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ABSTRACT

A road safety remedial programme has as an objective the improvement of road

transportation safety by applying road safety engineering remedial measures to

hazardous road network elements in a manner that will be economically

efficient.

Since accident data is the primary manifestation of poor safety levels it must be

analysed in manner that will support the overall objective of economic efficiency.

Three steps in the process of implementing a road safety remedial programme,

that rely on the systematic analysis of accident data, are the identification of

hazardous locations, the ranking of hazardous locations and the evaluation of

remedial measure effectiveness.

The efficiency of a road safety remedial programme can be enhanced by using

appropriate methodologies to measure safety, identify and rank hazardous

locations and to determine the effectiveness of road safety remedial measures.

There are a number of methodologies available to perform these tasks, although

some perform much better than other. Methodologies based on the Empirical

Bayesian approach generally provide better results than the Conventional

methods. Bayesian methodologies are not often used in South Africa. To do so

would require the additional training of students and engineering professionals

as well as more research by tertiary and other research institutions.

The efficiency of a road safety remedial programme can be compromised by

using poor quality accident data. In South Africa the quality of accident data is

generally poor and should more attention be given to the proper management

and control of accident data.

This thesis will report on, investigate and evaluate Bayesian and Conventional

accident data analysis methodologies.
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ABSTRAK

Die doel van 'n padveiligheidsverbeteringsprogram is om op die mees koste

effektiewe manier die veiligheid van onveilige padnetwerkelemente te verbeter

deur die toepassing van ingenieursmaatreëls.

Aangesien padveiligheid direk verband hou met verkeersongelukke vereis die

koste effektiewe implementering van 'n padveiligheidsverbeteringsprogram die

doelgerigte en korrekte ontleding van ongeluksdata.

Om 'n padveiligheidsverbeteringsprogram te implementeer word die ontleding

van ongeluksdata verlang vir die identifisering en priortisering van gevaarkolle,

sowel as om die effektiwiteit van verbeteringsmaatreëls te bepaal.

Die koste effektiwiteit van 'n padveiligheidsverbeteringsprogram kan verbeter

word deur die regte metodes te kies om padveiligheid te meet, gevaarkolle te

identifiseer en te prioritiseer en om die effektiwiteit van verbeteringsmaatreëls te

bepaal. Daar is verskeie metodes om hierdie ontledings te doen, alhoewel

sommige van die metodes beter is as ander. Die 'Bayesian' metodes lewer oor

die algemeen beter resultate as die gewone konvensionele metodes. 'Bayesian'

metodes word nie. in Suid Afrika toegepas nie. Om dit te doen sal addisionele

opleiding van studente en ingenieurs vereis, sowel as addisionele navorsing

deur universiteite en ander navorsing instansies.

Die gebruik van swak kwaliteit ongeluksdata kan die integriteit van 'n

padveiligheidsverbeteringsprogram benadeel. Die kwaliteit van ongeluksdata in

Suid Afrika is oor die algemeen swak en behoort meer aandag gegee te word

aan die bestuur en kontrole van ongeluksdata.

Die doel van hierdie tesis is om verslag te doen oor 'Bayesian' en konvensionele

metodes wat gebruik kan word om ongeluksdata te ontleed, dit te ondersoek en

te evalueer.
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There is no such thing as an accident.

What we call by that name is the effect

Of some cause which we do not see.

VOLTAIRE

Carriages without horses shall go,

And accidents fill the world with woe.

Prophecy attributed to Mother Shipton (11h century)
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CHAPTER 1

INTRODUCTION

1.1 THE ROAD SAFETY SITUATION IN SOUTH AFRICA

The number of accidents and casualties reported in South Africa in 1998 are

shown in Table 1.1.

Table 1.1 : 1998 South African accident statistics

Degree Total Fatal Serious Slight Damage

Accidents 511605 7260 21265 52097 430983
Casualties 129672 9068 36246 84358 -

Source: CSS Report No. 71·61·01 (1998)

Using the unit cost of accidents compiled by Schutte (2000), as shown Table

1.2, road traffic accidents cost the country approximately R 24817 * 511605 =
R 13.7 billion per year (1998 Rands). This figure is about 2 % of the GDP.

Table 1.2 : Unit cost of accidents by severity and status (1998Rand/accident)

STATUS

Accident severity Drivers and
Pedestrians All

Passengers

Fatal 572386 187562 388487
Serious 122415 49189 88248
Slight 32793 6455 23723
Damage Only 15936 983 15694
Average 24163 32897 24817

Source: CSIR Report CR·2000/4 (2000)

1.2 ACCIDENT CAUSATION

According to Austroads (1994) there are three factors that contribute to motor

vehicle accidents:

• Human factors.
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• Road environment factors.

• Vehicle factors.

Accidents are often caused not by a single factor but by the interaction of two

or more of these factors. Poor driving behaviour in a good vehicle on a good

road will in all likelihood present less of a risk than poor driving behaviour in a

poor quality vehicle on a poor road.

Research (Austroads; 1994) has established the contribution of these factors

to accidents to be as shown in Figure 1.1.

Human factors

67%

24%

Road environment factors

Figure 1.1 : Factors contributing to road traffic accidents ( Austroads ; 1994)

From Figure 1.1 it is evident that the road environment contributes either

direct or indirectly to approximately 28 % of all accidents. In monetary terms

this amounts to about R 3.6 billion per year (1998 Rands).
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1.3 ROAD SAFETY MANAGEMENT

The philosophy of road safety management in South Africa centres around

the multi-disciplinary approach. This approach advocates that transportation

safety can only be addressed through the integrated efforts of the

Enforcement, Education and Engineering disciplines.

The primary focus of the Enforcement and Education disciplines is to change

road user behaviour in a manner that will lead to an improvement in safety.

These disciplines thus focus on those 92 % of accidents that are attributable

directly or indirectly to human factors. Typically, enforcement and education

campaigns are targeted at high risk behaviours, such as speeding and driving

under the influence of alcohol, and high risk road user groups such as

pedestrians, taxi drivers, children etc.

The Engineering discipline also plays a vital role in influencing driver

behaviour, as engineering measures can influence road user perceptions and

ultimately the way road users behave. One of the primary objectives of the

Engineering discipline is to make the road environment safe to use, taking into

consideration the nature of the interaction between road users and the

environment. The environment can be designed and/or modified to

accommodate the road user and its limitations and to reduce the severity of

accidents should they happen.

According to the United States Department of Transportation's Strategic Plan

: 2000 - 2005, supporting economic growth is one of the most basic purposes

of a national transportation system. Transportation makes possible the

movement of people and goods, fuelling the economy and improving the

quality of life. However, at the same time the transportation system expose

people and property to the risk of accidents and harm. The objective of any

road safety management strategy should be to reduce transportation risk, and

where possible, to enhance mobility in order to maximise the benefits that can

be obtained from a transportation system.
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1.4 THE ROLEOF ROAD SAFETY ENGINEERING

The Engineering discipline can contribute to improving the efficiency of a

transportation system in a number of ways. These can be divided into two

categories: a) proactive measures, and b) reactive measures.

a) Pro-active approach

One of the main aims of the proactive approach is to 'build' safety into

all aspects of the transportation system. This approach requires a

good understanding of the safety implications of engineering decisions

relating to the planning, design, implementation, operation and

maintenance of road infrastructure elements. In South Africa the Road

Safety Manual (COLTO ; 1999) has been developed to facilitate this

proactive approach to road safety management. The Manual consists

of the following volumes:

• Volume 1 :

• Volume 2:

Principles and Policies

Road Safety Engineering Assessments on Rural

Roads

Road Safety Engineering Assessments on Urban

Roads

• Volume 3 :

• Volume 4: Road Safety Audits

• Volume 5: Remedial Measures and Evaluation

• Volume 6: Roadside Hazard Management

• Volume 7: Design for Safety

The objectives of Volumes 2 and 3 are to provide formal procedures to

examine the quality of traffic flow, accident potential and safety

performance of a road based on a set number of key indicators to

identify hazardous locations and safety deficiencies. A road safety

assessment of a road network would, amongst others, identify those

entities where the accident potential is high.
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The next proactive step is to subject these locations to detailed road

safety audits, with a view of eventually compiling and implementing a

number of remedial measure reports. Volume 4 of the Manual provides

detailed guidelines and checklists on how to perform these audits. Not

only can road safety audits be performed on existing road safety

infrastructure elements, but also on design projects in various stages of

execution. According to Volume 4 a Road Safety Audit can be

performed during any of the following six stages:

• Stage 1 : Preliminary Stage

• Stage 2 : Draft Design Stage

• Stage 3 : Detailed design Stage

• Stage 4 : During the Construction Stage

• Stage 5 : Pre-opening Stage

• Stage 6 : Existing Road Projects

A Road Safety Audit can be defined as follows (COLTO ; 1999) :

'~ Road Safety Audit is a formal examination of a future or existing

road/traffic project/any project where interaction with road users takes

place, in which an independent, qualified examination team reports on

the accident potential and safety performance of the project."

Volume 6 provides guidelines on how to proactively manage roadside

hazards, while Volume 7 provides guidelines on the safety implications

of geometric design decisions.

b) Reactive approach

Whereas the focus of the proactive approach is on accident potential

the focus of the reactive approach is on actual accident experience.

The assessment procedures of Volume 2 and 3 also consider accident
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experience and severity but this is done alongside many other

indicators that serve as a measure of accident potential.

The aim of the reactive approach is to identify those road infrastructure

elements which already operate at unacceptable levels of safety, to

investigate these and to apply remedial measures to improve safety.

As far as Road Safety Assessments are concerned the ideal is for an

authority to assess their whole road network on a regular basis in order

to identify those roads with a high accident potential and to apply

preventative measures. The full application of the assessment

procedures as described in Volume 2 and 3 of the South African Road

Safety Manual (COLTO ; 1999) could be very labour intensive and

therefore expensive to implement, especially to road authorities without

proper network management systems. It is a South African reality that

road authorities have limited budgets for road safety studies and

improvements. In light of this reality it would be inappropriate for road

authorities to spent money on assessing roads with possibly low

accident potentials, while existing hazardous locations with poor safety

records continue to operate because of a lack of funds.

Thus in an environment where there are financial and resource

constraints it is advisable to first consider accident experience only, by

implementing road safety remedial programmes, and then if resources

allow it, to consider accident potential by conducting Road Safety

Assessments.

1.5 ROAD SAFETY REMEDIAL PROGRAMMES

The implementation of a road safety remedial programme by a road authority

is a very important strategy to achieve a sustained reduction in accidents and

severity, and to improve the overall efficiency of the road transportation

system.
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A road safety remedial programme is a process which consists of the

following activities:

a) The identification of hazardous locations.

b) The preliminary ranking of these identified locations for further study.

c) Detailed engineering investigation of hazardous locations.

d) The identification of suitable remedial measures.

e) Economic evaluation of remedial measure options.

f) Final ranking for implementation.

g) Implementation.

h) Monitoring and evaluation.

a) Identification of hazardous locations

This activity involves the statistical analysis of accident data in

combination with road network data and traffic flow information to

identify those locations which experience an abnormally poor level of

safety when compared to similar locations.

b) Preliminary ranking of hazardous locations

The amount of financial, human and physical resources available to a

road authority might be such that it is unable to conduct detailed

investigations of all the identified hazardous locations. To ensure the

efficient allocation of resources is it important to rank sites according to

their expected economic benefit and then to apply resources in

descending order of priority.

c) Detailed investigation

In order to identify the most effective and efficient remedial measures it

is important to have a thorough understanding of the extent, nature and.

causes of the accident problem at a location.
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An investigation could be one or a combination of the following:

• A further detailed analysis of accident data to reveal accident

types and patterns that fall outside the 'norm'. This information

could provide clues as to the causes of accidents and casualties.

• Detailed analysis of individual accident records - accident

reconstruction and analysis.

• A formal Stage 6 Road Safety Audit according to the guidelines of

Volume 4 of the South African Road Safety Manual (COLTO

1999).

• Conflict studies and analysis

d) The identification of suitable remedial measures

Once all the contributory factors to the safety _problem/s have been

identified the next step is to identify appropriate remedial measures.

Volume 5 : Remedial Measures and Evaluation of the South African

Road Safety Manual (COLTO ; 1999) provides guidance to the road

safety engineer on choosing appropriate remedial measures to address

particular problems.

e) Economic evaluation of remedial measures

To ensure that resources are allocated to those projects that will yield

the best economic returns is it necessary to conduct an engineering

economic study to determine the expected economic return of an

remedial measure 'investment'. Volume 5 : Remedial Measures and

Evaluation of the South African Road Safety Manual (COLTO ; 1999)

provides details on expected accident reductions associated with

different remedial measures and proceeds to show how the expected
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Net Present Value, Benefit/Cost ratio and Internal Rate of Return can

be estimated.

f) Final ranking and selection for implementation

Once the expected cost and economic returns of each hazardous

location have been determined a decision has to be made on which

locations to select for the implementation of remedial measures. The

number of sites finally selected for treatment will depend on the

available budget. Selecting sites can be a complicated exercise which

falls in the realm of transport economics. Some of these selection

methods are discussed in Volume 5 : Remedial Measures and

Evaluation of the South African Road Safety Manual (COLTO; 1999).

g) Implementation

The identified remedial measures are then designed and implemented

at those locations selected during the previous step.

h) Monitoring and evaluation

After implementation is it imperative that the effectiveness and

efficiency of the remedial measures implemented be evaluated.

The focus of an evaluation study should be on estimating the degree of

change in the level of safety and the economic benefit associated with

this change.

This information is required to :

a) Ensure public accountability with regards to the spending of public

funds.
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b) Add to the database of knowledge on the effects of different types

of remedial measures in order to provide better quality information

for future road safety studies.

Apart from just evaluating the change in the level of safety it could also

be necessary to evaluate the impact of a remedial measure on social

issues, environmental issues, traffic flow operations, land use and

security issues.

1.6 THE ROLE OF ACCIDENT DATA ANALYSIS

Three of the steps of an road safety remedial programme rely exclusively on

the analysis of accident data - the identification and preliminary ranking of

hazardous locations and the evaluation of road safety remedial measures.

The analysis of accident data can also assist in identifying accident causes

and appropriate remedial measures, however, it is possible (although not

recommended) to perform these steps without analysing accident data.

According to Hauer (1997) accidents are the physical manifestation of

'unsafety' . The proper analysis of accident data is therefore the most

appropriate way to gain an understanding of road safety and all its

dimensions.

When identifying hazardous locations it is important to identify those locations

that are truly hazardous and to 'miss' those locations which are not truly

hazardous. Not identifying 'true' hazardous locations, could cause these

hazardous locations to remain untreated, obviously with potentially severe

consequences in terms of deaths, injury and damage to property. Identifying

'false' hazardous locations could waste potentially scarce resources to

investigate locations which are not really unsafe and whose potential

economic returns are low.

For the sake of the overall efficiency of a road safety remedial programme is it

important that the analysis of accident data to identify hazardous locations
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use methodologies that are efficient - i.e. methods that maximise the degree

of 'true' identifications and minimise the degree of 'false' identifications.

It is important to use accident data analysis methodologies that will produce

accurate and reliable estimates of the safety effect. The underestimation of

the safety effect could cause a treatment to be discarded in favour treatments

whose 'true' effects are less. It could also cause the expected economic

returns at a location to be underestimated, with the possible consequence that

a perfect viable location remains untreated. Similar principles apply when the

safety effect is overestimated.

1.7 STUDY OBJECTIVES

The objective of this thesis is to report on, investigate and present suitable

accident data analysis methodologies for the efficient identification and

ranking of hazardous locations and the estimation of accurate safety effects of

road safety engineering remedial measures.

Issues relating to the detailed investigation of hazardous locations, the

identification of remedial measures and the economic evaluation of remedial

measures will not be addressed in this thesis.

Chapter 2 will investigate issues relating to the information required to

efficiently identify and rank hazardous locations and to accurately estimate a

treatment effect. Particular attention will be paid to issues affecting the

accuracy and management of data.

Chapter 3 deals with general aspects concerning the measurement of safety.

The concept of measurement error will be explained and steps to reduce the

error associated with a measurement will be presented. The conventional

methods (i.e. accident rates) to express the risk associated with the road

transportation system will be critically evaluated and certain remedial

strategies e.g. using Safety Performance Functions, will be proposed to

overcome certain inherent shortcomings of the conventional approach.
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Chapter 4 deals with the actual accident data methodologies that can be used

to obtain accurate estimates of the level of safety for an single entity or a

group of entities. The two approaches to road safety measurement, the

Conventional and Bayesian approaches will be presented. The performance

of these methods will be assessed by means of experiments, the details of

which are discussed and presented in Appendix A1 and A2. The use of the

methods will also be illustrated using accident data and traffic flow data on

Class 1 2-lane rural roads in the Province of the Western Cape (Appendix
B1).

Chapter 5 will present and evaluate the different Conventional and Bayesian

methodologies available to identify and rank hazardous locations. The

performance of the different methods will also be assessed by means of a

number of experiments, the details of which are contained in Appendix A3.

The use of the methods will also be illustrated using accident data and traffic

flow data on Class 1 rural roads in the Province of the Western Cape

(Appendix B2 and B3).

Chapter 6 will present and evaluate the different Conventional and Bayesian

methodologies to evaluate the effectiveness of road safety remedial

measures. Chapter 6 is largely based on the work of Dr Ezra Hauer as

contained in his authoritative book on the subject - 'Observational Before-

and-After Studies in Road Safety' (Pergamon ; 1997). Once again the

different methods will be assess using a series of experiments, the details of

which are contained in Appendix A4.

Throughout Chapters 3, 4, 5 and 6 it will become evident that multivariate

regression models playa very important role in the Bayesian estimation of

safety, identification and ranking of hazardous locations and the evaluation of

road safety remedial measures. Chapter 6 provides a general overview of

issues relating to the modelling of accident data. The objective is not to make

the reader proficient in developing multivariate regression models, but to

provide general information on how these models are developed and applied.
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CHAPTER 2

INFORMATION REQUIREMENTS

2.1 INTRODUCTION

Apart from information on accident frequencies and severities, the successful

implementation of a road safety remedial programme also require information

on the characteristics of the road network and information on traffic flows. This

information, amongst others, may be required to calculate accident rates, to

identify suitable reference and comparison groups and to develop multivariate

regression models.

The objective of this Chapter is to discuss issues relating to the quality and

management of these information sources - accident data, road network

information and traffic flow information.

Good quality accident data is absolutely essential for the efficient

implementation of a road safety remedial programme. A number of issues

affecting the quality of accident data in South Africa will be reported on. One

of the main issues that could compromise the quality of accident data, namely

the underreporting of accidents will be discussed in detail. It will be shown that

the underreporting of accidents is a widespread which could seriously

compromise the efficiency of a road safety remedial programme. A

methodology will be presented to quantify the effect of underreporting on road

safety measurement and evaluations.
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2.2 ACCIDENT DATA

2.2.1 DATA QUALITY

According to Q'Day (1993) for accident data the components of quality

include:

• Completeness of coverage - the degree to which the data management

system contain all the accidents as defined by legislation.

• Consistency of coverage - where the degree of reporting varies

geographically or by time, weather or other factors.

• Missing data - the degree to which there are missing data elements for

those accident records that are reported.

• Consistency of interpretation - whether the report elements, for example

the degree of injury, are reported consistently by all persons that

investigate and report on accidents.

• The correct data - whether the correct data are being collected at the

appropriate level of detail.

• Correct data capturing procedure - whether the data as they appear on

the accident report form are taken up correctly and without error in a

computerised database.

2.2.2 REPORT ABILITY

The South African legislated definition of an accident is contained in

Paragraph 61 (1) of the National Road Traffic Act 93 of 1996 :

" The driver of a vehicle on a public road at the time when such vehicle

is involved in or contributes to any accident in which any other person

is killed or injured or suffers damage in respect of any property or

animal shall ... " (Italics added)
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In Paragraph 61(1f) it is stated:

"....unless he or she is incapable of doing so by reason of injuries

sustained by him or her in the accident, as soon as reasonably

practicable, and in any case within 24 hours after the occurrence of

such accident, report the accident to any police officer at a police

station or at any office set aside by a competent authority for use by a
traffic officer .... "malies added)

The Act defines a 'public road' as follows:

'Public road' means any road, street or thoroughfare or any other

place (whether a thoroughfare or not) which is commonly used by the

public or any section thereof or to which the public or any section

thereof has a right of access. And includes -

a) The verge of any such road, street or thoroughfare;

b) Any bridge, ferry or drift traversed by any such road, street or

thoroughfare; and

c) Any other work or object forming part of or connected with or

belonging to such road, street or thoroughfare; (Italics added)

The Act defines a 'driver' as follows:

'Driver' means any person who drives or attempts to drive any vehicle

or who rides or attempts to ride any pedal cycle or who leads any

draught, pack or saddle animal or herd or flock of animals, and 'drive'

or any like word has a corresponding meaning. (Italics added)

Act 93 of 1996 does not specify a definition of the concept 'damage'. In other

words in terms of the Act, for example, two vehicles that collide without any

visible damage and injury to any person would not constitute an accident. A

chipped windscreen as a result of a loose stone on the road would constitute

an accident so would hitting an animal even if it caused no damage to the
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vehicle. The event of a passenger falling inside a bus because the bus braked

too sharply would constitute an accident in terms of the Act.

In some countries, such as Canada, an accident is only reportable if the

damage to the vehicle exceeds a minimum amount (Hauer; 1997). In 1990

the reportability limit in Ontario was $700. A reportability limit has its

drawbacks in the sense that the cost to fix damage to a car could change from

area to area, and secondly if the threshold is not continually adjusted for

inflation it could cause that more and more damage only accidents are

becoming reportable.

According to Hauer (1997) many countries only keep records of injury

accidents. The injury accident count does not depend on the cost of car

repairs or the value of money.

2.2.3 ACCIDENT CLASSIFICATION

According to the Opperman and Hutton (1991) in South Africa a road traffic

accident can be classified into one of four categories:

• Fatal accident

An accident that results in injuries that cause immediate death, or

death within 6 days as a direct result of the accident.

• Serious injury accident

An accident that results in injuries that include fractures, concussions,

severe cuts and lacerations, shock necessitating medical treatment and

any other injury that requires hospitalisation or confinement to bed.

• Slight injury accident

An accident that results in injuries that include cuts and bruises, sprains

and slight shock not requiring hospital treatment.

• Damage Only accident

An accident in which there is no personal injury but damage to

property.
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According to Lotter (2000) up to 1975 the official definition of a fatal accident

in South Africa was one where death occurred within three months of an

accident. From January 1975 the definition was changed to death within 6

days of an accident.

Lotter (2000) notes that in South Africa there are no formal follow-up

procedures for tracking the progress of traffic accident casualties en route to

hospitals6 or while undergoing hospital care. The accident report forms are

therefore not updated as far as fatalities are concerned. Consequently fatality

statistics mostly reflect 'dead on the scene' cases. The police reported

fatalities are therefore heavily underreported when compared to actual

fatalities (according to the 6 day definition).

Lotter (2000) found that approximately 76.4 % of fatalities occur at 0 days

after the accident while 14.7 % occur within 1 - 6 days after the accident. It

can therefore be concluded that fatalities could be underreported by as much

as 23.6 %.

2.2.4 ACCIDENT REPORTING

In South Africa the responsible party for the investigation of accidents and the

completion of the accident report form is the South African Police Services.

(SAPS). The law does however provide for duly authorised traffic officers to

complete accident report forms. The traffic departments of certain towns such

as for example, Stellenbosch in the Western Cape, has established their own

traffic accident units which have taken over the function of accident

investigation and reporting from the local SAPS.

Prior to 1999 accident data information was recorded on the SAP352 accident

report form. This form was completed by the SAPS in triplicate. The original

copy was kept by the SAPS for their own records. The 2nd copy was send to

the Central Statistical Services where the information was taken up into the

National Accident Database. The 3rd copy was made available to the relevant

road authority (if any).
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In the event of a fatal accident or if an accident was caused by an serious

offence ,the SAPS would open a case docket. As information from the

accident report form has to be incorporated into the criminal investigation the

3rd copy was often filed with the case docket without a copy thereof made

available to the relevant traffic authority

It is therefore highly likely that fatal accidents in the accident data

management systems of local, regional and provincial authorities are under

reported.

During 1999 most Provinces changed over to a new accident report form

called the OAR (Officer Accident Report) form. Also in 1999 the responsibility

to operate and maintain a National Accident Register shifted from Stats SA

(Statistics South Africa) to the National Department of Transport. Since there

is only 1 copy of the OAR form as opposed to the 3 copies of the SAP352A

form, large scale changes in the status quo were necessary.

Firstly, it was expected of all the provinces to establish their own provincial

and/or regional databases and to provide accident data electronically to the

National Accident Register. The SAPS is still primarily responsible for

completing the accident form. Each Province in South Africa has their own

strategy for collecting these forms from the SAPS and ensuring that data are

taken up into a provincial accident database, and from there to the National

Accident Register. In the case where the SAPS has to keep the original OAR

form for their case docket they are obliged to make a photocopy of the form

available for collection within 7 days after the accident. In the Western Cape

mechanisms are in place to ensure that all accident forms are collected and

that forms don't 'disappear' into case dockets as was the case with the

SAP352 forms. It is therefore likely that in some instances the number of fatal

accidents will appear to increase as a result of better reporting.
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2.2.4.1 UNDER REPORTING

According to Hauer and Hakkert (1988) much of what we know and do about

road safety is tied to the use of accident data reported to and by the Police.

For instance if the level of accident reporting was to decrease the ability to

manage road safety will be compromised. Underreporting will result in fewer

accidents being reported with the consequence that it will take longer to

accumulate the same amount of data. Hazardous locations will take longer to

detect, accident patterns will be more difficult to discern, the effect of safety

remedial measures will be less precisely known etc. (Hauer and Hakkert ;

1988).

According to a study done by Hauer and Hakkert (1988) amongst 18 reporting

authorities in North America (USA and Canada), Europe (Netherlands,

Germany) the degree of accident underreporting is substantial and that it

differs widely from one authority to another. They estimated that fatalities

seem to be known to an accuracy of ±5 %. It was also found that 20 % of

injuries that require hospitalisation are underreported and only about 50 % of

all injuries sustained in motor vehicle accidents are reported to the police.

In a detailed comparison of accident reporting levels in 13 different countries

Elvik and Mysen (1999) found that reporting levels varied widely between

different countries and that reporting were incomplete at all levels of injury

severity. They found the mean reporting level for fatalities to be about 95 %

(according to the 30 day rule), for serious injuries 70 % (require

hospitalisation), slight injuries 25 % and very slight injuries 10 %.

According to Hauer and hakkert (1988) and James (1991), for injury accidents

the age of the casualty, type and number of vehicles involved in the accident,

accident location, severity of injury, and consequently mode of transport to
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medical care and/or length of time before treatment, affected whether or not

an accident was likely to be reported to the police.

It is evident from the studies by Hauer and Hakkert (1988), James (1991) and

Elvik an Mysen (1999) that fatal accidents are reported more fully than serious

accidents and that the reporting of the latter is better than that of slight injury

accidents.

Hauer and Hakkert (1988) states that the probability of reporting an injury

young children is 20 - 30 % and for people over 60 it is 70 %. James (1991)

explains that the low reporting rate for children is related to the type of

accident in which they are most likely to be involved in, namely bicycle

accidents.

Hauer and Hakkert (1988) found that that the probability of reporting an injury

is largest for the driver, less for the passenger and even less for non-

occupants. This was confirmed by Elvik and Mysen (1999) who found that

reporting levels tend to be higher for occupants and lowest for cyclist, and that

this was the pattern for all 13 countries considered in their investigation. They

found that the reporting of single-vehicle bicycle accidents is particularly low -

below 10 % in all the countries studied.

Smith ( in Hauer and Hakkert ; 1988) found that 57 % and 12 % reporting

levels for single-vehicle and damage only accidents respectively ; for multi-

vehicle accidents the corresponding percentages are 96 and 41.

Hauer and Hakkert (1988) argues that most of what is said about road safety

is based on accidents that have been reported and not on estimates of what

actually occurred. Not only do such statements make the safety problem

appear to be smaller than it really is, they also mix and confuse changes and

trends in safety with changes in trends in the inclination to report accidents.

According to Hauer and Hakkert (1988) if the inclination to report an accident

is constant from time period to time period and between sites, comparisons on
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safety on the basis of reported accidents are legitimate. They do however

argue that this assumption is unrealistic. There are a number of factors that

influence the probability of an accident being reported - factors that can

change over time and from location to location.

Thus if the probability of reporting an accident is not constant across time and

space accurate assessments of safety cannot be made without knowing what

the probabilities are. Without knowing the degree of underreporting a reliable

estimate of the 'true' level of safety at a location cannot be determined.

Hauer and Hakkert (1988) provided the following methodology to assess the

impact of underreporting on the estimation of safety:

Let :-

Xi - The number of accidents of class i reported to the police.

Pi - The probability that an accident of class i will be reported to the police.

mi - The actual number of accidents of class i expected to occur at the site.

The expected number of reported accidents is given by r, :

... [2.1 ]

Therefore

...[2.2]

The value of Pi is an estimate and is surrounded by uncertainty. Two

scenarios will now be investigated, a) Pi is known exactly, and b) Pi is

uncertain.

a) The accuracy of the estimate of mi is described by VAR(mi) :
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VAR( .) = VAR(lj )m, 2
p,

... [2.3]

When the Poisson model is applied to accident data, the variance is

equal to the mean, but when accident reporting is not complete the

variance of the estimate will always be larger than the mean even if pj

is known precisely (Hauer and Hakkert; 1988).

If it is assumed that there are n annual accident counts for some entity

and mj is the expected number of reported accidents per annum then:

r
VAR(r) =--'-

I n
... [2.4]

Therefore

VAR(r) = miPi and
I n

... [2.5]

VAR(m,) = mi
npi

... [2.6]

The vettenee-te-meen ratio, which serves as a measure of accuracy, is

given by:

VAR(m,) 1
--'--= ... [2.7]

m, np,
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Figure 2.1 : Accuracy vs. degree of accident reporting

From Figure 2.1 it is evident that if accident reporting is complete (i.e. p

= 1) only 2 years of accident data is required to get a variance that is

half its mean. To keep the same level of accuracy with a50 % reporting

level 4 years of accident data is required.

b) If the reporting probability is known only with some uncertainty i.e. it is

a random variable, it can be shown ( Hauer and Hakkert ; 1988) that

the variance of the expected accident frequency is given by :

VAR(mi) = mi + mi2VA~(p)
npi Pi

...[2.8]

It is evident that the number of years for which accident counts are

available (n) affects only one component of the variance of mj and not

the other. Thus for no matter how many years of accident counts are

reported, the uncertainty surrounding Pi puts a limit on how accurately

mi can be measured.
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If the goal is to obtain estimates of the ratios of the mïe 'before' and the

m'e 'after' treatment the probabilities of reporting during these two

periods should also be considered. If Pi is the same for these two

periods then the net effect of incomplete accident reporting is merely to

reduce the amount of accidents that can be collected per unit time.

Hauer and Hakkert (1988) argue that it is illogical to assume that the Pi
in the 'before' and the 'after' periods will be the same because remedial

action may change the accident patterns with some type of accidents

having a better probability of being reported than others.

If it can be assumed (however questionable) that Pi is the same for the

'before' and 'after' period the accuracy of the 'after' and 'before' ratio Si

is given by (Hauer and Hakkert; 1988):

VAR(S) =S/[_l_+_!_+ 2VAR~)]
-o, lj (p)

...[2.9]

EXAMPLE 2.1

Hauer and Hakkert (1988) provide the following example:

Suppose the number of reported injury accidents changed from 25 before treatment to 20

after treatment then 8 = 20/25 = 0.8 and ARF (Accident Reduction Factor) = 20%.

If P is known exactly and is equal between the 'before' and 'after' periods VAR(8) is given by :

VAR(8) = (0.8)2[1/20 + 1/25] = 0.058

If however if p is a random variable with E(p) = 0.7 and VAR(p) = 0.01 the value of VAR(8) is

given by Equation 2.9:

VAR(8) = (0.8)2[1/20 + 1/25 + 2(0.01 )/(0.7)2] = 0.083
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2.2.4.2 INCOMPLETE/INCORRECT REPORTING

The problem of non-reporting is compounded by a variety of inaccuracies and

errors recorded by the police on the accident report form. Hauer and Hakkert

(1988) list the following common problems

a) The police often misclassify the severity of injuries. James (1991)

reports on research that estimated that the net effect of police

misclassification caused the number of seriously injury cases to be

under-reported by 13 %. The problem of misclassification was also

identified in Sweden by Thorson and Sande ( in James ; 1991) who

found that 21 % of in-patients were wrongly classified by the police as

slightly injured.

b) Data fields are left uncompleted.

Depending on the nature of an accident study uncompleted data fields

could potentially introduce a serious bias in the analysis. Take for

example the Quality of road surface field on the OAR form. The person

completing the OAR form might a! all times be able to identify when a

road surface is good, but when it is not good he/she might not be able

to choose from the remaining options - bumpy, pothole, cracks,

corrugated, other - and rather choose nothing at all and leave the field

blank. Omitting all records in this case which have blank fields will

introduce a bias in favour of 'good'.

c) Very imprecise location of an accident is given, especially if the

accident did not occur at an intersection.

Having accurate and reliable information on the location of an accident

is a prerequisite for using accident data to identify hazardous locations.

The Provincial Accident Data Centre which collect OAR forms from

more than 120 SAPS stations in the Western Cape are experiencing
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tremendous problems because of the poor quality of the accident

location description. Problems are especially experienced with Damage

Only type accidents when the driver/s reported the accident directly at

the police station.

The accuracy of the locational description on the accident report form is

a function of the level of motivation of police officers and the

importance that they place on the accuracy of this data item. There

appears to be, in the Western Cape at least, a lack of awareness of the

importance of this data item to overall road safety management. The

South African Police Services are generally understaffed and consider

accident reporting to be of less importance than other policing duties

such as crime prevention.

2.3 ROAD NETWORK INFORMATION

The analysis of accident data often requires the comparison of safety between

different locations, e.g. during the identification of hazardous locations.

According to Hauer (1995) accident rates/number can only be compared if

there exists a reasonable expectation that the accident rate between two

locations should ideally be the same i.e. there exist a reasonable expectancy

of equality.

A major factor that could cause the level of safety between two locations to be

different is the geometric design characteristics of the locations in question.

Bester (1994) found that the following geometric design factors have a

significant influence on the safety of rural roads : Number of lanes, lane

widths, shoulder widths, terrain types, riding quality and the type of shoulder

(paved or unpaved). In addition to the factors identified by Bester (1994),

Milton and Mannering (1998) identified the following additional geometric

factors ; vertical grades, speed limits, horizontal curve radii, horizontal curve

central angles and tangent lengths.
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The safety of intersections could be a function of the type of intersection

control, traffic signal phasing and timing design, the number of approach

lanes, the presence of median islands, the width of such median islands, the

presence of pedestrian crossings, approach speeds etc.

Other factors that could influence the level of safety is the climate as well as

whether the road is situated in an urban, rural or semi-rural area.

The Empirical Bayesian approach and some of the Conventional methods,

particularly to identify hazardous locations, require a reference group to obtain

an estimate of the safety at a location. Such a reference group should consist

of sites that share similar geometric and environmental characteristics to the

site/s under investigation.

Conventional evaluation methods often require an comparison group to

account for changes in traffic volumes and other external influences over time.

It is possible that the degree and extent of changes in traffic volumes and

other external influences could depend on the geometric and environmental

characteristics of the site in question. In such a case it would be desirable to

have a comparison group of sites that share similar geometric and

environmental characteristics. In order to eliminate the regression-to-mean

effect it is necessary that the comparison group of sites not only share similar

geometric and environmental characteristics but also similar levels of safety

as the site/sites in question.

In conclusion therefore, to implement a road safety remedial programme

sufficient information should be available on the geometric and environmental

characteristics of the whole road network.

2.4 TRAFFIC VOLUME INFORMATION

Another factor that could cause accident rates/numbers between locations to

be different is the traffic volume.

Stellenbosch University http://scholar.sun.ac.za



2-16

Traffic volumes are used to estimate exposure in accident rate calculations. It

is also an important input variable (often the only variable) when developing

accident models (Safety Performance Functions) using regression techniques.

Traffic volumes, especially on rural road networks, are often expressed as an

AADT - Annual Average Daily Traffic. According to Papenfus (1992) the

AADT can be defined as that traffic volume which, if multiplied by the number

of days in a year, will yield the total annual traffic volume on a road.

The extend of a typical rural or urban network makes it impractical for each

link and node to be counted continuously in order to obtain an exact AADT

value. In practice, therefore, traffic counts are collected on a sampling basis

in which counts are collected only for short periods of a year. The estimation

of AADT's from these short term counts and not from a continuous 365 day

count have implications regarding the accuracy of the resultant AADT and

accident rate estimates.

2.4.1 ACCURACY OF TRAFFIC COUNTS

The accuracy of an AADT estimate depends on a number of factors:

• The short term counting period.

• The day /s of the week on which counting was conducted.

• The stratification method.

According to Papenfus (1992) the stratification method is based on the

assumption that the different traffic patterns which occur on the links of a road

network can be divided into different groups or strata. Permanent counting

stations are installed per stratum to determine average expansion factors for

each stratum. These expansion factors are used to convert the observed short

term count to an AADT count.
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The stratification method refers to how strata are defined and how the

different links are divided into the different strata.

a) No stratification.
Only one set of expansion factors is used 'for all roads.

b) Elementary stratification.

Only peak hour traffic is used for stratification.

c) Night-time traffic stratification.
The percentage traffic before 06:00 and 18:00 is used to estimate

weekend traffic and for stratification purposes.

d) Full stratification.
Stratification is based on both the peak hour traffic and the estimated

weekend traffic.

e) Mother/daughter method.
According to Papenfus (1992) this method is based on the assumption

that for each short term or "daughter" counting station, a similar traffic

pattern exists at a permanent or "mother" counting station. Expansion

factors are calculated for the mother station and applied at the

daughter station for the estimation of the AADT.

f) Direct estimation.
According to Papenfus (1992) if traffic counts are made over a period

of seven normal days or more, the AADT can be estimated directly

using the 'mother/daughter' method without making use of stratification.

Papenfus (1992) evaluated the accuracy of different stratification methods for

different collection periods. The coefficient-of-variation associated with AADT

estimates based on different counting periods and stratification methods are

shown in Table 2.1 and Table 2.2.
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The data in Table 2.1 is only applicable to links where the AADT > 500. It is

assumed that a 12 hour count is from 06:00 to 18:00, a 18 hour count from

04:00 to 22:00 and a 24 hour count from 00:00 to 24:00.

Table 2:1 : Coefficient-of-variation for different stratification methods and counting periods

Days counted Hours counted None Elementary Night-time Full
per day

1 12 hr 14.18 12.88 12.88 10.95
MON 18 hr 12.39 11.2 10.67 10.21

24 hr 11.32 10.62 10.01 9.88
1 12 hr 15.83 14.81 14.81 11.54

TUE 18 hr 13.72 12.6 12.21 10.54
24 hr 13.04 12.22 11.96 10.56

1 12 hr 15.83 15.04 15.04 11.15
WED 18 hr 13.67 12.79 12.31 10.11

24 hr 12.92 12.29 11.75 9.92
1 12 hr 14.51 13.82 13.82 10.04

THU 18 hr 12.09 11.35 10.86 9.04
24 hr 11.32 10.84 10.15 8.83

1 12 hr 12.19 11.83 11.83 10.92
FRI 18 hr 9.74 9.83 9.9 9.65

24 hr 9.83 9.9 9.74 9.57
2 12 hr 14.17 12.97 12.97 9.96

MON-TUE 18 hr 11.61 10.31 9.75 8.6
24 hr 10.41 11.14 8.86 8.23

2 12 hr 15.3 14.34 14.34 10.2
TUE -WED 18 hr 12.87 11.77 11.16 8.83

24 hr 11.95 11.14 10.26 8.5
2 12 hr 14.76 13.99 13.99 9.88

WED - THU 18 hr 12.31 11.45 10.91 8.7
24 hr 11.46 11.14 9.97 8.42

2 12 hr 12.18 11.62 11.62 9.44
THU - FRI 18 hr 8.86 8.48 8.41 8.17

24 hr 8.21 11.14 8.07 8.02
7 12 hr 9.69 9.7 9.7 8.34

SUN - SAT 18 hr 7.23 7.14 7.07 7.05
24 hr 6.51 6.67 6.67 6.84

Table 2.2 : Coefficient-of variation values

Number of Mother/Daughter Direct Estimation

weeks counted

1 6.91 6.33

2 6.71 6.04

4 5.87 5.15

8 5.06 4.33
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Sweet and Lockwood (1983) undertook an investigation into the accuracy of

short term traffic counts. They identified 4 main traffic categories:

a) Urban

b) Strategic

c) Recreational

d) Rural low flow

Each one of these categories is characterised by distinctive types of traffic

variation over the year.

a) Group A - Urban

This group have little traffic variation throughout the year, but with

slightly lower flows during holiday periods. This group includes both

urban commuter and non-commuter traffic. The main difference in the

profiles of commuter and non-commuter traffic lies in the weekend

traffic volumes. Commuter traffic has a lower volume over the weekend

than non-commuter traffic.

b) Group B - Strategic

These are primarily interurban routes with a high proportion of heavy

and commercial vehicles. Weekend traffic volumes are high particularly

on Saturdays. The AADT can range from 500 to 8000 vehicles per day.

c) Group C - Recreational

This group is characterised by low to medium traffic volumes : 300 to

3000 vehicles per day. The flows are heavily influenced by recreational

traffic. A site is classified as recreational if the holiday traffic is on

average 50 percent higher than the normal traffic.

Stellenbosch University http://scholar.sun.ac.za



2-20

d) Group 0 - Rural low flow

This group comprises rural low flow routes with little or no recreational

element, and includes most gravel roads and other minor roads. Daily

flows tend to be below 1000 vehicles per day.

Table 2.3 contains coefficients-at-variation for these different traffic categories

for three different common counting periods.

Table 2.3 : Coefficients-of- variation (%).

Traffic category
Count period

1-day 2-day 7-day

URBAN 9.6 7.9 5.5

STRATEGIC 17.7 14.3 9.0

RECREATIONAL 27.1 22.1 15.2

RURAL LOW FLOW 15.8 12.5 7.3
Source: Sweet et al. (1983)

The information in Table 2.3 is based on the assumption that the 1-day and 2-

day counts were conducted for a full 24 hours on normal weekdays i.e. not

during weekends and holiday periods and that the 7-day count was not

conducted during holiday periods.

In conclusion, the reliability and accuracy of road safety estimates that make

use of traffic flow information such as AADT's depends directly on the

accuracy with which the AADT is estimated. Since the accuracy of an AADT is

a function of the collection period, day of the week and stratification method

prior knowledge of these variables is required. Should information on the day

of the week and stratification method not be available it is recommended that

the coefficient-of-variation values in Table 2.3 be used.
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2.5 INFORMATION MANAGEMENT

In the preceding sections it was emphasised that in order to implement an

efficient and effective accident remedial programme information is required on

accident data, road network data and traffic flow data.

The objective of this section is to show how accident, road network and traffic

flow data could be managed in order to facilitate the efficient and effective

implementation of a road safety remedial programme.

In most road authorities information will be stored in a number of

computerised databases. Typically accident data, road network information

and traffic count information will be stored in separate databases. Each of

these databases are normally operated and maintained by separate

management systems which allow for data input, verification, database

maintenance, data extraction and reporting.

In order to implement a road safety remedial programme and to analyse

accident data according to the procedures set out in this document is it

important to be able to combine the information in these databases in a

manner that will satisfy the needs of an accident data analysis study.

Section 2.5.1 will provide a brief introduction into database design principles

and will discuss the principle of normalised tables and how normalised tables

can be combined to retrieve information. Section 2.5.2 will provide an

introduction to SOL (Structured Ouery language) and will illustrate by means

of numerous examples how SOL can be used to retrieve accident data,

network data and traffic flow information from various database tables in a

format that is suitable for direct analysis or for further manipulation using other

data analysis tools such as spreadsheets.
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2.5.1 DATABASE DESIGN

2.5.1.1 BASIC PRINCIPLES

Table 2.4 : Components of database design

Table In a relational database data are organised in tables. Fig. 2.2 shows

an example of a table that holds information on accidents.

Rows (Records) A table holds information on an event (or entity) in an horizontal row.

The table in Fig. 2.2 has 4 records i.e. it holds information on 4

different accidents.

Columns (Fields) Information on an event (entity) is stored in columns. In Fig. 2.2

each accident record has 8 attributes: an accident identification

number, a road identification code, the location of the accident, the

date of the accident, the number of fatalities, serious injuries, slight

injuries and magisterial area. Each attribute is defined as a column.

Primary Key A primary key is a column/s that uniquely identify a record. In Fig.

2.2 the 'accnum' column contains information that is unique to each

accident and is therefore the primary key.

Field A field is defined as the intersection of a row and a column. A field

mayor may not contain data. If there is no data in a field it is said to

contain a NULL value.

accNum Road AccKm AccDate Fatal MagArea

Table: accDetail

1
2
3
4

TR00901
TR00101
TR01101
MR0203

12.3
34.45
14.20
45.45

12/11/99
13/10/99
14/11/99
23/10/99

2
o
o
1

Bellville
George

Vredendal
Paarl

Figure 2.2 : A database table

2.5.1.2 THE RELATIONAL DATABASE CONCEPT

It is desirable that data should be stored in normalised tables, that is tables

that do not contain redundant information. Redundant information is

information that is repeated unnecessarily. The use of normalised tables will
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lead to less storage space required and that the potential for data errors and

inconsistencies are reduced.

Table: accDetail

accNum Road AccKm AccDate Fatal MagArea Region
1 TR00901 12.3 12/11/99 2 Bellville Metro
2 TR00101 34.45 13/10/99 0 George S Cape
3 TR01101 14.20 14/11/99 0 Vredendal W Coast
4 MR0203 45.45 23/10/99 1 Paarl Boland

Figure 2.3 : A database table with redundant information

The Table in Fig. 2.2 could be expanded to include an attribute called Region

- the region in which the accident occurred. This is indicated in Fig 2.3. The

Table in Fig.2.3 is not normalised since it contains redundant information -

Region. Since it is always known in which region a specific magisterial area is

situated it is not necessary to include Region in the accDetail table. This

problem can be overcome by creating a new table, magDe taii, (see Fig. 2.4)

which contains information on in which region a magisterial area is situated. In

order to determine in which region an accident occurred the Tables in Figures

2.2 and 2.4 can be linked. This concept of linking tables is the topic of the

next section.

Table: magDetail

magArea Region
Bellville
Paarl

Vredendal
George

Metro
Boland
W Coast
SCape

Figure 2.4: A database table
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2.5.1.3 RELATIONSHIPS BETWEEN TABLES

Two or more tables in a database can be linked if they have an attribute/s in

common.

a) One-to-one relationship

If a record from Table A can only be related to one record from Table B

and vice versa there exists a one-ta-one relationship between Table A

and Table B.

b) One-to-many relationship

If any record from Table A is related to zero or more than one record in

Table B and a record in Table B is related to only one record in Table A

there is a one-to-many relationship between Tables Band A. In our

previous example an accident can only be associated with one

magisterial area while a magisterial area can be associated with a large

number of accidents. There is thus a one-to-many relationship between

tables magDetail and aceDe tail.

Even if Tables A and B do not share a

common attribute they can still be

related. If Table A is related to Table C

and Table C is related to Table B then

there is a relationship between Tables

A and B. This can be illustrated by the

addition of a table called regDetail (see

Fig. 2.5). The aceDetail and the magDetail have the magArea attribute

Table: regDetail

Region Province
SCape
Boland
W Coast
Metro

WCape
WCape
WCape
WCape

Figure 2.5 : A database table

in common while the magDetail and the regDetail have the Region in

common. If the magisterial area in which an accident occurred is known

it is possible to determine the region from magDetail, and once the
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region is known it is possible to determine in which province the

accident happened from the regDetail table. There is an indirect one-to-

many relationship between accDetail and regDetail.

c) Many-to-many relationship

If a record in Table A is related to zero or more than one records in

Table B and vice versa there exist a many-to-many relationship

between Tables A and B.

2.5.2 DATA EXTRACTION and REDUCTION

Having good quality accident data in a well-designed and fully functional

database is worthless unless the data can be accessed, extracted and

reduced in an efficient manner for the purposes of reporting and analysis.

The most common method to extract information from a database is using

Sal (Structured Ouery language).

The objectives of this section are:

• To introduce the reader to Sal.

• To show how Sal can be used to extract information.

• To show how Sal can be used to do basic analysis.

Sal is a 4th generation non-procedural language. It provides tools for a

variety of data management tasks :-

• Ouerying of data

• Inserting, updating and deleting records

Data is queried by formulating and executing, within your software system, a

Sal procedure which in its simplest form has the following general format.
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Select [column names/ * /expression]

From [table names]

Where Ooin condition/ criteria/expression]

And/Or [criteria/expression]

Group by [column names]

Order by [column names] dese/ase

To illustrate the use of Sal procedures to extract and reduce data the Tables

in Figure 2.6 will be used. Table AccDetails contains details on individual

accident records. Table LinkDetails contain details on geometric and traffic

flow characteristics of link segments. AccDetails and LinkDetails have the

Roadno attribute in common. There exist a many-to-one relationship between

LinkDetails and AccDetails i.e. a record in AccDetails can only be related to

one record in Linkdetails while one record in Linkdetails can be related to

many records in AccDetail. Since a road with a specific Roadno may consist

of more than one link the two tables can only be joined by also specifying in

the joining operation that a record in AccDetails is related to that segment in

LinkDetails for which Acckm falls between Startkm and Endkm.

For the purposes of this exercise is assumed that the Climate (e.g dry,

medium, wet) depends on the magisterial area in which the link fall. Each

magisterial area is associated with one climate type and one only. The

LinkDetails and AreaDetails tables have the magArea (Magisterial area) in

common.
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AccDetails LinkDetails AreaDetails

Roadno .... Roadno ,--~ MagArea-..
Acckm Startkm Region

AccDate Endkm Climate

Fatal AADT

Serious Surfwidth

Slight LShouldW

VehA LShouldType

VehB RShouldW

Severity RShouldType

NumLanesL

NumLanesR

MagArea ~-..

Figure 2.6 : Normalised database tables

a) SELECTstatement

A SELECT statement retrieves information from a database. In its

simplest form it must include

• A SELECT clause which specifies the columns to be retrieved

and/or the expression to be executed

• A FROM clause which specifies the table/s on which these

columns exist.

Ex2.2: To retrieve all attributes of all records in the AccDetails table.

SELECT*

FROM AccDetails;
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Ex2.3 : To return the road number and accident date attributes of each

record in the AccDetails table.

SELECT RoadNo, AccDate

FROM AccDetails;

Ex2.4 : To return the road number, date and total number of casualties i.e.

the sum of the fatal, serious and slight attributes for all accidents in

the AccDetails table.

SELECT RoadNo, AccDate, (Fatal+Serious+Slight)

FROM AccDetails;

b) WHERE statement

The WHERE clause is optional and is used to i) join two or more tables

ii) or to specify the selection of certain rows.

i) Joining two or more tables

Ex 2.5: To return the AADT and the surfaced width at the location of all

accidents, the AccDetails and LinkDetails can be joined as follows:

SELECT a. *, I.AADT, I.SurfWidth

FROM accDetails a, LinkDetails I

WHERE a.Roadno = I.Roadno;

AND a.Acckm between I.Startkm and l.Endkm;

Ex 2.6: To return the AADT, the surfaced width and the climate for all

accidents, the AccDetails, LinkDetails and AreaDetails can be joined

as follows:

SELECT a. *, I.AADT, I.SurfWidth, r.Climate

FROM accDetails a, LinkDetails I, AreaDetails r

WHERE a.Roadno = I.Roadno

AND I.Area = r.Area

AND a.Acckm between I.Startkm and l.Endkm;
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In the aboveSal procedures the letters a, I and r are referred to

as aliases.

ii) Specifying the selection of rows

The WHERE statement can be used to limit the display of records by

specifying certain conditions. The WHERE clause consists of three

elements

a) A column name

b) A comparison operator ( <, >, >=, <= or =)

c) A column name, constant or list of values

Ex 2.8: To return all accidents in the AccDetails table where there are 5 or

more fatalities.

SELECTa.*

FROM AccDetails a
WHERE a.Fatal >= 5;

Ex 2.9: To return all accidents in the AccDetails table where there are more

fatalities than injuries.

SELECTa.*

FROM AccDetails a
WHERE a.fatal > a.serious + a.slight;

Ex 2.10 : To retrieve all accidents in the AccDetails table that occurred on

roads with a surfaced width of greater than 10m and an AADT

greater than 3500 vehicles per day:

SELECTa.*

FROM AccDetails a, LinkDetails I

WHERE = I.Roadno = a.Roadno

AND a.Acckm between I.Startkm and l.Endkm

AND I.AADT >= 3000

AND I.Surf Width >= 10;
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c) GROUP BY Statement

The GROUP BY statement allows for summary information to be

obtained for groups of rows through the use of aggregate functions. It

divides rows into smaller groups.

The following group functions can be used in the SELECT statement

when using the GROUP BY statement:

AVG[column/expression] - Return the average value of

column/expression over all specified

records.

COUNT[*] - To count all records per group that meet the

specified criteria.

MAX/MIN[column/expression] - Return the maximum/minimum value

of a column/expression per group for

all records that meet the specified

criteria.

SUM[column/expression] - Return the sum of a column/expression per

group for all records that meet the specified

criteria.

The STOOEVand VARIANCE functions are similar to the SUM function

and return the standard deviation and variance of a column/expression

respectively.
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To determine the total number of accidents per link.

SELECT l.Roadno, I.Startkm, I.Endkm, Count(*)

FROM AccDetails a, UnkDetails I

WHERE I.Roadno = a.Roadno

AND a.Acckm between I.Startkm and l.Endkm

GROUP BY I.Roadno, I.Startkm, l.Endkm;

To determine the number of fatal, serious, slight and damage only

accidents for each link.

SELECT I.Roadno, I.Startkm, I.Endkm, a.Severity, Count(*)

FROM AccDetails a, UnkDetails I

WHERE I.Roadno = a.Roadno

AND a.Acckm between I.Startkm and l.Endkm

GROUP BY I.Roadno, I.Startkm, l.Endkm, a.Severity;

To determine the number of casualties per link that resulted from

accidents involving at least one heavy vehicle.

SELECT I.Roadno, I.Startkm, I.Endkm, Sum(Fatal+Serious+SlightJ

FROM AccDetails a, UnkDetails I

WHERE I.Roadno = a.Roadno

AND a.Acckm between I.Startkm and l.Endkm

AND a. VehA like 'Heavy_ Vehicle' OR a. VehB like 'Heavy_ Vehicle'

GROUP BY I.Roadno, I.Startkm, I.Endkm;

To calculate the accident rate for each link.

SELECT I.Roadno, I.Startkm, l.Endkm, [Endkm-Startkml* AADT*3*

365/106 as E, Count(*) as A, (A)/(E) as R

FROM AccDetails a, UnkDetails I

WHERE a.Roadno and I.Roadno

AND a.Acckm between I.Startkm and a.Endkm

AND a.Accdate between '01-JAN-93' and '31-DEC-95'

GROUP BY I.Roadno, I.Startkm, l.Endkm, [Endkm-Startkml*AADT*3*

365/1if;

Stellenbosch University http://scholar.sun.ac.za



2-32

Ex 2.15: To calculate the total exposure for links with surfaced shoulders and

a surfaced width greater than 11 m (assuming a 3 year period).

SELECT sum[(/. Endkm-I.Startkm] *3*365* I.AADT/1cf)] as E

FROM LinkDetaiII

WHERE I.Surfwidth >= 11

AND I.LShouldType like 'Surfaced'

AND I.RShouldType like 'Surfaced'

Ex 2.16: To calculate the total number of accidents on links with surfaced

shoulders and a surfaced width of >= 11m.

SELECT count(*)

FROM AccDetail a, LinkDetaiII
WHERE I.Roadno = a.Roadno

AND I.LShouldST like 'Surfaced'

AND I. RShouldST like 'Surfaced'

2.6 SUMMARY and CONCLUSION

This Chapter identified three major information sources required to

successfully implement a road safety remedial programme ; accident data,

network and environmental data and, traffic flow information.

Various issues that could affect the quality of accident data in South Africa

were identified. The legislated definition of an accident was presented as well

as other supporting pieces of legislation to show that the legal definition could

be open to misinterpretation which could cause underreporting of accidents.

The issue of under reporting was identified as a major problem that could

seriously impact on the efficiency of a road safety remedial programme. The

results of international research studies on the extent of under reporting

relating to different road user groups and severity classes were presented. A

methodology to quantify the effect of under reporting on the accuracy of safety

estimates was presented.
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Reference were made to research studies that found that the safety at a

location depends, amongst others, on its geometric and environmental

characteristics. Many accident data methodologies require the use of a

reference group or a comparison group, which necessitate the availability of

road network and environmental characteristics. Without this information it

would not be possible to partition road network elements into reference

groups.

Traffic flow information was identified as important because this type of

information is required to estimate levels of exposure and to develop

multivariate regression models such as Safety Performance Functions. Issues

regarding the accuracy of AADT estimates were discussed . It was reported

that the accuracy of an AADT estimate depends on the stratification method,

day/s of the week counted and the length of the sampling period. The different

stratification methods were discussed and coefficient-of-variation values for

each were presented for the different sampling periods and day/s of the week.

An overview was provided on ways to manage these information sources in a

manner that would ensure that data required for a safety study is readily

available in the desired format. A method to extract data from a number of

relational databases containing accident, network and count data was

presented. A number of illustrated examples were given to show how SQl

(Structured Query language) can be used to extract data, suitable for

analysis, from a number of databases.
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CHAPTER 3

MEASURING SAFETY

3.1 INTRODUCTION

The ability to obtain reliable and valid estimates of safety for a variety of entity

types is fundamentally important for the efficient identification and ranking of

hazardous locations and to successfully determine the effect of various road

safety remedial measures.

The primary objective of this chapter is to investigate and to report on various

issues to consider before subjecting accident data to a formal examination in

order to estimate the safety of various entity types.

Firstly, the issue of what 'safety' is and how it can be defined will be

addressed. In order to facilitate an improved understanding of what is meant

by 'safety' the concepts of reliability, validity and measurement error will be

discussed. Certain recommendations will be made on how to reduce

measurement error and to increase the validity and reliability of a safety

estimate.

One of the most important determinants of the validity of a safety estimate -

the accident measure i.e. what type and kind of accidents to use, will be

discussed in detail.

The validity and reliability of a safety estimate expressed as an accident rate,

in addition to the accident measure, also depends on the measure of

exposure used to calculate the accident rate. For an accident rate to be a

valid and reliable measure of safety it should meet certain requirements.

These requirements will be presented as well as the potential consequences

of violating these requirements. It will be shown that conventional accident

rate expressions commonly used for segments and intersections do not meet
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the requirements and are therefor not suitable to estimate the safety of road

segments and intersections.

To overcome the shortcomings of using conventional accident rates an

alternative approach to estimating safety will be presented. This approach, it

will be shown, relies heavily on Safety Performance Functions (SPF) i.e.

mathematical functions that relate traffic flows to accidents.

Next, an extensive overview of typical Safety Performance Functions for

segments and intersections will be presented and will be illustrated with -case

studies. It will be shown that using Safety Performance Functions to estimate

safety, in certain circumstances, also has certain shortcomings which could

impact on the validity and reliability of safety estimates. These shortcomings -

the Function Averaging Problem and the Argument Averaging Problem will be

discussed in detail.

3.2 DEFINING SAFETY

According to Hauer (1997) the principle manifestation of safety ( or 'unsafety')

are accidents and the harm they cause i.e. damage to property, loss of life,

injury etc.

Accident data is therefore the primary source of information to make

inferences about road safety.

The analysis of accident data in the planning and evaluation of a road safety

accident remedial programme requires first, the comparison of safety levels to

identify and rank hazardous locations, and secondly to compare the level of

safety between the 'before' and 'after' periods of an entity or a group of

entities.

The quality of the results of such analysis and therefore the overall integrity of

a road safety remedial programme depends directly on the reliability and

validity of the safety estimates used in the analysis.
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Hauer (1997) provides the following definition of safety at an entity:

"The number of accidents, or accident consequences, by kind and

severity, expected to occur on the entity during a specified period of

time."

Often in practice safety is measured not by expected accident frequency but

by the expected accident rate.

According to Mahalel (1986) a common method of defining the safety of an

entity is by means of risk and exposure. Risk is defined as the possibility of

experiencing a 'negative' event, such as, for example, a road traffic accident.

In statistical terms the risk associated with a transportation system represents

the probability of being involved in an accident while using the system.

Exposure is defined as the amount of risk (expressed as the total number of

opportunities for an event to occur) a road user exposes him or herself to. The

total expected number of accidents to occur at a system during a certain time

period is given by the product of the risk and exposure.

A=R*E ... [3.1]

A - Expected number of accidents in time period T.

R - Risk : The probability of an accident.

E - Exposure: A measure of the total number of opportunities for an

accident to occur during time period T.

The term 'expected' is used here to refer to an estimate that is both reliable

and valid and hence free from measurement error.

3.3 MEASUREMENT THEORY

Leedy (1993) provides the definition of what measurement is :
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"Measurement is limiting the data of any phenomenon - substantial or

- insubstantial - so that data may be examined mathematically, and

ultimately, according to an acceptable qualitative or quantitative

standard."

In order to research any road safety problem, of whatever nature, the first step

is to identify indicator/s that will provide an acceptably reliable and valid

quantitative measure of the research problem. Such indicator/s form the basis

of the research process. (Leedy; 1993)

3.3.1 VALIDITY AND RELIABILITY

According to Leedy (1993) with any type of measurement validity and

reliability are two very important considerations.

Validity is concerned with the soundness and the effectiveness of the safety

estimate. It raises the question whether an estimate measures what it is

suppose to measure, as well as how comprehensively and accurately. An

important determinant of the validity of a safety estimate is therefore the

chosen 'accident measure' i.e. the type of accidents to consider in the

estimation of safety. Issues relating to 'accident measures' are covered in

more detail in Section 3.4.

Reliability deals with how dependable and accurate an estimate is. A major

determinant of the degree of reliability is the extent to which the estimate

contains any random and systematic errors (see Section 3.3.2). The larger the

degree of these errors the less the reliability of the estimate.

An indicator needs to be reliable for it to be valid. (Leedy; 1993)

3.3.2 MEASUREMENT ERROR

Any measurement (X) or observed value consists of 3 different components:
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a) True perfect value (T)

b) Systematic Error (8)

c) Random Error ( R)

Where X = T + 8 + R

Under conditions of perfect validity there are no systematic and random errors

i.e. X = T. The validity of a measurement can be improved by focussing on

eliminating 8 and R.

i) RANDOM ERROR

Accidents are discrete random events that according to Abbes et al.

(1981) follow a Poisson distribution around the 'true mean' (T). It is

unlikely therefore that the observed number of accidents X at an entity

will be equal to the true mean (T). Assuming the systematic error = 0,

the difference between T and X represents the random error

associated with a measurement.

ii) SYSTEMATIC ERROR

Whereas random error is a statistical phenomenon, systematic error is

the result of external influences, which distorts a measurement in a

systematic way.

The most common causes of systematic errors relating to accident data

are:

a) The underreporting of accidents.

b) Inaccurate and incorrect accident information.

c) Missing accident information.

The following remedial measures can be taken to minimise systematic

errors:
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a) Redefine the chosen 'accident measure' so as to exclude those

subsets of data that are normally associated with significant

systematic errors - such as Damage Only accidents.

b) Systematic errors as a result of inaccurate or missing data can really

only be reduced by having a good accident data management

system in place. This issue is covered in more detail in Chapter 2.

3.4 ACCIDENT MEASURE

An accident measure refers primarily to the type/s of accidents to consider

when estimating safety. It refers to what is called primary data - data that lies

closest to the source of 'ultimate truth' - data that will reveal most about the

true nature of the research objective. It refers to that subset of available data

that will have maximum validity and reliability when compared to other

subsets.

When deciding on an appropriate accident measure it is important to consider

the objective of the analysis. As far as road safety accident remedial

programmes are concerned the objectives could be to identify hazardous

locations or to evaluate the effectiveness of road safety remedial measures.

When evaluating road safety treatments it is necessary to identify the kind of

accidents that will be affected by the treatment. Hauer (1997) refers to these

accidents as target accidents.

Hauer (1997) provides the following definition for target accidents:

"The target accidents of a treatment are those accident types the

occurrence of which can be materially affected by the treatment."

Comparison accidents, in contrast, is defined by Hauer (1997) as follows:
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"Comparison accidents for a treatment are those accidents the

occurrence of which cannot be materially affected by the treatment."

Identifying target accidents require an understanding of the accident

generation process i.e. how the treatment works.

Accidents at an entity can be grouped into different subsets each of which are

associated with a different level of risk. For example research by Persaud and

Musci (1995) has indicate that for rural 2 lane segments in Ontario, Canada,

there are at least 4 distinct accident data types, i) night-time single vehicle

accidents, li) night-time multi-vehicle accidents, iii) day-time single vehicle

accidents and iv) day-time multi-vehicle accidents. Each of these accident

types is associated with significantly different levels of accident risk, with the

risk of night-time accidents being considerably higher than that of day-time

accidents.

The magnitude of an aggregated accident measure which include all day-time

and night-time accidents, will depend on amongst others on the ratio of night-

time to day-time traffic flows. Comparing different entities, each of which might

have a different night-time / day-time traffic ratio, becomes problematic. One

entity, for example, might be identified as more hazardous than another only

because it carries relatively more night-time traffic and not because it is

inherently more unsafe.

There are therefore advantages in using, instead of a single 'aggregated'

'accident measure', a number of 'accident measures' to estimate the safety at

a location.

The guiding principle is that ideally all accidents included in the 'accident

measure' should be associated with the same level of risk.
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I ALL Accidents I Level1
I

I I I I
Head-Rear Head-on Right-angle Right-angle
Accidents Accidents Accidents Turning

Accidents
Level2

Figure 3.1 : Typical categorisation of intersection accidents.

Figure 3.1 indicates two levels of data aggregation at an intersection where

Level 1 = ALL accidents and Level 2 = 4 different accident types. Intersections

are often dominated by a specific accident type. Using a Level 1 aggregation

this will not be apparent. The different accident types as identified in

aggregation Level 2 do not necessarily share the same level of risk and the

combination thereof into a single level of safety for an intersection can

produce a result that is not valid nor reliable due to the bias introduced by the

Function Averaging Problem. (See Section 3.7.4)

An important consideration when choosing an 'accident measure' is that

different levels of data aggregation have different information requirements,

especially for developing appropriate exposure measures. For example, in

estimating the safety of an intersection using ALL accidents as an accident

measure only requires information on traffic flows entering the intersection.

However turning movement traffic volumes are required should the objective

be to use Level 2 accident measures to define the safety of an intersection.

At lower levels of aggregation the sub-sets become more homogenous but

this is achieved at the expense of sample size. Because of the of the high

variability inherent in accident data large sample sizes are generally required

to obtain reliable safety estimates. There should be a proper balance between

the demands for homogeneity and sample size requirements,
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3.5 EXPOSURE

The most widely used means of describing risk is the accident rate. Accident

rates are defined as the number of accidents ( as defined by the 'accident

measure' ) divided by an exposure measure.

The use of accident rates is based on the assumption that there is always a

perfectly linear relationship between A and E. In other words, the accident

rate is completely independent of the level of exposure (E).

The inclusion of an exposure measure in estimating accident risk is required

to equalise for differences in the intensity of use in order to make comparisons

more meaningful. Accident rates determined in this manner are used to

standardise safety with respect to traffic flow. According to Chang (1982)

unless the exposure is known the relative hazards of various situations cannot

be compared.

A valid and reliable measure of exposure should meet the following criteria:

a) It should be a direct measure of the total number of opportunities for

an accident ( as defined by the accident measure) to occur during the

study period.

b) If a 'proxy' measure is used because it is not possible to determine the

total number of opportunities with precision than this 'proxy' measure

should be directly proportional to the total number of accident

opportunities.

c) For it to be a direct measure the exposure measure should be linearly

related to the accident measure. According to Hauer (1995) in order for

exposure to do the job of equalising the Safety Performance Function

(SPF)( i.e. the relationship between the two measures) must be linear.
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According to Hauer (1995) choosing a measure of exposure that is not

linearly related to the accident measure could have the following

consequences:

a) When the SPF is not a straight line, the accident rate will change as the

amount of traffic (exposure) changes, even if there was no intervention

and the road remained the same. It is possible for the accident rate to

decrease even as the facility becomes less safe. It is even possible

when two facilities are compared with each other for the safer facility to

have a higher accident rate then the other facility.

b) When evaluating the effectiveness of a remedial measure a non-linear

SPF could cause the effectiveness to be over or under estimated. This

is illustrated in Figure 3.2.

c .......--
1

c ---2

AADT

Figure 3.2 : Non-linear Safety Performance Function

The accident rate is obtained by the slope of the line connecting the

origin with any particular point on the curve. At exposure level E1 the

accident rate is R1. If the exposure level was to increase to E2 the

accident rate will be R2. It is evident that R2 < R1. In other words in the

absence of any road safety improvements an increase in the exposure

level in this case led to a reduction in the accident rate.
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In the event of successfully improving the safety of the road the SPF

will shift downwards - from Curve 1 to Curve 2. The improvements

could possibly attract more traffic which would cause the exposure to

increase from E1 to E2. The evaluation of a safety measure requires an

estimate of what the number of accidents would have been had no

improvements been undertaken. Assuming a linear SPF (described by

R1) this estimate would be given by point F1 where in fact the correct

estimate would be given by point F2. The real safety effect would

therefore be given by the difference between F2 and F3 and not by the

difference between F1 and F3. Assuming a linear SPF would cause the

safety effect to be overestimated by the difference between F1and F2.

3.5.1 ROAD SEGMENTS

The most widely used measure of exposure for measuring safety on road

segments is the million-vehicle-kilometres measure that is determined as

follows:

E=AADT*L*n*lO-6 ... [3.2]

n -

Exposure in million-vehicle-kilometers (mvkm)

Average Annual Daily Traffic ( veh/day)

Length of segment in kilometres (km)

Number of days of study period.

E-

AADT-

L-

There is consensus (Hauer ; 1995, Mahalel ; 1986 and Satterwaith ; 1981)

that using this measure of exposure will result in an accident rate that is not

reliable for the following reasons:

a) The relationship between E and most accident measures ( e.g. all

accidents, single vehicle accidents, multi-vehicle accidents etc.) was

found to be non-linear.
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Satterwaithe (1981) in a survey of research into relationships between

traffic accidents and traffic volumes concluded that the weight of

evidence suggests that single vehicle accidents and multi-vehicle

accident rates depend in a fundamentally different way on traffic

volumes. The single-vehicle rate tends to decrease with increasing

traffic volumes while on the other hand the multi-vehicle rate increases

with increasing traffic volumes, with some evidence of a decrease in

the rate after a certain volume, perhaps corresponding to the onset of

congestion. The implications of these relationships is that the total

accident rate varies in a U-shaped fashion with the traffic volume, but

the form of this relationship is likely to vary substantially, depending on

the relative numbers of single and multi-vehicle accidents. Satterwaithe

(1981) however does acknowledge that there are a lot of conflicting

results concerning the relationship between the multi-vehicle rates and

traffic volumes.

Zhou and Sissiopiku (1997) developed the following models to relate

accident rates and exposure ( expressed as a volume-to-capacity ratio)

on urban freeways in Michigan. (See Figure 3.3)

300 r---~--~--~--~--~--~----~--~--~--~--~
Single: Y = 279X 2 - 450X + 215

Multi: Y = 884X 2 - 877X + 353
240

~ 180
Eoo~
U;

].i 120
lJ,3
u
Ol

vIc ratio

Figure 3.3 : SPF's for single and multi-vehicle accidents on Michigan freeways
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Zhou and Sissiopiku (1997) explains the form of these relationships in

the following manner :-. As traffic volumes increase so do vehicle

conflicts and therefore higher accident rates become impossible. To

explain the higher accident rates associated with low traffic flows one

has to consider that low traffic flows generally occur at night where

poor visibility, fatigue and higher rates intoxication are major factors.

Also in low exposure conditions the average driver's attention to

driving tasks is reduced and higher speeds may be selected.

In conclusion, there is therefore sufficient empirical and logical support

to the notion that the relationship between A and E ( as in Equation 3.2)

to be non-linear.

b) In the exposure function a time-average value of traffic flow, the AADT

is used. There exist a causal relationship between traffic flow and

accidents. The effect (accidents) is observed over a long period of time

during which the cause (traffic flows) has assumed widely different

values, but for which only the average value is known. The causal link

between accidents and AADT is therefore indirect. This leads to what is

referred to as the issue of argument averaging which could introduce,

depending on the form of the SPF, a large and significant bias.

(Mensah and Hauer; 1998)

3.5.2 INTERSECTIONS

A common measure of exposure to measure safety at intersections is the

sum-of-flows measure that is determined as follows:

E = d * '" AADT *10-{i
~ In

... [3.3]

LAADTin - Sum of incoming flows on all approaches (veh/day).

d - Number of days of study period.
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The sum-of-flows measure for intersections determines the total number of

vehicles that entered the intersection during the study period. This does not

and cannot account for possible correlation between specific accident types

and certain combinations of vehicle movements. It also implies that all

vehicles entering an intersection have an equal probability of being involved in
an accident (Plass et al. ; 1987).

According to Hauer et al. (1988) the assumption that the number of accidents

at an intersection is proportional to the sum of flows that enter the intersection

is logically unsatisfactory and not a suitable basis for engineering analysis

which attempts to link cause and effect. Hauer et al. (1988) suggest that one

could expect, for example, that the number of rear-end accidents at an

intersection approach will strongly depend on the flow on approach A and

depend only weakly on the flow on approaches B, C and D. One would also

expect that accidents between vehicles from traffic streams moving at right-

angles will be related to the product of these flows. To use the sums of these

flows leads to the logical difficulty that one will be able to predict accidents

even if one of the flows is zero.

3.6 AN ALTERNATIVE APPROACH TO SAFETY ESTIMATION

On the basis of the fact that the conventional concept of accident risk, as

determined by the accident rate, is a function of the exposure level - the use

of the accident rate, in some cases, could be an inappropriate measure of

risk. According to Mahalel (1986) the risk level can only be expressed in

relation to a specific exposure level. Using accident rates without relating

them to exposure levels could make the comparison of accident rates for the

purposes of identifying and ranking hazardous locations and evaluating

remedial measures meaningless.

According to Hauer (1995) two accident rates can only be compared with

each other if there exists a reasonable expectation that the two rates should
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be equal to each other. This expectation is not necessarily valid when two

accident rates were determined using different levels of exposure.

The problems associated with the conventional definition of accident risk can

be overcome by relating it to exposure. This can be achieved by using Safety

Performance Functions.

Mahalel (1986) proposed that the probability of a certain number of accidents

at a given level of exposure to be an alternative definition of accident risk. In

terms of Mahalel's alternative definition of risk, the risk (R) at any location is a

function of the exposure (E), the expected number of accidents (A) and the

probability of A accidents (Pa).

R = j(E,A,P) . .. [3.4]

The fundamental characteristic of this alternative definition of accident risk is

its ability to express the expected number of accidents or the probability of a

certain number of accidents at any exposure level. Accordingly, the risk level

of a system can only be expressed in relation to a specific exposure level.

(Mahalel; 1986)

The role of a SPF can be seen as a 'black box' where exposure is an 'input'

and in which 'output' is accidents and probabilities.

3.7 SAFETY PERFORMANCE FUNCTIONS

Safety Performance Functions are in essence multivariate regression models

that explain how the number of accidents at a location depend on the traffic

flows.

3.7.1 ROAD SEGMENTS
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Mensah and Hauer (1988) mentions four common forms of SPF's commonly

used to relate accidents to exposure on roadway segments:

a) Type 1 : The Exponential SPF :

A =a(ADT)~ ... [3.5]

This function assumes that the exposure (total number of opportunities)

is proportional to AOJi3 . The value of A will always increase with

increasing values of ADT.

The accident rate (R) at any level of ADT is given by :

R =a(ADT)~-l ... [3.6]

If j3 > 1 then R will always increase with increasing values of ADT, and

if j3 < 1 then R will always decrease with increasing values of ADT.

Please refer to Figure 3.4.

20

/ \b> 1

16

b < 1

12

<

500 1000

ADT

1500 500 15001000

ADT

Figure 3.4 : Accident number and rate curves: Exponential SPF
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The exponential SPF has been used by Persaud and Musci (1995) to

model the relationship between ADT and accidents on two-lane rural

roads in Ontario, Canada.

Persaud and Musci (1995) used data from Ontario, Canada, for two-

lane rural road segments to develop a series of SPF's using the

Exponential form (Type1).

.A=aQf3 .. .[3.7]

A - accidents/kilometre/year

Q - Average hourly traffic flow

Table 3.1 : Regression parameters of SPF's

Day-time Night-time 24 Hours
Accident Type

a {3 a {3 a {3

Single-vehicle 0.0040 0.490 0.0354 0.557 0.0657 0.444

Multi-vehicle 0.0008 1.173 0.0013 1.071 0.0011 1.123

All 0.0194 0.741 0.0468 0.650 0.0415 0.627
.

The study by Persaud and Musci (1995) has shown that on 2-lane

roads in Ontario, Canada there exist significantly different SPF's for

day-time single vehicle accidents, day-time multi- vehicle accidents,

night-time single vehicle accidents and night-time multi-vehicle

accidents.

The Safety Performance Functions developed by Persaud and Musci

(1995) are illustrated in Figures 3.5 and 3.6.
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Multi-vehicle accidents
0.8,- ---,

0.6

a . Average hourly traffic flow

Figure 3.5 : Single vehicle and multi-vehicle accident SPF's

From Figure 3.5 it is evident that at similar levels of exposure the risks

associated with single vehicle accidents are considerably worse during

the night than during the day.

Night-time accidents Day-time accidents

1.6 1.6

.
I.' " I.',,',.

,.'
1.2 .' 1.2."."
! "1.0 " 1.0

s " ..' ."'.~ " I,i'
.Q

0.8 " 0.8I .».' "... ,"
:2 ," .
~ 0.6 i 0.6 .'"'" ./ ~'

,"
/ ,"'

0.' 0.' ,".',/ ."
"! 0.2 ~

l.-
0.0 '

100 150 200 0 100 150 200

a -Average hourly traffic flow a -average hourly traffic flow

Figure 3.6 : Night-time and day-time accident SPF's
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From Figure 3.6 it is evident in night-time conditions the risk associated

with single vehicle accidents are considerably worse than that of multi-

vehicle accidents while the reverse applies in day-time conditions.

Persaud (TRR1327) in a study to estimate the accident potential of

Ontario road sections developed the following SPF's for different

classes of roads.

A=aQi3 ... [3.8]

A - Accidents/kilometre/year

Q - ADT ( 1000 vehicles)

Table 3.2 : Regression parameters of SPF's

Road class a (3 k

Freeway 0.6278 1.024 2.95

Rural/undivided/2-lane 1.3392 0.8310 2.90

Rural/undivided/multi-Iane 0.6528 1.3037 2.90

Urban/u ndivided/2-lane 3.6514 0.5588 2.90

Urban/undivided/multi-Iane 1.4196 0.8763 2.90

Rural/divided/multi-Iane 0.4591 1.3037 2.90

Urban/divided/multi-Iane 0.9984 0.8763 2.90

k - Dispersion parameter obtained from Negative Binomial regression.

The results of Persaud's study have shown that different types of

facilities in Ontario have significantly different SPF's.

b) Type 2 : The Quadratic SPF

A =a(ADT) + f3 (ADT)2 ... [3.9]

The accident rate at any value of ADT is given by :

R =rz + f3 (ADT) ... [3.10]
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Figure 3.7 shows the accident number and accident rate curves for the

following quadratic SPF : A = O.0005*Q - 2*10-8*(;2.

0.52

2.8

2.4 0 .. 8

2.0

0.44

1.6 ~
II:

i
1.2

~
0.40

0.8

0.36

0.32'-::-0 ~'OOO::"::"'""::2000~3000~~4000;";:"""::5000~6~OOO~7000~

a . Average Daily Traffic

2000 3000 4000 5000 6000 7000

a . Average Dally Traffic

Figure 3.7 : Accident number and rate curves: Quadratic SPF

The Safety Performance Function developed by Zhou and Sissiopiku

(1997) as shown in Figure 3.3 is of the Quadratic type.

c) Type 3 : Hoeri's Function with k = 1

According to Mensah and Hauer (1998) Hoeri's function is as follows:

... [3.1Ob]

Thus with k = 1, then:

A =a(ADT)e[3(ADT) ... [3.11]

The accident rate at any value of ADT is given by :

R =ae[3(ADT) ... [3.12]
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With small values of ADT the accident frequency (A) increases

approximately linearly with traffic flow. Mensah and Hauer (1998) noted

that this function may be suitable for single vehicle accidents.

d) Type 4 : Hoeri's function with k = 2

A =a(ADT)2e(3(ADT) ... [3.13]

The accident rate at any value of ADT is given by :

R =a(ADT)e(3(ADT) ... [3.14]

A increases with the square of traffic flow. At large traffic flows the

slope of the function begins to diminish. Eventually a peak is reached

and A will begin to decrease. Mensah and Hauer (1988) noted that this

function may be suitable for two-vehicle accidents.

/
k-2

0.8r------------,

2000 3000 4000 5000 6000 7000
o . Averaoe Dally Traffic

0.7

00 0~I~OOO~2000~3000~4000~5000~;;:;;6000~7000~

a . Average Daily Tratfic

Figure 3.8: Accident Number and Rate curves: Hoeri's function with k =1 and 2.
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3.7.2 INTERSECTIONS

Some researchers such as Breunning and Bone, Sunti and Hakkert, and

Mahalel ( in Hauer et al. ; 1988) related accidents to the products of the

conflicting flows.

... [3.15]

Empirical research according to Hauer et al. (1988), has found the above

relationship not to be correct. It was found that accidents are rather related to

the product of flows with each flow raised to a power of less than 1. Tanner (in

Hauer ; 1988) suggested that the square root of the product flows would be

sufficiently accurate as a rule of thumb:

A=a)Q1Q2 ... [3.16]

The 'products-of-flows-to-power' relationship has been used by Bonneson and

McCoy (1993) and Belanger (1994) to relate total accidents to total flows on

the major and minor approaches at two-way stop controlled intersections on

rural highways, while Hauer et al. (1988), in a study to estimate safety at

signalised intersections used the 'products-of-flows-to-power' relation to relate

the frequency of specific accident types to the relevant conflicting flows.

Bonneson and McCoy (1993) developed the following SPF for two-way stop

controlled intersections on rural highways in Minnesota (USA) :

(
T JO.2S6( T JO.831A = 0.692 _m_ __c_ k=4

1000 1000
... [3.17]

Tm - major road traffic flow (veh/day)

Tc - Minor (cross) road traffic flow (veh/day)

A - Annual expected accident frequency (within 153 m / 500ft of junction)

k - Dispersion parameter from Negative Binomial regression
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For 4-legged un-signalised intersections in eastern Quebec, Bélanger (1994)

developed the following SPF based on the 'products-of-flows-to-power

relationship.

A = 5 59*10-6F.°.42F 0.51• 1 2 k=2.95
... [3.18]

A - Expected daily accident frequency (within 30m of intersection).

Ft - major road traffic flow (veh/day).

F2 - Minor road traffic flows (veh/day).

k - Dispersion parameter from Negative Binomial regression.

Hauer et al. (1988) identified 15 accident patterns in which two vehicles at an

intersection can be involved and developed a SPF for each of the accident

patterns. Accidents in each pattern are defined by the manoeuvres of the

vehicles before the collision. These accident patterns are shown in Figure 3.9.

The form of the model equations was chosen after an exploratory analysis of

the data to determine how accidents would depend on the contributory traffic

flows. The guiding principle was the wish to ensure a satisfactory fit with

parsimony of parameters and without violation of the obvious logical

requirements.

The results of the study by Hauer et al. (1988) are given in Table 3.3.

The study by Hauer et al. (1988) has shown the benefit of using dis-

aggregated accident data to relate these to the traffic flows to which the

colliding vehicles belong. They conclude that the logic of attempting to seek

an aggregate relationship between accident frequencies and some function of

all flows to be unsatisfactory. They also question the suitability of the

-custornary categorisation of accidents by initial impact (rear-end, angle,

turning movement, sideswipe etc.) One cannot assume, for example, that

classification of an accident as a right-angle collision implies that the vehicles

were travelling at right angles to each other or that most accidents involving

left or right turning will be classified as turning accidents.
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Table 3.3 : Regression parameters of SPF's

Pattern Model Form A b c K

1 A= a(F) 0.2052 * 10.6 4.59

2 A= a(F) 0.1014*10.6 1.97

3 A = a(F2)C 8.6129 * 10.9 1.0682 1.20

4 A = a(F2)C 8.1296 * 10-6 0.3662 5.51

5 A = a(F1)b(F2)C 0.3449 * 10-6 0.1363 0.6013 1.2

6 A = a(F1)(F2)C 0.0418 * 10-6 0.4634 2.1

7 A = a(F1)b(F2)C 0.2113 * 10-6 0.3468 0.4051 1.2

8 A = a(F2)C 2.6792 * 10-6 0.2476 1.2

9 A = a(F1)b 6.9815 * 10-9 1.4892 1.2

10 A = a(F2)C 5.5900 * 10-12 2.7862 1.2

11 A = a(F1)b(F2)C 1.3012 * 10-9 1.1432 0.4353 1.2

12 A = a(F1)b(F2)C 0.0106 * 10-6 0.6135 0.7858 1.2

13 A = a(F1)b(F2)C 0.4846 * 10-6 0.2769 0.4479 1.2

14 A = a(F1)b(F2/ 1.7741 * 10-9 1.1121 0.5467 1.2

15 A = a(F1)b 0.5255 * 10-6 0.4610 1.2

k - Dispersion parameter of Negative Binomial regression.

Models were also developed for AM, PM and off-peak conditions for patterns

1,2,4 and 6.

Table 3.4 show a number of macroscopic models developed by Mountain and

Fawaz (1996) for priority junctions, traffic signals and roundabouts in the UK.

The k value for all three models is 1.65.

Table 3.4 : Safety Performance functions

Junction type Model

Major-minor priority Il = 0.141 t1 0.64t2 0.24

Traffic signals Il = 0.180 t1 0.64t2 0.24

Roundabouts Il = 0.168 t1 0.64t2 0.24

t1 - major road flow (veh/day) and t2 - minor road flow (veh/day)

11- Accident frequency
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Figure 3.9 : Intersection accident patterns ( Hauer et al. ; 1988) [For traffic driving
on the right hand side of the road.]
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3.7.3 THE ARGUMENT AVERAGING PROBLEM

Some of the Safety Performance Functions presented in the preceding

section were estimated from using estimates of average traffic flow. According

to Mensah and Hauer (1998) the ideal is for SPF's to represent the cause-

effect relationship between accidents and the actual flows at the time of the

accidents. In practice, mainly because of a lack of sufficient data, average

flows are used for estimation of the SPF and not the actual flows at the time of

the accidents. Relating accidents with average traffic flows forms an indirect

causal link in the sense that the effect is observed over a long period of time

during which the cause has assumed widely different values, but for which

only the average value is known. This is referred to as the 'argument

averaging problem'

To examine the issue of argument averaging consider Figure 3.10 which

shows a non-linear SPF where the accident frequency !l is a function of the

average flow q i.e. !l = !l(q)

Average Flow - Q : (veh/day)

Figure 3.10 : The argument averaging problem.
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If during one half of a unit of time the flow q = qa and the other half the flow q =
qb, then the average flow is given by O.5(qa+qt).

Were the flow to be equal to O.5(qa+qtJ) for the whole unit of time one would

expect t,t[O.5(qa+qt)J accidents per unit time. (Point A in Figure 3.10).

Since the flow qa was for half of the time, and flow qb for half of the time, one

should expect [t,t(a) + t,t(b)]/2 accidents per unit time. (Point B in Figure 3.10).

If the AADT is used a function is fitted through points such as B, instead of

finding the 'true' function that would pass through point A.

According to Mensah and Hauer (1998) one should not be concerned about

errors due to argument averaging when :-

a) the flow during the averaging period is constant, and

b) when the SPF is linear for flows during the averaging period.

These conditions will arise when the period of averaging is short enough that

traffic flows in it can be thought of as nearly constant and if the flow is not

constant then when the segment of the SPF between the largest and the

smallest flows in the period is sufficiently close to a straight line.

According to Mensah and Hauer (1998) considering what is generally known

about how traffic varies over time and the likely shape of the SPF, one should

generally not be concerned about averaging of periods of about an hour and

that periods of longer than an hour need to be considered carefully.

Mensah and Hauer (1998) has developed a methodology to determine a

correction factor w where, from Figure 3.10 :

A
w=-

B
... [3.19]
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The following information is required to determine the value of w:

a) The distribution of traffic flows, in say hourly intervals over the study

period. Information of this kind can be obtained from permanent

counting stations. This information is required to estimate the CV

(coefficient of variation) where:

aCV=-q_
E(q)

... [3.20]

Where:

a(q) - The standard deviation of all hourly flows across the

study period.

The average hourly traffic flow over the study period.

The value obtained after substituting E(q) into the SPF.

E(q) -

J;l[E(q)}) -

b) The type and form of the SPF and its parameters.

Mensah and Hauer (1998) presented the following general formula to

determine w from any SPF based on a single flow measure.

W_l+_!_[d2J;l(q) I ] var(q)
- 2 dq" E(q) J;l(E{q})

... [3.21]

The section in the square brackets is determined by substituting E(q)

into the second derivative of the SPF. A detailed derivation of this

equation is contained in the paper by Mensah and Hauer (1998).

The above equation leads to several observations ( Mensah and Hauer

; 1998).

i) When over the averaging period the flow varies little, that is

var(q) ---7 0 then w = 1 and no correction is required.
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ii) When ~(q) is constant, i.e. when the SPF is a straight line then

the second derivative is zero and w = 1 and no correction is

required.

iii) For these values of q for which the slope of ~(q) is decreasing w
< 1 i.e. the true level of safety will be underestimated. For values

of q where ~(q) is increasing the true level of safety will be

overestimated.

The following equations are presented by Mensah and Hauer (1998) to

determine the value of w for each of the 4 different types of SPF's mentioned

in Section 3.7.1.

a) Type 1 : The Exponential SPF

w = 1+ 0.5((32 - (3)(CV)2 ... [3.22]

It is evident that the correction factor in this case depends only on the

exponent (3 and the square of the coefficient of variation (cv) of traffic

flow.

1.6

1.5

1.4

:;:: 1.3

0
1:5

1.2~
c
0
·13

1.1~
0
CJ

1.0

0.9

0.8
0.1 0.3 0.5 0.7 0.9 1.1

Bela

cv = 1.0

cv = 0.75

cv = 0.50

cv = 0.25

1.3 1.5 1.7

Figure 3.11 : Correction factor (w) - Exponential SPF
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b) Type 2 : The Quadratic SPF

1 2
w=l+ j3a .(cv)

--+1
E(q)

... [3.23]

From Figure 3.12 its is evident that the bias can be very large at high

traffic flows q and high values of cv.

1.1

1.0

0.9

~ 0.8
,
0 0.7t5
<Il
LJ..
c: 0.60·u
~ 0.50o

0.4

0.3

0.2
0 2000 4000 6000 8000 10000

cv = 0.25

cv = 0.50

cv = 0.75

cv = 1.0

Average Flow - E(q): (veh/day)

Figure 3.12 : Correction factor (w) - Quadratic SPF.

c) Types 3 and 4 : Hoeri's Function ( k = 1 and k = 2)

The correction factor w for Hoeri's function can be estimated from Eqn.

3.24.

w = 1+0.5[j32E(q)2 + 2kj3E(q) +k(k _1)](CV)2 ... [3.24]

Figures 3.13 and 3.14 show how the value of w varies with different

flows and coefficient-ot-variation values.
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Figure 3.13 : Correction factor (w) : Hoeri's function: k = 1

It is evident from Figures 3.13 and 3.14 that the bias due to the

argument averaging problem when using Hoeri's function could be very

large at large traffic flows with a high coefficient-of- variation.
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Figure 3 .14 : Correction factor (w) : Hoeri's function: k = 2.
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The bias introduced by developing SPF's using average traffic flows can be

very large. The magnitude of this bias depends on (Mensah and Hauer ;
1998) :-

a) The coefficient of variation (cv).

b) The form of the SPF.

c) The parameters of the SPF.

d) The magnitude of the average flow (AADT).

This bias can be removed by dividing the accident counts by w before fitting

the model using regression techniques. Since the determination of an

appropriate value for w depends on the form of the SPF and its parameters

the process must be iterative in nature. (Mensah and Hauer; 1998)

3.7.4 FUNCTION AVERAGING PROBLEM

It is often assumed that one SPF prevailed during the entire study period T. It

is however possible that during T several SPF's may apply. For example, it

has been previously shown by Persaud and Musci (1995) that there exist at

least 4 different SPF's for 2-lane rural roads in Ontario, Canada : 1) Single

vehicle day-time, 2) Single vehicle: night-time, 3) Multi-vehicle: day-time and

4) Multi-vehicle : night-time. Different SPF's could exist for different seasons

of the year, for afternoon and morning peaks etc. The problem of fitting a

single SPF to data where there exist 2 or more distinct SPF's is referred to as

the function averaging problem. (Mensah and Hauer ; 1998) This problem is

illustrated in Figure 3.15.
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It is assumed that !-l1 represent the SPF for night-time conditions and !-l2 the

SPF for daytime conditions.

Average Flow - q : (veh/hr)

With a night-time flow of qa one would expect !-l(qa) accidents, and with a day-

time flow of qb one would expect !-l(qt) accidents. If a flow of qa prevailed for

12 hours and a flow of qb prevailed for 12 hours the average traffic flow is

O.5(qa + qt) and the expected accident frequency is O.5(!-la + !-lJ. (Given by

point A in Figure 3.15).

Figure 3.15 : The Function Averaging Problem

Assuming now the same amount of daily traffic (qa + qb = qc + qd) but a

different ratio of night-time to day-time traffic it can be shown that the

expected number of accidents = O.5(!-lc + !-ld). (given by by Point B in Figure

3.15).

It is evident that even though in both cases the AADT is the same the

expected number of accidents are different because of the different night- to

day traffic ratios.
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EXAMPLE 3.1

Using the models developed by Persaud and Musci (1995) and assuming a average day-time

flow of qd = 2000 and an average night-time flow of qn = 500, the estimated accident numbers

are shown in Table 3.5.

Table 3.5 : Expected accident numbers

Type Day Night Sum 24-Hours % Difference

Single 0.83 0.88 1.71 1.56 8.8

Multi 2.98 0.51 3.48 3.31 4.9

Sum 3.81 1.39 5.19 4.87 6.2

All 2.71 1.33 4.04 3.63 10.1

% Difference 28.9 4.3 22.2 25.5

The total expected number of day-time single vehicle accidents is 0.83 and the total expected

number of night-time accidents is 0.88. The total expected number of single vehicle accidents

during the day and night is given by the sum of 0.83 and 0.88 = 1.71. Using an aggregated

SPF for single vehicle accidents over a 24-hour period the expected number of accidents is

1.56. Using an aggregated SPF in this case would have underestimated the true number of

accidents by approximately 8.8 %.

The expected accident frequency using an SPF based on all accidents and 24-hour flows

3.63. The 'true' expected number of accidents is given by the sum of the expected

frequencies of the 4 different SPF's which is = 5.19. Using an aggregated SPF based on all

accidents and total daily flows ( as is the customary practice) the 'true' accident frequency will

be underestimated by 30 %.

3.8 SUMMARY AND CONCLUSION

It has been shown that the conventional measure to express the safety of a

transportation system i.e. the accident rate, is not a suitable measure,

primarily due to the fact that a non-linear relationship exists between

accidents and the most common measures of exposure for road segments

and intersections.

An alternative approach that relies on Safety Performance Functions was

proposed. Safety Performance Functions allow the reliable comparison of
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safety at equal levels of exposure. Examples of Safety Performance

Functions, suitable to estimate safety on road segments, signalised and un-

signalised intersections were presented.

Due to the fact that often average traffic flows are used in the estimation of

Safety Performance Functions they are susceptible to the Argument

Averaging Problem which could introduce a large and significant bias in the

safety estimates. A methodology was presented on how to estimate the

magnitude of this bias for road segment SPF's.

Using aggregated data, which consists of accident types normally associated

with different levels of risk, the use of Safety Performance Function is also

susceptible to the Function Averaging Problem which could cause the level of

safety either to be over or underestimated. This problem necessitates the use

of different SPF's to define the safety of an entity such as an intersection

which may experience many different accident patterns, each of which are

associated with a different level of risk.
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CHAPTER 4

SAFETY MEASUREMENT METHODOLOGIES

4.1 INTRODUCTION

The objective of this Chapter is to provide methodologies to obtain reliable

safety estimates at site and group-af-sites level taking into consideration some

of the issues identified in the previous chapter.

According to Nembhard and Young (1995) there are two commonly used

methods for providing safety estimates of entities a) the site-specific historical

rate method, and b) the generic class method.

These two methods will be investigated and the disadvantages of each of will

be identified. An alternative methodology, based on the Empirical Bayesian

approach, will be presented, to show how these two methods can be

combined to overcome the shortcomings of each.

The Empirical Bayesian approach and the various methodologies within this

approach will be discussed in detail. Comparisons will be drawn between this

approach and the conventional historical rate method.

Throughout the Chapter use will be made of the experimental data contained

in Appendices A1 and A2 to illustrate some of the concepts and the

differences in the accuracy and performance of the different methods.
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4.2 HISTORICAL RATE METHOD

This method is based on the conventional definition of risk, where the risk of a

system can be estimated by the accident rate as follows :

R=A ... [4.1]
E

R - Accident risk

A - Number of target accidents.

E - Total exposure over study period.

This method has the following disadvantages:

a) RANDOM ERROR

The historical method assumes that the observed accident frequency

(X) at an entity is a reliable measure of the true level of safety at that

location. In other words, it is assumed that the true level of safety (m) is

known precisely and that this is equal to the observed rate/frequency at

an entity. (Abbess et al ; 1981) This assumption is in violation of the

fact that accidents are discrete sporadic events that follow the Poisson

distribution around its true level of safety - m. (AI-Masaeid ; 1993).

Hauer (1986) has shown that X is not a good estimate of m.

The difference between X and m is referred to as the random error

(assuming the systematic error is equal to zero). Because of the

random nature of X this random error could be significant. A

compensating strategy to reduce the random error associated with the

observation X is to increase the size of the observation. This can be

achieved in one of two ways: a) increase the collection period i.e. the

period over which data are collected and, b) include more entities in the

study group if possible.
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According to Nicholson (1987) a period of at least 5 years is required

for X to be an reliable estimate of m. The problem with using such long

periods for collecting data is the likelihood of significant changes in the

true level of safety (m) over time at an entity, due to the influence of

inevitable changes in the traffic, road and external environment. For

example urban development patterns could cause an increase in

pedestrian traffic or an increased proportion of night-time traffic. Both

scenarios could lead to a decrease in safety.

In order to assess and to quantify the historical rate method's ability to

predict the true level of safety the analysis described in Example 4.1

and Appendix A2 was applied to the experimental data in Appendix A1:

EXAMPLE 4.1

The true level of safety for each of the 1000 entities are known = mti. These were

randomly generated from a Gamma distribution with a mean of 4 accidents/year and

a variance of 2.

For each entity 5 years of accident frequencies were randomly generated assuming a

Poisson distribution with mean = mti. These accident frequencies, X1;, X2i, X3i, X4iand

XSiwere used to estimate mi in the following manner:

Table 4.1 : Calculations

Study period (Years) Expression

1 m1i=X1i
-

)(2 = (X1i + X2i)/22 m2i=
-

)(3 = (X1i + X2i + X3i)/33 m3i=
-

)(4 = (X1i + X2i + X3i+ X4i)/44 m4i=
-

)(s = (X1i + X2i + X3i+ X4i + Xsi)/55 mSi=

For each entity and for each study period the degree-of-deviation (D) was computed

as follows:

Continue ...
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Figure 4.1 : Accuracy of different study periods

Figure 4.1 shows the cumulative density functions for the degree-at-deviation for the

different study periods. It is evident that the accuracy of the estimates increase with

increasing study periods, with the differences between successive periods gradually

decreasing as the study period increase.
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Figure 4.2 : Mean deviations for different study periods

From Figure 4.2 it is evident that even using a study period of 5 years, as

recommended by Nicholson (1987), still produces an average deviation of 20 %.
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b) LOW EXPOSURE

At entities with low levels of exposure zero accidents might be recorded

over the study period - implying 'perfect' safety. This is obviously

logically unsatisfactory. In addition calculating accident rates using low

values of exposure could produce unstable accident rate estimates.

This is because the elasticity of R with respect to E increases as E

decreases. In other words, when E is small R could be significantly

influenced by potential errors in the measurement in E, or even by

small changes in E.

The elasticity of R with respect to E is given by the following equation:

R2

e=--
E

...[4.2]

Thus at a constant accident rate (R) the elasticity will increase with

decreasing values of E.
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Figure 4.3 : Accident rates vso exposure for different accident frequencies
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Figure 4.3 shows how the slope of the accident rate curve increases

with decreasing values of exposure.

EXAMPLE 4.2 .

Consider a gravel road, 10 km in length, which carries 200 vehicles per day. The

average number of accidents is 1 per year. The exposure can be shown to be equal

to 0.73 mvkm and the accident rate equal to 1.37 accidents per mvkm. The elasticity

is equal to -(1.37)2/0.73 = -2.57. In other words a 1 % error in the true value of the

AADT will cause a 2.57 % error in the value of the accident rate.

Consider a road with a similar accident rate, 10 km in length and which carries 600

vehicles per day. The exposure can be shown to be equal to 2.19 mvkm and the

elasticity equal to -0.86. The influence the exposure has on the accident rate when

the AADT is 600 instead of 200 vehicles per day is considerably less.

Thus at very low exposure levels large accident rates can be obtained even at low

accident frequencies and these accident rates can be very sensitive to changes in the

level of exposure.

4.3 THE GENERIC CLASS METHOD

This method assumes that the accident risk of a location is equal to the

accident risk of all locations with similar geometric, traffic and environmental

characteristics - called the reference group. The generic accident risk is

determined as follows:

... [4.3]

The validity of the assumption, on which this method is based, is a function of

the degree of similarity between a group of sites. The more similar the sites

the more valid the assumption. It is however extremely unlikely that two sites

are identical in every respect and that their true level of safety will be the

same. In spite of being similar each site could have its own regional character,

Stellenbosch University http://scholar.sun.ac.za



4-7

driver population, etc. giving it a unique level of safety m. Therefore m varies

from site to site. The distribution of m's between sites in the reference group

can be described by a Gamma density function with mean E(m) and variance

VAR(m). (AI-Masaeid ; 1993)

Figure 4.4 compares the accuracy of the generic and the conventional 5-year

historical method in predicting the true level of safety at the 1000 entities in

the experimental data contained in Appendix A. It is evident that the historical

rate method produces more accurate estimates than the generic estimates.

110
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50:;
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20
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Figure 4.4 : Comparison of generic and 5 -year historical methods.

4.4 COMBINING THE GENERIC AND HISTORICAL RATE METHODS

According to Hauer (1997) both these methods, the historic and the generic

method provide clues as to the true level of safety of an entity or a group of

entities. The generic method provide clues as to the safety contained in all

those observed and measurable characteristics that are common to all similar

locations e.g. number of lanes, type of shoulders, shoulder widths etc. The

historical rate method on the other hand provides clues as to the effect of all

those unknown, unobserved and misunderstood characteristics on the level of

safety at an entity i.e. those traits that make an entity absolutely unique.
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According to Nemhard and Young (1995) and Hauer (1997) the true level of

safety at a location is a combination of the site specific historical rate and the

generic rate, where :

... [4.4]

Rt - True accident rate (level of safety).

Rh - Site specific historical accident rate.

Rg - Generic accident rate for similar sites.

W1 and W2 - Weighting factors where W1 + W2 = 1.

The most common methodology to estimate the weighting factors W1 and W2 is

the empirical Bayesian methodology.( Nembhard and Young; 1995)

4.5 THE EMPIRICAL BAYESIANAPPROACH

4.5.1 INTRODUCTION

The Empirical Bayesian approach uses Bayes Theorem to combine the safety

estimates obtained from the historic and generic methods.

According to AI-Masaeid et al. (1993), the Bayesian approach is a probabilistic

method capable of augmenting the most recent information with the available

historical data or prior knowledge to achieve more accurate safety estimates.

According to Abbess et al. (1981) the Bayesian approach assumes that a

probability distribution can be found before any data becomes available - this

distribution is called the prior distribution of the parameter. Once information

becomes available Bayes theorem can be used to convert the prior

distribution into a posterior distribution. When even more information becomes

available the posterior distribution, using Bayes theorem, can be updated to

obtain even more accurate estimates of the parameter.

Stellenbosch University http://scholar.sun.ac.za



4-9

The objective is to determine the true level of safety E(mIX) at a location. For

this there are two clues - E(m) (from the generic method) and X (the historic

rate method). In order to determine the true level of safety - which is an

unknown parameter, the Bayesian method requires a subjective estimate of

this parameter. This is called the prior estimate. This estimate in itself is in all

likelihood an unreliable estimate of the true level of safety at a location and

has to be augmented with the observed accident experience X to obtain a

more accurate and reliable posterior estimate, E(mIX).

4.5.2 THEORETICAL FRAMEWORK

Unlike the conventional historical rate method which assumes the observed

accident frequency (X) to be a constant and an appropriate measure of safety

the Bayesian approach assumes the observed accident number to be variable

with a Poisson probability distribution with a mean of m - where m is the 'true'

level of safety at the location (Abbess et al. ; 1981).

x -mme
P(xlm} =--

xl ... [4.5]

It is further assumed that m is constant over time and that the observed

accident experience in different years are random variables that are Poisson

distributed about m (Abbess et al. ; 1981)

The Bayesian approach further assumes that m varies between different sites

and that the exact value for any particular site is unknown and is regarded as

a Gamma variable with the following probability density function: (Abbess et

al. ; 1981 and Higle and Witkowski; 1988)

... [4.6]

Where a, 13 are the parameters of the Gamma distribution.
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From Ang and Tang (1975) and Abbess et al. (1981)

E(m) = _ê_
a

... [4.7] VAR(m) = _ê_ = E(m)
a2 a

... [4.8]

The Empirical Bayesian method takes E(m) and VAR(m) to be the initial

(prior) estimates of the true level of safety at an entity. In order to obtain a

more reliable estimate of safety the observed accident experience, X, is

combined with E(m) and VAR(m), using Bayes theorem, to obtain the more

reliable posterior estimates, E(mIX) and VAR(mIX).

In order to apply Bayes theorem the following information is required:

• Values of E(m) and VAR(m).

• The Gamma parameters of E(m) - a and j3

• The observed accident experience - X

4.5.3 ESTIMATING E(m) and VAR(m)

According to Hauer (1997) there are two ways to determine E(m) and

VAR(m):

• The method of sample moments

• The multivariate regression method

Both of these methods require a suitable reference population.

4.5.3.1 REFERENCE POPULATION

The Bayesian approach requires a reference group to determine the prior

distribution of m -the true level of safety at a location.

Hauer (1998) provides the following definition of what a reference population

is:
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"A reference population of entities is the group of entities that share the same

set of traits as the entity in the safety of which we have an interest. "

Accident histories should not be considered in the selection process otherwise

a biased estimate of m will be obtained.

Since the effect of the prior distribution diminishes as it is updated with

observed data to form the posterior distribution the selection criteria for

suitable reference group sites can be relaxed somewhat in order to ensure a

sufficient sample size of sites.

In order to apply the multivariate regression method to estimate the safety of

signalised intersections, Hauer et al. (1988) used a reference group that

consisted of 145 four-legged, fixed time intersections in Metropolitan Toronto

that carried two-way traffic on all approaches and which have no turn

restrictions. All the intersections are on straight level sites with a speed limit of

60 km/h.

Bélanger (1994) used a reference group consisting of 149 four-legged

intersections with stops on the minor approaches to estimate the safety of 4-

legged unsignalised intersections. All the intersections are located in eastern

Quebec. In a similar study to estimate the safety of 2-way stop controlled

intersections on rural highways in Minnesota, Bonneson and McCoy (1993)

used a reference group that consisted of 125 rural, four-legged, two way stop

controlled intersections. In both these studies the multivariate regression

method was used to determine E(m) and VAR(m).

To determine the safety effect of resurfacing operations on rural roads in

Indiana AI-Maseied et al. (1993) used a reference group consisting of 95

undivided rural road segments to estimate E(m) and VAR(m) for the before

and after periods using the method of sample moments.
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4.5.3.2 THE METHOD OF SAMPLE MOMENTS

Assume there is a reference group consisting of n entities, and that each

entity experienced Xrj accidents during the study period. The mean (Il) and

standard deviation (S2) of the observed accident frequencies are determined

as follows:

2 1 ~ ( )2
S =--Li Xri-Il

n -1 i=1

...[4.9] ...[4.10 ]

According to Hauer (1997) the values of E(m) and VAR(m) are estimated as

follows:

E(m) = Il ...[ 4.12]...[4.11 ]

EXAMPLE 4.3

Consider Year 1 of the experimental data contained in Appendix A.

Table 4.2: Year 1 data - estimation of mean and variance.

X n(X) X*n(X)/n (X-Il)'
0 40 0.000 0.655
1 91 0.091 0.845
2 161 0.322 0.675
3 164 0.492 0.180
4 155 0.620 0.000
5 145 0.725 0.132
6 87 0.522 0.332
7 65 0.455 0.567
8 45 0.360 0.703
9 25 0.225 0.613
10 11 0.110 0.390
11 7 0.077 0.338
12 4 0.048 0.253

SUM 1000 4.047 5.683

Il = 4.047 and S2 = 5.683.

E(m) = 4.047 accidents/year and VAR(m) = 5.683 - 4.047 = 1.636
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Allowing for exposure

Assume there is a reference group consisting of n entities, and that each

entity experienced Xr; accidents during the study period and that each entity

has a level of exposure equal to Er;.

Let Rri be the accident rate at reference entity i :

R. = Xr;

n E.
n

...[4.13 ]

The mean accident rate for the reference population and its variance can be

estimated as follows:

...[4.14 ] 2 1 f. - 2
SR = -L.,; (R -Rr;)

n -1 ;=1

...[4.15]

The harmonic mean of all the normalised traffic volumes can be determined

as follows

lIn 1-,=-I-
E n ;=1 Er;

... [4.16]

According to AI-Maseied et al. (1993) E(m) and VAR(m) can be determined as

follows:

E(m) = R ...[2.17] VAR(m) = E's! -R
E'

...[2.18 ]

Calculating E(m) and VAR(m) using the above expressions are based on the

assumption that the relationship between X and E for each entity in the

reference group is linear i.e. that the Safety Performance Function is linear. If
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this assumption of a linear SPF does not hold the multivariate regression

method should be used to estimate E(m) and VAR(m).

4.5.3.3 THE MULTIVARIATE REGRESSION METHOD

It is often necessary to estimate the safety of entities for which a sizeable

reference group population does not or cannot exist. It has been noted before

that if the accident experience at a site is non-linearly related to its exposure

then such a site cannot be compared to sites which do not have the same

level of exposure. Therefore if the objective is, for example, to measure the

safety of a section of a 2-lane rural road that carries 2000 vehicles per day the

reference population should ideally also consist of 2-lane rural roads that carry

2000 vehicles per day. It is obvious that this requirement will in all likelihood

result in a reference population with very few entities, if any (Hauer; 1997).

This problem can be overcome by using multivariate regression models.

Multivariate models, according to Hauer (1998), serve to 'create' an imagined

reference group from which E(m) and VAR(m) can be determined. When a

multivariate model is being fitted to accident data, it is to estimate E(m) as a

function of variables called 'covariates' . These 'covariates' can also be

referred to as the traits or characteristics of an entity.

Hauer (1998) proposed the following procedure to estimate E(m) and VAR(m)

using the multivariate regression method:

1) Develop, using data from a sufficiently large and homogenous group of

reference sites, a set or sets of accident models using multivariate

regression modelling techniques.

...[4.19]

2) For a specific site estimate the values of E(m) and VAR(m) as follows:
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E(m) = II., r, ...[4.20 ] VAR (m) = [Ei (m) ]2
, k ...[4.21 ]

k - Dispersion parameter.

The value of k is obtained as an 'output' from the regression analysis

procedure. (Chapter 7)

4.5.4 APPLYING BAYES THEOREM

The objective of this section is to show how the Bayes Theorem can be used

to estimate the safety of single entities "and groups of entities, with and without

exposure information.

4.5.4.1 SINGLE ENTITY: ACCIDENT NUMBER METHOD

According to Ang and Tang (1975) the Bayesian method can be applied to the

Gamma distribution as follows:

Assume X accidents were observed over a period of n years at an entity and

E(m) is expressed as accidents per year. The posterior gamma parameters

are determined as follows:

a' = a + n

13' = 13 + X

... [4.22]

... [4.23]

With

...[4.24]

VAR(m I X) = E(m I X)
a+n

...[4.25]
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The following equations can be derived by Substituting Equations 4.22 and

4.23 into Equations 4.24 and 4.25.

x
E(m I X) = aE(m) + (l-a)-

n
...[4.26]

VAR(m I X) = (l-a)E(m I X) ...[4.27]

where

E(m)
...[4.28]a=------

E(m) +nVAR(m)

It is evident that Equation 4.26 is similar to Equation 4.4 with WI = a and W2 =
t-e.

According to Persaud (1993) if the variance VAR(mIX) is large, i.e. when there

is much unexplained variation then a will be small and the estimate will be

closer to the value of X. This situation could arise when the level of exposure

is quite high. For very high exposure locations therefore the observed

accident count X could be a reasonably accurate safety estimate. When the

amount of unexplained variation is low i.e. when VAR(mIX) is small i.e.

VAR(mIX) « E(mIX) the value of a will become large and the estimate will be

closer to the value of E(m). This situation will typically arise when exposure

levels are low.

Equation 4.26 can be rewritten as follows (Hauer; 1997) :

E(m I X) = X +a[E(m) -Xl ...[4.29]

If the observed accident frequency X is larger than E(m) it means that the

value of X has a large random error associated with it. In this case Equation

4.29 applies a correction factor to X i.e. a[E(m)-X}. Since X is larger than E(m)

Stellenbosch University http://scholar.sun.ac.za



4-17

this correction factor will be negative. Equation 4.29 serves to illustrate the

process by which the Empirical Bayesian approach deals with the random

error inherent in accident number observations (Hauer; 1997).

The use of Equations 4.26, 4.27 and 4.28 to estimate the safety of a location

is illustrated in Example 4.4.

EXAMPLE 4.4

Consider the experimental site with ID = 9. In the 5 year period a total of 17 accidents were

recorded at this site. i.e. X = 17 and n = 5. From Example 4.3 : E(m) = 4.047 and VAR(m) =
1.636.

From Eqn 4.28 : a = 4.047/(4.047+5(1.636» = 0.33

From Eqn. 4.26 : E(mgIX) = 0.33(4.047) + (1-0.33)(17)/5 = 3.61 ace/year

From Eqn. 4.27 : VAR(mgIX) = (1-0.33)(3.61) = 2.42

4.5.4.2 GROUP OF ENTITIES: ACCIDENT NUMBER METHOD

According to AI-Maseied et al. (1993) the expected number of accidents at a

group of n similar locations is obtained by using the convolution principle as

follows:

... [4.30]

Where mt has a gamma probability density function with parameters Ll3'i and
,

a.

... [4.31]

The expected mean and variance of mt are :

VAR(m ) = L (3';
I (a') 2

... [4.33]... [4.32]
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The use of these equations to estimate the safety of a number of sites in the

experimental group of data in Appendices A1 and A2 is illustrated in Example

4.5.

EXAMPLE 4.5

In Example 4.3 the prior estimates, E(m) and VAR(m) were determined to be equal to 4.046

and 1.636 respectively. The prior Gamma parameters are as follows:

a = 4.046/1.636 = 2.47 and f3 = (4.046)2/1.636 =10.0

X in this example represents the total accident number for a three year period i.e. n = 3

Table 4.3 : Groups of entities - accident number method

ID X f3' a' E(mlxj) VAR(mIX1)

1 7 17.00 5.47 3.11 1.77
2 11 21.00 5.47 3.84 2.69
3 18 28.00 5.47 5.12 4.79
4 11 21.00 5.47 3.84 2.69
5 16 26.00 5.47 4.75 4.13
6 11 21.00 5.47 3.84 2.69
7 7 17.00 5.47 3.11 1.77
8 15 25.00 5.47 4.57 3.82
9 10 20.00 5.47 3.66 2.44
10 7 17.00 5.47 3.11 1.77

TOTALS 213.000 38.94

Using Equations 4.30 and 4.32 :

E(mt) = 38.94

VAR(mt) = 213/(5.47)2 = 7.12

4.5.4.3 SINGLE ENTITY: ACCIDENT RATE METHOD

Assume the site under consideration experienced X, accidents and has a

exposure equal to Es.

Let Rs be the accident rate at the study site :-
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R = Xs

s E
s

... [4.34]

Where Es = Annual traffic in million vehicles (AADT*365/106).

The estimated prior parameters of the gamma distribution is as follows: (Refer

to Eqn. 4.17 and 4.18]

a= =--=
VAR(m) E's;-R
E(m) E'R

... [4.35] f3 = [E(m)]2 = Ra
VAR(m) ... [4.36]

Where E' = Harmonic mean [Eqn. 4. 161, R = Mean accident rate [Eqn. 4. 141

and sl = Variance of accident rates [Eqn. 4. 151.

Once the parameters of prior distribution have been determined, the next step

is to combine the prior information with the site-specific data to obtain the

posterior distribution.

a'=a +E, ... [4.37] . .. [4.38]

E (m I X s ,Es) = ~ = f3 + X s
a' a +E,

...[4.39]

f3' f3+XsVAR(m I Xs,E.) = --2 = 2
(a') (a+E.) ...[4.40]

Substituting Equations 4.35 and 4.36 into Equations 4.39 and 4.40 will yield

the following equations for E(mIXs, EJ and VAR(mIXs, EJ:

E (m I X s ,Es) = ( Es JRs + ( a JE (m)
Es +a Ei +a

... [4.41]
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VAR(m I Xs,E,) =( Es ]E(m I Xs,E,)
Es+a ...[4.42]

where

E'R ... [4.43]a =-~--=
E's2 -RR

where E' - the harmonic mean of the exposures (E) of all sites in the

reference group.

The 'true' level of safety at a site is a combination of the observed accident

rate (R) and the underlying Gamma mean, E(m). As mentioned before in

Section 4.2b at low levels of exposure the accident rate R becomes unstable.

In Equation 4.41 the significance of R decreases with decreasing values of E

while the significance of E(m) increases. Thus when a site has a low level of

exposure its 'true' level of safety will be closely related to the average level of

safety for similar locations while the level of safety at a site with a high level of

exposure wi" be closely related to the observed accident rate.

EXAMPLE 4.6

Appendix 81 contains accident and exposure information of a number of road sections in the

Western Cape. All these road sections consist of two 3.7m lanes with 2.4 m wide surfaced

shoulders.

E(m) = R = 0.78 82 = 0.84 E' = 4.44

a = (4.44*0.78)/(4.44*0.84-0.78) = 1.18 and 13 = 1.18*0.78 = 0.92

Consider the section of NR01004 between km 27.78 and km 54.24. During 1994 a total of 8

accidents were recorded on this section of road. During 1994 the AADT = 3085.

Continue ....
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Example 4.6 (continue)

Xs = 8

Es= (54.24-27.78)*3085 * 365*1000000 = 29.8 mvkm

Rs = 8/29.8 = 0.269 acc/mvkm

13' = 0.92 + 8 = 8.29 and a' = 1.18 + 29.8 = 30.97

E(mIXs,Es) = 8.29/30.97 = 0.29 acc/mvkm

VAR(mIXs,Es) = 0.29/30.97 = 0.009

4.5.4.4 GROUP OF ENTITIES: ACCIDENT RATE METHOD

According to AI-Maseied et al. (1993) at the group of entities level, the total

expected accident rate is given by the sum of the individual accident rates.

The total expected accident rate (rt) for a group of n sites is given by:

... [4.44]

The expected value and variance of rt is given by :

VAR(r ) = {' __ê_J_
I LJ 12

i=1 cx i
... [4.46]... [4.45]

The Gamma parameters of rt can be estimated as follows:

E(r/)cx = _ __;__
/ VAR(r/)

f3 = [E(r/)f
/ VAR(~)

... [4.48]... [4.47]

4.5.5 PERFORMANCE

To assess the effect of different study periods on the accuracy of the

Bayesian safety estimates the accident number method was used to perform

the analysis in Example 4.7 and Appendix A2.
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EXAMPLE 4.7

E(m) and VAR(m) were calculated from Year 1 data using the method of sample moments.

Please see Example 4.3.

Using Equation 4.27 the values of mij were estimated for each of the 1000 sites for each

'collection' period from 1 to 5 years.

mij = aE(m) + (1-a)X;jj

aj = E(m)I[E(m) + jVAR(m)]

Where i = 1 to 1000 and j = 1 to 5

Xij - The sum of accidents at entity i for years 1 to j.

The next step was to compare the true level of safety (mli) with its estimate mij by using the

following measure of deviation:

The next step was to compile a cumulative histogram for each collection period.

100

80

60

<fi. -0- 1 Year

-0- 2 Year
40

--00- 3 Year

-d- 4 Year

20 ..... 5 Year

Deviation

Figure 4.5 : Bayesian estimation: comparison of different study periods

Continue ....
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Example 4.7 (continued)

Figure 4.5 shows the cumulative density functions associated with the degree-at-deviation for

the 5 different collection periods. It is evident that as the collection period increases the

estimates become more accurate, but that the rate of increase diminishes as the collection

period increases.

Table 4.4: Summary statistics: Conventional and Bayesian methods

Period Mean Median Min. Max. Lower Upper Quartile Std.Dev
Quartile Quartile Range .

Conventional
1 Year 42.9 35.0 0.03 302.8 16.3 61.4 45.2 35.7
2 Year 30.0 26.3 0.03 153.6 11.7 41.8 30.1 23.2
3 Year 24.6 20.8 0.05 110.4 9.0 36.1 27.0 19.0
4 Year 21.7 18.0 0.03 97.1 8.5 31.7 23.2 16.4
5 Year 18.7 15.9 0.03 91.5 7.9 26.4 18.5 14.3

Bayesian
1 Year 27.9 20.3 0.04 484.4 10.1 36.1 26.0 30.2
2 Year 22.9 17.3 0.02 391.4 7.7 30.4 22.7 23.9
3 Year 20.3 . 15.9 0.03 301.5 7.7 27.4 19.7 19.7
4 Year 18.5 14.6 0.03 239.4 7.0 25.1 18.1 17.0
5 Year 17.1 13.9 0.01 193.9 6.8 23.4 16.7 15.2

It is evident from Figure 4.6 and Table 4.4 that for similar collection periods the accuracy of

the Bayesian estimates are consistently better than that of the Conventional estimates. It

appears that almost the same degree of accuracy can be obtained with the 1 Year Bayesian

estimates as with the 3 Year Conventional estimates.
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Figure 4.6: Degree -of-deviation: Bayesian vs. Conventional methods
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4.5.6 THE MULTIVARIATE REGRESSION METHOD WITHOUT A

REFERENCE GROUP

According to Mountain and Fawaz (1991) there are some practical issues to

consider when applying the multivariate regression method.

The determination of parameters using regression modelling requires a

sufficiently large sample of reference sites in terms of measurable

characteristics. If the size and homogeneity of the reference group is

sacrificed it will increase bias and the variability of the parameters.

In cases where a sufficient group of reference sites is not available it is more

practical to use an existing model suitable for the type of site under

investigation. It is however first necessary to obtain estimates of k, the shape

parameter of the assumed Gamma distribution for the between site variation

in m.

If already developed models are used then k cannot be estimated directly. In

such a case Mountain and Fawaz (1991) propose two possible approaches:

a) Assumean appropriate rangeof values for k.

This approach does not require a reference group of sites to determine

E(m).

According to Mountain and Fawaz (1991) a number of authors have

fitted negative binomial distributions to observed accident frequencies

and obtained k values in the range 0.5 to 2.8. This approach is

considered not preferable because the use of even narrow ranges of k

values can result in wide ranging estimates of safety.
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EXAMPLE 4.8

Persaud and Musci (1995) developed the following regression model to predict the

number of accidents per year per kilometre on rural 2-lane undivided roads:

A = l.3392(Q)08310 k = 2.9

A - Accidents/kilometre/year

Q - ADT ( 1000 vehicles)

Assume that for study road segment the AADT = 2000 i.e. Q = 2 and X = 4

E(m) = 1.3392(2)°·8310= 2.38 acc/km/year

Var(m) = (2.382)/k

Table 4.5 : Calculations

k Var(m) E(m) A X E(mIX) D (%)
0.5 11.32 2.38 0.17 4 4.41 16.9
0.9 6.29 2.38 0.27 4 4.65 12.4
1.3 4.35 2.38 0.35 4 4.84 8.9
1.7 3.33 2.38 0.42 4 4.99 6.0
2.1 2.70 2.38 0.47 4 5.12 3.6
2.5 2.27 2.38 0.51 4 5.22 1.7
2.9 1.95 2.38 0.55 4 5.31 0.0

E(mIX) = aE(m) + (1-a)X

a = E(m)/[E(m) + VAR(m)]

D = 100*[5.31-E(mIX)]/5.31

The real value of k = 2.90 and hence the 'true' value of E(mIX) is 5.31. D therefore

measure by how much the values of E(mIX) obtained at different values of k deviate

from the 'true' value = 5.31

b) Estimate an appropriate value of k

Mountain and Fawaz (1991) maintain that instead of assuming a value

for k a more preferable approach would be to estimate k using such

data as are available about the population of sites under study. If there
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are insufficient data to determine a reliable k for sites similar to the

study site then a broader grouping of sites can be used to generate a

sufficient number of sites.

If a broader grouping of sites is used then k can be estimated as
follows: -

1k =<j>(1+-)
8

... [4.49]

Where <j> is determined from fitting a negative binomial distribution to

the observed accident frequencies of each site in the reference group.

The value of <j> can be estimated from the method of moments as

follows:

-2
X

<j> = 2 -
Sx -x

... [4.50]

The value of 8 can be determined from fitting a Gamma distribution to

the values of y for each site. Where y is the predicted number of

accidents at a site using the prediction model.

-2
8= Y2 -

_ Sy - Y
... [4.51]
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4.5.7 THE MULTIVARIATE REGRESSION METHOD

COHERENT APPROACH
A MORE

The content of this section is based exclusively on the pioneering work done

by Hauer (1997) in his book Observational Before-and-After Studies in Road

Safety (Pergamon).

According to Hauer (1997) one of the major impediments of the 'classical'

multivariate regression method as discussed thus far is that a single estimate

of mj is determined for the whole analysis period. This is based on the

assumption that over the analysis period the 'true' level of safety at a location

(mj) remains unchanged. A further impediment, is that a fixed analysis period

is assumed, based on the notion that accident information prior to this period

contains no useful information.

4.5.7.1 THEORETICAL FRAMEWORK

Assume there is a reference group consisting of n sites. At each site accident

data and covariate values are available for each of the years y = 1, 2, .....Y.

Using multiple regression analysis a multiple regression model can be fitted

to the data for each of the years y = 1, 2, .....Y.

For example:

E(mi) = L,ayQrY

VAR(mi,y) = [E(m,)F / k

...[4.52]

...[4.53]

where

E(mj,y} - Denote the mean of the m/s in year 'y' for all entities in the

imagined reference population of entity i.

VAR(mj,y} - Denote the variance of these mïs
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k-

0.-I,y

The dispersion parameter obtained from negative binomial

regression analysis.

Traffic flow at entity i in year y.

The length of entity i.

In the above model the purpose of the ay's is to capture the influence of all

factors that change from year to year, except for the change in traffic flow. The

influence of changes in traffic flow is accounted for separately through Qf3. It is

stated that the ay's can be used to account for the joint influences of year-to-

year changes in weather, in economic conditions, the inclination to report

accidents etc. The absence of a subscript 'i' indicates two beliefs. First that

weather, economic conditions and similar factors changed in the same

manner on all road sections in the reference group. Second, that the effect of

a specific change from year-ta-year affects all road sections in the same

manner (Hauer; 1997).

The objective is to estimate mi,y , the expected number of accidents of the

entity i in year y, knowing that the entity experienced Xj,1 , Xj,2 , ... Xj,y

accidents, The different values of mj,y for an entity i are not independent of

one another. According to Hauer (1997) certain characteristics of an entity do

not change from year to year e.g. lane widths, gradient, curvature etc. Some

characteristics do however change from year to year - as quantified by the

a/s, e.g. weather, economic situation, traffic composition etc. One can

therefore expect that there will be some similarity in mi over the years, but that

there will also be some change in mi from year to year.

Hauer (1997) provides a detailed derivation of the following expressions:

m E(m)~= I,y =c.
mi,! E(mi,J) I.y

...[4.54]

m. =m.!c.I,y I, I,y
...[4.55]
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...[4.56]

The underlying assumption of these expression is that how the mi of an entity

changes from year to year can be adequately represented by the change in

the covariates over time, and by the model equation. The effect of these

expressions is that mi; and VAR(mi,y) are all a function of m,».

Hauer (1997) provides the following expressions to estimate mi,1 and

VAR(mi,1) :

...[4.57]y=1
mi.1 ==r=z:':
--+ICiy
E(m,) y=1 •

mi•1
VAR(mi I) = Y. k--+IciYE (mi•l) y=1 .

.,,[4.58]

The use of these equations to estimate the safety of an entity, as it changes

from year to year, is illustrated in Example 4.9.
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EXAMPLE 4.9

Consider a hypothetical segment of road with length = 2km that during a 6 year

period experienced the following number of accidents - {4, 1, 3, 4, 2, 5}. Using a

reference group of similar sites a total of 6 multivariate regression models were fitted

to the data, one for each year, - similar in form to the model in Equation 3.5. The f3
parameter for all the models = 0.78. The a parameters for six different models are

shown in the Table below. The k value obtained from calibrating the prediction model

for year 1 = 4.5

Table 4.6 : Data and calculations

y ay QI,y E(ml,y) c., X1,y mhy VAR(ml,y)

1 0.00271 1250 1.41 1.000 4 2.49 0.264
2 0.00295 1156 1.45 1.024 1 2.55 0.277
3 0.00277 1277 1.47 1.039 3 2.59 0.285
4 0.00265 1334 1.45 1.029 4 2.56 0.280
5 0.00284 1288 1.51 1.073 2 2.67 0.304
6 0.00278 1305 1.50 1.061 5 2.64 0.297

TOTALS 6.226 19 15.5

From Eqn. 4.57 and Eqn. 4.58:

m;,1= (4.? + 19)/(4.5/1.41 + 6.226) = 2.49

VAR(m;,1) = 2.49/(4.5/1.41 +6.226) = 0.264

From Eqn. 4.55 and Eqn. 4.56:

m;,2= 2.49 (1.024) = 2.549

VAR(md = (1.024)2(0.264) = 0.277
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4.5.8 STATISTICAL INFERENCE

Both prior an posterior Bayesian safety estimates follow a Gamma

distribution.

If the parameters of the Gamma distribution are known, using distribution

theory, a number of statistical inferences can be made concerning the safety

estimate of an entity or a group of entities.

The following inferences could be of interest:

• The probability that the safety estimate lies between two values.

• The probability that the safety estimate lies above or below a certain value.

• The values of two-tailed or one-tailed confidence intervals.

• The probability of two Bayesian estimates being different from one

another.

The probability density function of a Gamma distribution is as follows:

...[4.59]

To determine the probability that m is larger than b and smaller than a the

probability distribution function can be used as follows:

b j3a a-I -j3m

P(a < m $, b) = f m e dm
a r(a)

...[4.60]
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In Figure 4.7 the probability density function and probability distribution

function of an estimate with parameters a = 1 and f3 = 3.4 is shown.

ProbabilityDensityFunction
0.75 r----..-,.-~..,.-~-.__-.....,

0.50 . . .-.--_._ _ ~ _------· .· .· .· .· .· .· .· .· ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,· ., ,, ,, ,-.- .. _ -, ,, ,, ,, .· ,, ,, ,· ,, ,, ,, ,, ,· ., ,

ProbabilityDistributionFunction

0.8 . ··1 r I
:: :J I: :1--:
0.2 1 1 \ ·.
0.0 1.....o«.._.......J.._~--'-~_.....__. _ __,

0.0 2.5 5.0 7.5 10.0

0.25

Figure 4.7: Probability density and distribution functions for a Gamma
distribution with a = 1 and 13= 3.4.

The integral in Equation 4.59 can be solved using the GAMMADIST function

of Microsoft® Excel® as shown in Table 4.7. In any Excel® function that

refers to the Gamma distribution alpha = f3 and beta = 1lo:

Table 4.7 : Using the GAMMADIST function of Excel®

Prob. Function

P(m:s; b) =GAMMADIST(b,j3, 11a, TRUE)

P(a < rn s b) =GAMMADIST(b,j3, 11a, TRUE) - GAMMADIST(a,j3, 11a, TRUE)

P(m > b) =1- GAMMADIST(b, 13, 1la, TRUE)

To determine the value of merit for which P(m ::; merit)= 0.95 the GAMMAINV

function of Microsoft® Excel® can be used as follows:

=GAMMA IN V(O.95,13, 11a) ...[4.61]
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The critical values of m at which P(m ~ meriJ = 0.95 or P(m s meriJ = 0.05 can

be obtained from Tables 4.8 and 4.9 respectively. These Tables are used as

follows:

a) Using the f3 parameter of the Gamma distribution locate the

appropriate value of G.

b) Having obtained the G value merit is obtained using the a parameter

as follows:

merit = Gla ...[4.62]

EXAMPLE 4.10

In Example 4.6 the following estimates were obtained for a segment of road:

E(mIXs,Es) = 8.29/30.97 = 0.29 acc/mvkm

VAR(mIXs,Es) = 0.29/30.97 = 0.009

The Gamma parameters are:

f3' = 0.92 + 8 = 8.92

a' = 1.18 + 29.8 = 30.98

To determine the meritsuch that P(m ~ merit)= 0.05 obtain from Table 4.9 the value of G where

f3 = 8.9.

G = 4.84 and merit= 4.84/30.97 = 0.156.

To determine meritsuch that P(m ~ merit)= 0.95 obtain from Table 4.8 the value of G where f3 =
8.9.

G = 14.32 and merit= 14.32/30.97 = 0.462.

The 90 % confidence interval of E(mIX,E) is therefore {0.156; 0.462}.
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AI-Masaeid et al. (1993) provides the derivation for the following expressions

that can be used to determine the probability that two Bayesian estimates are

different from each other:

Assume there are two locations with Bayesian estimates mt and m2
respectively. The Gamma parameters of Site 1 are a and f3 while the Gamma

parameters of Site 2 are a' and [3'.

Assuming that m1 and m2 are independent the joint probability density function

is given by :

p'1(l' a'-I -j3'mzIJ mz e ...[4.63]
r{a')

P(m1< m2) can be estimated as follows:

a-I [ f3 J[ f3' Ja '+ J r(a '+ j)
pim, <mz) =1- ~ IV f3'+f3 r(j+1)r(a')

... [4.64]

The Eqn. 4.64 can be solved using a spreadsheet. E.g. the Gamma function

r(a') can be solved using a combination of the EXP and GAMMALN functions

in Microsoft® Excel®. r(a') = EXP(GAMMALN(a 'J).

EXAMPLE 4.11

Two sites have the following parameters:

Site 1 a = 4.0, 13 = 1.9, E(malxa) = 2.10

Site 2: a' = 3.4 , j3' = 1.2, E(mblxb) = 2.80

lf D . = [_ê_J[-j3'_Ja '+ j l(a '+j)
J 13' j3+j3' '['(j+l)l(a')

Then Do = 0.46 and D1 = 0.25

0.9
"J- DJ' = DO + 0.9D1 = 0.46 + 0.9(0.25) = 0.685
]=1

P(m1 < m2) = 1 - 0.685 = 0.315
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Table 4.8 : Incomplete Gamma function values (a = 1 ) : 95 % Degree of Confidence

j3 G j3 G j3 G j3 G
0.1 0.58 4.1 7.90 8.1 13.28 12.1 18.33
0.2 1.03 4.2 8.04 8.2 13.41 12.2 18.46
0.3 1.37 4.3 8.18 8.3 13.54 12.3 18.58
0.4 1.66 4.4 8.32 8.4 13.66 12.4 18.70
0.5 1.92 4.5 8.46 8.5 13.79 12.5 18.83
0.6 2.16 4.6 8.60 8.6 13.92 12.6 18.95
0.7 2.38 4.7 8.74 8.7 14.05 12.7 19.07
0.8 2.60 4.8 8.88 8.8 14.18 12.8 19.20
0.9 2.80 4.9 9.02 8.9 14.31 12.9 19.32
1.0 3.00 5.0 9.15 9.0 14.43 13.0 19.44
1.1 3.19 5.1 9.29 9.1 14.56 13.1 19.57
1.2 3.37 5.2 9.43 9.2 14.69 13.2 19.69
1.3 3.55 5.3 9.57 9.3 14.82 13.3 19.81
1.4 3.73 5.4 9.70 9.4 14.94 13.4 19.93
1.5 3.91 5.5 9.84 9.5 15.07 13.5 20.06
1.6 4.08 5.6 9.97 9.6 15.20 13.6 20.18
1.7 4.25 5.7 10.11 9.7 15.33 13.7 20.30
1.8 4.42 5.8 10.24 9.8 15.45 13.8 20.42
1.9 4.58 5.9 10.38 9.9 15.58 13.9 20.55
2.0 4.74 6.0 10.51 10.0 15.71 14.0 20.67
2.1 4.91 6.1 10.65 10.1 15.83 14.1 20.79
2.2 5.06 6.2 10.78 10.2 15.96 14.2 20.91
2.3 5.22 6.3 10.91 10.3 16.08 14.3 21.03
2.4 5.38 6.4 11.05 10.4 16.21 14.4 21.16
2.5 5.54 6.5 11.18 10.5 16.34 14.5 21.28
2.6 5.69 6.6 11.31 10.6 16.46 14.6 21.40
2.7 5.84 6.7 11.45 10.7 16.59 14.7 21.52
2.8 5.99 6.8 11.58 10.8 16.71 14.8 21.64
2.9 6.15 6.9 11.71 10.9 16.84 14.9 21.77
3.0 6.30 7.0 11.84 11.0 16.96 15.0 21.89
3.1 6.44 7.1 11.97 11.1 17.09 15.1 22.01
3.2 6.59 7.2 12.11 11.2 17.21 15.2 22.13
3.3 6.74 7.3 12.24 11.3 17.34 15.3 22.25
3.4 6.89 7.4 12.37 11.4 17.46 15.4 22.37
3.5 7.03 7.5 12.50 11.5 17.59 15.5 22.49
3.6 7.18 7.6 12.63 11.6 17.71 15.6 22.61
3.7 7.32 7.7 12.76 11.7 17.84 15.7 22.73
3.8 7.47 7.8 12.89 11.8 17.96 15.8 22.86
3.9 7.61 7.9 13.02 11.9 18.08 15.9 22.98
4.0 7.75 8.0 13.15 12.0 18.21 16.0 23.10
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Table 4.9 : Incomplete Gamma function values (a = 1): 5 % Degree of Confidence

f3 G f3 G f3 G f3 G
0.1 0.00 4.1 1.42 8.1 4.05 12.1 7.00
0.2 0.00 4.2 1.48 8.2 4.12 12.2 7.08
0.3 0.00 4.3 1.54 8.3 4.19 12.3 7.15
0.4 0.00 4.4 1.60 8.4 4.26 12.4 7.23
0.5 0.00 4.5 1.66 8.5 4.34 12.5 7.31
0.6 0.01 4.6 1.72 8.6 4.41 12.6 7.38
0.7 0.01 4.7 1.78 8.7 4.48 12.7 7.46
0.8 0.02 4.8 1.85 8.8 4.55 12.8 7.54
0.9 0.03 4.9 1.91 8.9 4.62 12.9 7.61 .
1.0 0.05 5.0 1.97 9.0 4.70 13.0 7.69
1.1 0.07 5.1 2.03 9.1 4.77 13.1 7.77
1.2 0.09 5.2 2.10 9.2 4.84 13.2 7.84
1.3 0.12 5.3 2.16 9.3 4.91 13.3 7.92
1.4 0.15 5.4 2.22 9.4 4.99 13.4 8.00
1.5 0.18 5.5 2.29 9.5 5.06 13.5 8.08
1.6 0.21 5.6 2.35 9.6 5.13 13.6 8.15
1.7 0.24 5.7 2.42 9.7 5.20 13.7 8.23
1.8 0.28 5.8 2.48 9.8 5.28 13.8 8.31
1.9 0.32 5.9 2.55 9.9 5.35 13.9 8.39
2.0 0.36 6.0 2.61 10.0 5.43 14.0 8.46
2.1 0.40 6.1 2.68 10.1 5.50 14.1 8.54
2.2 0.44 6.2 2.75 10.2 5.57 14.2 8.62
2.3 0.48 6.3 2.81 10.3 5.65 14.3 8.70
2.4 0.53 6.4 2.88 10.4 5.72 14.4 8.78
2.5 0.57 6.5 2.95 10.5 5.80 14.5 8.85
2.6 0.62 6.6 3.01 10.6 5.87 14.6 8.93
2.7 0.67 6.7 3.08 10.7 5.94 14.7 9.01
2.8 0.72 6.8 3.15 10.8 6.02 14.8 9.09
2.9 0.77 6.9 3.22 10.9 6.09 14.9 9.17
3.0 0.82 7.0 3.29 11.0 6.17 15.0 9.25
3.1 0.87 7.1 3.35 11.1 6.24 15.1 9.32
3.2 0.92 7.2 3.42 11.2 6.32 15.2 9.40
3.3 0.98 7.3 3.49 11.3 6.39 15.3 9.48
3.4 1.03 7.4 3.56 11.4 6.47 15.4 9.56
3.5 1.08 7.5 3.63 11.5 6.55 15.5 9.64
3.6 1.14 7.6 3.70 11.6 6.62 15.6 9.72
3.7 1.19 7.7 3.77 11.7 6.70 15.7 9.80
3.8 1.25 7.8 3.84 11.8 6.77 15.8 9.88
3.9 1.31 7.9 3.91 11.9 6.85 15.9 9.96
4.0 1.37 8.0 3.98 12.0 6.92 16.0 10.04
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4.6 SUMMARY and CONCLUSION

In this Chapter both the Conventional and Bayesian methodologies were

presented to measure the safety of road infrastructure elements. Certain

shortcomings of the Conventional methods to road safety measurement were

identified and discussed. The Empirical Bayesian methodology was discussed

in detail and it has been shown how Bayesian methods can compensate for

the shortcomings of the Conventional methods.

It has been shown from analysing the experimental data in Appendices A1

and A2 with both the Conventional and Bayesian methodologies that the latter

produce results that are generally more accurate, but that the relative 'benefit'

of using the Bayesian method decreases as the study period increases.

Certain impediments of the 'classical' Bayesian methods, as described in the

Chapter, were identified and a more coherent approach, based on the work of

Hauer (1997), was proposed. This approach acknowledged the fact that the

level of safety at a location may change from year to year.
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CHAPTER 5

THE IDENTIFICATION AND RANKING OF HAZARDOUS LOCATIONS

5.1 INTRODUCTION

A road safety remedial programme requires an effective means of identifying

hazardous locations. Hazardous locations according to Deacon et al. (1997)

are those locations where the accident pattern or the level of safety are

abnormally severe when compared with similar locations elsewhere, and for

which improvements can be made through a variety of engineering measures.

The identification of hazardous locations is the first step in a road safety

remedial programme. In short the procedure is as follows:

a) Identification of hazardous locations.

b) Preliminary ranking of selected locations.

c) Detailed investigation.

d) Final ranking based on cost effectiveness.

e) Design and implementation.

f) Monitoring and evaluation.

Applying an identification procedure is an important first step because it would

be impractical to conduct a road safety investigation on each and every

location in the road network. The detailed investigation of sites as well as the

design and implementation of remedial measures require the application of

potentially scarce resources - money, time, equipment, personnel etc. Road

authorities generally have limited budgets for the purpose of implementing

road safety remedial programmes. It is therefore the road authority's

responsibility and moral obligation to ensure that resources are applied in a

manner, and to those sites, that will yield the maximum possible economic

returns. In identifying hazardous locations it is important that the chosen
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methodology selects as many of the truly hazardous locations as possible and

discards as many of the non-hazardous locations as possible.

Hauer and Persaud (1984) compare the identification process to a 'sieve' that

retains the hazardous locations and lets the non-hazardous locations through.

The degree of efficiency of an identification process is defined as the degree

to which it retains truly hazardous locations and discards truly non-hazardous

locations.

It is possible that the identification process yields more hazardous locations

than a road authority has the resources to investigate. Ranking the selected

hazardous locations according to the safety benefits that could potentially be

achieved at a site, would ensure that available resources are applied to those

hazardous locations that would yield the best economic returns.

Methods to identify and rank hazardous locations can be divided into two

categories : Conventional methods and Bayesian methods. Conventional

methods rely on conventional safety estimates, and Bayesian methods rely on

Bayesian safety estimates and, in some cases, Safety Performance

Functions.

The objective of this Chapter is to present and to evaluate both the

Conventional and Bayesian methodologies. These two methodologies will be

compared in terms of their efficiency and ability to rank hazardous locations

according to their expected economic benefits.

5.2 PROGRAMME DESIGN

Nicholson (1989) refers to 4 types of plans for accident reduction :-

a) Single site plans

• The treatment of single hazardous locations e.g. intersections, ramps,

bridges, horizontal curves, short segments.
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b) Route plans

• A whole route or road segments with a poor level of safety is treated

with a remedial measure, such as for example, surfacing gravel

shoulders, widening lanes, resurfacing etc.

c) Area action plans

• A number of remedial measures are implemented in an area that has

been identified as having a particularly poor safety record. For example

the implementation of various traffic calming measures (mini-circles,

speedhumps, street closures etc.) in a town or suburb would constitute

an area action plan.

d) Mass action plans

• A common accident problem is treated by an appropriate remedial

action. An example of a mass action plan would be the wide-scale

resurfacing of intersection approaches to reduce head-rear or right-

angle collisions at intersections.

According to Nicholson (1989) which type of plan is most appropriate to

implement can be determined by evaluating the level and extent to which

accidents are clustered in the study area. A high level of accident clustering

would indicate that a Single-site type plan would be the most appropriate,

while lower levels of clustering would indicate that Route or Area type plans

are more suitable.

Thus with high levels of clustering, in order to maximise the expected accident

reduction and economic benefit, a road authority should commence with a

single-site (blackspot) programme. If the programme is effective the level of

clustering should decrease, after which it may be necessary to adopt a higher

level of aggregation i.e. a Route ('blackroute') programme. Routes may

contain a number of single sites which do not qualify as 'blackspots' but when

considered together give 'blackroutes' .
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The successful treatment of such routes will lead to a further reduction in the

level of clustering to the extent that even a higher level of aggregation is

required.

Nicholson (1989) provides a number of methods to quantify the level of

accident clustering on a network, but fail to provide threshold values as to

when the different type of plans are more appropriate. The methods proposed

by Nicholson (1989) can however be used to assess whether or not there

were changes in the level of accident clustering.

According to Nicholson (1989) there is a natural progression from single-site

plans to area plans with the expected accident reduction and economic return

declining with the 'law of diminishing returns'.

Even though single-site plans yield the best results in terms of accident

reductions and economic benefits relative to the other type of plans it is not

always the most appropriate course of action to take. Nicholson (1989)

reports that since the mid 80's systematic accident reduction efforts in New

Zealand concentrated primarily on single-site plans, but that subsequently

analysis has shown this to be the wrong approach because of the low levels

of clustering that already existed at the time.

The identification and ranking in this chapter are aimed specifically at single-

site and route action plans.

5.3 COMPONENTS OF IDENTIFICATION METHODS

An important consideration when attempting to identify hazardous locations is

how to define single-sites and routes.

5.3.1 SINGLE SITES

According to Deacon et al. (1975) several considerations are paramount to

determining the appropriate spot length:
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a) The spot length can be no smaller than the minimum distance

increment for reporting accident locations. If accidents are reported to

the nearest 100m then the spot length cannot be less than 100m.

b) The spot length should influence errors that will occur in reporting

accident locations. Such errors are inevitable partly because reference

markers are normally spaced at distances of 1km apart. According to

Deacon et al. (1975) a spot length of 300m is adequate to

accommodate reporting errors if reference markers are placed every

kilometre and enforcement personnel are well trained.

c) The spot length should be at least as long as the area of influence of a

road hazard.

According to the South African Road Safety Manual (1999) an

'intersection' is defined as the intersection itself and the influence areas

of the respective intersection approaches. The influence area of an

approach is calculated by determining the safe stopping distance using

the 85th percentile speed. Proposed influence areas of intersection for

different speeds are shown in Table 5.1. (SA Road Safety Manual;

1999).

Table 5.1 : Proposed influence areas of intersection

Speed 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Influence
87m 115 m 147 m 185 m 224m

length

d) The reliability in identifying hazardous locations is directly related to the

spot length. As spot length increases, the probability of identifying a

true hazardous location as hazardous increases and the probability of

identifying a safe location as hazardous decreases.
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e) If spots are small it becomes increasingly difficult to make meaningful

comparisons between spots because of the low accident counts.

On the basis of these considerations it is desirable that spot lengths be as

long as possible. However if the spot is too long it could become excessively

difficult and time-consuming to locate the hazard/so

Deacon et al. (1975) recommends that a spot should preferably be between

4BOm and BOOmlong.

5.3.2 SECTIONS/SEGMENTS/ROUTES

It is important that sections be defined in a manner that ensures that the

pavement condition, geometric design, traffic volume and other geometric,

traffic and environmental variables etc. are uniform across the whole length of

the section. Sections can be defined as a segment of road between two

nodes, where nodes could be intersections or points where the pavement,

geometric, traffic characteristics etc. change. According to this definition

sections would normally be of variable length.

According to Deacon et al. (1975) observed accident rates are dependent on

section length. High accident rates have been observed on short sections and

low accident rates on long sections of roads. Long sections tend to have lower

traffic volumes and fewer factors of traffic interference such as intersections,

access points and changes in the number of lanes.

The variance of a Bayesian estimate depends amongst others on the

exposure at a site. The longer the length of a section the larger the exposure

and the smaller the variance. A smaller variance makes it easier to detect

whether the estimate exceeds a threshold value.
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5-7

Assume that the system wide average rate Ra from a group of similar sites is 1.1 acc/mvkm.

Also assume that the harmonic mean (E*) of all the exposures is 4.1 mvkm. Assume we have

a section of road carrying 4000 vehicles per day. In order to illustrate the effect of segment

length, P(mj > Ra) has been determined for segment lengths ranging from 1 km to 25 km. This

procedure was also applied for different accident rates - 1.2, 1.3, 1.4, 1.6, 1.8 and 2

acc/mvkm.

1.05

0.95
R = 2.0

R = 1.8
0.85.. R = 1.6cr: 0.75

A

E-
o::

0.65 R = 1.4

0.55
R = 1.3

R = 1.2

3 5 9 11 13 15 17 19 21 23 25

Length (km)

7

Figure 5.1 : The effect of segment length on Ptm, > Ra).

It is evident that the higher the accident rate the shorter is the minimum length required for a

site to be identified as a hazardous location.

For the reasons highlighted in Example 5.1 it is recommended that section

lengths be constant. From the example it is evident that the shorter the length

the higher the possible number of false negative identifications. With long

section lengths the higher the possibility of an increase in the degree of false

positive identifications.
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5.4 IDENTIFICATION OF HAZARDOUS LOCATIONS

Hauer and Persaud (1984) have identified the following 4 criteria to evaluate

the efficiency of a hazardous location identification method :

• The number of locations selected as hazardous.

• The number of truly hazardous sites selected for further investigation -

true positives.

• The number of non-hazardous sites selected for further investigation -

false positives.

• The number of truly hazardous sites NOT selected - false negatives.

The following Venn diagram graphically illustrates the above concepts.

A c

2

Figure 5.2 : A - False negatives, B - True positives and C-
False positives

The total number of selected sites corresponds with the size of Curve 2. The

true number of hazardous locations corresponds with the size of Curve 1.

With a truly efficient identification method Curves 1 and Curve 2 will coincide.

An efficient 'sieve' , and therefore a good identification method, will maximise

the number of true positives and minimise the number of false positives and

false negatives (Hauer and Persaud; 1984).
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It is generally agreed (Higle and Hecht; 1989) that a false negative error is far

more serious than a false positive error. A false negative error would cause a

true hazardous location to go untreated with potentially very severe

consequences. A false postive error on the other hand would cause

potentially scarce resources to be wasted on investigating a site that is not

really a hazardous location, thereby reducing the amount of resources

available to investigate true hazardous locations. According to Higle and

Hecht (1989) a technique that tends to yield a low number of false negatives

is good, as long as its is not accompanied by an excessively large number of

false positives.

The different methods for identifying hazardous locations and for the

preliminary ranking of sites locations can be grouped into two categories:

Conventional methods and Bayesian methods.

5.4.1 CONVENTIONAL IDENTIFICATION METHODS

Palkowski and Menezes (1991) recommend using the following methods to

identify hazardous locations :

a) Accident Number method,

b) Accident Severity method,

c) Accident Rate method,

d) Accident Rate-Number method,

e) Quality Control method.

These methods are called conventional methods because they are based on

the following 'conventional' assumptions:

a) The observed accident rate or number is a reliable and valid measure of

the true level of safety at a location i.e. mi = Xi or mi = R;

b) All sites within a reference group of similar sites have the same 'true' level

of safety.
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c) The accident rate at a location is a constant irrespective of the level of

exposure at the location i.e. a linear Safety Performance Function.

5.4.1.1 THE ACCIDENT NUMBER METHOD

This method considers only the frequency of accidents at a location. A

location is classified as a hazardous location when the accident frequency

exceeds a predetermined threshold.

This method is considered suitable for small town street systems, local street

systems in larger cities and low volume rural roads. Because of the low and

narrow range of traffic volumes on these types of roads the inclusion of the

exposure factor is not critical (Roy Jorgensen Associates; 1975).

The primary purpose of the threshold value is to control the number of

selected hazardous locations. The threshold value could be different from

authority to authority depending on policy and available resources.

An increase in the threshold value will cause the number of incorrectly

identified sites as well as the number of correctly identified sites to decrease.

It appears that there is a trade off between the two and that a suitable

threshold value will depend on the ability of a road authority to investigate all

identified locations.
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EXAMPLE 5.2

The experimental data in Appendix A1 was used to illustrate the impact of the chosen

threshold value

The true levels of safety (mt) for each of the 1000 locations were randomly generated from a

Gamma distribution with an annual mean accident frequency of 4. All those locations where

P(mt>4) > 0.95 are assumed to be true hazardous locations.

Using the randomly generated true level of safety mt as the Poisson mean, 5 years of

accident frequencies were randomly generated at each of the 1000 sites, for each of 5 study

years.

For each study period the accident number (X) was determined. If the accident number

exceeded a certain threshold value that location was then flagged as a hazardous location.

The next step was to, for each study period, determine the number of true positives, false

positives, false negatives and true negatives for threshold values (T) of 5, 7 and 9 accidents

per year. The following criteria were used:

True positive:

False negative:

True negative:

False positive:

Pïrn,» 4) > 0.95 AND X ~ T

Pïrn, > 4) > 0.95 AND X < T

P(mt :5: 4) > 0.95 AND X < T

P(mt :5: 4) > 0.95 AND X ~ T

As a measure of efficiency 3 different indicators were calculated. These are the i) number of

sites identified as hazardous locations, ii) the true positive identification rate, and the iii) the

false positive rate. The true positive rate is the % of hazardous locations correctly identified as

hazardous while the false positive rate indicates the % of non-hazardous sites identified as

hazardous.

Continue ....
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Example 5.2 (continued)

Table 5.2 : Accident no. method: Efficiency assessment of different threshold values.

Collection period 1 Year 2 Year 3 Year 4 Year 5 Year
Threshold = 5 Accidents / year

False negative 10 8 5 2 0
False positive 345 267 240 226 206
True negative 601 679 706 720 740
True positive 44 46 49 52 54
No. identified 389 313 289 278 260
% Incorrectly identified 36.5 28.2 25.4 23.9 21.8
% Correctly identified 81.5 85.2 90.7 96.3 100.0

Threshold = 7 Accidents / year
False negative 27 25 23 23 20
False positive 130 70 50 38 30
True negative 816 876 896 908 916
True positive 27 29 31 31 34
No. identified 157 99 81 69 64
% incorrectly identified 13.7 7.4 5.3 4.0 3.2
% correctly identified 50.0 53.7 57.4 57.4 63.0

Threshold = 9 Accidents / year
False negative 41 42 46 47 48
False positive 34 13 5 6 3
True negative 912 933 941 940 943
True positive 13 12 8 7 6
No. identified 47 25 13 13 9
% incorrectly identified 3.6 1.4 0.5 0.6 0.3
% correctly identified 24.1 22.2 14.8 13.0 11.1

From Table 5.2 it is evident that for the experimental data a low threshold value ( 5 accident /

year) will yield a high % correctly identified as well as a high % incorrectly identified. Since in

practice it is not known which sites were correctly or incorrectly identified all identified sites

will have to be further investigated. If sufficient resources are available to investigate all

identified sites then at least a high number of true hazardous locations will be subjected to an

investigation - along with all the non-hazardous locations.

If a suitable reference group of sites is available a threshold value can be

calculated from Equation 5.1.

METHOD CN1

X: = X +zo ,
...[5.1]

where
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X - The sample mean accident frequency.

ax - Sample standard deviation.

k - A probability factor determined by the desired level of significance.

X T - Threshold value.

A site is flagged as a hazardous location when Xi> XT

The values of k corresponding to various levels of probability are shown in

Table 5.3.

Table 5.3 : k-values

P 0.001 0.005 0.0075 0.05 0.075 0.10

K 3.09 2.576 1.96 1.645 1.440 1.282
Source. Palkowski and Menezes, 1991

A probability level is selected to ensure that an accident number/rate is

sufficiently large so that it cannot be reasonably attributed to random

occurrences (Palkowski and Menezes; 1991). The probability level serves the

same function as a threshold value.

Method eNt is based on the assumption that accident frequencies between

sites are distributed according to the Normal distribution. This assumption,

according to Higle and Hecht (1989), causes this method to consistently yield

a high number of false negative identifications.

Since the accident frequency at a site is a function of the traffic volume, the

accident number method tends to favour sites with high traffic volumes.

Two locations with the same amount of accidents, but with different traffic

volumes obviously have different levels of risk. The accident rate method

considers this variable.
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5.4.1.2 THE ACCIDENT SEVERITY METHOD

This method is a variant of the accident number method, the difference being

that a site is considered a hazardous location if the Equivalent Accident

Number (EAN) exceeds a predetermined threshold level, where:

EAN = w,(F) + ws,(SR) + ws,(SL) + 0 ...[5.2]

Where

w(, WSr, Wsl - The weights associated with fatal, serious injury and slight

injury accidents respectively.

F, SR, SL ,0 - The number of fatal, serious injury, slight injury and damage

only accidents respectively.

The weighting factors represent the average cost of the respective accident

severity classes relative to the cost of a Damage Only accident.

The K21 Manual (Opperman and Hutton ; 1991) proposes the following

weighting factors to be used for the calculation of the EAN :

Fatal accidents 12
Injury accidents 3
Damage only accidents 1

The average 1998 cost of South African road traffic accidents, according to

Schutte (2000), are shown in Table 5.4.
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Table 5.4 : Cost of accidents in 1998.

Severity of accident Average cost per collision Weighting factor

Fatal R 388487 25

Serious Injury R 88 248 6

Slight Injury R 23 723 1.5

Damage Only R 15694 1

The total cost of accidents at a location can be obtained by multiplying the

EAN by the cost of a Damage Only accident.

EXAMPLE 5.3

Consider the following two locations:

Table 5.5 : Accident data

Location Fatal Serious Slight Damage Total

A 2 22 25 45 94·
B 5 15 18 40 78

The EAN for these sites using the K21 manual weighting factors are:

Location A

Location B

210

199

Using the weighting factors derived from the accident costs the EAN for the two sites are as

follows:

Location A

Location B

265 (Cost = 265 * 15694 = R 4158910)

282 (Cost = 282 * 15694 = R 4 425708)

Using only the accident number method Location A will be considered worse than Location B.

Using the 'K21' factors indicates that Location A is worse than Location B, while using the

'Cost' factors would indicate that Location B is the worst location.

The choice of appropriate weighting factors is critical to this method.

Stellenbosch University http://scholar.sun.ac.za



5-16

The EAN method recognises accident severity as a prime factor in the

identification of hazardous locations.

According to Deacon et al. (1975) the EAN represents not only the accident

number but also the severity of these accidents. The EAN method therefore

favours locations with high accident numbers (i.e. high exposure sites) with a

relatively large proportion of serious and fatal accidents. Deacon et al. (1975)

states that locations selected using the EAN method will be more

economically efficient than sites selected using the accident number method

or the accident rate method.

5.4.1.3 THE ACCIDENT RATE METHOD

This method is very similar to the accident number method. Instead of using

accident frequencies, accident rates are used. A location is identified as

hazardous when its accident rate exceeds some predetermined threshold.

This threshold (Rr) can be determined as follows (Highle and Hecht; 1989 ):

METHOD CR1

RT = R +ka R
... [5.4]

where

R - Sample mean of accident rates of all reference group sites.

aR - Sample standard deviation of accident rates.

k - Probability factor.

Location i is flagged as a hazardous location if R, > Rr.

Using this method requires sufficient information to reliably determine the

exposure at each location in the network.
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According to McGuigan (1982) the accident rate method tends to produce a

set of locations biased towards low accident totals and low traffic usage. By

choosing an appropriate threshold level it is possible to limit the number of

selected sites with low accident numbers. The choice of an appropriate

threshold can be problematic in that a too low level could cause locations with

limited accident reduction potential to be included or too high a level could

cause locations with good accident reduction potential to be excluded. The

identification and ranking of hazardous locations using accident rates

therefore requires a high degree of subjective decision making by the analyst.

5.4.1.4 NUMBER-RATE METHOD

In the preceding section it was stated that the accident number method is

biased towards high volume sites and the accident rate method towards low

volume sites.

The number-rate (NR) method attempts to find a compromise between the

accident number method and the accident rate method.

The NR method is based on the concept that those sites that are flagged as

hazardous locations using the accident number method (e.g. Method CN1)

AND the accident rate method (e.g. Method CR1) can be considered

abnormal and therefore truly hazardous.

The number of sites so identified can be manipulated by adjusting the

threshold values. According to Barbaresso et al.(1982) sites identified by the

NR method can be ranked according to their Severity Indices (SI's), where;

SI = EAN
N

...[5.5]

SI - Severity Index.

EAN - Equivalent Accident Number ..N - Total number of accidents.
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EXAMPLE 5.4

The sample means, standard deviations and threshold values (assuming k = 1.645) for

accident numbers (acc/km) and accident rates (acc/mvkm) of all 113 segments in Appendix

81 and 82 are shown below:

Table 5.6 : Mean, standard deviation and threshold values

Safety Measure Mean St. Dev. Threshold
Accident number 5.6 5.4 14.5
Accident rate 1.15 1.1 3.0

Table 5.7 indicates all those sites where the accident number threshold OR the accident

frequency threshold are exceeded.

Table 5.7: List of hazardous locations from Methods CN1, CR1 and NR

Road Start End L Ace/km R CN1 CR1 NR
NR00205 51.88 52.62 0.74 31.08 7.87 1 1 1
MROO027 51.73 52.29 0.56 26.79 4.34 1 1 1
MR00165 0 3.63 3.63 8.82 4.02 0 1 0
MR00227 5.89 9.66 3.77 5.57 3.43 0 1 0
TR02801 0 2.14 2.14 5.61 3.31 0 1 0
TR03201 44.35 45.15 0.8 8.75 3.40 0 1 0
MROO027 51.15 51.73 0.58 29.31 2.83 1 0 0
MROO027 67.19 68.56 1.37 18.25 2.65 1 0 0
MR00165 3.63 7.47 3.84 19.79 2.45 1 0 0
NR00205 9.85 11.4 1.55 18.71 2.29 1 0 0
TR00202 37.09 42.36 5.27 15.75 1.48 1 0 0

It is evident that the RN method only identified two sites as hazardous.

Since both the CNt and CRt methods are associated with a high degree of

false negative identifications, and the RN method tends to identify only those

sites common to methods CNt and CRt, it can be expected that the degree

of false negative identifications using the RN method could be considerably

worse than that of the CNt and CRt methods.
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5.4.1.5 THE QUALITY CONTROL METHOD

The quality control method calculates, using statistical techniques, a critical

accident rate for each site under consideration. The value of the critical rate is

a function of the system wide average accident number/rate for all reference

groups, the exposure at a site and a probability factor k.

a) THE NUMBER QUALITY CONTROL METHOD

METHOD CN2

...[5.6]

Xcr = Critical accident number.

Xa = Mean (average) accident number for all reference locations

k = Probability factor.

Location i is flagged as a hazardous location if Xi > Xcr.

Method CN2 is based on the assumption that the distribution of

accident numbers between sites follows a Poisson distribution and that

this distribution can be estimated, using the Central Limit Theorem, by

a Normal distribution with mean and variance equal to the system wide

average x,

To illustrate the efficiency of this method the experimental data has

been used to estimate the number of false negatives, false positives,

true negatives and true positives using Equation 5.6 for different study

periods ranging from 1 to 5 years. See Example 5.5 .
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EXAMPLE 5.5

The threshold value (Xc,) for each study period was estimated from Eqn. 5.6 with k =

1.645.

Table 5.8: Method CN2 - threshold values

Collection Period Xa x,
1 Year 4 7.9
2 Year 8 13.2
3 Year 12 18.2
4 Year 16.1 23.2
5 Year 20.2 28.1

For a location to be flagged as a hazardous location Xi > Xcr.

The next step was to, for each collection period, determine the number of true

positives, false positives, false negatives and true negatives. The following criteria

were used:

True positive:

False negative:

True negative:

False positive:

P(mt> 4) > 0.95 AND X >Xc,

P(mt > 4) > 0.95 AND X < Xc,

P(mt s 4) > 0.95 AND X < Xc,

P(mt s 4) > 0.95 AND X > Xc,

Table 5.9 : Method CN2 - efficiency assessment

Collection period 1 Year 2 Year 3 Year 4 Year 5 Year
False negatives 37 25 19 9 3
False positives 75 70 82 100 114
True negative 871 876 864 846 832
True positives 17 29 35 45 51
No. identified 92 99 117 145 165
% Incorrectly identified 7.9 7.4 8.7 10.6 12.1
% Correctly Identified 31.5 53.7 64.8 83.3 94.4

It is evident that as the collection period increases the number of true positive

identifications tends to increase. This however is achieved at the expense of an

increased number of false positive identifications.
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An alternative to using Method CN2 is Method CP1. Method CP1 is

based on the assumption that accident numbers between sites are

Poisson distributed around the system wide average Xa.

METHOD CP1

...[5.7]

A site, which experienced Xi accidents, is considered to be a

hazardous location when P(Xi > Xa) > 0.95. (Assuming a 95 % degree

of confidence.)

With modern computer technology and the use of spreadsheets P(X >

Xa} can be calculated directly using Equation 5.7 without resorting to

the Central Limit Theorem and Method CN2. Generally, because of the

difficulty of solving Equation 5.7 this equation can be approximated by

Equation 5.6.

EXAMPLE 5.6

Assuming Xa = 6 and X = 11.

Then P(X>Xa) can be determined using the following Microsoft® Excel® function:

=POISSON(11 ,6,TRUE) = 0.98.

To illustrate the efficiency of this Method CP1 the experimental data

has been used to estimate the number of false negatives, false

positives, true negatives and true positives using Equation 5.7 for

different study periods ranging from 1 to 5 years. See Example 5.7 and

Appendix A2.
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EXAMPLE 5.7

The average number (Xa) and the threshold value (Xcr) for each study period are

indicated in Table 5.10. Xcr was determined as the value of Xi in Equation 5.7 for

which P(Xi > Xa).

Table 5.10: Method CP1 - Critical values

Collection Period Xa x,
1 Year 4 8
2 Year 8 13
3 Year 12 18
4 Year 16.1 23
5 Year 20.2 28

For a location to be flagged as a hazardous location: X :?: Xcr.

Table 5.11 : Method CP1 - efficiency assessment

Collection Period 1 Year 2 Year 3 Year 4 Year 5 Year
False negative 37 23 12 8 2
False positive 75 99 117 119 138
True negative 871 847 829 827 808
True positive 17 31 42 46 52
No. identified 92 130 159 165 190
% Incorrectly identified 7.93 10.47 12.37 12.58 14.59
% Correctly identified 31.5 57.4 77.8 85.2 96.3

Comparing the results of Example 5.6 with the results of this Example it is evident

that Method CPt identifies less sites than method CN2. Take for example Year 3 -

Method CPt will identify all those sites with 18 accidents or more, while method CN2

will only identify those sites with 19 accidents or more. Since only some of the sites

that had 18 accidents are true hazardous locations, method CP1 will identify more of

the truly hazardous locations than method CN2 but also more of the non-hazardous

locations.
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b) THE RATE QUALITY CONTROL METHOD

METHOD CR2

...[5.8]

Rer (i) = Critical accident rate for site i.

Ra = Average accident rate of reference group

E(i) = Exposure for site i

IX(i)
R = I ...[5.9]

a E(i)

A site is identified as a hazardous location if R(i) ~ Reli)

An alternative to Method CR2 is the direct Method CP2.

METHOD CP2

X; (R E.)X; -(RaE;)

P(R. > R ) =" a I e
I a ~ 1

;=0 l.

...[5.10]

Method CP2 is based on the assumption that the number of accidents

at a location is Poisson distributed around the mean which is equal to

Ra*E;.

The number and rate quality control methods assume that the

observed accident number at a location has a Poisson distribution

about the system wide average ( X, or Ra*Ej), and that this system

wide average accurately represents the level of safety at a location.

This assumption is not correct, since according to Abbess et al. (1981)
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the 'true' level of safety at a site between the members of a reference

group generally follow a Gamma distribution around the system wide

average, and that the observed accident number at a location is

Poisson distributed around the 'true' level of safety at a site and not

around the system wide average. Accident frequencies therefore

according to Vogt and Bared (1998) follow a Negative Binomial

distribution between the sites of a reference group. Whereas with the

Poisson distribution the variance is equal to the mean, with the

Negative Binomial distribution the variance is larger than the mean.

The quality control methods therefore use a variance that is

underestimated, with the consequence that the critical (threshold)

values are also underestimated. Although this could cause a high

degree of true positive identification it could also cause a high degree

of false positive identification.

EXAMPLE 5.8

Consider the data in Appendix 81 and 82. The total number of accidents on the 113

segments over a 4 year period = 2433 and the total exposure on all these segments =

3270.3 million-vehicle-kilometres.

Ra = 2433/3270.3 = 0.74 accidents/mvkm

Using the above value of Ra and the level of exposure at each site (Ei) the critical rate

for each segment was determined using Equation 5.8.

Table 5.12: Method CR2: Top 10 segments where R > Rcr

Road Start End AADT E X R Rcr
NR00205 51.88 52.62 2704 2.92 23 7.87 1.74
MROO027 51.73 52.29 4220 3.45 15 4.34 1.65
MR00165 0 3.63 1502 7.97 32 4.02 1.31
MR00227 5.89 9.66 1111 6.12 21 3.43 1.40
TR03201 44.35 45.15 1760 2.06 7 3.40 1.98
TR02801 0 2.14 1158 3.62 12 3.31 1.63
MROO027 51.15 51.73 7077 6.00 17 2.83 1.41
MR00223 6.3 9.63 1618 7.87 21 2.67 1.31
TR03201 42.84 44.35 1708 3.77 10 2.65 1.61
MROO027 67.19 68.56 4722 9.45 25 2.65 1.26
NR00108 2.68 3.61 2530 3.44 9 2.62 1.65
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5.4.2 BAYESIAN IDENTIFICATION METHODS

According to Persaud et al. (1999b) the conventional methods listed above

are known to have difficulties in identifying hazardous locations because of

the potential bias due to the regression-to-mean phenomenon in which sites

with a randomly high accident count can be wrongly identified as being

hazardous and vice versa.

According to Abbess et al. (1981) the regression-to-mean effect (random

error) has been eliminated from road safety estimates that have been

obtained from using Empirical Bayesian methods. The difficulties associated

with the conventional methods as mentioned by Persaud et al.(1999b) can be

overcome by using Bayesian safety estimates.

Higle and Hecht (1989) investigated and evaluated 4 different Bayesian

methods to identify hazardous locations :

i) METHOD B1

According Higle and Witkowski (1988) location i is hazardous if the

probability is greater than 6 that its true accident rate/number mj,

exceeds the observed average rate/number ( Z ) across the reference

population. ( Z refer to both R and X)

P(mi >Z) >6 ...[5.11]

where

mi - Bayesian estimate of safety.

6 - The desired level of confidence e.g. 0.90, 0.95, 0.99

Z - The sample mean level of all Zïs
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...[5.12]

Since the Bayesian estimate of safety, mi , has a Gamma distribution:

- _ z !3 a'mal-le-f3,m
P{m. >Z) =l-P{m. ~Z) =l-f i dm

I I 0 na)
...[5.13]

EXAMPLE 5.9

The experimental data in Appendix A1 was used to illustrate the efficiency of Method

81 in identifying hazardous locations for different study periods. See Appendix A3.

The true levels of safety (mt) for each of the 1000 locations were randomly generated

from a Gamma distribution with an annual mean accident frequency of 4. All those

locations where P(m,>4) are assumed to be true hazardous locations.

Using the randomly generated true level of safety mt as the Poisson mean 5 years of

accident frequencies were randomly generated at each of the 1000 sites. For each

study period ranging from 1 to 5 years, Bayesian estimates (mj) and their gamma

parameters (a, 13) were obtained for each site using the method of sample moments.

The mean accident frequency X was also determined for each collection period. For

each site P(mj > X) was determined using the GAMMADIST function of Microsoft®

Excel® . A site was flagged as hazardous if P(m > X) > 0.95.

The following criteria were used to determine the number of true positive, false

negative, true positive and false positive identifications respectively.

TRUE POSITIVE:

FALSE NEGA TlVE :

TRUE NEGA TIVE :

FALSE POSITIVE:

Ptm,» 4) > 0.95 AND Ptm, > X) > 0.95

P(mt> 4) > 0.95 AND P(mi > YO~ 0.95

P(mt> 4) s 0.95 AND P(mi > X) s 0.95

Pïm,» 4) s 0.95 AND Ptm, > YO> 0.95

Continue ...
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Example 5.9 (continued)

As a measure of efficiency 3 different indicators were calculated. These are the i)

number of sites identified as hazardous locations, ii) the true positive identification

rate, and the iii) the false positive rate. The true positive rate is the % of hazardous

locations correctly identified as hazardous while the false positive rate indicate the %

of non-hazardous locations identified as hazardous.

Table 5.13 : Method 81 - efficiency assessment

Identification 1 Year 2 Year 3 Year 4 Year 5 Year
True positive 3 19 31 40 45
False negative 51 35 23 14 9
True negative 938 915 896 884 876
False positive 8 31 50 62 70
Total identified 11 50 81 102 115
% Correctly identified 5.6 35.2 57.4 74.1 83.3
% Incorrectly identified 0.85 3.28 5.29 6.55 7.40

ii) Method 82

According to Higle and Witkowski (1988) location i is hazardous if the

probability is greater than 6 that its true accident rate mi, exceeds the

observed regional accident rate Ra.

...[3.14]

...[3.15]

Since the Bayesian estimate of safety, mi, has a Gamma distribution:

Ra p.. a a·-I -f3.m
IJ 'm I e I

P(m > R ) = 1-P(m 'S, R ) = 1- f i dm
I a I a 0 r(a)

...[3.16]
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EXAMPLE 5.10

Consider the data in Appendix B1 and B2.

The mean accident rate for the 113 segments is R = 1.15 acc/mvkm and the area

wide average rate Ra = 0.74 acc/mvkm. The reason for such a large difference

between R and Ra lies in the fact that in the sample of sites used for the estimation

of these rates there is a wide variation in the magnitude of exposures. This is

particularly the case if the road segments in the sample have different lengths.

Table 5.14 shows the P(m > RaJ and Ptm» R) for the top ten sites on the basis of

their Bayesian estimates, mj.

Table 5.14 : Method B2 - top 10 hazardous locations

Road Start End E R m a' W P(m> R) P(m>RJ
NR00205 51.88 52.62 2.92 7.87 5.98 4.06 24.31 1.000 1.000
MR00165 0 3.63 7.97 4.02 3.66 9.11 33.31 1.000 1.000
MROO027 51.73 52.29 3.45 4.34 3.55 4.59 16.31 1.000 1.000
MR00227 5.89 9.66 6.12 3.43 3.07 7.26 22.31 1.000 1.000
TR02801 0 2.14 3.62 3.31 2.80 4.76 13.31 0.997 1.000
TR03201 44.35 45.15 2.06 3.40 2.60 3.20 8.31 0.974 0.998
MROO027 51.15 51.73 6.00 2.83 2.57 7.14 18.31 0.998 1.000
MROO027 67.19 68.56 9.45 2.65 2.48 10.59 26.31 1.000 1.000
MR00223 6.3 9.63 7.87 2.67 2.48 9.01 22.31 0.999 1.000
MR00165 3.63 7.47 31.02 2.45 2.40 32.17 77.31 1.000 1.000

Pim» R) was determined using the following expression in Microsoft® Excel® :

=t-GAMMAOIST(t.t5,13, t/o; TRUE)

And P(m>RaJ was determined using:

«t. GAMMAOIST(O.74, 13, t/o; TRUE)
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5.4.3 COMPARISON OF IDENTIFICATION METHODS

EXAMPLE 5.11

Degree of true positive identification

100 r-------------------------------------------------------,
90

The true positive rates of the CP1, CN2 and 81 methods as determined in Examples 5.5, 5.7

and 5.9 compared in Figure 5.3 The false positive rates of the P1, CN2 and 81 methods are

compared in Figure 5.4.
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Figure 5.3 : Degree of true positive identifications
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Figure 5.4 : Degree of false positive identifications.

Continue ....
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EXAMPLE 5.11 (Continued)

From Figures 5.3 and 5.4 it is evident that for at least the experimental data that method 81

generally has a lower true positive rate than CP1 and CN2, but that this is somewhat

compensated for by a lower rate of false positive identifications. This means that although

method 81 identified less true hazardous locations, it also identified significantly less sites

which are not true hazardous locations.

Although methods CP1 and CN2 have similar rates of true positive identifications, method

CN2 performed better with regards to false positive identifications.

Higle and Witkowski(1988) and Higle and Hecht (1989) conducted a detailed

experimental study to compare the efficiency of the CR1, CR2, 81 and 82

identification methods.

They came to the following conclusions :

a) Methods CR2, 81 and 82 correctly identify a significantly higher

fraction of the truly hazardous sites than does CR1.

b) 8ecause of the underlying assumption of normality in the distribution of

accident rates/numbers method CR1 tends to identify a larger number

of false negatives than methods CR2, 81 and 82.

c) The CR2, 81 and 82 methods tend to be equally efficient. Each yield

low numbers of false negative identifications and are generally

successful in selecting sites that are truly hazardous. This however

comes at the expense of an increase in the number of false positive

identifications, which may be a result of a sensitivity to the traffic

volume at a site.

d) Method 82 is more efficient than CR2 when data are sparse or when

numerous years of comparable data are not available.
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EXAMPLE 5.12

The CR1, CR2 , B1 and B2 methods of hazardous location identification were applied to the

sample of 113 road segments in Appendix B1 and B2. All the locations that were identified as

a hazardous location of one or more of these methods are listed in Table 5.15

Method CR1 flagged only 6 of the 113 sites as hazardous. This seems to indicate the

likelihood of a high rate of false negative identifications, as was also concluded by Higle and

Hecht (1989) as well as Higle and Witkowski (1988).

Method CR2 identified a total of 48 sites as opposed to the 34 by Method B2. It is likely that

method CR2 identified most of the true hazardous locations but also a large number of non-

hazardous locations, while method B2 might have identified less hazardous locations, but

also less non-hazardous locations.

It appears as if Method B2 is sensitive to the level of exposure at a site. When combining the

prior estimates with the accident frequency and exposure level using Bayes theorem the

larger the level of exposure the smaller the variance of the Bayesian estimate mj. The smaller

the variance, the smaller is the critical threshold value. To illustrate the following two

segments can be compared:

Road Start End E m VAR(m) B2
NR00205 40.64 49.34 38.93 1.48 0.037 1
NR00205 58.6 59.21 3.14 1.48 0.345 0

Both these locations have the same Bayesian estimates = 1.48 acc/mvkm but only the first

location was flagged as a hazardous location because of its relatively small variance ( =
0.037), which in turn is a result of its high exposure level = 38.93 mvkm.

Method B2 therefore favour sites with a potentially high PAR (Potential Accident Reduction). It

also tends to favour sites which are longer than other sites but not necessarily more unsafe. It

is advisable to, when applying the B2 method, to define the locations in a manner which

ensures that they are all of the same length.

Continue ...
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Example 5.12 (continued)

Table 5.15 : Comparison of CR1, CR2, 81 and 82 identification methods

Road Start End E R m CR1 CR2 81 82
NR00205 51.88 52.62 2.92 7.87 5.98 1 1 1 1
MR00165 0 3.63 7.97 4.02 3.66 1 1 1 1
MROO027 51.73 52.29 3.45 4.34 3.55 1 1 1 1
MR00227 5.89 9.66 6.12 3.43 3.07 1 1 1 1
TR02801 0 2.14 3.62 3.31 2.80 1 1 1 1
TR03201 44.35 45.15 2.06 3.40 2.60 1 1 1 1
MROO027 51.15 51.73 6.00 2.83 2.57 0 1 1 1
MROO027 67.19 68.56 9.45 2.65 2.48 0 1 1 1
MR00223 6.3 9.63 7.87 2.67 2.48 0 1 1 1
MR00165 3.63 7.47 31.02 2.45 2.40 0 1 1 1
TR03201 42.84 44.35 3.77 2.65 2.31 0 1 1 1
NR00108 2.68 3.61 3.44 2.62 2.25 0 1 1 1
NR00205 9.85 11.4 12.67 2.29 2.20 0 1 1 1
TR03201 0 5.71 14.42 2.22 2.14 0 1 1 1
NR00205 49.34 51.8 14.76 2.17 2.10 0 1 1 1
TR02801 2.14 3.73 8.74 2.17 2.06 0 1 1 1
DR01056 0 1.32 2.14 2.34 1.93 0 1 0 1
TR00204 50.54 55.03 17.47 1.95 1.90 0 1 1 1
MR00313 1.6 3.1 4.04 1.98 1.80 0 1 0 1
TR00204 44.28 45.16 3.15 1.91 1.71 0 1 0 1
TR02801 16.37 17.18 4.56 1.76 1.64 0 1 0 1
NR00205 52.62 58.6 30.12 1.56 1.55 0 1 1 1
TR02801 17.18 19.93 16.19 1.54 1.52 0 1 0 1
NR00205 40.64 49.34 38.93 1.49 1.48 0 1 1 1
NR00205 58.6 59.21 3.14 1.59 1.48 0 1 0 0
TR00202 37.09 42.36 56.21 1.48 1.47 0 1 1 1
TR03302 2.74 5.01 4.53 1.55 1.47 0 1 0 0
TR02801 19.93 23.6 22.73 1.45 1.44 0 1 0 1
NR00205 0 2.02 12.44 1.45 1.42 0 1 0 1
DR01101 1.9 5.79 11.25 1.33 1.32 0 1 0 1
TR00204 2.84 4.4 6.79 1.32 1.30 0 1 0 0
NR00105 29.83 31.89 7.86 1.27 1.26 0 1 0 0
DR01105 0 3.99 39.16 1.25 1.25 0 1 0 1
TR02801 3.73 9.1 23.78 1.22 1.22 0 1 0 1
MR00216 0 3.45 22.78 1.19 1.18 0 1 0 1
TR00204 45.16 50.54 19.59 1.17 1.17 0 1 0 1
TR02801 23.6 25.83 15.65 1.15 1.15 0 1 0 1
DR01101 0 1.9 10.49 1.14 1.14 0 1 0 0
TR02901 39.92 45.21 8.08 1.11 1.12 0 1 0 0
NR00205 7.12 9.12 18.06 1.00 1.01 0 1 0 0
MR00187 6.96 8.03 9.21 0.98 1.00 0 1 0 0
NR00208 65.71 67.78 16.38 0.92 0.93 0 1 0 0
NR00107 0 34.86 128.65 0.91 0.91 0 1 0 1
TR03201 5.71 15.26 21.85 0.87 0.88 0 1 0 0
TR03201 15.26 22.79 15.09 0.86 0.88 Q 1 0 0
MR00191 16.66 20.2 19.69 0.86 0.88 0 1 0 0
NR00108 62 72.44 37.60 0.85 0.86 0 1 0 0
TR03102 1.94 9.04 37.92 0.82 0.83 0 1 0 0

TOTAL 6 48 20 34
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5.5 RANKING METHODOLOGIES

The ranking of hazardous locations is important when a road authority does

not have sufficient resources to investigate and treat all identified hazardous

locations. It could be advantageous to have two levels of ranking, a

preliminary level and a final level of ranking. The objective of the preliminary

level of ranking should be to determine which sites to investigate further,

given the resource constraints. The investigation of the selected sites should

yield an estimate of the expected economic return ( e.g. Benefit/Cost ratio,

Internal Rate of Return etc.) as a result of the selected remedial measures.

The final level of ranking is then based on these economic indicators to

determine which combination of sites, when treated, would provide the best

economic returns. To prevent the unnecessary investigation of hazardous

locations the ranking index used for the preliminary ranking procedure should

provide a good measure of the anticipated economic return.

Some of the ranking methods that will be presented in this section can also be

used as a way to identify locations to apply remedial measures to, without

going through the formal identification procedures as presented in the

preceding sections.

5.5.1 ACCIDENT RATE/NUMBER RANKING METHOD

According to McGuigan (1982) using the accident rate as a ranking criterion

will produce a bias towards sites with low accident totals and low traffic flows.

Using the accident number on the other hand will produce a bias towards

sites with high traffic volumes and high accident numbers.
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EXAMPLE 5.13

Consider the information in Tables 5.16 and Table 5.17. The road segments in Table 5.16 are

ranked according to their accident numbers while the segments in Table 5.17 are ranked

according to their accident rates. For each site the PAR index has also been determined ( see

Paragraph 5.5.3).

Table 5.16 :Top 10 sites: Accident Number method

Road Start EndKm AADT N N R R E PARKm Rank Rank
NR2/5 51.88 52.62 2704 31.08 1 7.87 1 2.9 20.84
MR27 51.15 51.73 7077 29.31 2 2.83 7 6.0 12.56
MR27 51.73 52.29 4220 26.79 3 4.34 2 3.5 12.45
MR165 3.63 7.47 5530 19.79 4 2.45 12 31.0 53.04
NR2/5 9.85 11.4 5593 18.71 5 2.29 14 12.7 19.63
MR27 67.19 68.56 4722 18.25 6 2.65 10 9.5 18.01
TR2/2 37.09 42.36 7300 15.75 7 1.48 27 56.2 41.41
NR2/5 49.34 51.8 4107 13.01 8 2.17 17 14.8 21.08
DR1105 0 3.99 6717 12.28 9 1.25 33 39.2 20.02
TR28/1 2.14 3.73 3762 11.95 10 2.17 16 8.7 12.53
TOTALS 51732 196.91 29.50 184.4 231.56

Table 5.17:Top 10 sites: Accident Rate method

Road Start EndKm AADT R R N R E PARKm Rank Rank
NR2/5 51.88 52.62 2704 7.87 1 31.08 1 2.92 20.84
MR27 51.73 52.29 4220 4.34 2 26.79 3 3.45 12.45
MR165 0 3.63 1502 4.02 3 8.82 17 7.97 26.11
MR227 5.89 9.66 1111 3.43 4 5.57 41 6.12 16.47
TR32/1 44.35 45.15 1760 3.40 5 8.75 18 2.06 5.48
TR28/1 0 2.14 1158 3.31 6 5.61 39 3.62 9.32
MR27 51.15 51.73 7077 2.83 7 29.31 2 6.00 12.56
MR223 6.3 9.63 1618 2.67 8 6.31 37 7.87 15.17
TR32/1 42.84 44.35 1708 2.65 9 6.62 34 3.77 7.21
MR27 67.19 68.56 4722 2.65 10 18.25 6 9.45 18.01
TOTALS 27580 37.18 147.1 53.23 143.61

The sum of the AADT's for the locations selected using the accident number method is

considerably larger than those selected using the accident rate method, confirming that the

accident rate method is biased towards low volume sites and the accident number method

towards high volume sites. As a result the total number of observed accidents at the sites

selected using the accident number method is also larger than that of the sites selected using

the accident rate method.
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5.5.2 BAYESIAN SAFETY ESTIMATE METHOD

This method ranks sites according to their Bayesian estimates (m).

EXAMPLE 5.14

In Appendix B1 the Bayesian safety estimates were determined for each of the 113 sites

using the method of sample moments. Table 5.18 shows the top 10 sites ranked according to

their Bayesian safety estimates.

Table 5.18: Top 10 sites - Bayesian estimate method

Road Start End E AADT R R M
Rank m Rank Wl

NR00205 51.88 52.62 2.92 2704 7.87 1 5.98 1 0.72
MROO027 51.73 52.29 3.45 4220 4.34 2 3.55 3 0.75
MR00165 0 3.63 7.97 1502 4.02 3 3.66 2 0.87
MR00227 5.89 9.66 6.12 1111 3.43 4 3.07 4 0.84
TR03201 44.35 45.15 2.06 1760 3.40 5 2.60 6 0.64
TR02801 0 2.14 3.62 1158 3.31 6 2.80 5 0.76
MROO027 51.15 51.73 6.00 7077 2.83 7 2.57 7 0.84
MR00223 6.3 9.63 7.87 1618 2.67 8 2.48 9 0.87
TR03201 42.84 44.35 3.77 1708 2.65 9 2.31 11 0.77
MROO027 67.19 68.56 9.45 4722 2.65 10 2.48 8 0.89

It is evident that for the sample of 113 segments there is little difference between the ranking

performance of the Accident Rate and Bayesian estimate methods.

The last column Wl represents the weight given to the observed accident rate (R) in the

calculation of the Bayesian estimate. The Wl values are relatively high, which could explain

the similarity in the ranking performance of the Accident Rate and Bayesian estimate

methods.

5.5.3 POTENTIAL ACCIDENT REDUCTION (PAR) INDEX METHOD

5.5.3.1 CONVENTIONAL APPROACH

According to McGuigan (1982) the PAR index provides a significantly better

measure of the potential accident reduction, and hence the potential

economic returns, than the accident number or the accident rate.
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For accident numbers the PAR is determined as follows:

...[5.17]

For accident rates the PAR index is determined as follows:

...[5.18]

According to McGuigan (1982) the PAR index favours locations where

medium risk and medium exposure prevail instead of locations where high

risk and low exposure conditions prevail. According to Sayed and Rodriguez

(1999) sites with a higher level of exposure are more cost effective to treat.

In Example 5.13 the total PAR for the 'accident number' sites exceeds that of

the 'accident rate' sites. This seems to indicate that treating the 'accident

number' sites could provide greater benefit than the 'accident rate' sites,

assuming the cost of treating an accident rate site is equal to that of treating

an accident number site.

EXAMPLE 5.15

In Table 5.19 the top ten sites, from Example 5.13, Table 5.17 is ranked according the PAR

index. It is evident that the PAR method of ranking locations produces vastly different results

from using the accident rate method.

Table 5.19 : Top 10 sites according to PAR index.

Road Start End AADT R R PAR
PAR

Km Km Rank rank
MR00165 3.63 7.47 5530 2.45 12 13.26 1
TR00202 37.09 42.36 7300 1.48 26 10.35 2
NR00205 40.64 49.34 3063 1.49 25 7.30 3
MR00165 0 3.63 1502 4.02 3 6.53 4
NR00205 52.62 58.6 3447 1.56 22 6.18 5
NR00107 0 34.86 2526 0.91 35 5.45 6
TR03201 0 5.71 1729 2.22 15 5.33 7
NR00205 49.34 51.8 4107 2.17 17 5.27 8
TR00204 50.54 55.03 2663 1.95 19 5.27 9
NR00205 51.88 52.62 2704 7.87 1 5.21 10
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5.5.3.2 EMPIRICAL BAYESIAN APPROACH

Persaud et al. (1999b) proposed that sites be ranked according to their

potential safety improvement (8), where:

S = (m-P) ...[5.19]

Where

m - The Bayesian estimate of safety

P - The level of safety for similar sites

An important issue to consider is what value to use for P. Persaud et al.

(1999) identified and investigated three different methods.

i) The AADT model method

ST= (m-PT)
...[5.20]

The Bayesian estimate m is calculated using the best possible

regression model which incorporates all the available variables which

may contribute to poor safety. PT is based on a model that includes

traffic but no treatable variables. Therefore untreatable variables such

as road classification (freeway/two-lane, urban/rural) for example may

be included in the model to estimate PT. (Persaud et al. ; 1999)

The value of S in this instance is an estimate of the number of treatable

accidents that are caused by all those treatable variables included in

the full model.

This method will be illustrated in Example 5.16.
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EXAMPLE 5.16

Persaud et al. (1999) used the following model to estimate m , (hereafter referred to

as the tuil model.) :

P = O.000637LQo.8993e-O·08215TW (k = 5.82)

P - Injury accidents per year

L - Length at segment (km)

Q - AADT - Annual Average Daily Traffic

TW - Total pavement width

The AADT model to estimate PT is as follows:

Pr = O.000532LQo.8036

Assume a road segment has the following parameters:

L= 2 km

Q = 4000 veh/day

TW=7m

X = 4 accidents per year

From the tuil model P = 2.2 injury accidents 1 year and from the AADT model PT = 0.8

injury accidents 1year.

E(m) = 2.2 and VAR(m) = (2.2)2/5.82 = 0.83

a = 2.2/(2.2+0.83) = 0.73

m = 0.73(2.2) + (1-0.73)4 = 2.69 injury accidents/year

ST = 2.69 - 0.80 = 1.89 injury accidents/year
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ii) The BASE model method

Sa = (m-Pa) ...[5.21 ]

PB is for a base condition, reflecting that what is normal can be found in

the predominant values of treatable variables. According to Persaud et

al. (1999) the idea is that roads are built to some desirable standard

from a safety point of view. PB is therefore estimated from a base

model that was calibrated using those sites which represent the ideal

design.

EXAMPLE 5.17

In order to estimate PB, Persaud et al. (1999) calibrated the following model using

only those segments with a lane width of 3.5m and a shoulder width of 1.8m. These

magnitudes were decided on by examining the frequency of various lane width and

shoulder width combinations in their total sample of 2-lane rural road segments. A

review of road safety literature also revealed that these parameters constituted what

could be considered safe design.

PB =O.000826LQo.7448

From the previous example m = 2.69 injury accidents / year and Q = 4000 veh/day.

PB = 0.000826(2)(4000)° 7448 = 0.80 injury accidents / year.

S = 2.69 - 0.80 = 1.89 injury accidents/ year.

It can therefore be expected that increasing the total surfaced width from 7m to 10.3m

will decrease the injury rate by 1.89 accidents per year.
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iii) The FULL model method

...[5.22]

P is estimated from the full model used for the estimation of m.

SF in this instance provides an estimate of the potential accident

reduction related to those factors that were omitted from the model.

EXAMPLE 5.18

From Example 5.16 m = 2.69 injury accidents /year and P = 2.2 injury accidents /

year.

S = 2.69 - 2.20 = 0.49 injury accidents/year.

Over the 2 km segment there are factors present, treatable or untreatable, that are

causing the injury accident rate to be 0.49 injury accidents / year higher than it should

be. Hypothetically speaking it could be that the quality of road signs and road

markings are inferior when compared to other identical segments, or the segment

carries more nigh-time time traffic, or more heavy vehicles, etc.

5.5.4 DEGREE OF DEVIATION - Ni

R XNi =_1 or Ni =_1
e; Xai

...[5.23]

This ranking criterion considers the deviation from the expected values

regardless of the accident number/rate and the level of exposure. According

to Sayed and Rodriguez (1999) this index should be used in conjunction with

the PAR index. They propose that the two ranking criteria be given equal

weights. However if different weights are used a higher weight should be

given to the PAR criterion to achieve higher cost effectiveness.
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5.5.5 SEVERITY METHOD

5.5.5.1 CONVENTIONAL APPROACH

Sites identified as hazardous locations using the EAN method are often

ranked according to their EAN values.

A Severity Index can be used to rank hazardous locations to favour those

locations where the accidents are relatively severe.

For each selected hazardous location a Severity Index can be determined as

follows:

SI = __ E_:A_N__
F +SR+SL+D

...[5.24]

where

F, SR, SL, 0- The number of fatal, serious injury, slight injury and

damage only accidents respectively.

Using the Severity Index as a ranking criterion will favour those sites where

accidents are relatively more severe, irrespective of the number of accidents

or level of exposure at the sites.
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EMPIRICAL BAYESIAN APPROACH

Persaud et al.(1999a) presents a variation of the Bayesian PAR method, in

which PAR indices are determined for each severity class and then combined

with weighting factors to obtain a weighted PAR index.

The weighted Bayesian PAR method requires Safety Performance Functions

for each severity class.

Let

PARfat = mfat-Pfat

PARinj = minj-Pinj

PARdam= mdam- Pdam

...[5.25]

...[5.26]

...[5.27]

where

PARfat -

PARinj -

PARdam-

mfat-

minj -

mdam-

Pfat-

Pinj-

Pdam-

The potential reduction in fatal accidents.

The potential reduction in injury accidents.

The potential reduction in damage only accidents.

The Bayesian safety estimate for fatal accidents.

The Bayesian safety estimate for injury accidents.

The Bayesian safety estimate for damage only accidents.

The fatal accident safety estimate from a suitable SPF.

The injury accident safety estimate from a suitable SPF.

The damage only safety estimate from a suitable SPF.

The weighted PAR Index that can be used to rank and identify locations

potentially suitable for remedial action is determined as follows:

PARindex = wfat*PARfat+ win/PARinj + PARdam ...[5.28]
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EXAMPLE 5.19

A segment of 2-lane rural road, 5km long, experienced in a year 3 fatal, 5 injury and 10

damage only accidents.

The severity based Safety Performance Functions applicable to this road segment is as

follows:

Ptat = L(0.00004)AADT1
.
o2 (k = 3.2)

Pinj = L(0.00008)AADT1.03 (k = 4.0)

Pdam = L(0.00025)AADTo.98 (k = 3.7)

Assuming that AADT = 4500 veh/day.

Ptat= 1.06 and VAR(Ptat) = (1.06)2/3.2 = 0.35 and a = 1.06/(1.06+0.35) = 0.75

Pinj = 2.32 and VAR(Pinj) = (2.32)2/4 = 1.35 and a = 2.32/(2.32+ 1.35) = 0.63

Pdam = 4.75 and VAR(Pdam)= (4.75)2/3.7 = 6.10 and a = 4.75/(4.75+6.10) = 0.44

mtat= (0.75)(1.06) + (1-0.75)(3) = 1.55

minj= (0.63)(2.32) + (1-0.63)(5) = 3.31

mdam= (0.44)(4.75) + (1-0.44)(10) = 7.69

PARtat = 1.55 - 1.06 = 0.49

PARinj= 3.31 - 2.32 = 0.99

PARdam= 7.69 - 4.75 = 2.94

Assuming Wtat= 55 and Winj= 16 then:

PAR index = 55(0.49) + 16(3.31) + 7.69 = 87.6
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5.6 PERFORMANCEOF IDENTIFICATIONAND RANKINGMETHODS

Persaud et al. (1999b) applied the following methodology to evaluate the

performance of the following ranking methods:

• Accident number (X)

• Accident Rate (R)

• Empirical Bayes ( m)

• AADT model estimate (ST = m - PT)

• Base model estimate ( Ss = m - Ps)

• Full model estimate ( SF= m - PF)

Two-lane paved rural highways in Ontario, Canada were divided into 500 m

non-overlapping segments. This process yielded a total of 28000 segments.

The ranking of these locations were based on 3 years of data (1988 - 1990).

Data for the period 1991 - 1993 were used to assess the relative performance

of the ranking methods. Intersection accidents were excluded and only

casualty accidents were considered.

Each of the different methods as listed above were used to identify the worst

1000 segments. This process thus yielded a total of 6 groups consisting of a

1000 sites each. Some sites might be common to all the groups and some but

be unique to only one group.

In order to compare the different methods it was assumed that the group with

the most target accidents in the subsequent period (1991 - 1993) would be

the best method.

Two types of target accidents were considered:

• All injury accidents
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• Accidents that are treatable by highway engineering methods, such as for

example lane widening. An estimate of these accidents equals those that

are in excess of what is normally expected on intersections of a similar

class and traffic intensity.

Table 5.20 : Data for comparison of identification and ranking methods.

Injury accidents on 1000 worst 0.5 km segments

Treatable accidents

:L(91-93 count - AADT model

estimate)

Total accidents Total accidents
Method

1988 - 90 1991-93

Number 3323 1232

Rate 1535 336

Empirical Bayes 2444 1438

AADT model 3179 1338

Base model 3126 1393

Full Model 3278 1315

Source: Persaud et al. (1999b)

664

274

597

681

673

679

Using the Empirical Bayes estimate (m) as a ranking criterion appears to be

the most effective method to identify and rank sites that are most likely to

have accidents in the subsequent period ( 1991 - 1993). This is followed by

the Base model method. When only treatable accidents are considered the

'model' methods are superior to the method based on the Empirical Bayes

estimate.

Persaud et al. (1999b) conclude that if both accident measures are

considered together the Base model method appears to be the best of the

methods.
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5.7 SUMMARY and CONCLUSION

.This Chapter presented a number of Conventional and Bayesian

methodologies to identify and rank hazardous locations or locations that when

treated, would have the potential to produce good benefits in terms of

accident reduction and economic returns.

Generally those Conventional and Bayesian methods that are based on a

measure of potential accident reduction (PAR), according to McGuigan (1982)

and Persaud et al. (1999a and 1999b) appear to produce satisfactory results.

It has been shown how information about the severity of accidents at a

location can be combined with the Bayesian PAR method to favour those

sites with a good potential for accident and severity reduction.
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CHAPTER 6

THE EVALUATION OF ROAD SAFETY REMEDIAL MEASURES

6.1 INTRODUCTION

According to Persaud (1986) the effective management of safety on a system

requires sound knowledge of how the system reacts to the implementation of

measures that affect safety - whether safety increases or decreases and by

how much.

Hauer (1997) states that one of the main reasons for conducting evaluation

studies to determine the safety effect of a treatment/s on an entity or a group

of entities is to have factual guidance for the future. Hauer (1997) also states

that the results of each such evaluation adds to the edifice of professional

knowledge and the quality of professional advice.

The systematic and correct evaluation of road safety remedial measures is

therefore a very important last step in the implementation of an accident

remedial programme, since the results so obtained will add to the quality of

planning and implementation of any future road safety remedial programmes.

Another important reason to have reliable information on the effect of road

safety treatments is to be able to conduct economic feasibility studies. In other

words, to determine how efficiently funds and resources were utilised. The

overall success of a road safety remedial programme is often not measured in

the reduction of accidents but in a comparison of cost and benefits. The cost

component is determined by the amount of resources applied to bring about

improvements in safety, while the benefit component is determined by

expressing the safety effect of a treatment in financial terms using the unit

accident cost in Table 1.2.

Stellenbosch University http://scholar.sun.ac.za



6-2

The objective of this Chapter is to present accident data analysis

methodologies to determine reliable estimates of the effect that road safety

remedial measures may have on the safety of an entity or a group of entities.

As with measurement, identification and ranking methodologies, evaluation

methods can be divided into two categories a) Conventional methods and b)

Bayesian methods.

Although the Conventional methods have been found to be less reliable than

the Bayesian methods especially with regards the regression-to-mean effect

(Hauer; 1997) , for comparison purposes both the Conventional and Bayesian

methods will be presented in this Chapter.

The methodologies presented in this Chapter is based on the work done by Dr

Ezra Hauer in his book - "Observational Before-and-After Studies in Road

Safety" ( Pergamon - 1997).

To evaluate the performance of the Conventional and Bayesian methods and

to compare these methods with one another, use will be made of the

experimental data in Appendix A1. The analyses performed on this data, the

results of which are used in the Chapter, are contained in Appendix A4.

6.2 CONCEPTUAL FRAMEWORK

Estimating the effect of highway and traffic engineering measures on road

safety basically involves three tasks (Hauer; 1997):

a) Predicting what would have been the safety in the 'after' period had

treatment not been applied.

b) Estimating what the safety in the 'after' period was after treatment has

been applied.

c) Comparing the prediction with the estimation in order to estimate the

improvement/decline in safety between the 'before' and 'after' periods.

Stellenbosch University http://scholar.sun.ac.za



6-3

6.2.1 PREDICTING ACCIDENTS

There are a number of ways to predict the expected level of safety in the

'after' period had treatment not been applied. According to Hauer (1997) the

best method is the method that provides the best prediction. The quality of

prediction is determined by (Hauer; 1997) :

a) How the method accounts for those causal factors that affect safety that

are measured and the influence of which is known or can be known, such

as for example traffic flows.

b) How the method accounts for the remaining factors that affect safety,

those that are not measured or of which the influence of safety is

unknown.

c) How the method accounts for the regression-to-mean effect.

d) How the method accounts for changes in the extent of accident reporting.

6.2.2 STATISTICAL FRAMEWORK

According to Hauer (1997) let

Jt - The estimated number of target accidents of a specific entity in the

'after' period had the entity not been treated. I.e. Jt is to be predicted.

A - The expected number of target accidents of the entity in the 'after'

period. I.e. A is to be estimated.

The safety effect of a treatment is determined by comparing Jt and A as

follows:
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a) Unbiased estimates of the reduction in the number of accidents (6), and

its variance, VAR(6), is given by :

6 = n:-A ... [6.1 ]

...[6.2]VAR(6) = VAR(n:) + VAR(A)

b) Unbiased estimates of the index of effectiveness (8) and its variance,

VAR(8), are given by:

8 = (A/n:)[1 +VAR(n:)/n:2r1
VAR(8) = 82[VAR(A)/A2 + VAR(n:)/n:2]/[1 + VAR(n:)/n:2]2

...[6.3]

...[6.4]

For derivations of these expressions the reader is referred to Hauer (1997).

For a treatment to have been effective 6 > 0 and 8 < 1. The accident

reduction factor :

ARF = 100(1-8). ...[6.5]

Equations 6.1, 6.2, 6.3 and 6.4 form the basis for all the evaluation

procedures that will be presented in this Chapter. The difference between the

different evaluation procedures lies in the methods used to obtain Jt ,A,

VAR(Jt) and VAR(A).

6.2.3 METHODOLOGICAL FRAMEWORK

The framework for the statistical analysis of any of the evaluation procedures

in this chapter consists of a simple 4-step process as indicated in Table 6.1.
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Table 6.1 : The 4-step process

Step 1 For j = 1, ....... ,n estimate A.G)and JtG).

A.= LA.(j)

Jt = LJt(j)

Step 2 For j = 1, ....... ,n estimate VAR {Jt(j)} and VAR {A.(j)} .

VAR(A.) = LVAR{A.(j)}

VAR(Jt) = LVAR{Jt(j)}

Step 3 Determine 6 and 8:

6 = Jt-A.

8 = (A.JJt)[1+VAR(Jt)JJt2r1
Step 4 Determine VAR(6) and VAR(8) :

VAR(6) = VAR(Jt) + VAR(A.)

VAR(8) = 82[VAR(A.)/A.2 + VAR(Jt)/Jt2]J[1 + VAR(Jt)JJt2]2

Step 2 is based on the assumption that all the A(j)'S and all the Jt(j)'s are

mutually independent. Steps 3 and 4 are common to all the evaluation

procedures that will be presented in this Chapter.

6.3 SIMPLE BEFORE AND AFTER METHODOLOGY

The simple before-and-after methodology method consists of comparing the

observed accident count of the 'before' period (Xb) to the observed accident in

the 'after' period (Xa). The observed number of 'before' accidents is therefore

used as an estimate of what would have been the accident number in the after

period had safety treatments not been undertaken.

The difference between two observed values Xa and Xb in an evaluation study

could consist of 4 components:

a) The treatment effect.

The estimation of this effect is the primary objective of a road safety

evaluation study. The treatment effect is that change in the level of
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safety that was caused by the influence of a safety measure/s, and that
alone.

b) The exposure effect

Between the 'before' and 'after' periods there may be an increase ( or a

decrease) in the traffic volumes. Since higher traffic volumes are

associated with increased accident numbers, an increase in traffic

volumes after the implementation of road safety measures could lead

to a relative increase in accidents. Not accounting for the exposure

effect, when there has been an increase in traffic volumes, could result

in the underestimation of the treatment effect.

c) The trend effect

The trend effect is a function of a number of possible causal factors

which are possibly difficult to identify and measure. Between the

'before' and 'after' periods there may have been changes in the traffic

composition ( i.e. more minibus taxis), changes in the driver

composition ( e.g. more older drivers), changes in law enforcement

activity (e.g. the Arrive Alive campaign), the pedestrian numbers may

have increased, the level of accident reporting may have improved etc.

d) Random effect

Accident counts are random variables which have a Poisson

distribution around a long term mean. (Abbess et al. ; 1981). This long

term mean will hence be referred to as the 'true' level of safety.

Because of the discrete and random nature of accident data is it

unlikely that an observed value will be equal to its 'true' mean. The

difference between the mean and the observed value can be referred

to as the random error. Accident remedial measures are normally

applied to accident sites with a high accident number in the 'before'

period. This introduces what is called selection bias or the regression-
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to-mean (RTM) effect. (Abbess et al. ; 1981). It can be expected for the

high observed count to decrease (towards the mean) even in the

absence of any remedial measure, thereby creating a false sense of

'success'.

Figure 6.1 : Illustration of the RTM, treatment and trend effects

Figure 6.2 illustrates the regression-to-mean, trend and treatments effects,

assuming there were no changes in the level of exposure between the 'before'

and 'after' periods. If the trend in the 'before' data was not considered in

predicting the expected accident number in the 'after' period the RTM effect

would have been overestimated by the 'trend effect' and the treatment effect

would have been underestimated by the 'trend effect'.

The following example, based on the experimental data of Appendix A1, will

serve to illustrate the regression-to-mean effect.
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EXAMPLE 6.1

The data in columns 'Year 2', 'Year 3', 'Year 4' and 'Year 5' of Table 6.2 are the annual

average number of accidents that occurred at all those sites that during Year 1 experienced 0,

2,4,6 and 8 accidents respectively.

Table 6.2 : Annual average accident frequency data

Annual average frequency
Year1 Year2 Year3 Year4 YearS
0.00 3.67 4.33 3.50 4.44
2.00 3.83 4.06 4.07 4.06
4.00 4.07 3.80 3.89 4.35
6.00 3.91 4.05 4.13 4.18
8.00 4.96 3.89 4.36 3.82

The data in Table 6.2 is illustrated in Figure 6.2.

8 r -1 r r
t 6 -------------------------------------- 1--------------1--- 1----------------------1------------------------

~

-0- X,=2
• .;>. x, =4 .....

-6- X, = 6

...... X, =8

2 . · . ....... --.--- --_ -- -- _- _--_ __ .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .L ~ _j· _L· 1· J=======~o ::.
Year3 Year4 YearSYear 1 Year2

Figure 6.2 : Illustration of regression-to-mean effect

It is evident that the average annual accident frequency of all those sites that in Year 1

experienced accident frequencies above the mean ( =4 ) 'regressed' in subsequent years

towards the mean. And vice versa, annual accident frequencies of all those locations that

were below the mean in Year 1 'regressed' towards the mean in subsequent years.
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6.3.1 STATISTICAL ANALYSIS

Assume some treatment has been applied to a number of entities numbered

1,2,3 ,j, n.

During the 'before' period the accident counts were Xb(1), Xb(2), ..... Xb(n), and

the 'after' accidents were Xa(1 ),Xa(2), ..... Xa(n).

Since it is possible for the 'before' and the 'after' periods to differ in length

from entity to entity it is necessary to define the 'ratio-of-durations':

...[6.6]

Where

Ta(j} - Duration of after period for entity j.

Tb(j) - Duration of before period for entity j.

Table 6.3 : The 4-step process for the simple before-and-after procedure

STEP 1 STEP2

A = LXaG) VAR(A) = LXaG>

n = Lrd(j)XbG) VAR(1t) =Lr dG>2Xb(j)

STEP 3 STEP4

6 = 1t-A VAR(6) = VAR(1t) + VAR(A)

8 = (Al1t)[1 +VAR(1t)/1t2r1 VAR(8) = 82[VAR(A)/A2 + VAR(Jt)/1t2]/[1 + VAR(1t)/1t2f

The application of this 4 step procedure is illustrated in Example 6.2.
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EXAMPLE 6.2

During the first 6 months of 1998 a total of 1103 casualty accidents occurred on rural roads in

the province of the Western Cape. The Arrive Alive campaign started on 1 October 1997.

The following example will show the application of the simple before and after methodology in

determining if there was a reduction in the casualty accident number over this period.

The following data is available for the period January to June each year:

Table 6.4 : Accident Data

Year 1994 1995 1996 1997 TOTAL

Accidents 1116 1174 1119 934 4343

Xb = 4343; Xa = 1103; Tb = 4; Ta = 1 ; Rd = 0.25

Table 6.5 : The 4-step procedure; Calculations

STEP 1 STEP2

"A= 1103 VAR("A) = 1103

Jt= 4343 * 0.25 = 1086 VAR(Jt) = 0.252 * 1086 = 68

STEP 2 STEP4

b = 1086 - 1103 = -17 VAR(b) = 1103 + 68 = 1171 = (34.2)"

8 = (1103/1086) / (1 + 68/10862) = 1.015 VAR(8) = (1.015)2 [1/1103 + 68/10862] / [1 +

68/10862f = 0.00099 = (0.0315)2

An approximate 95 % confidence interval for b is -17 ± 2*(34.2) = {-85A ; 51A} .

Note that the shorter the 'before' period the larger rd will become. This will result in larger

values for VAR(Jt) and also for VAR(b) and VAR(8). Larger values of VAR(b) and VAR(8) will

result in less accurate estimates of 8 and b. It will make it more difficult to detect a change in

the accident number with any degree of significance.

In this particular example the calculated effect includes an exposure effect and a trend effect.

It is realistic to assume that rural traffic has grown since 1994 and that there have been many

other causal factors that could have influenced traffic and accident patterns over this period.
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EXAMPLE 6.3

Assume a treatment has been applied to six entities e.g. intersections.

Table 6.6 : Before-and-After accident data and calculations

Entity Years Years
Xb Xa rd(j) rdij)Xb rd(j)2Xbnumber before After

1 3 1 15 4 0.33 5.0 1.7
2 4 2 23 10 0.50 11.5 5.8
3 3 3 10 8 1.00 10.0 10.0
4 2 1 9 3 0.50 4.5 2.3
5 2 1 12 4 0.50 6.0 3.0
6 3 2 17 8 0.67 11.3 7.6

TOTAL 37 48.3 30.2

Table 6.7 : The 4-step procedure - calculations

STEP 1 STEP2

'A= 37 VAR('A) = 37

lt = 48.3 VAR(lt) = 30.2

STEP3 STEP4

6 = 48.3 - 37 = 11.3 VAR(6) = 37 + 30.2 = 67.2

8 = (37/48.3)/(1 +30.2/48.32) = 0.75 0(6) = 8.2

ARF = 100(1-0.75) = 25 % VAR(8) = (0.75)2/[1/37 + 30.2/48.32] 1

[1+30.2/48.32f = 0.023

0(8) = 0.15

The approximate 95 % confidence interval of 8 is given by O.75±2(O.15) = {0.45 ; 1.05}. Since

8=1 is contained in this interval there is no certainty that the treatment was indeed effective.

6.3.2 STUDY DESIGN

According to Hauer (1997) there are two important issues to consider when

designing a simple before-and-after study :

a) How many accidents should occur in the before period to estimate a

change in safety with satisfactory precision. For example, how many
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accidents should occur in the 'before' period in order to detect a 10 %

reduction in the expected number of target accidents?

b) What should be the duration of the 'before' and 'after' periods?

Hauer (1997) derived the following expression that can be used to guide

deliberations about the number of accidents required:

... [6.7]

Where !tXb(j) is the sum of the number of all expected 'before' accidents

across all treated entities.

According to Hauer (1997) the following rule of thumb applies:

"The standard deviation of the estimate has to be 2 - 3 times smaller

than the effect which one expects to detect."

A factor of 2 corresponds with a 95 % degree confidence while a factor of 3

corresponds with a 99 % degree of confidence.

EXAMPLE 6.4

Consider Example 6.2. The question is how many accidents should we have in the 'before'

period, to be able to detect a 10 % reduction as significant at the 95 % degree of confidence?

Rd = 0.25 ; 8 = 0.9 ; 0(8) = 0.10/2 = 0.05 ; VAR(8) = 0.052

Substituting into Equation 6.7 gives:

Xb = (0.9/0.25 + 0.92)/0.0025 = 1764

In the before period we have observed 4343 accidents which implies that one would be able

to detect a 10% reduction between the before and after periods. From Table 6.8 it is evident

that one would not be able to detect a 5% reduction with the available information.
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In the example above the required number of 'before' accidents can be

reduced by increasing the duration of the 'after' period, thereby increasing rd.

The larger the numbers in the 'before' and 'after' period the larger the

statistical precision. The accident numbers can be increased in one of two

ways:

a) By increasing the number of entities for which accidents are counted, and

b) By increasing the duration of the 'before' and 'after' periods.

However careful consideration should be given to using long 'before' and

'after' periods when there has been a trend in the accident counts over these

periods. For the simple before-and-after study to be legitimate there should be

no trend in either of the 'before' and 'after' periods. The general rule is - the

longer the period the better, provided there is no time trend in the levels of

safety.

Table 6.8:Minimum expectedaccidentsinbeforeperiod:95 % degree ofconfidence
Expected % reduction

40% 35% 30% 25% 20% 15% 10 % 5%
rd ij

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.20 84 120 177 276 464 884 2124 9044
0.25 69 99 146 228 384 733 1764 7524
0.33 54 78 116 181 306 586 1415 6050
0.40 47 67 100 156 264 506 1224 5244
0.50 39 56 84 132 224 431 1044 4484
0.60 34 49 74 116 197 380 924 3977
0.67 31 45 68 108 183 354 861 3713
0.75 29 42 63 100 171 330 804 3471
0.80 28 40 61 96 164 317 774 3344
1.00 24 35 53 84 144 280 684 2964
1.25 21 31 47 74 128 249 612 2660
1.33 20 30 45 72 124 242 595 2587
1.50 19 28 43 68 117 229 564 2457
1.67 18 27 40 65 112 219 540 2354
2.00 17 24 37 60 104 204 504 2204
2.50 15 22 34 55 96 189 468 2052
3.00 14 21 32 52 91 179 444 1951
4.00 13 19 30 48 84 166 414 1824
5.00 12 18 28 46 80 159 396 1748
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Table 6.9 : Minimum expected accidents in before period: 99 % degree of confidence

Expected % reduction
40% 35% 30% 25% 20% 15% 10% 5%

rd

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.20 189 270 400 622 1046 1993 4789 20390
0.25 156 223 330 514 866 1652 3977 16963
0.33 123 176 262 409 691 1322 3190 13640
0.40 105 151 224 352 595 1141 2760 11823
0.50 88 127 189 298 505 971 2354 10109
0.60 77 111 166 262 445 857 2083 8967
0.67 71 103 154 243 413 798 1942 8370
0.75 65 95 143 225 385 744 1813 7825
0.80 63 91 137 216 370 715 1745 7539
1.00 54 79 119 189 325 630 1542 6682
1.25 47 69 105 168 289 562 1380 5997
1.33 46 67 102 163 280 546 1341 5832
1.50 43 63 96 153 265 517 1272 5540
1.67 41 60 91 146 252 494 1216 5308
2.00 37 55 84 135 234 460 1136 4969
2.50 34 50 77 124 216 426 1055 4626
3.00 32 47 72 117 204 403 1001 4398
4.00 29 43 67 108 189 375 933 4112
5.00 27 41 63 103 180 358 893 3941

EXAMPLE 6.5

Consider the following annual total accident counts recorded in the magisterial area of

Hermanus on the South Coast of the Western Cape.

Table 6.10 : Annual accident data: Hermanus: 1991 to 1998

Year 1991 1992 1993 1994 1995 1996 1997 1998

Acc. 372 431 411 497 593 627 676 634

If it is decided to use 4 years of 'before' data to determine what would have been the accident

level in the 'after' period had the Arrive Alive campaign not been implemented then Xb = 2393

and rd = 0.25. According to Table 6.8 this amount of data is sufficient to detect a 10 %

change in the level of safety. From the analysis below it appears as if there were a 6 %

increase in the number of accidents during 1998.

ontinue ...
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Example 6.5 (Continued)

Table 6.11 : The 4-step procedure - calculations.

STEP 1 STEP2

'A=634 VAR('A) = 634

Jt = 0.25 * 2393 = 598 VAR(Jt) = 0.252 * 2393 = 150

STEP3 STEP4

6 = 598 - 634 = -36 VAR(6) = 634 + 150 = 784 = 28"

8 = (634/598) / (1+ 150/5982) = 1.060. VAR(8) = (1.06)2[1/634 + 150/5982] / [1+150/59S2f
= 0.00224 = 0.0472

Judging from Figure 6.3 it is evident that because of the trend in the accidents the 4 year

average does not provide a good measure of what the level of safety would have been had

the Arrive Alive campaign not been implemented.

The following analysis consider only 1 year in the before period - that is 1997.

Table 6.12 : The 4-step procedure - calculations.

STEP 1 STEP 2

'A= 634 VAR('A) = 634

Jt = 676 VAR(Jt) = 676

STEP3 STEP4

6 = 676 - 634 = 42 VAR('A) = 634 + 676 = 1310 = 36"

8 = (634/676) / (1 + 1/676) = 0.94 VAR(8) = (0.94)2[1/634 + 1/676] / [1 + 1/676]2 = 0.0027

ARF = 6 % = 0.052

It is evident that using a 4-year before period has produced smaller standard deviations for 6

and 8 than using only a 1-year before period i.e. the 4-year period measured 6 and more

precisely, however it measured an' incorrect' effect more precisely. In more human terms - it

is doing the wrong thing well. It is therefore prudent in some instances to use a shorter

'before' or 'after' period even it means a reduction in the accuracy of the estimates.

It is evident from Figure 6.3 that there is still a sizeable trend effect that remains unaccounted

for i.e. the effect estimate above ( - 6 %) is in all likelihood an underestimation. A comparison

group could be used to account for this trend effect.

Continue ...
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Example 6. (Continued)
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Figure 6.3 : Illustration of trend effect.

CASE STUDY 6.1

At the end of 1991 the municipality of Irbid, the third largest city in Jordan, implemented a

number of street bumps in order to reduce traffic accident problems. Street bumps were

constructed at 14 intersections of secondary streets with minor arterials, on the secondary

street approaches.

A study was done by AI-Masaied (1997) to evaluate the effectiveness of the street bumps in

reducing traffic accidents. He used three different methods - the simple before-and-after

method, the before-and-after method with a comparison group and the Bayesian method.

The 'before' and 'after' periods are both 1 year in length.

Table 6.13: Case study 'before' and 'after' accident data

Site no.
Period

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tot

Before
29 16 4 8 21 34 22 13 9 19 19 23 36 16 269

1991

After
17 2 0 1 15 27 9 2 3 7 4 12 23 5 127

1992
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Table 6.14 : The 4-step procedure - calculations

STEP 1 STEP 2

'A= 127 VAR('A) = 127

lt = 269 VAR(lt) = 269

STEP3 STEP4

6 = 269 - 127 = 142 VAR(6) = 127+269 = 396 = 19.9"

8 = (127/269)/(1+1/269) = 0.47 VAR(8) = (0.47)2[1/127+ 1/269]/[1 +1/269f =0.0025 = 0.052

An approximate 95 % confidence interval for 8 is given by 0.47±2(0.05) = {0.37 ; 0.57}. There

appears to have been a significant reduction in the accident number between the before and

after periods.

6.3.3 PERFORMANCE OF BEFORE-AND-AFTER METHODOLOGY

EXAMPLE 6.6

In order to assess the ability of this before-and-after methodology to eliminate the regression-

to-mean effect and to correctly estimate the true safety effect the following analyses were

applied to the hazardous locations identified by conventional methodologies (see Appendix

A4) for the different collection periods. Five sets of hazardous locations were identified -

each set corresponding to a different collection period.

It was assumed that the hazardous locations identified by the Conventional methodologies in

Chapter 3 and Appendix A4 were treated with a treatment that would reduce the accident

frequency by 20 %. The true levels of safety, which were randomly generated from a gamma

distribution for each hazardous location, were reduced by 20 %. This 'after' true level of safety

was then used as the mean to randomly generate 5 years of accident data for each site

according to the Poisson distribution.

If the mb; is the true level of safety at an entity, then ma; = O.8mb;. In the before period Xi -

P(mbi) and in the after period Xi - P(mai).

Xb is the total number of accidents observed at all the hazardous locations during the before

period, mb the sum of all the true levels of safety at all the hazardous locations during the

'before' period and ma the sum of all the true levels of safety during the 'after' period.

The regression-to-mean effect can be determined as follows: RTM = 100*(1-mt/Xt)

Continue ...
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Example 6.6 (Continued)

The expected treatment effect can be determined as follows:

The simple before-and-after methodology was applied to each set of hazardous locations

using different 'after' collection periods. The results of the analyses are shown in Table 6.15.

It appears from the data that as the 'before' period increases the regression-to-mean effect

decreases but that the length of the 'after' period has little effect on the estimated safety effect

E(8).

Table 6.15 : Results of assessment of conventional identification and evaluation methods.

x, I mb I rna Xa rd 'A. lt Var('A.) Var(lt) 8 Var(8) Oe ARF
Conventional- 1 Year

820 I 503 I 402 414 1 414 820 414 820 0.50 0.00092 0.030 49.6
840 2 840 1640 840 6560 0.51 0.00094 0.031 48.9

RTM = 38.7 % 1240 3 1240 2460 1240 22140 0.50 0.00112 0.033 49.8
E(8) = 0.51 1616 4 1616 3280 1616 52480 0.49 0.00131 0.036 51.0

2044 5 2044 4100 2044 102500 0.50 0.00160 0.040 50.4
Conventional- 2 Year

2015 I 1491 I 1193 591 0.5 591 1008 591 252 0.59 0.00067 0.026 41.4
1187 1 1187 2015 1187 2015 0.59 0.00046 0.022 41.1

RTM = 26 % 1799 1.5 1799 3023 1799 6801 0.59 0.00046 0.021 40.5
E(8) = 0.408 2348 2 2348 4030 2348 16120 0.58 0.00048 0.022 41.8

2961 2.5 2961 5038 2961 31484 0.59 0.00054 0.023 41.3
Conventional - 3 Year

3386 I 2780 I 2224 753 0.33 753 1117 753 122 0.67 0.00065 0.025 32.6
1496 0.66 1496 2235 1496 973 0.67 0.00039 0.020 33.1

RTM = 17.9 % 2255 1 2255 3386 2255 3386 0.67 0.00033 0.018 33.4
E(8) = 0.34 2983 1.33 2983 4503 2983 7966 0.66 0.00032 0.018 33.8

3769 1.66 3769 5621 3769 15489 0.67 0.00034 0.018 33.0
Conventional - 4 Year

4589 I 3901 I 3121 790 0.25 790 1147 790 72 0.69 0.00063 0.025 31.1
1575 0.5 1575 2295 1575 574 0.69 0.00035 0.019 31.4

RTM = 15 % 2380 0.75 2380 3442 2380 1936 0.69 0.00028 0.017 30.9
E(8) = 0.32 3153 1 3153 4589 3153 4589 0.69 0.00025 0.016 31.3

3951 1.25 3951 5736 3951 8963 0.69 0.00025 0.016 31.1
Conventional - 5 Year

6352 I 5593 I 4475 1062 0.2 1062 1270 1062 51 0.84 0.00068 0.026 16.4
1963 0.4 1963 2541 1963 407 0.77 0.00034 0.018 22.7

RTM = 11.9 % 2881 0.6 2881 3811 2881 1372 0.76 0.00025 0.016 24.4
E(8) =0.296 3721 0.8 3721 5082 3721 3252 0.73 0.00021 0.015 26.8

4655 1 4655 6352 4655 6352 0.73 0.00020 0.014 26.7
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6.4 ACCOUNTING FOR THE EXPOSURE EFFECT

As mentioned previously a disadvantage of the simple before-and-after

methodology is its inability to separate the treatment effect from the effect

from many other variables that changed between the 'before' and 'after'

periods.

One important measurable causal factor that changes between the 'before'

and 'after' period is traffic flow i.e. exposure. Traffic flow information is

routinely collected by roads authorities for a variety of purposes. The most

common measure of traffic flow for road segments is the AADT - Annual

Average Daily Traffic.

It is often assumed that the exposure effect can be accounted for by using

accident rates ( e.g. accidents / million vehicle kilometres / year). Using

accident rates in this manner is only legitimate if a direct linear relationship

exists between traffic flows and accidents. As has been shown in Chapter 3

AADT based accident rates are in most cases a function of the magnitude of

the AADT i.e. the Safety Performance function is non-linear.

6.4.1 STATISTICAL ANALYSIS

Let

The expected number of accidents when flow = Aa.

The expected number of accidents when flow = Ab.

The traffic flow ratio and its variance is given by (Hauer; 1997) :

In= F(AaJ/F(AJ

VAR(rrJ = r/ [c/VAR(AaJ / f2(AaJ + c/VAR(AJ / f2(AJ]

... [6.8]

... [6.9]

Where CA and Cs denote the derivatives of 'f with respect to traffic flows at A,

and Ab.
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For a linear Safety Performance Function the values of r« and VAR(rtt) is given

by (Hauer; 1997):

rtf = Aa/Ab

VAR(rtf) = rtf2{v2(Aa) + v2(Ab)}

... [6.10]

... [6.11]

Where

v(AaJ and v(AJ are the coefficients-ot-variation for the 'after' and 'before'

counts respectively. A coefficient-ot-variation is defined as the standard

deviation of a variable divided by its mean.

For a non-linear Safety Performance Function with the following form:

frAY = aAi3 ... [6.12]

the expressions for estimating rtt and VAR(rt,) is (Hauer; 1997):

rtf= (A.lAt)i3

VAR(rtf) = r/f./[';(AaY + ';(At)]

... [6.13]

... [6.14]

Table 6.16: The 4-step procedure - accounting for the exposure effect

STEP 1 STEP 2

A = Xa VAR(A) = Xa

:It = rdrtfXb VAR(:It) = (rr)2 [(rt/Xb + X/VAR(rrJ]

STEP3 STEP4

b = :It-A VAR(b) = VAR(:It) + VAR(A)

8 = (A.I:1t)[1+VAR(:It)/:lt2r1 VAR(8) = 82[VAR(A)/A2 + VAR(:It)/:lt2]/[1 + VAR(:It)/:lt2f
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• THE ESTIMATION OF v(AJ and v(Ab).

The values of v(Aa) and v(Ab) can be obtained from Tables 2.1, 2.2 and 2.3 in

Chapter 2.

EXAMPLE 6.7

Provincial Trunk Road Number 11 Section 4 connects Citrusdal in the south with Clanwilliam

in the north. It forms part of the N7 route which runs from Cape Town to Namibia. During

1992 the section between kilometre values 57.01 and 76.05 was resurfaced and the road

markings were repainted.

In the 4 years preceding the resurfacing i.e. 1988 to 1991 a total of 71 accidents were

recorded. In the 2 years after the treatment year i.e. 1993 to 1994 a total of 15 accidents were

recorded. The treatment year, 1992, was excluded from the analysis. The AADT for the

'before' period is about 1200 vehicles per day and for the after period it was about 1400

vehicles per day. The former count was obtained from a 2-day (24 hour) count and the latter

from a 1-day (24 hour) count.

Table 6.17 : Data and calculations

Category: Strategic

v(Ab) = 0.177 ( From Table)

v(Aa) = 0.143 ( From Table)

Tb = 4

Ta = 2

rd = 0.5

Xb = 71

Xa = 15

rtt = 1400/1200 = 1.167

VAR(rtt) = (1.167)2 {(0.177)2 + (0.143)2} = 0.071

Table 6.18 : The 4-step procedure - calculations

STEP 1 STEP2

A = 15 VAR(A) = 15

Jt=0.5*1.167*71 =41.4 VAR(Jt) = (0.5)2[(1.167)2*71 + 712*0.071] = 114

STEP 3 STEP4

0= 41.4 - 15 = 26.4 VAR(o) = 15 + 55.2 = 70.2

8 = VAR(8) = (0.35)2[15/152 + 114/41.42] / [1+114/41.42]2=

(15/41.4)/(1 +55.2/41.42)=0.35 0(0) = 8.38

ARF = 100(1-0.35) = 65 % 0(8)=0.105

Continue ...
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Example 6.7 (Continued)

If it is assumed that the Safety Performance function is non-linear and that X cx: A0.8 then:

rif = (1400/1200)°·8 = 1.13

VAR(rlf) = (1.13)2(O.8)2{(O.098)2+ (O.092)2} = 0.014

Table 6.19 : The 4-step procedure - calculations

STEP 1 STEP2

A = 15 VAR(A) = 15

j[ = 0.5*1.13*71 = 40.1 VAR(j[) = (0.5)2[(1.13)2*71 + 712*0.014] = 40.3

STEP3 STEP4

6 = 40.1 - 15 = 25.1 VAR(6) = 15 + 40.3 = 55.3

8 = (15/40.1 )/(1 +40.3/40.12)=0.36 VAR(8) = (0.36)2[15/152 + 40.3/40.12] 1 [1+40.3/40.12f=
ARF = 100(1-0.36) = 64 % 0.011

0(0) = 7.44

0(8)=0.106

The approximate 95 % confidence interval of the ARF is given by 64±2(1 0.6) = {42.8 ; 85.8}. It

can therefore be concluded that the resurfacing operations on TR 1114 were successful in

reducing accidents.

6.5 BEFORE-AND-AFTER WITH COMPARISON GROUP METHOD

According to Hauer (1997) to increase the accuracy of prediction it is required

to account for the influence of causal factors that change with time. In the

previous section the changes in traffic volumes were accounted for. Whereas

the change in traffic volumes can be measured, there are however numerous

causal factors which are not directly measurable or which are very difficult to

measure. Even if all the causal factors could be measured the analytical

procedures could become very complicated and cumbersome. To collectively

account for these causal factors a comparison group is often used.

A comparison group, according to Hauer (1997) is a group of entities that

remained untreated and that are similar to the treated sites.
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The before-and-after with comparison group procedure is based on two

assumptions:

1. That the causal factors have changed from the 'before' to the 'after' period

in the same manner for both the treatment and the comparison group

2. That the change in these causal factors affects the safety of the treatment

and comparison group in the same way.

6.5.1 STATISTICAL FRAMEWORK

Ca The total observed number of accidents for all entities in the

comparison group during the 'after' period.

Cb- The total observed number of accidents for all entities in the

comparison group during the 'before' period.

f.l- The total expected number of accidents for all entities in the

comparison group during the 'before' period.

v- The total expected number of accidents for all entities in the

comparison group during the 'after' period.

The comparison ratio is defined as :

re = v/f.l ... [6.15]

The equivalent ratio for the treatment group is

rT= xb: ... [6.16]

If the assumptions above holds then re = rT.

The 'odds ratio' is defined as :

(JJ = re/rT ... [6.17]
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For each group of treatment and comparison entities there is a time series of

(JJ's.Any such sequence of (JJ'shas a mean E«(JJ)and a variance VAR«(JJ).For

a comparison group to be legitimate E«(JJ)= 1.

Table 6.20: The 4-step procedure: Comparison group method

STEP 1 STEP 2

1..= x, VAR(A) = Xa

rT= re = CalCb VAR(rT) = rl [1/Cb + 1/Ca + VAR(w)]

n:= rTXb VAR(n:) = n:2 [1/Xb + VAR(rT)}/rT2
]

STEP 3 STEP4

b = n:-A VAR(b) = VAR(Jt) + VAR(A)

8 = (A/Jt)[1+VAR(Jt)/Jt2r1 VAR(8) = 82[VAR(A)/A2 + VAR(Jt)/n:2]/[1 + VAR(Jt)/Jt2f

EXAMPLE 6.8

Assume that during 1996 a municipality converted 6 intersections from 4-way stops to

signalised intersections. Assume that the comparison group consist of all non-treated 4-way

stops in the municipal area. For this exercise assume VAR(w) = o.

Table 6.21 : Treatment and comparison group data

Period Treatment Comparison

Before 73 307

After 59 389

Table 6.22 : The 4-step procedure - calculations

STEP 1 STEP2

1..= 59 VAR(A) = 59

rT= 389/307 = 1.27 VAR(rT) = (1.27)2[1/307 + 1/389] =0.0094

n:= 1.27 * 73 = 92 VAR(n:) = (92)2[1/73 + 0.0094/(1.27)2] = 165

STEP 3 STEP4

b = 92-59 = 33 VAR(b) = 59 + 165 = 224 = 15"

8 = (59/92)/(1 +1/92) = 0.63 VAR(8) = (0.63l[1/59 + 165/922]/[1+165/922f=0.014 = 0.122

ARF = 37 % S(8) = 0.12

The approximate 95 % confidence of the ARF is given by 37±2(12) = {13 ; 61}. The

conversion of the 6 intersections from 4-way stops to signalised installations was therefore

effective in reducing accidents.
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In Example 6.8 all the entities were situated in the same municipal area.

The procedure above, as illustrated by the example, is not correct for the

case where a treatment was applied to entities which do not have the same

'before' and 'after' periods and that share the same environment. Each entity

therefore has to have a different comparison group. (Hauer; 1997)

Treatments applied to different entities in different years will not have the

same 'before' and 'after' periods. A year which for one entity is in the 'before'

period might be in the 'after' period for another entity. It will therefore be

incorrect to pool the entities because the data for the 'before' and 'after'

periods will not be mutually exclusive.

The way causal factors change between the 'before' and 'after' periods and

their effect of safety could be geographically sensitive. Some areas may have

more rain then others, some areas may have more pedestrians, the growth in

vehicle travel may be higher etc. Therefore entities that are situated in

different environments cannot have a common comparison group. This would

violate the basic assumptions on which the comparison group method is

based on.

In such circumstances each entity should have its own comparison ratio. The

4-step procedure is shown in Table 6.23.

Table 6.23 : The 4 -step procedure: Entities with own comparison ratios

STEP 1 STEP2

A(j) = Xa(j} VAR{AG)} = Xa(j)

rT(j) = rc(j) = Ca(j) ICb(j) VAR{rT(j)} = rT2(j) [1/Cb(j) + 1/Ca(j) + VAR{w(j)]

1t(j) = rT(j)Xb(j) VAR(A) = LVAR{A(j)}

VAR{1t(j)} = 1t2(j) [1/Xb(j) + VAR{rT(j)}/rl(j)]

VAR(1t) = LVAR{1t(j)}

STEP3 STEP4

6 = 1t-A VAR(6) = VAR(1t) + VAR(A)

8 = (A/1t)[1 +VAR(1t)/1t2r1 VAR(8) = 82[VAR(A)/A2 + VAR(1t)/1t2]/[1 + VAR(1t)/1t2f
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EXAMPLE 6.9

Table 6.24 : Data and calculations.

Entity Year Xb Xa Cb Ca VAR(w) rT VAR(rT) " :rt VAR(,,) VAR(:rt)
1 1983 24 18 88 95 0.007 1.08 0.034 18 26 18 47.4
2 1985 29 16 102 92 0.011 0.90 0.026 16 26 16 45.1
3 1984 30 22 71 75 0.005 1.06 0.036 22 32 22 66.5
4 1988 17 8 45 56 0.009 1.24 0.075 8 21 8 47.9
5 1992 20 11 62 70 0.007 1.13 0.048 11 23 11 44.6
6 1990 25 11 84 88 0.006 1.05 0.032 11 26 11 47.7

86 154 86 299.3

Table 6.25 : The 4-step procedure - calculations

STEP 1 STEP2

/...= 86 VAR(/...)= 86

:rt= 154 VAR(:rt) = 154

STEP3 STEP4

o = 154 - 86 = 68 VAR(o) = 86 + 154 = 240 = 15.5"

8 = (86/154)/(1 +1/154) = 0.55 VAR(8) = (0.55)2 [1/86 + 1/154] I [1+11154f = 0.0054 = 0.072

ARF = 45 %

In this example the calendar years covered by the 'before' and 'after' periods differed from

site to site. It will be incorrect to add all the Ca and Cb values. For example consider Entities 1

and 2. For Entity 1 the year 1984 will form part of the 'after' period but for Entity 2 it will form

part of the 'before' period. LCa and LCb are therefore not mutually exclusive.

6.5.1.1 CHOOSING A COMPARISON GROUP

It is often the case that sites are assigned to the treatment group in a non-

random manner for example in terms of their poor safety records. It is

therefore unlikely that the expected number of accidents in the treatment

group will change in the same manner as in the comparison group.

As mentioned above a valid comparison group will have Eko) = 1. There could

however be a number of possible comparison groups that could be used,

possibly all with E(co) = 1. According to Hauer (1997) one should always

choose the comparison group for which 11Gb + 11Ga + VAR(co) is the smallest.
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• How to determine VAR(w)

Assume information for the treatment as well as the comparison group is

available for n years, and that within these n years no treatment measures

have been undertaken.

Let

o(i+ 1) = txarc«. 1)] I txu:1)*C(i)] I [1 + 1IX(i+ 1) + 1/C(i)] ...[6.18]

n-l

£(0) = Lo(i+1)
i=l

...[6.19]

and

1 n-l

VAR(o)=-L[£(o)-o(i+l)Y
n -1 i=l

...[6.20]

VAR(w) = VAR(o) - ( 11Xa+ 1/Xb + 11Ca+ tlCt) > 0 and 0 otherwise. ...[6.21 ]

EXAMPLE 6.10

Table 6.26 : Data and calculations

Year Treatment Comparison O(i)
1991 60 244
1992 63 260 0.995
1993 59 251 1.010
1994 69 274 0.916
1995 73 307 1.041

Average - E(o) 0.991
Standard deviation - 0(0) 0.053
Variance - VAR(o) 0.0028

VAR(w) = 0.0028-(1/73 + 1/59 + 1/307+ 1/389) = -0.033

If VAR(w) < 0 then assume that VAR(w) = O.
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EXAMPLE 6.11

Assuming the objective of the study is to determine the reduction in the safety (if any) in the

magisterial area of Cape Town between 1997 and 1998. In order for various causal factors

that could have changes in magnitude and characteristics between 1997 and 1998 a

comparison group has to be chosen. For this analysis three possible groups have been

identified: a) The Wynberg magisterial area, b) the whole Metropolitan area which include the

magisterial areas of Bellville, Kuilsriver, Somerset West, Simon's Town, Mitchell's Plain and

Wynberg, and c) the whole Province.

The first step is to determine which of these comparison groups are the most suitable i.e. for

which group does (1IGa + 11Gb+ VAR(w)) assumes the smallest value.

Table 6.27 : Data and calculations

Year Cape Wynberg Metro Province
Town Acc. o(i) Acc. o(i) Acc. o(i)

1991 15851 23528 42502 60342
1992 17042 23999 0.949 43851 0.960 61702 0.951
1993 15090 21527 1.013 40580 1.045 58576 1.072
1994 15881 24231 1.069 45409 1.063 64846 1.052
1995 18143 24698 0.892 47823 0.922 68974 0.931
1996 18768 27679 1.083 53174 1.075 76027 1.065
1997 19603 24886 0.861 53443 0.962 73886 0.930

Average - E(o) 0.978 1.004 1.000
Std. Deviation - 0(0) 0.092 0.064 0.070
Variance - VAR(o) 0.009 0.004 0.005

Table 6.28 : Data and calculations

Area Ca Cb Xa Xb Var(w) 1/Cb + 1/Ca + VAR(w)

Wynberg 24590 24886 18827 19603 0.0088 0.0089

Metro 50167 53443 18827 19603 0.0039 0.0039

Province 75194 73886 18827 19603 0.0049 0.0049

It is evident that the smallest value of 11Gb+ 11Ga+ VAR(w) has been obtained for the Metro

area. The value of E(o) is also sufficiently close to 1 to make it a suitable comparison group.

Continue ...
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Example 6.11 (Continued)

Table 6.29 : The 4-step procedure - calculations

STEP 1 STEP2

VAR().) = 18827 = (137)~

A = 18827 VAR(rT) = (0.94)2 [0.0039] = 0.00345

rT= re= 50167/53443 = 0.94 VAR(Jt) = 184012[1/19603 + 0.00345/(0.94)2 ]=

:rt = 0.94*19603 = 18401 (1157)2

STEP3 STEP4

b = 18401 -18827 = -426 Var(b) =18401 + 1157~ = 1165~

8 = (18827/18401)/(1 + 11572/184012 = VAR(8) = (1.019)2[ 1/18827 + 11572/184012 ] /

1.019 [1 + 11572/184012]2 = 0.0041

Since 8 > 1 it can be concluded that there was no improvement in safety in the magisterial

area of Cape Town between 1997 and 1998.

6.5.2 STUDY DESIGN

Hauer (1997) lists 5 principal choices that have to be made during the design

of a before-and-after with comparison group procedure:

1. Select the size of the treatment group in terms of the expected number of

target accidents.

2. Select the duration of the 'before' period.

3. Decide on an appropriate duration of the 'after' period.

4. Postulate what the anticipated index of effectiveness (8) of the treatment

is.

5. Select the comparison group
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In order to assess the influence of the five study design considerations of the

accuracy of the estimate, 8, Hauer (1997) derived the following expression for

VAR(8) :

...[6.22]

Tables 6.30, 6.31 and 6.32 show the minimum sample sizes required for a

comparison group in order to detect a certain change in the safety level at a

95 % degree of confidence for rd = 0.5, rd =1 and rd = 2 respectively. It is also

assumed that var(w) = O. It is evident that the larger the anticipated index of

effectiveness (8) the larger the required sample size. The smaller the value of

rd i.e. the ratio of the after- to the before period the larger is the required

sample size.

EXAMPLE 6.12

Consider a treatment which is expected to reduce the expected accidents by 10 %. Assuming

a 1 year before and 1 year after periods, what is the smallest comparison group that one

should consider in order to be able to detect a 10 % reduction?

The expected measure of effectiveness (8) = 0.9 and the desired standard deviation, 0(8) =
0.05. (assuming a 95 % degree of confidence). The minimum number of 'before' accidents is

given by applying Equation 6.22.

Assuming Xb = 2000 and assuming that the comparison group will be so good that VAR(w) =
0, Equation is applied as follows:

Solving gives Cb = 984 "" 1000
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Table 6.30 : Comparison group: Minimum sample size: rd= 1.0 and var(w) = 0

Accidents Index of effectiveness - 8
Before 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
Xb

% Reduction
5 10 15 20 25 30 35 40

20
30 90
40 222 45
50 92 35
60 367 66 30
70 178 55 27
80 129 49 26
90 1080 106 45 25
100 450 92 42 24
150 3200 164 67 36 21
200 457 124 59 33 20
250 302 108 55 32 20
300 3770 246 100 53 31 20
350 1276 217 95 51 31 19
400 853 200 91 50 30 19
450 678 188 89 49 30 19
500 583 180 87 49 30 19
550 522 173 85 48 29 19
600 481 168 84 48 29 19
650 451 164 83 47 29 19
700 28350 428 161 82 47 29 19
750 7364 410 158 81 47 29 19
800 4469 395 156 8Q 47 29 19
850 3318 383 154 80 46 29 19
900 2700 373 152 79 46 29 18
950 2314 364 151 79 46 29 18
1000 2051 357 150 79 46 29 18
1100 1713 344 147 78 46 28 18
1200 1507 335 145 77 46 28 18
1300 1368 327 144 77 45 28 18
1400 1267 321 143 77 45 28 18
1500 1191 316 142 76 45 28 18
1600 1132 311 141 76 45 28 18
1700 1084 307 140 76 45 28 18
1800 1045 304 139 76 45 28 18
1900 1013 301 138 75 45 28 18
2000 985 299 138 75 45 28 18
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Table 6.31 : Comparison group: Minimum sample size: rd = 0.5 and varko) = O.

Accidents Index of effectiveness - e
Before 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

Xb
% Reduction

5 10 15 20 25 30 35 40
20
30
40 1080
50 123
60 661 77
70 211 61
80 139 53
90 980 110 48
100 408 95 44
150 900 148 66 36
200 318 113 58 34
250 1846 229 98 53 32
300 758 193 91 51 31
350 533 173 86 49 30
400 436 161 83 48 30
450 8969 382 153 80 47 30
500 2779 348 147 79 47 29
550 1776 324 142 77 46 29
600 1365 306 138 76 46 29
650 1142 293 136 75 45 29
700 1001 282 133 74 45 29
750 905 274 131 74 45 28
800 835 267 129 73 45 28
850 781 261 128 72 44 28
900 739 256 127 72 44 28
950 705 251 125 72 44 28
1000 677 247 124 71 44 28
1100 19093 633 241 123 71 44 28
1200 7477 601 236 121 70 43 28
1300 4936 576 232 120 70 43 28
1400 3822 557 229 119 70 43 28
1500 3197 541 226 118 69 43 28
1600 2797 527 223 118 69 43 28
1700 2519 516 221 117 69 43 28
1800 2314 507 219 117 69 43 28
1900 2157 498 218 116 68 43 28
2000 2033 491 216 116 68 43 28

Stellenbosch University http://scholar.sun.ac.za



6-33

Table 6.32: Comparison group: Minimum sample size: rd = 2.0 and varke) = 0

Accidents Index of effectiveness - e
Before 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

Xb
% Reduction

5 10 15 20 25 30 35 40
20 77
30 111 30
40 490 53 23
50 129 40 20
60 86 35 19
70 378 70 32 18
80 216 61 30 17
90 162 56 28 17
100 135 52 27 16
150 313 90 43 25 15
200 200 77 40 24 15
250 1047 164 71 38 23 14
300 602 147 68 37 23 14
350 462 137 65 37 22 14
400 393 130 64 36 22 14
450 352 125 62 36 22 14
500 325 121 61 35 22 14
550 5811 306 118 61 35 22 14
600 3038 292 116 60 35 22 14
650 2164 281 114 59 35 22 14
700 1736 272 113 59 35 21 14
750 1482 265 111 59 34 21 14
800 1314 259 110 58 34 21 14
850 1194 254 109 58 34 21 14
900 1105 249 109 58 34 21 14
950 1035 245 108 58 34 21 14
1000 980 242 107 57 34 21 14
1100 897 237 106 57 34 21 14
1200 838 232 105 57 34 21 14
1300 794 229 104 57 34 21 14
1400 759 226 104 56 34 21 14
1500 732 223 103 56 34 21 14
1600 709 221 103 56 33 21 14
1700 691 219 102 56 33 21 14
1800 675 217 102 56 33 21 14
1900 661 216 102 56 33 21 14
2000 650 215 101 56 33 21 14
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CASE STUDY 6.1 (continued)

For the 14 locations where street bumps were implemented in Irbid, Jordan, a total of 21

suitable comparison locations were identified. The comparison locations were selected to be

similar to the locations that have been improved. Similarity included both geometric and

operational characteristics. The 21 sites in the comparison group had 384 and 346 accidents

in the 'before' and 'after' periods respectively.

The value of VAR(w) has not been determined in AI-Maseied's 0 study and will be assumed

to be equal to zero.

Table 6.33: Treatment and comparison group accident data

I Xb~269
Xa = 127

I Cb~384
Ca = 346

Table 6.34 : The 4-step procedure - calculations

STEP 1 STEP2

A = 127 VAR(A) = 127

rT= 346/384 =0.90 VAR(rT) = (0.90)2[1/384 + 1/346] = 0.0045

lt = 0.9*269 = 242 VAR(lt) = 2422[1/269 + 0.0045/0.902] = 543 = 232

STEP3 STEP4

6 = 242 -127 = 115 VAR(6) = 127 + 543 = 670 = 26"

8 = (127/242)/(1 +1/242) = 0.52 VAR(8) = (0.52)2[1/127+543/2422]/[1 +543/2422f = 0.0046

AFR = 48 % 0(8) = 0.068

The 95 % confidence interval for ARF is approximately {34 % ; 62%}

According to AI-Maseied the mean number of accidents recorded at the 14 treatment sites in

the before period is 19.2 accidents per site, while the mean number recorded at the 21

comparison group sites was 18.3 accidents per site. It is thus evident that on average the

treatment sites and the comparison sites had similar levels of safety. When this is the case

the regression-to-mean effect can be accounted for by the before-and-after with comparison

group procedure.

The regression-to-mean effect can in this case be estimated by the difference between the

result obtained from the simple study and the results obtained from the comparison group

study i.e. RTM = 53 - 48 = 5%.
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6.6 THE EMPIRICAL BAYES APPROACH

The conventional before-and-after procedures (with or without a comparison

group) assumes that the observed accident numbers Xa and Xb are estimates

of the true level of safety in the 'before' and 'after' periods i.e. mb and ma.

This assumption makes the conventional methods prone to the regression-to-

mean effect as was illustrated in the results shown in Table 6.15.

According to Abbess et al. (1981) one of the advantages of the Empirical

Bayesian approach is that the method is able to eliminate the regression-to-

mean effect, provided that the prior estimates E(m) are sufficiently reliable.

6.6.1 THE SIMPLE BEFORE-AND-AFTER PROCEDURE

6.6.1.1 THE COMPOSITE METHOD

The composite method is suitable to determine the average effect of an

treatment when applied to a number of entities.

Some treatment has been applied to a number of entities numbered 1, 2, 3,

....j, .... n. During the before period the accident counts were Xb(1), Xb(2),

...Xb(n) and during the 'after' period the accident counts were Xa(1), Xa(2),

...Xa(n). The 'before' duration and the 'after' duration may differ from entity to

entity.

For each entity there is a reference population, although several treated

entities may have the same reference group. For each reference population

the prior moments Elm(j)} and VARlm(j)} are known.

The weights for each entity is calculated as follows:

a(j) = [1+VAR{m(j)}lE{m(j)}t ...[6.23]
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E{mb IXb(j)} = a(j)E{m(j)} + [1-a]Xb(j)

VAR{ mb IXb(j)} =(1-a(j)] E{mb IXb(j)}

...[6.24]

...[6.25]

Table 6.35 : The 4-step procedure: Bayesian before-and-after method

STEP 1 STEP 2

A = LXaU> VAR(A) = L XaG)

n: = LrdG)X(j) VAR(n:) = LrdG)2VAR{xG)}

STEP3 STEP4

0= n:-A VAR(o) = VAR(n:) + VAR(A)

8 = (A/n:)[1 +VAR(n:)/n:2r1 VAR(8) = 82[VAR(A)/A2 + VAR(n:)/n:2]/[1 + VAR(n:)/n:2]2

From Step 2 in Table 6.35 the question may arise as to why LXa(j) is used as

an estimate of the true number of accidents in the 'after' period and not

Lma<DIXa(j) knowing that malXa is a more reliable estimate of safety then Xa ?

The answer is that if all treated sites in the 'after' period also forms the

reference group for the 'after' period then it can be shown, as follows, that for

the treated sites LXa(j) = Lma(j)IXa(j)

Assume that of the n sites that formed the reference group in the 'before'

period a total of k were treated.

k k

IE[m(j} IX(j}] =I {aE(m} + (I-a}X (j)}
j=l j=l

...[6.26]

k k

IE[m(j} IX(j}] =ak.E(m} + (I-a) IX(j)
j=l j=l

...[6.27]

k

k.E(m} = IX(j}
j=l

...[6.28]

k k

IE[m(j} I X (j)] = IX (j)
j~ j~

...[6.28]
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Should the treated sites be too few to form a reference group on their own

E[maIXa(j)] could be estimated for each site using the methods described in

Chapter 4.

CASE STUDY 6.1 (continued)

In the evaluation of the installation of speed humps in the city of Irbid in Jordan, AI-Masaeid

(1997) also used the Empirical Bayes approach to estimate the safety effect of speed hump

installations. For each treated site the method-at-moments (see Chapter 4) was used to

calculate malXa and mblXb i.e. for both the 'before' and 'after' period. The study by AI-

Masaeid (1997) did not provide enough information for the estimation of VAR(maIXa) and

VAR(mbIXb) and this example will be confined to Step 1 and Step 3 of the four step procedure.

Table 6.36 : Before-and-After Bayesian estimates

Location
Expected Accident Frequency

mblXb malXa
1 22.35 14.55
2 14.71 5.46
3 7.65 4.24
4 10.00 4.85
5 17.65 14.55
6 25.29 20.67
7 18.24 9.70
8 12.94 5.45
9 10.59 6.06
10 16.47 8.49
11 16.47 6.67
12 18.82 11.52
13 26.47 18.18
14 14.71 7.27
TOTAL 232.36 136.60

The (biased) measure of effectiveness 8 = (136.60/232.36) = 0.59 and ARF = 41 %. The

simple before-and-after methodology indicated an ARF of 53 %. The regression-to-mean

effect is thereforee approximately 53 - 41 = 12 %. The before-and-after with comparison

group methodology estimated an ARF of 43 % which is relatively similar the Empirical Bayes

estimate. The reason for this result is that the sites comprising the comparison group shared

similar levels of safety as the 14 sites in the treatment group.
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6.6.1.2 PERFORMANCE OF BAYESIAN BEFORE AND AFTER

METHODOLOGY

EXAMPLE 6.13

In order to assess the ability of this before-and-after methodology to eliminate the regression-

to-mean effect and to correctly estimate the true safety effect the following analyses were

applied to hazardous locations identified by the Bayesian methodology for the different

collection periods. Five sets of hazardous locations were identified - each set corresponding

to a different collection period

It was assumed that the hazardous locations identified by the Bayesian methodology in

Appendix B4 were treated with a treatment that would reduce the accident frequency by 20

%. The true levels of safety, which were randomly generated from a gamma distribution for

each hazardous location, were reduced by 20 %. This 'after' true level of safety was then

used as the mean to randomly generate 5 years of accident data for each site according to

the Poisson distribution.

If the mb; is the true level of safety at an entity, then ma; = O.8mb;. In the before period Xi -

P(mbi) and in the after period Xi - P(mai).

Xb is the total number of accidents observed at all the hazardous locations during the before

period, mb the sum of all the true levels of safety at all the hazardous locations during the

'before' period and ma the sum of all the true levels of safety during the 'after' period.

The regression-to-mean effect can be determined as follows:

RTM = 100*(1-mtlXt;)

The expected treatment effect can be determined as follows:

The simple before-and-after Bayesian methodology was applied to each set of hazardous

locations using different 'after' collection periods. The results of the analyses are shown in

Table 6.37.

Continue ...
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Example 6.13 (Continued)

Table 6.37 : Assessment of simple before-and-after Bayesian methodology

Xb I Mb I ma rd ').. :rt VAR(')..) VAR(:rt) 8 0(8) ARF
Bayesian - 1 Year

68 I 65 I 52 1 58 68 58 68 0.84 0.149 15.6
2 108 135 108 542 0.77 0.148 22.6

RTM = 4.7 % 3 161 203 161 1829 0.76 0.163 24.1
E(8) = 0.76 4 215 271 215 4335 0.75 0.179 25.1

5 271 339 271 8468 0.75 0.193 25.5
Bayesian - 2 Year

314 I 316 1 253 1 262 314 262 314 0.83 0.069 16.8
2 530 627 530 2510 0.84 0.076 16.1

RTM = -0.7 % 3 780 941 780 8470 0.82 0.085 17.9
E(8) = 0.81 4 1021 1255 1021 20078 0.80 0.093 19.7

5 1290 1569 1290 39214 0.81 0.103 19.1
Bayesian - 3 Year

502 I 512 I 410 1 411 502 411 502 0.82 0.054 18.3
2 830 1004 830 4017 0.82 0.059 17.7

RTM = -2.0 % 3 1242 1506 1242 13557 0.82 0.067 18.0
E(8) = 0.82 4 1636 2008 1636 32134 0.81 0.074 19.2

5 2062 2510 2062 62762 0.81 0.082 18.7
Bayesian - 4 Year

634 I 642 I 513 1 518 634 518 634 0.82 0.048 18.4
2 1052 1268 1052 5073 0.83 0.053 17.3

RTM = -1.2 % 3 1589 1902 1589 17121 0.83 0.061 16.9
E(S) = 0.81 4 2099 2536 2099 40582 0.82 0.067 17.8

5 2633 3170 2633 79262 0.82 0.074 17.6
Bayesian - 5 Year

713 I 724 I 579 1 684 713 684 713 0.96 0.051 4.2
2 1283 1427 1283 5707 0.90 0.054 10.3

RTM = -1.5 % 3 1894 2140 1894 19260 0.88 0.060 11.9
E(S) = 0.81 4 2451 2853 2451 45654 0.85 0.066 14.6

5 3038 3567 3038 89168 0.85 0.072 15.4

It is evident from the results in Table 6.37 that the Bayesian methodology was effective in

eliminating the regression-to-mean effect completely. There appears to be little difference in

the influence of the length of the 'before' and 'after' periods in estimating the safety effect.

6.6.2 BEFORE-AND-AFTER WITH COMPARISON GROUP METHOD

Treatments may be applied to entities that do not have the same 'before' and

'after' periods and environment. Each entity thereforee has to have a separate

comparison group.
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Table 6.38 : The 4-step procedure: Bayesian before-and-after with comparison group

STEP 1 STEP2

)c(j) = Xa(j) VAR{)cG}} = Xa(j)

rT(j) = rdj) = CaG>ICb(j) VAR{rT(j)} = r/(j) [1/Cb(j) + 1/Ca(j) + VAR{w(j)]

n(j) = rT(j)x(j) VAR()c) = LVAR{)c(j)}

VAR{n(j)} = n2(j) [VAR{x(j)}/x(j)2 + VAR{rT(j)}/rT2(j)]

VAR (n) = LV AR {n(j)}

STEP3 STEP4

6 = n-)c VAR(6) = VAR(n) + VAR()c)

8 = (Aln)[1 +VAR(n)/n2r1 VAR(8) = 82[VAR()C)1)c2+ VAR(n)/n2]/[1 + VAR(n)/n2]2

6.6.3 THE MULTIVARIATE REGRESSION 'TIME-SERIES' APPROACH

In Chapter 4 a methodology is presented to estimate the level of safety at an

entity assuming that this level of safety changes from year to year. Hauer

(1997) proposed this methodology to overcome two basic impediments of the

'classical' Empirical Bayes approach, namely:

a) That over the study period the 'true' level of safety remains unchanged,

and
b) That the study period remains fixed and that information outside of the

study period has no value.

Hauer's (1997) methodology allows the estimation of the safety at a location i
for each of Y years (i.e. mi,y),where Y is the period for which information is

available. The objective of this section is to show how Hauer's (1997)

methodology can be applied to predict what would have been the expected

accident frequencies mi,Y+1 , mi,Y+2 , ...... mi,Y+Z in the 'after' years had the

treatment not been applied. Where Z = the number of years in the 'after'

period for which information is available.
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6.6.3.1 THEORETICAL FRAMEWORK

Assume we have an entity i with Yyears of covariate and accident information

available in the 'before' period and similar information for Z years in the 'after'

period. Assume the treatment has been applied at the end of year Y. Since

the objective is to determine the number of accidents that would have

occurred had treatment not taken place the same reference group should be

used for the 'before' and 'after' periods.

These prediction models can be used to estimate E(mi.1), Etm; v),
Etm; Y+1), ..... Etm; y+z} from which Ci.j can be determined as follows:

E(m )c.. = I.J
I.J E(m

i
)

...[6.29]

where j = 1,2,3 Y+Z.

The predicted number of accidents for each year in the 'after' period can be

estimated from Eqn. 6.30 :

my =Cy mlI, +z I, +z I,

...[6.30]

...[6.31]

where z = 1,2, ......Z.

The value of mi.1 can be determined from Equation 4.57 and VAR(mi.1) from

Equation 4.58.
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EXAMPLE 6.14

In Example 4.9 the number of accidents on a 2km segment of road was estimated for each of

6 years. Assume now that at the end of year 6 this segment of road underwent major

rehabilitation. The road which had gravel shoulders to start of with now has surfaced

shoulders. For the after period 6 years worth of information is available. Because of

improvements to the road the traffic volumes increased significantly over the 'after' period.

The first step in the evaluation process is to determine what would have been the total

number of accidents in the 'after' had the road not been improved, given the increased traffic

volumes.

In Example 4.9 there was a reference group, consisting of a sufficient number of 2-lane road

segments with gravel shoulders, that was used to develop accident prediction models for

each of the 6 years in the before period. A similar reference group consisting of 2-lane road

segments with gravel shoulders can be used to develop accident prediction models for each

of the 6 years in the after period. For all these models assume j3 = 0.78. The ay+z values are

indicated in the table below.

Table 6.39 : Data and calculations

J aj Q"j E(m"j) c, mhj VAR(mi,j)

1 0.00271 1250 1.41 1.000 2.49 0.264
7 0.00283 1410 1.62 1.15 2.86 0.348
8 0.00277 1480 1.65 1.17 2.91 0.360
9 0.00269 1502 1.62 1.15 2.85 0.347
10 0.00280 1493 1.67 1.19 2.96 0.372
11 0.00291 1520 1.77 1.25 3.12 0.414
12 0.00278 1515 1.68 1.19 2.97 0.376

6 6
Jti = Imp(i.Z) =17.66 and VAR(Jt,.) = IVAR(mp(i,z») = 2.22

z=1 z=1

The second step in the evaluation process is to determine the actual number of accidents that

occurred in the 'after' period. Assume the observed accident frequencies in the 'after' period

are - { 2, 1, 2, 0, 3, 3}.

In order to develop prediction models for each of the 6 years in the after period a reference

group consisting of 2-lane segments with surfaced shoulders, each with 6 years' worth of

accident data and traffic flow information, is required. Assume accident models have been

fitted to the data for each year and that the j3 parameter for all 6 models is 0.85.

Continue ...

Stellenbosch University http://scholar.sun.ac.za



6-43

Example 6.14 (Continued)

The a parameters for each year are indicated in the Table below. Assume also that the k

value of the model for the first year of the 'after' period = 5.5.

From Equation 4.57 and 4.58 :

ma(i) = (5.5 +11)/(5.5/1.95 + 5.96) = 1.88

VAR[ma(i,1l] = 1.88/(5.5/1.95 + 5.96) = 0.214

Table 6.40 : Data and calculations

j aj QI,j E[ma(l,j)] C(i,j) XI,j ma(l,j) VAR[(ma(l,j)]
7 0.00205 1410 1.95 1.00 2.00 1.88 0.214
8 0.00193 1480 1.91 0.98 1.00 1.84 0.206
9 0.00185 1502 1.86 0.95 2.00 1.79 0.194
10 0.00197 1493 1.97 1.01 0.00 1.90 0.218
11 0.00201 1520 2.04 1.05 3.00 1.96 0.234
12 0.00188 1515 1.90 0.97 3.00 1.83 0.203

TOTALS 5.96 11.00 11.21 1.270

6 6
Ai = Imau.}) = 11.21 and VAR(A) = IVAR[mau.})] = 1.27

}=I }=l

Now applying the 4 step procedure:

Table 6,41 : The 4-Step procedure - calculations

STEP 1 STEP2

'A= 11.21 VAR('A) = 1.27

lt = 17.66 VAR(lt) = 2.22

STEP3 STEP4

6 = 17.66 - 11.21 = 6.45 VAR(6) = 1.27 + 2.22

8 = (11.21/17.66)[1+2.22/17.662
]"1 = 0.63 VAR(8) = (0.63f[1.27 /11.212 +

ARF = 100(1-0.63) = 37 % 2.22/17.662]/[1 +2.22/17.662f = 0.00674

0(8) = 0.082
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6.6.4 ALLOWING FOR CHANGES IN EXPOSURE

Improving the safety of a location may cause traffic volumes to increase

above what is normal. The simple before-and-after Bayesian methodology

estimates what the number of accidents would have been in the 'after' period

using traffic volumes applicable to the 'before' period. This is an acceptable

approach if the policy is to consider the accidents caused by additional traffic,

generated by a treatment, to be included in the estimation of the safety effect.

The assumption is that had the treatment not been undertaken the traffic flows

would not have increased and the additional accidents as result thereof would

not have occurred.

This approach however do not provide accurate estimates of the true (gross)

safety effect of a treatment. To obtain such a 'gross' estimate it is required to

estimate the number of accidents that would have occurred in the before

period if flows were equal to those observed in the 'after' period i.e. after

treatment has been applied. This estimate then becomes what would have

occurred in the after period had no treatment been undertaken.

To illustrate these concepts the following example is presented;

EXAMPLE 6.15

Consider a section of road which during the before period had an accident rate of 2 acc/mvkm

and an exposure of 2 mvkm. The road was then upgraded to the extent that the accident rate

decreased to 1 acc/mvkm and the exposure increased to 3 mvkm.

The number of accidents in the before period = 4. The simple before-and-after methodology

would assume that had the road not been upgraded a total of 4 accidents would have

occurred during the after period. This would give a safety effect 3/4 = 0.75. However if the

section of road in the 'before' period carried the same amount of traffic as in the 'after' period

a total of 6 accidents would have occurred, and since only 3 accidents occurred in the after

period ( at the same level of exposure) the safety effect 8 = 3/6 = 0.5.
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The multivariate regression 'time-series' method can be adapted to allow for

changes in traffic volumes between the 'before' and 'after' period.

Assume we have a fixed before duration of tb years and a fixed after period of

ta years. In these periods Xb and Xa accidents were observed respectively.

Also assume that during the before and after periods the traffic flows were ab

and Oa respectively.

Using an appropriate regression model, based on a reference group related to

the entity's 'before' condition, the regression estimate of the total annual

number of target accidents for the 'before' (E[ mJ) and 'after' (E[ mP)) periods

can be determined, where E(mb) = f(Ob) and E(mp) = f(OaJ.

The expected annual number of accidents ( mb) can be determined from the

following Equations which can be derived from Equations 4.57 and 4.58 ;

...[6.32]

...[6.33]
--+t
E(m

b
) b

Since the objective is to determine the total number of accidents that would

have occurred in the 'after' period had the treatment not been undertaken it is

necessary to determine the total expected number of accidents in a 'before'

period equal in length to the 'after' period:

...[6.34]

...[6.35]
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To allow for changes in traffic flows between the 'before' and 'after' periods

Hauer (1997) recommends using a correction factor (C) which is estimated as

follows:

...[6.36]

The total number of accidents that would have occurred in the after period had

the treatment not been undertaken (mp) and its variance can be determined

as follows:

...[6.37]

...[6.38]

For the 4 step process:

Jt = Imp
VAR(Jt) = I VAR(mp)

...[6.39]

...[6.40]

CASE STUDY 6.2

This case study is based on research done by Persaud et al. (2000) on crash reductions

following the installation of roundabouts in the United States.

In the states of California, Colorado, Florida, Kansas, Maine, Maryland, South Carolina and

Vermont a total of 24 intersections were converted to modern roundabouts between 1992 and

1997. Of the 24 intersections, 20 were previously controlled by stop signs and 4 were

controlled by traffic signals. Fifteen (15) of the roundabouts were single-lane circulation

designs and 9 had multi-lane designs.

For each intersection accident data were obtained for the periods before and after conversion.

The construction period and the 1st month after conversion were excluded from the analysis.

The lengths of the before and after periods varied in accordance with available accident data.

In no case was a period shorter than 15 months.
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In order to apply the multivariate regression method to estimate safety in the 'before' period a

number of regression models were assembled. Bonneson and McCoy's (1993) model for rural

stop controlled intersections were used to estimate the safety at those stop controlled

intersections in rural areas that were converted to modern roundabouts. New models were

calibrated for stop controlled urban intersections. In order to calibrate these models the

reference group consisted of urban stop controlled intersections that were not converted to

roundabouts.

In order to illustrate the methodology applied by Persuad et al. (2000) only one intersection

will be considered. The intersection in question is situated in Anne Arundale County,

Maryland, and was converted from a rural stop controlled intersection to a modern 1 lane

roundabout in 1994. The information pertaining to this intersection is as follows:

Table 6.42 : Before and after data

Data Description Before After

Years of accident data 4.67 3.17

Accident Count 34 14

AADT on major approaches 10654 11 956

AADT on minor approaches 4691 5264

The model developed by Bonneson and McCoy (1993) for rural stop controlled intersections

is as follows:

Y = 0 000379Qo.256QO.831
• maj mm k = 4.0

where

Y - The expected number of all accidents per year

Omaj - AADT on major road approaches

Omin - AADT on minor road approaches

The fist step is to determine mp and VAR(mp) - the expected accident frequency and its

variance in the 'after' period

The expected number of accidents in the 'before' period E(mb)

0.000379(10654)°·256(4691 )0.831 = 4.58 ace / year and VAR(mb) = 4.582/4 =5.25

The values of mb and VAR(mb) are determined from Equations 6.32 and 6.33 as follows:
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mb = (4+34)/(4/4.58 + 4.67) = 6.86 ace/year

VAR( mb) = 6.86/(4/4.58 + 4.67) = 1.238

The next step is to multiply mb by the length of the after period:

mb = 6.86 * 3.17 = 21.74 and VAR(mb) = (3.17)2(1.238) = 12.441

In order to estimate mp the differences in the AADT's between the before and after periods

need to be considered.

The expected number of accidents per year in the after period had the intersection not been

converted to a roundabout = E(mp) = 0.000379(11956)°·256(5264)°·831= 5.19 ace/year.

C = 5.19/4.58 = 1.133

mp = C(mb) = 1.133(21.74) = 24.63

VAR(mp) = (1.133)2(12.441) = 15.97

In order to determine the improvement in safety at rural stop controlled intersections the same

procedure as described above was applied to all rural stop controlled intersections which

were converted to roundabouts.

The results of the analysis for the 5 rural stop controlled intersections in the study are

indicated in the Table below:

Table 6.43 : Results of study

Xa Mp VAR(mp)

14 36.71 30.63

14 24.62 15.95

2 14.38 9.40

10 14.33 8.55

4 15.16 6.76

Sum = 44 Sum = 105.19 Sum = 71.29
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The 4 step procedure can be applied as follows:

Table 6.44 : The 4-step procedure - calculations

STEP 1 STEP2

A = 44 VAR(A) = 44

n:= 105.19 VAR(n:) = 71.29

STEP 3 STEP4

b = 105.19 - 44 = 61.19 VAR(b) = 44 + 71.29 = 115.29

8 = (44/105.19)/[1 +71.29/105.192] VAR(8) = (0.416)2[1/44+71.29/105.192]/

=0.416 __ [1+71.29/1 05.192f = 0.005

ARF = 100(1-0.416) = 58 % 0(8) = 0.07

The approximate 95 % confidence interval of the ARF is 58±2(7) = {34 ; 74}. It can therefore

be concluded that the conversion of the rural stop controlled intersections in the study group

to roundabouts was effective in improving safety.

6.7 THE TREATMENT EFFECT

In the Conventional and Bayesian procedures discussed thus far entities were

lumped together and were treated as if they were one 'composite entity'. Only

the sum of the accident counts of all the entities was used to estimate the

safety effect associated with a treatment. Consider the simple before-and-

after procedure applied to the data of Case Study 6.1. It was estimated that

the average effect of the speed humps was a 53 % reduction with a standard

deviation of 5%. This estimated effect has been determined by considering all

12 sites together. The reduction of 53 % does not apply to any of the sites, nor

does the 5% standard deviation measure how the safety effect varies from

site to site. It represents the uncertainty surrounding the estimated value of

the average effect.

When a treatment is applied to a number of sites the effect of this treatment

will in all likelihood vary from site to site. For these different effects a mean

value as well as a variance can be determined. Should the variance be small

one could expect the treatment to have approximately the same effect on all
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entities, and should the variance be large the effect of a treatment would be

difficult to predict.

The objective of the following section is to show how the standard 4-step

procedure can be expanded to estimate both the mean and the variance of

the safety effect.

6.7.1 THEORETICAL FRAMEWORK

Assume the same treatment has been applied to n entities that have indices

of effectiveness denoted as 8(1), 8(2), .... 8(n).

The average effect is given by :

...[6.41 ]

The sample variance is given by :

...[6.42]

The expected effect E(8) is determined as follows:

E(8) = ij ...[6.43]

The procedure to determine VAR(8) is as follows (Hauer; 1997):

a) Apply the single entity 4-step procedure to estimate 8(j) and VAR{8(j)} for

each entity.

b) Using the estimates 8(j) compute the sample variance.

c) Determine the average variance for all the entities: avg(V) = LVAR{8(j)}/n

d) VAR(8) can be estimated by : VAR(8) = S2( 8) - avg(V)
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Table 6.45 : The 5-step procedure - estimating treatment effects

STEP 1 For j = 1 to n estimate AG)and :!tG).

Estimate A and :!t.

STEP2 For j = 1 to n estimate VAR{AG)} and VAR{:!tU)}

Estimate VAR(A) and VAR(:!t)

STEP3 Estimate 6 and 8

STEP4 Estimate VAR( 6) and VAR( 8)

STEPS Determine E(8) and VAR(8)

CASE STUDY 6.1 (continued)

Because of zero accidents in the 'after' period, VAR{8G)} for Site number 3 is not defined and

has this site has been left out of this analysis.

Table 6.46 : Data and calculations

Site :!t(j) AG> 6(j) 8G> ARFij) [%] VAR{6ij)} VAR{8ij)}
1 29 17 12 0.57 43 46 0.028
2 16 2 14 0.12 88 18 0.007
4 8 1 7 0.11 89 9 0.011
5 21 15 6 0.68 32 36 0.048
6 34 27 7 0.77 23 61 0.037
7 22 9 13 0.39 61 31 0.022
8 13 2 11 0.14 86 15 0.010
9 9 3 6 0.30 70 12 0.032

10 19 7 12 0.35 65 26 0.022
11 19 4 15 0.20 80 23 0.011
12 23 12 11 0.50 50 35 0.029
13 36 23 13 0.62 38 59 0.026
14 16 5 11 0.29 71 21 0.020

Sum 265 127 392 0.304
Avg. 10.6 0.39 61 0.023
Stdev. 3.1 0.22

The calculations to determine E(8) and VAR(8) are shown in Table 6.47.
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Table 6.47 : The extended 4-step procedure - calculations

STEP 1 STEP 2

A = 127 VAR(A) = 127

Jt= 265 VAR(Jt) = 265

STEP3 STEP4

0= 10.6 VAR( 0)=3.1"=9.6

8 = 0.39 VAR( "8) = 0.222 = 0.048

STEPS

E(8) = 0.39

VAR(8) = 0.048 - 0.023 = 0.025 = 0.052

Avg(ARF) = 61 %

Whereas the 'composite' analysis gave an overall ARF of 53 % in this an average ARF of 61

% has been calculated.

6.8 CONCLUSION

This Chapter presented both Conventional and Bayesian before-and-after

methodologies to evaluate the effectiveness of road safety remedial measures

at entity level as well as at group-of-entity level.

It was stated that any observed change in safety between the 'before' and

'after' periods after the application of a remedial measure could consist of 4

components - the treatment effect, the regression-to-mean effect, the trend

effect and the exposure effect. Conventional and Bayesian methodologies

were presented to account for the trend and exposure effects. It was

concluded after, analysing the experimental data in Appendices A1 and A4,

that the Bayesian method performs considerably better than the Conventional

methods in eliminating the regression-to-mean effect even if short study

periods are used. From the experimental studies it was found that at the

group-of -entity level the length of the 'after' period had little influence on the

magnitude of the estimated treatment effect.
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A methodology was also presented to determine the effectiveness of a

remedial measure at a location when there is reason to believe that the 'true'

level of safety changed from year to year during both the 'before' and 'after'

periods as a result of changes in traffic volumes and other confounding

factors.

It was shown how each of all these methodologies can be reduced to a simple

4-step procedure to determine measures of effectiveness and their variances.
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CHAPTER 7

MULTIVARIATE REGRESSION MODELS

7.1 INTRODUCTION

From Chapters 3, 4, 5 and 6 it is evident that multivariate regression models

play an important role in applying the Empirical Bayesian methodology to

estimate safety, to identify and rank hazardous locations and to evaluate the

effectiveness of road safety remedial measures.

Multivariate regression models of data from a reference population are the

source of the estimates E(m) and VAR(m) which serve as prior estimates for

the Empirical Bayesian methodology.

An alternative method to estimate E(m) and VAR(m) is the method-ot-sample

moments. This method rest on the assumption that a linear relationship exists

between the number of accidents and traffic flow at a location i.e. that the

accident rate will remain constant irrespective of the traffic flow at a location.

Using multivariate regression models 'release' the Empirical Bayesian

approach from this assumption. The regression model equation can be

specified to allow for any hypothetical relationship between accidents and

traffic flows.

It is often required to estimate the safety of an entity for which a sufficient

reference population does not or cannot exist. Consider the example of a 2

lane rural road with lane widths of 3.55 mand 1.2 m gravel shoulders that has

a traffic flow of 2345 vehicles per day. The ideal reference group, in order to

apply the method-ot-sample moments, would consist of a sufficient number of

entities that share exactly the same geometric characteristics and traffic flows.

It is unlikely that there will be many, or even any, entities that would meet

these requirements.
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By using a 'wider' reference group that consists perhaps of all 2-lane rural

entities irrespective of lane widths, shoulder widths and traffic volumes a

multivariate regression model can be developed from this reference group

data to estimate precise values of E(m) and VAR(m) for any entity,

irrespective of its geometric characteristics and traffic flows. For each entity

the regression model serves to create, in the words of Hauer (1997), an

'imaginary' reference group.

Multivariate regression models allow for determining how the level of safety at

an entity can expect to change with changing values of the covariates, such

as for example, with changes in traffic flows. This ability of regression models

forms the basis to predict what the level of safety would have been in the

future had no road safety measures been undertaken.

7.2 MULTIPLE REGRESSION ANALYSIS - AN INTRODUCTION

According to Gujarati (1988) the modern interpretation of regression is as

follows:

"Regression analysis is concerned with the study of the dependence of

one variable, the dependent variable, on one or more other variables,

the explanatory variables with a view to estimating and or predicting

the population mean or average value of the former in terms of the

known or fixed ( in repeated sampling) values of the latter. "

The regression process begins with specifying the objectives of the regression

analysis, including the selection of the dependent and independent variables.

The next step is to design the regression analysis, considering such factors as

sample size and the need for variable transformations. With the regression

model formulated the assumptions underlying regression analysis are first

tested for the individual variables. If all the assumptions are met then the

model is estimated. Once results are obtained, diagnostic analyses are

performed to ensure that the overall model meets the regression assumptions

Stellenbosch University http://scholar.sun.ac.za



7-3

and that no observations have undue influence on the results. The next stage

is the interpretation of the modelling results. Finally the results are validated to

ensure generalizability to the population. (Hair et al. ; 1995)

Probably the two most important steps of multivariate regression modelling is

(Hauer; 1997):

a) The choice of model form (model equation).

b) The estimation of parameters.

According to Hauer (1997) when developing a multivariate model these steps

may have to be repeated several times. The results of one cycle of analysis

provide motivation for modifications to the next cycle of analysis. Once

parameters have been estimated and residuals examined, the form of the

model may have to be revised, covariates may have to be added or dropped,

and parameters estimated anew.

Hauer (1997) states that multivariate regression modelling is based on the

belief that accident frequencies are associated in some orderly fashion with

causal factors, and that this belief is embodied in a model equation.

A model equation states in what way accident frequencies are a function of

the various covariate values

According to Hauer (1998) the choice of the model equation is more influential

in determining the quality of the results than is the statistical technique to

estimate the parameter values. The choice of model equation should reflect

prior knowledge and beliefs about the nature of the relationship, and also

insights obtained from an exploratory analysis of the data at hand. Hauer

(1997) states that the choice of model equation reflects beliefs, embodies

assumptions and impose limitations.

For example consider a model equation with the following form:

... [7.1]
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E(m.) = LaQf3
I I I

The expected accident frequency at location i.

The length of location i.

The traffic flow at location i.

The inclusion of Li in the model equation embodies the belief that a road

section along which all characteristics remain constant, will have a constant

expected accident frequency per unit length along the whole length of the

road. According to Hauer (1997) research has indicated that E(m) may not be

proportional to L if intersection accidents are included in the data set.

The inclusion of the a parameter serves the purpose of capturing the effect of

all factors except for the effect of traffic flows. The influence of the traffic flow

is accounted for separately by 0[3. The absence of a subscript i according to

Hauer (1997) reflects the belief that influencing factors such as weather,

economic conditions etc. have the same influence on all entities in the data

set, and by implication, for the entire population which the data set is thought

to represent.

The inclusion of a[3 reflects the belief that differences in 0 make for

differences in E(m). The lack of a subscript i for the f3 parameter reflects the

view that the safety of all entities depend on 0 in the same manner. Using the

form a[3 guarantees that E(m) = 0 as 0 = O. This form however has the

limitation that it cannot represent the scenario where accidents initially

increase with traffic flow, but at some point, as traffic flow increases further

accident frequency begins to diminish.

Data from the reference group used in regression modelling serves to test the

validity of the chosen model equation. If a covariate does not improve the fit of

the model to the data consideration could be given to omitting that variable. If

the introduction of a covariate improves the fit consideration could be given to
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its inclusion in the model equation. Sometimes a model can be improved by

transforming one or more variables, or even combining one or more variables.

It is important to note that a calibrated model only represents what statistical

associations are present in the set of data at hand and that it does not

necessarily capture plausible cause-effect relationships.

7.3 ORDINARY MULTIPLE LINEAR REGRESSION

7.3.1 MODEL FORM

The most common model form is one where the model is a linear function of

its variables as well as its parameters.

...[7.2]

Y - Level of safety e.g. accident rate or

= 1 for event

= 0 for non-event

E -

Regression parameters

Independent variables e.g. roadway characteristics

Error term

a1- an-1 -

Xt- Xn-

To allow for a possible non-linear relationship between the dependent variable

and an independent variable one or more polynomial terms are included in the

model.

The need to include polynomial terms is generally indicated by means of an

exploratory analysis of the general form of the relationship between a

dependent variable and an independent variable. Constructing and then

evaluating a scatter plot of these two variables is generally a common

method.
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To allow for the interaction of different driver, vehicle and/or roadway factors

moderator (interaction) effects are often included in the model.

Dummy variables are also used where an independent variable is of a

dichotomous or a categorical nature.

The following examples are presented to illustrate the different models that

have been used to model accidents using linear regression analysis.

Bester (1988) developed the following model to predict the accident rate for all

accidents using data from the Cape Province (now Western Cape, North

West, Eastern Cape and Northern Cape) and the province of KwaZulu-Natal.

TAR = -O.295-0.12S2 +O.710T2 +O.933Rq -O.648T(Rq)
... [7.3]

where R2 = 0.278, and

S - Shoulder width (m).

T - Topography: 1= Flat; 2 = Rolling and 3 = Mountainous.

Rq- Riding quality.

The regression model contains two a= degree polynomials (~ and T~ as well

as an interaction term (T*R).

The model shown above has a additive form. A linear regression model can

also take a multiplicative form (Equation 7.4) which can then be linearised

using a logarithmic transformation (Equation 7.5).

Y X a,X a, X an=1= al I 2 . ..... n
.. .[7.4]

... [7.5]
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7.3.2 ASSUMPTIONS

According to Gebers (1998) the multiple linear regression method is based on

the following assumptions:

a) Independence - the Y observations are statistically independent of each

other.

b) Linearity - the value of Y is a linear function of X1, X2, X3 ..... X,

c) Homoscedasticity - the variance of Y is the same for any fixed

combination of X1, X2, X3 ..... Xn •

d) Normality - the errors of prediction (residuals) are normally distributed at

all levels of Y.

e) Measurement infallibility - the variates are free of measurement error.

f) Additivity - the effect terms (coefficient X variable values) of the

parameters can be combined in an additive fashion to estimate Y.

7.3.3 MODEL ESTIMATION

Linear multiple regression models are usually calibrated using the ordinary

least square (OlS) method. The objective is to find the parameters that will

minimise the following function (Gujarati ; 1988):

n

D =I (1'; - I-l) 2

i=1

... [7.6]

When the assumptions of homoscedasticity and/or independence do not hold,

Gujarati (1988) recommends that the weighted least square method be used

to estimate parameters.
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7.3.4 PERFORMANCE

According to Vogt and Bared (1998) the use of linear regression models have

produced disappointing results because of the following reasons:

a) Accident frequencies and accident rates often do not follow a normal

distribution.

Traffic accidents are random discrete events that are sporadic in

nature. It is widely accepted that accident frequencies generally follow

a Poisson distribution (Miaau et al. ; 1992). Normalising accident

frequencies with exposure estimates to make accident rates appear to

be a continuous random variable, according to Vogt and Bared (1992),

do not change the fundamental discrete nature of accident data.

According to Gebers (1998) highly skewed Poisson-like variables

produce heteroscedastistic residuals, thereby introducing

'inconsistency' into the parameter estimates produced by OlS

techniques. The use of OlS multiple regression in the presence of

heteroscedasticity and non-normality results in regression models that,

although not biased, do not satisfy the property of minimum variance.

b) Accident frequencies for particular locations could be very small or

even zero, even if several years of accident data have been obtained

for those locations. Small integer counts, zero or close to zero do not

typically follow a normal distribution. Using models calibrated using

such small accident counts could predict negative values which is

obviously not possible.

The presence of locations with zero accidents is particularly critical

when using a multiplicative model linearized by a logarithmic

transformation. The logarithm of zero is not defined. locations with

zero observations can therefore not be included in the investigation.

Omitting such locations could be undesirable as traffic situations where
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no accidents occur could be as important as locations where accidents

occur.

Miaau and Lum (1993) concluded that linear regression models lack the

distributional properties to adequately describe random, discrete, non-

negative and sporadic vehicle accidents. Using linear regression method is

therefore not a suitable method to estimate E(m) and VAR(m).

According to Miaau et al. (1992) the problems associated with the linear

regression approach to modelling accidents can be overcome by using the

Generalised Linear Modelling technique.

7.4 GENERALISED LINEAR MODELLING

According to McCullough and Neider (1989) Generalised Linear Models

(GLM) is a natural generalisation of classical linear models . The class of

generalised linear models includes log-linear models for count data ( such as

accident counts).

The GLM approach allows the analyst to use dependent variables which may

be bounded or which may have a non-continuous or a non-normal distribution.

Accident frequencies for example are bounded in the sense that they can

never be less than zero. As previously stated it also follows a non-normal

distribution.

7.4.1 THEORETICAL FRAMEWORK

According to McCullough and Neider (1989) the GLM approach assumes that

there is a dependent variable Y and one or more independent variables (X/s)

whose values influence the distribution of Y and that the independent

variables influence the distribution of Y through a single linear function only.

This function is called the linear predictor and is written as :

... [7.7]
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The linear predictor may contain polynomials, moderator effects and/or

dummy variables as long as it remains linear in its coefficients.

The linear prediction function is related to the expected value of an

observation via a link function. There is one link function that is theoretically

related to the error structure of the data on the basis of its underlying

distribution. (Bonneson and McCoy; 1997)

From McCullough and Neider (1989) :

... [7.8]

!li =g-l(l1) =g-l(Lf)kXik)
k=l

... [7.9]

The GLM technique relies on the Maximum Likelihood Estimation approach to

estimate the coefficients of the model. This approach involves estimating the

f)-coefficients that will maximise the log-likelihood function.

As with the link function there is a log-likelihood function that is theoretically

related to the error structure of the data on the basis of it underlying

distribution.

In the following section the application of the GLM approach to estimate log-

linear Poisson and Negative Binomial models will be presented.

7.4.2 POISSON MODEL FORMULATION

According to Vogt and Bared (1998) the Poisson regression approach regards

the number of accidents in a given space-time region as a random variable

that takes values 0,1,2 ..... with probabilities obeying the Poisson distribution.
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Miaou et al. (1992) provides the following formulation of the Poisson

regression model:

Consider a set of n locations. Let Yi be the number of accidents of a

particular type at location i during a year. Assume Ei is the exposure at this

location. Associated with each location i there is a k X 1 covariate vector

denoted by Xi = ( Xi1 = 1, Xi2, , Xi/J', describing its geometric

characteristics, traffic conditions and other relevant attributes. It is postulated

that Yi ( I = 1 to n) are independent and each is Poisson distributed as :

... [7.10]

Where

i = 1,2, n
Yi = 0,1,2 .....

R, is the accident rate at location i and is expected to vary from one location to

another depending on its covariates Xi. For each location i the Poisson model

implies that the mean is equal to the variance.

If Xi and Ei are given with negligible uncertainties and R, is assumed to be

constant then Equation 7.10 becomes a classical Poisson regression model.

The uncertainties in Ei and R, introduce extra variations (or overdispersion) in

the Poisson model. The consequences of ignoring the extra variations in the

Poisson regression are that the maximum likelihood estimates (MLE's) of the

regression coefficients, (3, under the classical Poisson model are still

consistent; however, variances of the estimated coefficients would tend to be

underestimated. In other words the significance levels of the estimated

coefficients may be overstated (Miaou et al. ;1992).
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The link function for the Poisson model is (McCullough and Neider; 1989) :

11= lnlul ... [7.11]

... [7.12]

... [7.13]

It is evident that the predicted value I-" will always be greater then zero.

If the dependent variable is a rate which is expressed as accidents per unit of

exposure then the expression above can be modified as follows:

... [7.14]

... [7.15]

The logarithm of exposure is treated as an offset and is subtracted initially

from the logarithm of the number of accidents before fitting the expression.

This approach is based on the assumption that there is a linear relationship

between exposure and accidents.

To allow for a possible non-linear relationship between accidents and

exposure Equation 7.14 can be written as :

... [7.16]

... [7.17]
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To estimate the safety of two-way stop controlled intersections on rural

highways in Minnesota, USA, Bonneson and McCoy «1993). developed a

model with the following form:

... [7.18]

A - Annual accident frequency.

Tm- Major road traffic demand (veh/day).

Tc - Minor road traffic demand (veh/day).

The linear predictor function for this type of multiplicative model takes the

following form:

... [7.19]

Where n is the number of years of observations and In(n) is termed the offset

variable.

To predict the effect of median treatments on urban arterial safety Bonneson

and McCoy (1997) used a model with the following form:

... [7.20]

where

A - Annual accident frequency.

ADT- Average daily traffic demand.

L - Street segment length.

Xi - Selected traffic and geometric characteristics.

In this case the linear predictor takes the form:

... [7.21]
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It is often found with the modelling of accidents that the variance of the

dependant variable exceeds its mean. This is due to it not being practical nor

possible to include and account for all variables that could influence accident

occurrence. In such cases Vogt and Bared (1998) recommend that negative

binomial models be used in accident modelling.

7.4.3 NEGATIVE BINOMIAL MODEL FORMULATION

According to Poch and Mannering (1996) Negative Binomial models

generalise the Poisson form by permitting the variance to be overdispersed,

equal to the mean plus a quadratic term in the mean whose coefficient is

called the overdispersion parameter. When the parameter is zero a Poisson

model results. When it is larger than zero, it represents variation above and

beyond that due to the high way variables present in the model.

If accident frequencies are overdispersed the probability density function of Yi

is as follows (Vogt and Bared; 1998):

Where k is the over-dispersion parameter.

... [7.22]

And

var(y.) = Il. + 4,tJ, r, k
... [7.23]

If K = 1Ik = 0 then the negative binomial reduces to the Poisson model. The

larger the value of K the more variability there is in the data over and above

that associated with the mean !-l.
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The link function for the Negative Binomial model is (Bonneson and McCoy;

1993):

Y] = In[-!-t ]
k+!-t

... [7.24]

The different linear predictors presented for the Poisson model can also be

used for the Negative Binomial model.

7.4.4 LOG LINEAR MODEL ESTIMATION

The GLM technique uses Maximum Likelihood Estimation (MLE) methods to

calibrate the regression models. This method entails finding the l3-coefficients

and in the case of the Negative Binomial also the k coefficient that will

maximise the following log-likelihood functions:

Poisson Model

n

In(L) = LYi loglu.) - !-ti
i=1

... [7.25]

(from McCullough and Neider; 1989)

Negative Binomial Model

n ( r(y. +k-
I JIn(L)=LYi1og(ky)-(Yi+k-l)log(1+k!-t)+log (y l)r -I

i=1 I" i + 1 (k )
... [7.26]

(from SAS Institute Inc. ; 1999)

The regression parameters can be determined by maximising the log-

likelihood function by an iterative weighted least square procedure.

(McCullough and Neider; 1989).
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According to McCullough and Neider (1989) an equivalent approach to

maximising the log-likelihood function is by minimising the deviance.

The deviance is given by :

... [7.27]

Where

Lf - Log-likelihood value for the 'null' model.

Lm - Log-likelihood value for the model under consideration.

The log-likehood value for the 'null' model can be determined from fitting a

model to the accident data that consist of a constant term only ( no variables

included).

According to McCullough and Neider (1989) the deviance function for a

Poisson model is :

D = 2" (Y In(Y / II .) - (Y - II .)LJ I I r, I rt
... [7.28]

Gebers (1998) states that a fundamental assumption underlying ordinary

least squares linear regression analysis is that all random errors have the

same variance at difference values of the explanatory variable. The

homogeneity of residual error assumption is invariably violated with accident

data because of the direct proportional relationship between the means and

variances of the arrays, thereby introducing heteroscedasticity into the

distribution of the residuals. For this reason the OlS technique is not suitable

to calibrate models based on the GlM technique.

Saccomano and Buyco (1988) demonstrated that the weighted least squares

algorithm (WlSA) for calibrating log-linear models produces high residuals for

cells that are characterised by low cell memberships in the contingency table
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of causal factors. The WLSA approach requires large samples. Koch and

Imrey (in Saccomanno and Buyco ; 1988) noted that the WLSA approach is

sensitive to small observer and expected cell counts. This approach is

especially problematic for assessing situations where there is exposure but no

accidents - as could easily be the case with low volume roads. The MLE

technique can however accommodate such a scenario.

7.4.5 ESTIMATION TECHNIQUES

A common approach to estimate the coefficients of log-linear models is to use

an iterative procedure. Bonneson and McCoy (1992). describe the procedure

as follows:

First the data is analysed using a Poisson model. Secondly, a regression is

fitted to Eqn. 7.30, using MLE techniques to estimate the value of K and a

measure of its degree of significance.

. .. [7.30]

where

... [7.31]

The need for a 3rd analysis step is based on the dispersion parameter (ad) and

the significance of the k parameter (from Step 2), where:

Dm
a ---d -

n-p
... [7.32]

om - The deviance of the Poisson model (From Step 1J.
n- Total number of observations.

p- Total number of estimated coefficients.
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If the dispersion parameter is greater than 1 and the k parameter is

significant, a 3rd analysis step is conducted using the Negative Binomial

model with the value of k from Step 2. The residuals from this analysis are

then analysed in a 4th step to determine a new k parameter. Steps 3 and 4 are

repeated until convergence on a value of k.

7.4.6 ESTIMATION TOOLS

Generalised linear models can be estimated using specialised statistical

software. The most common software packages used by road safety

researchers to estimate log-linear models are the GLIM software package and

the non-linear regression procedure (NLlN) in the SAS statistical software.

7.4.7 MODEL EVALUATION

According to Vogt and Bared (1998) there are three important tests for an

acceptable model. These are as follows:

a) The estimated regression coefficient for each independent variable should

be statistically significant i.e. one should be able to reject the null

hypothesis that the coefficient is zero.

b) Engineering and intuitive judgements should be able to confirm the validity

and practicality of the sign and rough magnitude of each estimated

coefficient; and

c) Goodness-of-fit measures and statistics should indicate that the variables

do have explanatory and predictive power.

An important assumption of the GLM technique is that there should be no

correlation between different observations. In other words all the observations

should be independent of one another. There are situations in which a

possibly of dependence between observations may arise, for instance treating
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each year of accident data at a particular site as a separate observation, or

considering the accidents on intersection approaches as separate

observations, where it is quite possible that accident numbers on the

approaches of the same intersection might be correlated with one another.

McCullough and Neider (1989) propose that goodness-of-fit be evaluated on

the basis of the deviance or on the generalised Pearson X2 statistic.

The deviance of a model m is :

... [7.32]

Where Lf is the log-likelihood that would be achieved if the model gave a

perfect fit and Lm is the log-likelihood of the model under consideration.

The overdispersion parameter (ad) is given by :

Dm
a -_-d -

n-p
... [7.33]

where

om - Deviance.

n - Number of observations.

p - Number of coefficients estimated.

According to Vogt and Bared (1998) if the value of the overdispersion

parameter (ad) is larger then 1 then the Poisson model is inappropriate

because of overdispersion due to missing variables and/or measurement

error. In such cases a Negative Binomial models is generally indicated.

The Pearson chi-square statistic is defined by (McCullough and Neider

1989) as:
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... [7.34]

Where V(y) refers to the variance function of the model.

The variance functions for the Poisson and the Negative Binomial models are

as follows:

Poisson:

Negative Binomial:

vry) = !-li

vry) = !-li + (!-lP)/k

... [7.35]

... [7.36]

For a valid Poisson model the Pearson X2 statistic follows a chi-square

distribution with n-p degrees of freedom. Therefore if X2/(n-p) equals

approximately 1 the assumed Poisson error structure is approximately

equivalent to that found in the data. Should the statistic be significantly larger

than 1 then overdispersion is indicated and the Negative Binomial model

should be considered.

For a Negative Binomial model the Pearson X2 statistic has a chi-square

distribution with n-p-1 degrees of freedom. Thus if X2/(n-p-1) equals

approximately 1 the assumed Negative Binomial error structure is

approximately equivalent to that found in the data. (Bonneson and McCoy ;

1992).

According to McCullough and Neider (1989) the Pearson X2 statistic is not

well defined in terms of minimum sample size when applied to non-normal

distributions. They recommend that the Pearson X2 statistic should not be

used as an absolute measure of model significance.

The R2 (coefficient of determination) goodness-of-fit measure, used to

estimate the percentage .ot variation explained by a linear regression model is

not suitable for Poisson and Negative Binomial regression models. In some
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instances the R-square measure may provide values greater then one,

particularly for non-linear models. (Vogt and Bared; 1998)

A more subjective measure of model fit can be obtained from a graphical plot

of prediction ratio vs. the estimate of the expected accident frequency. The

prediction ration is described as the normalised residual (Bonneson and

McCoy; 1992) :

PR = !-li - Y;
I ~V(y)

... [7.38]

where V(y) is the variance function.

This type of plot yields a visual assessment of the predictive ability of the

model over the full range of !-li'S. A well fitting model would have the

prediction ratios symmetrically around zero.

7.5 SUMMARY and CONCLUSION

This Chapter provided a brief overview of the processes involved in

developing accident prediction models using multivariate regression

techniques. It was shown that the classical linear regression approach is not a

suitable approach to model accident frequencies and accident rates. An

alternative approach called Generalised Linear Modelling (GLM) was

presented and details on two log linear modelling approaches - Poisson

regression and Negative Binomial were presented. It was shown that these

modelling approaches are suitable to model accident data. To illustrate how

the concepts discussed are applied in practice a case study will be presented

to show how the Negative Binomial modelling approach was used to estimate

the safety of signalised intersections.
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CASE STUDY 7.1

ESTIMATION OF SAFETY AT SIGNALISED INTERSECTIONS

By Hauer E, Ng JeN and Lovell J (1988)

Introduction

Hauer et al. (1988) developed a number of microscopic and macroscopic

models to measure the safety at signalised intersections if the vehicular flows

using it are known.

Data

They selected for analysis a set of intersections that are similar in most

respects except for traffic flows and accident history. The data set consisted

of accident data and traffic flow information for 145 four-legged, fixed-time,

signalised intersections in Metropolitan Toronto that carry two-way traffic on

all approaches and have no turn restrictions. Most are on straight, level sites

with a speed limit of 60 km/h.

The accident data was collected over a three year period - 1982 to 1984. For

each approach one day manual traffic counts were conducted. Turning and

through moving flows were thus available for each approach for the AM-peak,

the PM-peak and the off-peak periods. All vehicle counts are for weekday

conditions.

The analysis was confined to the AM peak ( 07:00 - 09:00) the PM-peak

(16:00 - 18:00) and the following off-peak period - 10:00 to 15:00. The

periods from 09:00 to 10:00 and 15:00 to 16:00 were excluded because the

signal timings changed during these periods.
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The accident dataset only contained information on accidents involving two

vehicles. This type of accident accounted for 81 % of the total accidents.

Model development

One of the objectives of the study was to relate accidents to the traffic flows to

which they belong. Fifteen (15) accident patterns were identified and are

shown in Figure 6. Accidents in each pattern were defined by the manoeuvres

of the two vehicles before colliding. The common categorisation by initial

impact type such as rear-end, angle, turning movement, sideswipe etc. was

avoided because of its ambiguity.

The next step was to decide on the model form for each one of these 15

accident patterns. The guiding principle in this process was the wish to

ensure a satisfactory fit with parsimony of parameters and without violation of

the obvious logical requirements.

To determine the most appropriate model form exploratory data analysis was

first undertaken. The following example is presented on how a model form

was developed for Accident Pattern 6.

Table 7.1 gives the average number of accidents per site in 3 years for five

ranges left1 turning flows versus five ranges of the straight-through flow. The

irregular flow ranges were selected so that each row and column would have

approximately one-fifth of all accidents

I 'Left' refers to the Canadian/USA driving convention. This should read 'right' for a South
African interpretation.
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Table 7.1 : Traffic flows for accident pattern 6.

Straight- Left turning flow ROW

Through TOTAL

Flow 0-521 522-821 822-1033 1034 -1408 1409 - 4038

0-3525 0.49 0.60 0.63 1.57 0.56 0.64
3526 - 4825 0.61 1.00 1.91 1.24 1.75 1.16
4826 - 5941 1.27 1.22 1.44 1.36 2.79 1.63
5942 - 7771 1.31 1.40 3.10 2.20 1.40 1.78
7772 - 12091 1.67 2.75 2.63 4.50 3.27 2.73

Total 0.74 1.05 1.56 1.93 1.91 1.26

The relationship between accidents and left-turning flows are shown in Figure

7.1.

2.2
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Left Turning flows (F2)

Figure 7.1 : Accident frequency vs. left turning flows.
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The relationship between straight through flows and accident frequency is

shown in Figure 7.2.
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Figure 7.2 : Accident frequency vs. straight through flows

From Figure 7.2 it appears that accidents are proportional to the through

traffic (F1) i.e. A oe F1 and from Figure 7.1 that the increase of accidents with

the left turning flow (F2) appears to be non-linear i.e. A oe F2b1where b1 < 1.

A suitable model form for accident pattern 6 is thus:

A = af:.F/'

This process of data analysis was applied to all 15 accident patterns and the

subsequent model forms are indicated in Table 7.2.

All these models are mutiplicative in nature and it was assumed they all have

a negative binomial error structure.
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Coefficient Estimation

The coefficients were estimated using the GLIM ( Generalised Linear

Interactive Mode!). The process of coefficient estimation was iterative. Firstly

a value for k was assumed and then proceeded to estimate the j3-coefficients

using GLIM. The residuals were calculated and from the residuals a new

value of k was determined. This k value was then fed back into the model to

calculate a new set of j3-coefficients. The residuals and a new k value were

calculated again and this process was repeated until convergence.

Interpretation

Hauer et al. (1998) concluded that a closer examination of how the frequency

of accidents depend on traffic flows from which they arise reveals that

preconceived ideas are sometimes not supported by empirical evidence. The

results in Table 7.2 reveal that accident frequencies between vehicles

travelling in the same direction is proportional to the traffic flows in that

direction (Patterns 1 and 2). The frequency of accidents between left turning

and through moving vehicles is proportional to the flow of through traffic but

less than proportional to the flow of left-turning vehicles. (Pattern 6). The

frequency of accidents between right-angle flows (Pattern 4) is not influenced

by the major road flow but by the minor road flow which exerts a great deal of

influence initially, but that this tapers off as flows become larger.

According to Hauer et al. (1988) these observations lead to the conclusion

that the popular assumption that intersection accidents are proportional to the

sum of entering volumes is not supported by empirical evidence for common

accident types. They state it is therefore not correct to use intersection

accident rates calculated on the basis of the sum of entering volumes to

compare the safety of two different intersections, or between 'before' and

'after' periods.
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Table 7.2 : Results of multivariate regression analysis

Pattern Model Form Time a b c k

1 A = a(F) AM 0.1655 * 10.6 2.98

PM 0.2178 * 10.6 2.73

Off 0.2164 * 10.6 3.54

daily 0.2052 * 10-6 4.59

2 A = a(F) AM 0.0987 * 10-6 1.49

PM 0.0933 * 10-6 0.94

Off 0.1080 * 10-6 4.15

daily 0.1014*10-6 1.97

3 A = a(F2)C Daily 8.6129 * 10-9 1.0682 1.20

4 A = a(F2)C AM 19.020 * 10-6 0.1536 2.65

PM 1.4127 * 10-6 0.6044 2.33

Off 9.7329 * 10-6 0.3860 3.38

Daily 8.1296 * 10-6 0.3662 5.51

5 A = a(F1)b(F2)C Daily 0.3449 * 10-6 0.1363 0.6013 1.2

6 A = a(F1)(F2)C Daily 0.0418 * 10-6 0.4634 2.1

7 A = a(F1)b(F2)C Daily 0.2113 * 10-6 0.3468 0.4051 1.2

8 A = a(F2)C Daily 2.6792 * 10-6 0.2476 1.2

9 A = a(F1)b Daily 6.9815 * 10-9 1.4892 1.2

10 A = a(F2)C Daily 5.590 * 10-12 2.7862 1.2

11 A = a(F1)b(F2)C Daily 1.3012 * 10-9 1.1432 0.4353 1.2

12 A = a(F1)b(F2)C Daily 0.0106 * 10-6 0.6135 0.7858 1.2

13 A = a(F1)b(F2)C Daily 0.4846 * 10-6 0.2769 0.4479 1.2

14 A = a(F1)b(F2)C Daily 1.7741 * 10-9 1.1121 0.5467 1.2

15 A = a(F1)b Daily 0.5255 * 10-6 0.4610 1.2
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Figure 7.3 : Intersection accident patterns (Right hand driving rule)
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CHAPTER 8

SUMMARY AND CONCLUSIONS

When implementing road safety remedial programmes it is required to analyse

road traffic accident data in a manner that will ensure the effective and

efficient utilisation of often scarce resources.

This thesis has shown how accident data could be analysed to measure

safety at road entities, to identify and rank hazardous locations and how to

determine the effectiveness of road safety remedial measures.

Having valid and reliable estimates of the true level of safety of an entity or a

group of entities is fundamentally important for the efficient identification and

ranking of hazardous locations and determining the effectiveness of remedial

measures.

The methods available to measure safety can be divided into two categories,

a) Conventional methods and b) Bayesian methods. The Conventional

methods are based on the assumption that the level of safety at a location is

fixed and that it can be determined by the observed accident experience,

while the Bayesian methods assume that the true level of safety at a location

is unknown, a variable and that the observed accident experience can

provide a clue as to what the real value is.

It has been shown that the conventional accident rate measure to measure

safety on road segments produces results that are generally not reliable. The

main reason for this is that a non-linear relationship normally exists between

accident frequencies and exposures. It can be concluded therefore that

should the Safety Performance Function be non-linear accident rates should

not be used to compare time periods nor different locations with each other.

Similarly it has been shown that the common sum-ot-flows accident rate

measure to measure the safety of intersections is logically unsatisfactory for a
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number of reasons. Using a safety measure based on the product of flows is

generally considered to be more appropriate.

Safety Performance Functions can be used to overcome the inherent

shortcomings of the conventional accident rate measures for segments and

intersections. However SPF's are prone to a certain degree of bias if average

traffic flow values such as AADT's are used, or if the SPF serves as an

aggregate function for different accident types, each of which are associated

with significantly different levels of risk. Depending on the form of the SPF, the

chosen accident measure, the variability in traffic flows etc. this bias could be

significantly large.

When identifying hazardous locations it has been shown that it is important to

use methodologies that will maximise the number of true positive

identifications and minimise the number of false positive identifications. As

illustrated in Example 5.11 it could be the case that a large degree of true

positive identification can only be obtained at the expense of the false positive

identification rate. In assessing the overall efficiency of a hazardous location

identification method it becomes necessary to weigh the relative cost and

consequences of false negative and false positive identifications. A false

negative identification would let a true hazardous location continue untreated

with potentially very serious consequences in terms of loss of life, injury and

damage to property, while a false positive identification could cause scarce

resources to be allocated to locations with a low potential for accident

reduction.

The identification methods presented in this work were divided into two

categories, namely : a) Conventional methods, and b) Bayesian methods.

Applying these methods to the experimental data in Appendix A1 revealed

that it appears the Bayesian methods could produce lower true positive

identification rates as well as lower false positive identification rates than the

Conventional methods.
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It could often be the case that to further investigate all the identified hazardous

locations would require more financial resources than are available. Decisions

are then required on which hazardous locations to investigate and which not

to investigate further. The most common approach is to rank the identified

hazardous locations according to some criteria and then to start investigating

from the 'top' in descending order until the budget for such road investigations

are depleted.

A number of possible criteria to rank hazardous locations were presented.

These criteria can be roughly divided into three groups - those that make use

of Conventional safety estimates, and those make use of Bayesian safety

estimates and regression models, and finally those that combine Conventional

or Bayesian estimates with accident severity information.

Criteria based on accident rates have been shown to produce a bias in favour

of locations with low accident totals and low traffic volumes i.e. sites whose

accident reduction and potential economic returns are low. Criteria based on

accident numbers have been shown to produce a bias in favour of locations

with high accident totals and traffic volumes. Since one of the overall

objectives of a remedial programme is to improve the efficiency of the road

transportation system by reducing accidents, the PAR (Potential Accident

Reduction) index is a popular method of ranking hazardous locations. The

PAR index provides a measure of the expected accident reduction at a

location and therefore also a measure of the expected economic return at a

location.

To quantify the potential accident reduction associated with specific remedial

measures (e.g. shoulder widening) the PAR index can be estimated using the

Bayesian safety estimates and appropriate multivariate regression models.

Research by Persaud et al. (1999b) has shown that this approach generally

produces better results than methods based solely on Conventional and

Bayesian safety estimates. Persaud et al. (1999a) have also shown how this

method of estimating the PAR index can be combined with accident severity

information and accident costs to rank hazardous locations.
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Evaluating the effectiveness of a remedial measure/s is a very important last

step when implementing a accident remedial programme. This knowledge is

required to determine the actual cost effectiveness of a remedial measure and

to provide factual guidance for the future.

The determination of the effectiveness of a remedial measure basically

involves estimating what would have been the level of safety in the 'after'

period had the remedial measure not been implemented and then to compare

this estimate with the level of safety actually observed in the 'after' period.

The observed number of accidents in the 'before' period are most often used

in procedures to determine the 'what would have been' level of safety in the

'after' period. In doing this a number of factors should be considered and

allowed for, these are - a) the regression-to-mean effect, b) exposure effect

and c) trend effect.

The regression-to-mean effect occurs because of the non-random manner in

which hazardous locations are chosen. Since hazardous locations are

normally selected on the basis of a high number of accidents or accident rate

in the before period it is reasonable to expect that, because of the random

nature of accidents, the accident rate/number in the after period could be less

even in the absence of any remedial measures. The regression-to-mean

effect is particularly relevant when conventional safety estimates are used. It

has been shown however that the magnitude of this effect decreases as the

study period increases.

The regression-to-mean effect can largely be eliminated by using Bayesian

safety estimates.

The exposure effect becomes particularly relevant if there has been an

increase/decrease in the traffic volumes using a location between the 'before'

and 'after' periods. Conventional and Bayesian methodologies were presented
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on how to eliminate the exposure effect when determining the effectiveness of

a remedial measure.

The trend effect is of importance if there have been changes in the traffic,

road, social environments etc. between the 'before' and 'after' periods.

Changes in the traffic composition, climate, urban structure, law enforcement

quality/quantity etc. could all for example have an impact on the level of safety

at a location. The trend effect is accounted for by using a comparison group. A

methodology is presented on how to choose the most appropriate comparison

group for a before-and-after with comparison group study. Guidelines have

also been provided on how to design such a study and how to interpret the

results.

A Bayesian methodology based on the use of multivariate regression models

for each year in the study period is a suitable methodology to eliminate the

regression-to-mean effect and also to account for any trend and exposure

effects. This methodology as proposed by Hauer (1997) is an improvement on

other Bayesian and Conventional methodologies because it does not assume

that the 'true' level of safety during either the before or after periods remained

constant for the whole period. It is therefore based on the realistic assumption

that the true level of safety of a location may change from year to year for a

variety of reasons.

Many of the methodologies to measure safety, to identify and rank hazardous

locations and to determine the effectiveness of remedial measures rely on the

availability of suitable multivariate regression models. It has been shown that

the ordinary least squares regression technique produce models that are not

suitable. Instead the generalised linear modelling approach was presented as

an alternative.
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CHAPTER 9

RECOMMENDATIONS

It is recommended that road authorities use the Bayesian methodologies in

this thesis to analyse accident data when implementing road safety remedial

programmes. Before this can be undertaken it is recommended that the

following critical issues be addressed:

a) Clarify and/or improve the legal definition of what constitutes an accident

and ensure that all reporting officers interpret and apply the definition

consistently.

b) Improve the management of accident data, particularly focussing on

eliminating underreporting, missing data and incorrect/incomplete

locational information.

c) To ensure that all fatalities that occur within 6 days are recorded as such

and that follow-up procedures for casualties admitted to hospital should be

improved. Attention could be given to linking hospital databases and

accident databases.

d) Bayesian accident data analysis methodologies should be included in the

graduate and/or post graduate civil engineering curricula.

e) Dedicated research should be undertaken by research institutions to

develop appropriate Safety Performance Functions (accident models) for

different road and intersection types.

f) Software systems should be developed to assist local authorities in

implementing the Bayesian methodologies in this thesis.

Stellenbosch University http://scholar.sun.ac.za



LIST OF REFERENCES

ABBESS, C., JARRETI, D., and WRIGHT, C.C. ; 1981 ; Accidents at

blackspots : estimating the effectiveness of remedial treatment, with special

reference to the "regression-to-mean" effect; Traffic Engineering and Control;

Volume 22 No.1 0 ; pp. 535 - 542.

AL-MASAEID, H.R. ; 1997 ; Performance of safety evaluation methods ;

Journal of Transportation Engineering; Volume 123, No.5; pp. 364 - 369.

AL-MASAEID, H.R. and SINHA, K.C. ; 1994 ; Analysis of accident reduction

potentials of pavement markings ; Journal of Transportation Engineering ;

Volume 120, No.5; pp. 723 - 735.

AL-MASAEID, H.R., SINHA, K.C. and KUCZEK, T. ; 1993 ; Evaluation of

safety of safety impact of highway projects; Transportation Research Record

1401 ; TRB, National Research Council, Washington O.C. ; pp. 9 - 16.

ANG, A.H-S and TANG, W.H. ; 1975 ; Probability concepts in engineering,

planning and design; John Wiley and Sons; New York.

AUSTROADS ; 1994 ; Road safety audit; Standards Australia; Sydney.

BARBARESSO, J.C., BAIR, B.O., MANN, C.R. and SMITH, G. ; 1982

Selection process for local highway safety projects ; Transportation Research

Record 847; TRB, National Research Council, Washington O.C. ; pp. 24 - 29.

BéLANGER, C. ; 1994 ; Estimation of safety of four-legged unsignalised

intersections ; Transportation Research Record 1467 ; TRB, National

Research Council, Washington O.C. ; pp. 23 - 29.

Stellenbosch University http://scholar.sun.ac.za



ii

BESTER, C.J. ; 1988 ; The effect of road geometry on accidents on rural

roads in the Cape Province; CSIR Research Report DPVT 24 ; CSIR ;

Pretoria.

BESTER, C.J. ; 1994 ; The effect of various road features on safety; Project

Report PR 93/328 ; Department of Transport; Pretoria.

BONNESON, J.A and McCOY, P.T. ; 1993 ; Estimation of safety at two-way

stop-controlled intersections on rural highways ; Transportation Research

Record 1401 ; TRB, National Research Council, Washington O.C. ; pp. 83 -

89.

BONNESON, J.A. and McCOY, P.T. ; 1997 ; Effect of median treatment on

urban arterial safety - an accident prediction model; Transportation Research

Record 1581 ; TRB, National Research Council, Washington O.C. ; pp. 27 -

36.

CHANG, M.S. ; 1982 ; Conceptual development of exposure measures for

evaluating highway safety. ; Transportation Research Record 847; pp. 37 -

42.

COLTO ; 1999 ; South African Road Safety Manual ; Final Draft ; Pretoria,

South Africa.

DEACON, J.A., ZEGEER, C.V. and DEEN, R.C. ; 1975 ; Identification of

hazardous rural highway locations; Transportation Research Record 543 ;

TRB, National Research Council, Washington O.C. ; pp. 16 - 33.

ELVIK, R. and MYSEN, A.B. ; 1999 ; Incomplete accident reporting - meta

analysis of studies made in 13 countries ; Transportation Research Record

1665; TRB, National Research Council, Washington O.C. ; pp. 133 - 139.

Stellenbosch University http://scholar.sun.ac.za



iii

GEBERS, M.A. ; 1998 ; Exploratory multivariabie analyses of California driver

record accident rates; Transportation Research Record 1635; ; TRB,

National Research Council, Washington O.C.; pp. 72 - 80.

GUJARATI, D.N., ; 1988 ; Basic Econometrics; 2nd Edition McGraw-Hili

Book Company; Singapore.

HAIR, J.F., ANDERSON, R.E., TATHAM, R.L. and BLACK, W.C. ; 1995 ;

Multivariate data analysis with readings ; 4th Edition ; Prentice-Hall

International, Inc. ; New Yersey, USA.

HAUER, E. ; 1986 ; On the estimation of the expected number of accidents;

Accident Analysis and Prevention; Volume 18, No.1; pp. 1-12.

HAUER, E. ; 1995 ; Exposure and accident rate; Traffic Engineering and

Control; Volume 36 , No.3; pp. 134 - 138.

HAUER, E. ; 1997 ; Observational Before-After Studies in Road Safety

Pergamon Press; Elsevier Science Ltd. , Oxford, England.

HAUER, E. And HAKKERT, A.S. ; 1988 ; Extent and some implications if

incomplete accident reporting ; Transportation Research Record 1185 ; TRB,

National Research Council, Washington O.C. ; pp. 1 - 10.

HAUER, E. and PERSAUD, B.N. ; 1984 ; Problem of identifying hazardous

locations using accident data ; Transportation Research Record 975 ; TRB,

National Research Council, Washington O.C. ; pp. 36 - 43.

HAUER, E., NG, J.C.N. and LOVELL, J. ; 1988 ; Estimation of safety at

signalized Intersections ; Transportation Research Record 1185 ; TRB,

National Research Council, Washington O.C. ; pp. 48 - 61.

HAUER, E., TERRY, D. And GRIFFITH, M.S. ; 1995 ; The effect of

resurfacing on the safety of two-lane rural roads in New York State ;

Stellenbosch University http://scholar.sun.ac.za



iv

Transportation Research Record 1467 ; TRB, National Research Council,

Washington O.C. ; pp. 30 - 37.

Highway Strategic Plan 2000 - 2005 ; US Department of Transportation.

HIGLE, J.L. and HECHT, M.B. ; 1989 ; A comparison of techniques for the

identification of hazardous locations; Transportation Research Record 1238 ;

TRB, National Research Council, Washington O.C. ; pp. 10 - 19.

HIGLE, J.L. and WITKOWSKI, J.M. ; 1988 ; Bayesian identification of

hazardous locations; Transportation Research Record 1185 ; TRB, National

Research Council, Washington O.C. ; pp. 24 - 36.

JAMES, H.F. ; 1991 ; Under-reporting of road traffic accidents Traffic

Engineering and Control; Volume 32 ; pp. 574- 583.

LEEDY, P.O. ; 1993 ; Practical Research: Research and Design; Macmillan

Publishing Company; New York.

LoTTER, H.J.S and PEDEN, M.M. ; 2000 ; Towards global standardisation -

redefining fatalities ; Road Safety of Three Continents Conference ; Pretoria,

South Africa; September.

MAHALEL, D. ; 1986 ; A note on accident risk ; Transportation Research

Record 1068 ; TRB, National Research Council, Washington O.C. ; pp. 85 -

89.

McCULLAGH, P. and NELDER, J.A. ; 1989 ; Generalized Linear Models;

Chapman and Hall; London.

McGUIGAN, D.R.D. ; 1982 ; Non-junction accident rates and their use in

'black-spot' identification; Traffic Engineering and Control; Volume 23 No.2;

pp. 60 - 65.

Stellenbosch University http://scholar.sun.ac.za



v

MENSAH, A. and HAUER, E. ; 1998 ; Two problems of averaging arising in

the estimation of the relationship between accidents and traffic flow ;

Transportation Research Record 1635 ; TRB, National Research Council,

Washington O.C. ; pp. 37 - 43.

MIAOU S, HU PS, WRIGHT T, RATHI AK and DAVIS SC ; 1992 ;

Relationship between truck accidents and highway geometric design : A

Poisson Regression Approach; Transportation Research Record 1376 ; TRB,

National Research Council, Washington, D.C ; pp. 10 - 18.

MIAOU, S-P. and LUM, H. ; 1993 ; Modelling vehicle accidents and highway

geometric design relationships ; Accident Analysis and Prevention ; Volume

25, No.6; pp. 689 - 709.

MILTON, J. and MANNERING, F. ; 1998; The relationship among highway

geometrics, traffic-related elements and motor-vehicle accident frequencies

;Transportation; Volume 25, No.4; pp.395 - 413.

MOUNTAIN, L. and FAWAZ, B. ; 1991 ; The accuracy of estimates of

expected accident frequencies obtained using an Empirical Bayes approach ;

Traffic Engineering and Control; Volume 32, No.5; pp.246 - 251.

MOUNTAIN, L. and FAWAZ, B. ; 1996 ; Estimating accidents at junctions

using routinely-available input data; Traffic Engineering and Control; Volume

37, No. 11 ; pp. 624 - 628

National Road Traffic Act 93 of 1996 ; Juta and Co. , Pretoria.

NEMBHARD, O.A. and YOUNG, M.R. ; 1995 ; Parametric Empirical Bayes

estimates of truck accident rates ; Journal of Transportation Engineering ;

Volume 121, NO.4; pp. 359 - 363.

Stellenbosch University http://scholar.sun.ac.za



vi

NICHOLSON, A.J.; 1987 ; The estimation of accident rates and

countermeasure effectiveness. Traffic Engineering and Control; Volume 28

No. 10; pp. 518 - 523.

NICHOLSON, A.J.; 1989; Accident clustering: some simple measures. Traffic

Engineering and Control; Volume 30: pp. 241 - 246.

O'DAY, J. ; 1993 ; Accident data quality : NCHRP Synthesis 192

Transportation Research Board; National Academy Press; Washington DC.

OPPERMAN, R.A. and UPTON, A.H ; 1991 ; The revised K21 : Identification

and improvement of hazardous locations ; Research Report 88109bl2 ; South

African Roads Board; CSIR ; Pretoria.

PALKOKOWSKI R.K. and MENEZES, P.M.G. ; 1991 ; Procedure for

identifying and ranking hazardous locations ; Research Report IR 891901111 ;

South African Roads Board; Pretoria.

PAPENFUS AJ ; 1992 ; A traffic counting strategy for rural roads; Doctoral

Thesis; Faculty of Engineering (Civil) ; University of Pretoria, South Africa.

PERSAUD, B.N ; 1993 ; Estimating Accident Potential of Ontario Road

Sections ; Transportation Research Record 1327 ; TRB, National Research

Council, Washington D.C. ; pp. 47 - 53.

PERSAUD, B.N. and DZBIK, L. ;1993 ; Accident Prediction Models for

Freeways; Transportation Research Record 1401 ; TRB, National Research

Council, Washington D.C. ; pp. 55 - 60.

PERSAUD, B.N. and MUSCl, K. ; 1995 ; Microscopic accident potential

models for two-lane rural roads ; Transportation Research Record 1485 ;

TRB, National Research Council, Washington D.C. ; pp. 134 - 139.

Stellenbosch University http://scholar.sun.ac.za



vii

PERSAUD, B.N. and NGUYEN, T. ; 1998 ; Disaggregate safety performance

models for signalized intersections on Ontario provincial roads ;

Transportation Research Record 1635 ; TRB, National Research Council,

Washington O.C. ; pp. 113 - 120.

PERSAUD, B.N., BAHAR, G.,SMILEY, A., HAUER, E. And PROIEnl, J. ;

1999a ; Applying the science of highway safety to effect highway

improvements - a multi-disciplinary approach ; Canadian Multi-disciplinary

Road Safety Conference XI ; Halifax, Novia Scotia, Canada.

PERSAUD, B.N., LYON, C. and NGUYEN, T. ; 1999b ; Empirical Bayes

procedure for ranking sites for safety investigation by potential for safety

improvement ; Transportation Research Record 1665 ; TRB, National

Research Council, Washington O.C. ; pp. 7 - 12.

PERSAUD, B.N., RETTING, R.A., GARDER, P.E. and LORD, G. ; 2000 ; ..

Crash reductions following installation of roundabouts in the United States ;

Road Safety on Three Continents Conference ; Pretoria, South Africa ;

September.

PLASS, M. and BERG, W.O.; 1987; Evaluation of opportunity-based accident

rate expressions; Transportation Research Record 1111 ; TRB, National

Research Council, Washington D.C. ; pp.42 - 48.

POCH, M. and MANNERING, F. ; 1996 ; Negative binomial analysis of

intersection accident frequencies ; Journal of Transportation Engineering ;

Vol. 122, No.2, March/April 1996 ; pp. 105 - 113.

Road Traffic Collisions, 1998; 1998 ; Report No. 71-61-01 (1998) ; Statistics

South Africa; Pretoria, South Africa.

ROY JORGENSON ASSOSIATES ; 1975 ; Methods for evaluating highway

safety improvements ; National Cooperative Highway Research Program

Report 162; TRB, National Research Council, Washington D.C ..

Stellenbosch University http://scholar.sun.ac.za



viii

SACCOMANNO, F.F. and BUYCO, C.; 1988 ; Generalised loglinear models of

truck accident rates; Transportation Research Record 1172 ; TRB, National

Research Council, Washington D.C. ; 23 - 31.

SATTERWAITHE, S.P. ; 1981 ; A survey of research into relationships

between traffic accidents and traffic volumes; TRRL SP 692. U.K. Transport

and Research Laboratory; Crowthorne, Berkshire, England.

SAS Institute Inc. ; 1999 ; Generalised Linear Models Theory

http://nsit.uchicago.edu/csm/CompOp/sasdoc/stat/chap29/sect27.htm.

SAYED, T. and RODRIGUEZ, F. ; 1999 ; Accident prediction models for urban

unsignalized intersections in British Columbia ; Transportation Research

Record 1665; TRB, National Research Council, Washington D.C. ; pp. 93 -

99.

SCHUTTE, I.C, ; 2000 ; An estimate of the unit cost of road traffic collisions in

South Africa for 1998 ; CSIR Research Report CR-2000/4 ; Pretoria; CSIR .

SILCOCK, D.T., BARRELL, J. and GHEE, C. ; 1991 ; The measurement of

changes in road safety; Traffic Engineering and Control; Volume 32, No.3;

pp. 120 -129.

SWEET, R.J. and LOCKWOOD, D.N. ; 1983 ; The accuracy and estimation of

annual traffic flow; Technical Manual K70 ; National Institute for Transport

and Road Research; Pretoria, South Africa.

SOUTH AFRICAN ROAD SAFETY MANUAL; 1999; Final Draft; Committee

of Land Transport Officials (COLTO) ; Pretoria, South Africa.

VOGT, A. and BARED, J.G. ;1998 ; Accident models for two-lane rural roads

; Segments and intersections ; Report No. FHWA-RD-98-133 ; Federal

Highway Administration; McLean, Virginia, USA.

Stellenbosch University http://scholar.sun.ac.za

http://nsit.uchicago.edu/csm/CompOp/sasdoc/stat/chap29/sect27.htm.


ix

ZHOU, M. And SISIOPIKU, V.P. ; 1997 ; Relationship between volume-of-

capacity ratios and accident rates; Transportation Research Record 1581 ;

TRB, National Research Council, Washington D.C. ; pp. 47 - 52.

Stellenbosch University http://scholar.sun.ac.za



APPENDIX A1

EXPERIMENTAL DATA

• Introduction

In order to compare different measurement, identification, ranking and

evaluation methods, and also to assess the influence of different study

periods on the performance of these methods a number of experimental

studies were performed.

These studies were performed using data generated randomly for a total of

1000 sites. The true level of safety at each site (mt) was randomly generated

from a Gamma distribution with mean = 4 ace/year and variance = 2. Based

on the assumption that at each site the observed annual accident frequencies

will follow a Poisson distribution around the true mean (mt), a total of 5 years

of accident frequency data were randomly generated.

The moments of the Gamma distribution were chosen arbitrary. It is assumed

that in practice it is likely that there exist a target accident definition and a

reference group of sites that will follow a similar Gamma distribution. Only 5

years of accident frequency data were generated because in practice more

than 5 years worth of data are seldomly used. To keep the experiment simple

it was assumed that traffic volumes and other possible confounding factors

remained absolutely constant over the 5 year period.

• Procedure

The experimental data was generated using a spreadsheet application -

Microsoft® Excel®.

Below the random numbers, the true level of safety (mt) and the annual

accident frequencies for the first three sites are shown:
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1 ! 0.323 0.251 0.098 0.642 . 0.716 0.931 3.24 2 4. 4 6
................... ! ..

2! 0.301 0.944
f

0.524 0.315 0.850 0.280 3.16 6 3 2: 5 2

31 0.912 0.573 0.381 0.721 0.063 0.347 6.01 6 5 7: 3! 5

The following procedure was followed:

1. Using the »renat) function of Microsoft® Excel® for each of the 1000

sites 6 random numbers were generated - rnd1, rnd2, rnd3, rnd4, rnd5

and rnd6.

2. Random number Rnd1 was used to generate the true level of safety at

a site (mt) assuming it is from a Gamma distribution with mean = 4

ace/year and variance = 2. The Gamma parameters i3 = 8 and a = 2.

The =GAMMAINV function of Excel® was used to generate mt as

follows-

mt = GAMMAINV(rnd1,B,O.5)

In Excel alpha = i3 and beta = 1/a.

3. Using the Microsoft Excel macro below random number Rnd2 was

used to generate X1, Rnd3 to generate X2, Rnd4 to generate X3, Rnd5

to generate X4 and Rnd6 to generate X5. (Refer to Table above)

Sub poissonO

Dim i As Integer

Dim j As Integer

Dim t As Double

Dim to As Double

Dim ts As Double

Dim dum As Integer
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For k = 0 to 4

For i = 0 to 999

fs = 0

j = 0

while fs <= Cel/s(i + 2,1 + k)

If j = 0 Then fa = Exp(-1 * (Cel/s(i + 2,8)))

If j > 0 Then fa = fa * (Cel/s(i + 2, 8) / j

ts e ts= to
Cel/s(i + 2,9 + k) =j

j = j + 1

Wend

Next

Next

End Sub

The objective of this macro is the estimate the value of j at which:

j -m
" mt e ' ::;RndL. .,
j=O J.

• Data summary

Table A1.1shows summary statistics for mt, X1, X2, X3, X4 and X5.

Table A 1.1 : Summary Statistics

Statistic mt Xl X2 X3 X4 Xs
Mean 4.025 4.047 3.989 3.985 4.059 4.114
Median 3.859 4 4 4 4 4
Mode - 3 4 3 3 3
Mode frequency - 164 170 174 173 204
Minimum 0.591 0 0 0 0 0
Maximum 10.12 12 16 18 15 13
25th Percentile 2.958 2 2 2 2 2
75th Percentile 4.887 5 5 5 6 5
Std.dev. 1.408 2.385 2.577 2.476 2.525 2.437
Variance 1.982 5.688 6.640 6.131 6.376 5.941
Sum 4025 4047 3989 3985 4059 4114
Dispersion (k) - 9.978 6.003 7.400 7.111 9.264
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According to Vogt and Bared (1998) if mt has a Gamma distribution between

sites and X is Poisson distributed about mt then the distribution of X between

sites would follow the Negative Binomial distribution, where:

E(X) = Mean and VAR(X) = Mean + (Meani/k

Figure A1.1 shows the fitting of a Gamma distribution to the generated values

of mt.

Gamma distribution mt' 1000 sites

Kolmogorov-Smirnov d = .0158847, P = n.s.

Chi-Square: 18.80982, dl = 12, P = .0932878 (dl adjusted)

180~~~~~~~~~~~~~~~~~~~~~~~~

160 .

140 f••.•••••••..••.

120

............................. alpha = 8.104 .
beta = 0.496

100
U)
.Do
(5
o
Z

80

40

20 !-.....••.•.••..

01.-....-'-""""1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

Category (upper limits)

Figure A1.1 : Fitting of Gamma distribution

• Data listing

A complete list of the random numbers used and the generated values for mt,

X1, X2, X3, X4 and X5 for all 1000 sites are shown in Table A2.1
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Table A1.2 : Listing of data for experimental sites (Sites 1 to 50)
ID rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 mt X1 X2 X3 X4 Xs

1 0.323 0.251 0.098 0.642 0.716 0.931 3.24 2 1 4 4 6
2 0.301 0.944 0.524 0.315 0.850 0.280 3.16 6 3 2 5 2
3 0.912 0.573 0.381 0.721 0.063 0.347 6.01 6 5 7 3 5
4 0.377 0.766 0.376 0.369 0.755 0.982 3.42 5 3 3 5 8
5 0.631 0.787 0.609 0.711 0.628 0.736 4.31 6 5 5 5 6
6 0.191 0.725 0.455 0.926 0.548 0.701 2.75 4 2 5 3 3
7 0.137 0.377 0.775 0.252 0.110 0.785 2.52 2 4 1 1 4
8 0.504 0.955 0.720 0.388 0.164 0.349 3.85 7 5 3 2 3
9 0.255 0.716 0.571 0.576 0.204 0.832 3.00 4 3 3 2 5

10 0.073 0.617 0.777 0.630 0.437 0.018 2.16 2 3 2 2 0
11 0.054 0.783 0.053 0.721 0.741 0.733 2.03 3 0 3 3 3
12 0.156 0.613 0.466 0.226 0.765 0.567 2.60 3 2 1 4 3
13 0.162 0.889 0.601 0.448 0.260 0.854 2.63 5 3 2 1 4
14 0.605 0.010 0.632 0.484 0.228 0.971 4.21 0 5 4 3 8
15 0.602 0.286 0.528 0.761 0.710 0.204 4.20 3 4 6 5 2
16 0.063 0.641 0.703 0.722 0.476 0.327 2.09 2 3 3 2 1
17 0.193 0.121 0.390 0.283 0.551 0.714 2.76 1 2 2 3 4
18 0.166 0.567 0.608 0.578 0.460 0.899 2.65 3 3 3 2 5
19 0.797 0.046 0.179 0.281 0.238 0.504 5.10 2 3 4 3 5
20 0.807 0.105 0.112 0.670 0.939 0.386 5.16 2 2 6 9 4
21 0.428 0.872 0.450 0.780 0.014 0.773 3.59 6 3 5 0 5
22 0.186 1.000 0.007 0.194 0.456 0.303 2.73 11 0 1 2 2
23 0.790 0.386 0.798 0.969 0.464 0.088 5.06 4 7 10 5 2
24 0.466 0.162 0.752 0.449 0.173 0.819 3.72 2 5 3 2 5
25 0.662 0.881 0.868 0.470 0.754 0.199 4.44 7 7 4 6 3
26 0.815 0.833 0.293 0.823 0.415 0.223 5.21 7 4 7 5 3
27 0.774 0.444 0.989 0.514 0.998 0.041 4.97 4 11 5 12 1
28 0.212 0.492 0.250 0.780 0.947 0.049 2.84 3 2 4 6 0
29 0.049 0.486 0.920 0.008 0.030 0.378 1.98 2 4 0 0 1
30 0.318 0.515 0.581 0.888 0.180 0.975 3.22 3 3 5 2 7
31 0.535 0.118 0.133 0.115 0.399 0.308 3.96 2 2 2 3 3
32 0.166 0.007 0.466 0.993 0.192 0.772 2.65 0 2 7 1 4
33 0.167 0.137 0.978 0.725 0.979 0.489 2.65 1 6 4 6 2
34 0.693 0.315 0.262 0.208 0.038 0.307 4.57 3 3 3 1 3
35 0.458 0.024 0.072 0.375 0.628 0.523 3.69 0 1 3 4 4
36 0.448 0.064 0.002 0.264 0.046 0.107 3.66 1 0 2 1 1
37 0.657 0.316 0.633 0.593 0.996 0.838 4.42 3 5 5 11 6
38 0.350 0.331 0.146 0.756 0.843 0.951 3.33 2 1 4 5 7
39 0.796 0.616 0.584 0.638 0.353 0.836 5.09 6 5 6 4 7
40 0.447 0.374 0.394 0.273 0.487 0.634 3.65 3 3 2 3 4
41 0.288 0.236 0.976 0.724 0.669 0.519 3.11 2 7 4 4 3
42 0.888 0.853 0.612 0.904 0.016 0.104 5.76 8 6 9 1 3
43 0.947 0.742 0.770 0.030 0.319 0.579 6.52 8 8 2 5 7
44 0.733 0.227 0.732 0.399 0.034 0.602 4.76 3 6 4 1 5
45 0.163 0.877 0.761 0.079 0.888 0.815 2.63 5 4 1 5 4
46 0.604 0.596 0.703 0.419 0.904 0.696 4.21 5 5 4 7 5
47 0.001 0.169 0.312 0.885 0.398 0.714 1.01 0 0 2 1 1
48 0.901 0.532 0.972 0.581 0.510 0.566 5.90 6 11 6 6 6
49 0.633 0.230 0.152 0.068 0.430 0.608 4.32 3 2 1 4 5
50 0.523 0.733 0.100 0.279 0.743 0.403 3.91 5 2 3 5 3
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APPENDIX A2

COMPARING THE ABILITY OF THE CONVENTIONAL AND BAYESIAN

METHODS TO ACCURATELY MEASURE THE TRUE LEVEL OF SAFETY.

Using the randomly generated accident frequencies from Appendix A1 the

level of safety was estimated at each location for study periods ranging from

1 to 5 years using Conventional as well as Bayesian methods.

1. CONVENTIONAL ESTIMATES

The conventional estimates were determined as follows:

X1 = X1

)(2 = (X1+X2)/2

)(3 = (X1 + X2 + X3)/3

)(4 = (X1 + X2 + X3 + X4)/4

)(5 = (X1 + X2 + X3 + X4 + X5)/5

2. BAYESIAN ESTIMATES

E(m) and VAR(m) were determined from Year 1 data only, using the method-

of-sample-moments: E(m) = 4.05 and VAR(m) = 1.64.

mt = e-Etm) + (1-at)Xt

at = E(m)I[E(m)+VAR(m)]= 0.71

m2 = a2E(m) + (1-a;) X2

a2 = E(m)I[E(m) + 2*VAR(m)] = 0.55

m3 = a3E(m) + (1-a3) X3

a2 = E(m)I[E(m) + 3*VAR(m)] = 0.45
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m, = a4E(m) + (1-a4) X4
tu = E(m)/[E(m) + 4*VAR(m)] = 0.38

ms = asE(m) + (1-as) Xs
as = E(m)/[E(m) + S*VAR(m)] = 0.33

The Generic estimate of safety = E(m).

3. DEGREE OF DEVIATION

For each of these Conventional and Bayesian estimates the absolute degree

at deviation (D) was determined as follows:

For Conventional estimates :

For Bayesian estimates:

For the Generic estimate:

Di,y= Imti - X i,yl*1oo/m,
Di,y= Imti - mi,yl*1OO/mti

Di,y= Imti - E(m)I*100/mti

Where y = 1, 2, 5 and i = 1, 2, 1000.

The Conventional, Generic , Bayesian estimates and the degree-at-deviation

associated with each estimate at each site are indicated in Table A2.1

The next step was to organise the data into a cumulative frequency table as

shown in Table A2.2. The Table shows, for each type and period of

estimation, the % of sites smaller than a certain degree of deviation (0).
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Table A2.1 : Conventional and Bayesian estimates and deviations from the 'true' level of safety (Sites 1 to 50)
ID mt X1 D1 X2 D2 X3 D3 X4 D4 Xs Ds Dil m1 Dm1 m2 Dm2 m3 Dm3 m4 Dm4 ms Dms
1 3.24 2 38.2 1.5 53.7 2.33 27.9 2.75 15.0 3.4 5.0 25.0 3.46 6.8 2.91 10.2 3.11 4.0 3.24 0.2 3.61 11.6
2 3.16 6 89.9 4.5 42.4 3.67 16.0 4 26.6 3.6 13.9 28.1 4.61 45.9 4.25 34.5 3.84 21.5 4.02 27.2 3.75 18.6
3 6.01 6 0.2 5.5 8.5 6 0.2 5.25 12.7 5.2 13.5 32.7 4.61 23.3 4.70 21.9 5.12 14.9 4.79 20.3 4.82 19.9
4 3.42 5 46.3 4.0 17.0 3.67 7.3 4 17.0 4.8 40.4 18.4 4.32 26.4 4.03 17.8 3.84 12.3 4.02 17.5 4.55 33.1
5 4.31 6 39.1 5.5 27.5 5.33 23.6 5.25 21.7 5.4 25.2 6.2 4.61 6.9 4.70 8.9 4.75 10.2 4.79 11.1 4.95 14.8
6 2.75 4 45.3 3.0 9.0 3.67 33.2 3.5 27.2 3.4 23.5 47.0 4.03 46.6 3.58 30.0 3.84 39.5 3.71 34.7 3.61 31.3
7 2.52 2 20.6 3.0 19.2 2.33 7.3 2 20.6 2.4 4.7 60.8 3.46 37.3 3.58 42.1 3.11 23.4 2.78 10.5 2.94 16.9
8 3.85 7 81.8 6.0 55.9 5 29.9 4.25 10.4 4.0 3.9 5.1 4.90 27.3 4.92 27.9 4.57 18.7 4.17 8.4 4.02 4.3
9 3.00 4 33.5 3.5 16.9 3.33 11.3 3 0.2 3.4 13.5 35.1 4.03 34.7 3.80 26.9 3.66 22.0 3.40 13.5 3.61 20.7
10 2.16 2 7.4 2.5 15.7 2.33 8.0 2.25 4.1 1.8 16.7 87.3 3.46 60.0 3.35 55.2 3.11 43.8 2.94 35.8 2.54 17.7
11 2.03 3 48.0 1.5 26.0 2 1.4 2.25 11.0 2.4 18.4 99.6 3.74 84.7 2.91 43.3 2.92 44.2 2.94 44.8 2.94 45.2
12 2.60 3 15.2 2.5 4.0 2 23.2 2.5 4.0 2.6 0.1 55.5 3.74 43.9 3.35 28.9 2.92 12.3 3.09 18.7 3.08 18.2
13 2.63 5 90.1 4.0 52.1 3.33 26.7 2.75 4.6 3.0 14.1 53.9 4.32 64.3 4.03 53.1 3.66 39.0 3.24 23.4 3.35 27.2
14 4.21 0 100 2.5 40.7 3 28.8 3 28.8 4.0 5.1 4.0 2.88 31.7 3.35 20.4 3.47 17.6 3.40 19.3 4.02 4.7
15 4.20 3 28.6 3.5 16.7 4.33 3.1 4.5 7.1 4.0 4.8 3.7 3.74 10.9 3.80 9.5 4.20 0.1 4.33 3.0 4.02 4.4
16 2.09 2 4.5 2.5 19.4 2.67 27.4 2.5 19.4 2.2 5.1 93.3 3.46 65.1 3.35 60.2 3.29 57.1 3.09 47.6 2.81 34.2
17 2.76 1 63.8 1.5 45.6 1.67 39.6 2 27.5 2.4 13.0 46.7 3.17 14.8 2.91 5.3 2.74 0.7 2.78 0.8 2.94 6.7
18 2.65 3 13.3 3.0 13.3 3 13.3 2.75 3.9 3.2 20.9 52.9 3.74 41.5 3.58 35.2 3.47 31.2 3.24 22.6 3.48 31.5
19 5.10 2 60.8 2.5 51.0 3 41.2 3 41.2 3.4 33.3 20.6 3.46 32.2 3.35 34.2 3.47 31.9 3.40 33.3 3.61 29.1
20 5.16 2 61.2 2.0 61.2 3.33 35.4 4.75 7.9 4.6 10.8 21.5 3.46 33.0 3.13 39.3 3.66 29.1 4.48 13.1 4.42 14.4
21 . 3.59 6 67.2 4.5 25.4 4.67 30.1 3.5 2.5 3.8 5.9 12.8 4.61 28.5 4.25 18.4 4.39 22.3 3.71 3.4 3.88 8.2
22 2.73 11 303 5.5 101 4 46.5 3.5 28.2 3.2 17.2 48.2 6.05 121.7 4.70 72.0 4.02 47.3 3.71 35.8 3.48 27.4
23 5.06 4 20.9 5.5 8.8 7 38.4 6.5 28.6 5.6 10.8 20.0 4.03 20.2 4.70 7.1 5.67 12.1 5.56 10.1 5.09 0.6
24 3.72 2 46.2 3.5 5.9 3.33 10.4 3 19.3 3.4 8.6 8.8 3.46 7.1 3.80 2.2 3.66 1.7 3.40 8.6 3.61 2.8
25 4.44 7 57.6 7.0 57.6 6 35.1 6 35.1 5.4 21.6 8.9 4.90 10.3 5.37 20.9 5.12 15.2 5.26 18.3 4.95 11.5

Continue ....
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Table A2.1 (continued)
10 mt X1 01 X2 O2 X3 03 X4 04 Xs 05 Og m1 Om1 m2 Om2 m3 Om3 m4 Om4 mS OmS
26 5.21 7 34.4 5.5 5.6 6 15.2 5.75 10.4 5.2 0.1 22.3 4.90 5.9 4.70 9.8 5.12 1.7 5.10 2.0 4.82 7.5
27 4.97 4 19.5 7.5 50.9 6.67 34.2 8 61.0 6.6 32.8 18.6 4.03 18.8 5.59 12.6 5.48 10.4 6.49 30.7 5.76 15.8
28 2.84 3 5.8 2.5 11.8 3 5.8 3.75 32.2 3.0 5.8 42.7 3.74 32.1 3.35 18.3 3.47 22.4 3.86 36.2 3.35 18.0
29 1.98 2 1.1 3.0 51.7 2 1.1 1.5 24.2 1.4 29.2 104.6 3.46 74.7 3.58 80.9 2.92 47.8 2.47 24.9 2.27 15.0
30 3.22 3 6.8 3.0 6.8 3.67 13.9 3.25 0.9 4.0 24.2 25.7 3.74 16.3 3.58 11.1 3.84 19.2 3.55 10.4 4.02 24.7
31 3.96 2 49.4 2.0 49.4 2 49.4 2.25 43.1 2.4 39.3 2.3 3.46 12.6 3.13 20.9 2.92 26.1 2.94 25.8 2.94 25.6
32 2.65 0 100 1.0 62.2 3 13.4 2.5 5.5 2.8 5.8 52.9 2.88 8.8 2.68 1.4 3.47 31.2 3.09 16.8 3.21 21.4
33 2.65 1 62.3 3.5 32.0 3.67 38.2 4.25 60.2 3.8 43.3 52.6 3.17 19.4 3.80 43.3 3.84 44.7 4.17 57.3 3.88 46.3
34 4.57 3 34.4 3.0 34.4 3 34.4 2.5 45.3 2.6 43.1 11.5 3.74 18.1 3.58 21.8 3.47 24.1 3.09 32.4 3.08 32.7
35 3.69 0 100.0 0.5 86.5 1.33 63.9 2 45.8 2.4 35.0 9.6 2.88 22.0 2.46 33.4 2.56 30.7 2.78 24.7 2.94 20.3
36 3.66 1 72.7 0.5 86.3 1 72.7 1 72.7 1.0 72.7 10.7 3.17 13.4 2.46 32.8 2.37 35.1 2.16 40.9 2.01 45.1
37 4.42 3 32.1 4.0 9.5 4.33 2.0 6 35.7 6.0 35.7 8.4 3.74 15.3 4.03 8.9 4.20 4.9 5.26 18.9 5.36 21.1
38 3.33 2 39.9 1.5 54.9 2.33 29.9 3 9.8 3.8 14.2 21.7 3.46 3.9 2.91 12.6 3.11 6.6 3.40 2.2 3.88 16.7
39 5.09 6 17.8 5.5 8.0 5.67 11.3 5.25 3.1 5.6 10.0 20.5 4.61 9.5 4.70 7.7 4.94 3.1 4.79 5.9 5.09 0.1
40 3.65 3 17.9 3.0 17.9 2.67 27.0 2.75 24.7 3.0 17.9 10.8 3.74 2.5 3.58 2.0 3.29 9.9 3.24 11.2 3.35 8.4
41 3.11 2 35.8 4.5 44.5 4.33 39.1 4.25 36.4 4.0 28.4 29.9 3.46 11.0 4.25 36.4 4.20 35.0 4.17 34.0 4.02 28.9
42 5.76 8 38.8 7.0 21.5 7.67 33.0 6 4.1 5.4 6.3 29.8 5.19 10.0 5.37 6.8 6.03 4.7 5.26 8.8 4.95 14.1
43 6.52 8 22.6 8.0 22.6 6 8.0 5.75 11.9 6.0 8.0 38.0 5.19 20.5 5.82 10.8 5.12 21.5 5.10 21.8 5.36 17.9
44 4.76 3 36.9 4.5 5.4 4.33 8.9 3.5 26.4 3.8 20.1 14.9 3.74 21.3 4.25 10.6 4.20 11.6 3.71 22.0 3.88 18.4
45 2.63 5 89.8 4.5 70.8 3.33 26.5 3.75 42.3 3.8 44.2 53.6 4.32 64.0 4.25 61.3 3.66 38.7 3.86 46.6 3.88 47.3
46 4.21 5 18.8 5.0 18.8 4.67 10.9 5.25 24.7 5.2 23.6 3.8 4.32 2.7 4.47 6.3 4.39 4.2 4.79 13.8 4.82 14.5
47 1.01 0 100.0 0.0 100.0 0.67 33.9 0.75 25.7 0.8 20.7 301.1 2.88 185.3 2.23 121.4 2.19 117.2 2.01 98.9 1.87 85.6
48 5.90 6 1.7 8.5 44.1 7.67 30.0 7.25 22.9 7.0 18.7 31.4 4.61 21.8 6.04 2.4 6.03 2.3 6.03 2.2 6.02 2.1
49 4.32 3 30.6 2.5 42.2 2 53.7 2.5 42.2 3.0 30.6 6.4 3.74 13.4 3.35 22.4 2.92 32.4 3.09 28.5 3.35 22.6
50 3.91 5 27.7 3.5 10.6 3.33 14.9 3.75 4.2 3.6 8.0 3.4 4.32 10.4 3.80 2.9 3.66 6.6 3.86 1.3 3.75 4.3
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Table A2.2 : Cumulative frequencies (%) . Conventional Generic and Bayesian estimates,
0 X1 X2 X3 X4 Xs E(m) m1 m2 m3 m4 ms
0 0 0 0 0 0 0 0 0 0 0 0
5 9.4 12.2 13.4 14.5 16.6 10.3 12.8 15.7 15.9 16.9 19.6
10 16.5 22.0 27.0 28.9 32.7 19.6 24.8 29.6 33.0 35.2 35.5
15 23.1 30.6 39.8 42.1 48.0 32.8 38.8 43.5 47.5 51.0 53.5
20 30.0 39.0 48.2 55.0 61.7 43.0 49.4 56.8 60.8 65.2 68.0
25 37.0 47.6 58.0 64.8 72.4 52.9 58.0 67.4 71.5 75.0 79.1
30 43.4 56.3 66.7 72.1 80.5 59.7 67.0 74.3 79.2 81.4 86.2
35 49.9 64.9 73.8 78.9 86.8 66.3 73.6 79.0 84.7 87.2 90.6
40 55.6 72.1 80.4 84.3 91.2 73.4 79.9 85.4 88.7 91.5 93.8
45 60.6 78.8 84.7 90.0 95.1 77.2 83.2 88.9 92.0 93.6 95.6
50 65.9 83.2 89.1 93.1 96.8 80.6 85.9 90.8 94.0 95.5 96.8
55 70.1 86.6 92.4 95.5 97.9 84.3 87.8 93.5 95.0 96.7 97.5
60 73.9 89.5 94.8 97.7 98.5 86.4 90.0 94.5 96.5 97.7 98.2
65 78.1 92.2 96.8 98.7 98.8 88.9 92.1 95.6 97.5 98.3 98.6
70 81.6 93.8 97.8 99.2 99.5 89.8 93.7 96.6 98.2 98.9 99.0
75 84.3 95.1 98.5 99.7 99.8 90.6 94.6 97.3 98.5 99.1 99.1
80 86.6 96.4 99.0 99.8 99.9 91.9 95.4 98.2 98.5 99.2 99.5
85 88.0 97.3 99.5 99.8 99.9 92.8 96.3 98.3 98.7 99.2 99.5
90 89.2 98.1 99.5 99.8 99.9 93.8 96.7 98.6 99.0 99.5 99.7
95 89.9 98.6 99.5 99.9 100.0 94.8 96.9 98.9 99.3 99.6 99.7
100 94.7 99.1 99.6 100.0 100.0 95.7 97.5 99.0 99.4 99.7 99.7
105 95.3 99.2 99.9 100.0 100.0 96.1 97.9 99.1 99.6 99.7 99.8
110 96.5 99.5 99.9 100.0 100.0 96.2 98.3 99.2 99.6 99.8 99.8
115 96.9 99.5 100.0 100.0 100.0 96.7 98.8 99.2 99.6 99.9 99.8
120 97.3 99.6 100.0 100.0 100.0 96.9 99.0 99.4 99.7 99.9 99.9
125 97.5 99.7 100.0 100.0 100.0 97.0 99.1 99.5 99.8 99.9 99.9
130 97.8 99.7 100.0 100.0 100.0 97.7 99.1 99.5 99.8 99.9 99.9
135 98.0 99.7 100.0 100.0 100.0 98.1 99.1 99.6 99.8 99.9 99.9
140 98.6 99.7 100.0 100.0 100.0 98.3 99.2 99.6 99.8 99.9 99.9
145 98.7 99.8 100.0 100.0 100.0 98.3 99.4 99.6 99.8 99.9 99.9
150 98.9 99.9 100.0 100.0 100.0 98.6 99.4 99.8 99.9 99.9 99.9
155 99.0 100.0 100.0 100.0 100.0 98.8 99.5 99.8 99.9 99.9 99.9
160 99.0 100.0 100.0 100.0 100.0 98.9 99.5 99.8 99.9 99.9 99.9
165 99.2 100.0 100.0 100.0 100.0 99.1 99.5 99.8 99.9 99.9 99.9
170 99.3 100.0 100.0 100.0 100.0 99.3 99.5 99.8 99.9 99.9 99.9
175 99.3 100.0 100.0 100.0 100.0 99.3 99.5 99.8 99.9 99.9 99.9
180 99.4 100.0 100.0 100.0 100.0 99.4 99.5 99.8 99.9 99.9 99.9
185 99.4 100.0 100.0 100.0 100.0 99.4 99.5 99.8 99.9 99.9 99.9
190 99.5 100.0 100.0 100.0 100.0 99.5 99.6 99.8 99.9 99.9 99.9
195 99.5 100.0 100.0 100.0 100.0 99.5 99.8 99.8 99.9 99.9 100.0
200 99.6 100.0 100.0 100.0 100.0 99.5 99.8 99.8 99.9 99.9 100.0
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APPENDIX A3

EFFICIENCY ASSESSMENT OF IDENTIFICATION METHODS

In order to assess the efficiency of the CP1, CN2 and 81 identification

methods the following procedures were applied:

• Identifying 'true' hazardous locations.

Previously the random number rnd1 was generated for each of the 1000 sites.

This random number was used to generate the true level of safety (mt) from a

Gamma distribution with mean = 4 ace/year and a variance = 2.

It is assumed that all those sites where rnd1 > 0.95 are 'true' hazardous

locations. All the hazardous locations identified from the CP1, CN2 and 81

identification methods will be compared with these true hazardous locations to

determine the efficiency of the respective methods.

Thus in Tables A3.1 and A3.2 : Ht = 1 of rnd1 > 0.95

• Method CP1

In Table A3.1 the value for Pij ( where j = 1 to 5) represent the probability that

the accident total for a j year period exceeds the average accident total for the

same period across all 1000 sites.

The average accident frequency for the 5 different study periods are shown

below:

Study
1 Year 2 Year 3 Year 4 Year 5 Year

Period

Average 4.05 8.04 12.02 16.08 20.2
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If Xij is the observed accident number at site i over a period of j years and Xaj

is the average accident number for a period of j years, then:

Xij (Xa.)k e -Xa,
p = ,,_-=-J __
ij ~ k!

Pij was determined using the following Microsoft® Excel® function:

A site was identified as hazardous if Pj> 0.95. Thus in Table A3.1 : HCj = 1 if

Pj> 0.95.

The efficiency descriptions in the Ej columns were determined as follows:

'tp' - True positive: If Hf = 1 and Hpj = 1
'tn' - True negative: If Hf = 0 and Hpj = 0

'tp' - False positive: If Hf = 0 and Hpj = 1

'fn' - False negative: If Hf = 1and Hpj = 1

• Method CN2

Table A3.1 contains the average accident frequency per location for each of

the 5 study periods.

For each study period the critical accident number were estimated as follows:

Xcrj = Xa j +1.64S~Xaj +0.5

These critical values are as follows :
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Study
1 Year 2 Year 3 Year 4 Year 5 Year

Period

Critical
7.86 13.02 18.22 23.18 28.09

Value

A site was identified as a hazardous location if j* Xj > xct; where Xj was

obtained from Table A2.1 and j = 1 to 5.

Thus in Table A3.1 : Hjc = 1 ifr X,» XCIj.

The efficiency descriptions in the Eje columns were determined as follows:

'tp' - True positive: If H, = 1 and Hjc = 1

'tn' - True negative: If H, = 0 and Hjc = 0

'fp' - False positive: If Ht = 0 and Hjc = 1

'fn' - False negative: If H, = 1and Hjc = 1

• Method 81

In Table A3.2 mij refers to the Bayesian safety estimates that was determined

for each site in Appendix A2.

The prior estimates E(m) and VAR(m) were determined from Year 1 data:

E(m) = 4.05 and VAR(m) = 1.64. The Gamma parameters can be shown to

be: a = 2.47 and f3 = 10.

The posterior Gamma parameters of site i are determined as follows:

a', = a + j
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where

XTij- The total number of accidents at site i over a period of j years.

j - Length of study period : 1 to 5.

A site was identified as a hazardous location if P(mij > E(m)) > 0.95.

Where

E(m) (.l.1(l' a'-l -f3'm-
IJ me'

P (m - > E (m)) = 1- f dm
lj 0 na')

The following Microsoft® Excel® function was used to calculate P(mij > E(m)):

= 1- GAMMADIST[E(m), [3', 1Ia', TRUE]

Thus in Table A3.2 : Pmj = P(mij > E(m))

Hbj = 1 if Pmj > 0.95

The efficiency descriptions in the Ebj columns were determined as follows:

'tp' - True positive: If H, = 1and Hbj = 1

'tn' - True negative: If Ht = 0 and Hbj = 0

'to' - False positive: If Ht = 0 and Hbj = 1
'fn' - False negative: If H, = 1and Hbj = 1
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Table A3.1 : Methods CP1 and CN2 - Identification of hazardous locations (Sites 1 to 50)
ID m rnd1 Hm P1 Hp1 E1 P2 Hp2 E2 P3 Hp3 E3 P4 Hp4 E4 Ps Hps Es H1c E1c H1c E1c H1c E1c H1c E1c H1c E1c

1 3.23 0.323 0 0.231 o tn 0.041 o tn 0.089 o tn 0.123 o tn 0.283 o tn o tn o tn o tn o tn o tn
2 3.16 0.301 0 0.884 o tn 0.712 o tn 0.459 o tn 0.558 o tn 0.365 o tn o tn o tn o tn o tn o tn
3 6.013 0.912 0 0.884 o tn 0.885 o tn 0.962 1 fp 0.907 o tn 0.915 o tn o tn o tn o tn o tn o tn
4 3.419 0.377 0 0.778 o tn 0.588 o tn 0.459 o tn 0.558 o tn 0.832 o tn o tn o tn o tn o tn o tn
5 4.314 0.631 0 0.884 o tn 0.885 o tn 0.898 o tn 0.907 o tn 0.942 o tn o tn o tn o tn o tn o tn
6 2.752 0.191 0 0.62 o tn 0.309 o tn 0.459 o tn 0.36 o tn 0.283 o tn o tn o tn o tn o tn o tn
7 2.517 0.137 0 0.231 o tn 0.309 o tn 0.089 o tn 0.021 o tn 0.036 o tn o tn o tn o tn o tn o tn
8 3.85 0.504 0 0.946 o tn 0.934 o tn 0.843 o tn 0.652 o tn 0.542 o tn o tn o tn o tn o tn o tn
9 2.995 0.255 0 0.62 o tn 0.448 o tn 0.345 o tn 0.188 o tn 0.283 o tn o tn o tn o tn o tn o tn

10 2.161 0.073 0 0.231 o tn 0.188 o tn 0.089 o tn 0.042 o tn 0.004 o tn o tn o tn o tn o tn o tn
11 2.027 0.054 0 0.424 o tn 0.041 o tn 0.045 o tn 0.042 o tn 0.036 o tn o tn o tn o tn o tn o tn
12 2.603 0.156 0 0.424 o tn 0.188 o tn 0.045 o tn 0.075 o tn 0.061 o tn o tn o tn o tn o tn o tn
13 2.63 0.162 0 0.778 o tn 0.588 o tn 0.345 o tn 0.123 o tn 0.147 o tn o tn o tn o tn o tn o tn

14 4.214 0.605 0 0.017 o tn 0.188 o tn 0.241 o tn 0.188 o tn 0.542 o tn o tn o tn o tn o tn o tn

15 4.202 0.602 0 0.424 o tn 0.448 o tn 0.679 o tn 0.736 o tn 0.542 o tn o tn o tn o tn o tn o tn

16 2.094 0.063 0 0.231 o tn 0.188 o tn 0.154 o tn 0.075 o tn 0.019 o tn o tn o tn o tn o tn o tn

17 2.759 0.193 0 0.088 o tn 0.041 o tn 0.02 o tn 0.021 o tn 0.036 o tn o tn o tn o tn o tn o tn

18 2.647 0.166 0 0.424 o tn 0.309 o tn 0.241 o tn 0.123 o tn 0.209 o tn o tn o tn o tn o tn o tn

19 5.099 0.797 0 0.231 o tn 0.188 o tn 0.241 o tn 0.188 o tn 0.283 o tn o tn o tn o tn o tn o tn

20 5.159 0.807 0 0.231 o tn 0.098 o tn 0.345 o tn 0.807 o tn 0.774 o tn o tn o tn o tn o tn o tn

21 3.588 0.428 0 0.884 o tn 0.712 o tn 0.77 o tn 0.36 o tn 0.453 o tn o tn o tn o tn o tn o tn

22 2.731 0.186 0 0.999 1 fp 0.885 o tn 0.574 o tn 0.36 o tn 0.209 o tn 1 fp o tn o tn o tn o tn

23 5.056 0.79 0 0.62 o tn 0.885 o tn 0.994 1 fp 0.992 1 fp 0.962 1 fp o tn o tn 1 fp 1 fp o tn

24 3.719 0.466 0 0.231 o tn 0.448 o tn 0.345 o tn 0.188 o tn 0.283 o tn o tn o tn o tn o tn o tn

25 4.443 0.662 0 0.946 o tn 0.982 1 fp 0.962 1 fp 0.977 1 fp 0.942 o tn o tn 1 fp o tn 1 fp o tn

26 5.207 0.815 0 0.946 o tn 0.885 o tn 0.962 1 fp 0.962 1 fp 0.915 o tn o tn o tn o tn o tn o tn
Continue ...
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Table A3.1 (continued)
ID m rnd1 Hm P1 Hp1 E1 P2 Hp2 E2 P3 Hp3 E3 P4 Hp4 E4 Ps Hps Es H1c E1c H1c E1c H1c E1c H1c E1c H1c E1c
27 4.969 0.774 0 0.62 o tn 0.991 1 fp 0.988 1 fp 1 1 fp 0.997 1 fp o tn 1 fp 1 fp 1 fp 1 fp
28 2.836 0.212 0 0.424 o tn 0.188 o tn 0.241 o tn 0.459 o tn 0.147 o tn o tn o tn o tn o tn o tn
29 1.978 0.049 0 0.231 o tn 0.309 o tn 0.045 o tn 0.004 o tn 7E-04 o tn o tn o tn o tn o tn o tn
30 3.22 0.318 0 0.424 o tn 0.309 o tn 0.459 o tn 0.268 o tn 0.542 o tn o tn o tn o tn o tn o tn
31 3.956 0.535 0 0.231 o tn 0.098 o tn 0.045 o tn 0.042 o tn 0.036 o tn o tn o tn o tn o tn o tn
32 2.646 0.166 0 0.017 o tn 0.013 o tn 0.241 o tn 0.075 o tn 0.098 o tn o tn o tn o tn o tn o tn
33 2.652 0.167 0 0.088 o tn 0.448 o tn 0.459 o tn 0.652 o tn 0.453 o tn o tn o tn o tn o tn o tn
34 4.573 0.693 0 0.424 o tn 0.309 o tn 0.241 o tn 0.075 o tn 0.061 o tn o tn o tn o tn o tn o tn
35 3.692 0.458 0 0.017 o tn 0.003 o tn 0.007 o tn 0.021 o tn 0.036 o tn o tn o tn o tn o tn o tn
36 3.657 0.448 0 0.088 o tn 0.003 o tn 0.002 o tn 4E-04 o tn 6E-05 o tn o tn o tn o tn o tn o tn
37 4.42 0.657 0 0.424 o tn 0.588 o tn 0.679 o tn 0.977 1 fp 0.985 1 fp o tn o tn o tn 1 fp 1 fp
38 3.326 0.35 0 0.231 o tn 0.041 o tn 0.089 o tn 0.188 o tn 0.453 o tn o tn o tn o tn o tn o tn
39 5.092 0.796 0 0.884 o tn 0.885 o tn 0.936 o tn 0.907 o tn 0.962 1 fp o tn o tn o tn o tn o tn
40 3.652 0.447 0 0.424 o tn 0.309 o tn 0.154 o tn 0.123 o tn 0.147 o tn o tn o tn o tn o tn o tn
41 3.115 0.288 0 0.231 o tn 0.712 o tn 0.679 o tn 0.652 o tn 0.542 o tn o tn o tn o tn o tn o tn
42 5.763 0.888 0 0.977 1 fp 0.982 1 fp 0.998 1 fp 0.977 1 fp 0.942 o tn 1 fp 1 fp 1 fp 1 fp o tn
43 6.524 0.947 0 0.977 1 fp 0.996 1 fp 0.962 1 fp 0.962 1 fp 0.985 1 fp 1 fp 1 fp o tn o tn 1 fp
44 4.756 0.733 0 0.424 o tn 0.712 o tn 0.679 o tn 0.36 o tn 0.453 o tn o tn o tn o tn o tn o tn
45 2.635 0.163 0 0.778 o tn 0.712 o tn 0.345 o tn 0.459 o tn 0.453 o tn o tn o tn o tn o tn o tn
46 4.209 0.604 0 0.778 o tn 0.812 o tn 0.77 o tn 0.907 o tn 0.915 o tn o tn o tn o tn o tn o tn
47 1.009 0.001 0 0.017 o tn 3E-04 o tn 5E-04 o tn 9E-05 o tn 1E-05 o tn o tn o tn o tn o tn o tn
48 5.899 0.901 0 0.884 o tn 0.998 1 fp 0.998 1 fp 0.999 1 fp 0.999 1 fp o tn 1 fp 1 fp 1 fp 1 fp
49 4.324 0.633 0 0.424 o tn 0.188 o tn 0.045 o tn 0.075 o tn 0.147 o tn o tn o tn o tn o tn o tn
50 3.915 0.523 0 0.778 o tn 0.448 o tn 0.345 o tn 0.459 o tn 0.365 o tn o tn o tn o tn o tn o tn
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Table A3.2 : Method 81 - Identification of hazardous locations (Sites 1 to 50)
ID mt Ht m1 Pm1 Hb1 Eb1 m2 Pm2 Hb2 Eb2 m3 Pm3 Hm3 Em3 m4 Pm4 Hm4 Em4 ms PmS Hms Ems

1 3.24 0 3.46 0.256 o tn 2.91 0.088 o tn 3.11 0.111 o tn 3.24 0.131 o tn 3.61 0.254 o tn
2 3.16 0 4.61 0.665 o tn 4.25 0.553 o tn 3.84 0.376 o tn 4.02 0.459 o tn 3.75 0.318 o tn
3 6.01 0 4.61 0.665 o tn 4.70 0.723 o tn 5.12 0.871 o tn 4.79 0.803 o tn 4.82 0.832 o tn
4 3.42 0 4.32 0.566 o tn 4.03 0.460 o tn 3.84 0.376 o tn 4.02 0.459 o tn 4.55 0.730 o tn
5 4.31 0 4.61 0.665 o tn 4.70 0.723 o tn 4.75 0.768 o tn 4.79 0.803 o tn 4.95 0.871 o tn
6 2.75 0 4.03 0.459 o tn 3.58 0.279 o tn 3.84 0.376 o tn 3.71 0.308 o tn 3.61 0.254 o tn
7 2.52 0 3.46 0.256 o tn 3.58 0.279 o tn 3.11 0.111 o tn 2.78 0.038 o tn 2.94 0.050 o tn
8 3.85 0 4.90 0.752 o tn 4.92 0.793 o tn 4.57 0.701 o tn 4.17 0.537 o tn 4.02 0.459 o tn
9 3.00 0 4.03 0.459 o tn 3.80 0.367 o tn 3.66 0.296 o tn 3.40 0.181 o tn 3.61 0.254 o tn

10 2.16 0 3.46 0.256 o tn 3.35 0.202 o tn 3.11 0.111 o tn 2.94 0.060 o tn 2.54 0.012 o tn
11 2.03 0 3.74 0.354 o tn 2.91 0.088 o tn 2.92 0.073 o tn 2.94 0.060 o tn 2.94 0.050 o tn
12 2.60 0 3.74 0.354 o tn 3.35 0.202 o tn 2.92 0.073 o tn 3.09 0.091 o tn 3.08 0.075 o tn
13 2.63 0 4.32 0.566 o tn 4.03 0.460 o tn 3.66 0.296 o tn 3.24 0.131 o tn 3.35 0.147 o tn
14 4.21 0 2.88 0.107 o tn 3.35 0.202 o tn 3.47 0.224 o tn 3.40 0.181 o tn 4.02 0.459 o tn
15 4.20 0 3.74 0.354 o tn 3.80 0.367 o tn 4.20 0.544 o tn 4.33 0.613 o tn 4.02 0.459 o tn
16 2.09 0 3.46 0.256 o tn 3.35 0.202 o tn 3.29 0.162 o tn 3.09 0.091 o tn 2.81 0.032 o tn
17 2.76 0 3.17 0.172 o tn 2.91 0.088 o tn 2.74 0.045 o tn 2.78 0.038 o tn 2.94 0.050 o tn
18 2.65 0 3.74 0.354 o tn 3.58 0.279 o tn 3.47 0.224 o tn 3.24 0.131 o tn 3.48 0.196 o tn
19 5.10 0 3.46 0.256 o tn 3.35 0.202 o tn 3.47 0.224 o tn 3.40 0.181 o tn 3.61 0.254 o tn
20 5.16 0 3.46 0.256 o tn 3.13 0.138 o tn 3.66 0.296 o tn 4.48 0.684 o tn 4.42 0.669 o tn

21 3.59 0 4.61 0.665 o tn 4.25 0.553 o tn 4.39 0.626 o tn 3.71 0.308 o tn 3.88 0.387 o tn
22 2.73 0 6.05 0.951 1 fp 4.70 0.723 o tn 4.02 0.460 o tn 3.71 0.308 o tn 3.48 0.196 o tn

23 5.06 0 4.03 0.459 o tn 4.70 0.723 o tn 5.67 0.957 1 fp 5.56 0.961 1 fp 5.09 0.904 o tn

24 3.72 0 3.46 0.256 o tn 3.80 0.367 o tn 3.66 0.296 o tn 3.40 0.181 o tn 3.61 0.254 o tn

25 4.44 0 4.90 0.752 o tn 5.37 0.895 o tn 5.12 0.871 o tn 5.26 0.919 o tn 4.95 0.871 o tn

26 5.21 0 4.90 0.752 o tn 4.70 0.723 o tn 5.12 0.871 o tn 5.10 0.889 o tn 4.82 0.832 o tn

27 4.97 0 4.03 0.459 o tn 5.59 0.929 o tn 5.48 0.936 o tn 6.49 0.997 1 fp 5.76 0.983 1 fp
Continue ...
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Table A3.2 (continued)
ID mt Ht m1 Pm1 Hb1 Eb1 m2 Pm2 Hb2 Eb2 m3 Pm3 Hm3 Em3 m4 Pm4 Hm4 Em4 ms PmS HmS EmS
28 2.84 0 3.74 0.354 o tn 3.35 0.202 o tn 3.47 0.224 o tn 3.86 0.382 o tn 3.35 0.147 o tn
29 1.98 0 3.46 0.256 o tn 3.58 0.279 o tn 2.92 0.073 o tn 2.47 0.013 o tn 2.27 0.003 o tn
30 3.22 0 3.74 0.354 o tn 3.58 0.279 o tn 3.84 0.376 o tn 3.55 0.240 o tn 4.02 0.459 o tn
31 3.96 0 3.46 0.256 o tn 3.13 0.138 o tn 2.92 0.073 o tn 2.94 0.060 o tn 2.94 0.050 o tn
32 2.65 0 2.88 0.107 o tn 2.68 0.052 o tn 3.47 0.224 o tn 3.09 0.091 o tn 3.21 0.107 o tn
33 2.65 0 3.17 0.172 o tn 3.80 0.367 o tn 3.84 0.376 o tn 4.17 0.537 o tn 3.88 0.387 o tn
34 4.57 0 3.74 0.354 o tn 3.58 0.279 o tn 3.47 0.224 o tn 3.09 0.091 o tn 3.08 0.075 o tn
35 3.69 0 2.88 0.107 o tn 2.46 0.029 o tn 2.56 0.026 o tn 2.78 0.038 o tn 2.94 0.050 o tn
36 3.66 0 3.17 0.172 o tn 2.46 0.029 o tn 2.37 0.014 o tn 2.16 0.003 o tn 2.01 0.001 o tn
37 4.42 0 3.74 0.354 o tn 4.03 0.460 o tn 4.20 0.544 o tn 5.26 0.919 o tn 5.36 0.949 o tn
38 3.33 0 3.46 0.256 o tn 2.91 0.088 o tn 3.11 0.111 o tn 3.40 0.181 o tn 3.88 0.387 o tn
39 5.09 0 4.61 0.665 o tn 4.70 0.723 o tn 4.94 0.825 o tn 4.79 0.803 o tn 5.09 0.904 o tn
40 3.65 0 3.74 0.354 o tn 3.58 0.279 o tn 3.29 0.162 o tn 3.24 0.131 o tn 3.35 0.147 o tn
41 3.11 0 3.46 0.256 o tn 4.25 0.553 o tn 4.20 0.544 o tn 4.17 0.537 o tn 4.02 0.459 o tn
42 5.76 0 5.19 0.824 o tn 5.37 0.895 o tn 6.03 0.982 1 fp 5.26 0.919 o tn 4.95 0.871 o tn
43 6.52 0 5.19 0.824 o tn 5.82 0.953 1 fp 5.12 0.871 o tn 5.10 0.889 o tn 5.36 0.949 o tn
44 4.76 0 3.74 0.354 o tn 4.25 0.553 o tn 4.20 0.544 o tn 3.71 0.308 o tn 3.88 0.387 o tn
45 2.63 0 4.32 0.566 o tn 4.25 0.553 o tn 3.66 0.296 o tn 3.86 0.382 o tn 3.88 0.387 o tn
46 4.21 0 4.32 0.566 o tn 4.47 0.643 o tn 4.39 0.626 o tn 4.79 0.803 o tn 4.82 0.832 o tn
47 1.01 0 2.88 0.107 o tn 2.23 0.015 o tn 2.19 0.007 o tn 2.01 0.002 o tn 1.87 0.000 o tn
48 5.90 0 4.61 0.665 o tn 6.04 0.970 1 fp 6.03 0.982 1 fp 6.03 0.989 1 fp 6.02 0.993 1 fp
49 4.32 0 3.74 0.354 o tn 3.35 0.202 o tn 2.92 0.073 o tn 3.09 0.091 o tn 3.35 0.147 o tn
50 3.91 0 4.32 0.566 o tn 3.80 0.367 o tn 3.66 0.296 o tn 3.86 0.382 o tn 3.75 0.318 o tn
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APPENDIX A4

ASSESSMENT OF EVALUATION METHODS

In Appendix A3 the CP1 and 81 methods were used to identify hazardous

locations for study periods from 1 to 5 years.

For each site in a group of identified hazardous locations the true level of

safety in the 'before' period (mtb) was reduced by 20 % - this represents the

'true' effect of a safety treatment. Using the same procedure as in Appendix

A1, 5 years of accident frequencies were randomly generated assuming a

Poisson distribution around the true 'after' level of safety (mta).

Table A4.1 and Table A4.2 contains listings of the hazardous locations

selected by Methods CP1 and 81 using 3 years of data, and information on

the randomly generated accident frequencies for each of 5 years in the 'after'

period.
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Table A4.1 : Method CP1 - Hazardous locations· Period = 3 years
ID T3 mbt mat Xa1 Xa2 Xa3 Xê4 Xas
3 18 6.01 4.81 4 4 3 6 7
23 21 5.06 4.04 1 5 2 3 6
25 18 4.44 3.55 2 3 4 3 3
26 18 5.21 4.17 3 2 5 6 2
27 20 4.97 3.98 1 4 6 2 6
42 23 5.76 4.61 2 5 4 3 4
43 18 6.52 5.22 6 6 4 7 6
48 23 5.90 4.72 5 6 5 3 3
56 19 5.40 4.32 6 2 4 2 5
78 19 4.56 3.65 4 4 2 3 10
80 19 4.78 3.82 3 2 5 2 4
83 19 5.24 4.19 6 1 1 5 4
85 27 6.89 5.51 5 5 5 4 6
95 18 4.53 3.62 5 1 3 5 3
98 24 7.97 6.38 6 11 3 3 5
106 22 5.50 4.40 5 4 7 5 3
120 22 5.92 4.73 3 7 5 7 4
133 18 5.55 4.44 3 9 7 5 6
136 20 4.02 3.22 4 3 5 5 3
139 19 4.44 3.55 7 3 4 3 4
140 22 6.45 5.16 10 7 6 8 4
148 27 7.01 5.60 2 5 7 8 8
157 22 7.76 6.21 7 9 3 9 4
165 24 7.03 5.63 2 7 7 5 5
168 21 6.27 5.02 4 8 6 5 3
185 26 5.19 4.15 4 0 4 3 8
187 22 4.45 3.56 2 1 2 4 2
200 21 6.73 5.39 8 8 6 3 3
213 18 7.20 5.76 9 7 7 10 6
217 20 5.04 4.03 4 8 2 4 4
221 33 6.46 5.17 6 8 7 4 1
227 25 7.37 5.89 5 7 7 6 6
229 19 5.13 4.11 7 2 2 2 1
233 19 5.79 4.64 4 3 7 5 1
249 32 9.04 7.23 5 8 7 9 5
250 23 5.31 4.24 10 3 6 5 5
255 22 4.59 3.67 2 1 4 4 7
264 18 6.48 5.19 5 5 2 5 5
273 21 5.75 4.60 6 7 3 8 4
276 22 5.68 4.55 5 3 2 2 4
278 21 4.76 3.81 1 3 0 4 4
282 18 6.75 5.40 2 5 6 4 6
283 19 6.66 5.33 4 5 8 8 3
285 28 7.08 5.66 7 6 10 5 8
300 19 5.48 4.38 5 5 2 6 5
301 18 6.68 5.34 2 6 9 3 3
308 18 3.66 2.93 2 2 2 2 4
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Table A4.1 (continued)
ID T3 mbt mat Xa1 Xa2 Xa3 X~ Xas
327 22 6.93 5.55 8 6 10 3 6
334 22 6.08 4.86 8 5 5 4 4
341 20 4.95 3.96 7 4 2 5 6
344 23 6.65 5.32 6 6 6 4 8
349 19 5.55 4.44 5 5 6 9 5
354 22 5.95 4.76 4 3 5 7 5
355 20 8.70 6.96 3 8 9 5 3
361 19 4.63 3.70 2 2 5 4 3
370 20 4.85 3.88 6 6 3 3 1
371 21 5.31 4.25 4 4 6 3 7
389 19 5.81 4.65 2 9 6 4 4
392 21 5.96 4.77 5 6 6 7 8
397 19 4.39 3.51 6 2 2 4 7
398 31 6.81 5.45 6 3 6 5 5
402 19 5.66 4.53 2 7 4 6 4
403 23 8.18 6.54 10 6 5 7 9
409 26 9.05 7.24 6 5 4 7 7
413 19 4.15 3.32 5 3 2 4 4
418 22 8.10 6.48 10 5 10 5 7
421 25 7.27 5.81 7 9 7 5 7
428 23 5.64 4.51 4 1 6 5 3
435 18 6.03 4.82 6 3 2 3 7
436 18 5.58 4.46 4 3 3 3 3
437 21 6.76 5.41 7 6 5 5 6
443 23 5.64 4.51 4 4 5 3 6
450 26 8.64 6.91 8 10 7 3 10
456 28 10.12 8.10 8 7 12 5 7
460 19 3.64 2.91 2 4 4 4 5
463 18 4.30 3.44 3 2 1 2 5
468 22 4.84 3.87 5 9 3 7 3
477 19 5.27 4.21 4 10 2 6 3
481 18 4.01 3.21 3 3 5 2 5
491 22 4.87 3.89 7 1 2 6 0
493 19 6.59 5.27 7 2 9 3 5
497 22 6.91 5.53 6 5 4 4 6
503 18 4.03 3.23 3 1 4 1 2
506 32 5.36 4.29 2 4 6 3 2
516 18 4.39 3.51 4 2 2 2 5
520 26 5.25 4.20 3 4 6 2 5
523 18 4.44 3.55 3 2 4 5 7
535 24 5.65 4.52 3 3 2 9 2
539 24 6.67 5.34 4 4 4 7 8
543 18 4.25 3.40 2 5 4 4 4
548 25 6.98 5.58 7 8 6 3 5
559 28 8.84 7.07 8 6 11 4 9
560 20 5.28 4.22 4 3 5 2 3
573 22 7.46 5.97 8 5 4 7 8
581 26 5.92 4.74 2 6 6 4 4
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Table A4.1 (continued)
ID T3 mbt mat Xa1 Xa2 Xa3 Xa4 Xas
584 22 6.83 5.46 5 3 3 4 8
593 19 5.77 4.62 6 4 2 6 4
607 21 5.29 4.23 2 3 6 4 6
612 19 5.23 4.18 4 1 5 5 5
614 18 5.65 4.52 6 5 5 3 6
620 18 3.72 2.97 2 3 1 1 0
641 26 6.24 5.00 7 6 7 1 8
646 20 4.67 3.73 6 1 6 1 6
652 18 4.90 3.92 5 4 3 4 4
657 22 6.58 5.26 4 3 7 11 3
661 18 6.08 4.87 4 5 7 3 1
665 21 6.13 4.90 4 8 4 4 5
666 24 5.10 4.08 9 2 1 2 7
695 25 5.15 4.12 5 4 7 4 3
696 18 6.40 5.12 2 7 9 5 5
702 25 7.41 5.93 4 8 8 5 6
714 19 5.79 4.63 3 4 4 4 4
715 23 5.31 4.25 3 5 6 4 5
719 22 5.07 4.06 4 5 3 4 3
730 27 7.42 5.94 0 3 3 6 4
750 24 5.72 4.58 3 8 5 4 3
767 24 4.97 3.98 2 1 2 2 8
770 18 3.60 2.88 1 3 2 2 3
780 21 7.33 5.86 6 10 7 6 8
782 18 5.87 4.70 1 2 4 5 6
786 19 4.82 3.86 4 6 5 3 4
789 18 6.94 5.55 7 2 4 6 2
808 18 4.09 3.27 3 3 2 10 8
816 18 6.24 4.99 7 2 6 10 3
822 22 5.82 4.65 2 5 7 2 8
827 18 6.65 5.32 7 3 5 2 9
851 21 5.32 4.25 5 2 2 4 2
856 19 4.19 3.35 6 2 2 3 4
859 24 6.56 5.25 4 9 4 4 2
873 18 3.87 3.10 2 2 4 4 4
881 32 6.45 5.16 4 5 2 3 5
885 18 4.37 3.50 5 5 2 4 9
889 19 4.84 3.87 9 4 3 1 5
892 18 5.76 4.61 8 5 12 5 6
893 18 4.91 3.93 9 5 5 3 5
895 22 4.08 3.26 2 2 0 7 6
899 18 7.89 6.31 10 10 8 9 10
902 23 4.58 3.67 6 5 2 5 3
903 23 6.16 4.93 7 3 3 6 7
904 18 5.78 4.62 4 9 5 4 4
913 20 4.72 3.78 2 6 4 2 4
914 21 5.90 4.72 4 5 3 7 4
926 18 5.23 4.18 2 7 6 8 9
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Table A4.1 (continue)
ID T3 mbt mat Xa1 Xa2 Xa3 Xa4 Xas
932 22 6.08 4.86 5 7 5 7 6
934 23 8.45 6.76 7 8 5 3 6
935 18 6.22 4.98 7 6 8 8 3
943 26 7.42 5.94 4 3 6 4 6
950 18 6.73 5.38 9 7 4 4 7
951 24 6.42 5.13 6 5 3 6 5
955 20 6.99 5.59 7 6 9 7 7
961 22 4.97 3.97 5 2 7 1 9
962 28 6.57 5.25 6 6 7 8 5
963 18 5.06 4.05 2 1 6 4 2
964 18 5.79 4.63 2 3 4 8 4
965 19 4.53 3.63 3 5 4 0 6
966 23 6.24 4.99 7 3 4 3 2
972 27 4.88 3.90 6 5 6 9 4
991 19 4.72 3.77 2 2 2 5 6
994 18 5.36 4.28 4 6 5 1 3
Total 3386 2779.81 2223.84 753 743 759 728 786

Table A4.2 : Method 81 - hazardous locations: Period = 3 years
ID m3 mbt mat Xa1 Xa2 Xa3 Xa4 Xas

23 5.67 5.06 4.04 1 5 2 3 6
42 6.03 5.76 4.61 2 5 4 3 4
48 6.03 5.90 4.72 5 6 5 3 3
85 6.77 6.89 5.51 5 5 5 4 6
98 6.22 7.97 6.38 6 11 3 3 5
106 5.85 5.50 4.40 5 4 7 5 3
120 5.85 5.92 4.73 3 7 5 7 4
140 5.85 6.45 5.16 10 7 6 8 4
148 6.77 7.01 5.60 2 5 7 8 8
157 5.85 7.76 6.21 7 9 3 9 4
165 6.22 7.03 5.63 2 7 7 5 5
168 5.67 6.27 5.02 4 8 6 5 3
185 6.58 5.19 4.15 4 0 4 3 8
187 5.85 4.45 3.56 2 1 2 4 2
200 5.67 6.73 5.39 8 8 6 3 3
221 7.86 6.46 5.17 6 8 7 4 1
227 6.40 7.37 5.89 5 7 7 6 6
249 7.68 9.04 7.23 5 8 7 9 5
250 6.03 5.31 4.24 10 3 6 5 5
255 5.85 4.59 3.67 2 1 4 4 7
273 5.67 5.75 4.60 6 7 3 8 4
276 5.85 5.68 4.55 5 3 2 2 4
278 5.67 4.76 3.81 1 3 0 4 4
285 6.95 7.08 5.66 7 6 10 5 8
327 5.85 6.93 5.55 8 6 10 3 6
334 5.85 6.08 4.86 8 5 5 4 4
344 6.03 6.65 5.32 6 6 6 4 8
354 5.85 5.95 4.76 4 3 5 7 5
371 5.67 5.31 4.25 4 4 6 3 7

Stellenbosch University http://scholar.sun.ac.za



A4-6

Table A4.2 (continued)
ID m3 mbt mat Xa1 Xa2 Xa3 Xa.. Xas
392 5.67 5.96 4.77 5 6 6 7 8
398 7.50 6.81 5.45 6 3 6 5 5
403 6.03 8.18 6.54 10 6 5 7 9
409 6.58 9.05 7.24 6 5 4 7 7
418 5.85 8.10 6.48 10 5 10 5 7
421 6.40 7.27 5.81 7 9 7 5 7
428 6.03 5.64 4.51 4 1 6 5 3
437 5.67 6.76 5.41 7 6 5 5 6
443 6.03 5.64 4.51 4 4 5 3 6
450 6.58 8.64 6.91 8 10 7 3 10
456 6.95 10.12 8.10 8 7 12 5 7
468- 5.85 4.84 3.87 5 9 3 7 3
491 5.85 4.87 3.89 7 1 2 6 0
497 5.85 6.91 5.53 6 5 4 4 6
506 7.68 5.36 4.29 2 4 6 3 2
520 6.58 5.25 4.20 3 4 6 2 5
535 6.22 5.65 4.52 3 3 2 9 2
539 6.22 6.67 5.34 4 4 4 7 8
548 6.40 6.98 5.58 7 8 6 3 5
559 6.95 8.84 7.07 8 6 11 4 9
573 5.85 7.46 5.97 8 5 4 7 8
581 6.58 5.92 4.74 2 6 6 4 4
584 5.85 6.83 5.46 5 3 3 4 8
607 5.67 5.29 4.23 2 3 6 4 6
641 6.58 6.24 5.00 7 6 7 1 8
657 5.85 6.58 5.26 4 3 7 11 3
665 5.67 6.13 4.90 4 8 4 4 5
666 6.22 5.10 4.08 9 2 1 2 7
695 6.40 5.15 4.12 5 4 7 4 3
702 6.40 7.41 5.93 4 8 8 5 6
715 6.03 5.31 4.25 3 5 6 4 5
719 5.85 5.07 4.06 4 5 3 4 3
730 6.77 7.42 5.94 0 3 3 6 4
750 6.22 5.72 4.58 3 8 5 4 3
767 6.22 4.97 3.98 2 1 2 2 8
780 5.67 7.33 5.86 6 10 7 6 8
822 5.85 5.82 4.65 2 5 7 2 8
851 5.67 5.32 4.25 5 2 2 4 2
859 6.22 6.56 5.25 4 9 4 4 2
881 7.68 6.45 5.16 4 5 2 3 5
895 5.85 4.08 3.26 2 2 0 7 6
902 6.03 4.58 3.67 6 5 2 5 3
903 6.03 6.16 4.93 7 3 3 6 7
914 5.67 5.90 4.72 4 5 3 7 4
932 5.85 6.08 4.86 5 7 5 7 6
934 6.03 8.45 6.76 7 8 5 3 6
943 6.58 7.42 5.94 4 3 6 4 6
951 6.22 6.42 5'.13 6 5 3 6 5
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Table A4.2 (continued)
ID mJ mbt mat Xa1 Xa2 XaJ Xat Xas
961 5.85 4.97 3.97 5 2 7 1 9
962 6.95 6.57 5.25 6 6 7 8 5
966 6.03 6.24 4.99 7 3 4 3 2
972 6.77 4.88 3.90 6 5 6 9 4

Total 502.10 512.18 409.75 411 419 412 394 426
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APPENDIX 81

THE METHOD OF SAMPLE MOMENTS

In Table B1.1 is listed all the road links in the Province of the Western Cape,

South Africa, that meet the following criteria. :

• Number of lanes: 2 lanes ( one in each direction)

• Type of shoulder: Surfaced

• Surfaced width: >= 11 m ( typically 2*3.7 m lanes with shoulder widths>

1.8m)

• Geography: Rural - Province of the Western Cape

• AADT: > 1000 veh/day and < 8000 veh/day

• Segment length: > 500 m

• Accident period: 1993 to 1996 (4 Years)

• Accident type : ALL

This information was obtained from the road network and accident databases of

the Transport Branch of the Department of Economic Affairs, Agriculture and

Tourism of the Provincial Administration of the Western Cape

The method of sample moments has been applied as follows to estimate the

true level of safety at each of these segments:

Mean accident rate ( R) = 1.15

Variance of R «l) = 1.13

Harmonic mean (E*) = 9.60

E(m) = 1.15 and VAR(m) = [9.60(1.13)-1.15]/9.60 = 1.01

a = 9.60(1.15)/[1.13(9.60) -1.15] = 1.14 and (3= 1.14*1.15 = 1.31

a'i = 1.14 + Ei and (3'= 1.31 + Ai

mi = (3'i/a'i and VAR(mi) = (3'/(a'i)2
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Table 81.1 : Method of sample moments
Road Start End L AADT E A R a' f3' m VAR(m)
NR00205 51.88 52.6 0.74 2704 2.92 23 7.87 4.06 24.31 5.98 1.47
MR00165 0 3.63 3.63 1502 7.97 32 4.02 9.11 33.31 3.66 0.40
MROO027 51.73 52.3 0.56 4220 3.45 15 4.34 4.59 16.31 3.55 0.77
MR00227 5.89 9.66 3.77 1111 6.12 21 3.43 7.26 22.31 3.07 0.42
TR02801 0 2.14 2.14 1158 3.62 12 3.31 4.76 13.31 2.80 0.59
TR03201 44.35 45.2 0.8 1760 2.06 7 3.40 3.20 8.31 2.60 0.81
MROO027 51.15 51.7 0.58 7077 6.00 17 2.83 7.14 18.31 2.57 0.36
MROO027 67.19 68.6 1.37 4722 9.45 25 2.65 10.59 26.31 2.48 0.23
MR00223 6.3 9.63 3.33 1618 7.87 21 2.67 9.01 22.31 2.48 0.27
MR00165 3.63 7.47 3.84 5530 31.02 76 2.45 32.17 77.31 2.40 0.07
TR03201 42.84 44.4 1.51 1708 3.77 10 2.65 4.91 11.31 2.31 0.47
NR00108 2.68 3.61 0.93 2530 3.44 9 2.62 4.58 10.31 2.25 0.49
NR00205 9.85 11.4 1.55 5593 12.67 29 2.29 13.81 30.31 2.20 0.16
TR03201 0 5.71 5.71 1729 14.42 32 2.22 15.56 33.31 2.14 0.14
NR00205 49.34 51.8 2.46 4107 14.76 32 2.17 15.90 33.31 2.10 0.13
TR02801 2.14 3.73 1.59 3762 8.74 19 2.17 9.88 20.31 2.06 0.21
TR00204 50.54 55 4.49 2663 17.47 34 1.95 18.61 35.31 1.90 0.10
NR00205 52.62 58.6 5.98 3447 30.12 47 1.56 31.26 48.31 1.55 0.05
NR00205 40.64 49.3 8.7 3063 38.93 58 1.49 40.07 59.31 1.48 0.04
TR00202 37.09 42.4 5.27 7300 56.21 83 1.48 57.35 84.31 1.47 0.03
DR01056 0 1.32 1.32 1108 2.14 5 2.34 3.28 6.31 1.93 0.59
MR00313 1.6 3.1 1.5 1843 4.04 8 1.98 5.18 9.31 1.80 0.35
TR00204 44.28 45.2 0.88 2449 3.15 6 1.91 4.29 7.31 1.71 0.40
TR02801 16.37 17.2 0.81 3850 4.56 8 1.76 5.70 9.31 1.64 0.29
TR02801 17.18 19.9 2.75 4029 16.19 25 1.54 17.33 26.31 1.52 0.09
NR00205 58.6 59.2 0.61 3519 3.14 5 1.59 4.28 6.31 1.48 0.35
TR03302 2.74 5.01 2.27 1365 4.53 7 1.55 5.67 8.31 1.47 0.26
TR02801 19.93 23.6 3.67 4240 22.73 33 1.45 23.87 34.31 1.44 0.06
NR00205 0 2.02 2.02 4214 12.44 18 1.45 13.58 19.31 1.42 0.10
DR01101 1.9 5.79 3.89 1980 11.25 15 1.33 12.39 16.31 1.32 0.11
TR00204 2.84 4.4 1.56 2981 6.79 9 1.32 7.93 10.31 1.30 0.16
NR00105 29.83 31.9 2.06 2610 7.86 10 1.27 9.00 11.31 1.26 0.14
DR01105 0 3.99 3.99 6717 39.16 49 1.25 40.30 50.31 1.25 0.03
TR02801 3.73 9.1 5.37 3031 23.78 29 1.22 24.92 30.31 1.22 0.05
MR00216 0 3.45 3.45 4520 22.78 27 1.19 23.92 28.31 1.18 0.05
TR00204 45.16 50.5 5.38 2492 19.59 23 1.17 20.73 24.31 1.17 0.06
TR02801 23.6 25.8 2.23 4803 15.65 18 1.15 16.79 19.31 1.15 0.07
DR01101 0 1.9 1.9 3779 10.49 12 1.14 11.63 13.31 1.14 0.10
TR02901 39.92 45.2 5.29 1045 8.08 9 1.11 9.22 10.31 1.12 0.12
MR00279 33.98 34.7 0.67 2016 1.97 2 1.01 3.11 3.31 1.06 0.34
TR02901 51.85 55.1 3.23 1060 5.00 5 1.00 6.14 6.31 1.03 0.17
MR00279 34.65 35.3 0.68 3142 3.12 3 0.96 4.26 4.31 1.01 0.24
NR00205 7.12 9.12 2 6182 18.06 18 1.00 19.20 19.31 1.01 0.05
MR00187 6.96 8.03 1.07 5894 9.21 9 0.98 10.35 10.31 1.00 0.10
TR03302 1.74 2.74 1 1507 2.20 2 0.91 3.34 3.31 0.99 0.30
NR00208 65.71 67.8 2.07 5417 16.38 15 0.92 17.52 16.31 0.93 0.05
TR03201 22.79 26.2 3.42 1564 7.81 7 0.90 8.96 8.31 0.93 0.10
NR00107 0 34.9 34.86 2526 128.65 117 0.91 129.79 118.31 0.91 0.01
TR03201 5.71 15.3 9.55 1566 21.85 19 0.87 22.99 20.31 0.88 0.04

Continue ...
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Table 81.1 (continued)
Road Start End L AADT E A R a' (3' m VAR(m)
TR03201 15.26 22.8 7.53 1372 15.09 13 0.86 16.23 14.31 0.88 0.05
MR00191 16.66 20.2 3.54 3808 19.69 17 0.86 20.84 18.31 0.88 0.04
NR00108 62 72.4 10.44 2465 37.60 32 0.85 38.74 33.31 0.86 0.02
MR00227 1 5.89 4.89 1359 9.71 8 0.82 10.85 9.31 0.86 0.08
NR00205 9.12 9.85 0.73 5839 6.23 5 0.80 7.37 6.31 0.86 0.12
MR00166 3.93 4.71 0.78 1405 1.60 1 0.62 2.74 2.31 0.84 0.31
TR03102 1.94 9.04 7.1 3656 37.92 31 0.82 39.06 32.31 0.83 0.02
TR00202 54.11 58.2 4.1 3524 21.11 17 0.81 22.25 18.31 0.82 0.04
NR00206 35.76 37.2 1.46 3647 7.78 6 0.77 8.92 7.31 0.82 0.09
NR00108 56.93 62 5.07 2550 18.89 15 0.79 20.03 16.31 0.81 0.04
MROO027 42.91 44.8 1.9 7270 20.18 16 0.79 21.32 17.31 0.81 0.04
MR00187 4.36 6.96 2.6 6407 24.34 19 0.78 25.48 20.31 0.80 0.03
MROO027 44.81 50.7 5.86 6922 59.26 45 0.76 60.40 46.31 0.77 0.01
NR00108 39.85 56.9 17.08 2277 56.82 43 0.76 57.96 44.31 0.76 0.01
TR03102 10.78 13.6 2.8 2722 11.14 8 0.72 12.28 9.31 0.76 0.06
TR03103 1.9 18.4 16.53 1284 31.01 23 0.74 32.15 24.31 0.76 0.02
MR00187 8.03 14.7 6.68 6170 60.22 45 0.75 61.36 46.31 0.75 0.01
NR00205 32.72 40.6 7.92 3386 39.18 29 0.74 40.32 30.31 0.75 0.02
TR02801 9.1 16.4 7.27 2831 30.07 22 0.73 31.21 23.31 0.75 0.02
TR03201 32.73 42.8 10.11 1563 23.09 16 0.69 24.23 17.31 0.71 0.03
TR00202 52.64 54.1 1.47 4247 9.12 6 0.66 10.26 7.31 0.71 0.07
MROO027 68.56 72.1 3.57 6622 34.54 23 0.67 35.68 24.31 0.68 0.02
MR00188 16.54 19.2 2.63 2540 9.76 6 0.61 10.90 7.31 0.67 0.06
NR00106 0.42 29.9 29.46 2514 108.21 72 0.67 109.35 73.31 0.67 0.01
TR02901 24.03 27.3 3.3 1129 5.44 3 0.55 6.58 4.31 0.66 0.10
NR00208 0 6.35 6.35 7379 68.46 44 0.64 69.60 45.31 0.65 0.01
MR00344 0 6.2 6.2 2247 20.35 12 0.59 21.49 13.31 0.62 0.03
MR00191 20.2 20.7 0.5 3576 2.61 1 0.38 3.75 2.31 0.62 0.16
NR00208 46.62 48.6 2.01 5398 15.85 9 0.57 16.99 10.31 0.61 0.04
NR00107 61.64 68.3 6.64 2839 27.54 16 0.58 28.68 17.31 0.60 0.02
NR00206 25.35 27.7 2.32 3770 12.78 7 0.55 13.92 8.31 0.60 0.04
NR00105 81.64 84.5 2.82 2701 11.13 6 0.54 12.27 7.31 0.60 0.05
NR00205 2.02 7.12 5.1 6241 46.50 27 0.58 47.64 28.31 0.59 0.01
TR00203 26.1 38.2 12.14 2064 36.61 21 0.57 37.75 22.31 0.59 0.02
NR00206 16.61 25.4 8.74 2734 34.91 19 0.54 36.05 20.31 0.56 0.02
NR00205 59.21 66.8 7.54 3706 40.83 22 0.54 41.97 23.31 0.56 0.01
NR00108 3.61 39.9 36.24 2602 137.77 75 0.54 138.91 76.31 0.55 0.00
NR00206 58.17 62.4 4.26 3721 23.16 12 0.52 24.30 13.31 0.55 0.02
NR00205 70.77 82.1 11.28 4187 69.00 37 0.54 70.14 38.31 0.55 0.01
TR00202 58.21 64.3 6.07 4694 41.63 22 0.53 42.77 23.31 0.55 0.01
NR00107 34.86 61.6 26.78 2665 104.27 56 0.54 105.41 57.31 0.54 0.01
NR00206 46.84 58.2 11.33 4114 68.10 36 0.53 69.24 37.31 0.54 0.01
DR01105 3.99 5.12 1.13 4461 7.36 3 0.41 8.51 4.31 0.51 0.06
NR00206 38.65 45.1 6.43 3327 31.25 15 0.48 32.40 16.31 0.50 0.02
TR07501 29.55 31.5 1.94 2640 7.48 3 0.40 8.62 4.31 0.50 0.06
NR00208 63.69 65.7 2.02 6003 17.72 8 0.45 18.86 9.31 0.49 0.03
NR00206 45.08 46.8 1.76 3189 8.20 3 0.37 9.34 4.31 0.46 0.05
NR00105 31.89 39.8 7.88 2715 31.26 13 0.42 32.40 14.31 0.44 0.01

Continue ...
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Table 81.1 (continued)
Road Start End L AADT E A R a' (3' m VAR(m)
NR00104 27.78 54.2 26.46 3609 139.52 60 0.43 140.66 61.31 0.44 0.00
MR00177 18.12 22.5 4.39 7495 48.07 20 0.42 49.21 21.31 0.43 0.01
NR00105 39.77 81.6 41.87 2617 160.09 68 0.42 161.23 69.31 0.43 0.00
MR00200 3.64 11.3 7.7 7465 83.98 34 0.40 85.12 35.31 0.41 0.00
MR00223 0 6.3 6.3 4015 36.96 14 0.38 38.10 15.31 0.40 0.01
NR00206 12.44 16.6 4.17 2802 17.07 6 0.35 18.21 7.31 0.40 0.02
NR00206 62.43 68.3 5.87 3193 27.38 10 0.37 28.52 11.31 0.40 0.01
NR00205 66.75 70.8 4.02 3432 20.16 7 0.35 21.30 8.31 0.39 0.02
NR00208 48.63 54.9 6.28 6260 57.44 18 0.31 58.58 19.31 0.33 0.01
NR00208 8.27 16.8 8.51 5961 74.11 23 0.31 75.25 24.31 0.32 0.00
NR00206 68.3 72.9 4.55 4092 27.20 7 0.26 28.34 8.31 0.29 0.01
NR00205 11.4 14.7 3.27 5096 24.35 6 0.25 25.49 7.31 0.29 0.01
MR00199 19.57 22.5 2.89 3751 15.84 3 0.19 16.98 4.31 0.25 0.01
NR00207 43.29 52.1 8.78 7415 95.12 23 0.24 96.26 24.31 0.25 0.00
NR00208 59.42 63.7 4.27 6011 37.50 8 0.21 38.64 9.31 0.24 0.01
NR00208 34.32 46.6 12.3 6074 109.15 23 0.21 110.29 24.31 0.22 0.00

LEGEND

Road: The number assigned to the road by the provincial roads authority where NR = National
Road, TR = Trunk Road and MR = Main Road.
Start: The kilometre value (according to the provincial road logs) at which the segment start.
End: The kilometre value (according to the provincial road logs) at which the segment end.
L : The length of the segment ( End - Start).
AADT: Annual Average Daily Traffic
E: Exposure in million vehicle kilometres (= L*365*4*AADT*10-6)
A : The total number of accidents recorded on the segment between 1993 and 1996 ( 4 years)
R : The accident rate (accidents per million vehicle kilometres) : = A/E.
a' : The posterior alpha parameter of the Gamma distribution of mj = a + E
(3' : The posterior beta parameter of the Gamma distribution of mj = (3 + A
ml: The posterior Bayesian estimate = (3'/a'
var(ml) : The variance of the posterior Bayesian estimate = (3'/(a,)2
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APPENDIX 82

IDENTIFICATION OF HAZARDOUS LOCATIONS

The 113 segments identified in Appendix 81 were evaluated using the

following hazardous location identification methods:

• The accident number method (CN1)

The sample mean accident number ( X ) = 5.57 ace/km

The sample standard deviation (ox) = 5.41

From Eqn. 5.1 Xcr= 5.57 + 1.645*5.41 = 14.47

In Table 82.1 the value of CN1 = 1 if N > 14.47.

• The accident rate method (CR1)

The sample mean accident rate ( R) = 1.15 acc/mvkm

The sample standard deviation (OR) = 1.06

From Eqn. 5.4 Rcr= 1.15 + 1.645*1.06 = 2.90

In Table 82.1 the value of CR1 = 1 if R > 2.90

• The rate-number method (RN)

In Table 82.1 the value of RN = 1 if both CN1 and CR1 = 1

• The rate quality control method (CR2)

The total number of accidents recorded on 113 links = 2433.

The sum of all exposures on 113 links = 3270.29 mvkm.
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From Eqn 5.9 Ra= 2433/3270.29 = 0.74 acc/mvkm

In Table 82.1 Re= 0.74 + 1.645(0.74/E) + 0.5/E and CR2 = 1 if R > Re.

• The B1 Bayesian method

In Table 82.1 'Pb1 = P(m > 1.15) which was determined using the

following Microsoft® Excel® function:

=1-GAMMADIST(1.15,(3,1/a,TRUE) where a and (3 are the Gamma

parameters determined in Appendix 81.

In Table 82.1 81 = 1 if Pb1> 0.95

• The B2 Bayesian method

In Table 82.1 P21 = P(m > 0.74) which was determined using the

following Microsoft® Excel® function:

=1-GAMMADIST(0.74,(3,1/a,TRUE) where a and (3 are the Gamma

parameters determined in Appendix 81.

In Table 82.1 82 = 1 if Pb2> 0.95
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Table 82.1 : Identification of hazardous locations
Road Start End E N R m CN1 CR1 NR Rc CR2 Pb1 81 Pb2 82

NR00205 51.88 52.62 2.92 31.08 7.87 6.15 1 1 1 1.80 1 1.000 1 1.000 1
MROO027 51.73 52.29 3.45 26.79 4.34 3.77 1 1 1 1.69 1 1.000 1 1.000 1
MR00165 0 3.63 7.97 8.82 4.02 2.92 0 1 0 1.32 1 0.994 1 0.997 1
MR00227 5.89 9.66 6.12 5.57 3.43 2.39 0 1 0 1.41 1 0.946 0 0.965 1
TR03201 44.35 45.15 2.06 8.75 3.40 2.62 0 1 0 2.12 1 0.987 1 0.993 1
TR02801 0 2.14 3.62 5.61 3.31 2.35 0 1 0 1.66 1 0.942 0 0.963 1
MROO027 51.15 51.73 6.00 29.31 2.83 2.64 1 0 0 1.41 1 1.000 1 1.000 1
MR00223 6.3 9.63 7.87 6.31 2.67 2.11 0 0 0 1.33 1 0.922 0 0.950 1
TR03201 42.84 44.35 3.77 6.62 2.65 2.12 0 0 0 1.63 1 0.929 0 0.955 1
MROO027 67.19 68.56 9.45 18.25 2.65 2.40 1 0 0 1.28 1 0.998 1 0.999 1
NR00108 2.68 3.61 3.44 9.68 2.62 2.22 0 0 0 1.69 1 0.970 1 0.984 1
MR00165 3.63 7.47 31.02 19.79 2.45 2.26 1 0 0 1.12 1 0.997 1 0.999 1
DR01056 0 1.32 2.14 3.79 2.34 1.80 0 0 0 2.08 1 0.790 0 0.842 0
NR00205 9.85 11.4 12.67 18.71 2.29 2.13 1 0 0 1.22 1 0.992 1 0.997 1
TR03201 0 5.71 14.42 5.60 2.22 1.85 0 0 0 1.20 1 0.851 0 0.897 0
TR02801 2.14 3.73 8.74 11.95 2.17 1.97 0 0 0 1.30 1 0.957 1 0.978 1
NR00205 49.34 51.8 14.76 13.01 2.17 1.98 0 0 0 1.19 1 0.964 1 0.983 1
MR00313 1.6 3.1 4.04 5.33 1.98 1.70 0 0 0 1.59 1 0.797 0 0.854 0
TR00204 50.54 55.03 17.47 7.57 1.95 1.74 0 0 0 1.17 1 0.854 0 0.905 0
TR00204 44.28 45.16 3.15 6.82 1.91 1.70 0 0 0 1.75 1 0.825 0 0.881 0
TR02801 16.37 17.18 4.56 9.88 1.76 1.64 0 0 0 1.53 1 0.847 0 0.906 0
NR00205 58.6 59.21 3.14 8.20 1.59 1.50 0 0 0 1.75 0 0.752 0 0.831 0
NR00205 52.62 58.6 30.12 7.86 1.56 1.47 0 0 0 1.12 1 0.730 0 0.813 0
TR03302 2.74 5.01 4.53 3.08 1.55 1.39 0 0 0 1.53 1 0.591 0 0.665 0
TR02801 17.18 19.93 16.19 9.09 1.54 1.47 0 0 0 1.18 1 0.745 0 0.829 0

NR00205 40.64 49.34 38.93 6.67 1.49 1.41 0 0 0 1.10 1 0.671 0 0.759 0
Continue ...
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Table 82.1 (continued)
Road Start End E N R m CN1 CR1 NR Rc CR2 Pb1 81 Pb2 82

TR00202 37.09 42.36 56.21 15.75 1.48 1.44 1 0 0 1.08 1 0.791 0 0.882 0
TR02801 19.93 23.6 22.73 8.99 1.45 1.40 0 0 0 1.14 1 0.692 0 0.787 0
NR00205 0 2.02 12.44 8.91 1.45 1.39 0 0 0 1.22 1 0.688 0 0.784 0
DR01101 1.9 5.79 11.25 3.86 1.33 1.28 0 0 0 1.24 1 0.534 0 0.619 0
TR00204 2.84 4.4 6.79 5.77 1.32 1.28 0 0 0 1.37 0 0.564 0 0.661 0
NR00105 29.83 31.89 7.86 4.85 1.27 1.24 0 0 0 1.33 0 0.521 0 0.615 0
DR01105 0 3.99 39.16 12.28 1.25 1.24 0 0 0 1.10 1 0.570 0 0.701 0
TR02801 3.73 9.1 23.78 5.40 1.22 1.20 0 0 0 1.14 1 0.494 0 0.594 0
MR00216 0 3.45 22.78 7.83 1.19 1.18 0 0 0 1.14 1 0.484 0 0.601 0
TR00204 45.16 50.54 19.59 4.28 1.17 1.17 0 0 0 1.16 1 0.458 0 0.550 0
TR02801 23.6 25.83 15.65 8.07 1.15 1.15 0 0 0 1.19 0 0.455 0 0.574 0
DR01101 0 1.9 10.49 6.32 1.14 1.15 0 0 0 1.26 0 0.446 0 0.554 0
TR02901 39.92 45.21 8.08 1.70 1.11 1.13 0 0 0 1.32 0 0.414 0 0.483 0
MR00279 33.98 34.65 1.97 2.99 1.01 1.06 0 0 0 2.17 0 0.366 0 0.448 0
TR02901 51.85 55.08 5.00 1.55 1.00 1.07 0 0 0 1.49 0 0.374 0 0.442 0
NR00205 7.12 9.12 18.06 9.00 1.00 1.02 0 0 0 1.17 0 0.302 0 0.424 0
MR00187 6.96 8.03 9.21 8.41 0.98 1.00 0 0 0 1.29 0 0.287 0 0.404 0
MR00279 34.65 35.33 3.12 4.41 0.96 1.00 0 0 0 1.76 0 0.316 0 0.408 0
NR00208 65.71 67.78 16.38 7.25 0.92 0.95 0 0 0 1.18 0 0.241 0 0.346 0
NR00107 0 34.86 128.6 3.36 0.91 0.98 0 0 0 1.06 0 0.298 0 0.380 0
TR03302 1.74 2.74 2.20 2.00 0.91 1.00 0 0 0 2.05 0 0.327 0 0.399 0
TR03201 22.79 26.21 7.81 2.05 0.90 0.99 0 0 0 1.33 0 0.320 0 0.392 0
TR03201 5.71 15.26 21.85 1.99 0.87 0.98 0 0 0 1.15 0 0.308 0 0.379 0
MR00191 16.66 20.2 19.69 4.80 0.86 0.92 0 0 0 1.16 0 0.235 0 0.323 0
TR03201 15.26 22.79 15.09 1.73 0.86 0.98 0 0 0 1.19 0 0.313 0 0.381 0
NR00108 62 72.44 37.60 3.07 0.85 0.93 0 0 0 1.10 0 0.267 0 0.345 0
MR00227 1 5.89 9.71 1.64 0.82 0.96 0 0 0 1.27 0 0.299 0 0.365 0

Continue ...
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Table B2.1 (continued)
Road Start End E N R m CN1 CR1 NR Re CR2 Pb1 B1 Pb2 B2

TR03102 1.94 9.04 37.92 4.37 0.82 0.89 0 0 0 1.10 0 0.210 0 0.291 0
TR00202 54.11 58.21 21.11 4.15 0.81 0.88 0 0 0 1.15 0 0.206 0 0.286 0
NR00205 9.12 9.85 6.23 6.85 0.80 0.85 0 0 0 1.40 0 0.149 0 0.233 0
NR00108 56.93 62 18.89 2.96 0.79 0.89 0 0 0 1.16 0 0.233 0 0.307 0
MROO027 42.91 44.81 20.18 8.42 0.79 0.83 0 0 0 1.15 0 0.118 0 0.199 0
MR00187 4.36 6.96 24.34 7.31 0.78 0.83 0 0 0 1.14 0 0.124 0 0.203 0
NR00206 35.76 37.22 7.78 4.11 0.77 0.85 0 0 0 1.33 0 0.183 0 0.258 0
MROO027 44.81 50.67 59.26 7.68 0.76 0.81 0 0 0 1.08 0 0.103 0 0.176 0
NR00108 39.85 56.93 56.82 2.52 0.76 0.87 0 0 0 1.08 0 0.225 0 0.294 0
MR00187 8.03 14.71 60.22 6.74 0.75 0.80 0 0 0 1.08 0 0.109 0 0.180 0
TR03103 1.9 18.43 31.01 1.39 0.74 0.91 0 0 0 1.12 0 0.272 0 0.335 0
NR00205 32.72 40.64 39.18 3.66 0.74 0.83 0 0 0 1.10 0 0.174 0 0.244 0
TR02801 9.1 16.37 30.07 3.03 0.73 0.84 0 0 0 1.12 0 0.189 0 0.258 0
TR03102 10.78 13.58 11.14 2.86 0.72 0.83 0 0 0 1.24 0 0.187 0 0.254 0
TR03201 32.73 42.84 23.09 1.58 0.69 0.86 0 0 0 1.14 0 0.236 0 0.297 0
MROO027 68.56 72.13 34.54 6.44 0.67 0.73 0 0 0 1.11 0 0.063 0 0.113 0
NR00106 0.42 29.88 108.2 2.44 0.67 0.80 0 0 0 1.07 0 0.171 0 0.232 0
TR00202 52.64 54.11 9.12 4.08 0.66 0.75 0 0 0 1.29 0 0.106 0 0.163 0

NR00208 0 6.35 68.46 6.93 0.64 0.70 0 0 0 1.08 0 0.045 0 0.087 0

MR00166 3.93 4.71 1.60 1.28 0.62 0.84 0 0 0 2.43 0 0.221 0 0.278 0

MR00188 16.54 19.17 9.76 2.28 0.61 0.76 0 0 0 1.27 0 0.148 0 0.204 0

MR00344 0 6.2 20.35 1.94 0.59 0.75 0 0 0 1.15 0 0.152 0 0.207 0

NR00107 61.64 68.28 27.54 2.41 0.58 0.72 0 0 0 1.13 0 0.120 0 0.172 0

NR00205 2.02 7.12 46.50 5.29 0.58 0.65 0 0 0 1.09 0 0.039 0 0.074 0

TR00203 26.1 38.24 36.61 1.73 0.57 0.75 0 0 0 1.11 0 0.157 0 0.210 0

NR00208 46.62 48.63 15.85 4.48 0.57 0.65 0 0 0 1.18 0 0.048 0 0.084 0

TR02901 24.03 27.33 5.44 0.91 0.55 0.82 0 0 0 1.45 0 0.221 0 0.274 0
Continue ...
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Table 82.1 (continued)
Road Start End E N R m CN1 CR1 NR Re CR2 Pb1 81 Pb2 82

NR00206 25.35 27.67 12.78 3.02 0.55 0.67 0 0 0 1.22 0 0.076 0 0.118 0
NR00108 3.61 39.85 137.7 2.07 0.54 0.70 0 0 0 1.06 0 0.117 0 0.165 0
NR00206 16.61 25.35 34.91 2.17 0.54 0.70 0 0 0 1.11 0 0.111 0 0.158 0
NR00105 81.64 84.46 11.13 2.13 0.54 0.70 0 0 0 1.24 0 0.110 0 0.158 0
NR00205 59.21 66.75 40.83 2.92 0.54 0.66 0 0 0 1.10 0 0.074 0 0.116 0
NR00107 34.86 61.64 104.2 2.09 0.54 0.70 0 0 0 1.07 0 0.111 0 0.158 0
NR00205 70.77 82.05 69.00 3.28 0.54 0.65 0 0 0 1.08 0 0.061 0 0.099 0
NR00206 46.84 58.17 68.10 3.18 0.53 0.64 0 0 0 1.08 0 0.060 0 0.098 0
TR00202 58.21 64.28 41.63 3.62 0.53 0.63 0 0 0 1.10 0 0.048 0 0.082 0
NR00206 58.17 62.43 23.16 2.82 0.52 0.65 0 0 0 1.14 0 0.067 0 0.106 0
NR00206 38.65 45.08 31.25 2.33 0.48 0.63 0 0 0 1.12 0 0.067 0 0.103 0
NR00208 63.69 65.71 17.72 3.96 0.45 0.55 0 0 0 1.17 0 0.016 0 0.032 0
NR00104 27.78 54.24 139.5 2.27 0.43 0.58 0 0 0 1.06 0 0.046 0 0.074 0
NR00105 39.77 81.64 160.0 1.62 0.42 0.62 0 0 0 1.06 0 0.077 0 0.112 0
MR00177 18.12 22.51 48.07 4.56 0.42 0.50 0 0 0 1.09 0 0.006 0 0.013 0
NR00105 31.89 39.77 31.26 1.65 0.42 0.60 0 0 0 1.12 0 0.070 0 0.104 0
DR01105 3.99 5.12 7.36 2.65 0.41 0.54 0 0 0 1.35 0 0.025 0 0.045 0
MR00200 3.64 11.34 83.98 4.42 0.40 0.49 0 0 0 1.07 0 0.005 0 0.012 0
TR07501 29.55 31.49 7.48 1.55 0.40 0.60 0 0 0 1.34 0 0.069 0 0.102 0
MR00191 20.2 20.7 2.61 2.00 0.38 0.54 0 0 0 1.89 0 0.036 0 0.060 0
MR00223 0 6.3 36.96 2.22 0.38 0.52 0 0 0 1.10 0 0.027 0 0.047 0
NR00206 45.08 46.84 8.20 1.70 0.37 0.54 0 0 0 1.32 0 0.042 0 0.067 0
NR00206 62.43 68.3 27.38 1.70 0.37 0.54 0 0 0 1.13 0 0.042 0 0.066 0
NR00206 12.44 16.61 17.07 1.44 0.35 0.55 0 0 0 1.17 0 0.051 0 0.077 0
NR00205 66.75 70.77 20.16 1.74 0.35 0.52 0 0 0 1.15 0 0.033 0 0.053 0
NR00208 48.63 54.91 57.44 2.87 0.31 0.42 0 0 0 1.08 0 0.004 0 0.008 0
NR00208 8.27 16.78 74.11 2.70 0.31 0.42 0 0 0 1.07 0 0.004 0 0.010 0
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Table 82.1 (continued)
Road Start End E N R m CN1 CR1 NR Rc CR2 Pb1 81 Pb2 82

NR00206 68.3 72.85 27.20 1.54 0.26 0.42 0 0 0 1.13 0 0.011 0 0.020 0
NR00205 11.4 14.67 24.35 1.83 0.25 0.39

,
0 0 0 1.14 0 0.004 0 0.009 0

NR00207 43.29 52.07 95.12 2.62 0.24 0.34 0 0 0 1.07 0 0.001 0 0.002 0
NR00208 59.42 63.69 37.50 1.87 0.21 0.34 0 0 0 1.10 0 0.001 0 0.003 0
NR00208 34.32 46.62 109.1 1.87 0.21 0.34 0 0 0 1.07 0 0.001 0 0.003 0
MR00199 19.57 22.46 15.84 1.04 0.19 0.38 0 0 0 1.18 0 0.009 0 0.016 0
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APPENDIX 83

COMPARISON OF RANKING METHODS

The 113 segments identified in Appendix B1 were ranked according to the

following criteria :

• Accident number - X (ace/km)

• Accident rate - R (acc/mvkm)

• Bayesian safety estimate - m (acc/mvkm)

• Potential Accident Reduction - PAR ( ace/year)

The results of this ranking study are shown in Table B3.1.
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Table 83.1 : Comparison of ranking procedures
Road Start End AADT E N Rank(N) R Rank(R) M Rank(m) PAR Rank(PAR)
MR00165 3.63 7.47 5530 31.02 19.8 4 2.45 12 2.40 10 13.23 1
TR00202 37.09 42.36 7300 56.21 15.7 7 1.48 27 1.47 26 10.30 2
NR00205 40.64 49.34 3063 38.93 6.7 33 1.49 26 1.48 24 7.26 3
MR00165 0 3.63 1502 7.97 8.8 17 4.02 3 3.66 2 6.52 4
NR00205 52.62 58.6 3447 30.12 7.9 23 1.56 23 1.55 22 6.15 5
NR00107 0 34.86 2526 128.65 3.4 61 0.91 46 0.91 48 5.32 6
TR03201 0 5.71 1729 14.42 5.6 40 2.22 15 2.14 14 5.32 7
NR00205 49.34 51.8 4107 14.76 13.0 8 2.17 17 2.10 15 5.25 8
TR00204 50.54 55.03 2663 17.47 7.6 26 1.95 19 1.90 18 5.25 9
NR00205 51.88 52.62 2704 2.92 31.1 1 7.87 1 5.98 1 5.21 10
DR01105 0 3.99 6717 39.16 12.3 9 1.25 33 1.25 33 4.97 11
NR00205 9.85 11.4 5593 12.67 18.7 5 2.29 14 2.20 13 4.89 12
MROO027 67.19 68.56 4722 9.45 18.2 6 2.65 10 2.48 8 4.49 13
MR00227 5.89 9.66 1111 6.12 5.6 41 3.43 4 3.07 4 4.11 14
TR02801 19.93 23.6 4240 22.73 9.0 15 1.45 28 1.44 28 4.02 15
MR00223 6.3 9.63 1618 7.87 6.3 37 2.67 8 2.48 9 3.79 16
TR02801 17.18 19.93 4029 16.19 9.1 13 1.54 25 1.52 23 3.24 17
MROO027 51.15 51.73 7077 6.00 29.3 2 2.83 7 2.57 7 3.13 18
TR02801 2.14 3.73 3762 8.74 11.9 10 2.17 16 2.06 16 3.12 19
MROO027 51.73 52.29 4220 3.45 26.8 3 4.34 2 3.55 3 3.11 20
TR02801 3.73 9.1 3031 23.78 5.4 42 1.22 34 1.22 34 2.83 21
MR00216 0 3.45 4520 22.78 7.8 24 1.19 35 1.18 35 2.51 22
TR02801 0 2.14 1158 3.62 5.6 39 3.31 6 2.80 5 2.33 23
NR00205 0 2.02 4214 12.44 8.9 16 1.45 29 1.42 29 2.19 24
TR00204 45.16 50.54 2492 19.59 4.3 52 1.17 36 1.17 36 2.11 25
TR03201 42.84 44.35 1708 3.77 6.6 34 2.65 9 2.31 11 1.80 26

Continue ...
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Table 83.1 (continued)
Road Start End AADT E N Rank(N) R Rank(R) M Rank(m) PAR Rank(PAR)
DR01101 1.9 5.79 1980 11.25 3.9 57 1.33 30 1.32 30 1.66 27
NR00108 2.68 3.61 2530 3.44 9.7 12 2.62 11 2.25 12 1.61 28
TR02801 23.6 25.83 4803 15.65 8.1 22 1.15 37 1.15 37 1.59 29
TR03201 44.35 45.15 1760 2.06 8.8 18 3.40 5 2.60 6 1.37 30
MR00313 1.6 3.1 1843 4.04 5.3 43 1.98 18 1.80 19 1.25 31
TR02801 16.37 17.18 3850 4.56 9.9 11 1.76 21 1.64 21 1.15 32
NR00205 7.12 9.12 6182 18.06 9.0 14 1.00 42 1.01 43 1.14 33
DR01101 0 1.9 3779 10.49 6.3 36 1.14 38 1.14 38 1.05 34
NR00105 29.83 31.89 2610 7.86 4.9 45 1.27 32 1.26 32 1.04 35
NR00108 62 72.44 2465 37.60 3.1 65 0.85 52 0.86 52 1.01 36
TR00204 2.84 4.4 2981 6.79 5.8 38 1.32 31 1.30 31 0.99 37
TR00204 44.28 45.16 2449 3.15 6.8 31 1.91 20 1.71 20 0.91 38
TR03302 2.74 5.01 1365 4.53 3.1 64 1.55 24 1.47 27 0.91 39
DR01056 0 1.32 1108 2.14 3.8 58 2.34 13 1.93 17 0.85 40
TR02901 39.92 45.21 1045 8.08 1.7 101 1.11 39 1.12 39 0.75 41
NR00208 65.71 67.78 5417 16.38 7.2 28 0.92 45 0.93 46 0.70 42
TR03102 1.94 9.04 3656 37.92 4.4 51 0.82 54 0.83 56 0.70 43
TR03201 5.71 15.26 1566 21.85 2.0 91 0.87 49 0.88 49 0.69 44
NR00205 58.6 59.21 3519 3.14 8.2 21 1.59 22 1.48 25 0.67 45
MR00191 16.66 20.2 3808 19.69 4.8 46 0.86 50 0.88 51 0.59 46
MR00187 6.96 8.03 5894 9.21 8.4 20 0.98 43 1.00 44 0.54 47

TR03201 15.26 22.79 1372 15.09 1.7 98 0.86 51 0.88 50 0.44 48

TR00202 54.11 58.21 3524 21.11 4.1 53 0.81 55 0.82 57 0.32 49

TR02901 51.85 55.08 1060 5.00 1.5 106 1.00 41 1.03 41 0.32 50

TR03201 22.79 26.21 1564 7.81 2.0 88 0.90 48 0.93 47 0.30 51

MROO027 42.91 44.81 7270 20.18 8.4 19 0.79 58 0.81 60 0.25 52

NR00108 56.93 62 2550 18.89 3.0 69 0.79 57 0.81 59 0.24 53
Continue ...
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Table 83.1 (continued)
Road Start End AADT E N Rank(N) R Rank(R) M Rank(m) PAR Rank(PAR)
MROO027 44.81 50.67 6922 59.26 7.7 25 0.76 61 0.77 62 0.23 54
MR00187 4.36 6.96 6407 24.34 7.3 27 0.78 59 0.80 61 0.22 55
MR00227 1 5.89 1359 9.71 1.6 103 0.82 53 0.86 53 0.19 56
NR00108 39.85 56.93 2277 56.82 2.5 77 0.76 62 0.76 63 0.18 57
MR00279 34.65 35.33 3142 3.12 4.4 50 0.96 44 1.01 42 0.17 58
MR00279 33.98 34.65 2016 1.97 3.0 68 1.01 40 1.06 40 0.13 59
NR00205 9.12 9.85 5839 6.23 6.8 30 0.80 56 0.86 54 0.09 60
TR03302 1.74 2.74 1507 2.20 2.0 89 0.91 47 0.99 45 0.09 61
NR00206 35.76 37.22 3647 7.78 4.1 54 0.77 60 0.82 58 0.05 62
MR00187 8.03 14.71 6170 60.22 6.7 32 0.75 63 0.75 66 0.05 63
TR03103 1.9 18.43 1284 31.01 1.4 110 0.74 64 0.76 65 -0.02 64
NR00205 32.72 40.64 3386 39.18 3.7 59 0.74 65 0.75 67 -0.04 65
MR00166 3.93 4.71 1405 1.60 1.3 111 0.62 73 0.84 55 -0.05 66
TR03102 10.78 13.58 2722 11.14 2.9 72 0.72 67 0.76 64 -0.07 67
TR02801 9.1 16.37 2831 30.07 3.0 66 0.73 66 0.75 68 -0.09 68
TR00202 52.64 54.11 4247 9.12 4.1 55 0.66 71 0.71 70 -0.20 69
MR00191 20.2 20.7 3576 2.61 2.0 90 0.38 100 0.62 77 -0.24 70
TR02901 24.03 27.33 1129 5.44 0.9 113 0.55 80 0.66 74 -0.26 71
TR03201 32.73 42.84 1563 23.09 1.6 105 0.69 68 0.71 69 -0.29 72
MR00188 16.54 19.17 2540 9.76 2.3 81 0.61 74 0.67 72 -0.32 73
NR00105 81.64 84.46 2701 11.13 2.1 85 0.54 84 0.60 81 -0.57 74
DR01105 3.99 5.12 4461 7.36 2.7 75 0.41 97 0.51 92 -0.62 75
NR00206 25.35 27.67 3770 12.78 3.0 67 0.55 81 0.60 80 -0.63 76
TR07501 29.55 31.49 2640 7.48 1.5 107 0.40 99 0.50 94 -0.64 77
MROO027 68.56 72.13 6622 34.54 6.4 35 0.67 69 0.68 71 -0.67 78
NR00208 46.62 48.63 5398 15.85 4.5 48 0.57 79 0.61 78 -0.70 79
NR00206 45.08 46.84 3189 8.20 1.7 99 0.37 102 0.46 96 -0.78 80
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Table 83.1 (continued)
Road Start End AADT E N Rank(N) R Rank(R) M Rank(m) PAR Rank(PAR)
MR00344 0 6.2 2247 20.35 1.9 92 0.59 75 0.62 76 -0.79 81
NR00107 61.64 68.28 2839 27.54 2.4 79 0.58 76 0.60 79 -1.12 82
NR00208 63.69 65.71 6003 17.72 4.0 56 0.45 92 0.49 95 -1.30 83
NR00206 58.17 62.43 3721 23.16 2.8 73 0.52 90 0.55 87 -1.31 84
TR00203 26.1 38.24 2064 36.61 1.7 97 0.57 78 0.59 83 -1.56 85
NR00206 12.44 16.61 2802 17.07 1.4 109 0.35 104 0.40 103 -1.68 86
NR00208 0 6.35 7379 68.46 6.9 29 0.64 72 0.65 75 -1.73 87
NR00206 16.61 25.35 2734 34.91 2.2 84 0.54 83 0.56 84 -1.74 88
NR00205 2.02 7.12 6241 46.50 5.3 44 0.58 77 0.59 82 -1.90 89
NR00205 66.75 70.77 3432 20.16 1.7 96 0.35 105 0.39 105 -2.00 90
NR00206 38.65 45.08 3327 31.25 2.3 80 0.48 91 0.50 93 -2.06 91
NR00205 59.21 66.75 3706 40.83 2.9 70 0.54 85 0.56 85 -2.09 92
NR00106 0.42 29.88 2514 108.21 2.4 78 0.67 70 0.67 73 -2.13 93
MR00199 19.57 22.46 3751 15.84 1.0 112 0.19 113 0.25 110 -2.20 94
TR00202 58.21 64.28 4694 41.63 3.6 60 0.53 89 0.55 89 -2.24 95
NR00105 31.89 39.77 2715 31.26 1.6 102 0.42 96 0.44 97 -2.56 96
NR00206 62.43 68.3 3193 27.38 1.7 100 0.37 103 0.40 104 -2.59 97
NR00205 11.4 14.67· 5096 24.35 1.8 95 0.25 109 0.29 109 -3.03 98
NR00206 68.3 72.85 4092 27.20 1.5 108 0.26 108 0.29 108 -3.31 99
MR00223 0 6.3 4015 36.96 2.2 83 0.38 101 0.40 102 -3.37 100
NR00205 70.77 82.05 4187 69.00 3.3 62 0.54 87 0.55 88 -3.58 101
NR00206 46.84 58.17 4114 68.10 3.2 63 0.53 88 0.54 91 -3.67 102
MR00177 18.12 22.51 7495 48.07 4.6 47 0.42 95 0.43 99 -3.94 103
NR00208 59.42 63.69 6011 37.50 1.9 93 0.21 111 0.24 112 -4.97 104
NR00107 34.86 61.64 2665 104.27 2.1 86 0.54 86 0.54 90 -5.39 105
NR00208 48.63 54.91 6260 57.44 2.9 71 0.31 106 0.33 106 -6.18 106
NR00108 3.61 39.85 2602 137.77 2.1 87 0.54 82 0.55 86 -6.87 107
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Table 83.1 (continued)
Road Start End AADT E N Rank(N) R Rank(R) M Rank(m) PAR Rank(PAR)
MR00200 3.64 11.34 7465 83.98 4.4 49 0.40 98 0.41 101 -7.12 108
NR00208 8.27 16.78 5961 74.11 2.7 74 0.31 107 0.32 107 -8.03 109
NR00104 27.78 54.24 3609 139.52 2.3 82 0.43 93 0.44 98 -10.95 110
NR00207 43.29 52.07 7415 95.12 2.6 76 0.24 110 0.25 111 -11.94 111
NR00105 39.77 81.64 2617 160.09 1.6 104 0.42 94 0.43 100 -12.78 112
NR00208 34.32 46.62 6074 109.15 1.9 94 0.21 112 0.22 113 -14.55 113
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