
Resource Management
in lP Networks

AbdoulRassaki Wahabi

Thesis presented in partial fulfilment
of the requirements for the degree of

Master of Science
at The University of Stellenbosch

Supervisor: Prof. A. E. Krzesinski

December 2001

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own

original work and has not previously in its entirety or in part been submitted at any

university for a degree.

III

Stellenbosch University http://scholar.sun.ac.za

Abstract

lP networks offer scalability and flexibility for rapid deployment of value added lP

services. However, with the increased demand and explosive growth of the Internet,

carriers require a network infrastructure that is dependable, predictable, and offers

consistent network performance.

This thesis examines the functionality, performance and implementation aspects of

the MPLS mechanisms to minimize the expected packet delay in MPLS networks.

Optimal path selection and the assignment of bandwidth to those paths for minimizing

the average packet delay are investigated.

We present an efficient flow deviation algorithm (EFDA) which assigns a small amount

of flow from a set of routes connecting each OD pair to the shortest path connecting

the OD pair in the network. The flow is assigned in such a way that the network

average packet delay is minimized. Bellman's algorithm is used to find the shortest

routes between all OD pairs. The thesis studies the problem of determining the routes

between an OD pair and assigning capacities to those routes.

The EFDA algorithm iteratively determines the global minimum of the objective func-

tion. We also use the optimal flows to compute the optimal link capacities in both single

and multirate networks. The algorithm has been applied to several examples and to

different models of networks. The results are used to evaluate the performance of the

EFDA algorithm and compare the optimal solutions obtained with different starting

topologies and different techniques. They all fall within a close cost-performance range.

They are all within the same range from the optimal solution as well.

v

Stellenbosch University http://scholar.sun.ac.za

Opsomming

lP-netwerke voorsien die skaleerbaarheid en buigsaamheid vir die vinnige ontplooing

van toegevoegde-waarde lP-dienste. Die vergrote aanvraag en eksplosiewe uitbreiding

van die Internet benodig betroubare, voorspelbare en bestendige netwerkprestasie.

Hierdie tesis ondersoek die funksionaliteit, prestasie en implementering van die MPLS(multi-

protokoletiketskakel)-meganismes om die verwagte pakketvertraging te minimeer.

Ons bespreek 'n doeltreffende algoritme vir vloei-afwyking (EFDA) wat 'n klein hoe-

veelheid vloei toewys uit die versameling van roetes wat elke OT(oorsprong-teiken)-

paar verbind aan die kortste pad wat die OT-paar koppel. Die vloei word toegewys

sodanig dat die netwerk se gemiddelde pakketvertraging geminimeer word. Bellman se

algoritme word gebruik om die kortste roetes tussen alle OT-pare te bepaal. Die tesis

bespreek die probleem van die bepaling van roetes tussen 'n OT-paar en die toewysing

van kapasiteite aan sulke roetes.

Die EFDA-algoritme bepaal die globale minimum iteratief. Ons gebruik ook optimale

vloeie vir die berekening van die optimale skakelkapasiteite in beide enkel- en mul-

tikoers netwerke. Die algoritme is toegepas op verskeie voorbeelde en op verskillende

netwerkmodelle. Die skakelkapasiteite word aangewend om die prestasie van die EFDA-

algoritme te evalueer en dit te vergelyk met die optimale oplossings verkry met ver-

skillende aanvangstopologieë en tegnieke. Die resultate val binne klein koste-prestasie

perke wat ook na aan die optimale oplossing lê.

VIl

Stellenbosch University http://scholar.sun.ac.za

IX

Acknowledgements

Many people have contributed in some or other way to getting this thesis finished. To

these people lowe an enormous debt of gratitude.

• Professor Tony Krzesinski for his academic example, wisdom, and continued sup-

port for this work.

• My parents (mom and dad) for their multi-faceted support which allowed me to

come to South Africa.

• Reg Dodds, for his timely assistance and being a friend.

• The rest of the Computer Science Department academic staff, students and col-

leagues for their collaboration and friendship.

• The friends I have made over the past few years at Stellenbosch who have all

contributed in numerous and immeasurable ways.

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract

Opsomming

Acknow ledgements

1 Introduction

1.1 Network Resource Management

2 MPLS Networks

2.1 Feature Overview

2.2 MPLS components

2.3 Label Switching Features

3 Optimal Path Discovery in MPLS Networks

3.1 Path Selection Information and Algorithms

3.1.1 Metrics

3.2 Path selection .

3.2.1 Path Computation Algorithm.

3.2.2 Distributed Bellman Algorithm

4 The Flow Deviation Algorithm: Finding optimal link flows in lP net-
works

Xl

v

vii

ix

1

I

5

5

7

8

13

13

13

14

15

16

19

Stellenbosch University http://scholar.sun.ac.za

4.4.2

4.4.3

Service integration

19

21

25

31

31

32

33

37

37

39

43

44

44

44

45

47
47

48

53

55

55

56

xii CONTENTS

4.1 General approach

4.2 Characterization of optimal routing

4.3 An Efficient Flow Deviation Algorithm.

4.4 Multiservice network dimensioning

4.4.1 Analytic Techniques

A Larger Network

5 Optimal Link Capacities in lP Networks

5.1 Capacity assignment problem

5.2 The algorithm .

5.3 Multiservice Blocking Model.

5.4 Network model.

5.5 Implementation.

5.5.1 Blocking probabilities

5.5.2 Service Separation

6 EFDA: Numerical Results

6.1 Fifty-Node Test Network

6.2 A Hundred-Node Test Network

7 Conclusions

A The Blocking Probability

A.1

A.2

The Erlang-B Formula

Multi service Blocking Probability

Stellenbosch University http://scholar.sun.ac.za

Class-dependent factor and slots per service

26

30

33

34

34

41

41

42

45

46

List of Tables

Link flows in the FDA4.1

4.2 Link flows in EFDA .

4.3 Distribution of flows per service class

4.4 Traffic intensity matrix

4.5

5.1

5.2

5.3

The NSF network: traffic intensity matrix

Load factor and slots per service . . .

Optimal link flows and link capacities

5.4 The link blocking probabilities per service class

5.5 Optimal link flows and capacities per service class

XUI

Stellenbosch University http://scholar.sun.ac.za

XIV LIST OF TABLES

Stellenbosch University http://scholar.sun.ac.za

6.7 Hundred-Node network delay 52

List of Figures

4.1 Minimum delay routing problem 26

4.2 The optimal link flows per class 35

4.3 The optimal link flows per class . 35

4.4 Link utilisation per class 36

4.5 Link utilisation per class . 36

5.1 The Core NSF ATM network 41

5.2 Capacity assignment algorithm 42

5.3 Convergence of the algorithm 43

6.1 MPLS-OMP network topology 49

6.2 The link load ... 50

6.3 The network delay 50

6.4 The link capacities 51

6.5 Hundred-Node Network 51

6.6 The optimal capacities 52

xv

Stellenbosch University http://scholar.sun.ac.za

1

Chapter 1

Introduction

This introductory chapter begins with an overview of resource management in lP net-

works. The role of optimization of MPLS networks is introduced. Finally, a brief

discussion introduces each of the six major parts of this thesis.

1.1 Network Resource Management

In the data communications and telecommunications industries today, there is a broad

consensus that the era of circuit-switched networks is drawing to a close. Circuit-

switched networks will be gradually replaced with packet-switched networks offering

better scalability along with enhanced handing of data traffic. Today's circuit-switching

applications - for example, real-time voice - will be mapped to virtual calls across the

packet-switched network.

However, this broad consensus is over a decade old, and there have been many an-

nouncements of new technologies that promise to change the way data are forwarded,

or switched in the Internet or other networks. First Integrated Services Digital Net-

work (ISDN), then Asynchronous Transfer Mode (ATM), and most recently Internet

Protocol (lP) have been viewed as traffic technologies that would unite all of the di-

verse forms of communications once. Many of these technologies are based on a set of

common ideas. They all use a label swapping technique for forwarding data.

MPLS - Multiprotocol Label Switching is an approach proposed by the Internet Engi-

neering Task Force (IETF) which promises to playa fundamental role in uniting lP and

ATM technology. It is to be the networking technology to deliver traffic engineering

Stellenbosch University http://scholar.sun.ac.za

2 Acknowledgements

capability and QoS performance for carrier networks.

In an MPLS network, incoming packets are assigned a label by a Label Edge Router

(LER). Packets are forwarded along a Label Switched Path (LSP) where each Label

Switched Router (LSR) makes forwarding decisions based on the contents of the label.

At each hop, the LSR removes the existing label and applies a new label which tells

the next hop router how to forward the packet.

MPLS can deliver control and performance to lP data packets through the use of Label

Switched Paths (LSPs), in particular, with the use of explicitly routed LSPs (ER- LSPs).

One of the most significant application of MPLS is in traffic engineering which refers

to the control of traffic flow in a network. Conventional lP traffic is dynamic and

hard to predict because the flows are constantly changing and therefore do not nec-

essarily match the network topology that has been put in place. Currently, lP traffic

within routed networks is forwarded according to layer 3 shortest or lowest cost path

algorithms, regardless of downstream conditions. These algorithms do not account for

activities within, or the current state of the network. Traffic engineering via MPLS

allows the traffic to be mapped efficiently to current network topologies. By setting up

paths through a network to accommodate traffic, MPLS offers control over traffic that

traditional routing algorithms cannot. The promise of MPLS is that it will directly

integrate connections and predictability into lP networks, thereby simplifying network

design and management.

The essential concept behind network resource management is to allocate network

resources in such a way as to separate traffic flows according to service characteristics.

In the design process, satisfactory resource utilization and good performance can be dif-

ficult to achieve simultaneously due to the multiservice environment and both variabil-

ity and uncertainty of the traffics offered to the network. To improve the performance,

some management actions should be introduced into the network with the aim of dy-

namically adapting the resource assignment to the current traffic levels. To this end,

two main aspects of network management are addressed in this thesis. The first con-

cerns traffic flow assignment in MPLS networks to achieve high performance. Several

routing algorithms are compared and routing schemes maximizing network throughput

are considered. The second considers the dynamic adaptation of link capacities.

The rest of this thesis is structured as follows. In chapter 2, we present an introduction

to the principles of MPLS, and we elaborate a view of its benefits and applications.

Stellenbosch University http://scholar.sun.ac.za

1.1 Network Resource Management 3

Chapter 3 focuses on the general design choices and mechanisms we rely on to support

QOS requests. This includes details on the path selection metries, link state update

extensions, and the path selection algorithm itself.

Chapter 4 examines the Flow Deviation Algorithm designed to minimize average net-

work delay. The routing algorithms used here are essentially static flow assignment

strategies that distribute the flows in the network to minimize the average packet de-

lay.

In Chapter 5, we compute the optimal link capacities by considering the same crite-

rion used in the flow assignment problem in combination with a blocking model for

describing call admission controls in multiservice broadband networks. Traffic of a

number of different types requiring different bandwidth allocations is offered to each

origin-destination pair. The network manager must implement a call admission control

scheme to minimize the packet delay and maximize the throughput earned from the

network while maintaining agreed quality of service constraints.

Chapter 6 presents some experimental results. The EFDA algorithm has been applied

to various test networks. We use the optimal flows to compute the optimal link capaci-

ties and compare them with optimal capacities as computed by another approach. We

examine the strengths and weaknesses of each and consider the environments in which

one approach or the other might be most suitable.

Finally, an appendix provides additional material of interest, namely an equation to

compute the Multiservice blocking probability.

Stellenbosch University http://scholar.sun.ac.za

4 Acknowledgements

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

MPLS Networks

This chapter presents an overview of Multiprotocol Label Switching (MPLS), high-

lighting MPLS in ATM networks and packet-based networks. It concentrates on the

fundamentals of MPLS network design that apply to all networks, including those

mechanisms supporting traffic engineering.

2.1 Feature Overview

As a packet of a connectionless network layer protocol travels from one router to the

next, each router makes an independent forwarding decision for that packet. That is,

each router analyzes the packet's header, and each router runs a network layer routing

algorithm. Each router independently chooses a next hop for the packet, based on its

analysis of the packet's header and the results of running the routing algorithm.

The main concept of MPLS is to introduce a label into each packet. Each MPLS packet

has a header. The header is between the lP header and the link layer header. Packet

headers contain considerably more information than is needed simply to choose the

next hop. Choosing the next hop can therefore be thought of as the composition of

two functions. The first function separates the entire set of possible packets into a set

of Forwarding Equivalence Classes (FECs). The second function maps each FEC to

a next hop. All packets which belong to a particular FEC and which travel from a

particular node will follow the same path or if certain kinds of multi-path routing are

in use, they will all follow one of a set of paths associated with the FEC.

In conventional lP forwarding, a particular router will typically consider two packets

5

Stellenbosch University http://scholar.sun.ac.za

6 Acknowledgements

to be in the same FEC if there is some address prefix X in that router's routing tables

such that X is the longest match for each packet's destination address. As the packet

traverses the network, each hop re-examines the packet header and assigns it to a FEC.

In MPLS, the assignment of a particular packet to a particular FEC is done once, as

the packet enters the network. The FEC to which the packet is assigned is encoded

as a short fixed length value known as a label. When a packet is forwarded to its next

hop, the label is sent along with it; that is, the packets are labeled before they are

forwarded.

At subsequent hops, there is no further analysis of the packet's network layer header.

Rather, the label is used as an index into a table which specifies the next hop, and a
- --new label. The old label is replaced with the new label, and the packet is forwarded to

its next hop.

In the MPLS forwarding process, once a packet is assigned to a FEC, no further header

analysis is done by subsequent routers; all forwarding is driven by the labels. This has

a number of advantages over conventional network layer forwarding.

• MPLS forwarding can be done by routers which are capable of doing label lookup

and replacement, but are either not capable of analyzing the network layer head-

ers, or are not capable of analyzing the network layer headers at adequate speed.

• Since a packet is assigned to a FEC when it enters the network, the ingress router

may use, in determining the assignment, any information it has about the packet,

even if that information cannot be collected from the network layer header. For

example, packets arriving on different ports may be assigned to different FECs.

Conventional forwarding, on the other hand, can only consider information which

travels with the packet in the packet header.

• A packet that enters the network at a particular router can be labeled differently

than the same packet entering the network at a different router, and as a result

forwarding decisions that depend on the ingress router can be easily made. This

cannot be done with conventional forwarding, since the identity of a packet's

ingress router does not travel with the packet.

• The considerations that determine how a packet is assigned to a FEC can become

complicated, without any impact on the routers that forward labeled packets.

• Sometimes it is desirable to force a packet to follow a particular route which

Stellenbosch University http://scholar.sun.ac.za

2.2 MPLS components 7

is explicitly chosen at or before the time the packet enters the network, rather

than being chosen by the normal dynamic routing algorithm as the packet travels

through the network. This may be done as a matter of policy or to support

traffic engineering. In conventional forwarding, this requires the packet to carry

an encoding of its route. In MPLS, a label can be used to represent the route, so

that the identity of the explicit route need not carried with the packet.

Some routers analyze a packet's network layer header not to choose the packet's next

hop, but also to determine a packet's precedence or class of service. MPLS allows but

does not require the precedence or class of service to be fully or partially inferred from

the label. In this case, one may say that the label represents the combination of a FEC

and a precedence or class of service.

MPLS stands for Multiprotocol Label Switching, Multiprotocol because its techniques

are applicable to any network layer protocol. In this thesis, however we focus on the

use of lP as the network layer protocol. A router which supports MPLS is know as

Label Switching Router, or LSR and a specific path through an MPLS network is a

Label Switched Path, or LSP.

2.2 MPLS components

In this section, we introduce some of the basic concepts of MPLS and describe the

general approach to be used.

The Internet Draft "Multiprotocol Label Switching Architecture" [30] defines a label

as a short, fixed length, locally significant identifier which is used to identify a FEC. A

label which is put on a particular packet represents the Forwarding Equivalence Class

to which that packet is assigned.

A LSP is a specific path through an MPLS network. A LSP is supplied using a Label

Distribution Protocol (LDP) such as Resource Reservation Protocol- Traffic Engineer-

ing (RSVP-TE) or Constaint-based Routing (CR-LDP). Either of these protocols will

establish a path through an MPLS network and will reserve the necessary resources to

meet pre-defined service requirements for the data path.

LSPs must be contrasted with traffic trunks. A traffic trunk is an aggregation of

traffic flows of the same class which are placed inside a LSP. It is important, however,

Stellenbosch University http://scholar.sun.ac.za

8 Acknowledgements

to emphasize that there is a fundamental distinction between a traffic trunk and the

path, and indeed the LSP, through which it traverses. The path through which a trunk

traverses can be changed. In this respect, traffic trunks are similar to virtual circuits

in ATM and Frame Relay networks.

A Label Distribution Protocol is a major part of MPLS and is a specification which lets

a label switched router distribute labels to its LDP peers. When a LSR assigns a label

to a forwarding equivalence class (FEC) it needs to let its relevant peers know of this

label and its meaning and a LDP is used for this purpose. Since a set of labels from

the ingress LSP to the egress LSR in an MPLS domain defines a Label Switched Path

and since labels are mappings of network layer routing to the data link layer switched

paths, LDP helps in establishing a LSP by using a set of procedures to distribute the

labels among the LSR peers.

2.3 Label Switching Features

MPLS in conjunction with other standard technologies, offers many features:

The Interior Gateway Protocol (IGP) such as OSPF or IS-IS, is used to defined commu-

nication and the binding/mapping between FEC and next hop address. MPLS learns

routing information from IGP (i.e., OSPF, IS-IS).

MPLS, in combination with the Border Gateway Protocol (BGP) provides support for

highly scalable lP networks. IGP is used within Autonomous Systems (ASs), while

Exterior Gateway Protocol (EGPs such as BGP) are used to interconnect ASs. The

scalability feature of IGP makes it the best over the EGP and IS-IS is more scalable

than OSPF. That is, a single OSPF area can support 150 or more routers and a single

IS-IS area can support 500 or more routers.

It is best to first understand the benefits and disadvantages of each protocol, then use

the network requirements to choose the IGP which best suites the needs. MPLS brings

many other benefits to lP based networks. Some of the key benefits are discussed

below.

Quality of Service (QOS)

lP QOS refers to the performance of an lP packet flow through one or more networks.

The aim is to deliver end-ta-end QOS to user traffic. lP QOS is characterized by a

Stellenbosch University http://scholar.sun.ac.za

2.3 Label Switching Features 9

small set of metries, including the meausures of the ability to

• Guarantee a fixed amount of bandwidth for specific applications (such as au-

dio/video conference applications).

• Control delay and delay variation, throughput, and packet loss rate.

• Provide specific, guaranteed and quantifiable Service Level Agreements (SLAs).

MPLS supports the same QOS as lP. But since connectionless networks cannot pro-

vide hard quality of service, it provides relative class-of-service transport only, which

is unacceptable for services like voice and video which require a network with high

predictability. MPLS adds a connection-oriented, or circuit-like behavior to native or

traditional lP, in essence making it connection-oriented which enables hard QOS to be

delivered.

Constraint-based and Congestion-aware Routing

Constraint-based and Congestion-aware routing are terms used to describe networks

that are aware of their current utilization, existing capacity and provisioned services at

all times. Traditional lP routing protocols, including OSPF, IS-IS and BGP, are not

congestion-aware, and have to be modified to enable such awareness.

MPLS will modify traditional lP routing protocols to became constraint-based: once

connections have been configured either by dynamic signaling or by static provisioning,

the Layer 2 and Layer 3 network becomes aware of the amount of bandwidth being

consumed, as well as the parts of the network being used to route the connections. This

information can then be propagated to the lP routers, creating a congestion-aware view

of the network and its current topology. All future network requests can be directed to

their destination by not only the shortest path first (as defined OSPF), but by a path

that will guarantee the bandwidth requirements of the lP application or service. Since

CBR considers more than the topology of the network when computing routes, it may

find a longer but lightly loaded path, which is better than using a heavily loaded path

that may be shorter. Network traffic is distributed more evenly.

Traffic Engineering (TE)

Traffic Engineering refers to the process of selecting the paths chosen by data traffic

in order to balance the traffic load on the various links, routers, and switches in the

network. Traffic engineering is most important in networks where multiple parallel or

Stellenbosch University http://scholar.sun.ac.za

10 Acknowledgements

alternate paths are available.

The goal of TE is to compute a path from one node to another, such that the path

does not violate the constraints (e.g. bandwidth requirements) and is optimal with

respect to some metric. Once the path is computed, TE is responsible for establishing

and maintaining forwarding state along such a path.

MPLS is strategically significant for Traffic Engineering because it can potentially pro-

vide most of the functionality available from the overlay model, in an integrated man-

ner, and at a lower cost than the currently competing alternatives.

In MPLS networks, the traffic engineering building block is a Label Switched Path

which can be manipulated and managed by the network operators to direct the traffic.

The route for a given LSP can be established in two ways, a hop-by-hop LSP, or an

explicitly routed (ER-LSP). When setting up a hop-by-hop LSP, each LSR indepen-

dently chooses the next hop for each FEC. This is the usual mode today in existing lP

networks.

In an explicitly routed LSP, each LSP does not independently choose the next hop;

rather, a single LSR, generally the LSP ingress or the LSP egress, specifies several (or

all) of the LSRs in the LSP. If a single LSR specifies the entire LSP, the LSP is strictly

explicitly routed. If a single LSR specifies only part of the LSP, the LSP is loosely

explicitly routed.

Loose ER-LSPs allow some flexibility for routing and rerouting options, and minimizes

configuration overhead. In addition, a loose segment can be adaptive by moving to a

new route according to the changes incurred in the Layer 3 routing table. However, this

kind of route change is not always desirable due to the stability and control requirements

of the network operators. In this case, the loose segment provides a mechanism, such

that an alternative route will only be tried when failure happens.

The sequence of LSRs followed by an explicitly routed LSP may be chosen by con-

figuration, or may be selected dynamically by a single node (for example, the egress

node may make use of the topological information learned from a link state database

in order to compute the entire path for the tree ending at that egress node).

Explicit routing may be useful for a number of purposes, such as policy routing or

traffic engineering. In MPLS, the explicit route needs to be specified at the time that

labels are assigned, but the explicit route does not have to be specified with each lP

packet. This makes MPLS explicit routing much more efficient than the alternative of

Stellenbosch University http://scholar.sun.ac.za

2.3 Label Switching Features 11

lP source routing.

The attractiveness of MPLS for Traffic Engineering can be attributed to the following

factors:

1. Explicit Label Switched paths which are not constrained by the destination based

forwarding paradigm can be easily created through manual action or through

automated action by the underlying protocols.

2. LSPs can potentially be efficiently maintained.

3. Traffic trunks can be instantiated and mapped onto LSPs. A set of attributes can

be associated with traffic trunks which modulate their behavioural characteristics.

4. MPLS allows for both traffic aggregation and disaggregation whereas classical

destination-only-based lP forwarding permits aggregation only.

5. It is relatively easy to integrate a constraint-based routing framework with MPLS.

6. A good implementation of MPLS can offer significantly lower overhead than com-

peting alternatives for Traffic Engineering.

Additionally, through explicit label switched paths, MPLS permits a quasi- circuit

switching capability to be imposed on the current Internet routing model.

Stellenbosch University http://scholar.sun.ac.za

12 Acknowledgements

Stellenbosch University http://scholar.sun.ac.za

Optimal Path Discovery
MPLS Networks

•In

Chapter 3

Path discovery refers to the method used for selecting the LSP for a particular FEe in

MPLS network. As mentioned in the previous chapter, the MPLS protocol architecture

supports two options for route establishment: hop by hop routing and explicit routing.

This chapter explains the optimal path selection process which selects the best paths

among the set of feasible paths discovered in the path computation.

3.1 Path Selection Information and Algorithms

This section reviews the basic building blocks of QOS path selection, namely the metries

on which the routing algorithm operates, and the path selection algorithm itself.

3.1.1 Metrics

The process of selecting a path that can satisfy the QOS requirements of a flow relies

on both the knowledge of the flow's requirements and characteristics, and information

about the availability of resources in the network. In addition, for purposes of efficiency,

it is also important for the algorithm to account for the amount of resources the network

has to allocate to support a new flow. In general, the network prefers to select the least

cost path among all paths suitable for a new flow, and it may decide not to accept a

new flow for which a feasible path exists, if the cost of the path is too high. Accounting

13

Stellenbosch University http://scholar.sun.ac.za

14 CHAPTER 3. THE FLOW DEVIATION ALGORITHM

for these aspects involves several metries on which the path selection process is based.

They include:

• Link available bandwidth: We assume that most QOS requirements are deriv-

able from a rate-related quantity termed bandwidth. We further assume that

associated with each link is a maximal bandwidth value, namely the physical

bandwidth or some fraction thereof that has been set aside for QOS flows. If a

link is to accept a new flow with given bandwidth requirements, then at least

that much bandwidth must be available on the link, and the relevant link metric

is, therefore, the amount of available bandwidth.

• Link propagation delay: This quantity identifies high latency links which may be

unsuitable for real-time requests. Link propagation delay can be used to eliminate

specific links when selecting a path for a delay sensitive request.

• Hop-count: This quantity is a measure of the path cost to the network. A path

with a smaller number of hops is typically preferable, since it consumes fewer

network resources. As a result, the path selection algorithm will attempt to find

the minimum hop path capable of satisfying the requirements of a given request.

3.2 Path selection

There are two major aspects to computing paths for QOS requests. The first is the

path selection algorithm itself which determines the metries and criteria that are used.

The second aspect comes into play when the algorithm is invoked.

The optimization criteria used by the path selection are reflected in the costs associated

with each interface in the topology of the network and how those costs are accounted

for in the algorithm itself. The cost of a path is a function of both its hop count and

the amount of available bandwidth. As a result, each interface has associated with it a

metric, which corresponds to the amount of bandwidth that remains available on this

interface. This metric is combined with hop count information to provide a cost value,

which is used to select a path with the minimum number of hops that can support

the request bandwidth. When several such paths are available, the preference is for

the path whose available bandwidth (i.e., the smallest value on any of the links in the

path) is maximal. The rationale for the above rule is the following: we focus on feasible

paths that consume a minimal amount of network resources; and the rule for selecting

Stellenbosch University http://scholar.sun.ac.za

3.2 Path selection 15

among these paths is meant to balance load as well as maximize the possibility that

the required bandwidth is indeed available.

3.2.1 Path Computation Algorithm

Many practical path selection algorithms, are based on the notion of a shortest path

between two nodes. Here each communication link is assigned a positive number called

its length. A link can have a different length in each direction. A path (a sequence

of links) between two nodes has a length equal to the sum of the lengths of its links.

A shortest path routing algorithm routes each packet along a minimum length path

between the origin and destination nodes of the packet. The simplest possibility is

for each link to have unit length, in which case a shortest path is simply a path with

minimum number of links (also called a min-hop path). More generally, the length of a

link may depend on its bandwidth and its projected traffic load. The idea here is that

a shortest path should contain relatively few and uncongested links, and therefore be

desirable for routing.

A more sophisticated alternative is to allow the length of each link to change over time

and to depend on the current congestion level of the link. Then a shortest path may

adapt to temporary overloads and route packets around points of congestion. This

idea is simple but contains some drawbacks, because by making link lengths dependent

on congestion, we introduce a feedback effect between the routing algorithm and the

traffic pattern within the network.

We implemented three standard algorithms for the shortest path problem: the Bellman

algorithm, the Dijkstra algorithm, and the Floyd-Warshall algorithm. The first two

algorithms find shortest paths from all nodes to a given destination node, and the

third algorithm finds the shortest paths from all nodes to all other nodes.

An important distributed algorithm for calculating shortest paths to a given destina-

tion, known as the Bellman method has the form

(1)

where Di is the estimated shortest distance of node i to the destination and dij is the

length of the link (i,j). Each node i executes this iteration with the minimum taken

over all of its neighbours j. Thus dij + Dj is the shortest distance from node i to

the destination subject to the constraint of going through j, and minj(dij + Dj) is the

shortest distance from i to the destination going through the best neighbour. We will

Stellenbosch University http://scholar.sun.ac.za

Di:= min (di + D)
jEN(i) J J

ill (2)

16 CHAPTER 3. THE FLOW DEVIATION ALGORITHM

proceed in the next section with a more detail description of the distributed Bellman's

algorithm and the data structure used to record routing information. In practice, the

Bellman iteration (3.1) can be implemented as an iterative process, that is, as a se-

quence of communications of the current value of Dj of nodes j to all their neighbors,

followed by execution of the shortest distance estimate updates Di := min, (dij + Dj).

A remarkable fact is that this process is very flexible with respect to the choice of initial

estimates Dj and the ordering of communications and updates; it works correctly, find-

ing the shortest distances in a finite number of steps, for an essentially arbitrary choice

of initial conditions and for an arbitrary order of communications and updates. This

allows an asynchronous, real-time distributed implementation of the Bellman method,

which can tolerate changes of the link lengths as the algorithm executes.

3.2.2 Distributed Bellman Algorithm

Consider a routing algorithm that routes each packet along a shortest path from the

packet's origin to its destination, and suppose that the link length may change either

due to link failures and repairs, or due to changing traffic conditions in the network. It

is therefore necessary to update shortest paths in response to these changes.

The idea is to compute the shortest distances from every node to every destination by

means of a distributed version of the Bellman algorithm. An interesting aspect of this

algorithm is that it requires very little information to be stored at the network nodes.

Indeed, a node need not know the detailed network topology. It suffices for a node to

know the length of its outgoing links and the identity of every destination.

We assume that each cycle has positive length. We also assume that the network

always stays strongly connected, and that if (i, j) is a link, then (j, i) is also a link.

We predict a pratical situation where the lengths dij can change with time. In the

analysis, however, it is assumed that the lengts dij are fixed while the initial conditions

for the algorithm are allowed to be essentially arbitrary. These assumptions provide

an adequate model for a situation where the link lengths stay fixed after some time

to following a number of changes that occurred before to. We focus on the shortest

distance Di from each node i to a destination node taken for concreteness to be node 1.

Under our assumptions, these distances are the unique solution of Bellman's equation,

Stellenbosch University http://scholar.sun.ac.za

3.2 Path selection 17

where N(i) denotes the set of current neighbors of node i.

The algorithm is well suited for distributed computation since the Bellman iteration

(3.2) can be executed at each node i in parallel with every other node. The algorithm

operates indefinitely by executing from time to time at each node i i- 1 the iteration

(3.2) using the last estimates Dj received from the neighbors j E N(i), and the latest

status and lengths of the outgoing links from i. The algorithm also requires that each

node i transmit from time to time its latest estimate Di to all its neighbors. However,

there is no need for either the iterations or the message transmissions to be synchronized

at all nodes. Furthermore, no assumptions are made on the initial values Dj,j E N(i)

available at each node i. The only requirement is that a node i will eventually execute

the Bellman iteration (3.2) and will eventually transmit the result to the neighbours.

Thus, a totally asynchronous mode of operation is envisioned.

It turns out that the algorithm is still valid when executed asynchronously as described

above. If a number of link length changes occur up to some time to, and no other

changes occur subsequently, then within finite time from to, the asynchronous algorithm

finds the correct shortest distance of every node i. The shortest distance estimates

available at time to can be arbitrary numbers, so it is not necessary to reinitialize the

algorithm after each link status or link length change.

We now state formally the distributed, asynchronous Bellman algorithm and proceed

to establish its validity. At each time t, a node iEl has available:

D;(t) = Estimate of the shortest distance of each neighbor node j E N(i) which was

last communicated to node i

Di(t) = Estimate of the shortest distance of iwhich was last computed at node i ac-

cording to the Bellman iteration

The distance estimates for the destination node 1 are defined to be zero, so

for all t 2:: to

Di = 0, for all t 2:: to, and i with 1 E N(i)

Each node i also has available the link lengths dij, for all j E N(i), which are assumed

constant after the initial time to. We assume that the distance estimates do not change

Stellenbosch University http://scholar.sun.ac.za

Di(t):= min (dij + Dj(t))jEN(i)

18 CHAPTER 3. THE FLOW DEVIATION ALGORITHM

except at same times to, tI, t2,' .. , with tm+l > tm, for all m, and tm -+ CX) as m -+ CX)

when at each processor i i- 1, one of three events happens:

1. Node i updates Di(t) according to

and leaves the estimates D~(t), JEN (i), unchanged.

2. Node i receives from one or more neighbors j E N(i) the value of Dj which was

computed at node j at some earlier time, updates the estimate Dj, and leaves all

other estimates unchanged.

3. Node i is idle, in which case all estimates available at i are left unchanged.

Stellenbosch University http://scholar.sun.ac.za

19

Chapter 4

The Flow Deviation Algorithm:
Finding optimal link flows in lP
networks

In this chapter we discuss the Flow Deviation Algorithm (FDA) designed to minimize

the network average time delay. The emphasis of the algorithm is on two aspects

of the routing problem. The first has to do with selecting routes to achieve optimal

performance. The second aspect of the problem is how the flow requirements are

distributed among the links of the network in order to minimize the network delay.

4.1 General approach

Consider a physical network consisting of a set of N nodes denoted by N and a set

of L physical links denoted by L. The traffic requirements are specified by an N x N

matrix R = rij, called the requirement matrix, whose entries are non-negative. Let

Ci,j denote the capacity in bandwidth units of the physical link from an origin node

i to a destination node j. The set of routes connecting O-D pair (0, d) is denoted by

Ro,d. Each route consists of a non-cycling sequence of physical links.

Messages are offered to O-D pair (i,j) according to a Poisson process with mean rate

Aij. The average message length from node i to node j is exponentially distributed

with mean 1/ /-Lij. Let Pij = Aij / /-Lij denote the intensity of the offered traffic stream.

Stellenbosch University http://scholar.sun.ac.za

1 (Fij/ /Lij)
T = -:L C _ F / ..+ (Fij//Lij)/LijPij

"((ij) tJ tJ /LtJ
(4)

20 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

Let t- denote the flow on route r. The total flow Fij on link (i,j) is denoted by

Fij = :L fr
rEAij

where Aij is the set of routes that use link (i, j).

We are interested in the numerical solution of the following network flow problem:

Minimize: The average end to end network delay.

(1)

where"(= :L Aij is the total message arrival rate from external sources (bits/sec) and
(i,j)

Tij is the average delay experienced by a message on link (i,j) (sec)

subject to:

0< r: < C..- tJ - tJ Vi,j EN (2)

With reference to equation (4.1) Tij is the sum of two components:

where, assuming that the link is modelled as an M/M/1 queue,

is the transmission and queue delay, and Ti; = Pij is the propagation delay. If the

propagation delay is negligible, then the average network delay from Eq.(4.1) is:

T=:L;j(WC.
1 P.)

(
") I tJ tJ - tJt,J

(3)

If the propagation delay is not negligible, then :

Stellenbosch University http://scholar.sun.ac.za

4.2 Characterization of optimal routing 21

We choose to write this expression in terms of average data rate by defining the flow

on link (i, j) to be Fij := Fij / JLij. Equation (4.4) becomes:

1 '" (Fij 1)T = - L..,; G .. _ F-. + FijPij
I (0 0) tJ tJt,J

(5)

where

1
Pij = JLijPij

An expression of the form

L Dij(Fij)
(i,j)

(6)

where each function Dij is monotonically increasing, is often appropriate as a cost

function for optimization. This assumes that one achieves reasonably good routing by

optimizing the average levels of link traffic without paying attention to other aspects of

the traffic statistics. Thus, the cost function L Dij(Fij) is insensitive to undesirable
(i,j)

behavior associated with high variance and with correlations of packet interarrival times

and transmission times. A frequently used formula is

Fij 1
Dij(Fij) = C _ F- 0 + FijPij'

ZJ 1,J
(7)

where P{j is the propagation delay.

Another cost function with similar qualitative properties is given by

{ F-}max zu
(i,j) Gij

(8)

(maximum link utilization). A study [13] has shown that it typically makes little

difference whether the cost function of Eq.(4.7) or that of Eq.(4.8) is used for routing

optimization. This indicates that one should employ the cost function that is easiest

to optimize. In what follows we concentrate on cost functions of the form L Dij (Fij).
(i,j)

4.2 Characterization of optimal routing

We now formulate the problem of optimal routing. The main objective in this section is

to show that optimal routing directs traffic along paths which are shortest with respect

to link lengths.

Stellenbosch University http://scholar.sun.ac.za

L Dij(Fij)
(i,j)

where Fij is the total flow (in bits per second) carried by link (i,j) and is given by

(9)

22 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

Recall the form of the cost function

Fij = L xp
PEAij

(10)

where xp is the flow (in bits per second) of path pand Aij is the set of paths that use

link (i,j). For each pair 'W = (i,j) of distinct nodes i and i, there are the constraints

(11)

xp > 0, for all pE Pw (12)

where rw is the traffic offered to the OD pair 'Wand Pw is the set of paths which connect

the OD pair 'W. W is the set of all OD pairs. In terms of the unknown path flow vector,

x = {xp lp E Pw, 'W E W} the optimization problem is written as

Minimize

subject to

for all 'W E W (13)

xp ~ 0, for all pE Pw

In what follows we will characterize the optimal routing in terms of the first derivative

Dij with respect to Fij of the function Dij. We assume that each Dij is a differentiable

function of Fij and is defined on an interval [O,Gij), where Gij is either a positive

number (typically representing the link capacity) or else 00; Dij is convex, continuous,

and has strictly positive and continuous first and second derivatives on [O,Gij), where

the derivatives at ° are defined by taking the limit from the right. Furthermore, Dij (Fij)

-? 00 as Dij (Fij) --+ Gij.

Let x be the vector of path flows xp. Denote by D(x) the cost function of the problem

Eq.(4.13),

Stellenbosch University http://scholar.sun.ac.za

4.2 Characterization of optimal routing 23

D(x) = 2:Dij (L xp)
(2,)) pEA;j

The object of the routing optimization is to find each xp 2': 0 satisfying the conservation

equations, such that D(x) is minimized. One additional constraint is the capacity

constraint Fij S; Gij. This constraint serves as a penalty function on the time delay

to be minimized and is automatically brought into play when Fij approaches Gij. A

configuration x is feasible if it satisfies the constraints (2) and (13).

Let 8D(x)j8xp denote the partial derivative of D with respect to xp. Then

8D(x) = " D'.
8x L.." 2)

P (i,j)Ep

where the first derivatives D~j are evaluated at the total flows corresponding to x. We

regard 8D(x)j8xp as the length of the path p when the length of each link (i,j) is

taken to be the first derivative D~j evaluated at x. In what follows 8D(x)j8xp is called

the first derivative length of path p.

Let x = {xp} be an optimal path flow vector. Then if xp > 0 for some path p of an

OD pair, shifting a small amount of flow lj > 0 from path p to any other path pi of the

same OD pair will increase the cost; otherwise the optimality of x would be violated.

The change in cost from this shift is

and since this change must be nonnegative, we obtain

8D(x) 8D(x)-->--8xpl - 8xp , for all pi E Pw (14)

The condition (4.14) is a necessary condition for optimality of x. It can also be shown

to be sufficient for optimality if the functions Dij are convex.

The implementation of the Flow Deviation Algorithm starts with zero flow on each link

and assigns lengths to the links based on their first derivative of delay with respect to

the flow in the links. Each flow assignment is performed in one step of the FDA. In

Stellenbosch University http://scholar.sun.ac.za

D[a*(x) + (1 - a*)x] = min D[a(x) + (1 - a)x]
aE[O,l]

where o" is the stepsize that minimizes the function D[a*(x) + (1 - a*)x]

(15)

24 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

each step, Bellman's algorithm [3] is used to find the shortest routes between all OD

pairs.

The requirements are assigned to the shortest routes between all OD nodes to yield

an initial global flow, Gflow which is not optimal and in many cases, it is not even

feasible in the sense that it does not satisfy the link capacity constraints. In this case,

the link capacities are increased so that the link flow satisfies the constraints. In each

new iteration, capacities are calculated to ensure that the global flows are feasible. In

each step, we assign link lengths based on the first derivative of delay with respect to

flow, calculate the shortest paths which may be different from paths calculated earlier

and assign the flows to these paths to yield Eflow, the current extremal flow. Gflow

is the previous calculated best flow, and Eflow is the extremal flow calculated in the

current step. We now add a small amount of the new Eflow to improve the old Gflow.

It is obvious that every linear combination of two valid flows is a valid flow. If we have

flow vectors x and x (representing respectively Gflow and Eflow), and some number

a E [0,1], then a (x) + (1 - a)x will also be a valid flow, and for some value of a,

the new flow might be better in terms of delay than the original flow. The value of a

minimizing the average total network delay is found by performing a line search:

The new set of path flows is obtained by

for all pE Pw, w E W (16)

and the process is repeated. The process, in the most general case, goes through two

stages:

1. The capacities are not sufficient to handle the flow and therefore must be adjusted.

2. The flow is redistributed in such a way that the capacities are sufficient.

The delay calculated in stage 1 is not a real delay because the capacities were adjusted.

The delay calculated in stage 2 is real and will decrease at each step of the algorithm.

The algorithm will stop in stage 1 only if it fails to find a feasible solution. In stage 2,

the algorithm will end when the delay stops decreasing.

Stellenbosch University http://scholar.sun.ac.za

4.3 An Efficient Flow Deviation Algorithm 25

A description of the Flow Deviation Algorithm is as follow:

Step 1: Initialize the link lengths.

Step 2: Find the initial set of shortest routes based on these lengths. For each OD

pair, use Bellman's algorithm [3J to find the shortest routes.

Step 3: Assign the initial global flows to the links of the shortest routes.

Step 4: Adjust the link capacities to ensure that the global flows are feasible.

Step 5: Update the link lengths.

Step 6: Find the set of shortest routes.

Step 7: Assign the extremal flow to the links of the shortest routes.

Step 8: Find the value of a in the range 0 ::; a ::; 1such that the flow a(xp) + (1- a)xp

minimizes the total network delay.

Step 9: Compute a new global flow. The new flow is an improvement on the previous

flow when applied to the same link capacities.

Step 10: Adjust the link capacities to ensure that the global flows are feasible.

Step 11: Calculate the average total network delay.

Step 12: Stopping rule. If the delay stops decreasing then halt, else go to step 5.

Consider the small network shown in figure 4.1. There are three nodes and six directed

links. All links have capacities equal to 2. There are two requirements, a (0,1) re-

quirement of magnitude 2 and a (1,2) requirement of magnitude 3. The objective is

to find minimum delay link flows using the FDA. Table 3.1 shows the progress of the

FDA through 46 iterations. Each column shows the optimal link flow and the average

total delay. The FDA computes a minimum value for the cost function although its

convergence rate near the optimum tends to be very slow.

4.3 An Efficient Flow Deviation Algorithm

The optimal routing problem (4.13) can be converted to a problem involving only

positivity constraints by expressing the flows of the minimum first derivative length

(MFDL) paths in terms of other flows, while eliminating the equality constraints

Stellenbosch University http://scholar.sun.ac.za

26 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

Figure 4.1: Minimum delay routing problem

Links It.3 It.5 It.15 It.25 It.35 It. 46
0 1.442 1.465 1.556 1.609 1.632 1.646
1 1.788 1.778 1.722 1.689 1.671 1.657
2 1.230 1.243 1.279 1.296 1.303 1.304
3 1.769 1.756 1.72 1.703 1.696 1.695
4 0 0 0 0 0 0
5 0.558 0.534 0.443 0.393 0.367 0.353

delay 4.070 3.928 3.568 3.46 3.439 3.432

Table 4.1: Link flows in the FDA

in the process. For each OD pair 'W, let Pw be the MFDL path with the respect to the

current length D~j(Fij). For each 'W, xpw (flow of the MFDL path Pw) is substituted in

the cost function D(x) using the equation

Xpw = rw - L xp
pEPw
P¥-Pw

(17)

thereby obtaining a problem of the form

Stellenbosch University http://scholar.sun.ac.za

4.3 An Efficient Flow Deviation Algorithm 27

Minimize ÏJ(x) subject to

Xp 2: 0, for all w E W,p E Pw,p -I- Pw (18)

where x is the vector of all paths flows which are not MFDL paths.

We now calculate the derivatives that will be needed to the problem ofEq.(4.18). Using

Eq.(4.17) and the definition of ÏJ(x), we obtain

8ÏJ(x)
8xp

8D(x) 8D(x)
for all pE Pw,p -I- Pw (19)

for all w E W. In Section 4.2 we saw that 8D(x)j8xp is the first derivative length of

path p, that is,

8D(x) I----a;;-- = L Dij Fij ,
p (i,j)Ep

(20)

Regarding second derivatives, differentiation of the first derivative expressions (4.19)

and (4.20) shows that

L D~j(Fij)
(i,j)ELp

for all w E W, P E Pw (21)

where, Lp is the set of links belonging to either p, or Pw, but not both. The length of

each link is defined as the first derivative of the total delay with respect to the flow in

link and the path lengths are simply the sum of the link lengths in that path.

Lp is formed in this way because each link has a second derivative length and there are

some links that belong to either the nonshortest path p or to the shortest path p~, but

not to both. No path uses the same link more than once.

Expressions for both the first and second derivatives of the reduced cost ÏJ(x), are now

available and thus the scaled projection method can be applied. The iteration takes

the form

for all w E W,p E Pw,p -I- Pw (22)

where dp and dpw are the first derivative length of the paths p and Pw given by Eq. (4.23)

Stellenbosch University http://scholar.sun.ac.za

u; = L D~j(Fij)
(i,j)ELp

given by Eq.(4.24). The parameter a is a positive scalar which may be chosen by a

(24)

28 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

dp = L D~j(Fij),
(i,j)EP

dpw = L D~j(Fij)
(i,j)Epw

(23)

and Hp is the second derivative path length

variety of methods. In the original statement of the Bertsekas-Gallager algorithm in

[3], the authors suggest setting a to 1 and then decreasing it by a constant factor as the

algorithm proceeds. Because many requirements are moved before recomputing link

lengths in the implementation, see Kershenbaum [1], the algorithm works better if a is

set to a smaller value.

Like the FDA algorithm, our implementation starts with link lengths calculated with

zero flow and finds the shortest paths between all pairs of nodes. These paths form

the initial set of paths. We next set the flow on each path equal to the requirement

between its ends and we add this requirement to the flows on the links of the path. As

a result the flow on a link becomes a sum of flows on all paths which contain this link.

In our implementation of the EFDA algorithm, each path is stored as a vector of its

links. We keep the vectors sorted in ascending order as in Bertsekas-Gallager [1], which

allows us to compare two paths by comparing vectors element by element. However,

the original implementation presented in [1] used linked lists instead of vectors. No

path can be longer than NL (total number of links), and we allocate NL elements for

each path. In fact, N (number of nodes) can be used because nodes do not occur twice

in paths.

An important difference between our implementation and the Bertsekas-Gallager ver-

sion [1] is that by using a route generation procedure as part of the shortest path

algorithm, routes with least cost can be recorded as they are generated.

The use of second derivatives improves the rate of convergence and facilitates stepsize

selection in the optimization algorithm. This procedure is to scale the descent direc-

tion using second derivatives of the objective function as in the Bertsekas-Gallager

Algorithm.

The algorithm executes a sequence of iterations. On each iteration, for each pair OD

between which there is a non-zero requirement, we calculate the link lengths based on

Stellenbosch University http://scholar.sun.ac.za

4.3 An Efficient Flow Deviation Algorithm 29

the current flows and find the shortest path. Then we move some flow from all the

paths onto this shortest path, and the amount being moved is calculated in Eq.(4.22).

The algorithm is described schematically as follow:

Step 1: Assign the link lengths based on the first derivative of delay with respect to

flow starting with zero flows.

s, = L D~j(Fij)
(i,j)Ep

Step 2: Find shortest paths using Bellman's algorithm [3] for each OD pair.

Step 3: Load the shortest path for every pair of requirements.

Perform the iterations:

Step 4: Adjust the link capacities if necessary to ensure that the path flows are feasible.

Step 5: Assign new link lengths based on first derivative of delay with respect to

current flow. The new flow is an improvement on the previous flow when applied to

the same link capacities.

Step 6: Find shortest paths for every OD pair.

Step 7: Add new path to the path set and compute how much flow must be moved to

it. The amount of flow Cj to move off of path p is computed as

Step 8: For each OD pair, move the flow from all other paths to the shortest paths.

Step 9: Calculate the new network average delay.

The iteration stops when the current delay is no longer significantly less than the

previous delay. To prevent infinite iteration, the algorithm also stops when the new

factor of capacity adjustment is not significantly less than previous one.

Again consider the 3 node network shown in Figure 4.1 and compare the results in

Table 4.2 with those reported in previous section.

Table 4.2 shows the output of the EFDA algorithm through 38 iterations. The EFDA

algorithm converges faster than the FDA algorithm and a slightly better result is ob-

tained. We applied the EFDA algorithm to a network consisting of 6 nodes 30 links

Stellenbosch University http://scholar.sun.ac.za

Table 4.2: Link flows in EFDA

30 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

Links 1t.3 1t.5 1t.15 1t.20 1t.25 1t.30 1t.35 1t.38
0 1.54522 1.3965 1.4131 1.4497 1.4984 1.5327 1.5574 1.6545
1 0.5534 0.7973 1.2110 1.3629 1.4860 1.5467 1.5853 1.6529
2 0.0986 0.1938 0.6241 0.8126 0.9845 1.0794 1.1427 1.3074
3 2.9013 2.8061 2.3758 2.1817 2.0154 1.9205 1.8572 1.6925
4 0 0 0 0 0 0 0 0
5 0.4547 0.6034 0.5868 0.5502 0.5015 0.4672 0.4425 0.3454

delay 4.2877 4.3388 4.6161 4.8673 5.3039 5.1570 3.9000 3.4306

presented in [2]. Only 18 iterations are required to converge while the FDA requires

1075 iterations for convergence.

The reason for the rapid convergence is that EFDA works with one OD pair (one re-

quirement) at a time, calculates path lengths and moves flow from one path to another.

The FDA algorithm moves flow from all requirements at the same time. Another im-

portant feature is that we compute an approximation to the second derivative of delay

with respect to flow and use this as a correction factor on the amount of flow to move

instead of performing a line search. This allows us to efficiently compute a reasonable

estimate of the amount of flow to move.

The following observations can be made regarding the EFDA algorithm:

1. Since dp 2: dpw for all p =f Pw, all the nonshortest path flows that are positive

will be reduced with the corresponding increment of flow being shifted to the

MFDL path Pw. If a is large enough, all flow from nonshortest paths will be

shifted to the shortest path. The delay then increases and will falsely indicate

that the algorithm has converged. Therefore the algorithm may be viewed as a

generalization of the adaptive routing method based on shortest paths with a,

Hp, and dp - dpw determining the amount of flow shifted to the shortest path.

With a small, the algorithm tends not to oscillate as much, that is, moving flow

back and forth among the same links. If a is too small, however, the convergence

slows as the algorithm moves flow from one path to another in many small steps

instead of fewer larger ones. At high utilizations, it becomes important to prevent

oscillation.

2. Those nonshortest path flows xp, p =f Pw that are zero will stay zero. Therefore,

Stellenbosch University http://scholar.sun.ac.za

4.4 Multiservice network dimensioning 31

the path flow iteration of Eq.(4.22) should only be carried out for paths that

carry positive flow.

3. Only paths that carried positive flow at the starting flow pattern or were MFDL

paths at some previous iteration can carry positive flow at the beginning of an

iteration. This is important since it tends to keep the number of flow-carrying

paths small, with a corresponding reduction in the amount of calculation and

bookkeeping needed at each iteration.

4.4 Multiservice network dimensioning

Up to this point, we have considered single-service networks, that is, networks for which

a call occupies one circuit in each link along its routes. The focus of this section is on

multiservice networks.

Multiservice networks carry calls which belong to several call classes with different

bandwidth requirements - a telephone call for example requires one unit of transmission

capacity whereas a video call may require hundreds of units of capacity. In this section,

the EFDA algorithm is extended to investigate the performance of optimal routing in

multiservice networks carrying several classes of traffic each with different bandwidths

and different quality of service requirements.

4.4.1 Analytic Techniques

We consider the same network in section 4.1 which consists of N nodes with L physical

links. Recall that the design problem is to find optimal flows that would optimize the

objective function.

(25)

where Fij is the flow on the link (i,j) in message/sec and Tij is the average delay

experienced by a message on link (i, j). The original Flow Deviation Algorithm used an

objective function based on the M/M/1 queue. This queue assumes that the packets

arrive according to a Poisson process and that the packet lengths are exponentially

distributed. In the single service network the total delay on the link, (i, j) with service

time T, and utilization Uij is

Stellenbosch University http://scholar.sun.ac.za

32 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

(26)

where T; is the average length of a message of size M, divided by the capacity of the

link Gij, and Uij is the flow in the link, Fij divided by Gij. Thus,

MIG-·T.. - ~.1
~J -

1- FijiGij

M (27)

The weighted network delay is therefore

(28)

where M is the message length. In a multiservice network, the inputs of the models

correspond to those of single class models. The additional consideration is the specifi-

cation of the link service discipline which is the rule for selecting the next customer to

receive service.

Each link in our multiservice problem will be modelled as a processor sharing queue in

which the total service capacity is equally shared between the available customers.

For the Process Sharing the total average system response time for a class-k, where

kEK, is :

(29)

where Mk is the length of a class-k message in the system, and Fijk is the class k flow

on link (i,j).

4.4.2 Service integration

The multiservice traffic is formed as follows: The class k requirement A?j between two

given nodes (i, j) is equal to the base traffic intensity Aij multiplied by a class-dependent

traffic intensity factor Ik multiplied by the bandwidth requirement bk for this service.

Stellenbosch University http://scholar.sun.ac.za

4.4 Multiservice network dimensioning 33

Links class I class 2
0-1 0.248 1.492
0-2 0.249 1.494
1-0 0.197 1.186
1-2 0.252 1.513
2-0 0 0
2-1 0 0

Table 4.3: Distribution of flows per service class

Consider the small network shown in Figure 4.1. The network consists of three nodes

and six directed links. All links have capacities equal to 2. The objective is to find

minimum delay routes using the EFDA in a multiservice network. There is a basic

traffic intensity of 2.0 between node 0 and 1 and 3.0 between node 1 and 2.

There are two classes of service, with bandwidths bl =1 and b2=3. The message length

for class one service is Ml =1 and M2=2 for the second class. The requirement for class

1 from node 0 to node 1 is therefore equal to 0.5 and from node 1 to node 2 equals to

0.75. For class 2, the requirement from the node 0 to node 1, is equal to 1.5 and from

node 1 to node 2, the requirement is equal to 2.25. We assume that the class-dependant

traffic intensity factor, to be 0.25 for both classes. For the overall network delay, the

experiment gave 4.48 seconds as minimal delay and the distribution of flows per class

are given in Table 4.3.

4.4.3 A Larger Network

We also investigated the optimal flows for a larger network consisting of 8 nodes which

is a fictitious representation of the NSF ATM backbone network introduced by Mitra

[2]. The topology of the network is shown in Fig.5.1. Each link carries traffic in one

direction. The transmission capacity of each uni-directional link is 2812 bandwidth

units. The double lines indicate two-unidirectional links each having a transmission

capacity of 5624 bandwidth units.

The network carries six traffic classes: the bandwidth requirement of the first service is 1

unit and the bandwidth of services 2 through 6 are 3, 4, 6, 24, and 40 respectively. Table

4.5 presents the different message lengths per service while the base traffic intensity

matrix is shown in table 4.4. The class dependant traffic intensity is pfj = pij/sbs.

Figures 4.2 and Fig 4.3 present the optimal link flows per service class.

Stellenbosch University http://scholar.sun.ac.za

Table 4.4: Traffic intensity matrix

34 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

nodes 1 2 3 4 5 6 7 8
1 - 6 7 1 9 5 2 3
2 7 - 24 3 31 15 6 9
3 8 25 - 4 37 18 7 11
4 1 3 3 - 4 7 1 1
5 11 33 39 5 - 24 9 15
6 5 14 16 2 21 - 4 6
7 2 5 6 1 8 4 - 2
8 3 8 10 1 12 6 2 -

class 1 class 2 class 3 class 4 class 5 class 6
/s 0.4 0.4 1.0 0.5 0.5 0.1
bs 1 3 4 6 24 40
Ms 1 3 2 3 1 1

Table 4.5: Class-dependent factor and slots per service

When one considers the utilisation of the links 2-3, 4-5 and 5-7, one can see that it is

much higher compared with the utilisation of the other links. However their flows are

not large compared with the other links (see Fig 4.2 and Fig 4.3).

Although links 3-4 and 7-8 have large flows, the utilisations are moderate. The reason

is that they have large capacities, 5624 bandwidth units as opposed to 2812.

Stellenbosch University http://scholar.sun.ac.za

4.4 Multiservice network dimensioning 35

Link Flows

500

400
~
0
ii: 300

200

100

0
1-2 2-3 3-4 3-8 4-5 4-6 5-7 6-7 7-8 8-3

Links

Figure 4.2: The optimal link flows per class

Link Flows
1100
IOOO
900
800
700

V>~ 6000
ii: 500

400
300
200
100

1-2 2-3 3-4 3-8 4-5 4-6 5-7
Links

2_
4_-
~

6-7 7-8 8-3

Figure 4.3: The optimal link flows per class

Stellenbosch University http://scholar.sun.ac.za

30

25

20
~
c
0 15.~
Vl

§
;:J 10

class 2
clm;s4 IIIIIIIIIBI
doss'S ~

36 CHAPTER 4. THE FLOW DEVIATION ALGORITHM

Link Utilisation
20
18

16
14

Ë 12
c
0 10

~ 8
;S

6
4
2

0
1-2 2-3 3-4 3-8 4-5 4-6 5-7

class I
class _, i!l'lI!iiiI!!!l -
('!(l$;-:,6~

6-7 7-8 8-3
Links

Figure 4.4: Link utilisation per class

Link Utilisation

5

o
1-2 2-3 3-4 3-8 4-5 4-6 5-7 6-7 7-8 8-3

Links

Figure 4.5: Link utilisation per class

Stellenbosch University http://scholar.sun.ac.za

37

Chapter 5

Optimal Link Capacities in lP
Networks

The general topology optimization problem is complex and concerns the optimum selec-

tion of links, the assignment of capacities to these links and the routing of requirements

on these links. The routing problem was discussed in the previous chapter. In this chap-

ter, the focus is on the optimal assignment of capacities to the links and the routing of

requirements on these links.

5.1 Capacity assignment problem

This section begins by considering the problem of assigning optimal capacities to the

links in the network given the link topology and link flows.

Consider a network consisting of N nodes and L links. Let i - j denote the link

connecting OD pair (i,j). Link i - j has capacity Gij measured in bits/sec.

There are S classes of messages. The traffic requirements between the node pairs are

measured in bits per second. We assume a flow distribution - a flow on each link and

for each class which satisfies the requirements.

The objective is to compute the optimal link capacities for a network where the topology

and traffic flows are known and fixed which minimize the average delay subject to the

linear total cost of the system:

Stellenbosch University http://scholar.sun.ac.za

1[F:;
Gij = Fij + ..J1fY V d0

The objective now is to find the value of (J. Once we have evaluated the constant (J,

(3)

38 CHAPTER 5. THE FLOW DEVIATION ALGORITHM

L dijGij
(i,j)

where dij is the positive cost per unit capacity on link (i,j).

(1)

To minimize the objective function, we proceed by using a Lagrange multiplier (J and

by forming the Lagrangian function as follows:

L = T + (J (L dij Gij - D)
(i,j)

where D is the total cost of the network and T is given by the M /M /1 delay function:

(2)

In Eq.(5.38), if we find the minimum value of L with respect to the capacity assignment,

then we will have found the solution to the capacity assignment problem.

As is usual in Lagrangian problems, we set the partial derivatives aL/aGij to zero:

aL _ Rd- _ _ Fij - 0
- I-' ~J 2 -oe; ,(Gij - Fij)

Solving for Gij gives:

this will be our solution.

From this equation, solving for (J gives,

Stellenbosch University http://scholar.sun.ac.za

5.2 The algorithm 39

1

VM

D - L Fijdij
(i,j)

L JFijdij
(i,j)

Using this last form in our Eq.(5.39), the optimal solution to the capacity assignment

problem is

G .. - F .. + D - L:(i,j) Fijdij [fjij
ZJ - ZJ " ~d dLJ(i,j) V FijU.ij ij

(4)

The algorithm assumes:

1. The nodes of the network and the input traffic flow for each pair of nodes are

known.

2. A routing model determines the optimal flows Fij of all links (i, j) given the link

original capacities Gij. We assume that the link flows minimize a cost function

L Dij (Fij) as in Eq. (4.9). Fij can be determined by minimizing the average
ij
packet delay,

1 '"' (Fij ,)T = - Z:: G. _ F-. + FijPi
'/ (") ZJ ZJZ,J

based on the MIM/1 formula, where '/ is the total input traffic into the network,

and Gij and p~are the capacity and the processing and propagation delay, respec-

tively, of link (i, j). The algorithms described in Sections 4.2, 4.3 and 4.4 can be

used for this purpose.

5.2 The algorithm

This section describes the different steps of the capacity assignment algorithm and how

it works.

The capacity assignment algorithm

Stellenbosch University http://scholar.sun.ac.za

40 CHAPTER 5. THE FLOW DEVIATION ALGORITHM

Step 1: Select a network topology with initial capacities and requirements.

Step 2: Compute optimal link flows that minimize the average delay for the network

using the EFDA algorithm.

Step 3: Allocate the link capacities to minimize the delay with the link flows computed

in step 2, given the constraints on the total cost of a system.

Step 4: Use these capacities instead of the original capacities with the original re-

quirements and go to step 2. The delay calculated in this step will be less than in step

2.

Step 5: Reallocate the optimal link capacities with the optimal link flows from step

4. The new delay will be smaller than the delay in step 3.

The iteration is repeated until the new network delay is not significantly smaller than

the old delay. Since the delay decreases with every iteration and it is positive, the

algorithm converges.

In order to evaluate the effectiveness of the above method, the algorithm was applied

to a model of a network consisting of 8-nodes and lO-links presented in [2] to compute

the optimal link capacities. The topology of the network is shown in Fig.5.l. Each

link carries traffic in both directions. The double lines between nodes 3 and 4 and 7

and 8 indicate that there are two links in each direction connecting theses nodes. The

network carries 2 traffic classes: the bandwidth requirement of the 1st class is 1 unit

and the bandwidth requirement of class 2 is 40 units. The capacity of each link is

5624 units. The traffic intensity matrix is given in table 5.1 and the class dependent

intensities are given by pfj = pij/sbs where Pij represents the traffic intensity between

link (i,j), 'Ys is the class load factor and bs the bandwidth. These value are given in

table 5.2.

We now compare the network optimal link capacities with their initial values. Table

5.3 shows the optimal link flows and capacities computed after the convergence of the

capacity assignment algorithm.

Fig 5.2 plots the capacity assigment for link (1-2) as the algorithm executes. Fig

5.3 plots the network delay as the algorithm executes. The delays converge after 44

iterations. Comparison with Fig 5.2 shows a strong correlation between the delay and

the assigned capacity. This can be expected since the delay is a function of capacity.

The delays decrease since the flows are shifted onto optimal paths in order to reduce

Stellenbosch University http://scholar.sun.ac.za

5.2 The algorithm 41

1
San Diego

Houston

Figure 5.1: The Core NSF ATM network

nodes 1 2 3 4 5 6 7 8
1 - 13 15 2 20 10 4 6
2 - - 49 6 64 29 11 17
3 - - - 7 76 34 13 21
4 - - - - 9 4 2 2
5 - - - - - 45 17 27
6 - - - - - - 8 12
7 - - - - - - - 4
8 - - - - - - - -

Table 5.1: The NSF network: traffic intensity matrix

the delays on congested links. This smaller flow on the congested links in turn leads to

a decrease in the capacity required to achieve a given delay.

There are several approaches to capacity assignment, utilizing different performance

criteria. An additional approach is to improve an existing network by redistributing

the link capacities while maintaining the total sum of all capacities of the network.

Kleinrock [4] notes that the selection of an appropriate algorithm to allocate capacities

will depend on the cost-capacity structure, on the presence of additional topological

class 1 class 2
'Ys 20 0.1
bs 1 40

Table 5.2: Load factor and slots per service

Stellenbosch University http://scholar.sun.ac.za

5 10 15 20 25 30 35 40 45

42 CHAPTER 5. THE FLOW DEVIATION ALGORITHM

Links Optimal Flows Optimal Cap Initial Cap

(1,2) 520 1469.4 5624
(1,8) 2280 4268.1 5624
(2,3) 7040 10533.4 5624
(3,4) 8800 12705.8 11248
(3,8) 3240 5609.9 5624
(4,6) 4480 7266.8 5624
(5,7) 2640 4779.3 5624
(6,7) 1200 2642.3 5624
(7,5) 2640 4779.3 5624
(7,8) 4040 6686.4 11248

Table 5.3: Optimal link flows and link capacities

Capacity Assignment

5000

4500

4000

3500
IJ)s·u 3000ca
0..cao

2500

2000

1500

1000
0

Iterations

Figure 5.2: Capacity assignment algorithm

constraints, on the degree of human interaction allowed and, finally, on the tradeoff

between cost and precision required by the particular application.

Stellenbosch University http://scholar.sun.ac.za

5.3 Multiservice Blocking Model 43

Network Delay

0.88

0.86

0.84

0.82

0.8

>-
<Il 0.78(jj
0

0.76

0.74

0.72

0.7

0.68
0 25 30 35 4010 15 205

Iterations

Figure 5.3: Convergence of the algorithm

5.3 Multiservice Blocking Model

In this section we again model a network as a collection of resources to which calls,

each with an associated holding time and class, arrive at random instances. However,

this time a call can be blocked.

Recall that the EFDA uses an objective function based on the MIM/1 queue. In this

system, if a message or customer arrives when the channel is not busy, no message

in transmission, the message is transmitted immediately. If the channel is busy when

the message arrives, the message is placed in a queue where it waits until the channel

becomes free and then begins serving the next message.

Not all the systems deal with congestion by allowing messages to wait. Most traditional

telephone systems block calls from entering the system if no capacity is available for

them.

This kind of system is fundamentally different from a queueing system because a call's

system time is equal to its holding time. Here, a call arrives and requires a fixed

amount of capacity, enough to handle a conversation. If the capacity is available, it is

45

Stellenbosch University http://scholar.sun.ac.za

44 CHAPTER 5. THE FLOW DEVIATION ALGORITHM

dedicated to the call for its duration. If not the call is blocked and lost. We consider

such a system in this section.

5.4 Network model

In our blocking model, a network consists of N nodes with L physical links which carries

S classes of calls. Each link i - j has capacity of Gij bandwidth units. We define a

route as a sequence of physical links. Let Rij denote the set of routes that connect i

and j. Class-s calls are offered to O-D pair (i, j) according to a Poisson process with

rate Ai,j. The average holding time of a call of class-s is exponentionally distributed

with mean 1/Mi,j. We refer to pi,j = Af,jIMf,j as the class-s intensity of the offered

traffic stream. The bandwidth requirement of a class-s call is bso A class-s connection

between O-D pair (i, j) is admitted if there is sufficient bandwidth available on at least

one route in Rij to accommodate its effective bandwidth and is lost otherwise.

Our goal is to obtain a capacity assignment such that the link blocking probabilities

satisfy a certain grade of service (GaS).

5.5 Implementation

We compute the link blocking probabilities Btj as

(5)

where Pij = (Pfj)SES, b = (bs)sEs and Etj(.) is a function returning the blocking prob-

abilities of class-s calls on link (i, j).

5.5.1 Blocking probabilities

There are several options for the blocking function Etj (.). We use the stochastic knap-

sack algorithm [8].

The implementation starts by computing link flows that are optimal in terms of the

network delay. Then we compute the link blocking probabilities using these flows for

each link. To calculate the probabilities we need the traffic intensities for different

classes which are given by pfj = pij/sbs where Pij represents the traffic intensity on

Stellenbosch University http://scholar.sun.ac.za

5.5 Implementation 45

Service Service
Integration Separation

Links class1 x 10-4 class2 x 10 -J class1 x 10 -J class2 x 10 -J

(1,2) 2.04698 9.99201 9.78443 9.69459
(1,8) 2.13866 9.95198 9.87183 9.22791
(2,3) 2.15838 9.99911 9.96748 9.00554
(3,4) 2.22972 9.96107 9.96809 8.91993
(3,8) 1.97635 9.95442 9.67632 6.76622
(4,5) 2.16964 9.98509 9.89086 9.74935
(4,6) 2.04468 9.97948 9.86695 9.85335
(5,7) 2.15711 9.93149 9.88864 9.41679
(6,7) 2.04277 9.92063 9.79374 7.07872
(7,8) 2.16638 9.96009 9.85324 8.57969

Table 5.4: The link blocking probabilities per service class

link (i, j), 'Ys is the class load factor and bs the bandwidth. After calculating these

intensities, we run the multiservice blocking probability algorithm. The algorithm uses

the link capacity as a loop index. Thus we first calculate blocking probabilities for the

link with capacity 1, then use this to calculate for link with capacity 2, and so on. When

the capacities are big enough, the blocking probability becomes very small, almost zero.

The iteration terminates as soon as the average blocking probability becomes less than

the GOS.

5.5.2 Service Separation

Under service integration, all the bandwidth Gij of link (i,j) is available to all service

classes. With service separation, each class has access only to a different bandwidth

Glj, G~, ... , GijS where Gij + G~ + ... + G~ = Gij.

In this case, we calculate the optimal link capacities required for every class with

certain blocking probability, then we sum all capacities to obtain the capacity on a

link. Consider again the network model in section 5.2. The network consists of 8 nodes

and carries 2 traffic classes. The traffic intensity matrix is given in table 5.1 and the

class dependent intensities are given by multiplying these values by the load factors.

Table 5.4 presents the link blocking probabilities per service class for service integration

as well as service separation and we compare the link capacities produced by the two

services in table 5.5.

Stellenbosch University http://scholar.sun.ac.za

46 CHAPTER 5. THE FLOW DEVIATION ALGORITHM

Links FS. Capint Capsept,]

classl class2
(1,2) 1408.4 845.1 2671 2678
(1,8) 2273.1 1363.8 4130 4140
(2,3) 2386.9 1422.9 4320 4333
(3,4) 3834.1 2300.4 6723 6732
(3,8) 1085.1 651.1 2118 2155
(4,5) 2581.5 1548.9 4645 4647
(4,6) 1410.7 846.4 2675 2680
(5,7) 2574.4 1544.7 4634 4640
(6,7) 1478.5 887.1 2791 2828
(7,8) 2615.4 1569.3 4702 4721

Table 5.5: Optimal link flows and capacities per service class

We can see from the Table 5.5 that links with larger flows have larger capacities and

therefore smaller service times which is a factor contributing to the reduction in the

total delay of the network.

Note that our experiment combines two different models: the blocking model and the

queueing model. However, these models are applied at different stages. First we have

the queueing model associated with a network delay. Secondly, we have the blocking

model associated with calls blocked and packets dropped. In first case, the capacities

must be enough to accomodate the optimal flows, otherwise the network delay becomes

indefinite. In the second situation, some capacities might be insufficient and calls will

be dropped.

In order to evaluate the effect of applying service separation, we also compute the

optimal link capacities for service integration and then compare the two. The total

link capacity computed in service separation is the sum of the capacities required in

both traffic classes.

Our conclusion is that the new capacity is sometimes bigger than in the case of complete

sharing; this is the penalty for service separation; the penalty is not too large. For

example, for link (4,5) the link capacity on complete sharing is 4645 while the separation

case is 4647.

Stellenbosch University http://scholar.sun.ac.za

47

Chapter 6

EFDA: Numerical Results

In order to test the performance of the extended flow deviation algorithm under different

conditions its performance was tested on several topologies and for different parameter

values. Different topologies were used in the experiments but we will analyze two

of them in detail in the following section. Some data for these tests networks were

extracted from [22]

6.1 Fifty-Node Test Network

We apply the EFDA algorithm to a larger network, also used by C. Villamizar [22]

with a significantly larger number of OD pairs. The topology of the network is shown

in Fig 6.1. This network has fifty nodes and 202 links. All links are uni-directional and

have different bandwidths.

The results of the experiments are described by providing the values of the optimal

routes, the optimal solution, the optimal link capacities and the average end to end

delay in the network corresponding to the best feasible solution.

In order to evaluate the effectiveness of the algorithm, different parameter values were

applied to the network and the results compared.

The set of original link capacities is given in the second plot of Fig 6.4. The results of

the first experiment presented in Fig 6.2 show the optimal flows for the EFDA algorithm

and MPLS-OMP data. The results are generated after 53 iterations. Execution time

for the EFDA algorithm was less than lmin on Pentium II 200 MHz. The convergence

Stellenbosch University http://scholar.sun.ac.za

48 CHAPTER 6. THE FLOW DEVIATION ALGORITHM

of the algorithm is showing in Fig 6.3.

The Fig 6.2 also presents the comparison between the EFDA and the MPLS-OMP

method. The plot 6.2 shows the link loads as computed by the EFDA algorithm and

from the MPLS-OMP data. Both figures represent the optimal solution generated in

those experiments.

The first plot displays the link loads generated by the EFDA algorithm. The average

link load was computed to be 50 %. The highest link loads are 71.17 %, 67.65 %, 67.51
%, 64.92 % We also have 0 % on link (23, 1). The link capacity of (23, 1) is 28165

bits/sec while the link capacity of (23, 20) is 237765 bits/sec and link (20, 1) is 339945

bits/sec. The shortest path is (23 ::::}20 ::::}1) and not (23 ::::}1). The (23, 1) link was

thus never selected as an appropriate path.

The second plot depicts the link loads by MPLS-OMP after the first 10 minutes of

convergence. Convergence is essentially complete at 60 minutes. The worst link loads

are less than 70 % and the average link load is 60 %. The two plots are superimposed

to see the difference of the link loads of the two methods in Fig 6.2. Our flow deviation

algorithm spreads the traffic in the network in such a way that the link loads are lower

than in the case of the OMP method. Therefore figure 6.2 shows that flow deviation's

link load percentages are in general lower than OMP's.

Another experiment involved computing the optimal capacities for the initial configu-

ration and then evaluating the performance of the network. Fig 6.4. demonstrates the

results: the algorithm allocates more capacity to the links with more flow and therefore

provides smaller service times which is a factor contributing to the reduction in delay.

The two plots are superimposed in Fig 6.4. As the plot shows, the difference between

the optimal and the original capacities is not large. The pattern of the link capacities

is the same. Some of the solutions are identical and the narrow range of capacities

implies that it is close to the optimum.

One can see the convergence of the algorithm and how the network delay gets better

and better after each iteration in Fig 6.3.

6.2 A Hundred-Node Test Network

The EFDA algorithm was applied to investigate the optimal link flows and link ca-

pacities for a network with hundred nodes and 244 links. The network topology is

Stellenbosch University http://scholar.sun.ac.za

6.2 A Hundred-Node Test Network 49

Figure 6.1: MPLS-OMP network topology

presented in Fig 6.5. The links are uni-directional.

Fig 6.6 and 6.7 summarize the results of an optimization minimizing the network de-

lay. Only 10 iterations were required for convergence. As shown in Fig 6.6, the link

capacities tend to increase as the algorithm proceeds until any further increase would

not significantly decrease the delay.

Stellenbosch University http://scholar.sun.ac.za

0
0 50 100 150 200 250

Links

Figure 6.2: The link load
Network Delay

2.86

2.84

2.82

2.8

2.78

>-
<Il

2.76"ij;
Cl

2.74

2.72

2.7

2.68

2.66
0 10 20 30 40 50 60

Iterations

Figure 6.3: The network delay

50 CHAPTER 6. THE FLOW DEVIATION ALGORITHM

Link Loaded: Optimal Flow and OMP Flow

80

70

60

50
"0
Ol
"0
<Il
0
_J 40.::.::c
::J
:!2_0

30

20

10

"opt-flow"
"omp-flow"

Stellenbosch University http://scholar.sun.ac.za

6.2 A Hundred-Node Test Network 51

Link Capacities

600000 .-----------.-------~~,_--------~----------_.----------_.

500000

"opt-cap" --
"orig-cap" -------

400000

)
"
"
", "I,:

<Jl
Q)
:;::;

.g 300000
0..
Olo

200000

100000

o L- L- ~ ~ ~ ~

o 50 100 150 200
Links

Figure 6.4: The link capacities

Figure 6.5: Hundred-Node Network

250

Stellenbosch University http://scholar.sun.ac.za

52 CHAPTER 6. THE FLOW DEVIATION ALGORITHM

Optimal Capacity

11400

11300

11200

11100

(fJ
11000Ol

E
ct!
0.
ct! 10900CJ

10800

10700

10600

10500
1 6 8 92 3 4 5 7

Iterations

Figure 6.6: The optimal capacities
Network Delay

0.58

>-
ct! 0.56Qi
0

0.54

Iterations

Figure 6.7: Hundred-Node network delay

10

Stellenbosch University http://scholar.sun.ac.za

Conclusions

Chapter 7

This thesis surveyed some of the mathematical programming and network routing

(flow) techniques that have been found to be useful for the design of the computer-

communication networks.

Our main focus was on methods for optimal routing which can be subdivided into path

discovery and packet forwarding.

We present an algorithm which combines flow deviation with Lagrangian multiplier

relaxation in order to compute efficiently the shortest routes, assign optimal flows to

these routes and simultaneously to compute optimal link capacities in both single and

multirate networks.

Applying the results to a set of networks, we show that the algorithm converges to a

good solution faster and generates better feasible solutions than the Bertsekas-Gallager

flow deviation algorithm.

53

Stellenbosch University http://scholar.sun.ac.za

54 CHAPTER 1. THE FLOW DEVIATION ALGORITHM

Stellenbosch University http://scholar.sun.ac.za

pB(p, C)
B(p, C + 1) = pB(p, C) + C + 1 (2)

Appendix A

The Blocking Probability

A.I The Erlang-B Formula

Erlang's function

pC/C!
B (p, C) = ",C C/CI

uc=o P .
(1)

is perhaps the single most important expression in the field of teletraffic theory. It

was derived by the A.K. Erlang as a formula for the probability that calls arriving

individually in a Poisson stream of intensity p to a link consisting of C circuits would

find all circuits occupied and therefore be lost. Erlang's function is mostly used in

the field of telecommunications, in its own right and as part of more complicated

analysis procedures, both exact and approximate. The function is numerically difficult

to evaluate because it involves a very large number of C. Fortunately, it, and its related

functions such as its derivatives can be rearranged algebraically into a more convenient

form which allows us to iteratively compute B(p, C) as in the following recursion

This equation has computation requirements O(C) and storage requirements 0(1).

The recursion works with normalized quantities B(p, C) and is therefore not subject

to numerical problems such as imprecision and overflow.

55

Stellenbosch University http://scholar.sun.ac.za

4. for(c=l;c<=C;c++){

a = (l/c) "Lf=l PkbkP(M + 1- bk)

P(m - 1) = P(m)/(l + a)

P(M) = a/(l + a)

m=2, ... ,M

56 CHAPTER A. THE FLOW DEVIATION ALGORITHM

A.2 Multi service Blocking Probability

The classical deterministic knapsack problem (see Ross [5,23] for example) involves a

knapsack into which objects from K different classes arrive at random and share C
resource units. An object departs after its holding time completes. The stochastic

system can be used to model a link in a multi service telecommunication technology

and calculate the blocking probabilities of all the traffic classes sharing the link.

Consider a stochastic knapsack with capacity of C resource units to which objects from

K classes arrive. Let Ak denote the Poisson arrival rate of a class-k object and 1/ J-Lk
the average holding time of this class-k object. If an arriving class-k object is admitted

into the knapsack, it holds bk resource units and departs at the end of this holding

time, all the bk resource units are simultaneously released. Let Pk = Ak/ J-Lk and let

Bk (C) denote the blocking probability of class-k objects for this knapsack.

Berezner and Krzesinski [8] have developed the following numerically stable algorithm

to compute the multiservice blocking probabilities for the basic stochastic knapsack:

2. P(M) = 1

3. P(m - 1) = 0 m=2, ... ,M

}

5. Bk(C) = "L~~~P(M - m) k= 1, ... ,K

Figure 1. Algorithm to compute the Erlang-B blocking probabilities Bk(C)

The general stochastic knapsack, which can be also used for modeling networks, differs

from the basic stochastic knapsack in that the arrival rates Ak(n) and the mean holding

times 1/ J-Lk(n) or state-dependent. These parameters dependent on the state n =

(nl, n2, ... , nK) where nk is the number of class-k objects in the knapsack, of the

knapsack.

Stellenbosch University http://scholar.sun.ac.za

57

Bibliography

[1] A. Kershenbaum. Telecommunications Network Design Algorithms. McGRAW-Hill

International Computer Science series, 1993.

[2] D. Mitra, J.A. Morrison and K.G. Ramakrishnan. ATM network design and op-

timization: A multirate loss network framework. In Proceeding of IEEE INFO-

COM'96, vol.3 pages 994-1002, San Francisco, USA, March 1996.

[3] D. Bertsekas and R. Gallager. Data Networks, Prentice-Hall, Englewood Cliffs, NJ

1992.

[4] L. Fratta, M. Gerla and L. Kleinrock. "The flow deviation method: An approach

to store and forward communication network design" Networks, 3:97-133, 1990.

[5] K.W. Ross. Multiservice Loss Models for Broadband Telecommunication Networks.

Springer- Verlag, London, 1995.

[6] COST 242. Broadband Network Teletraffic: Performance Evaluation and Design of

Broadband Multiservice Network. 1996.

[7] E.S. Levitin, and B.T. Poljak. Constrained Minimization Methods, URSS Computer

Math. Phys., 6:1-50. 1985.

[8] S.A. Berezner and A.E. Krzesinski. An Efficient Stable Recursion to Compute Mul-

tiservice Blocking Probabilties. Submitted for publication.

[9] B. Davies, P. Doolan and Y. Rekter. Switching in lP Networks: lP Switching,

Tag Switching, and Related Technologies. Morgan Kaufmann Publishers, Inc. San

Francisco, California.

[10] M. Frank, and P. Wolfe. "An algorithm for quadratic programming." Naval Res.

Logist. Quart., 3:149-154, 1991.

Stellenbosch University http://scholar.sun.ac.za

58 BIBLIOGRAPHY

[11] L. Kleinrock. Queueing System, Vol. 2: Computer Applications. John Wiley Sons,

New York, 1976.

[12] E.D. Lazowska, J. Zahorjan, G.S. Graham and KC. Sevcik. Quantitative Sys-

tem Performance. Computer System Analysis Using Queueing Network Models.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

[13] KS. Vasta, A Numerical Study of two measures of Delay for Network Routing,

M.S.thesis, University of Illinois, Dept. of Electrical Engineering, Urbana, IL. 1979.

[14] R.K Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows Theory, Algorithms

and Applications Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[15] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Numerical

Recipes in C. The Art of Scientific Computing. Cambridge University Press, 1988.

[16] U. Manber. Introduction to Algorithms A creative approach Addison-Wesley 1989.

[17] F. Kelly, "Blocking Probabilities in Large Circuit Switched Networks", Adv. Appl.

Prob., 18 (1986), 473-505.

[18] A.O. Allen. Probability, Statistics, and Queueing Theory: with Computer Science

Applications. Academic Press, Inc., 1998.

[19] N. Anerousis and A.A. Lazar. Virtual Path Control for ATM Networks with Call

Level Quality of Service Guaranees. IEEE/ A CM Transactions on Networking. vol.6

1998.

[20] A. Inggsi. Call Management in Broadband Networks. Technical Report Depart-

ment of Computer Science, University of Stellenbosch, 7600 Stellenbosch, South

Africa 1999.

[21] J.S. Kaufman. Blocking in a shared resource environment. IEEE Transactions on

Communications, COM-29(10):1474-1481, October 1981.

[22] C. Villamizar. MPLS Optimized Multipath (MPLS-OMP), internet draft-ietf-ospf-

omp-03 August 18, 1999.

[23] KW. Ross and D.H.K Tsang. The Stochastic Knapsack Problem. IEEE Trans-

actions on Communications 37:7, pp 740-747, 1989.

[24] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus. Requirements for

Traffic Engineering over MPLS. draft-ietf-RFC 2702 September, 1999.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 59

[25] C. Metz. lP Switching Protocols and Architectures, McGraw-Hill, 1999.

[26] Rekhter, et al. Switching in lP Networks, Morgan Kaufmann, 1998.

[27] Feldman, et al. "Evolution of Multiprotocol Label Switching" IEEE Communica-

tions, vol.36 No.5 May 1998.

[28] G. Apostolopoulos et al. QOS Routing Mechanisms and OSPF Extensions. draft-

ietf-RFC 2676 August 1999.

[29] E.C. Rosen, A. Viswanathan and R. CalIon. Multiprotocol Label Switching Archi-

tecture. draft -ietf-mpls-arch July 2000.

Stellenbosch University http://scholar.sun.ac.za

