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SUMMARY

The advent of the new millennium saw the complete sequencing of the entire human genome.

Only approximately 30 000 genes, much less than was initially predicted, have been identified

to be responsible for the genetic diversity in humans. This discovery has prompted a shift in

the approach to disease research, since one gene can be involved in numerous diseases. This

phenomenon seems to be especially true for the low-density lipoprotein receptor (LDLR)

gene. Various substances beside sterols can induce transcription of the LDLR gene.

Non-communicable diseases (e.g. hypertension) are common in the developing world and

contribute significantly to mortality rates. The fmding that a promoter variant (-175 g~t) in

the LDLR gene is associated with elevated diastolic blood pressure may explain the

phenomenon of high LDL-cholesterollevels in hypertensive individuals. Studies have

demonstrated that the lowering of cholesterol, especially LDL-cholesterol, can reduce the

incidence of hypertension. The -175 g~t variant is located in a newly described cis-acting

regulatory element which contains a putative binding site for Yin Yang (YY)-l and also

demonstrates great homology to the cAMP response element (CRE) which bind the Ca2+-

dependent transcription factor, CRE binding protein (CREB). The fact that Ca2+ can induce

transcription of the LDLR gene may, at least in part, explain the association between the -

175g~t variant and elevated diastolic blood pressure.

Cholesterol is important for various processes, such as apoptosis, maintenance of cellular

membranes and immune function. The -59 c-ot mutation in repeat 2 of the LDLR gene

abolishes binding of the sterol regulatory element binding protein(SREBP) to the SRE-l site.

SREBP is proteolytically activated during apoptosis by two caspases (CPP32 and Mch3) to
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induce cholesterol levels. Our results imply that the -59C/T mutation, in repeat 2 of the LDLR

gene promoter, may inhibit apoptosis under normal immunological conditions.

Atherosclerosis can be considered an immunological disease, since various humoral and

cellular immune processes can be detected throughout the course of the disease. The fmding

that certain lipoproteins can protect against infection by binding and lysing of pathogens, or

competing with pathogens for cellular receptors, prompted the investigation into the potential

role of variation in the LDLR gene promoter in immune function. A significant difference in

allelic distribution was detected between asymptomatic HIY -infected subjects and fast

progressors for the -124 c-ot variant (P=O.006), shown to increase (~160%) transcriptional

activity of the LDLR gene. Of relevance to this particular study is the fact that human

herpesvirus (HHV) 6 can transactivate CD4 promoters through a partial CRE site. It has been

shown that the CREB and YYl can regulate viral and cellular promoters, and these

transcription factors can potentially bind to the LDLR promoter at the FP2 site.

The mutation enrichment in the LDLR gene promoter seen in the South African Black and

Coloured population groups can possibly provide insight into the pathogenesis of various

diseases. This could also potentially, provide novel targets for treatment, since manipulation

of cholesterol levels may affect the pathogenesis of various diseases.
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OPSOMMING

Die volledige DNA volgorde bepaling van die mensgenoom is voltooi vroeg in die nuwe

millennium. Slegs ongeveer 30 000 gene is geidentifiseer, heelwat minder as wat in die

verlede voorspel is, wat verantwoordelik is vir die genetiese diversiteit in die mens. Hierdie

ontdekking het gelei tot 'n verandering in die benadering van navorsing ten opsigte van

siektes, aangesien een geen 'n rol by verskeie siektes kan speel. Hierdie gewaarwording blyk

veral waar te wees vir die lae digtheids lipoproteien reseptor (LDLR) geen. Verskeie stimuli,

buiten sterole, kan transkripie van die LDLR geen inisieer.

Verskeie siektes soos hipertensie is algemeen in die ontwikkelende wereld, en dra by tot die

hoe mortaliteit syfers. Die bevinding dat 'n promoter variant in die LDLR geen (-175g-H)

geassosieer is met verhoogde diastoliese bloeddruk, kan moontlik verhoogde lipiedvlakke in

hipertensiewe individue verklaar. Studies het aangetoon dat die verlaging van cholesterol,

veral LDL-cholesterol, die voorkorns van hipertensie kan verlaag. Die -175 g~t variant is

gelee in 'n cis-regulerende element wat na bewering 'n bindingsetel vir die Yin Yang (YY)-l

transkripsie faktor bevat asook sterk homologie met die cAMP respons element (CRE) toon,

wat bind aan die Ca2+_ afhanklike transkripie faktor, CRE bindings proteiene (CREB). Die feit

dat Ca2+ transkripsie van die LDLR geen kan inisieer, kan dalk tot 'n mate, 'n verklaring bied

vir die assosiasie tussen die -175 (g~t) variant en verhoogde diastoliese bloeddruk.

Cholesterol is noodsaaklik vir verskeie prosesse soos apoptose, die instandhouding van

selmembrane sowel as immuun funksies. Die -59 c-ot mutasie in die sterol regulerende

element 1 (SRE-l) van die LDLR geen vernietig binding van die sterol regulerende element

bindingsprotei'en (SREBP) aan SRE-l. SREBP word proteolities geaktiveer tydens apoptose
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deur twee kaspases (CPP32 en Mch3) om cholesterolvlakke te induseer. Ons resultate

impliseer dat die -59C/T mutasie, in herhaling-2 van die LDLR-geen promoter, apoptose kan

inhibeer onder normale immunologiese toestande.

Aterosklerose kan beskou word as 'n immunologiese siekte, aangesien verskeie humorale en

sellulere immuun prosesse deur die verloop van die siekte waargeneem kan word. Die feit dat

Iipoproteiene beskermend kan wees teen infeksies, deur binding en lisering van virusse of

kompeteer met patogene vir sellulere reseptore, het aanleiding gegee tot 'n ondersoek na die

potensiele rol van variasies in die promoter area van die LDLR geen in immuun funksie.

Betekenisvolle verskille in alleel verspreiding vir die -124c~t variant (P=0.006) is

waargeneem tussen asimptomatiese MIV -geinfekteerde pasiente en individue met vinnige

siekte progressie. In vitro studies het voorheen getoon dat die -124c~t 'n verhoging in LDLR

geen transkripsie (160%) tot gevolg het. Dit is noemenswaardig dat 'n vroee studie getoon het

dat die mens like herpesvirus-6 (MHV6) transaktivering van die CD4 promoters deur 'n

gedeeltelike CRE bindingsetel kan bewerkstellig. Beide CREB en YYl kan virus en sellulere

promotors reguleer, en hierdie transkripsie faktore toon bindingshomologie met die FP2

element van die LDLR promotor

Die mutasie verryking van die LDLR geen promoter soos waargeneem in Suid Afrikaanse

Swart en Kleurling populasies, kan moontlik lig werp op die patogenese van verskeie

siektetoestande. Hierdie bevindinge kan potensieel nuwe teikens vir behandeling identifiseer,

aangesien manipulasie van cholesterolvlakke 'n effek mag he op die patogenese van verskeie

siektes.
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CHAPTER 1

Stellenbosch University http://scholar.sun.ac.za



2

1 CHOLESTEROL

Cholesterol is one of the most important substances in the human body and is essential for

various cellular processes, including maintaining the integrity of the cell membrane (Brown

and Goldstein, 1999), immune function (Feingold and Grunfeld, 1997) and apoptosis (Hartel,

1998). Cholesterol is transported in the form of lipoproteins, of which low density lipoprotein

(LDL) is the major cholesterol carrying lipoprotein in human plasma. Various other

lipoproteins such as high density lipoprotein (HDL), very low density lipoprotein (VLDL)

and lipoprotein (a) [Lp(a)] have been identified. Cholesterol homeostasis is obtained through

receptor-mediated endocytosis (exogenous) and I or the cholesterol biosynthetic pathway

(endogenous). Maintenance of cholesterol levels is extremely important since too little or too

much can have detrimental effects. Low cholesterol levels have been associated with chronic

respiratory and gastrointestinal diseases as well as cancer (Muldoon et al, 1997), while high

cholesterol levels are strongly associated with an increased risk for heart disease (Ross et al,

1999). In the human body, cholesterol homeostasis is maintained through a feedback

regulatory system, which is modulated through membrane-bound transcription factors called

sterol regulatory element binding proteins (SREBPs) (Brown and Goldstein, 1997).

1.1 THE ROLE OF CHOLESTEROL IN CELL MEMBRANE INTEGRITY

A fine balance between the cholesterol levels and amount of unsaturated and saturated fatty

acids in phospholipids maintains the integrity of cell membranes (Brown and Goldstein,

1999). Devaux (1991) indicated that cholesterol is essential for modulating fluidity and phase

transitions in the plasma membranes of animal cells. It has recently been shown that

cholesterol together with sphingomyelin forms membrane rafts of caveolae that are sites
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where signalling molecules are concentrated (Simons and Ikonen, 1997; Anderson, 1998). For

optimal efficacy cholesterol homeostasis needs to be maintained at all costs. This is achieved

by sterol regulatory element binding proteins (SREBP's) which are proteolytically cleaved

from the membrane in order to be functionally active (Brown and Goldstein, 1997).

1.2 ROLE OF CHOLESTEROL IN INFECTION AND IMMUNE FUNCTION

Recent studies have indicated that cholesterol and the lipoprotein system play an important

role in viral transport (Phalen an Kielen, 1991) and innate immunity (Feingold et al, 1997).

Various viruses (like alpha viruses) enter the cell through receptor-mediated endocytosis,

while cholesterol forms an essential part of infection for some viruses (Phalen and Kielian,

1991; Bernardes et al, 1998; Agnello et al, 1999; Gatfield and Pieters, 2000; Coppens et aI,

2000). Interestingly, Hsu and colleagues (1995) demonstrated that the human herpes simplex

virus 1 (HSV -1) infection of arterial smooth muscle cells may alter cholesterol trafficking,

leading to accumulation of cholesterol esters (CE). They furthermore showed that HSV-l

infection (a) increased LDL binding and uptake, LDL receptor mRNA steady state and gene

transcription; (b) increased CE synthesis and 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase activity but reduces CE hydrolysis and cholesterol efflux; (c)

decreased both lysosomal and cytoplasmic CE hydrolytic [acid CE hydrolyse (ACEH) and

neutral CE hydrolase (NCEH)] activities, where the latter enzyme is PKA-sensitive; and (d)

reduced PKA activity after infection. Gatfield and Pieters (2000) indicated that cholesterol is

essential for the cellular uptake of mycobacteria and also for the phagosomal association of

TACO (tryptophane aspartate-containing coat protein), which prevents degradation of

mycobacteria by lysosomes. It has also been reported that multiple viruses use the LDL
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receptor for cellular entry, such as Rous sarcoma VIrUS A (Bates et al, 1993), human

rhinovirus (Hofer et al, 1994) and hepatitis C virus (Agnello et al, 1999).

Infection and inflammation induce a wide array of protective metabolic changes (the acute

phase response) which is mediated by cytokines, primarily at the level of gene transcription.

Various studies have shown that lipoproteins bind, neutralise and compete with certain

pathogens (Owens et aI, 1990; Xu et al, 1993; Hofer et al, 1994). It has been demonstrated

that certain viruses compete with LDL for LDL receptor entry into the cell (Hofer et al, 1994),

thus elevated LDL levels in certain species may compete with viruses and may play a

protective role. Apolipoproteins (apo), like apo A-I, have been shown to neutralise several

viruses, including the human immunodeficiency virus (HIV) by inhibiting virus-induced cell

fusion (Owens et al, 1990). LDL has also been shown to bind certain viruses, after which the

LDL is oxidised, attracting macrophages, which may kill the organism (Xu et al, 1993).

Human HDL has the ability to lyse certain pathogens and it has been shown that by increasing

serum HDL (by over-expressing Apo A-I) after endotoxin treatment, survival is improved

(Levine et al, 1993).

1.3 THE ROLE OF CHOLESTEROL IN APOPTOSIS

Apoptosis is a physiologically regulated process essential in the development and homeostasis

of metazoan animals (Gerschenson and Rotello, 1992; Barinaga, 1994; Steller, 1995).

Apoptosis is characterised by the formation of large membrane proturbances, also known as

"zeiosis" (Stacey et al, 1985) and cell shrinkage (Cohen et al, 1992). The most typical feature

at the molecular level is chromatin condensation and DNA degradation (Hotz et al, 1994).

The apoptotic bodies shed during apoptosis are phagocytised by macrophages (Savill, 1997).
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Apoptosis differs from the pathological process of necrosis, which can be triggered by various

processes including hyperthermia, hypoxia, ischaemia, complement mediated metabolic

poisons and direct cell trauma (Schwartzman and Cidlowski, 1993) (Figure 1).

Celsshrink
Org1llelles u nd an aged
Chromatin marginated

A PO PTOSIS

Formation of apoptotic bodies
Organelles ntect
Chromatin fragm91ted

Celislys.
Organelles detroyed
Chromatin detroyed

Cel conEnt relained

INFLAMMATION

Cel conents released

NO INFLAMMATION

Figure 1: Schematic presentation of the differences between the process of necrosis vs. apoptosis.

In the cell death cascade, where multiple proteins bring about apoptosis, a family of 10

cysteine proteases, called caspases, form an integral part in initiating this process (Voss and

Cotton, 1998;Alnemri et aI, 1996).

Cholesterol forms an essential part of the cell cycle and its role in apoptosis IS well

established. Cholesterol homeostasis, as previously mentioned, is under strict control of a

feedback regulatory system modulated by SREBPs (Goldstein et al, 1995). SREBPs regulate
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transcription of genes encoding the LDL receptor and multiple enzymes involved in the

cholesterol and fatty acid biosynthetic pathways (Brown and Goldstein, 1998). SREBPs are

proteolytically activated in a two-step cleavage process dependent on cellular cholesterol

concentrations (Brown and Goldstein, 1997).

During apoptosis, SREBP's are proteolytically cleaved, irrespective of sterol status, by two

members of the caspase family (CPP32 and Mch3), which share 54% homology, but differs in

pH (Wang et al, 1996; Pai et al, 1996). The mevalonate pathway (responsible for endogenous

cholesterol synthesis) provides isoprenoids for the cell cycle and farnesyl for p21 ras activity

(Goldstein and Brown, 1990). Interestingly, inhibition of this pathway triggers apoptosis in a

wide variety of cells (Padayatty et al, 1997; Clutterbuck et al, 1998; Choi et al, 1999). It thus

seems unlikely that the activation of SREBP during apoptosis is to provide isoprenoids and

farnesyl, but rather for the provision of cholesterol to maintain plasma membrane integrity

(Hartel et al, 1998).

2 REGULATORY REGIONS

Regulation of transcription is an essential prerequisite for homeostasis and considering the

complex nature of the eukaryotic genome, unmitigated initiation of genes can be detrimental.

The initial predictions formed with regard to the molecular structure and genomic

organisation of eukaryotic genomes were obtained from investigating prokaryotes (Ringe,

1992). Although great similarities exist between eukaryotic and prokaryotic genes, expression

and regulation of eukaryotic genes demands a more complex approach. A basic rule in

eukaryotic systems is that, in general, if a cell does not require a gene product, that gene

would not be transcribed (Ringe, 1992). The expression of genes are dependent, in part, on the
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combination of both cellular and environmental triggers and the underlying interaction

between the signals (pugh, 2000). The regulatory domains of genes are called promoters, and

can encompass several hundred to several thousand base pairs of DNA (Arnone et al, 1997).

2.1 Basic structure

Transcription of genes is dependent on various enzymes, of which the RNA polymerases are

the most important for the transcription of the different types of RNA in cells. Given the

intricate organs and specialised cells of eukaryotes three different polymerases exist, each

making a different kind of RNA (messenger RNA, ribosomal RNA, transfer RNA) (Ringe,

1992). Each RNA polymerase recognises a different promoter type, of which RNA

polymerase II promoters are the most well-known.

Promoters recognised by RNA polymerase II are very similar to prokaryotic promoters and

contains various binding sites for gene-specific regulatory proteins as well as a core,

composing of a TAT A box (an A- T rich sequence) and / or initiator elements close to the

transcription initiation site (Ringe, 1992; Pugh, 2000). Although the level of transcription

relies heavily on the transcriptional activators triggered at certain times, the general

transcription machinery assembles over the core promoter and transcription is initiated at the

initiator. Binding ofTATA-binding proteins (TBP) to the TATA box, seems to be essential

for the activation and / or deactivation of transcription (Pugh, 2000). After the binding of

various enhancers and the formation of the TBP complex, RNA polymerase (pol) II is

recruited to initiate transcription. Once homeostasis is restored, inhibitors are activated to

compete with the RNA pol II to deactivate transcription (Pugh, 2000).
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Within promoter regions there can be dozens of regulatory elements of various kinds which

act as binding sites for distinct transcription factors (Arnone et al, 1997). Interestingly, the

presence of a particular regulatory element in a promoter does not reveal much about its

influence on the expression of a given gene. There appears to be little logic in the organisation

of regulatory elements and even less in the way they interact to regulate gene expression. The

same regulatory element can activate transcription in one promoter while it represses

expression in another. To decipher how various regulatory elements within a promoter work,

extensive experimental analyses are needed, which is not always predictable. There are

apparently many ways to switch a gene on or off or to modulate transcription of a given gene

depending on the stimulus and the cell type.

A detailed description of the promoter regions of the LDLR and apolipoprotein (apoB) genes

is given below, since the present study focuses mainly on the possible role of LDL or LDL-

cholesterol in diseases that represent major health problems in the local population. Mutations

in these genes may underlie the familial hypercholesterolaemia (FH) phenotype, a condition

that has been a focus of research in South Africa ever since it was recognised as a major cause

of cardiovascular disease (CVD) in the Afrikaner population of European ancestry. The high

prevalence of FH in this population, shown to be due to a founder effect (Kotze et al, 1991), is

in striking contrast to the apparently low prevalence of this disease in Africans. The detection

several different polymorphisms in the promoter region of the LDLR gene in populations of

African origin, whilst apparently absent in Caucasians (Appendix A-C), raised the possibility

that some of these alleles may interact with other mutations in the LDLR gene, thereby

modifying clinical expression of FH.
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2.2 LDLR gene promoter

Low density lipoprotein (LDL) (the most important cholesterol-carrying lipoprotein in human

plasma) and the LDL receptor (LDLR) playa pivotal role in the clearance ofLDL cholesterol

from circulation in the whole body through receptor-mediated endocytosis (Brown and

Goldstein, 1986). The LDLR gene is located on the short arm of chromosome 19 (p 13.1-

pI3.3) (Yamamoto et al, 1984; Sudhof et al, 1987) and mutations in this gene underlie

familial hypercholesterolaemia, a condition characterised by elevated cholesterol levels

(Goldstein et al, 1995). Regulation of the LDLR gene is mediated by sterols through a

negative feedback mechanism; transcription is initiated when cellular sterol levels are low and

down regulated when sufficient sterols are present.

Figure 2 illustrates the essential regulatory region of the LDLR gene that encompasses three

direct imperfect repeats (16 bp in length) and two TATA-like sequences (7bp in length),

located within 200bp upstream of the transcription initiation site (Goldstein et al, 1995).

Repeats 1 and 3 bind Spl, a transcription factor essential for basal transcription of the LDLR

gene (Sudhof et al, 1987; Dawson et al, 1988). Repeat 2, designated the sterol regulatory

element (SRE-l), is essential for high levels of transcription in the absence of sterols, while

sterol-mediated repression is also achieved through this region (Smith et al, 1990; Briggs et

al, 1993; Koivisto et al, 1994). Interestingly, two additional cis-acting elements (designated

footprinting 1 (FP1) and footprinting 2 (FP2), respectively) have also been identified

upstream of the three repeats and is thought to be essential for maximal induction of

transcription (Mehta et al, 1996). Dhawan and colleagues (1997) proposed a possible

interaction between the FP 1 and SRE-l sites. In vivo evidence for this possible effect was

,:\.~,\r5B:8,
",,_j ;(~ ....

"!~ <.?01
-;: "'
::, ~1

u. S. '.
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observed in an individual (with normal cholesterol levels) reported to have a LDLR promoter

variant in both these elements (Scholtz et al, 1999). Variant -59 (Crr) significantly decreased

LDLR transcription, while variant -124 (CIT) markedly increased LDLR gene expression in

vitro.

5'--~

Repeat 2 Repeat 3 TATA-oox TATA-box +1

Initiation

Figure 2: A graphic presentation of the basic cis-acting elements and transcription factors of LDLR gene
promoter active in sterol-mediated regulation. Repeat I and 3 bind Spl, while repeat 2 contains the sterol
regulatory element 1 (SRE-l) which bind sterol SRE-binding proteins (SREBPS). Footprinting 1 and 2 (FPl and
FP2) are newly defined elements. The arrow connecting FPl and SRE-I is indicative of the suggested interaction
between the two elements.

Although the mode of interaction between the SRE-1 and FP1 sites is still undefmed, Dhawan

and colleagues (1997) demonstrated, using protein-binding assays, that two unknown nuclear

proteins bind to the FP 1 site. They furthermore speculated that these proteins, which they

designated p50 and p125 (due to their respective sizes), could be part of a family of

transcription factors which recognise and bind identical DNA sequences, or that p50 could be

the proteolytically active form ofp125. This report further demonstrated that p125 appears to

be relevant to LDLR gene transcription since mutations at the crucial sequences in FP1

(positions -135/-136) abolished binding of this protein as well as FP1 induced transcription of

the gene.

Although the importance of the LDLR gene in cholesterol metabolism as well as sterol-

mediated regulation of the gene is well described, recent reports indicated that this only

skimmed the surface of the LDLR gene in the overall homeostatic picture. The LDLR gene

has been shown to play an important role in the inflammatory response, in such a manner that
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it can be considered a primary response or immediate early response gene (Makar et al, 1994;

Dhawan et al, 1999). Interestingly, Cuthbert and Lipsky (1990) showed that among the

cellular processes initiated upon mitogen activation, an increase in LDLR gene expression

could also be observed, irrespective of ambient sterols. This fmding therefore implies a role

for stimuli, other than sterols, which is important for cellular activation in regulation of the

LDLR gene. Various reports have provided evidence that the LDLR gene can also be induced

in a sterol independent fashion (Makar et al, 1994, 1998,2000; Liu et al, 2000).

2.2.1. Cytokines

The finding that various stimuli can induce transcription of the LDLR gene, both independent

and dependent on sterol levels, has made it important to determine which essential regulatory

elements are important for gene transcription. Liu and colleagues (2000) identified a sterol

independent regulatory element (designated SIRE) in the LDLR gene, involved in cytokine

(oncostatin M (OM)) induced transcription. This region spanning position -17 to -1

overlapped with the previously described TAT A-like element and contained an activator

CCAAT / enhancer binding protein (CIEBP) element (-17 to -9) and a cAMP response

element (CRE) (-8 to -1). Of interest is the fact that the proximal Spl binding site is

dispensable, but the binding of a strong transcriptional activator in a location proximal to the

SIRE is necessary for this element to function as an independent cis-acting element to activate

LDLR gene transcription. Another cytokine, tumor necrosis factor alpha (TNFa), have been

reported to induce transcription of the LDLR gene (Harada et aI, 1990). Hamanaka et al

(1992) also showed that apart from induction of LDLR gene transcription, TNFa also

increased interleukin 1 (lL-1), another cytokine which increases LDLR gene transcription.

Although the mechanism responsible for TNFa-mediated induction of the gene is still

unclear the increase in Sp 1 gene expression and enhanced binding of Sp 1 to the binding sites,
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might confer a possible modus operandi for gene activation (Hamanaka et al, 1992). Various

other cytokines including interleukin 1P (IL-l P) (Stopeck et ai, 1993) and interleukin 6 (IL-6)

(Ruan et aJ, 1998) have been reported to similarly induce transcription of the LDLR gene,

each through different mechanisms. TNFa and IL-l p seem to be sterol dependent (Stopeck et

al, 1993) while OM and IL-6 stimulation appear to be sterol independent (Liu et al, 1997;

Gierens et aI, 2000). Gierens and colleagues (2000) furthermore demonstrated that the

mechanism by which IL-6 stimulate LDLR gene transcription is through the activation of

nuclear factors binding to the SRE-l and the Spl site in repeat 2 and repeat 3, respectively.

The mechanism by which IL-1 P induce transcription of the LDLR gene is through activation

of extracellular signal-regulated kinase (ERK), a subfamily of the mitogen activated protein

kinase (MAPK) cascade (Kumar et al, 1998). Most of these cytokines have mitogenic

activities and their effect on LDLR gene transcription might be due to their mitogenic action

(Hamanaka et al, 1992).

2.2.2. Hormones and growth factors

Apart from cytokines, stimulation of the LDLR gene by hormones and growth factors has also

been reported. The hormone-sensitive region of the LDLR gene has been located between

positions --69 to -36, which contains the SRE-1 and Spl regulatory sites (Streicher et al,

1996). This report demonstrated that insulin and insulin-like growth factor 1 (IGF-l) induce

transcription of the LDLR gene via the SRE-l site through SREBP-l I -2 binding.

Interestingly, platelet-derived growth factor (pDGF) also activated transcription of the LDLR

gene through this region (Mazzone et aJ, 1989), although the molecular mechanism appears to

be different. Roth et al (1991) furthermore demonstrated that although PDGF seems to

stimulate transcription of the 3-hydroxy-3-methylglutaryl-CoA (HMG-Co) reductase gene

through protein kinase C (PKC- a family of 10 closely related isotypes involved in
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transmembranous signal transduction), its effect on LDLR gene transcription appears to be

independent of PKC. Basheerudin et al (1995) illustrated that PDGF activation enhanced

binding ofSp1 to the LDLR gene, independent of new Spl protein synthesis.

Other hormones, like estrogens, have important cardio-protective properties through

beneficial effect on lipids and lipoprotein metabolism (Walsh et al, 1991; Lobo, 1991; Hong

et al, 1992; Samsioe, 1994; Grodstein and Stampfer, 1995). Estrogens have been shown to

increase clearance of LDL (Walsh et aI, 1991) and lower plasma LDL levels (Walsh et al,

1991; Lobo, 1991; Nabulsi et al, 1993; Samsioe, 1994). Croston et aI (1997) recently

illustrated that estrogen may upregulate transcription of the LDLR gene in an estrogen-

receptor (ER)-dependent manner, even though the molecular mechanism is undefmed.

Recently, the molecular mode of operation were elucidated by Li et al (2001), who

demonstrated that ER-mediated transcription occurs through interaction with Spl and

mutations inhibiting Spl binding may abolish ER-mediated activation. This study further

showed that ER enhanced binding of Sp I-repeat 3 complexes. Although SRE-l was not

directly involved in ER activation, it does seem to be important for optimisation of estrogen's

effect on the LDLR gene, suggesting interaction between the Spl-ER complex and the SRE-1

site (Li et al, 2001). Other growth factors and hormones, comprising epidermal growth factor

I (EGF-l) (Graham and Russel, 1994), hepatocyte growth factor-l (HGF-1) (Pak et al, 1996)

as well as follicle stimulating hormone (FSH) (LaVoie et al, 1999), also affect LDLR gene

transcription irrespective of sterol status.

2.2.3. MAPK and protein synthesis inhibitors

Mitogen-activated kinases (MAPK) are important in mediating cellular responses to various

extracellular stimuli (Marshall, 1995; Seger et al, 1995; Treisman, 1996; Robinson and Cobb,
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1997). The MAPK cascade compnses protein kinases, which are important for cell

proliferation and play a role in both endorsing (p46/54JNK and p38MAPK
) and contesting

(p42/44MAPK
) apoptosis (Robinson et al, 1997). Of interest to this study is the fact that these

protein kinases may phosphorylate and regulate the activities of several transcription factors,

including cyclic AMP responsive element binding proteins (CREB) which regulate

transcription of numerous immediately early (IE) response genes (Cano and Mahadevan,

1995; Hazzalin et al, 1998). Certain members of the MAP kinases (p46/54JNK and p38MAPK
),

and their subfamily members, are strongly activated in response to stress stimuli. Due to its

importance in various cellular processes, the MAPK cascade is under tight control by MAPK

kinase kinases and MAPK kinases (Marshall, 1995;Waskiewicz and Cooper, 1995).

Interestingly, anisomycin, the most potent protein inhibitor, has the ability to specifically

activate p46/54JNK and p38MAP
\ as well as induce transcription of the LDLR gene through

various mechanisms (Dhawan et al, 1999). Since anisomycin has the ability to act as a

stimulant for various signal transduction pathways as well as inhibit translation, Dhawan and

colleagues (1999) set out to determine whether anisornycin-induced transcription is due to

translational arrest. This study illustrated that the effect of anisomycin could not be due to

translational arrest because other protein synthesis inhibitors such as cyclohexamide (CHX)

and puromycin did not produced these effects, and induction of transcription was also

observed at anisomycin levels below that required for efficient inhibition of protein synthesis.

It was further demonstrated that a mild activation of the p42/44MAPK cascade could increase

transcription of the LDLR gene (Dhawan et al, 1999). It is important to bear in mind that apart

from anisomycin numerous extracellular signals like cytokines (IL-I P; TNFa) (Kumar et al,

1998) employ the p42/44MAPK cascade to upregulate the LDLR gene (Dhawan et al, 1999). Of

note is the finding that the p38MAPK pathway also seems to affect the transcription of the

LDLR gene (Kumar et aI, 1998). Kotzka and colleagues (1998) also demonstrated that the
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effect of insulin and PDGF on LDLR gene transcription is linked to the MAP kinase cascade.

These and other reports indicate a critical role for the MAP kinase cascade in LDLR gene

response.

2.2.4. ACE-inhibitors and CCB's

Angiotensin-converting enzyme (ACE) inhibitors and calcium channel blockers (CCB's) also

appears to have cardio-protective abilities through its efficacy in lowering blood pressure and

upregulation of LDLR gene transcription in a protein kinase C (PKC)-dependent manner

(Block et aI, 1993). Interestingly, its been shown that CCB's slightly reduce circulating

cholesterol concentration in plasma and can therefore correct disturbances of cholesterol

metabolism at the cellular level (Etingin and Hajjar, 1990). Similarly, the positive

transcriptional effect of ACE-inhibitors can possibly explain its beneficial role in organ

protection (Ambrosioni et al, 1987). Even though Block et al (1993) showed that CCB's and

ACE-inhibitors increase binding and internalization of extracellular LDL-cholesterol esters,

even at therapeutic concentrations (nanornolar), they failed to block transcription of the

HMG-CoA reductase gene, excluding a relevant influence on cellular cholesterol

biosynthesis. It is also interesting that different CCB's use different signal transduction

pathways to upregulate the LDLR gene (Ruan et al, 1999). It was shown that the calmodulin

pathway is commonly used for upregulation of the LDLR gene through diltiazem and

verapamil, while the tyrosine kinase and PKC signal transduction pathway also seem to be

involved in induction by verapamil. Differential effects were also observed between

nifedipine and the two CCB's (diltiazem and verapamil) on LDLR gene expression and

protein uptake. Nifedipine appeared to have an inhibitory effect on LDLR mRNA production

and binding. Ma and colleagues (1986) also provided evidence that the HMG-CoA reductase
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inhibitor mevinolin induced transcription of the LDLR gene thereby lowering circulating

plasma cholesterol levels.

2.2.5. IT1

Yin Yang 1 (YY1) is a multifunctional protein which act as an activator, repressor or initiator

of transcription of both cellular and viral genes (Shi et al, 1997). YY1 binds to a core CCAT

or ACAT motif and shows substantial heterogeneity in the flanking nucleotides. In 1999

Ericsson and colleagues illustrated that YY1 repress transcription of three SREBP-responsive

genes, even though they failed to demonstrate the mechanism of repression of YY1 on the

LDLR gene. Bennett and co-workers (1999) however, demonstrated that repression of the

LDLR gene by YY1 seems to be independent of direct binding by YYl to the LDLR

promoter region. This study indicated that YY 1 interacts with Sp 1 in solution and the same

region utilised for YY I-Sp 1 interaction is also needed for interaction between Sp 1 and

SREBP. Thus, the specific interaction between Sp 1 and SREBP, which upregulate

transcription of the LDLR gene, is specifically targeted by YY1 for inhibition of transcription.

It is of interest that YY1 can similarly interact with cAMP response element binding protein

(CREB) to repress transcription in several genes (Zhou et al, 1995).

2.3 Apolipoprotein B gene promoter

Apolipoprotein (Apo) B is an important component of all lipoproteins involved in

atherogenesis, including LDL and lipoprotein (a) (Young et al, 1990). The two forms ofapoB

(apoB-48 and apoB-100) are encoded by the same gene which has been localised to

chromosome 2 (Lusis et al, 1985; Law et al, 1985; Knott et al, 1985; Deeb et al, 1986;

Glickman et al. 1986). Ap08-] 00 is synthesised exclusively by the liver where it plays an
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important role in the assembly of various lipoproteins, including LDL, while ApoB-48,

synthesised by the gut, is necessary for the assembly of chylomicrons (Kane et al, 1980;

Havel and Kane, 1989). The only difference between ApoB-100 and ApoB-48 molecules is

that the ApoB-48 is produced by a unique RNA process where the apoB protein is truncated

(powell et al, 1987; Chen et al, 1987). Mutations in the ApoB gene can lead to abnormally

high or low apoB and LDL cholesterol levels, depending on the mutation type (Young et al,

1990). ApoB is essential for the clearance of LDL cholesterol from plasma as well as

receptor-mediated endocytosis. Elevated cholesterol (LDL levels), as seen in familial

hypercholesterolaemia, is commonly due to defective receptor mediated uptake ofLDL. Since

apoB is the ligand mediating LDL binding to the receptor, similar clinical features can be

expected if genetic abnormalities are present in the apoB gene. Familial defective

apolipoprotein B-I00 (FDB), a condition mimicking these clinical features, have been

reported and the genetic abnormality underlying this disease, characterised (Vega and

Grundy, 1986). The mutation at amino acid 3500, which changes a glutamine residue to an

arginine, were consistently found in individuals showing clinical features similar to FH, but

without mutations in the LDLR gene (Soria et al, 1989; Innerarity et al, 1990). To date quite a

few mutations have been identified which causes hypobetalipoproteinemia, a syndrome

characterised by abnormally low apoB and LDL cholesterol levels (summarised by Farese et

al, 1992)

It has been shown that the region 5kb upstream and 1.5kb downstream of the apoB gene is

sufficient for hepatic expression, while an additional 315 bp intestinal enhancer is necessary

for intestinal expression (reviewed in Zannis et al, 2001). Transcription factors essential for

regulation of the apoB gene include the CCAAT enhancer binding protein (CIEBP),

hepatocyte nuclear factor-S (HNF-3), hepatocyte nuclear factor-4 (HNF-4) and various other
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nuclear factors, which bind to the proximal and intestinal enhancers. Nucleotides -150 to

+ 124 can initiate transcription of the ApoB gene in hepatic and intestinal cells in vitro, but not

in vivo (Kardassis et al, 1990; Kardassis et al, 1991; Brooks et al, 1994). Through in vitro

mutagenesis, Kardassis and colleagues (1991) demonstrated that the nucleotide region -112 to

-95, which binds HNF-3, is essential for transcription. This region also contains a hormone

response element (fIRE) which binds orphan (ARP-l and HNF-4) and ligand-dependent

nuclear receptors in the -86 to -62 region and CIEBP in the -72 to -54 region. Mutations

abolishing DNA-protein binding reduce transcription of the apoB gene significantly

(Kardassis et al, 1991). The proximal promoter contains various additional CIEBP binding

sites that do not affect transcription to a similar extent (Figure 3). Interestingly, Brooks and

co-workers (1991) demonstrated that intron 2 (+621 to + 1064) has a 3-5 fold enhancing effect

on the strength of the ApoB promoter. This study furthermore demonstrated that the inclusion

of the second enhancer region was sufficient for liver-specific but not intestinal-specific

expression of the ApoB gene (Brooks et al, 1991). The region -3067 to -2736 contains a

silencer element, which have been shown to suppress the ApoB promoter in CaC02 cells but

not HepG2 cells (Paulweber et al, 1993). This region binds CIEBP, ARP-l and HNF-4.

Ladias and Karathanias, (1991) illustrated that ARP-l and HNF-4 share sequence homology

and have shared DNA binding specificity. When these two elements recognise the same

binding site, ARP-l inhibits HNF-4 mediated transcription (Ladias et al, 1992), but when

binding to unique sites, ARP-l has the capacity to enhance the activity of HNF-4 through

protein-protein interaction (Ktistaki and Talianidis, 1997; Kardassis et al, 1998). The

intestinal enhancer was localised within 315 bp approximately 57 kb upstream of the ApoB

gene (Antes et al, 2000). This region contains binding sites for liver-specific transcription

factors (CIEBP beta, HNF-3 beta, HNF-4), and can upregulate transcription of a minimal

promoter in the absence of these transcription factors (Figure 3).
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3. OBJECTIVES

3.1. To investigate the potential role of LDLR promoter polymorphisms in the aetiology

of various diseases where lipoprotein metabolism may be involved.

It has recently been suggested that a promoter variant at nucleotide position -175 (g~t) of the

LDLR promoter may contribute to the phenotypic expression of familial

hypercholesterolemia (FH) in Black patients (Thiart et al, 2000/Appendix B). Since family

studies indicated that this variant is not responsible for the FH phenotype on its own, it seems

plausible that it may jeopardises the ability of carriers to handle certain metabolic stresses,

thereby contributing to disease risk in genetically predisposed subjects.

3.2. To determine the possible role of the -59 e-s-t mutation in repeat 2 of the LDLR

gene in apoptosis

Cholesterol is very important in maintaining cell membrane integrity, which is essential for

apoptosis. Scholtz et al (1999/Appendix A) identified a mutation at nucleotide position -59

(CIT) of the LDLR promoter, which markedly reduce transcription of the LDLR gene. This

variant is located within the sterol-regulatory element-I (SRE-l), which is important for

sterol-mediated regulation of the LDLR gene (Dawson et al, 1988; Smith et al, 1990).

Mutations at position -59 of the LDLR gene promoter have been shown to abolish binding of

SREBP to the SRE-l site (Smith et al, 1990). SREBP, which bind to SRE-l, plays an

important role in the regulation of various pro- and anti-apoptotic genes. This prompted the

investigation of the effect of the naturally occurring -59 e-s-t mutation on apoptosis.
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3.3. To assess the significance of lipoproteins in host defense

It has recently become apparent that lipoproteins play an important role in innate immunity

(Feingold and Grunfeld, 1997). Infection and inflammation induce a wide array of protective

metabolic processes, which is mediated by cytokines. The induction by cytokines is primarily

at the level of gene transcription. The LDLR gene can be considered an immediate early (IE)

or primary response gene and it has been reported that various stumuli, other than sterols, can

induce transcription of the gene (Makar et al, 1994; Dhawan et al, 1999). This has prompted

the screening of subjects infected with human immunodeficiency virus (Hl V) for variation in

the LDLR promoter, to determine the possible significance of variation in this gene region in

the pathogenesis of infectious disease.
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Abstract

A -175 g~ variant was recently identified in the footprinting 2 (FP2) regulatory element of the low

density lipoprotein receptor (LDLR) gene promoter. In an attempt to defme the possible phenotypic

effect of this variant, mutation analysis was performed on DNA of 414 South African individuals,

on whom full clinical, biochemical and physiological parameters were available. In order to

minimise confounding effects that may result from population substructures (due to difficulties in

selecting matched cases and controls), the study population was recruited from the general Coloured

population (Mamre community). Subjects with the

-175g~t variant (51/414) presented with a significantly increased diastolic blood pressure

(difference 4.2 mmHG, 95% CI: 1.0 to 7.4 nunHG) compared with those who tested negative

(p<O.Ol). Although the polymorphism was not associated with systolic blood pressure, the direction

of the estimated effect (difference 3.7 mmHG, 95% CI: -1.7 to 9.0 nunHG) was close to that

observed in the diastolic blood pressure regression model. Previous haplotype studies have largely

excluded the possibility that these fmdings may be related to association with another mutation or

gene, since the -175t allele occurs on different chromosomal backgrounds. The significant

association detected between the apparently African-specific variant -175g~t and diastolic blood

pressure therefore suggest that variation in the LDLR promoter may predispose individuals with an

African genetic background to hypertension, or may reflect the inability of carriers to handle certain

metabo lie stresses.
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Introduction

African populations in many developing countries are experiencing rapid urbanisation

characterised by a double burden of disease in which noncommunicable diseases become more

prevalent and infectious diseases remain undefeated (Vorster et al, 1999). While the rates of

coronary heart disease (CHD) remain relatively low in the Black population of South Africa,

high rates of hypertension, stroke, and obesity are observed in this group (Walker et al, 1993).

Since disease risk would be significantly increased in genetically susceptible individuals,

genetic studies aimed at disease prevention should be focussed on identification of mutations

that may be of relevance in the process of nutritional transition. Genes involved in lipoprotein

metabolism, such as those underlying familial hypercholesterolaemia (FH), may represent good

candidates for such studies due to the finding that the frequency and spectrum of mutations in

the low-density lipoprotein receptor (LDLR) gene contribute significantly to ethnic differences

in disease risk (Loubser et al, 1999; Thiart et al, 2000).

Although more than 600 mutations underlying FH have been identified in the coding region of

the LDLR gene (Hobbs et al, 1992, Day et al, 1997, http://www.ucl.ac.ukffb ; Varret et al, 1998,

http://www.umd.necker.fr). promoter variants appear to be rare (Top et al, 1992). Recently,

several sequence changes have been identified in the promoter region of the LDLR gene in

African populations, whilst apparently absent in Caucasians (Scholtz et al, 1999). The most

Commonvariant, -175g-H, was over-represented in Black FH patients compared to population-

matched controls, even though family studies demonstrated that this mutation alone does not

cause the FH phenotype (Thiart et al, 2000). Haplotype studies have excluded the possibility

that this finding is due to association of the -175t allele with another mutation in the LDLR

gene, since the sequence change occurs on different chromosomal backgrounds (Hoogendijk,

1999; Thiart et al, 2000). It therefore is highly likely that the
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-175g--+t LDLR promoter variant enhances the FH phenotype in LDLR-deficient patients,

particularly since it has been detected in cis with two different missense mutations in the LDLR

gene (Scholtz et al, 1999; Thiart et al, 2000). It has previously been shown that the combined

effect of two LDLR gene mutations occurring on the same chromosome may lead to abnormal

receptor function, while the individual mutational effects did not reach statistical significance

(Jensen et al, 1997).

In the present study extended analysis of 414 South African individuals of mixed ancestry

(Coloured population) were performed, in an attempt to define the possible phenotypic effect of

the -175g--+t LDLR promoter variant. This recently admixed but genetically distinct population

has been defined as an ideal group to investigate the genetics of complex traits such as

hypertension, diabetes and obesity (Loubser et al, 1999). Since previous studies have

demonstrated an association between polymorphisms (ApaLI, Hincll) in the LDLR gene and

obesity in essential hypertensives (Zee et al, 1992; 1995), we focussed on these conditions.

Materials and Methods

Subjects

Blood samples were collected with informed consent from 414 individuals (Table 1) of the

Coloured population of South Africa, a people of mixed ancestry (KhoiSan, West African

Negro, Madagascar, Javanese, Malay and European origin) (Nurse et al, 1985; Loubser et aI,

1999). In order to minimise the likelihood of population substructures, all study participants

were recruited randomly from the Moravian mission Mamre, located on the western perimeter

of the Swartland. For the purpose of this study body mass index (BMI), blood pressure

(diastolic and systolic blood pressure), and the diagnosis (Hblood) and use of high blood

pressure medication (HbloodM) were denoted. Blood pressure was recorded in all study
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participants as previously described (Steyn et al, 1996). The diastolic blood pressure was taken

as the point of disappearance of the Korotkoff sound (phase V). Three intermittent readings

were taken and recorded. The minimum diastolic blood pressure reading together with the

corresponding systolic reading was applied in this study.

DNA Analysis

Genomic DNA was amplified by the polymerase chain reaction (PCR) using previously described

primers spanning the -175g-H polymorphism of the LDLR gene (Thiart et al, 2000). Mutation

detection was performed using a combined heteroduplex-single-strand conformation polymorphism

(HEX-SSCP) technique (Kotze et al, 1995). PCR products demonstrating altered mobility were

verified by repeated HEX-SSCP analysis together with a positive control sample for the -175g-H

variant and/or direct sequencing on an automated system ABI31 O.

Statistical Analysis

Linear regression was used to model diastolic and systolic blood pressure on a set of covariates.

The covariates included age, sex, body mass index (BMI), high blood pressure medication

(HbloodM), LDL particle size and the -175g~t polymorphism as well as significant

interactions between them. Since LDL particle size was not determined on all 414 individuals,

the linear regression models included only the samples (404) with LDL particle size

determinations. P-values <0.05 were regarded as statistically significant.
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Results

HEX-SSCP analysis of 414 Coloured individuals from the general South African population

(Table 1) demonstrated the presence of the -175g-H LDLR promoter polymorphism in 51

subjects (12.3%). Since the clinical, biochemical and physiological features of four individuals

found to be homozygous for the -175g~t variant did not differ significantly from that denoted

in the heterozygous group (Table 2), the data of mutation-positive subjects were pooled for

further comparative analysis.

Table 2 shows mean values of BMI, blood pressure and lipid determinations in 51 subjects with

and 363 subjects without variant -175g~t. Diastolic blood pressure appears to be significantly

associated with the promoter variant (p=0.047). Using linear regression, covariates were

independently modelled against both diastolic and systolic blood pressure (Table 3). The -175t

allele again showed a significant effect (p=0.009) on diastolic blood pressure (4.2 mmHG, 95%

CI: 1.0 to 7.4 mmHG) compared to subjects without this variant. Although the polymorphism

did not have a significant effect on systolic blood pressure (p=0.18), the direction of the

estimated effect (3.7 mmHG, 95% CI: -1.7 to 9.0 mmHG) was close to that observed in the

diastolic blood pressure regression model. Several covariates, including age, gender, BMI and

the use of high blood pressure medication, showed significant effects on diastolic and systolic

blood pressure, independently as well as in combination with each other. LDL particle size

modelled against both diastolic and systolic blood pressure did not affect diastolic blood pressure

(p=0.5), but significantly affected systolic blood pressure (p=0.0 1) (K. Steyn et al, unpublished

data).
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Table 1. Characteristics of the study population

Variable
Age
BMI
DBP
SBP
TC
Trig
HDL
LDL

MALES (n=175)
Mean SD Range
37.54 16.844 15.0-76.0
23.35 5.021 15.2-41.2
77.68 15.502 46.0-138.0
132.29 24.67 98.0-232.0
5.18 1.159 2.8-8.9
1.32 0.438 0.6-3.6
3.29 1.065 0.6-6.8
1.2 0.824 0.3-5.4

FEMALES (n=239)
Mean SD Range
39.3 16.968 15.0-80.0
27.56 6.996 15.5-51.9
73.67 13.03 44.0-116.0
126.8 26.165 76.0-242.0
5.41 1.26 2.8-9.6
1.31 0.362 0.6-2.6
3.61 1.146 1.2-7.3
1.03 0.529 0.3-3.2

BMI=body mass index; DBP=diastolic blood pressure; SBP=systolic blood pressure; TC=total cholesterol;TG=triglycerides;
HDL=high density lipoprotein; LDL=low density lipoprotein; SD=standard deviation.

~
00
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Table 2. Comparative analysis of various parameters in South African subjects with and without the -175g-H polymorphism.

-175 gg -175 gt -175 tt
Gender Variable Mean SD Range Mean SD Range Mean SD Range

Number 153 19 3
Age 37.46 17.103 15.0-76.0 36.26 14.383 15.0-64.0 50 18.52 29.0-64.0
BMI 23.31 4.963 15.2-41.2 23.84 5.811 16.5-36.4 21.85 3.364 18.4-25.2
DBP 76.99 15.114 46.0-138.0 81.58 17.238 52.0-110.0 88 23.065 66.0-112.0

Male SBP 131.9 24.665 98.0-232.0 133.37 21.798 98.0-184.0 145.33 46.49 110.0-198.0
TC 5.16 1.135 2.8-8.9 5.22 1.399 2.9-8.5 5.73 0.945 5.0-6.8
TG 1.19 0.773 0.3-4.4 1.22 1.206 0.3-5.4 1.63 0.493 1.3-2.2
HDL 1.31 0.426 0.6-3.6 1.44 0.535 0.7-2.4 1.13 0.351 0.8-1.5
LDL 3.3 1.07 0.6-6.8 3.12 1.059 1.3-6.2 3.87 0.97 2.9-4.7

Number 210 28 1
Age 39.72 17.32 15.0-80.0 36.46 14.24 18.0-66.0 30
BMI 27.6 6.969 15.5-51.9 27.23 7.436 16.0-46.5 28.59
DBP 73.53 13.182 44.0-116.0 74.57 12.243 56.0-102.0 78

Female SBP 126.7 26.306 76.0-242.0 127.86 25.9 98.0-190.0 114
TC 5.42 1.254 2.8-9.3 5.37 1.336 3.7-9.6 4.4
TG 1.03 0.512 0.3-3.2 1 0.653 0.4-2.7 0.6
HDL 1.31 0.358 0.6-2.6 1.38 0.392 0.6-2.1 0.9
LDL 3.63 1.152 1.2-7.3 3.53 1.137 2.2-6.6 3.2

Table 2/continue on page 50

+:>.
\0
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Table 2 / continued: Comparative analysis of various parameters in South African subjects with and without the -175g-H polymorphism.

-175 gg
Gender Variable Mean SD Range

Number 363

Age 38.77 17.242 15.0-80.0
BM1 25.79 6.548 15.2-51.9
DBP 74.99 14.113 44.0-138.0

i

Combined SBP 128.9 25.72 76.0-242.0
TC# 5.31 1.21 2.8-9.3
TG# 1.1 0.639 0.3-4.4
HDL# 1.31 0.388 0.6-3.6
LDL# 3.49 1.129 0.6-7.3

--- -- ---- -

-175 gt

Mean SD Range
47

36.38 14.141 15.0-66.0
25.86 6.963 16.0-46.5
77.4 14.708 52.0-110.0
130.09 24.231 98.0-190.0
5.31 1.348 2.9-9.6
1.09 0.912 0.3-5.4
1.4 0.451 0.6-2.4
3.37 1.114 1.3-6.6

-175 tt
Mean SD Range

4 P
value *

45 18.129 29.0-64.0
23.53 4.348 18.4-28.6 0.88
85.5 19.485 66.0-112.0 0.0473
137.5 41.065 110.0-198.0 0.2918
5.4 1.02 4.4-6.8 0.6664
1.38 0.655 0.6-2.2 0.7382
1.08 0.31 0.8-1.5 0.2506
3.7 0.812 2.9-4.7 0.7499

BM1 = body mass index; DBP = diastollic blood pressure; SBP = systolic blood pressure; TC = total cholesterol; TG = triglycerides; HDL = high
density lipoprotein; LDL = low density lipoprotein; SD = standard deviation
*Due to the small sample size of the homozygotes (-175 tt) their data were pooled with that of the heterozygotes (-175 gt) and p-values determined on
combined groups after correcting for age and gender
#Lipid levels are from Hoogendijk 1999 / Appendix C)

VIo
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Table 3: Parameter estimates of linear regression of diastolic and systolic blood pressure

Parameter

Intercept
Age

Sex (female)
HBloodM

-175 g-Ht

BMI

LDLpartt
HBlood

Age-HbloodM

BMI -HbloodM
BMI-LDLpart

Diastolic Blood Pressure

Estimate Standard Error P-value

134.5 10.78 0.0001
-0.34 0.13 0.0116
-5.55 1.17 0.0001
-59.39 11.30 0.0001
-4.23 1.63 0.0099
-0.71 0.22 0.0015
-4.84 7.26 0.5053
-14.56 2.52 0.0001
0.61 0.14 0.0001

0.03 0.13 0.0001
0.30 0.25 0.2535

Systolic Blood Pressure

Estimate Standard Error P-value

172.65 18.15 0.0001
0.81 0.22 0.0003
-8.35 1.97 0.0001
-46.80 19.02 0.0143
-3.67 2.75 0.1826
-1.68 0.37 0.0001
-32.14 12.21 0.0088
-22.95 4.24 0.0001
-0.17 0.23 0.4682
1.87 0.40 0.0001
1.16 0.43 0.0068

-----

HBloodM=high blood pressure medication; BMI=body mass index; LDLpart=LDL particle size; HBlood=high blood pressure diagnosis
t -175 variant present; t fairly small to small

VI-
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Discussion

The main objective of this study was to define the possible phenotypic effect of the -175 g~t

variant, shown to occur on different LDLR gene haplotypes (Hoogendijk, 1999; Thiart et aI,

2000). This mutation is located in the FP-2 cis-acting regulatory element of the LDLR

promoter, which contains a putative binding site for the multifunctional transcription factor, F-

ACTI (YYI) (Mehta et aI, 1996). Interestingly, this region containing the single base change

also shows strong homology (6 out of 8 bp) to the cAMP response element (CRE) which binds

CRE-binding proteins (CREB) (Sheng et aI, 1991). Since the CREB protein functions as a Ca2+_

regulated transcription factor, combined with the fact that LDLR gene transcription is induced

by calcium (Makar et aI, 1994), may shed some light on the mechanism by which elevated LDL

is associated with hypertension.

Since the -175g~t variant IS present In African populations while apparently absent in

Caucasians, we considered the likelihood that the relatively high frequency and statistically

significant association with hypertension in the Coloured study cohort could be the result of

population admixture. If there is a relationship between the frequency of hypertension and the

degree of admixture, the observed association may not necessarily indicate a relationship

between the LDLR gene and hypertension. Such a phenomenon is, however, unlikely, since the

Coloured population has prevalence rates of hypertension comparable to that in the South

African Black population (both approximately 25%), which does not differ significantly from

that (23%) in white males (15% in white females) (Seedat and Seedat, 1982). The -175 t allele

was detected at a carrier frequency of 3.8% in the KhoiSan population of South Africa,

(Hoogendijk, 1999), which contributed at least 40% to the gene pool of the Coloured population

(Loubser et aI, 1999). This indicates that the polymorphism was not introduced into the

Coloured population as a consequence of recent admixture with the Black population. Although
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cholesterol levels in the Coloured population is comparable to the Caucasians (Rossouw et al,

1985), but higher than the Black and Khoisan population (Hoogendijk, 1999 1Appendix C), the lack

of significant difference in cholesterol levels between individuals with and without the -175g-H

variant, furthermore argued against false association due to population substructures.

Although the precise mechanism is not clear, the significant association detected between the -

175 t allele and increased diastolic blood pressure in relation to the known effect of Ca2+ on

LDLR activity (Makar et aI, 1994), suggests that variation in the LDLR promoter might

predispose individuals to hypertension. A non-lipid mechanism may be involved, since it has been

shown that cholesterol lowering drugs such as pravastatin not only decreases cholesterol levels, but

also blood pressure, and that this reduction is independent of changes in plasma cholesterol levels

(Glorioso et al, 1999). The finding that cytokines, such as tumour necrosis factor alpha (TNFa)

shown to be elevated in hypertensive subjects, (Glenn et al, 2000) may also influence LDLR gene

transcription irrespective of sterol status (Ruan et aI, 1998), raises the possibility that a complex

interaction between external influences affecting LDLR activity may be involved in the

development of hypertension (in the African context). The association detected between intragenic

LDLR gene polymorphisms and obesity in essential hypertensives, but not in normotensives (Zee et

al, 1992; 1995), substantiates this hypothesis. Since glucose, insulin and BMI playa significant role

in hypertension, the effect of the -175g-H variant were also investigated using linear regression

models for each of these parameters. No statistically significant association could, however, be

detected between the -175g-H variant and any of these parameters (fasting glucose (P=0.576),

insulin (P=0.364) and BMI (P=0.882)) (data not shown). Further studies are warranted to

determine whether variant -175g-H directly causes hypertension, or only jeopardises the ability of

genetically susceptible individuals to handle certain metabolic stresses. Preliminary data in the

Black population of South Africa have indicated an increased frequency (4/18, 22%) of this

promoter polymorphism in hypertensives (H. Van Jaarsvelt and M.l Kotze, unpublished data)
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compared with the normal population where a similar heterozygote frequency (~5%) has been

described in different black tribes (Thiart et al, 2000/ Appendix B).

The significant association observed between the apparent African-specific -175g-H LDLR

promoter polymorphism and diastolic blood pressure may, at least in part, explain the relatively

high prevalence of hypertension in Africans (Steyn et al, 1996). Extended investigation of the

consequences of polymorphic variation in the LDLR promoter region may provide clues to

understanding the apparently low incidence of coronary heart disease in the Black population,

despite the high prevalence of other known risk factors such as hypertension and obesity

(Vermaak et al, 1991).
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Abstract

The low-density lipoprotein receptor plays an integral part of cholesterol homeostasis and is

under strict control of sterol regulatory binding proteins (SREBPs), which also regulate

transcription of various enzymatic pathways. CPP32 and Mch3, which form part of the family

of caspases reported to regulate apoptosis, can proteolytically cleave SREBP to its active

DNA binding form. A mutation (-59 c~t) identified in the sterol regulatory element (SRE-l)

in repeat 2 of the LDLR gene promoter, markedly reduced transcription of the LDLR gene in

vitro. This mutation co-segregated with the PH phenotype in the South African family, and

individuals with this mutation was investigated together with population, age and gender-

related controls to determine the significance of this variant on apoptosis. This study also

attempted to defme the links, if any, between cholesterol and the levels of immunological

cells present in these individuals as well as to determine whether any immunological deficits

may be present. This study strongly suggests that the -59 e-st mutation may inhibit apoptosis

under normal immunological conditions. The CD4 and CD8 T-cells seem to be the most

sensitive to the effects of this mutation and possibly also the eosinophils and basophils. We

thus conclude that the activation of the SREBP and thereby elevated LDLR expression is

essential for apoptosis induction under normal immunological conditions.
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Introduction

The importance of cholesterol in apoptosis is well established and it forms an integral part of

the cell cycle. Cholesterol is essential for maintaining the integrity of the cellular membrane

since, unlike necrosis, the cell membrane stays intact during apoptosis. The concentration of

cellular cholesterol is maintained by a finely tuned balance between the de novo synthesis

(mevalonate pathway) and the uptake of exogenous cholesterol via receptor mediated

endocytosis (low-density lipoprotein receptor (LDLR) pathway) (Goldstein and Brown,

1990). Cholesterol regulation is tightly controlled by a family of proteolytically activated

membrane-bound transcription factors, called sterol regulatory element binding proteins

(SREBP's) (Goldstein and Brown, 1990) through a negative feedback system. SREBP's and

other transcription factors are recruited to induce transcription when cellular cholesterol levels

are low, while optimum cellular cholesterol levels inhibit the recruitment of transcription

factors and transcription is down regulated (Brown and Goldstein, 1986). SREBP's regulate

transcription of the LDLR gene (Dawson et al, 1988; Smith et al, 1990), as well as the

expression of various enzymes regulating cholesterol homeostasis (Kawabe et al, 1999).

These enzymes include HMG-CoA synthase, HMG-CoA reductase, farnesyl pyrophosphate

synthase as well as regulators involved in triglyceride synthesis, glycerol-3-phosphate

acyltransferase and fatty acid synthesis. Interestingly, two members of the caspase family,

CPP32 (Wang et al, 1995,1996) and Mch3 (SCA-2) (Pai et al, 1996) (sharing 54%

homology), have both been shown to target SREBP during apoptosis, producing an active

SREBP molecule. This activation of SREBP is completely independent of the cellular

cholesterol level and occurs even if sterols are supplied to the cell at high levels (Wang et al,

1996). It seems unlikely that the activation of SREBP during apoptosis occur to provide

isoprenoids and farnesyl, which are products of the mevalonate pathway. Interestingly it has
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been shown that the inhibition of the mevalonate pathway (which is responsible for

endogenous cholesterol and the provision of isoprenoids for the cell cycle and farnesyl for

p21), induces apoptosis in a wide variety of cells (Clutterbuck et al, 1998; Padayatty et al,

1997; Choi and lung, 1999). It appears likely that the role of the activation of SREBP is to

provide cholesterol to maintain the integrity of the plasma membrane. This suggestion has

been supported by reports that the addition of small amounts of cholesterol incorporated into

the membrane enhances cell sensitivity to apoptosis (Hartel et al, 1998). Too much

cholesterol however, inhibits apoptosis, probably to protect the membrane from lipid

peroxidation.

The low-density lipoprotein receptor (LDLR) gene is essential for the recruitment of

exogenous cho lestero Iand contains a sterol regulatory element (SRE-l) in repeat two of its

promoter (Brown and Goldstein, 1986; Dawson et al, 1988; Smith et al, 1990). It has been

shown that variation in this region of the LDLR gene abolish binding of SREBP and

consequently results in down regulation of the LDLR gene (Dawson et al, 1988; Smith et al,

1990). Recently, variations in the LDLR gene promoter have been reported in a South African

family of mixed ancestry with familial hypercholesterolaemia (FH) (Scholtz et al, 1999). In

vitro studies demonstrated that the mutation at position -59 (c-)t), located in the SRE-l

element, markedly reduces transcription of the LDLR gene irrespective of sterol status. It

should also be noted that this mutation co-segregated with the FH phenotype in the family. Of

further note is the fact that two additional variants were detected in this family (-124 CIT and

-175 G/T). These two polymorphisms are located in newly defined cis-acting regulatory

regions, designated footprinting 1 (FP 1) and footprinting 2 (FP2) (Mehta et al, 1996),

respectively. One individual with both the -59 and -124 variants presented with plasma

cholesterol levels within the normal range according to age and gender. This finding might
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provide in vivo evidence for the proposed interaction between the SRE-l and FP 1 sites as

suggested by Dhawan and colleagues (1997)

The aim of this study was to determine the significance of the activation of SREBP (and

therefore the LDLR gene) in the cell death cascade, by investigating the levels of apoptosis in

lymphocytes isolated from the FH family. This study also attempted to define the links, if any,

between cholesterol and the levels of immunological cells present in these individuals as well

as to determine whether any immunological deficits may be present.

Materials and Methods

Subjects

The study cohort consisted of 3 individuals with the -59 c-ot mutation in the LDLR promoter

and a single individual with both the -59 e-st mutation and the -124C/T variant (Scholtz et al,

1999), as well as age, sex and population matched normocholesterolaemic controls. Informed

consent was obtained from the study cohort and they were counselled regarding the

importance of an HIV test, which was done as part of the study. The determination of the HIV

status was important since a positive test could influence the overall results. Various

parameters were denoted for each individual, including a fasting lipogram, full blood count

with a differential count, IgG, IgM and IgA levels, HIV serology, the percentage and total

CD3 (T-cells), CD4 (T-helper cells), CD8 (cytotoxic T-cells), CD 19 (B-cells) and CD16+56

(NK-cells) as well as the levels of apoptosis in CD4, CD8 and CD 19 positive cells.

Imm unophenotyping

For the purpose of immunophenotyping EDT A blood was drawn from the study subjects and

50f.l1of the blood was combined with 20f.l1of the appropriate monoclonal antibodies (supplied

Stellenbosch University http://scholar.sun.ac.za



65

by Becton Dickinson®): CD4 determination: CD3+ FITC, CD4+ PE, CD45+ PerCP, CD8

determination: CD3+ FITC, CD8 PE, CD45+ PerCP, CD19 determination: CD3+ FITC,

CD19 PE, CD45+ PerCP and CD16+56 determination: CD3+ FITC, CD16+56 PE and

CD45+ PerCP. The blood and monoclonal antibodies were incubated for 20 minutes after

which 450111Facs lysing buffer was added and left for 10 minutes to lyse the red blood cells.

Data was acquired by flow cytometry (FacsScan from Becton Dickinson®), with all sample

analysed within 1 hour. Analysis was performed using CellQuest software.

Apoptosis determination

For apoptosis determination, 50111EDT A blood of each individual was used and red blood

cells were lysed using 2.5m1 Facs Lysing buffer. The samples were incubated for 10 minutes

and then centrifuged for 10 minutes at 1800 rpm. Samples were washed with phosphate

buffered saline (PBS). Samples were again centrifuged for 10 minutes at 1800 rpm and the

PBS discarded. Appropriate monoclonal antibodies were then added (supplied by Becton

Dickinson®): CD4 apoptosis: CD3+ FITC, CD4+ PE, CD8 apoptosis: CD3+ FITC, CD8+ PE

and CD19 apoptosis: CD3+ FITC, CD19+ PE. The cellular pellet was incubated with the

monoclonal antibodies for 20 minutes followed by another PBS wash phase. After the PBS

wash, the cell pellet was fixed with 501114% formaldehyde and left for 10 minutes and

washed with PBS. After the wash step, 400111PBS was added together with 100111Apostain (a

DNA intercalating dye produced by Ridge Diagnostics) to the pellet and allowed to incubate

until the data was acquired by flow cytometry. All data was acquired within 6 hours of the

samples being drawn.

The peripheral blood mononuclear cells were gated according to their scatter properties. The

% CD4, % CD8 and the % CD19 was then respectively gated within this gate. The number of
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apoptotic cells within these gates was determined according to their fluorescence (far red) and

size (forward scatter).

It was noted that within the CD4+ and CD8+ populations there were two distinct sub-

populations, which were divided according to their degree of CD4 and CD8 expression. These

populations were designated CD4/CD8 Hi and CD4/CD8 Low (Figure 1). The differentiation

was made according to the degree of fluorescence and the presence/absence of a homogenous

cell population. The determinations were all made in the control individuals and the gates

were retained to determine whether the associated patient had any shifts in their degree of

fluorescence and the % apoptotic cells present within the gate. CD 19 was excluded due to the

fact that this population was found to be a single homogenous group and could not be divided

into Hi and Low sub-populations.
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CONTROL PATIENT

CD4/8 CD4/8

CD3 FITC CD3 FITC

Figure 1: Method used to differentiate CD4+ and CD8+ cells according to the degree of

fluorescence and the presence/absence of a homogenous cell population.

Statistical analysis

As the groups in this study were small in nature, two independent statisticians were used to

analyse the data in an attempt to provide objectivity and avoid any possible over-

interpretation of the results. Statistical analysis focussed on the use of paired analysis, rank

analysis and correlation matrices to interpret the data. A value of +4 or -4 represents a

significant upward or downward trend respectively when analysing the results with paired

analysis. A rank value or 16 suggests a significant trend. A P<O.05 was regarded as significant

when the data was analysed using correlation matrices.

Results

Immunopbenotyping

The only significant difference found between the patient and control groups existed in the

difference between the absolute CD3 levels and the %NK levels. The absolute CD3 levels

were significantly increased in the patient group with a pair value of +4 and a rank value of

16. The %CD3 levels also showed a trend to being raised in the patient group although this

was not significant. The %NK cells were significantly lower in the patient group with a pair
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value of -4. The absolute NK levels show a trend to being lower in the patient group although

this was also not significant. There exists a trend to an increase in the absolute CD4, CD8 and

CD 19 levels in the patient group although these trends were not significant (Figure 2).
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Apoptosis

The apoptosis results are summarised in Table 1. It is noteworthy that apoptotic events

predominantly occurred in the low gate of both the CD4 and CD8 groups in the control group.

There exist a significant upward trend in the Hi gates and a significant downward trend in the

low gates in the patient CD4 and CD8 group. These observations are due to a decrease in the

expression of the CD4 and CD8 molecules. Evidence for the latter statement can be found in

the reduced levels of fluorescence of the CD4 and CD8 molecules of which the reduction in

CD4 expression is significant (Table 1) and the decrease in CD8 expression shows a trend to

significance.

Table 1: A summary of the apoptotic events observed in the study cohort

PARAMETER MEANC MEANP PAIR RANK

SCD8H 6.86 28.31 +4

S CD8L 82.17 68.1 -4

S CD8T 36.19 22.09 -4

SCD4H 6.99 51.66 +4 +16

S CD4L 79.42 60.62 -4

S CD4T 27.89 24.54 -3

S CD19 6.25 5.22 +2

FLCD8 468.97 172.97 -3

FLCD4 359.6 147.34 -4 -16

FL CD19 84.59 61.33 -4
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A significant reduction in the level of total CD8 apoptosis were observed in the patient group

with a trend to a significant reduction in the level of total CD4 apoptosis. No significant

difference was observed between patient and control groups in the level of CD19 apoptosis,

but a significant reduction was detected in the level of CD 19 expression in the patient group.

With these observations in mind, it would stand to reason that if there exists a reduction in the

levels of apoptosis in the patient group then an increase in the number of cells should be

visible in the coulter count (Table 2).

Table 2: A summary of the number of cells visualised in the coulter counter.

PARAMETER MEANC MEANP PAIR RANK

%LYMPH 23.8 34.1 +4

A LYMPH 1.69 2.45 +4 +16

%EOS 3.1 5.32 +4

AEOS 0.2 0.39 +4

%BAS 0.45 0.73 +4 +16

WBC 7.375 7.308

It is important to note in table 2 that a significant increase can be observed in the percentage

and absolute lymphocyte count which is in correlation with the inhibition of apoptosis seen in

the CD4 and CD8 T-cells. There also exist a significant trend to an increase in the eosinophil

counts and the percentage basophils. One would expect the WBC count to be increased in the

patient group, however, for all intent of purposes the WBC count is nearly identical between

the two groups. This finding possibly suggests that different cell types may show varying

sensitivity to the -59c-H mutation and the CD4, CD8 and possibly the eosinophils and

basophils are more dependent on the LDLR for the maintenance of their cell cycle.
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No significant difference could be observed between patients and controls regarding the

production of antibodies. This result must be seen against the background of a lack of

significant difference in the CD 19 apoptosis and the CD 19 count despite a significant

reduction in the degree of expression of the CD19 molecule in the patient group. This

suggests that the -59 c-ot mutation does not cause any significant disruption of normal B-cell

function.

A significant increase was detected in the LDL cholesterol levels in the patient group,

consisting of 4 individuals, compared with controls (figure 3). Failure to detect a statistically

significant difference in total cholesterol levels between the groups may be due to the

presence of both the -59 c-ot and -124 e-st mutations in the normocholesterolaemic subject,

due to possible allelic interaction (Scholtz et al. 1999).

LIPOGRAM PARAMETERS

.CONTROL
• PATIENT8

7.003

Figure 3: Difference in lipid and lipoprotein levels between patients with the -59 c---;
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~ 3
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o
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mutation and mutation negative controls.
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Discussion

This study demonstrated that the -59 c-ot mutation, shown to reduce transcription of the

LDLR gene by 60% in vitro (Scholtz et al, 1999), have a significant inhibitory effect on

apoptosis. A possible mechanism of inhibition by the -59 e-s-t mutation may be by

moderating lipid peroxidation since it may lead to an increase in membrane cholesterol

(Hartel et al, 1998). This might play a small role in these patients as there is a trend to an

increase in the serum cholesterol concentration. This fmding, however, could not explain the

trend of apoptosis inhibition in two individuals with normal cholesterol levels.

A second potential mechanism involves interaction with p53 and bcl-2 with transcription

factors which regulate SREBP activity and thereby LDLR expression. The bcl-2 gene

contains a SRE-like domain within its promoter region and its expression is also increased

upon signalling through receptor C, (Tsujimoto et al, 1986). With the reduction of SREBP

binding to SRE-l of the LDLR gene it may make more SREBP available for binding to

apoptosis inhibiting genes such as bcl-2. Furthermore, YYl is a negative regulator of SREBP

activity (Ericcson et aI, 1999) in the expression of the LDLR gene as well as p53 activity

(Furlong et ai, 1996). The inhibitory effect of YY 1 on SREBP can be circumvented by

increased SREBP activity and therefore LDLR gene expression in cases of sterol depletion

(Bennett et ai, 1999). The -59 c-ot mutation might result in a positive feedback loop so as to

increase LDLR gene expression, which will lead to a reduction of YY 1 activity. Reduced

YYl activity would lead to increased p53 levels (DNA repair enzyme) (Voss and Cotton,

1998), resulting in increased correction of DNA faults and induction of cell apoptosis.

An interesting result of this study is the shift in the apoptosis Hi/Low groups between patient

and control groups, which has been found due to a reduced expression of CD4 and CD8. The
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results also demonstrated a reduction in CD 19 expression despite the absence of clear Hi/Low

apoptotic groups. The reason for this phenomenon is hard to explain. It is well known that

cholesterol modulate membrane receptor function (Gimpl et al, 1997) which might explain

this result. The absence of an elevated serum cholesterol in two of the patients despite them

showing signs of reduced CD4, CD8 and CD19 expression, makes cholesterol mediated

alteration of receptor function an unlikely mechanism for this phenomenon. The most likely

mechanism rests upon the modulation of the activity of the transcription factors, which

regulate CD4, CD8 and CD19 expression. This may involve YY1, which has been implicated

as a regulator of a vast number of genes (Shi et al, 1997). Alternatively, the transcription

factors c-fos and c-myc, which form part of the receptor Ck transduction pathway (Kaur et al,

1998), might be invo lved as c- fos has been shown to be particularly important in regulating

CD4 and CD8 expression during T-cell maturation in the thymus (Chen et al, 1999). It is also

important to note that various cholesterol-independent stimuli regulate the expression of the

LDLR gene, most of these stimuli utilise the SRE-l site for activation. Mitogenic activation

of lymphocytes induces the LDLR gene (Makar et al, 1994, Chan et al, 1998), providing

possibly a logical explanation for the reduced CD4, CD8 and CD 19 expression even though

the effect of the -59 mutation in mitogenic activation was not determined in this study.

As previously indicated the expression ofLDLR is induced through the interaction of SREBP

with other transcription factors including CBP (cAMP response element binding protein

(CREB) binding protein) (Meier, 1997). Somatic mutations of CBP is associated with acute

myeloid leukaemia (AML) as well as Rubenstein Taybi syndrome, which also predisposes to

haematological malignancies (Petrij et al, 1995). Cholesterolgenic mutations associated with

AML include the absence of receptor Ck, which results in the dysregulation of the mevalonate

pathway, bcl-2, cyclin D and c-fos as well as overexpression of LDLR (Tatidis et al, 1997;
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Kaul and Kaur, 1998). All these changes serve to immortalise the cell and secondly to provide

it with a high level of cholesterol, which is essential for maintaining cell membrane integrity,

as the cells are dividing rapidly. The CBP translocation in AML (8:16) results in the

formation of a fusion protein between CBP and MOZ (monocyte zinc finger protein), the

latter is believed to have acetyltransferase activity. A second fusion protein described in AML

is the fusion between MOZ and TIF2 (a nuclear transactivator). It has been demonstrated that

the latter recruit CBP or can mimic its activity. These fusion proteins probably act as "super

transcription factors" which immortalise the cell by interacting with the tumour suppressor

gene p53 and other cell cycle regulators (Giles et al, 1998).

Although high degrees of LDL degradation have been reported in various cancers such as

AML (Ho et al, 1976), no increase in LDLR gene transcription was detected (Rudling et al,

1998). Even though no significant elevation in transcription were reported, it seems likely that

the -59 c-ot mutation, which seems to reduce SREBP binding (preventing high degree

expression of the LDLR gene) (Scholtz et al, 1999), might influence the development of AML

in individuals with this mutation. The presence of SREBP is important for the activity of CBP

as the latter is a trans-activator and does not bind directly to the DNA to modulate

transcription (Ericcson et al, 1998). Therefore, unless the CBP-MOZIMOZ- TIF2 can bind

directly to SRE-l regions, they will be unable to direct SREBP-dependent up regulation of the

LDLR. Theoretically, even if the aforementioned translocations were to occur in patients with

the -59 mutation, it is unlikely that the low level of LDLR expression would fulfil the

demands of the high cell turnover seen in AML.

In summary, our results strongly suggest that the -59 e-st mutation, in repeat 2 of the LDLR

gene promoter, may inhibit apoptosis under normal immunological conditions. The cells
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which seem to be the most sensitive to the effects of this mutation are the CD4 and CD8 T-

cells and possibly also the eosinophils and basophils as seen by the increase in cell numbers

of the latter two populations. The conclusion made from these results suggest that

transcriptional activation by SREBP which affects LDLR gene expression, is essential in

normal cellular processes for the progression to apoptosis.

Acknow ledgements

Personnel of the Immunology Unit, Tygerberg Hospital, is acknowledged for technical

assistance and J Devine for formulating the hypothesis on which the study was based. Prof

AD Marais, University of Cape Town, is thanked for the provision of blood samples. C.L.

Scholtz received a doctoral scholarship from the Claude Harris Leon Foundation.

Stellenbosch University http://scholar.sun.ac.za



76

References

Bennett MK, Ngo TT, Athanikar IN, Rosenfeld 1M, Osborne TF. Co-stimulation of promoter

for low-density lipoprotein receptor gene by sterol regulatory element binding protein and

Spl is specifically disrupted by the Yin Yang 1 protein. J Biol Chern 1999: 274; 13025-13032

Brown MS, Goldstein 1L. A receptor-mediated pathway for cholesterol homeostasis. Science

1986: 232; 34-47

Chan P-C, Edwards A, Lefreniere R, Parsons HG. Improved detection of familial

hypercholesterolemia by determining low-density lipoprotein receptor expression in mitogen-

induced proliferation lymphocytes. J Lipid Res 1998: 39; 2261-2270

Chen F, Chen D, Rothenberg EV. Specific regulation of fos family transcription factors in

thymocytes at two developmental checkpoints. Int Immuno11999: 11; 677-688

Choi JW, Jung SE. Lovastatin-induced proliferation inhibition and apoptosis in C6 glial cells.

J Pharmacol Exp Ther ]999: 289; 572-579

Clutterbuck RD, Millar BC, Powless RL, Newman A, Catovsky D, Jarman M, Millar 1L.

Inhibitory effect of simvastatin of the proliferation of human my leoid leukemia cells in sever

combined immunodeficient (SCID) mice. Br J Haematoll998: 102; 522-527

Dawson PA, Hofinann SL, Vander Westhuyzen DR, Sudhof TC, Brown MS, Goldstein 1L.

Sterol-dependent repression of low-density lipoprotein receptor promoter mediated by 16-

Stellenbosch University http://scholar.sun.ac.za



77

base pair sequence adjacent to binding site for transcription factor Spl. J Biol Chern 1988:

263; 3372-3379

Dhawan P, Chang R, Mehta KD. Identification of essential nucleotides of the FPl element

responsible for enhancement of low-density lipoprotein receptor gene transcription. Nucl

Acid Res 1997: 25; 4132-4138

Ericsson J, Edwards PA. CBP is required for sterol-regulated and sterol regulatory element

binding protein-regulated transcription. J BioI Chern 1998: 273; 17865-17870

Ericcson J, Usheva A, Edwards PA. YYl is a negative regulator of transcription of three

sterol regulatory element binding protein-responsive genes. J Biol Chern 1999: 274; 14805-

14513

Furlong EEM, Rein R, Martin F. YYl and NFl both activate the human p53 promoter by

alternatively binding to a composite element, and YYl and EIA cooperate to amplify p53

promoter activity. Mol Cell BioI 1996: 16; 5933-5945

Giles RH, Peters DJ, Breuning MIL Conjunction dysfunction: CBP/p300 in human disease.

Trends Genet 1998: 14; 178- 183

Girnpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochem

1997: 36; 10959-10974

Goldstein JL, Brown MS. Regulation of the mevanolate pathway. Nature 1990; 343: 425-430.

Stellenbosch University http://scholar.sun.ac.za



78

Hartel S, Ojeda F, Diehl H. Cholesterol induced variations of membrane dynamics related to

induction of apoptosis in mouse thymocytesl Int J ofRad Bioi 1998: 74; 607-615

Ho YK, Brown MS, Bilheimer DW, Goldstein JL. Regulation of low density lipoprotein

receptor activity in freshly isolated human lymphocytes. J Clin Invest 1976: 58; 1465-1474

Kaul D, Kaur M. Receptor Ck controls the expression of Bcl-2 and cyclin D genes. Leuk Res

1998: 22; 671-675

Kaur M, Kaul D, Sobti RC. Receptor Ck-dependent regulation of genes involved in the cell

cycle. Mol Cell Biochem 1998: 181; 137-142

Kawabe Y, Suzuki T, Hayashi M, Hamakubo T, Sato R, Kodama Y. The physiological role of

sterol regulatory element binding protein-2 in cultured human cells. Biochim Biophys Acta

1999: 1436; 307-318

Makar RSJ, Lipsky PE, Cuthbert JA. Non-sterol regulation of low-density lipoprotein

receptor gene expression in T cells. J Lipid Res 1994: 35; 1888-1895

Mehta KD, Chang R, Underwood J, Wise J, Kumar A. Identification of a novel cis-acting

element participating in maximal induction of human low-density lipoprotein receptor gene

transcription in response to low cellular cholesterol levels. J Biol Chern 1996: 271; 33618-

33622

Stellenbosch University http://scholar.sun.ac.za



79

Meier CA. Regulation of cholesterol synthesis: of SCAP, SREBP, CBP and more. Eur J

Endocrinol1997: 136; 271-272

Padayatty SJ, Marcelli M, Shao TC, Cunningham GR. Lovastatin-induced apoptosis ill

prostate stromal cells. J Clin Endocrinol Metab 1997; 82: 1434-1439

Pai J-T, Brown MS, Goldstein JL. Purification and eDNA cloning of a second apoptosis-

related cysteine protease that cleaves and activates sterol regulatory element binding proteins.

Proc Natl Acad Sci 1996: 93; 5437-5442

Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hannekam RC, Masuno M, Tommerup N, Van

Ommen G-J, Goodman RH, Peters DIM, Breuning MH. Rubinstein- Taybi sysndrome caused

by mutations in the transcriptional co-activator CBP. Nature 1995: 376; 348-351

Rudling M, Gafvels M, Paini P, Gahrton G, Angelin B. Lipoprotein receptors in acute

myelogenous leukemia: failure to detect inreased low-densitiy lipoprotein (LDL) receptor

numbers in cell membranes despite increased cellular LDL degradation. Am J Pathol 1998:

153; 1923-1935

Scholtz CL, Peeters AV, Hoogendijk CF, Thiart R, de Villiers JNP, Hillermann R, Liu I,

Marais AD, Kotze MI. Mutation -59c-H in repeat 2 of the LDL receptor promoter: reduction

in transcriptional activity and possible allelic interaction in a South African family with

familial hypercholesterolaemia. Hum Mol Genet 1999: 8; 2025-2030

Stellenbosch University http://scholar.sun.ac.za



80

Shi Y, Lee J-S, Galvin KM. Everything you ever wanted to know about Ying Yang 1.

Biochim Biophys Acta 1997: 1332; F49-F66

Smith JR, Osborne TF, Goldstein JL, Brown MS. Identification of nucleotides responsible for

enhancer activity of sterol regulatory element in low-density lipoprotein receptor. J Biol

Chern 1990: 265; 2306-2310

Tatidis L, Gruber A, Vitols S. Decreased feedback regulation of low-density lipoprotein

receptor activity by sterols in leukemic cells from patients with acute myelogenous leukemia.

J Lipid Res 1997: 38; 2436-2445

Tsujimoto Y, Croce CM, Analysis of the structure transcripts and protein products of bcl-2,

the gene involved human follicular lymphoma. Proc Natl Acad Sci 1986: 83; 5214-5218

Voss M, Cotton MF. Mechanisms and clinical implications of apoptosis. Hosp Med 1998: 59;

924-930

Wang X, Pai J-T, Wiedenfeld EA, Medina JC, Slaughter CA, Goldstein JL, Brown MS.

Purification of an interleukin 1p-converting enzyme-related cysteine protease that cleaves the

sterol regulatory element binding proteins between the leucine zipper and transmembrane

domains. J Bioi Chern 1995: 270; 18044-18050

Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL. Cleavage of sterol

regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 1996:

15; 1012-1020

Stellenbosch University http://scholar.sun.ac.za



81

CHAPTER 4

Stellenbosch University http://scholar.sun.ac.za



82

Analysis of the low-density lipoprotein receptor gene promoter region in host

susceptibility to HIV infection: A pilot study

IDivision of Human Genetics, Faculty of Health Sciences, University of Stellenbosch,

Tygerberg, 2Infectious Diseases Clinic, Tygerberg Hospital, Tygerberg and 3Department of

Medical Biochemistry, Faculty of Medicine, University ofTranskei, Transkei, South Africa.

Stellenbosch University http://scholar.sun.ac.za



83

Abstract

Recent data have indicated that lipoproteins might be involved in innate immunity. In this

study the likelihood that variation in the promoter region of the low-density lipoprotein

receptor (LDLR) gene might playa role in susceptibility to HIV /AIDS has been investigated.

DNA samples of 222 my -seropositive South African individuals and 173 population-

matched controls were subjected to mutation screening. Three LDLR promoter variants, -124

c-)t, -136 g-)a and -175 g-)t were identified in the Black and Coloured populations. In the

Black population, a statistically significant difference in allelic frequency for the -124 c-ot

variant was detected between my -seropositive patients with fast disease progression

compared with asymptomatic subjects (P=O.006). A marginally significant difference

(P=O.07) was also detected between fast progressors and normal/slow progressors, but no

statistically significant allelic differences could be detected for the -175 g-)t variant. These

findings support the hypothesis that variation in the promoter region of the LDLR gene may

influence disease progression in my infection and propose a possible significant role for the

LDLR gene in host defence. It seems possible that not only the rarity of protective mutations

in the CC chemokine receptor 5 (CCR5) gene, but also the enrichment of polymorphic

variation in the LDLR promoter, may explain the apparently fast disease progression in my-

seropositive Africans compared with affected Caucasians. Further studies are warranted to

confirm these findings in a larger sample and to elucidate the mechanisms underlying the

proposed disease association.
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Introduction

Comprehending the basic principles of susceptibility and / or resistance to infection in relation

to the genetic make-up of the host, that may greatly affect the fate of infectious agents, is

extremely important (Marquet et aI, 1999). The importance of lipoproteins has repeatedly

been highlighted in innate immunity, even though the exact mechanisms remain unclear.

Lipoproteins such as apolipoprotein (apo) A-I and high density lipoprotein (HDL) neutralise

(Owens et al, 1990) and lyse (Levine et al, 1993) certain pathogens, including the human

immuno-deficiency virus (HIV), while LDL has been shown to bind and target parasites for

uptake by macrophages (Xu et al, 1993). It has also been demonstrated that some viruses

compete for cellular receptors like the LDLR to gain entry into the cell (Hofer et al, 1994).

Interestingly, Netea and colleagues (1996) have shown that LDLR deficient mice were

protected against certain lethal infections, which further highlighted the importance ofLDL in

immunity.

LDL is the major cholesterol carrying lipoprotein in human plasma and is transported into the

cell through receptor-mediated endocytosis (Goldstein et al, 1995). The finding that mitogenic

activation can induce transcription of the LDLR gene, irrespective of sterol status (Cuthbert

and Lipsky, 1984; 1990), furthermore suggests that the LDLR gene can be considered an

immediate early response gene (Makar et al, 1994, Dhawan et al, 1999). Infection and

inflammation induce a wide array of metabolic changes, the acute phase response, which are

primarily mediated by cytokines (Mackiewicz et al, 1993). The regulation by cytokines is

mostly at the level of gene transcription, as has been demonstrated for the LDLR gene

(Stopeck et al, 1993). It is noteworthy that abnormal cholesterol levels have been repeatedly

Stellenbosch University http://scholar.sun.ac.za



85

detected early during infections (Nilsson-Ehle and Nilsson-Ehle, 1990; Grunfeld et al, 1992;

Hsu et al, 1995), indicating a possible earlier host response.

Various mutations underlying familial hypercholesterolaemia (FH) have been reported in the

coding region of the LDLR gene, while sequence changes in the promoter region appear to be

rare (Hobbs et al, 1992; Top et al, 1992; Day et al, 1998; Peeters et al, 1998;

http://www.ucl.ac.ukl£h and http://www.umd.necker.fr). The regulatory region of the LDLR

gene lie within 200 bp upstream of the transcription initiation site and three direct imperfect

repeats are essential for transcription of the gene (Sudhof et al, 1987) Repeats 1 and 3 bind

Sp1, a transcription factor important for basal transcription, while repeat 3, the sterol

regulatory element (SRE-1), bind SREBP (Smith et al, 1990; Briggs et al, 1993). Two

additional regulatory elements, designated footprinting 1 (FP1) and footprinting 2 (FP2)

elements, were also shown to be important for maximal induction of transcription (Mehta et

al, 1996). Dharwan and colleagues (1997) furthermore reported possible interaction between

FP 1 and SRE-1, while it has been suggested that the FP2 site might contain a putative binding

site for YY1 (Mehta et al, 1996). This multifunctional transcription factor may act as both an

activator and repressor of various cellular and viral genes (Shi et aI, 1996) and may repress

transcription of the LDLR gene indirectly (Bennett et al, 1999).

Schulte (2001) has suggested that subtle variations in promoter gene regions might influence

the ability of an organism to adapt to a change in the environment. Since the LDLR gene can

be considered an immediately early response gene, we screened DNA of HIV -infected and

apparently healthy controls for variation in the promoter region to determine possible allelic

associations.
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Materials and Methods

Subjects

Blood samples were collected with informed consent from 222 HIV -seropositive South

African subjects. These included 11 Caucasian, 50 Coloured and 84 Black patients who

attended the Tygerberg Hospital Infectious Clinic and 77 Black asymptomatic HIV -infected

individuals from the THUSA survey (Table 1). The THUSA samples were collected as part of

a cross sectional survey of apparently healthy Black individuals performed in the Northwest

Province of South Africa (James et al, 2000). In this study "Coloured" refers to a recently

admixed but genetically distinct population of mainly Khoisan and European origin and

"Black" to subjects of central African origin (Nurse et al, 1985).

Table 1: HIV infected individuals recruited for the study grouped according to disease

progression.

Disease HIV-infected individuals
Progression Caucasian Coloured Black THUSA samples
Fast 2 4 11 0
Normal 1 12 14 0
Slow 0 5 2 0
Unknown 8 29 57 77
Total 11 50 84 77

HIV -positive individuals were enrolled either prospectively at the time of HIV infection or

retrospectively. HIV infection was determined serologically by detection of anti-HIV

antibodies by standard clinical protocols. Subjects were classified as being slow progressors if
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they were infected with HIV for longer than ten years before they progressed to AIDS and as

fast progressors if the progression to AIDS was within two years after infection. DNA

samples of 40 seronegative Blacks and 76 seronegative Coloureds were included as controls.

Due to the difficulty of obtaining control samples screened for HIV, DNA samples of 57

Black individuals recruited from the general South African population were pooled with the

HIV seronegative samples to obtain a statistically viable sample size. Allele frequencies for

the polymorphisms analysed were similar in these groups for the Black population.

DNA analysis

DNA was extracted from whole blood using the Qiagen extraction kit according to the

manufacturer's instructions. Genomic DNA was amplified by the polymerase chain reaction

(PCR) using pruners 5'GAGGCAGAGAGGACAA TGGC3' (forward) and

5'CCACGTCATTTACAGCATTTCAATG3' (reverse). Mutation detection was performed

using a combined heteroduplex-single-strand conformation polymorphism (HEX-SSCP)

technique (Kotze et al, 1995). Repeated HEX-SSCP analysis and/or direct sequencing on an

automated sequencer (ABI 310) were performed to characterise PCR products demonstrating

altered mobility.

Statistical analysis

Genotype distribution and allele frequencies were compared between groups using the

chi-square and/or Fisher exact tests. P-values <0.05 were regarded as statistically

significant.
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Results

Mutation status in my -infected Black and Coloured individuals is grouped according to

disease progression in Table 2. The -124 e-st variant was detected in three Black fast

progressors (13.6%) and in one asymptomatic Hlv-infected subject (0.6%), but not in any of

the other disease progression groups or the Coloured population. It is not possible to comment

on disease progression in the individual recruited as part of the THUSA survey, since this

study population was not available for follow-up studies due to ethical constraints. In addition

to the previously described -124 e-s-t and -175 g~t promoter variants (Scholtz et a1, 1999), a

novel g~a base change was detected at nucleotide position -136 in two Black HlV-positive

samples but not in either the Black control individuals nor the Coloured population. Although

the numbers are small, it is noteworthy that none of the Black or Coloured slow progressors

carried any of the LDLR promoter variants. None of the sequence variants identified in the

LDLR promoter region were detected in the Caucasian Hl V-seropositive patients and

therefore these subjects were excluded from further analysis.

The genotype distribution and allele frequencies of the LDLR promoter polymorphisms

identified in the study cohort are summarised in Table 3. The -175 g~t variant was detected

in seven Black HlV-infected patients of whom two were homozygous. Homozygosity for the

-175 g~t variant was not observed in the asymptomatic Black individuals or any of the

Coloured individuals, although the frequency of this polymorphism has previously been

reported to be highest in the Coloured population of South Africa (Hoogendijk, 1999 /

Appendix C). In this study the frequency of variant -175 g~t was higher in the HlV-

seropositive Black patients (excluding asymptomatic group) than in the Coloured Hlv-

seropositive patients or controls. However, possibly due to small numbers analysed, no
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statistically significant differences could be detected between the HfV -infected subjects and

controls. No significant difference in genotype distribution or allele frequencies could be

detected between Hlv-infected subjects and population matched controls for either the -124

c-ot or the -175 g~t variants in the Black or Coloured populations. To determine whether

any differences would be detected when only serologically tested controls were included,

comparisons between these individuals and the Hl V-seropositive samples were performed. No

significant difference could be detected when either pooled controls (p=0.452) or seronegative

samples were included (p=1.00). A significant difference could also not be detected when the

THUSA samples were compared with the Western Cape IllV -seropositive patient group for

either the -124 c-ot or the -175 g~t variants (data not shown).

To determine whether the -124 c-ot or the -175 g~t variants could be associated with

disease progression, statistical analysis was performed between the various disease

progression groups and the asymptomatic (THUSA) Hl V-infected subjects (Table 4). Due to

the small sample sizes and to exclude possible confounding factors due to Caucasian

admixture in the Coloured population, this analysis was only performed ill the Black

population upon pooling of slow (no mutations detected, Table 2) and normal progressors. A

significant difference was detected in allelic frequency for the -124 e-s-t variant between the

fast progressors and the asymptomatic Hl V-seropositive group (p=O.006). No significant

difference could be detected between the pooled normal/slow progressors and the

asymptomatic THUSA subjects for either variants. The results remained significant for the -

124 c-ot when all the HlV-seropositive patients (in an attempt to increase sample size) with

known disease progression were compared with the asymptomatic group (p=O.046).

Comparison between the fast progessors and normal/slow progressors were marginally

significant for the -124 c-e-t variant (p=O.07).
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Table 2. Allelic distribution of variants detected in the South African Black and Coloured Hl V study-population in various stages of disease

progression.

LDLR Fast progressors Normal progressor Slow progressor Progression unknown Asymptomatic
Variant Allele Blacks Coloureds Blacks Coloureds Blacks Coloureds Blacks Coloureds Blacks

(n=22) (n=8) (n=28) (n=24) (n=4) (n=10) (n=114) (n=58) (n=154)
-124

C 19 (86.4) 8 (100) 28 (100) 24 (100) 4 (100) 10 (100) 114(100) 58 (100) 153 (99.4)
T 3 (13.6) 0 0 0 0 0 0 0 1 (0.6)

-136
G 22 (100) 8 (100) 27 (96.4) 24(100) 4 (100) 10 (100) 113 (99.1) 58 (100) 154 (100)
A 0 0 1 (3.6) 0 0 0 1 (0.9) 0 0

-175
G 20 (90.9 8 (100) 26 (92.9) 24 (100) 4 (100) 10 (100) 109 (95.6) 56 (96.6) 150 (97.4)
T 2 (9.1) 0 2 (7.1) 0 0 0 5 (4.4) 2 (3.4) 4 (2.6)

----

\0o
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Table 3. Genotype distribution and allele frequencies of the two LDLR promoter variants in the South Africa Black and Coloured HIY study-

populations

BLACKS
HIY samples (n=84) Controls (n=97) THUSA samples (n=77)

LDLR variant No % No % No %
124 cc 81 96.4 96 99 76 98.7

Genotype ct 3 3.6 1 1 1 1.3
tt 0 0 0 0 0 0

,

Allele c 165 98.2 193 99.5 153 99.4 I
I

t 3 1.8 1 0.5 1 0.6 I

-175 gg 77 91.7 90 92.8 73 94.8
Genotype gt 5 5.9 7 7.2 4 5.2

tt 2 2.4 0 0 0 0

Allele g 159 94.6 187 96.4 150 97.4
t 9 5.4 7 3.6 4 2.6

--- _. --

COLOUREDS
HIY samples (n=50) Controls (n=76)

No % No %
50 100 76 100
0 0 0 0
0 0 0 0

100 100 152 100
0 0 0 0

48 96 70 92
2 4 6 8
0 0 0 0

98 98 146 96
2 2 6 4

\0
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Table 4. Comparison of allele frequencies at various stages of disease progression in Black HlV positive individuals

and controls.

LDLR THUSA THUSA HIV THUSA
variants Allele Fast samples P Normal/Slow samples P patients samples P
-124

C 19 153 0.006 32 153 NS 51 153 0.046
T 3 1 0 1 3 1

-175
G 20 150 NS 30 150 NS 50 150 NS
T 2 4 2 4 4 4

NS, not significant

\0
N
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Discussion

Increasing data support the concept that, in addition to its well recognised role in lipid

transport, the lipoprotein system also plays an important role in innate immunity (Feingold

and Grunfeld, 1997). The fact that the LDLR gene can be considered an immediately early or

primary response gene, highlights the importance of this gene in immune function (Makar et

aI, 1994; Dhawan et al, 1999). The identification of various promoter variants in the LDLR

gene in HfV -infected individuals, particularly in the Black population where disease

progression to AIDS appears to be relatively fast, may imply an important role in

susceptibility to infectious diseases. Variants -124 c-H, -136 g~a and -175 g~t were

detected in the Black population but not in the Caucasian population, while only the base

change at nucleotide position -175 was present in the Coloured population. In a previous

study to determine the global distribution of this polymorphism (Hoogendijk, 1999 /

Appendix C), it was detected at carrier frequencies of 12.6% in the Coloured population and

4.6% in the Black population. The -175 g~t variant was furthermore absent in more than 700

Caucasians screened and occurred at a carrier frequency of 3.8% in the Khoisan; these

populations contributed roughly equal (~40% each) to the gene pool of the Coloured

population of South Africa. Thiart et al (2000 / Appendix B) have also reported that the

frequency of this polymorphism is similar in different Black tribes (Xhosa, Zulu, Sotho, Pedi)

in South Africa.

The novel variant -136 g~a, identified in this study in two HfV -seropositive Black patients

only, is located within the cis-acting FP 1 site of the LDLR gene promoter. Dhawan and

colleagues (1997) demonstrated, through site-directed mutagenesis, that variation at position

-135/-136 completely abolishes binding ofp125 to the FPl site and also eliminates SRE-l

Stellenbosch University http://scholar.sun.ac.za
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mediated induction of transcription. The -124 e-s-t variant is located directly adjacent to the

FP1 site and has previously been shown by in vitro studies to increase transcription of the

LDLR gene to ~ 160% of normal (Scholtz et al, 1999). The -175 g-H variant is located in the

FP2 site, which contains a putative binding site for YY 1 (Shi et al, 1997) as well as a potential

CRE site (which binds CRE-binding proteins) (Flamand et al, 1998) spanning the mutated

allele. The transcription factors YY1 and CREB are both present and involved in the

regulation of cellular and viral genomes. In 1998, Flamand and co lleagues demonstrated that

the CD4 promoter, which also contains a potential CRE site (6/8 bases homologous), is

transactivated by the human herpesvirus (HHV) 6. HHV 6 is proposed to playa cofactorial

role in disease progression in AIDS patients since it can infect CD4 and T-cells, hence

contributing to the decline in this cell population.

From Table 2 it was clear that the frequency of variant -175 g-H is consistently lower in the

Coloured population compared to the Black population within the different progression

groups (except in slow progressors who all tested negative), despite the fact that the frequency

of this mutation was shown to be significantly higher in Coloureds compared to Blacks in the

general population (Hoogendijk, 1999 1 Appendix C). As expected in the control population,

the highest allele frequency for variant -175 g~t was found in HfV -seronegative blood

donors from the Coloured population (Table 3). Although the numbers are small, it is

therefore noteworthy that the lowest overall allele frequency for this variant was detected in

HlV-seropositive Coloured patients. The allele frequency of2% detected in this group is even

lower than that of the asymptomatic Black HlV-seropositive subjects (2.6%), shown to have

the lowest frequency for the rare allele of variant -175 g~t among all the Black patient and

control groups analysed. By using intragenic LDLR gene polymorphisms/mutations and a

highly informative microsatellite marker upstream of the gene, it has previously been
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demonstrated that the -175 g~t variant IS associated with different chromosomal

backgrounds (Hoogendijk, 1999 / Appendix C; Thiart et al, 2000 / Appendix B), and therefore

the only logical explanation for the above-mentioned findings is admixture linkage

disequilibrium.

In a recent study of the CC chemokine receptor 5 (CCR5) gene performed in the South

African population (Petersen et al, 2001), similar findings were obtained with respect to a

novel polymorphism identified in the gene. It was demonstrated that the frequency of the A-

allele of the African-specific polymorphism at codon 35 (p35, CCQ to CCA) was

significantly higher in HIY -seropositive compared with HIY -seronegative Coloureds, while

the frequency of this allele was lower in Black HIY -seropositive patients compared with HIY-

seronegative Black controls. The difference in allele frequency between Black patients and

controls, however, did not reach statistical significance. It is therefore clear that if the

significance of the CCR5 gene in HIY /AIDS has not been so well defmed in Caucasian

populations (Martinson et al, 1997), failure to detect significant differences in allelic

frequencies for any of the known or novel mutations in the South African Black population

(Petersen et al, 2001) could have led to dismissal of this gene as an important co-factor for

HIY infection. These fmdings highlights the value of the Coloured population as a source of

genetic material to identify genes/mutations involved in complex conditions (Loubser et al,

1999), based on the admixture linkage disequilibrium approach (McKeigue, 1998).

Since the likelihood of spurious associations due to population substructures in the Coloured

population has to be considered before any conclusions can be drawn from these fmdings, we

are in the process to type the study cohort for other African-specific and Caucasian-specific

mutations in an attempt to exclude possible confounding effects. Data obtained with the only
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African-specific marker completed to date, a mutation in the HFE gene (rVS 3-48c--+g), did

not demonstrate a similar reversal of allele frequencies in HIV -seropositive patients and

controls in the Black versus the Coloured population (G.S. Pretorius and M.l. Kotze,

unpublished results) as reported for certain polymorphisms in the CCR5 and LDLR genes,

which argues against population substructures in our study cohort. Detection of the

Caucasian-specific 32-bp CCR5 deletion in some of the Coloured subjects, particularly the

slow progressors, demonstrated the Caucasian admixture in this population group (Petersen et

al, 2001). Apart from the fact that this deletion-mutation has, as expected, not been detected in

the South African Black population, none of the other known and novel CCR5 gene mutations

identified in this population was detected in a high risk subgroup consisting of HIV-

seronegative commercial sex workers (Petersen et al, 2001). Failure to identify any of the

LDLR promoter variants in these subjects of Zulu descent appears to substantiate our

hypothesis that this gene may be involved in HIV/AIDS susceptibility. It therefore seems

possible that not only the presence of protective mutations in the CCR5 gene, but also the

absence of polymorphic variants in the LDLR promoter, may be beneficial with respect to

HIV/AIDS, particularly since this is the case in Caucasians.

Comparative analysis between HIV -seropositive Black subjects with different stages of

disease progression (when known) has indeed demonstrated a statistically significant

difference between the fast progressors and the asymptomatic group for the -124 c-ot variant

(p=0.006). A marginally significant difference (P=0.07) was also detected between fast

progressors and normal/slow progressors. No significant difference could be detected for the -

175 g--+t variant. Due to small numbers and to exclude possible confounding factors as a

consequence of Caucasian admixture in the Coloured population, the aforementioned analyses

were only performed in the Black population.
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In order to investigate the likelihood that the association with disease progression in HIY-

seropositive patients may be related to opportunistic infections, we have also performed

mutation screening in 96 Coloured patients with tuberculosis (TB) and 47 control individuals

above the age of20 years, drawn from the same community (Western Cape area where one in

every three houses has had at least one case of TB in the last 10 years). No significant

difference in allelic frequency could, however, be detected between these groups (E van

Helden and CF Hoogendijk, unpublished data). Preliminary data obtained in Black TB

patients and controls from the Transkei area also failed to show any association between

susceptibility to TB and variation in the LDLR gene promoter. Studies are underway to

identify patients infected with both HIY and TB for further comparative analysis, in order to

enhance our understanding of the complex interplay between infectious agents and host

factors in innate immunity.

Comparative analysis of various biochemical parameters in the THUSA study cohort

(including approximately 1000 individuals of whom more than 200 were HIY -infected) have

recently demonstrated significantly lower plasma cholesterol levels in the asymptomatic HIY-

seropositive subjects compared with the seronegative subjects (HH Vorster et al, unpublished

data). The finding that the -124 e-st variant, which significantly increases transcription of the

LDLR gene leading to reduced LDL-cholesterol levels (Scholtz et al, 1999), predominates in

HIY -seropositive fast progressors therefore supports the notion that low plasma cholesterol

levels may be associated with higher risk towards disease progression in HIY /AIDS. If the

proposed association with disease progression can be confirmed in a larger/additional study

population, it seems plausible that appropriate alterations in lipid status might slow down the

progression of the infectious complications ofHIY infection.
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Abstract

Survival of any species is dependent on its ability to swiftly adapt to any changes in their

environment. At a molecular level, this could represent variation in their genetic composition,

which leads to changes on the cellular level. Modifying gene regulation would therefore

contribute significantly to any species' ability to adapt evolutionary to a changing

environment. Cholesterol homeostasis is regulated by various genes involved in lipoprotein

metabolism, including genes encoding lipoprotein receptors and apolipoproteins. Mutations

causing abnormalities in the structure of lipoprotein receptors and I or the tempo of

transcription of these genes would therefore, greatly influence any subject's ability to handle

environmental change. Cholesterol is essential for various processes and abnormalities in

cholesterol homeostasis can have dire consequences. The low-density lipoprotein receptor

(LDLR) gene forms part of the acute phase response and are considered an immediately early

response gene. Although mutations in the promoter region of the LDLR gene are considered

to be rare, several sequence changes have recently been identified in Africans. In this

overview of variation detected in the LDLR promoter, the possible role of subtle phenotypic

effects caused by regulatory mutations is discussed within the context of the pathogenesis of

different diseases.
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Introduction

Slight variations in regulatory sequences could provide evolutionary significant changes and

greatly impact on environmental adaptation of organisms (Schulte, 2001). Since cholesterol

forms an essential part of the cell cycle, it would be logical that alterations in lipid levels

could be indicative of environmental change. Various studies have demonstrated that changes

in lipid profiles are one of the primary compensatory changes initiated upon infection

(Nilsson-Ehle and Nilsson-Ehle, 1990; Hsu et al, 1995). The low-density lipoprotein receptor

(LDLR) gene plays an important role in the regulation of cholesterol homeostasis through

receptor-mediated endocytosis (Brown and Goldstein, 1986). Various reports have indicated

that the LDLR gene can be considered an immediately early (IE) or primary response gene,

since transcription is initiated upon mitogenic stimulation (Makar et al, 1994; Dhawan et al,

1999).

In addition to sterols, various other molecules, including cytokines (Stopeck et al, 1993),

hormones (Streicher et al, 1996; Croston et aI, 1997; LaVoie et al, 1999), growth factors

(Mazzone et al, 1989; Graham and RusselL, 1994; Basheerudin et al, 1995; Pak et al, 1996),

protein synthesis inhibitors (Dhawan et al, 1999), 3-methy 1-3-glutaryl coenzyme A (HMG-

CoA) reductase inhibitors (Ma et al, 1986), angiotensin converting enzyme (ACE) inhibitors

and Ca2+ channel blockers (CCBs) (Block et al, 1993) as well as mitogen activated protein

kinases (MAPK) (Kumar et aI, 1998; Kotzka et al, 1998; Dhawan et al, 1999) can induce

transcription of the LDLR gene.
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Promoter region of the LDLR gene

Transcription of the LDLR gene is under stringent control and all the essential regulatory

elements are located within 200 bp upstream of the transcription initiation site (Goldstein et

al, 1995). This region contains two TATA-like sequences and three direct imperfect repeats

(16bp in length), essential for basal transcription as well as sterol mediated regulation of the

LDLR gene. Repeats 1 and 3 (nucleotide positions-103 ---+-88and -51---+-36, respectively)

bind Spl, a known transcription factor, important for basal transcription of the LDLR gene

(Sudhof et al, 1987; Dawson et al, 1988). Repeat 2 (position -68---+-53) contains the sterol

regulatory element (SRE-l) (position -63---+-57), which binds sterol regulatory binding

proteins (SREBPs) and is also responsible for sterol-mediated regulation of the LDLR gene

(Smith et al, 1990; Briggs et al, 1993; Koivisto et al, 1994). Recently, two additional cis-

acting elements, designated footprinting 1 (FP I) and footprinting 2 (FP2) elements (located

between positions -144---+-125 and -187---+-173, respectively) were identified, and deemed

essential for maximal induction of transcription (Mehta et al, 1996). Dhawan and colleagues

(1997) identified two nuclear proteins (p50 and p125) which bind to the FP-l site, and

suggested possible interaction between FP-I and SRE-I.

LDLR promoter mutations

To date, relatively few promoter mutations causing familial hypercholesterolaemia (FH) have

been identified in the LDLR gene, which may signify the importance of this region. Although

Top et al (1992) failed to identify any promoter mutations in a large cohort of heterozygous

FH patients, Hobbs and colleagues (1992) reported the presence of three mutations in the two

Spl binding sites. These included a 3-bp deletion at nucleotide position -92 and two point

mutations, -44 c-ot and -42 c---+g.This study did not include functional analysis of these

variants, and Peeters and colleagues (1998) have subsequently determined through transcient
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transfection studies and bandshift assays that mutation -92dcct identified in a South African

Pedi significantly reduces transcription of the LDLR gene and abolishes binding of Sp 1 to

repeat 1.

Koivisto et al (1994) presented the first detailed report of a disease causing mutation in the

LDLR promoter (-43 c~t), which co-segregated with the FH disease phenotype in a Finnish

family. In vitro assays indicated that this variant, located in repeat 3, significantly decreased

LDLR gene transcription and abolishes binding of Spl. Mutation -45 t-e-e associated with a

mild FH phenotype, was identified in the proximal Spl site in a Welsh patient (Sun et al,

1995). Functional studies demonstrated that the -45 t-oe variant reduces the binding affinity

for Spl to this site as well transcription of the LDLR gene in vitro.

In 1997, Day and colleagues reported the first naturally occurring LDLR promoter mutation

in repeat 2 (-53 c~t) of the LDLR gene. This variant, however, is unlikely to have a major

effect on transcription of the LDLR gene, since it is located outside the region (SRE-I site)

identified to be critical for protein binding and sterol-mediated transcription (Smith et al,

1990; Briggs et aI, 1993).

Further analysis of the LDLR promoter gene region in the South African population revealed

an enrichment of promoter variants in the Black and Coloured (a people of mixed ancestry)

populations, while apparently absent in Caucasians (Appendix A-C). Scholtz and colleagues

(1999) reported the presence ofa disease-causing mutation at position -59 (c~t) within repeat

2 of the LDLR gene in a South African Coloured family with FH. This mutation significantly

reduced transcription of the LDLR gene and co-segregated with the FH disease phenotype in

the family. In addition to this mutation, two other sequence changes, -124 e-s-t and -175 g~t,
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were detected in the same family. The -124 e-st variant is located immediately adjacent to the

FP-1 site and significantly increased LDLR transcription (~ 160% compared to control) while

the -175 g~t variant, located within the FP-2 site, only slightly (non-significant) reduced

transcription of the LDLR gene in vitro. The -59 c-ot mutation and the -124 e-st

polymorphism were detected together in a single individual in this family who presented with

plasma cholesterol levels within the normal range. This finding appears to provide the

possible in vivo evidence for interaction between the SRE-1 and FP1 site, as previously

suggested by Dhawan and colleagues (1997).

Figure 1 provides a schematic presentation of the mutations and polymorphisms that have

been identified in the LDLR promoter region. The influence on LDLR promoter activity is

illustrated in Figure 2, for four ofthe variants that have been identified in South Africa.

Figure 1: Schematic presentation of naturally occurring mutations in the promoter region of
the LDLR receptor gene.

-136

-144 -125

-59 -_H

T'/o

-68 I-53
AAAATCAca::.CACTGC 3'

5'

I
Il

-175
-9~

-52 -36

FP2 = footprinting 2 site; FP1=footprinting I; TATA-box = TATA like sequences; underlined sequences
indicate variants in the South African population
• Hobbs et ai, 1992; #Koivisto et ai, 1994; &Sun et aI, 1995; %Day et al, 1997; $ Peeters et aI, 1998; •• Scholtz et
at, 1999; If# novel variants



Figure 2: Transient expression of luciferase reporter gene constructs containing the LDLR
gene promoter. Illustration of the expression patterns of mutations identified in South Africa
(-59 c-H; ~ -92 cct; -124 c~t; -175 g~t) compared to a mutation negative LDLR promoter
construct. Luciferase gene activity was normalised against p-galactosidase activity.
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Extended mutation analysis of the LDLR promoter region has recently resulted in the

identification of two additional mutations, -136 g~a and -221 c~t, in South African subjects.

The -136 g~a variant is located within the FP-1 site, where sequence variation was shown to

influence binding ofp125 to the FP-1 site and abolishes SRE-1 mediated LDLR transcription

(Dhawan et al, 1997). The c to t base change at position -221 lies outside the described

regulatory region of the LDLR gene (200 bp upstream of the transcription initiation site) and

therefore further in vitro studies are required to determine the possible effect of this point

mutation on transcriptional activity.
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LDLR activity and disease pathogenesis

Infection and inflammation induces a wide array of metabolic changes, the so-called acute

phase response, which is mediated by cytokines. Numerous reports have indicated that high

lipoprotein levels are beneficial in combating infections (Owens et al, 1990; Xu et al, 1993;

Hofer et al, 1994). Various cytokines, including oncostatin M (OM), tumour necrosis factor a

(TNF a), interleukin 1~ (IL-l~) and interleukin 6 (IL-6) have been shown to regulate

transcription of the LDLR gene (Stopeck et al, 1993). In disease pathogenesis this would

suggest an increase in LDLR gene transcription and increased endocytosis ofLDL.

It has been reported that LDLR gene transcription IS enhanced upon infection with

herpersvirus 1 (HSV -1), leading to increased LDL endocytosis (Hsu et al, 1995). Other

reports have indicated that cholesterol is essential for cellular transport as well as survival of

certain pathogens (Phalen and Kielian, 1991; Bernardes et al, 1998; Gatfield and Pieters,

2000). Interestingly, it has recently been reported that certain pathogens compete with

lipoproteins for cellular receptors (Coppens et al, 2000). Although the exact mechanism of

cholesterol recruitment by pathogens is not fully understood, it is reported that viruses exploit

transcription factors, (Sp1, YY1, LSF and CREB) important for gene expression (Romerio et

al, 1997; Flamand et al, 1998; Rahaus and Wolff, 2000). Of interest to this study is the fact

that binding and putative binding sites for these transcription factors are present in the LDLR

gene promoter. Since the LDLR gene is considered an immediately early response gene, and

the fact that certain pathogens exploit the LDL receptor to gain entry into the cell (Hofer et al,

1994), it appears likely that mutations in the promoter region of the gene will affect

transcription and therefore viral entry. The -175 g-H variant, detected in the South African
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Black and Coloured populations (Scholtz et al, 1999), are located within a putative YY1

binding site (Shi et al, 1997).

The FP2 site where the -175 g~t variant is located, contains a potential CRE-site which

binds CRE-binding protein. Sheng et al. (1991) demonstrated that CREB is a Ca2+_

regulated protein and this might explain the finding that Ca2+ can increase LDLR gene

transcription (Makar et al, 1994). The fact that LDL can increase intracellular Ca2+ levels

(Sachinidis et al, 1991) might furthermore explain the possible link for the assosiation found

between hypertension and the -175 g~t LDLR promoter variant. Various reports have

indicated that increased LDL levels are associated with hypertension and decrease in lipid

levels may decrease the incidence of hypertension (Ekelund, 1988; Flesch et al, 1994).

Atherosclerosis is a multifactorial disease which has been suggested to commence early in

childhood, manifesting later in life (Stary, 1989). It is also one of the most prevalent and well-

studied diseases in the Western world and is predicted to become the leading cause of death in

developing countries by the year 2020. Interestingly, Wick et al (1995) (and other researchers)

have provided evidence that atherosclerosis can be considered an immunologically mediated

disease, an aspect that has been greatly neglected in classical atherosclerosis research.

Evidence exists that humoral and cellular immune responses are involved at all stages of

atherosclerotic development (Hansson et al, 1989; Libby and Hansson, 1991).

Abnormalities in cellular cholesterol homeostasis have been widely reported in the

initiation and progression of various cancers, including chronic myeloid leukemia (CML)

(Goel et al, 1996) and acute myelogenous leukemia (AML) (Rudling et al, 1998). Vitols

and colleagues (1984) demonstrated that LDLR activity was increased in different
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leukemia patients and also reported that hypocholesterolemia was frequently found in

leukemia. In 1996, Goel and co lleagues described a particular 47kDa protein (with affinity

for SRE sequences) which was present in lymphocytes of normal individuals but not in

CML patients. This finding suggests that the enhanced degradation of LDL observed in

leukemia patients could be due to SRE-l enhanced expression of the LDLR gene. When

the normal cells proliferates, LDL receptor numbers are increased through increased

LDLR gene expression (Kruth et al, 1979). Ho et al (1978) and Vitols et al (1984)

demonstrated a significant increase in LDL degradation and receptor activity in

mononuclear cells of leukemic patients compared to normal subjects, but the exact

mechanism underlying this phenomenon is still unclear. Vitols et al (1990) have

demonstrated that LDL could possibly be used as a carrier to target lipophilic cytotoxic

drugs to specific leukemic cells in vivo. In 1996, Rudling and Collins reported that LDLR

and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA levels were

reduced in renal cell carcinoma. This finding prompted close scrutiny of other cancer cells

and showed that the increased LDL degradation observed in cancer patients, appears to be

independent of increased LDLR gene expression (Rudling et al, 1998).

In conclusion, it is evident that the importance of cholesterol is not always considered

when defining the pathogenesis of disease. It has been reported that naturally low or

clinically lowered cholesterol levels are associated with higher mortality rates due to

increased suicide risk, violence-, and injury-related deaths not caused by malignancies

(Forrette et al, 1989). With this in mind, Rauchhaus et al (2000) have suggested an alternative

endotoxin-lipoprotein theory and stressed the need for a paradigm shift in the approach to the

treatment of atherosclerosis. This suggested paradigm shift, however, does not eliminate the

role of traditional risk factors, such as elevated cholesterol in the pathogenesis of
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atherosclerosis, but only emphasise the importance of alternative approaches to managing

heart disease and in concomitantly elevated cholesterol levels. The fact that various

substances, apart from sterols, regulate LDLR gene transcription could be beneficial for

the treatment regime of various diseases.
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CONCLUSION

The regulation of eukaryotic gene expression is complex and poorly understood and it is clear

that, even from the present perspective, evolution has yielded a wide variety of mechanisms to

control genomic activity. By studying the survival adaptation of the fish population (Fundulus

heteroclitis) off the East Coast of North America, Schulte (2001) demonstrated that variations

in regulatory sequences could provide evolutionary significant changes, which can greatly

impact an environmental adaptation.

The role of lipoproteins (especially low-density lipoprotein) has been well established in

cholesterol homeostasis and various diseases, particularly atherosclerosis. Insight gained

during this study, however, implies that even though we have acquired immense knowledge

on the functionality ofLDL and cholesterol in the global homeostatic picture, this does not

even begin to emphasise the importance of these substances in cellular survival.

The LDLR gene can be considered an early response gene (Makar et al, 1994; Dhawan et al,

1999), and its promoter region is highly conserved (few regulatory variants present). Even

though some of the variants identified in the gene may only slightly affect transcription of the

LDLR gene, it seems possible that these variants might hamper the ability of individuals to

handle certain metabolic stresses, underlying some noncommunicable diseases. The

association detected between the -175 g-H variant and diastolic blood pressure appears to

support this hypothesis. We postulate that the effect ofCa2+ on LDLR gene expression and

the subsequent increase in intracellular Ca2+ levels by LDL, might at least underline this

association. Of further interest is the fact that this region contains a putative binding site for
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YYl and shows strong homology to a cAMP response element (CRE-l). It is noteworthy that

both these factors have been implicated in the regulation of both cellular and viral genes.

Classical atherosclerotic research has failed to consider the role of humoral and cellular

immune complexes involved in atherosclerosis. The presence of immune responses can be

detected throughout atherosclerosis (Wick et al, 1995) and suggests that it can be considered

an immunological disease. The endotoxin-lipoprotein hypothesis (Rauchhaus et al, 2000),

which suggests an alternative approach to managing and treating atherosclerosis, could

revolutionise the way we see atherosclerosis, thereby providing new targets for drug

development.

Upon mitogenic stimulation, immediately early genes are expressed to adapt to the cellular

changes. This process, and the fact that certain pathogens compete for the LDL receptor to

gain cellular entry, emphasises the importance of the LDLR gene regulation in innate

immunity.

The significant increase in clearance ofLDL in various cancer cells emphasises the

importance of cholesterol in proliferation, even though the precise mechanism is still unclear.

Even though the LDLR and HMG-CoA genes are down regulated in renal cell carcinoma, this

does not necessarily mean that these genes imply non-significance in the aetiology of cancer.

It has been suggested that LDL could be used as a carrier to target specific lipophilic

cytotoxic drugs to leukemic cells (Vitols et al, 1990).

The observed effect of the -59 c-ot mutation on apoptosis suggests that this variant might

inhibit apoptosis under conditions of normal immunological conditions. The cells which seem
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to be the most sensitive to the effects of this mutation are the CD4 and CD8 T-cells and

possibly also the eosinophils and basophils as seen by the increase in cell numbers of the

latter two populations.

This study highlighted the importance of regulatory gene regions in the pathogenesis of

disease. Since the sequencing of the human genome was completed a radical paradigm shift is

needed in the approach to disease pathogenesis, since approximately 30 000 genes (instead of

the initial 80-100 000 genes predicted) have been identified to be responsible for human

diversity. This would therefore, necessitate further investigation into non-structural variations

and protein-protein interaction in defining modem diseases. The LDLR gene represents as an

excellent example of a single gene that may be involved in various conditions such as cancer

and risk for heart disease. It thus seems plausible that alterations in serum lipid levels might

affect progression of various diseases. This might be especially important in the African

context, since variation in promoter regions may play an important role in adaptation to a

more Westemised lifesty leienvironment.
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The low-density lipoprotein /~ceptor (LDLR) plays a
major role in cholesterol homeostasis. Mutations in the
regulatory region of the LDLR gene, although rare, have
been shown to alter transcriptional activity of the gene
and can cause familial hypercholesterolaemia (FH). In
this study, a transition (c-et) was identified at nucleotide
position -59 within repeat 2 of the LDLR promoter in a
South African FH patient of mixed ancestry. By
screening 17 family members of the index case for this
promoter mutation, two additional single base changes
(-124c~t and -175g~t) were identified, located at
recently described cis-acting regulatory sequences of
the LDLR promoter. Both the -59c~t and the -124c~t
transitions were identified in the normocholesterolaemic
son of the index patient. Reporter plasm ids containing
the normal and mutant promoter fragments were
constructed by directional cloning. Transcription
studiesusing a luciferase reporter system demonstrated
thatthe -59c~t mutation significantly reduces promoter
activity in both the presence and absence of sterols
HO% of normal activity), while the -124c~t variant
increases transcription (-160%) of the LDLR gene. The
intra-familial phenotypic variability observed amongst
individuals with the -59c~t mutation can probably be
ascribed to allelic interaction, suggesting that variation
in the LDLR promoter region may contribute sig-
nificantly to the phenotypic expression of FH-related
mutations in populations where these mutations prevail.

INTRODUCTION

Familial hypercbolesterolaernia (FH) an autosomal
dominant disorder affecting the regulation of chole rerol

homeostasis. Clinical and biochemical features of FH include
xanthomata, premature coronary heart disease (CHO) and
elevated plasma cholesterol (I). Most Fl-l-re lated mutations
identified to date are located in the coding region of the 10\\'-
density lipoprotein receptor (LOLR) gene. while mutations in
the promoter region appear to be rare (2-5).

The essential regulatory elements of the LOLR gene lie
within -::200 bp upstream of the transcription initiation site, and
three imperfect direct repeats are largely responsible for
promoter activity (6). Repeats I and 3 bind Sp I. a lralls-acring
transcription factor, which promotes transcription ofthe LOLR
gene in the presence and absence of sterols (6.7). The 10 bp
core sequence of repeat 2, designated the sterol re gulatory
clement (SRE-I). is essential for high lewis of transcription of
the LOLR gene (8-10). In the case of sterol depletion, SRE-I
interacts with the essential transcription binding proteins
(SREBP) ro induce transcription of the LOLR gene (11-13).
\\ hi ls: responsible for sterol-mediated repression of the gene
\\ hen cellular cholesterol levels are high (8.9). Mutations in the
cor,' of repeat 2 have been shown to reduce transcription
significantly only in the absence of sterols (8,9). Two
additionnl cis-acting regulatory clernent-, have recently been
identified and are designated Iootprinung I (FP I) and
footprinring::: (FP2) clements (14). FPI and FP2, spanning
nucleotide intervals -145 to -126 ami -IS7 to -175.
respectively, arc deemed essential for maximal induction of
transcription. In 1997. Dhawan ('I (/1. (15) suggested that FPI-
induced transcription might be through interaction with SRE-
I. A variety of substances, such as cytokiues, growth factors
and hormones. has also been reponed to influence regulation
of transcription of the LOLR gene (16, I7)

In this study, we identified single base changes at nucleotide
positions -S9(c-7t), -124(c~r) and-175(g-7r) of the LOLR
gene promoter in a South African family of mixed ancestry. Of
these, only the -S9c~t mutation located in repeat 2 was
associated with the FH phenotype. Together with the sequence
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Figure I. Mutation :l11:11:,is in the index f:lI11ily. (A) Structure of the LII11i1:. r:ll11ily 111~l11bcr, \\ irh the apparem ly di-ca-c-rel.ucd mutation -59c-)1. including the
normocholcstcrolacmic son (l l l-S) of the index patient (identified by all :lITO\\). .uc indicated by half-filled symbols. (H) Heteroduplex "n:ll),s;; of the LDLR
promoter region. D\.-\ of a conrrol indiv idu.il with the -I ~-Il·-)t v.ui.uu \\:lS Icl:lclcd in lane I. The index patient (1:lI1e ~) and one of her son' (lane 3) \\ ere
h~tel'(l~:~ous for 111111:IIi,)n-59c-)1. w hilc the eldest son (lane 6) \\a; hetc rozvgous for both -59c-)1 and -I 2-1c-) I. The promoter mut.uions w e re absent in the
1\\0 ti:IlI1:!llIUS (I:lnes -I .uid 5).

changes described here, nine different defects/polymorphisrns
have now been reported in the LDLR promoter region
(3.4, I 0, I s, 19)

RESULTS

A base change (C'--7t) at nucleotide position -591\ as identified
by combined hcieroduplex and single-strand conformation
polymorphism (HEX-SSCP) analysis (20) ill repeat 2 of the
LDLR gene promoter in a South African FH p.uieru of Afro-Euro-
Malay origin. Subsequent screening for the mutation in 17
addnional relatives revealed the presence of mutation -59c'--7t in
the brother (11-5) and two sons (111-8, 111-11) of the index case
(Fig. IA), Individuals 11-5 and III-II presented with total
cholesterol (TC) levels above the 80th percentile for age and
gender(21), while individual l l l-S demonstrated an apparently
normal lipid profile (Table I), Interestingly. further mutation
analysis in this individual (Ill-S) revealed an additional single
base change (C'--7t) at nucleotide position -12-1 (Fig. l B,
lane' 6), Furthermore. we detected a base change (g'--7t) at
nucleotide position -175 in the samples of two normo-
cholesterolaernic nieces (111-2.111-5) ofthe index patient. D0!A
sequence analysis of the three promoter mutations detected in
the' family is illustrated in Figure 2. The lipid profiles of the
ruuturion-ncgntivc daughters of the index patient were within

the normal range, while her mutation-negative siblings had
moderately raised TC concentrations (below the' 70th
percentile) for age and gender according to Rossouw ct al.
(2 I)

D0!A screening of an additional 151 FH heteroz- gores from
the same population for the presence of promoter variants led
to the identification of a single patient with the -I 75g'--7t base
change. Subsequent D0!A screening of this individual for
mutations in the coding reg ion of the LDLR gene revealed a
G'--7A base change (E237K) in exon 5 CR, Thiart and H,
Nissen, unpublished data). In contrast, no disease-causing
mutation could be identified in the coding region of the FH
index patient with the -59c'--7t mutation. We also failed to
identify an LDLR gene mutation in the hyperchole sterolaernic
sister (TC > 7 11111101/1and normal uiglycerides) of the index
case (11-7). who tested negative for mutation -59c'--71. This
individual was selected for extensive analysis of the LDLR
gene (together with the index case) to screen for another
genetic factor underlying the' hypercholesterolaernia in the
~family, Mutations -I2-1c'--7t (prex iously detected at a 10\\'
frequency in Africans) and -59c'--7t were absent ill 60 healthy
blood donor of mixed ancestry included in this study. while
the promoter variant at nucleotide' position -175 was detected
at a heterozygote frequency of IY7e (S/60) in the control
population.
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Table I. Characterixtics of the index ca-,e and ~('\'l'r~tI rel.uivcs

Subjects Gel1der .Age (ye;u',) TC (11111101/1) TG (11111101,11 HDLC (11111101/1) LDLC (mmol.I) \'IUUlioll Apo E genotype

II·~ F 71 6j ~.7 0.9 -1.-1 :'/3

11·3 F 6S 7.7 :'.0 0.9 5A 3/J,

II·) \,1 6.' 9.~ 1.7 I.~ t: -59':-71 3/3

11·6 F 60 5.9 1.3 15 :'.8 3/3

11·7 F 57 t: 1.0 I.J, 5.-1 :'/J,

11·10' F 5J, 95 0.9 U 7.S -59c-71 3/3

11·II \'1 60 3.0 0.9 0.9 1.7 3/J,

1I1·~ F J,-l -10 O.S 1.1 1,5 -175g-71 V'
111·:' F 31 3.7 1.0 1.1 1.0 3/3
1I1·J, \,1 3~ ).~ ~J 1.0 3.1 :oj:'
111·) F 4~ J,j 1.0 1.0 3.D -175~-71 V'
111·6 F 37 6.1 1.2 OS n :'/3
111·7 F J,2 7.2 0.9 0.7 6.1 -1/J,

III·S \,1 36 -1.9 0.5 2.1 1.6 -59c-71/-12J,c-71 :'/3
111·9 F 30 5.3 0.5 O.S -1J 2!3
111·10 J-' 23 -lj 0.5 U 3.0 3/3

111·11 \,1 15 5.1 0.7 1.6 .'\.2 -59c-71 3/3

1\'·1 \,1 7' -1.j 0.9 1.0 :'.0 3/3_J

Subject numbering according 10 the p~di~r~e ill Fi~ure Ir\.
Jllld('x case.

c "

-59 cit

r, G

-12-1 cit
i\
I'
I

i
\

/

1 ! \ .
'. • I I (\
.,'"f] Y11' ! i i \
I I I ', I,

':'~_.':..... ~

G G C It C h

·175 glt

Figure 2. D\.-\ sequence ",1;,11 .sis ill members of the index L'l11il)' \\ irh mut.uious -5'!C-71, -12-1(-)1 and -I 75g-71. Each b,,,e ch;lIlge ;; depicted in rhe sequence
by ;111 ;"Ier;s~ (").

In order to determine the possible allelic effects of the sequence
Changes identified at nucleotide: positions -59 and -12-t in
indi\'idu:11 111-8, PeR-al11plified products encompassing
nucleotide: interval -2-t-t to +55 of the: wild-type and mutated
PI'omoters were cloned into a luciferase reporter vector and
transiently transfecred into human hepatoma (HepG2) cells. High
Ic\'els of transcription were observed for the wild-type promoter,
\\ hile the prornoterless vector (pGL3 Basic) showed virtually no
effect in the J-IepG2 cells. In comparison, the -59c-7t transition
Significantly reduced transcription of the LDLR gene promoter
to -40S'c of normal activity. while the -12-1c-7t base change
Incre:lsed promoter activity to -1609'" of normal in sterol

depleted cells (P < 0.05) In HepG2 cells supplemented with
sterol-containing medium. transcription of the LDLR gene
decreased to -169'c, while transcription of the mutant
promoters was reduced to 109'c (-59c-7t) and 50lJc (-124c-7t),
respectively (Fig. 3).

Apolipoprotein (apo) E genotyping wac; performed in an
attempt to determine whether mutation -59c-7t exhibits only a
mild effect on LDLR function that is exacerbated by the E4 allele
of this polymorphism (22). All individuals with mutations in the
LDLR promoter region were found to be homozygous for the
neutral E3 allele of the apo E polymorphism (Table I), Notably,
the presence ofthe cholesterol-raising E-t allele was detected in all
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three family members (11-3, JI-7, 1I1-7) with TC levels raised
7 mmol/] in the absence of mutation -59c-7t.

, DISCUSSION

The base change (C-7t) identified at nucleotide position -59 in
the index family represents the first report of a naturally
oCcurring mutation in the 10 bp core sequence of repeat 2 in the
LDLI<. promoter, III vitro results demonstrated that this
1l1Lltation dramatically diminishes transcription of the LDLI<.
gene in both the absence and presence of sterols, The
transft'ction assays were performed in HepG2 cells, where a
reductioll of transcriptional activity to -4OCk of normal in
Sterol-deficient cells was observed. It has been shown
pre\'iously that the nucleotide interval -65 to -56, the core
sequcnce of repeat 2, is essential for high levels of
trallsCI'iption. as we]! as sterol-mediated repression of the gene
(~,9), Interestingly, transvcrsions (c-7g/a) incorporated at
nucleotidc position -59 (8,9) virtually abolished (to -100 of
nOl'IlLlI acti , ity) the induction of transcription in the absence of
Sterols, but did not reduce transcription of the LOLR gene in
the presence of sterols as observed with the -)9c-7t mutation
icJcntified in the South African patient. This observation lllay
be explained by the LICt that the naturally occurring mutation
rcpresents a transition. reflecting the possible significance of
the specific b:ISC content at a given position within repeat 2,
Since a mutation at nucleotide position -59 results in non-
binding of nuclear proteins (9), and hyperrnethylation of
guanine -59 is positively associated with activation of LOLl<.
gene transcription in skin fibroblasts (23). we conclude that the
:-59c-7t mutation is the most likely cause of the FH phenotype
In the index patient. Further evidence in favour of a causative
role of this mutation includes the failure to identify an
additional diseast'-cau-;ine. mutation in the codinz region of the
lDLR gene in the index patient, its apparent absence in
healthy control individuals and the fact that this site has
remained conserved throughout evolution, The -53c-7a
n)ut~l1ion reported previously in repeat 2 (4) (l,N.M, Day,
Personal communication) is located at a position unlikely to

have a major effect on sterol-mediated regulation of the LDLR
gene (8,9)

The -59('-7t transition was detected in three family members
of the index case, In keeping with the above-mentioned data.
her brother (11-5) and youngest son (1[1-11) with (only)
mutation -59c-71. presented \\ith TC lewis above the 80th
percentile for age and gender, In a follow -up study of lipid
determinations (data not shown) performed after a 10 month
period in nine (11-5, 11-7, 11-10. II-II, IJ!-2. [[[-4, 1!I-8, III-II.
IV-I) relatives, TC concentration in the 15-year-old son (1[1-
I I) of the index patient \\ ith mutation -59c-7t was only
moderately raised (4,6 mmol/l: >60th percentile). which can
probably be ascribed to altered expression of El-l-related
mutations during childhood (24), The follow-up TC
determinations also confirmed the FH status of the index
case's brother (11-5: TC 8.4 111mol/I). the non-FH status of her
sister (11-7: 6.4 rnmol/l). and the normal lipid profile of her
eldest son (111-8; 4,9 mmol/l) carrying both mutations -59c-7t
and -12-+C-7t. Plasma cholesterol levels remained normal in
subjects II-II, 111-2,111-4 and 1\'-1 without mutation -59c-71.
which is consistent with the finding that this mutation co-
scgregrues \1 ith the FH phenotype in family members without
the sequence variant at nucleotide position -124(c-7t),

Although it was not possible to study the influence of the
numerous environmental (e.g. diet) and genetic factors that
may contribute to the abnormal lipid profile in the index
family, possible allelic effects imposed by the common ape E
polymorphism were excluded in those subjects with mutations
in the LOLR promoter region, The presence of the apo E4
allele, previously shown to be associated with raised plasma
cholesterol concentrations (22), may nevertheless explain the
raised TC levels in mutation-negntive hypercholesterolaemics
11-3. -7, 111,7 (TC > 7 mrnol/l)

The normal plasma cholesterol level detected in the
mut.uion-positivc son (111-8) of the index patient can probably
be ascribed to allelic interaction between the mutations at
nucleotide positions -59 and -124, since the transfection
results revealed a statistically significant increase ill promoter
activity for the' -12-lc-7t construct alone, to - 1600 of normal in
sterol depleted cells. The -I 2-1c-7t variant is located adjacent to
the FPI ci5<lCting regulatory element (position -126 to -144),
previously implicated in maximal induction of the human
LOLR gene transcription in response to low cellular
cholesterol levels. Demonstration in this study that the variant
(C-7t) at nucleotide position -124 increases LOLR
transcriptional activity indicates that the boundary of the FPl
enhancer sequence should probably be extended to include
nucleotide' pl1sition-12..f,)t is noteworthy that this variant Ila,
absent in the FH patients analysed, Thi observation rnav be
due to chance, but as illustrated in the index family, it is highly
unlikely th.u an individual with this apparently favourable
variant as well as a disease-causing LDLR gene mutation
would present with elevated plasma cholesterol levels; except
maybe when the two sequence changes occur on the same
chromosome. Interestingly, D\,A screening of >1000
individuals from eight different ethnic groups demonstrated
the presence' of variant -124c-7t at a low frequency (1-31Jc) in
populations with an African genetic element, while apparently
absent in Caucasians (25),

Irentification of variant -175g-7t in normocholesterolaernic
individuals, as well as in a single proband (who died recently at



the age of 50 year» of a heart anack) with an Fl-l-relatcd mutation
in the coding region of the LDLR gene, indicates that this base
ck\ll);'e does not cause the Fl-l phenotype. However, ::1S suggested
by our prelirninnry data obtained in the South African Black
population (26). it is possible that the presence of the -I 75);'-7t
variant imposes susceptibility or an increased risk for the
cbelopment of symptomatic FH in patients with other disease-
related mutations. In a study of the coding region of the LDLR
gene in South African FH patients of mixed ancestry, we
demonstrated recently that Caucasian admixture has contributed
Significantly to the disease phenotype in this indigenous
Population (27). Since the -175g-7t polymorphism has not been
detected in Caucasians, we postulate that the significantly lower
frequency (1/151) of this variant in FH patients of mixed ancestry
cOlllp:1rI~d with controls from the same population (-I YIc). is
PI·obablya reflection of the genetic profile at the LDLR gene locus
in FH patients as a consequence of admixture linkage
disequilibrium. Interestingly, variant -I 75g-7t is located within a
recently defined FP2 cis-acting regulatory element, and disrupts a
Putatil·e binding site for the rnulrifuncuonal transcription factor F-
ACT I (YY I) (14). However, whether the presence of the rare -
175t allele increases CHD risk in FH patients of mixed ancestry
was not the focus of this study, aqcI therefore further data are not
InclUded in this repon.
This study highlights the role of the SREBP in the regulation

of LDLR gene transcription and suggests that the -59c-7t
nlutation, leading to reduced transcriptional activity both in the
Presence and absence of sterols, is the causative rH mutation
In the index family. In contrast to clinical FH hornozygoies
I\·ho present with severely elevated plasma cholesterol levels
clue to the presence of two mutant LDLR alleles, we have
Identified an individual with two point mutations in the
PrOmoter re cion of the gene, whose cholesterol concentration
is Within th~ normal ra~H:,e. Further studies arc warranted to
cletennine whether the n~rmocholesterolacll1ic status in this
'cOmpound heterozygote' may provide the sought-after ill vivo
eVidence for interaction between FPI and SRE-I, as postulated
Previously by Dhawan et 0/. (15).

MATERIALS AND METHODS

I)etnils of the index patient arid stuciy subjects

Ihe index case is a 54-year-old South African woman of mixed
~~cestry (San, KllOi, African Negro, 1\L\dagascar, Javanese and
estern European origin), clinically diagnosed with FH. She

PreSented at a~e 44 with anaina. x(\nthOI11:1t<1and :lI"ClISt ~ ~
rorneae, smoked ten cigarettes per (Lly and had 110 documented
\<
lil1ily history of premature CHD. At this age, her pre-
;eQtrnent TC concentration was 7.3 mmol/', TG 0.6 mmol/l,
Ilgh-density lipoprotein cholesterol (HOLC) 1.6 mrnol/l and
iO\\-density lipoprotein cholesterol (LOLC) 5.5 mmol/l. For
.nclusion in this study, her plasma lipid levels were measured
~g(\in together with that of 17 additional family members,
ling standard techniques (Table I).

U ]::ollo\\"-up mutation screening wns performed in 151
cnrelated FH hererozygotes of mixed ancestry attending the
s rOOte Schuur Hospital lipid clinic. The selection of the
rlPles was based on previously described criteria for a.
t:Qgnosis of FH (24), including TC > 7 rnrnol/l, the presence of
ndon xanthomas and/or premature CHO in the index patient
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or first-de cree relatives. D\fA of 60 healthv blood donors from. ~ -
the same population was also included. All blood samples were
obtained with informed consent and the study protocol was
approved by the appropriate Institutional Ethics Review
Committee.

D:\A analysis

Genomic Ol\'A extracted from whole blood was amplified by
PCR on an OmniGene Thermal Cycler (Hybaid. UK) using
LDLR promoter primers 5'-GAGGCAGAGAGGACAA T-
GGC-3' (forward) and 5'-CCACGTCATTT ACAGCA TT-
TCAATG-3' (reverse). PCR products were denatured and
frasrnents resolved on a low cross-linked polyacrylamide gel
for~ combined ·HEX-SSCP analysis (20) of the LOLR gene.
Fragments demonstrating altered mobility were sequenced
manually and variation confirmed on an automated sequencer.
ABU?:, (Perkin Elmer, Foster City, CAy. Determination of
apo E genotypes was performed using oligonucleotide primers
F4 and F6 (28), restriction enzyme digestion with HII({I and gel
electrophoresis (29).

Reporter vector constructs and transient transfection
assays

Construction of reporter plasmids containing the normal and
mutant promoter fragments and transient trunsfection assays
were performed as described previously (IS). The calcium
phosphate method was used to transfect HepG2 cells with the
plasmid D~A. Triplicate wells were assayed for each transfection
condition and at least three independent transfection assays were
performed for each construct. Luciferase activity was normalized
against ~-galactosidase activity to correct for rransfection
efficiency. The ill vitro results obtained with the -59t and -124t
transcripts described ill this study haw been verified by
Peeters (30) in CHO cells using Transfectum (Promega,
Madison, \VJ) as the transfection reagent.
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Predominance of a 6 bp deletion in exon 2 of the
LDL receptor gene in Africans with familial
hypercholesterolaemia

Rochelle Thiart, Charlotte L Scholtz, Joseph Vergotine, Christiaan F Hoogendijk,
J Nico P de Villiers, Henrik Nissen, Klaus Brusgaard, Dairena Gaffney, Michael S Hoffs,
\VI J Hayward Vermaak, Maritha J Kotze

Abstract
In South Africa, the high prevalence of
familial hypercholesterolaemia (FH)
among Afrikaners, Jews, and Indians as a
result of founder genes is in striking
contrast to its reported virtual absence in
the black population in general. In this
study, the molecular basis of primary
hypercholesterolaemia was studied in 16
Africans diagnosed with FH. DNA analy-
sis using three screening methods resulted
in the identification of seven different
mutations in the coding region of the low
density lipoprotein (LDLR) gene in 10 of
the patients analysed. These included a 6
bp deletion (GCGATG)· accounting for
28% of defective alleles, and six point
mutations (DI51H, R232W, R385Q,
E387K, P678L, and R793Q) detected in
single families. The Sotho patient with
missense mutation R232W was also het-
erozygous for a de novo splicing defect
313+1G~A. Several silent m.utationsl
polymorphisrns were detected in the
LDLR and apolipoprotein B genes, includ-
ing a base change (g~t) at nucleotide
position -175 in the FP2 LDLR regulatory
element. This promoter variant was de-
tected at a significantly higher (p<0.05)
frequency in FH patients compared to
controls and occurred in cis with rriu tat io n
E387K in one family. Analysis of four
intragenic LDLR gene polyrnor-pb isrns
showed that the same chromosomal back-
ground was identified at this locus in the
four FH patients with the 6 bp deletion.
Detection of the 6 bp deletion in Xhosa,
Pedi , and Tswana FH patients suggests
that it is an ancient mutation predating
tribal separation approximately 3000
years ago.
U Med Genet 2000;37:514-519)

Keywords: apolipoprotcin B; hypcrcholcsterolaemia;
low density lipoprotein receptor; mutation

Autosomal dominant hypercholesterolaemia
(ADE) ismost commonly caused by mutations
in the low density lipoprotein receptor (LDLR)
gene causing familial hypercho1estero1aemia
(FE), or in the apolipoprotein B CApoB) gene
causing familial defective apo B (FDB).I 2

These biochemical defects result in the precipi-
tation of excess cholesterol and clinical charac-
teristics include tendon xanthomata and pre-

mature coronary heart disease (CHD). The
estimated incidence of both FE and FDB is
approximately I in 500 in most white popula-
tions.

In the Afrikaner population of South Africa,
the prevalence of FE has been increased to
approximately I in 70, as a consequence of a
founder effect following the introduction of at
least three defective LDLR gene alleles by
European settlers. l-5 This is in striking contrast
to the apparently low prevalence of FE in the
black population, reported to have migrated
from central Africa to the south in three main
groups, the Ngunis (Xhosa, Tembu, Swazi, and
Zulu) along the east coast, the Sothos (South
Sotho, North Sotho/Pedi, \'\'est Sotho/Tswana)
who settled further west on the Transvaal high-
veld, and the Vendas living in the northern
Transvaal area6; \'\1e suspect that FE is not
frequently recognised in Africans because of
altered clinical expression and not because of a
lower mutation prevalence compared to most
other populations. Previous studies have indi-
cated that the mutational mechanisms giving
rise to germline mutations are largely a
function of the local DNA sequence
environrnent.t"?

Since the situation in South Africa is ideal for
studies of underlying lipid related genetic
differences among population groups," we
attempted to identify black hypercholesterolae-
mics to determine the spectrum of mutations
in the promoter and coding region of the
LDLR gene and in exon 26 of the ApoB gene.
FDB has not previously been studied in the
South African black population, but was found
to be rare in other South African populations,
most likely because of a "negative" founder
effect that diluted the frequency of the
common ApoB 3500 mutation in the immi-
grants relative to their parent populations. 12

Subjects and methods
SUBJECTS

Blood samples were collected from 56 black
patients attending lipid clinics in South Africa,
after obtaining informed consent and ethical
approval from the regional Review Committees.
Details on clinical features and ethniciry were
provided by the referring clinicians. Sixteen
patients with a diagnosis of "classical" or "prob-
able" FE, including two FE hornozygores, were
selected for extensive mutation analysis for the
coding and promoter region of the LDLR gene
and exon 26 of the ApoB gene. Blood samples
were also obtained from 38 of their family
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Table J Characteristics of Africa II probands analysed for LDLR and apo 1J gene muuitions
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TC 7G HDL LDL
LDLR gene Apo B g~'lh' Relatives

ln.lcx AIICI.':HI)' Sex Ag ....' (1II1J1l,!'l)t Clinical sequence changes sequence changes tested

C,\\ Xhosa F 52 8.5 2.7 1.5 5.8 CHO R793Q 0
"\X Xhosa ,,\ 50 10.8 2.0 0.9 9.0 Arc, Xan -175g-H 0
AN Swazi 1" 58 10.1 0.9 1.3 8.4 Are, Xan , CHO 0151H 0
AS Swazi ,\\ 49 8.0 1.0 2.1 5.4 Are, CHO P678L 0
f\.\ \. Swazi/Zulu F 56 8.3 1.5 1.9 5.7 Arc II
CKt Zulu ,\\ 26 l3.8 0.8 1.3 12.1 Arc, Xan -17Jg-H I
SH Sotho ,\\ 33 12.7 2.2 1.2 10.5 Arc, Xan 313+ IG->A; R232\'i' 4
RK Sotho ,,\ 58 10.7 2.3 1.0 8.6 CHO R385Q 0
KNt Pcdi F 32 14.9 0.8 J..l 13.1 Arc, X~\I1 6-bp del, 6-br del 0
EF Pcdi F 56 13.1 I I 1.2 I 1.4 Are, 1'\'0, CHO E387K; -175g->t; C3nC T3552T; T3540T 10
LP Pt'di F 61 9.4 0.8 0.9 8.1 Arc, X311 6-bp del 3
CN' Pedi F 57 7.4 2.6 0.9 5.3 Are, P\'D 6
R,\\' Pcdi/Tswana r 54 10.8 0.4 1.3 9.3 Arc, ?Xan 3
L,\\* Tswana F 56 6.1 1.8 1.8 3.5 Are, CHO -1 75g-H T3552T 0
RL Tswana F 30 9.3 0.8 1.7 7.2 Arc.Xan 6-bp del 0
CS Tswana F 47 7.9 0.7 1.7 5.9 Arc 6-bp del 0

The majority of mutations summarised in this table were included in a recent mutation update."
Reference plasm a cholesterol concentrations in [he general black population are given in ref 2 ..1.
TC, total cholesterol; TG, triglyccridcs, HOL, high density lipoprotein cholesterol; LOL, low density lipoprotein cholesterol; CHO, coronary heart disease; P\'O,
peripheral vascular disease; Arc, arcus cor ncalis; Xan, xanthomata.
'Probable FH.
+Clinical FH homozvgorcs.
~rrctreJtrncnt conccnirarions, except for proband L!\\ for whom pretreatment levels were not available.

members (table 1). Classical FH (12 probands)
was defined as the occurrence of pretreatment
total cholesterol (TC) >7 mrnol/l, with the pres-
ence of tendon xanthomata or premature CHD
or both in the index case or a first degree relative.
Probable FH (four probands) was defined by
the same pretreatment cholesterol level and pri-
mary hypercholesterolaernia or premature CHD
or both in the family (table 1). DNA samples of
the 40 lipid clinic patients without the FH phe-
notype, but who had hyperlipidaernia or normal
lipid profiles in the presence of vascular disease,
were included for analysis of specific regions of
the LDLR gene. Ninety six people drawn from
the same population (J 9 Pedis, 21 Sothos, 27
Xhosas, and 29 Zulus) were sampled as
controls. TC, high density lipoprotein choles-
terol (HDLC), and triglyceride (TG) determi-
nations and extraction of genomic DNA were
performed using standard methods. I) Plasma
I.DL cholesterol (LDLC) concentrations were
calculated with the Friedewald formula
(LDLC=TC-(HDL+TG/2.18)). "

,\\UTATIO:'-: DETECTIO:'-:

Hcteroduplcx single strand conformation poly-
morphism (HEX-SSCP) analysis was per-
formed in South Africa" and denaturing
gradient gel electrophoresis (DGGE) JI1

Denmark" and Scotland" to screen polymer-
ase chain reaction (PCR) amplified genomic
DNA for mutations in the LDLR and ApoB
genes. For HEX-SSCP analysis, the exon spe-
cific primers described by Jensen et alii' were
used, while the promoter region of the LDLR
gene was amplified using primers 5'-
GAGGCAGAGAGGACAATGGC-3' and 5'-
CCACGTCATTTACAGCATTTCAATG-3'.
Base changes in the promoter region were
numbered according to Hobbs et al,'9 after
adding an additional A within the AAAA
stretch preceding repeat I, which is missing
from the published sequence." PCR products
showing aberrant electrophoresis patterns were
sequenced on both strands with a PCR

Product Sequencing kit (Amersharn) or an
automated sequencer ABI 373A or both.

H.WLOTYPE A:'-:.-\LYSIS

Haplotype analysis using four LDLR gene
polymorph isms was performed according to
Theart et al," Microsatellire markers v\y/A31 ,
F IAI,and THO I (Profiler kit, Applied Biosys-
terns) were used to test for biological consist-
ency in two families.

STATISTICAL A:'-:ALYSIS

Allele frequencies were determined by allele
counting. Testing for significance of heterogen-
eity in mutation frequencies among patient and
control groups was based on the chi-square
and Fisher's exact tests.

Results
Extensive DNA screening of the LDLR gene in
16 black FH patients, using both the DGGE
and HEX-SSCP screening methods, showed
six missense mutations in individual families
and a 6 bp deletion in four probands (table I). n
The deletion (FH Cape Town-I ), previously
described in a Xhosa FH homozygote,'; and
missense mutations D 15IHand R385Q have
not (yet) been reported in other populations.
Haplotype SliIal+/Srl/I+IA,:aII - was associ-
ated with the deletion in all three FH hererozy-
gotes and a homoallelic FH homozygote.
Screening of the coding region in DNA of the
four FH patients heterozygous for a base
change (g-7t) at nucleotide position - I75 of
the LDLR gene promoter resulted in the detec-
tion of a recycling deficient mutation E387K'9

in the DNA of subject EF. Interestingly, this
Pedi proband was found to be extremely
heterogeneous at the DNA level, since a silent
C to T base change was furthermore detected
at nucleotide position 1104 in exon 8, in addi-
tion to two silent mutations in the ApoB gene.
The G to C change in the third base of codon
3540 (T3540T) and the T to C change in the
third base of codon 3552 (T3552T) in the
ApoB gene have previously been reported in
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Age (y) 62 57 38 35 15 13 31 12 7 26 5

TC (mmol/I) 9.3 13.1 5.8 10.5 2.8 6.1 7.4 3.5 5.2 8.6 7.3

LOLC (mmol/I) 5.9 11.4 2.8 8.8 1.8 4.8 5.2 1.9 4.0 7.2 6.2

HOLC (mmol/I) 3.0 1.2 2.4 1.1 0.8 0.8 1.4 1.3 0.9 1.0 0.8

TG (mmol/I) 0.9 1.1 1.3 1.5 0.4 1.1 1.7 1.6 0.6 0.8 0.7

Xanthomas +
CVO/PVO PVO

E387K +- +- +- +- +- +-
-175G/T +- +- +- ++ +- +- +- +-
Smal ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Stul ++ ++ ++ ++ ++ ++ +- ++ ++ +- ++
Avail

Nco I ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Figure J Pedigree of proband EF (arrow) clinically diagnosed ,,·ilh heterozygous FH. Clinical, biochemical, and genetic
data are provided for people for tohom DNA samples oz::er.:available. Those unth raised plasma cholesterol leuels are
indicated by dark (1IIl1ralioll positire for E387K) and shaded symbols. The presence (+) or absence (-) of LDLR gem
1l111lOCiollSand recognition sites for 511101, Stnl, Aual I, 011</Neal are indicated.

Nigerian and African-American subjects,
respectively." One of the daughters of proband
EF (11.3 in fig I) carried two copies of the silent
ApoB mutation at codon 3540. RFLP analysis
indicated that haplotype SIl'IOl+/S{/{I+/AvaII-1
NcaI + cosegregatcd with the -175t allele in the
family (fig I). This chromosomal background
was also identified in two of the other probands
with the sequence substitution at -175 in the
LDLR promoter region, while haplotype
SIlIOI=l Stu). +IAvaII +INcoI + was associated
with the t allele in the Tswana proband (LM),
who also carried the T3552T variant in the
ApoB gene.

In order to determine whether the two
mutations identified in each of probands EF
and SH occur in cis or in trans on their respec-
tive chromosomes, blood samples were ob-
tained from additional family members for
segregation analysis. Pedigree analysis in the
family ofEF showed that mutation E387K and
the -175g-H variant occur on the same
chromosome (fig I). All the family members
who inherited the 387K/-175t haplotype (1.1,
1.2, II.2, II.4, IIL2, and IIL5) had abnormally
high TC and LDLC levels. 11.2, with a clinical
diagnosis of heterozygous FH, was homo-
zygous for the t allele at nucleotide position
-175. This implies that her deceased father
(husband of the index case) also carried the
-175g-H promoter variant, but in the absence
of mutation E387K. Her norrnocholesrerolae-
mic son (III. I), as well as her brother, inherited
this paternal chromosome, the latter presenting
with a moderately raised TC value. The
proband's son (ILl) and one of her daughters
(11.3) (confirmed by marker studies using
highly informative microsatellites) had moder-
ately raised plasma cholesterol concentrations
in the absence of either the promoter variant or
the exonic mutation, indicating that another
unknown factor contributes to the abnormal
lipid profile observed in this family. TC
concentrations were found to be very low in the

general black population (approximately 3
mrnol/l) compared with other South African
groups.2425

DNA screening of the 53 year old father of
proband CK, diagnosed with homozygous FH,
showed homozygosity for the t allele at
nucleotide position -175. His TC and LDLC
levels were 6.11 mmolll and 4.29 mmolll,
respectively, which is comparable to that of a
FH heterozygote. Plasma TG and HDLC con-
centrations were 1.49 mmolll and 1.14 mmolll,
respectively, and the only clinical feature
indicative of hyperlipidaemia in this obligate
FH heterozygote was corneal arcus.

HEX-SSCP analysis indicated that the splic-
ing defect identified in exon 3 represents a de
novo event in the family of SH, since it was not
present in any of his close relatives analysed.
Familial relationship was illustrated by trans-
mission of the exon 5 mutation (R232W) from
the father (72 years, TC 4.1 mmolll), and was
further substantiated by marker studies using
three highly informative microsatellites (data
not shown). Mutation R232W was absent in
the normocholesterolaemic brother (30 years,
TC 3.5 mmolll) and sister (42 years, TC 3.3
rnrnol/l) of the proband. Their mother, aged 62
years, presented with a TC level of2.9 mrnol/l.
It was therefore not possible to determine
whether the splice mutation occurred in cis in
the proband on the paternal chromosome
bearing mutation R232W, or in trans on the
normal maternal chromosome.

Subsequent DNA screening of 96 controls
from the general black population comprising
56 Ngunis (27 Xhosas, 29 Zulus) and 40 Sot-
hos (19 Pedis, 21 Sothos) resulted in the iden-
tification of six subjects (four Ngunis (one
Xhosa, three Zulus) and two Sothos (one Pedi,
one Sotho)) heterozygous (6%) for the -l75t
allele. Although the number of patients ana-
lysed is small, the frequency of this allele'
appeared to be higher within each tribal group
(2/6 Igunis and 2/10 Sothos with FH)
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compared to the controls (4156 Ngunis and
2/40 Sothos). An overall statistically significant
difference (p<0.05) was observed between the
presence of the rare t allele in the general black
population (0.03) compared to its frequency of
0.13 in the patients diagnosed with classical or
probable FH (;('=5.916, I df, p=0.0149). We
furthermore detected five carriers of the
-175g-H polymorphism among 40 lipid clinic
patients without the FH phenotype (13%),
showing an intermediate allele frequency of
0.06. This was not significantly different from
the frequencies observed in the FH (X'= 1.326,
I df, p=0.249) or control (/:'=1.474, I df,
p=0.224) groups. Variant -175g-H was also
detected in 1/47 DNA samples of controls from
the Venda tribe studied by Ehrenborg el al,25
which was absent in more than 300 whites
screened. '6

Discussion
Numerous low density lipoprotein receptor
(LDLR) gene mutations (>600) have been
identified in FH patients, but genetic data on
black African populations are rare. I. " ') 27 A
striking finding is that a 6 bp deletion
predominates in a small number (5/18) of FH
patients (this study)'· ') '8 identified in the
South African black population, where this
lipid disorder is thought to be rare. This
deletion in exon 2 removes an aspartic acid and
a glycine from the first cysteine rich ligand
binding repeat of LDLR, and impairs its trans-
port but not lipoprotein binding in
fibroblasts.') Frequent detection of a deleteri-
ous mutation can be the result of consanguin-
ity, recurrent mutational events, genetic drift,
founder gene effect, multiple introduction of
the mutation into a population, or heterozygote
advantage.

The 6 bp deletion identified originally in a
homoallelic Xhosa FH homozygote," and now
also in a homozygous Pedi and three FH
heterozygotes (Pedi and two Tswanas) on the
same haplotype, have not (yet) been reported
in other populations. These findings largely
exclude the likelihood of a recurrent muta-
tional event because of slipped mispairing or
multiple entries of the deletion mutation into
the black population. Detection of the deletion
in different tribes suggests that it originated in
Africa approximately 3000 years ago before
tribal separation." Although FH patients with
the deletion may therefore be distantly related,
family ties cannot at present explain its
relatively high prevalence among black FH
patients. The apparently low prevalence of FH
in South African blacks and the large popula-
tion size furthermore argue against a founder
effect. It is, however, possible that the deletion
mutation was propagated and inherited within
a small group of people who later evolved sepa-
rately into different African tribes. Another
plausible explanation is that this deleterious
deletion mutation may be associated with a
selective advantage in Africa. Already in 1990
Hobbs et al/o noted that the presence of several
founder mutations in different South African
population' groups' 31 may be indicative of a
Darwinian selection that favours the hetero-
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zygous state in this region of the world. Since
the most likely selective agent in Africa would
be infectious diseases, the fi.nding that LDLR
deficient mice are protected against lethal
endotoxaernia and severe gram negative
infections)' supports the likelihood of such an
evolutionary selection mechanism conferring a
survival advantage. In addition to binding and
inactivating endotoxin, lipoproteins also bind
certain viruses and inhibit their infectivity."

Although the family data presented in this
study show that the -175g-H polymorphism
residing in a cis acting element in the LDLR
promoter" does not cause the FH phenotype in
affected subjects, further studies are warranted
to investigate the likelihood that this variant
may influence disease expression. The possi-
bility that the significantly higher frequency of
the -175g-H promoter polymorphism in
South African black FH patients compared to
controls (p<0.05) is caused by linkage disequi-
librium with another downstream mutation
causing the FH phenotype was excluded by
haplotype studies showing that the rare t allele
was associated with different LDLR haplo-
types. This allele furthermore cosegregated
with missense mutation E387K in one family.
These different chromosomal backgrounds
may be the result of recombination events,
reflecting the age of the -175g-H variant.
Compared to whites, blacks are considered
older in evolutionary terms); and can therefore
be expected to have accumulated variation over
longer times. It is possible that the -175g-H
polymorphism did not spread to other parts of
the world, thereby explaining its apparent
absence in whites (this study). 1836 The African
origin of the -I 75g---1t variant was confirmed
by detection of the rare t allele at a low
frequency in control DNA samples obtained
from Nigerians and African-Americans."
African-Americans originated mostly from the
western African coast and arrived in North
America between the 16th and 19th centuries.

One Sotho proband was heterozygous for a
known splicing defect 111 intron 3
(313+ I G---tA) and for the R232W mutation in
exon 5. In all the patients with mutation
313+ I G---1A studied to date, the splicing defect
is associated with a clinical picture of severe
hypercholesterolaernia and early CHD. 37 )8

Patient SH had a TC concentration of 13
mmolll, but it is uncertain whether this high
level is solely because of the 313+ I G---1A
mutation or whether there is an additional
effect of the downstream R232W mutation.
Family studies could not rule out the possi-
bility of a double mutation, but showed that the
splicing defect is the consequence of a de novo
mutation. None of the family members of SH
were hypercholesterolaemic, including his 72
year old father (LDLC 1.9 mmoll1), who was
heterozygous for mutation R232W. This find-
ing indicates that R232W does not affect
LDLR function or, alternatively, that clinical
expression of this missense mutation is altered
by other genetic/environmental factors.

Although the missense mutations identified
have not been characterised further, they are
likely contributors to the FH phenotype in our



patient sample, since all the codon changes
involve conserved amino acids and were not
detected in the normal population. Screening
for mutations causing FDB'6 17 39 resulted in
the identification of two silent mutations,
T3540T and T3552T (data not shown), previ-
ously described in a Nigerian and African-
American subject, respectively." Failure to
identify disease related mutations in all the
patients studied may be because of limitations
imposed by the screening techniques used,
clinical misdiagnosis of FH, or mutations in
other genes causing the ADH phenotype.'o"

Both the Zulu and Pedi patients clinically
diagnosed with homozygous FH presented
with relatively low pretreatment TC levels « 15
mmol/I) for this severe condition I and neither
have yet suffered from CHD. The relatively
mild expression of homozygous FH in these
subjects largely precludes an estimation of the
prevalence of heterozygous FH in the South
African black population based on the preva-
lence of homozygous FH. Raised plasma chol-
esterollevels causing FH in a family frequently
remain undetected until the occurrence of cor-
onary events or clinical signs indicative of FH is
observed in one or more family members. This
may particularly be the case in the South Afri-
can black population, as hypercholesrerolae-
mics with lipid profiles compatible with the
diagnosis of heterozygous FH frequently lack
xanthomata characteristic of this condition
(this study)." None of the FH heterozygotes
with the relatively severe 6 bp deletion in cxon
223 presented with CHD. These findings
provide evidence that FH is probably under-
diagnosed in the South African black popula-
tion, most likely as a consequence of altered
expression of FH related mutations. This may
be the result of interaction with other genetic
and environmental factors, including a prudent
diet. II Data provided by us and others":"
therefore suggest that clinical/biochemical cri-
teria for the diagnosis of FH need to be differ-
ent by country/population and that DNA
methods may assist in making a definitive
disease diagnosis.
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Abstract

DNA samples of 2303 individuals obtained from nine different population groups were

screened for a polymorphic variant (g-H) at nucleotide position -175 of the low-density

lipoprotein receptor (LDLR) promoter. This variant, residing in a cis-acting regulatory

element, predominates in Black South Africans with familial hypercholesterolaemia (FH),

most likely due to enhancement of the clinical expression of FH when the -175t allele

occurs in association with another disease-related mutation. The objectives of this study

were 1) to determine the global distribution of the promoter variant, 2) to determine

whether the -175g~t polymorphism affects transcriptional activity of the LDLR gene, and

3) to use this information to assess the likelihood of negative selection against the rare -

175t allele during human evolution. The -175g~t variant detected at carrier frequencies

of 3-10% in different African population groups was absent in the Caucasian and Asian

(Chinese) individuals studied. In contrast to previous findings in Black South African FH

patients, the -175t allele occurred at a significantly lower frequency in

hypercholesterolaemics from the recently admixed Coloured population of South Africa

compared with population-matched controls (P<O.OOO1). Haplotype and mutation analysis

excluded the likelihood that this finding is due to association with another FH-related

mutation in the patient group, although reversal of the positive association with FH

observed in the Black population may, at least in part, be due to admixture linkage

disequilibrium. Finally, transient transfection studies in HepG2 cells demonstrated that the -

175t allele is associated with a non-significant decrease (-7%) of LDLR transcription in the

absence of sterols. The data presented in this study suggest that the -175g~t

polymorphism may have subtle effects that become clinically important within certain

genetic and/or environmental contexts and highlight the potential consequences of

admixture between populations with different disease risks.
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Introduction

Elucidation of the role of polymorphic variants in susceptibility to common diseases

represents a major challenge in human genetics. Certain commonly occurrmg

polymorphisms may contribute significantly to genetic risk of cardiovascular disease

(CVD), while less frequent but highly penetrant mutations may represent the primary

cause of disease subtypes such as familial hypercholesterolaemia (FH). FH is inherited in

an autosomal co-dominant fashion and is estimated to occur at a frequency of 1/500,

although a significantly increased (~1 /70) disease prevalence has been reported in the

Afrikaner population of South Africa due to the presence of three common founder gene

mutations in the low-density lipoprotein receptor (LDLR) gene (Kotze et al. 1991). To

date, more than 700 FH-related mutations (http://www.ucl.ac. uk/fh,

http://www.umd.necker.fr) have been identified in the LDLR gene, whilst single-nucleotide

polymorphisms (SNPs) that alter the amino acid sequence of the protein appear to be rare

(Hobbs et al. 1992). This may be due to evolutionary selection against deleterious alleles

as suggested by Cargill et al. (1999), although the effect of individual polymorphic

variants may be relatively mild and therefore difficult to detect due to potential

confounding factors that may differ between populations. By studying more than 500

SNPs in 106 genes, these authors demonstrated that polymorphisms involving amino acid

sequence changes are found at a lower rate and with lower allele frequencies than silent

substitutions that are less likely to influence disease. This finding relates well to the early

prediction (Kotze et al. 1989c) that the non-synonymous StuI polymorphism identified in

the LDLR gene (Kotze et al. 1986), and occurring at a relatively low frequency (~0.08) in

various populations (Kotze et al. 1989a; http://www.umd.necker.fr). may have a mild

phenotypic effect. Gudnason et al. (1995) have subsequently shown that the rare allele of
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this mutation (A370W) is indeed associated with elevated plasma cholesterol levels in the

general population.

Although the promoter regions of most genes remams poorly characterised, the 5'-

untranslated region of the LDLR gene has been studied extensively. The first

comprehensive mutation analysis of the LDLR promoter region (Top et al. 1992)

suggested that variation in this area does not playa significant role in the aetiology of FH.

However, several sequence changes that may affect transcriptional activity of the LDL

receptor have subsequently been reported by us (Peeters et al. 1998; Scholtz et al. 1999;

Thiart et al. 2000) and others (Hobbs et al. 1992; Koivisto et al. 1994; Sun et al. 1995;

Jensen et al. 1996; Day et al. 1997b). Frequent detection of polymorphic variants (allele

frequency> 1%) in the LDLR promoter region in subjects of African origin (Scholtz et al.

1999) raised the possibility that the phenotypic expression of FH mutations might be

influenced by variation in the LDLR promoter region in populations where these mutations

prevail (Thiart et al. 2000). This notion was substantiated by the detection of two LDLR

promoter mutations with opposite effects on transcriptional activity, in a subject with

normal plasma cholesterol levels who was part of a South African FH family (Scholtz et

al. 1999). Mutation -59c-H was shown to reduce promoter activity (~40% of normal

activity) and co-segregated with the FH phenotype, while the -124c-H polymorphism

increased transcriptional activity (~160%). Another point mutation (g~t) detected at

nucleotide position -175 in association with different FH-related mutations (Scholtz et al.

1999; Thiart et al. 2000), most likely contributes to or "unmasks" expression of the

disease phenotype / mutation in affected South African patients. Segregation analysis in a

Black FH family with mutation E387K (Thiart et al. 2000) and a South African Coloured

family with mutation E237K (Scholtz et al. 1999), demonstrated that the -175g~t variant
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occurs ill cis with both these mutations ill the respective families. These studies

demonstrated that the promoter polymorphism at nucleotide position -175 does not cause

the disease phenotype in the absence of another FH mutation, since only those subjects

with sequence changes in both the promoter and coding regions presented with elevated

plasma cholesterol levels.

In this study extended analysis of the -175g-H variant was performed in nine different

population groups, in order to determine the global distribution of this polymorphism and

its possible allelic effect.

Subjects and Methods

Study Population

DNA samples of 2303 unrelated subjects from ethnically diverse population groups have

been screened for the -175g-H polymorphism (Table 1).

Caucasians. The 742 Caucasian subjects were from five distinct groups: 357 white South

Africans of European descent, 200 Belgians, 145 French, 20 Australians and 20 New

Zealanders. Except for 327 of the white South Africans included as controls, and the 145

French participants, all the other subjects were hyperlipidaemics attending lipid clinics in

the different countries.

Asians. The 133 unrelated control individuals of Chinese (Cantonese) ancestry were

recruited from six different Chinese family physician practices in Vancouver. These

subjects were previously included in a similar study of a promoter variant in the

lipoprotein lipase (LPL) gene (Ehrenborg et al. 1997).
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Algerians. The 123 unrelated Algerian male subjects were randomly selected from a

representative list of households living in Oran region, from the Algerian National census

provided by the Algerian national demographic and statistic department.

Nigerian Blacks. The 27 Sub-Saharan Africans from Nigeria were referred to the East

Anglian Regional Genetics Service Laboratory in Cambridge, UK, for the diagnosis of

sickle-cell anaemia (Rubinsztein et al. 1994).

Khoisan. The 103 Khoisan people were from the area of Schmidtsdrift in the North-West

Cape. These individuals belonged to the Vaskela tribe or the Barakwena or Negroid type.

Coloureds. A total of 775 subjects (300 hypercholesterolaemics and 475 controls) from

the Coloured population of South Africa, a people of mixed ancestry (Khoisan, West

African Negro, Madagascar, Javanese, Malay and European origin). Sixty-one of the

control individuals were unrelated healthy blood donors recruited via the Western

Province Blood Transfusion services. The other 414 control individuals came from the

Moravian mission Mamre, located on the western perimeter of the Swart land. The

hyperlipidaemics attended lipid clinics in the Western Cape Province and included 200

patients with a diagnosis of classical or probable FH (Loubser et al. 1999) and 100 non-

FH hyperlipidaemics.

South African Blacks. The 211 Black South Africans were from three tribes originating

mainly from central Africa: 51 Ngunis (27 Xhosa, 24 Zulu), 66 Sothos (34 South Sotho,

32 North Sotho/Pedi) and 94 Vendas. The 94 control subjects from the Venda tribe living

in rural areas of South Africa were previously included in a similar study of a promoter

variant in the LPL gene (Ehrenborg et al. 1997). Fifty-four individuals from the different

tribes were dyslipidaemic patients (including 14 FH patients) attending lipid clinics in the

Southern and Northern regions of South Africa.
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American Blacks. The 30 African-Americans included 6 FH patients and 24 non-

hyperlipidaemic control individuals recruited as part of a family-based, cardiovascular

genetic epidemiology study.

Caribbean Blacks. Twenty-six of the 105 subjects of the Caribbean Black population

living in the Netherlands were hypercholesterolaemic patients from Curacao attending a

lipid clinic in Amsterdam. The remainder of the subjects, 79 in total, were control

individuals from Antilles, Surinam, and Hindustani origin.

Biochemical Analysis

Plasma levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and

triglycerides (TG) were determined in 706 of the unrelated South African control subjects

as previously described (Kotze et al. 1987; Ehrenborg et al. 1997). LDL cholesterol was

calculated according to the Friedewald formula [LDLC = TC - (HDLC + TG/2.18)]

(Friedewald et al. 1972).

Analysis of genomic DNA

DNA was extracted from whole blood usmg standard procedures (Miller et al. 1988).

Polymerase chain reaction (PCR) amplification of genomic DNA and analysis of the -175g-H

variant were performed as previously described (Thiart et al. 2000). Analysis of the tetra-

nucleotide repeat marker D 19S3 94 was performed as previously described (Day et al.

1997a), using primers c., (5'-AGACTACAGTGAGCTGTGG-3') and C12 (5'-

GTGTTCCT AACTACCAGGC-3 ').
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Cloning and transient transfection assays

The wild type (-175 g) and mutated (-17 5t) promoter fragments were inserted within the

HindIII and BglII cloning sites of the promoterless luciferase reporter vector pGL3

(Promega), essentially as described previously (Peeters et aI. 1998). For cloning purposes,

a BglII site was incorporated in the 3' region of the forward PCR primer (5'-CCA-

ATTTGAGGGGGCGTCAGATCTTCACC-3') and a HindIII site in the 3' region of the

reverse PCR primer (5'-GGGTTTCAAGCTTGGAC-ACAGCAGGTCGTG-3'), that were

used together to amplify the fragments containing the different alleles. Plasmid DNA for

transfection experiments was prepared using a Promega Plasmid Kit (Promega

Corporation, Madison, WI). Human hepatoma (HepG2) cells were cultured in EMEM

medium supplemented with 10% foetal calf serum, 100 units/rnl of penicillin G, and 100

ug/rnl streptomycin. Transfection assays in HepG2 cells were performed using the calcium

phosphate co-precipitation method as previously described (Peeters et aI. 1998). Absolute

luciferase activity was normalised against p-galactosidase activity to correct for

transfection efficiency. Triplicate wells were assayed for each transfection condition and at

least three independent transfection assays were performed for each luciferase construct.

Statistical analysis

Significance of frequency distribution of the -175t allele between and within populations

was determined using chi-square analysis and Fisher's exact two-tail probability when

appropriate. Group differences in biochemical parameters were determined usmg an

analysis of variance. P-values <0.05 were regarded as statistical significant.
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Results

Frequency of the -175t allele in patients and controls

Allele frequencies of the -175g-H variant were determined in the different population

groups indicated in Table 1. The -175t allele was not detected in any of the Caucasian or

Chinese individuals, but was present in all the populations of African origin. In the general

South African population, the highest carrier frequency (12.6%) was detected in the

Coloured population. In this particular subpopulation, a lower frequency of the -175t

allele was observed in hyperlipidaemics compared with controls (p<O.OOOl). This fmding

is in contrast to the results obtained in Black patients attending lipid clinics in South

Africa for whom, as previously reported by Thiart et al. (2000), the frequency of the

mutated allele was significantly higher compared with controls drawn from the same

population (p<0.01). Frequent detection of the -175g-H variant in the Khoisan

population, who has contributed significantly to the gene pool of the Coloured population,

largely excludes the possibility that the rare allele has been introduced into the Coloured

population strictly as a consequence of Black admixture. Finally, the -175t allele was

absent in hypercholesterolaemic American (a relatively small number of patients and

controls were available for analysis) and Caribbean Blacks included in the study, whilst

detected at frequencies of 12.5% and 3.8%, respectively, in normolipidaemics subjects

from these populations.

Analysis of microsatellite marker D19S394

Genotyping using D19S394 (approximately 250-kb upstream of the LDLR gene) was

performed to determine whether the significant differences in allele frequencies observed

between patient and control groups in the Coloured population, and the trend observed in
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the Caribbean and American Blacks, could be ascribed to allelic association. As previously

demonstrated following mutation screening and/or analysis of four intragenic LDLR gene

polymorphisms in non-Caucasian FH patients (Scholtz et al. 1999; Thiart et al. 2000), the

-175t allele was observed on various chromosomal backgrounds in both the patient and

control populations. The results obtained in subjects from the Coloured population are

shown in Figure 1.

Phenotypic effects of the -175t allele

Lipid profiles were assessed in 705 individuals from the general South African population

(Table 2). No statistically significant differences were found in individuals with or without

the -175t allele in the Coloured, South African Black or Khoisan populations, after

correcting for age and gender. In the four Coloured individuals, aged 29 to 64 years,

found to be homozygous for the -175g~t variant, TC levels ranged from 4.4 to 6.8

mmo/l, and LDLC from 2.9 to 4.7 mmol/1. Plasma cholesterol levels were consistently

higher in the Coloured population compared with the Black and Khoisan populations, a

phenomenon that can probably be ascribed to Caucasoid admixture as indicated earlier by

direct LDLR mutation screening in the Coloured population (Loubser et al. 1999).

Transient transfection assays

To further ascertain a possible phenotypic effect, the activity of the wild-type and mutated

LDLR promoter fragments was analysed using transient transfection assays. Since

hepatocytes constitute the main cell type synthesising cholesterol, the human hepatocyte

cell line HepG2 was used. Using as a reference the activity of the construct containing

nucleotide -175g, it was found that the -175t allele decreased transcription (~7%) of the

LDLR gene in the absence of sterols (Figure 2) but these differences did not reach statistical
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significance. When cells were grown in medium supplemented with sterols instead of

lipoprotein-deficient serum, luciferase activity was reduced to approximately 90-95% of

normal. The promoterless vector pGL3 Basic demonstrated virtually no effect in the

HepG2 cells (data not shown).

Discussion

Failure to identify the -175 g~t LDLR promoter variant in the Caucasian or Asian

populations indicates that this is an African-specific polymorphism, possibly due to

development of this variant after the migration of these groups from Africa. Detection of

the polymorphism in the Khoisan population as well as in different Black tribes in South

Africa, however, suggests that it originated before the protonegriform Africans split into

two major branches, the Khoisan and the Negro. Based on archaeological evidence, the

separation probably began more than 6000 years ago (Tobias 1974). Non-African

populations have experienced bottlenecks in population size during which less common

alleles such as -175t could have been lost through genetic drift or selection (von Haeseler

et al. 1996). After testing certain theoretical predictions, Cargill et al. (1999) suggested

that the minor allele of a functional polymorphism in current populations may in a

significant proportion of cases be the oldest, and the extent of linkage disequilibrium

around this allele would be expected to be quite small.

Among the Black populations with some degree of Caucasoid admixture, VlZ. South

African Coloured, American Black and the Caribbean Black populations, the frequency of

the t-allele was consistently higher in controls than in patients attending lipid clinics. In the

South African population, the highest allele frequency was detected in the Coloured



157

population, and the t-allele was significantly more common in the control group (0.07)

than in patients (0.01) (p<O.OOOI). None of the American and Caribbean Black FH

patients/hyperlipidaemics carried the -175t allele. While this may simply reflect the

relatively small number of hyperlipidaemic patients studied, it is also possible that the

-175g-H variant does not contribute to the development of dyslipidaemia in these

populations. Failure to detect the LDLR promoter variant in these groups may also be a

consequence of admixture linkage disequilibrium and/or selection acting against the

mutated allele during human evolution. The selection hypothesis, as proposed by Cargill et

al. (1999), is supported by the finding that the rare -175t allele appears to be associated

with the development of dyslipidaemia in the South African Black population (Thiart et al.

2000), since the frequency was significantly higher in patients attending lipid clinics (0.09)

than in the control population (0.02).

In an attempt to explain the aforementioned findings we considered the following

explanations with respect to the -175g-H variant: 1) association/linkage disequilibrium

with another disease-related mutation(s); 2) contribution to phenotypic variability via

interaction with other lipid-related mutation(s); 3) negative selection in Westernised

populations as a consequence of "incompatibility" with a non-African genetic background;

4) undetected in lipid clinic patients of recently admixtured populations due to the

predominance of other major genetic risk factors which are prevalent in European parent

populations; 5) apparent mutation enrichment in the promoter region of the LDLR gene in

Africans as a consequence of selective advantage. The latter possibility has not been

investigated further, but it is noteworthy that evidence is accumulating for potential

mechanisms by which changes in lipid metabolism and serum lipoproteins may be

beneficial in host defence (Hardardottir et al. 1995; Netea et al. 1995). It is therefore
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possible that alleles considered to be detrimental in relation to disease susceptibility may be

maintained as a consequence of improved survival to reproductive age following infectious

disease challenge. The multiple founder-related LDLR gene mutations identified in South

Africa (Leitersdorf et al. 1989; Kotze et al. 1989b; Meiner et al. 1991) led to a hypothesis

by Hobbs and colleagues as early as 1990, that this apparent mutation enrichment may be

caused by a Darwinian selection that favours the heterozygous state in Africa (Hobbs et al.

1990). Although we have recently demonstrated (Durst et al. 2001) that the founder

effect explains the high frequency of the common Lithuanian mutation (G 197del) in the

Jewish FH population (80% in South African Jews with FH) (Meiner et al. 1991), positive

selection due a selective advantage or genetic factors modifying the response of a

mutation's carriers to historical or local environmental constraints remains a possibility in

the African context.

Haplotype analysis with four intragenic (Smal, Stul, AvaIl, Neol) LDLR gene

polymorphisms in the South African population (Thiart et al. 2000), and genotyping of a

highly informative micro satellite marker D 19S394, demonstrated that association with a

specific disease-related mutation downstream in the LDLR gene is an unlikely explanation

for the differences detected in allele frequencies of the -175g-H polymorphism among

hyperlipidaemic and control populations. Specific polymorphisms/haplotypes were not

predominantly associated with the mutant allele in hyperlipidaemics or patients with FH,

compared with individuals from the respective control populations. Since marker

D 19D394 is located at a physical distance of 250 kb from the LDLR gene, there is an

expected 1/400 chance of recombination between D19S394 and the LDLR locus in a

single generation (Day et al. 1997a), while cross-over events would be less likely with

respect to polymorphisms and mutations within the LDLR gene.
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A possible explanation for the significantly lower frequency of the -175g~t variant in

South African Coloured patients attending lipid clinics compared with controls, may be

related to the genetic make-up of this "selected" hyperlipidaernic group. It has recently

been shown that Caucasian admixture contributes significantly to the FH phenotype in the

Coloured population of South Africa (Loubser et al. 1999). Since the -175g~t variant

appears to be absent in Caucasians, it is possible that the significantly lower frequency of

the mutated allele detected in Coloured hyperlipidaernics compared with controls from the

same population, is a reflection of the genetic origin of the LDLR gene locus in the

hyperlipidaernic subjects. Afrikaners of European descent are at high risk for FH due to a

founder effect in South Africa (Kotze et al. 1991), and African populations such as the

Khoisan presumably are at low risk. Since these two populations contributed roughly

equally to the gene pool of the present-day Coloured population (Loubser et al. 1999), the

risk of FH would therefore be proportional to the number of LDLR copies that are of

European descent. Any LDLR gene copy that carries the -175t allele must be of African

descent, and therefore this allele would be expected to be inversely associated with FH.

Family studies previously performed in the South African Black population suggested that the -

175g~t variant does not directly cause the FH phenotype in affected individuals, but that it

may contribute to phenotypic variability via interaction with other lipid-related mutations, such

as the allelic association with E387K reported by Thiart et al. (2000). Identification of a new

mutation, E237K, in association with the -175t allele (Scholtz et al. 1999) in one of the 200

Coloured FH patients analysed, appears to be in accordance with these findings. Although it is

not possible to exclude the likelihood that the -175t allele occurred together with mutation

E237K in the FH family by chance, it is noteworthy that the proband died at the age of 50
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years of a heart attack, perhaps suggesting that the -175g~t variant may impose a health

threat with Westernisation. If the mutated allele is largely incompatible with a non-African

genetic background and/or Western lifestyle one would anticipate a decrease in the frequency

or absence of the allele as observed in populations of European descent.

Recently, an association has been detected between the -175g~t variant and diastolic blood

pressure in the Coloured population of South Africa (C.L. Scholtz et al., manuscript in

preparation). Since the study participants included in this study have been recruited from the

general population for comparisons between subjects with and without variant -175g~t, the

likelihood of population substructures leading to spurious associations was largely excluded.

Further studies are, however, warranted to determine whether variant -175g~t directly causes

hypertension per se or perhaps jeopardises the ability of genetically susceptible individuals to

handle certain metabolic stresses, which secondarily result in changes in blood pressure. In

light of the results obtained in FH families with this promoter variant (Scholtz et aL 1999;

Thiart et aL 2000), failure to demonstrate an association with plasma cholesterol levels in three

South African population groups studied may suggest that the 175g~t polymorphism is

context -dependent.

Since the -175g~t variant resides in a FP2 cis-acting regulatory element and may disrupt

a putative binding site for the multifunctional transcription factor YY 1 (Mehta et al.

1996), we investigated the effect of the -175g~t variant in vitro. In accordance with the

family data and lipid comparisons presented, the cloning and transient transfection studies

revealed a non-significant decrease of approximately 7% in transcriptional activity for the

mutated allele. However, since the cis-acting elements responsible for non-sterol
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regulation of the LDLR gene by intracellular calcium and molecules including hormones,

cytokines and growth factors have not yet been defined (Makar et al. 1994), further

studies are warranted to investigate the possibility that variant -175g~t is involved in this

form of gene regulation. Differential expression may be expected in association with

different environmental contexts, seeing that the same mutation in the LPL gene has been

associated with both increased and decreased transcriptional activity depending on the

type of cell line used (Ehrenborg et al. 1997).

In conclusion, this study has provided further evidence that promoter regions may harbour

DNA polymorphisms which, instead of being phenotypically and clinically neutral, may

exert some influence on the transcriptional activity of the downstream gene. Such

comparatively minor effects on transcription may not always be immediately apparent but

could still assume clinical significance in combination with other sequence changes,

whether it be another polymorphism or a disease-causing mutation in the same/other gene.

The trends observed in this study may be a reflection of the serious consequences that may

arise from a sequence variant in the regulatory region of the LDLR gene being expressed

within a new genetic and environmental framework. Although mild phenotypic effects are

unlikely to influence reproductive fitness, further studies are warranted to assess the

likelihood that the apparent mutation enrichment in the LDLR gene promoter m

populations of African descent may impose a major health threat with Westernisation.



162

Acknowledgements

Professors M. Ramsay, University of the Witwatersrand, South Africa, and P. McKeigue,

London School of Hygiene and Tropical Medicine, United Kingdom, are acknowledged

for critical reading of the manuscript. Drs. J. Liu and A.V. Peeters are thanked for cloning

of the wild-type and mutant promoter fragments and independent verification of the

transfection results. This study was supported by the South African Medical Research

Council and the University of Stellenbosch. The Harry and Doris Crossley Foundation is

acknowledged for a student grant awarded to C.F. Hoogendijk and the Claude Harris

Foundation for a doctoral fellowship awarded to C.L. Scholtz.



163

References

Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et a1. (1999) Characterization

of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet 22:

231-238.

Day INM, Haddad L, O'Dell SD, Day LB, Whittall RA, Humphries SE (1997a)

Identification of a common low-density lipoprotein receptor mutation (R329) in the south

of England: complete linkage disequilibrium with an allele of micro satellite D 19S394. J

Med Genet 34: 111-116.

Day IN, Whittall RA, O'Dell SD, Haddad L, Bolla MK, Gudnason V, Humphries SE

(1997b) Spectrum of LDL receptor gene mutations in heterozygous familial

hypercholesterolemia. Hum Mutat 10: 116-127.

Durst R, Columbo R, Shpitzen S, Ben Avi, L, Friedlander Y, Wexler R, Raal FJ, Marais AD,

Defesche JC, Mandelshtam MY, Kotze MJ, Hobbs HH, Leitersdorf E, Meiner V (2001)

Recent origin and spread of a common Lithuanian mutation (G 197delLDLR) causing familial

hypercholesterolaemia: Positive selection is not always necessary to account for disease

incidence among Ashkenazi Jews. Am J Hum Genet 68: 1172-1188.

Ehrenborg E, Clee SM, Pimstone SN, Reymer PWA, Benlain P, Hoogendijk CF, et a1.

(1997) Ethnic variation and in vivo effects of the -93t---+g promoter variant in the

lipoprotein lipase gene. Arteriosci Thromb Vase BioI 17: 2672-2678.



164

Friedewald WT, Levy Fl, Fredrickson DS (1972) Estimation of the concentration of the

low density lipoprotein Cholesterol in plasma without use of the preparative

ultracentrifuge. Clin Chern 18: 499-509.

Gudnason V, Patel D, Sun XM, Humphries S, Soutar AK, Knight BL (1995) Effect of the

Stul polymorphism in the LDL receptor gene (Ala 370 to Thr) on lipid levels in healthy

individuals.

Hadardottir l, Grunfeld C, Feingold KR (1995) Effects of endotoxin on lipid metabolism.

Bioch Soc Trans 23: 1013-1018.

Hobbs HH, Russell DW, Brown MS, Goldstein JL (1990) The LDL receptor locus in

familial hypercholesterolemia: mutational analysis of a membrane protein. Ann Rev Genet

24: 133-170.

Hobbs HH, Brown MS, Goldstein JL (1992) Molecular genetics of the LDL receptor gene

in familial hypercholesterolaemia. Hum Mutat 1: 445-466.

Jensen HK, Jensen LG, Hansen PS, Faergeman 0, Gregersen N (1996) High sensitivity of

the single-strand conformation polymorphism method for detection of sequence variations

in the LDL receptor gene validated by DNA sequencing. Clin Chern 42: 1140-1146.

Koivisto U-M, Palvimo 11, Janne OA, Kontula K (1994) A single-base substitution in the

proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of

heterozygous familial hypercholesterolemia. Proc Natl Acad Sci USA 91: 10526-10530.



165

Kotze MI, Retief AE, Brink PA, Weich HFH (1986) A DNA polymorphism in the human low-

density lipoprotein receptor gene. S Afr Med J 70: 77-79.

Kotze MJ, Langenhoven E, Retief AE, Steyn K, Marais MP, Grobbelaar n, et al. (1987)

Haplotype associations of three DNA polymorphisms at the low-density lipoprotein

receptor gene locus in familial hypercholesterolemia. J Med Genet 24: 750-755.

Kotze MJ, Langenhoven E, Retief AE, Seftel HC, Henderson HE, Weich HFH (1989a)

Haplotypes identified by 10 DNA restriction fragment length polymorphisms at the human low

density lipoprotein receptor gene locus. J Med Genet 26: 255-259.

Kotze MJ, Langenhoven E, Warnich L, Du Plessis L, Marx MP, Oosthuizen cn, Retief AE

(1989b) The identification of two low-density lipoprotein receptor gene mutations in South

African familial hypercholesterolaemia. S Afr Med J 1989; 76: 399-401.

Kotze MJ, Langenhoven E, Warnich L, Marx MP, Retief AE (1989c) Molecular

characterisation of a low-frequency mutation in exon 8 of the human low-density lipoprotein

receptor gene. S Afr Med J 76: 402-405.

Kotze MJ, Langenhove E, Warnich L, du Plessis L, Retief AE (1991) The molecular basis

and diagnosis of familial hypercholesterolemia in South African Afrikaners 55: 115-121.



166

Leitersdorf E, van der Westhuyzen DR, Coetzee GA, Hobbs HH (1989) Two common

low density lipoprotein gene mutations cause familial hypercholesterolemia in Afrikaners. J

Clin Invest 84: 954-961.

Loubser 0, Marais AD, Kotze MJ, Godenir N, Thiart R, Scholtz CL, de Villiers JNP,

Hillermann R, Firth JC, Weich HFH, Maritz F, Jones S, van der Westhuyzen DR (1999)

Founder mutations in the LDL receptor gene contribute significantly to the familial

hypercholesterolemia phenotype in the indigenous South African population of mixed ancestry.

Clin Genet 55: 340-345.

Makar RSJ, Lipsky PE, Cuthbert JA (1994) Non-sterol regulation of low-density

lipoprotein receptor gene expression in T cells. J Lipid Res 35: 1888-1895.

Meiner V,Landsberger D, Berkman N, Reshef A, Segal P, Seftel HC, van der Westhuyzen

DR, Jeenah MS, Coetzee GA, Leitersdorf E (1991) A common Lithuanian mutation

causing familial hypercholesterolemia in Ashkenazi Jews. Am J Hum Genet 49: 443-449.

Mehta KD, Chang R, Underwood J, Wise J, Kumar A (1996) Identification of a novel cis-

acting element participating in maximal induction of the human low density lipoprotein

receptor gene transcription in response to low cellular cholesterol levels. J Biol Chern 274:

33618-33622.

Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting

DNA from human nucleated cells. Nucleic Acids Res 16: 1215.



167

Netea MG, Demacker PNM, Kulberg BJ, Boerman OC, Verchueren I, Stalenhoef APH,

van der Meer JWM (1995) Low-density lipoprotein receptor-deficient mice are protected

against lethal endotoxemia and severe gram-negative infections. J Clin Invest 97: 1366-

1372.

Peeters AV, Kotze MJ, Scholtz CL, de Waal LF, Rubinsztein DC, Coetzee GA, Zuliani G,

SteiffR, Liu J, van der Westhuyzen DR (1998) A 3-basepair deletion in repeat 1 of the LDL

receptor promoter reduces transcriptional activity in a South African Pedi. J Lipid Res 39:

1021-1024.

Rossouw IE, Jooste PL, Steyn K, Benade AJS (1985) Serum total and high-density

lipoprotein cholesterol - reference values obtained in the coronary risk factor study

baseline survey. S Afr Med J 67: 533-538.

Rubinsztein DC, Amos W, Leggo J, Goodburn S, Ramesar RS, Old J, Bontrop R,

McMahon R, Barton DE, Ferguson-Smith MA (1994) Mutational bias provides a model

for the evolution of Huntington's disease and predicts a general increase in disease

prevalence. Nature Genet 7: 525-530.

Scholtz CL, Peeters AV, Hoogendijk CF, Thiart R, de Villiers JNP, Hillermann R, Liu J,

Marais AD, Kotze MJ (1999) Mutation -59c-H in repeat 2 of the LDL receptor promoter:

Reduction in transcriptional activity and possible allelic interaction in a South African family

with familial hypercholesterolaernia. Hum Mol Genet 8: 2025-2030.



168

Sun XM, Neuwirth C, Wade DP, Knight BL, Soutar AK (1995) A mutation (T-45C) in

the promoter region of the low-density lipoprotein (LDL )-receptor gene is associated with

a mild clinical phenotype in a patient with heterozygous familial hypercholesterolaemia.

Hum Mol Genet 4: 2125-2129.

Thiart R, Scholtz CL, Vergotine J, Hoogendijk CF, de Villiers JNP, Nissen H, Brusgaard K,

Gaffney D, Hoffs MS, Vermaak WJH, Kotze MJ (2000) Predominance of a 6-bp deletion in

exon 2 of the LDL receptor gene in Africans with familial hypercholesterolaemia J Med Genet

37: 514-519.

Tobias PV (1974) The biology of the Southern African Negro. In: Hammond-Tooke WD

(ed). The Bantu-Speaking Tribes of South Africa. 2nd ed. London and Boston: Routledge

and Kegan Paul; I: 3-30.

Top B, Uitterlinden AG, van der Zee A, Kastelein JIP, Gevers Leuven JA, Havekes LM,

et al. (1992) Absence of mutations in the promoter region of the low density lipoprotein

receptor gene in a large number of familial hypercholesterolemia patients as revealed by

denaturing gradient gel electrophoresis. Hum Genet 89: 561-565.

Von Haeseler A, Sajantila A, Paabo S (1996) The archaeology of the human genome.

Nature Genet 14: 135-140.



169

FIGURE LEGENDS

Figure 1. Analysis of micro satellite marker locus D19S394 in patients and controls of

mixed ancestry with the -175g~t variant on a 6% polyacrylamide denaturing gel. Lanes 1-

6: PCR-amplified genomic DNA of control individuals. Lanes 7-10: PCR-amplified

genomic DNA of hypercholesterolaemic subjects. Fragment sizes corresponding to a M13

sequence marker are indicated in base pairs.

GAT C 1 234 5 6 7 8 9 10
- 307 bp

- 258 bp
M13 marker
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Figure 2. Analysis of wild type and mutated LDLR promoter activity under transient

transfection conditions.
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Table 1. Comparison of genotype distribution and allele frequencies of the -175g-H
variant in different population groups

Population n Frequencies P value
Alleles Genotypes Carrier %
g t gg gt tt

Caucasians 742 1.0 0.0 742 0 0 0.0
Chinese 133 1.0 0.0 133 0 0 0.0
Algerians 123 0.98 0.02 119 4 0 3.1
Nigerian Blacks 27 0.98 0.02 26 1 0 3.6
Khoisan 103 0.98 0.02 99 4 0 3.8
Coloureds 775 8.4 <0.0001

Patients 300 0.99 0.01 296 4 0 1.3
Controls* 475 0.93 0.07 415 56 4 12.6

SA Blacks 265 7.3 <0.01
Patients 54 0.91 0.09 44 10 0 16.8
Controls 211 0.98 0.02 201 10 0 4.6

American Blacks 30 18 0.302
Patients 6 1.0 0.0 6 0 0 0.0
Controls 24 0.88 0.13 18 6 0 21.9

Caribbean Blacks 105 5.6 0.332
Patients 26 1.0 0.0 26 0 0 0.0
Controls 79 0.96 0.04 73 6 0 7.3

P-values refer to both allele and genotype distribution
Patient groups represent individuals attending lipid clinics; the majority has the FH phenotype
*Data from Coloured individuals of the Marnre community and healthy blood donors were
pooled, since the genotype distribution and aIJele frequencies were similar in these two
subgroups (data not shown).
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Table 2. Lipid and lipoprotein concentrations in the general South African population
according to genotype combinations at position -175 in the LDLR gene promoter

Coloured population
Mean (SD)

Black population
Mean (SD)

Khoisan
Mean (SD)

gg Number 363
Sex (MfF) 153/210
Age (years) 38.77 (17.26)
TC (mmol/l) 5.31 (1.21)
HDLC (rnmol/l) 1.31 (0.39)
TG (rnmol/l) 1.10 (0.64)
LDLC (mrnol/I) 3.50 (1.13)

86
21165
35.66 (15.26)
3.84 (0.69)

194
146/48
34.32 (14.32)
3.36 (0.83)

1.05 (0.62)
1.17 (0.43)
1.70 (0.85)

gt Number 47
Sex (M/F) 19/28
Age (years) 36.38 (14.14)
TC (rnrnol/I) 5.31 (1.35)
HDLC (rnrnol/l) 1.4 (0.45)
TG (rnmol/I) 1.09 (0.91)
LDLC (rnmol/I) 3.37 (1.11)

9
9/0
30.0 (8.07)
2.83 (0.68)

1.17 (0.32)
0.85 (0.24)
1.27 (0.29)

4
113
21.50 (15.86)
3.64 (0.92)

tt Number 4
Sex (MfF) 311
Age (years) 45.0 (18.13)
TC (mmol/I) 5.40 (1.02)
HDLC (mmol/l) 1.08 (0.31)
TG (rnrnol/l) 1.38 (0.66)
LDLC (rnmol/l) 3.70 (0.81)

TC, total cholesterol; HDLC, high-density lipoprotein cholesterol; TG, triglycerides; LDLC,
low-density lipoprotein cholesterol; MfF, male/female; SD, standard deviation
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