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Summary

� The (maximum) growth rate (µmax) hypothesis predicts that cellular and tissue phosphorus

(P) concentrations should increase with increasing growth rate, and RNA should also increase

as most of the P is required to make ribosomes.
� Using published data, we show that though there is a strong positive relationship between

the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a rela-

tively constant P productivity, the relationship with RNA content is more complex.
� In eukaryotes there is a strong positive relationship between µmax and RNA content

expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In

prokaryotes the rRNA operon copy number is the important determinant of the amount of

RNA present in the cell. The amount of phospholipid expressed as % dry weight increases

with increasing µmax in microalgae. The relative proportions of each of the five major P-con-

taining constituents is remarkably constant, except that the proportion of RNA is greater and

phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of

temperature differences between studies was minor.
� The evidence for and against P-containing constituents other than RNA being involved with

ribosome synthesis and functioning is discussed.

Introduction

The growth rate hypothesis (Elser et al., 1996, 2000; Sterner &
Elser, 2002) states that rapid growth requires increased numbers of
ribosomes for protein synthesis, which in turn means that cellular
concentrations of phosphorus (P)-rich RNA (largely ribosomal
RNA) will also increase. Consequently the hypothesis predicts that
RNA content and, consequently, organism P concentrations should
increase with increasing growth rate (Elser et al., 1996; Main et al.,
1997; Sterner & Elser, 2002; Moreno & Martiny, 2018). It should
be noted that the growth rate hypothesis originated with differences
in P content between slow-growing freshwater copepods and
rapidly growing cladocerans, mainly Daphnia, being almost entirely
explained by differences in RNA content (Sterner, 1995; Elser
et al., 1996; Sterner & Elser, 2002). In other words, changes in P
content are dominated by changes in RNA content (mainly rRNA,
but also mRNA and tRNA, which should also increase with growth
rate) and, all else being equal, the relative proportions of P-contain-
ing compounds do not remain constant with growth rate. How-
ever, Elser et al. (2003) provide evidence that the amount of P in
RNA constitutes 49% of the total P in a number of prokaryotic
and eukaryotic heterotrophs. Most of the information relating to
the growth rate hypothesis is for an individual species growing
under various forms of resource limitation. The few interspecific

studies of the growth rate hypothesis either do not include any pho-
tosynthetic organisms (Sutcliffe, 1970; Elser et al., 2003), or con-
centrate only on N : P ratios in higher plant leaves (Reich et al.,
2010) or N : P ratios in phytoplankton (Flynn et al., 2010), though
the latter does include fluorescence data for RNA (see ‘RNA’ in
Materials and Methods).

Here we address the relationship, at the interspecific level,
between µmax (a cardinal characteristic of any organism (Flynn &
Skibinski, 2020)) of photosynthetic organisms and their nitrogen
(N) and P contents, P productivities (g dry matter g−1 phosphorus
d−1) and P-containing constituents, in both prokaryotes and
eukaryotes. We reverse the logic of the growth rate hypothesis by
starting with the strong positive relationship between µmax and P
content and then addressing the reason for this. RNA content is a
part of the answer, and we discuss the possibility that the other P-
containing constituents are involved directly or indirectly in ribo-
some synthesis and function.

Materials and Methods

Data

We searched (from Google to Web of Science) the literature (a
total of 79 publications) for data on maximum growth rate
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(µmax), organism N and P content and P-containing cellular con-
stituents (polyphosphate, RNA, DNA, phospholipids and phos-
phate esters and anhydrides) expressed as a percentage of dry
weight and/or total P in photosynthetic organisms. Where the
relationships between µmax and N and P content are compared,
only data for all three parameters for a given species that were
obtained from the same paper (or in two instances from the same
group) were used. Where comparisons are made between µmax

and a constituent (e.g. RNA) only data for both parameters given
in the same paper were used. The number of observations is given
in the legend of each table and figure.

Maximum growth rate

Only µmax is considered here and it is assumed that growth was
balanced (i.e. all cellular constituents increase at the same rate)
and that local conditions allowed for sufficient resources, which
would include temperature and light for the latter, when the mea-
surements were made. Only µmax involving measurements of the
increase in cell number or some measure of biomass (e.g. fresh
weight, dry weight) over time were used. All µmax values are
expressed as specific growth rate with units of d−1. Data provided
as doublings d–1 (base 2) were converted to µmax by multiplying
by loge2 (= 0.6931). Where there was more than one reported
value for µmax of a species, the highest value was used as it is
assumed that this represents the true (or truer) µmax. The assump-
tion of balanced growth allows µmax measured as, for example,
increases in cell density to be expressed as g dry weight g−1 dry
weight d−1. Values for µmax were not corrected for temperature,
because though there are appropriate Q10 values for growth rate,
there are no comparable values for N, P or RNA content of
organisms (see Moreno & Martiny (2018) for a full discussion).

Organismal N and P

Values for cell or tissue N and P are for organisms growing at
µmax. Values for N and P were obtained from the same paper as
µmax and were used only where these values were given as % dry
weight or where it is possible to calculate dry weight. All these
data were used to calculate P productivities, and extra data were
added from other sources where only µmax and P content were
provided. The benefits of using dry weight as a standard measure
for biomass are outlined elsewhere (Rees, 2014; Raven, 2015)
under ‘What is the effect of temperature?’ in the Discussion.

Storage of N or P (as polyphosphate or phosphate) can, both
in principle and in practice, have a marked effect on values for
organism N or P. This is more likely to occur when an organism
is grown with excess external sources of N or P to prevent
resource limitation and to ensure µmax and is why Raven (2013a)
explicitly deducts polyphosphate from an inventory of major P-
containing fractions. The main reason for including polyphos-
phate is that it may have an important role in biosynthesis and
not simply as a form of P storage (the non-storage role of
polyphosphate is discussed under ‘Polyphosphate/phos-
phate/phytate’).

Phosphorus productivity

Phosphorus productivity (g dry weight g−1 phosphorus d−1) was
calculated as:

μmax

P

where µmax is maximum growth rate (d−1) and P is the propor-
tion of dry weight that is phosphorus (g phosphorus g−1 dry
weight).

A single, exceptionally high, P productivity (536 g dry biomass
g−1 P d−1) for Ulva rigida (Lavery & McComb, 1991) is not
included. This high rate is largely due to a very low tissue phos-
phorus content of 0.04%, which is the lowest for any photosyn-
thetic organism recorded here. Chaetomorpha linum from the
same site had a P productivity of 119 g dry biomass g−1 P d−1

and a tissue phosphorus content of 0.2% (Lavery & McComb,
1991), suggesting that the high P productivity for U. rigida is
not due to any property of the site that it was collected from.

RNA

Values for cell or tissue RNA are for organisms growing at µmax.
There are a variety of potential problems associated with data for
RNA and protein content, most of which have been addressed else-
where (Flynn et al., 2010). Raven (2013a) has highlighted some of
the problems associated with the extraction of protein and, to a
greater extent, RNA, and there are additional problems relating to
the measurement of RNA (and DNA) with fluorescent probes
(Mordy & Carlson, 1991; Hildago et al., 2017). There may be
instances where these problems do not occur or have been pre-
vented, but there are examples where the use of fluorescent probes
for both DNA and RNA give very low values for these nucleic acids
(mainly microalgae and a few macroalgae), and these data are not
included here. This is not to suggest that values obtained with fluo-
rescent probes are incorrect. Rather, for internal consistency and
because there are more published values, RNA values reported here
used the orcinol method mainly, but also the UV method (Herbert
et al., 1971; Geider & LaRoche, 2002) and are expressed as % total
dry weight and/or %P. Where relevant it is assumed that 9.1% of
RNA is P (Sterner & Elser, 2002).

Phospholipids

Values for phospholipids are for organisms growing at µmax.
Where relevant it is assumed that 4.2% of phospholipids is P
(Sterner & Elser, 2002). There are conflicting values for the
amount of phospholipid in the Haptophyta. Values for phospho-
lipids in Isochrysis galbana range from 0.12% (Cañavate et al.,
2017) to 5.2% (Zhu et al., 1997) and 5.5% of total dry weight
(Fidalgo et al., 1998). For Diacronema vlkianum phospholipids
are 1.5% of total lipid and 0.24% of dry weight; total lipid is
15.9% of dry weight (Cañavate et al., 2017). Other values for D.
vlkianum are similar: phospholipids are 3.3% of total lipid
(Armada et al., 2013, albeit the same group as Cañavate et al.,
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2017) and total lipid is 17.9% of total dry weight (Fradique
et al., 2013). Phospholipids are a minor component of lipid in
Pavlova lutheri (Eichenberger & Gribi, 1997). In Tisochysis lutea
phospholipids in the light are either the most abundant (Lacour
et al., 2012) or the second most abundant lipid class (after glycol-
ipids) (Marchetti et al., 2018). Phospholipids make up c. 33% of
the total intact polar lipid during P-replete growth in Emiliania
huxleyi (Shemi et al., 2016). There is a clear discrepancy in the
apparent content of phospholipids in the Haptophyta that needs
resolution. Where there were three values (I. galbana and
Nannochloropsis gaditana), two of the three values for phospho-
lipids were in close agreement and the one with the greater µmax

was used. For other values there was only one published value for
µmax and phospholipid content.

Other P constituents

Values for the other P constituents are for organisms growing at
µmax. Values for DNA, polyphosphate and P-esters and anhy-
drides were obtained from the literature and either expressed as
% total dry weight and/or %P.

Statistics

Reduced major axis (RMA) regression (Sokal & Rohlf, 1995)
was used to describe relationships between µmax and cellular

constituents. For these analyses the line-fitting package SMATR

v.2.0 (Warton et al., 2006; http://www.bio.mq.edu.au/ecology/
SMATR/) was used. Differences between phospholipid content
and logged values for RNA : phospholipids ratio in prokaryotic
and eukaryotic photosynthetic organisms were investigated using
t-tests. Differences between DNA content as % of dry weight in
microalgae and macroalgae and an angiosperm were investigated
using a Mann–Whitney rank sum test. The effect of growth tem-
perature and µmax on %P and RNA content were determined
using multiple regressions. All statistical tests were performed in
SIGMAPLOT v.14.

Results

Relationships between maximum growth rate and N and P
content

There was a strong positive linear relationship (r2 = 0.60) between
µmax and P content expressed as percentage of organism dry weight
(Fig. 1a). By contrast, there was a much weaker relationship (r2 =-
0.35) between µmax and nitrogen content expressed in terms of
percentage of organism dry weight (Fig. 1b), and the relationship
was stronger (r2 = 0.45) if the data were fitted to a rectangular
hyperbola (n = 58 for both Fig. 1a and b). Using a more extensive
collection of data (n = 78), for µmax and P content expressed as
percentage of organism dry weight, the relationship was stronger

(a) (b)

Fig. 1 Relationship between maximum growth rate (d−1) and (a) phosphorus (P) (% dry weight) and (b) nitrogen (N) content (% dry weight) of
photosynthetic organisms (n = 58). The reduced major axis regression equation and coefficient of determination for the relationship between maximum
growth rate and phosphorus content are as follows: y = −0.04 + 1.78x; r2 = 0.60, P (slope = 0) < 0.001. The fitted rectangular hyperbola shows the
relationship between maximum growth rate and nitrogen content (r2 = 0.45).
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(r2 = 0.67). There was a minor and nonsignificant (P = 0.336)
effect of temperature on P content (%P = 0.44 + (1.35 × µmax) –
(0.016 × temp), r2 = 0.67). There were no differences between the
P productivities of marine and freshwater microalgae, marine
macroalgae and terrestrial plants (angiosperms and a fern) (n = 78)
(Table 1).

Distribution of the five major categories of P-containing
constituents as a percentage of total P

The distribution of the five major categories of P-containing con-
stituents as a percentage of total P within photosynthetic organ-
isms is shown in Table 2. The main constituents were
polyphosphate (and phosphate) and RNA. If it is assumed that
the sole function of polyphosphate + phosphate is phosphate
storage, the relative amounts of P in the other four categories are
very similar to those reported by Raven (2013a).

There was a significant difference in the phospholipid content
(as a proportion of total P) between prokaryotic and eukaryotic
photosynthetic organisms (t = −2.432; df = 21; P = 0.024),
being five times greater in eukaryotic photosynthetic organisms
(Table 2). There were insufficient data to make the comparison
based on dry weight. There was an even greater difference between
prokaryotic and eukaryotic photosynthetic organisms (t = 6.936;
df = 10; P = <0.001) in the RNA : phospholipids ratio (Table 2).

Relationships between maximum growth rate and RNA
and phospholipids in eukaryotic photosynthetic organisms

There were no relationships between any of the five major cate-
gories of P-containing compounds expressed as a proportion of
dry weight and µmax except for RNA and, possibly, phospho-
lipids. For the other categories there were insufficient data
(polyphosphate, n = 1; phosphate esters, n = 0) or no relation-
ship (DNA, n = 7). However, there was a significant difference
(Mann–Whitney U = 7; P = 0.002) between the DNA content
(as % dry weight) of faster growing microalgae (marine and fresh-
water; 0.54%) and that of macrophytes (macroalgae and a terres-
trial angiosperm; 0.28%).

The slope of the relationship for eukaryote phospholipids and
µmax was not significantly different from zero, but the

relationship was positive (r2 = 0.28). If a high value for phos-
pholipid content of the freshwater diatom Stephanodiscus
minutulus, which has a higher lipid content than protein even at
µmax (Lynn et al., 2000) is removed, the slope of the positive rela-
tionship was significantly different from zero (r2 = 0.42; Fig. 2).
A comparison of the slope and intercept of this relationship with
that for Fig. 1(a), and assuming that 4.2% of phospholipids is P
(Sterner & Elser, 2002), suggests that phospholipids constitutes a
roughly constant 11% of total P in photosynthetic organisms,
which is very similar to the value for eukaryotic phospholipids
(which includes the value for S. minutulus) in Table 2.

There was a strong positive relationship (r2 = 0.66) between
µmax and RNA as a percentage of dry weight in eukaryotic photo-
synthetic organisms (marine and freshwater microalgae and ter-
restrial plants) (Fig. 3). There was a nonsignificant (P = 0.226)
effect of temperature on RNA content (RNA = 4.1 + (3.49 ×
µmax) – (0.118 × temp), r2 = 0.71). A comparison of the slope
and intercept of this relationship with that for Fig. 1(a), assum-
ing that 9.1% of RNA is P (Sterner & Elser, 2002), suggests that
RNA constitutes a roughly constant 25% of total P in eukaryotic
photosynthetic organisms, which is very similar to the value for
eukaryotic RNA in Table 2.

Relationships between maximum growth rate and RNA in
cyanobacteria: the importance of the rRNA operon copy
number

For a given µmax, cyanobacteria generally had a greater RNA con-
tent (Fig. 3), despite identical P productivities (Table 1). For
heterotrophic prokaryotes growing at < 2.0 d−1, there was a sim-
ilar relationship to that of cyanobacteria (Fig. 3). Though most
prokaryotes had a greater RNA content for a given µmax than
eukaryotes, there were two exceptions with lower RNA contents

Table 1 Mean (�SE) and median phosphorus productivities (g dry biomass
g−1 P d−1) for different groups of photosynthetic organisms growing at
maximum growth rate.

P productivity (g dry
biomass g−1 P d−1)

nMean Median

Marine microalgae 77 � 8 72 30
Freshwater microalgae 75 � 9 67 9
Marine macroalgae 72 � 10 58 24
Terrestrial plants 71 � 9 77 15
All photosynthetic organisms 74 � 5 66 78
Cyanobacteria 74 � 4 74 7

Cyanobacteria include marine and freshwater species.

Table 2 Percentage of the major phosphorus-containing fractions in
photosynthetic organisms growing at maximum growth rate as mean
values (� SE).

(% total P)
nMean � SE

DNA 9 � 2 18
P-esters 10 � 3 5
Cyanobacteria
RNA 46 � 6 4
Phospholipids 3 � 1 4
RNA : phospholipids 20 � 5 4
Polyphosphate 29 � 9 6
Eukaryotes
RNA 25 � 3 18
Phospholipids 14 � 2 19
RNA : phospholipids 2 � 0.4 8
Polyphosphate/phosphate 35 � 8 7

Values for DNA and P-esters are for all photosynthetic organisms; RNA,
phospholipids and polyphosphate are given as separate values for
cyanobacteria and eukaryotes. It should be noted that phosphate rather
than polyphosphate makes a major contribution in angiosperms, and one
value (Bieleski, 1968) is included here, but only two published values
(Robson et al., 1959; Bieleski, 1968) distinguish between DNA and RNA.
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that were comparable to eukaryotic photosynthetic organisms.
The two exceptions were Prochlorococcus marinus subsp. pastoris
str. CMP1986 (also known as Med4) and Mycobacterium bovis,
that both have a single copy of the rRNA operon (Cox, 2004;
Schirrmeister et al., 2012). By contrast, the other bacteria have
two to six copies (Cox, 2004; Schirrmeister et al., 2012); there is
no value for Nostoc paludosum, but other species and strains of
Nostoc possess three to six copies (The Ribosomal RNA Database;
https://rrndb.umms.med.umich.edu/search/).

Discussion

Given the strong relationship between µmax and P content, what is
(are) the most likely P-containing constituent(s) that is (are)
required for growth, and why is more P required for rapid growth?
One possibility is that most of the P is allocated to RNA (as stated
by the growth rate hypothesis). However, RNA accounts for only
25% (in eukaryotic photosynthetic organisms) or 50% (in prokary-
otic photosynthetic organisms) of total P. Clearly this leaves 50 to
75% of total P unaccounted for. Either the growth rate hypothesis
is only a partial explanation of the relationship between µmax and P
content, or the other four categories of P-containing constituents
are directly or indirectly involved with RNA synthesis and/or ribo-
some functioning. This latter possibility, which would leave the
growth rate hypothesis largely intact, is explored under ‘Role of P-
constituents other than RNA’. However, we start by addressing
two important questions relating to the data.

Does µmax represent the true maximum growth rate?

The answer to this question is that it is impossible for anyone to
be certain that their measurement of µmax is a measure of the true

maximum growth rate. Fenchel (1974) refers to his maximum
growth rate (rm) as an ‘approximation’. Given that we restricted
our µmax values to those papers that also contained information
on N, P, RNA and phospholipids, then our µmax is possibly even
more of an approximation. However, it could be argued that as
our techniques improve (there is independent evidence that they
do not) our ‘approximate’ values should become closer to the true
values. Within the context of our data, we would also expect, if
the measured µmax increased in the future, that the organism’s P
content would also increase.

What is the effect of temperature?

The effect of temperature on P productivity was negligible across
all photosynthetic organisms and minor with RNA content in
eukaryotes. There is evidence for an increase in the amount of
cellular or tissue RNA with a decrease in temperature in photo-
synthetic organisms (Woods et al., 2003) and marine phyto-
plankton (Toseland et al., 2013). With cold hardening in
terrestrial plants there are increases in RNA content, but this is
accompanied by a marked decrease in growth rate (e.g. Sarhan &
D’Aoust, 1975) that is not a consideration here. We do not dis-
pute that decreased growth rate and increased RNA content per
unit dry weight are characteristics of cold hardening terrestrial
plants. The difficulty with interpreting data for single cells is that
cell volume (Atkinson et al., 2003) and cell dry weight (Cook,
1966; Aaronson, 1973) increase with decreasing temperature.
With decreasing temperature the amount of RNA g–1 dry weight
decreases in Ochromonas danica (Aaronson, 1973), and Euglena
gracilis strain Z (Cook, 1966), but there is a slight (12%) increase
in E. gracilis var. bacillaris between 15 and 25°C (Cook, 1966).
When the RNA content is expressed per cell in Scenedesmus sp.,
there is an increase in RNA content with decreasing temperature,
but there is also an increase in cell volume, though the relative
increase in RNA and P content between 10 and 15°C is greater
than that for cell volume (Rhee & Gotham, 1981). However, at
15°C RNA constitutes 23% of total P, but at 10°C, only 13%.
In Fragilariopsis cylindrus there is a strong negative relationship
between temperature (−2, 4 and 10°C) and RNA content per cell
(Toseland et al., 2013). The optimum growth temperature for F.
cylindrus is about 4°C, and no growth occurs at 10°C (Lacour
et al., 2017), therefore it is not surprising that there is less RNA
per cell at 10°C. At 0°C, the growth rate of F. cylindrus is lower
than at 4°C (Zhu et al., 2016). RNA increases by c. 75% between
−2 and 4°C (Toseland et al., 2013), and cell volume increases by
c. 90% between 0 and 4°C and there are similar increases in C,
N and P per cell (Zhu et al., 2016).

Role of P-constituents other than RNA

Though there are numerous P-containing compounds in a
cell, there are only five categories of P-containing compound
that are quantitatively significant. The greater requirement for
P in fast-growing organisms is either because it requires more
of each category of P-containing compound (i.e. the relative
proportion of each category remains constant), or one or

Fig. 2 Relationship between maximum growth rate (d−1) and
phospholipid content (% dry weight) of eukaryotic microalgae. The
reduced major axis regression equation and coefficient of determination
for the relationship between maximum growth rate and phosphorus
content are as follows: y = − 0.68 + 5.66x; r2 = 0.42, P
(slope = 0) = 0.043, n = 10. The open circle represents data for the
freshwater diatom Stephanodiscus minutulus (Lynn et al., 2000), but it is
not included in the regression analysis. Data were obtained from Fidalgo
et al. (1998), Pahl et al. (2010) and Cañavate et al. (2017).
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more categories of P-containing compound become propor-
tionally more important (and others less so) as µmax increases.
The data reported here and in Raven (2013a, his Table 2)
support the former hypothesis. Is this because, as µmax

increases, more ribosomes are needed and more of the other
four categories of P-containing compounds are required to
drive RNA synthesis and/or ribosome functioning?

Polyphosphate/phosphate/phytate

Polyphosphates are linear polymers of up to hundreds of phos-
phate molecules and can be the major P-containing compound
in some photosynthetic organisms. It is generally considered to
be a form of P storage (John & Flynn, 2000; Martin et al.,
2014), with the advantage over phosphate being that its accu-
mulation has no osmotic effect (Raven & Knoll, 2010).
Polyphosphate may also serve as an energy source (e.g. Korn-
berg et al., 1999), but, at best, this would only provide a very
short-term source of energy and ignores the cost of synthesiz-
ing polyphosphate (Raven & Knoll, 2010; Lavoie et al.,

2016). In the aquatic angiosperm Spirodela oligorrhiza, 71%
of total P is present as phosphate (Bieleski, 1968). Phytate
(inositol hexakisphosphate) is the principal form of P storage
in tubers, fruits, and seeds of terrestrial plants (Veneklaas
et al., 2012; Frank, 2013; Lorenzo-Orts et al., 2020) and is
the major form of P in some plants (Frank, 2013). In the
root cortex of Trifolium subterraneum, P is accumulated in
globular structures together with, in quantitative order, potas-
sium, magnesium, sulphur, sodium and calcium (Ryan et al.,
2019).

A relationship between polyphosphate concentrations and
growth rate has been suggested for Scenedesmus sp. (Rhee,
1973) and Saccharomyces cerevisiae (Trilisenko &
Kulakovskaya, 2014). A barley mutant with decreased (by >
90%) concentrations of seed phytate displays decreased yield
even in irrigated fields, but even moderate decreases (33–70%)
in phytate in mutant seeds cause decreased yields in nonirri-
gated fields (Raboy, 2007).

Polyphosphate can act as a chaperone in protein folding in
bacteria (Gray et al., 2014). The only bacterial chaperone known

Fig. 3 Relationship between maximum growth rate (d−1) and RNA content (% dry weight) of eukaryotic photosynthetic organisms and prokaryotic
photosynthetic organisms and heterotrophs. The reduced major axis regression equation and coefficient of determination for the relationship between
maximum growth rate and eukaryote RNA content are as follows: y = 0.34 + 4.35x; r2 = 0.66, P (slope = 0) < 0.001, n = 12. Data were obtained from
the following sources: for eukaryotic photosynthetic organisms, Robson et al. (1959), Nyholm (1977), Cook (1981), Kato & Asakura (1981), Laws et al.
(1983), Bajaj (1970), Fidalgo et al. (1995), and Mahboob et al. (2012); for prokaryotic photosynthetic organisms with one copy of the rRNA operon, Casey
et al. (2016); for prokaryotic photosynthetic organisms with two or more copies of the rRNA operon, Kramer & Morris (1990), Fontes et al. (1992), Vargas
et al. (1998), and Li et al. (2014); for prokaryotic (heterotrophic) organisms with one copy of the rRNA operon, Cox (2004); for prokaryotic (heterotrophic)
organisms with two or more copies of the rRNA operon, Cox (2004). The data for terrestrial plants consisted only of values for suspension or callus/tissue
cultures. The data for prokaryotic (heterotrophic) organisms with two or more copies of the rRNA operon are for Streptomyces coelicolor growing at 8 and
16% of maximum growth rate (7.2 d−1) so that growth rates were comparable to the other prokaryotes.
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to bind to the ribosome is trigger factor, with chaperones such as
the ATP-dependent chaperone DnaK binding to released
polypeptides (Kramer et al., 2019). In bacteria it is the ATP-de-
pendent chaperones such as DnaK that can be replaced by
polyphosphate (Gray et al., 2014). Polyphosphate can bind to
ribosomes in Escherichia coli both in vitro and in vivo, and stabi-
lizes polysomes (McInerney et al., 2006). RNA associates with
polyphosphate in Anabaena variabilis and Chlorella pyrenoidosa,
with 1 mol of nucleotide being associated with 7 mol polyphos-
phate-P (Correll & Tolbert, 1962). It is currently unknown
whether polyphosphate can act as a chaperone in eukaryotes, but
it can bind to ribosomes.

Of particular interest is the role of lysine polyphosphoryla-
tion in ribosome biosynthesis in yeast and humans (Bentley-
DeSousa et al., 2018; Lorenzo-Orts et al., 2020; McCarthy
et al., 2020). In yeast c. 7% of proteins have one or more
PASK-like motifs (stretches of 20 amino acids with up to at
least 15 glutamate, aspartate and serine residues and at least
one lysine residue), and the 17 known polyphosphorylated
proteins are preferentially localized to the nucleolus. Mutants
lacking Vtc4 polyphosphate polymerase are defective in 80S
monosome and polysome assembly that compromises ribo-
some synthesis (Bentley-DeSousa et al., 2018). Two polyphos-
phorylated proteins in yeast are the histone chaperones Fpr3
and Fpr4 (Bentley-DeSousa et al., 2018). They work coopera-
tively to regulate genes involved in polyphosphate metabolism
and ribosome synthesis, and mutants lacking genes for both
chaperones have a genome instability phenotype at rDNA
(Savic et al., 2019). The authors suggest that Fpr3 and Fpr4
may act as master regulators of ribosome biosynthesis. What
is not known is whether lysine polyphosphorylation occurs in
photosynthetic organisms or, even in yeast, the proportion of
total polyphosphate that is involved.

Phospholipids

Phospholipids can be replaced by sulpholipids and galac-
tolipids under conditions of P limitation (Andersson et al.,
2005; Van Mooy et al., 2009; Raven, 2013b). Because it is
assumed that there are no resource limitations during µmax,
such substitutions are ignored. However, there is currently no
explanation for the apparent superiority of phospholipids
under conditions of P sufficiency (Raven, 2013a). In algae
and higher plants most extra-chloroplastic membranes are nor-
mally dominated by phospholipids (Jouhet et al., 2004;
Andersson et al., 2005; Dörmann, 2005; Khozin-Goldberg,
2016), and this may explain the higher phospholipid content
of roots compared to leaves (Siebers et al., 2015). Conse-
quently, there will be always be a greater demand for phos-
pholipids in eukaryotic than prokaryotic photosynthetic
organisms, because the latter do not contain nuclei, vacuoles,
endoplasmic reticulum (ER), Golgi apparatus or mitochon-
dria. Though bacteria do contain organelles, those that are
found in cyanobacteria are carboxysomes, which are enclosed
in a protein shell and (except in Gloeobacter) thylakoids with
organelles that are delimited by lipoprotein membranes with

very little phospholipid (Greening & Lithgow, 2020).
Lipoprotein membranes with phospholipids as the dominant
lipid (chromatophores, anammoxosomes and magnetosomes),
with the possible exception of lipid bodies, are not found in
cyanobacteria (Greening & Lithgow, 2020). This presumably
explains the significant difference between the proportion of P
present in phospholipids in prokaryotic and eukaryotic photo-
synthetic organisms.

Phospholipids are important constituents of the nuclear
membrane, tonoplast, ER, Golgi apparatus and mitochondrial
inner and outer membranes, as well as the plasma membrane,
in plants (Dörmann, 2005). In Arabidopsis 31% of the
genome codes for membrane proteins (Stevens & Arkin, 2000)
that will be synthesized on ribosomes attached to the ER
(rough ER) (Staehelin, 1997; Sadowski et al., 2008). Among
eukaryotes, the proportion of the genome that codes for mem-
brane proteins is relatively constant at c. 30% (Stevens &
Arkin, 2000) despite marked differences in µmax suggesting
that the proportion of total ribosomes attached to the ER is
also relatively constant. The data of Stevens & Arkin (2000)
are derived from the predicted hydrophobic α-helical mem-
brane proteins coded in the sequenced genome. For the
human genome, only 11% had been sequenced, with 29.7%
of the total genome predicted to contain genes coding for
membrane proteins. Subsequently, of 21 416 annotated genes
in the human genome, about 26% corresponded to membrane
proteins (Fagerberg et al., 2010), and in a mapping study of
12 000 human proteins 27% were membrane proteins (Thul
et al., 2017). The predictions of Stevens & Arkin (2000)
appear to be remarkably robust. Consequently, as the total
amount of RNA g–1 dry weight increases with increasing µmax,
the total number of ribosomes and the number of ribosomes
attached to the ER should also increase.

Phosphate esters and anhydrides

Phosphate esters and anhydrides are involved in a variety of both
biosynthetic and catabolic pathways. P-esters and anhydrides
make up 5.6% of total P in S. oligorrhiza (Bieleski, 1968). The
major P-esters and anhydrides (in terms of P content) in
S. oligorrhiza are glucose-6-phosphate, ATP and phosphoglycer-
ate (Bieleski, 1968), and in Chlamydomonas reinhardtii are ATP,
3-phosphoglycerate and glucose-6-phosphate (Mettler et al.,
2014). It is likely that the value of 3% of total P for
Prochlorococcus (Casey et al., 2016) is an underestimate as it does
not include the three major compounds found in S. oligorrhiza or
C. reinhardtii. Conversely, the value of 17.7% for Synechococcus
elongatus (Grillo & Gibson, 1979) may be an overestimate as the
5% cold trichloroacetic acid extract could also include
orthophosphate and low molecular weight polyphosphate (Her-
bert et al., 1971; Thompson et al., 1994).

There are currently insufficient data with which to draw any
conclusions regarding the amount of P-esters and anhydrides g–1

dry weight, but the available evidence suggests that changes in their
amount with increasing µmax is likely to be minor, mainly because
of adverse osmotic effects (Park et al., 2016; Raven, 2018).
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DNA

DNA accounts for a small proportion of dry weight (mean value
of 0.5% dry weight) and total P (9%), but the amount of DNA
g–1 dry weight is greater in fast-growing microalgae than in slow-
growing macroalgae and an angiosperm. There is a positive rela-
tionship between rDNA copy number and genome size in plants
(Prokopowich et al., 2003), suggesting that there are more rDNA
copies in faster growing microalgae and providing a potential link
between DNA and RNA content.

However, there is a negative relationship between DNA con-
tent (though not expressed g–1 dry weight) and growth rate (Ben-
nett, 1972; Shuter et al., 1983; Gregory, 2001; Hessen et al.,
2010; Sharpe et al., 2012; Šimová & Herben, 2012; Raven et al.,
2019a,b). This may (Cavalier-Smith, 1978) or may not (Shuter
et al., 1983) affect the rate of RNA transport through the nuclear
pores in eukaryotes. There is no effect of genome size on growth
rate in prokaryotes (Vieira-Silva et al., 2010).

There is a strong positive relationship between cell length and
cell volume and the rRNA gene copy number in marine microalgae
(Zhu et al., 2005; Godhe et al., 2008; Raven et al., 2019a) that
would translate into a relatively low rRNA gene copy number in
fast growing organisms. The extra copies in yeast are thought to
protect the cells against DNA damage from mutagens such as UV.
This became essential with the evolution of larger eukaryotic cells
that required more rDNA transcription, which would be toxic
unless they maintained more rDNA copies (Ide et al., 2010),
though small, fast-growing cells are more at risk from UV damage
than large cells (Raven, 1991; Finkel et al., 2010).

RNA

In eukaryotic or prokaryotic photosynthetic organisms, the propor-
tion of total P which is RNA is surprisingly constant, irrespective
of growth rate. In eukaryotes, the RNA content constitutes 20% of
total P in Parthenocissus tricuspidate, which grows at 0.06 d−1 (Rob-
son et al., 1959), 27% in Chlorella vulgaris, which grows at 2.05
d−1 (Nyholm, 1977) and is 17–32% in eight species of macroalgae
(Young, 1964). The linear relationship between µmax and RNA in
eukaryotes suggests that RNA makes up a relatively constant 25%
of total P. By contrast, in cyanobacteria RNA is 57% of total P in
P. marinus growing at 0.62 d−1 (Casey et al., 2016) and 54% in S.
elongatus growing at 3.36 d−1 (Grillo & Gibson, 1979). RNA
remains a remarkably constant proportion of total P in cyanobacte-
ria also, but closer to 50% of total P rather than the 25% in eukary-
otic photosynthetic organisms.

Bacteria have from 1 to 17 copies of the rRNA operon, which
consists of the three genes that encode 16S, 23S and 5S rRNA
together with internal transcribed spacer regions that contain tRNA
(Espejo & Plaza, 2018). The advantage of possessing more than
one copy is that it allows rapid responses to increased resource
availability (Condon et al., 1995; Klappenbach et al., 2000), but
bacteria adapted to low-nutrient environments tend to be slow-
growing and have a low number of rRNA operon copies (Fegatella
et al., 1998; Klappenbach et al., 2000). There is a positive relation-
ship between rRNA operon copy number and growth rate in

bacteria and Archaea, though there is a large range of growth rates
within each rRNA operon copy number up to a total of five
(Vieira-Silva & Rocha, 2010). Of particular interest is a compar-
ison of Bacillus subtilis with one to ten copies (Yano et al., 2013).
The largest difference in the phenotypes of this bacterium occurs in
the transition from one to two copies (Yano et al., 2013), and
mutants with a single copy have lower numbers of ribosomes (20–
35%) than the wild-type (Nanamiya et al., 2010). Consistent with
this observation, a mutant of E. coli with only one copy of the
rRNA operon has 56% of the rRNA found in a strain with no
deletions, but the decrease in total RNA is relatively minor because
of the presence of increased levels of tRNA in the mutant (Asai
et al., 1999); the growth rate of the mutant with only one copy is c.
50% that of the wild-type. The increased levels of tRNA are due to
the increase in the tRNA : ribosome ratio that occurs with
decreased growth rate in E. coli (Dong et al., 1996). Though there
are no published values for µmax, all 62 genomes of Rickettsia inves-
tigated have a single operon (The Ribosomal RNA Database) and
RNA is 3 to 5.5% of dry weight in Rickettsia burneti (Smith &
Stoker, 1951), which is similar to the values for P. marinus subsp.
pastoris str. CMP1986 (also known as Med4) and M. bovis, which
also have a single copy of the rRNA operon.

In contrast to cyanobacteria, there was a strong positive relation-
ship between µmax and organism RNA content in eukaryotes, as
predicted by the growth rate hypothesis. There is no doubting the
central importance of RNA, but where is the other 75% of total P
for eukaryotic photosynthetic organisms – and 50% for cyanobac-
teria and heterotrophs (Elser et al., 2003) – located, and what is its
contribution to growth rate (Moreno & Martiny, 2018)?

Paucity of data

There are two major reasons for the limited data. The first is the
use of dry weight as a universal measure of biomass across all
photosynthetic organisms. The second is the time-consuming
and unrewarding nature of compiling inventories of biochemical
composition. While the use of dry weight as a measure of
biomass is relatively common in macroalgae and terrestrial
plants, it is much less so in microalgae and cyanobacteria. A
major reason for the latter is the inconvenience of measuring dry
weight due to salts in residual medium, on filters or in centrifuge
tubes compromising the final dry weight. However, this is easily
overcome by washing the cells with isotonic ammonium for-
mate, which is volatile and is lost when the cells are dried using
heat. Good inventories are available for well-studied organisms
such as E. coli, but sadly the incentive for their construction is
very limited. However, where they are available (e.g. Park et al.,
2016) their considerable value is obvious.

Conclusion

Two of the three key predictions of the (maximum) growth rate
hypothesis hold for eukaryotic photosynthetic organisms. However,
RNA does not account for most of the P and the proportions of the
different classes of compounds that contain P stay relatively con-
stant. There is clear evidence that as µmax increases, the amount of
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RNA g–1 dry weight increases, and there is some evidence that more
phospholipids are required and, to a lesser extent, polyphosphate
and DNA (expressed g–1 dry weight), but it is unlikely that the
amounts of phosphate esters and anhydrides increase. Whether the
classes of compounds other than RNA are involved, directly or indi-
rectly, in RNA biosynthesis and ribosome function (as suggested
here) and/or they have other important roles in cell metabolism that
increase with increasing µmax remains to be elucidated.
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The combined effects of blue light and dilution rate on lipid class and fatty acid

composition of Tisochrysis lutea. Journal of Applied Phycology 30: 1483–1494.
Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS. 2014.

Accumulation and enhanced cycling of polyphosphate by Sargasso Sea

plankton in response to low phosphorus. Proceedings of the National Academy of
Sciences, USA 111: 8089–8094.

McCarthy L, Bentley-DeSousa A, Denoncourt A, Tseng Y-C, Gabriel M,

Downey M. 2020. Proteins required for vacuolar function are targets of lysine

polyphosphorylation in yeast. FEBS Letters 594: 21–30.
McInerney P, Mizutani T, Shiba T. 2006. Inorganic polyphosphate interacts

with ribosomes and promotes translation fidelity in vitro and in vivo.Molecular
Microbiology 60: 438–447.
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