideal for a variety of applications. 

The operation of the harmonic mixer is investigated, and the mixer is analyzed using an 

extension of the classic mixer theory. The synthesis of harmonic mixers is also investigated, and 

a design procedure is proposed for the design and realization of a variety of harmonic mixers. 

This design procedure is evaluated with the design and realization of two harmonic mixers, one 

in X-band and the other in S-band. Measurements suggest that the procedure is successful for the 

specific applications.

Opsomming

Harmoniese mengers kan by hoer frekwensies gebruik word as gewone mengers deurdat hulle 

gebruik maak van ‘n harmoniek van die LO. ‘n Hoe-frekwensie, hoe-drywing LO word dus nie 

benodig nie. Die mengers se uittreespektra het ook ‘n aantal karakteristieke wat hulle goeie 

kandidate maak vir ‘n verskeidenheid van toepassings. Die werking van die harmoniese menger 

word ondersoek deur uit te brei op die klassieke menger-teorie. Die ontwerp van die harmoniese 

menger word vervolgens ondersoek, waama ‘n ontwerpsprosedure voorgestel word vir die 

ontwerp van ‘n verskeidenheid van harmoniese mengers. Hierdie prosedure word getoets met die 

ontwerp en realisering van twee harmoniese mengers, een in X-band en die ander in S-band. 

Vanuit die metings is dit duidelik dat die ontwerpsprosedure geslaagd is vir die spesifieke geval.
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Introduction

Frequency mixers are used to achieve frequency conversion of an input signal. A nonlinear 

device, most commonly a diode or transistor, is used for this purpose. The nonlinear device 

generates the necessary integer multiples, or harmonics, of the signals that are necessary for the 

process of frequency conversion. This process can be described by the following general 

equation

where cds is the input signal, cop is the signal driving the mixer, and com,n is the output signal. Here 

m and n are integers denoting the harmonic of the input signal and driving signal respectively. 

For conventional mixers \m\ = 1 and \n\ = 1. Conventional mixers therefore use the fundamental 

frequencies of the input and driving signals to perform the frequency conversion, and are 

subsequently collectively called fundamental mixers. These mixers require a driving signal (Op 

with a frequency of the same order as the frequency of the input signal cos to produce an output 

signal.

With the upper frequency barrier of communication systems continuously creeping upwards 

(with the occasional leap), it becomes increasingly difficult to realize stable, powerful and cost 

effective driving sources for the fundamental mixers. A mixer topology utilizing an easily 

realizable driving source of lower frequency, while still taking a higher frequency input signal 

would provide a solution to the problem.

The harmonic mixer is such a topology. Harmonic mixers, while still obeying the above 

equation, require \m\ = 1 and \n\ > l . A  harmonic of the lower frequency driving signal is 

therefore utilized in order to produce an output signal of the same frequency as a fundamental 

mixer. Apart from the ability to utilize a lower frequency driving signal, the harmonic mixer 

provides the additional advantage of rejecting certain frequency components associated with 

conventional mixers. The operation of diode multipliers is in some aspects very similar to that of 

harmonic mixers, and it is not surprising that the multipliers incorporate similar structures as the 

harmonic mixer.

5
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Harmonic mixers were first introduced in 1975 [1]. Initially conversion losses of 5 to 8 dB worse 

than equivalent fundamental mixers were obtained [2], However, harmonic mixers have evolved 

to provide very competitive conversion losses at lower frequencies, while they are an established 

technology at higher frequencies [41, 42, 43]. Using 2nd-order mixers, 5 dB conversion loss at 

100 GHz has been achieved [3], while lOdB loss at 230 GHz demonstrates the power of this 

technology [38].

Harmonic mixers can utilize the higher order even harmonics of the driving signal, with a 

corresponding increase in conversion loss. Examples include a 6th-order mixer producing 24 dB 

loss at 26 GHz, a lO^-order mixer producing 28 dB loss at 50 GHz, and a lS^-order mixer 

producing 46 dB loss at 110 GHz [4]. The harmonic mixer therefore provides a convenient 

method of achieving acceptable conversion loss, without the need for a specialized source 

producing driving signal of adequate power at high frequencies.

The purpose of this thesis was to investigate the properties and implementation possibilities of 

the harmonic mixer. Its aim is to characterize the harmonic mixer adequately in terms of existing 

mixer properties. The operation and performance of the harmonic mixer were to be explored by 

means of design examples, and the minimization of conversion loss was chosen to be an 

important design criteria. Due to its extensive nature, noise analysis was restricted to the basics.

The thesis is divided into two main parts : the first part explores the analysis of the harmonic 

mixer with reference to conventional mixer theory. In many instances it is possible to extend 

existing mixer theory to accommodate the harmonic mixers. The second part explores the 

synthesis of the harmonic mixer, setting out to create a comprehensive design procedure which 

to date is not readily available in literature. The aim was to create a design procedure which 

considers the as many as possible of options offered by harmonic mixers, and then provide a 

step-by-step method for realizing a variety of harmonic mixers. Such a procedure was created 

and evaluated by designing two harmonic mixers. The procedure proved adequate and 

repeatable, producing a mixer at X-band with a conversion loss of 7.8 dB.

Chapter 1 provides a general overview of the basic structures employed for frequency 

conversion. The harmonic mixer is introduced, and an overview of its properties is given. The 

chapter concludes with an overview of the general properties used to describe mixer operation.

6
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Chapter 2 is a detailed description of the diode harmonic mixer. The operation of the diode 

harmonic mixer is considered, and the antiparallel diode pair is introduced as a fundamental 

building block of the harmonic mixer. The analysis of the mixer is subsequently discussed, with 

emphasis on the large-signal and small-signal analysis. Conversion loss, noise and other mixer 

properties are then related to the harmonic mixer. The chapter concludes with a comprehensive 

discussion on the analysis, paving the way for mixer synthesis.

Chapter 3 contains a detailed discussion of the various design considerations of the harmonic 

mixer. The mixer properties of Chapter 2 are related to various design methods. The chapter 

concludes with a proposed design procedure for harmonic mixers.

Chapter 4 contains two implementations of the design procedure proposed in Chapter 3. Both S- 

band and X-band harmonic mixers are designed and realized, and their performance is discussed. 

This discussion is carried over to the Conclusion, where a few final ideas are presented.

The Appendix contains discussions and design procedures omitted from the text.

7
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Chapter 1 : Microwave Diode Mixers

Out of all the different mixer classes, diode mixers are the most versatile tool to perform 

frequency conversion. Although they have been around since 1939, the simplicity and yet 

versatility have preserved their usefulness. In the mm-wave region and beyond, they are still 

utilized almost exclusively due to the limitations of active devices. In the RF and microwave 

region they constantly compete with newer technology, and are still often preferred to more 

complex circuits.

This chapter will investigate the usefulness of the diode mixer in the microwave region. It starts 

with a mathematical description of the process of frequency conversion, or mixing. Thereafter 

the diode is introduced as a nonlinear element capable of performing frequency conversion. 

Once the role of the diode as a tool for frequency conversion has been defined, its application in 

standard mixer circuits and topologies for the microwave region is investigated. The harmonic 

mixer is introduced, and the basics of operation are considered. The chapter is concluded with a 

discussion of the terminology and properties used to characterize mixers.

1.1) F undam enta l  Mixer Theory

Frequency conversion, or mixing, is achieved when a periodic signal of frequency ras is 

modulated by a periodic conductance waveform with frequency rap. The periodic signal is called 

the RF signal {radio frequency), while the periodic conductance is a result of an applied LO 

signal (local oscillator). The current resulting from the RF signal being modulated by the LO 

signal contains the generated frequency products, otherwise known as the sum and difference 

products.

1.1.1 Generalized Frequency Mixing

A frequency mixer is essentially a multiplier. Any nonlinear device can be used to perform the 

frequency mixing, as will be demonstrated. A voltage v (the independent variable) is applied 

across such an element with a nonlinear transfer function, with the current z'd (the dependent 

variable) flowing through the element as a result of the applied voltage.

8
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This current-voltage, or I-V, characteristic of the nonlinear device can be described by a power 

series of the form

id = a0 + axv + a2v2 + a 3v3 + ... ............... (1.1)

where ao, ai, ci2, ... are suitable coefficients [5]. Equation (1.1) summarizes the general relation 

for the currents and voltages associated with a nonlinear device.

1.1.2 The Diode as Nonlinear Element

The I-V relationship of the general diode provides the required mechanism for frequency 

conversion. The diode is not the only nonlinear element exhibiting this relationship -  the I-V 

curves of various families of transistors also obey the relationship in equation (1.1), and they are 

consequently employed as frequency mixers.

In general there will be two voltages applied across the nonlinear diode :

1) The periodic RF signal vs, which is generally of the form

v,(0  = K  cos{cost)

2) The periodic LO signal vp, which is generally of the form

vp(t) = Vp cos(copt)

The phase angles cos and cop of the RF and LO signal respectively are ignored for the purpose of 

this qualitative discussion. When these two signals are applied across a diode simultaneously, the 

nonlinear current z'd from equation (1.1) flowing in the diode as a result of the applied voltages is 

given by

h (0 =  K (0 +  h (0 +  K (0 +  • • • ..................... ( 1 -2 )

The general trigonometric identities were used to obtain
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ia( 0 =  ia(t) = aVs cos(a>st)+aVp cos(o)pt) ............... (1.3)

ib (0  = \b [  V] + V] + Vs2 cos(2<y/)+ Vs2 cos(2<opt) 

+ 2VsVp{cos((®, + cop)/)+ cos((<y, - © , ) } ] (1.4)

ic (0 = tcI eos(3ffl,r) + Fp3 cos(3cy)

+ 3K/KJ,{cos((2®f + a ,)r)+  cos 

+ 3 r ,^ 2{cos((2ffl, +ffl,y)+ COS ((2 0 ,-« ,) /) (  

+ 3(F,! + 2 r / pJ)cos(®,/)

+ 3(r;+2F ,2F,,)cos(®,f)] (1.5)

where a, c, ...are general coefficients. What is important to note, is that frequencies other than

all the generated frequency products are a linear combination of the two excitation frequencies, 

or

where m,n = ..., -2, -I, 0, +1, +2, ... The fundamental mixing product with m -  1 and n = -1 is 

in most cases the desired intermediate frequency, or IF, while the second order mixing product 

with m = -1 and n = 2 is termed the image. The order of the mixing product is given by \m\. 

Mixing products with orders greater than one are called intermodulation products, IM  products 

or spurs [6, 37].

Although not formally, the output spectrum of the mixer provides an additional means of 

characterization for the different types of frequency mixers. Apart from aspects such as physical 

diode topology, conversion loss, frequency range of operation etc., a given type of mixer (e.g. a 

“double balanced mixer”) always implies a certain frequency content of the output spectrum.

In mixer selection and design it is fundamental to have a knowledge of the output spectrum of a 

specific frequency mixer. Standard considerations include the amount of LO power “leaking 

through” to the IF, how much of the power available to the IF is lost to the image, and how the

those of the original signals are created. A closer inspection of equations (1.3) -  (1.5) reveals that

(1.6)
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output filters need to be designed in order to filter out the intermodulation products. In the 

following sections the classic topologies for diode frequency mixers will be considered with 

reference to their output spectra.

1.2) D io d e  Mixer T op olog ies

Diode frequency converters are primarily classified by the number of diodes they employ, and by 

the manner in which these diodes are arranged in the circuit. The mixers can further be classified 

by their frequency band of operation (e.g. X-band), the medium used for wave-propagation (e.g. 

stripline), or a special function the mixer performs (e.g. image enhancement). An overview of 

the most common topologies with a brief description of their operation is given.

1.2.1 Single Diode Mixers

Single diode mixers (or single-ended mixers) provide the simplest way of frequency conversion. 

A single diode mixer essentially comprises a diode embedded in two matching networks : one 

combined network for the LO and RF, and one network for the IF. Figure 1.1 shows the standard 

topology for a single diode mixer.

Single diode mixers are rarely used at frequencies below the millimeter-wave region. Their 

simplicity and minimal components make them the only truly effective mixers at higher 

frequencies, but at lower frequencies they are outperformed by improved configurations. As it 

might have been expected, the analysis and synthesis of single diode mixers provide the 

“building blocks” for most multi-diode mixers. Multi-diode mixers can essentially be reduced to 

equivalent single diode mixers [7].
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The typical frequency spectrum of the current flowing through the diode is shown below. 

Although the graph only shows mixing products up to the 3 rd order, it is clear that the lower 

order mixing products are generally those of interest, since the amplitude of these lower order 

mixing products makes it necessary to consider them when designing input and output filter 

networks. Also note the “tapering” of the amplitudes as the frequency increases; as it can be 

expected, the majority of the power lies at the mixing products of the fundamental RF and LO 

frequencies, while less power is available at the higher frequencies.

O A « <c
v *  r

o” o ' y  *  o* ^
V Frequency

Figure 1.2 : Frequency Spectrum of Single Diode Mixer (up to 3rd order mixing products)

The frequency content of the current through the single diode mixer is typical for any general 

nonlinear element. The various frequency components described by equations (1.3) -  (1.5) can 

be graphically identified above. Specific frequencies to note are as follows :

- The RF and LO, with their harmonics

- The IF : {-LO + RF}

- The Image Frequency : {2LO -  RF}

- Even-order IM products : {-LO + RF}, {2LO + 2RF}, etc.

- Odd-order IM : {2LO -  RF}, {-2LO -  3RF}, etc.

As a measure of comparison to the topologies of the following sections, it is noted that the 

frequency spectrum of the current through the single diode contains the LO and RF signals, and 

all their harmonics. There is consequently no inherent isolation of these signals from the IF port. 

Removing these signals from the IF port is a task that must be done completely by means of 

filtering. It is also noted that the spectrum contains both the even-order and odd-order IM 

products. The single diode mixer therefore provides no spurious-response rejection', a task that 

must once again be done entirely by filtering.
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Finally, it is noteworthy that any amplitude or phase noise present in the LO will be directly 

“translated” to the IF signal -  therefore there is no noise-rejection.

To conclude, single diode mixers have the following general characteristics :

Characteristic Performance

Isolation No isolation between LO, RF and IF

Spurious-response rejection No rejection of even- or odd-order IM products

Noise-rejection No rejection of LO amplitude or phase noise

Frequency Range Classic mixer for higher GHz-region

Table 1.1 : Summary of Characteristics for Single Diode Mixer

Although the single diode mixer is predominantly used in the mm-wave region and beyond, 

more complex topologies generally outperform this mixer at lower frequencies. These topologies 

will briefly be discussed in the following section.

1.2.2 Balanced Mixers

In addition to single diode mixers, balanced mixers provide a further dimension to frequency 

conversion. Their multi-diode configurations allow for certain very attractive characteristics, as 

will be shown shortly. Balanced mixers usually employ diodes in groups of 2, 4 or 8, and are 

characterized accordingly. The harmonic mixer has often been characterized as a sub-division of 

balanced mixers, since its operation is in some ways similar to that of a balanced mixer. The 

operation of the balanced mixer will briefly be presented here in order to verify and explore this 

classification of the harmonic mixer.

Apart from utilizing more than one diode, balanced mixers make use of hybrids and baluns [8]. 

A hybrid circuit has an isolated port, and provides a phase difference (usually 90° or 180°, 

depending on the design). When the LO and RF signals are applied as unbalanced signals at the 

input ports, the hybrid produces a balanced signal consisting of a combination of the LO and RF 

signal on each of its output ports. A balun simply converts a balanced transmission line to an 

unbalanced line. Single balanced mixers utilize one hybrid or balun, while double balanced 

mixers use more than one. At lower frequencies the baluns are realized using transformers, while 

distributed elements are used at GHz-frequencies.
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1.2.2.1 Single Balanced Mixer

Figure 1.3 shows the typical topology for a single balanced mixer. The circuit essentially utilizes 

a 180° hybrid and two diodes. The LO voltage over the diodes is out of phase by 180°, while the 

RF voltage appearing over the diodes is in phase. These phase differences are characteristic of 

the specific hybrid, and they determine the harmonic content of the IF.

The method of analysis in the current text for determining the frequency content at the IF port is 

qualitative, and general to all the types of balanced mixers that are presented in the following 

sections [9].

For the LO : It can be shown that each diode contains frequency components at all the 

harmonics of the LO. However, the pair of diodes produces no frequency components at any 

of the LO harmonics. The respective diode currents at the harmonics of the LO must therefore 

be equal but opposite, cancelling at the IF port.

For the RF : It can also be shown that each diode contains frequency components at all the 

harmonics of the RF. The pair of diodes, however, only has frequency components at the odd 

harmonics of the RF. The respective diode currents at the even harmonics of the RF must 

therefore be equal but opposite in phase, cancelling at the IF port.

Although all the frequency components of the LO are confined to the loop containing the diodes 

and the hybrid, the mixing products containing these components (e.g. {2LO -  RF}, {LO + 

3RF}) are not limited to the loop, and appear at the IF port where they can be filtered out by the 

IF Filter. Figure 1.4 below shows a typical output spectrum for a single balanced mixer, with 

mixing products to the 3rd order. The frequency components characteristic of the single diode 

mixer that are not present (i.e. rejected) in the single balanced mixer have been grayed.
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/

Figure 1.4 : Frequency Spectrum at the IF Port of typical Single Balanced Mixer

The single balanced mixer also has the property of rejecting LO amplitude noise (or AM noise) 

at IF frequencies. The noise voltage Vn that enters the mixer at the LO port, is 180° out of phase 

through the diodes, and cancels at the IF port. As can be expected, the IF has much improved 

isolation from the LO signal (limited mainly by the degree o f  balance in the circuit, which is in 

turn determined by the quality of the hybrid, and the similarity of the two diodes).

To conclude, single balanced mixers have the following general characteristics :

Characteristic Performance

Isolation Good isolation between LO and IF 

No isolation between RF and IF

Spurious-response rejection (1) All {mu)s + nuip} mixing products with m and n even 

are eliminated (e.g. {-2LO + 2RF})

(2) All {mcjs + ncop} mixing products with m even and n 

odd are eliminated (e.g. {-LO + 2RF})

Noise-rejection Rejection of LO amplitude noise

Frequency Range MHz-range (baluns) and low GHz-range (hybrids)

Table 1.2 : Summary of Characteristics for Single Balanced Mixer

1.2.2.2 Double Balanced Mixer

A double balanced mixer typically uses four diodes and three baluns. Figure 1.5 shows a 

configuration for displaying the operation of the double balanced mixer. (In practice the mixers 

are rarely realized in this way. A ring- or star-configuration, described later, is often used.)
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Once again the analysis of the double-balanced-topology presented here will be intuitive, as a 

detailed description will be given in later sections. Since the two diodes connected to the 

secondary of each of the LO baluns are identical, points A and A’ are virtual grounds for the LO. 

In the same way points B and B’ are virtual grounds for the RF. During the positive half of the 

LO cycle, A’ is ideally connected to virtual ground, while A is ideally open. The part of the RF 

balun’s secondary between A’ and the IF port is therefore connected. During the negative half of 

the LO cycle the part of the RF balun’s secondary between A and the IF port is connected. As a 

result of this “switching” action the RF applied to the IF port is switched at the LO frequency. 

The conductance waveform due to the LO has half-wave symmetry (a result of the “switching” 

action), and therefore contains no even harmonic components.

For the LO : It can be shown that all the diodes contain all the harmonics of the LO. 

However, the lines from the 1-2 and 3-4 pairs of diodes (see Figure 1.5) to the secondary of 

the RF balun contain no frequencies at the harmonics of the LO. Consequently, for both the 1 - 

2 and 3-4 loops, the harmonic currents must be equal but opposite in phase, cancelling at both 

ports of the RF secondary. Ideally the IF is completely isolated from the LO, since the RF 

balun is free of any LO frequency content.

For the R F : In a situation similar to that of the single balanced mixer, the 1 -2 and 3-4 pairs 

of diodes permit only current components at the odd harmonics of the RF to flow between the 

diodes and the secondary of the RF balun. Since it can be shown that all diodes contain all 

harmonics of the RF, the diode currents at the even harmonics of the RF must therefore be 

equal but opposite in phase. The remaining odd harmonics from the 1-2 and 3-4 pairs of 

diodes add in the secondary of the RF balun, and since they are of equal magnitude but 

opposite phase, they too cancel in the ideal case, and the IF is completely isolated from the 

RF.
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Figure 1.6 shows a typical output spectrum for a double balanced mixer (with mixing products to 

the 3rd order).

Figure 1.6 : Typical IF Frequency Spectrum of Double Balanced Mixer

Because the frequency content in the secondary of the RF balun is even more limited than the 

diode loop of the previously discussed single balanced mixer, the IF spectrum contains even less 

mixing products. Only products of odd LO and RF harmonics are present.

Double balanced mixers are seldom realized as depicted in Figure 1.5. Slight variations of the 

topology permit a double balanced mixer with improved performance. The Ring Mixer is created 

by connecting both points labelled B in Figure 1.5, as well as both points labelled B’. The Star 

Mixer is created by essentially extracting the IF signal from a common point connecting all four 

diodes. Further discussion on their operation will be omitted from this overview.

To conclude, double balanced mixers have the following general characteristics :

Characteristic Performance

Isolation Good isolation between LO and IF 

Good isolation between RF and IF

Spurious-response rejection Only {mojs + ncop) mixing products with m and n 

odd are permitted (e.g. -3LO + RF)

AM Noise-rejection Rejection of LO amplitude noise (similar to single 

balanced mixer)

Frequency Range Low GHz-range

Table 1.3 : Summary of Characteristics for Double Balanced Mixer
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1.2.2.3 Higher-Level Balanced Mixers

As evident from the previous discussions, an increase in circuit complexity generally leads to 

improved mixer performance. Apart from attractive isolation, good spurious response rejection 

and low conversion loss, higher-level balanced mixers have the additional advantage of 

improved power handling.

Several structures are employed to realize these high-level mixers. The triple balanced mixer is 

in analogy an extension of the double balanced mixer, just as the double balanced mixer is of the 

single balanced mixer. It uses two rings of four diodes each, with IF power from the two diode 

rings effectively combining at the IF balun or hybrid. The major disadvantages of the triple 

balanced mixer are an additional 3dB of LO power, and greater circuit complexity.

Another structure employs two 90° hybrids to split the RF and LO separately into quadrature 

signals. These are mixed separately into quadrature IF signals, which are finally combined in a 

180° hybrid. The major advantage of such a scheme is excellent VSWR’s due to the hybrids at 

the LO, RF and IF ports. The main disadvantages are increased LO power, and possible signal 

loss in the hybrids.

1.2.2.4 Subharmonic Mixers

The principle of operation of the balanced mixer is similar to that of the harmonic mixer. 

Arguments exist that the harmonic mixer performs frequency conversion without the use of 

“balancing structures” (e.g. hybrids), and can therefore not be considered a balanced mixer. 

However, authoritative texts [9] suggest that the applied signals are essentially “balanced” 

between the two diodes, and therefore the harmonic mixer is introduced in this text as a part of 

the family of balanced mixers. This section should serve as an introduction, while the finer 

details of the harmonic mixer will be explored at length in the following chapters.

At this point a definition [10] will be in order to avoid any confusion that might arise from the 

usage of the terms “harmonic mixer” and “subharmonic mixer” :

Subharmonic Mixer : The family of mixers designed to utilize an input LO at a 

fraction, most commonly a half, of the desired LO.

Harmonic Mixers : Another term used to describe subharmonic mixers, but most 

often refers to mixers employing higher multiples (greater than the 2nd) of the 

injected LO.
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Although the definition is clearly not rigid and the terms are occasionally used outside their 

defined context, it rarely creates a problem. In the current text the term “subharmonic mixer” and 

“harmonic mixer” will be used interchangeably, and the order of the “effective” LO harmonic 

will be used as a reference, e.g. a 4th order harmonic mixer requires an LO signal on the LO port 

at a quarter of the effective LO.

A harmonic mixer converts the RF signal with frequency ws to an IF signal of frequency tuIF 

using the n-th harmonic of the input LO of frequency tup. The essence of harmonic mixing is 

described by

o)IF=cos -ncoP ............... (1.7)

Harmonic mixing is most effectively accomplished using an antiparallel diode structure. A 

single diode mixer can also be used to perform harmonic frequency conversion, although it is 

then strictly not a balanced mixer.

Single Diode Operation : Subharmonic mixing can be achieved in what can be described as a 

“crude” method, simply by driving the diode “hard” at the LO frequency, forcing the 

amplitude of the higher order LO harmonics to increase. However, the fundamental {xns ± xnp} 

mixing response is usually greater than the desired {tus - ntup} mixing response, making it 

difficult to implement filters. These mixers are harmonic mixers in the strictest sense, since 

the RF mixes with all the harmonics of the LO. Single diode harmonic mixers are used where 

responses to a wide range of LO harmonics is necessary, typically in the input circuits of 

spectrum analyzers.

The single diode harmonic mixer has effective yet restricted use, and the remainder of the 

current text will be concerned with harmonic mixers utilizing the antiparallel diode pair.

Antiparallel Diode Pair : The most effective method of mixing an RF signal with a harmonic 

of the LO, is achieved by using an antiparallel diode pair. Instead of mixing the RF with all 

the harmonics of the LO, the antiparallel diode pair only allows mixing with selected LO 

harmonics. It also exhibits impressive rejection of certain spurious responses. Figure 1.7 

shows the basic topology for the antiparallel harmonic mixer.
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In a way similar to conventional mixers (i.e. mixers utilizing the fundamental LO harmonic), 

the antiparallel diode pair is “pumped” by the LO, while the RF signal is applied to the pair. 

The IF can usually be extracted relatively easily through a low pass filter. Slight variations of 

the above topology have been implemented, but the basic principle of operation remains the 

same.

The main concern during the design of the subharmonic mixer is twofold :

1) Provide the antiparallel diode pair with a frequency spectrum containing the required 

frequency content, and

2) Provide the antiparallel diode pair with optimum impedance terminations at the frequencies 

of interest.

The implementation of the above requirements, together with the overall performance of 

subharmonic mixers employing antiparallel diode pairs, will be the explored in the remainder of 

the current text.

1.3) Mixer Characteristics

The nonlinear nature of frequency generation during frequency conversion often makes the 

process of extracting a useful IF signal quite challenging. Mixing products close to the required 

IF signal in the output spectrum can cause difficulty when implementing output filters. Often 

input filters are required, adding to the overall complexity of the structure. Apart from simply 

posing a problem in the output spectrum through their individual existence, certain frequency 

products can themselves cause a new process of mixing, leading to a new family of frequency 

components in the output spectrum.
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The above problem has lead to the definition of certain mixing characteristics required for 

“effective” mixing -  these are often referred to as figures o f  merit. The primary goal is usually to 

minimize conversion loss, while the minimization of noise figure and intermodulation distortion 

might occasionally be of greater importance. Other parameters for designing (or for optimization 

after the initial design) include reflection at the ports (VSWR), and compression.

The definitions in the following section relate to mixers in general -  in Chapter 2 they will 

specifically be applied to subharmonic mixers.

1.3.1 Conversion Loss

Conversion loss is defined as the ratio of output signal power to input signal power [8], or

..................( i . 8 )

where P jf  is the IF output power and P r f  is the available RF power. The conversion loss is 

usually specified for a specific frequency (the IF), and for a specific bias current or LO power 

level. Three factors generally contribute to greater conversion loss :

1) RF and IF mismatch,

2) Loss in the diode series resistance Rs,

3) Loss in the diode junction due to the generation of intermodulation products.

Although for a single diode mixer a theoretical value of 3dB for Lc is given, a typical practical 

value is 4dB to 7dB.

By sensibly choosing the type of diode to use in a specific application, factor (2) and factor (3) 

can be minimized. Factor (1), and in a lesser degree factor (3) can be kept to a minimum by 

skillful design of the embedding circuit for the diode(s).

Additional techniques to reduce conversion loss have been explored [11]. By ensuring a correct 

reactive impedance seen by the diode at the image frequency, improvements of 3dB have been 

recorded (image enhancement) [12,13].
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1.3.2 Noise

Mixers suffer from two types of noise distortion :

- Inherent Noise is the term used to describe the noise generated by electron movement 

within the semiconductors and structures. Inherent Noise determines the sensitivity of the 

mixer.

- Signal Noise refers to the perturbations that might be present within an applied signal. 

Signal noise manifests itself as unwanted mixing products in the frequency spectrum of 

the mixer.

1.3.2.1 Inherent Noise

Noise in electronic components is due to the random motion of electrons in materials. In 

Schottky diode mixers noise is predominantly generated by two instances of electron motion :

1) Thermal (Johnson) noise : Thermal noise is generated by random current fluctuations in 

any resistor without any external voltage applied.

2) Shot noise : Shot noise is generated by the stream of electrons flowing across the diode 

barrier at random velocities.

Apart from thermal and shot noise, Flicker noise (or “1/f -  noise”) is an additional source of 

noise. However, it is a low-frequency phenomenon, and for the majority of microwave mixers 

employing Schottky-barrier diodes the effect of flicker noise can be neglected.

In the analysis of noise, the primary units for expressing noise quantities are [14] :

- Noise Voltage, v„

- Noise Power, N

- Equivalent Noise Temperature, Te

These quantities are related by the following equations :

noise power N  is delivered. In order to relate the above mentioned quantities numerically, the 

following relation holds for Rl = 50Q :

(1.9)

where K  is Boltzmann’s constant = 6.456 3 10’23, and Rl is the load resistance into which the
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Note that it is also common to include a bandwidth-component in the definition of noise power 

[8].

Noise Factor F  relates the noise power from the input frequencies of a mixer to the noise power 

in the output band. Noise from the RF sideband(s) will be converted to noise in the IF band. Per 

definition the Noise Factor is given by

...............

So/No 4  N,

where Sj is the input signal power, So is the output signal power, Nj is the input noise power, No 

is the output noise power, and Lc is the conversion loss. The Noise Figure NF  is only the Noise 

Factor expressed in decibels, or

NF =10 log F  ............. (1.11)

The ultimate goal of noise analysis is to characterize a mixer as a two-port device (RF signal at 

the input, IF signal at the output) contributing a certain amount of noise to its input noise power. 

The amount of noise contributed by the mixer is expressed in terms of the noise factor F  (or NF), 

or the equivalent noise temperature Te.

1.3.2.2 Signal Noise

Apart from the above mechanisms of internal noise generation, noise appears at the output of a 

mixer due to the effect of the applied external sources. Amplitude and phase noise on the LO are 

the major contributors of external noise.

A LO signal containing noise can mathematically be described by

. =o)p ± A pnoise ^  r

where Ap represents a small frequency deviation of the LO due to phase noise. Equation (1.6) 

can be now adapted slightly for the case when m = 1 and n = -1 :
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G)i f ± & i f = O s - G )  .
J J y  noise

(1.12)

where 4 /  represents the resulting small deviation at the IF frequency due to the noisy LO signal. 

In the time-domain the IF signal is superimposed upon a low-frequency oscillation.

1.3.3 Conversion Compression

Conversion Compression dictates the upper limit of a mixer’s dynamic range, i.e. the RF input 

level above which the RF versus IF curve exhibits a certain deviation from linearity. It is 

necessary to specify conversion compression for a specific LO power level, since higher values 

of LO power allow for higher conversion compressions. This immediately suggests a trade-off 

during design : minimal conversion loss generally requires higher LO levels, while lower LO 

levels are favourable for lower cost, lower noise and additional filtering considerations. In most 

instances the conversion loss is the primary consideration, and the conversion compression is 

usually quite satisfactory at the LO power level resulting in the optimal conversion loss.

Since balanced mixers have an optimum LO for minimum conversion loss or noise, the 

conversion compression is conveniently specified at this LO value. Figure 1.10 shows the typical 

characteristic for a mixer’s conversion compression. Note the 1-dB compression point - 

operating the mixer past this point on the curve of conversion compression results in increased 

conversion loss.

Figure 1.8 : Typical Characteristic for Conversion Compression

Although excessive RF levels are rarely a problem in receiver front-ends, conversion

compression is a noteworthy factor for instruments such as spectrum analyzers.
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1.3.4 Intermodulation Distortion

The undesired mixing products generated during the mixing process are called intermodulation 

products, or spurious responses. The effect of these products on the output of the mixer is 

referred to as intermodulation distortion [40]. It is important to identify the spurious responses, 

especially those potentially within the IF band, prior to mixer design. An amount of flexibility 

regarding the choice of LO and IF (the choice of RF is usually less arbitrary) can enable the 

designer to make an optimum decision, avoiding spurious responses which will be difficult to 

isolate from the IF.

This is typically done graphically with a spurious product chart as shown in Figure 1.11. The 

chart shown is a downconversion chart, but a similar upconversion chart can be constructed [7].

Figure 1.9 : Typical downconversion spurious response chart (limited to 5th order IM products)

The horizontal axis of the chart represents the RF input normalized to the LO frequency, while 

the vertical axis represents the IF output normalized to the LO frequency. The various spurs are 

indicated as lines on the graph. With the LO and RF as variables, a vertical line can be 

constructed for the chosen Frf /  FLo• The resulting intermodulation products can be read off 

from the vertical axis (after denormalization). Also note that the higher the order of the
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intermodulation products that are considered on the chart, the more “crowded” by lines the chart 

becomes.

As an example, let f w  = 5 GHz, and / rf between 8 and 8.5 GHz. This results in f a  between 3 

GHz and 3.5 GHz. Thus Frf/F lo lies between 1.6 and 1.7, on the horizontal axis. Likewise Fjf /  

Flo lies between 0.6 and 0.7 on the vertical axis. The resulting IF passband can be visually 

represented by the gray square indicated on Figure 1.11. For Fif = 3 GHz only one spur, {RF -  

LO}, intercepts the gray square. This spur can be seen on Figure 1.12 as the solid line at 3GHz. 

Figure 1.12 shows the typical frequency spectrum of the output of a single diode mixer for the 

two values of the RF : / rf -  8 GHz (solid lines), and Jrf =8.25 GHz (dashed lines).

Frequency

Figure 1.10 : Output Spectrum for fRF = 8 GHz (solid) and fRF = 8.25 GHz (dashed)

For Frf = 8.25 GHz two spurs, {RF -  LO} and {5LO -  3RF}, intercept the gray square. These 

spurs both fall in the IF passband, and their “movement” into the IF passband as the RF 

frequency increases can be seen on Figure 1.12.

It has been demonstrated that mixer topologies such as balanced mixers can reject certain 

spurious responses. However, care must be taken during the design stage to ensure that the IF, 

represented by a rectangular area on the spurious response chart, is relatively ‘Tree of spurs”.

1.3.5 Reflection fVSWR)

The Voltage Standing Wave Ratio, or VSWR, of a port (e.g. the LO port) is a measure of the 

mismatch offered by the port to the system driving the port. The VSWR is defined as
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VSWR = ' - ^ f \
1 -M

where

p = Z l ~ Z 0 
ZL+ Z 0

with ZL the input impedance of the port, and Zo the characteristic impedance of the system (50Q 

for all the circuits presented in the current text). If Zo = 50Q and Zi = 65Q, then p  = 0.13 and 

VSWR = 1.29.

A VSWR greater than unity implies that power is reflected from the port (the port is unmatched 

to the system). This is of course unwanted, since a non-optimally matched RF port, for example, 

can reflect a portion of the RF signal back into the RF source (possibly an antenna or low-noise 

amplifier). Similarly a non-optimally matched IF port can prevent the IF signal from optimally 

“exiting” the mixer. This “unavailable power” is termed the return loss of a port, and is given in 

decibels by

RL = -201og|/?|

With the above values for Zi and Zo the return loss is found to be RL = 17dB. The port is 

generally well matched to the source.

In general, the input impedance of the mixer is dictated by the impedance of the diode(s). (When 

narrowband filters are used on the ports, their response adds significantly to the input 

impedance.) Considering the diode’s I-V curve, it becomes clear that the input impedance of the 

diode is a function of bias-point. The LO level has a significant effect on the bias-point of a 

mixer, and consequently the input impedance of the diode(s). Therefore the LO level must be 

referenced when specifying VSWR. The RF signal does not have a significant effect on the bias- 

point, and consequently does not change the VSWR. Effectively the LO level determines the LO, 

RF and IF input impedance (and of course VSWR on these ports).

Apart from LO drive power, the input impedance of a diode, and therefore of the mixer, is also a 

function of frequency. On the Smith chart the input impedance (seen by the LO) of a typical
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diode varies from high impedance to low impedance, and then back to high impedance as the 

frequency increases. Figure 1.13 shows the typical circles made on the Smith chart by the input 

impedance of the diode junction. Each circle represents a specific LO power level, while the LO 

frequency is sweeped. Typically a larger LO power results in larger values for junction 

capacitance and conductance for a specific frequency. It is evident that the diode junction 

presents a wide variety of input impedances by varying the LO power and frequency. This is a 

characteristic that is exploited during mixer design.

Figure 1.11 : Typical Diode Input Impedance for different LO power levels

The design of a mixer requires that the various ports are matched, resulting in optimal signal 

conversion.

Now that the fundamentals of frequency conversion and frequency mixers have been 

investigated, the stage is set for an investigation into a specific device, the harmonic mixer. The 

fundamental properties of the harmonic mixer will be investigated, and the above mixer 

characteristics will be related to them. Many of the fundamentals encountered in Chapter 1 are 

simply extended for use with the harmonic mixer.
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Chapter 2 : Diode Harmonic Mixers

As the upper frequency barrier of communication systems is continuously pushed upwards by 

faster components such as diodes and oscillators, producing adequate power at these frequencies 

remains a problem. The inability to manufacture stable, powerful and yet cost effective local 

oscillators at high frequencies has been one of the main reasons for downconverters operating at 

these frequencies not having become commonplace already. However, if the need for such local 

oscillators can be eliminated, while still operating at high frequencies, the situation might look 

much better.

Harmonic mixers offer a solution to this problem. While the frequencies at which these mixers 

operate are typically limited mainly by the type of diode used, the harmonic mixer does not 

require a high frequency, high power driving source. Although the harmonic mixer can never 

match the conventional diode mixers as the leader in terms of conversion loss, modern harmonic 

mixers offer very competitive performance. While conversion loss might sometimes only lag by 

two or three dB’s, the option of using a local oscillator at half the original frequency is often a 

very favorable option.

This chapter investigates the operation of the diode harmonic mixer. It starts off by describing 

the Schottky-Barrier diode as the fundamental component of harmonic mixers. Another 

fundamental structure, the antiparallel diode pair, is then described. The chapter provides a 

description of the methods used to analyze harmonic mixers, whereafter it elaborates on the 

mixer characteristics defined in Chapter 1, with respect to harmonic mixers. The chapter closes 

with a discussion on the analysis of the antiparallel diode pair.

2.1) T h e  Schottky-Barrier D iode

The Schottky-Barrier Diode (or Schottky diode) is the most commonly used diode in modern 

mixer circuits below the mm-wave region. High switching speeds (due to the low Reverse 

Recovery Time of the barrier), low forward resistance, as well as ease of fabrication makes the 

Schottky diode preferable to other diodes, such as the /w-diodes or point-contact diodes (The 

point contact diode is essentially a variation on the Schottky-Barrier diode where the surface of 

the junction is concentrated into a point.) This section will present a brief overview of the 

properties of the Schottky-Barrier diode.
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2.1.1 Junction Characteristics

The Schottky-Barrier diode is created by connecting a metal contact (the anode) to a 

semiconductor (the cathode). Conduction in a Schottky diode is by means of the emission of 

majority carriers over the junction boundary. The Schottky diode is therefore a majority carrier 

device, and its switching speeds are not limited by the minority effects found in minority carrier 

devices, such as the pn-diode. Platinum and titanium are the most common metals used for the 

anode, while a «-type semiconductor (e.g. GaAs) is used for the cathode due to its greater 

electron mobility over the p-type semiconductors [9].

+i

Cathode

M etal ; Sem iconductoro  ■ ■

t
Depletion

Region

Figure 2.1 : The Schottky diode junction

While the extensive description of the Schottky junction in terms of unequal Fermi levels [9, 15] 

falls outside the scope of the current text, a qualitative description (with the aid of Figure 2.1) 

will suffice. When the metal and the semiconductor surfaces are joined, electrons from the 

semiconductor spontaneously move to the metal surface. This is due to the unequal Fermi levels 

of the metal and the semiconductor, indicating less energy, on average, for the electrons in the 

metal. The positively charged region that is created in the semiconductor is called the depletion 

region. This results in a built-in potential <pbi of the junction, a crucial parameter when 

characterizing the Schottky diode. After several manipulations with Gauss’ law and the electric 

field, the depletion region can be characterized in terms of its depletion charge Qj :

............ (2.1)

where W is the junction area, q is the electron charge, £s is the dielectric permittivity for the 

semiconductor, and N<j is the doping density.
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When a forward bias voltage V is applied to the Schottky diode, the voltage across the junction 

becomes (cpbi-̂ 9- Equation (2.1) therefore becomes

Qt =w42qe,(<pl l - V ) N d ............... (2.2)

From equation (2.2) the capacitance of the nonlinear junction (due to the effects of charge- 

storage) can be found by taking the derivative of the charge with respect to the junction voltage :

dQj _ C, o
c{y ^ - ^ = —  v  ............... (2-3)dV f  y X / l

1—
Vbt

where Cjo is the junction capacitance at zero bias. The denominator’s exponent of Vi indicates the 

assumption of uniform doping density Nj. The current flowing though the barrier is due 

primarily to thermionic emission across the barrier. By relating the electron density at the 

junction under no bias conditions (cpbi) to the electron density with a bias applied (cpbi-P)> the 

current through the junction is given by

I (V )  = /,
f  sL 

eKT- \ (2.4)

where q is the electron charge, V is the applied bias voltage, K  is Boltzmann’s constant, and T is 

absolute temperature. Is is the saturation current, and represents the effect of the size of the 

junction area and the different Fermi levels. Equation (2.4) is the ideal diode equation.

The operation of the real Schottky diode junction differs slightly from that described in the 

previous section. Imperfections on the surface of the junction, and quantum mechanical 

tunneling of electrons through the barrier both add to the nonlinear behaviour of the junction. 

However, the most significant deviation from ideality comes from the fact that the barrier height 

does not remain constant with increased bias voltage, but rather decreases as the voltage 

increases. This barrier lowering is due to conduction electrons in the junction experiencing a 

force from their image charges in the metal. Effectively a larger voltage V needs to be applied to 

the diode junction in order to have the same current flow as in the ideal case. The ideality factor 

t) is approximated as a constant over the voltage range, and is given by
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77 =
1 - dPb,

dV

(2.5)

ri is close to 1.0, usually between 1.05 and 1.25. It is an indication of the diode’s nonlinearity -  a 

larger value of r\ implies a decrease in the diode’s nonlinearity, and a consequent increase in 

noise, conversion loss etc. To include the ideality factor equation (2.4) is altered as follows

K V ) = IS
\

(2.6)

Equation (2.6), together with (2.3) are used to characterize the junction of the Schottky diode 

completely.

Apart from barrier lowering, the series resistance Rs presented by the diode junction also has an 

effect on the operation of the Schottky diode. This series resistance at lower frequencies is 

inversely proportional to the doping density Nd, while at the higher GHz-frequencies the 

dimensions of the diode start to play a significant role, and the skin-effect needs to be considered 

when calculating Rs. For the greater part the series resistance Rs can be modeled by a discrete 

resistance with a value in the order of ohms. As will be shown below, the inclusion of Rs 

necessitates the distinction between junction voltage and terminal voltage.

2.1.2 Intrinsic Model

To analyze and design diode frequency mixers, it is necessary to have a diode model that is valid 

for both small-signal and large-signal excitations. It is valid to assume that the large-signal 

model for Schottky diodes is quasistatic, since the Schottky diode is a majority earner device. 

This implies that the junction capacitance and current as described by equations (2.3) and (2.6) 

are functions of the junction voltage alone, and change instantaneously with that voltage. The 

quasistatic assumption is valid for frequencies up to several hundreds of GHz.
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2.1.2.1 Large-Signal Model

Figure 2.2 shows an intrinsic large-signal model of the Schottky diode. The model is intrinsic in 

the sense that the junction capacitance and conductance are taken into account, while parasitic 

package impedances are ignored.

The intrinsic large-signal model consists of three elements :

- A nonlinear, voltage-dependent conductance g(V), described by the I-V relationship of 

equation (2.6),

- A nonlinear, voltage-dependent capacitance, C(V) given by equation (2.3),

- A series resistance Rs.

The model is large-signal in the sense that both the conductance g(V) and the capacitance C(V) 

are functions of the junction voltage V, as implied by the above mentioned quasistatic 

assumption.

2.1.2.2 Small-Signal Model

Although the model that is used for the small-signal analysis is essentially similar to the one 

depicted in Figure 2.2, it is implemented slightly differently from the large-signal model. The 

nonlinear elements are linearized around the instantaneous values obtained from the large-signal 

model, and treated as linear, time-varying elements [9,16, 39].

The small-signal impedance consists of the linear small-signal junction conductance g(V) and 

the linear small-signal capacitance Cv. g(V) is the derivative of junction current (equation (2.6)) 

with respect to voltage, with the derivative taken around a fixed point on the I/V curve, or
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g(v)=̂ l k m+I^ ,<v> (2.7)

where Is is sufficiently small when compared to I(V), and can therefore be ignored. Figure 2.3 

summarizes the relationship between large-signal and small-signal conductance.

Voltage Vt

Figure 2.3 : Small- and Large-signal calculation of g(V)

The small-signal impedance presented by the capacitance C(V) also needs to be known before 

the diode junction can be completely characterized for small signals. Unlike the small-signal 

conductance g(V), the small-signal capacitance is not merely the product of a constant and the 

current. In the time-domain, the capacitor’s charge waveform is given by

q(t) = c(t )v(/) ............... (2.8)

where c(t) is the capacitance (modulated by the junction voltage V) given by equation (2.3), and 

v(t) is the applied small-signal voltage. The small-signal capacitor current ic(t) is found by taking 

the time derivative of the charge, or
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Equations 2.7 and 2.9 are used to characterize the small-signal reactance due to the junction 

capacitance being driven by the LO.

2.1.3 The Complete Diode Model

The previous section described the intrinsic model of the Schottky diode. It represents the most 

basic model for the diode, not taking into account the parasitic impedances due to the diode 

packaging. While whisker-contact diodes (used in waveguides at higher GHz frequencies) have 

minimal parasitic inductance introduced by packaging, the surface mount Schottky diodes used 

up to the Ku-band contains both parasitic inductance and capacitance. Optimally designed diodes 

have small parasitic elements which can be compensated for by correct matching.

The main parasitic elements that need to be included in the complete diode model are bond-wire 

inductance, lead inductance and package capacitance. Figure 2.4 shows the complete diode 

model used extensively for analysis [15,17]. The symbols have the following meaning :

- Cj(Vj) : Junction Capacitance (function of junction voltage Vj)

- gj(Vj) : Junction Conductance (function of Vj)

- R s : Diode series resistance

- L s : Diode series inductance

- Lp : Parasitic package inductance

- Cp : Parasitic package capacitance

Vd : Voltage applied over the entire diode
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The addition of more components to the diode model necessitates a new notation for the applied 

voltage. The voltage applied across the complete diode will be called Vd, while the part of the 

voltage appearing over the junction will be Vj, as shown in Figure 2.4.

The diode used for designs within the current text is the HSMS-820x series surface mount 

microwave mixer Schottky diode [17]. The diode is optimized for X-band and lower Ku-band 

operation, and has low series resistance Rs. The following values are supplied :

Saturation Current 7s = 46 nA

Non-ideality Factor r| = 1.09

Series Resistance Rs = 6Q

Series Inductance Ls = 1.3 nH

Package Inductance (per pin) Lp = 1.0 nH

Package Capacitance (total) Cp = 0.08 pF

Table 2.1 : Selected Diode Parameters for HSMS-820x-series

2.2) The Antiparallel D iode Pair

In the single diode mixer in the previous section, one diode was used to generate a spectrum 

containing the full range of harmonics. When more than one diode is used (as in the variations of 

the balanced mixers), it is possible to generate spectra containing less frequency content, 

resulting in a lower conversion loss. However, in all of these mixers the frequency conversion 

takes place between the RF and the fundamental of the LO, resulting in an IF of the form {cdif = 

cos - cop}.

Although it is possible to obtain frequency conversion of the form {©if = cos - mop} with a single 

diode, it was shown in the previous chapter that this method is not efficient, since the majority of 

power is still lost to fundamental mixing. It is necessary to utilize a diode-structure that will 

minimize mixing with the fundamental of the LO, while maximizing frequency conversion 

between the RF and a harmonic of the LO. It will be shown that the antiparallel diode- 

configuration is such a structure. The ability of the antiparallel diode pair to generate only certain 

frequencies of its driving signal has also led to its wide application in the field of frequency 

multipliers [15].

37

Stellenbosch University http://scholar.sun.ac.za/



2.2.1 Single Diode Fundamentals

To understand the fundamental operation of the antiparallel diode pair, it is necessary to briefly 

consider the operation of a single diode. Figure 2.5 shows the junction conductance g(t) for a 

single diode driven by an LO signal.

The junction conductance reaches a maximum once during every LO cycle, and by taking the 

Fourier transform of the conductance waveform g(t), it is evident that the diode’s junction 

conductance changes periodically at the frequency of the LO. It is this mechanism that controls 

the mixing action of the single diode and balanced mixers.

Figure 2.5 : Conductance waveform g(t) for a single diode

2.2.2 The Antiparallel Configuration

When two diodes are joined in parallel as shown in Figure 2.6, an antiparallel diode structure is 

created [2], It will be shown that gp, the conductance of the diode pair, provides the mechanism 

for “higher order mixing”, i.e. frequency conversion with harmonics of the LO [2],
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Using the notation of Figure 2.6, and using intrinsic diode models for the purpose of the 

discussion, the differential conductance of the diode pair is given by taking the derivative of the 

instantaneous current ip with respect to the voltage Vp, or

(2.10)

The individual diode currents idi and combine as follows to form the ip, the diode current for 

the pair of diodes (Figure 2.6):

(2.11)

The loop current ic flows inside the loop, and will be considered in the following sections. 

Expressions for the diode pair conductance, gp, will now be developed. Once the input 

impedance of the diode pair can be expressed in terms of ip and the techniques of mixer 

analysis and design can be implemented in the usual fashion.

Equation (2.11) can be expanded as follows using equation 2.6 (note that the series resistance Rs 

has been omitted for the purpose of this investigation; its effect will be considered in later

It is assumed that the two diodes of the antiparallel pair are identical. Although the diode pair is 

usually fabricated on the same wafer (and therefore the diodes have very similar Is, r| and Rs),

sections):

(2.12)

this assumption is only valid to a certain extent. The effect of diode unbalance will be considered 

separately. Equation (2.12) can be reduced to [2]

(2.13)
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where a  is known as the diode slope parameter, and represents the effect of the non-ideality 

factor T) and temperature T. For the HSMS-series diodes used for designs within the current text, 

the diode slope parameter is a  = 3 4 F '7.

Since the voltage Vp is known, and the current ip can be expressed in terms of Vp, it is possible to 

find the conductance gp of the antiparallel pair using equation (2.10) :

8  = g, + = —— + ^-dl ............. (214)
p dV dV

P  P

Note that the parallel conductances simply sum to the total conductance. Using equation (2.13) it 

is possible to reduce equation (2.14) to

gP -  [ f Vp + e~aV") = cosh (a Vp ) ............. (2-15)

Inspection of equation (2.15) reveals that the conductance gp has even symmetry around Vp (due 

to the co.s/?-function), and as a result reaches two positive peaks for every one positive peak of 

the LO. Figure 2.7 shows the junction conductance g(t) for the antiparallel diode pair.

Figure 2.7 : Junction Conductance g for Antiparallel Diode Pair
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2.2.3 Two-Tone Analysis

During normal mixer operation, the driving voltage Vp(t) of the antiparallel pair consists of the 

sum of the large signal LO and the small signal RF. Mathematically this signal can be expressed 

as

Vp(t)  = VLO cos(coLOt) + Vs cos(a)st) ............. (2.16)

The junction conductance g(t) is modulated by only the LO voltage, and therefore equation 

(2.16) can be reduced to

Vr(t)- .V l0 cos(au; )  .............(2-17)

Substituting equation (2.17) into equation (2.15) produces

gp = 2a Is cosh (aVLO cos(a>LOt))  .............(2.18)

which can be expanded into [2]

k(ccVL0)  

g p = 2 a l s +212 ( aVL0 )  cos(2coLOt) 

+2IA(aVLO)cos(4co LOt )  +  -

(2.19)

where I„(cxVlo)  are modified Bessel Functions of the second kind [5]. At this stage the junction 

conductance waveform g(t) of the antiparallel diode pair can be described completely in terms of 

the modulating voltage Vp. It is noteworthy that g(t) consists of a dc value described by the first 

term in equation (2.19), as well as harmonics at the even frequencies of the LO. To find the total 

current (large- and small-signal) flowing in the antiparallel diode pair, it is necessary to 

“superimpose” the complete driving voltage Vp onto the conductance waveform gp(t). Using 

Ohm’s law, and from equation (2.16)

ip = g p (0  x (VL0 cos(coLOt)  + Vs cos(cost))  ............. (2.20)

and by substituting equation (2.19) into equation (2.20), the total current for the diode pair is
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1P = Acos{c0w t)+  Bcos(cost)+Ccos(3coLOt)+  Dcos{5coLOt)  
+ E cos(2coLO + o)s )r + F cos(2coLO -cos )t 
+ G cos(4<yi0 + cos )t + H cos(4«i0 -cos )t 
+ ... (2 .21)

where A, B, C, ...are at this stage arbitrary coefficients. From equation (2.21) a number of 

noteworthy observations are made. From inspection it becomes clear that the composite current 

ip flowing through the antiparallel diode pair contains only components with frequency 

{mcos6ncDLo} where (m+n) = 1,3,5, ...i.e. an odd integer. Equation (2.21) mathematically displays 

the mechanism by which the antiparallel diode pair converts an RF signal to an IF signal using a 

multiple of the LO, e.g. coIF = cos ~ 2colo or co]F = 4a>L0 -  cos• Since the amplitude of the RF 

signal is usually both fixed and small, harmonics of the RF signal other than the first are 

impractical to use.

Figure 2.6 also indicates that a loop current ic circulates within the loop formed by the 

antiparallel diode pair. Because of the assumption of identical diodes ic can be expressed as

i = ld\ ld l . (2 .22)

Using the usual trigonometric identities and equation (2.6), equation (2.22) can be expanded into

= l s (cosh(aVp)~  1) (2.23)

which can in turn be expanded using equation (2.16):

c 2

V2 + V 2 V2 s V2 / x
LO 2 S + ~ Y  cos(20)LOt ) + cos(2cost)

L̂Ô S {C0S(' > + cos(<yLO +cos }

+ cos(3coLO -  cos )t + cos(3coLO + a)s )r +...}

(2.24)
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Important observations are made from inspection of equation (2.24). The loop current ic flowing 

within the loop formed by the antiparallel diode pair contains only components with frequency 

{ma>s6ncoLo} where (m+n) = 0,2,4,..., i.e. an even integer. Equation (2.24) contains the 

mechanism by which the antiparallel diode pair suppresses the even harmonic mixing products, 

e.g. coif = cos -  colo or coif = 3c o lo  ~ &>s, as well as the even harmonics of the LO, e.g. Icolo > 

4(oLo , etc.

2.2.4 IF Frequency Spectrum

Figure 2.8 shows the typical output spectrum of the antiparallel diode pair driven by LO and RF 

signals. It is significant to note that the first harmonic of the LO is located relatively far from the 

IF, i.e. there is no significant frequency content between the IF and the LO. It is therefore easy to 

realize a low-pass filter to extract the IF from the mixer. This is a very desirable characteristic of 

harmonic mixers.

When compared to the output spectrum of typical double balanced diode mixers (Figure 1.6), it 

is clear that the frequency content in the output spectrum is significantly reduced due to the 

suppression of certain frequencies. It is important to note that this suppression is reduced by 

diode unbalance', a factor that may become significant when the mixer is realized. Diode 

unbalance will be discussed in section 2.6.

This concludes the fundamental description and characterization of the antiparallel diode pair. It

is clear that the antiparallel diode pair is an ideal “building block” for a harmonic mixer : it

permits current containing only odd harmonics of the LO (and mixing products with m+n odd) to
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flow through, while confining current with even LO harmonics (and mixing products with m+n 

even) to the loop formed by the diodes. In the following section the analysis of the antiparallel 

diode pair will be considered.

2.3) Analysis

As it was gathered from the previous sections, the antiparallel diode pair excited by a LO signal 

and a RF signal contains a range of spectral components. Consequently currents and voltages 

exist at all of these frequencies. The goal of mixer analysis is to quantitatively describe these 

voltages and currents at the various frequencies. Once the currents and voltages are known, it 

becomes possible to find expressions for the mixer’s small-signal parameters : conversion loss, 

port impedances, noise figure, etc.

Mixer analysis is divided into two parts : a large-signal analysis, which solves the junction 

voltages and currents due to an LO excitation, and a small-signal analysis, which determines the 

diode impedance at the frequencies to„ = a>o + no), for n = ...-2, -1, 0, 1, 2... For consistency 

with existing texts, the IF will henceforth be denoted by coq. The RF for a 2nd order harmonic 

mixer will therefore be given by to 2 — coo +  2cop  or co .2  =  (Do - 2cOp. The analysis of any diode 

circuit under LO and RF excitation can be represented graphically as in Figure 2.10.

Figure 2.9 : Diagram of Generalized Mixer Analysis
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The following discussion of mixer analysis will follow the topology presented in Figure 2.10. 

Once the large-signal and small-signal analysis have been done, the mixer performance will be 

related to the “figure of merit” mixer properties introduced in Chapter 1.

2.3.1 Large-Signal Analysis

The first step in the analysis of the diode circuit is a large-signal analysis. The junction of the 

diode(s) contains both a conductance and a capacitance that are strong nonlinear functions of the 

diode junction voltage V/t). It is required to solve the currents through these elements at the 

various frequencies of the applied junction voltage. Once the currents and voltages are solved, 

the Fourier components of the junction conductance can be calculated, and simultaneously the 

junction conductance waveform g(t) can be computed, i.e. a time-domain waveform of the 

pumped diode conductance can be obtained. Although it is the Fourier components rather than 

the time-domain waveform that are used in the following small-signal analysis, the shape of g(t) 

can nevertheless provide useful information regarding the order of the change in conductance as 

the junction is pumped by the LO.

Various techniques to obtain the voltages and currents at the LO have been presented. [18, 19, 

13]. The harmonic balance technique has evolved to a very robust solution algorithm, and is the 

most popular technique used in modem software packages. This technique will be presented in 

the following section. Although not as popular as the HB (harmonic balance) technique, the 

reflection algorithm [20] remains a useful tool in large-signal analysis, and is included in 

Appendix A for completeness.

2.3.2 Harmonic Balance for Single Diode [18.191

The harmonic balance technique determines the junction current and voltage at each LO 

harmonic by “balancing” the currents of the linear and the nonlinear parts of the diode circuit. A 

brief overview of the HB technique for a single diode will be given, whereupon the technique 

will be modified for the antiparallel diode pair.

The aim of the technique is to find the time-domain junction voltage V/t), or alternatively 

Vj(ncop) for n = ..., -2, -1, 0, 1, 2, ... in the frequency domain, where cop represents the LO. Once 

the junction voltage is known, the junction current Id(t) or Id(ncop)  is also known.
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The large-signal junction characteristics are completely described in terms of the large-signal 

junction voltage V, by the following equations :

W  = /o
qv, \  

> * T - \ . (2.25)

W  = c ,  o
dV;
dt

, (2.26)

where

dQi
C(V ) =  ——

V dV.
cj  0

V i
\ / /2

\ <Pb<i

(2.27)

The circuit that will be analyzed usually contains a diode junction embedded within a linear 

network. This linear network includes the diode series resistance, package parasitic impedances, 

the matching networks, and any source and load impedances (usually the RF source and IF 

terminating impedance). Figure 2.11 shows the typical setup with LO source, IF and RF 

terminations (large signal excitation, therefore no RF signal is applied), and the complete diode.

Diode
with

Package

Figure 2.10 : Equivalent Circuit of Mixer with Single Diode

By manipulating the elements shown in Figure 2.11, it is possible to divide the entire circuit into 

a linear part and a nonlinear part. The linear part will include the LO source, all terminating 

impedances (Zs, Zrf and Zif), the entire matching circuit, the linear time-invariant components of
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the diode package, and the diode series resistance Rs. The nonlinear part will consist of the 

junction conductance (modeled as a voltage dependent current source Ig(Vj)) in parallel with the 

nonlinear capacitor Cj(Vj). The entire linear circuit (with the exception of the LO source) can be 

expressed as a row matrix Ysfnatp) with its elements equal to the equivalent complex admittance 

at the harmonics of the LO. Figure 2.12 shows how the circuit from Figure 2.11 can be 

manipulated into a linear and a nonlinear part.

Once the circuit has been divided into a linear and nonlinear part, it becomes easy to understand 

the fundamentals of the harmonic balance method. While the linear part of the circuit contains 

time-invariant frequency dependent elements that is best described in the frequency domain, the 

nonlinear part of the circuit contains a time-variant capacitance and conductance that is best 

described in the time domain. An estimate of Vj is initially made at all the harmonics of the LO, 

whereupon the linear and nonlinear harmonic currents, 7/ and /„/, are calculated. An error 

function is created by the difference between 7/ and 7„/, and Vj is chosen repeatedly (usually by 

means of a numerical method) until the error function is sufficiently small. Finally V/ncop)  is 

known for all the harmonics, and the large signal time-domain LO waveform V/t) can be 

constructed.

From Figure 2.12 it is clear that the following condition (Kirchoff) must hold between the linear 

circuit and the nonlinear junction :

7,(11©,)— 7* (»® ,) ............. (2.28)

for n = 0,1,2,... N, or in vector form :
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~I,( 0) ' I J O )

h(<»P) Ki(o3p)

I t( 2o>P) = - I J 2g>p)

I/fNcOp) J J N ( O p)

. (2.29)

The initial estimate of Vj will produce values of 7/ and /„/ that can be used to create the current- 

error vector of the form

F(Vj) = // + Inl .............(2.30)

A numerical method is used to find V/ncop) so that equation (2.30) eventually becomes

F(Vj) = 0 ............. (2.31)

The computation of the current-error vector involves operations in both the time domain and the 

frequency domain. The matrix of the time-invariant currents in the linear circuit is computed as 

follows (from Figure 2.12):

(2.32)

The currents in the nonlinear junction arise from equations in the time domain. The nonlinear 

current /„/ is made up of the resistive current Ig and the reactive current Ic, or

I n l - I g + I c

where Ig is defined by equation (2.6), and Ic is found using equation (2.3):

• _ d _ d  
lc 1 Qd j  

dt dt

(2.33)

, (2.34)

Instead of finding the time-derivative using numerical techniques (which may be cumbersome), 

the capacitor current is easily found in the frequency domain :
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(2.35)

where O  is a diagonal matrix with (ncop)  for n = 1,2,3, ... JV on its diagonal axis. The current-error 

vector F(Vj) can now be computed in the time domain :

F(Vj) = 3  {I i}  + i„i .............(2.36)

The numerical technique for finding Vj to satisfy equation (2.36) can be one of a variety of 

optimization techniques [9]. The Newton-Raphson iteration is used most commonly. After p  

iterations Vj is described by Newton’s method as follows (in the time domain):

VjP+I = Vjp -J '^ F fV j)  .............(2.37)

where J  is the Jacobian matrix, defined as

J =  — F(V.) = Ye + .............(2.38)
dVj ' E dVj J dVj

Vj is found using various matrix manipulations of its comprising terms. Since only an overview 

of the method is presented here, these manipulations are omitted.

Once the voltage Vj is solved for all the harmonics of the LO the junction can be completely 

characterized in terms of its voltage Vj(ncop) and current Ij(ncop). Since Vj is known, it is possible 

to find the junction conductance waveform gj(t) via equation (2.25), as well as the junction 

capacitance waveform Cj(t) via equation (2.27). As mentioned at the beginning of the section, the 

Fourier components of the total junction conductance G(jcop)  at the harmonics of the LO can now 

be found from Ohm’s law :

and the time-domain junction waveform g(t) can be found through taking the inverse Fourier- 

transform of equation (2.39).
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Using the HB method to solve the junction currents and voltages of the antiparallel diode pair 

involves only slight alterations of the technique for a single diode described above, as will be 

shown in the next section.

2.3.3 Harmonic Balance for Antiparallel Diode Pair

When analyzing the antiparallel diode pair, one essentially has to analyze a circuit containing 

two diodes, and therefore two nonlinearities. Although the basic analysis remains the same (such 

as described in the previous section), there are two possible methods, depending on the 

complexity of the problem :

- The circuit can be reduced to a single nonlinearity, and analyzed in a way similar to a 

single diode;

- The circuit can be treated as a multiport network, and analyzed accordingly.

While the first method often only caters for trivial solutions, the second method accommodates 

for a non-trivial circuit. The second method will be presented first.

2.3.3.1 Multiport Network [13]
The expansion of a mixer with an antiparallel diode pair into a multiport network is similar to the 

representation in Figure 2.12. The entire embedding circuit is connected to the two diodes A and 

B via a series of ports. These are not physical ports, but rather ports representing the various 

harmonics of the LO. Figure 2.13 contains such a representation.
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Diode A is connected to the linear network through a series of ports at the frequencies neap (for n 

= 0, 1, representing the harmonics of the LO. Diode B is connected in a similar 

fashion. The LO is applied at port C, similar to the single diode mixer.

The analysis of the multiport is similar to the previous analysis, except that vectors are now 

replaced by vectors of vectors. The linear current vector of equation (2.29) now become vectors 

of current vectors, or

where, for instance, I ij  is the matrix
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I , A  =

1,(0)
I,(cop)
I,(2(op)

I,(Ncop)

.(2.41)

Similarly the nonlinear current vector of equation (2.29) becomes

h i =
nl,A

nl,B

. (2.42)

Note that no nonlinear current component flows in port C. The estimated voltage (Vj in the 

previous section) is also put in vector format:

V  = (2.43)

In a way similar to equation (2.32), the linear current components // are found as follows :

I ^ Y V  ............. (2.44)

where Y is a 3-by-3 matrix with sub-matrixes similar to Ye- The nonlinear current components 

are found by solving equation (2.42) (effectively solving for each diode separately). Once the 

linear and nonlinear current components are known (for a specific value of V), the error function 

F  can be minimized, eventually solving for VA and VB.

It is clear that the obtaining the large-signal solution for the antiparallel diode pair via the 

multiport method is merely a “matrix-extension” of the harmonic balance method for the single 

diode. The alternative to the multiport method, i.e. the equivalent diode method, will now be 

considered briefly.
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2.3.3.2 Equivalent Diode
The equivalent diode method evaluates the entire mixer circuit at every harmonic of the LO, and 

produces an equivalent (and usually rather simple) circuit containing only one diode. The 

analysis for a single diode described in section 2.3.2 can then be applied almost exactly. A 

drawback of this analysis is that it is often limited to a specific mixer, and is therefore not 

generic like the multiport method. The equivalent diode method can justifiably be viewed as a 

specific case of the multiport analysis.

Since the equivalent diode method is often specific to a certain mixer configuration, its 

implementation will be demonstrated using a specific mixer. Figure 2.14 shows a typical 

topology for a harmonic mixer. The antiparallel diode pair (consisting of identical diodes A and 

B, with their series resistance Rs and series inductance Ls) is driven by an LO source with 

impedance Zlo■ In general, the impedance Zlo can represent the termination for a number of 

source and load impedances.

The key to the successful implementation of the equivalent diode method for this circuit lies in 

the symmetry of the configuration. The circuit as seen by the LO is symmetrical, except for the 

polarity of the diodes. This causes the even order LO harmonics to be out of phase over the 

diodes, producing zero voltage over the parallel LO branch. The odd LO harmonics are in phase 

over the diodes, producing a voltage over the parallel LO branch [21]. The equivalent circuits 

seen by each diode at the various LO harmonics are summarized by Figure 2.15.
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The matrix h(ncop) of equation (2.29) representing the linear current components can now be 

constructed using the circuits of Figure 2.15. The remainder of the analysis, i.e. the nonlinear 

current components, minimization of the error function, and solution for V(na>p), is conducted 

exactly according to the process described in section 2.3.2.

On completion of the large-signal analysis, the set of harmonic voltages Vj = V/ncop) and 

harmonic currents Id = Id(ncop) for n = 0,1,2,... are known. In the next section it will be shown 

how the small-signal parameters for the antiparallel diode pair is obtained once the large signal 

analysis has been done.
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2.4) Small-Signal D iode Parameters

Once the LO is solved in the way described in the preceding section, all large-signal quantities 

are known, and the small-signal analysis is done. Defining the small-signal impedances of the 

mixer involves not only the LO frequency cop (as was the case with the large-signal analysis), but 

also the IF frequency coo• The small-signal analysis will give the input impedance to the mixer at 

all the frequencies co„, where

g)„=coq + ncop ............. (2.45)

and n is the n-th LO harmonic. The list of input impedances can be calculated most effectively 

through matrices, which gave rise to the term "conversion matrix Conversion matrices are first 

generated separately for the junction conductance and junction capacitance of the separate diodes 

(thus a total of four matrices, of which two pairs are identical in the ideal scenario of balanced 

diodes). Thereafter the admittance matrix Ye for the embedding network (Figure 2.13) of the 

entire mixer is constructed (the admittance matrix is used instead of the impedance matrix, 

allowing admittance components to be simply added together). Finally the conversion matrix YM 

for the entire mixer (including the antiparallel diode pair) is constructed.

2.4.1 Conversion Matrix for Junction Conductance

The voltage across the junction can be represented by a set of time-domain phasors v(t) given by

[9]

V f t > =  t  r „ Z ( K + m > , ) / ) =  t  .................(2 -46)
tt=-co AJ=-oo

where V„ is the voltage component at frequency co„ (obtained by the HB method)and a>o is the IF 

frequency. Note that the waveform v(t) is a sum of phasor quantities -  effectively a summation 

of sinusoids of magnitudes and angles contained in V„, and with frequency given by (coo + ncop). 

v(t) is expressed here as a complex function in the time-domain. In a similar way the current 

through the nonlinear conductance is defined as

i(t) = Y  ........... (2.47)
YI- - C O
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From the definition, the Fourier series of a time-varying resistance r(t) is

r ( t ) =  £  V ” " (2.48)
n=-oo

The /?„-elements are the small-signal values for the junction resistance. They are found using 

equation (2.7) (section 2.1.2.2). r(t) therefore represents the time-domain waveform of the 

resistive part of the diode junction, as the diode is pumped by the LO.

Using Ohm’s law, the relationship between equations (2.46) -  (2.48) is given by equation (2.49). 

Note that the number of harmonics n has been limited to a finite number so that n = -N, N. 

This corresponds to the number of harmonics used in the large-signal solution. In matrix 

notation:

11
•

11
G0 ••• G_2n

Q n G0

-N

(2.49)

or

/  = GjV (2.50)

The elements of the junction conductance conversion matrix Gj are a function of both the LO 

frequency cop and the applied IF signal, and provides the solution to the small signal impedance 

of the junction conductance for the frequencies co„ = coo + ncop for the first N harmonics.

2.4.2 Conversion Matrix for Junction Capacitance

The small-signal voltage over and current through the junction capacitance are again given by 

equations (2.46) and (2.47). The small-signal junction capacitance is given by equation (2.9):

dt dt dt
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Similar to equation (2.50), the small-signal voltages and currents for the junction capacitance are 

related by the following equation :

/  = jQ  CjV .............(2.51)

where Cj is the junction capacitance conversion matrix (similar to the conductance conversion 

matrix of equation 2.49). Q is a diagonal matrix with elements jncop, accounting for the 

frequency dependence of the impedance presented by the junction capacitance. The elements of 

matrix Cj are the Fourier components of the time-varying capacitance. Therefore jOC] provides 

the small-signal impedance of the junction capacitance for the frequencies con = coo + ncop over 

the first N harmonics.

2.4.3 Mixer Conversion Matrix

Instead of treating the antiparallel diode pair separately from the rest of the mixer, it is preferred 

to find a conversion matrix representing the entire mixer. This is done to assist subsequent small- 

signal analysis [22].

The process of generating the small-signal conversion matrix for the entire mixer can be better 

understood when the mixer is once again treated as a multiport network (section 2.3.3.1). Figure 

2.13 is altered slightly to make provision for the additional frequencies. Figure 2.16 shows the 

new model for the mixer.

Figure 2.16 shows the entire mixer circuit including the antiparallel diode pair (diodes A and B 

with their series resistances Ra and Rb respectively). The diodes are evaluated at frequencies 

co0+ncop. This evaluation consists of the large-signal and small-signal analysis described in the 

above sections, and is represented by the various “ports” between the diode and the remainder of 

the mixer circuit. This remainder, or embedding network Ye, contains the diodes’ series 

resistances, all matching networks, etc., and is evaluated at frequencies a>0+ncop using linear 

circuit analysis. It is significant that port C (representing the source and load impedances) 

contains more ports than the single port it contained for the large-signal analysis. This facilitates 

the small-signal analysis of the mixer at frequencies o)0+n£op.
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/

For a typical harmonic mixer the following holds for port C:

- coo represents the IF and Yo is the IF-port admittance with Yo = 1/50 Q;

{cOo+2cOp} is the RF frequency, with Y2 = 1/50 Q;

- The remainder of the ports represents the various mixing frequencies, and are either not 

considered if they are significantly small, or are reactively terminated, short- or open- 

circuited, depending on the design.

The first step to finding the complete mixer conversion matrix is to determine the conversion 

matrices separately for the two diodes, A and B. The junction conversion matrices are found 

from equations (2.50) and (2.51), and the conversion matrices for the entire diode (excluding 

package parasitics) are then found by summing the corresponding elements of equations (2.50) 

and (2.51), or

Ya = G ja + J co C j A 

YB= G jB+j(oC jB
, (2.52)
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In order to illustrate the method, a harmonic mixer circuit is analyzed using only two harmonics. 

The conversion matrix for diode A, Ya, is constructed as follows :

(GJa+jco0CJo) [Gj  ̂+ jcoQCu) (Gu +ja>0CjJ  (Gu +ja>0Cu ) (Gu +ja>0Cu )

(Gj, + j(°\C^) (GJo + M C Ja) (Gu + M c u )  {Gu + M c u )

Ya = (Ga + jco2Ch ) (G , + j(o2Ch ) (GJa + jo)2CJa) (Gu  + jco2Cu ) (Gu  + jco2Cu )

(Gh +jco,Ch ) ((Gh +jco3Ch ) [Gh +jcoiCJi) (G,o + ja>3Ck ) (GM + j a 3Cu ) 

(GJt+ jo )4C j  (Gh +ja>4Ch ) (<Gh +j(o4Ch ) (G;| +j(oACJ)  (Gjo+ jco4CJo)

where for example G,^ is the junction conductance evaluated at co„=.2 = <x>o - 2 cop, and 0)3 

represents the frequency d)n=3 = coo + 3cop. The conversion matrix for diode B is constructed in a 

similar way, and when the diodes are identical, Ya = Yb.

The conversion matrix for the embedding matrix, Ye, is found relatively easily from linear circuit 

analysis. However, since there are three ports to be considered (A, B and C), special care has to 

be taken when defining Ye- The most popular notation constructs Ye as a 3-by-3 matrix 

containing nine individual sub-matrices. Ye is defined as follows :

yAA
E

yA B
l E

yA C  
1 E

II yBA yB B
I E

y B C  
1 E

1

yC B
l E 1

, (2.53)

The sub-matrices represent the relation of the different ports to each other, and have the general 

form YEpor‘)(port>((On)- YeAA, for example, represents the input admittance of the embedding 

network at port A for the frequencies con = a>o + ncop, while YeAC represents the admittance of the 

embedding network from port A to port C. The sub-matrices of Ye are diagonal matrices, since 

the linear network implies no coupling between the various frequencies inside the embedding 

network [22]. The sub-matrices are the same size as the diode conversion matrices, i.e. with 

dimension 2N+1 when N harmonics are considered.

The final step in setting up the mixer conversion matrix is to add the conversion matrices of the 

individual diodes to the conversion matrix of the linear network. By coupling the diodes in 

parallel with the embedding network (the typical topology, denoted by Figure 2.16), the diode
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conversion matrices can be added to the conversion matrices representing the embedding 

network’s input impedance presented to the diodes, i.e. YeAA and YeBB. Equation (2.53) therefore 

becomes

1

+

iyAB  
J E

O
i

II \rBA
J E rEBB+ Y B

y B C
J E

i *1

yC B
J E

o
1

where Ym is the compound conversion matrix of the entire mixer. Note that the addition of the 

diodes to the embedding network does not alter the coupling between the various ports, and 

therefore the remainder of the sub-matrices of Ye is unaffected by the addition.

The mixer conversion matrix can be inverted to find the mixer impedance matrix, or [22]

= [ / « ] -  ............. (2.55)

That concludes the small-signal solution of the mixer. In the following section Zm will be used to 

find typical mixer parameters such as conversion loss, input impedance and VSWR.

2.4.4 Input Impedance

In Chapter 1 it was established that the diode’s input impedance is a function of both the LO and 

RF signals (hence the terms small-signal and large-signal impedance). It is therefore only natural 

to expect that the diode conversion matrix (which is the result of both a small-signal and large- 

signal analysis) provides a convenient way of calculating the input impedance.

It will be necessary to distinguish between two different input impedances :

The mixer input impedance : The mixer input impedance is the impedance seen when 

looking into a port of the mixer (typically the IF port). This impedance includes the 

effects of both the antiparallel diode pair, and the embedding network.

- The diode input impedance : The diode input impedance is the impedance of the 

antiparallel diode pair alone, excluding-the embedding circuit.
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The input impedance looking into any port (C,k) where cok = coo + kcop is defined as [22]

Zm = Z jS * x c * > ^ Z « : (k,k) ............. (2.56)

However, equation (2.56) includes the port admittance 7*, as shown in Figure 2.16. To obtain the 

mixer input impedance, it is therefore necessary to remove the effect of F*, or

Zin = mk
7 (C ,k)(C ,k) ‘ 

M TT (2.57)

The input impedance of the antiparallel diode pair will prove to be a quantity of interest during 

the design of the harmonic mixer. In an oversimplified way it can be seen that the LO signal 

dictates the impedance seen by an input port at the small-signal frequencies (a>s and &>„). Mixer 

design then requires the correct embedding structure to ensure maximum power transfer at the IF 

and LO. This topic will be handled in detail later.

2.4.5 Conversion Loss

In Chapter 1 conversion loss was defined as the ratio of output signal level to input signal level, 

or

where iV  is the IF output power ad Prf is the available RF power. Although conversion loss is 

defined by this expression, a general expression for the conversion loss of a harmonic mixer 

containing an antiparallel diode pair within an embedding network needs to be found.

Such an expression is found using the small-signal mixer analysis described in the previous 

section [9], since the mixer impedance matrix Zm is already in a convenient form to carry out the 

analysis. The specific method determines the conversion loss Lcfrom a specific sideband a>k = coo 

+ kcop to the IF a>o. Usually the sideband in question will be the RF signal, and k = 2 for the 

typical harmonic mixer.
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A small current is applied to the RF port (k = 2), resulting in a response at the IF port [22], This 

small current is represented by

s i(C*)

and the resulting response at the IF port is given by

5V <C,0) = z (C’0)(C-k)S I(C’k) .............(2.58)

where Z j C’0)(C’k> is the impedance between the RF port and the IF port. The power available from 

the RF source is given by

\si<c*> I2
P „  =!------, - L  .............(2.59)

where 7* is the input admittance of the RF source (from Figure 2.16) [9]. The IF output power is 

given by

PIF= \5V (C^ R e { Y Q} .............(2.60)

where Yo is the termination admittance at the IF. Eliminating the small current S /c' > and small 

voltage 5V<c’0> from equations (2.58) -  (2.60), the conversion loss from the RF to the IF is found 

to be

Lr> L —
1 (2.61)

where k refers to the RF (but could refer to any frequency in general). Further quantitative 

analysis of equation (2.61) will not be carried out in the current text, but further insight into the 

calculation of the conversion loss can be gained by considering a method proposed by [9]. The 

mixer is again divided into a linear and nonlinear part, as shown by Figure 2.17 :

The arrows indicate power flow through the circuit. The amplitude of the RF excitation signal Vs 

can be expressed as
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V,=j8PTRe{Z,(jo,)} (2.62)

where Pt is the available power (unknown) that can be delivered to the pumped diode pair, 

represented by Zp. The current flowing in the loop is found using the diode conversion matrix Zp:

/-(z,+z,yv. (2.63)

where Ze is the conversion matrix of the linear part of the circuit. The output power into the 

embedding circuit represented by Ze at frequency con is

P , ^ \ l ( c , f  Re{z,(jo>,)}

The conversion loss is now found using equations (2.62) and (2.64)

.(2.64)

4  = —  pr T
(2.65)

Figure 2.16 : Alternative Small-signal representation of Diode Mixer (with Power Flow)

2.5) N o ise

The fundamentals for mixer noise analysis have been established remarkably early. Although a 

reliable model was only obtained in the 1970’s, the properties of noise correlation in mixers have
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been understood before that time. Since the topic of noise is an extensive field in its own right 

[11, 14], the current text will only present the fundamentals.

In Chapter 1, mixer noise was categorized as either inherent noise, or signal noise. In Schottky 

diode mixers the dominant inherent noise sources are :

1) Thermal Noise -  Generated in the series resistance,

2) Shot Noise -  Generated in the junction.

The dominant signal noise source for the Schottky diode is noise sidebands on the LO. In a 

frequency mixer the noise-processes are rather simple to understand. The challenge arises when 

the correlation properties of the noise is investigated. As it will become evident, the time-varying 

junction creates the phenomenon by which the noise properties at all the mixing frequencies is 

linked to one another -  from there the idea of correlation.

2.5.1 Thermal Noise

As mentioned briefly in the preceding section, thermal noise has its origin in the series resistance 

Rs. Thermal noise arises from the random agitation of electrons, and it is present in every 

medium capable of dissipating power. Apart from being temperature dependent, thermal noise is 

also frequency dependent, although it is the bandwidth B and not the absolute frequency that is 

of importance.

The noise added to the diode circuit by a resistance R can be modeled by an equivalent voltage 

source having the mean-square voltage given by

v2 = 4 KTBR ........... (2.66)

where K  is Boltzmann’s constant and T is the absolute temperature [9]. The mean-square arises 

from the fact that the noise is a random process, but can be characterized in terms of its average. 

Note that equation (2.66) is only valid for non-cryogenic temperatures and frequencies below the 

sub-millimeter range. Equation (2.66) is a generalization of Planck’s black body radiation law

[8] at the mentioned temperatures and frequencies. Figure 2.18 shows the Schottky diode model 

adapted to include the effect of thermal noise.
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2.5.2 Shot Noise

The electrons crossing the junction of the Schottky diode cause the current waveform to be 

approximated as a series of pulses, leading to the term “shot” noise. The instantaneous current 

varies with time due to the random nature of the flow of electrons, but the average current 

remains constant, and is a function of the dc current flowing through the junction.

The shot noise in a Schottky diode can be adequately modeled by an equivalent current source 

(rather that a voltage source, as was the case with thermal noise). The mean-square equivalent 

current source for the shot noise due to a current Ij flowing trough the junction is given by

i2 =  Iq B Ij ............. (2.67)

where q is the charge of an electron. It must be noted that Ij is the current flowing through the 

resistive part of the junction [9]. Once again frequencies in the sub-millimeter range are implied. 

Higher frequencies reach the order of the inverse of the electron transit time across the junction. 

Figure 2.18 also shows the Schottky diode model adapted to include the effect of shot noise.

Figure 2.17 : Adaptation of the Schottky Diode model to include the effects of shot noise and thermal
noise

2.5.3 Noise Correlation

Thermal and shot noise are treated as white Gaussian noise, therefore having a continuous and 

uniform spectrum within the frequency band B. To demonstrate how frequency components of 

the unpumped diode are not correlated, [9] dc-biased a Schottky diode, and created two noise 

waveforms at different frequencies by applying band-pass filters to the diode’s noise. Since the
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original two noise waveforms are only a function of the dc bias, it follows that the resulting 

mixing products are themselves functions of only the dc bias, and are therefore uncorrelated.

However, the situation changes once the diode is pumped by an LO signal. Although the thermal 

noise remains constant under LO excitation (since the series resistance Rs remains constant), the 

shot noise becomes a strong function of the applied LO signal. The shot noise “originates” at all 

the harmonics of the LO, and is then converted to all the mixing frequencies by the process of 

frequency mixing. Eventually the noise components at any mixing frequency include noise 

components from all the other mixing frequencies, and the noise components are therefore 

correlated.

The aim of an analysis will be to find the IF noise voltage due to the noise components from all 

the mixing frequencies. This is done considering the thermal noise and the shot noise separately.

2.5.3.1 Shot Noise
Following the large-signal analysis and the solution of the junction current Ij(jcop), it is possible 

to construct a matrix of noise currents at the mixing frequencies using equation (2.67). Using 

analysis similar to the small-signal analysis carried out in the previous sections, the impedance 

conversion matrix of the diode is related to the matrix of noise currents, resulting in the shot 

noise voltage across the junction at any frequency com. Finally the shot noise correlation matrix 

Cs is created, giving the correlation between shot noise at the various mixing frequencies [22, 

23].

2.5.3.2 Thermal Noise
The thermal noise does not vary with the applied LO, and is therefore uncorrelated at the various 

frequencies. Following the same procedure as above, the thermal noise correlation matrix Ct 

reduces to a simplified form of Cs. In effect C, becomes a diagonal matrix.

The total noise voltage for a single diode at any frequency is a sum of the thermal and shot noise 

components, and employing C, and Cs the total noise power dissipated in the load Ze (Figure 

2.17) at any frequency com is given by
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where v j  is found using Ct and Cs. The single sideband noise temperature, or Tssb , relates the 

total noise power to a single input source, and is a convenient way of expressing noise 

performance for one input frequency :

Irn 
KBG„T s s B = T ^ r -  .............(2-69)

where Gmn is the transducer gain between the input frequency con and the output frequency com

[9]. For the antiparallel diode pair, [22] defines the single sideband noise temperature as

where Z j C'0) is the input impedance to the mixer at the IF port and frequency, Y2 is the source 

admittance of the RF signal, Z j  '0)(C,2) relates the coupling impedance between the IF and RF 

frequencies, C is the sum of the correlation matrices C, and Cs, B is the bandwidth, and the *T- 

superscript indicates the conjugate transpose of the vector.

2.5.4 Signal Noise [241

The presence of noise sidebands on the LO is often a very real problem in receivers. The 

sideband noise-components mix with the LO, producing low frequency mixing components 

which are often situated very uncomfortably in the IF band (Chapter 1, Figures 1.8 and 1.9). 

However, in Section 2.2.5 (Figure 2.9) the antiparallel diode pair’s ability to reject these mixing 

products from the IF band was described. The noise sideband mixes with 2LO, producing mixing 

products well outside of the IF band. This property is a function of the similarity of the diodes.

Simulation of the X-band mixer with identical diodes described in Chapter 4 shows typical 

rejection values in excess of 105dB. Although a realistic figure will be less, the ideal figure will 

be used for comparison in the following section.

Stellenbosch University http://scholar.sun.ac.za/



2.6) D iod e  Unbalance

As with any balanced mixer, harmonic mixers suffer from the effects of diode unbalance. This 

effect is caused by a slight variation in the characteristics of the diodes, mainly due to 

manufacturing. This variation leads to unsymmetrical diodes, and the currents (and frequencies) 

that were confined to the diode loop in the ideal case, begin to “leak” into the embedding mixer 

circuit. The effects of diode unbalance have been investigated by [2, 25]. The most significant 

result of diode unbalance is definitely a decrease in isolation.

Most of the diode parameters are subject to a certain degree of variation. [2] has investigated the 

effect of variation in Is and tj, while [25] investigated a variation in Rs- The HSMS-8202 used for 

the designs in Chapter 4 specifies variations for Cjo and Rs [17]. In the current text the variation 

of these parameters will be investigated for the diodes used in the X-band 2nd-harmonic mixer 

designed in Chapter 4. The parameter variations will be considered individually with reference to 

the mixer’s performance.

2.6.1 Theory

The variation of the diode saturation current Is will now be expressed mathematically. Similar 

derivations can be made for the other parameters, but they will be omitted here due to space 

limitation.

[2] evaluates the effect of a variation in Is by comparing the resulting different conductances g. If 

the difference in Is is denoted by AIS, the effective saturation currents for the two diodes become

Is i -  Is  + Als and Is2 = Is  - AIs

respectively. From equation (2.15) the conductance for the pumped diode pair can now be given 

by [2]

gP = 2 ccls cosh [otVp) + — -  sink [ccVp) (2.71)
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The A/s-term introduces a sw/z-dependence to the conductance. The asymmetrical s/w/i-function 

(as opposed to the symmetrical cos/2-function) provides the mathematical mechanism for the 

unbalance effects.

2.6.2 Analysis

The effects of diode unbalance will now be investigated. The nominal values for the ideal 

HSMS-8202 diodes will be used, and are given below. The typical deviations from ideality, 

according to [17], are also indicated :

- Cjo = 0.18 ±0.04 pF  

Rs = 6 ± 2  Q

- 77 = 1.09 ±0.02

- Is = 4.6e8 ±0.5e 8A

The mixer containing the HSMS-8202 is pumped at an optimal LO level. The simulated 

conversion loss and isolation of selected frequency products are shown in the table below. The 

{ © r f  - cdlo} mixing product is an even order mixing product that should ideally be well isolated 

from the IF.

Diode Parameter 

Deviation

Conversion Loss 

[dB]

LO-to-IF 

Isolation [dB]
{(Br f  - CDlo} 

Isolation [dB]

LO Noise 

Isolation [dB]

Identical Diodes 7.2 30 140 11 0

ACjo = 0.04 pF 7.7 30 70 49

ARs = 2Q 7.5 30 88 45

At] = 0.02 7.3 30 100 74

AIS = 0.5e'8 A 7.2 30 110 90

Table 2.2 : Comparison of Mixer Performance for Diode Unbalance caused by variation of Diode 
Parameters. Only one parameter is varied at a time.

The results show that the mixer exhibits various levels of sensitivity to the diodes with unequal 

parameters. As it was expected, the level of isolation is significantly influenced by unbalance, 

while the conversion loss shows only slight deterioration. The unequal junction capacitance C7o 

has the most profound effect on the level of unbalance, while the permitted variation in the 

saturation current Is has an almost negligible effect on the isolation.
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2.7) The Antiparallel D iode Pair -  A Quantitative  

Analysis

Before the design of harmonic mixers is discussed in Chapter 4, a quantitative analysis of the 

antiparallel diode pair is done. The aim of this analysis is to investigate the antiparallel diode pair 

as a building block of harmonic mixers, and to become familiar with its performance. The 

waveforms of the antiparallel diode pair under LO drive will be investigated, whereafter the 

input impedance will be investigated. Finally a model for the antiparallel diode pair (which will 

be used for the designs in Chapter 4) is extracted.

2.7.1 LO Excitation

Figures 2.19 and 2.20 show a typical large-signal solution for the voltage waveform Vj appearing 

over the junctions of an antiparallel diode pair of HSMS-8202 Schottky diodes. For the purpose 

of the investigation the diodes are assumed to have no parasitic inductance or capacitance, and 

are driven at +3 dBm at a frequency of 5 GHz.

Figure 2.18 : Antiparallel diode pair LO time- Figure 2.19 : Spectrum of Antiparallel Diode Pair 
Waveform LO Waveform

From the above figures it is noted that the LO is made up of mainly the 1st and 3rd harmonics at 

5GHz and 15 GHz respectively. Unlike that of a single diode, the LO waveform for the 

antiparallel diode pair contains no dc component, and is symmetrical around the zero voltage 

axis.
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The conductance gp(t) and capacitance Cp(t) waveforms occurring as a result of the applied LO 

signal are shown in the figures below.

Figure 2.20 : Antiparallel Diode Pair Capacitance Figure 2.21 : Antiparallel Diode Pair Conductance 
modulated by LO modulated by LO

From Figures 2.21 and 2.22 it is clear that the conductance gp(t) plays the dominant role in the 

mixer’s small-signal properties. The exponential characteristic causes the junction resistance to 

vary from several ohms to tens of kilo-ohms, while the inverse square-root characteristic of the 

junction capacitance only varies in the order of tens of picofarads. The conductance waveform 

has a fundamental frequency of twice the LO frequency -  it is this mechanism that forms the 

heart of the antiparallel diode pair.

2.7.2 Large-Signal Input Impedance

By driving the antiparallel diode pair at various levels of power, a range of input impedances can 

be achieved. By keeping the LO power fixed and varying the frequency, a clockwise rotation is 

achieved on the smith chart (the effect of the junction capacitance). Figure 2.23 shows the traces 

obtained for the pair of HSMS-8202 Schottky diodes in an antiparallel configuration driven at 

power levels ranging from -lOdBm to +10dBm over a frequency range of 40 GHz. Figure 2.24 

shows the comparative traces for a single Schottky diode (HSMS-8101) under the same 

conditions.

From Figure 2.23 it can be seen that the antiparallel pair input impedance is governed by the real

conductance gp(t) for lower frequencies, but becomes a stronger function of the junction

capacitance Cp(t) as the frequency increases. At frequencies beyond 40 GHz the input impedance

becomes a function of almost exclusively the junction capacitance. Another phenomenon that is

confirmed by the comparison of Figures 2.23 and 2.24, is the greater input impedance for a given
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LO power of the antiparallel diode pair when compared to the single diode pair. Due to its 

parallel topology, the antiparallel diode pair has a greater junction conductance gP(t), while the 

junction capacitance Cp(t) almost doubles. This is confirmed by Figure 2.25 below. The figure 

shows a plot of the calculated capacitance for both a single diode, and an antiparallel diode pair.

Figure 2.22 : Input Impedance of Antiparallel Figure 2.23 : Input Impedance of Single Diode
Diode Pair as function of LO Power. The arrow as function of LO Power. The arrow indicates

indicates increased LO Power. increased LO Power.

Figure 2.24 : Junction Capacitance as a function of Junction Voltage Vj 

for single diode and the Antiparallel diode

Smith
d«p Mac 

40GHz

9 *pM n
0.01GHz
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When the frequency is kept constant (5 GHz) and the LO is swept from -10 dBm to +10 dBm, 

the plot of Figure 2.26 is obtained for the antiparallel diode pair. It clearly shows how the input 

impedance is a function of LO power.

Figure 2.25 : Input Impedance of the Antiparallel Diode Pair for swept LO Power at 5 GHz

When the input impedance curve of Figure 2.26 is divided into real and imaginary parts, the 

plots of Figures 2.27 and 2.28 are obtained :

LO Power [mWj
Figure 2.26 : Real part of the Antiparallel Diode Figure 2.27 : Imaginary part of the Antiparallel 

Pair Junction Impedance Diode Pair Junction Impedance

From Figure 2.27 it is clear that there is an optimum real impedance presented by the antiparallel 

diode pair. Matching of this point to the source impedance will ensure minimum conversion loss.
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2.7.3 Model

In order to carry out a successful mixer design, it is necessary to have an adequate model for the 

antiparallel diode pair. Although the topology for the HSMS-8202 has been established earlier in 

the chapter (Figure 2.4), it is necessary to verify the model with a measurement, and to modify 

the model if necessary.

The parameter values for the model of the HSMS-8202 Schottky diode as given in Table 2.1 

were verified by measuring the diode pair over 12 GHz, for LO power levels o f -10 dBm, OdBm 

and +10 dBm. The diode was mounted in a jig comprising a SMA-connector on either side, and 

the sets of measurements were taken. A sufficient model [26] was used for the SMA-connector, 

and the measured diode model could be extracted from the measurements. The diode parameters 

were optimized within their range of possible values [17], and finally a model for the HSMS- 

8202 diodes was extracted. The traces for the different power levels are shown in Figure 2.29.

Figure 2.28 : Simulated Reflection Coefficient for the HSMS-8202 diode pair 
driven by LO levels o f-10 dBm (blue), 0 dBm (red) and +10 dBm (green)

The final model for the diode pair is shown in Figure 2.30. The unpumped diodes have a 

resonance in the vicinity of 6 GHz, but this disappears as the diode is driven harder by the LO. 

This model is used for the mixer designs in Chapter 4. Although more extensive topologies have 

been suggested for the SOT-23 package [27], the model implemented in the current text proved 

to be adequate.
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The optimization did not alter the values of the intrinsic diode parameters significantly, although 

values for the package parasitics were altered slightly. The model is considered valid for 

frequencies up to X-band.

Figure 2.29 : Final Model for HSMS-8202 Antiparallel Diode Pair

The operation of the harmonic mixer is now sufficiently characterized, and the antiparallel diode 

pair is available as a well-defined building block of the mixer. The next chapter will move away 

from the analysis of the harmonic mixer, and will investigate its synthesis. Chapter 4 will focus 

on a practical implementation.
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Chapter 3 : Design Considerations

The fundamental requirement of a frequency mixer is frequency conversion. However obvious 

this statement may seem, it is still the main task of a mixer to produce an output signal of lower 

(or higher) frequency using the available two input signals. The quality of this produced output 

signal will vary in accordance with the intended application.

Usually the primary requirement for the IF signal (in the case of a downconverter; an identical 

argument can be presented for the RF signal in an upconverter) is adequate power of the output 

signal -  in other words, minimized conversion loss. The power of the applied RF signals is in 

most instances minimal, since only a low-noise preamplifier is inserted between the receiver 

antenna and the downconverter in a typical front-end application. Any RF power that can be 

preserved by minimizing conversion loss does not have to be gained by excessive gain stages 

(which are prone to noise and other forms of signal degradation).

Apart from minimal conversion loss, it is also preferable for a mixer to produce a clean IF 

spectrum. Isolation from the LO and RF signals is usually the secondary requirement in mixer 

design. Isolation is strongly associated with the topology of the mixer, as certain topologies 

inherently produce IF signals which are “clean” of frequencies other than the IF (the balanced 

mixer structures, for example, described in Chapter 1). However, the LO frequency usually 

requires additional effort to be removed from the IF spectrum, due to its superior power 

(typically the LO signal is larger in magnitude in the order of 20dB and more).

The available LO power is also a consideration which might be of concern. However, the choice 

of a harmonic mixer usually implies an inherent LO power consideration, i.e. lower frequency 

and higher power. It is therefore not often a problem to produce adequate LO power once the 

type of harmonic mixer has been chosen, since the LO frequency usually lies in a region where 

adequate power can be generated without additional effort.

Other factors such as input impedance and noise are rarely primary considerations for the design 

of a mixer, and they are often implied in the design specifications. Even physical factors such as 

size can be a consideration.
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Although it may seem as if the harmonic mixer design demands numerous requirements to be 

met simultaneously, this is rarely the case. The proposed design procedure is to a large extent 

modular, and design steps can be added or left out in accordance with the requirements. 

However, before the design procedure can be developed, it is necessary to consider the possible 

requirements for mixer design in depth. This is the done in the following sections.

3.1) “The D es ig n  R equirem ent”

A mixer is designed in accordance with a set of requirements. These will now be discussed, with 

emphasis on the requirement of low conversion loss and high port isolation. Due to its extensive 

nature, and for lack of available space, this work will not consider the noise requirement as a 

primary design consideration.

3.1.1 Frequency Allocation

The very first issue in the design of a harmonic mixer is the choice of frequencies. The primary 

choice of frequency (i.e. the frequency that will dictate the choice of the others) lies between the 

RF and the IF. No flawless argument can be presented as to which frequency needs to be fixed 

first. On the one hand, the RF should be the primary choice, since the choice of RF is usually 

dictated by the nature of the application (e.g. satellite communications, where frequencies need 

to be confined to fixed frequency bands). On the other hand, the IF signal might be chosen first 

due to the availability of components within the IF band (e.g. the GSM-band).

Once the RF and IF frequencies have been fixed, the LO frequency can be attended to. The 

choice of LO frequency is generally dictated by the LO power availability. Should ample LO 

power be available up to frequencies of half the RF, a 2nd-harmonic mixer can be utilized. 

Should LO power be available to frequencies of only a quarter of the RF frequency, a 4th- 

harmonic mixer can be employed. LO power at even lower frequencies can utilize a harmonic 

mixer of orders higher than the 4th.

Once the IF is located at the correct frequency, the issue of minimal conversion loss can be 

addressed.

77

Stellenbosch University http://scholar.sun.ac.za/



3.1.2 Ontimum Conversion Loss

The harmonic mixer’s conversion loss between two frequencies was defined by equation (2.61) 

in Chapter 2 as

Apart from the numerical utilization of equation (2.61), it is significant to note that the following 

three factors contribute towards conversion loss :

1. RF source termination (denoted by the factor Y j c,k)) : RF power can be lost before 

even entering the mixer due to a mismatch between the RF source and the RF port. In 

the examples presented later in the current work, care has been taken to always ensure 

50Q at the RF port.

2. IF load termination (denoted by the factor Y/JC’0)) : The converted IF power can be 

prevented to optimally “exit” the mixer due to a mismatch between the IF port and 

the IF load. It is necessary to ensure that the resistive parts of the IF port impedance 

and IF load impedance are ideally equal.

3. Coupling between conversion frequencies (denoted by the factor YJC'0)(C'k)) : Without 

launching into an elaborate discussion pertaining to the mechanics of frequency 

conversion in the antiparallel diode pair, it will be considered sufficient to say that 

amongst others, the junction series resistance Rs adds to conversion loss by means of 

resistive losses. The series inductance Ls does not have resistive losses, but becomes a 

high impedance at higher frequencies, adding to the conversion loss. By the same 

token the parasitic package components Cp and Lp also increase conversion loss.

From the above discussion it is clear that obtaining a low conversion loss can only partially be 

achieved by optimum design. The diode characteristics play an important role in determining 

conversion loss, and the correct choice of diode is essential to satisfying the requirement of 

minimal conversion loss.

3.1.3 Port Isolation

Rejecting the LO, RF and certain mixing products from the IF port is the most important goal of 

port isolation. A secondary goal is often to reject the IF signal from the RF and LO ports, since

78

Stellenbosch University http://scholar.sun.ac.za/



any resistive termination other than the IF port causes an increase in conversion loss. Often the 

RF signal is also rejected from the LO port, again for the minimization of conversion loss.

Although the isolation requirements of the previous paragraph seem to be difficult to realize 

simultaneously, the process is often less complicated than it seems. The subharmonic mixer 

provides inherent isolation from even order LO harmonics, as well as odd order mixing products. 

The use of open-ended and shorted stubs is often employed as a further means to isolate ports 

from unwanted frequencies. Finally, the use of filter structures in addition to the aforementioned 

methods generally provides all the isolation that is needed. The use of these methods will be 

demonstrated in the design examples.

3.2) Choice o f  D iode

The choice of diode(s) is an important part of the design process. Factors such as low conversion 

loss and noise temperature are influenced significantly by the properties of the diode.

Since it is impossible to escape the effects of junction resistance and capacitance of real diodes, 

or the effect of the parasitic package elements, it becomes necessary to minimize these through 

diode selection. For the beam lead diodes typically used at X-band, the junction capacitance is 

often the limiting factor : a minimum capacitance of 0.1 pF restricts the use of theses diodes to 

under 30 GHz [9]. A series resistance of 5Q is typical, while a series inductance of InH is often 

observed. Different diode structures (e.g. dot-matrix or point-contact) are used at higher 

frequencies to minimize C,& Rs and Z$.

A common method used to express the frequency capability of the diode is by means of the cut

off frequency f co, where

f  = ----- 1.......  ............... (3.1)
Jco 2ttCj0Rs

fco often proves to be no more than a guideline, and should be treated accordingly, i.e. as a first- 

order diode choice [28].

The choice of diode can be simplified if the designer has a knowledge of the sensitivity of the 

diode to the specific parameter. The following figures compare the sensitivities of the
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antiparallel diode pair to junction capacitance Qo, series resistance Rs, non-ideality factor tj and 

series inductance Ls. The comparison should serve as an example, as results will vary depending 

upon the mixer circuits. Figures 3 .1 to 3 .4 show the results from the simulation. The HSMS-8202 

antiparallel diode pair is used in a standard 2n -harmonic mixer configuration. It is pumped by a

5 GHz LO, and the IF power is measured as the RF is swept through 10 GHz to 50 GHz. For 

every sweep one of the diode parameters is increased by a realistic amount.

Figure 3.1 : IF Output Power for variation in 
Junction Capacitance : Cp  = 0.18pF (blue line) 

and Op = 0.36pF (red line)

Figure 3.2 : IF Output Power for variation in 
Series Resistance : Rs = 6Q (blue line) and Rs 

= 12Q (red line)

Figure 3.3 : IF Output Power for variation in Figure 3.4 : IF Output Power for variation in 
Diode Non-Ideality : 77 = 1.09 (blue line) and 77 = Series Inductance : Ls = 1 3nH (blue line) and 

1.18 (red line) Ls = 1.6nH (red line)

From these graphs it can be seen that the diode pair is very sensitive to an increase in junction

capacitance, and therefore the capacitance is usually a quantity that manufacturers aim to

minimize. The specific configuration is moderately sensitive to an increase (doubling) of series

resistance, while more ideal diodes tend to produce a better conversion loss at lower frequencies.

Figure 3.4 shows that an increase in series inductance can actually increase diode performance at

the lower frequencies (due to better reactive matching), while the series inductance causes an
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increase in conversion loss at higher frequencies as the effect of the inductance becomes more 

prominent.

Such an analysis should provide the designer with the background for making an optimum 

choice when considering various diodes.

3.3) D e s ig n  T op o log ies

The antiparallel diode pair can be used in more than one configuration. The mechanism of the 

harmonic mixing remains essentially the same, although the different topologies have inherent 

advantages and drawbacks.

3.3.1 Series Topologies \2\

The series topologies consist of the antiparallel diode pair with one port on the one side, and two 

ports on the other side. Figures 3.5 and 3.6 illustrate the two options offered by the series 

topology.

Figure 3.5 : Isolated Series Topology

Figure 3.6 : Non-lsolated Series Topology 
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3.4.1 Specifications

The design starts off with a set of specifications. These can include frequencies, limits for 

conversion loss, port isolation, etc. The specifications enable the designer to consider and 

possibly make choices concerning the topology, the order of the LO harmonic used, the method 

of realization, etc.

3.4.2 Choice of Frequencies

The frequencies not stipulated by the initial specifications are now chosen. At this stage it is 

important to consider any possible spurious responses generated due to a poor choice of 

frequencies. Once the LO, RF and IF have been fixed, the next step is to choose the topology.

3.4.3 Topology

A topology is chosen, if it has not already been done in 3.4.1. This choice is influenced by 

factors such as port isolation, intended complexity of the circuit, method of realization (e.g. 

stripline), frequency bands, etc.

An outline for the intended design must also be constructed at this stage. Filters and matching 

circuits need to be considered, and preliminary choices are made for the order of the filters, etc.

3.4.4 Choice of Diodes

It has been established that it is crucial to consider the specifications of the diodes used in the 

design. In many cases this choice may be limited by the availability of the diodes. A low junction 

capacitance is crucial for high frequency designs, while low series resistance is preferred for 

lower frequency designs.

3.4.5 Basic Design

The goal of the basic design is to find the small-signal input impedances at the small-signal 

frequencies. This is done in order to design the port filters and the matching networks. For the 

basic design, the chosen topology is used with only two ports : a large-signal port for the LO, 

and a small-signal port for the RF. With the circuit driven by the LO, and with the RF applied on 

the small-signal port, the small-signal input impedances at the RF and LO ports are measured. 

The spectrum at the RF port is also considered. A value for the LO power is chosen in the
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IF

Figure 3.7 : Shunt Topology

Since the shunt topology adds and extracts all the signals through one side of the antiparallel 

diode pair, this sometimes necessitates the use of complex filtering structures, or diplexers. 

Shunt stubs (like that of the series topologies) are seldom used.

3.3.3 Additional topologies

The series and shunt topologies were used to realize the majority of harmonic mixers 

encountered in literature. Occasionally the antiparallel diode pair is used in a conventional 

double balanced mixer structure, where the conventional single diodes are then replaced by the 

back-to-back diodes [32]. The antiparallel diode pair has also been used in a triple balanced 

mixer topology, resulting in a unique three-dimensional structure [33]. Quadrature mixers 

utilizing antiparallel diode pairs have also been recorded [24].

3.4) D e s ig n  Overview

Before the design examples are presented in Chapter 4, it is necessary to briefly consider the 

design procedure developed for use in the current text. The procedure developed is to a large 

extent a step-by-step design, starting with the design specifications and ending with the 

realization of the design. Only the outline of the procedure will be given, as a detailed discussion 

of each step is given in Chapter 4.

83

Stellenbosch University http://scholar.sun.ac.za/



3.3.1.1 Isolated Series Topology [3, 29]
The isolated series topology of Figure 3.5 provides a very popular method for realizing harmonic 

mixers. It has the IF and RF ports on one side of the diode (the small-signal side), and the LO on 

the other side (the large-signal side). The separation of large and small signals provides a 

convenient way of isolating the IF signal, contributing to this topology’s popularity.

The mixer utilizes two optional shunt stubs on either side of the antiparallel diode pair. On the 

small-signal side the open-ended stub is 90° long at the LO frequency, presenting a short to the 

LO (so that LO current flows through the diode pair), and at the same time removing the LO 

from the small-signal side. On the large-signal side the shorted stub is 180° long at the RF 

frequency, presenting a short to the RF frequency, and also providing a ground return path for 

the IF signal.

3.3.1.2 Non-lsolated Series Topology [30]
The non-isolated series topology is less popular due to the fact that additional measures need to 

be taken to remove the LO from the IF port. If the LO and IF frequencies are far apart, this 

becomes less of a problem. The non-isolated series topology may also utilize stubs, but the open- 

ended and shunt stubs are interchanged. The non-isolated series topology has been implemented 

in waveguide structures, where options are often reduced.

3.3.2 Shunt Topology [311

The shunt topology of Figure 3.7 is another popular mixer structure. It has all three ports 

connected to one side of the antiparallel diode pair, while the other side is grounded. Sometimes 

the LO and IF are respectively added and extracted through the same port, reducing the number 

of physical ports to two.
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vicinity of minimum conversion loss (the datasheets usually provide typical values for LO 

power).

Once the small-signal input impedances are known, the matching networks and filters can be 

designed. The output spectrum is considered in order to establish the order of the required 

filter(s).

3.4.6 Extended Design

The extended design adds another small-signal port, the IF port, to the topology. Since there are 

now two ports in parallel (the RF and IF, or the LO and IF), it becomes difficult to match the 

ports individually. This can possibly be overcome by a simultaneous solution or optimization. In 

the current text, an approximation was made. Since one of the harmonic mixer’s characteristics 

is frequency components (IF, RF and LO) that are spaced far apart, it is possible (within 

reasonable bounds of the specific design) to consider only one of the shunt ports, while the other 

is approximated as an open circuit (due to the effect of its matching circuit or filter). From this 

principle, is it possible to design the output filters and matching networks for the IF and RF 

ports, ensuring that the assumption is indeed met. The process will be illustrated in Chapter 4.

3.4.7 Simulation

After the initial design has been completed (usually with lumped elements or transmission lines), 

it is necessary to simulate the entire circuit. If the assumption of 3.4.6 was not met by the initial 

design, a second design must be carried out. It is also possible to optimize the circuit, especially 

if it is simulated using non-ideal (e.g. microstrip or stripline) components. The effects of ground 

straps, enclosures or possible unintended coupling between structures also need to be verified. 

Another important factor to consider is the sensitivity of structures to component tolerances -  if a 

structure is more tolerant of dimensions etc. than can be met by the design procedure, it might be 

necessary to consider an alternative.

After the design procedure has been carried out, the circuit can be realized. Two design examples 

are presented in Chapter 4, and it was found that the above design procedure yielded very good 

results.
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Chapter 4 : Implementation and 
Measurements

Two designs were carried out to demonstrate the principles discussed in the previous chapters, 

one at S-band and one at X-band. A detailed exposition of the design process, with specific 

reference to the design procedure presented in Chapter 3, as well as the results, will be presented 

here for both cases.

4.1) S-Band Mixer

The first harmonic mixer design is for a S-band down-converting mixer. A number of 

specifications are fixed for the mixer, setting out a basic direction the design procedure should 

take. The design procedures for the filters implemented in the S-band mixer are given in 

Appendix B.

The design of the mixer is done with the aid of Microwave Office. The design package includes, 

amongst others, a large-signal circuit solver implementing the harmonic balance method, as well 

as EM models for microstrip components, allowing the mixer to be simulated as a microstrip 

circuit.

4.1.1 Specifications

An RF frequency of corf = 2.45 GHz is chosen, as this frequency falls in an ISM-band, is often 

used for telemetry applications, and is also commonly used for applications such as WLL 

{wireless local loop). The design will be for as wide a bandwidth as possible, although a value 

between 100 MHz and 200 MHz would be sufficient. The IF is restricted to a value below 500 

MHz, since available VHF components can then be used in the post-mixer stages. It was decided 

to implement a 2nd-harmonic mixer.

4.1.2 Choice of Frequencies

With the RF fixed on coRF = 2.45 GHz, the LO and IF need to be chosen. The mixer will be a 

lower-sideband mixer in order to keep the LO frequency as low as possible. Finally the LO was 

fixed at value of colo = 1-1 GHz, which resulted in an IF with frequency
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colF = co^ -  2coLO = 250 MHz (4.1)

The choice of LO and IF allows a bandwidth of 100 MHz to 200 MHz, while the IF lies safely 

within a frequency range where standard VHF components can be utilized. The choice of 

frequencies can be summarized as follows :

CDpf = 2.45 GHz 
coLO =1.1 GHz 
coIF = 250 MHz

4.1.3 Topology

The next step in the design process is to choose a topology for the subharmonic mixer. Since the 

isolated series-topology is a popular topology in the field of subharmonic mixers, this topology is 

chosen for the S-band mixer.

It is further decided to follow the classic approach where the large-signal LO is isolated from the 

small-signal RF and IF. The antiparallel diode pair will be pumped by the LO signal on one side, 

while the RF signal and IF signal will respectively be injected and extracted on the opposite side. 

A shorted stub will be used on the LO side, while an open stub will be implemented on the side 

of the RF and IF. Figure 4.1 shows the intended topology.

Filters will be used on all three of the ports. This is a preliminary decision, and the intended use 

of filters will be evaluated again when the spectra for all the ports are known. The IF is low 

enough to implement a lumped-element low-pass filter, while the RF is high enough to
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implement a coupled-line band-pass filter. A low-pass filter, most likely consisting of distributed 

elements, is proposed for the LO.

Finally, a relatively inexpensive microstrip substrate intended for use in the lower GHz-region is 

chosen. It has the following characteristics :

er = 3.86 
h = 0.787 
t = 0.05

4.1.4 Choice of Diodes

The HSMS-8202 series Schottky diodes will be used exclusively in this text. Table 2.1 and [17] 

provide a detailed description of the diode characteristics. The HSMS-820x series is ideally 

suited for use in the intended application. It has a low series resistance Rs of typically 6 ohms, 

and the junction capacitance Cjo is typically 0.18 pF, making it suitable for applications well into 

X-band. Other suitable diodes include [27].

Although the HSMS-820x series are available in a variety of packages, the HSMS-8202 is ideal 

for use in a subharmonic mixer. It comprises two antiparallel diodes, housed in a SOT-23 

package. The characteristics of the entire diode (including package) are well defined in its 

datasheets, and in Chapter 2 an optimal model for the diode was extracted from measurements. It 

is this model that will be used in the design of the mixer.

4.1.5 Basic Design

The basic design of the S-band subharmonic mixer is shown in Figure 4.2 (Microwave Office 

schematic). It comprises a large-signal port PI, the antiparallel diode pair SI, a small-signal port 

P2, and the stubs TL1 and 7X2 (implemented as ideal transmission lines).

Using the setup of Figure 4.2, the next step is to find the port impedances of the circuit. An 

initial value of+ldB m  was chosen for the LO power, since this is suggested in the datasheets. A 

nonlinear analysis is performed, and the port impedances are as follows :

z» C ‘ = (73+-'U8)n

z» C 2=(93+-'u -65)n

z«C=(43+-'4-62)n
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Figure 4.2 : MWO layout of the Basic Design

Figure 4.3 shows a plot of the input impedance of the small-signal port from 100 MHz to 3 GHz. 

The effect of the open stub can be seen, shorting the input impedance to ground at 1.1 GHz and 

providing the required isolation between the LO and the small-signal port.

Figure 4.3 : Impedance on the Small-Signal port

Figure 4.4 shows the output spectrum for the small-signal port (Port 2 on Figure 4.2). The RF 

signal o f -20 dBm is clearly visible as the largest signal on the plot. The IF signal { © r f  -  2© l o } 

at 250 MHz is relatively strong (-32dB) for an unmatched mixer, but since the real part of the 

input impedance of the IF frequency is close to 50Q, this result is to be expected. Also visible on 

figure 4.4 is the image frequency at { © r f  + 2© l o } = 4.65 GHz. The image is clearly not 

reactively terminated, and contains power that can possibly be relinquished to the IF, if
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terminated correctly [1], Also note that the LO is not present in the output signal (no harmonics 

are present either). This is of course due to the combination of the antiparallel diode pair, and the 

open circuit stub.
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Figure 4.4 : Output Spectrum of the Small-Signal Port (Port 2 on Figure 4.2)

This concludes the basic design for the S-band subharmonic mixer. Although a third port still 

needs to be added to the topology, the basic work has been done to create a topology capable of 

producing a significant IF signal. In the remainder of the design, this IF signal will be maximized 

and isolated using matching, filtering and tuning.

4.1.6 Extended Design

It is necessary to introduce the third port on the small-signal side of the antiparallel diode pair, 

through which the IF can be extracted. The 3rd port is designed in such a way that it does not 

upset the input impedance seen by the existing port at 2.45 GHz. In other words, the 3rd port (or 

IF port) should let frequencies around 250 MHz pass, while it presents a high impedance to 

signals at 2.45 GHz. Filtering provides a solution to this problem.

In addition to using filters to isolate the IF port and the RF port, matching may be required to 

ensure optimum RF power transfer between the RF port and the antiparallel diode pair, as well as 

optimum IF power transfer between the IF port and the antiparallel diode pair. Since the design
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is for moderate bandwidth, stubs and lines are expected to provide an adequate response. The 

intended topology for the design is shown below.

Figure 4.5 : Intended Topology showing Matching Circuits and Filters 

4.1.6.1 IF Low-pass Filter
 ̂ tJj

Since the IF lies within the VHF-band, lumped elements are used to realize the IF filter. A 5 - 

order LC-ladder topology is chosen, providing an estimated isolation of 47dB at c o l o  =1.1 GHz, 

and 84dB at c o r f  = 2.45 GHz (Of course the isolation at co rf  is almost impossible to realize with 

lumped elements, due to the parasitics of the elements. As it will become evident, the values 

provide a good first-order approximation of the isolation at c o r f . )  The simulated response is 

shown in Figure 4.6.

Ideally the low-pass filter provides the antiparallel diode pair with a 50Q termination at ©if, 

while it becomes a short for the higher frequencies. The next step is to design the band-pass filter 

for the RF.
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Figure 4.6 : Low-Pass Filter Frequency Response (Sn = blue, s2i = red)

4.1.6.2 RF Band-Pass Filter

The RF band-pass filter should ideally pass the band of frequencies around 2.45 GHz, while 

presenting an open circuit to the other frequencies. The width of the pass-band determines the 

bandwidth of the mixer to a great extent, a factor that needs to be considered when choosing 

topologies. In order to gain moderate bandwidth while still maintaining a relatively simple 

design, a 2nd-order band-pass filter was realized [8, 34], The filter response is shown in Figure 

4.7.

Figure 4.7 : Band-Pass Filter Frequency Response (s-n = blue, s2i = red) for realized microstrip filter
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The filter has an attenuation of 0.5 dB in the center of the pass-band, while the -3 dB bandwidth 

of the filter is about 100 MHz. It is expected that the mixer will have an equivalent bandwidth.

Once the filters have been implemented, the antiparallel diode pair should see a 50Q termination 

at 250MHz and 2.45GHz at the IF port and RF port respectively. This is indeed the case at the IF 

frequency (Figure 4.9), but not yet at the RF (Figure 4.8). Since the IF low-pass filter has a shunt 

inductor as its first element, the antiparallel diode pair is shorted to ground at frequencies above 

the IF cut-off frequency, and a 50Q match at the RF frequency is not possible. This can be 

corrected by isolating the IF filter from the remainder of the circuit at the RF frequencies. The IF 

matching network, proposed in Figure 4.5 and consisting of a stub and a line, should solve this 

problem.

Figure 4.8 : RF port Input Impedance for 2.3 -  2.6 Figure 4.9 : IF port Input Impedance from 
GHz 100MHz-400MHz

4.1.6.3 IF Matching Network

The purpose of the IF matching network is twofold :

- Match the 50Q IF port to the IF filter at 250 MHz

- Isolate the IF port from the antiparallel diode pair at 2.45 GHz.

At 250MHz, the input impedance of the antiparallel diode pair at the EF port is {64 + j7}Q. This 

is matched to the antiparallel diode pair using a single line with an impedance of 58Q. The line is
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chosen to be 90° long at 2.45 GHz, resulting in an open circuit at the RF. The single line 

provides an adequate match, and it is not necessary to add a shunt stub. The new RF and IF input 

impedances are shown in Figures 4.10 and 4.11.

Figure 4.10 : RF port Input Impedance from 2.3 Figure 4.11 : IF port Input Impedance from 100 
GHz to 2.6 GHz (after the addition of the IF MHz to 400MHz (after the addition of the IF

matching network) matching network)

4.1.6.4 RF Matching Network

The only purpose of the RF matching network is to match the 50Q RF port to the antiparallel 

port at 2.45 GHz. The RF band-pass filter already provides isolation between the IF and RF ports 

at 2.45 GHz.

Although the RF port input impedance is very close to 50Q at 2.45 GHz (after the addition of the 

IF matching stub), the input impedance at frequencies around 2.45 GHz still approach a short 

circuit (see Figure 4.10) due to the limited bandwidth of the IF matching stub, and the shorting- 

effect of the IF filter. The intended effect of the RF matching circuit is therefore to provide 

additional bandwidth to the RF match, while still providing a adequate match to the 50Q RF 

port.

An ideal transmission line with an impedance of 67Q and a length of 168° at the RF shifts the 

curve on the Smith chart towards the desired location. Figures 4.12 and 4.13 show the final plots 

for the input impedance at the RF and IF ports.
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Figure 4.12 : Final RF port Input Impedance for Figure 4.13 : Final IF port Input Impedance
2.3 -  2.6 GHz (after the addition of the IF and RF from 100MHz -  400MHz (after the addition of 

matching networks) the IF and RF matching networks)

4.1.6.5 LO Isolation

Once the RF and IF ports have been matched and isolated, the design on the small-signal side of 

the mixer is complete. However, the LO port on the large-signal side presents a 50Q termination 

to many frequencies other than the LO signal. These frequencies include the IF frequency, as 

well as mixing products between 1GHz and 3 GHz. By reducing the real termination at these 

frequencies, the conversion loss can be slightly improved. Figure 4.14 shows the frequency 

spectrum at the LO port.

A low-pass filter was chosen to isolates the LO port. Ideally a band-pass filter should be used, 

rejecting all signals (including the IF and the image frequency) from the LO port. Since the LO 

and IF frequencies are spaced relatively close (-25%) and relatively low (<l.lGHz), a simple 

microstrip band-pass structure is difficult to realize. The low-pass filter will therefore provide 

additional isolation (and increased bandwidth) from the RF signal, but will not terminate the IF 

signal reactively. It was later found that a reactive termination would have resulted in a 2dB to 

3dB improvement in conversion loss.

A quarter-wave stub filter was chosen to realize the microstrip structure [8], The frequency 

response of the filter is shown in Figure 4.15.
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Figure 4.14 : Frequency Spectrum at LO port (before isolation)

Figure 4.15 : Frequency Response of implemented LO LPF (Sn = blue and s2i = red)

4.1.7 Microstrip Simulation

The circuit is transformed to microstrip, and simulated using a low-frequency (<3 GHz) substrate 

with sr = 3.86 and h = 0.787, The initial design (containing transmission lines) is simulated in 

Microwave Office, using the available EM-models offered for microstrip structures.

For the simulation all ideal transmission lines from the initial design are replaced with microstrip 

lines of the correct length and width, and are joined by the necessary T-junctions or cross-
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junctions (the simulation package utilizes adequate models for these structures). The shorted stub 

on the large-signal side is realized with a microstrip line connected to ground by a ground strap. 

The chip inductors are modeled with Q = 40, a realistic value at the frequency.

Before the simulation was done on the microstrip circuit, the circuit was optimized for 

minimized conversion loss. The optimization is justified by the addition of the T-junctions and 

cross-sections. The error-function for the optimization was created by making line lengths and 

widths variables, and then computing the corresponding conversion loss. Since the design 

process has already placed the error-function within the vicinity of the absolute minimum for the 

specific design, it was necessary only to search locally for a minimum value for the error- 

function. Two of the optimization methods included in the design package were utilized : the 

Local Random Optimization and Simplex Optimization. The local random optimization was 

implemented first due to its effectiveness when a large number of variables are used. Once the 

local random optimizer flattened out, a simplex optimization (or downhill search) was 

implemented, evaluating N  points on the error surface, and finally converging accurately to the 

minimum value for the error function. The local random optimization flattened out within -1000 

iterations, while the simplex optimization required -500 iterations to achieve a minimum.

Figure 4.16 shows the IF output power against swept LO input power for a RF of -20dBm. The 

mixer has an optimum conversion loss of 8.7dB [-20 -  (-28.7)], and this is achieved at an LO 

power of-0.5dBm.

Figure 4.16 : Simulated IF power as a function of LO power for the S-band Harmonic Mixer
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Figure 4.17 shows the expected output spectrum at the EF port (with an applied LO power of 

OdBm). Apart from the IF signal, the LO and RF signals are visible. The predicted IF-to-LO 

isolation is 52dB, while the predicted IF-to-RF isolation is 80dB.

Figure 4.17 : Simulated Output Spectrum at the IF Port (with -0.5dBm LO applied)

Finally the bandwidth of the mixer is found with a simulation. Figure 4.18 shows the frequency 

of the applied RF signal as input, while the power of the corresponding IF response is plotted as 

the output. From 4.18 the mixer is expected to have a 3dB-bandwidth o f-200 MHz.

Figure 4.18 : Simulated plot of RF frequency vs IF power
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4.1.8 Realization

The S-band harmonic mixer was realized in microstrip using a low-frequency substrate with 8r = 

3.86 and h = 0.787. The lumped-element IF low-pass filter was realized using 0805-type surface 

mount components. A layout of the final mixer is shown in Figure 4.19. The footprints for the 

0805-type components, as well as the diodes’ SOT-23 package are also visible. Also note that 

the SMA-connectors are connected to the ports via lengths of 500 line.

A photograph of the manufactured mixer is shown in Figure 4.20. Note that the lines from the 

diode to the IF and LO ports were bent through 90° to minimize surface space. Further 

minimization using mitered lines was possible, although this was not done.

LOLPF

Figure 4.19 : Final S-band mixer layout (Scale 1:1)
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Figure 4.20 : The Manufactured S-band Harmonic Mixer

4.1.9 Measurements

The performance of the S-band harmonic mixer was measured to determine conversion loss, 

isolation and bandwidth. The measurements generally agreed very well with the predicted 

results.

Figure 4.21 shows the mixer’s measured conversion loss by plotting input LO power against 

output IF power. The power of the applied RF signal is -20 dBm. The minimum conversion loss 

is 10.3dB (1.8dB worse than the predicted value of Figure 4.16). This optimum conversion loss 

is achieved with 0.5dBm LO power (ldBm higher than the predicted value). The shape of the 

measured curve agrees very well with the predicted curve of Figure 4.16.

Next a RF frequency sweep is performed with +0.5dBm LO power applied. The -20dBm RF 

signal is swept from 2.23 GHz to 2.60GHz, resulting in an IF from 30MHz to 400MHz. Figure 

4.22 shows the measured curve. A 3dB-bandwidth of ~250MHz is measured (50MHz in excess 

of the predicted value). Furthermore, the shape of the curve in Figure 4.22 agrees well with the 

predicted shape of Figure 4.18.

Finally the port-to-port isolations were measured using a spectrum analyzer and a power meter :

LO-to-IF Isolation : 41dB 

RF-to-IF Isolation : 60dB
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Both the LO-to-IF and RF-to-IF isolations are slightly less than their simulated values, but are 

still very satisfactory.

Figure 4.22 : Measured RF-sweep of S-band harmonic mixer, showing IF amplitude 
against IF Frequency for +0.5 dBm applied LO power and -20 dBm applied RF power
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4.1.10 Comments

The S-band harmonic mixer performs very satisfactorily. Conversion loss is only slightly less 

than expected. This is most likely due to a slight mismatch or manufacturing tolerances. Isolation 

on the ports is satisfactory. The performance of the mixer could for the larger part be predicted 

adequately.

The IF low-pass filter could however be slightly improved. The filter has a shunt capacitor 

closest to the mixer. This capacitor shorts out the RF signal, necessitating the matching circuit. 

This problem could have been overcome by ensuring an inductor as the filter element closest to 

the mixer.

In an attempt to improve the conversion loss even more, a narrowband matching structure could 

have been used at the LO port instead of the low-pass filter. The low-pass filter does not isolate 

the RF port from the IF, undoubtedly resulting in some lost IF power.

Judging by Figure 4.13, the IF port is not as optimally matched to the antiparallel diode pair as 

one would have preferred. A second iteration for the design of the matching networks would 

have improved the match.

With these guidelines in mind, and with the experience gained, the design of the X-band mixer is 

taken on.

4.2) X-Band Mixer

The second design is for an X-band down-converting mixer. As with the S-band mixer, a number 

of specifications will be set for the mixer, setting out a basic approach for the design procedure. 

The design procedures for the filters implemented in the X-band mixer are given in Appendix C.

4.2.1 Specifications

A RF frequency of ©rf = 11 GHz is chosen, making the mixer suitable for use in some satellite 

communication systems. A 6% bandwidth of ~700 MHz is chosen, half the bandwidth obtained 

with the S-band mixer, so that the option of reduced conversion loss with reduced bandwidth can 

be explored. The IF is chosen to be 1.1 GHz (a value of exactly 1 GHz resulted in numerical 

instability of the software due to the harmonic relation between the integer values). For optimal

102

Stellenbosch University http://scholar.sun.ac.za/



conversion loss in the frequency band, a 2nd order subharmonic mixer will be implemented 

instead of a 4th order mixer.

4.2.2 Choice of Frequencies

With the RF fixed on c o r f  =  11.0 GHz and the IF on © if  =  1.1 GHz, the LO is automatically fixed 

on © l o  = 4.95 GHz. Equation 4.2 verifies that the relation between the frequencies is correct:

co ip  = ( o e f - 2 colo = (ll.0 -2 x 4 .9 5 )G //z  =  l.lG //z ............... (4.2)

The choice of frequencies can be summarized as follows :

tuRF =  11.0 GHz 
a  lo =4.95 GHz 
coIF = 1.1 GHz

4.2.3 Topology

The topology chosen for the X-band mixer is very similar to that implemented on the S-band 

mixer. The popular series-topology is implemented, with the LO applied on one side of the 

antiparallel diode pair, and the RF and IF are respectively applied and extracted on the opposite 

side of the diodes. A shorted stub will be used on the side of the LO, while a open-ended stub 

will be used on the side of the RF and IF. Figure 4.23 shows the intended topology.

Figure 4.23 : Intended Topology intended for use with the X-band Harmonic Mixer

103

Stellenbosch University http://scholar.sun.ac.za/



Filters will be used on all three of the ports. This choice led to satisfying results with the S-band 

mixer. Unlike the S-band mixer, the IF is high enough to use distributed element filters. 

Distributed element filters will therefore be used at all three ports.

A Taconic microstrip substrate intended for use at X-band is chosen to realize the circuit. It has 

the following characteristics :

sr = 2.48 
/z = 0.787 
t = 0.05

4.2.4 Choice of Diodes

The HSMS-8202 diode in a SOT-23 package is again used for the design. The model extracted in 

Chapter 2 is still valid in X-band, and is used for the design of the mixer.

4.2.5 Basic Design

The basic design for the X-band harmonic mixer is similar to that shown in Figure 4.2 

(Microwave Office schematic). It consists of the large-signal port PI, the antiparallel diode pair 

SI, a small-signal port P2, the open-ended stub 7X7, and the short-circuited stub TL2 

(implemented as ideal transmission lines).

The port impedances for the two ports need to be found. The datasheets of the HSMS-8202 

suggest an increase in LO power with an increase in frequency, and an initial value of +8dBm is 

chosen for the LO power. A nonlinear analysis is performed, and the port impedances are as 

follows:

Z * C - ( 21.3+y3°.3)n

zC 2=(127+'168)n
z»C=(42-8-̂ 15)Q

Figure 4.24 shows the plot of the input impedances of the small signal port from 10 GHz to 12 

GHz.

104

Stellenbosch University http://scholar.sun.ac.za/



Figure 4.24 : Input Impedance on the Small-Signal port

Figure 4.25 displays the output spectrum for the small-signal port (Port 2 on Figure 4.2). The RF 

signal of about -20 dBm at 11 GHz is clearly visible as the largest signal on the plot. The IF 

signal { o jr f  -  2g o l o } at 1.1 GHz is relatively strong (-30.5dBm) for an unmatched mixer, but 

since the real part of the input impedance of the IF frequency is once again close to 50Q, this 

result is to be expected. Also visible on Figure 4.25 is the image frequency at { corf  + 2© l o } ~ 

20.8 GHz. The image is clearly not reactively terminated, and contains power that can possible 

be added to the IF, when terminated correctly [1]. Also note that neither the LO nor any of its 

harmonics is present in the output signal. This is due to the combination of the antiparallel diode 

pair and the open circuit stub.
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This concludes the basic design for the X-band subharmonic mixer. As with the S-band mixer, a 

third port will now be added to the basic structure, whereafter the matching and filtering 

structures will be added.

4.2.6 Extended Design

The IF port is added to the small-signal side of the mixer in such a way that it lets through the 

frequencies around 1.1 GHz, while it presents an open circuit to the RF at 11 GHz. The LO is 

already somewhat isolated from the IF port by the open-ended stub.

Once again matching networks will be needed to ensure optimum power transfer to and from the 

IF port and RF port respectively. The S-band mixer design has shown that networks consisting of 

stubs and lines perform adequately, and therefore this approach will again be implemented. The 

intended topology for the design is shown in Figure 4.5.

4.2.6.1 IF Low-pass Filter

From Figure 4.25 it is evident that the two large frequencies centered around 10MHz need to be 

removed from the IF port. This will be done using a stepped impedance low-pass filter [35]. The 

filter is designed to attenuate maximally at 11 GHz, while passing the IF at 1.1 GHz. When 

designing stepped impedance filters, a general compromise has to be made between bandwidth, 

ripple, attenuation and realizability. The designed 7-element filter provides 46dB isolation at the 

RF frequency, while the ripple in the IF-band is negligible. The simulated response is shown in 

Figure 4.26.

Ideally the low-pass filter provides the antiparallel diode pair with a 50Q termination at ©if, 

while it becomes an open circuit for the higher frequencies. The next step is to design the band

pass filter for the RF.
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Figure 4.26 : Low-Pass Filter Frequency Response (Sn = blue, s2i = red)

4.2.6.2 RF Band-Pass Filter

The RF band-pass filter should ideally pass the band of frequencies around 11 GHz, while 

presenting an open circuit to the other frequencies. A S^-order coupled line filter provides 

~3GHz RF bandwidth, while attenuating the IF signal by ~80dB [8, 34], The response for the 

simulated filter (using microstrip) is shown in Figure 4.27.

Figure 4.27 : Band-Pass Filter Frequency Response (Sn = blue, s2i = red) for realized microstrip filter

Once the filters have been implemented, the antiparallel diode pair needs to be matched to these 

filters in order to see a 50Q termination at the 1.1 GHz and 11 GHz at the IF port and RF port 

respectively.
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4.2.6.3 IF Matching Network

The purpose of the IF matching network is again twofold :

- Match the 50Q IF port to the IF filter at 1. 1GHz;

- Isolate the IF port from the antiparallel diode pair at 11GHz.

At 1.1GHz the input impedance of the antiparallel diode pair at the IF port is {42.8 -  jl5}Q. This 

impedance is matched to the 50Q filter by a length of transmission line with an impedance of 

90Q, 25° long at the IF frequency. The match is completed by an open-ended stub with 

impedance 900  and length 35° at the IF frequency. This combination provides a very good 

match in the IF band from 0.7GHz to 1.5GHz, as is evident from Figure 4.28. However, the RF 

port still contains no matching network, and is completely unmatched to the antiparallel diode 

pair, as seen on Figure 4.29.

Figure 4.28 : IF port Input Impedance for 0.7 -  Figure 4.29 : RF port Input Impedance from 
1,5GHz (after the addition of the IF matching 10.5GHz -  11,5GHz (after the addition of the IF 

network) matching network)

4.2.6.4 RF Matching Network

The only purpose of the RF matching network is to match the 50Q RF band-pass filter to the 

antiparallel port at 11 GHz. The RF band-pass filter already provides adequate isolation between 

the IF and RF ports at 11GHz.
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The input impedance at the RF port is 127 -  j 168 Q at 11 GHz. This, together with the curve of 

Figure 4.29, suggests that the proposed 2-element stub match might not be adequate for the RF 

band. However, for the purpose of the illustration the 2-element match will be implemented.

The RF antiparallel diode pair is matched to the RF band-pass filter by first inserting a length of 

transmission line with impedance 70Q and an electrical length of 63° at 11 GHz between the 

diodes and the band-pass filter (rotation on the Smith chart). A open-ended stub of 90Q and of 

length 74.5° at 11GHz completes the match (movement towards the center of the Smith chart).

Figures 4.30 and 4.31 show the final input impedances of the RF port and the IF port 

respectively.

Figure 4.30 : Final RF port Input Impedance for Figure 4.31 : Final IF port Input Impedance 
10.5 GHz to 11.5 GHz (after the addition of the IF from 700 MHz to 1.5 GHz (after the addition of 

and RF matching networks) the IF and RF matching networks)

4.2.6.5 LO Isolation

Similar to the S-band mixer, a filter is used between the LO port and the antiparallel diode pair. 

The main objective of this filter is to reduce the real impedance seen by frequencies such as the 

RF and IF, leading to improved conversion loss.

Since the IF and RF is much further removed from the LO in the frequency spectrum than was

the case with the S-band mixer (see Figure 4.32), it is possible to implement a band-pass filter
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[14, 34], The simulated frequency response of a 2nd-order band-pass filter providing ~40dB 

attenuation of the IF signal together with ~60dB attenuation of the RF is shown in Figure 4.33.

Figure 4.32 : Frequency Spectrum at LO port (before isolation)

Figure 4.33 : Frequency Response of implemented LO BPF (s-n = blue, s2i = red)
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4.2.7 Microstrip Simulation

The circuit is transformed to microstrip and its operation simulated. For the simulation all ideal 

transmission lines from the initial design are replaced with microstrip lines of the correct length 

and width, and are joined by the necessary T-junctions or cross-junctions. The shorted stub on 

the large-signal side is realized with a microstrip line connected to ground by a ground strap. The 

model used in Chapter 2 for the SMA-connectors [26] was used on the ports of the mixer.

After the circuit was simulated, it was noted that the RF and LO signals were not as optimally 

isolated from the IF port as it was intended. Therefore, the isolation was enhanced by adding to 

shunt open-ended stubs between the IF port and the IF low-pass filter. The stubs had an 

impedance of 90Q, and were 90° long at the RF and LO frequencies respectively. Their addition 

improved the isolation, but did not alter the conversion loss or IF input impedance significantly.

The circuit was once again optimized for minimal conversion loss. The process of optimization 

was identical to that of the S-band mixer.

Figure 4.34 shows the simulated output spectrum at the IF port with an applied LO ranging 

between -5 dBm and +15dBm, and an applied RF of -20dBm. The simulated mixer has an 

optimum conversion loss of 6.5dB, and this is achieved at an LO power of +9.5dBm.

Figure 4.34 : Simulated LO power against IF Power of the X-band Harmonic Mixer

Figure 4.35 shows the simulated output spectrum at the IF port (with +9dBm applied LO power 

and -20dBm RF power). The IF (1.1 GHz), LO (4.95 GHz) and RF (11 GHz) signals are visible,
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with the LO and RF well suppressed to below -80dBm. Also visible is the { 2 corf - (O lo) mixing 

product at 16.6 GHz. This product is not suppressed by the IF low-pass filter (Figure 4.26), but is 

small enough (-77dBm) not to interfere with the IF signal.

Figure 4.35 : Simulated Output Spectrum at the IF Port with +9dBm LO Power and -20dBm RF Power
applied

Figure 4.36 : Simulated plot of RF frequency against IF power for the X-band mixer with +9dBm LO
Power and -20dBm RF Power applied

The bandwidth of the X-band mixer is measured by plotting RF frequency against IF power. 

Figure 4.36 shows the simulated response, with an optimal conversion loss of 6.5 dB achieved at
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11 GHz. From the plot the bandwidth is estimated to be -750 MHz, slightly more than the 6% 

bandwidth required by the specification

4.2.8 Realization

A layout of the realized mixer is shown in Figure 4.37. The SMA-connectors are connected to 

the ports via lengths of 50Q line. A photograph of the manufactured mixer is shown in Figure 

4.38.

LO Port
LO BPF l

HSMS8103'

RF BPF
RF Port

IF LPF

IF Port

Figure 4.37 : Layout of finalized X-band mixer (Scale 1:1)

Figure 4.38 : The Manufactured X-band Mixer 
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4.2.9 Measurements

The X-band mixer was measured to determine conversion loss, isolation and bandwidth. Again 

the measurements generally agreed very well with the predicted results.

Figure 4.39 shows the mixer’s measured conversion loss by plotting input LO power against 

output IF power. The minimum conversion loss is 7.8dB (1.3dB less than the value predicted in 

Figure 4.34). This optimum conversion loss is achieved with 8dBm -  lOdBm LO power (similar 

to the predicted values of Figure 4.34). The shape of the measured curve agrees well with the 

predicted curve of Figure 4.34, although an unexpected resonance is experienced at lower LO 

levels. Curves very similar to that of Figure 4.39 (with specific reference to the resonance) have 

been recorded by [36],

Next a RF frequency sweep is done with +9dBm LO power applied to the mixer. The -20dBm 

RF signal was swept from 10.5GHz to 11.5GHz, resulting in an IF from 600MHz to 1.6GHz. 

Figure 4.40 shows the measured curve. A 3dB-bandwidth of ~550MHz is measured, 200MHz 

less than the predicted value. The shape of the curve in Figure 4.40 agrees well with the 

predicted shape of Figure 4.36.

114

Stellenbosch University http://scholar.sun.ac.za/



Figure 4.40 : Measured RF-sweep of X-band harmonic mixer with +9dBm LO Power and -20dBm RF
Power applied

Finally the port-to-port isolations are measured using a spectrum analyzer and a power meter :

LO-to-lF Isolation : 37dB 

RF-to-IF Isolation : 46dB

These values (especially the LO-to-lF isolation) are slightly less than the anticipated value. This 

is most likely due to the position of the antiparallel diode pair, which was soldered slightly off its 

intended position.

4.2.10 Comments

The design and realization of the X-band mixer is successful. The mixer achieves a very 

competitive conversion loss. For the larger part the mixer can again be modeled very adequately, 

while the design procedure facilitates a successful design.

In the previous section the aspect of diode position was mentioned. When the mixer was 

manufactured, the diodes were soldered 2mm off their intended position, in the direction of the 

stubs. This resulted in an initial measurement of 19dB conversion loss. The diodes were 

subsequently soldered on correctly, and the mixer performed according to specification. This 

demonstrates the mixer’s sensitivity for the position of the diodes.
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Conclusion

This thesis explored the analysis and synthesis of diode harmonic mixers. The aim of the 

analysis was to characterize the harmonic mixer sufficiently in order to set up a design 

procedure. This design procedure would then be used to synthesize and realize a harmonic mixer 

from a set of specifications.

A literature study was performed to investigate the implementation and performance of harmonic 

mixers. It soon became evident that there does not exist a general design method for harmonic 

mixers which considers all the possibilities of mixer design that are available to the designer. 

With this deficiency in mind, the process of characterizing the harmonic mixer was initiated. A 

study of the conventional diode mixer topologies was made, whereafter the performance of the 

harmonic mixer could be related to the performance of the conventional mixer topologies. The 

general mixer properties such as conversion loss, isolation, noise, input impedance and 

intermodulation were defined and discussed.

The operation of the harmonic mixer was then investigated. By starting with the Schottky mixer 

diode, equations describing the operation of the harmonic mixer were derived, and the operation 

of a fundamental building block of harmonic mixers, the antiparallel diode pair, was 

investigated. Properties inherent to the antiparallel diode pair (such as selected mixing product 

rejection, LO amplitude noise rejection, etc.) were investigated, and verified mathematically. 

The phenomenon of unbalance in the antiparallel diode pair was investigated, and observations 

of the mixer’s sensitivity for diode unbalance were made.

Mixer analysis by means of a large-signal and small-signal analysis was explored. After the 

harmonic balance method was introduced as a popular tool for large-signal analysis, the 

adaptation of the method for a mixer containing an antiparallel diode pair was explored. The 

small-signal analysis was adapted for use with the harmonic mixer by describing the mixer as a 

multi-port, multi-frequency structure. Once the mixer analysis was complete, the input 

impedance, conversion loss and noise were related to the harmonic mixer by the small-signal 

parameters calculated in the small-signal analysis.
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In order to gain a better intuitive understanding of the operation of the antiparallel diode pair, a 

number of simulations were done on selected mixer circuits containing the antiparallel diode 

pair. The junction conductance and capacitance waveforms were verified, and the variation of 

the input impedance with swept LO power was investigated. A measurement was done to extract 

the parameters of the HSMS-8202 diode pair, and the resulting model was used for later mixer 

designs.

Once the investigation of the operation of the harmonic mixer was complete, the synthesis of the 

mixer was considered. An extended literature study was performed on various examples of 

harmonic mixer designs and implementations. Once this was completed, the various criteria for 

mixer design were discussed. The design criteria were related to the mixer characteristics 

developed in Chapter 2. Suggestions were made for optimum mixer design, and a design 

topology was proposed. The design provided a step-by-step procedure to design a variety of 

harmonic mixers. Such a procedure has not been presented in literature.

Finally the presented design procedure was evaluated with the synthesis and manufacturing of 

two harmonic mixers, one at S-band and the other at X-band. The manufactured mixers were 

measured, and generally agreed well with the results predicted from the simulations. Satisfactory 

results were obtained for conversion loss (7.8 dB optimum), bandwidth (10% optimum) and port 

isolation (all in excess of 40 dB).

It was found that the proposed design topology gives good and repeatable results. Its success 

depends on the validity of the assumption of port isolation. This requirement can be met without 

difficulty when the IF, RF and LO frequencies are spaced far enough apart, as was the case with 

the implemented designs, and often harmonic mixers in general. When the spacing between the 

various frequencies becomes small, it becomes difficult to realize filters that present open 

circuits at the surrounding frequencies, and the design method might become less effective. It 

was also noted that the mixer is very sensitive to manufacturing tolerances. A study of sensitivity 

will therefore ensure optimum design methods.

The scenario lends itself to simultaneously matching the antiparallel diode pair to both ports on 

one of its sides. By utilizing an optimization routine to find an optimal match for both ports 

given an initial guess, a better match can be achieved faster. Although it was not done in the 

current text in order to facilitate the demonstration, the option of combining filtering and 

matching into one structure must definitely be considered. A well-defined technique for optimum
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matching of all ports with minimal dependence on any assumptions will definitely add 

significantly to the success of the method.

The harmonic mixer was considered as a tool for frequency conversion. After an analysis 

o f the mixer, a procedure for synthesis was proposed. Such a method has to date not been 

available in literature. The method was verified, and the results agreed well with the 

manufactured mixers. Further verification and optimization might be needed before a 

robust method for harmonic mixer design is presented.
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Appendix A : The Reflection Algorithm

The Reflection Algorithm [143] is an alternative to the harmonic balance method for solving the 

large-signal mixer problem. Although the circuit is divided into linear and nonlinear parts and a 

solution is then found iteratively, as with the HB method, the main differences to the HB method 

are as follows :

1) The reflection algorithm uses propagating waves instead of currents and voltages, and

2) The method is self-initiating; it is not required to make an initial guess.

The reflection algorithm is a type of “splitting method” where a new estimate is defined as the 

point lying geometrically between the previous two estimates (as opposed to Newton’s method 

which uses gradient information).

The linear circuit is separated from the nonlinear circuit by means of a length of transmission 

line with characteristic impedance Zc, as shown in Figure A.I. The transmission line is assumed 

to be a integral number of wavelengths long at the LO, resulting in equal steady-state voltages 

and currents at the terminals of the diode and the linear circuit. Note that the series resistances Rs 

of the two diodes of the antiparallel diode pair is not included in the linear part of the circuit.

Figure A.1 : Large-Signal Circuit used for the Reflection Algorithm

As the LO is applied at the left of the transmission line, an incident wave V/t)  is excited. The 

incident wave V/t) is obtained via elementary circuit analysis and given by

Vt (t) =  , Vl° Zc — ~cos(copt + 0 )  .............. (A.1)

yJZc + \Z e ( j^ P)\
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where

6 = tan 1
Im \z

1Hz A j “>p)KJ (A.2)

The transmission line only provides a convenient way of dividing the diode circuit into two 

parts, as shown in Figure A.2. The terminating resistance of the circuit on the left-hand side of 

the transmission line becomes the source resistance of the circuit on the right hand side of the 

transmission line.

The incident wave V,(t) now propagates through the transmission line, reaching the pair of 

antiparallel diodes. The model for the antiparallel diode pair consists entirely of lumped elements 

(linear and nonlinear), and as was the case previously, a solution is most conveniently obtained 

in the time-domain. Using equations (A.l) -  (A.2), the following differential equation is found 

by applying Kirchoff s voltage law :

-2J ' ( 0 + Z c/„m > + % ^  =  0 (A.3)

where Iapdp is the current into the antiparallel diode pair, defined as follows (under the 

assumption of identical diodes D1 and D2) :

apdp
(A .4)
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The differential equation (A.3) is solved numerically, and the terminal voltage and current of the 

antiparallel diode pair, Vp(t) and lapdp(0  are found. The reflected wave propagating from right to 

left towards the LO source is now given by

Vr ( t ) = Vp^ ~ Y apdp^  .............. (A.5)

using transmission line theory. At the source Vr(t) is first Fourier transformed to obtain Vr(jcop)  at 

each harmonic of the LO, then Vr(jcop) is multiplied by the reflection coefficient r(jcop),  and 

finally the inverse Fourier transform is taken. The new incident wave V,2(t) is found by adding 

the reflected wave to the original wave (the “splitting” algorithm), or after p  iterations

v r '  = V,(t)+IFFT[r(jap)FFT{Vl'’ (<)}' (A.6)

where the reflection coefficient at the harmonics of the LO is given by its usual relation

(A.7)

Conversion of the process is indicated by minimum variation in the terminal voltages and 

currents Vp(t) and lapdp(0 of the antiparallel diode -  as soon as this criteria is achieved, the values 

for Vp(t) and lapdp(0  are the valid large-signal solutions.

Whether it is a single diode or antiparallel diode (or any other nonlinear circuit), the reflection 

algorithm provides a method of solving the unknown voltages and currents in the diode(s). On 

completion of the large-signal analysis, the set of harmonic voltages Vj = Vj(ncop) and harmonic 

currents Id = Id(ncop)  for n = 0,1,2,... are known. Therefore the time-varying conductance 

waveform g-rft) and time-varying capacitance waveform Cj{t) due to the LO are known 

quantities.
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Appendix B : Filters implemented in the 

S-band Harmonic Mixer

Three filter structures were implemented in the S-band harmonic mixer :

- A low-pass filter on the IF port,

- A low-pass filter on the LO port,

- A band-pass filter on the RF port.

The details for the realized filters are given in the following sections. The layout for the mixer is 

shown in Figure B. 1.

B .l )  T h e  IF  lo w -p a s s  F i l te r

It was decided that the IF filter should cut off at 500 MHz, and attenuate as much as possible at 1.1 

GHz and 2.45 GHz. The filter was realized using a 5-element LC-ladder [8], After the initial design, 

the component values were optimized for realizable component values. Both the inductors and
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capacitors are 0805-type surface mount components, while the inductors have Q = 50. Figure B.2 

demonstrates the topology of the filter. Figure B.2 shows the simulated frequency response.

To LO Port 27 nH 27 nH From APDP

U U U U U U

8.2 pF 15 pF 8.2 pF

Figure B.2 : Lumped Topology for the IF low-pass filter

Figure B.3 : Response for the IF low-pass filter (sn = blue, s21 = red)

B .2) T h e  L O  lo w -p a s s  F i l te r

The LO low-pass filter implemented consisted of 4 quarter wave-stubs at the RF frequency. The 

low-pass filter should ideally be an open circuit to the RF. The topology of the filter, and the 

dimensions of the lengths of microstrip is given in Figure B.4. Figure B.5 shows the simulated 

characteristic of the low-pass filter.
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i—1

L = 20.6 mm L = 1 8.0 mm
W = 0.7 mm W = 1 mm

To APDP
o---- - r H  I— o

From LO Port ,L = 24.5 mm L = 20 mm
W = 0.3 mm W = 0.3 mm

Figure B.4 : Microstrip Topology for LO low-pass filter

Figure B.5 : Response for the LO low-pass filter (Sn = blue, s2i = red)

B .3 ) T h e  R F  b a n d - p a s s  F i l te r

The RF band-pass filter is chosen to comprise two sections of coupled lines. Using [8] and [34], the 

usual design procedure is followed, and the filter is realized in microstrip. Figure B.6 shows the 

topology for the filter, as well as the measurements for the microstrip lines. Figure B.7 shows the 

simulated response of the band pass filter.

124

Stellenbosch University http://scholar.sun.ac.za/



Figure B.6 : Microstrip Topology for RF band-pass filter

Figure B.7 : Response for the RF low-pass filter (s^ = blue, s2i = red)

This concludes the design for the filters implemented in the S-band harmonic mixer. All the planar 

structures were realized in microstrip with er = 3.86 and h = 0.787.
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Appendix C : Filters implemented in the 

X-band Harmonic Mixer

Three filter structures were implemented in the X-band harmonic mixer :

- A low-pass filter on the IF port,

- A band-pass filter on the LO port,

- A band-pass filter on the RF port.

All the filters were realized as planar structures. The details for the realized filters are given in the 

following sections. The layout for the mixer is shown in Figure C. 1.

LO P ort
LO BPF I RF BPF

RF Port

HSMS8103 •

IF LPF

IF Port

Figure C.1 : X-Band Harmonic Mixer Layout 

C .l )  T h e  IF  l o w - p a s s  F i l te r

It was decided that the IF filter should cut off at 5 GHz, and attenuate as much as possible at 11 

GHz. The filter was realized as a stepped impedance low-pass filter [35], The design is chosen to 

have a larger ripple, but a steeper roll-off in return. Figure C.2 demonstrates the topology of the 

filter. Figure C.2 shows the simulated frequency response.
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Figure C.2 : Topology for the IF low-pass filter

Figure C.3 : Response for the IF low-pass filter (Sn = blue, s2i = red)

C .2) T h e  L O  b a n d -p a s s  F i l te r

The LO filter requires minimum bandwidth, and therefore a topology with two coupled sections was 

decided upon [8] and [34], The topology of the filter, and the dimensions of the lengths of microstrip 

is given in Figure C.4. Figure C.5 shows the simulated characteristic of the low-pass filter.
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Figure C.4 : Microstrip Topology for LO band-pass filter

Figure C.5 : Response for the LO low-pass filter (Sn = blue, s2i = red)

C .3) T h e  R F  b a n d - p a s s  F i l te r

The RF band-pass filter is chosen to comprise four sections of coupled lines. Using [8] and [34], the 

usual design procedure is followed, and the filter is realized in microstrip. Figure C.6 shows the 

topology for the filter, as well as the measurements for the microstrip lines. Figure C.7 shows the 

simulated response of the band-pass filter.
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0—

To
RF Port L = 4.87 mm H I ToW = 0.4 mm 

S = 0.3 mm L = 11.3 mm APDP
W  = 0.3 mm L = 4.83 mm ------ O
S = 0.25 mm W = 0.44 mm 

S = 0.31 mm
L = 4.86mm 

W = 0.36mm 
S = 0.30mm

Figure C.6 : Microstrip Topology for RF band-pass filter

Figure C.7 : Response for the RF band-pass filter (Sn = blue, S21 = red)

This concludes the design for the filters implemented in the X-band harmonic mixer. All the 

structures were realized in microstrip with er = 2.48 and h = 0.787.
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