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Abstract

The topic of this thesis is speaker adaptation, whereby speaker-independent speech models

are adapted to more closely match individual speakers by utilising a small amount of

data from the targeted individual. Speaker adaptation methods - specifically, the MAP,

MLLR and MLED speaker adaptation methods - are critically evaluated and compared.

Two novel extensions of the MLED adaptation method are introduced, derived and

evaluated. The first incorporates the explicit modelling of the mean speaker model in

the speaker-space into the MLED framework. The second extends MLED to use basis

vectors modelling inter-class variance for classes of speech models, instead of basis vectors

modelling inter-speaker variance.

An evaluation of the effect of two different types of feature vector - PLP-cepstra and

LPCCs - on the performance of speaker adaptation is made, to determine which feature

vector is optimal for speaker-independent systems and the adaptation thereof.
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Opsomming

Die onderwerp van hierdie tesis is spreker-aanpassing, dit wil sê, die verandering van

'n spreker-onafhanklike spraakmodel om nader aan 'n spreker-afhanklike model vir 'n

individu te wees, gegewe 'n klein hoeveelheid spraakdata van die individu. Die volgende

sprekeraanpassing-metodes word geëvalueer: MAP, MLLR en MLED.

Twee nuwe uitbreidings vir die MLED-metode word beskryf, afgelei en geëvalueer.

Die eerste inkorporeer die eksplisiete modellering van die gemiddelde sprekermodel van

die sprekerruimte in die MLED metode. Die tweede uitbreiding maak gebruik van basis-

vektore vir MLED wat vanaf die interklas-variansie tussen 'n stel sprekerklasse in plaas

van die interspreker-variansie afgelei is.

Die effek van twee tipes kenmerk-vektore - PLP-kepstra en LPCC's - op die prestasie

van sprekeraanpassings-metodes word ondersoek, sodat die optimale tipe kenmerk-vektor

vir spreker-onafhanklike modelle en hul aanpassing gevind kan word.
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Chapter 1

Introduction

1.1 Preamble

Speaker adaptation techniques originated due to the needs of the speech recognition milieu

of the late 1970s and early 1980s. Most speech recognition systems rely on the analysis

of short frames of speech in order to form feature vectors, and then model these feature

vector sequences using statistical models. Now - as in the 1980s - the state of the art

in speech recognition is to use hidden Markov models as the statistical models for feature

vector sequences. Typically LPC (linear prediction coefficients), LPCC (linear prediction

coefficient cepstra), PLP (perceptual linear prediction) or MFCC (Mel-frequency warped

cepstral coefficients) are used as feature vectors.

Initially, two kinds of system were available to cope with speech recognition prob-

lems: speaker-independent (SI) systems and speaker-dependent (SD) systems. Speaker-

independent systems are trained using the data from many speakers, and the resulting

system has to cope with the task of recognising the speech of a great variety of indi-

vidual speakers. Speaker-dependent systems, however, are trained using speech data of

the target speaker it is designed to recognise. SD systems generally outperform their SI

counterparts - typically having error rates that are two to three times lower [20, 33].

The better performance of SD models is due to the fact that they only need to model the

intra-speaker variability of a single speaker, whereas SI models model the intra-speaker

and inter-speaker variability of a set of speakers. This performance is not without cost,

as speech recognition systems require a great deal of data to train, and all the data for

1
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CHAPTER 1 - INTRODUCTION

an SD system have to be obtained from the target speaker. Definite benefits could be

reaped if the recognition performance of an SI system could be improved for individual

speakers, or if the exorbitant amount of data required from a single individual to train an

SD system could be reduced.

Enter speaker adaptation techniques - techniques originating due to the necessity to

improve the performance of an SI system for individual speakers, and operating by utilising

a small amount of observation training data from an individual speaker with which to

modify the recognition system to better recognise the particular individual - referred

to as the target speaker. Speaker adaptation techniques are not only used to adapt for

differences in the target speaker, as they are often employed to adapt a recognition system

to compensate for varying acoustic and noise conditions. Speaker adaptation techniques

can be roughly categorised into two groups: speaker normalisation and speaker (model)

adaptation.

Speaker normalisation occurs when the SI model is left unchanged, but the features of

the speaker are normalised to match the features used to train the SI (reference) model.

Such methods attempt to map the input vectors of all speakers to the reference model

using a single transform. Examples of speaker normalisation methods include VTLN

(vocal tract length normalisation) [45, 50], dynamic frequency warping [46] and the use

of self-organising feature maps [26]. Speaker normalisation methods have been found to

be ineffective, yielding only small (if any) improvements in recognition [33, 3], due to the

complex mappings required and the fact that the same mapping is applied to the input

features of different new speakers - allowing little modelling for the differences between

speakers.

Speaker adaptation occurs when the SI model is adapted in order to better model a

specific speaker. Results attained using these methods are generally superior to those

obtained using speaker normalisation approaches, so that most research today focuses

on the development of new speaker adaptation methods. Speaker adaptation methods

include maximum a posteriori reestimation (MAP) [18], regression-based model prediction

(RMP) [1], maximum likelihood linear regression (MLLR) [34], cluster adaptive training

(CAT) [14], maximum likelihood eigenvoice decomposition (MLED) [28,40], and weighted

projection (WP) [51].

2
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CHAPTER 1 - INTRODUCTION

We focus on speaker adaptation techniques that reestimate HMM model parameters

- specifically the MAP, MLLR, MLED and WP adaptation methods. Subsequent intro-

ductory sections consist of an introduction into speaker adaptation concepts, a chrono-

logically ordered overview of selected speaker adaptation techniques, the objectives and

contributions of this work and an overview of the treatment of topics in this thesis.

1.2 Speaker Adaptation Concepts

The following concepts are of importance when considering speaker adaptation: inter-

speaker and intra-speaker variation, the adaptation mode, the choice of parameters to

adapt and adaptation performance.

1.2.1 Inter- and Intra-Speaker Variation

Intra-speaker variation refers to the variations in the speech signal produced by one

speaker between different utterances of the same text. Inter-speaker variation refers to the

variations between speech signals produced by different speakers when uttering the same

text. Both of these variations associated with human speech production have an impact

on the performance of speech models and speaker adaptation methods. For instance, SI

models have to cope with modelling inter-speaker variation and intra-speaker variation for

many speakers. SD models, on the other hand, need only model the intra-speaker varia-

tion of a single individual. The intra-speaker variation of one individual is normally much

less than the combined inter- and intra-speaker variation of several speakers. Therefore,

it is to be expected that variances of SD model parameters are less than the variances

of corresponding SI model parameters. The resulting increase in the precision of model

parameter estimates thus affords SD models more accurate modelling capability than SI

models, observable in the lower word error rates achieved when using SD models.

Intra- and inter-speaker variance also influence the design and performance of speaker

adaptation systems. For instance, should we wish to use adaptation to train an SD

model for a speaker given the SI model and a some adaptation data,' we are attempting

1The term adaptation data refers to the available observation data for a speaker that can be used to

modify a recognition system to better model and recognise the speaker in question.

3
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CHAPTER 1 - INTRODUCTION

to remove the inter- and intra-speaker variability of the speakers used to train the SI

model and replace them with the intra-speaker variability of the target speaker." When

modelling the speech of an individual, other problems arise as speech characteristics of

the person may vary due to factors such as illness or emotion. We might then adapt an

initial SD model to better recognise the individual's speech under varying circumstances.

In effect, we attempt to change the intra-speaker variability represented in our model to

better match the current attributes of the individual's speech.

1.2.2 Inter-Speaker Variation

We use classification of inter-speaker variation proposed by Ahadi and Woodland [2] for

this discussion." In this model, inter-speaker differences originate from two main sources:

anatomical differences between speakers, and speaker habits.

Anatomical differences refer to the characteristics of the vocal apparatus, such as

vocal tract length and shape. One of the greatest sources of inter-speaker variation is

the person's gender. Female speakers tend to have higher fundamental frequencies, and

female vocal tracts are shorter, resulting in wider formant bandwidths than that of male

speakers.

Speaker habit refers to the way in which a speaker has learned to speak. The speech

rate is such a habit, and it is normally due to a personal preference. Accent is another

source of learned behaviour, and accents can arise due to the speaker's socio-economical

environment, the ethnic group to which the speaker belongs, whether the language is

native of non-native to the speaker, and the region in which the speaker was raised.

1.2.2.1 Intra-Speaker Variation

Sources of intra-speaker variation include differences arising from the physical and mental

conditions of the speaker. The emotion anger may make a person's speech louder and

increase the speech rate. A physical condition such as tiredness may cause slower, slurred

speech. A cold, causing a blocked nose, may remove the nasal component of speech.

2The term target speaker refers to the speaker from whom adaptation data is obtained, and for whom

the recognition system is to be adapted.
3More accurate classifications of sources of speaker variability exist, i.e. [42J. For our needs, however,

the simpler classification will suffice.
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Obviously, these short-term effects will cause a degradation in recognition performance,

as the speech model must now cope with very different speech data compared to that

on which it was trained. According to Leggetter [33], an ideal speech adaptation scheme

should be able to compensate for such short-term fluctuations in speech. However, he

notes that such schemes are not possible at present due to the poor understanding of

these short-term effects.

1.2.3 Modes of Speaker Adaptation

When performing speaker adaptation, we are faced with the choice of mode to use. We

can choose between supervised vs. unsupervised, static vs. dynamic and adaptive vs. non-

adaptive adaptation.

• Supervised vs. Unsupervised:

Supervised adaptation occurs when the identity of the observed speech is

known, i.e. a transcription of the observed adaptation data is available.

Unsupervised adaptation occurs when the identity of the observed speech

is unknown, i.e. no transcription is available for the observed adaptation data.

Supervised adaptation is preferred over unsupervised adaptation, as it does not

require a segmentation of the received speech signal based on the recognition

ability of the initial SI model (or set of SD models).

• Static vs. Dynamic:

Static or batch adaptation occurs when all of the available adaptation data is

gathered before the model is reestimated.

Dynamic or incremental adaptation occurs when the model is reestimated

as soon as an adequate amount of data has been observed, and then further

refined as more adaptation data become available.

• Adaptive vs. Non-Adaptive: Here the term adaptive does not refer to the ac-

tual speaker adaptation process, but to the method of training used in large tasks

involving the training of SD models for many speakers. It should be noted that not

all adaptation methods use an SI model as the initial model on which adaptation
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is performed. Many methods, mostly adaptive, use a set of SD models from which

an initial model is generated. Such a set of SD models is often referred to as a

canonical model set.

Adaptive training is used when the same adaptation method was used to

create the SD models present in the speaker database as the adaptation method

used to create an SD model for a new speaker. Often these methods use

information extracted from the well-trained models in the database to serve as

a prior when adapting a model for a new speaker. Adaptation methods that

facilitate adaptive training, such as RMP and CAT, allow the rapid generation

of large sets of SD models.

N on-adaptive training is used when the adaptation method cannot incorpo-

rate a set of SD models as prior, or if the adaptation method requires prior SD

models and cannot train new SD models without it. Such methods include the

eigenvoice methods MLED and WP, which completely rely on a well-defined

eigenspace extracted from a large set of SD models before a model for a new

speaker can be estimated.

The choice of adaptation mode is dependent on the task at hand. For instance: should

a large set of SD models be trained, with new models being added to the system on a

regular basis with moderate amounts of available observation data, an adaptive method

such as CAT would be appropriate. If a task requires the once-off training of an SD

model for a new speaker, it would be desirable to have the speaker utter a phonetically

representative sentence, with known transcription, so that static, supervised adaptation

can be used. On the other hand, should an SD model for a person be trained online while

the person is using the recognition system, a dynamic unsupervised mode of adaptation

may be needed.

Other issues that impact the choice of adaptation scheme include the relative improve-

ment in the adapted speaker models given various amounts of data, and the computational

requirements of the adaptation. Should a great deal of data be available, MAP adapta-

tion would be a suitable choice, as it is a computationally lightweight adaptation and it

converges to the ML estimate as the amount of adaptation data increases. However, if
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very little adaptation data are available, one of the eigenvoice methods should be used, as

they have the ability to form robust model estimates using very little observation data.

As this thesis involved the incorporation of well-known speaker adaptation methods

into a software toolkit and the development and testing of new speaker adaptation meth-

ods, experiments were done using the most forgiving adaptation mode: supervised, static

adaptation.

1.3 A Brief Semi-Chronological Overview of Speaker

Adaptation Methods

It is our opinion that the best way to rapidly attain an understanding of speaker adapta-

tion topologies and their capabilities is to be shown examples. Thus an abridged history

of speaker adaptation techniques is traced here by describing a select few of the possible

model adaptation techniques. Not all methods described here are treated in this the-

sis. However, they are mentioned as they give some indication of other possible speaker

adaptation schemes, and because each of them represents a broad class of speaker adap-

tation techniques. The following broad classes of speaker adaptation topologies may be

identified:

• Bayesian adaptation methods, such as ML reestimation of HMM parameters and

MAP adaptation, as well as simple extensions of these methods. The original ML

reestimation and MAP adaptation methods (and most of the methods based on

them) are not rapid" adaptation techniques, as they cannot adapt parameters for

which no data was observed. Though ML reestimation of HMM parameters is not

normally viewed as a speaker adaptation technique, one can sometimes refer to it

as such, because it may be employed to generate SD models given copious amounts

of adaptation data and an initial SI model.

• Spectral transformation approaches, where the input speech of a new speaker is

mapped (using a transform estimated for the new speaker) to match the speaker

4A speaker adaptation method is only considered to be rapid if it can reestimate parameters to which

no observation data is assigned, by relying on relationships with other model parameters for which data

was observed.
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on which the system was trained. Mappings are either applied to the input vector,

or to the entire model. Spectral transformation methods are not equivalent to

speaker normalisation methods - though there are some resonances between the

two - as the latter only maps the input speech, and use the same mapping for

all new speakers. The first spectral transformation methods were developed in the

early 1980s for use with recognisers based on spectral templates. Later methods

focus on the adaptation of VQ codebooks for HMMs. These methods will receive no

further treatment, as this thesis focuses solely on speaker adaptation techniques that

reestimate HMM model parameters. An excellent summary containing descriptions

and references for a multitude of spectral transformation techniques may be found

in [33J.

• Methods relying on linear regression and linear transformations to adapt the HMMs

of a speaker model. These methods all attempt to find linear relationships between

model parameters, so that the linear relationships may by exploited to adapt pa-

rameters for which no data were observed from parameters for which data were

observed. We will refer to parameters to which no observation data was assigned as

unseen parameters, and to parameters to which observation data was assigned, as

seen parameters.

• Speaker clustering techniques. Instead of using an SI model as initial model, a

set of SD models are trained. These SD models are then clustered, and a single

cluster model is estimated for all the SD models represented by the cluster. It is

then assumed that a new speaker may be represented by one of the cluster models.

Adaptation consists of estimating to which cluster the target speaker belongs given

the adaptation data obtained from the target speaker.

• Eigenvoice methods: methods inspired by the concept in human face recognition of

using a weighted sum of eigenfaces to model an individual's face. A set of eigenvoices

are determined in an off-line pre-adaptation phase, and it is assumed that a new

speaker may be represented as a weighted sum of the eigenvoices. Adaptation

consists of estimating the optimal set of weights given the adaptation data obtained

from the target speaker.
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We now proceed with our semi-chronological overview and treat the following adaptation

methods: ML, MAP, MLLR, RMP, CAT, MLED and WP. It should be noted that

all of these methods are applied to recognition systems making use of HMMs (or sets

of HMMs) with GMM state pdfs. Furthermore, a speaker (dependent or independent)

model for these methods is defined as the set of HMMs - where each HMM represents a

phoneme or word - used to model speech for the speaker. A brief description of each is

given, as well as the reestimation formula for a mean vector in a GMM in an HMM of a

speaker model.

1.3.1 ML adaptation

Maximum likelihood (ML) estimation is the standard method used to train hidden lVlarkov

models, and it has been used since the inception of HMMs in speech modelling. Since

part of the data needed to form ML estimates for HMM parameters is hidden, the EM

algorithm (see Section 2.3.3) is used to estimate the hidden data (the state sequence

or state occupation probabilities) and determine the optimal parameter set. The ML

estimate ji~) of a mean vector is given by5

""T (s)()-(s) _ L....t=l "1m t Ot
J-Lm - ""T (s)()'

L....t=l "1m t
(1.1 )

where J-L~) is the original mean in state mixture component m of state s in the SI model,

"I~) (t) is the mixture occupation probability (see Section 2.4.4) and {Ot}t=l, .. ,T is the

sequence of observation vectors.

Robust ML reestimation, where only those parameters with an adequate amount of

observation data assigned to them are reestimated, may be seen as an early form of speaker

adaptation. Alternatively (or additionally) deleted interpolation [47] may be used. Here

the new model estimate is formed using a weighted sum of the SI model and ML estimate,

so that

New model estimate = (1 - E)(SI model) + E(ML estimate), (1.2)

SIn this thesis we distinguish between a Bayesian (ML or MAP) estimate of a parameter and an

adaptation method estimate of a parameter by using tildes and hats. If A is the parameter, then the ]\IlL

or MAP estimate is denoted as .x, and any adaptation method estimate is denoted as ~
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where E,O ::; E ::; I, is essentially a confidence measure placed on the ML estimate. The

less data are available, the less robust the ML estimate will be and the smaller E should

be made.

The new estimate [L}:,,) for a mean vector in a GMM in an HMM of the speaker model

using deleted interpolation is
,\"T (s)()

~ (5) = (1 _ E) (5) + E L...-t=l "1m t Ot
Mm Mm ,\"T (s)()

L...-t=l "1m t
(1.3)

Both these implementations of ML estimation attempt to make the ML estimate more

robust in sparse data conditions. It should be noted that they cannot adapt parameters

for which no observation data was available, and are thus not rapid adaptation methods.

1.3.2 MAP adaptation

Maximum a posteriori (MAP) adaptation of HMM parameters was introduced by Gau-

vain and Lee [18J in 1994. MAP estimation includes the prior pdf of the parameters to be

estimated into the estimation process. In this way, any prior knowledge we have of the

parameters is utilised, so that less data is necessary to form a robust MAP estimate of a

parameter than the amount of data required for a robust ML estimate. When only the

mean vectors are adapted, the MAP reestimation formula for a mean vector is
(5) (5) ,\"T (5)

-(5) _ Tm Mm + L...-t=l "1m Ot
Mm - (5) ,\"T (5) ,

Tm + L...-t=l "1m

(1.4 )

where T~), T~) 2: 0 is a parameter originating from prior density for the mixture compo-

nent m in state s.

Equation 1.4 has several interesting properties: As the number of observation vectors

goes to infinity (T -t 00), the MAP estimate approaches the ML estimate. Also, the

prior parameter T~) behaves as a confidence measure between the SI model and new

ML estimate. As T~) -t 00, all our confidence is placed in the original SI model, and

as T~) -t 0, we trust that the new ML estimate is robust. It should be noted that

the behaviour of MAP reestimation of mean vectors is very similar to that of deleted

interpolation (Equation 1.3), save that the MAP estimate will converge to the ML estimate

as the amount of available adaptation data becomes greater. Though MAP adaptation is

more robust than ML estimation, it still shares the weakness of not being able to adapt

parameters for which no data was available.
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1.3.3 MLLR adaptation

Since its introduction in 1995 by Leggetter and Woodland [34, 33], maximum likelihood

linear regression (MLLR) has become one of the most popular speaker adaptation meth-

ods. MLLR is a rapid speaker adaptation technique, i.e. it has the ability to adapt

parameters for which there was no observed data, given that there was at least some

observed data for other parameters in the speaker model. Like all the rapid speaker adap-

tation techniques treated, it relies on parameter reduction for robust estimation of unseen

parameters. MLLR accomplishes parameter reduction by assuming that classes of mean

vectors in the speaker model undergo similar linear transformations when a new speaker

model is trained. The same linear transform is thus used to adapt the set of mean vectors

belonging to the same class in the original SI model. For instance, mean vectors in G lVIMs

belonging to HMMs representing similar phonemes in a speaker model may be grouped

in a class, as it is expected that they will all undergo a similar change for a new target

speaker. The MLLR reestimation formula for a mean vector is of the form

(1.5)

where T is a matrix and b is an offset vector calculated for the regression class to which

J-l~) belongs. T performs rotation and scaling of the original mean vector, and b adds an

offset to map the mean vector of the initial model to a mean vector for the new target

speaker model.

Today several adaptation methods exist that employ linear transformations to change

the SI model to fit a new target speaker. Due to their superb parameter reduction

capabilities, these methods can all yield robust parameter estimates in conditions where

very little observation data are available.

1.3.4 RMP adaptation

Regression-based model prediction (RMP) was introduced a while after MLLR in 1995 by

Ahadi and Woodland [1]. RMP uses a set of well trained SD models as prior information.

Linear relationships between parameters in a speaker model may be found using the

information of the set of speaker models. The linear relationships may be found in the

following way: One parameter y is labelled as a target, and another parameter x to which
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we wish to relate it, is labelled as the source parameter. We assume that there is a linear

relationship between the source and the target such that

(1.6)

where bl and bo are the regression parameters to be estimated and E is the error associated

with the approximation. If there are K speakers in the prior SD model set, then the

regression parameters may be found by minimising the sum of the squared errors for all

K speakers, i.e. we minimise
K K

LE~= L(Yk - b1Xk - bo)2,
k=l k=l

(1. 7)

to obtain the regression parameters. Alternatively, multiple regression relationships may

be found such that linear relationships are found between multiple sources and the target

parameter:
p

Y = bo +L brx, + E,
l=l

where P is the order of the regression.

For any target parameter y, we can also calculate the x source parameter with which

(1.8)

it is most highly correlated.

When a new speaker model is to be estimated, a MAP estimate is formed for the

parameters given the available adaptation data. Those parameters that were robustly

estimated are now labelled as source parameters, and parameters that were adapted us-

ing little data or parameters for which there were no observed data are labelled as target

parameters. For each of the target parameters, we determine the most correlated source

parameter (or parameters, for multiple regression), determined from the set of prior mod-

els. A new regression-based estimate is then made for each target parameter Y using the

source parameter (or parameters, for multiple regression) with which it is most correlated.

In this way the linear regression estimates for parameters with no data may be made using

the robust MAP estimates of parameters with sufficient observation data.

In the final RMP step, the MAP estimates and regression estimates for the parameters

are combined in a MAP framework. The resulting equation for RMP reestimation of a

mean vector is given by

2 + 2
A ILMAP aLR ILLR aMAP
IL = 22'

aLR + aMAP
(1.9)
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where !-lMAP is the original MAP estimate, !-lLR is the linear regression estimate based

on the other original MAP estimates, a~AP is the variance associated with the MAP

estimate, a[R is the variance associated with the linear regression estimate and jl is the

new estimate of the mean vector.

As the amount of observation data for the variable increases, a~1AP decreases, and a[R

increases, so that the RMP estimate consists mostly of the more accurate IVIAPestimate.

The converse holds when little data are observed, as a[R is small and a~AP is large, so

that the RMP estimate consists mostly of the linear regression estimate !-lLR. For the

limiting conditions of infinite data or no data, the following holds: when infinite data are

available, the RMP estimate reduces to the MAP estimate, and when no data is available,

the RMP estimate reduces to the linear regression estimate.

RMP is a rapid adaptation technique. It should be noted that RMP is outperformed

(by a factor of almost two) by MLLR for conditions where observation data is very to

moderately sparse. However, as the amount of observed data is increased, RMP begins

to perform as well as MLLR [3]. When the observation data becomes sufficient for robust

MAP estimates of many mean vectors, RMP outperforms MLLR. This is to be expected,

as the RMP estimate converges to the MAP estimate, whereas the MLLR estimate does

not.

1.3.5 CAT

Cluster adaptive training (CAT), introduced by Gales [14] in 1998, is an adaptation

method that makes use of speaker clustering. First, a set of well-trained SD models are

created. These models are then clustered into P clusters, and a single model is trained to

represent all the SD models in a cluster. With initial speaker clustering methods, a new

speaker is modelled by assigning one of the cluster models to represent the speaker. CAT,

however, models a new speaker by using a weighted sum of the cluster models. In addition

to the weighted sum of clusters, a mean vector b from a bias cluster may be included in the

summation with weight 1. Essentially the bias cluster then models speaker-independent

mean vector characteristics, and the bias cluster may be incorporated without increasing

the number of parameters that need to be estimated for a new speaker.

Instead of using a set of different weights for the estimation of each mean vector,
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Figure 1.1: Mean vector modelling in CAT. AI,"" Ap-I are the weight vectors, and b is

the offset vector (from Gales [14]).

weight classes may be created. Any mean vector in a weight class is then estimated from

the cluster means by applying the same set of class weights. Thus, for a mean vector

belonging to weight class r, m E NI(r), the new estimate of a speaker mean p,(m) IS given

by

p,(m) = M(m) A (r), (1.10)

where M(m) is a matrix with the cluster means as columns, i.e.

(1.11)

where /1(mp) is the mean of Gaussian component m associated with cluster p, and the

extended weight vector for weight class r , A (r), is given by

(1.12)

For a new speaker, the set of weight vectors for the speaker is estimated given the available

adaptation data and applied to Equation 1.10 in order to obtain the new set of speaker

mean vectors.

CAT facilitates adaptive training, i.e. both the SD models used to create the clusters

as well as the new speakers modelled are trained using the same adaptation scheme -

in this instance, CAT. CAT architectures may be iteratively trained using training data

from a set of new speakers using two stages:
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1. The values of the weight vectors for each speaker are estimated using the training

data for that speaker, given the current cluster parameters.

2. The parameters for each cluster are reestimated given the estimated weight vectors.

The parameters reestimated for each cluster include the mean vectors, covariance

matrices and component weights of all the Gaussian pdfs represented in the cluster.

The above steps are iterated until some convergence criterion is met.

The above CAT implementation uses model-based clusters. Alternatively, transform-

based clusters may be specified, i.e. the mean vectors for each cluster are not specified

directly. Instead, each cluster mean vector is modelled as an MLLR transform of some

canonical model.

According to Gales [14], CAT has roughly the same performance as other adaptive

methods. It may also be used to yield small improvements when very little adaptation

data is available.

1.3.6 MLED adaptation

Inspired by the use of "eigenfaces" used in human face recognition, Kuhn [27] introduced

the concept of eigenvoices for speaker adaptation in 1997. Kuhn postulated that the inter-

speaker variability in a set of SD models may be modelled in space with lower dimension

than the space spanned by the parameters of the original SD models. In order to form the

lower-dimensional space, "supervectors" are created for each SD model (every SD model

comprises of several phonemes, and represents the entire speech model for the speaker) in

the set, where each supervector consists of all the SD model parameters we wish to adapt.

Eigenvectors (of the same dimension as the supervectors), referred to as eigenvoices , are

then extracted from the set of SD supervectors. Typically very few eigenvoices are needed

to accurately model inter-speaker variability. A supervector for a new speaker may now

be approximated by using a weighted sum of the dominant eigenvoices. The weights are

referred to as "eigenweights". An estimate of a mean vector using eigenvoice adaptation

schemes is given by

E

P, =L Wjjl(j)
j=l

(1.13)

15

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1 - INTRODUCTION

where p(j) is the section of eigenvector j modelling the mean vector in question, Wj is the

estimated eigenweight associated with p(j), and E is the number of eigenvoices utilised.

A highly effective adaptation method using Kuhn's original postulate, MLED (max-

imum likelihood eigenvoice decomposition) was developed by P. Nguyen [40] in 1998.

Nguyen states that adaptation for a new speaker may be achieved by simple projection,

i.e. the ML estimate for the new speaker is constrained to lie in the eigenspace by pro-

jecting the ML estimate onto the eigenspace, and then reprojecting the constrained ML

estimate back into the normal speaker space. Projection, however, is suboptimal for two

reasons: One, parameters for which no new ML estimates are available (due to lack of

data) are also projected into the eigenspace, and thus playa role in the adaptation. Two,

the projection of the ML estimate onto the eigenspace does not necessarily represent the

highest value of the likelihood function representable in the eigenspace. For this reason,

Nguyen developed MLED, where MLED forms an optimal estimate of the eigenweights

given the adaptation data directly in the eigenspace. An ML estimate is thus made taking

the eigenspace constraint into mind, instead of first forming the ML estimate and then

enforcing the eigenspace constraint.

Eigenvoice adaptation techniques are to date the adaptation methods that require by

far the smallest amount of adaptation data for successful parameter adaptation. Even the

data of one or two phonemes are enough to yield a small improvement in performance.

Also, MLED adaptation is on par with most MLLR adaptation schemes where moderate

amounts of adaptation data are available.

1.3.7 WP

Weighted projection IS a newer eigenvoice adaptation method, and it was introduced

by Westwood [51] in 1999. The extraction of eigenvoices and the modelling of a new

mean vector (Equation 1.13) are identical to those used in MLED. The estimation of

the eigenweights, however, is accomplished using a projection technique. Instead of using

normal projection, discounted by Nguyen for good reasons, Westwood did the following:

An ML estimate of parameters is formed in the original full-dimensional speaker space.

The ML-estimated parameters in the original space are then mapped to a new space, T.
The mapping is such that each parameter is divided by its variance and multiplied by
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weighting dependent on the parameters' occupancy (the number of observation vectors

assigned to it). Thus parameters with no observed data map to the null vector in T,

and parameters with lower variance receive preference over those with high variance. The

closest point in the eigenspace to the point for the speaker model in the space T is then

found, where the closest point then represents the estimate of the new set of eigenweights.

These eigenweights are then used to estimate a mean vector for the target speaker using

Equation 1.13.

The performance of WP is on par with that of MLED. This is no surprise, as the

estimation equations for the eigenweights are very similar for both methods.

1.4 The Choice of Parameters to Adapt when HMMs

are Employed

Ideally, when a speaker adaptation method is used to adapt an HMM-derived recognition

system, the adaptation method in question should be capable of adapting all of the HMIVI

parameters. Of the speaker adaptation methods mentioned in this thesis, only ML, r../IAP

and CAT adaptation have the ability to reestimate all HMM parameters - given that

enough observation data was observed for each parameter. Very few methods have the

ability to adapt the state transition probabilities of HMMs. However, as Leggetter [33]

states, the effect of state transition probabilities is small in a continuous density HMM, and

thus not adapting state transition probabilities will not severely affect the performance

of a speaker adaptation method. Similar arguments may be made for neglecting to adapt

mixture component weights of GMMs, as GMMs may be expanded into HMMs, where the

mixture component weights become state transition probabilities. Also, the best speaker

recognition systems currently use GMMs, where temporal information of the observation

sequence from a speaker is neglected. This seems to indicate that most of the differences

between speakers lie in the distributions associated with the observation vectors, and not

in the transitional information in the sequence of the observation vectors. Reestimation of

state transition probabilities for a new speaker is thus not considered to be of paramount

importance for successful speaker adaptation.

Many methods, including the basic MLLR scheme as well as the eigenvoice adapta-
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tion techniques, rely solely on the adaptation of the mean vectors present in the state

pdf GMMs present in the HMMs of a speaker. Though they do not adapt all HMM pa-

rameters, the success of these methods indicate that highly effective speaker adaptation

is possible when focusing only on mean vectors and neglecting covariance matrices. It

should also be noted that robust reestimation of covariance matrices requires more adap-

tation data than the robust reestimation of mean vectors - a fact that is of importance

when employing Bayesian adaptation methods such as ML and MAP reestimation.

1.5 Objectives

This work was aimed at research in the field of speaker adaptation, specifically the adap-

tation of speaker models comprising continuous density hidden Markov models, where

single or mixture Gaussian state probability density functions are used. The following

objectives were set:

• A literature study of speaker adaptation, so that the most effective adaptation

techniques may be selected.

• Detailed study of the available material on the selected adaptation methods.

• Coding of speaker adaptation routines to expand the in-house DSP and pattern

recognition software package PatrecII.

• Experimentation, both for validation of the code and confirmation of the results of

other research efforts.

• Further experimentation to determine behavioural aspects of the adaptation meth-

ods.

• Development of novel speaker adaptation approaches, or enhancements for existing

speaker adaptation methods.

These objectives were met in the following way:

• A literature study of speaker adaptation techniques was completed. During the

study trends in adaptation techniques were noted, so that speaker adaptation tech-

niques could (for the most part) be classified as belonging to one of the following:
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Bayesian adaptation schemes, spectral transformation schemes, speaker clustering

schemes, linear transformation or regression schemes, and eigenvoice schemes .

• The adaptation methods selected for further study were MAP, MLLR and MLED.

MAP was selected on merit of being a computationally lightweight algorithm and

the fact that the MAP estimate converges to the ML model estimate as the observed

data increase. MLLR was selected as a matter of course. It is a very effective and

well-known adaptation method - so much so that it is often used as a benchmark

against which the performance (both in terms of computational complexity and

recognition performance) of other adaptation methods are tested. It also represents

a wide field of adaptation techniques based on tying and linear transformations of

the speaker model. The most effective adaptation methods for extremely sparse ob-

servation data conditions are the eigen-decomposition methods. MLED was selected

to represent these methods, as it is the first eigen-decomposition method created

and the body of literature for the method is consequently larger than that of other

eigenvoice methods. Though newer eigen-decomposition methods such as WP exist,

their performance is similar that of MLED .

• PatrecII is a very flexible software package, and it allows for the implementation of

statistical structures in an almost Mobius-strip-like quality. An HMM, for instance,

may have state pdfs comprised of HMMs, neural networks or Gaussian mixture

models. A state pdf consisting of a mixture density model may in turn consist of

an HMM, which in turn may have states consisting of mixture density models, etc.

The speaker adaptation methods selected were for the most part very rigid, as they

are only applicable to continuous density HMMs with mixture Gaussian state pdfs.

MLLR and MLED also only adapt the mean vectors of Gaussian pdfs in the HlvlMs

forming a speaker model.

Due to the flexibility of PatrecII, and the relatively inflexible nature of the adap-

tation methods, they proved challenging to incorporate in the software package.

Initially they could only be incorporated via pointer promiscuity. After changes to

the package by prof. J. du Preez, however, a more elegant design was implemented.
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• In order to test the performance of PatrecII using the newly incorporated speaker

adaptation methods, the set of experiments performed by P. Nguyen on the ISOLET

speech corpus was repeated. As the ISOLET speech corpus represents a relatively

small recognition problem, many other experiments could be set up and executed

speedily in order to attain a better feel for the behaviour of the adaptation methods.

• Further experiments were completed on the larger TIMIT speech corpus, in order

to further test existing methods and to evaluate the performance of the l\lILED

extensions designed in this thesis.

• Two novel enhancements of the eigenvoice methods were designed and implemented.

One is a simple method which incorporates the direct modelling of the original mean

of the set of SD models into the MLED framework. Incorporation of the original

mean is essentially a better modelling of the speaker space using an eigenspace, and

the result was improved recognition performance. The second enhancement extends

eigen-decomposition methods via the class-based Karhunen-Loéve method. Here we

have the ability to model classes of speaker models instead of modelling individual

models. It was assumed that by using this adaptation method it would be possible

to adapt for speakers belonging to different dialect classes.

1.6 Contributions

During the experiments, an interesting observation regarding the behaviour of speaker

adaptation methods was made:

• Experiments were conducted on the use of PLP-cepstral and LPCC features for

the speaker models. As found by other researchers, SI models trained using PLP-

cepstral features outperform models using LPCC features by up to 3%. Thus, the

pre-adaptation models (ML-estimated SI models) show better results when PLP-

cepstral features are employed. However, the post-adaptation models for most meth-

ods tested show better results when LPCC features are used.

PLP-cepstral and MFCC features outperform LPC and LPCC features for recog-

nition systems that use a single SI model, therefore perceptual features were sub-
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sequently used for systems using several SD models as well as for systems where

speaker adaptation of models take place. The results of this thesis show that the

commonly accepted practice of using perceptual features for all kinds of systems is

not necessarily good, as the type of feature employed has an effect on the perfor-

mance of speaker adaptation and the performance of SO models. It is our opin-

ion that the information discarded when forming perceptual features gives these

features some speaker normalisation attributes, thereby increasing the performance

achieved with SI systems. The speaker normalisation, however, removes some of the

inter-speaker variance that can be utilised by speaker adaptation methods, causing

poorer adaptation. Furthermore, the larger the degree of inter-speaker variance, the

greater the differentiation between SO models will be, so that an individual's speech

is (possibly) more accurately modelled by his SD model.

This once more opens the issue of which type of feature vector is superior, as it now

seems that the performance of the type of system is linked to the type of feature

vector employed. It is hoped that this thesis will lead to detailed studies of the effect

of the type of feature vector on the performance of different recognition systems.

Furthermore, two extensions to the eigenvoice decomposition methods were made:

• Including the average of the available SO models into the modelling method em-

ployed by the MLEO technique is a simple yet effective extension to the adaptation

method. It has the effect of adding the modelling power of a robustly estimated

extra eigenvoice to the adaptation procedure at very little extra computational cost .

• Researchers working with eigenvoice speaker adaptation methods have postulated

that other methods for extracting eigenvoices might lead to better performance.

One method in particular - linear discriminant analysis (LOA), referred to in this

thesis as the CBKLT - was cited by several researchers as a possibility [28, 40, 51].

MLED was therefore extended to use basis vectors - determined via LOA (CBKLT)

- that model the inter-class variance between several speaker classes instead of the

inter-speaker variance. The method is shown to be effective for adaptation ac-

cording to the speaker's gender, but has slightly poorer performance than standard

MLEO for a limited recognition task with speakers originating from different dialect
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regions. The results indicate that even though the CBKLT extracted eigenvoices

resulted in satisfactory performance, their performance was not on par with eigen-

voices extracted using the KLT (PCA). Further uses for a class-based MLED might

be found - such as language or environmental adaptation - but in our opinion it

is doubtful that CBKLT /LDA-based adaptation will outperform KLT /PCA-based

speaker adaptation.

1.7 Overview of the Thesis

The treatment of speaker adaptation is divided into three phases: The material in the first

phase (Chapter 2) is intended as a propadeutic treating the current speech modelling and

recognition approach. Though it is by no means sufficient for a complete understanding,

important concepts used throughout the thesis such as ML (maximum likelihood) estima-

tion are touched upon. As it treats familiar concepts in speech recognition, it should aid

the reader in understanding the form of notation employed in the rest of the thesis. A

maximum likelihood framework from which all of the adaptation methods are derived is

introduced at the end of the first phase, and it completes the primer for the study of the

rest of the thesis.

Having laid the speech recognition background, the chosen speaker adaptation tech-

niques MAP, MLLR and MLED are treated in Chapters 3, 4 and 5.

As it is possibly the most well known of the adaptation methods, and as it is the

only non-rapid speaker adaptation method, MAP adaptation will receive only cursory

treatment (see Chapter 3).

MLLR is afforded a more detailed treatment, with complete derivation of the basic

adaptation equations and discussion on the various clustering schemes. As the volume

of literature on MLLR is great, and given the large amount of MLLR variations and

derived methods - all using linear transformations to adapt HMM parameters - only

basic MLLR is treated. Brief mention is made of other adaptation methods employing

linear transformations (see Chapter 4 for MLLR adaptation). The use of eigenvoices is

relatively new, and the volume of literature on the subject is relatively small. As the

implementation, analysis and extension of eigenvoice methods form the major drive of
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the thesis, the derivation of the basic MLED adaptation equations receives full treatment

(see Chapter 5).

WP (weighted projection) is a newer eigenvoice adaptation method, and a full deriva-

tion of the basic adaptation equations as well as a detailed description of the concepts

involved are included. WP is identical to MLED in terms of computational complexity

and recognition performance - so similar, in fact, that certain implementations of WP

reduce to the same adaptation equations as those used for MLED. Due to the similarity

between the methods, WP was not employed in the experimentation. However, WP rep-

resents a completely different approach and view on eigenvoice adaptation, and is thus

treated in full (see Chapter 6).

Two novel extensions slotting into the MLED adaptation framework are treated in

Chapter 7. All eigenvoice methods rely on a set of eigenvoices that are extracted via

the Karhunen-Loéve transform (PCA) from a set of well trained SD models. The first

extension includes the modelling of the mean of the set of SD models into the MLED

framework, resulting in small changes in the final MLED adaptation equations. This

simple enhancement results in improved performance, at very little extra computational

cost.

The second extension makes use of the CBKLT (class-based Karhunen-Loéve trans-

form) to extract a set of vectors spanning a subspace. These vectors are not eigenvec-

tors - they do not even have the property of orthogonality; neither is the subspace an

eigenspace. However, as the method fits into MLED adaptation equations, this thesis will

still refer to the extracted vectors as "eigenvectors", though the term is not strictly appli-

cable. The CBKLT-extended MLED was designed to cope with recognition tasks where

moderately disparate accents (differences in pronunciation) are present in the expected

target speakers. Instead of modelling differences between the models of individual speak-

ers, CBKLT-extended MLED models the differences between classes of speaker models,

where every class comprises the speakers with a certain accent or dialect.

Chapters 8 to 9 deal with the experiments. The initial experiments on the ISO LET

speech corpus (for the most part a repetition of P. Nguyen's work) are treated in Chapter 8.

Further experiments on the more complex TIMIT database are treated in Chapter 9.

Experiments on both the ISOLET and TIMIT corpora were aimed at highlighting the
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strengths and weaknesses of each adaptation method. Some experiments showed that

MAP is inferior to the other methods for conditions of extreme data scarcity. Others

were designed to show how unbalanced data might adversely affect MLLR adaptation.

Further experiments tested the conditions of extreme data scarcity under which only the

eigenvoice methods could still yield good estimates. Experiments to examine how using

different types of feature vector impacts on the adaptation methods were completed for

both speech corpora. Two different types of feature vector were analysed, namely LPC

features and PLP features. PLP features normally give recognition performance that is

a few percent higher than that of LPC features. However, LPC features yield better

post-adaptation improvement than PLP features for both the speech corpora. It is thus

not always true that PLP features are superior to LPC features.

These experiments emphasised one of the findings of other researchers: each adaptation

method has strengths and weaknesses, and most of the weaknesses are only encountered

under very specific data conditions. The expected amount and kind of available adaptation

data will thus play an important role in the selection of a suitable technique for every

speaker adaptation task. Furthermore, new findings regarding the performance of the

MLLR and MLED adaptation methods for different features and different speaker model

complexities resulted from the experiments. Also, the experiments conducted prove that

the novel extensions to the eigenvoice methods introduced in this thesis function as they

were designed to, and that both of the methods are successful. The performance of the

mean-preserving MLED implementation is such that it should be used in favour of the

original MLED method when the amount of adaptation data is extremely little and only

a single eigenvoice is used. The CBKLT-extended MLED implementation is shown to

have the same performance as standard MLED when a large inter-class variance exists

between several speaker (accent or gender) classes in the speaker set. For more detail on

the resulting conclusions, refer to Chapter 10.
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Chapter 2

Speech Modelling in Brief

2.1 Introduction

Speaker adaptation is but a small cog in the engine of speech recognition, and it is

a relatively recent addition to the field of discrete-time processing of speech signals. In

order to fully appreciate speaker adaptation it must be placed in the correct context within

the recognition framework. Thus, this section introduces a few of the basic concepts of

discrete-time speech recognition.

The end goal of modern speech recognition is the recognition of extracted features

from the speech waveform using higher-order statistical models. In order to model speech

using higher-order statistical models (such as HMMs), speech is assumed to be station-

ary over a short period of time - typically 10-30 ms. This assumption is known as the

quasi-stationary assumption. When the analysis time frame is too short, too little data is

available to determine the signal properties, and when the frame is too long, the speech

signal varies too much during the time frame and the stationarity assumption becomes

void. Speech signals are a combination of semi-periodic, aperiodic and stochastic signals.

Using intimate knowledge of the properties of the speech signal it may be represented in

a compact form by a sequence of feature vectors. Well-designed features summarise the

most important information in the speech signal, while discarding unimportant informa-

tion and suppressing noise. This focuses the higher-order statistical models on the most

important information for the task at hand. Poorly designed features focus the statisti-

cal models on unimportant (and possibly performance degrading) signal characteristics.
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Figure 2.1: Block diagram of the speech recognition process.

Furthermore, the resulting compression reduces the processing and memory requirements

for the recognition problem.

Speech recognition may be broken into the following sub-categories:

• Recording the speech signal: The goal here is to create a copy of the original

speech waveform onto some storage format. The storage may be analogue, such as

audio tape, or, if the signal has been sampled, digital, such as CD-ROM or hard

disk .

• Digital sampling of the recorded speech signal: In order to perform analysis

of the speech signal on a digital computer, the recorded speech signal is sampled

at twice the Nyquist frequency of speech, and then quantised and stored in digital

format. Speech signals may have frequency components as high as 15kHz, but

typically the highest frequency components are lower than 8kHz. Sampling at 16kHz

is thus sufficient to represent a high quality speech signal. Low quality speech, e.g.

speech recorded over a telephone transmission line, may be sampled at a lower

frequency. The bandwidth of telephone transmission lines is typically between 3-

4 kHz, so sampling at 8kHz is considered to be adequate.
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• Spectral analysis of the digitised speech signal: Spectral analysis is impor-

tant for both understanding of the speech waveform as well as being a precursor

to many feature extraction methods. Under the quasi-stationary assumption, the

speech signal is segmented into short time frames. Spectograms may be calculated

using these frames to gain more knowledge of the specific speech signal. Wideband

spectograms using short time frames have high time resolution, and are useful for

the accurate transcription (i.e. finding the begin and end times for the phonemes or

words that were spoken in the digitised speech) of the speech signal. Narrowband

spectograms use relatively long time frames and have high frequency resolution, and

are useful for accurately determining the formants (resonances in spectrum caused

by the shape of the vocal tract, and named formants because they tend to dominate

and "form" the overall spectrum) of the time frames. The power spectra and DFTs

computed for the time frames are also used for feature extraction purposes.

• Feature extraction: Several kinds of feature vectors are available: cepstral co-

efficients, linear prediction coefficients (LPCs), linear prediction coefficient cepstra

(LPCC), perceptual linear prediction (PLP) and Mel-frequency warped cepstral co-

efficients (MFCCs). In the experiments described in this thesis LPCC and PLP

features are exclusively. Therefore LPCC and PLP extraction, as well as the pre-

cursors of LPCCs - cepstral coefficients and LPCs - will be treated briefly 111

Sections 2.2.2-2.2.5.

• Phoneme, word and sentence recognition: Hidden Markov models (HMMs)

are the current state-of-the-art in statistical modelling for speech recognition. HMMs

are also the focus of the most successful speaker-model adaptation techniques, and

are treated in Section 2.4.

• Message understanding: This constitutes the processing and understanding of

the information the speaker intended the speech signal to convey. As it falls beyond

the scope of speaker adaptation it will not receive any treatment in this thesis.

Selected topics in the speech recognition process will now be addressed.
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2.2 Feature Extraction

Feature extraction is the process of creating compact representations of each frame of the

segmented speech signal, so that these features may be used either as a method of storing

the speech signal in a highly compressed form or as the sequence of vectors modelled by

a higher-order statistical model.

The following feature extraction techniques will be treated: cepstral analysis, linear

prediction, cepstral coefficients of the linear prediction spectrum and perceptual linear

prediction. In terms of interpretation and derivation of the feature extraction methods,

the source-filter model of speech production is of tantamount importance. Thus the

feature extraction discussion begins with a description of the source-filter model.

2.2.1 The Source-Filter Model for Speech Production

There are two kinds of basic excitation for a speech signal [9]:

• Voiced excitation: A stream of quasi-periodic puffs of air due to the periodic

movement of the vocal chords.

• Unvoiced excitation: A noise-like excitation caused by the turbulence of air-flow

through a narrow constriction.

Along with these are combinations of voiced and unvoiced excitations that are categorised

for modelling purposes:

• Plosive excitation: The buildup and subsequent release of air pressure behind a

completely closed portion of the vocal tract. The release may be voiced or unvoiced.

• Whisper: Air is forced through the partially open glottis to excite an utterance.

• Silence: Short periods of silence occur between utterances, such as the pause before

a plosive sound.

Both unvoiced and voiced sounds may be adequately modelled as the convolution of an

excitation signal and the vocal tract impulse response. For voiced sounds, the excita-

tion signal is modelled by a periodic pulse train, and the vocal tract impulse response is
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Figure 2.2: The source-filter model for speech modelling.

modelled by a pole-zero filter. Unvoiced sounds are modelled using white noise to rep-

resent the excitation signal, and a pole-zero filter function to represent the vocal tract

impulse response. These models form what is known as the source-filter model of speech

production.

2.2.2 Cepstral Analysis

The spectrum of the vocal tract is of great importance in speech recognition, and so we

would like to reconstruct it by removing the effect of the excitation source from the speech

signal via filtering. Filtering in the frequency domain, however, can only separate signals

that consist of linear combinations of input signals, where the component frequencies of

the input signals are separated in the frequency domain. Unfortunately, speech is the

result of the convolution of two signals in the time domain, so the speech spectrum is the

result of the multiplication of the vocal tract spectrum and excitation spectrum. Thus,

filtering in the frequency domain will not separate the vocal tract and excitation spectra,

as these signals are not additive in the frequency domain.

In order to "filter" the excitation spectrum from the speech spectrum, we need to

transform the spectra into a domain where multiplication becomes addition. Such a

domain is the cepstral domain (where the unit is time), where the power cepstrum Cs (n)

for a speech signal s(n) is given by the IDTFT of the log of magnitude squared of the
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Figure 2.3: A diagram of liftering in the cepstral domain in order to separate the vocal

tract power spectrum from the excitation power spectrum (adapted from Niesier [41]).

DTFT for s(n). Thus

cs(n) = _!_ j7r {lOg
21r -7r

(2.1)

High-time (or longpass) and low-time (or shortpass) liftering - the equivalent to high

and low pass filtering in the frequency domain - may now be done in the cepstral domain

to separate the excitation cepstrum from the vocal tract cepstrum. The inverse cepstral

transform is then applied to obtain the separated vocal tract impulse response - or

excitation signal, if it is desired - in the time domain. In the cepstral domain, the vocal

tract response is typically less than 5 ms, whereas the first peak in the cepstrum due to

the excitation pulse train is in the vicinity of 8 ms. Liftering is thus easily accomplished.
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Figure 2.4: A representation of a typical cepstra vs. time plot for voiced speech, indicating

the regions of cepstral dominance of the vocal tract and excitation spectra (adapted from

Niesier [41]).

The cepstral coefficients cs(n) describing the vocal tract spectrum may then be combined

to form a feature vector for the speech frame s(n). Computing the continuous DTFT and

IDTFT is not possible on a digital computer. However, the speech frames are of finite

duration, thus the DFT and IDFT instead of the DTFT and IDTFT are used to compute

the cepstrum. If the frame is length N - 1, and the DFT S(k) of signal s(n) is
N-l

S(k) =L s(l)e-j(27rIN)kn
n=O

k = 0, ... ,N - 1, (2.2)

then the computed cepstra cs(n) are given by
N-l

cs(n) = ~ L log IS(k)12 ej(27rIN)kn
k=O

The relationship between the true cepstra and practically computed cepstra is

ti = 0, ... , N - 1. (2.3)

cs(n) = {
0,

L:;:-oo cs(n + qN), n = O,... ,N-l

other ti

(2.4)

31

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2 - SPEECH MODELLING IN BRIEF
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Figure 2.5: A depiction of the transfer function H(z) (the vocal tract transfer function)

to be estimated using linear prediction. U(z) is the Z-transformed input signal (the exci-

tation signal for the vocal tract) and S(z) is the Z-transformed output signal (the speech

signal). G represents the gain component of H(z), and A(z) represents the minimum-

phase all-pole component of H(z).

Cs (n) is thus a periodic, aliased version of Cs (n). Even though this aliasing is not particu-

larly detrimental in speech recognition, it may be reduced by appending zeros (normally

factor 10 or less) to the speech frame to increase the effective record length. In practice

the speech is either a Hamming or Hanning windowed.

It should be noted that the transform used to obtain the power cepstra is not truly

reversible, as the phase information of the original signal is lost when the absolute value

of the signal spectrum is taken. Fortunately phase information is generally of little use

for speech recognition purposes. However, for purposes such as vocoding where a speech

signal is to be generated, the phase-preserving complex cepstra should be used.

2.2.3 Linear Prediction

Linear prediction is a method that can be implemented to obtain an estimate of vocal

tract transfer function - much like the implementation of cepstral liftering to obtain

an approximate vocal tract transfer function. Linear prediction attempts to model an

element in a discrete time sequence 8(n) as a weighted sum of prior sequence elements and

prior input signal elements. The resulting model may be represented by an autoregressive

moving avemge(ARMA) or pole-zero system.

For linear prediction, the form of the vocal tract transfer function (introduced during

the discussion of the source-filter representation of speech production in Section 2.2.1)

is generally simplified to be an all-pole instead of a pole-zero transfer function. The

motivation for this is twofold:
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• It is analytically difficult to form pole-zero transfer functions in linear prediction,

whereas simple solutions comprising linear equations exist for all-pole models .

• Any causal rational pole-zero system 8(z) may be decomposed as

8(z) = G8min(z)8ap(z), (2.5)

where G is a constant gain term, 8min(z) is minimum phase and 8ap(z) is all-pass,

i.e. 18ap(ejW)1 = 1, Vwo Also, the minimum-phase component may be expressed as

an all-pole system. Phase information in the speech signal is relatively unimportant

for speech recognition (Deller [9], p. 269-270). As an all-pole model can exactly

model a magnitude spectrum, and the information needed for speech recognition lies

mostly in the speech magnitude spectrum, linear prediction using an all-pole model

is considered sufficient for most speech modelling applications. Thus the system we

wish to model has transfer function H (z) = G/ A (z) (refer to Figure 2.5), where

linear prediction is used to estimate the all-pole component A(z) = 1-2::~=1akz-k.
V/hen only the prior sequence elements are used to form a signal estimate, it is known as

autoregressive linear prediction. The resultant transfer function will be all-pole. Ap-th

order autoregressive linear predictive estimate s(n) for signal s(n) at time n is given by
p

s(n) =L aks(n - k),
k=l

(2.6)

where ak are the predictor coefficients. The error e(n) between the estimate and the true

signal is given by

e(n) = s(n) - s(n). (2.7)

Thus, from Equation 2.6, the relationship between the true signal and the estimate is
P

8(11,)=L ak8(n - k) + e(n).
k=l

(2.8)

2.2.3.1 LP Parameter Estimation for a Deterministic Signal Using the Method

of Least Squares

In order to obtain the linear prediction parameters for stochastic signals, the likelihood

of the squared error, £{e2(n)}, is minimised, whereas for deterministic signals the total
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Figure 2.6: (a) Representation of all-pole linear prediction modelling in the time domain.

(b) Representation of all-pole linear prediction in the frequency domain.

squared error :L~=-ooe2(n) is minimised. If we denote the total squared error by E, then

E = ~ e'(nl = ~ [s(nl - ~ aks(n - kl]' (2.9)

E is now minimised with respect to the LP parameters by setting

BE
~ = 0, 1 ~ i < p.
oa,

(2.10)

From Equations 2.9 and 2.10 the following set of equations is obtained

pLakL s(n - k)s(n - i) = L s(n)s(n - i), 1< i < p. (2.11)
k=l n n

The LP parameters {ai}i = 1 ... p may be obtained by solving the set of equations in

Equation 2.11. The range of summation over n is of import, and two methods - the

covariance and the autocorrelationmethods - with differing summation ranges are com-

monly employed. In the covariance method the range of summation is chosen so that

the minimisation is over the finite interval 0 ~ ti ~ N, whereas for the autocorrelation

method the error is minimised over the interval -00 ~ ti ~ 00. Our choice is to use the

autocorrelation method, as it is computationally friendly and it is guaranteed to yield

stable LP models.
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2.2.3.2 The Autocorrelation Method

Autocorrelation vector and matrix are defined next. The autocorrelation vector r is

defined so that each of its elements r, are given by the short-term autocorrelation estimate

Ts(i) for an N-point frame of signal s(n), so that

1 00

r, = Ts(i) = N L s(n)s(n - i). (2.12)
n=-oo

Autocorrelation matrix R is defined so that each of its elements Rk = Ts(i - k) are given

by
00

Rik = Ts(i - k) = L s(n - k)s(n - i). (2.13)
n=-oo

For the autocorrelation method, the total squared error E is minimised over the range

-00 :s; n :s; 00, so that Equation 2.11 becomes
p 00 00Lak L s(n - k)s(n - i) = L s(n)s(n - i), 1:S; i :s; p. (2.14)

k=l n=-oo n=-oo

Multiplying both sides by -t, it is found that

p 1 00Lak N L s(n - k)s(n - i)
k=l n=-oo

1 00

N L s(n)s(n - i)
n=-oo

(2.15)

p

L akrs(i - k)
k=l

or, in the corresponding matrix form,

rs(i), 1:S; i :s; p, (2.16)

Ra= r, (2.17)

where a is a vector such that each of its p elements is one of the LP parameters (a, =

cu, 1 < i < p).

Matrix R is symmetric and Toeplitz. Due to these properties, the very efficient

Durbin's algorithm (also known as the Levinson-Durbin or L-D algorithm) can be used

to solve for a in Equation 2.17.

Generally, speech is framed using a windowing function so that the quasi-stationary

assumption is valid. A windowed speech frame s' (n) is zero outside some interval 0 :s;
n :s; N - 1, so that

s'(n) = {
0,

s(n)w(n), O:S;n:S;N-l
(2.18)

elsewhere
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where w(n) is the windowing function.

Equations for the elements of the autocorrelation vector (Equation 2.13) and autocor-

relation matrix (Equation 2.14) then become

1 N-1+i

r, = Ts(i) = N L s(n)s(n - i), i 2: 0,
n=O

(2.19)

and

N-1+i-k

Rk = Ts(i - k) = L s(n - k)s(n - i), i 2: 0, k 2: 0,
n=O

(2.20)

respecti vely.

For the analysis of long time frames, a block windowing function would be appropriate.

Speech, however, is highly transient. The time analysis must thus be limited, making a

Hamming or Hanning window appropriate.

2.2.3.3 A Few Remarks on Linear Prediction

A few points on linear prediction are stated briefly without any proofs:

• When a vocal tract transfer is estimated from a speech signal using linear prediction,

the estimated spectra are generally better fits for the original spectra than the

estimates obtained using shortpass liftering in the cepstral domain.

• Linear prediction tends to match the peaks in the signal spectrum better than the

rest of the spectrum due to the least-squares criterion. This is of importance for

speech processing, as it helps to accurately determine the characteristic resonant

peaks or formants in the speech spectrum.

• From an inverse filtering point of view, linear prediction can be described as the

process of finding the inverse filter that whitens the signal spectrum, i.e. the post-

filtering spectrum is flat. Not surprisingly, the best LP match (in the sense that

the total error squared is a minimum) for a signal spectrum is possible for those

cases where the true input signal has a flat spectrum. Such input signals include the

impulse (Kronecker delta) - a deterministic signal - and stationary white noise

- a stochastic signal. From a speech modelling point of view this is advantageous,

as the primary excitation (input) signals in speech can be modelled by white noise
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(unvoiced speech) and impulse train (voiced speech) functions. LP modelling is thus

likely to provide a good estimate of the vocal tract transfer function. It should be

noted that the pulse train becomes closer to the ideal input signal as the period of

the pulse train goes to infinity. This explains why LP modelling for voiced sounds is

generally better for lower pitched (relatively long pulse train period) male-produced

speech than higher pitched (relatively short pulse train period) female- or child-

produced speech .

• The choice of the linear predictor model order p is not a trivial matter. It is known

that as p ---t CX) it becomes possible to match any minimum-phase system using

linear prediction. This, however, is not practical. We thus seek to find p large

enough to give a good estimate for the problem at hand, but not so large that the

computational complexity becomes prohibitive.

2.2.4 Linear Prediction Coefficient Cepstra

Research has shown [8] that cepstral parameters formed from the spectrum of an LP

model yield better performance than LP parameters. These cepstral coefficients can be

computed from the LP coefficients by recursively applying the following equation:

n-l

Cn = anL m cman-m, 1::; ti ::;p,
ti

m=l

(2.21)

where ao is typically chosen to be the model gain G that can be computed if the input

signal is known. It can be shown that [9]

unvoiced case
(2.22)

voiced case

where P is the pitch period.

An LP model spectrum represents a "smoothed" version of the original speech frame

spectrum, as it tends to remove the effect of the excitation spectrum. Computing cepstrum

for a speech frame has similar smoothing properties. Part of the reason for the better

performance of LPCCs is that the LPCC features are essentially a doubly smoothed

version of the speech frame spectrum. It is possible to fine tune this smoothing by

manipulating the cepstral coefficients. Another reason for the LPCCs' superiority over
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LPCs is that the resulting cepstra bear a useful relation to the log spectrum of the LP

filter. Suppose Al (w) and A2(w) represent the inverse filters for two different speech

frames, and c~l) and C~2) represent the cepstral sequences computed using the parameters

of Al (z) and A2(z) respectively. If we ignore the gain for both systems, then

(2.23)

The euclidean distance between two cepstral sequences is thus a good measure of the

spectral difference between two LP models.

2.2.5 Perceptual Linear Prediction

Perceptual linear prediction (PLP) extends linear prediction by including three concepts

from psychoacoustics of human hearing in the LP framework. These three concepts are:

1. Spectral resolution of human hearing: When two tones are close to each an-

other in frequency, the human auditory system can often only perceive the dominant

tone, i.e. the tone with the highest power.

2. Equal-loudness preemphasis: The human auditory system is more sensitive to

frequencies in the midrange of the auditory spectrum.

3. Intensity-loudness power law: There is a non-linear relationship between the

intensity of sound and the perceived loudness.

Including these three psychoacoustic concepts makes PLP-feature extraction more con-

sistent with what is known of human hearing than LP-feature extraction. A stepwise

procedure for calculating PLP features is now given:

1. Sampling, windowing and spectral analysis: The procedure of sampling, win-

dowing and spectral analysis is identical to the corresponding steps of LP analysis.

The speech is sampled (8kHz for low quality speech, and 16kHz for high quality

speech), and windowed (typically a Hamming or Hanning window with a window

length of ten to thirty milliseconds). The power spectrum for each windowed sam-

pled speech frame is then calculated.
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2. Spectral Resolution of Human Hearing: A "critical band" is a frequency range

in psychoacoustic studies that relates to the spectral resolution capabilities of human

hearing. When two competing tones fall in the same critical band, the only tone

that will be perceived is the most powerful tone. However, when two tones are

separated in the frequency domain by more than the critical bandwidth, they are

both perceived. This perceptual change is abrupt. Furthermore, the critical band

is approximately constant for frequencies under 800 Hz, after which it increases

logari thmically.

To compensate for the critical band frequency resolution of human hearing, the

frequency scale is first warped to the Bark scale. The Bark scale is a perceptual

frequency scale such that one Bark covers one critical band, 24 Bark covers the

audible spectrum, and the mapping between the frequency and Bark scales is given

by

(2.24)

where w is frequency and 0 is Bark.

Making the resolution in the Bark scale equivalent to the resolution of human hear-

ing, the spectrum in the Bark scale is convolved with a critical band filter function.

This filter function has a bandwidth of one Bark, i.e. the bandwidth is the same as

relevant critical band. Convolving the Bark spectrum with the critical band filter

smoothes the power spectrum, removing frequency resolution to the same extent as

the human hearing system. As the frequency resolution has been degraded, it is

permissible to downsampie the power spectrum. Typically 18 samples are taken,

where a sample is taken approximately everyone Bark.

3. Equal Loudness Preemphasis: Human hearing is not equally sensitive to all

frequencies, and it is most sensitive to frequencies around 3.5 kHz. Compensation

for the non-uniform sensitivity, the spectrum is warped by the following function:

(w2 + 56.8 . 106) w4

E(w) = (w2 + 6.3.106) (w2 + 0.38.109) (w6 + 9.58.1026))' (2.25)

Note that Equation 2.24 is used so that Equation 2.25 may be applied to the down-

sampled smoother power spectrum (in Bark).
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4. Intensity-Loudness Power Law: There is a non-linear relationship between the

intensity of a sound and the perceived loudness of the sound. To compensate, the

following function is applied to the spectrum:

L(w)= ~. (2.26)

Once more, Equation 2.24 is used so that Equation 2.26 may be applied in the

Bark-warped frequency scale.

5. LP Analysis: A loudness-compensated preemphasised downsampled smoothed

power spectrum (in Bark) is now available. The IFFT of this power spectrum

then yields an autocorrelation, from which a set of LP coefficients are calculated.,

This set of LP coefficients form the PLP features. Additionally, PLP cepstral co-

efficients can be calculated from the PLP coefficients in the same way that LPCCs

are determined from LPCs.

The computational requirements for determining PLP features is similar to that required

for LP analysis. PLP features generally outperform LPC and LPCC features, and has

been shown to be more noise-robust than MFCC features (MFCCs, like PLPs, compensate

for psychoacoustic effects in human hearing).

2.2.6 Delta Parameters

Delta (or differenced) parameters are often used to extend feature vectors. If cn(t) is a

n-th feature parameter (i.e. the n-th element of feature vector c(t)) for the t-th speech

frame, then the delta feature parameter for frame n is given by

~Cn(t) = cn(t + Ó) - cn(t - Ó), (2.27)

where Ó is a parameter chosen to smooth the estimate. Ó is typically set to one or two, so

that the delta parameter is computed by differencing future and past parameters of the

feature parameter.

Delta parameters can now be computed for all the feature parameters, and a new

feature vector may be formed by appending some or all of the delta parameters to the

original feature vector.
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2.3 Parameter Optimisation for Statistical Models

This section reviews some of the key estimation methods used for finding optimal param-

eters for statistical models. The first, maximum likelihood estimation(ML estimation),

yields an optimal set of parameters that maximises the likelihood of the observed data

given the model parameters. The second, the expectation maximisation algorithm(EM

algorithm), is an iterative maximisation procedure used when not all the data needed to

estimate the model parameters are observable. These methods are employed in many ways

for parameter estimation of HMMs and the derivation of HMM-based speaker adaptation

methods.

2.3.1 Definition of Likelihood

This is based on the definition of likelihood in [7], p. II.

Let Y = (Yl, ... ,Yn) represent a random process where the pdf of Y belongs to some

family :F, and let the observations Y = (Yl, ... , Vn) be realised values of this process. It is

not known which pdf in the family is the true pdf of Y. It is often useful to consider how

the density changes at the particular observed value Y for different functions in :F. The

ability of a certain pdf to "explain" the particular Y is thus analysed, and to emphasise

this the likelihood of f (.)at Y is defined by

L{f(')IY} = f(y)· (2.28)

Equivalently, the natural logarithm of Equation 2.28 can be used. This is called the

log-likelihood

l{f(-)Iy} = In(J(y)). (2.29)

2.3.2 Maximum Likelihood Estimation

Many problems in engineering consist of choosing a model to describe a real-world prob-

lem, and then finding the optimal (most likely) model parameters that would give the best

fit of the proposed model given data from the real-world process. Suppose A represents

a complete set of model parameters in A, where A is the space spanning all possible sets
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of model parameters, and X = {x., ... , XT} represents a set of observations for the real-

world process. In order to find an optimal parameter set, we would like to maximise the

probability P(AIX) of the parameter set given the observed data. An optimal estimate A

for the set of parameters may thus be found by solving

).= argmax P(AIX).
A

(2.30)

P(AIX) is not generally a readily obtainable function, whereas P(XIA) is. Fortuitously

- under certain conditions - maximisation of P(XIA) is equivalent to maximisation of

P(AIX). The proof is as follows

P(AIX) = P(A_,X)
P(X) , (2.31 )

and

P(XIA) = P(A, X)
P(A) . (2.32)

Therefore

P(AIX) = P(XIA)P(A).
P(X)

(2.33)

Clearly, the A that maximises the left side will also maximise the right side, so that

). = argmax P(AIX) = argmax P(XIA)P(A).
A A

(2.34)

For the special case where the prior pdf of the parameter sets, P(A), is fiat, i.e.

P(A) = constant, (2.35)

the following holds:

). = argmax P(AIX) = argmax P(XIA).
A A

(2.36)

The maximisation of the likelihood of the data given the model parameters under the

assumption of equal a priori parameter set probabilities is termed maximum likelihood

estimation. Instead of maximising the likelihood, the log-likelihood may be maximised,

as the logarithmic function is monotonically increasing. Thus

). = argmax P(XIA) = argmax In [P(XIA)].
A A

(2.37)
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Maximising the log-likelihood is often the simpler way of determining the optimal A, as

the family of exponential pdfs is often employed in engineering solutions. For the sake of

simpler notation, the likelihood and log-likelihood functions are often used to denote the

relevant probabilities, where

Lx(A) = P(XIA) (2.38)

is the likelihood function, and

Ix(A) = In P(XIA) (2.39)

is the log-likelihood function.

As an example, the ML estimate of a mean vector for a Gaussian pdf given a set of

observations will now be derived.

The Gaussian pdf b(x) is given by

b(x) = 1 e-!(x-tt)'C-1(x-tt)

(27fr/2IGI1/2 '
(2.40)

where n is the dimension of each observation vector, and fL and G are respectively the mean

vector and covariance matrix for the Gaussian pdf. If the observations {x.. ... ,XT} are as-

sumed to be independent and identically distributed (iid), that is P(X) = P(x], ... , XT) =

P(XI)P(X2) ... P(XT), then the ML estimate it of the mean vector is obtained by solving

fL = argmax P(XlfL) = argmax In [P(XlfL)]
tt tt

arg;;,ax In [gP(Xt'l'll
T

argmax Lin [P(XtlfL)]
tt t=1

~ [ 1 1 1 , -1argmax ~ In n/2 1/2 - - (x, - fL) G (x, - fL) .
tt t=1 (27f) IGI 2

The optimal estimate for fL is the one that maximises In [P(XlfL)], and it is found by

(2.41)

taking the derivative of In [P(XlfL)] with respect to u; setting the result equal to zero,

and solving for fl. We thus proceed by taking the derivative of Equation 2.41 with respect

to fL
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moving the derivative inside the summation over t and noting that the first term does not

depend on f-L (and therefore has a zero derivative)

~{10 Il}Z:: 0 - 28 (x, - f-L) c: (x, - f-L)
t=l f-L

(2.42)
t=l

Setting the result of the differentiation in Equation 2.42 equal to zero and solving for u;

the familiar ML estimate of the mean vector of a Gaussian pdf (assuming the observations

are iid) is found:

- "I:,;=1 Xt
f-L= T . (2.43)

2.3.2.1 Sufficient Statistics

Any real or vector valued function t(X) of the data X is known as a statistic. Statistics are

sufficient if they supply all the information necessary to estimate the model parameters.

A sufficient statistic thus "summarises" the data, such that only the statistic is necessary

for the reestimation of parameters, and not the entire original data set. The concepts of

sufficient statistics may be expressed as follows: Statistic t(X) is sufficient if there are

functions (note that these are not pdfs) g (t(X), A) and h(X) such that

P(XIA) = g (t(X), A) h(X). (2.44)

Maximising g (t(X), A) with respect to A will yield the same parameters as maximising

P(XIA) with respect to A. This is readily seen if the log-likelihood In [P(XIA)] is max-

imised instead of the likelihood P(XIA), as

In P(XIA) = In [g (t(X), A)] + In [h(X)]. (2.45)

Thus

:A P(XIA)
a a
OA {In [g (t(X), A)]} + OA {In [h(X)]}
a
OA {In [g (t(X), A)]} + O.

(2.46)

(2.47)
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2.3.2.2 The Exponential Family of Distributions

The exponential family of distributions include all pdfs of the form

f(XI'\) = b(X)e[c/(.\)t(X)lja('\), (2.48)

where t(X) is the sufficient statistic of the family. This family of distributions is often

employed as it offers a wide variety of distributions of engineering interest, such as the

Gaussian, Poisson, Rayleigh, uniform and binomial distributions. ML estimation for all

of the distributions belonging to the exponential family may be simplified, as only the

sufficient statistic of each is necessary for the estimation of model parameters.

2.3.3 The Expectation-Maximisation Algorithm

In order to perform maximum likelihood estimation, all the data needed to estimate a

parameter is required. In many pattern recognition problems, however, all the necessary

data is not always available. Often only part of the data is observed, while another part

remains hidden. The EM (expectation-maximisation) algorithm is well suited to tackling

parameter estimation problems where a part of the complete data needed to compute an

ML estimate is not directly observable.

Let Y be the sample space of observable data, and y E R'" is an observation from

y. Similarly, let X denote the full underlying space, and let x E R" be an outcome of

X, with n 2: m. x is referred to as the complete data. There is a many-to-one mapping

y = y(x) between the complete data and the observable data. Thus, any observation y

represents a subset of X, denoted by X(y).

Let ,\ represent a set of parameters in A, the space containing all possible parameter

sets. If the pdf of the complete data given the model parameters is f(xl'\), then the pdf

of the incomplete data is

g(yl'\) = r f(xl'\)dx.
JX(Y)

Equation 2.49 may be worded as follows: the pdf of the observable data y is equal to the

(2.49)

integral of the pdf of the complete data over that region of X represented by y.

To form an ML estimate of ,\ given the data, we need to maximise the log-likelihood

In [g (yl'\)] (also referred to as the log-likelihood of the observed data, ly('\)) with respect
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to A. An ML estimate for A using ly(A) will not have an analytic solution in general; lx(A)

(i.e. In [f(XIA)] ), however, normally has a well-defined analytically solvable maximum.

Finding the maximum of the log-likelihood function lx(A) for the complete data is not

possible, as the complete data x is not known (the complete data is not observed directly,

but only by means of y). Direct maximisation of In [f(XIA)] is thus impossible. The EN!

algorithm surmounts the problem by iteratively maximising the expectation of In [f(XIA)]

given the observable data y and the current estimate of A. By taking the estimation

of the likelihood given the observable data and current set of model parameters, we are

"completing" the observable data and estimating the complete data.

The EM algorithm owes its name to the fact that each iteration can be split into

two steps: an expectation step, and a maximisation step. If A[k] is the estimate of the

parameter set at the k-th iteration, then the two steps can be formulated as:

• The expectation step: Here we compute the desired expectation, denoted by

Q (A IA[k]), where

E [In f(xIA) ly, A[k]]

J [In f(xIA)] f(xly, A[k])dx.

(2.50)

(2.51)

The second argument A[k] of the Q function conditions the expectation, and is

considered fixed. The first argument is the conditioning argument for the complete

data log-likelihood f(xIA), and it is the parameter with respect to which the log-

likelihood will be maximised .

• The maximisation step: Let A[k+l] be the value of A that maximises the Q

function. Thus

A[k+l] = argmax Q (AIA[k]) .
A

(2.52)

The estimate A[k+l] will be used as the current parameter set for the expectation

step of the next iteration, i.e. iteration k + 2, of the algorithm.

The EM algorithm thus consists of choosing an initial parameter set A[k], and then per-

forming expectation and maximisation steps iteratively until convergence. Convergence
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may be determined by examining the distance between successive parameter estimates

and stopping when the parameter sets become closer than E. Thus we stop iterating when

(2.53)

where II . II is a appropriate distance measure and E is an suitable error distance between

two successive parameter sets.

The EM algorithm has the following properties:

• The maximisation of Q (AIA[kJ) at each iteration yields an increase in ly(A), the

log-likelihood of the observed data given the model parameters.

• ly(A) is non-decreasing at every iteration. That is

(2.54)

with equality only when A[kJ is a stationary point (eg. a global maximum, local

maximum, saddle point or other point) of ly(A).

The EM algorithm thus guarantees that the sequence of parameter estimates A[oJ, A[lJ, , A[kJ

results in a bounded non-decreasing sequence of log-likelihoods ly (A[oJ) :S ly (A[lJ) :S :S

ly (A[kJ) which must converge as k --+ 00. 1 A complete proof of the above can be found

in [10, 52].

2.3.3.1 Specialisation of the EM Algorithm for Distributions of the Expo-

nential Family

The EM algorithm can be simplified for the exponential family, as each of the distributions

in this family has a well defined sufficient statistic. The expectation and maximisation

steps of the EM algorithm reduce to the following:

• The expectation step:

Q (AIA[kJ) = E [ln b(x) ly, A[kJ] + c(A)' E [t(x)ly, AlkJ] - In a(A). (2.55)

In deriving the above it should be noted that the expectation E [ln a(A) ly, A[kJ]

is simply In [a(A)], so that no expectation computation is necessary. The term

1The convergence for the EM algorithm is approximately that of a steepest decent algorithm [52].

Convergence of the EM algorithm may be accelerated by employing conjugate gradient methods [21].
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null-state emitting state emitting state null-state

Figure 2.7: A representation of a typical HMM. States 1 and 2 are the emitting states.

State 0 is the beginning null-state, and state 3 is the optional ending null-state. The state

transition probabilities are labelled by aij.

E [In b(x) ly, A[k]] will not playa role when maximising with respect to A in the

maximisation step, and is thus not computed. Only the expectation in the second

term of Equation 2.55 needs to be computed. Denoting this expectation by t[k+l],

the entire expectation step reduces to determining

t[k+l] = E [t(x)ly, A[k]] . (2.56)

• The maximisation step: The new parameter estimate A[k+l] is now given by

A[k+l] = argmax {C(A)'t[k+l] - In [a(A)l} .
A

(2.57)

2.4 Modelling Speech with Hidden Markov Models

A hidden Markov model (HMM) is a stochastic model of a process that changes with time.

The ability to model a quasi-stationary random process makes HMMs ideal to model

features extracted from a speech signal, and has resulted in HMMs becoming the most

popular model for speech recognition tasks. An HMM2 consists of a fixed number of states

(represented by the encircled 0, 1, and 2 in Figure 2.7), where each emitting state (states

1 and 2 for Figure 2.7) has a pdf associated with it. The states are connected via state

transition probabilities (the arrows labeled aij in Figure 2.7), i.e. the probability of making

2Continuous density first-order Moore forms of HMMs are treated in this text, as speaker adaptation

techniques to date have focused on this form.
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a transition from one state to another. An HMM is thus a set of pdfs, interconnected

by links, where each link represents the probability associated with making a transition

from one pdf to another. An HMM thus models a time-changing stochastic process as a

time-changing sequence of states. At any time, the properties of the process is modelled

by the pdf of one of the states. When time moves on, and the properties of the signal

change, the most likely state to represent the process for the new time is selected. This

new state is selected according to the cost of making a transition to it from the previous

state, and the match of the state pdf with the attributes of the process. Note that the

most likely state may be the same as the previous state.

The symbols denoting HMM structures and parameters, as well as the symbols for the

observation sequence from the process will now be introduced:

• T is the length of the observation sequence.

• N is the number of states.

• Q = {ql' q2,···, qN} are the states.

• A = {aij}, aij = P(qj at t + 11qi at t) is the state transition probability, i.e, the

probability being in state j at time t + 1 given that the previous state at time twas

state i. The transition probabilities must always satisfy 2:;=1 aij = 1.

• B = {bj(o)}, bj(o) = P(olqj) is the state pdf, i.e. the probability of state j gener-

ating observation 0.

• 1f = {1fi}' tt, = P(qi at t = 1) is the probability of beginning in state qi. The set of

initial probabilities {1fl' ... ' 1fN} is known as the initial state distribution.

A = (1f, A, B) will be used as a compact representation of an HMM and its parameter

set. As previously stated, HMMs are used to model observation sequences. HMMs may

also be used to generate observation sequences. To elucidate the working of an HMt'.;I,

the steps necessary to generate an observation sequence 0 = 01,02, ... , OT will now be

stated:

1. An initial state il is chosen according to the initial state distribution, 1f. The "time"

t is set to t = 1.
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2. An observation Ot is chosen according to the state pdf bit (0) for state it.

3. The next state in the sequence, state it+l at time t + 1, is chosen according to the

state transition probabilities from state it, aitit+l'

4. The time t is incremented by one, and if t < T we return to step 2, if not, then the

procedure is terminated, as the observation sequence of length T has been generated.

In the above, all the states associated have state pdfs, and are referred to as emitting

states. Instead of using a separate set of 7ri parameters for the initial state distribution,

a null-state (non-emitting state) with no pdf may be prepended to the HMM (state 0 in

Figure 2.7). The transition probabilities from state 0 to state i are then equivalent to

the initial state distribution, so that {aOI = 7r1, a02 = 7r2, ... , aON = 7rN}. The addition

of a beginning null-state will not alter any of the derivations, and is simply an alternate

representation. It should be noted that an ending null-state (such as state 3 in Figure 2.7)

is sometimes appended to an HMM, so that set of states is {qo, ... , qN+I}, and states

qo and qN+I are null-states. The transition probability from a penultimate state to this

final state explicitly models the probability of ending in the penultimate state. Adding an

ending null-state will slightly change the equations derived for the likelihood computation,

segmentation and reestimation of the HMMs, as the final transition probability must be

included.

HMMs are generally used to solve three kinds of problems:

• Likelihood computation: Compute the probability of an observation sequence 0

given a set of model parameters, >., i.e. compute the likelihood Lo(>') = P(OI>').

This likelihood is important for recognition and scoring purposes. For instance: A

set of HMMs are used to model a set of phonemes, with each HMM representing

one phoneme. An observation sequence is then recorded, and we must decide which

phoneme was uttered. The likelihood of the observation sequence for each HMM is

then computed, and the decision of which phoneme was uttered is made according

to which HMM had the highest likelihood .

• Segmentation: Given an observation sequence 0 = 01,02, ... ,OT, we must find the

state sequence e = il, i2, ... ,iT most likely to have generated it must be found.

Such a state sequence is useful for studying model behaviour.
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• Reestimation: Find a set of parameters ..\ to maximise P(OI..\), so that good models

for speech signals may be trained. Due to the nature of HMMs, the state sequence

forms the hidden data that must be estimated in order to form EM estimates of the

HMM parameters. The dependency of reestimation on the hidden state information

means that segmentation and reestimation go hand in hand for HMMs.

Two key algorithms - the Viterbi and Baum- Welch algorithms - useful for computations

of all three problems will be introduced before a discussion of the problems.

2.4.1 The Baum-Welch Algorithm

This algorithm has several uses, namely determining the likelihood of the observation data

given the model parameters, determining state-occupation probabilities and obtaining

values necessary for the estimation of HMM parameters. The Baum- Welch procedure

may be split into a forward iteration and a backward iteration. The forward iteration will

be treated first. The forward variable at (i) is introduced, where

(2.58)

The forward variable is thus the likelihood of the partial observation sequence up unto

time t and being in state qi at time t given the model parameters. The forward variable

may be solved inductively as follows:

1. Initialise the first set of forward variables at the first time step, t = 1.

(2.59)

2. Compute at+l (j) iteratively for the remaining time steps.

For t 1,2, ... , T - 1,

[t,"'t(i)aij 1 bj(Ot+l), 1:S j :S N, (2.60)at+l (j)

3. Determine the likelihood of the observation sequence.

N

P(OI..\) =L aT(i).
i=l

(2.61)
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Only N2T calculations are required to determine P(OI.\) (as opposed to 2TNT for

straightforward computation - see Section 2.4.3, Equation 2.75). The efficiency of the

Baum- Welch algorithm is due to the fact that there are only N states, and therefore only

N possible places for path to emerge at time t. Each forward variable Ctt(i) represents

the summed likelihood of all possible path sections up to time t going through state i at

time t - in effect every forward parameter is a "summary" of the likelihood of all possible

path sections up to time t. As we work with the "summary" of path section likelihoods,

it is not necessary to calculate all possible paths individually, which would be computa-

tionally expensive. Calculating the next set of forward variables (representing the next

set of summed likelihoods of all possible paths going through a state at time t + 2) is

accomplished using the simple update in Equation 2.60. The final likelihood is the sum of

the forward variables for time T, i.e. the sum of all the sums of likelihoods of all possible

paths ending in states l..N at time T. In a similar fashion to the forward iteration, a

backward variable !3t(i) is defined for the backward iteration, so that

(2.62)

As was the case with the forward variable, the backward variable may now be solved

inductively:

1. Initialise the backward variables at the final time step, t = T.

!3T(i) = 1, 1 ~ i ~N. (2.63)

2. Iteratively determine the backward variables for the remaining time steps.

For t T - 1,T - 2, ... , 1,
N

Laijbj(ot+d!3t+1(j), 1< i ~N, (2.64)
j=l

The backward iteration, like the forward iteration, only requires 111 the order of N2T

calculations.

2.4.2 The Viterbi Algorithm

The Viterbi algorithm is used to find the optimal state sequence () for an HMM, as well as

obtaining values necessary for HMM parameter reestimation. The algorithm bears great
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resemblance to the forward iteration of the Baum-Welch procedure (see Section 2.4.1).

Viterbi segmentation relies on the fact that at each point in time t, there are only N (the

amount of emitting states) possible outcomes for path sequences, i.e. all possible path

sequences up until time t must terminate in one of the N states. The algorithm will now

be given in stepwise fashion, followed by an explanation of the idea:

1. Initialise at the first time step, t = 1.

o.
(2.65)

(2.66)

2. Iteratively compute of 6t(i) and '!/Jt(i) for 2 ::; t ::; T:

For t 2, 3, ... ,T

max [6t-l(i)aij]bj(Ot), 1::; j ::; N
1<i<N

argmax [6t-1 (i)aij], 1::; j ::; N.
i-a-:»

(2.67)

(2.68)

'!/Jt (j) represents the state at time t - 1 most likely to have preceded state j at time

t. 6t (i) is the likelihood of the most probable state sequence of all state sequences

ending in state i at time t.

3. Terminate the iteration. Determe the most likely final state and the probability

associated with it.

p max [6T(i)]i-a-:»

argmax [6T(i)].
i-a-:»

(2.69)

(2.70)

4. Determine the optimal path (state sequence) by backtracing from the optimal state

at time T, 7,T.

For t T - 1,T - 2, ... ,1

(2.71 )

The optimal state sequence is then [}= iI, i2, ... ,7,T.
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In the above algorithm the most likely state sequence is determined. This is done by

initialising all possible beginnings of state sequences. Note that the best state sequence

ending in state j at time t can only come from one of the optimal state sequences ending

at time t - 1, and not one of the sub-optimal state sequences ending at time t - 1. At

every time step t and every state i it is only necessary to compute the best state sequence

ending in state i at time t, while the remaining sub-optimal state sequences ending in

state i at time t may be discarded. Using the iterative procedure the optimal final state

for the sequences ending at time T is then determined, and by backtracking through the

previously most likely states the optimal state sequence is obtained.

The Viterbi and Baum- Welch Algorithms have now been treated, and so we move 011

to the treatment of the three HMM problems.

2.4.3 Likelihood Computation

As previously stated, determining which HMM is more likely to have generated an obser-

vation sequence is useful for phoneme, word and other speech recognition tasks.

We wish to determine the likelihood of the data (observation sequence) given the

current set of model parameters, P(OI>'). To determine this likelihood, P(OIO, >') is first

determined, where 0 = il, i2, ... ,iT is a fixed state sequence.

(2.72)

The probability for a fixed state sequence I given parameter set A is

(2.73)

Thus the likelihood of the model generating the observation sequence 0 and state sequence

() simultaneously is P(O, Ol>') = P(OIO, >')P(OI>'). Determining P(OI>') is now a simple

matter of summing P(O, Ol>') over all possible state sequences. Therefore

P(OI>') = L P(OIO, >')P(OI>') (2.74)
(JEe

L Kil bil (OI)ail i2bi2 (02) ... aiT_l iTbiT (OT),
il,i2, ... ,ir

(2.75)

where 8 is the set of all possible state sequences. Computation of the likelihood using

Equation 2.75 is computationally expensive - about 2T NT calculations are required.
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Therefore, P(OI.-\) is normally determined using the computationally efficient Baum-

\;Velch procedure.

2.4.4 Segmentation

Several segmentations of an HMM for a given observation sequence are possible. We

might want to know which state is the most likely to have occurred at a certain time,

or we might need the state-occupation probabilities at a certain time. We might also

wish to find the single best state sequence, and not simply the sequence of those states

that were most likely at each time step. For each of these, application of the Viterbi or

Baum- Welch algorithms may be used to obtain the desired segmentation. The algorithms

to use in order to obtain a few of the segmentations will now be stated.

• Obtaining an optimal state sequence: If e is the set of all possible state

sequences, and 8 is a state sequence in 8, then we wish to find the optimal 8 that

maximises P(O, 81.-\). The Viterbi algorithm may be employed to find this optimal

state sequence.

• Obtaining the state occupation probabilities: The state occupation probabil-

ity ,(i) (t) is the pro babili ty of being in state i at time t, and it may be expressed

as

(i)(t) = at(i)J3t(i)
, P(OI.-\) , (2.76)

where the forward variable at (i), backward variable J3t(i) and the likelihood of the

observation sequence given the model parameters P(OI.-\) are all obtained using the

Baum- Welch algorithm.

• Obtaining "hard" state occupation probabilities: The segmentation of an

HMM by state occupation probabilities using the Baum- Welch algorithm, IS re-

ferred to as "soft" segmentation. Segmentation using the Viterbi algorithm, where

a decision is made as to which state was most likely to have occurred at a specific

time, is referred to as "hard" segmentation. Using the optimal state sequence 8 from

the Viterbi algorithm, a set of hard state occupation probabilities may be defined
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such that

if Ot = i

if ët i- i.
(2,77)

The most commonly used state pdfs for HMMs in speech processing are the single Gaus-

sian and mixture Gaussian pdfs. As such, it is often desirable to obtain mixture occupation

probabilities for reestimation purposes. Possible segmentations to obtain mixture occu-

pation probabilities will be discussed after stating the form of a mixture Gaussian pdf (or

GMM - Gaussian mixture model).

The mixture Gaussian j(i) (0) used to represent the state pdf for state i is given by

j(i)(O) = LC}:}b}:}(o),
mEi

(2.78)

where i is the state, m a mixture component in the GMM (mixture Gaussian or Gaussian

mixture model) of state i, c~ is the weight of mixture component m and b~ (0) is the

Gaussian pdf for mixture component m in state i. Each mixture component is a Gaussian

pdf, b~(o), given by

(') 1 _1 (o_,,(i»)'C(i)-l (o_,,(i»)
b~ (0) = 1 2e 2 ,-m m r=r ,

(27rr/2IC~) I /
(2.79)

where n is the dimension of observation vector 0, and J..L~ and C~) are the mean vector

and covariance matrix of the Gaussian pdf.

The following definitions of mixture occupation probability may now be made:

• Mixture occupation probabilities for Baum- Welch segmentation: The mix-

ture occupation probability 'Y~)(t) for mixture component m in state s at time t is

given by

(2.80)

• Mixture occupation probabilities for Viterbi segmentation: The mixture

occupation probability 'Y~)(t) for mixture component m in state s at time t is again

given by ,

(i) (i)
",(i) (t) = ",(i) (t) Cm bm (0)
t rri I j(i)(O)' (2.81)

56

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2 - SPEECH MODELLING IN BRIEF

where "(i)(t) is the state occupation probability obtained via the Viterbi algorithm

as defined in Equation 2.77. Nguyen [40] refers to this as the semi- Viterbi mode of

obtaining mixture occupation probabilities.

2.4.5 Reestimation of HMM parameters

There is no direct ML estimation for HMM parameters given an observation sequence.

As such, we must resort to using gradient techniques, or the EM algorithm treated in

Section 2.3.3. As stated in Section 2.3.3, the EM algorithm is used to maximise P(XIA)

in cases where the complete data needed to estimate parameters are not available. The

EM algorithm first "completes" the data by estimating the complete data given the ob-

served data and current set of model parameters. For HMMs, the observed data X is

the observation sequence 0, and the hidden (missing) data is the state sequence e that

generated the observation sequence. For HMM reestimation using the EM algorithm,

the state sequence is estimated first, and then using the estimated sequence maximum

likelihood estimates for a new set of HMM parameters are formed. Multiple iterations of

the EM algorithm will converge to a stationary point on P(OIA).

The Baum- Welch algorithm was created specifically for the EM reestimation of HMM

parameters, and the reestimation formulas obtained using Baum- Welch segmentation and

reestimation are stated in the next section.

Alternatively, Viterbi reestimation of parameters may be used, where Viterbi segmen-

tation is used to obtain the optimal state sequence, which is used to complete the data

and estimate the new parameters. Viterbi reestimation represents the EM algorithm for

maximising P(O, eIA), where e is the optimal state sequence. Though this is not the

"true" EM maximisation of P(OIA), Viterbi reestimation is often employed in practice

as it requires much less computation than Baum- Welch reestimation, and the recognition

results are similar for the hidden Markov model structures commonly used for speech

modeling. The Viterbi reestimation formulas will be stated in the section following the

treatment of the Baurn- Welch reestimation formulas.
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2.4.5.1 Baum-Welch Reestimation of Parameters

First we introduce ~t(i, j), where

(2.82)

~t (i, j) is thus the probability of being in state i at time t, and of making the transition

to state j at time t + 1 given the observation sequence 0 and the current set of model

parameters A. Another expression for I'(i)(t) in terms of ~t(i,j) is now possible:

N

I'(i)(t) = L~t(i,j).
j=l

(2.83)

The Baurn- Welch reestimation formulas for Jf and A are then

7ri = I'(i)(l), 1::; i ::;N, (2.84)

and

""T-1 C( .. )- L...,t=l "t Z, Ja·· = =:::-':-,.----'---'-
ZJ ""T-1 (i)(t)·L...,t=l I'

(2.85)

For the case of mixture Gaussian state pdfs, the reestimation equations for the mixture

component weights c~, mean vectors J.L~ and covariance matrices Cg) are

""T (i)(t)L...,t=l I'm (2.86)""T (i) ( )'L...,t=l I' t

and

T C)
-(i) _ 2::t=l I'~ (t)Ot
J.Lm - ""T (i)()'L...,t=l I'm t

(2.87)

and

""T (i)()[ (i)l[ (i)l'C(i) = L...,t=l I'm t at - J.Lm at - J.Lm
m ""T (i) ( ) ,L...,t=l I'm t

(2.88)

where I'(i)(t) is the state occupation probability obtained via the Baum-Welch algorithm,

given by Equation 2.76, and I't(i)(t) is the mixture occupation probability, also obtained

via the Baum- Welch algorithm, given by Equation 2.80.
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2.4.5.2 Viterbi Reestimation of Parameters

First, the hidden data must be estimated, and so the optimal state sequence jj is computed

using Viterbi segmentation. While computing jj during the backtracking procedure of the

segmentation process, it is necessary to keep track of the following tallies:

1. nij, the number of transitions between states i and j in the optimal state sequence.

2. tu, the number of transitions from state i to any state in the optimal state sequence.

The reestimation formula for the state transition probabilities aij is then

(2.89)

Since the optimal state sequence has been determined, we also automatically have Viterbi

state occupation probabilities ')'(i)(t) as defined by Equation 2.77, and the mixture occupa-

tion probabilities ')'~)(t) defined by Equation 2.81. Using these occupation probabilities,

the reestimation formulas for mixture Gaussian state pdfs are

(2.90)

for the mixture component weights, and

T C)
-(i) _ 2:t=l ')'~ (t)Ot
/-lm -""T (i) () ,

L....t=l ')'m t

for the mean vector of Gaussian mixture component m, and

(2.91)

""T (i) ( ) [ (i)l [ (i)l'c(i) = L....t=l ')'m t Ot - /-lm Ot - /-lm
m ""T (i)() ,

L....t=l ')'m t

for the covariance matrix of Gaussian mixture component m. It is noted that the Viterbi

(2.92)

reestimation formulas for mixture Gaussian state pdf parameters are identical to the

Baurn- Welch reestimation formulas, but for the fact that the Viterbi or "hard" state

occupation probabilities are used here.

2.5 The Likelihood Function and Auxiliary Function

One of the advantages common to all the HMM reestimating speaker adaptation tech-

niques treated in this thesis, is that they all fit into the same likelihood frame as normal
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HMM reestimation. In order to reestimate the HMM parameters, these adaptation tech-

niques all use the EM algorithm. As such, they rely on Baum- Welch or Viterbi segmenta-

tion as the expectation step of the EM algorithm, to estimate the hidden state sequence

information. The maximisation step, however, is specific to the adaptation method. An

auxiliary function can be defined such that an increase of the auxiliary function is equiv-

alent to an increase of the likelihood function. This section is dedicated to introducing

the likelihood function and subsequent auxiliary function common to the derivation of all

treated speaker adaptation techniques.

2.5.1 Defining the Auxiliary Function

The available adaptation data, 0, is a set of T observation vectors:

(2.93)

The current set of HMM parameters is A and the set of adapted model parameters is i
8 represents the set of all possible state sequences (length T) given the data O. The

likelihood that the current model generates the observed data 0, is then given by

L(OIA) =L L(O, eIA).
OEe

(2.94)

In the above, L(O, elA) is the likelihood of generating the sequence of observation vectors,

0, using state sequence e and given the current set of model parameters A. During

adaptation, the objective function to maximise is L(OIA).

Ifwe view the mixture components as a parallel branch in the state sequence, Equation

2.94 can be written as

L(OIA) =L L L(O, e, (lA),
OEe (EWe

(2.95 )

where \li0 is the set of all possible mixture component sequences given the state sequence

e, and ( is a mixture component sequence in \lIo. An auxiliary function Q(A,~), given by

Q(A,~) =L L L(O, o, (lA) log [L(O, e, (I~)]
OEe (EWe

(2.96)

is introduced at this point. Model parameters that maximise the auxiliary function also

increase the value of the objective function L(OIA), and by repeating the procedure of
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maximising the auxiliary function and updating the model parameters with the reesti-

mated parameters 5., the objective function is iteratively maximised" [4, 35, 24].

2.5.2 Further Expansion and Manipulation of the Auxiliary Func-

tion Q(,,\, A)

The pdf for every state of the HMM is a mixture Gaussian 1(0) given by

1(s)(0) =L c~)b~)(o)
mEs

(2.97)

where s is the state, m a mixture component in the GMM of state s, and c~) is the weight

of mixture component m. The likelihood of the observation sequence using the state and

mixture sequences and given the current model parameters can now be expanded to

T

L(O, e, (lA) = r»; IIa(Jt-l(Jtc~~t)b~~t)(ot)
t=l

(2.98)

where 'Tri is the probability that the HMM begins in state i, and aij is the state transition

probability from state i to state j for the HMM.

Now 2.98 is substituted for L(O, e, (15.) in the auxiliary equation.

Q(A,5.) = L L L(O,e,(IA)IOg{7f(JO IT a(Jt-l(JtC~~t)b~~t)(OI)}
(JEe (E>Vo 1=1

L L L(O, e, (lA)
(JEe (E>Vo

x {log"" +tlOga,._.,. + tlogci:<l + tlOgbi:<l(o,)}
The speaker adaptation methods treated focus on the reestimation of the mean vectors

(2.99)

(2.100)

exclusively," while all the other HMM parameters remain unchanged. Thus, only the last

term in the { } braces containing the Gaussian pdf which is dependent on the mean vectors

3The convergence of this algorithm for improving £(01)') using the maximisation of Q(>.,).) was first

proved by Baum (in 1972) and later extended to mixture pdfs and vector observations.
4MAP adaptation need not be on mean vectors only, but can be applied on all HMM parameters [18].

MLLR-like maximum likelihood linear transformations that have the ability to adapt covariance matrices

as well as mean vectors were derived by Gales [15]. Though eigenvoice techniques have thus far focused

only on the adaptation of mean vectors [40, 28, 51], R. Kuhn et al. [28] state that eigenvoices may be

used to model all parameters in an HMM.
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will be of importance for the purposes of maximisation. The first term containing the

initial state probabilities, the second term containing the state transition probabilities and

the third term containing the mixture component weights may be treated as a constant

term so that

Q("\, ~)
T

constant + L L L(O,O,(I"\) Llogb~~t)(Ot) (2.101)
t=1

The constant term can henceforth be removed from the equation of the auxiliary func-

tion, as it will have no influence on the maximisation procedure. The state occupation

probability ,(s)(t) and mixture occupation probability ,~)(t) will now be defined. If S is

the set of all state distributions in the system, and ,(s)(t) is the a posteriori probability

of being in state s at time t given that observation sequence 0 was generated, then

(2.102)

If Ais is the set of all mixture components in state s, then ,~)(t) is the a posteriori

probability of being in mixture component m of state s at time t given that observation

sequence 0 was generated.

1
,~)(t) = L(OI"\) L L L(O, Ot= s, (t = ml"\)

BEe (E'I1o

(s) b(S) ( )(s)(t) Cm m Ot
, " (s)b(s)( )

L."rEs Cr r Ot

(2.103)

(2.104)

Equation 2.101 can now be written as (recall that the constant term has been omitted)

S Ms T

Q("\,~) = L(OI"\) L L L ,~)(t) log [b~)(Ot)]
s=1m=l t=1

1 s Ms T

-2L(01"\) L L L ,~)(t) [nlog (27r)+ log IC~)I + h~)(ot)]
s=1m=l t=1

where

(2.105)

Equation 2.105 represents the furthest specialisation of the auxiliary function (defined by

Equation 2.96) common to the derivations of the treated speaker adaptation methods.

Any further refinement depends on the adaptation method in question, therefore further
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discussion on the auxiliary function and maximisation thereof is suspended until the

relevant MLLR and MLED5 sections. Consult Sections 4.3.2 and 5.3.2 for the MLLR and

MLED auxiliary functions respectively.

2.6 HMM Design for Phoneme Recognition

Completing EM iterations to train an HMM guarantees that a local maximum of the

likelihood function of the HMM given the data will be achieved, but not that that this

maximum will be the global maximum. For this reason, the effectivity of the EM algorithm

is determined in large by the initial values of the HMM as well as constraints placed on

the HMM model.

Ergodic HMMs have a large number of parameters, and the consequent freedom of the

model increases the complexity of the likelihood function - complexity that can greatly

increase the number of ill-suited local maxima. Simply employing an ergodic HMM (refer

to Figure 2.9) to model phonemes will almost certainly result in a poorly estimated model.

A way to avoid poor estimation due to entrapment in local minima is to employ any prior

knowledge of what the model structure should be. This places a relevant constraint on

the EM algorithm and will help to attain higher local maxima.

The sound of a phoneme changes with time, and so the feature vectors form a highly

coherent progression through time. Thus, a desirable characteristic in the HMM will be

that the state progression be forced to be from left to right in the model, making skipping

back to previous states impossible.

Restrictions of the left-to-right HMM may be relaxed somewhat by allowing forward

skips between states. This makes allowances for phonemes that were pronounced faster

than usual, or where the speaker does not pronounce some of the states in the progression.

This thesis's model of choice was a left-ta-right HMM with a skip width of one or more.

Skip width was one for five-state (including beginning and ending null-states) HMMs, and

was increased if the number of states was higher. An example of an eight-state, double

5MAP is not derived in full, though the same auxiliary function is employed when adaptation is

restricted to mean vectors. WP depends on tire maximisation of the above in order to obtain ML

estimates of mean vectors, but not for the derivation of the WP reestimation equations.
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beginning state
(null-state)

ending state
(null-state)

Figure 2.8: An example of an eight-state, left-to-right, double skip width HMM used to

model a phoneme.

beginning state
(null-state)

ending state
(null-state)

Figure 2.9: An example of the HMMs used to model silence.

skip width HMM is depicted in Figure 2.8.

In order to ensure that features are not passed along and bunched up at the penulti-

mate state of the HMM during training, the initial loop-back probability (all for state 1)

is set to 0.7. Transitions to all other states were then set to equal each other.

Phonemes are well modelled by a left-to-right scheme; silence, however, is not. Silence

is for the most part noise, and as such it does not display the same forward progression

of phonic phases as phonemes do. Little is known about the temporal dynamics of noise,

and in the absence of relevant prior knowledge the model of choice reverts to an ergodic

HMM. An example of a typical ergodic model used in this thesis is depicted in Figure 2.9.

The only constraints placed are that the loop-back probability for each state be 0.5 and

all other transitions departing from a state were made equal. Both speech corpora used

for experimental purposes (ISO LET and TIMIT) were high-quality recordings, and most
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of the silence encountered in them would consist of low-power white noise.

Sometimes a great deal of data might well be extracted from the silence sections, for

instance milieu noise (e.g. traffic) recorded when a cellular phone user is not speaking.

Some of the distinctive qualities of this noise could be used to design a more appropriate

HMM structure, and this should improve the recognition of silent sections. Knowing what

parts of a recording consist of silence is important, as observation data for these parts can

be employed for noise cancellation in the spoken sections, resulting in an increase in the

recognition of the spoken sections.

2.7 Reducing the Impact of Local Maxima During

HMM Training

Cranking a randomly initialised HMM through Viterbi or Baum- Welch training algo-

rithms will probably achieve a highly sub-optimal local maximum for the likelihood func-

tion. It is often easier think in terms of the negative log-likelihood function (-log L( DIA)),

where the local maxima of the likelihood function become local minima situated in bowls

in the negative log-likelihood function. Once stuck in a bowl, retraining using the same

data will only cause deeper entrenchment. Using more data (if available) is also unlikely

to make much difference, as it will probably only shift the parameters slightly and remain

in the same bowl, or - if the previous data set was lopsided - the new estimate might

shift the parameters enough to land in a local minimum near the first minimum. Local

minima can gobble up endless amounts of data with little or no improvement in the model

estimate. All that will happen is that a more robust estimate of parameters for a poor

local minima will be achieved. Calculating the likelihood function (or better yet, the

recognition performance) of the HMM for all possible values of all its parameters using

tiny increments for these parameter values is probably the only true protection against

local minima. Such a calculation is not feasible, as even a very small HMM will have a

wealth of parameters, and each of these will have to be stepped through a great number

of fine increments. How big the number and how fine the increments should be is yet

another problem.

One method of defense against local maxima lies in appropriate incorporation of prior
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knowledge into the training procedure, as the prior knowledge can restrain the training to

an area of HMM parameters likely to yield high local maxima for the likelihood function.

Selecting an appropriate model structure (see Section 2.6) is one method of restraining

training to useful regions of the parameter space. This, however, only initialises the

structure of the HMM, and not the parameter values of the underlying state pdfs. How

can those and other parameters effectively be initialised? What should be done if the

model desired is an HMM where the number of Gaussians in each mixture pdf is very

large? Such complex pdfs are not easily initialised by making an educated guess at the

beginning of the training procedure.

The answer lies in breaking the training procedure up into small steps, each step

relying on prior knowledge supplied by the results of the previous step. A simple step-

wise algorithm was designed to address the problem. The algorithm is given below in

pseudocode, after which the design philosophy will be stated (note that the algorithm is

only valid for HMMs with GMM state pdfs).

o for each of the HMM models to be trained

o choose the initial model structure for the HMM, as dictated

by prior knowledge of the problem to model

o choose the type of initial pdf for each of the states

in the HMM.

o choose the number of component pdfs in the mixture

pdf that will eventually be used in each state as the state pdf

The more the data, the more components may be robustly estimated.

ochoose Viterbi or Baum- Welch as a reestimator for the HMM, and

the maximum iterations for it to use during an EM procedure.

o gather all the training utterances for the HMM.

o for each utterance

o make s the number of states that are not null-states.

o segment the feature vectors into s equal-sized chronological

data blocks.

o assign the first segment to the first state, and the following
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segments to their corresponding states.

o for each non-nullstate

o determine the pdf parameters using the ML estimate of

all the data assigned to the state.

(the state pdf parameters have now been robustly initialised, and the state

transition probabilities are taken from the initial model structure.)

o use all utterances, and employ the reestimator

(Viterbi or Baum- Welch) in EM iterations, and train until

convergence or maximum iteration count is reached.

o while the number of mixture components is less than the

desired number of components

<> for each utterance

c given the utterance, determine the state occupation

probability for the new model, and assign feature vectors to

states according to the state occupation probability for the

feature vector sequence.

o increase the number of component pdfs for the

mixture pdf in each state by 1, and let m denote the new number

of pdf components.

o for each state

<> segment the feature vectors assigned to the state into m

parts by using the k-means algorithm.

o using the segmentation of the data, determine the ML estimate of

each of the component pdfs and their weights in the mixture.

o use all utterances, and employ the reestimator

(Viterbi or Baum- Welch) in EM iterations, and train until

convergence or maximum interaction count is reached.

o save the completed model.

As stated previously, when using the EM algorithm, achieving a maximum for the

likelihood function is possible, but this maximum is not guaranteed to be the global
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4 lowest value achievable
using rough segmentation

6 good local

initialising value for EM
algorithm

.\- / .

7 initialising value for EM
algorithm

8 good local minimum3 poor local minimum

•Rough segmentation

Single p.d.f.

Mixture p.d.f.
2 poor initialising value

for the EM algorithm 1global minimum

Model parameters

Figure 2.10: The effect of local minima on training. The dashed curve represents the

negative log-likelihood of the HMM with single Gaussian state pdfs. The red dots on

the curve represent possible parameter values from the rough segmentation of data. The

solid curve represents the negative log-likelihood of the HMM with GMM state pdfs. The

points labelled 1 to 8 represent values of the negative log-likelihood of the two HMMs at

various stages in the algorithmic training process.
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maximum. Performance of the EM algorithm is strongly linked to how well the model

parameters are initialised. The step-wise algorithm used is essentially a set of progressively

finer EM algorithms, each acting as an initialiser for its successor. It is hoped that in

this fashion it is more likely to achieve the global maximum, or at least a higher local

maximum than simply running a Viterbi (or Baum-Welch) EM reestimation of the HMM

blindly.

Figure 2.10 is intended to give a rough idea of what happens when the HMM model

IS trained using progressively finer training iterations. The negative log-likelihood of

the data given the model is plotted, so that the maxima of the likelihood function are

now the minima of the negative log-likelihood function. Such a plot should have been

multidimensional, but a one-dimensional representation was chosen for simplicity's sake.

Point 4 (Figure 2.10) represents the negative log-likelihood for a HMM with single

Gaussian state pdfs when using the simple rough segmentation of the input data. Note

that such a segmentation allows a very restricted range of parameter estimates, so that

we cannot achieve any value on the dashed-dot log-likelihood curve. The dashed-dot

curve represents the entire - log L( 01.\) for the HMM where every non-nullstate has

a single pdf, and no restraints are placed on either the estimation of the pdfs or the

transition probabilities. A complete Viterbi (or Baum- Welch) reestimation of all the

model parameters may be done at this stage. The final continuous curve represents the

-log L(OI.\) function for the final HMM where every non-nullstate has a mixture pdf, no

restraints are placed on the model parameters, and a complete Viterbi (or Baum- Welch)

reestimation of all the model parameters is possible.

In Figure 2.10 the global minimum for the full-complexity model is indicated by 1.

Had the HMM simply been randomly initialised (indicated by 2), training is likely to

yield one of the other local minima (indicated by 3) with parameter values close to the

initialising values of the EM algorithm.

During the first segmentation of the data into chronological blocks and determining

initial ML estimates for the state pdf parameters, the range of values for the parameters

for the HMM model is effectively reduced, and fewer points on the likelihood function are

attainable. As fewer parameter values are available, the likelihood function is effectively

smoothed, resulting in fewer local minima, thereby making it easier to get close to the
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global minimum on the smoothed function. Since the segmentation is very rough, the ML

estimates for the pdfs are relatively robust. The minimum achieved is indicated by 4.

Using the pdfs estimated during the rough segmentation as the initial state pdfs, and

the transition probabilities of the designed desired model structure as the state initial

transition probabilities for the HMM, a few iterations of complete Viterbi reestimations

of the model parameters can now be done. The model initialisation point is indicated

by 5, and the eventual minimum achieved is indicated by 6. The entire curve is lower

than the previous curve, as the model has been allowed more degrees of freedom for

adaptation, and can thus model the observed data more accurately. Unfortunately this

will also increase the complexity of the curve, making the occurrence of local minima

more likely.

More degrees of freedom are now given by increasing the number of mixture compo-

nents for each state from one component to two. More degrees of freedom means that

the -log L( Ol>') will be more complex than before, but also lower than the other curves.

The initial values for the state mixture pdfs ar€ obtained by an ML estimate on the data

segmentation of the previous HMM model, and the initial state transition probabilities

remain the same as for the previous model. In Figure 2.10 the initialisation point IS

indicated by 7, and the subsequent minima obtained after training is indicated by 8.

In this fashion a more robust and accurate estimation of the HMM parameters IS

possible than when the HMM is simply trained using random initialisation of model

parameters. To test the performance of the algorithm, two SI systems were trained. The

first system was trained by using random initialisation and Viterbi reestimation for the

HMMs and the second was trained using the algorithm described in this section. Each SI

system had an HMM for each phoneme in the reduced phoneme set [32] for the TIMIT [39]

corpus. The HMMs had three emitting states and an mixture (diagonal) Gaussian pdfs

with eight mixture components for each state. For the system that was initialised with

random values, the phoneme recognition rate was 66.51%, and for the system that was

trained with our algorithm, the phoneme recognition rate was 67.55%.

Though they were not employed in this thesis, other methods for the avoidance of ill-

suited local minima exist, such as the use of genetic algorithms and simulated annealing

during the training process. These methods are a little more data-driven and rely less on
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prior knowledge. However, good initialisation as supplied by the step-wise algorithm will

narrow the range of parameters through which these algorithms need to search, reducing

training time and locating better minima.
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MAP Adaptation

3.1 Introduction to MAP Adaptation

Maximum a posteriori (MAP) adaptation of HMMs was introduced by Gauvain and

Lee [18]. ML adaptation of HMMs yields poor results for sparse training data. MAP

adaptation makes it possible to include prior information into the estimation process,

thereby making it more suitable for robust estimation of HMM parameters using relatively

sparse data.

MAP adaptation does not adapt parameters for which no data was observed, and

can therefore not compete against the more powerful rapid speaker adaptation techniques

such as CAT, MLLR, MLED and weighted eigen-decomposition. RMP, CAT, MLLR and

especially MLED can still make robust estimates in conditions of extreme data sparseness

due to their data spreading capabilities. Rapid adaptation techniques such as MLLR and

MLED can operate under conditions where data is so sparse that a MAP estimate for a

"seen" parameter (i.e. a parameter for which data was observed) is not robust.

Though it cannot compete with other methods under conditions of extreme data

sparseness, MAP adaptation has many valuable qualities. The computational require-

ments for MAP adaptation are much lower than those required for other adaptation

methods. It also has the advantage that it converges to the ML estimate as the number

of observation vectors tends to infinity, something neither MLED nor MLLR1 can claim.

t MLLR is convergent for the special case where a separate transformation matrix is estimated for each

mean vector. See Appendix B.2
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MAP adaptation is thus useful under conditions where most of the model parameters

are seen and have moderate amounts of data assigned to them.

3.2 Basic MAP Equations

When we train a statistical model, we wish to find the optimal set of model parameters

given the observed data. In other words, we wish to maximise j(OIY) with respect to

0, where 0 represents the set of model parameters, Y is the observed data, and j('IO) is

the pdf associated with Y. j(OIY) is not always a readily obtainable function, and in

Section 2.3.2 it is shown that maximising j(YIO)g(O) is equivalent to maximising j(OIY),

where g(O) is the prior pdf of O. Optimising j(YIO)g(O) with respect to 0 is known as

maximum a posteriori estimation (MAP estimation), and the optimal parameter set OMAP

is found by solving

0MAP = argmax j(YIO)g(O).
B

(3.1 )

Comparing this with the ML estimation equation

OML = argmax j(YIO).
B

(3.2)

ML estimation may be seen as a special case of MAP estimation where a non-informative

prior pdffor 0 has been assumed, i.e. g(O) is constant. When no prior knowledge regarding

the distribution of the parameter set is available, the ML estimate is the right one to

choose; however, when such knowledge is available, it should be incorporated via MAP

estimation in order to make a better estimate.

In order for Equation 3.1 to be employed, three issues must be addressed: the choice of

prior distribution family, the parameter values for the prior densities, and the evaluation

of the MAP estimate.

1. The choice of prior distribution family: As is the case for ML estimation, MAP

estimation is relatively simple if the family of pdfs {j(·IO), 0 E 8} has a sufficient

statistic, t(x) (see Section 2.3.2.1) for O. A sufficient statistic is a real or vector

valued function of the data and contains all the information necessary to estimate

model parameters. If j(xIO) has a sufficient statistic t(x) for 0, it may be factored
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as follows:

f(xIB) = k (Blt(x)) h(x), (3.3)

where h(x) is independent of B, and k (Blt(x)) - known as the kernel density - is

a function of B that depends on x only through the sufficient statistic t(x).

When f(xIB) has a sufficient statistic, the natural solution for the prior pdf is to

choose it from the same conjugate family {k( ·leP),eP E eI>} to which the kernel density

k (Blt(x)) belongs (see Appendix A.l). As h(x) is independent ofB, MAP estimation

may then be performed by maximising k (BIeP)k (Blt(x)) instead of f(xIB)g(B).

2. The specification of parameters for the prior density: According to Gauvain

and Lee [18], the parameters for the prior density may be based on subjective

knowledge of the stochastic process. Alternately, they may be determined by an

empirical Bayes approach whereby the prior parameters are determined directly

from the adaptation data. One problem incurred when using the empirical Bayes

approach, is that the parameters of the prior density add more parameters that

need to be estimated using the limited amount of adaptation data. This problem is

alleviated by constraining the size of the prior family by adding constraints on the

prior parameters, and also by tying of the prior parameters.

3. Evaluation of the MAP estimate: If the complete data is available and a suf-

ficient statistic exists for the problem, then the solution is usually straightforward.

For HMMs, however, the complete data is not known. Fortunately Dempster et

al. [10] proved that the EM algorithm may be applied to MAP estimation, where

the function that is iteratively maximised is R(B, 0), given by

R(B,O) = Q(B, 0) + In g(B), (3.4)

where Q(B, 0) is the auxiliary function defined for ML EM maximisation defined by

Equation 2.50 in Section 2.3.3.

3.3 MAP Adaptation of HMMs

Gauvain and Lee [18] show that the prior density for an HMM may be modelled as the

product of Dirichlet and normál-Wishart densities (see Appendix A.2). The parameters
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of an HMM cannot be simply determined using MAP estimation, as the state sequence

is unknown and the complete data is therefore not available. Thus the EM algorithm

is applied to MAP estimation in order to maximise the parameters. Either the Baum-

Welch or the Viterbi algorithm will be used to obtain the state and mixture occupation

probabilities. All the HMM parameters may be maximised using MAP adaptation, but

as the other adaptation methods treated adapt only the mean vectors, this thesis will

constrain MAP adaptation to adapt only the mean vectors of the Gaussian pdfs in the

HMM.

The reestimation for a mean vector is

(S) (s) ",\",T (s)
-(sj _ Tm Mm +Dt=l Tm Ot
Mm - (s)",\",T (s) ,

Tm + Dt=l Ttn
(3.5)

where s is the state, m is the component number, T$:.) is a parameter originating from the

normal- Wishart prior density for the mixture component m, Ot is the observation vector

for time t, and T~) is the mixture-occupation probability.

Suppose the number of observation vectors goes to infinity. Then

(s) (s).",\",T (s) ",\",T (s)
lim Tm Mm + Dt=l Tm Ot = Dt=l "1m Ot

T-HXJ (s) + ",\",T (s) ",\",T. (s) .
Tm Dt=l Tm Dt=l "[m.

(3.6)

Therefore, as the number of observation vectors goes to infinity, the MAP estimate of the

mean vector converges to the ML estimate for the mean vector.

From Equation 3.5, we see that T$:.) may be interpreted as a confidence measure in the

new estimate. The smaller T$;), the more confidence is placed on the portion of the mean

vector determined by the observed data. The larger T$:.), the more the new estimate relies

on the value of the previous mean vector, M}:"l. Though the empirical Bayes method can

be used to obtain the value of T$:.), T$:.) was determined heuristically. We simply tested

the recognition performance for various T$:.) values and selected the optimal T$:.) value.

Also, all the T~) were set equal, so that a single T was used. This is equivalent to using

the same prior pdf for all the Gaussian pdfs in the HMM.

To summarise: The MAP adaptation of a single mean vector is given by Equation 3.5,

where the mixture occupation probabilities were obtained using either the Baum- Welch

or Viterbi algorithms. As the number of observation vectors approaches infinity, the MAP

estimate converges to the value of the ML estimate for the mean vector. For the case
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of adapting mean vectors, the T parameter from the prior pdf operates as a confidence

measure between the old and new mean vector estimates.

3.4 MAP Algorithm Summary

This is a succinct treatment of implementing the MAP algorithm for the adaptation of

mean vectors in GMMs in HMMs of a speaker speech model. The treatment will proceed

in three steps:

• The algorithm and its prerequisites, divided into online and offline steps.

• Points to bear in mind for general MAP implementations.

• Points to bear in mind specific to the implementation of the algorithm in this thesis.

3.4.1 Algorithm Implementation

The algorithm is split into online and offline steps:

• Offline Steps:

Train an SI model, using a large amount of representative speech data from a

representative set of training speakers. This SI model will form the ini tial model

for each new target speaker for which MAP adaptation is to be performed.

The mean vectors (f.L~)) of the SI model also form part of the prior for !\IlAP

adaptation.

Using a test subset of speakers, determine T;':) values using the empirical Bayes

approach, or through trail and error.

• Online Steps:

Use the Viterbi or Baum-Welch algorithms and the SI model to segment the

adaptation data obtained from the target speaker. From the segmentation, the

following accumulators are obtained:

T

L 'Y~)(t)Ot,
t=l
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and
T

L T~)(t).
t=l

Using the prior mean vectors from the SI model, J1r;,,), the values arising from

the prior pdfs T;;'), and the accumulators computed during the segmentation

of the adaptation data, the new, adapted mean vectors for the target speaker

are computed using
(s) (s) "T (s)

-(sj _ Tm J1m + wt=l Tm Ot
J1m - (s) + "T (s)

Tm wt=l Tm

3.4.2 General Implementation Issues

The following points must be noted regarding the implementation of the MAP algorithm

in general:

• The SI model and the speaker models obtained by MAP adaptation must have the

same structure, i.e. the same number of HMMs, states, Gaussian pdfs in GMMs,

and state transition probability links. This does not mean that the HMMs in a single

speaker model must all be identical, or that HMMs for different speakers must have

identical parameter values, only that the HMMs must have similar structure.

• The prior mean vectors J1r;,,) used during the calculation of the mean vectors are

those of the SI model. If multiple adaptation iterations are used, the same prior

SI mean vectors (J1r;,,)) should be used, and not the mean vectors obtained during

the previous adaptation run. The only aspect that will thus change during multiple

MAP adaptation iterations is the segmentation of the adaptation data, for which

the newest available model is used.

• The treatment in this thesis is only for the MAP adaptation of mean vectors. It

should be noted, however, that MAP adaptation can be used to reestimate all HMM

parameters, and therefore all parameters of a speaker speech model.

3.4.3 Implementation Issues Specific to this Thesis

The following points must be noted regarding the implementation of the MAP algorithm

in this thesis:
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• The adaptation is static, i.e. all of the available adaptation data is gathered before

the model is reestimated. A separate and independent data set is used for testing,

except for some of the experiments on the TIMIT corpus.

• Adaptation is supervised, i.e. the transcription of the adaptation data is known.

• Only the mean vectors are reestimated. Parameters that are not reestimated remain

the same as that of the SI model.

• In order to test the performance of MAP adaptation against MLLR adaptation, the

covariance matrices in the Gaussian pdfs in the speaker speech models are limited

to being diagonal matrices.

• When multiple adaptation iterations were used, the prior mean vectors 11~) were

taken from the mean vectors of the previous model. Strictly speaking, the prior

mean vectors for MAP adaptation should always remain those of the SI model.

3.5 Strengths and Weaknesses of MAP

Two strengths of MAP adaptation are: convergence to the ML estimate as the number

of observation vectors goes to infinity, and low computational requirements.

A detailed deduction of the computational requirements of several adaptation methods

may be found in [51]. Assume that a speaker model consists of H HMMs (each repre-

senting a phoneme), S states per HMM and lVI mixture components per state and n-

dimensional observation vectors. Further, assume that each observation is T frames long,

and that P is the number of phonemes observed. The computational requirements for

segmentation and determining the accumulators are 0 ((SM)2T) in time and O(HSMn)

in memory. The computational requirements of MAP - excluding the Baum- Welch or

Viterbi segmentation and determination of accumulators - are then approximately [51]:

• Memory: O(HSMn)

• Computations: 0 (SM(SMT + Pn))

The cost of segmentation and determining the accumulators is not included, as it is a cost

shared by all the treated adaptation methods.
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Most weaknesses of MAP adaptation result from the requirement that each param-

eter must be estimated using only the seen observation data for that parameter. Two

weaknesses resulting from this requirement are:

• MAP is unable to adapt parameters for which no data was observed. Other adap-

tation methods such as MLED and MLLR have the ability to adapt all the HMM

mean vectors using a small number of observations for a few mean vectors .

• Dimension reduction of the speaker model and the pooling of observed data go hand

in hand. MAP does not reduce the dimension of the model, and therefore does not

pool all the observed data. MLLR pools the observed data for a group of mean

vectors, and reduces the dimension of the parameters to be adapted by estimating a

single transform for all mean vectors in the group. MLED pools the observed data

for the entire speaker model, and adapts all model parameters using the pooled data

in a lower-dimensional space. Due to the dimension reduction capabilities of MLLR

and MLED, these methods require much less adaptation data to generate robust

estimates than MAP adaptation would.

The weaknesses of MAP make it an inappropriate choice when the amount of avail-

able adaptation data is very little. The strengths, however, make it an excellent post-

adaptation method of increasing recognition performance of those parameters for which

adequate amounts of data were observed. For instance, MLLR or lVILED may be applied

as a rapid speaker adaptation method, making a rough but robust estimate for the new

speaker model. The computationally light MAP is then used on the MLLR of MLED

estimate to form finer estimates of those mean vectors for which enough adaptation data

were observed.
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MLLR Adaptation

4.1 Introduction to the MLLR Adaptation Approach

Maximum likelihood linear regression (MLLR) adaptation is a popular and widely used

rapid speaker adaptation technique. So much so that MLLR using global clustering is

often used as a benchmark for other speaker adaptation methods.

Much research has been done since its introduction in 1995 by C.J. Leggetter and P.C.

Woodland [34, 33], and now several more flexible MLLR-derived techniques are available

[15] as well as more extensive clustering methods [17, 23] for the original MLLR method.

MLLR focuses on the adaptation of CDHMMs with GMM (including single Gaussian)

state pdfs, where each Gaussian has a diagonal covariance matrix. Only the mean vectors

of the Gaussian distributions are reestimated in MLLR adaptation, and all other model

parameters remain fixed. Adaptation is realised by grouping (or clustering) a set of

mean vectors together, estimating an optimal linear transformation for the group from

adaptation data, and then applying the same linear transform to each of these mean

vectors to form the new estimate for each of them. Several clusters may be used, and

each mean vector will be adapted using only the linear transformation estimated for the

cluster it was assigned to. This thesis will refer to these clusters as regression classes.

The parameter reduction inherent in the tying of the mean vectors has the effect of

pooling together the data observed for a set of Gaussian distributions, allowing for robust

estimates when observation data is scarce. Another benefit of this form of parameter

reduction is that adaptation of distributions for which no data were observed is made
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possible, as the mean vectors of these dataless distributions may be adapted using the

linear transformation estimated from the data observed for the other distributions in the

regression class. This last advantage distinguishes MLLR as a rapid speaker adaptation

technique, because the ability to adapt distributions for which there were no observed

data is not a trait that simple adaptation techniques such as ML and MAP exhibit.

4.2 Basic MLLR Adaptation Equations

As previously stated, the speaker model to be adapted consists of an HMM with mixture

Gaussian state probability density functions, and the only parameters MLLR adapts are

the mean vectors of the Gaussian models in the speaker model.

For the first MLLR adaptation iteration, the pre-adaptation model is the SI model.

Each of the pre-adaptation Gaussian pdfs is given by

(4.1)

where ti is the feature vector dimension, s is the state in the HMM, m is the mixture

component of the GMM pdf for s, Cg) is the covariance matrix, f-L;:"_) is the mean vector

and 0 is the feature vector.

MLLR assumes that mean vectors may be grouped into regression classes, and that a

new estimate p,;:"_) for a mean vector may be formed by applying a linear transformation

estimated for its regression class to the initial mean vector, f-L;:"_). Thus

t/(S) = T. I/(s) + b
t+m. afA'm 0, (4.2)

where Ta is a matrix and bo is an offset vector calculated for the regression class to which

f-L;:"_lbelongs. To performs rotation and scaling of the original mean vector, and bo adds

an offset to map the mean vector of the initial model to a mean vector for the new target

speaker model.

An alternate representation of Equation 4.2 is possible if extended mean vectors are

used.! An extended mean vector ~g)is created by prepending an offset term, w, to the

IThe alternative representation makes for greater ease during the derivation of the optimal linear

transformations.
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current mean vector. Therefore ~~) is given by

~~)= [ ~~)]

To complete the linear transformation of the original mean vector, the extended mean

(4.3)

vector is multiplied by a transformation matrix Wa.

r,(s) = W ds)
r+rri a<'m (4.4)

where p,~) is the (n) x 1 adapted mean vector, Wa is the n x (n+ 1) transformation matrix

and ~~) is the (n + 1) x 1 extended mean vector. It should be noted that the first column

of Wa represents the offset vector ba that will be added to the original mean vector, and

the remaining columns represent the rotation and scaling transform Aa of the original

mean vector. If we wish an offset to be included in the regression, then w = 1; if not,

then w = O.

Thus, after adaptation the Gaussian pdf will be:

b(s)(o) = 1 e-Ho-Wa~~))'C~)-l(o-wQá!))
m (27ft/2IC~)11/2

A total of A regression classes are used to adapt the mean vectors of the speaker model,

(4.5)

and for each of these regression classes a single transformation matrix is estimated. There

are thus A transformation matrices, Wa, where (Y represents a regression class the trans-

formation matrix belongs to and (Y E {I ... A}. Each mean vector is assigned to one

regression class exclusively, and will be transformed using the transformation matrix es-

timated for this regression class. The following section will treat the maximum likelihood

estimation of these transformation matrices given an observed data sequence and the

current model parameters.

4.3 Determining the Transformation Matrices for MLLR

Adaptation

The following deduction is for the determination of a transformation matrix where the

speaker model to adapt is a single HMM with mixture Gaussian state pdfs. At the end

of the discussion it will be shown how the results are easily extended for the case where

a speaker model consists of several HMMs.
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4.3.1 Defining the Auxiliary Function

This section will briefly review the topics treated in Sections 2.5.1 and 2.5.2: reestimation

of model parameters in a maximum likelihood framework, the likelihood function to be

maximised, and the auxiliary function that may be maximised instead of the likelihood

function. To estimate the best set of transformation matrices for MLLR adaptation, it

is necessary to maximise the likelihood of the observed data given the model parameters,

L(OI),). L(OI),) is given by Equation 2.94, which is restated here for convenience:

L(OI),) = L L L(O, e, (I),),
eEG (EW8

(4.6)

where We is the set of all possible mixture component sequences given the state sequence

e, and ( is a mixture component sequence in We.

An auxiliary function may be defined such that parameters that maximise it will also

increase the value of the likelihood function L(OI),). This auxiliary function Q(),I~) is

given by

Q(),,~) =L L L(O, B, (I),) log [L(O, e, (I~)].
eEG (Ew8

(4.7)

L(OI),) may now be maximised by iteratively maximising Q(),I~) and updating the model

parameters with the reestimated model parameters, ),.

When the auxiliary function was expanded, it was found that some of the terms were

constant, and thus would play no part in the maximisation of the auxiliary function. The

expanded auxiliary function with constant terms removed is given by Equation 2.105. It

is this function that will be maximised with respect to the transformation matrices (Wo,

where ex E {1 ... A}), and it is restated here for convenience

1 s Ms T

Q(),,~) = -2L(01),)LLL'Y~)(t) [nlog(27r)+logIC~)I+h~)(Ot)J, (4.8)
8=1 m=1 t=1

where

(Ot - (1~))' C~)-1 (Ot - (1~))

(Ot - Wa~~))' C~)-l (Ot - Wa~~)) .

(4.9)
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4.3.2 Maximising the Auxiliary Function Q()"'~) with Respect

to the Transformation Matrix Wa

The auxiliary equation as it appears in Equation 4.8 must be maximised with respect

to the transformation matrices in order to increase the value of the objective function

L(OI).). Note that there are no terms in the auxiliary function that contain more than

one regression matrix, and that the regression matrices are independent of one another

(g:; = 0, i =I- j), so that the auxiliary function can be maximised separately for each of

the transformation matrices.

1 a s MB T

--L(OI).)~ L L L I~)(t) [nlog (27r)+ log IC~)I + h~)(ot)]
2 uWa s=1 m=1 t=l

-~L(OI'\) t~t 1'~)(t) [iJ!,. h~)(o,) 1
1 S MB T

-2L(01).) L L L I~)(t) [-2C~)-1 [Ot - Wa~~)] ~~)I]
s=1 m=1 t=1

S MB T

L(OI).) L L L 1~)(t)C~)-1 [Ot - Wa~~)] ~~)I. (4.10)
s=1 m=1 t=l

For a more detailed discussion of determining the derivative of h~) (Ot) with respect to

Wa, see Section B.l. To maximise the auxiliary function with respect to Wa, the result of

the differentiation is now set to zero. If the mean vector of h~) (Ot) is tied to a regression

matrix other than Wa, it will become zero after differentiation. We can thus change the

summation over Sand M, to a summation over Ra, where Ra is the set of all pdfs with

mean vectors f-L~) tied to regression matrix T-l1a.

o
T

L(OI).) L L 1~)(t)C~)-1 [Ot - Wa~~)] ~~)I

(s,m)ER" t=1

o. (4.11)

Therefore
TL L 1~)(t)C~)-10t~~)1

(s,m)ERo t=l

z

TL L 1~)(t)C~)-1Wa~~)~~)I.
(s,m)ER" t=l

y.

(4.12)

(4.13)
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It should be noted that there is no closed form solution for Wa unless all the covariance

matrices are diagonal." The right side of Equation 4.12 will now be represented by matrix

Y, and the left side by Z. Furthermore, two other matrices, Vand D, will be introduced:

T

V~s) =L = ,~)(t)C~)-l
t=l

(4.14)

(an n x ti diagonal matrix) and

D(S) = c(s)c(s)'
m "m "m (4.15)

an (n + 1) x (n + 1) matrix. Now the ti x (n + 1) matrix Y is given by

Y= (4.16)
(s,m)ER"

If we denote the individual elements of Y, V~s), W and D~) by Yij, v~,m), Wij and d~;,m),

respectively, then

n n-l-I

Yij =LLwpq
p=l q=l

[
'" (s,m) d(s.'m)]~ vzp qJ

(s,m)ER"

(4.17)

Since D~) is symmetric and the covariance matrices are diagonal,

{

'" (s,m) d(s,m)
'" (s,m)d(s,m) = LJ(s,m)ER" Vii jqc: Vzp qJ

(s,m)ER" 0

when i = P

when i"# p
(4.18)

If the elements of an (n + 1) x (n + 1) matrix C(i) ate given by

g(i) =
Jq

'" (s,m)d(s,m)c: Vii jq (4.19)
(s,m)ER"

the elements of Y are may be expressed as

n+l

Y - '" W g(i) - Zij - ~ iq jq - ij

q=l

(4.20)

where Zij are the individual elements of Z.

2Although MLLR has a closed form solution for the optimal transformation matrices HI only when the

models have diagonal covariance matrices, Gales [15] shows how EM can be used to iteratively determine

transformation matrices for models with non-diagonal covariance matrices.
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Since the elements of both Zand G(i) can be computed using only the model parame-

ters and observations, they are not dependent on Wo. Thus Wo can be computed by the

set of equations

(4.21)

where io, and z, are the i-th rows of Wo and Z respectively. The equations can be solved

row by row using Gaussian elimination. One interesting point seen from the derivations

is that MLLR reduces to simple ML reestimation of the mean vectors for the case when

the occupancy of each regression class consists of one mean vector (see Appendix B.2) .

Extending the results to the case where a speaker model consists of various HMl\IIs

IS straightforward. All of these separate HMMs can be seen as segments of an all-

encompassing HMM model for the speaker. During supervised adaptation the HMM

modelling the observation sequence is known, and in unsupervised adaptation the obser-

vation is assigned to the HMM most likely to have generated the observation sequence.

In the all-encompassing HMM this means that the state occupation probabilities for indi-

vidual HMMs to which the observation sequence is not assigned are zero. From Equation

4.11, Ro now includes mean vectors from different HMMs. Any summation over Ro,

(4.22)
(s,m)ERa

from Equation 4.11 to the final solution in Equation 4.21 is replaced by the summation

(4.23)
(h,s,m)ERa

where h is an HMM model in the set of HMM models for the speaker.

Attention should be paid to the implications of Equations 4.15 and 4.19. Each G(i)

matrix is formed by a weighted sum of vectors multiplied by their transpose. Therefore,

if the number of vectors (the extended mean vectors) used in the creation of c» is

less than the dimension of the extended mean vectors, c» will be rank deficient and

therefore not invertable. Even if the number of vectors is greater than the dimension of the

vectors, the matrix G(i) could have a high condition number, which will result in numerical

instability during the inversion process. Leggetter [33] suggests using the Moore-Penrose

pseudo-inverse, but the experiments conducted in this thesis showed that it was better not
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to perform adaptation at all than to perform adaptation using transformation matrices

calculated from a pseudo-inverse. With the above in mind, a regression class should

always have more mean vectors assigned to it than the dimension of an extended mean

vector. Also, the number of mean vectors to which adaptation data were assigned should

be checked, so that no inversion of a rank deficient G(i) is attempted. Even though it is

expensive, it is wise to check the condition numbers of the G(i) matrices during MLLR

adaptation, especially when the regression classes have few mean vectors assigned to them

(as is the case with systems employing HMMs with few states and few pdfs), or when the

amount of adaptation data is very little.

4.4 The Choice of Regression Classes

A very important factor in successfully employing MLLR adaptation is selecting suitable

regression classes. MLLR adaptation is limited by the assumptions on which it is based.

Since it is implied that all the mean vectors in a regression class may be optimally adapted

using the same linear transform, we must attempt to form regression classes of mean

vectors that conform to this assumption.

If adaptation data is relatively scarce, using a few large regression classes (where each

regression class contains many mean vectors) is preferable to using a large number of small

regression classes (where each regression class contains a small number of mean vectors).

This is because the adaptation data available for each regression class is pooled, and large

regression classes will have a greater amount of pooled adaptation data with which to

estimate the transformation matrices than small regression classes. The more data are

available for a transformation matrix estimate, the more robust the estimate will be.

Choosing a greater number of finer regression classes containing only a few mean

vectors each, will necessitate the estimation of more transformation matrices using the

same amount of data. Using more regression matrices will increase the likelihood of

the speaker model, up to the point where one regression class is used for every mean

vector, when the MLLR estimate reduces to the ML estimate. Provided sufficient data is

available for the robust estimation of these transformation matrices, a decrease in error

rate is expected. However, if too little pooled data is available for robust estimates of
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Figure 4.1: An example of a regression class tree.

transformations, then results will be poor.

Normally, the speech to be modelled consists of a finite set of phonemes or words.

Phonetic relationships between the phonemes or words may be exploited in order to

cluster mean vectors of similar phonemes or words together. It is hoped that similar-

sounding phonemes will undergo similar transformations for a new speaker. The amount

of adaptation data available will probably not be known, so the amount of regression

classes that can be robustly estimated will not be known a priori. To remedy this,

regression class trees are used.

4.4.1 Regression Class Trees

Any tree T may be implemented, where the tree is a hierarchy of regression classes. In

the tree in Figure 4.1 are regression classes {Rl' R2' R3}, each of which is made up of base

classes {B4' B5, B6, B7}' These base classes could also be regression classes. As using finer

regression classes will bring the estimate closer to that of the ML estimate, it is desirable to

use regression classes as far down the tree as robust estimation will allow. A simple method

to decide how far down the tree to go is by using an empirically determined minimum

number of observation vectors for robust estimation. Such a procedure is described in the
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following recursive algorithm (Gales [17]). Beginning at the top of the tree:

o if parent node P has sufficient pooled data

o for all children C of P

o if child of C has sufficient pooled data

o if child of C is leaf node

o estimate transformation matrix for C.

o adapt mean vectors associated with C using

transformation matrix estimated for C.

o else

o apply the recursive algorithm using child C as new

parent node.

o else

o let P be regression class for mean vectors in C.

o if one or more child nodes of P had insufficient pooled data

o estimate transformation matrix for P using pooled data of

all child nodes in P.

o apply transformation matrix associated with P on mean vectors of child

nodes that were not adapted due to insufficient data.

Using a regression class tree, it is p-ossible to robustly adapt finer regression classes

that have sufficient data, and also to adapt regression classes that have little or no data by

using transformation matrices estimated for their parent class. Empirically determining a

good threshold for sufficient adaptation data is not a pleasing method, and more elegant

methods have been proposed by Gales [23, 17].

Assigning mean vectors to regression classes in the regression tree can be done by

one of two methods: using phonetic knowledge of the speech corpus, or by clustering

algorithms.

Tying using phonetic knowledge. This requires human expertise to form regression

classes based on phonetic relationships in the speech. Drawbacks are that such
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knowledge might not be available and that every new speech corpus will need a

different expert phonetic clustering.

Tying by clustering algorithms. Generally this is done by clustering data according

to proximity in acoustic space using some form of distance measure, or by iteratively

determining the tying structure that will give the maximum for the sum of auxiliary

functions (as defined in Equation 2.99) for various training speakers. Some more

advanced methods even take into account the adaptation data available for the

speaker model to be adapted. Clustering algorithms have the advantage that they

are data-driven and require no phonetic knowledge input. However, more code must

be generated, and a greater amount of off-line pre-adaptation computations must

be done than would be the case for phonetic assignment.

It has been shown [33, 17] that very few clustering algorithms outperform the phonetic

method for small problems. For the relatively small ISO LET database, the phonetic

approach devised by P. Nguyen [40] was considered appropriate.

4.4.2 Choosing Regression Classes According to Phonetic Knowl-

edge

There is a myriad of ways to form regression classes for a speaker model given phonetic

knowledge of the system. Below are a few methods from rougher to finer granularity:

Global tying. All the mean vectors in the speaker model are grouped into a single

regression class and adapted using the same transformation matrix.

Tying similar HMMs. The mean vectors of HMMs representing phonetically similar

phonemes in the speaker model are grouped together.

Tying by HMM. All the mean vectors of an HMM representing a phoneme in the

speaker model are grouped in the same regression class. This could be done if

there are enough data to update the phoneme regardless of other phonemes, but

not enough data to update the states of the phoneme separately. It is assumed that

all the states in the phoneme will undergo approximately the same transformation.
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Tying states in similar HMMs. This is the tying of similar phonemes in a state-

by-state fashion. Mean vectors in the same state of various HMMs are tied. Thus,

beginning and ending states of HMMs modelling similar phonemes tied. This offers

differentiation between the transformations of different states for phonemes where

states are likely to undergo dissimilar transformations.

Various other assignments might also be employed if the recognition problem warrants it.

Care should be taken when creating a regression class tree from the regression classes to

ensure that similar child nodes combine to form a parent node.

4.4.3 Assigning Regression Classes Using Clustering Algorithms

The following clustering schemes will be briefly discussed: acoustic proximity cluster-

ing and several optimal clustering methods as proposed by Gales [17] and Johnson and

Woodland [23].

4.4.3.1 Acoustic Distance Clustering

The training data of many speakers are used. Data is segmented, and one of several

distance metries may be used (X and Y represent data segments). Johnson and Woodland

[23] suggested the use of the arithmetic harmonic sphericity distance measure or the

Gaussian divergence distance measure:

Arithmetic Harmonic Sphericity (AHS) [5]

(4.24)

Gaussian Divergence

d(X, Y) O.5tr(C;lCy + C;;lCx - 21)

+ O.5(/-Lx - /-Ly)'(C;l + C;;l)(/-Lx - /-Ly)

(4.25)

(4.26)

where Cx is a diagonal covariance matrix and /-Lx is a mean vector of a data segment.

Leggetter [33] made use of the Gaussian divergence measure, as well as the likelihood

measure: a measure of the similarity between distributions." When D distributions are

3The likelihood measure is also used in model decision tree building for clustering of distributions

[33,44]
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merged to produce a single distribution e, the change in likelihood 6[, or likelihood measure

is given by

JL = (~~ In(ICdl)t 'l'd(t)) - (~ln(IC,1) t 7,(t)) (4.27)

where 'Yd(t) is the probability of being in state d at time t, and 'Ye(t) is the probability

of being in the group of states e at time t. For more on these distance measures refer to

Appendix B.3.

A binary split procedure can now be used to cluster the mean vectors using either

of the above distance measures. Alternately a more flexible top-down split-and-merge

clustering method may be used [23]. In this method an initial assignment of mean vectors

is made to child nodes in the regression class tree. Segments are then moved between

the child nodes to decrease the distance. Splitting continues until an empirical minimum

occupancy for a regression class is reached. A merging procedure now follows during which

similar child nodes are combined. Johnson and Woodland [23] also propose a method for

re-assignment of segments to nodes using a direct maximisation of the log likelihood of the

data, given the MLLR adaptation scheme. The recognition results for both the distance

measure and the direct maximisation were of the same order.

4.4.3.2 Optimal Assignment to Regression Classes

Neither using phonetic knowledge to create a regression class tree, nor using acoustic

distance methods are necessarily optimal. This paragraph focuses mostly on the work

of Gales [17], who proposed several methods that are optimal in their assignment of

regression classes. The assignment here is "optimal" in the sense that it maximises the

likelihood of the data given the MLLR-estimated transformation matrices. An optimal

assignment of a regression tree (T) can be described by:

(4.28)

where

Q(X)p.., ~IT) = constant
1 s M. T

- 2L(OIA) L L L I~) (t) [n log (27f)+ log IC~)I+ h~) (Ot)]
8=1 m=1 t=1

(4.29)
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and {X = LX} is a set of all the speakers available in the tree-building process. It is

possible to make the splitting in the tree locally optimal, as this method only guarantees

a local maximum auxiliary function. Using this strategy, a fixed regression tree can be

obtained using tree-building data from several training speakers. The regression tree can

also by built using only the using the adaptation data for the speaker or speakers to be

adapted.

Optimal Assignment of Hard Clustering: Hard clustering is the normal use of

MLLR, where a mean vector is adapted using one transformation matrix estimated for a

regression class. A set of regression classes (typically obtained from acoustic clustering

methods) is assumed and transformation matrices are obtained. Base classes are then

assigned to the regression class that maximises its auxiliary function. If a base class has

been reassigned to another regression class, the transformation matrices are reestimated

using the new clustering, and the process is repeated. The process can be iterated a fixed

number of times, or until no base class swaps to a different regression class.

Optimal Assignment of Fuzzy Clustering: Fuzzy clustering makes use of a

weighted sum of transformation matrices to adapt a mean vector. This makes it pos-

sible to tie a mean vector to more than one regression class. The transformation for a

mean vector is now given by:

(4.30)

For a given set of weights, transformation matrices can be estimated, which in turn can be

used to reestimate the weight vectors [17]. The process of maximising the auxiliary func-

tion with respect to the transformation vectors, and then maximising the new auxiliary

function with respect to the weights is an iterative method of maximising the likelihood

of the tree-building data given the model. Fuzzy clustering is thus an optimal and soft

clustering method of assigning base classes to regression classes. As fuzzy clustering has

many more parameters to adapt than hard clustering, the degrees of freedom in the adap-

tation may be lessened by constraining the base classes to belong to certain regression

classes only.
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Stopping Criterion for Optimal Tree-building Methods: If the regression

classes are not fixed when adaptation is done, a stopping criterion is necessary to en-

sure the generation of robustly estimated transformation matrices. As previously stated,

this can be done by empirically determining a minimum number of observation vectors

necessary to robustly estimate a transformation matrix for a regression class. Alterna-

tively, non-empirical methods (cross-validation or iterative MLLR) that take into account

the available adaptation data have been suggested by Gales [17].

Performance of Various Regression Tree Building Schemes: Previous re-

search has shown that similar results are obtained through phonetic clustering and acous-

tic distance clustering. The only deciding factors here is whether or not phonetic knowl-

edge is available and whether or not it is viable to generate code to perform an acoustic

distance clustering.

Optimal methods for assigning base classes to regression classes would suggest a de-

crease in error rate. However, even though the optimal methods may increase the like-

lihood of the adaptation data considerably, it does not always coincide with a similar

decrease in error rate. In some cases the letter error rate becomes even higher. This

indicates that clustering schemes maximising the likelihood of the adaptation data using

an MLLR scheme may increase the likelihood of the model, but that this does not bear a

direct relationship to the error rate.

Gales showed that only the stopping criterion associated with the iterative MLLR

method resulted in a lower error rate as compared to an empirically determined stopping

criterion.

4.5 MLLR Algorithm Summary

This is a succinct treatment of implementing the MLLR algorithm for the adaptation of

mean vectors in GMMs in HMMs of a speaker speech model. The treatment will proceed

in three steps:

• The algorithm and its prerequisites, divided into online and offline steps .

• Points to bear in mind for general MLLR implementations.
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• Points to bear in mind specific to the implementation of the algorithm in this thesis.

4.5.1 Algorithm Implementation

The algorithm is split into online and offline steps:

• Offline Steps:

Train an SI model, using a large amount of representative speech data from a

representative set of training speakers. This SI model will form the initial model

for each new target speaker for which MLLR adaptation is to be performed.

Assign mean vectors to base regression classes, and create a regression class

tree. This is accomplished using any of the methods discussed in 4.4. For this

thesis, phonetic knowledge was used to assign mean vectors to base regression

classes, and to combine these base regression classes into a regression class tree.

• Online Steps:

Use the Viterbi or Baum-Welch algorithms and the SI model to segment the

adaptation data obtained from the target speaker. From the segmentation, the

following accumulators are obtained:

T

L ')'~)(t)Ot,
t=l

and

Given the data segmentation, the regression class tree can be altered according

to the amount of seen data for each node in the regression class. More com-

plex methods methods can also be used to optimise the regression classes and

regression class tree for the observed adaptation data.

Determine the transformation matrix Wa: for each regression class for which

there was enough observed data. This is accomplished in three steps for each

regression class: one, compute matrix Z using Equation 4.12, two, compute
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the G-matrices using Equations 4.14, 4.15 and 4.19, and three, solve each row

of Wa using Equation 4.21 :

The extended mean vectors (i.e. a mean vector with a one or a zero prepended

to it, as in Equation 4.3) from the previous model (this is the SI model for the

first training iteration), ~g),are transformed by the transformation matrix to

which they were assigned to form the new estimate:

rl(S) = W ds)
r+m. a<'m .

4.5.2 General Implementation Issues

The following points must be noted regarding the implementation of the MLLR algorithm

in general:

• The SI model and the speaker models obtained by MLLR adaptation must have the

same structure, i.e. the same number of HMMs, states, Gaussian pdfs in GMMs,

and state transition probability links. This does not mean that the HMMs in a single

speaker model must all be identical, or that HMMs for different speakers must have

identical parameter values, only that the HMMs must have similar structure.

• The prior mean vectors p}:,_) used during the calculation of the new mean vectors are

those of the SI model for the first MLLR iteration. If multiple adaptation iterations

are used, the prior mean vectors are those trained during the previous adaptation

run. Both the prior speech model and the data segmentation is thus different for

each MLLR iteration.

• MLLR in its simplest form can only be used for the adaptation of mean vectors.

Parameters that are not part of mean vectors are not adapted, and remain the same

as those in the initial SI model.

• For a closed form solution of the transformation matrices, the covariance matrices of

the Gaussian pdfs in the speaker speech models must be diagonal. If full covariance

matrices are desired, more complex methods involving the EM algorithm have to

be used to determine the transformation matrices.
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• Enough mean vectors must be assigned to regression classes to prevent numerical in-

stability. Numerical instability could also result if too small an amount of adaptation

data is used to determine a regression class transformation matrix. It is therefore a

good idea to check condition numbers during the calculation of the transformation

matrices to prevent adaptation with poorly estimated transformation matrices.

4.5.3 Implementation Issues Specific to this Thesis

The following points must be noted regarding the implementation of the MLLR algorithm

in this thesis:

• The adaptation is static, i.e. all of the available adaptation data is gathered before

the model is reestimated. A separate and independent data set is used for testing,

except for some of the experiments on the TIMIT corpus.

• Adaptation is supervised, i.e. the transcription of the adaptation data is known.

• Only the mean vectors are reestimated. Parameters that are not reestimated remain

the same as that of the SI model.

• The regression class tree is determined from phonetic knowledge.

• Transformation matrices are only estimated for nodes in the regression class tree

for which there were enough observed data. Mean vectors are adapted by the trans-

formation matrix of their node (or the node closest to their node) in the regression

class tree, or, if no regression matrix was estimated for any of the parent nodes of

the base regression class of the mean vector, the mean vector is not adapted and

remains the same.

4.6 Strengths and Weaknesses of MLLR

Every adaptation method has its pros and cons. These arise from the base assumptions

of the method, implications of the underlying equations, computational aspects or the

interaction of the adaptation method with the specific speech modelling problem. In this

section the good and bad points regarding MLLR adaptation will be examined.
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One of the base assumptions is that the mean vectors tied to the same regression class

undergo a similar transformation when adaptation is performed for a new speaker. This

assumption is a dual-edged sword. Firstly it affords MLLR a method to adapt parameters

for which no data was observed, making it a powerful adaptation method. On the other

hand, correctly clustering mean vectors is not an easily addressed problem.

When assigning mean vectors to a cluster, how similar must their behaviour be for the

cluster transformation to be valid? For a global regression class covering a wide scope of

mean vectors, the single linear transformation will tend to capture an average translation,

scaling and rotation for the mean vectors. When adapting for a new speaker, such a broad

similarity would be displayed for most of the mean vectors, and adaptation is likely to

yield good results. For a finer regression class covering a narrow scope of mean vectors,

the chance is greater that there is no broad linear transformation similarity among them.

Thus, when using smaller regression clusters, the similarities between mean vectors must

be much greater for estimation of a valid transformation. To summarise: If regression

classes do not bind mean vectors that are expected to undergo a similar transformation,

then adaptation will be poor, and the degree to which their behaviour must be similar is

dependent on the number and scope of mean vectors assigned to the regression class.

Robust estimation of parameters is another issue related to MLLR performance, and

the amount of data needed for robust estimation depends as much on the specific MLLR

clustering scheme as on the amount of adaptation data available. The issues of clustering

and robust estimation were treated in Section 4.4.

Another problem area for MLLR adaptation that depends on the clustering scheme

as well as on the expected data of the speech recognition task, is the "balance" of the

regression tree. A regression class tree will be balanced when the data available to estimate

the transformation matrix is evenly spread over the mean vectors in that regression class.

An unbalance in a regression tree is either due to poor tree design, or due to a highly

uneven spread of observed data for the model. These problems are closely linked, as both

have to do with the expected amount of observation data for the nodes in the regression

tree.

For instance, assume a regression class tree has been built on phonetic knowledge of

an expected data set. A certain node P in this tree consists of two child nodes A and E,
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where A is the set of all phonemes with an a-like sound, and E is a set of all phonemes with

an e-like sound. If the number of a-like sounds are much larger than the amount of e-like

sounds, the tree has a designed imbalance. Should an even amount of data be available

for all sounds, the following situation may occur: the A node has enough adaptation data

and the mean vectors assigned to it are transformed. The E node, however, does not have

enough adaptation data for robust estimation, and the mean vectors assigned to it are

transformed by the transformation matrix of parent P. P uses both the data for the A

and E nodes to form the transformation matrix. Most of the adaptation data emanates

from the a-like sounds, and so an an a-like transformation will be forced on e-like sounds,

resulting in poor adaptation.

An imbalance like the above may have been tailored into the tree if the small E set is

expected to have many observed instances for the e-like sounds as opposed to a larger A

set with fewer observed instances of a-like phonemes. The structural "imbalance" in the

tree is used here to compensate for the expected data imbalance resulting from the more

commonly found e-like sounds in the adaptation data. There are many ways in which an

imbalance can occur, all of them resulting in a transformation unduly favouring a set of

mean vectors at the expense of another set of mean vectors. The adaptation data that

will be expected will thus have a great effect on choosing the regression tree in order to

avoid any major imbalances.

Furthermore, MLLR is prone to numerical instability when very small amounts of

adaptation data are available. It is therefore wise to check condition numbers when

MLLR is to be used under such conditions.

Finally, we state the computational requirements fot MLLR.4 Assume that a speaker

model consists of H HMMs (each representing a phoneme), S states per HMM and M mix-

ture components per state and n-dimensional observation vectors. Furthermore, assume

that there are A regression classes, and that each applies to H~M states. If each obser-

vation is T frames long, and P is the number of phonemes observed, the computational

requirements for MLLR adaptation (excluding the Baum- Welch or Viterbi segmentation

and determination of accumulators) are then approximately [51]:

4Note that the computational requirements for the initial Baum- Welch or Viterbi segmentation is not

included.
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• Memory: O(HSMn3)

• Computations: 0 (SM(SMT + H An2)) + 0 (An4)

These requirements are greater than those required for MAP adaptation. The more

regression classes are used, the greater the computational requirements become.
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Chapter 5

MLED Adaptation

5.1 Introduction to Eigenvoice Decomposition

Maximum likelihood eigenvoice decomposition (MLED) [28, 40] is a rapid speaker adap-

tation technique inspired by the use of eigenfaces in human face recognition [25].

In facial recognition, the eigenvectors obtained via PCA (principal component analy-

ses, also known as the Karhunen-Loeve transform) of a set of training faces are termed

"eigenfaces". A weighted sum of these orthogonal eigenfaces can then be used to repre-

sent a human face. Generally, very few of these eigenfaces are necessary to represent a

face adequately for recognition purposes, and the resulting dimensional reduction of the

recognition problem is normally quite phenomenal.

Kuhn et al. [27] postulated that if this concept could be applied to the family of

patterns composed of human faces, then the same could be done for human speech. The

use of an eigenspace essentially assumes that the inter-speaker variability in a set of SD

models may be modelled in a space with lower dimension than the space spanned by the

parameters of the original SD models. The first step in creating an eigenspace for speech

models entails the creation of well-trained SD models for many individuals. For each SD

model in the set, a representative "supervector" is created. A supervector is created by

stringing the relevant parameters - i.e. those parameters to be represented and adapted

in an eigenspace - of an SD model together in a single vector. Eigenvectors (of the

same dimension as the supervectors), referred to as eigenvoices, are then extracted from

the set of SD superveetors via PCA. The dominant eigenvoices - those with the largest
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ML estimate in the original space
/

/

I

ML estimate in the eigenspace

Projection of ML estimate onto eigenvoice el

Figure 5.l: A simplified representation of the projection of the Ml. estimate in the original

space onto the eigenspace vs. the ML estimate made in the eigenspace. The original 2-

dimensional space is spanned by Yl and Y2, and the I-dimensional eigenspace is spanned

by el' The concentric ellipses on the original plane represent a Gaussian pdf for the 2

model parameters, with ellipses nearer to the centre representing a higher likelihood.

inter-speaker variances associated with them - are then used to span the eigenspace.

Typically the inter-speaker variability can be accurately modelled using very few of these

eigenvoices. A supervector for a new speaker may now be approximated by using a

weighted sum of the dominant eigenvoices.

In itself, the parameter reduction afforded by PCA is already a great benefit when little

adaptation data for a new speaker model is available. A new ML or MAP estimate for

the speaker model given the adaptation data could simply be formed, and the supervector

for the newly estimated model thus obtained can then be projected into the eigenspace

and then subsequently projected back into the normal speaker space. This has the effect

of doing a maximum likelihood adaptation and then constraining the adaptation to fit

in the set of possible speaker models spanned by the eigenspace. Projection, however, is

suboptimal for two reasons: One, parameters for which no new ML estimates are available

(due to lack of data) are also projected into the eigenspace, and thus playa role in the

adaptation. Two - as depicted in Figure 5.1 - the projection of the ML estimate

onto the eigenspace does not necessarily represent the highest value of the likelihood
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function representable in the eigenspace. The method of forming an lVILestimate and

then constraining the model to lie in the eigenspace is an optimal solution, as it does not

incorporate the a priori information we have of the speaker models in the formation of

the new estimate.

Kuhn et al. and Nguyen [28, 40] analysed the problems inherent in simple projection,

and overcame them by developing a new eigenvoice-driven speaker adaptation method:

MLED. Assuming that the supervector for a new speaker can be formed by a weighted

sum of eigenvoices, a maximum likelihood estimation for the weights given the adaptation

data and the current model is possible. This means that the a priori data we have for

the speaker model - the fact that it must lie in the eigenspace - is a constraint directly

incorporated in the adaptation procedure in a maximum likelihood fashion. MLED is thus

the method of forming a maximum likelihood reestimation of the speaker model given the

initial speaker model, the adaptation data and the eigenspace.

5.2 Basic MLED Adaptation Equations

In MLED, the only parameters that are adapted are mean vectors. The supervector J-l

created for each of the SD models thus has the following form:

(1)
J-ll

(1)
J-l2

J-l= (s)
(5.1)

J-lm

(s)
J-lMs

where S is the number of states in all the HMM models of a speaker model, and M,

is the number of mixture components in state s. There is thus a single supervector for

each speaker, comprising of all the mean vectors in all the states in all the HMMs for the
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speaker. An eigenvoice (or eigenvector) JL will have the same form, and will be given by

e~1)(j)

e~l)(j)

where j = 1 ... K, (5.2)
(s) ( ')em J

(s) ( ')
eMs J

where K is the number of eigenvoices chosen. In MLED, the new estimation of the

supervector it for a new speaker model is given by a weighted summation of the eigenvoices.

J<

it =Lwjej,
j=1

(5.3)

where Wj is the weight (or eigenweight) associated with eigenvoice j. Alternatively, each

of the mean vectors can be calculated separately as a sum of "eigenmeans".

J<

it~) =L wje~) (j).
j=1

(5.4)

Note that the eigenweights are not the eigenvalues. These eigenweights must be chosen

so that they maximise the likelihood of the adaptation data.

5.3 Determining the Optimal Eigenweights for MLED

Adaptation

The following deduction is for the determination of the set of optimal eigenweights where

the speaker model to adapt is a single HMM with mixture Gaussian state pdfs. At the

end of the discussion it will be shown how the results are easily extended for the case

where a speaker model consists of several HMMs.

5.3.1 Defining the Auxiliary Function

This section briefly reviews the topics treated in Sections 2.5.1 and 2.5.2: reestirnation

of model parameters in a maximum likelihood framework, the likelihood function to be

maximised, and the auxiliary function that can be maximised instead of the likelihood
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function. To make a maximum likelihood estimate for the MLED eigenweights, it is

necessary to maximise the likelihood of the observed data given the model parameters,

L(OI.\). L(OI.\) is expressed by Equation 2.94, which is restated here for convenience:

L(OI.\) =L L L(O, e, (1.\),
BEe (EWe

(5.5)

where \lfBis the set of all possible mixture component sequences given the state sequence

(j, and ( is a mixture component sequence in \lfB.

An auxiliary function may be defined such that parameters that maximise it will also

increase the value of the likelihood function L(OI.\). This auxiliary function Q(.\I~) is

given by

Q(A,~) =L L L(O, (j, (1.\) logL(O, (j, (I~)·
BEe (EWe

(5.6)

L(OI.\) may now be maximised by iteratively maximising Q(.\I~) and updating the model

parameters with the reestimated model parameters, .\.

Expanding the auxiliary function, it is seen that some of the terms are constant, and

thus would play no part in the maximisation of the auxiliary function. The expanded

auxiliary function with constant terms removed is given by Equation 2.105. It is this

function that will be maximised with respect to the eigenweights (Wj, j = 1 ... K), and

it is also restated here for convenience

1 S M. T

Q(.\)) = -2"L(OI.\) L L L l'~)(t) [nlog (271")+ log IC~)I + h~)(ot)] , (5.7)
8=1 m=l t=l

where

(5.8)

(5.9)

5.3.2 Maximising the Auxiliary Function

To estimate the eigenweights, the set of equations found by differentiating the auxiliary

function Q(.\,~) with respect to each of the eigenweights and equating the result to zero
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must be solved simultaneously. The eigenvoices are orthogonal, and so it is reasonable to

assume that the eigenweights will be independent of one another (~ = 0, i =1= j).
J

i = 1... K. (5.10)

Differentiating with respect to each of the eigenweights and equating to zero we find

i = 1... K, (5.11)

thus

0, i = 1 ... K. (5.12)

5.3.2.1 Determining the Derivative of h~)(ot) with Respect to an Eigenweight

The new estimate for a mean vector is the weighted sum of eigenmeans. Because the

eigenweights are assumed to be independent of one another the following holds:

OOK
_t/(S) = _ '" W ·e(S) (J.) = e(s)(i)
Ow.t"'m ow. Z:: J mm·

t t j=1

(5.13)

Now

(5.14)

(5.15)

(5.16)

Substituting Equation 5.13 for the adapted mean vectors gives

= -20'C(S)-le(S)(i) + (_!!_t,(S)') C(s)-lt/(s) + t,(s)' C(s)-1 (_!!_t/(S))
t m m OWit"'m m r+rn. rrm. m OWit"'m· (5.17)

Since scalars are equal to their transpose, so

= -20' C(s)-le(s)(i) + 2 (_!!_t/(s)') C(s)-1 trCs)
t mm!=} r+rn m rrm >

UWi
(5.18)

Using Equation 5.13 again

= 2 [-o~C~)-le~)(i) + e~)' (i)C~)-1 t Wje~)(j)l.
J=1

(5.19)
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Substituting the results of Equation 5.19 in Equation 5.12 gives

:~i= 0 = LLL"t~)(t) {-O~C~)-le~)(i) +e~)'(i)C~)-l tWje~)(j)} (5.20)
s m t J=l

or, equivalently

s m
K

= L L L "t~)(t) L wje~)' (j)C~)-le~)(i), i = 1... K. (5.21)
s m j=l

Equation 5.21 defines the set of linear equations that must be solved in order to obtain

optimal set of eigenweights. This set of equations can also be expressed as

v=Qw, (5.22)

where w is the K-dimensional vector of eigenweights

(5.23)

and v is an K-dimensional vector given by

v=

Ls Lm Lt "tg)(t)e~)' (1)Cg)-10t
Ls Lm Lt "tg)(t)e~)' (2)Cg)-10t

(5.24)

and every element Qij of the K x K matrix Q is given by

(5.25)
s m

Thus

(5.26)

The set of eigenweights can thus be found by inverting matrix Q and multiplying it by v

or by Gaussian elimination. The newly estimated mean vectors or supervector can now

be calculated using Equation 5.4 or 5.3 respectively.
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5.4 Creation of the Eigenvoices from a Set of Speaker

Dependent Models

We now apply PCA to the set superveetors representing the SD (speaker dependent)

models available to create the eigenspace. Ideally, these SD models should have the same

structure in terms of the number of states, the links between the states and the number

of mixture components per state. The corresponding state transition probabilities and

covariance matrices in different SD models should be the same, so that only the mean

vectors model differences between different speakers. This can be done by first pooling

all the data for all the speakers and training a speaker independent (SI) model. All

model parameters except the mean vectors can now be held fixed, and an SD model for

each speaker can be created using EM training algorithms. Should little training data

be available for these SD models, the well-known MLLR method can be used for model

estimation.

A supervector for each of these SD models (where each of these SD models comprises

of several HMMs, and each HMM represents a phoneme) is now created, and PCA is then

applied to the set of superveetors to obtain the eigenvectors (eigenvoices ) of the set.

5.4.1 Principal Component Analysis

As this is a well-known method, only a summary of the relevant equations and their

import will be given. PCA is also referred to as the Karhunen-Loeve transform (KLT).

peA is used for the purpose of parameter reduction, and a transform is required for

a vector in the current space to a vector in a space with (possibly) fewer dimensions. If y

is a: vector of dimension m in the original space, and x is the projection of y in the new

space, then

y= Ux. (5.27)

If the number of data vectors y is ti, then they can be combined to form the m x ti data
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matrix Y. The eigen decomposition of the correlation matrix Ry is then given by

(5.28)

where U is the m x m eigenvector matrix, and A is the m x m diagonal eigenvalue matrix

of the correlation matrix.

The eigenvectors li of the correlation matrix are the columns of U and the eigenvalues

A are contained in the diagonal eigenvalue matrix A. The number of non-zero eigenval-

ues is min(m, n). Eigenvectors are orthogonal, and can be made orthonormal. For an

orthonormal matrix the following holds:

U-I = U' or U-lU = U'U = J. (5.29)

The correlation matrix of X (none of the dimensions have been discarded yet) now has

the property that it is diagonal and equal to the eigenvalues of the correlation matrix of

the y-vectors.

!..XX' = !..(U'Y)(U'Y)' = !..U'(YY'U) = U'(UA) = JA = A.
n n n

(5.30)

Equation 5.27 can now be interpreted as the representation of y as the weighted sum of

eigenvectors, where the weights are the elements of the x vector. Dimension reduction is

possible if we represent y using a only subset of the eigenvectors and x element values.

The error in this approximation of y is minimised in a mean-squared sense if the dis-

carded eigenvectors in the approximation are those that are associated with the smallest

eigenvalues.

A fixed number of eigenvalues can be retained for the approximation of a y vector.

Alternatively a rough idea of the error in the approximation can be obtained by deter-

mining the sum of the eigenvalues that are retained, and expressing it as a percentage of

the sum of all the eigenvalues. In practice, the first few eigenvectors represent the bulk

of the sum of eigenvalues, so that the rest of the eigenvectors may be discarded. The

result is a great reduction in the dimension of the training problem, as the dimension of

x becomes the same as the number of eigenvectors used in the approximation.
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5.4.2 Using SVD to Determine the Eigenvectors and Values for

peA
It is not necessary to compute the correlation matrix of the data in order to obtain the

eigenvectors for PCA. Singular value decomposition (SVD) can be used directly on the

data matrix Y to obtain the necessary matrices. The SVD of a data matrix Y is given by

Y U V'
(5.31)

m x n m x m m x n n x n,

where U is the mxm left singular matrix. E an mxn diagonal matrix with the nonnegative

singular values OJ, j = 1 ... min( m, n) arranged in descending order of magnitude on the

diagonal, and V is the the ti x n right singular matrix.

Both U and Vare orthonormal matrices. By rearranging Equation 5.31, it is readily

shown that the columns of U are the eigenvectors of YY', and the columns of Vare the

eigenvectors of Y'Y. Thus, if Equation 5.31 is substituted for Y in Equation 5.28 then

_!_ yy'U = _!_U:EV' (U:EV')'U = _!_U:EV'V:EU'U = _!_U:E2 = UA.
n n n n

(5.32)

The non-zero eigenvalues Aj,j = 1 ... min(m, n) of the correlation matrix Ry are related

to the non-zero singular values of the SVD of Y by

1 2Aj = -(JJ. ,j = 1 ... min(m, n).
n

(5.33)

The rank of matrix Y is the same as the number of nonzero singular values. Also,

r :s: min(m, n). If the rank of Y is r, then Equation 5.31 can be reduced to

Y V'+ (5.34)
m x n m x r r x r r x n,

where :E+ is the diagonal matrix containing the r nonzero singular values of Y, and U+

and V+ are the first r columns of U and V. U+ and V+ form the orthonormal basis for

the columns and rows of Y respectively, whereas the remaining columns of U and V form

the orthonormal basis for the left and right null-spaces of Y respectively. As we are not

interested in the null-spaces, Equation 5.34 will be used in preference of Equation 5.31.
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5.4.3 Utilising SVD to Reduce Memory Requirements

Normally the superveetors and eigenvectors used in MLED are very large. For instance a

simple SD model used for the ISO LET comprised of the following: 26 HMMs (one for each

letter) with 6 states (not including null states) for each of these HlvlMs. One HMM for

the silence model with 3 states (not including null states). There is one Gaussian pdf per

state, and the mean vector is 18-dimensional. The dimension for each of the superveetors

(and eigenvectors) is then

[(26 x 6) + (1 x 3)J x 1 x 18 = 2862. (5.35)

When a mixture Gaussian with 6 mixture components is used instead of a single Gaussian,

the dimension of a supervector escalates to 17172. For the ISOLET corpus, there are 150

speakers. So even when all the speakers are used, ti = 150 «m = 2862. For most speech

databases, the number of speakers will be less than the dimension of the supervector for

a SD model.

When computing the eigenvectors for a set of vectors with large dimension, computer

memory problems may be encountered. The correlation matrix Ry has dimension m x m =

(17172 x 17172) when mixture Gaussian pdfs are employed. Using 32-bit floating point

numbers, this is equivalent to a 1125 MB (31 MB for the single Gaussian case) memory

requirement for the storage of the correlation matrix alone. Imagine the effect more

complex SD models for larger speech corpora would have on the memory requirements

for the computation of the eigenmeans.

Alleviating the memory burden was achieved by utilising a method used in face recog-

nition [36], where the dimension of the data vectors (the number of points in an image)

is often very large. Using this method of computation, the memory requirements may be

drastically reduced, as the eigenvectors describing the null-spaces of Yare not of interest.

The method is as follows:

Note that the SVD Equation 5.34 can be substituted for Y in the eigenvector decom-

position of the "reverse" correlation matrix Y'Y.

(5.36)

V+ and U+ are orthonormal, so

(5.37)
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The left singular matrix can now be determined by rearranging Equation 5.34

y L;-1
+ (5.38)

m x r m x ti ti x r r x r.

When ti «m, as in this thesis, the memory savings are considerable. This is due to the

fact that the eigenvectors of the smaller matrix Y'Y are determined instead of those of the

larger matrix YY'. Only the necessary eigenvectors are computed, so it is unnecessary to

bother with extra computations and memory for eigenvectors that span the null-spaces.

When n < m the above method will be used to obtain the eigenvectors, and when m < n

(unlikely in this application) the normal SVD or KLT may be employed. A small price is

paid for the reduction in memory needs, as accuracy is impaired due to rounding errors

when Y'Y is computed. According to Muller et al. [36], the smallest singular values are

affected most, which is most fortunate. Obviously, if we know we will only need c ~ r

eigenvectors, then we can simply reduce the number of columns of U+ to the number that

needs to be computed.

-1

o
(5.39)

o

5.5 The Effect of the Eigenspace on Recognition Per-

forrnanee

The following is a summary of the findings of Nguyen [40J and Westwood [5lJ on the

dimension of the eigenspace and post-adaptation recognition performance.

Nguyen's experiments were on the relatively simple ISOLET [37J speech corpus, which

consists of the letters of the alphabet spoken in isolation. A six (non-null) state Hr/IM

with a six mixture component GMM representing each state pdf was used to represent

each of the 26 letters. The database has speech from 120 speakers. The data from 100

speakers were used to train 100 SD models from which an eigenspace was extracted via

PCA. Nguyen used up to 30 eigenvoices, and found that post-adaptation recognition rate

increased as the number of eigenvoices were increased. Also, an increase in the amount

of adaptation data resulted in an increase in recognition rate. The maximum amount of
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available adaptation data for a new speaker was a single utterance of each of the 26 letters

of the alphabet.

Westwood used the Darpa corpus [38], which consists of 30 utterances for each of

109 speakers. Westwood used several modelling schemes to represent monophones of

triphones, where the simplest speech models consisted of monophones modelled by HlvlMs

with single Gaussian state pdfs, and the most complex models consisted of triphones

represented by HMMs with 6 mixture component GMM state pdfs. All HMMs had three

non-null states. 30 sentences were available for each speaker, 10 of which were used for

adaptation and 20 for scoring. Westwood found that, in general, the relative amount

of eigenvoices (relative to the number of model parameters) needed to account for half

the speech variability in the set of SO models was less for the more complex modelling

schemes. He attributed the decrease in variability to the lack of training data needed to

form good SO model estimates for the more complex models, as the lack of training data

makes less differentiation possible between SO models.

Westwood used three kinds of subspace bases: eigenvoices extracted via PCA from

the correlation matrix of the SO supervectors, eigenvoices extracted via PCA from the

covariance matrix, and bases comprising of the original SO supervectors. The last imple-

mentation indicates that the MLED and WP eigenvoice techniques bear great similarities

to CAT and other speaker clustering methods. He found that recognition performance

generally increased as the amount of PCA-extracted eigenveices were increased, up to fif-

teen eigenvoices, after which the post-adaptation recognition rate decreases and increases

erratically. Also, when few eigenvectors where used, PCA-extracted eigenvectors result in

better performance than SO supervectors, indicating that eigenvoices were indeed captur-

ing much of the inter-speaker variability between the speakers. However, the recognition

rate using SO superveetors continues to increase as more superveetors are employed, and

does not display the erratic behaviour of PCA-extracted eigenvoices. Westwood ruled out

numerical instability as the cause of the erratic adaptation performance, and attributed it

to a poorly estimated eigenspace. His findings indicated that only about 15 eigenvectors

could be robustly estimated from the models of 109 speakers. He suggested that either

a larger SO model set must be used for the robust determination of more than 15 eigen-

voices, or that methods other than PCA must be used to extract a space that models the
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inter-speaker variability better.

Nguyen found that the recognition rate rapidly increases for MLED as more adaptation

data becomes available. However, he only used the ISOLET corpus, and had a maximum

number of 26 spoken letters worth of adaptation data with which to adapt. Westwood,

on the other hand, had 10 sentences worth of adaptation data, which is much more than

an utterance of the alphabet. He experiments indicate that recognition rate for MLED

increases until approximately three sentences of adaptation data, after which a plateau

is reached and little or no improvement in recognition is achieved for more adaptation

data. Though MLLR does not yield as much improvement as MLED for one or two

sentences of adaptation data, it does not reach a plateau in recognition rate as MLED

does. As the amount of adaptation data increases, MLLR performance increases. For the

simple models, MLLR performance surpasses MLED performance after approximately 7

sentences of adaptation data. For the more complex models, MLLR performance is on par

with MLED performance after approximately four adaptation sentences, and remains on

par. The plateau in MLED recognition performance seems to indicate that the point in

the eigenspace representing a speaker may be determined using very little adaptation data,

and that using more data to estimate this point results in very little change in recognition

performance as we have already reached a maximum likelihood in the eigenspace. The

bound on the performance indicates a limit on the accuracy with which fifteen (or less)

eigenvoices can represent the true model for a new speaker. Though Nguyen experimented

using very little adaptation data, his experiments indicate that when few eigenvoices

(one or five) are used, the tempo of improvement in recognition rate as more adaptation

data is used becomes less and less. When more eigenvoices (ten) are used, the initial

recognition rate is lower for one letter utterance of adaptation data. However, the tempo

of improvement in recognition rate is much higher than it is for few eigenvoices, and that

the tempo decreases more slowly than it does for fewer eigenveices.

Based on the experiments and conclusions of Nguyen and Westwood, the following

observations are made:

• The performance of MLED is highly dependent on how many eigenvoices are used,

and how robustly these eigenvoices were estimated .

• When using PCA-extracted eigenvoices, the factor limiting the robust estimation of

114

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5 - MLED ADAPTATION

eigenvoices is the number of available SD models. As previously stated, Westwood

concluded that only about fifteen eigenvoices can be robustly estimated from a prior

set of SD models for 109 speakers.

• When very little adaptation data is available (one to two phoneme utterances), very

few (one or two) eigenweights for one or two eigenvoices can be robustly estimated.

When more adaptation data is available (one or two sentences), eigenweights for

more eigenvoices (ten to fifteen) may be robustly estimated.

• When the amount of adaptation data is more a few phoneme utterances, using more

eigenvoices results in higher post adaptation recognition performance.

• Recognition improvement using MLED generally increases as more adaptation data

are used, however, a plateau in performance is soon reached, and increases in adap-

tation data yield no further improvement. Using a limited set of eigenvoices thus

result in a limited ability to accurately estimate a new speaker model. The lower

the number of eigenvoices, the faster this limit is reached.

5.6 MLED Algorithm Summary

This is a succinct treatment of implementing the MLED algorithm for the adaptation of

mean vectors in GMMs in HMMs of a speaker speech model. The treatment will proceed

in three steps:

• The algorithm and its prerequisites, divided into online and offline steps.

• Points to bear in mind for general MLED implementations.

• Points to bear in mind specific to the implementation of the algorithm in this thesis.

5.6.1 Algorithm Implementation

The algorithm is split into online and offline steps:

• Offline Steps:
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- Train an SI model, using a large amount of representative speech data from a

representative set of training speakers. This SI model will form the initial model

for each new target speaker for which MLED adaptation is to be performed.

Create a set of robustly trained SD models, using speech data for each speaker

in the set of SD models. The initial model for each of these models is the SI

model. If enough data are available for robust model estimation, ML estimation

of parameters may be used. If enough data for robust ML estimation are not

available, speaker adaptation methods may be employed to estimate the SD

models. Note that each SD model must have the same structure as the original

SI model. Furthermore, only the mean vectors of these SD models may be

reestimated. All other parameters must remain identical to that of the SI

model.

Create a supervector from each of the SD models in the prior set of SD mod-

els (i.e. those obtained in the previous step), and determine the dominant

eigenvoices (Section 5.4).

• Online Steps:

Use the Viterbi or Baum-Welch algorithms and the SI model to segment the

adaptation data obtained from the target speaker. From the segmentation, the

following accumulators are obtained:
TL r~)(t)Ot,
t=l

and
T

L r~)(t).
t=l

Determine the matrix Q and vector v, where each of the elements of Q are

given by Equation 5.25:

s m

and each element of v is obtained from Equation 5.24:

s m
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Obtain the set of optimal eigenweights by solving Equation 5.26:

(5.40)

Using the eigenweights determined in the previous step, each new mean vector

is determined from the (eigen-)weighted sum ofeigenmeans (see Equation 5.4):

K

p,~) =L wje~)(j).
j=l

5.6.2 General Implementation Issues

The following points must be noted regarding the implementation of the MLED algorithm

in general:

• The SI model and the speaker models obtained by MLED adaptation must have the

same structure, i.e. the same number of HMMs, states, Gaussian pdfs in GMMs,

and state transition probability links. This does not mean that the HMMs in a single

speaker model must all be identical, or that HMMs for different speakers must have

identical parameter values, only that the HMMs must have similar structure.

• The prior mean vectors J-L~) used during the calculation of the new mean vectors are

those of the SI model for the first MLED iteration. If multiple adaptation iterations

are used, the prior mean vectors are those trained during the previous adaptation

run.

• MLED is only used for the adaptation of mean vectors. Parameters that are not

part of mean vectors are not adapted, and remain the same is those in the initial SI

model.

• Numerical instability can arise if too many eigenweights have to estimated from

extremely little adaptation data. It is therefore prudent to check condition numbers

when the Q matrices are inverted to help prevent poor adaptation.

5.6.3 Implementation Issues Specific to this Thesis

The following points must be noted regarding the implementation of the MLED algorithm

in this thesis:
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• The adaptation is static, i.e. all of the available adaptation data is gathered before

the model is reestimated. A separate and independent data set is used for testing.

• Adaptation is supervised, i.e. the transcription of the adaptation data is known.

• Only the mean vectors are reestimated. Parameters that are not reestimated remain

the same as that of the SI model.

• In order to test the performance of MLED adaptation against MLLR adaptation, the

covariance matrices in the Gaussian pdfs in the speaker speech models are limited

to being diagonal matrices.

5.7 Strengths and Weaknesses of MLED

All adaptation methods have strengths and weaknesses, which are important to consider

when selecting an adaptation method for a specific task. This section discusses the positive

and negative attributes of MLED, starting with the former:

• Pooling all observed data: MLED makes use of all the observed data for the

entire speaker model when adapting a parameter. Of the methods treated, only the

eigenvoice techniques (and a global MLLR implementation) have this ability. The

observed data for all parameters are thus pooled before any attempt at parameter

reestimation is made. Pooling all the observed data allows MLED to make very

robust estimates with very little adaptation data.

• Extreme degree of parameter reduction: Neither of the Bayesian reestimation

methods (ML and MAP) has any form of parameter reduction, so unseen parameters

cannot be adapted.

MLLR can be employed with varying degrees of parameter reduction, depending

on the number of regression classes employed. MLLR is thus a rapid adaptation

technique. Leggetter and Woodland [34J found that using full linear transformation

matrices (the To. matrix in Equation 4.2) is preferable to using diagonal trans-

formation matrices. Thus, every regression matrix Wo. requires the calculation of

n x (n + 1) regression parameters. Also, the parameter reduction is not always
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balanced (except when using a global regression class), as some regression classes

will have more mean vectors than others.

MLEO gives us the greatest degree of parameter reduction of all the treated meth-

ods. Both Nguyen [40] and Westwood [51] found that for a SO speaker set consisting

of about 100 speakers, only about 15 eigenvoices may be robustly extracted. Thus,

even the largest MLEO implementations require only the calculation of 15 eigen-

weights, which is significantly fewer parameters than even global MLLR. The only

other adaptation methods that can compete with such extreme parameter reduction

capabilities are WP, an eigenvoice method, and speaker clustering methods, such as

CAT.

NILEO also has the following negative aspects:

• Dependency on robustly estimated eigenvoices: MLEO is completely depen-

dent on the extracted eigenvoices. MLEO adaptation improves the recognition rate

when more eigenvoices are used, but only if these eigenvoices are robustly estimated.

For the eigenvoices to be robustly estimated, a large set of well-trained speaker de-

pendent models are required. From the experiments in this thesis there seems to be

a dependency of MLEO performance on the quality (in terms of recognition rate)

of the set of prior SO models. The poorer the performance of the SD models, i.e.

the closer the recognition rates are to those achieved with the SI model, the less the

differentiation between the prior SD models will be. The less the differentiation,

the smaller the inter-speaker variance captured by the set of SO models will be.

Therefore, the number of directions of inter-speaker variance extracted via the KLT

will be less, resulting in poorer and fewer estimated eigenvoices .

• Computational complexity: Assume that a speaker model consists of H HMMs

(each representing a phoneme), S states per HMM and A1 mixture components per

state and n-dimensional observation vectors. Furthermore, assume that K eigen-

voices are used. If each observation is T frames long, and P is the number of

phonemes observed, the computational requirements for MLEO adaptation (exclud-

ing the Baum- Welch or Viterbi segmentation and determination of accumulators)

are then approximately [51]:
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- Memory: O(KHSMn)

Computations: 0 (SJvI(SJvIT + H(Kn)2))

The memory requirement of MLED is greater than that of MAP, but less than that

of MLLR. To accurately compare the computational requirements of MLLR and

MLED, the model complexity, number of eigenvoices and regression classes used

and feature vector dimension are needed. Generally, the following holds: For simple

models (where HSM is small), the computational requirement of MLED is less

than that required for MLLR, but for complex models (where HSM is large) the

computational requirements for MLED is greater than that required for MLLR.

• Not convergent to the ML estimate: Methods such as MAP and RMP con-

verge to the ML estimate as the amount of available adaptation data is increased.

MLED does not converge (unless the number of eigenvoices is the same as the num-

ber of dimensions of a SD supervector), and neither does MLLR. Experiments by

Westwood [51] indicate that MLED can improve recognition performance when very

little adaptation data are available. The recognition performance increases as the

amount of adaptation data increases, but soon reaches a plateau. MLLR tends

to have poorer performance than MLED for little adaptation data, but eventually

passes the plateau MLED attains as more adaptation data are added.

• Cannot be employed adaptively: It is not likely that MLED could be applied

adaptively, as it is dependent on a large set of SD models before it can train any

new SD models.

The positive and negative attributes of MLED were valuable when planning the experi-

ments described in this thesis, as well as for the interpretation of the results. This section

concludes the discussion of MLED, and the next chapter treats WP - a neweigenvoice

adaptation method.
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Weighted Projection

6.1 Introduction to Weighted Projection

Weighted projection is an adaptation technique employing eigenvoices introduced by West-

wood in 1999 [51]. The extraction of eigenvoices and the estimation of a new mean vector

as a weighted sum of eigenvoices is identical to the MLED approach. The estimation of

the optimal eigenweights, however, is accomplished using a projection technique.

As stated in the MLED section, simply taking the maximum likelihood estimate in the

original model space and then projecting to the eigenspace is not guaranteed to result in

a maximum likelihood estimate in the eigenspace. As speaker adaptation techniques are

normally applied when relatively little data are available, many of the parameters in the

original space will not have a maximum likelihood estimate, which will necessitate using

their initial values during the projection. By doing this something is inferred about the

model that is not known, i.e. we have ML estimates for all the parameters in the original

space when we do not.

Instead of using normal projection to obtain eigenweights (discounted by Nguyen [40]

for good reason), Westwood does the following:

An ML estimate of parameters is formed, and a supervector jJ, is created for this ML

estimate. The supervector is then mapped via a linear transformation T to a new space,

T The mapping is such that each supervector element (an ML-estimated parameter) is

divided by its variance and multiplied by a factor dependent on the amount of observed

data for the parameter. The mapping accomplishes two things: One, parameters with no
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observed data map to the null vector in T. Two, parameters with lower variance receive

preference over those with high variance in the new space T.
The mapped ML-estimated supervector is now constrained to lie in the eigenspace

by the following method: The eigenvectors are mapped using the same transformation

as the one applied to jL. T [L, the closest point in the mapped eigenspace to the mapped

TjL, is found. [L then represents the new WP estimate for the speaker, and the desired

eigenweights can be determined from it.

The following section explains the difference between simple projection and the WP

adaptation method in more detail, and states the equation that must be solved in order

to obtain eigenweights using WP.

6.2 From Simple Projection to Weighted Projection

First we will introduce the spaces used in WP: D is the original space for a supervector,

K is the eigenspace, T is the space onto which the original supervector is mapped via the

linear transform T, and T(K) is the mapped eigenspace.

When the simple projection for eigenvoice adaptation is used, we are essentially finding

the vector [L in the eigenspace K that is closest to the maximum likelihood estimate jL in

the original space D. Thus, if /-If( is any vector in K, then

(6.1)

With weighted projection, a linear transform T is applied to the ML-estimated supervector

in the original space, and to the set of eigenvectors. The original space D is then mapped

to the space T, and the eigenspace is mapped to the space T(K). It should be noted that,

as K represents a subspace of D, T(K) represents a subspace of T. Having performed the

necessary mappings, we wish to find the vector T [L in the transformed eigenspace T (K)

that is closest to the T-transformed ML estimate, TjL. Thus, if /-If( is any vector in the

eigenspace then

(6.2)

In order for WP to be effective, the linear transform T is chosen to satisfy two criteria:
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• T is designed so that parameters that do not have ML estimates in the original

space map to the zero vector in the transformed supervector space T.

• Transform T must also satisfy \:Ix E le , T(x) = 0 :::} x = O. This means that

none of the vectors in le are mapped to the zero vector in T, so that the image of

the basis vectors of le (i.e. the eigenvoices) form a set of bases for the transformed

eigenspace T (le).

Before treating the derivation of optimal WP estimates, it is necessary to address the

choice of linear transformation T. This is done in the following section.

6.3 The Choice of the Linear Transformation T

The zeroth-order accumulator and first-order accumulator may be obtained from a Baum-

Welch or Viterbi segmentation. The zeroth-order accumulator Ao(s, m) is given by

T

Ao(s, m) =L ,~)(t),
t=l

(6.3)

and the first-order accumulator by

T

A1(s, m) =L ,~)(t)Ot.
t=l

(6.4)

The robustness of an estimate is thus related to the zeroth-order accumulator, as this gives

an indication of how much data there is to estimate the mean vector of the pdf in state

s and mixture component m. The higher the value of the zeroth-order accumulator, the

more robust the estimate on the data is hoped to be. Thus a weight function w : R ---+ R

is defined that maps the zeroth-order accumulator to a weight for the parameter (in this

case the mean vector) to be estimated. The properties of the weight function will be:

• w(O) = 0

• w is a non-strictly monotonically increasing function

The transform T may now be defined as the combination of two transformations, D

- a decorrelation of the original space - and st - a transform based on the weighting

function, such that T = stD. Strictly speaking, the decorrelation transform is unnecessary,

but it will reduce the weighting in favour of distributions with large variances.
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• Matrix D: The variance between distributions is not taken into account, and so

D will be a block diagonal matrix with symmetrical blocks. Each block on the

diagonal thus decorrelates a different distribution. Several options for the decorre-

lation are possible: the identity matrix I on each block along the diagonal results

in no decorrelation, C~)-1/2 on each corresponding block will result in component-
--1/2 -by-component decorrelation, and C ,where C is the mean of the component

covariance matrices, is a more robust decorrelation when the component covariance

matrices are poorly estimated. Thus, D could be given by

o 0
D = 0 In 0

o 0

o o o o
(6.5)or o C~)-1/2 0 or o C-l/2 0

o o o o

where n is the dimension of the feature vectors and In is the n x n identity matrix.

It should be noted that the above is only a list of of possible decorrelations, as many

more forms for D are possible .

• Matrix n: As the D matrix is block diagonal, it is easier to think of the n matrix

as being block diagonal too, even though it is only diagonal. n is now defined as

n = 0 w (Ao(s, m))1/2 In 0

o 0

o o
(6.6)

where w (Ao(s, m)) is the scalar weight function and In is the n x n identity matrix.

6.4 Proving that Vf.1K E JC, IITp, - TfLll < IITp, - Tf.1KII
As stated before, it is necessary to find the vector in the T -transformed eigenspace that

is closest to the T-transformed ML estimate in the original space. A basic linear alge-

bra theorem (see Appendix D for the basic theorem) is adapted to create the following

theorem:

Theorem: Let E = [el' .. eK l, where {el,' .. ,eK} is the set of linearly independent

eigenvectors that span the space K. Then there exists a weight vector w, such that

ii = Ew, that satisfies \:IJJ/( EK, IITjL - Tiill ~ IITjL - TJj/(11 if and only if TE has
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linearly independent columns. If TE has linearly independent columns, then w is given

by (TE)'(TE)w = (TE)'Til or w = ((TE)'(TE))-l(TE)'Til.

Proof: The vector T p, = TEw closest to the projected ML estimate Til will be

the orthogonal projection of Til onto the space T(K), or alternately the error vector E

between the two vectors Til and TEw will be perpendicular to the vectors {Tel ... Ted

spanning the space T(K). Thus, the error vector given by

E = Til- TEw (6.7)

is perpendicular to {Tel ... Tek} so that

(TE)'(Til- TEw) = o. (6.8)

Thus

(TE)'(TE)w = (TE)'Til. (6.9)

Solving for w,

w = [(TE)'(TE)rl (TE)'Til. (6.10)

From the above, it is seen that w exists if matrix (T E)'(T E) is invertible. We will now

prove that (T E)'(T E) is invertible if and only if TE has linearly independent columns.

To do this, it is first shown that the columns of TEare linearly independent (i.e. the

nullspace of TE contains only the zero vector), then that TE and (T E)'(T E) have

the same nullspace, and therefore (as a matrix that contains only the zero vector in

its nullspace has linearly independent columns) the square matrix (T E)'(T E) has linearly

independent columns, which, for a square matrix, implies invertibility.

Proving that the columns of TEare linearly independent: T is linear, and therefore

{Te1, ... , Ted spans T(K). Let us find the possible solutions for vectors in the nullspace

of TEas follows

TEx = 0 (6.11)

The above is zero if the vector Ex is zero, or if the vector Ex is in the nullspace of T.

As the columns of E are linearly independent, Ex is the zero vector if and only if x = o.
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Therefore we only need to determine the nullspace of T. The definition of T specifies that

it does not map any of the vectors in the eigenspace (save the zero vector) to the zero

vector (note that this is only the case if T has linearly independent columns). As Ex is

in the eigenspace, only x = a satisfies Equation 6.11. Thus the nullspace of TE consists

only of the zero vector, hence the columns of TEare linearly independent and span the

transformed eigenspace T (IC).

Proving that the nullspace of TE and (T E)'(T E) are the same: Suppose that x is a

vector in the nullspace of TE

TEx = a. (6.12)

Premultiplying by (TE)',

(T E)' (T E)x = 0, (6.13)

therefore x is also present in the nullspace of (T E)'(T E). Now suppose that x is a vector

in the nullspace of (TE)' (T E)

(TE)' (T E)x = O. (6.14)

Premultiplying by x',

x'(T E)'(T E)x

or (TEx)'(TEx)

or IITExl12

x'a (6.15)

(6.16)

(6.17)

o
0,

therefore vector TEx has zero length and is the zero vector, T Ex = a. Thus vector x is

in the nullspace of TE.

Each vector in the nullspace of TE exists in the nullspace of (TE)' (T E), and each

vector in the nullspace of (T E)'(T E) exists in the nullspace of TE. This implies that the

nullspaces of TE and (TE)' (T E) are identical.

It was shown that TE has linearly independent columns, and therefore its nullspace

contains only the zero vector. The nullspace of (TE)' (T E) therefore also only contains the

zero vector, and thus the columns of (T E)'(T E) are linearly independent. For a square

matrix linearly independent columns implies invertibility, thus (TE)' (T E) is invertible

and vector w exists.
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To summarise: TE has linearly independent columns, therefore (TE)' (T E) is invert-

ible, therefore w exists and is given by w = [(TE')(TE)r1 (TE)'Tjl.

Not only does the theorem prove the existence of w, but it also supplies the equation

to solve for the new estimate of the weight vector wand subsequently the new estimate

of the model parameters jl = Ew.

This proof by Westwood has one irregularity: if T does not have linearly independent

columns, then TE might not have linearly independent columns. If the columns of TE

are not linearly independent, the inverse of (T E)'(T E) will not exist. Westwood never

proves linear independence of the columns (or invertibility) of T, but simply states that

T must be chosen so that it does not transform any vector (save the null vector) in the

eigenspace to the null vector. From the choices of the D and n matrices in Section 6.3, it

is seen that T is block diagonal, and that each block is applied to a mean vector during

adaptation. If there were no observed data for a mean vector, the weight function will

make the block a zero matrix. For each mean vector with no observed data, matrix T

will have ti columns and n rows that are zero vectors (n is the dimension of the feature

vectors or mean vectors). If more than one of the columns of T are the zero vector, Twill

not have linearly independent columns (i.e. T, a square matrix, will not be invertible).

To summarise: if there are mean vectors for which there are no observed data, and the

weighting function makes their associated blocks in T zero, then T is not invertible,

and therefore TE might not have linearly independent columns and therefore (T E)'(T E)

might not invertible. If T is not invertible, the linear independence of the columns of TE

depend on the specific Tand E matrices.

It should be noted that rank deficient T matrix does not necessarily mean that the

matrix TE does not have linearly independent columns. However, the greater the degree

of rank deficiency, the less likely it is for TE to have linearly independent columns. Also,

the higher the number of eigenvectors in E is, the more likely it will be for some of the

eigenvectors to be projected to the zero vector by the non-invertible matrix T. Normally

relatively few eigenvoices are used, so the chance of encountering aTE matrix with

dependent columns should be relatively small.

When (TE)' (T E) is not invertible - as the case might be for non-invertible T matrices

the pseudo-inverse can be used. When the pseudo-inverse is used, a least squares
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solution for the weight vector w is obtained. The effect of using a pseudo-inverse (when

(T E)'(T E) is not invertible) on adaptation performance is not known, and it is our opinion

that it should be used with caution.

6.5 Changing (TE)'(T E)w = (TE)'Tjl to the More Fa-

miliar Qw = v for Eigenweight Estimation

In this section the equation for the new weight vector w for weighted projection will be

expressed in a form that is analogue to the equation for the eigenweights for MLED.

To do so, first expand T'T and equate it to a new matrix B:

T'T = D'O,'O,D

0 0 0 0

0 (D~))' 0 0 w (Ao (s, m) )1/2 Id 0

0 0 0 0

0 0 0 0

0 w (Ao(s, m))1/2 Id 0 0 (D~)) 0

0 0 0 0

(6.18)

(6.19)

Recalling that D~) is a symmetric matrix (possibly one of I, C~)-1/2 or C-1/2),

T'T=

o
(

()) 2o w (Ao(s, m)) D~

o
o =B. (6.20)

o o
The right-hand side of Equation 6.9 may now be written as

v = (TE)'Tji = ee; (6.21)

or, if Vi is an element of vand e(i) is the i-th column of E, then

e(i)'Bji
s MsL L e~)(i)'w (Ao(s, m)) (Dg))2 ji

(6.22)

(6.23)
8=1 m=l

S MsL LW (Ao(s, m)) e~)(i)' (Dg))2 ji~)
8=1 m=l

(6.24)
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d· - AI(S m)an Sl Il Cf' II. = --'-, r: Ao(s,m)

.= ~ ~ w (Ao(s, m)) (s)( .)/(D(s))2A ( )
V1 L L Ao(s m) em Z mIS, m .

s=1 m=1 '

(6.25)

Similarly, the left-hand side of Equation 6.9 may now be written as

EITITEw = EIBEw = QW, (6.26)

where every element Qij of Q is given by

e(j)1 Be( i) (6.27)
S MsI: I: w (Ao(s, m)) e~)(j)1 (D~))2 e~)(i).

s=1 m=1

(6.28)

Combining Equations 6.22 and 6.26, Equation 6.9 may be expressed as

Qw=v. (6.29)

Looking at expressions for Qij and Vi, it is seen that the weight estimation equations for

weighted projection are very similar to those for MLED. In fact, in Section 6.6 it will be

shown that certain choices for D and n will result in identical adaptation equations for

weighted projection and MLED.

6.6 Comparing the Adaptation Equations for Weighted

Projection and MLED

Here it will be shown that weighted projection is identical to MLED for certain choices

of the decorrelation matrix D and the weighting matrix n.
Westwood [51J proved that when the weighting function is the identity function (i.e. w(x) =

x), and component-by-component decorrelation is used, weighted projection reduces to

MLED using Baum- Welch segmentation (i.e. the state-occupation probabilities ')'g) (t) and

the accumulators were obtained via the Baum-Welch algorithm). Substituting Ao(s, m)

for w (Ao(s, m)) into Equations 6.25 and 6.28 it can be shown that

S M. A () I 2
v; = "\""'"\""' 0 s,m (S)(.)I (C(S)-2) A ( ). L L A (s m) em Z mIS, m

s=1 m=1 0 ,

S Ms TI: I: I: ')'g)(t)e~)(i)/cg)-10t

(6.30)

(6.31)
s=1 m=1 t=1
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and
S u, 1 2L L Ao(s, m)e~)(j)' (C~)-ï) e~)(i)

s=l m=l

S Ms T

L L L r~)(t)e~l(j)'C~)-le~)(i)
s=l m=l 1=1

(6.32)

(6.33)

which are identical to Equations 5.24 and 5.25 for MLED adaptation. Note that the

above derivation is also valid for the case where Nguyen's semi- Viterbi and full- Viterbi

segmentation is employed [40]. From the above, Equation 6.26 and the discussion on

the invertibility of (TE)' (T E) = Q, it is seen that standard MLED suffers from same

problems as weighted projection. A check on the condition number of Q - or checking

whether the columns of TEare linearly independent - should reveal potential numerical

instability when inverting Q. Otherwise the pseudo-inverse of Q could be used in order

to obtain a least squares solution for w.

The identity weighting function (combined with component-by-component decorrela-

tion) is not the only one that reduces weighted projection to MLED. Westwood considered

weighting functions belonging to the family

x:S;O

x>O
(6.34)

Two special cases of this weighting function were found to be of particular interest. The

first was termed occupancy weighting, where q = 1 (recall that occupancy weighting

combined with component-by-component decorrelation was shown to be equivalent to

l\IILED), and the other was termed indicator weighting, where q = O.

Consider the case where Viterbi segmentation is used to obtain state-occupation prob-

abilities for an HMM with single Gaussian state pdfs. Here

if the best path goes through state s at time t

otherwise
(6.35)

If occupancy weighting and component-by-component decorrelation is now used, then

weighted projection reduces to MLED. Also, should indicator weighting be used, it is

easy to show that weighted projection once more reduces to MLED.

From the above it is clear that though the weighted projection and MLED methods

approach the adaptation problem from different perspectives, the resulting adaptation
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equations are very similar, or, in some cases, identical. It is thus no surprise that West-

wood found the recognition performance of weighted projection adaptation to be of the

same order as the recognition performance of MLED adaptation for a variety of weighting

functions and decorrelation matrices.

6.7 Recognition Performance

Westwood [51] found that for the family of weighting functions defined by Equation 6.34,

the recognition performance was not highly sensitive to the choice of q. Performance was

found to be of the same order for 0.2 ::; q ::; 1.8. Also, the choice of decorrelation matrix

had little influence on recognition. As expected, component-by-component decorrelation

resulted in slightly better performance than other decorrelations for a monophone recogni-

tion problem, whereas for a triphone recognition problem (where the covariance matrices

were poorly estimated) global decorrelation resulted in slightly better performance than

other decorrelation matrices.

Recognition performance in general was of the same order as that of MLED.

6.8 Advantages of Using Weighted Projection

MLED is one of the most elegant and successful speaker adaptation techniques, and many

new extensions thereof may still be created (such as using non-linear PCA to extract an

eigenspace) to suit different speaker adaptation problems. Weighted Projection is also

an eigen-decomposition adaptation technique, and has the same flexibility as MLED in

the choice of eigenspace extraction. The adaptation equations are virtually identical for

both MLED and weighted projection. Also, the recognition performance - both in terms

of computational complexity, adaptation data required and the percentage of phonemes

correctly recognised - of both adaptation methods is of the same order. Since MLED

has a patent pending, weighted projection may prove to be a viable alternative.
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A Few Navel Approaehes

7.1 Introduction to the Novel Approaches

We have created two novel extensions for eigenvoice methods, in particular MLED. The

first method is a very simple extension to eigenvoice modelling, and the second incor-

porates the use of the class-based Karhunen-Loéve transform into a MLED reestimation

framework. The rationale behind the development of the methods is now stated:

7.1.1 Motivation for Creating a Mean-Preserving Covariance-

Based MLED Extension

The original MLED method applied PCA on the correlation matrix of the prior set of SD

superveetors in order to extract the eigenvectors. When this is done, it is very likely that

the first eigenvector extracted essentially models the mean of the set of SD supervectors.

Alternatively, when PCA is applied to the covariance matrix, eigenvectors are extracted

that do not model the mean of the set of SD models.

Thus, a correlation approach "wastes" the first eigenvector to modelling the super-

vector mean - a value known prior to adaptation. An eigenweight needs to be robustly

estimated for this eigenvector, which places more strain on a system that must adapt

using the barest amount of data.

The covariance approach, on the other hand, entirely discards the information con-

tained in the mean of the prior SD supervectors. This mean can only be modelled if a

linear combination of the chosen eigenvectors allows it. At best, the burden of modelling
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the mean of the SD superveetors is spread over a few eigenvectors, and at worst, the mean

of the SD superveetors cannot be modelled accurately enough by any linear combination

of eigenvectors.

Shortcomings of both the correlation and covariance approaches led us to design an

approach that allows the eigenvoices to exclusively model the inter-speaker variance, while

the mean of the speaker-dependent models is modelled automatically. Thus the mean is

not discarded, even though no eigenvoice is used to explicitly model it. In practice, both

Nguyen [40] and Westwood [51] have shown the correlation method to have good results,

even when using only one eigenvoice. When we attempted to use the covariance approach,

however, the performance when using only a single eigenvoice was inferior to that of the

correlation approach. It is our opinion that this is because the first eigenvector of the

covariance approach is insufficient to model the mean of the SD supervectors. Our results

are contradictory to those of Westwood, who found the two methods to have very similar

performance, even for only one eigenvector. Our mean preserving extension is shown to

outperform both previous approaches when few eigenvoices are used, while being on par

when many eigenvoices are used.

7.1.2 Motivation for the Design of a Class-Based "Eigenvoice"

Method

Accent is one of the largest contributors to inter-speaker variance (see Section 1.2.2), and

in most English-speaking countries speakers belong to one of several accent classes. When

designing a system to cope with speakers from various dialects, one of the following might

be employed:

• For small recognition problems with a very small lexicon, a system can be designed

that only uses one set of phonemes to model a word. There is thus only one global

model that is employed to recognise every possible accented pronunciation of the

word. Needless to say, such a system would probably have very poor performance.

• A system can be designed where all the phonemes (or triphones, or syllables, etc.)

present in all the dialects are explicitly modelled. To model a word in the system,

several different HMM sets are then required - one set to cope with the sequence of
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phonemes used to form the word for each of the dialect classes. While this will result

in an accurate model, it requires the training of more phonemes than the previous

approach. Also, as there are more word models using this method, it might affect

recognition performance.

We focus our attention on the first, smaller recognition task. We will now refer to the

set of phonemes modelled by a single HMM as a "speech unit". Performance of this type

of system could be improved by the use of eigenvoices. Using the same HMM to model

different phonemes produced by speakers with different accents will make the variance of

the SI model for the speech unit very large. However, a well-trained SD model should

have approximately the same intra-speaker variance for a speech unit as for a single

phoneme. Should eigenvoices be extracted from a set of such SD models, the large inter-

speaker variance between speech units could be effectively modelled. A weighted sum of

eigenvoices should then make it possible to accurately adapt HM1\lImodels of speech units

for different accent classes.

Eigenvectors extracted via PCA represent the directions of greatest inter-speaker vari-

ance. The inherent assumption is thus that the directions of greatest variance are the most

important and carry the most valuable information of the original space. What if another

factor, such as the accent class of a speaker, contains information more relevant to HMM

model adaptation than the inter-speaker variance? In this instance, a subspace mod-

elling the greatest inter-class variance may perform better than a subspace modelling the

greatest inter-speaker variance. Such a subspace may be extracted using the class-based

Karhunen- Loéve transform (CBKLT).

The hypothesis regarding inter-accent-class variance was thus tested by extracting a

set of subspace-spanning vectors using the CBKLT, and by implementing a CBKLT-basecl

MLED method for accent and speaker adaptation. For the speech corpus on which the

evaluation was performed, the performance of the mean-preserving CBKLT-based method

was of the same order as standard MLED performance. In an experiment where male

and female speaker classes were used, the performance using only a single gender-based

eigenvoice indicated that adaptation with regards to speaker sex is sufficient to obtain

moderate increases in recognition rate.
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Projection of distribution B on Y2
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Distribution A
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Distribution A (or C) after mean subtraction

Distribution B after mean subtraction
'/---.,.

Figure 7.1: KLT on correlation matrix vs. KLT on covariance matrix.

Having discussed the motivation behind the creation of the MLED extensions, as well

as giving an introduction into the methods, we now move on to an in-depth treatment.

7.2 Using a Mean-Preserving Covariance-Based Ap-

proach for MLED

A small but powerful change to eigenvoice decomposition is to model the mean separately,

as this focuses the modelling of the eigenvoices solely on extracting axes representing the

greatest directions in variance. Figure 7.1 is used to demonstrate the effect of various

KLT implementations have when applied to different data sets. Each elliptic "cloud" on

the figure represents a roughly Gaussian spread of data points with greatest variance in

the direction of the long axes and lowest variance in the direction of the small axes. The

following KLT implementations were analysed:

• Applying the KLT on the correlation matrix of a data set: First, consider

eigenvector extraction for the data set A. The first eigenvector (UI) will go through
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the mean of A, and the second eigenvector (U2) will be perpendicular to it. The

error when using only one eigenvector to model points in the set is relatively small.

Next consider data set B. The same eigenvectors as for data set B are extracted,

but the error in representing the points in the data set using only eigenvector UI is

much larger than before. The reason for this is that the first eigenvector extracted

in this way essentially models the mean of the data set it is applied on. This KLT

implementation tends to preserve the mean of the original data set, but the first

eigenvector may not be in the direction of most variance .

• Applying the KLT on the covariance matrix of a data set: This is the same

as first subtracting the mean of the distribution from the points in the data set, and

then applying the KLT. First, consider distribution A. After mean subtraction, A

lies around the origin, and eigenvectors UI and U2 are extracted. Approximating the

points in A using only the first eigenvector UI is good, as the eigenvoice goes through

the original distribution before the mean was subtracted. Now, consider distribution

B. Distribution B is shifted to lie around the origin, and the eigenvectors lie in the

same direction as the original axes, i.e. Y2 is the first eigenvector and Yl is the second

eigenvector. Here, modelling of the original B distribution using only Y2 will be poor,

as the error between the projection of B onto Y2 and B will be much higher than was

the case for using the KLT on the correlation matrix. This KLT implementation

does not preserve the mean of the original data set, but the first eigenvector is in

the direction of most variance .

• Applying the KLT and preserving the mean: Here, a new data set is formed

be first subtracting the mean of the original data set from itself. The KLT is then

applied on the new mean-less dataset, and the eigenvectors are determined. To

return to the original set of axes, we back-project and then add the original mean

vector. Data set B was the most difficult to represent using eigenvectors of the

previous two KLT implementations. Should this method be used, the mean of B

is subtracted until B lies around the origin. The eigenvectors extracted will be Y2

and Yl. If only the first eigenvector Y2 is used, then the error between the mean-less

dataset B its projection will be very small. The error after back-projecting and

restoring the mean of B compared to the original data set B will be the same small
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value. This KLT implementation preserves the mean, as well as having the first

eigenvector aligned in the direction of most variance.

From the above, it is clear that only the final KLT implementation preserves the mean

vector and has its most important eigenvectors aligned to the directions of most variance.

As such, the mean square error in the approximation of the original data set using this

KLT implementation will probably be the least when only a few eigenvectors are to be

used.

In summary: When applying the KLT (PCA) to the correlation matrix of the su-

pervectors, the first eigenvector essentially models the mean of the supervectors. If the

eigenvectors are to be used exclusively for the modelling of inter-speaker variability while

retaining the ability to model the mean, the third KLT implementation must be used.

Simply estimating a new model using MLED and then restoring the original mean

vector will not suffice, as implementation of mean preservation must be included in the

MLED framework in a maximum likelihood fashion. To do this, first subtract the mean

of the supervectors. The columns Yi of the data matrix are now given by

1 J

1~= /-li - - '" /-lj where i = 1 ... J,JL
J

(7.1 )

where J is the number of SD superveetors and /-lj is a supervector.

This new data matrix is now used in Equation 5.34 and the new set of eigenvectors

(the columns of the U matrix) are computed. A new estimate for a mean vector in a

speaker model is now computed by adding the weighted sum of eigenvoices to the mean

of the supervectors.

K

{L = P +Lwje(j),
j=l

(7.2)

where p is the mean of the superveetors that must be preserved. Alternatively, for each

of the individual model mean vectors

K

{L~) = p~) +L wje~)(j),
j=l

(7.3)

where pt;,_) is the mean of the mean vectors of mixture component m in state s for all of

the SD speaker models.
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Maximising the auxiliary function with respect to the weights follows the same path as

before with very slight differences. The derivation is the same from Equations 5.10 through

5.12. As before, it is necessary to find the derivative jlt;,_) with respect to an eigenweight

before the derivative of ht;,_) (Ot) with respect to an eigenweight can be determined in order

to solve Equation 5.12.

o 0 { K }_I,(s) = _ p(s) + ~ w.e(s)(J.) = e(s)(i)ow. r+rn. ow. m L...t) mm·
l l j=1

(7.4)

Now, as before

~h(S)(o ) = -20' C(s)-1 (~I/(S)) + ~ (I'(S)' C(S)-11,(S))
!:lW m t t m !:l r+m. !:l r+rn. m r+m
ui u~ u~

(7.5)

substituting Equation 7.2 for the adapted mean vectors gives

= -20~C~)-let;,_)(e) + (O~ijlt;,_)') C~)-ljlt;,_) + jlt;,_)'C~)-l (O~ijlt;,_)) . (7.6)

scalars are equal to their transpose, so

-20'C(S)-1e(S)(i) + 2 (~. I/(s)') C(s)-II/(s)
t m m OWi rrm m t+m

-20'C(S)-le(S)(i) + 2e(s)'(i)C(S)-I/,(s)
t mmm . m t-"'m

(7.7)

(7.8)

again, by substituting equation 7.2

~ 2 [-O;C;':J-i e;,:1(i) + e;,:I'(i)C;,:I-l {p;':1 +t 1/Ije;':)(j) } l.
Substituting the results of Equation 7.9 in Equation 5.12 gives

(7.9)

OQ = 0 = (7.10)OWi
L L L I'~)(t) [-O~C~)-let;,_)(i) + et;,_)'(i)C~)-l {pt;,_) +t wjet;,_)(j)}]

S m t )=1

or, equivalently,

S m

~ ~ ~ ,;,:)( t) {p;':1tWje;':1'(j)C;,:J-ie;,:) (i) }, i ~ i ...K.

Equation 7.11 defines the set of linear equations that must be solved in order to obtain

(7.11)

an optimal set of eigenweights. This set of equations can also be expressed as

v=Qw, (7.12)

138

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 7 - A FEW NOVEL ApPROACHES

where the E-dimensional vector of eigenweights is

(7.13)

and v is a J(-dimensional vector given by

v=

Ls Lm Lt 'Y~)(t)e~)' (l)C~)-l(Ot - p~))

Ls Lm Lt 'Y~)(t)e~)' (2)C~)-1(Ot - p~))
(7.14)

and every element % of the J( x J( matrix Q is given by

(7.15)
s m

Thus, as before,

(7.16)

Note that besides the eigenvoices being different, only the computation of vector v has

changed. Mean preservation for MLED is thus a simple extension to eigenvoice decom-

position, and was easily and successfully implemented. As predicted the first eigenvoice

used in the original MLED essentially models the mean of the SD supervectors. The

use of mean preservation resulted in having the adaptation power afforded by normal

MLED using two eigenvoices for roundabout the same computational cost as using a

single eigenvoice.

7.3 Using the Class-Based Karhunen-Loëve Thans-

form for Accents

R. Kuhn et al. [28] state that the eigenvoice concept may possibly be extended to use

more complex dimension reduction techniques such as non-linear PCA for more accurate

approximations of the speaker space prior information. Section 7.2 extended the use of

eigenvoice decomposition to different KLT implementations, and in this section the idea

of eigenvoice decomposition is extended to use the class-based Karhunen-Loeve transform
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(CBKLT). The CBKLT is similar to class-based linear discriminant analysis (LDA) and

is also known as the Fisher method for the two-class case.

Nguyen [40] found that, for the MLED experiments on the ISOLET speech corpus,

the first eigenvoice could be used to identify male and female speakers, indicating that

males and females could possibly form two classes that may be used effectively using a

class-based transform like CBKLT. Male-female separation in the speaker space is useful,

but other interesting uses for MLED using CBKLT are also possible.

Consider the USA, where accents are prominent enough for a human listener to make

an accurate guess as to the ethnicity or region of origin of the speaker. Accent groups could

represent separate speaker classes for use in a CBKLT, where the resulting transformed

space will have the greatest linear separation between speakers of different accent regions

- assuming, of course, that the classes are indeed linearly separable.

In a country such as South Africa there is a great deal of divergent accents, as there

are so many people from diverse ethnic backgrounds that speak English as their second

or third language. Often such speakers' first language does not have the same phonetic

richness as English. Phonemes with which they are familiar are frequently substituted

in place of a more standard English phoneme pronunciation. For a small vocabulary

recognition task such as a single digit number recognition problem, a different set of

phonemes could be used to represent the same digit for speakers with different accents,

resulting in a larger recognition problem. Alternatively, the same HMl\lI could be used

to represent a digit for speakers of all accents. SD models representing the digit would

then be quite dissimilar for speakers with different accents, thus resulting in reasonably

large separation between accent classes in the speaker space. Speaker adaptation using a

CBKLT implementation of eigenvoice decomposition might then be used to successfully

adapt the HMM for new speakers.

When the KLT is used to create an eigenspace, the inherent assumption is that the

directions of greatest variance holds the most important data relevant to speaker adap-

tation. For the speech corpora such as ISOLET, this assumption was valid and MLED

adaptation performance was excellent. What if the modelling problem needs to address

speakers with different accents? Will the most important data for speaker recognition pur-

poses still be associated with the directions of greatest inter-speaker variance, or would
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Class A -- -_

Class B -- - ~

Figure 7.2: Choosing axes according to the greatest class vanance vs. choosing axes

according to greatest data vector variance.

the accent class of the speaker be more important? To test the hypotheses, an extension of

maximum likelihood eigenvoice decomposition incorporating the well-known class-based

Karhunen-Loéve transform is presented. Before the derivation of the MLED extension is

continued, it is necessary to treat the class-based Karhunen-Loéve transform.

7.3.1 The Class-Based Karhunen-Loëve 'Transform

7.3.1.1 A Brief Outline of the CBKLT

Refer to Figure 7.2. Here the two ellipses represent the data for two linearly separable

classes. With normal KLT, the first or dominant axis of the transformed space will be in

the direction of greatest variance of the original data. For the two classes in Figure 7.2,

the principal eigenvector will be Ui and will lie on the original Yl axis, thereby yielding

no separation between classes. CBKLT, however, chooses axes according to the greatest

variance in class, resulting in maximal linear class separation along the axes in the trans-

formed space. The first "eigenvector" (it is not entirely correct to refer to the rows of the

CBKLT matrix as eigenvectors, as they are not orthonormal) obtained via the CBKLT

will be U2 and will lie on the original Y2 axis and through the means of the original classes.

The CBKLT is done as follows: First a whitening transform is applied to the data

to make the average covariance of the classes the unity matrix. After this, another KL

transform is applied on the class means instead of on the individual data vectors -
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Class A

Y2

Class B

Yl
\

\

Class A after decorrelatio~
(in the t-space)

Class B after decorrelation
(in the t-space)

Figure 7.3: Representation of the effect of CBKLT on a two-class data set (adapted

from [11]).

treating the class means as data points for a KLT results in the desired alignment of the

axes in the direction of greatest variance in the class means.

7.3.1.2 Derivation of the CBKLT

As previously stated, the class-based Karhunen-Loëve transform is essentially a two-step

transformation. A feature vector y in the original space (the y-space) is transformed

to a feature vector t in an intermediate whitened space (the t-space), which is in turn

transformed to a feature vector x in the final space (the x-space). Equations 7.17 and

7.18 represent this two-step transformation:

t = B'y. (7.17)

x = V't = V'B'y = l¥'y. (7.18)

If each yy) is used to represent a data vector number j in class i, and n, is the number
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of data vectors in class i, then the covariance matrix for a class is given by

~ 1 ~((i) )( (i) )'ui = -:;:L Yj - /-li Yj - /-li ,
t j=l

(7.19)

where /-li is the mean of class i given by
1 ni .

/-li = - Ly;t).
ti z j=l

The average covariance matrix for all the classes is now given by

(7.20)

c

(7.21)
i=l

where c is the number of classes and Pi is the probability of class i occurring. This

average covariance matrix is also known as the intra-class dispersion matrix and it gives

an indication of how data of the classes are spread in general.
c

(7.22)
i=l

where /-IT is the mean of all the feature vectors in all the classes. Equation 7.22 is known

as the inter-class dispersion matrix, and it gives an indication of how the centroids of the

classes are spread.

If the probability is simply determined by the relative number of feature vectors as-

signed to each class, then the following may be substituted for Pi:

D. _ !!i:_
Ft - ,

nT

where ïvr is the total combined number of feature vectors for the classes.

For CBKLT, a transform is required that makes the intra-class dispersion matrix the

(7.23)

unity matrix in the new space. If the intra-class dispersion matrix is the unity matrix,

then it implies that the features are decorrelated. These features will also remain decor-

related after any further orthonormal transformations. If the required transform is B',

and the orthonormal eigenvector matrix and diagonal eigenvalue matrix for Sware U and

i\ respectively, then the new intra-class dispersion matrix (after transformation) is given

by Sw:

B'SwB

A -1/2 A 1/2

(7.24)

(7.25)

(7.26)

(7.27)

A -1/2' A 1/2

A -1/2' U'U AU-1 UA -1/2.
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Thus

(7.28)

The SVD of s; is

(7.29)

Substituting Equation 7.29 in the right side of Equation 7.28, it follows that the desired

transform B' is given by

B' = (U A -1/2)' = (A -1/2)'U' = A -1/2U'. (7.30)

Transforming the features using B' thus makes the variance of the data in the intermediate

space (represented by the t vectors), when viewed across all the classes, the same in all

dimensions. The inter-class dispersion matrix is also transformed to become Sb:

(7.31 )

In order to obtain optimal compression of the data, a transformation that is based on

the eigenvectors of Sb is now applied. The transformation is a simple rotation of axes, so

that the features will remain decorrelated after the new transformation. If the eigenvector

matrix of Sb is given by V , then the total transformation applied to the original data is

vV', given by

vV' V' B'
(7.32)

mxm mxm mxm

where m is the dimension of the data to be transformed.

If x is a vector in the new transformed space, then x and yare related by

x = Hf'y or y = (W')-lX. (7.33)

Note that the transform W' is not orthonormal, as is the case with the normal Karhunen-

Loeve transform.

It is not necessary to retain all the dimensions after the first transform B', as all

but the first r eigenvectors will be associated with non-null eigenvalues. The other m - T

eigenvalues will be zero and their eigenvectors will describe the null-space of Sw. Thus only
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the first T eigenvectors and eigenvalues need to be used to form the reduced transformation

matrix B~. As the z-space (created by applying transform B~ to the y-space) is only T-

dimensional, the transformed inter-class dispersion matrix Sb only has dimension TXT.

Consequently, the transformation formed be the eigenvectors of Sb also only has dimension

TXT. The reduced transform W~ is given in Equation 7.34:

Hl'+ V'+ B'+
V' A -1/2+ + u~

(7.34)
T X m TXT r x m TXT TXT r x m

Any dimension reduction and loss of data that have occurred at this stage are a side effect

of CBKLT, and it occurs because all the data in a class are represented by the mean of

the class in the calculation of the V: transform. The amount of loss is greater when fewer

classes are used for the same data set. Further dimension reduction is obtained at a loss

by only retaining those eigenvectors corresponding to the largest eigenvalues of Sb in V++,

so that

Hl'++ B'+ (7.35)
ex m eXT r x m

where e is the number of eigenvectors retained in transformation matrix V:+.

Transforming the original features into the new e-dimensional x-space is then given

by

W" V' B' V' (A-1/2)'U'X = ++y = ++ +y = ++ +y. (7.36)

Therefore, the matrix used in order to describe the reduced speaker space (similar to the

original concept of the "eigenspace") in MLED is then the left-inverse of (W~+), so that

(7.37)

Recalling that the columns of U+ are orthonormal, the columns of V++ are orthonormal

and that A is diagonal, the validity of the left-inverse matrix can be checked by simple

multiplication:

(W' )-IW'++ ++ (U+A~2V++)(V~+(A -1/2)'U~)

U A1/2IA-1/2U'+ + +

(7.38)

I,
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where the final identity matrix I is an e x e matrix. As with the extraction of the normal

eigenvoices using the KLT, the memory requirements for computing the "eigenvoices"

using the CBKLT are quite large. A similar memory reduction method as the one for

KLT (Section 5.4.3) was thus used for the CBKLT computation of basis vectors. The

memory reduction method for the CBKLT may be found in Appendix C.

7.3.2 Extending the MLED Idea to Use CBKLT Speaker Space

Reduction

During the MLED derivations, the eigenvoices used were orthonormal with respect to each

other, and so the reasonable assumption was made that the eigenweights are independent

of one another.

When the CBKLT is utilised, however, the transformation matrix W' is not orthonor-

mal. The concept of eigenvoices is also not really applicable any more either, as the

columns of (W')-1 are the product of a rotation-and-scaling transform and another ro-

tation transform, so the individual columns are not orthonormal. However, by making a

simple assumption regarding independence of the weights, a derivation may be made for

MLED-like adaptation of a model using a reduced-dimension speaker space.

During CBKLT, the first transformation, B', decorrelates the supervectors. The trans-

formed superveetors will remain uncorrelated under any further purely rotational trans-

form. Since the transformed superveetors are uncorrelated, it is reasonable to assume

that the weights will be linearly independent of one another.

As in the derivation of normal MLED adaptation, the columns of the inverse of the

transform used to create the "eigenspace" - previously U; now (W')-1 - are referred

to as eigenmeans (e), and the number of eigenmeans employed is E. The new estimate

of the supermean vector for a speaker is then given by

K

it = :Lwjej
j=1

(7.39)

where ej is the column number j of (W')-1.

Alternatively, for each of the model mean vectors individually

K

it~) = :Lwje~)(j).
j=1

(7.40)
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Equation 7.40 is exactly the same as Equation 5.4 of the original MLED derivation, and the

assumption of linear independence of eigenweights is still valid. The rest of the derivation

for MLED utilising CBKLT is identical to that of the normal MLED derivation, with the

same resulting set of equations to determine the eigenweights.

It is interesting to note that even though the transformation is class-based and the

columns of the (W')-l matrix are not really the same as eigenvoices, the same adaptation

equations still apply. Save for the generation of the eigenmeans, which is different, the

computational complexity and computer code is identical for the original MLED and the

new CBKLT MLED. Considering that CBKLT is a more complex dimension reduction

technique, the similarity of the adaptation is quite a windfall.

It should be noted that the CBKLT does not preserve the mean of the original data

it transforms, resulting in similar problems as those discussed in Section 7.2. Creating

a mean-preserving CBKLT MLED is the same as the creation of the mean-preserving

MLED implementation derived in Section 7.2, save that the eigenvoices are created using

the CBKLT instead of the KLT. As the modelling of the original mean of the SD models

will be exceptionally poor when using CBKLT-extracted eigenvoices, the mean-preserving

CBKLT MLED implementation will always be used.

7.4 Strengths and Weaknesses of the Novel Approaches

Both methods share the weaknesses associated with the standard MLED implementation.

In addition to these weaknesses, the mean-preserving CBKLT-based MLED implemen-

tation has one more weakness: performance is linked to the number of speaker-classes,

and the separation between them. If there are too few speaker classes, the number of

eigenvoices will be very low. This is acceptable for robust estimation when there is an

extremely small amount of adaptation data, but is unacceptable for accurate estimation

when there is a moderate amount of adaptation data. For such conditions, standard

l\IILED will outperform the class-based MLED, as a higher-dimensional eigenspace (that

captures more inter-speaker variance) may be employed. When the separation between

speaker classes is small (and there is little inter-class variance), standard MLED will once

again outperform the mean-preserving CBKLT-based MLED implementation.
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Experiments using the ISOLET

Speech Corpus

Several factors made the ISOLET speech corpus [37] an excellent choice for initial exper-

imentation with speaker adaptation techniques:

• ISOLET was the speech corpus used by Nguyen [40] for MLEO experimentation.

Therefore, a set of results were available with which to compare the performance of

the speaker adaptation software.

• MLEO is one of the adaptation methods that will be tested using the ISO LET

corpus, therefore the speech corpus needs to represent enough speech from enough

speakers so that a robust set of eigenvoices may be determined. ISO LET contains

speech from 150 speakers, which is enough for the creation of a large enough SO

model set from which eigenvoices can be robustly determined. There is relatively lit-

tle speech available for each speaker, however, as the set of SO models will be trained

using rapid speaker adaptation methods, and thus will not present a problem.

• ISOLET is a relatively small speech corpus, making the design of small and time-

efficient experiments possible. It is thus an excellent testing ground for new ideas.

• ISOLET contains high-quality speech, so the adaptation methods could be tested

under highly favourable conditions. Furthermore, each utterance in the corpus con-

tains a large voiced portion. Voiced speech is considered to contain more speaker-
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specific information than unvoiced speech, so speaker adaptation experiments per-

formed on ISOLET should have very favourable results.

The rest of the chapter is arranged as follows:

• A succinct description of the ISOLET speech corpus.

• Details on the extracted feature vectors and normaliser.

• Details on the HMM structures used to model spoken letters and silence.

• A set of ML and MAP adaptation experiments.

• A set of MLLR adaptation experiments.

• A set of MLED adaptation experiments.

• Experimental results for the repetition of Nguyen's experiments that test the effect

of varying adaptation data on MLLR and MLED.

• The experiments are discussed, and conclusions are drawn.

8.1 The ISOLET Speech Corpus

ISOLET (release 1.1) speech corpus [37] comprises of utterances of the letters of the

English alphabet produced in isolation. Two utterances of all the letters of the alphabet

(produced in isolation of each other) are available for each of 150 speakers. This amounts

to a total of 7800 spoken letters, which is approximately 1.5 hours of speech. The speech

quality is considered to be high.

Speakers were between the ages 14 and 72, the average age being 35. 75 were male,

and 75 female. The ISOLET corpus is subdivided into 5 subsets, ISOLET-1, ISOLET-2,

ISOLET-3, ISOLET-4 and ISOLET-5, each consisting of the utterances of 30 speakers,

15 male and 15 female.

There is approximately 80ms of silence at the beginning and end of each utterance,

for a total of 160ms silence per utterance.

Speech was sampled at 16kHz, and the resulting WAY files are stored using the RIFF

standard. The files are 16-bit linearly encoded.
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8.2 Choice of Features and Extraction Thereof

Nguyen performed his experiments using eighteen-dimensional feature vectors, where the

elements comprised of eight PLP-cepstral features, the zeroth PLP-cepstral coefficient or

energy, and their corresponding nine delta-parameters. We wish to use his results as a

reference for some of the experiments, and we also wish to compare the performance of

PLP-cepstral and LPCC feature vectors. The creation process of each of the two types

of feature vectors is described next.

8.2.1 LPCC Feature Extraction used for the ISOLET Corpus

First, the speech in the WAY files is loaded, and blocked into 32 ms frames, with an

overlap of 16 ms between frames and the power in the utterance is made unity. The

spectrum of each frame is then preemphasised. Each frame is then Hamming windowed

(the window coefficient is 0.54), and the LPCCs for each frame are computed. Nine

LPCCs (including the zeroth cepstrum or energy in the spectrum) are computed. A

mean value of each LPCC parameter is now removed, and a delta-parameter is computed

for each. The feature vector thus consists of nine mean-compensated LPCCs, and nine

delta-parameters. Finally, the features are normalised by their standard deviation.'

8.2.2 PLP Feature Extraction used for the ISOLET Corpus

The power in the utterance (file) is made unity. The digitised speech is blocked into 32 ms

frames, with an overlap of 16 ms between frames. The spectrum of each frame is then

preemphasised. Each frame is then Hamming windowed (window coefficient 0.54), and

nine PLP-cepstral coefficients for each frame is determined. The fitst cepstral coefficient is

the energy of the signal. The mean value of each PLP-cepstral parameter is now removed,

and delta-parameters for all PLP-cepstral parameters are computed. Finally, the features

are normalised by their standard deviation.

1Note that only the training data of the SI model was used to estimate the norrnaliser, i.e. the first

utterance of each letter of the alphabet for each speaker in four of the ISOLET speaker subsets. There

was thus no contamination of the adaptation training and testing data with the SI model training data.
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8.3 Choice of HMM to ModelISOLET Letters

In order to model the speech present in the ISOLET corpus, 27 HMMs are needed -

one HMM for each letter of the alphabet, and one HMM for silent sections present in the

recorded speech.

Each letter was modelled by an 8-state, left-to-right, double skip-width HMM. Only

the six middle states had pdfs associated with them. The self-loop (i.e. a state transition

probability aij where i= j) for each emitting state was initialised with a value of 0.7, and

all other transition probabilities from a state were made equal. Each emitting state has

a GMM state pdf.

A five-state ergodic HMM structure was used to model the silent parts of the recorded

speech. The first and last states were beginning and ending null-states, so that only the

three middle states had pdfs associated with them. The initial loop-back probability (self-

loop ) for each non-null state was set to 0.5, and all other state transition probabilities

from a state were made equal so that the sum of all transition probabilities leaving the

state was equal to one. Each emitting state has a GMM state pdf.

Speaker adaptation experiments are performed on two speech modelling schemes. The

first is simple modelling scheme, where each GMM has a single mixture component, i.e.

single Gaussian state pdfs are used. The second is a more complex modelling scheme;

GMMs with eight mixture components were used for each state pdf.

MLLR adaptation in its basic form can only be used where the G1VH/Istate pdfs have

diagonal covariance matrices. As such, all HMM models were restricted to use GMMs (or

single Gaussian pdfs) with diagonal covariance matrices.

8.4 General Setup for Experimentation

All experiments conducted using the ISO LET corpus are identical to that used by Nguyen [40],

save for the following differences and additions:

• Nguyen only did detailed MLLR experiments for HMMs with GMMs with six mix-

ture components, and only did detailed MLED experiments on HMMs with single

Gaussian state pdfs. We perform detailed experiments of MLLR and MLED adap-

tation for models incorporating GMMs as well as for models incorporating single
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Gaussian pdfs. In this way the results could be compared to Nguyen's (where avail-

able), and observations could be made with regard to the effect of model order on

the performance of an adaptation technique.

• All experiments were done for systems using PLP-cepstral features as well as for

systems using LPCC features. Experiments using PLP-cepstral features could be

verified against Nguyen's, as his experiments were performed using PLP-cepstral

features.

• The two novel MLED extensions were included in all experiments, so that their

performance could be measured against the original MLED adaptation implemen-

tation.

• The experiments conducted to test the effect the number of eigenvoices have on

recognition accuracy are done at finer intervals than Nguyen's experiments, to see

if the eigenspace extracted from ISOLET speakers has the same characteristics as

the eigenspace extracted from DARPA speakers in Westwood's experiments [51].

• The experiments include graphs of per-letter recognition accuracy, as this helps

illustrate the difference between PLP-cepstral features and LPCC features.

The 5 speaker-subsets of the ISO LET corpus are used in a round-robin fashion so that

speaker adaptation experiments can be performed on each of the sets, and the average of

the recognition performance of all sets can then be determined. In this fashion speaker

adaptation experiments could be performed for 150 speakers, so that taking the average

gives a good indication of the adaptation performance.

For each target subset (consisting of 30 speakers), an SI model is trained using the

speech from the other four subsets. The iterative procedure described in Section 2.7 is

used to robustly train the SI model. An SD model is now trained for each speaker in the

target subset, where the available adaptation data consisted of only the first utterance of

each letter for the speaker. Note that the SD model has the same architecture as the SI

model. The test data consists of the second utterance of each letter for the speaker.

The final letter error rate for an adaptation method is computed by by taking the

average of the letter error rates for each of the five SD sets trained by the adaptation
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method. The formula used to compute the letter error rate for each of the five ISO LET

subsets is given by:

letter error rate
(number of observed letters incorrectly recognised)

(number of observed letters)
xlOO%, (8.1 )

and the formula for the average letter error rate is given by:

1 5
average letter error rate = - ~ letter error rate for ISOLET-i.5L...-

i=l

(8.2)

The recognition rate is given by

average letter recognition rate = 100 - average letter error rate. (8.3)

Henceforth the average letter error rate will be referred to as ER, and the average recog-

nition rate will be referred to as RR.

For all SI and SD model training and adaptation procedures, the Viterbi algorithm

was used to obtain the state and mixture occupation probabilities. For scoring purposes,

the Viterbi algorithm was again used. Viterbi was preferred to Baum- Welch, because the

Baum- Welch algorithm was computationally very expensive when compared to Viterbi,

and preliminary experiments indicated that there was little difference between error rates

for the two segmentation approaches.

Adaptation methods were only allowed to reestimate the mean vectors of Gaussian

pdfs in the HMMs, and all other HMM parameters were fixed.

Any interesting results found when comparing different adaptation methods were ver-

ified using the McNemar test [19]. The McNemar test is a is a method used to check

whether the difference in error rates between two algorithms tested on the same data set

is statistically significant, i.e. to check whether the difference between the error rates is

due to the algorithms, or simply due to the (limited) data set. The McNemar test is

used to determine the probability of the following hypotheses: The number of utterances

which the first algorithm classifies correctly and the second algorithm classifies incorrectly

is equal to the number of utterances the first algorithm classifies incorrectly and the sec-

ond algorithm classifies correctly. Thus, if the McNemar probability is close to one, it
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Single pdf Single pdf Mixture pdf Mixture pdf

PLP-cepstra LPCC PLP-cepstra LPCC

16.15% 16.18% 11.76% 13.22%

Table 8.1: SI recognition results for various speech modelling systems. Single pdf refers

to a system using HMMs with single Gaussian state pdfs. Mixture pdf refers to a system

using HMMs with eight-component GMM state pdfs. PLP-cepstra refers to systems using

PLP-cepstral features, and LPCC refers to systems employing LPCC features.

is very likely that the algorithms had equivalent performance and any difference in error

rate was simply due to the limited data set. If the McNemar probability is close to zero,

it is likely that the algorithms are not equivalent, and any difference in error rate is due

to the algorithms and not the data set. Typically a significance level is chosen, and if

the McNemar probability is less than the significance level, the hypotheses that the two

algorithms are equivalent is rejected.

8.5 Letter Error Rates for SI models

Table 8.1 gives the average letter error rates for the SI models for the various modelling

systems tested. As expected, systems employing mixture pdfs have lower error rates than

systems employing single pdfs. Also, SI systems using PLP-cepstral features outperform

systems using LPCC features. In all subsequent sections, the following notation will be

used to denote the various systems:

• "SG PLP" will refer to a system that has HMMs using single Gaussian state pdfs,

and uses PLP-cepstral features.

• "SG LPCC" will refer to a system that has HMMs using single Gaussian state pdfs,

and uses LPCC features.

• "GMM PLP" will refer to a system that has HMMs using GMM state pdfs (each

with eight mixture components), and uses PLP-cepstral features.

• "GMM LPCC" will refer to a system that has HMMs using GMM state pdfs (each

with eight mixture components), and uses LPCC features.

154

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 8 - EXPERIMENTS USINGTHE ISOLET SPEECH CORPUS

System

SG PLP SG LPC GMM PLP GMM LPC

SI ER 16.15% 16.18% 11.76% 13.22%

ML ER 15.66% 15.30% 15.94% 15.94%

Table 8.2: Error rates for various systems after ML-reestimation. ER is the letter error

rate as defined in Section 8.4.

8.6 ML and MAP Adaptation Experiments

This section treats ML and MAP adaptation on the ISOLET corpus. The specific ex-

perimental setup and the results of the experiments are treated in the next section. In

Section 8.6.2 the ML and MAP adaptation results are discussed in depth.

8.6.1 Experimental Setup and Results for ML and MAP Adap-

tation

ML adaptation is the normal method used to train and reestimate the model parameters

of an HMM. As such, comparing the recognition performance of ML-reestimated SO

models with speaker adapted SO models will give a good indication of the abilities of the

speaker adaptation methods.

To prevent non-robust Ml.-estimation, a limit was placed on the minimum number of

observation vectors needed for the reestimation of a mean vector. Previous experience with

PatrecII code suggested that a minimum observation count of 8 (per mixture component)

was sufficient for robust estimation of a mean vector. Henceforth the notation Omin will

be used to refer to the minimum observation count.

Table 8.2 summarises the performance of ML-adaptation when USIng all available

adaptation data (i.e. the first utterance of each letter of the alphabet) for each speaker.

MAP-reestimation of HMM parameters can be seen as a more robust version of ML-

reestimation. In addition to the T parameter, the confidence measure in the new ML-

estimate, a minimum observation count (as with ML-estimation) of one, four or eight

observation vectors is used. There are thus two factors controlling the "robustness" of a

new estimate: the T parameter, and the minimum observation count.

155

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 8 - EXPERIMENTS USINGTHE ISOLET SPEECH CORPUS

I Adaptation method I SG PLP I SG LPCC I
SI 16.15% 16.18%

MAP, T = 100, Omin = 8 11.91% 10.54%

MAP, T = 40, Omin = 4 13.76% 11.93%

MAP, T = 30, Omin = 1 12.52% 10.23%

MAP, T = 40, Omin = 1 11.98% 10.50%

Table 8.3: A comparison of best letter error rates achieved for SG systems after MAP-

reestimation.

I Adaptation method I GMM PLP I GMM LPCC I
SI 11.76% 13.22%

MAP, T = 30, Omin = 8 10.29% 8.33%

MAP, T = 10, Omin = 4 11.13% 11.95%

MAP, T = 10, Omin = 1 10.29% 8.83%

MAP, T = 20, Omin = 1 9.77% 8.94%

MAP, T = 30, Omin = 1 9.80% 9.16%

Table 8.4: A companson of best letter error rates for GMM systems after MAP-

reestimation.

The heuristic parameter was chosen to be the same for all the mean vectors in all the

HMIVls of a speaker model. Various values of this single heuristic parameter T were then

tried to obtain an empirical indication of which values yield the best results. Table 8.3

contains the lowest error rates achieved using MAP-reestimation of the parameters of the

SG PLP and SG LPCC systems. Table 8.4 contains the lowest error rates achieved using

MAP-reestimation of the parameters for the GMM PLP and GIVIMLPCC systems. For

more results, see Tables E.1 and E.2.

8.6.2 Discussion on ML and MAP adaptation results

From Table 8.2 it is seen that ML-adaptation results in a small improvement in the letter

error rate. This is as the amount of adaptation is too small for robust and accurate ML
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adaptation.

From Tables 8.3 and 8.4, it is seen that MAP adaptation always resulted in an im-

provement in error rate, and that the improvement was considerable for certain choices of

T and minimum observation count. It appears that using a minimum observation count

for "doubly robust" MAP adaptation results in poorer performance than when no mini-

mum observation count was used. For an SG LPCC system, the improvement was as high

as 5.95%, which is a relative reduction of 36.77% of the SI error rate of 16.18%. For an

GMM LPCC system, the improvement was as high as 4.83%, which is a relative reduction

of 33.21%.

For the case of SG systems, the error rates after MAP adaptation are comparable to

the error rates achieved using MLLR or MLED adaptation (see Tables 8.5 and 8.7). This

indicates that the number of parameters to adapt given the amount of available adaptation

data is such that parameter spreading is unnecessary for adequate reestimation of the

speaker model (this is only true when there was adaptation data for each letter).

For the case of GMM systems, the error rates after MAP adaptation are - while

better than ML adaptation - not comparable to the rapid adaptation techniques. The

reason for this is that the number of parameters that need to be robustly estimated from

the available adaptation data have increased eightfold. The rapid adaptation techniques

have made more robust estimation possible by effectively spreading the available data.

The relative improvement in error rate was always greater for LPCC systems than

for PLP systems. MAP-adapted SG LPCC systems always had lower error rates than

SG PLP systems. MAP-adapted GMM LPCC systems often outperformed MAP-adapted

GMM PLP systems, even though the initial PLP SI model has a 1.46% advantage over

the initial LPCC SI model.

Contrary to the findings of Nguyen [40], we found that MAP adaptation performance

was rather sensitive to the value of T. This suggests that a better performance could

be achieved if a genetic algorithm (or similar method) were used on the set of training

speakers to determine the best T values. Furthermore, the performance could probably be

enhanced by using a separate T for each mean vector. The iterative Bayesian method [18]

may also be used to obtain good T values.
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Global
[a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.tl

[p.q.r.s.t,u, v,w.x.y ,z,silence]

silence
":,
:,
"-------------------------- ....

Big clusters

Eb-set Ec-set
[b,d,g,p,t] [f.l.m.n.s.x] [a.h.j.k][c,e,v,z]

Small clusters

Figure 8.1: Regression tree used for the ISOLET corpus (adapted from Nguyen [40]).

8.7 Setup for the MLLR Adaptation

The regression tree used during the experiment is identical to the one proposed by Nguyen

[40] for his ISOLET experiments on MLLR, and is reproduced in Figure 8.l.

Nguyen never used the entire tree during his MLLR experiments, but tested the fol-

lowing clusterings for four different experiments:

• Global regression: this regression class binds all the letters' models as well as the

silence model.

• Big clusters: phonetically similar letters are grouped according to the following large

regression classes:

- A set containing only the silence model.

- An E-set composed of the set [b, c, d, e, g, p, t, v, z].

- An A-set composed of the set [a, f, h, j, k, 1, m, n, s, x].

- Separate sets for each of the letters 0, rand w, to be adapted by the global

matrix.
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• Small clusters: big clusters are split in order to exploit further phonetic similarities

between constituent letters.

A plosi ve subset of the E-set (referred to as the Eb-set), com posed of the letters

[b, d, g, p, t].

The remainder of the E-set (referred to as the Ec-set), composed of the letters

[c, e, v, z],

A subset of the A-set (referred to as the Af-set), composed of the letters If, 1,

m, n, s, x].

A second subset of the A-set (referred to as the Aa-set), composed of the letters

[a, h, j, k],

The l-set and separate sets for the letters 0, rand w remain the same as they

were for the big clusters .

• Per letter: a separate regression class for each letter on its own.

As some results will be compared to Nguyen's, initial ISO LET experiments are to be

done using the same clustering schemes. Subsequent experiments use the entire phoneti-

cally determined regression class tree.

Nguyen included the silence model in his global regression class, but it is not known

whether the silence model was adapted using the global regression matrix. It was decided

to altogether remove the silence model from the adaptation, for two reasons. Firstly, it

does not contribute any speaker-specific knowledge that could be helpful during adap-

tation, as the recording conditions were identical. Secondly, the other letter models are

vastly different from the silence model, both in structure and in the feature data used to

train them. As such, adapting the silence model using a global regression matrix formed

from letter data would not improve the SI silence model. Furthermore, initial experimen-

tation indicated that the inclusion or exclusion of the silence model in the adaptation

procedure had little effect on recognition performance. The exclusion of a silence model

is not advisable for all adaptation tasks. For instance, using the "silence" feature vec-

tors produced by motor-car noise could assist MLLR adaptation of a speaker model to

compensate for the recording environment.
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I SG PLP I GMM PLP I Omin

SI 16.15% 11.76% -

MLLR, global 10.37% 7.66% GI: 200

MLLR, big clusters 10.80% 7.67% GI, BC: 200

MLLR, small clusters 1 13.65% 12.02% GI, 0, r, w: 200 & SC: 8

MLLR, small clusters 2 13.04% 7.83% GI, 0, r, w: 200 & SC: 100

MLLR, per letter 1 96.30% - GI: 200 & PL: 8

MLLR, per letter 2 10.37% 7.66% GI: 200 & PL: 100

MLLR, tree 1 15.68% 8.02% GI, BC: 200 & SC, 0, r, w: 50

MLLR, tree 2 13.36% 8.02% GI, BC, 0, r, w: 200 & SC: 100

MLLR, tree 3 10.85% 8.02% GI, BC, SC, 0, r, w: 200

GI: Global; BC: Big Clusters (excluding 0, rand 'w)

SC: Small Clusters (excluding 0, r ,and w)

PL: per letter (0, rand ware included)

The silence model was entirely excluded from adaptation.

Table 8.5: A Comparison of MLLR Letter Error Rates for PLP systems.

Results for an extensive set of experiments testing MLLR adaptation performance

on PLP systems using various regression class schemes are contained in Table 8.5. A

second set of experiments for MLLR adaptation of LPCC systems using only the best

regression class schemes is contained in Table 8.6. All of these experiments are done with

all the available training data for each speaker, i.e. the first utterances of each letter of

the alphabet for the speaker is used.

8.7.1 Discussion of MLLR Adaptation Results

For the SG models, the MLLR using the best regression class schemes only had slightly

better performance than MAP adaptation, indicating that there was enough adaptation

data per parameter to make robust MAP estimates. For the GMM models, however, most

iVILLR regression class schemes outperform MAP adaptation, indicating that parameter

reduction is becomes necessary for robust parameter estimation.
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I SG LPCC I GMM LPCC I Omin

SI 16.18% 13.22% -

MLLR, global 9.36% 7.62% Gl: 200

MLLR, big clusters 9.36% 6.87% Gl, BC: 200

MLLR, small clusters 1 9.31% 9.76% Gl, 0, r, w: 200 & SC: 8

MLLR, tree 1 13.14% 7.59% Gl, BC: 200 & SC, 0, r, w: 50

MLLR, tree 3 9.36% 7.59% Gl, BC, SC, 0, r, w: 200

Table 8.6: A Comparison of MLLR Letter Error Rates for LPCC systems.

In all cases the post-adaptation error rates for LPCC systems are lower than their

counterpart PLP systems.

For the "per letter I" implementation of MLLR, the error rate was 96.30% - by

far the highest error rate for any MLLR implementation. This is because the minimum

occupancy (eight) was far lower than the dimension of the feature vectors (eighteen), so

that the resulting G(i)_matrix is rank deficient, and therefore not invertable (as discussed in

Section 4.3.2). A pseudo-inverse is therefore calculated (as suggested by Leggetter [33]) in

place of the inverse to obtain a least-squares approximation of the true solution. However,

the extremely poor adaptation performance indicates that using a pseudo-inverse when

the G(i)-matrix is very rank deficient is not good practice. It is therefore our suggestion

that the pseudo-inverse be used with caution (or not at all) when the regression class

occupancy is low.

The error rates for MLLR adaptation are generally two to three percent lower than

those achieved by Nguyen. This is probably because our SI system had a slightly lower

error rate (1% lower), and as a result of the different limitations placed on the minimum

observations needed to estimate a regression matrix.

Even though several regression class schemes were employed, few had better results

than a simple global regression class. This is probably due to the very basic phonetic

regression tree employed. Using more complex clustering schemes - be it phonetically

or distance based - performance better than that of the global regression class scheme

should be possible.
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8.8 Setup for MLED Adaptation

Before MLED adaptation can be performed, a set of eigenvoices is needed. These, in turn,

have to be calculated via PCA from superveetors extracted from a set of well-trained SD

models.

Adaptation experiments are to be performed on one ISO LET speaker-subset at a time.

As stated before, the SI model for the current target subset is trained using the data from

the other four subsets. For MLED adaptation, a set of 120 SD models are determined

for each of the speakers in the other four subsets. These SD models are trained by first

using MLLR adaptation, and then using MAP-reestimation as a computationally light-

weight post-adaptation step, to increase the SD models' likelihood slightly. For instance,

if ISOLET-1 is the targeted speaker subset on which MLED adaptation is to be tested,

the data from ISOLET-2 to ISOLET-5 will be used to train the SI model. The same

training data is then used to adapt this SI model to an SD model for each speaker in

subsets ISOLET-2 to ISOLET-5. Eigenvoices are then determined from the SD models

trained for the speakers in ISOLET-2 to ISOLET-5, so that MLED adaptation may be

performed on ISOLET-l.

Note that the HMM modelling silence was included in the computation of the eigen-

voices as well as in the final adaptation, unlike MLLR where the silence model was entirely

excluded from the adaptation process.

The silence model is excluded from MLLR adaptation, because we are not concerned

with environmental adaptation. Adaptation data from the silence sections is therefore

not likely to make a positive contribution to the MLLR adaptation of non-silence letter

models. Furthermore, as the recording environment is the same, the silence portions will

be highly similar. It is therefore not viable to poorly adapt the silence models using a

small amount of similar adaptation data, because a well-trained SI silence model, which

is robustly estimated using a large amount of similar adaptation data, is available.

The silence model is included for MLED adaptation, as it is not likely to affect adap-

tation performance. The recording environment is the same for all speakers, and so the

silence sections will be the same for all speakers. This means that the inter-speaker vari-

ance that can be extracted from the silence data of various speakers will be very small,

and will thus have a very small role in the estimation of MLED eigenvoices. Inclusion of
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silence data for MLED adaptation is thus not likely to have a great effect on adaptation

performance. This is only true as the recording environment is the same for all speakers.

If the recording environment is not the same, the silence portions could play an important

role in environmental adaptation.

Three types of MLED adaptation were performed in each of the experiments:

l. Normal MLED, where PCA is used to extract the eigenvoices from the correlation

matrix of the set of SD supervectors. This MLED implementation will be labelled

"l\IILEDcor" .

2. Mean-preserving MLED, where PCA is used to extract the eigenvoices from the

covariance matrix of the set of SD supervectors. This MLED implementation will

be labelled "MLEDcov".

3. Mean-preserving MLED with CBKLT-derived bases or eigenvoices. For ISOLET,

CBKLT was performed using two classes: one for male speakers, and one for female

speakers. As there are only two classes, there is at most one eigenvoice that can be

used for adaptation. This MLED implementation will be labelled "MLEDcbklt".

Resul ts for MLED adaptation of the various SI systems are contained in Table 8.7. All

of these results were obtained using all the available training data for each speaker, i.e.

the first utterance of each letter of the alphabet produced by the speaker.

Figures 8.2 to 8.5 show that the letter recognition rate increases as the number of

eigenvoices employed is increased.

Only one adaptation iteration was used in the MLED experiments listed thus far.

To test the effect of using more than one iteration on recognition performance, a sim-

ulation using three adaptation iterations of a mean-preserving covariance-based MLED

implementation on an LPCC GMM system was completed, and the results are shown in

Figure 8.6.

8.8.1 Discussion of the MLED Adaptation Results

From Table 8.7, and Figures 8.2 to 8.5, it is clear that mean-preserving covariance-based

MLED implementation (MLEDcov) always outperforms standard MLED (MLEDeor)
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I SG PLP I SG LPCC I GMM PLP I GMM LPCC I
SI 16.15% 16.18% 11.76% 13.22%

MLEDcor, ]{ = 1 15.21% 15.93% 11.03% 13.23%

MLEDcor, ]{ = 10 11.30% 11.64% 7.83% 9.04%

MLEDcor, ]{ = 20 11.15% 10.63% 7.46% 8.66%

MLEDcov, ]{ = 1 13.28% 14.13% 8.81% 12.00%

MLEDcov, ]{ = 10 11.32% 11.34% 7.96% 9.53%

MLEDcov, ]{ = 20 11.15% 10.53% 7.34% 8.54%

MLEDcbklt, ]{ = 1 13.46% 14.55% - -

Table 8.7: A comparison of letter error rates for SG and GMM systems after adaptation.

K is the number of eigenvoices used.
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when only one eigenvoice is used. When more than one eigenvoice is employed, how-

ever, there is little difference in performance between the two MLED implementations.

For the case where one eigenvoice was used, the CBKLT-based MLED implementation

(MLEDcbklt) had slightly better performance than the standard MLED implementation

(MLEDcor), and similar performance to the mean-preserving covariance-based MLED

implementation. Only one eigenvoice could be used, as the classes used for the CBKLT

computation of eigenvoices consisted of a male and female speaker class. The CBKLT-

based MLED performance indicates two things: one, mean-preservation enhances adap-

tation performance, and two, an eigenvoice aligned to the inter-class variance between

male and female speaker classes gives the same performance as an eigenvoice aligned to

the direction of greatest inter-speaker variance.

Nguyen showed that increasing the number of eigenvoices used, results in increased

post-adaptation recognition performance. He only showed the results for using one, two,

three, five, eight, ten, fifteen, twenty and thirty eigenvoices, and the resulting recognition

rate versus eigenspace dimension curve was relatively smooth and almost monotonically

increasing. Westwood, however, plotted recognition rate versus eigenspace dimension

graphs for systems of varying complexity - ranging from monophones modelled by HMMs

using single Gaussians, to triphones modelled by HMMs using six component GMMs, all

for the DARPA Resource Management corpus [38]- for an eigenspace dimension of one to

thirty. For the simple models, the recognition rate increased as the number of eigenvoices

were increased up to fifteen eigenvoices, after which the recognition rate increased and

decreased erratically. We suspect that this is possibly due to numerical instability, as

Westwood estimates many eigenvoices, and each eigenvoice has a very large dimension,

using a very small amount of adaptation data (see Section 6.4). Another possibility is

that the pseudo-inverse is being used. Use of a pseudo-inverse will give the least-squares

solution to the problem, which is not necessarily close to the true solution. For the

complex models, the recognition rate increased to five eigenvoices at best, after which the

recognition rate once more became very erratic. In all cases, the performance behaviour

became more unpredictable when less adaptation data was available. Westwood cites non-

robust estimation of the eigenvoices as the reason for the unpredictable behaviour. We

wanted to see if eigenvoices for the ISOLET corpus displayed similar traits, as Nguyen's
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plots were incomplete.

Figures 8.2 to 8.5 of this thesis are plots of recognition rate versus eigenspace dimen-

sion, where the dimension ranges from one to twenty for SG systems, and from one to forty

for GMM systems. For SG systems, the recognition rate does not behave unpredictably as

the number of eigenvoices are increased, and the curve is smooth and increasing. For the

GMM systems, the curve is still increasing and relatively smooth for eigenvoices one to

forty. The curve is less smooth than is the case for SG systems, but does not display the

same unpredictable behaviour observed by Westwood, where the recognition rate would

rise and drop with up to 3% as the eigenspace dimension is increased by one.

For the SG PLP system, the recognition rate versus eigenspace dimension curve climbs

rapidly, and reaches a plateau after the eighth eigenspace dimension, after which the

increase (if any) is very small. For the SG LPCC system, the recognition rate initially

increases slower than is the case for the SG PLP system. However, the recognition rate

shows no indication of having reached a plateau for the eigenvoices one to twenty. At

twenty eigenvoices, the recognition rate of MLED-adapted SG LPCC systems is higher

than the recognition rate of MLED-adapted SG PLP systems. This hints that the largest

part of the inter-speaker variability is captured in very few eigenvoices by the SG PLP

system, but that the eigenvoices of the SG LPCC system has more true dimensions of

inter-speaker variability. It would seem that the use of PLP-cepstral features removes

some of the dimensionality of inter-speaker variability, and concentrates the remaining

variability into very few dimensions.

Moving to the GMM systems, it is seen that the curve for the GMM PLP system

is generally higher than the curve for the GMM LPCC system. The LPCC curve, how-

ever, tends to be smoother than the PLP curve. Neither curve shows any indication of

reaching a plateau in recognition performance. Of the adaptation methods tested, MLED

adaptation of a GMM PLP system is the only PLP system that outperforms its LPCC

counterpart, even though PLP systems have better SI models than LPCC systems.

Figure 8.6 indicates that using more adaptation iterations is beneficial to recognition

rate when the eigenvoice dimension is less than fifteen.
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8.9 Adaptation for Varying Amounts of Data

A set of four experiments testing the effect of varying amounts of adaptation data on the

performance of different adaptation methods was completed. The four experiments are:

1. Sub-experiment 1: In this experiment, the following nine letters are removed

from the training set:

• A, H, K and L from the A-set.

• B, E, Pand T from the E-set.

• o.

The remaining training data was considered to be reasonably balanced.

2. Sub-experiment 2: All nine letters from the E-set were removed in order to

create a sparse unbalanced training data set. This should have an adverse impact

on MLLR adaptation. MLED adaptation should remain unaffected, apart from

having less adaptation data.

3. Sub-experiment 3: Adaptation methods were only allowed to use the training

data of letter A.

4. Sub-experiment 4: Adaptation methods were only allowed to use the training

data of letter S.

Table 8.8 summarises the results for PLP-cepstral features.

8.9.1 Discussion of Adaptation for Varying Amounts of Data

The MLLR adaptation results are discussed first. From Table 8.8, we observe that MLLR

adaptation is adversely affected by the first reduction in the amount of available adapta-

tion (sub-experiment one). When unbalanced adaptation data was used in sub-experiment

two, MLLR adaptation becomes a little worse, as is expected. For the last two sub-

experiments, where adaptation of only one letter are used, no MLLR adaptation takes

place as there are too few observation vectors to robustly estimate a global regression

matrix.

168

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 8 - EXPERIMENTS USING THE ISOLET SPEECH CORPUS

Exp. 1 Exp. 2 Exp. 3 Exp. 4

SI 16.15% 16.15% 16.15% 16.15%

MLLR, global 12.03% 13.40% 16.15% 16.15%

MLLR, big clusters 12.05% 13.34% 16.15% 16.15%

MLEDcor, K = 1 15.16% 14.99% 15.38% 15.34%

MLEDcor, K = 10 11.32% 11.66% 14.61% 15.83%

MLEDcor, K = 20 11.02% 12.08% 20.07% 19.38%

MLEDcov, K = 1 13.33% 13.21% 13.06% 13.53%

MLEDcov, K = 10 11.47% 11.79% 14.52% 16.02%

MLEDcov, K = 20 11.22% 12.19% 19.33% 19.97%

MLEDcbklt, K = 1 13.51% 13.48% 13.85% 13.89%

Table 8.8: Error rates for sub-experiments one to four on the SG PLP system.
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MLED adaptation, on the other hand, yields reduction in error rate even when the

adaptation data consists of the observation vectors from one letter. Apart from the mean-

preserving CBKLT-based MLED implementation, MLED always outperformed MLLR for

certain sizes of eigenspace dimension. This is a reversal of the situation found when all

letters are used as adaptation data, where MLLR outperforms MLED.

For the following two reasons, it was hoped that the MLEDcov implementation would

allow superior performance:

1. Applying the KLT to the covariance matrix instead of the correlation matrix of

the prior set of SD superveetors should result in a more targeted modelling of the

directions of highest inter-speaker variance. It was hoped that adaptation would

perform better for at least the first few eigenvoices, as the mean is preserved, and

the directions of inter-speaker variance are represented better.

2. Preserving the mean of the prior set of SD superveetors means that it does not have

to be estimated from the available adaptation data. It was reasoned intuitively that,

if the data were not wasted on the estimation of a quantity already known (i.e. the

mean of the prior set of SD supervectors), then more eigenweights could be robustly

estimated. It was hoped that the MLEDcov implementation would outperform the

standard MLED implementation for the first few eigenvoices when the amount of

adaptation data was very small.

The mean-preserving covariance-based MLED implementation (MLEDcov) always out-

performed the standard MLED implementation (MLEDeor) when only a single eigenvec-

tor was used. McNemar [19] tests were done to verify this result. McNemar tests to verify

the MLEDcov vs. MLEDcor results for the cases where only one eigenvoice was used

were much lower than a significance level of 0.005 - typically of the order 1 x 10-6. This

indicates that the superior performance of MLEDcov is in fact due to the method and

not simply due to the specific data set.

When enough adaptation data are available for the robust estimation of many eigen-

weights, Figures 8.2 to 8.5 show that the performance of the two MLED implementations

is very similar, and the more accurate eigenspace modelling of MLEDcov does not give

improvement for all eigenspace dimensions. When a very small amount of adaptation
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data is available, Figures 8.7 and 8.8 show that the intuition that mean-preservation

would allow the robust estimation of more eigenvoices was false, as the performance of

standard MLED (MLEDcor) and the mean-preserving covariance-based MLED imple-

mentation (MLEDcov) are similar when more than one eigenvoice is employed. The

mean-preserving CBKLT-based MLED implementation (MLEDcbklt) could only employ

one eigenvoice, and was consequently very robust. It shows very little degradation in

performance as the amount of adaptation data is decreased. However, Ml.El.ïcov still

outperforms MLEDcbkit for one eigenvoice, indicating that a one-dimensional eigenspace

based on inter-speaker variance is superior to a one-dimensional eigenspace based on

gender-class variance. MLEDcbkit performance is not that much poorer than MLEDcov,

indicating that much of the inter-speaker variance is due to gender. This concurs with the

results of Nguyen, who found that PCA (KLT) identifies gender as the source of greatest

inter-speaker variance.

8.10 Discussion of ISOLET Experiments

From the set of experiments on the ISOLET corpus the following conclusions could be

drawn with regards to the behaviour of the adaptation methods:

• MAP: When all adaptation data are used (i.e. every first utterance of the al-

phabet), MAP has similar performance to the rapid speaker adaptation techniques

MLLR and MLED for the SG systems. There are relatively few parameters in the

SG system and the amount of data was therefore enough that parameter spreading

had very little effect on adaptation performance. When GMM systems were rees-

timated using all adaptation data, MAP was outperformed by MLLR and MLED.

The eightfold increase in the number of parameters to be estimated using the same

amount of adaptation data made parameter spreading necessary for robust estima-

tion of parameters.

For the SG experiments where less and less adaptation data were available, MAP

adaptation degrades rapidly, and cannot compete with MLLR and MLED .

• MLLR: MLLR adaptation gave the best results when all the available training

data was used for adaptation, with the exception of the GMM PLP system, where
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MLED had slightly better performance. Few regression schemes gave better results

than the simple global regression class. For the SG models, this is because the mean

vector occupancy of other regression class schemes is very low, making numerical

instability determination of regression matrices commonplace. The implementation

in this thesis checks the condition numbers of the matrices that are inverted to create

the transformation matrix, and if they are too high, adaptation using the particular

regression class is not allowed. For the GI\lIM models, the amount of adaptation

data is relatively small, making robust estimation of non-global regression matrices

difficult .

• MLED: MLED adaptation had better results than the other methods when the

amount of adaptation data was very small. The parameter reduction of the method

is so great that successful robust reestimation of model parameters is possible with

as little as one letter utterance. When a great deal of data is available, adaptation

performance tends to be on the same order (or slightly less) than the performance

of the set of prior SD models from which the eigenspace is created.

In all instances, the MLEDcov implementation resulted in significantly lower error

rate than standard MLED (MLEDcor) for the case where a single eigenvoice is used.

When there are very little adaptation data (one letter utterance), the error rate never

becomes significantly greater than when a single eigenvoice is used. MLEDcor needs

two eigenvoices before it performs as well as MLEDcov, which is computationally

more expensive. The MLEDcov implementation may thus be used as a robust

computationally light adaptation method when little adaptation data is available.

MLEDcbkit could only employ one "eigenvoice" . However, the adaptation was

robust, and indicated that a significant improvement over the baseline SI model

performance was possible by compensating for inter-gender speech variance.

On the performance of PLP-cepstral features versus LPCC features, the following obser-

vations were made: (a) SI models using PLP-cepstral features had lower error rates, and

(b), post-adaptation error rates were lower for systems using LPCC features in all but

one case: MLED adaptation of GMM PLP systems was better than MLED adaptation

of GMM LPCC systems. Even in this last case, the decrease in the error rate from the
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SI system was 4.68% for the LPCC system, which is higher than the 4.42% decrease for

the PLP system. McNemar [19] statistical significance tests were used to validate the

performance of systems using PLP-cepstral and LPCC feature vectors. The results are

summarised in Tables 8.9 and 8.10. The closer the McNemar probability is to one, the

more likely it is that any difference between error rates for systems is likely to be due

to the specific data set used, and not due to differences between the performance of the

systems. The closer the McNemar probability is to zero, the more likely it is that the

difference between error rates for the systems is likely to be due to the differences between

the systems, and not due to the specific data set used.

First, the results of the McNemar tests for the SG PLP and SG LPCC systems will

be discussed (refer to Table 8.9). The McNemar probability for the two SI systems

indicates that the differences in performance between the two systems was statistically

insignificant. The same goes for the comparison between MLEDcor adapted SG LPCC

and SG PLP systems. The McNemar test for MAP indicates that the differences in

performance between the LPCC and PLP systems is significant, and that the LPCC

system outperforms the PLP system. The McNemar test for the global MLLR does

not have such a low probability, indicating that it is quite likely (but not certain) that

global MLLR adaptation for LPCC systems has better performance than global MLLR

adaptation for PLP systems. The McNemar test for MLEDcor indicates that there is

statistical significance between the performance of the LPCC and PLP systems.

The results of the McNemar tests for the GMM PLP and GMM LPCC systems will

now be discussed (refer to Table 8.10). The McNemar probability for the SI systems

indicate there is a small chance that the difference in performance between the SI systems

is due to the data set, even though the error rate for the PLP system is somewhat lower

than the error rate for the LPCC system. The McNemar probabilities for the MAP and

MLLR ("big clusters") adapted LPCC and PLP systems indicate that the chance that

the difference in performance between the LPCC and PLP systems is due to the specific

data set is relatively small. The global MLLR adaptation of LPCC and PLP systems

is likely to be equivalent. The McNemar probabilities obtained for both SG and GMl\II

systems were relatively high, as the ISOLET corpus is small, and there are few utterances

with which to compare the methods. The McNemar tests for the GMM systems generally
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Error rate

Model SG LPCC SG PLP McNemar probability

SI 16.18% 16.15% 0.87

MAP, T = 40, Gmin = 1 10.50% 11.98% <0.005

MLLR, global 9.36% 10.37% 0.08

MLEDcor, K = 20 10.63% 11.15% 0.47

Table 8.9: Error rates and McNemar tests for SG PLP vs SG LPCC systems. The closer

the McNemar probability is to zero, the less likely it is that the performance of the PLP

and LPCC systems are equivalent. The closer the McNemar probability is to one, the

more likely it is that the performance of the PLP and LPCC systems are equivalent,

regardless of the difference in error rates.

had larger values than the McNemar tests for the SG systems. This is because the error

rates for the GMM systems are lower, and there are fewer instances where the decoding

of the utterances differ.

Error rate

Model GMM LPCC GMM PLP McNemar probability

SI 13.22% 11.76% 0.11

MAP, T = 40, Gmin = 1 10.50% 11.98% 0.03

MLLR, global 7.62% 7.66% 0.53

MLLR, big clusters 6.87% 7.67% 0.04

Table 8.10: McNemar tests for GMM PLP vs GMM LPCC systems. The closer the

McNemar probability is to zero, the less likely it is that the performance of the PLP and

LPCC systems are equivalent. The closer the McNemar probability is to one, the more

likely it is that the performance of the PLP and LPCC systems are equivalent, regardless

of the difference in error rates.

SI systems trained on PLP-cepstral features have lower error rates, because PLP-

features tend to reduce the inter-speaker variance. When training SD models or adapting

SI systems, lower inter-speaker variance means that less specialisation for each SD system
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is possible, and higher inter-speaker variance means that more specialisation for each SO

system is possible. Intuitively, higher specialisation for a SD system should lead to a

higher recognition rate. This explains why LPCC features are generally preferable to

PLP-cepstral features when supervised adaptation is performed.

Nothing can be said for the case of unsupervised adaptation, as such experiments were

not performed. The higher SI recognition rate for PLP systems may lead to better clas-

sification and segmentation of data. For the case where moderate amounts of adaptation

data is available, this would certainly lead to better MLLR adaptation. MLEO adapta-

tion gives almost constant error rates for moderate to large amounts of adaptation data,

therefore better segmentation and classification is unlikely to have a positive influence on

adaptation.
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Chapter 9

Experiments using the TIMIT

Speech Corpus

TIMIT is a larger corpus than ISOLET, in terms of the number of speakers, the amount

of recorded speech for each speaker, and the variety of phonemes present in the corpus.

The recorded speech for each speaker consists of ten sentences, and TIMIT therefore has

a much wider variety of phonemes. Furthermore, the speech is continuous. The phonetic

diversity and continuity of the speech makes the TIMIT corpus more complex, and it can

therefore be employed to evaluate the performance of the speaker adaptation techniques

in a more complex environment.

Furthermore, we wished to test the performance of the mean-preserving CBKLT-

based MLED implementation when dialect classes were used. TIMIT contains speech

from speakers of seven major dialect regions, and an eighth consisting of speakers not

belonging to any of the dialect regions, making it a good choice of speech corpus to test

the performance of our class-based MLED implementation.

The TIMIT database was also employed by other researchers working on concurrent

projects, so that that the speaker adaptation and speech recognition results of this thesis

could be compared against their speech and speaker recognition results.

The rest of the chapter is arranged as follows:

• A succinct description of the TIMIT speech corpus .

• General experimental setup for all TIMIT experiments.
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• Detail extracted feature vectors and normaliser.

• Detail of the employed HMM structures.

• Detail of the regression tree used for MLLR adaptation.

• Three experiments testing the various MLED implementations.

• Conclusion of the experiments performed on TIMIT.

9.1 The TIMIT speech corpus

The DARPA TIMIT acoustic-phonetic continuous speech corpus [39] consists of 6300

sentences (roughly five hours and twenty-two minutes of speech), ten sentences spoken by

each of 630 speakers from seven major dialect regions of the United States of America,

and an eighth group of speakers not belonging to any of the seven regions.

The ten sentences for each speaker are divided into the following groups:

• 2 sa sentences: Two sentences were designed to expose the dialectal variants of the

speakers. These two sentences were spoken by all 630 speakers, and are the sentences

labelled "sa" on the CD-ROM. Together these sentences represent an average of 6.2

seconds of speech for a speaker.

• 5 sx sentences: 450 phonetically-compact sentences were designed to provide good

coverage of pairs of phones, with extra occurrences of phonetic contexts of special

interest. Each speaker read five of these sentences, labelled as "sx" on the CD-

ROM. Together these sentences represent an average of 14.6 seconds of speech for

a speaker.

• 3 si sentences: 1890 phonetically-diverse sentences were selected to add diversity

to the sentence types and phonetic contexts. Each speaker reads three of these

sentences, labelled as "si" on the CD-ROM. Together these sentences represent an

average of 9.9 seconds of speech for a speaker.

The suggested training and testing speaker sets on the CD-ROM were used. The training

set consists of 462 speakers, and the test set consists of 168 speakers. The training and
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test speaker sets are such that the proportion of male and female speakers, as well as the

proportion of speakers from different dialect groups are approximately the same for both

speaker sets.

Instead of using the transcriptions for the full set of phonemes, transcriptions for a

reduced set of 39 phonemes, as proposed by Lee [32], was used.

The speech in TIMIT was sampled at 16 kHz.

9.2 Choice of Features and Extraction Thereof

For experiments on the TIMIT database, the feature vectors comprised of eleven PLP-

cepstral features, the zeroth PLP-cepstral coefficient or energy, and their corresponding

twelve delta-parameters.

9.2.1 PLP Feature Extraction used for the TIMIT Corpus

First the power of each utterance (file) is made unity. The digitised speech is blocked

into 32 ms frames, with an overlap of 16 ms between frames. The spectrum of each

frame is then preemphasised. Each frame is then Hamming windowed (window coefficient

0.54), and nine PLP-cepstral coefficients for each frame is determined. The first cepstral

coefficient is the energy of the signal. The mean value of each PLP-cepstral parameter

is now removed, and delta-parameters for all PLP-cepstral parameters are computed.

Finally, the features are normalised by their standard deviation.

9.3 Choice of HMM to Model TIMIT Phonemes

We employed 39 HMMs to model the 39 phonemes of the reduced phoneme set for the

TIMIT corpus. 38 of the phonemes represent speech sections, and the remaining phoneme

(labelled "epi") represents silent sections.

The 38 "spoken" phonemes were each modelled by a 5-state, left-ta-right, single skip-

width HMM. Only the three middle states had pdfs associated with them. The self-loop

(i.e. a state transition probability aij where i = j) for each emitting state was initialised

with a value of 0.7, and all other transition probabilities from a state were made equal.
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Each emitting state has a GMM state pdf.

A five-state ergodic HMM structure was used to model the silent parts of the recorded

speech. The first and last state were beginning and ending null-states, so that only the

three middle states have pdfs associated with them. The initial loop-back probability (self-

loop ) for each non-null state was set to 0.5, and all other state transition probabilities

from a state were made equal, so that the sum of all transition probabilities leaving the

state was equal to one. Each emitting state has a GMM state pdf.

Speaker adaptation experiments are performed on two speech modelling schemes. The

first is a simple modelling scheme, where each GMM had a single mixture component, i.e.

single Gaussian state pdfs are used. This system will be referred to as the SG system.

The second is a more complex modelling scheme; GMMs with eight mixture components

were used for each state pdf. This system will be referred to as the GMM system.

As with the experiments on the ISOLET corpus, all the Gaussian pdfs were restricted

to have diagonal covariance matrices.

9.4 Regression Class Tree used for MLLR

The regression class tree that was used for MLLR adaptation is phonetically based, and

is depicted in Figure 9.1. Based on this regression class tree, the following regression

schemes were used:

• (Fake) global: Here all mean vectors belong to a single global regression class (the

"fake global" node in the regression tree). The minimum observation count was set

to 200 .

• Big Clusters: Here the "fake global", "silence", "mostly voiced" and "mostly

unvoiced" nodes were given very high minimum observation counts, so that re-

gression matrices for these classes would never be estimated or employed. The

"global" node was retained with a minimum observation count of 1400. The nodes

"vowels", "semi-vowels and glides", "nasals", "affricates", "stops" and "fricatives"

were retained, each with a minimum observation count of 25 times the number of

phonemes in the regression class. It was later found that the node "semi-vowels and
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= ae, aw, ay, ah, ao

I, r, w, y, hh

= b, d , p, t , dx

= k , g

Figure 9.1: Regression tree used for MLLR on the TIM IT corpus.
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glides" adapted poorly, and therefore the minimum observation class for this node

was made very high, so that it was adapted using the "global" regression matrix.

• Small clusters 1: Here all the nodes except leaf nodes were given very high min-

imum observation counts. After initial experiments it was found that adaptation

with nodes "stops", "fricatives" and "nasals" were poor, and these nodes were also

given very high minimum observation counts. The remaining nodes were given min-

unum observation counts of 25 times the number of phonemes in the regression

class.

• Small clusters 2: The same as the regression scheme "small clusters 1", except

that the node "semi-vowels and glides" was given a very high minimum observation

count.

• Small clusters 3: The same as the regression class scheme "small clusters 2",

except that minimum observation count for each remaining node after removing

undesirable nodes (by setting their minimum observation counts very high) was set

to 144 times the number of phonemes in the regression class.

• Tree 1: All nodes are given a minimum observation count of between 25 and

50 times the number of phonemes in the regression class, except the nodes "fake

global", "silence", "stops", "fricatives", "nasals" and "semi-vowels and glides" which

are removed.

• Tree 2: All the nodes remaining in scheme "tree I" are used, except that their

minimum observation count is set to 500. Additionally, node "a's" is removed.

• Tree 3: All the nodes remaining in scheme "tree 2" are used, except that the

"global" node is removed. All phonemes belonging to the "mostly unvoiced" node

will thus not be adapted, and neither will their data be used in the estimation of a

regression matrix with which phonemes belonging to the "mostly voiced" node might

be adapted. This is to investigate whether unvoiced sounds should be adapted, and

whether or not unvoiced data have a positive effect on MLLR adaptation.

It should be noted that for the SG systems, there are only three Gaussian pdfs for each

phoneme, therefore the largest leaf node (nodes "a's" and "front stops") can at most have
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fifteen mean vectors assigned to them. This number is too small for matrix c» to have

an inverse, and therefore no regression class can be estimated (see the last paragraph of

Section 4.3.2).

9.5 Experiment One: Performance of Adaptation Meth-

ods for Different Training and Test Sets

The aim of this experiment was to check the performance of three MLEO implementa-

tions - standard MLEO, mean-preserving covariance-based MLEO and mean-preserving

CBKLT-based MLEO - on the TIMIT speech corpus, using an SG system and the

transcription for the reduced set of phonemes proposed by Lee [32].

The experiment was completed in the following steps:

1. An SI model was created using all available data from the set of training speakers

in the TIMIT corpus.

2. An iterative combination of MLLR and MAP adaptation was used to create a set

of SO models for the set of training speakers in the corpus.

3. ML, MLLR and MLEO adaptation were performed for the set of test speakers in

the TUvfIT corpus. Adaptation for five different training and testing data sets were

completed and the results compared. The segmentation of the available data into

training and testing data for the five sub-experiments were as follows:

(a) In the first sub-experiment, the training data consisted of the first sa sentence,

and the testing data consisted of the remaining sa, si and sx sentences.

(b) In the second sub-experiment, the training data consisted of one of the si sen-

tences, and the testing data consisted of the remaining sa, si and sx sentences.

(c) In the third sub-experiment, the training data consisted of both sa sentences,

and the testing data consisted of the remaining si and sx sentences.

(d) In the fourth sub-experiment, the training data consisted of all three si sen-

tences, and the test data consisted of the remaining sa and sx utterances.
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(e) In the fifth sub-experiment, the training data consisted of all five sx utterances,

and the testing data consisted of the remaining sa and si sentences.

The performance of the SI model for each training and testing data segmentation

is also given. In every case but ML adaptation, only one adaptation iteration was

employed.

9.5.1 Creating the SI and SD Initial Models

First, an SI model and set of SD models were created that are necessary for MLED

adaptation. The SI model was trained using all utterances from the set of 462 speakers

in the training set of TIMIT. Using MLLR adaptation and the SI model as an initial

model, a set of 462 SD models was created. All the available data for each speaker were

used during the training of the individual's SD model, in the hope of obtaining the most

accurate speaker model possible. The more accurate the models for the training speakers,

the more likely we are to obtain a representative speaker-space from which the eigenspace

can be determined. The same data were used to score the individual's model. The scores

for SD models created using various adaptation methods are contained in Tables 9.1 and

9.2.

Note that these results were obtained by testing the models using the same data set

that was used for training the models. As the scores are not obtained from a test data

set that is independent from the training data set, they should not be seen as a good

indication of the true performance of the adaptation methods, nor of the true recognition

performance of the resulting trained set of SD models. Accurate scores can only be

obtained by using a large amount of test data which is independent of the training data.

The only truth that can be learned by comparing the post-adaptation scores of the SD

models to the pre-adaptation scores of the SI model for the case of using the same data

set for training and testing, is that the lower error rates of the SD models indicate that

the adaptation methods adapt model parameters is such a way that they maximise the

likelihood of the data given the model parameters.

At best, when the training data set is very large, such scoring gives an indication

of the best possible adaptation performance. At worst, when the training data set is

very small (as in this case), such scoring could easily lead to error rates much lower than
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ER

SI 41.97%

ML, 1 iteration 21.86%

ML, 10 iterations 20.74%

MLLR, global 33.54%

MLLR, big clusters 55.76%

MLLR, small clusters 1 61.39%

MLLR, small clusters 2 51.77%

MLLR, small clusters 3 34.94%

MLLR, tree 1 34.98%

MLLR, tree 2 27.49%

MLLR, tree 3 30.17%

ML on MLLR (tree 2) 18.25%

Table 9.1: Error rates for initial SI and MLLR trained SO models (for MLED adaptation).

All available data were used, both for training and scoring.

they would have been, had an independent test data set been available. This is because

overtraining could have occurred, i.e. specialising the models too much for the small

amount of available training data. Scoring the highly specialised models with the small,

non-representative test (and training) data set will then yield seemingly good, but highly

unreliable error rates.

The scores obtained for SD models created via ML, MLLR global and MLLR tree

adaptation looked very promising, considering that only an SG system was used. Un-

fortunately, it was not possible to determine whether overtraining had occurred, as all

available data were used to train the models. If overtraining had occurred, the error rates

are probably not representative at all, and, in truth, very poor SO models may have

been trained. Such poor training would result in a non-representative speaker-space, so

that the extracted eigenspace will not model inter-speaker variance accurately. A poorly

determined eigenspace will degrade the performance of MLED adaptation.

The SD models with the lowest error rates were obtained via iteratively alternating
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Error rate for iteration

1 2 3 4 5

MLLR, tree 2 27.49% 17.80% 17.34% 17.10% 16.90%

ML 18.25% 17.62% 17.27% 17.07% 16.98%

Table 9.2: Error rates for initial SO models obtained via alternating between MLLR and

I'vILadaptation. The SI error rate was 41.97%.

between MLLR tree and ML adaptation. Five iterations were used (see Table 9.2). These

models were thus used to create the set of SO superveetors from which the eigenvoices

were determined.

9.5.2 Discussion of the Results

Table 9.3 contains the results for the five sub-experiments. From the results, it is clear

that there was too little data for robust ML estimation. The only instance where NIL

estimation reduced the error rate of the SI system was for the fifth sub-experiment, where

five adaptation sentences were used. MLLR adaptation had even poorer results. For the

first three sub-experiments, there were too few observations to estimate a global regression

matrix. For the fourth and fifth experiments, MLLR adaptation did take place, but it

had an adverse effect on performance. The degradation for the fourth and fifth sub-

experiments are a 5.25% and 2.97% increase in phoneme error rate, indicating that the

increase in adaptation data from three to five adaptation sentences was making the MLLR

estimate more robust. For the speech corpora and transcriptions Leggetter [34, 33] used

for his tests of the MLLR adaptation method, he found that approximately ten seconds

(corresponding to roughly 10000 frames of adaptation data) of speech was required for

each regression class for the robust estimation of transformation matrices. In total there is

five hours and 22 minutes of speech on the TIMIT corpus, which means there is about 30

seconds of speech available for each of the 630 speakers, and for each speaker parameters

for a set of 39 HMMs (one per phoneme) must be reestimated. The sal sentence is

3.4 seconds long (averaged over the speakers), and the sum of the duration of the sx

sentences is 14.6 seconds (averaged over the speakers. As only 3.4 to 14.6 seconds of
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Adapted model Error rates for sub-experiment

1 2 3 4 5

SI 44.93% 42.69% 45.52% 42.20% 42.00%

NIL, 10 iterations 46.69% 44.28% 48.33% 45.03% 41.52%

MLLR, tree 2 44.93% 42.69% 45.72% 47.46% 44.97%

MLEDcor, K = 1 45.08% 42.27% 45.78% 42.10% 42.10%

MLEDcor, K = 7 41.65% 39.20% 41.94% 38.43% 38.31%

MLEDcor, K = 10 41.59% 39.13% 41.81% 38.08% 37.97%

MLEDcor, K = 20 42.67% 41.25% 42.21% 38.51% 38.03%

MLEDcov, K = 1 41.94% 39.55% 42.49% 38.97% 38.95%

MLEDcov, K = 7 41.68% 39.13% 41.87% 38.37% 38.03%

MLEDcov, K = 10 41.65% 39.44% 41.90% 38.15% 37.87%

MLEDcov, K = 20 42.75% 41.26% 42.12% 38.53% 37.87%

MLEDcbklt, K = 1 44.73% 42.10% 45.23% 41.57% 41.56%

MLEDcbklt, K = 7 44.22% 42.05% 44.76% 41.13% 40.31%

Sub-experiment 1: Train on first sa sentence, test on remainder

Sub-experiment 2: Train on one si sentence, test on remainder

Sub-experiment 3: Train on both sa sentences, test on remainder

Sub-experiment 4: Train on all three si sentences, test on remainder

Sub-experiment 5: Train on all five sx sentences, test on remainder

Table 9.3: Adaptation results for the five sub-experiments of experiment one, where the

performance of each adaptation method is evaluated for different training and test data

sets.
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speech per speaker was available for for MLLR adaptation on the TU/lIT corpus, and the

low occupancy of regression classes due to the SG models used, it is not surprising that

MLLR adaptation performed so poorly.

MLED adaptation was the onlyadaption method to yield decreases in the error rate.

As before, MLEDcov had better results than MLEDcor when only one eigenvoice was used.

In fact, MLEDcor using one eigenvoice sometimes had poorer (higher) error rates than

the SI model, whereas MLEDcov never performed worse than the SI model, regardless of

the number of eigenvoices used. This result emphasises that the inclusion of the mean of

the SD models adds the modelling power of one extra robustly estimated eigenvoice, for

which no eigenweight needs to be determined. MLEDcov will thus be useful for situations

where eigenweights for very few eigenvoices may be robustly estimated.

The same behaviour regarding the effect of eigenspace dimension was observed as for

the ISO LET experiments: the number of eigenweights that can be robustly estimated

decreases as the amount of adaptation data decreases. For the fifth sub-experiment,

where five adaptation utterances where used, the error rate decreased up to about the

ninth eigenvoice, after which the error rate effectively remained constant. For the first

sub-experiment, where one adaptation utterance was used, the error rate decreased up to

about the fifth eigenvoice, remained constant up to about the eleventh eigenvoice, after

which the error rate began to climb.

MLEDcbkit generally yielded small decreases in the error rate, but always performed

poorer than MLEDcov, and generally performed poorer than MLEDcor. The only times

MLEDcbkit had better performance than MLEDcor, was for the cases where a single

eigenvoice is used. This is because MLEDcbkit has the same mean-preserving capability

as MLEDcov. The results indicate that there was very little benefit to be gained from

eigenvoices based on the inter-class variance from speaker dialect classes for the current

set of phonemes. Furthermore, the results are indicative that one of the underlying as-

sumptions of standard MLED - that eigenvoices in the direction of greatest inter-speaker

variance carry the most useful or important information for speaker adaptation - is bet-

ter than the underlying assumptions of MLEDcbkit - that base vectors ("eigenvoices")

in the direction of greatest inter-dialect variance carry the most useful information for

speaker adaptation. The dialect class a speaker belongs to is thus less important than the
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Figure 9.2: The percentage of the sum of eigenvalues versus the percentage of the eigen-

voices used for the ISO LET and TIMIT corpora. 119 eigenvoices are available for the

ISOLET corpus, and 461 eigenvoices are available for the TIMIT corpus.

location of the speakers supervector in the speakerspace.

The error rates obtained for the MLLR adapted models of the set of training speakers

in TIMIT were vastly superior to the error rates achieved for adaptation on the set of test

speakers in TIMIT. This indicates that overtraining had probably occurred during the

creation of the set of prior SD models for MLLR, and that the low error rates for these

models are wildly inaccurate and misleading. MLED is expected to have performance of

the order of the SD models spanning the eigenspace, indicating that the error rates for

the prior SD models would probably have been on the order of 39% instead of 17%. The

test results for the prior SD models were thus not a reliable indication of their recognition

performance. As previously stated, the poor performance of MLLR adaptation for both

the set of training and test speakers is not only due to a lack of sufficient adaptation data,

but also because of the simplicity of the SG system. Using an SG system means that

there are fewer different mean vectors that are assigned to a regression class, making the

chance of numerical instability and the inability to estimate regression matrices greater.

The performance of MLED adaptation performance on the ISO LET corpus was superior

to the performance of MLED adaptation on the TIMIT corpus. The first reason for this

is the overtrained initial set of SD models used for the TIMIT corpus. The second reason

has to do with the amount of inter-speaker variance captured by the eigenvoices used
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Figure 9.3: The percentage of the sum of eigenvalues versus the number of the eigenvoices

used for the ISOLET and TIMIT corpora.

during the adaptation. The eigenvalue associated with an eigenvoice is related to the

amount of inter-speaker variance in the direction of the eigenvoice. Figures 9.2 and 9.3

are plots of the sum of a number of eigenvalues relative to the total sum of eigenvalues

for the eigenvoices used in ISO LET and TIMIT SG PLP systems. These eigenvoices were

determined from the covariance matrix of the set of SD models for each corpus. 120

speakers' models were trained for ISOLET, therefore 119 eigenvoices could be extracted.

462 speaker models were trained for TIMIT, therefore 461 eigenvoices could be extracted.

From these figures, it is clear that a much larger amount of inter-speaker variance IS

captured by the first few eigenvoices of ISOLET. There are three reasons for this:

1. TIMIT is more complex than ISOLET, because it contains more phonetic diversity

and context than ISOLET. More phonemes were used to represent the speech on

TIMIT.

2. The MLLR-trained prior set of SD models for the TIMIT corpus were overtrained.

3. Very little data were available for the training of the prior TIMIT SD models, re-

sulting in little specialisation of the SD models. The smaller degree of specialisation

has the following effects on the inter-speaker variance represented by the set of SD

models: fewer directions of inter-speaker variance may be extracted by the KLT,

and each of these directions are associated with smaller variances than those for

ISOLET.
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It is therefore not surprising that MLEO adaptation was more successful for the experi-

ments on the ISOLET corpus.

Even though the MLLR estimated prior SO models were poor, the differences be-

tween them still captured a good deal of inter-speaker variance, and MLEO still managed

modest improvement in error rates for the adapted speakers. This speaks volumes for the

adaptation capabilities of the method. It seems to indicate that the inter-speaker variance

represented by the set of prior SO models has a greater effect on MLED performance than

the recognition performance of the SO models. This echos Kuhn et al. [29], who found

that an eigenspace determined from a number of speakers with a set amount of data gave

inferior performance to an eigenspace determined from double the number of speakers

with half of the amount of data.

9.6 Experiment Two: Testing MLED on a Dialect-

Independent Transcription

Experiment One indicated that most of the inter-dialect variance was compensated for

by the transcription of the phonemes, and that there was very little benefit in using an

iVILEOcbkit implementation. This experiment is designed to examine MLEDcbkit for the

case where a set of phonemes representing different pronunciations of the same utterance

for speakers from the different dialect regions, are transcri bed as the same symbol (this

"phoneme" thus comprises of several true phonemes). The experiment was conducted as

follows:

1. A dialect-independent transcription was created for each of the dialect emphasising

sentences sal and sa2.

2. An initial SI model was created from the data of both sa sentences for the set of

training speakers in TIMIT.

3. A set of SO models was created by iteratively alternating between MLLR and ML

adaptation, using the SI model as the initial model and the data of both sa sentences

for the set of training speakers in TIMIT. This set of SO models was then used to

create the different sets of eigenvoices for the three MLEO implementations.
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4. MLLR and MLED adaptation were then used to create SD models for the set of

testing speakers in TIMIT. Two training and testing data sets were used: in the

first, the training data consist of sal and the testing data of sa2, and in the second

the training data consist of sa2 and the testing data of sal.

The various stages in the experiment will now be treated, after which the results will be

discussed.

9.6.1 Creating a Dialect-Independent Set of Transcriptions

The creation of a set of dialect-independent transcriptions entails the selection of a ref-

erence transcription for each sa utterance, and then finding an optimal fit for the sa

transcriptions of each speaker (target transcriptions) to the reference transcriptions. In

this way, the phonemes representing the same speech segment are transcribed by a single

symbol. The task is not straightforward, as the same number of phonemes might not be

present in the reference and target transcription. A speaker may have omitted phonemes

present in the reference transcription, or may have added phonemes that are not present

in the reference transcription.

It was felt that the Viterbi-algorithm could be employed to solve the problem, as

the problem entails the determination of an optimal match between two sequences of

events (phonemes). In order to employ the Viterbi-algorithm, a discrete-density HMiVI

was created to represent the reference transcription. Each of the phonemes (the symbols

of our new dialect-independent transcription set) are now represented by a state. Each

state pdf (strictly a pmf) is such that if a phoneme belongs to the same class as the state's

reference phoneme, the probability is 0.99; if not, the probability is {(I - 0.99)/ A}, where

A is the number of phonetic classes.

To accommodate omissions and additions of phonemes in target transcriptions, a

double-skipwidth left-ta-right HMM was used. For each emitting state i, the transi-

tion probabilities were as follows: ai,i = 0.1, ai,i+] = 0.5, ai,i+2 = 0.3, and ai,i+3 = 0.1.

The initial probabilities were such that the sequence must begin in the first state, i.e.

n] = 1 and all other ni = 0, i =1= 1.1

1In retrospect it may have been better to allow the sequence to begin in more than only the first state.
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Seven phonetic classes were used, one for each of the following: stops; affricates;

fricatives; nasal; semi-vowels and glides; vowels; and silence.

Using the HMM and the Viterbi-algorithm, the optimal match (given the choice of

HMM parameters) between the reference transcription and target transcription could

be determined. The new transcription for the target transcription was then created by

going through the optimal state sequence, and determining the probabilities of the target

phoneme for the state it was assigned to. If the probability is equal to 0.99, the new

symbol for the target phoneme transcription is the reference phoneme transcription. If

the probability is not equal to 0.99 (i.e. the target phoneme does not belong to the same

phonetic class as the reference phoneme), the new transcription for the target phoneme

is "ARB". Speech labelled by "ARB" is not used for training or testing.

The transcriptions of speaker "fad gO" from the test set of dialect region one were

(randomly) selected to form reference transcriptions for the sa sentences. Below we list the

reference transcription for sal, the initial target transcription of sal for speaker "mcmjO"

(from the test set of dialect region six) and the final dialect-independent transcription of

sentence sal for speaker "mcmjO".

• Reference: epi, sh, iy, hh, ae, d, y, er, d, ao, r, k, s, uw, t, ih, n, g r, iy, s, iy, w,

ao, sh, epi, w, ao, dx, er, t, ao, 1, y, ih, er, epi

• Target: epi, sh, iy, hh, eh, epi, y, er, d, ao, r, k, s, uw, t, ih, n, g, r, iy, s, iy, w, ao,

sh, epi, w, ao, dx, er, t, ao, 1, y, iy, er, epi

• New: epi, sh, iy, hh, ae, ARB, y, er, d, ao, r, k, s, uw, t, ih, n, g, r, iy, s, iy, w, ao,

sh, epi, w, ao, dx, er, t, ao, 1, y, ih, er, epi

Only 26 "phonemes" remain in the dialect-independent transcription, as opposed to

the 39 in the original set. For a list of these phonemes, see Appendix E.2.

9.6.2 Creating the Initial SI and SD Models

The same HMM models' structures as those used in Experiment One were used for spoken

phonemes and silence. The initial SG SI model was trained using all the data from the

sa utterances of the set of training speakers in TIMIT. Subsequently, a set of SD models

192

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 9 - EXPERIMENTS USING THE TIMIT SPEECH CORPUS

I Adapted model ER

SI 13.39%

MLLR, big clusters 13.15%

MLLR, tree 2 13.13%

Table 9.4: Error rates of the SI model and MLLR adapted models.

I Adapted model I ER for iteration

1 2 3 4 5

MLLR, tree 2 13.13% 8.42% 8.42% 8.41% 8.41%

ML 8.43% 8.42% 8.43% 8.42% 8.42%

Table 9.5: Iterative ML and MLLR adaptation to improve SD models for the dialect

experiment. The SI error rate was 13.93%.

were trained for the set of training speakers using all the data from the sa utterances.

All the available training data were used in order to estimate the SO models as robustly

as possible. Tables 9.4 and 9.5 contain the error rates for the models. The models were

scored using the same data on which they were trained. As the amount of adaptation

data is very small (about 6.2 seconds of speech for each speaker) and the MLLR regression

class occupancy of SG models are very low, overtraining had probably occurred and the

error rates could be misleading.

9.6.3 Post-Adaptation ErrorRates for Experiment Two on TIMIT

Tables 9.6 and 9.7 contain the results for MLEO adaptation. The error rates are much

smaller than those for Experiment One, but that is simply because the number of phonemes

that are modelled (and need to be recognised) have been reduced from 39 to 26. MLEDcor

and MLEOcov each only managed to reduce the error rate by about 1%, which is less than

what is expected of adaptation of such simple models with the available adaptation data.

The MLEOcbkit implementation could not even manage a 1% reduction in error rate.

As with with Experiment One, the MLEDcbkit implementation is once more shown to

be slightly worse than standard MLED (MLEDcor), even though the dialect-independent
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I Adapted model I ER
K= 1 K=2 K=3 K=4 K = 5 K=6 K = 7

MLEDcor 11.60% 11.22% 11.35% 11.25% 11.25% 11.25% 11.07%

MLEDcov 11.21% 11.38% 10.37% 11.27% 11.28% 11.20% 11.06%

MLEDcbklt 11.40% 11.40% 11.46% 11.40% 11.48% 11.44% 11.36%

Table 9.6: Error rates after MLED adaptation for Experiment Two on TIMIT. sal was

used for training, and sa2 was used for testing. The SI error rate was 11.67%.

I Adapted model I ER
K = 1 K=2 K=3 K=4 K=5 K=6 K=7

MLEDcor 10.58% 9.55% 9.63% 9.62% 9.81% 9.88% 9.87%

MLEDcov 9.73% 9.71% 9.66% 9.69% 9.65% 9.71% 9.73%

MLEDcbklt 10.41% 10.04% 10.02% 9.81% 10.05% 9.94% 10.10%

Table 9.7: Error rates after MLED adaptation for Experiment Two on TIMIT. sa2 was

used for training, and sal was used for testing. The SI error rate was 10.76%.
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transcription was used. The poorly trained set of SD models from which the eigenvoices

were determined is the most likely cause of the relatively poor performance of MLEO.

9.7 Experiment Three: A Further Dialect Experi-

ment Using a Larger Amount of Training Data

The biggest problem with the previous section was the poor estimation of the set of prior

SO models, resulting in a non-representative speakerspace (and eigenspace) and poor

adaptation performance. Furthermore, a relatively small amount of data was available

with which to perform MLEO adaptation. The aim of Experiment Three was to reduce

the problems associated with Experiment Two, so that a better analysis of MLEOcbkit

for dialect classes could be made.

First, a better prior set of SO models needed to be trained. These models are trained

using alternating iterative MLLR and ML adaptation. There are two ways in which the

l\I1LLR portion of the training process can be improved. The first is by increasing the

amount of adaptation data, which is not possible in this case. The second is to increase

the amount of mean vectors assigned to a regression class. As even a global regression

class for the SG system does not have a high mean vector occupancy, it is likely to be

poorly estimated due to numerical instability. Therefore, it was decided to change to a

GIv1M system, as this will result in an eightfold increase in the number of mean vectors

assigned to each regression class, making the regression matrix estimation less prone to

numerical instability.

Secondly, the quantity of adaptation data used for MLEO adaptation was increased

by using round robin training and scoring on the two sa sentences. All the phonemes

of both sentences save one are used for training, and scoring is then done using the

remaining phoneme. The round robin training is done until scoring has been done with

each phoneme. The scores are then tallied, and the error rate computed.

Table 9.8 contains the results after MLED adaptation. The decreases in error rate

for all MLEO implementations are modest - on the order of 2%, which is a relative

decrease of about 30% in the error rate of the SI model. The decrease in error rate as

the eigendimension is increased is very small. This is due to the rather poorly MLLR
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adapted speaker models from which the eigenvoices were created. Poor adaptation results

in smaller differentiation between speakers, so that fewer directions of inter-speaker vari-

ance can be robustly determined. When we compare this experiment with Experiment

Two, we see that the amount of adaptation data increased twofold and the number of

model parameters to reestimate increased eightfold. This means that a greater degree of

parameter spreading is necessary for speaker adaptation in this experiment. Nonetheless,

the relative decrease in error rate for Experiment Three (around 30%) was much greater

than the relative decrease in error rate for Experiment Two (which was around 10%).

This is possibly due to the effect of adapting GMM systems with MLLR adaptation, as

the occupancy of regression matrices is greater for GMM systems than for SG systems.

Normally it would be expected that the greater the parameter spreading necessary for

MLLR adaptation, the poorer the results would be. However, the GMM systems are

adapted better here, as the regression class occupancy for SG systems is simply too low,

and is likely to result in numerical instability regardless of the amount of adaptation

data. In this instance, therefore, the GMM systems allow better MLLR adaptation, so

that the eigenspace determined from the MLLR estimated set of prior SO models is more

representative of the true speakerspace than the eigenspace determined for Experiment

Two.

MLEOcbklt performance was slightly worse than that MLEOcor and MLEOcov. Once

more it is found that eigenvoices based on inter-speaker variance outperform eigenvoices

based on inter-dialect variance. To further evaluate the performance of the mean-preserving

CBKLT-based MLED implementation, a speech corpus containing more speech per speaker

- maybe twenty to thirty sentences (each with an average duration of 3 seconds per sen-

tence) per speaker - is required. In addition to this, the speakers in the corpus must

come from distinct speaker classes.

9.8 Discussion of TIMIT Experiments

This section lists and discusses the most important results of the experiments on the

TIMIT speech corpus.
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I Adapted model I ER

J{ = 1 J{ = 2 J{ = 3 J{ = 4 J{ = 5 J{ = 6 J{ = 7

MLEDcor 3.87% 3.69% 3.68% 3.62% 3.56% 3.46% 3.46%

MLEDcov 3.71% 3.66% 3.71% 3.63% 3.51% 3.38% 3.53%

MLEDcbklt 3.90% 3.88% 3.83% 3.80% 3.70% 3.64% 3.64%

Table 9.8: Error rates after MLED adaptation for Experiment Three on TIMIT. The SI

error rate was 5.89%.

• From the experiments it is seen that the performance of MLED is linked to the

quality of the prior SD models. This dependency is not so much on the recognition

performance of the SD models, but rather on how well the true inter-speaker variance

is represented by the set of SD models.

• The mean-preserving covariance-based MLED implementation (MLEDcov) always

performs better than standard MLED (MLEDcor) for the case where a single eigen-

voice is used.

• The results of Experiment One - where MLED adaptation of an SG system for

various training and test data sets was examined - indicate that the number of

eigenvoices used should depend on the amount of available adaptation data. If too

many eigenvoices are used, the degree of parameter spreading becomes too great and

results in non-robust adaptation. The amount of eigenvoices that can effectiv.ely be

employed thus depends on the following:

The true inter-speaker variance, which is dependent on such factors as the

language, phonemes and speech of the speakers that need to be modelled.

- The set of prior SD models. The better the SD models are trained and the

more speakers are represented, the higher the dimension of the eigenspace that

is an accurate representation of inter-speaker variance.

- The amount of available adaptation data relative to the number of parame-

ters to be estimated. The larger the amount of adaptation data, the more

eigenweights may be robustly estimated.
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As an efficient eigenspace dimension to use is dependent on so many variable factors,

it is hard to suggest empirical guidelines .

• During the ISO LET experiments, the MLEDcbkit implementation was used to adapt

for inter-gender variance, and was shown to have poorer performance than standard

MLED. The TIMIT experiments tested the use MLEDcbkit on dialect classes.

In Experiment One, where a dialect-dependent transcription was used, MLEDcbkit

has poorer performance than MLEDcor (standard MLED) and MLEDcov. Using the

dialect-independent transcription (in Experiment Two and Experiment Three) ben-

efited MLEDcbkit performance. In both Experiment Two and Experiment Three,

MLEDcbkit performance was much closer - though still slightly worse - to the

performance of MLEDcor and MLEDcor.

From the results we can deduce that eigenvoices based on inter-speaker variance

are superior to eigenvoices based on inter-dialect variance. Perhaps different classes

would lead to a MLEDcbkit implementation with better performance, but for gender-

based and dialect-based classes the performance was worse than that of standard

MLED (apart from the instances where mean-preservation boosted MLEDcbkit per-

formance past that of standard MLED).

It should be emphasised that the only advantage of using the CBKLT would be

to obtain a few eigenvoices that might have a better effect on adaptation than

eigenvoices based on inter-speaker variance. When many eigenvoices are used, the

KLT obtained eigenvoices (based on inter-speaker variance) will capture the inter-

class variance - as it is part of the inter-speaker variance - making the use of

the CBKLT (LDA) pointless. The CBKLT can thus only shift the focus of the

first few eigenvoices, but will not provide a better approximating subspace for the

speakerspace than the KLT when many eigenvoices are used. The CBKLT (LDA) is

very useful as a clustering or segmentation device, as it provides the greatest linear

separation between classes in the underlying data along the extracted base vectors.

If this separation is not useful for adaptation purposes, it will perform worse for

MLED speaker adaptation than the KLT (PCA).
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It should be noted that eigenvoices were recently successfully employed for speaker

identification and verification [49]. For this application LDA is shown perform better

than PCA for certain speech corpora.
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Chapter 10

Conclusions and Recommendations

This chapter covers the achievements and conclusions of this thesis, as well as suggestions

for future research on speaker adaptation. First, the major conclusions are discussed.

10.1 Conclusions

• The best adaptation method for a problem depends on the expected amount of

available adaptation data. The performance of a method for varying amounts of

adaptation data is strongly linked to the parameter reduction capabilities of the

method. The higher the parameter reduction, the more robust the method will

be for sparse data conditions. Lower parameter reduction makes more specialised

adaptation of parameters possible, which will lead to lower error rates provided that

the estimates were robust.

If large amounts of adaptation data is available for most of the parameters in the sys-

tem, MAP adaptation will be a good choice. For moderate amounts of adaptation,

an MLLR scheme would be a good choice. For very small amounts of adaptation,

MLED adaptation would be a good choice.

These findings are in accord with the findings of other researchers [51, 40, 33J.

• The complexity of the model impacts on the performance of adaptation methods. In

general, lower model complexity estimation allows more robust estimation of param-

eters and higher model complexity allows more specific adaptation of parameters.
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MLLR displayed more complex behaviour for the model order. The smaller the

number of seen mean vectors in the regression class, the less robust the estimate is

likely to be, and the more likely it is to encounter numerical instability. The number

of seen mean vectors depends on the amount and spread of adaptation data, as well

as the number of mean vectors belonging to the regression class. For the SG models,

the number of mean vectors belonging to a node in the regression tree was so low

that virtually only the global node could be used for adaptation, regardless of the

amount of available adaptation data. Even greater parameter reduction was required

for MLLR adaptation of GMM systems. Even though the number of parameters

for GMM systems was higher, the results were better than for SG systems as the

regression class occupancy was higher. This behaviour was also remarked on by

[34,33] .

• The mean-preserving covariance-based MLED implementation always had better

adaptation than standard MLED when a single eigenvoice was used. It is unfortu-

nate, as it was hoped that the explicit inclusion of the mean of the prior set of SD

models would allow an eigenspace that is a more accurate approximation of the true

speaker-space, and that this would lead to lower error rates for at least the first few

eigenvoices. However, it seems that the inter-speaker variance in the speakerspace

is such that the eigenvoices extracted by the KLT on the correlation matrix of the

SD superveetors have much the same effect as eigenvoices extracted by the KLT on

the covariance matrix of the SD supervectors.

The mean-preserving CBKLT-based MLED implementation was also shown to have

better performance than standard MLED when a single eigenvoice was used. This

indicates that mean-preservation is a good method of boosting MLED performance

when a single eigenvoice is used .

• The performance of the CBKLT MLED implementation for gender classes in ISO-

LET indicated that a great deal of inter-speaker variance is a result of gender. This

finds correlation with Nguyen's work, who found that peA identifies the greatest

source of inter-speaker variance as the different sexes of the speakers [40].
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For the case of a reduced-dialect independent phoneme set, the mean-preserving

CBKLT-based MLED implementation was shown to have slightly poorer perfor-

mance than standard MLED. If the inter-dialect variance was greater, CBKLT-

based MLED might have had better performance, but such a test must still be

completed. We thus implemented CBKLT (LDA) as a method of forming eigen-

voices (as suggested by [28, 40, 51]), and found that it had poorer results than

standard MLED using the KLT (PCA) for gender-based or dialect-based speaker

classes. Perhaps a different clustering method might yield better speaker classes,

though it is unlikely to yield better performance than standard MLED unless it

extracts better initial eigenvoices. As stated in Section 9.8: When many eigenvoices

are used, the KLT obtained eigenvoices (based on inter-speaker variance) will cap-

ture the inter-class variance - as it is part of the inter-speaker variance - making

the use of the CBKLT (LDA) pointless.

• The performance of MLED adaptation is highly dependent on the size and quality

of the set of SD models from which the eigenspace was extracted. This seems to be

the greatest limiting factor in MLED performance, even more so than the available

amount of adaptation data.

• In general, using PLP-features is superior to LPCC-features for SI systems, but

inferior for SD models and adaptation of SI models. It is our opinion that this is

a direct consequence of reduced inter-speaker variance when using PLP-features.

This conclusion is of some significance, as many researchers employ PLP-cepstral

(or MFCC) features for speaker adaptation purposes, simply because PLP-cepstral

features have better performance than LPCC features for SI systems.

10.2 Achievements

• Speaker adaptation was incorporated in the in-house DSP and pattern recognition

toolkit, PatrecII. This forms a base that will facilitate further speaker and environ-

mental adaptation experiments driven by PatrecII.
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• Two new MLED implementations were designed and implemented. The first novel

implementation - preservation of the mean of the prior set of SD models for MLED

- resulted in better adaptation than standard MLED when a single eigenvoice

was used. Mean-preservation has the effect of adding an extra robustly estimated

eigenvoice to MLED adaptation.

• The second novel MLED extension was the use of the CBKLT (LDA) to determine

the eigenvoices used for adaptation. It was shown to have performance that was

slightly worse than that of standard MLED. The use of CBKLT-extracted (LDA-

extracted) eigenvoices was suggested by other researchers [28, 40, 51] as an alter-

native to KLT-extracted eigenvoices. The results in this thesis indicate that it is

unlikely for CBKLT-extracted eigenvoices to outperform KLT-extracted eigenvoices

for the purposes of speech recognition.'

• LPCC features were shown to be preferable to PLP-cepstral features for most adap-

tation implementations and models of varying complexity, notwithstanding the fact

that PLP-cepstral features generally outperform LPCC features for SI models. This

is something to be aware of when designing a recognition system. If a SI system is

to be used, then PLP-cepstral features will be better. However, should the recogni-

tion system employ SD models and the use of speaker adaptation methods, LPCC

features might very well be a better choice.

10.3 Recommendations

The use of eigenvoice decomposition for speaker adaptation is still relatively new, and

research in the following has not been done to date:

• MLED (or another eigenvoice decomposition technique) should be extended to adapt

other HMM parameters besides the mean vectors. It is our opinion that post-

adaptation recognition rates may be improved for the case where moderate amounts

of data are available if the covariance matrices (and possibly the transition proba-

bilities) could be incorporated into the same MLED framework. Other researchers

1Recent work in the field of speaker identification and verification using eigenvoices has shown LDA

to outperform peA for certain speech corpora. Here a class consisted of all the speech for a speaker.
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have also commented on this, but to date MLED has not been extended to include

the adaptation of anything but mean vectors.

• The number of eigenvoices needed to effectively cover the inter-speaker variability

is generally quite high. For instance, Westwood found that around twenty eigen-

voices are needed to account for half the inter-speaker variability for a set of 109

speakers [51J. Non-linear methods should be analysed, to see whether the number

of bases needed to accurately model inter-speaker variability can be reduced. The

bases thus derived might also prove to result in more robust adaptation given the

same amount of adaptation data as normal MLED bases, as they will match the

inter-speaker variance more closely.

• Further research may be done to determine the usefulness of the CBKLT-based

MLED implementation, though it is our opinion that it is unlikely that such an

implementation would outperform standard MLED. A speech corpus with greater

dialect or accent variance than TIMIT should be used so that a better comparison

of the CBKLT-based MLED implementation and standard MLED may be made.

Furthermore, different speaker classes may be used. A simple clustering technique

could be used to form speaker classes, after which CBKLT may be used to extract

eigenvoices.

• As remarked by Westwood [51], no research has to date (to our knowledge) been

done on the effectivity of eigenvoice decomposition for environmental adaptation.

Westwood further states that such a method should include examples for SI or SD

models trained under various environmental conditions in the set of prior speech

models, so that the extracted eigenvoices would model the directions of greatest

inter-environmental variance or inter-speaker-and-environmental variance. Given

the non-linear changes that noise and other environmental effects cause on feature

vectors, it remains to be seen if the linearly extracted eigenvoices could cope with this

task for large changes in noise and environment. Non-linearly extracted eigenvoices

may have better results for a speaker-and-environment space that is expected to be

highly non-linear.
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Further research into the effect of different types of feature vectors on SI, SD, speaker

and environmentally adapted models is also necessary. Such research would facilitate the

optimisation of a recognition system in terms of model complexity and feature vector type

for a certain speaker adaptation technique.

To date, many detailed comparisons have been drawn between adaptation methods.

In most work on eigenvoice decomposition methods, including this thesis, the method is

compared to a relatively basic MLLR implementation where only the mean vectors are

adapted and a simple (typically global) regression scheme is employed. This is under-

standable, since eigenvoice decomposition techniques are typically tested for conditions

of extreme to moderate data scarceness, where few MLLR regression matrices may be

robustly estimated. A detailed comparison of MLED or WP with a high-end MLLR im-

plementation must still be completed so that an accurate assessment may be made of

which method is more effective for any given amount of adaptation data.
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Appendix A

Information Pertaining to MAP

Adaptation

A.l Posterior Distributions and Conjugate Families

of Prior Densities

Let 8 and Y be continuous random variables and let !e(B) be the prior density of 8 and

g(yIB) be the conditional density of Y given e. Bayes' Theorem for continuous random

variables then can be represented by

B _ !e(B)g(yl B)
g( ly) - J~oo!e(B)g(yl B)dB ' (A.I)

where g(BI y) is called the posterior density function of 8.

In Bayesian statistics, conjugate priors are often used. Let:F denote a class of density

functions. A class C of prior distributions is a conjugate family for :F if the posterior

distribution is also in the class C for all density functions in :F and all prior density

functions in C. When using conjugate priors, the posterior distribution is normally easily

calculated.

212

Stellenbosch University http://scholar.sun.ac.za



ApPENDIX A - INFORMATION PERTAINING TO MAP ADAPTATION

A.2 Prior Densities Referred to During MAP Adap-

tation Discussions

According to Gauvain and Lee [18] a practical candidate to model the prior knowledge of

the mixture gain parameter vector is the Dirichlet density, given by
M

g(Cl, ... , cMlvl, ... , VM) = IIc~m-l, (A.2)
m=l

where Cm are the mixture component weights, and Vm > 0 are the parameters for the

Dirichlet density.

The Dirichlet density can also be used as prior probability for the initial probability

vector 'If and each row of the transition probability matrix A of an HMM (see Section

2.4).

The prior probability used for each individual Gaussian pdf in a mixture pdf is a

normal- Wishart density, given by

where n is the dimension of the Gaussian pdf, /Lm is the mean vector, C is the covariance

matrix, (Tm, qm, am, Um) are the parameters of the normal-Wishart pdf such that am >

n - 1, Tm > 0, qm is a vector of dimension ti, and Um is a p x p positive definite matrix.

If independence between mixture weights and parameters of individual mixture pdf

components is assumed, the prior density for a GMM is a joint pdf obtained from the

product of A.2 and A.3:
M

g(B) = g(Cl, ... , CM) IIg(/Lm, Cm).
m=l

(A.4)

From here, Gauvain and Lee go on to prove that the prior density for all HMM

parameters can be modelled by

(A.5)

where {7]i} is the parameter set for the prior density of the initial probabilities {'lfi}, and

{TJij} is the parameter set for the prior density of the transition pro babili ties {aij}, and

N is the number of states.
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Appendix B

Supplementary Mathematical

Derivations for MLLR

B.1 Differentiation of a Scalar Function with Respect

to a Matrix

When the term "matrix differentiation" is used in this thesis, the definition introduced

below will be followed.

The derivative of a scalar function j(A) with respect to an m x ti matrix A is defined

as:

..E.1__ ..E.1__ ...EL
Ball Bal2 Baln

dj ..E.1__ ..E.1__ ...EL
Ba21 Ba22 Ba2n (B.1)

dA

...ÊL ...ÊL .si..
aaml Bam2 Bamn

The dimension of the derivative is thus always the same as that of A.

A typical example of matrix differentiation will now be given:

To determine the derivative of j(A) = b'Ax the scalar function j(A) is expanded into

summation form:
m n

j(A) = L biL aijXj (B.2)
i=1 j=1
m n

LLbiaijXj
i=1 j=1

(B.3)
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ApPENDIX B - SUPPLEMENTARY MATHEMATICAL DERIVATIONS FOR MLLR

b'Ax xb'

function of A I derivative with respect to A

tr(A) I

x'A'MAx 2MAxx'

Table B.l: A small table of matrix differentiation equations.

Now determine the derivative with respect to one of the elements of A, apq:

(B.4)

(B.5)

The elements of A are independent of each other, so that ",a;j = 0, unless i = pand j = q.uapq

Thus

(B.6)

or

dj ,
dA = bx. (B.7)

As another example, the differentiation of h~) (Ot) with respect to transformation matrix

vVa needed in order to solve Equation 4.10 for MLLR auxiliary function maximisation

will be done. First, h~) (Ot) is expanded:

h~)(ot) = [(Ot)'C~)-10t - (0t)'C~)-1Wa~~)

-(~~))'(Wa)'C~)-10t + (~~))'(Wa)'C~)-1Wa~~)]

(B.8)

(B.9)

Remembering that the transpose of a scalar is equal to the scalar, and that the covariance

matrix is diagonal, and using the first two matrix differentiation rules in Table B.l, the

expansion of h~) (Ot) is differentiated with respect to Wa.

~ {(o )'C(S)-10 } - 2~ {(o )'C(S)-lVV ds)}aWa t m t aWa t m a<"m

+a!a {(~~))'(Wa)'C~)-1Wa~~)}

o - 2C~)-10t(~~))' + 2C~)-lWa~~)(~~))'

-2C~)-1 [Ot - Wa~~)] (~~))'

(B.I0)

(B.11)

(B.12)
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ApPENDIX B - SUPPLEMENTARY MATHEMATICAL DERIVATIONS FOR MLLR

B.2 Using the Least or Highest Possible Amount of

MLLR Regression Classes

Though there are many possible regression class schemes, there are two extremes that are

of particular interest:

• global clustering, where all mean vectors in the model are placed in the same single

regression class .

• assigning each mean vector to its own exclusive cluster.

Global clustering is closely related to speaker normalisation using spectral shift trans-

formations [22]. Also, because it affords the most general transformation possible, it is

possibly the safest clustering method when little is known about the speech modelling

problem, or when the smallest amount of adaptation data is available. Using a cluster

exclusively for one mean vector is the extreme opposite of global clustering. It is the

clustering scheme with the highest likelihood given the data, as it allows more freedom

to the adaptation and affords a finer estimation of parameters. It is, in fact, identical to

ML reestimation of mean vectors. This is easily seen when Equation 4.12 (restated below

for convenience) is examined:

T

L L I'~)(t)C~)-lOt~~)1 =
T

L L I'~)(t)C~)-lWo~~)~~)/. (B.13)
(s,m)ERa t=l (s,m)ERa t=l

Only one mean vector is assigned to regression class 0:', and so the summation over states

and mixture components disappears so that

C),:)-1 (t,,),:)(t)0,) ~),:)'
T

L I'~)(t)Ot
t=l

C),:)-1 (t,,~:)(t)) W"~),:)<),:)'

(t,,),:)(t)) W"~),:)

(B.14)

(B.15)

Thus

A "i\'T (s)()w ~(s) _ (s) _ LJt=l I'm t Ot
o m - Mm - "i\'T (s)()

LJt=l I'm t
(B.16)

which is identical to the equation for ML mean vector reestimation.
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ApPENDIX B - SUPPLEMENTARY MATHEMATICAL DERIVATIONS FOR MLLR

B.3 Distance Measures Used During Acoustic Clus-

tering

Assigning mean vectors to regression classes for MLLR can be done using acoustic dis-

tance clustering methods. Several distance measures may be employed, each with its own

characteristics. In this section, the properties of a distance measure between two clusters

of data will be introduced, after which specific distance measures will be stated (some

will be derived).

B.3.1 Representing Clusters Using Gaussian pdfs

vVe want a distance measure between two data clusters, X and y. Let {Xt}l:=::t:SM be a

sequence of M vectors from cluster X, and {Yt}t:=::t:SN a sequence of N vectors from cluster

y. The vectors from both clusters are n-dimensional. Under the hypothesis the clusters

are Gaussian distributions and the data sequence can be summarised by its mean vector

and covariance matrix. For example, the mean vector and covariance matrix given by

1 M

/-Lx = M LXt
t=l

and (B.17)

respecti vely summarise sequence {x.}.

B.3.2 Properties of Distance Measures Based on Second-Order

Statistical Measures

All the distance measures treated here can be expressed completely using the second-order

statistics of the data. Each distance measure d(X, y) between two data clusters X and

Y can thus be expressed as a function [6]

(B.18)

The distance measures are non-negative

d(X,Y) 2: 0, (B.19)

and satisfy the property

d(X, X) = O. (B.20)
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ApPENDIX B - SUPPLEMENTARY MATHEMATICAL DERIVATIONS FOR MLLR

B.3.3 The Gaussian Divergence Distance Measure

Two ways of approaching the Gaussian divergence distance measure will now be presented.

This section covers the Gaussian divergence distance measure as it is treated by Bimbot

et al. [6], and Appendix B.3.6 covers the measure as treated by Leggetter [34].

The likelihood of an observation from sequence {Yt} on the distribution of X is

b(y IX) = 1 e-~(Yt-J.lx)'C;l(Yt-J.lx)
t (271't/2ICxI1/2

(8.21)

If all the vectors Yt are assumed to be independent observations, then the average log-

likelihood of sequence {Yth:'St:'SN for distribution X is

(B.22)

(B.23)

-~ [n In 2" + In ICxl + ~ t, (y, - !"xl' C;' (y, - !"xl]

-~ [nin 2" + In ICxl + ~ t, (y, - !"y +!ly - !"xl' C;' (y, - !"y +!"y - !"xl]

The following property:

1 N
N 2~)Yt - /-Ly)'C;l(Yt - /-Ly) = tr (CyC;l)

t=l
(B.24)

is now substituted so that

(B.25)

or

2 1
-.cx(yn + In 271'+ -In ICYI+ 1n n

1 [(ICyl) (-1 )' -1( ]= ;, In ICxl - tr CyCX ) - (/-Ly - /-Lx Cx /-Ly - /-Lx) + 1.

If the Gaussian likelihood measure dG is defined as

(B.26)

(B.27)

then

argmax .cx(Yt) = argmin dG(X, Y).
x x

(B.28)
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B.3.3.1 Properties of the Gaussian Likelihood Measure

The measure as it is defined is not symmetric, in other words dG(X, Y) =1= dG(Y, X). The

measure is only equal to zero when both the covariance and mean of both sequences are

equal, i.e. dG(X, Y) = 0 if and only if Cx = Cy and /-lx = /-ly.

B.3.3.2 A Variant of the Gaussian Likelihood Measure

According to Bimbot et al. [6] the mean vectors /-lx and /-lyare more sensitive to channel

characteristics and noise present in a distorted speech signal than the covariance matrices

Cx and Cy. The difference terms (/-ly -/-lx) in Equation B.27 may thus make the Gaussian

likelihood measure inconsistent when the speech is very distorted. A variant Gaussian

distance measure determined completely by the more noise-robust covariance matrices is

given by

(B.29)

This alternative measure has the same properties as the Gaussian likelihood measure, i.e.

it is non-symmetric and zero only when both the covariance matrices and mean vectors

are equal.

B.3.3.3 Symmetrisation

When one cluster (X) is a well estimated reference set and the other (Y) is a cluster

estimated using only a limited amount of data, then the directed Gaussian likelihood

measure dG(X, Y) defined by Equation B.27 will be an accurate measure. In practice,

however, both reference and test clusters are estimated from a limited amount of data,

and neither are exact. Both directed distance measures dG(X, Y) and dG(Y, X) could be

used in order to check the validity of a measure, but the discrepancy between dG(X, Y)

and dG (y, X) becomes great when the number of test and reference vectors is greatly

disproportionate (i.e. when N /M is very different from 1). Symmetrisation of a dis-

tance measure can improve classification compared to both directed asymmetric terms

taken individually. Constructing a symmetric measure by taking the average of the two

asymmetric measures is the simplest method.

(B.30)
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Other methods of symmetrisation taking into account the relative numbers of vectors for

the respective clusters are possible [6].

The symmetrised Gaussian likelihood measure dc« is then given by

dGsym

(B.31)

B.3.4 Arithmetic-Geometric Sphericity Measure

According to Bimbot [6] a likelihood measure of the proportionality of covariance matrix

Cy given covariance matrix Cx is defined by

(8.32)

The average log-likelihood .cx (yN) for the sphericity test is then

N 1
.cx(y ) = Nln [S(CYICx)]. (B.33)

Defining the arithmetic-geometric sphericity measure to be

[

.!.tr (C C-1)]ds (X, Y) = In n y ~ ,

(lflJ)iïICxl

(B.34)

we have

argmax .cx(yN) = argmin ds(X, Y).
x x

(8.35)

B.3.4.1 Properties of the Arithmetic-Geometric Sphericity Measure

The measure is non-negative:

ds(X, Y) ~ 0 (B.36)

and is zero if and only if Cx and Cy are proportional (i.e. all the eigenvalues of X-~Y X-~

are equal to 1). The measure is not symmetric:

ds(X, Y) i ds(Y, X). (B.37)
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B.3.4.2 Symmetrisation of the Arithmetic-Geometric Sphericity Measure

Equation B.30 is used once more to provide a symmetric measure.

dSsym(X, y)
1 1
"2ds(X, y) + "2ds(Y, X)
1"2 {In [tr (CyC;l) tr (CxC;l)] - 2Inn}. (B.38)

B.3.5 Expressing Distance Measures in Terms of Eigenvalues

It is possible to express the Gaussian likelihood and arithmetic-geometric sphericity mea-
I I

sures in terms of the eigenvalues of r = C;"2CyC;"2, where the eigenvalues (Ai, where

1 ::::;i ::::;n) are the roots of equation

jr - All = O. (B.39)

The distance measures treated thus far may be expressed in terms of three functions of

the eigenvalues:

1. The arithmetic mean:

(B.40)

2. The geometric mean:

(B.4l)

3. The harmonic mean:

( )

-1
1 n 1
;;:L :x.

i=l t

(B.42)

It should be noted that

(B.43)

where equality holds only when all eigenvalues are equal.
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When swapping X and y, a becomes 1/ h, g becomes 1/ g and h becomes l/a (also r
becomes r-1, Cx becomes Cy etc.). These three functions may also be expressed as

1 1 1
-tr A = -tr r = -tr (CyC;l)
n n n

1

(lAl) ~ = (If!) ~= (Q1) n
lXI

n n n
tr (A -1) tr (r-1) tr (CxC;I)

(B.44)

(B.45)

(B.46)

where A is the diagonal eigenvalue matrix.

Expression for the distance measures may now be found in terms of the eigenvalues.

For instance, the asymmetric Gaussian likelihood measure (Equation B.27) may thus be

expressed as

(B.47)

Similarly, the asymmetric arithmetic-geometric sphericity measure may be expressed as

ds(X, Y) = In (~) (B.4S)

and the symmetric arithmetic-geometric sphericity measure is

dSsym(X, Y) = ~In (~) . (B.49)

The arithmetic-harmonic sphericity measure, a new measure that is proportional to the

symmetric arithmetic-geometric sphericity measure [5] may now be defined as

In (~)

In (tr (CyC;I)tr (CxC;I)) - 2lnn.

(B.50)

(B.51 )

The properties of the arithmetic-harmonic sphericity measure are the same as those for

the symmetric arithmetic-geometric sphericity measure.

B.3.6 Gaussian Divergence as Defined by Leggetter [33]

Divergence is a distance measure of the separability of two distributions based on the

difference between their means.
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If there are two Gaussian distributions, distribution bl (y) for class WI, with mean 111

and covariance Cl and distribution b2(y) for class W2, with mean 112 and covariance C2

then the log-likelihood ratio is

A(y) = In [bl(Y)]
b2(y)

(B.52)

The expectation of the log-likelihood ratio for i = 1 or i = 2 is then given by

(B.53)

If H (i, j) is defined by

.. 100

[bi (y)] [ ( bi (y)) I ]H(z,)) = -00 In bj(y) bi(y)dy = E In bj(y) wi, (B.54)

the directed divergence is then given by

(B.55)

and the symmetric divergence is given by

(B.56)

In order to expand these two divergence measures, the log-likelihood ratio is first ex-

panded.

(B.57)

Now

(B.58)

Using the properties

(B.59)

and

tr (AB) = tr (BA), (B.60)
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we have

E [tr ((y - Jll)'Cll(y - Jll)) IWd

E [tr (Cll(y - JlI)(y - Jll)') IWd

tr (CllCI)

tr (I) (B.61)

and

E [(y - Jl2)'C:;1(y - Jl2)lw1] = E [tr ((y - Jl2)'C:;l(y - Jl2)) IWd

E [tr (C:;l(y - Jl2)(y - Jl2)') IWd

E [tr (C:; 1(y - Jll + Jl1 - Jl2)(y - Jl1 + Jl1 - Jl2)') IWd
tr (C:;l (Cl1 + (Jll - Jl2)(Jl1 - Jl2)'))

tr (C:;lCll + (Jll - Jl2)'C:;1(Jl1 - Jl2))' (B.62)

Given the above, the directed divergence ddir thus becomes

H(W1, W2)
1 (1 ) 1 , 1( 1 I C21-tr C:; Cl - I + -(Jl1 - Jl2) c:; Jll - Jl2) + ? In -IC I
2 2 - 1

and the symmetric divergence dsym is given by

(B.63)

dsym H(W1' W2) + H(W2' wI)
1 1
2tr (Cl1C2 + C:;lC1 - 21) + 2(Jll - Jl2)'(Cll + C:;1)(Jl1 - Jl2)' (B.64)

Note that the directed divergence is the same as the asymmetric Gaussian likelihood

measure (Equation B.27), and the symmetric divergence is the same as the symmetric

Gaussian likelihood measure (Equation B.27).

B.3.7 Likelihood Measure

The likelihood measure is used to measure the similarity between distributions for the

purpose of tree-based state tying of HMMs [44, 43, 53, 34].

Executing a complete maximum likelihood training pass is computationally expensive,

and so an estimate of the log-likelihood for the training data given a particular set of state

distributions is used. According to Odell [43] the following assumptions are made when

the simplified estimate is used:
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• The state-occupation probabilities 'Ys(t) are not altered during the clustering proce-

dure.

• The contribution of the state transition probabilities to the total likelihood are

ignored. Though the state transition probabilities have a significant impact on

the total likelihood, their contribution only changes when there are changes in the

state-occupation probabilities. Since the state-occupation probabilities - and thus

also the state sequence - are assumed fixed, the state transition probabilities will

remain constant during clustering.

• It is assumed that the total likelihood can be estimated by the average of the log-

likelihoods of the state pdfs weighted by the state-occupation probabilities.

From the above assumptions, the approximation of the total likelihood of the group of

distributions S generating observation sequence 0 is then given by:

T

L L 'Ys(t) In [P(ot, I1s, Cs)] (B.65)
t=1 sES

:::::; In[P(O,S)] (B.66)

where P(ot, I1s, Cs) is the probability of state pdf s for observation Ot, P(O, S) is the

probability of the group of state pdfs S generating 0 and 'Ys(t) is the state-occupation

probability of state s at time t.

Suppose we have an HMM that has single Gaussian pdfs of dimension ti for each

emitting state. The log-likelihood of a Gaussian pdf in the HMM generating a single

observation 0 is then

In [ 1 e-~(O-JlS)Ic.-l(O-JlS)l

(27l'r/2ICsI1/2

-~ [nln(27l') + In(ICsl) + (0 - I1s)' Cs-1 (0 - I1s)] .

In [bs(o)] = (B.67)

(B.68)

The likelihood of the set of Gaussian pdfs S generating an entire sequence of T observa-

tions {Ot}t=l...T thus becomes

T 1
c =L L -2 [n In(27l') + In(ICsl) + (Ot - I1s)' C;1 (0 - I1s)] 'Ys(t).

t=1 sES

(B.69)
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To reestimate the covariance of a Gaussian pdf given the new observation sequence, the

following formula is applied

(B.70)

Thus
T T

Cs L !r's(t) L I's(t) (Ot - IJs) (Ot - IJs)'
t=l t=l
T T

L Il's(t) L I's(t)C;l (Ot - IJs) (Ot - IJs)'
t=l t=l

tr (~h,(t)) tr (~/,,(t)C,-1 (0, - I") (0, - "')')

T

(~/,,(t) (0, - ",)' C,-' (0, - ",))nL IS(t) tr
t=l
T T

tiL I's(t) L I's(t) (Ot - IJs)' C;l (Ot - IJs)' (B.71)
t=l t=l

Thus the likelihood in Equation B.69 becomes

1 T

L =L -2" {n [1+ In(27r)] + In(ICsl)} L I's(t).
sES t=l

(B.72)

The difference in likelihood if a single distribution e is used to represent the set of distri-

butions D would be

Le - LD
1 T

-2" {n [1 + In(27r)] + In(ICel)} L le(t)
t=l

1 T

+L 2" {n [1+ In(27r)] + In(ICdl)} L I'd(t)
dED t=l
1 TIT

-2"n [1+ In(27r)] L le(t) - 2"ln(ICel) L I'e(t)
t=l t=l

1 TIT
+L 2"{n[1+ In(27r)]} L I'd(t) +L 2"ln(ICdl) L I'd(t) (B.74)

dED t=l dED t=l

(B.73)

226

Stellenbosch University http://scholar.sun.ac.za



ApPENDIX B - SUPPLEMENTARY MATHEMATICAL DERIVATIONS FOR MLLR

remembering that "fAt) = LdED Id(t)

1 TIT-L 2"n [1+ In(271")]L Id(t) - 2"ln(ICel) L le(t)
dED t=l t=l

1 TIT

+L 2"{n [1+ In(271")]}L Id(t) +L 2"ln(ICdl) L Id(t)
dED t=l dED t=l

1 TIT
-2"ln(ICel) L le(t) + 2"L In(ICdl) L Id(t).

(=1 dED t=l

6£ =

(B.75)

Similarly, the change in likelihood when a single distribution e is split into a set of distri-

butions D may be expressed by

1 TIT
6£ = -- L In(ICdl) L Id(t) + -In(ICel) L le(t).2 2dED t=l (=1

(B.76)
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Appendix C

Reducing the Memory Requirements

of the CBKLT

As with the computation of the eigenvoices using the Karhunen-Loeve transform, the

memory requirements will be massive should the large covariance or correlation matrix

of the supermean vectors be used. A similar procedure to Section 5.4.3 can be used to

reduce the memory requirements.

Finding a data matrix for the intra-class dispersion matrix Sw is the key to applying

the same memory requirement reducing technique. If a data matrix Z, is defined for each

class i as follows:

i = 1... c, (C.1)

then a data matrix for all the classes Z is given by

(C.2)

The intra-class dispersion matrix Sw can now be expressed in terms of Z

Sw = ZZ'. (C.3)

To obtain Equation C.3, Equation 7.23 was substituted for the class probability Pi in the

intra-class dispersion matrix.

As in Section 5.4.3 the right singular matrix of Z can now be used to determine the

left singular matrix of Z - the left singular matrix of Z being the eigenvectors of the
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intra-class dispersion matrix Sw. Only r of these eigenvectors will not describe the null-

space, and only these r eigenvectors are needed to transform the feature (in our case the

speaker) space. For r the following holds:

r::; min(m,nT) (C.4)

where m is the number of elements in a supervector. Normally, the dimension of a su-

pervector will be much greater than the number of speakers available for creating the

transform, so that r will be much smaller than m. The small amount of non-zero eigen-

values means that the m x r transform B+ can be computed without ever having to

determine the massive m x m intra-class dispersion matrix Sw.

Now the memory requirements for the second part of the transform must be considered.

As the inter-class dispersion matrix is also a massive m x m matrix, computing and

storing it should be avoided. The equation for Sb in expanded form is restated here for

convenience:
c

Sb = L PiB~(Mi - MT)(Mi - MT)' B+ (C.5)
i=l
c

""" ti, ( , , )( , , )'L..t - Mi - MT Mi - MT
i=l nT

(C.6)

where {ii is the mean of the features of class i in the transformed space and {ii is the

mean of all features in the transformed space. After the first transformation, the features

are r-dimensional, and so these transformed mean vectors are also only r instead of m-

dimensional. We wish to determine the data matrix Q from which Sb could have been

computed. From Equation C.5, Q can be extracted and is given by

so that

(C.8)

The computation of Q can be accomplished in two ways. We could apply B~ and trans-

form the feature vectors into the new r-dimensional space and compute the class mean

vectors and total mean vector from the transformed feature vectors. The second option

involves first computing the required mean vectors and then applying the B~ transform
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on them. In order to choose one of the methods, the computational and memory require-

ments must be compared. For the experiments on the ISOLET corpus, there were 120

supervectors, the dimension of each supervector was 2862 and there were 2 classes.

Only the final results of the detailed analysis will be given:

• Method 1: (41 213040 multiplication or division operations) + (41 212680 addition

or subtraction operations)

• Method 2: (689 742 multiplication or division operations) + (1 373 520 addition or

subtraction operations)

It is clear that the second method is computationally far superior. The memory require-

ments were also much less than those required for the first method, as the first method

needs to store the transformed feature vectors. The dominant cause for the first method's

larger computational requirements, is that more B~ transformations are used. Each of

the 120 supervector features require 2862 multiplications and 2861 additions to be trans-

formed.

Q is thus computed using the second method. It should be noted that /IT need not

be computed using all the supervector features, as the class means can be used. As

Equation C.9 demonstrates, fewer addition operations are necessary when computing MT

using the previously calculated class mean vectors:

c ni c ni c nj C

1 LL (i) L ti, 1 L (i) L· 1 L (i) LMT = - y. = -- y. = Pi- Y = Pi/lin J n n· . J n. J
T i=l j=l i=l T t j=l i=l z j=l i=l

(C.9)

V++ can now be computed by using the same principle as in Section 5.4.3. First the right

singular matrix and singular values of Q are computed by determining the eigenvectors

and eigenvalues of Q'Q. The left singular matrix of Q is then computed using the right

singular matrix and the singular values of Q. V++ consists of the dominant eigenvectors

of Sb, and these eigenvectors correspond to the first columns of the left singular matrix

of Q.
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Appendix D

Supplementary Mathematical

Derivations for Weighted Projection

This section covers some of the basic linear algebra proofs that are used in the formulation

of the weighted projection adaptation method introduced by Westwood [51]. The proofs

may be found in greater detail in Strang [48].

D.l Projection onto a Subspace

Suppose that the columns of matrix A are ti linearly independent vectors aI, ... ,an that

span the n-dimensional subspace R", We wish to find the point in this subspace that is

closest to vector b in the m-dimensional space Rm (m 2': n). In other words, the distance

between the linear combination xlal + ... + xnan and b is to be minimised.

This problem is solved in three steps:

• Find the best x value, denoted by x,

• Determine the projection p = Ax.

• Find the projection matrix P, such that p = Ph.

The error vector e between b and its projection on the subspace is given by

e = b - Ax. (D.1)

The length of e will be the shortest when it is perpendicular to all the vectors al, ... , an
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b

p = Ax = Pb

Figure D.1: Projection onto a subspace. b is projected onto A. The projection p is the

nearest point to b in the column space of A, and the error e is perpendicular to A (i.e. in

the nullspace of A').

(refer to the geometry depicted in Figure D.1). Thus

or

a'n

a~(b - Ax) = 0 a'1
or A'(b - Ax) = o. (D.2)

a~ (b - Ax) = 0

Solving for x, we find

x = (A' A)-l A'b. (D.3)

Now that x has been determined, the projection p is

p = Ax = A(A' A)-l A'b. (D.4)

and, from the above the projection matrix P is

(D.5)

The above derivations hold only when A' A is invertible. It will now be proven that A' A

is invertible if and only if the columns of A are linearly independent.

Proof: If the nullspace of a matrix contains only the zero vector, then the columns

of the matrix are linearly independent, which for a square matrix implies invertibility.

First it will be shown that A' A has the same nullspace as A:
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Suppose that A is any matrix and that vector x is in its nullspace. Then

Ax = o. (D.6)

Premultiplying by A'

A'Ax = o. (D.7)

Thus x is also in the nullspace of A' A. Now consider the nullspace of A'A. If x is a vector

in the nullspace of A' A, then

A'Ax = o. (D.8)

Multiplying by x' (note that we cannot multiply by the inverse of A', as this does not

exist in general)

x' A'Ax = x'O or (Ax)'(Ax) = 0 or IIAxl12 = o. (D.9)

Thus vector Ax has zero length and must be the zero vector Ax = o.
Therefore every vector in one nullspace also exists in the other nullspace, and the

nullspaces of the two matrices A and A'A are identical. If A has dependent columns, A'A

has dependent columns, and if A has independent columns, so does A'A.

To summarise: When columns of A are linearly independent, A'A is square, symmetric

and invertible.
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Appendix E

Additional Results for Experiments

on ISOLET

E.l MAP-Reestimation Results

Table E.1 contains all results for the set of experiments testing the effect of different T-

values on the MAP-reestimation of SG systems. Table E.2 contains all results for the set

of experiments testing the effect of different T-values on the MAP-reestimation of GNIlVI

systems.

E.2 The Phonemes of the Dialect-Independent Tran-

scriptions for TIMIT

The following phonemes remain in the dialect-independent transcriptions: ae, ao, ay, d,

dh, dx, eh, epi, er, g, hh, ih, iy, k, 1, m, n, ow, oy, r, s, sh, t, uw, w, y.
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I Adaptation method I SG PLP I SG LPCC I
SI 16.15% 16.18%

MAP, T = 5, Dmin = 8 15.61% 15.32%

MAP, T = 10, Dmin = 8 15.66% 15.25%

MAP, T = 20, Dmin = 8 15.81% 14.98%

MAP, T = 30, Dmin = 8 13.57% 11.55%

MAP, T = 40, Dmin = 8 15.78% 14.96%

MAP, T = 60, Dmin = 8 15.63% 14.81%

MAP, T = 100, Dmin = 8 11.91% 10.54%

MAP, T = 5, Dmin = 4 15.33% 13.45%

MAP, T = 10, Dmin = 4 14.74% 12.95%

MAP, T = 20, Dmin = 4 13.98% 12.22%

MAP, T = 30, Dmin = 4 13.61% 11.83%

MAP, T = 40, Dmin = 4 13.76% 11.93%

MAP, T = 60, Dmin = 4 13.49% 12.02%

MAP, T = 100, Dmin = 4 13.46% 12.69%

MAP, T = 5, Dmin = 1 14.67% 12.68%

MAP, T = 10, Dmin = 1 13.57% 11.55%

MAP, T = 20, Dmin = 1 12.76% 10.47%

MAP, T = 30, Dmin = 1 12.52% 10.23%

MAP, T = 40, Dmin = 1 11.98% 10.50%

MAP, T = 60, Dmin = 1 11.91% 10.54%

MAP, T = 100, Dmin = 1 12.55% 11.35 %

Table E.l: A comparison of letter error rates for SG systems after MAP-reestimation.
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I Adaptation method I GMM PLP I GMM LPCC I
SI 11.76% 13.22%

MAP, T = 5, Omin = 8 12.08% 13.22%

MAP, T = 10, amin = 8 12.10% 13.22%

MAP, T = 20, Omin = 8 12.15% 13.16%

MAP, T = 30, Omin = 8 10.29% 8.33%

MAP, T = 40, Omin = 8 12.20% 13.23%

MAP, T = 60, amin = 8 12.27% 13.18%

MAP, T = 100, Omin = 8 10.39% 9.85%

MAP, T = 5, Omin = 4 11.23% 11.92%

MAP, T = 10, amin = 4 11.13% 11.95%

MAP, T = 20, amin = 4 11.01% 11.99%

MAP, T = 30, Omin = 4 11.18% 12.17%

MAP, T = 40, Omin = 4 11.35% 12.34%

MAP, T = 60, amin = 4 11.77% 12.41%

MAP, T = 100, Omin = 4 11.75% 12.34 %

MAP, T = 5, amin = 1 10.54% 8.87%

MAP, T = 10, Omin = 1 10.29% 8.83%

MAP, T = 20, Omin = 1 9.77% 8.94%

MAP, T = 30, Omin = 1 9.80% 9.16%

MAP, T = 40, Omin = 1 9.82% 9.43%

MAP, T = 60, Omin = 1 10.39% 9.85%

MAP, T = 100, amin = 1 10.74% 10.83%

Table E.2: A comparison of letter error rates for GMM systems after MAP-reestimation.
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