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SUMMARY

The use of fungal enzymes as ruminant feed digestibility enhancers was investigated. Currently,

ruminants may not digest 38 to 80 % of fibrous forages' content. A renewed interest in the potential

of feed enzymes for ruminants was prompted by the high costs of livestock production, together

with the availability of newer enzyme preparations. Direct application of enzyme preparations can

improve in vitro dry matter (DM) and neutral detergent fibre (NDF) degradation, indicating that

direct-fed fibrolytic enzymes may be effective in enhancing in vivo digestion of forages.

Two commercial enzyme products, Fibrozyme and Celluclast, and fungal extracellular

enzyme extracts from Aureobasidium pullulans, Trichoderma reesei, Aspergillus aculeatus, and

Thermomyces lanuginosus were evaluated for enhancing in vitro feed digestibility. Fibrozyme

addition to both wheat straw and lucerne hay did not improve their in vitro digestibilities, even after

a two hour pre-incubation period. The four fungal enzyme extracts did not enhance wheat straw's

digestibility, but marginal increases were evident for lucerne hay. Celluclast addition resulted in

marginal increases in the digestibility of both oat hay and oat silage, with no enhanced effect on

lucerne hay and NaOH-treated wheat straw. No relationship could be found between the level of

enzyme activity and the degree of feed digestion in the in vitro assay.

Enzyme hydrolysis with Celluclast, in the absence of rumen fluid, gave more conclusive

results. All the feed samples tested showed a positive response to Celluclast addition, even the less

digestible feeds, namely sugarcane bagasse and wheat straw.

In vitro results show that the assays were unsuccessful, because almost all of the

experiments conducted showed inconclusive results. Alternative feed evaluation assays, which

include the in vivo, in sacco and in situ methods of analysis, as well as gas production measurement

and in vitro analysis with the DAISyII system, should be evaluated. A more detailed study of feed

digestibility should be motivated by determining which feeds are hydrolysable, their chemical

composition, i.e. how accessible the feeds are, and also evaluation of feed mixtures. The enzyme

supplements also need to be evaluated for optimum temperature and pH, as well as the compilation

of enzyme cocktails.
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OPSOMMING

Die gebruik van swamensieme om die verteerbaarheid van herkouervoere te verhoog, is ondersoek.

Tussen 38 en 80 % van veselagtige voere se inhoud is tans onverteerbaar. 'n Hernieude

belangstelling in die potensiaal van voerensieme vir herkouers word deur die hoë koste van

veeproduksie, asook die beskikbaarheid van nuwe ensiempreparate gedryf Direkte byvoeging van

ensiempreparate kan die in vitro droëmateriaal (DM) en neutrale onoplosbare vesel (NOV)

vertering verbeter, wat daarop dui dat fibrolitiese ensieme wat direk gevoer word, effektief mag

wees tydens die in vivo vertering van voer.

Twee kommersiële ensiemprodukte, Fibrozyme en Celluclast, en die vier ekstrasellulêre

ensieme van vier swamme, naamlik Aureobasidium pullulans, Trichoderma reesei, Aspergillus

aculeatus, en Thermomyces lanuginosus is vir hul vermoë om die in vitro verteerbaarheid van voere

te verbeter getoets. Byvoeging van Fibrozyme by beide koringstrooi en lusernhooi het geen

verbetering in hulonderskeie in vitro verteerbaarheid tot gevolg gehad nie, selfs nie eens na 'n twee

uur vooraf inkubasieperiode nie. Koringstrooi se verteerbaarheid is nie verbeter deur die byvoeging

van die vier swam-ensiempreparate nie, maar 'n minimale verbetering is wel waargeneem in die

verteerbaarheid van lusernhooi. Byvoeging van Celluclast het 'n minimale verbetering in beide

hawerhooi en hawerkuilvoer se verteerbaarheid tot gevolg gehad, maar geen effek op lusernhooi of

NaOH-behandelde koringstrooi se verteerbaarheid nie. Geen verwantskap is tussen die vlak van

ensiemaktiwiteit en die mate van vertering tydens die in vitro toets gevind nie.

Ensiematiese afbraak met Celluclast, in die afwesigheid van rumenvloeistof, het meer

konkrete resultate gelewer. Al die voermonsters het 'n positiewe respons op die byvoeging van

Celluclast getoon, selfs ook die minder verteerbare voere, nl. suikerrietbagasse en koringstrooi.

In die wyer konteks was die resulate van die in vitro verteringstoetse egter onbeduidend as

gevolg van groot variasie in die metings. Alternatiewe voerontledingstoetse, wat moontlik beter

resultate mag lewer, sluit in in vivo, in sacco en in situ analises, asook die meting van gasproduksie

en in vitro analise met die DAISyII sisteem. 'n Meer uitgebreide studie van voerverteerbaarheid wat

die bepaling van die afbraak van voere, hul chemiese samestelling, met ander woorde

toeganklikheid van voere, en die ondersoek van voermengsels behels, behoort aandag te geniet. Die

ensiemmengsels behoort ook ten opsigte van samestelling, optimum temperatuur en pH ondersoek

teword.
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1. INTRODUCTION

1.1. INTRODUCTION AND AIMS

Currently, ruminants may only digest between 38 and 80% of the cellulose in fibrous forages,

depending on the degree of lignification. Therefore, it is obvious that if a greater amount of the total

dietary energy from forages were available, lower cost diets could be formulated (Allen and Oba,

1998). The addition of fibrolytic enzymes produced by microorganisms as feed supplement to

improve digestion and production efficiency in ruminants has recently gained renewed interest (Akin

et aI., 1993, 1995; Annison, 1997). Some studies demonstrated a more than 10% increase in feed

conversion ratio and average daily gain, particularly in lactating and growing cattle, upon the

addition of fibrolytic enzymes to the diets. However, an important conclusion from these studies is

that microbial additives in one diet formulation will not necessarily function optimally in a different

diet formulation (Newbold, 1995; Howes et aI., 1998). These results demonstrate that the evaluation

of fibrolytic enzyme addition to specific feed formulations can yield improved feed formulations with

real cost benefits. Specific research is however needed to examine the effects of exogenous fibrolytic

enzymes applied to forage harvested as dry hay, and as direct-fed additives to forage diets (Feng et

al., 1996).

Lignin, hemicellulose and cellulose account for between 30 and 80% of the organic matter in forage

crops, and is known as neutral detergent fibre with the remaining organic matter almost completely

digestible. In addition, the fibre concentration increases with maturing of plants, which is the most

important factor affecting dry matter digestibility. Neutral detergent fibre separates the highly

digestible fractions of feeds from the less digestible, non-uniform fractions and is apparently the best

single chemical predictor of voluntary dry matter intake by ruminants (Buxton and Redfearn, 1997;

Varga and Kolver, 1997).

Grasses and legumes have a hemicellulose content that range between 21 and 37% of total dry mass,

depending on the maturity of the specific plant. Arabinoglucuronoxylan is a major polymer in the

hemicellulose fraction that also increases with the maturity of the plant. This polymer is substituted

with 4-0-methyl-a-D-glucuronyl residues linked (1--)2) to xylose residues. The presence of these

substituents presumably decreases the accessibility of microbial xylanases to xylan, thereby reducing

forage digestibility (Smith and Forsberg, 1991).

Forage quality is a function of nutrient concentration in the herbage, intake potential, nutrient

availability, and partitioning of metabolised products within animals. According to Buxton et al.

(1995), plant characteristics are major determinants of forage quality, but animal variation can also

influence its assessment (Buxton et al., 1995). Plant cell walls limit intake and digestibility; therefore
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intake of available energy is primarily a function of plant cell wall concentration. Animals are

dependent on microbial fermentation in the rumen of cows, sheep, and goats to obtain the energy of

complex carbohydrates contained in forage cell walls. Intake of roughage is mainly dependent on the

rate of digestion and therefore feed utilisation by ruminants is greatly determined by the efficiency of

microbial activity in the rumen (Jouany, 1994). The less digestible a feed is, the less dry matter a

ruminant will consume (0rskov, 1998).

Fibrolytic activity in the rumen is normally very high, and therefore not easily increased by a simple

addition of exogenous enzyme products. However, a renewed interest in the potential of feed

enzymes for ruminants was prompted by the high costs of livestock production together with the

availability of newer enzyme preparations (Rode and Beauchemin, 1998). Fibrolytic enzymes

effectively hydrolyse structural carbohydrates and yield more substrate for lactic acid-producing

microbes (Beauchemin and Rode, 1996). Direct application of enzyme preparations can improve in

vitro dry matter and neutral detergent fibre degradation, indicating that direct-fed fibrolytic enzymes

may be effective in enhancing in vivo digestion offorage (Lewis et al., 1996).

Microbial xylanolytic enzymes in admixture with cellulases can be used efficiently for improvement

of animal feed, resulting in increased feed efficiency (Biely, 1993). A wide range of microbial feed

additives, containing microorganisms, their products, or spent growth medium containing metabolic

end products, is currently available commercially to livestock producers (Beharka and Nagaraja,

1998). Many of the current enzyme products are fermentation extracts obtained from the growth of

bacteria such as Lactobacillus, Enterococcus, Streptococcus, Bifidobacterium, and Bacillus spp. as

well as fungal species such as Aspergillus niger, Aspergillus oryzae, Saccharomyces cerevisiae, and

Trichoderma longibrachiatum. These preparations primarily contain amylases, pectinases, cellulases,

and proteases. In order to be commercially successful, enzymes for ruminants should be compatible,

or complement the variety of feed additives (Martin and Nisbet, 1992; Newman and Jacques, 1995;

Howes et al., 1998).

The aims of this study were to investigate the following:

1. Evaluation of commercial fibrolytic enzyme preparations, such as Fibrozyme and Celluclast,

when added to forages or roughages (including sugarcane bagasse) to enhance the fibre digestibility

in rumen fluids from sheep.

2. Production and evaluation of suitable crude enzyme preparations from the fungi

Thermomyces lanuginosus, Aureobasidium pullulans, Aspergillus aculeatus, and Trichoderma

reesei, for use in feed formulations to enhance the fibre digestibility in rumen fluids from sheep.

3. Preliminary characterisation of the enzymes and formulation in appropriate mixtures.
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2. LITERA TURE REVIEW

Lignocelluloses are the most abundant organic compounds in the biosphere. Biomass in the form of

wastes accumulates in large quantities, causing a deterioration of the environment and loss of

potentially valuable resources. Lignocellulose has attracted considerable attention as an alternate

feedstock and energy resource, because of the large quantities available and of its renewable nature.

Potential uses are in pulp and paper industries, production of fuel alcohol and chemicals, protein for

food, and feed using biotechnological means (Kuhad and Singh, 1993). However, the limits to

biodegradation of lignocellulose are a major problem in the commercial use of this material. For

example, lignin reduces the availability of structural carbohydrates in forage cell waIls to rumen

microorganisms (Akin, 1995). The carbohydrate composition of some lignocellulosic substrates is

indicated in Table 2.1.

TABLE 2.1. Cell wall carbohydrate composition oflignocellulosic substrates (adapted from Op den

Camp et al., 1988, Dijkerman et al., 1997).

Cellulose Hemicellulose

Substrate % Dry matter

Hay 26.0 26.8

Alfalfa 21.8 12.4

Wheat straw 44.0 29.6

Bagasse 39.3 27.2

Saw dust 45.0 15.1

Coconut fibre 17.7 2.2

Lignin

4.7

9.7

10.4

12.2

25.3

34.0

The potential of lignocellulose as a renewable raw material is immense. It is produced and wasted

annually in huge amounts (Table 2.2) and has several likely uses if suitable technology can be

developed. An integrated approach has been proposed for biomass production in feed and biocatalyst

applications (Fig. 2.1). The main possibilities of lignocellulose bioconversion are production of

single-cell protein (SCP), enzymes, and sugar syrup, which can be used as feedstock (Kuhad and

Singh, 1993).

Hemicellulases can be used for the bioconversion of lignocellulosic materials to produce

products of higher value, such as SCP, fuel, and other chemicals. However, the characteristics and

effects of hemicelluloses in the feedstock need to be assessed before the relevant hemicellulases can

be selected and used effectively. Addition of hemicellulases can increase the digestibility of animal
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feed and thereby widen the variety of its ingredients and increase its energy value (Viikari et al.,

1993; Wong and Saddler, 1993).

TABLE 2.2. Estimated Global Production of Lignocellulosic Wastes (Kuhad and Singh, 1993).

Wastes (million tons)
Continent I Country Cereal cro(! Pulse cro(! Oilseedcro(! Plantation cro(!
Africa 165 9 11 34
Asia 1135 51 61 174
Australia 35 1 2 12
Europe 550 10 8 1
Central America 500 49 21 84
South America 153 37 10 147
U.S. 440 44 19 15
Canada 60 2 <1 NA"
World 2946 166 142 548
• NA = Not available

I 1
+ +

FIGURE 2.1. Integrated approach for bioconversion oflignocellulosic wastes into valuable products

(adapted from Kuhad and Singh, 1993).
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2.1. HEMICELLULASES

2.1.1. Hemicellulases involved in lignocellulose degradation

Plant cell wall polysaccharides consist mainly of celluloses and hemicelluloses. Hemicelluloses are

usually classified according to the main sugar residues in the backbone, e.g. xylans, glucomannans,

galactans and glucans. Xylan is the main component of hemicellulose, especially in hemicellulose

from hardwood and grass species and is complexed with cellulose, pectin, and lignin (Buchert et al.,

1994; Jeffiies, 1996). Hemicellulose mainly consists of a main chain of highly branched 13-1,4-linked

xylanopyranosyl residues, some of which are substituted by glycosidically linked a-L-

arabinofuranosyl and 4-o-methyl a-D-glucopyranosyl uronic acid, and acetyl residues linked through

ester bonds. A few of the L-arabinosyl residues are substituted with feruloyl and/or p-coumaroyl

groups (Fig. 2.2). The presence of these various substituents therefore has a pronounced influence

on the chemical and structural properties, and also on the enzymatic degradability of xylan in

lignocellulose. The degradation of xylan requires a number of different esterases and glycosidases,

with the endo-I3-1,4-xylanases the most important amongst them, which cleave the backbone itself

(Mendicuti Castro et al., 1997; Garcia-Campayo et al., 1994; McCrae et al., 1994; and Ziser et al.,

1995).

According to Buchert et al. (1994), the structure of various types of hemicelluloses depends

on the plant type, and may even vary between different parts of the same plant (Buchert et al., 1994).

Due to the complex structure of hemicelluloses, several different enzymes are needed for their

enzymatic degradation and modification (Viikari et aI., 1993) (Fig. 2.2). There are two different

types of side-group-cleaving enzymes. Some of them hydrolyse only short substituted oligomers that

have been formed by the backbone-depolymerising enzymes. Other enzymes attack the intact

polymeric substrates (Gilbert and Hazlewood, 1993). Microbial enzymes act synergistically to

convert xylan to its constituent simple sugars. These enzymes include: (a) endo-1, 4-I3-xylanases (EC

3.2.1.8), which cleave internal glycosidic bonds within the xylan backbone; (b) l3-xylosidases (I3-D-

xyloside xylohydrolase) (EC 3.2.1.37), which hydrolyses xylobiose to xylose; (c) a-glucuronidase

(EC 3.2.1.139), which removes glucuronic acid side-chains from the xylose units; (d) a-L-

arabinofuranosidases (EC 3.2.1.55), which hydrolyses arabinose side-chains; (e) acetylxylan esterases

(EC 3.1.1.6), which rupture the ester linkages (esterases) between xylose units of the xylan polymer

and acetic acid; and (f) feruloyl (EC number not designated) and p-coumaroyl (EC number not

designated) esterases hydrolyse between arabinose side-chain residues and phenolic acids. Therefore,

side-chains must be cleaved before the xylan backbone can be completely hydrolysed (Sunna et aI.,
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1997). Where endo-xylanase and J3-xylosidase are the primary enzymes involved in xylan cleaving, its

complete degradation is dependent on the synergistic action of additional enzymes to remove the

substituents (Christov and Prior, 1993).

Fer (p-Coum)

1'-
5

Araf

a.
MeGlcA

a.
MeGlcA

•
CJ f3-xylosidase

Endo-l,4-f3-xylanase

a.-Glucuronidase

a.-L-Arabinofuranosidase

Acetyl esterase or acetyl xylan esterase

Feruloyl (p-Coumaroyl) esterase

Abbreviations: Ac, acetyl group; Araf, L-arabinofuranose; p-Coum, p-coumaric acid; Fer, ferulic acid; MeGlcA, 4-0-

methyl-D-glucuronic acid; Xyl, xylose.

FIGURE 2.2. A hypothetical plant xylan fragment showing the sites of action of the enzymes

involved in its hydrolysis (adapted from Biely, 1993)
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2.1.2. Organisms producing hemiceUulases

2.1.2.1. Endo-l,4-j3-D-xylanase

Numerous bacteria, yeasts and fungi produce these enzymes. Endoxylanases show the highest

activity against polymeric xylan, and their rate of hydrolysis normally decreases with a decrease in

chain length of the oligomeric substrates (Buchert et al., 1994). Xylobiose, xylotriose, and

substituted oligomers of two to four xylosyl residues are the main products formed from the

hydrolysis of xylan. However, the length and type of the substituted products depends on the mode

of action of the individual xylanases. Also, interaction of xylanases with their substrates depends

upon the substitution of the xylan moiety. Substrate attack is not random, and the bonds to be

hydrolysed depend on the nature of the substrate; e.g. length and degree of branching of the

substrate, or the presence of substituents. It has been reported that at least xylotriose, one of the end

products, inhibits the action of xylanases. In addition, in addition to their hydrolytic activity, several

xylanases have transferase activity (Sunna et aI., 1997).

Endoxylanases are classified into two major families of glycosyl hydro lases; namely 10

(previously F) and 11 (previously G). Xylanases from Family 10 are larger, more complex and

produce smaller oligo saccharides, whereas Family Il xylanases are more specific for xylan.

Substrate-binding domains are more commonly found in Family 10 xylanases, than in Family Il

xylanases. Only Family Il xylanases with substrate-binding domains are those encoded by

Thermomonospora fusca TfXA and Streptomyces lividans XylB genes. One study on glucanase

families reported 23 endo-J3-1,4-xylanases (EXs) in Family 10 and 17 in Family 11 (Biely et al.,

1997), whereas BLAST searches conducted in January 1996 revealed 77 Family 10 and 88 Family Il

xylanases. These differences may reflect published information and sequences deposited in databases.

Enzymes belonging to Family 10 exhibit greater catalytic versatility or lower substrate specificity

than enzymes of Family Il (Jeffries, 1996).

The fungal xylanases of Aspergillus and Trichoderma spp., and bacterial xylanases of

Bacil/us spp., Streptomyces spp. and Clostridium spp. have been intensively studied (Tables 2.3 and

2.4). The optimum pH for xylan hydrolysis is ca. 5 for most fungal xylanases and they are normally

stable between pH 2 and 9. Fungal and bacterial endoxylanases show a strong relationship between

their molecular weight (MW) and isoelectric point (PI) values. Those with a low MW generally have

a high pI value and are members of Family 11, whereas high MW members have a low pI value and

belong to Family 10 (Biely et al., 1997). Most endoxylanases are optimally active at temperature

ranges between 45 and 75°C. However, the purified endoxylanases from various species of
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thermophilic bacteria such as Thermotoga are optimally active at temperatures between 80 and 105

"C. The above-mentioned tables also summarise a wide variety of other fungal xylanases (Viikari et

al., 1993; Sunna et al., 1997).

TABLE 2.3. Physicochemical properties of purified P-l,4-xylanases from bacteria (adapted from

Surma et al., 1997).

Organism Xylanase MoL Wt.· pI Optimal Optimal Hydrolysis products
(kDa) J!H Teml!:~°C)

Bacillus sp. C-125 A 43.0 n.d 6.0 -10.0 70 X2, X3,x, x,
N 16.0 n.d 6.0 -7.0 70 X2,x, x, x,

Bacillus sp. NCIM 59 I 35.0 4.0 6.0 55 - 60 X2, X3,x, x,
II 15.8 8.0 6.0 50 X2, X3,x, x,

Bacillus sp. 41 M-I J 36.0 5.5 9.0 50 X2, X3, x,
Bacillus sp. XE 22.0 7.8 6.0 75 X2,X3,~
Bacillus polymyxa CECT 153 X34C 34.0 9.3 6.0 -7.0 45 XI, X2,X3

X~ 34.0 >9.3 4.0 - 6.0 50 -62 XI, X2,X3
Xu 22.0 9.0 6.0 -7.0 55 X2,X3,~
)(,,1 61.0 4.7 6.5 50 X2,X3,~

Bacillus pumilus IPO 24.0 n.d 6.5 45 -60 X2, X3,x, x,
Bacillus stearothermophilus 21 39.5 4.8 7.0 60 X2,X3
Bacillus stearothermophilus T-6 T-6 43.0 7.0 6.5 75 X},X2
Baciilus subtilis PAP 115 32.0 n.d. 5.0 50 X}, X2,X3
Cellulomonas fimi A 13.2 8.5 5.0 45 n.d

B 22.0 8.0 6.0 40 n.d.
C 150.0 4.5 5.5 - 6.5 40 n.d.

Clostridium sp. SAIV A 30.0 n.d 5.5 - 6.5 50 n.d
Clostridium acetobutylicum ATCC 824 A 65.0 4.4 5.0 50 X2, X3,x, X,

B 29.0 8.5 5.5 - 6.0 60 X2,X3
Clostridium stercorarium A 44.0 4.5 5.5 -7.0 75 X},X2,X3,~

B 72.0 4.4 5.5 -7.0 75 X},X2,X3,~
C 62.0 4.3 5.5 -7.0 75 XI,X2,X3,~

Clostridium stercorarium HX-1 D 53.0 4.5 6.5 75 X2,X3
Clostridium thermolacticum TC 21 A 39.0 4.4 6.5 80 X}, X2,X3

B 55.0 4.5 6.5 80 X}, X2,X3
C 65.0 4.6 6.5 80 X},X2,X3

Fibrobacter succinogenes S85 1 53.7 8.9 7.0 39 X}, X2, X3, x, x, A
2 66.0 8.0 6.3 55 X},X2,X3,X,

Streptomyces sp. T 7 21.8 7.8 4.5 - 5.5 60 X}, X2, X3, x, X,
Streptomyces sp. 3137 X-I 50.0 7.1 5.5 - 6.5 60 - 65 XI,X2

X-II-A 25.0 10.0 5.0 - 6.0 60 - 65 X"X2
X-Il-B 25.0 10.2 5.0 - 6.0 60 - 65 XI,X2

Streptomyces sp. EC10 x, 32.0 6.8 7.0 - 8.0 60 X}, X2,x,
Xm 22.0 8.9 7.0 - 8.0 60 X}, X2,x,
X'n 21.0 5.2 7.0 - 8.0 60 X}, X2,x,

Streptomyces sp. A451 I 22.8 8.6 5.6 50 X2, X3,x, X,
II 33.1 8.9 5.4 50 X2, X3,x, X,

Streptomyces sp. 8-12-2 la 26.4 7.5 6.0 55 X2, X3,x,
Ib 23.8 8.3 6.0 60 X2, X3, x,
2 36.2 5.4 7.0 60 X2, X3,x, x,
3 36.2 5.0 7.0 60 X2, X3,x, x,
4 40.5 4.8 6.0 60 X2, X3,x,x,

Streptomyces cyaneus MT 813 I 37.5 5.1 8.0 72 n.d.
II 34.0 5.2 6.5 65 n.d.

Streptomyces thermoviolaceus OPC-520 I 54.0 4.2 7.0 70 X},X2
II 33.0 8.0 7.0 60 XI, X2,X3

Thermoanaerobacterium sp. JW/SL-YS485 350.0b 4.37 6.2 80 n.d

Thermonospora curvata I 36.0b 4.2 7.8 75 X2, X3, x,
2 19.0b 7.1 7.2 75 x,x,x,
3 15.0b 8.4 6.8 75 X3, x, X" x,

Thermotoga sp. Fj SS3-B.1 31.0 n.d 5.3 105 X2,X3
Thermotoga maritima MSB8 Xyntt 120.0 n.d, 6.2 92 X2,X3

XynB 40.0 5.6 5.4 105 X2,X3
Thermotoga thermarum I 266.0b n.d, 6.0 80 X2, x, X" x,

2 35.0 n.d 7.0 90 - 100 X2
"SDS-PAGE; bsize exclusion chromatography; n.d., not determined; X}, xylose; X2, xylobiose; X3, xylotriose; x." xylotetraose; X" xylopeataose;

x, xylooligosacdJarides.
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TABLE 2.4. Physicochemical properties of purified f3-1,4-xylanases from fungi (adapted from Sunna
et al., 1997).

Organism Xyianase Mol WC pI Optimal Optimal Hydrolysis products
(kDa) pU Tem!!: (0C)

Aspergillus awamori CM! 142717 I 39.0 5.7 -6.7 5.5 - 6.0 55 x., X2, x,
Il 23.0 3.7 5.0 50 X2, x, A
III 26.0 3.3 -3.5 4.0 45 - 50 X2,Xl

Aspergillus flavipes 45.0 D.d. 5.0 55 X2, x, )4, x,
Aspergillus kawachii IFO 4308 A 35.0 D.d. 5.5 60 X"X2, x, X.

B 26.0 n.d, 4.5 55 X"X2, x, X.
C 29.0 n.d. 2.0 50 X" X2, x., X.

Aspergillus nidulans CECT 2544 X22 22.0 6.4 5.5 62 X2, x, x, X.
Xl< 34.0 3.4 6.0 56 X"X2,X"x.

Aspergillus oryzae D5 46.5 3.6 5.0 55 n.d
Aureobasidium sp. NRRL- Y-23 I I-I 20.0 8.5 4.5 45 n.d.
Aureobasidium pullulans Y-2311-1 Il 25.0 9.4 4.8 54 X"X2
Bipolaris sorokiniana H83 30.0 9.5 5.5 70 n.d.
Cryptococcus flavus IFO 0407 25.0 10.0 4.5 55 X2, x, x, X.
Fusarium oxysporium f sp. melonis 80.0 D.d. 5.0 50 n.d.
Gloeophyllum trabeum BAM Ebw 109 39.0 5.0 4.0 80 X2,Xl
Humicola grisea var. thermoidea I 95.0 n.d, 6.0 -7.0 60 X"X2,Xl,X.

Il lJ.O n.d, 7.0 60 X"X2, x, X.
Humicola grisea var. thermoidea 2 25.5 n.d, 5.5 70 X.
Myrothecium verrucaria CM! 45541 15.9 4.3 5.5 45 x,
Neocallimastix frontalis MCH3 I 45.0 n.d, 6.0 55 X.

Il 70.0 D.d. 5.5 55 X.
Neurospora crassa 870 I 33.0 4.5 4.8 50 x., X2, x, )4, x, A

Il 30.0 4.8 4.8 50 X" X2, x, )4, x; A
Penicillium chrysogenum QI76 35.0 4.2 6.0 40 X"X2
Penicillium purpurogenum B 23.0 5.9 5.0 50 n.d.
Pichia stipitis CBS 5775 43.0 D.d. 5.0 30 n.d.
Robillarda sp. Y-20 I 17.6 9.5 4.5 - 6.0 50 X"X2,Xl

II 59.0 3.5 4.5 - 6.0 50 XI,X2,Xl
Schizophyllum commune A 21.0 4.5 5.0 50 X"X2
Schizophyllum radiatum CM! 90347 27.7 D.d. 4.9 55 X" x; )4, x,
Talaromyces byssochlamydoides YH-50 X-a 76.0 4.3 5.5 75 X"X2, x, A

X-b-I 54.0 3.8 4.5 70 X"X2
X-b-II 45.0 4.0 5.0 70 X"X2

Talaromyces emersonii CBS 814.70 II 74.8 5.3 4.2 78 X2, x, x, X.
III 54.2 4.2 3.5 67 X2, x,x, x,

Thermoascus aurantiacus C436 32.0 7.1 5.1 80 X2,x.
Thielavia terrestris 255B II 25.7 6.1 4.0 60 -65 n.d.
Trichoderma harzianum E58 20kDa 20.0 9.4 5.0 50 X2,x.

22kDa 22.0 8.5 4.5 - 5.0 45 - 50 n.d
29kDa 29.0 9.5 5.0 60 X2,x.

Trichoderma koningii lMI 73022 I 29.0 7.2 4.9 - 5.8 60 X"X2,Xl,A
2 18.0 7.3 4.9 - 5.5 50 X2, x., X.

Trichoderma lignorum A 21.0 5.1 3.5 45 X"X2, x; X.
B 20.0 8.7 6.5 45 X"X2, x, X.

Trichoderma reesei Rut C30 pI5.5 19.0 5.5 4.0 - 4.5 D.d. X"X2,Xl,X.
pI9.0 20.0 9.0 5.0 - 5.5 n.d, X"X2,Xl,X.

Trichoderma reesei VIT-D-80133 I 32.0 4.1-4.2 4.0 - 5.0 D.d. X"X2,x.
Il 23.0 6.4-6.5 4.0 - 5.0 n.d, x., X2, X.

"SDS-PAGE; n.d, not determined; X" xylose; X2, xylobiose; Xl, xylotriose; Xa, xylotetraose; Xj, xylopartaose; x., xylooligosacdiarides;
A, arabinose.

UNIVERSITEIT STELLENBOSCH
RIBIIOTI=~

Stellenbosch University http://scholar.sun.ac.za



10

2.1.2.2. L4-(3-D-Xylosidase

These enzymes are produced by a variety of fungi and bacteria, with molecular weight values ranging

from 34 to 240 kDa (Table 2.5). They may be monomeric, dimeric, or trimeric (Coughlan et aI.,

1993). Many have transferase activity, in addition to direct hydrolase action, and exhibit specificity

for both the sugar and the linkage. They generally exhibit little or no action against polymeric xylans.

True f3-xylosidases cleaves artificial f3-xylosides, like p-nitrophenyl f3-D-xyloside, and unsubstituted

f3-1,4-linked xylo-oligosaccharides, including xylobiose (Sunna et al., 1997).

TABLE 2.5. Properties of purified bacterial and fungal f3-xylosidases (adapted from Eriksson et aI.,

1990; Sunna et al., 1997).

\,
Organism MoL Wt. Subunit Form pI Optimum

(kDa! (kDa! pH
Bacteria
Baei llus pumi lus 130.0 70.0 Dimeric 4.4
Bacillus stearothermophilus 150.0 75.0 Dimeric 4.2
Clostridium acetobutylicum 224.0 85.0 Dimeric 5.8

63.0
Thermoanaerobacter ethano/icus 165.0 85.0 Dimeric 4.6
Thermotoga sp. FjSS3-B.l 174.0 92.0 Dimeric 4.1

Fungi
Aspergi llus awamori 110.0 Monomeric 4.2
Aspergillus niger 78.0 Monomeric n.d, 6.7-7.0
Aspergillus oryzae 168.0 82.0 Dimeric 4.1
Aspergillus pulverulentus 180.0 65.0 Trimeric 4.7

190.0 100.0 Dimeric 3.5
Aureobasidium pul/ulans 240.0 121.0 Dimeric <3.0
Emericalla nidu/ans 240.0 116.0 Dimeric 3.2
Neurospora crassa 83.0 Monomeric 4.3
Penicillium wortmanni 100.0 Monomeric 5.0
Pichia stipitis 34.0 Monomeric n.d.
Ta/aromyces emersonii 181.0 97.5 Dimeric 8.9
Trichoderma reesei 100.0 Monomeric 4.7
Trichoderma viride 101.0 Monomeric 4.4 3.5

The activity towards xylo-oligosaccharides generally decreases rapidly with increasing chain length.

The main hydrolysis product of f3-xylosidase is xylose, which has been reported to inhibit the action

of f3-xylosidase in a competitive manner. This may affect the sugar yield in hydrolysis experiments

significantly, as f3-xylosidase is the key enzyme for the production of monomeric xylose. Although

some extracellular f3-xylosidase activity is found in the culture fluids of organisms, the enzyme is

mainly cell associated in bacteria and yeast (Viikari et aI., 1993; Sunna et aI., 1997).
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2.1.2.3. a.-D-Glucuronidase

This is the least studied of the enzymes participating in degradation of xylans; partly due to a lack of

a suitable activity assay method. Many fungal hemicellulase preparations lack a.-glucuronidase

activity; therefore this enzyme was not described until 1986. Most fungi apparently secrete too little

a.-l,2-glucuronidase for a complete cleavage of the uronic acid side chains that protect the

neighbouring ~-1,4-linkages of the xylan backbone from cleavage by xylanases and/or xylosidases

(Eriksson et aI., 1990). The enzyme source mainly determines the substrate specificities of a.-

glucuronidases. The enzymes from Streptomyces olivochromogenes and Agaricus bisporus require a

low-molecular weight glucuronoxylan substrate and release 4-0-methylglucuronic acid from 4-0-

methyl-glucuronose-substituted xylooligomers, but not from the polymer. The presence of acetyl

groups next to the glucuronosyl substituents hinders the action of a.-glucuronidase from A. bisporus.

The enzyme from the ruminal bacterium Flavobacter succinogenes is unable to release 4-0-

methylglucuronic acid from intact xylan, whereas that of Aspergillus niger and Schizophyllum

commune are able to liberate 4-0-methylglucuronic acid from methyl-glucuronoxylan. A few

microbial a.-glucuronidases have been purified and characterised (Table 2.6) (Sunna et al., 1997).

TABLE 2.6. Biochemical properties of some bacterial and fungal a.-glucuronidases

Organism MoLWta pI Optimum Optimum Reference
(kDa) pH Temp.(og

Bacteria
Clostridium stercorarium 72.0,76.0 4.3 5.5 - 6.5 60 Bronnenmeier et al. (1995)
Piromonas communis 103b 5.5 50 Wood and Wilson (1995)
Thennoanaerobacterium 71.0 4.3 5.5 - 6.5 60 Bronnenmeier et al. (1995)
saccharolyticum

Fungi
Aspergillus tubingensis 107.0 5.2 4.5 - 6.0 70 De Vries et al. (1998)
Phanerochaete chrysosporium 112.0 4.6 3.0 - 5.0 50 Castanares et al. (1995)
Schizophyllum commune 125.0 3.6 4.5 - 5.5 40 Tenkanen and Siika-aho (2000)
Trichoderma reesei RUT C30 91.0 5.0 - 6.2 4.5 -6.0 40 Siika-aho et al. (1994)

'SOS-PAGE; bGeI fihratioo.

2.1.2.4. a.-L-Arabinofuranosidase

Only a few of these enzymes have been isolated and characterised. Two types of arabinases occur,

the exo-acting a.-L-arabinofuranosidase (EC 3.2.1.55), which is active against p-nitrophenol- a.-L-

arabinofuranosidases and on branched arabinans; and the endo-l,5-a.-L-arabinase (EC 3.2.1.99),

which is active only toward linear arabinans. Exo-acting arabinan-degrading enzymes are the most

common enzymes (Viikari et aI., 1993). Production of a.-arabinosidases is often associated with the

production of pectolytic enzymes. Arabinosidase activity has been detected in various plant, fungal

Stellenbosch University http://scholar.sun.ac.za



12

and bacterial sources, but only a few have been isolated and characterised (Table 2.7), partly due to a

lack of defined 'natural substrates' (Coughlan et al., 1993). Several rumen bacterial isolates showed

high levels of arabinofuranosidase activity when grown in the presence of arabinose or arabinose

containing polysaccharides. However, only low arabinofuranosidase levels were detected when the

isolates were grown on a substrate containing glucose or cellobiose. Native enzymes are found in

mono-, di-, tetra-, hexa-, and octameric forms. The molecular weight values of the native enzymes

range from 53 to 495 kfra; pI values range from 3.6 to 9.3, and optimum pH values from 2.5 to 6.9

(Sunna et al., 1997).

TABLE 2.7. Occurrence and properties of a-arabinofuranosidases (adapted from Viikari et al.,

1993; Sunna et al., 1997).

Mol. Wt. Subunit Form pI Optimum
Orgaaism (kDa) (kDa) pB

Bacteria
Baci llus polymyxa 166.0 65.0 Dimeric 4.7

33.0
Bacillus subtilis 65.0 Monomeric 5.3
Baci llus stearothermophi lus 256.0 64.0 Tetrameric 6.5
Bacteroides xylanolyticus 364.0 61.0 Hexameric n.d
Butyrivibrio fibrisolvens 240.0 31.0 Octameric 6.0
Clostridium acetobutylicum 94.0 Monomeric 8.2
Ruminococcus alb us 310.0 75.0 Tetrameric 3.8 6.8
Streptomyces sp. 17-1 92.0 Monomeric 4.4
Streptomyces diastaticus 38.0 Monomeric 8.8

60.0 Monomeric 8.3
Streptomycespurpurascens 495.0 62.0 Octameric 3.9
Thermonosporafusca 92.0 46.0 Dimeric n.d.

Fungi
Aspergi /Ius awamori 32.0 n.d 5.0
Aspergillus niger 53.0 Monomeric 3.6 3.8
Aspergillus niger 5-16 67.0 Monomeric 3.5
Dichomitus squalens 60.0 5.1 3.5
Phanerochaete chrysosporium 55.0 Monomeric 7.3
Talaromyces emersonii 210.0 105.0 Dimeric 3.5
Trichoderma reesei 53.0 Monomeric 7.5 4.0

N.d., not dttennined.

2. 1.2.5. Acetylxylan esterase

Esterases have been localised in plant and animal tissues, and microorganisms. The degradation of

acetylated polysaccharides, like pectins and xylans, are achieved by means of acetyl esterases.

Acetylxylan esterase production by fungi and bacteria was only reported in 1985, probably due to a

lack of suitable substrates to evaluate their activity (Kormelink et al., 1993). Several xylanolytic or

cellulolytic fungi, e.g. Aspergillus sp., Trichoderma reesei, Rhodoturula mucilaginosa,
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Thermoanaerobacter ethano/icus showed acetyl xylan esterase activity; as well as several bacteria

including Pseudomonas jluorescens, Butyrivibrio fibrisolvens, Streptomyces spp.,

Thermoanaerobacterium saccharolyticum, Caldocellum saccharolyticum, Thermonospora fusca,

and Fibrobacter succinogenes. Acetylxylan esterases have been purified from Trichoderma reesei,

Aspergillus awamori, A. oryzae, Thermomonospora fusca, and from the rumen bacterium

Fibrobacter succinogenes S85 (Shoa and Wiegel, 1995). According to Kormelink et al. (1993), a

cooperative action between combinations of fungal acetylxylan esterase and endo-xylanase occur in

hydrolysing acetyl xylan (Kormelink et al., 1993). It seems however, that a xylanolytic system is not

always necessary to initiate the deacetylation of acetyl xylan (Sunna et al., 1997).

Acetylxylan esterases remove the O-acetyl substituents at the C2 and C3 positions of xylose

residues in acetylxylan. They liberate acetic acid from partially acetylated 4-0-methyl-D-

glucuronoxylan and this deacetylation makes the xylopyranosyl units of the main xylan chain more

accessible to degradation by endo-f3-1,4-xylanases (Shao and Wiegel, 1995). Acetylxylan esterase

activity increases the rate of hydrolysis of xylan by xylanases, but the extent of the synergy is

dependent on the degree of acetylation. The highest specific activity of acetylxylan esterase has been

reported in A. niger. However, little is known about their physicochemical properties (some are

given in Table 2.8). The two monomeric isoenzymes being produced by T. reesei are glycosylated

and have a molecular weight of34 kDa (Sunna et al., 1997). Acetylated xylooligosaccharides are the

preferred substrate of the S. commune enzyme (Biely et al., 1996a, 1996b).

TABLE 2.8. Properties of some purified bacterial and fungal acetyl xylan esterases

Organism Mol. Wt pI Optimum Optimum Reference
(IDa) pH Temp.eg

Bacteria
Bacillus pumilus PS 213 40.0 4.8 8.0 55 Degrassi et al. (1998)
Fibrobacter succinogenes S85 55.0' 4.0c 7.0 45 McDermid et al. (1990)
Streptomyces lividans 34.0' 9.0d 7.5 70 Dupont et al. (1996)
Thermoanaerobacterium sp. 195.0b 4.2d 7.0 80 Shao and Wiegel (1995)
strain JW/SL- YS485 106.0b 4.3d 7.5 84 Shao and Wiegel (1995)

Fungi
Aspergillus niger 30.48' 3.0 - 3.2d 5.5 -6.0 50 Kormelink et al. (1993)
Penicillium purpurogenum (I) 48.0b 7.5 5.3 50 Egana et al. (1996)

(IT)23.0b 7.8 6.0 60 Egana et al. (1996)
Schizophyllum commune 31.0 7.7 30 -45 Halgasova et al. (1994)
Trichoderma reesei RUT C30 34.0' 7.0,6.8c 5.0 -6.0 60 - 65 Christov and Prior (1993)

'SDS-P AGE, Gel filtration, 'Chromatofocusing, Iso-eleetrofocusing,
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2.1.2.6. Cinnamoyl esterase

Cinnamoyl esterases, a specific class of carboxylic ester hydrolases, were first detected by Deobald

and Crawford in 1987 (Kroon et al., 1997). Their specificity is defined mainly by recognition of

molecular structures adjacent to the ester bond (Williamson et al., 1998). There are two types of

cinnamoyl esterases, those acting on 4-hydroxy-3-methoxycinnarnic (ferulic) acid (feruloyl

esterases), and those acting on 4-hydroxycinnarnic (p-coumaric) acid (p-coumaroyl esterases). They

work on widely different substrates, although they catalyse a similar chemical reaction while acting

on plant cell walls. They have been detected in the culture supernatants of various microorganisms

(Kroon et al., 1997). These esterases have been isolated, purified, and characterised from both

bacteria and fungi (Table 2.9).

Phenolic acids influence the biodegradability of cell wall polysaccharides and also restrict

forage digestibility by ruminants. This is probably due to the inhibition of ruminal bacteria by

phenolic components or the limitation of hydrolysis by phenolic acid substituents in hemicellulose

(Tenkanen et al., 1991).

Ferulic acid is esterified with arabinose in the arabinoxylans of wheat bran, wheat flour,

sugarcane bagasse, barley straw, and maize. Some other polysaccharides are also ferulated, e.g. in

spinach and the pectins in sugar beet. Therefore, ferulic acid may crosslink lignin and carbohydrates

and also different carbohydrates in annual plants (Tenkanen, et al., 1991). Cross-linking of the

feruloyl groups to form diferulic acid, which covalently cross-links polysaccharide chains, strengthen

hemicellulose and thereby restrict enzyme digestibility. Ferulic acid release from plant cell wall

polysaccharides by feruloyl esterase is dependent upon the interaction with other carbohydrates, and

accessibility of the feruloyl group on the polymer side-chain. The activities of all of the feruloyl

esterases tested to date are dramatically increased in the presence ofaxylanase (Faulds et al., 1992).

Despite the potential importance of cinnamoyl esterases, definite information on their

properties is still very sparse. This is partly due to the relatively few cinnamoyl esterases that have

actually been isolated and characterised (McCrae et al., 1994). In addition, it is difficult to obtain

suitable substrates to study their enzyme action (Castanares et al., 1992).
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TABLE 2.9. Biochemical properties of some cinnamoyl esterase activities

Organism Enzyme Mol. we pI Optimum Optimum Reference
(kDa) pH TemI!. {OC}

Bacteria
Clostridium stercorarium FE 33.0 8.0 65 Donaghy et al. (2000)
Streptomyces avermitilis CECT 3339 FE 6.0 50 Garcia et al. (1998)
Streptomyces olivochromogenes NRCC 2258 FE 29.0 7.9 - 8.5 5.5 30 Faulds and Williamson (1991)
Streptomyces viridosporus T7A CE 9.0 45 - 50 Donnelly and Crawford (1988)

Fungi
Aspergillus awamori IMI 142717 CE 75.0 4.2 5.0 50 McCrae et al. (1994)

FE 112.0 3.7 5.0 50 McCraeetal.(1994)
FE 35.0 3.8 Koseki et al. (1998)
FE-I 132.0 3.0 Faulds and Williamson (1993)
FE-II 29.0 3.6 Faulds and Williamson (1993)
FE-III 36.0 3.3 5.0 55 - 60 Faulds and Williamson (1994)
FE/CE 75.8 4.8 6.0 50 Kroon et al. (1996)
FE 30.0 3.6 4.5 - 6.0 45 Tenkanen et al. (1991)
FE 42.0 3.7 4.0 - 6.0 40 - 60 Dzedzyulya et al. (1999)
CE 5.8 4.7 7.2 40 Borneman et al. (1991)
FE-I 69.0 4.2 6.2 40 Borneman et al. (1992)
FE-II 24.0 5.7 7.0 40 Borneman et al. (1992)

Penicillium expansum FE/CE 57.5 5.6 37 Donaghy and McKay (1997)
Penicillium pinophilum CMI 87160ii FE/CE 57.0 4.6 6.0 55 Castanares et al. (1992)

·SDS-PAGE; CE, p-Coumaroyl esterase; FE, Feruloyl esterase; FE/CE, Cinnamoyl esterase.

Aspergillus awamori
Aspergillus niger

Aspergillus niger CBS 120.49
Aspergillus niger CS 180
Aspergillus oryzae VTT -D-85248
Aspergillus sp.
Neocallimastix MC-2
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2.2. CELLULASES

2.2.1. CeUulose structure

Cellulose is the major carbohydrate synthesised by plants and the most abundant biopolymer on

earth. It is a linear polymer that consists of glucose subunits linked via J3-1, 4 bonds and therefore, the

basic repeating unit is cellobiose (Fig. 2.3A). lts chain length can vary between 100 and 14 000

glucose residues, which can form bundles or microfibrils where the molecules are orientated in

parallel and held together by hydrogen bonds. These microfibrils consist of highly ordered crystalline

regions interspersed by more disordered amorphous regions (Fig. 2.3B). Cellulose fibrils present in

plant cell walls are mainly embedded in a matrix of hemicellulose and lignin (Béguin and Aubert,

1992; 1994).

A

\ J
Cellobiose Glucose

B
Crystalline region

t
Amorphous region

Crystalline region

t

FIGURE 2.3. The basic structure of cellulose. (A) J3-glucosidic bonds. (B) Schematic structure of a

fibril (adapted from Béguin and Aubert, 1994)

The role of cellulose is exclusively structural. It enables plant cells to withstand osmotic pressure,

due to its high tensile strength and is also responsible for plants' resistance to mechanical stress.

Native cellulose is also completely insoluble in water (Béguin and Aubert, 1992; 1994).

The main natural agents of cellulose degradation are fungi and bacteria. Plants also synthesise

cellulases, which playa role in morphogenesis and developmental processes e.g., in the ripening of

fruits. Among the fungi and bacteria, a variety of aerobes and anaerobes, mesophiles and

thermophiles have been described that can degrade crystalline cellulose and use it as a carbon and

energy source. However, the conversion of cellulosic material into glucose is a process of

considerable complexity. Cellulose fibres are embedded in a matrix of hemicellulose and lignin, which
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severely restricts the access of cellulolytic enzymes to the substrate. Therefore, most cellulolytic

organisms also produce hemicellulases (Bhat and Bhat, 1997; Béguin and Aubert, 1992).

2.2.2. Organisms producing ceUulases

2.2.2.1. Endo-glucanase

The recommended name for this specific enzyme (1,4-[1,3: 1,4]-f3-D-Glucan 4-glucanohydrolase, EC

3.2.1.4) is cellulase, according to International Union of Biochemistry standards, with endoglucanase

as an alternative. However, the term cellulase is often applied to the complete complex of cellulolytic

enzymes (Clarke, 1997).

Endoglucanases act almost exclusively on the noncrystalline regions of the substrate (Béguin

and Aubert, 1992). Endoglucanase activity rapidly decreases the viscosity of cellulose solutions, and

is in general confined to amorphous cellulose regions. Exceptions are enzymes from the fungi

Trichoderma viride and Trichoderma koningii, because they can decrease the viscosity of both

amorphous Avicel and untreated cotton linters (Clarke, 1997). Table 2.10 lists the physicochemical

properties of some isolated and purified endoglucanases, produced by bacteria and fungi. The fungal

enzymes range in size between Il and over 100 kDa, with the majority ranging between 30 and 55

kDa. Bacterial enzymes tend to be a little larger in molecular weight; many with sizes greater than 65

kDa. Fungal enzymes are mostly glycoproteins, with carbohydrate chains linked via both asparagine

and serine and threonine residues. Some bacterial enzymes are also glycosylated. The glycan chains

apparently provide both protection against proteolytic attack and thermo stability; it also aids in the

adsorption of the enzymes to insoluble substrates (Clarke, 1997).

2.2.2.2. Cellobiohydrolase

Fungal cellobiohydrolases (l,4-f3-D-Glucan cellobiohydrolase, EC 3.2.l.91) have a broad specificity,

hydrolysing both crystalline and amorphous cellulose, but generally inactive toward substituted

cellulose, such as carboxymethyl cellulose. These enzymes have slightly higher molecular weights

than endoglucanases (41 - 85 kDa), but they also have acidic pI values. All characterised fungal

enzymes appear to be glycosylated. Table 2.11 summarises the properties of some cellobiohydrolases

purified from various bacteria and fungi (Clarke, 1997).
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TABLE 2.10. Physicochemical properties of some bacterial and fungal endoglucanases (adapted

from Clarke, 1997).

Stability
Organism Mol.Wt pI Optimum Optimum pH Temp I''C)

(kDa} !!H Tem!!. {DC)
Bacteria
Clostridium cellulolyticum 48.0 6.0 48
Clostridium thermocellum 39.0 6.2 6.0 - 6.6 60 70

56.0 6.2 6.0 60 5.0 -7.0 65
64.0 5.9 60 5.0 -7.0

91.0 - 99.0 6.4 80 5.0 -7.0 85
94.0 6.72 5.2 62

Fibrobacter succinogenes 50.1 4.25 5.9 39 -44
58.0 6.4 30 <50
65.0 4.75 - 4.9 6.4 39 5.9 -7.1 <45
94.0 9.18 5.8 39 5.4 - 6.2 <45
118.0 9.4

Pseudomonas j1uorescens 40.0 8.0 7.0 - 8.0
100.0 8.0 7.0 - 8.0

7.0 7.0 - 8.0
Ruminococcus albus 30.0 6.0 - 6.1
Thermotoga maritima 27.0 6.0 -7.5 95 80

Fungi
Aspergillus aculeatus 25.0 4.8 4.5 50 2.0 - 9.0 45

38.0 3.4 4.0 65 3.5 - 9.0 65
66.0 4.0 5.0 70 3.0 - 8.0 70
68.0 3.5 2.5 60 3.5 - 6.0 50

Aspergillus niger 23.6 4.47 4.8
26.0 3.8 - 4.0 45 1.0 - 9.0
31.0 3.67 4.0 5.0 - 8.0 70
46.0 3.3

Coriolus versicolor 29.5 5.0 55 4.0 - 6.0 55
Dichomitus squalens 42.0 4.8 4.8 - 5.0 55 - 60 4.0 - 8.0 65

47.0 4.1 4.6 - 4.8 55 - 60 4.0 - 8.0 65
56.0 4.3 4.8 55 - 60 4.0 - 8.0 65

Humicola insolens 57.0 5.0 50 3.5 - 9.5 65
Humicola grisea 63.0 5.0 50 3.5 - 9.5 65
Irpex lacteus 35.6 4.0 - 5.0 40 3.0 - 6.0 50
Phanerochaete chrysosporium 28.3 4.40

32.3 5.32
36.7 4.72
37.0 4.20
37.5 4.65

Polyporus versicolor 11.4 4.5
Schizophyllum commune 38.0 3.5 5.5 40 4.0 - 8.0 30 -70
Sclerotium rolfsii 27.5 4.20 2.8 - 3.0 50 3.0 -7.0

50 4.55 4.0 74 4.0 -7.0
77.6 4.51 4.0 50 4.0 -7.0

Thermoascus auranticus 34.0 1.8 4.5 - 5.0 65 5.0 - 9.0 65
49.0 4.5 - 5.0 68 2.0 - 12.0 65
78.0 5.0 75 5.0 - 9.0 65

Trichoderma koningii 13.0 4.72
31.0 5.09
48.0 4.32
48.0 4.32

Trichoderma reesei 20.0 7.5
43.0 4.0
48.0 5.5
55.0 4.5
56.0 5.0
67.0 6.5
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In contrast to most endoglucanases, soluble carboxymethylcellulose is hydrolysed quite poorly by

cellobiohydrolases, probably because hydrolysis cannot proceed beyond substituted residues.

Cellobiohydrolases are regarded as essential enzymes for degradation of the native cellulose

(Schulein, 1988). They are often the most abundant protein in the culture filtrates of fungi, such as

T reesei. Most of the fungal enzyme produced is secreted, but species of Trichoderma apparently

also produce a conidial bound enzyme (CBlill) (Clarke, 1997).

TABLE 2.11. Properties of some bacterial and fungal cellobiohydrolases (adapted from Clarke,

1997)

Organism Mol. Wt. pI Optimum Optimum
(kDa} ~H Tem~·rq

Bacteria
Fibrobacter succinogenes 75.0 6.7 6.2 39 -45

40.0 4.9 5.9 - 6.2 45 - 50
Clostridium thermocellum 75.0 <50
Ruminococcus albus 200.0 6.8 7.4
Ruminococcus flavefaciens 230.0 5.0 39 - 45
Thermotoga maritima 29.0 6.0 -7.5 95

Fungi
Humicola insolens 72.0 5.0 50
Irpex lacteus 56.0 4.0 - 5.0 55

65.0 5.0 50
Penicillium pinophilum 46.0 4.36 2.5

50.7 5.0 4.5
Sclerotium rolfsii 41.7 4.32 4.5 50
Sporotrichum pulverulentum 48.6 4.3
Sporotrichum thermophile 63.8 4.52 3.5 80
Trichoderma koningii 62.0 3.8 2.5; 5.0
Trichoderma reesei 64.0 3.9

53.0 5.9
Trichoderma reesei CBID 65.0 3.6 - 4.2
Trichoderma reesei CBIDI 85.3 6.3

2.2.2.3. p-Glucosidase

These enzymes (P-D-Glucoside glucohydrolase, EC 3.2. 1.21) bind to cellobiose and soluble cello-

oligosaccharides and release glucosyl residues sequentially from the non-reducing end. They not only

provide an energy and carbon source in the form of glucose, but also facilitate the efficient hydrolysis

of cellulose by clearing cellobiose, a competitive inhibitor of endoglucanase and cellobiohydrolase

(Clarke, 1997).

p-Glucosidase is the largest cellulolytic enzyme and can be di- or multirneric. Monomeric

enzymes range between 41 and 170 kDa. Bacterial enzymes are mainly monomeric, but still relatively

large with molecular weights of between 50 and 122 kDa (Table 2.12). All studied enzymes have
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acidic pI values (pH 3.2 - 5.9), except that of T. reesei. Most l3-glucosidases are glycosylated, except

the 39.8 and 47 kDa enzymes from T. koningii and T. viride, respectively. Optimum pH activity for

these enzymes ranges within the acidic region, 1.5 - 6.8; the majority being most active at pH 4 - 5.

The optimum enzyme activity is generally found above 50 °C (Clarke, 1997).

Fungal Bsglucosidases may be released extracellularly, retained by the cell, or both. T. reesei,

Talaromyces emersonii, and Schizophyllum commune have both types of l3-glucosidases. However,

bacterial enzymes appear to predominantly be cell-associated, e.g. that of the rumen bacteria

Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, and Clostridium

thermocellum (Clarke, 1997).

TABLE 2.12. Properties of some bacterial and fungal l3-glucosidases (adapted from Clarke, 1997)

Organism MoL Wt. pI Optimum Optimum
(kDa) ~H Tem~.eC)

Bacteria
Alcaligenes faecalis 122.0 6.0 -7.0
Clostridium thermoce/lum 50.0 6.0 65
Ruminococcus albus 82.0 6.5 30 - 35
Streptomyces lividans 66.0

Fungi
Aspergillus fumigatus 340.0 4.5 4.5 65

41.0 5.0
Aspergillus niger 150.0

137.0 3.8
Aspergi /Ius oryzae 218.0 4.3 4.0 - 5.0
Aspergillus wentii 170.0 1.5 - 5.0
Aureobasidium pu/lulans 340.0 4.5 75
Candida gui/liermondii 48.0 6.8
Humicola insolens 250.0 4.23 5.0 50
Neoca//imastix frontalis 153.0 3.9 6.0 50
Saccharomyces cerevisiae 313.0 6.8

300.0 6.4 - 6.8 45
Schizophyllum commune %.0 5.4 52

110.0 5.4 52
Sclerotium ro/fsii 95.0 4.2 - 4.5 68

95.5 4.2 - 4.5 68
95.5 4.2 - 4.5 68

Talaromyces emersonii 45.7 3.6 5.7 70
57.6 4.41 - 4.50 35
100.0
135.0 3.4-4.17 4.1 70

Thermoascus aurantiacus 87.0 4.5 - 5.0 70
Trichoderma koningii 39.8 5.53

39.8 5.85
Trichoderma reesei 70.0 8.2 6.0

73.0
81.6 8.5 4.5 - 5.0
98.0 6.5
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2.2.3. Mechanism of cellulase degradation

It is traditionally believed that the hydrolysis of (semi) crystalline cellulose by fungal cellulase

systems requires the cooperative action of a range of cellulolytic enzymes. Two types of synergism

have been proposed for fungal cellulases. Endo-exo synergism generally functions via a sequential

enzymatic action: endoglucanases attack the amorphous regions of cellulose initially; thereby

providing new chain ends for cellobiohydrolase (CBR) action. Exo-exo synergism, on the other

hand, is based on the formation of a loose complex between the enzymes from T. reesei (CBHI and

CBHII) in solution; therefore adsorption of the individual components to cellulose will be maximal in

optimal synergistic admixtures. However, results in literature are sometimes contradictory and

inconclusive; therefore plausible mechanistic concepts for cellulase synergistic action cannot be

advanced. There are some significant findings, namely that synergism between cellulases is dependent

on: (1) the ratio of individual enzymes, (2) the importance of the degree of substrate saturation, and

(3) the influence of the physicochemical properties of the substrate itself (Nidetzsky et al., 1994).

According to the results of Nidetzky et al. (1994) obtained for exo-exo synergism, CBH I

prepares a more readily hydrolysable substrate for CBH II and vice versa. This indicates that a

simultaneous action of both enzymes is not required to observe 'synergism'. It does not however rule

out the possibility that CBH I-CBH II complexes may exist, but their formation does not appear to

be required for synergistic action on filter paper. For endo-exo synergism a sequential mechanism of

enzyme action may apply: endoglucanase (EG) III prepares a more easily hydrolysable substrate for

CBH I and CBH II. However, EG III activity is not influenced after substrate pre-treatment with

CBHs. EG I act synergistically with CBH I and very little with CBH II, and only shows higher

activity on filter paper pre-treated with CBH I and not by CBH II (Nidetzsky et al., 1994).

The filamentous fungus T. reesei is probably the most efficient producer of cellulases. It

produces the three major types of enzyme, namely: endoglucanases, cellobiohydrolases, and f3-
glucosidases. Their synergistic action is indicated in Fig. 2.4 (Montenecourt, 1983).
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Crystalline Amorphous
region region

JJ Adsorption of cellulases

~--___.~••
f3-glucosidases

FIGURE 2.4. Schematic representation of the synergistic action of T. reesei cellulases. Glucose

residues are indicated by hexagons; glucose residues with reducing ends are shown in black (Béguin

and Aubert, 1992).
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2.3. APPLICATION OF FffiROLYTIC ENZYMES AND MICROORGANISMS IN THE

ANIMAL FEED INDUSTRY

2.3.1. Structure of the plant cell wall

Maximised energy gain from forage cell walls is important for high and efficient animal production.

Forages of high cell wall content have a low digestibility and thus result in low intake by ruminants.

Forage cell wall content can vary in digestibility within the range of30 to 60 %, and in individual cell

types from 0 to 100 %. It is lower in legumes than in grasses, lower in temperate (C3) than tropical

(C4) grasses, and lower in young than old material (Wilson, 1994).

The content and digestibility of forage cell walls is significantly influenced by the growth

environment; the major factor being temperature. This is mainly due to a decline in cell wall

digestibility because of greater lignification and faster tissue maturation, which are greater for grasses

than legumes. Water stress, applied at mild to moderate levels, usually results in herbage of lower

cell wall content and higher dry matter digestibility (Wilson, 1994).

Growth and development of the cell wall in plants consists of a primary and secondary

growth phase. The cell wall is composed of polysaccharides, proteins, and phenolic acids during

primary growth (Table 2.13). No lignin is deposited during primary growth, but only pectins, xylans,

and cellulose. Ferulic acid and a small amount of p-coumaric acid are esterified to the arabinoxylan

polymers laid down in the primary wall of grasses. During secondary wall growth the additional

polysaccharide material that is deposited, is richer in cellulose than xylans, and pectins are no longer

being added to the wall. In addition, ferulic acid is not incorporated into the secondary wall.

Secondary wall thickening initiates the deposition of the lignin polymer, in addition to an apparent

incorporation of some of the arabinoxylan ferulate esters of the primary wall into cross-linkages of

the xylans to lignin. p-Coumaric acid is also incorporated into the secondary wall with ether linkages

to the lignin polymer, but these p-coumarate ether molecules probably do not have the additional

cross-linkage to arabinoxylan via an ester bond, as is the case for ferulate ethers. Phenolic acids

crosslink lignin to the structural carbohydrates of plant cell walls, and lignin is known to depress cell

wall digestibility, presumably by reducing access to the structural carbohydrates by anaerobic

bacteria. As lignification of the cell wall proceeds, the lignin that is deposited shifts from guaicyl-type

lignin to lignin richer in syringyl units. According to Jung and Allen (1995), all forage species contain

phenolic acids in the cell wall (Jung and Allen, 1995). Dry season tropical grasses have a relatively

high content of hydroxycinnarnic acids covalently bound in the cell wall, which may in part account
I

for their lower digestibility (Jung et al., 1983). Liberation of phenolic acids from the cell wall is

unlikely to have an adverse effect on the rumen microbial metabolism (Lowry et al., 1993).
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TABLE 2.13. Composition of primary and secondary wall regions of mature lignified cells in grasses

and legumes (adapted from Jung and Allen, 1995).

Wall polymer component
CeU wall re,;on PolIsaccharides Li"un Phenolic acids Protein

rasse
Middle lamella Cellulose, Guaiacyl (major), Ferulic acid esters and Proteins with
/primary wall glucuronarabinoxylans, syringyl (minor), p- eiliers,p~umaricacid low or no

mixed linkage ~-glucans, hydroxyphenol esters (minor) hydroxyproline,
heteroglucans, pectic (middle lamella extensin
polysaccharides (minor) only) (minor)

gume
Pectic polysaccharides, Guaiacyl (major), Ferulic acid ethers and Extensins, oilier
cellulose, heteroglucans, syringyl (minor) esters (minor)", p- proteins
heteroxylans (minor) coumaric acid esters

(minor)"
rasse

Secondary wall Cellulose, Syringyl (major), p-Coumaric acid esters None
glucuronarabinoxylans, guaiacyl (minor) and ethers
heteroglucans, mixed
linkage ~-glucans (minor)
--------------------------~~gume~--------------------------

Cellulose, 4-O-methyl- Syringyl (major), p-Coumaric acid esters None
glucuronxylans, guaiacyl (minor) and ethers (minor)"
glucomannans (minor)

"Localisation of phenolic acids in legumes cell walls is assumed based on data from other plant species.

2.3.2. Factors limiting fibre degradation by farm animals

Four major factors regulate ruminant fibre digestion, namely: (1) plant structure and composition,

which regulate bacterial access to nutrients; (2) nature of the population densities of the pre-

dominant fibre-digesting microbes; (3) microbial factors that control adhesion and hydrolysis of

complexes by hydrolytic enzymes of the adherent microbial populations; and (4) animal factors that

increase the availability of nutrients through mastication, salivation and digestion kinetics. The

presence of silica and tannins in forages present additional layers of recalcitrant material to be

penetrated by microorganisms. Bacteria usually access readily digestible inner tissues through

stomata, lenticels, or damaged areas, and digestion proceeds from the inside out. Rumen fungi also

degrade the more vulnerable areas of plant tissue, but in addition they also have the ability to

penetrate the plant cuticle; which aids in reducing the tensile strength of the tissue and thereby

provide additional sites of access for bacteria (Varga and Kolver, 1997). Fig. 2.5 illustrates the

potential interactions influencing the rate of ruminal fibre digestion and passage.
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Low forage or small particle size
High non-forage fibre

Rate of fibre
digestion

Rate of fibre
passage

High forage or large particle size
Low non-forage fibre

FIGURE 2.5. Potential interactions among forage level and particle size and amount of non-forage

fibre on rate of ruminal fibre digestion and passage. The model implies that, when high levels of non-

forage fibre are fed instead of forage, the amount of dietary forage is necessarily low; therefore,

forage particle size must be adequate to stimulate rumination and entrap small feed particles (adapted

from Grant, 1997).

Many feedstuffs contain antinutritional factors that interfere with the digestibility, adsorption, or

utilisation of nutrients, and thereby adversely affect animal performance. Antinutritional factors can

also be expected to disturb the digestive processes of farm animals, because of similarities in

digestive processes, and organisms ingesting them lack the appropriate enzymes in their

gastrointestinal tracts to render them ineffective. They work in many ways, from the complexing of

important nutrients and mineral ions, to direct enzymatic inhibition (Walsh et al., 1993).

The nutritional availability of fibre to livestock varies greatly, depending on its composition

and structure. Fibre is slowly and incompletely digested, and therefore the proportion of fibre to cell

solubles is a major determinant of energy available. Some fibre cannot be digested no matter how

long it remains in the rumen. Lignin interferes with microbial degradation of fibre polysaccharides by

acting as a physical barrier and by being cross-linked to polysaccharides by ferulate bridges. Physical

and structural barriers may limit fibre digestibility beyond the effect of lignin. Waxes and the cuticle

of the epidermis covering plants restrict microbe and enzyme access to forage tissues. Plant anatomy

Stellenbosch University http://scholar.sun.ac.za



26

at the cellular level also influences fibre digestibility, and cell types differ in digestibility in general

(Table 2.14 and Fig. 2.6) (Buxton and Redfearn, 1997).

TABLE 2.14. Summary of plant tissues and their relative digestibility (Buxton and Redfearn, 1997).

Tissue Function Digestibility Comments
Mesophyll Contain chloroplasts High Thin wall, no lignin. Loosely arranged

in legumes and C3 grasses.
Inmidrib of grass and main vein of
legume leaves, leaf sheath and stem of
grasses, and petiole and stem of
legumes.
Highly digestible when immature.
In legume leaves and stems. Thick wall,
not lignified.
Surrounds vascular tissue in C4 leaf
blades. Wall moderately thick and
weakly lignified.
In legume petioles and stems. Often does
not lignify.
Outer wall thickened, lignified, and
covered with cuticle and waxy layer.
Comprises phloem and xylem. Major
contributor to indigestible fraction.
Up to 1200 um long and 5 - 20 urn in
diameter, thick, lignified wall.

Parenchyma Metabolic Moderate to high

Collenchyma Structural Moderate to high

Parenchyma bundle Contain chloroplasts Moderate to high
sheath

Phloem fibre Structural Moderate

Epidermis Dermal Low to high

Vascular tissue Vascular None to moderate

Sclerenchyma Structural None to low

Anatomical Mesophyll / Bundle Epidermal Vascular Sclerenchyma ca ~
~ u

fraction phloem sheath cells bundles i:i5
".g
u

EE--- Cellular -, .1...-
Cell wall constituents

.....
......1..... ./

contents

./ MICROBIAL ..... NDF region..... DIGESTION ./
.A

Organic acids Unprotected tl Protected
hemicellulose .~ hemicellulose

Chemical Soluble carbohydrate .0
11)

fractions ;.- ca .S
Crude protein "B ~ 152 i:i5 u0

Ether extract
Unprotected ~ Protected
cellulose .~ cellulose

Ash ~

./ POTENTIALL Y ..... ./ ....
Digestibility .... .... .... INDIGESTIBLE ./

DIGESTIBLE

FIGURE 2.6. Conceptual model of the relation between plant anatomy and chemical fractions
indicating areas of potential digestibility; NDF ~ neutral detergent fibre (adapted from Minson, 1990)
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Intake, dietary interactions, feeding strategies and feed additives influence microbial growth and

subsequent fibre digestion. The extent of fibre digestion is the result of competition between the rates

of digestion and passage. Rumen available energy normally limits growth of bacteria and any

additional organic matter fermented in the rumen. Fibre digestion depends on the various rates of

digestion of structural and non-structural carbohydrate. Ferulic and p-coumaric acid limit the

biodegradability of plant fibre. Fibre digestibility is reduced by 3.3% as a result of reduced residency

time in the rumen. The order and frequency of substrate presentation to the rumen may limit fibre

digestion (Varga and Kolver, 1997).

Other limitations to fibre digestion in diets include: (1) a high proportion of low pH silages;

(2) fermented feeds with a moisture content greater than 50%; an acid detergent fibre less than 19%;

(3) a high proportion of feed concentrate; (4) irregular feeding of high levels of feed concentrate; and

(5) finely ground feed concentrate. Feed particles are generally retained in the rumen two to three

times longer than the fluid, depending on size, density, and susceptibility to digestion. Prolonged

residence within the rumen is necessary for slowly growing organisms like ruminal fungi and

protozoa, because they are rapidly depleted if unable to attach to feed particles (Varga and Kolver,

1997). According to McAllister et al. (1994), most feeds contain a surface layer resistant to

microbial attachment and therefore to digestion. Maturity of the microbial consortium and adaptation

to a particular type of feed leads to inherent stability, and its participant microorganisms are

notoriously difficult to manipulate due to the impenetrable nature of biofilms (McAllister et aI.,

1994). In vitro studies showed that phenolic acid concentrations above 1 mM inhibited growth of

many species of ruminal bacteria. It was found that phenolic monomers (5 mM) are toxic to rumen

microbes in vitro and interfered with the attachment of Fibrobacter succinogenes to cellulose.

However, the free phenolics concentration in ruminal fluid is generally low (0.15 - 5.15 J..LM) (Akin

et al., 1993).

Stellenbosch University http://scholar.sun.ac.za



28

2.3.3. Enhancement of fibre digestibility by farm animals

Fibre digestibility enhancement is dependent upon advances in a number of related areas, a few of

which is summarised in Table 2.15.

TABLE 2.15. Research areas that could lead to the enhancement of fibre digestion (Varga and

Kolver, 1997).

Microbial Animal
Attachment to the substrate
Rumina! pH (5.9 - 6.5)
Increase interaction with fungi
Increase substrate accessibility
Identify optimal particle size
Increase substrate availability
Evaluate microbial growth phase
Identify microbial growth factors
Increase rate of hydration of substrate
Decrease antiquality factors (tannin, silica)
Evaluate importance of spirochetes
Determine serotypes of binding proteins

Feeding strategies

Increase frequency of feeding
Evaluate timing of feeding
Evaluate order of substrate presentation
Evaluate direct use of enzymes
Increase residence time of substrate
Determine optimal carbohydrate
availability in the rumen
Increase mastication and insalivation

Penetration of substrate
Increase interaction with fungi
Determine enzyme induction mechanism
Determine surface area exposure necessary
Evaluate plant structure and composition
Evaluate importance of protozoa

For poor and good quality forages
Evaluate interaction with non-fibre
components
Evaluate use of biological and chemical
treatments
Determine interaction with protein
Determine hydration potential
Determine cationic exchange capacity
Determine optimal particle size

Rate of digestion
Elucidate enzymatic activity of consortium
Identify microbial synergistic and/or competitive interactions
Decrease phenolic concentration of plants
Decrease generation time of organisms
Determine importance of catabolic and/or regulatory enzyme expression
Determine effect of non-fibre components
Select for bacteria that attack refractory portions of the cell wall

To improve the dry matter digestibility, changes must occur in both the fibre concentration and the

fibre digestibility. According to Buxton and Redfearn (1997), the most logical way of improving

forage digestibility would be to reduce fibre concentration.
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2.3.4. Microorganisms involved in lignocellulose degradation by farm animals

Rumen bacteria consist of a range of strict anaerobes and facultative anaerobes and include

Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, and Butyrivibrio

fibrisolvens as the most important species (Table 2.16). They tend to degrade the more readily

digestible structures like mesophyll cells. Fungi account for almost 8% of the microbial biomass in

the rumen and primarily degrade unlignified cell walls in leaf blades and stems. They are able to

penetrate both cuticle and cell wall of lignified tissues. They also can degrade more recalcitrant cell

wall materials like the sclerenchyma and vascular tissue. Their fibrolytic activity is enhanced by

hydrogen-utilising methanogens, which decrease the repressive effect of hydrogen (Czerkawski,

1986). There are 3 groups of fungi in the rumen of herbivores: (1) facultatively anaerobic and

aerobic fungi, described as transient because they continually enter the rumen in feed; (2) two species

that parasitise some ciliate protozoa; (3) obligatory anaerobic zoosporic fungi that are saprophytic on

plant material (Wubah et al., 1993: Borneman et al., 1990).

Protozoa are responsible for 19 - 28% of the total cellulase activity. They may be limited to

digestion of very susceptible tissue like mesophyll cells. There is an increased requirement for non-

protein nitrogen in the absence of protozoa (defaunation), due to an increase in the bacterial

population. The relationships between protozoa and other microorganisms in the rumen are

characterised by competition for nutrients and possibly for space, predation, and synergism.

Defaunation of the rumen leads to an increase in amylolytic, pectolytic, and cellulolytic bacteria. It

appears that, when the hydrogen concentration is reduced, methanogens adhere to the protozoa to

be able to use the hydrogen produced by protozoa via the direct transfer of hydrogen. Protozoal

metabolic activity may be negatively affected by the accumulation of hydrogen, whereas its

elimination by methanogens probably stimulates protozoal metabolism (Ushida et al., 1991; Varga

and Kolver, 1997).
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TABLE 2.16. Selection of rumen bacteria, protozoa and fungi and their function (Czerkawski,
1986).

Fibre digesters
Bacteria

Starch digesters

Acid utilisers
(mainly lactate)

Sugar utilisers

Particle ingesters
(including bacteria)

Fibre digesters

Bacteroides succinogenes
Clostridium /ochheadii
Ruminococcus flavefaciens
Ruminococcus a/bus

Bacteroides amy/ophilus
Succinomonas amy/o/ytica
Butyrivibrio fibriso/vens
Bacteroides ruminocola
Se/enomonas ruminantium
Streptococcus bovis

Vei/lonella alealeseens
Peptostreptococcus elsdenii
Selenomonas lactolytica

Protozoa
Isotricha prostoma
Dasytricha ruminantium

Epidinium ecaudatum
Dip/odinium deutatum
Ophryoscoles purkynei
Entodinium eaudatum

Fungi
Neocallimastrix frontalis
Spheromonas communis
Piromyces communis
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2.3.5. Addition of microorganisms to animal feeds to improve digestibility

The survival of adult ruminants and other herbivores fed diets of high fibre content depend on

microorganisms. Maximisation of utilisation of forage by the animal depends on maximising the rate

and extent of fibre digestion in the rumen, as both voluntary intake and digestibility depend on this

(Offer, 1990). The rumen must be considered as an integrated system and therefore it is difficult to

rationalise manipulation. Thus, the observed result of any treatment is a combination of several

interactive reactions and therefore any change to one component of the system has several

uncontrolled effects on other components (Wallace, 1994). The addition of microbial feed additives

(direct-fed microbials) is currently one of the present methods for manipulating ruminal fermentation.

Others include dietary ionophores, antibiotics, and addition of large amounts of certain natural

substrates (Jouany, 1994).

Yeast cultures are microbial feed supplements that contain both viable yeast cells and a dried

preparation of the medium in which these cells were grown, with value as a rumen microbial

enhancer (Dawson, 1993). The culture benefits the nutrition of the animal and the efficiency of meat

and milk production by stimulating the growth of rumen bacteria (Wallace and Newbold, 1993). The

ability of yeast to stimulate the viable count in the rumen depends on its respiratory activity. It

appears that yeast removes some of the oxygen that occurs in ruminal fluid at various times during

the daily feed cycle, thereby preventing toxicity to the ruminal anaerobes (Fig. 2.7) (Wallace, 1994).

Aspergillus oryzae fermentation extract (Amaferm) and Saccharomyces cerevisiae are the

most common cultures been fed to animals to promote desired responses like increased weight gain,

milk production, or total tract digestibility of feed components. These saccharolytic microbes' main

metabolic action in aerobic condition entails the use of sugars and oligo saccharides to produce CO2

and ethanol. They increase the total viable bacteria and cellulolytic bacteria numbers, with no clear

effect on protozoa and fungi. This partially explains the improvement in fibre breakdown and

increased stability of the fermentation. Apparently, the microbial additives containing both

components might have a broader spectrum of efficacy than preparations containing single

organisms. However, the effectiveness of S. cerevisiae and A. oryzae seems to be affected by the diet

and nutritional demands of the host (Varel et al., 1993; Jouany, 1994; Wallace, 1994; Wallace and

Newbold, 1993; Newbold, 1995).
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[IMPROVED PRODUCTIVITY )

DECREASED LACTATE
PRODUCTION

CHANGED VOLATILE
FATTY ACID PROPORTIONS

INCREASED BACTERIAL
VIABILITY

/
IMPROVED pH
STABILITY

REMOVAL OF OXYGEN
BY S. cerevisiae

FIGURE 2.7. A scheme describing the mode of action of yeast culture (Wallace, 1994).

Aspergillus spp. produces a wide variety of polisaccharidase enzymes (cellulases, hemicellulases),

which could influence plant cell wall degradation (Varel et al., 1993). When the aerobic fungus

A. oryzae is exposed to an anaerobic environment, it may simply lyse and release enzymes, which

enhances the rate of plant cell wall breakdown, but not necessarily the extent of breakdown (Martin

and Nisbet, 1992). Supplementation with A. oryzae increased ruminal and total tract digestibility of

fibre fractions, but ruminal volatile fatty acid and NH3 production was not affected. Some A. oryzae

strains produce substances with a wide range of antibacterial activities, but none of the ruminal

bacteria was negatively affected (decreased growth rate). Most ruminal bacteria showed no response

to A. oryzae supplementation; however, some species grew faster when A. oryzae was supplemented.

Table 2.17 summarises the effect of A. oryzae supplementation on growth rate of ruminal bacteria.

Some bacteria exhibit higher growth rates in medium containingzl. oryzae than in medium without it.
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Responses between the 2 and 5% (0.2 and 0.5 mg/ml, respectively) concentrations of A. oryzae

filtrate did not differ (Beharka and Nagaraja, 1998).

TABLE 2.17. Effect of Aspergillus oryzae fermentation extract on specific growth rate of ruminal

bacteria (adapted from Beharka and Nagaraja, 1998).

Organism

Control 2% AO
Filtrate!

Growth rate (Jh) Growth rate (Jh)

5% AO Filtrate

Growth rate
(Jh

Fibrobacter succinogenes S85 0.26b

Megasphaera elsdenii BI59 0.32b

M elsdenii T8I 0.30b

M elsdenii LCI 0.29d

Ruminococcus albus 7 0.58b

Selenomonas ruminantium D 0.59b

S. ruminantium HDI 0.65b

S. ruminantium HD4 0.62b

S. ruminantium GA3I 0.50a

S. lactilytica PCI8 0.57b

0.35" 0.368

0.42"
0.42a

0.43"
0.40a

0.32c 0.39c

0.698

0.728
0.72"
O.71a

0.758

0.74a

0.54a

0.758

0.728

0.55a

0.7480.728
~bMeans within a row with different supe:rsaipts differ (P < 0.0 I).
c.d Means within a row with different superscripts differ (P < 0.05).
1 A sterile filtrate of lO%Aspergilius oryzae (AO) was added to the medium at 2 or 5% (vol/vol), providing a final AO
concentration of2 or 5 mglml, respectively.

Microbial feed additives can also be applied in the pre-ruminant animal, thereby manipulating the gut

fermentation to reduce diarrhoea and to enhance the development of the active, fibre digesting flora

and fauna of the adult ruminant. This also helps to accelerate the transition from liquid to solid feed.

Therefore, microbial additives must perform part of the function of probiotics for non-ruminants and

should have an additional effect specific to the ruminant. Table 2.18 summarises the general

effectiveness of different microbial additives in pre-ruminants (Wallace and Newbold, 1993).

TABLE 2.18. Effects of microbial feed additives in pre-ruminants (Wallace and Newbold, 1993).

Microbial species Animal Observed effects
Lactobacillus spp. Calves Decreased coliform count

Reduced scouring
Improved feed intake / liveweight gain
Lower mortality
Improved feed intake / liveweight gain
Improved feed intake / liveweight gain
Improved feed intake / liveweight gain
Decreased effects of transport stress
Improved feed intake / liveweight gain

Lambs

Saccharomyces cerevisiae Calves
Lambs
Calves
CalvesAspergillus 0ryzae
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2.3.6. Enzymes involved in IignoceUulose degradation by farm animals

Enzymes have several distinct advantages relative to chemical and physical processing methods,

namely that they:

1) are of natural origin and non-toxic

2) have specific activities

3) work best under mild conditions; i.e. moderate temperatures and broad pH range

4) act rapidly at relatively low concentrations

5) are easily inactivated (Sears and Walsh, 1993).

Rumen fungi produce a wide range of enzymes that can digest the major structural

polysaccharides of plant cell walls, hydrolyse a range of glycosidic linkages, and thereby enabling

fungi to grow on a number of polysaccharides. Many of the polysaccharide-hydrolysing enzymes are

excreted into the extracellular culture medium. It seems that all species studied to date utilise xylan,

starch, and hemicelluloses. Cellulases necessary for solubilising both amorphous and highly ordered

celluloses present in plant fibre are produced by anaerobic fungi, e.g. avicelase, endoglucanase, and

J3-glucosidase. Extracellular exoglucanase( s), endoglucanase( s), and cellodextrinase( s) combined

makes fungi capable of degrading cellulose into cellobiose. Rumen fungi also produce high levels of

hemicellulases; for example, xylanase is the most active of all endo-acting polysaccharide hydrolases.

Other enzymes include acetyl xylan esterase, and p-coumaroyl and feruloyl esterases (Wubah et al.,

1993).

2.3.7. Addition of enzymes to animal feeds to improve digestibility

Supplementation of cattle feed with enzymes containing amylolytic, proteolytic, and cellulolytic

activities showed significant improvements in average daily gain and feed conversion ratio. However,

exogenous enzymes can only be beneficial when the feed composition and the enzyme preparation

are complementary (Beauchemin and Rode, 1996). Maximal effects are obtained when the enzyme

additives are applied to the feed in an aqueous form. An increase in the interval between the enzyme

application to feed and feeding creates a stable enzyme-substrate complex that increases enzyme

effectiveness. Enzyme application to the feed before feeding is more beneficial than direct application

into the ruminal environment (Rode and Beauchemin, 1998).

The goals of enzyme supplementation to animal diets would be to: (1) stimulate dry matter

intake; (2) maintain rumen pH; (3) increase rumen microbial synthesis of proteins or volatile fatty

acids; (4) improve fibre digestion in the rumen; (5) stabilise the rumen environment; (6) improve
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animal growth; (7) minimise weight loss; (8) improve animal health; and (9) maintain the immune

system and response (Hutjens, 1998).

Feed digestion rate and the absorption of the products of digestion is dependent on the

formation of a complex between the digestive enzyme and its substrate, and subsequent release of its

product. Fibre digestion is a complex process that is not only affected by the forage, but also by the

retention time of forage particles in different segments of the gastrointestinal tract and the amount

and activity of enzymes secreted by fibrolytic organisms in the rumen and large intestine (Bedford,

1995). Forage fibre consists of complex carbohydrates that include cellulose, hemicellulose, pectins,

and lignin. The complete fermentation of cellulose and hemicellulose are limited by the degree of

lignification; therefore they are incompletely fermented to volatile fatty acids, unlike pectin that is

completely fermented to volatile fatty acids (Allen and Oba, 1998).

The use of crude enzyme preparations enhances feed digestibility by:

* hydrolysing raw materials (fibre) not usually degraded by natural enzymes;

* hydrolysing raw materials with specific anti-nutritional properties, such as l3-g1ucans, thereby

enhancing the nutritive value of poor quality feeds;

* enhancing bio-availability of polysaccharides (starch) and proteins;

* hydrolysing phytate in the intestine; and

* complementing the enzymes in young animals to enhance digestive systems not fully developed at

weaning (Teller and Vanbelle, 1990).

Exogenous enzymes may simply supplement those enzymes already present in the digestive

tract to a more effective level, or provide hydrolytic capacity that is completely absent (Bedford and

Schulze, 1998). According to Howes et al. (1998), supplemental fibrolytic enzymes may act by

initiating degradation of plant structural polysaccharides prior to ingestion and ruminal digestion, or

by complementing the fibrolytic enzymes produced by ruminal microorganisms. In vitro studies

showed that Fibrozyme, an enzyme preparation from the fermentation extracts of Aspergillus niger

and Trichoderma longibrachiatum, enhanced the digestion of particulate material and carbohydrate

metabolism in a 100% grass hay diet by 44% during a 12 hour incubation period. However, it had

little consistent long-term effects on digestion over longer periods (Howes et al., 1998). It has not

yet been determined whether the major benefit of enzyme application occurs in pre-feeding treatment

or after the feed enters the rumen. However, it appears that when enzymes are added directly to

grass and silages, they have a definite benefit in improving digestibility of forages. The treatment of

feed or forage way in advance of feeding allows the potential for increased rumen enzymatic activity.
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In general, it would appear that the means of delivering the enzyme into the rumen and the time

allowed between treatment and feeding may be crucial (Lewis et al., 1996). It is important to

consider the combined effect of enzyme type, enzyme level, and forage moisture condition when

forage is treated with enzymes. When fibrolytic enzymes are added to dry grass immediately before

feeding, in vivo data indicate improved intake, digestibility, particulate passage, and ruminal

degradability (Feng et al., 1996).
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3. METHODS

3.1. MICROORGANISMS AND ENZYME PREPARATIONS

Aureobasidium pullulans NRRL Y2311-1, Aspergillus aculeatus DSM 2344, Trichoderma reesei

Rut C30, and Thermomyces lanuginosus ATCC 34626 served as microbial sources for enzyme

production. Fibrozyme, an enzyme supplement for ruminants contains fermentation extracts from

Aspergillus niger and Trichoderma longibrachiatum (Alltech, USA), was used as the one

commercial enzyme preparation. Celluclast 1.5 L (Novo Nordisk, Denmark), a liquid cellulase

preparation made via submerged fermentation of a selected strain of Trichoderma reesei, served as

the other commercial enzyme preparation. All enzyme preparations were held at 4 °C until use in

experiments.

3.2. MEDIA AND CULTIVATION CONDITIONS

All the organisms were routinely maintained by cultivation at 30 or 50°C on YMX slants

containing (gil): xylose, 10; yeast extract, 3; malt extract, 3; peptone, 5; agar, 15 (Christov et al.,

1997).

Growth media for A. pullulans and A. aculeatus consisted of (gil): Birchwood xylan (Roth), 20;

Yeast nitrogen base (YNB), 6.7; Asparagine, 2.0; KH2P04, 5.0 (O'Neill et al., 1996). Growth media

for T. reesei consisted of (gil): Cellulose (Solka floc), 10.0; Bacto-peptone, 0.735; <NH4)2S04, 6.66;

Urea, 1.5; CaCh, 1.5; MgS04, 1.5; Citric acid, 5.84; K2HP04, 7.71; Trace elements, 10 ml. Trace

elements consisted of (mg/l): FeS04·7H20, 5.0; MnS04·H20, 1.56; ZnS04·7H20, lAO; CoCh, 2.0

(Biely et al., 1988; Mandels and Weber, 1968). Growth media for T. lanuginosus consisted of (gil):

Birchwood xylan (Roth), 20; Yeast extract, 14.3; <NH4)2S04, 2.1; MgS04, 3.0; CaCh·2H20, 0.3;

KH~04, 10.0 (Bennett et al., 1998). All the above organisms were also grown on media containing

(gil): wheat straw, 20; Yeast nitrogen base (YNB), 1.7; and <N"H4)2S04,5.0. All organisms were

cultivated in liquid media at 30 or 50°C, with agitation at 150 rpm for 5 days.
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3.3. ENZYME RECOVERY

The enzymes were recovered from the spent medium by centrifugation (10 000 x g for 20 minutes

at 4°C). The supernatant was subjected to ultrafiltration (10 000 MW cut-off; Millipore, Bedford,

MA, USA) with a Minitan apparatus and concentrated up to 3D-fold by using a high-pressure

ultrafiltrate-membrane apparatus (10 000 MW cut-off; Amicon, Beverly, MA, USA). Finally 0.02

% (w/v) of sodium azide was added to prevent microbial growth.

The commercial enzyme product, Fibrozyme (Alltech, USA) was dissolved m distilled

water at a final concentration of 0.2 mg/ml dry weight, thoroughly mixed, and the enzymes

extracted via vortexing in the presence of 0.5 mm glass beads (20 minutes). The mixture was

centrifuged at 10 000 rpm for 10 minutes, and the supernatant harvested and stored at 4 °C until

further use.

3.4. ANALYSIS OF ENZYME PROPERTIES

3.4.1. Enzyme assays

3.4 .1.1. Protein assay

The protein concentration was determined using the Coomassie Brilliant Blue dye-binding method

as described (Bio-Rad; Bradford, 1976).

3.4.1.2. Xylanase assay

f3-Xylanase activity was determined by following the release of reducing sugars from a 1.0 %

birchwood xylan (Roth) solution at 50°C for 5 minutes (Bailey et al., 1992). The reaction was

terminated by addition of dinitrosalicylic acid (DNS) reagent and subsequently boiled for 5 minutes.

The reducing sugar concentration was determined spectrophotometric ally at 540 nm. One unit (IV)

of activity was defined as the amount of enzyme that released 1 umol of xylose as reducing sugar

equivalents per minute.

3.4.1.3. Total cellulase assay

Total cellulase activity was determined by measuring the release of reducing sugars from Whatman

no. 1 filter paper at 50°C for 60 minutes (Wood and Bhat, 1988). The reaction was stopped by

addition ofDNS reagent and subsequent boiling for 5 minutes. The release of reducing sugars from
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filter paper was measured spectrophotometric ally at 540 nm. One unit (IV) of activity was defined

as the amount of enzyme that released 1 umol of glucose as reducing sugar equivalents per minute.

3.4.1.4. Cellobiase assay

Cellobiase (J3-glucosidase) activity was determined by measuring the release of p-nitrophenol from

p-nitrophenyl-J3-D-glucoside at 50°C for 30 minutes (Wood and Bhat, 1988). The reaction was

terminated via addition of 0.4 M glycine-NaOH (pH 10.8) buffer. The liberated p-nitrophenol was

measured at 430 nm. One unit (IV) of activity was defined as the amount of enzyme that released 1

umol of p-nitrophenol as reducing sugar equivalents per minute.

3.4.1.5. CMC assay for endo-glucanase

Endoglucanase activity was determined by measuring the release of reducing sugars from

carboxymethyl cellulose (CMC) at 50°C for 30 minutes (Wood and Bhat, 1988). The reaction was

terminated with DNS reagent and subsequent boiling for 5 minutes. The release of reducing sugars

from CMC was determined spectrophotometrically at 540 nm. One unit (ill) of activity was defined

as the amount of enzyme that released 1 umol of glucose as reducing sugar equivalents per minute.

3.4.1.6. Acetyl esterase assay

Acetyl esterase activity was determined by measuring the release of p-nitrophenol from 2 mM

p-nitrophenyl acetate at room temperature over a 10 minute period (Biely et al., 1996a). The

absorbance of p-nitrophenol was measured spectrophotometrically at 410 nm. One unit (IV) of

acetyl esterase activity hydrolyses 1 umol of the substrate in 1 minute.

3.4.1.7. 6-Xylosidase assay

J3-Xylosidase activity was determined by measunng the release of p-nitrophenol from

p-nitrophenyl-J3-D-xylopyranoside (5 mM in 0.1 M sodium acetate buffer, pH 5.0) substrate at 37°C

for 10 minutes. The reaction was stopped by addition of saturated sodium borate (Borax) solution.

Released p-nitrophenol was quantified spectrophotometrically at 410 nm. One unit (ill) of activity

was defined as the amount of enzyme that released one urnol of p-nitrophenol per minute.

3.4.1.8. a-L-Arabinofuranosidase assay

u-t-Arabinofuranosidase activity was determined by measuring the release of p-nitrophenol from

p-nitrophenyl-J3-D-arabinofuranoside (5 mM in 0.1 M sodium acetate buffer, pH 5.0) substrate at

37°C for 10 minutes. The reaction was stopped by addition of saturated sodium borate (Borax)

Stellenbosch University http://scholar.sun.ac.za



40

solution. Released p-nitrophenol was quantified spectrophotometrically at 410 nm. One unit (JU) of

activity was defined as the amount of enzyme that released one umol of p-nitrophenol per minute.

3.4. 1.9. Pectinase assay

Pectinase activity was determined on plates as described by Hagerman et al. (1985). The pectin

medium contained (w/v): 0.1 % pectin, 0.1 % maltose, 0.1 % KN03 and 0.5 % agarose in buffer

(0.05 M Na2HP04; 0.01 M citric acid, pH 6.3). Enzyme (10 ul) was spotted onto the plate and

incubated at 30°C for 4 hours (if necessary plates were stored at 4 °C for up to 15 hours before

staining for activity). Afterwards plates were stained with freshly prepared 0.02 % (w/v) Ruthenium

red in distilled water and then refrigerated for ca. 2 hours. The staining solution was discarded and

plates destained for 15 minutes in distilled water.

3.4.1.10. Laccase assay

Laecase activity was determined on plates as described by Buswell et al. (1995). The laecase

medium contained (w/v): 0.15 % 2,2' -azino-bis-ethylbenthiazoline (ABTS) and 0.5 % agarose in

0.1 M sodium acetate buffer (pH 5.0). Enzyme (10 ul) was spotted onto the plates and incubated at

30°C for ca. 24 hours.

3.4.2. Gel electrophoresis

SDS-PAGE (denaturing) was done according to the method of Laemmli (1970) with 12 %

polyacrylamide gels. Gels were stained with 0.25 % Coomassie Brilliant Blue R250 (Sigma) in

45 % methanol I ethanol and 10 % glacial acetic acid. Excess dye was removed with a solution

containing 25 % methanol I ethanol and 10 % glacial acetic acid. The various bands were identified

by relating their position on the gel with a standard marker preparation (Full range rainbow marker,

RPN 800) from Amersham. These consisted of the following molecular weights (kDa): 250, 160,

105, 75, 50, 35, 30, 25, 15, 10 (all recombinant proteins).

3.4.3. Iso-electrofocusing (lEF)

lEF was done with pre-cast gels in the pH range 3.5 to 10.0. The anode solution consisted of

25 mM L-aspartic acid, 25 mM L-glutamic acid and the cathode solution was 1 M NaOH. Gels

were run with the Flat Bed apparatus (FBE 3000) connected to the Computer controlled power

supply (Bio-Rad Model 3000XI). The gels were pre-run at 600 V for 20 minutes and thereafter

under standard mode conditions of 1000 V, 200 mA & 50 W for ca. 1 hour. Gels were placed in
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fixing solution for 0.5 - 1.0 hour, followed by washing in destaining solution (see SDS-PAGE) for

5 minutes. Subsequent staining (in staining solution (see SDS-PAGE), pre-heated to 60°C) and

destaining was followed by a final preservation step in preservation solution (10 % glycerol in

destain solution). The pI of the various bands was established using standard pI marker proteins

(lEF mix 3.5 - 9.3, product no. 1-3018, Sigma).

3.4.4. Zymogram / activity staining

This was performed according to the method of Biely et al. (1985). The substrate gel contained

either Remazol Brilliant Blue (RBB)-dyed xylan (Sigma) or Ostazin Brilliant Red (OBR)-

hydroxy ethyl cellulose (Sigma), depending on enzyme being tested. Protein gels (non-denatured)

were overlaid with the different dye-containing gels to detect the activity of either xylanases or

cellulases.

3.5. IN V7TRODIGESTIBllJTY ASSAYS WITH RUMEN FLUID

3.5.1. Enzyme sample preparation prior to in vitro digestion

Fibrozyme powder was dissolved at the various concentrations in 1.0 ml distilled water prior to

addition to the 0.5 g feed sample. The crude enzyme extracts were diluted in 1.0 ml distilled water,

relative to the xylanase concentration of each enzyme sample, prior to addition to the 0.5 g feed

sample. Celluclast was added in concentrated form (1.0 ml) to the feed samples.

3.5.2. Experimental procedure

In vitro digestibility assays were performed according to the methods of Tilley and Terry (1963)

and Engels (1966). The rumen fluid was obtained from cannulated Dohne Merino wethers, which

were routinely fed a roughage diet consisting of mainly oats hay (60 to 70 %) and lucerne hay (30

to 40 %). The animals abstained from feed and water for ca. 12 hours prior to removing rumen

fluid.

The following feed samples were evaluated: wheat straw, lucerne hay, oats hay, oats silage

(all the previous obtained locally), and NaOH-treated wheat straw (obtained from Meadow Feeds,

Paarl, South Africa). Before the in vitro digestibility assay, the feed samples were dried at 60°C for

ca. 8 hours and hammer-milled to pass through a 1 mm sieve.
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Fresh rumen fluid was strained through four layers of cheesecloth and then kept in a pre-warmed

thermos flask. Before use, the fluid was diluted five-fold with a synthetic saliva/buffer solution

consisting of NaHC03, 15.2 g; Na2HP04, 5.84 g; Urea, 1.74 g; KCl, 0.91 g; NaCl, 0.75 g;

MgS04"7H20, 0.19 g; CaCh·2H20, 0.064 g, and distilled water (up to a final volume of 1.6 I). The

solution was degassed by bubbling CO2 for ca. 80 minutes or until the pH reached 6.9.

The diluted rumen fluid (50 ml) was added to feed samples containing the added enzyme (in

100 ml tubes), degassed with CO2, sealed with rubber corks with a Bunsen gas release valve, hand

mixed and incubated at 39 °C in a shaking water bath (ca. 30 oscillations/minute) for 48 hours. At

the completion of incubation, the pH was reduced to 1.2 by addition of 2N HCl to stop microbial

activity. A pepsin solution (pepsin A, BDH Chemicals Ltd, Poole, England) was added to each tube

to simulate the complete digestion period in the ruminant. Distilled water (at 40 °C) was added to

the tubes to the 80 ml mark, the corks replaced and the tubes were further incubated at 39 "C for 48

hours.

Afterwards, the tube contents were filtered through no. 2 sintered glass crucibles under

vacuum and dried overnight at 100 "C, to determine the dry mass (DM). Finally, the feeds insoluble

fibre content was determined via the neutral detergent fibre (NDF) analysis method of Van Soest et

al. (1991). Samples were brought to boiling in a neutral detergent solvent containing (per litre):

lauryl sulphate, 30 g; EDTA, 18.61 g; sodium borate (Borax), 6.81 g; Na2HP04, 4.56 g; ethylene

glycol, 10 ml. In addition, 2 ml decahydrophthalene and 0.5 g anhydrous sodium sulphite were

added to the samples prior to the 60 minutes boiling period. Samples were washed with water,

followed by rinsing with acetone and then dried at 100 "C overnight. After determining the samples'

dry weight, they are incinerated at 500 "C for 5 hours, the ash weight determined and brought into

account of the final calculations.
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3.5.3. Calculations

(l)%DM=DM/MMx 100

Abbreviations:

DM _. dry mass

MM _. sample mass

OM - organic matter

ADF - acid detergent fibre

NDF - neutral detergent fibre

(2) % Ash = Ash / DM x 100

(3) gOM = gDM - gAsh

(4) Fraction DM

(4.1) % DM digestibility = [(MM x %DM) /100] - gDMx 100

[(MM x %DM) /100]

(4.2) % ADF = Weight after boiling xlOO

Weight before boiling

(4.3) gADFout =Weight before boiling x (% ADF/ 100)

(4.4) % ADF digestibility =MM x fraction ADF - gADFout x 100

MM x fraction ADF

(4.5) % NDF asis= ('Veight after boiling - Weight after incineration)x 100

Weight before boiling

(4.6) % NDF dry basis=% NDFasis._x 100

%DM

(4.7) g NDFout = Weight before boiling x fraction NDFas is

(4.8) NDF digestibility =MM x average NDFdrybasisfraction - g NDFout x 100

MM x NDFdry basis fraction

(4.9) % OM digestibility =MM x (100 - Ash fraction) - g OMx 100

MM x (100 - Ash fraction)

Stellenbosch University http://scholar.sun.ac.za



44

3.6. ENZYME HYDROLYSIS IN THE ABSENCE OF RUMEN FLUID

Enzyme hydrolysis experiments with Celluclast 1.5 L (Novo Nordisk) was done via the method of

Colombatto et al. (1999). Feed samples that were evaluated included: sugarcane bagasse, wheat

straw, NaOH-treated wheat straw, lucerne hay, oats hay, and oats silage. These feed samples were

incubated at 50°C for 48 hours, in the presence of 0.05 M sodium acetate (pH 4.5) and 0.02 %

(w/v) sodium azide. Samples were withdrawn after 0, 24 and 48 hours of incubation. Withdrawn

samples were boiled for 5 minutes, cooled and centrifuged (12 000 rpm for 15 minutes), and the

supernatant harvested and stored at 4 °C until further use. Samples were evaluated for release of

reducing sugars via a modified protocol. The samples were added to 0.1 M sodium acetate buffer,

pH 5.0. Dinitrosalicylic (DNS) reagent was added to indicate a possible release of reducing sugars,

with subsequent boiling and cooling afterwards. The release of reducing sugars was determined

spectrophotometrically at 540 nm.
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4. RESULTS

4.1. ENZYME ASSAYS AND PROPERTIES OF CRUDE ENZYME EXTRACTS

4.1.1. Background

The four different microorganisms employed during this study were chosen mainly for their

excellent enzyme producing abilities. Trichoderma reesei Rut C30 is a cellulase overproducing

mutant, with very high endoglucanase activity, relative to the carbon source. It also produces

considerable amounts of other enzymes, such as endo-J3-1,4-xylanase and acetyl esterase (Schulein,

1988; Sunna et al., 1997). Thermomyces lanuginosus is a xylanase overproducer, with little or no

other enzyme activity (Singh et al., 2000). Aureobasidium pullulans, the black yeast, is known for

producing a vast array of enzymes, with moderate levels of mainly endo-J3-1,4-xylanase and acetyl

esterase (Myburgh et al., 1991). Species of Aspergillus also produces moderate to high enzyme

levels, depending on the carbon source. Important enzymes being produced by this fungus include

the various cellulases, xylanase, and xylosidase (Bailey and Poutanen, 1989).

4.1.2. Enzyme assays

Concentrated crude extracellular enzyme extracts of fungi, grown on Birchwood xylan or Solka-

floc (cellulose), are shown in Table 4.1.

TABLE 4.1. Enzyme activities (U/mg protein) of different organisms grown on 2 % Birchwood

xylan (Roth) or 1% Solka-floc cellulose (T. reesei only) as carbon sources for ca. 5 days

Assay T. reese; A. pulluians A. aculeatus T. lanuginosus
[Enzyme] lOx SOx 60x 40x

Xylanase 2660.0±20.0 5878.0±42.0 4085.0±238.0 23750±250.0
Xylosidase 19.2±1.0 5.3±O.2 36.0±5.0 0.3±O.OI
Acetyl esterase II1.2±15.0 74.0±3.0 139±8.0 19.I±O.7
Arabinofuranosidase 2.75±O.23 1.0±O.I 4.8I±O.65 O.I±O.Ol
Cellulase (Total) 4.77±O.54 0.2±O.0 1.5±O.2 O.I±O.O
Endoglucanase 66.0±I9 1.2±O.0 53.3±IO.0 0.3±O.0
Cellobiase 3.0±O.2 1.0±O.I 5.0±O.3 0.3±O.0
"Pectinase + ++ + ++
"Laccase ++
[protein] 9.0 mglml 7.6 mglml 13.0 mglml 10.0 mg/ml

Values are indicated as the average of two determinations ± range.
"Both pectinase and laecase assays were plate assays.
Key: + indicate a zone diameter of 5.0 - 8.0 mm; ++ indicate a zone diameter of 12.0 - 18.0 mm; - indicate
no result
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All the organisms' crude enzymes tested show moderate to high enzyme levels, except for

T. lanuginosus, which produced mainly xylanase (Singh et aI., 2000). The other organisms show

high xylanase and acetyl esterase activities, with high endoglucanase activity for both T. reesei and

A. aculeatus (Table 4.1). Therefore, the array of enzymes from the crude extracts of T. reesei and

A. aculeatus might be most suitable for enhancing fibre digestibility in feed. Also, no laecase

activity was detected for T. reesei, A. pullulans and A. aculeatus.

The four microorganisms were also grown on wheat straw as carbon source to produce

crude enzyme extracts that might contain a wider range of enzyme activities appropriate for in vitro

digestion. The assumption was made that if the organisms were grown on the same substrate as the

enzymes were required to digest, more enhanced digestibility might occur. The protein

concentrations of the four organisms, after growth on wheat straw as carbon source and subsequent

concentration (ca. 30-fold), are given in Table 4.2.

TABLE 4.2. Protein concentration (mg/ml) of the culture fluid from different organisms grown on

wheat straw (2 %) as carbon source and concentrated ca. 30-fold

Organism [protein] (mg/ml)
T. reesei
A. pullulans
A. aculeatus
T. lanuginosus

1.5±O.20
0.5±O.03
0.72±O.14
0.23±O.00

Values are indicated as the average of two determinations ± range.

Wheat straw was shown to be an unsuitable substrate for the growth of all the organisms tested

(Table 4.2), as their growth resulted in approximately 10-fold lower amounts of protein, compared

to growth on other substrates (Table 4.1). Therefore, the enzyme activities of the crude extracts

from microorganisms grown on wheat straw as carbon source were not evaluated further, but only

SDS-PAGE analysis was performed to compare the banding pattern of these enzymes with that of

enzymes from the same fungi grown on either Birchwood xylan or Solka-floc cellulose as carbon

sources (see section 4.1.3).
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SDS-PAGE analysis was performed for all the crude extracellular enzyme extracts obtained during

fungal growth on the various carbon sources (Fig 4.1).

Fig. 4.1A reveals a diverse electrophoretic banding pattern for all the organisms cultivated

on Birchwood xylan or Solka-floc. T. reesei showed major bands at ca. 140, 70, 50, 35, 33 and 24

kDa. A. aculeatus showed the most diverse banding pattern of all the organisms tested; with major

bands at ca. 55, 33, 31, 28, 25 and 20 kDa. However, the function of the individual protein bands

could not be determined. T. lanuginosus had only a few major bands at ca. 50, 26 and 20 kDa; with

the very prominent xylanase band at ca. 26 kDa as shown previously (Singh et al., 2000).

A. pullulans showed 3 major bands at ca. 250, 43 and 26 kDa; the latter being the xylanase band as

confirmed by the studies ofLi et al. (1993).

When the various fungi were cultivated on wheat straw, fewer bands were revealed by SDS-

PAGE analysis (Fig. 4.1B). T. reesei showed prominent bands at ca. 60 and 50 kDa. A. aculeatus

gave bands at ca. 75, 70, 50 and 33 kDa, with T. lanuginosus and A. pullulans showing prominent

bands at ca. 34 and ca. 25 kDa, respectively. Therefore, it is apparent that substrates such as

Birchwood xylan and Solka-floc induce a wider range of enzymes than wheat straw. All subsequent

enzyme preparations used in this study were derived from organisms grown on either Birchwood

xylan or Solka-floc cellulose.

AkDa
1 2 3 4 5

B

FIGURE 4.1. SDS-PAGE analysis of crude extracellular enzyme extracts from microorganisms

Samples: 1, Molecular weight (MW) Marker; 2, T. reesei; 3, A. aculeatus; 4, T. lanuginosus; 5, A. pullulans.
A. Organisms grown on either 2 % Birchwood xylan (Roth) or 1% Solka-floc (T. reesei only) as carbon sources
B. Organisms grown on 2 % wheat straw as carbon source
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4.1.4. Iso-electrofocusing (lEF) and activity staining

Iso-electrofocusing analysis was conducted on the crude extracellular enzyme extracts of the four

fungi, grown on either Birchwood xylan or Solka-floc (cellulose) as carbon sources. lEF analysis

(Fig. 4.2) indicated that most proteins have an optimal activity in the acidic region (3.6 - 5.3) for all

organisms tested. Only a few proteins function optimally in the basic region (9.1 - 8.3) for most

organisms, except T. lanuginosus. T. reesei shows strong bands at ca. 5.3,4.6, 4.3, 4.1 and 4.0 pl;

with weak bands at ca. 8.9, 5.9 and 3.8 pl. A. aculeatus reveals a broader optimal enzyme range,

with prominent bands at ca. pI 9.0, 8.4, 5.5 and 3.7. T. lanuginosus have only two bands in the

acidic region; one more prominent band at ca. pI 3.9 and a less prominent band at ca. 3.7. The

former band is the xylanase band as confirmed by Singh et al. (2000). A. pullulans have one

prominent band at ca. pI 8.4, and weak bands at ca. 9.2,4.3 and 4.0. The band sizes of 4.0, 8.4, and

9.2 almost fully corresponds to three of the four major xylanase bands of 4.0, 7.9, and 9.4, as

described by Li et al. (1993). In the studies ofLi et al. (1993), A. pullulans was grown on 1.0 % oat

spelts xylan, whereas during this study it was grown on birchwood xylan.

FIGURE 4.2. lEF analysis of crude extracellular enzyme preparations from microorganisms

cultivated on either Birchwood xylan or Solka-floc for ca. 5 days

Samples: I,Molecular weight (MW) Marker; 2, T. reesei; 3, A. aculeatus; 4, T. lanuginosus; 5, A. pullulans.

Activity staining of the lEF gel revealed that a number of bands contained protein with either

cellulase or xylanase activity (data not shown). T. reesei and A. aculeatus were found to have a

larger number of bands containing either cellulase or xylanase activity than either A. pullulans or

T. lanuginosus; suggesting the presence of a wider range of isozymes in the former two organisms.

T. lanuginosus possessed a single band with xylanase activity and no bands with cellulase activity.
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4.2. ENZYME ASSAYS AND PROPERTIES OF COMMERCIAL ENZYME

PREPARATIONS

4.2.1. Fibrozyme analysis

4.2.l.l. Background

Fibrozyme is an enzyme supplement for ruminants (Alltech, USA), containing fermentation extracts

from Aspergillus niger and Trichoderma longibrachiatum. Due to its ability to degrade xylan in the

hemicellulose fraction, it was designed to aid in the breakdown of the fibrous matrix in plant

structural carbohydrate complexes. Thereby, many bound nutrients are exposed to the digestive

activities in the rumen. Fibrozyme also contains measurable amounts of cellulase and protease

activity, which enhances enzymatic activity in the rumen. Many of its component proteins are

produced in a naturally glycosylated form, thereby protecting the enzymes in the rumen (Dawson

and Tricarico, 1999).

Previous studies showed an enhanced degradability of grass hay in animals receiving

Fibrozyme (Tricarico et al., 1998). The digestive activities were often more pronounced in animals

receiving a high level of grain supplement, rather than a hay based diet. However, enhanced

application of Fibrozyme and other exogenous enzymes will also require investigation of other

determining parameters, such as: feed evaluation, enzyme addition, and time of incubation (Dawson

and Tricarico, 1999).

The purpose of the biochemical analysis of Fibrozyme was to obtain more details of the

range of enzymes present in the preparation and the activities. Fibozyme is a protected enzyme

supplement, therefore certain techniques were applied to release its enzymes for further analysis.

The Fibrozyme powder was dissolved in distilled water and the release of the enzymes was

attempted by: 1) exposure in a ultrasonic waterbath at room temperature and subsequent

centrifugation for 30 seconds; 2) exposure on a bead mill (cell homogenizer) in the presence of

glass beads for 20 minutes, followed by centrifugation; 3) only centrifugation and harvesting of the

supernatant, and 4) incubation at 39°C (rumen temperature) for 20 minutes, followed by

centrifugation. Exposure in the presence of glass beads was the more successful extraction method

(showing the highest protein concentration) and therefore used further during this study (Table 4.3).

Subsequent SDS-PAGE analysis also revealed that the sample subjected to glass beads treatment

yielded the most intense bands and the larger number of bands (data not shown). Fibrozyme was

therefore subjected to glass bead extraction prior to further biochemical analysis in subsequent

experiments.
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TABLE 4.3. Comparison of Fibrozyme protein concentrations obtained by varIOUS extraction

methods.

Technique [protein] (mg/ml)
lUltrasonication
2Glass beads
3Centrifugation
"Incubation

0.106±O.OS
0.397±O.06
O.lOO±O.OS
0.09±O.01

IUltrasonication was performed at room temperature for 30 seconds.
2Homogenisation in the presence of glass beads on a bead mill for 20 minutes.
3pibrozyme powder was dissolved in water and centrifuged.
"Incubation at 39 oe (rumen temperature) for 20 minutes.
All samples were centrifuged (10 000 rpm for 15 minutes) after their respective
treatments and the supernatants stored at 4 oe until further use.

4.2.1.2. Enzyme assays

Compared to the preparations described above, analysis of Fibrozyme showed that the preparation

contained relatively low enzyme activities (Table 4.4). The reason for these low activities IS

unknown, but could be related to the formulation ofFibrozyme or the instability of enzymes.

TABLE 4.4. Enzyme activities (U/mg protein) of Fibrozyme extracted by homogenisation with

glass beads.

Assay Activity (U/mg)
Xylanase
Xylosidase
Acetyl esterase
Arabinofuranosidase
Cellulase (Total)
Endoglucanase
Cellobiase
"Pectinase
"Laccase
[protein]

3.98±O.33
0.04±O.01
0.24±O.03
O.Ol±O.OO
O.OI±O.OO
O.l±O.OI
0.02±O.00

+
++

0.397 mg/ml
Values are indicated as the average of two determinations ± range.
"Both pectinase and laecase assays were plate assays. KEY: + indicate a zone
diameter of 5.0 - 8.0 mm; ++ indicate a zone diameter of 12.0 - 18.0 mm;
- indicate no result.
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4.2.1.3. SDS-PAGE analysis

SDS-PAGE analysis was conducted on Fibrozyme to determine the molecular weight of the

proteins present (Fig. 4.3).

A range of proteins is revealed, differing in size from ca. 70 to ca. 30 kDa, with prominent

bands at 70, 50, 36 and 29 kDa. Although a large number of proteins are present, which suggests

that Fibrozyme is composed of a number of different enzymes, the identities and enzyme activities

of these main protein bands are still unknown.

kDa 1 2

FIGURE 4.3. SDS-PAGE analysis ofFibrozyme extracted by homogenisation with glass beads.

Samples: 1, Molecular weight (MW) Marker; 2, Fibrozyme.

4.2. 1.4. Iso-electrofocusing (lEF) and activity staining

Fig. 4.5 reveals four weak bands at pI 8.6, 7.2, 4.3 and 4.1, suggesting the presence of proteins that

function over a broad pH range. Subsequent activity staining indicated a xylanase at 5.0, and a

cellulase at 4.3 and 4.1 (data not shown). However, the xylanase band was not visible by lEF

analysis.

pI
1 2

FIGURE 4.5. lEF analysis ofFibrozyme extracted by homogenisation with glass beads

Samples: 1, Marker; 2, Fibrozyme.
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4.2.1.5. Further analysis

The Fibrozyme powder smelt faintly of active dried yeast and motivated a search for the presence of

any viable cells. Therefore the enzyme product was streaked out on a yeast peptone dextrose (YPD)

slant and incubated at 30 DC overnight. Growth of a single yeast type was observed, and after

microscopic analysis, it was identified as an Ascomycete (probably Saccharomyces sp.).

The Fibrozyme powder was also dissolved in sterile distilled water and incubated at both

room temperature and 37 DC overnight. Both mixtures showed fermentation, but better fermentation

was observed at 37 De. This might indicate that Fibrozyme contained adequate nutrients to sustain

the yeast, and also that the yeast could function in the rumen, where it possibly takes up excess

oxygen and produces volatile fatty acids (Wallace and Newbold, 1993; Wallace, 1994). A slight

change in pH, from 5.6 to 5.0, was also observed.

In conclusion it is apparent that Fibrozyme consists of a range of enzymes involved in fibre

digestion, with mainly xylanase activity and little cellulolytic activity. It also contains yeast, but the

enzymes do not seem to be associated with the yeast, as yeast separated from the enzyme mixture

showed no enzyme activity on cellulose and xylanase activity plates.
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4.2.2. Celluclast analysis

4.2.2.1. Background

Due to the low enzyme activities of the Fibrozyme sample, a second commercial enzyme product

was chosen for evaluation during this study. Celluclast 1.5 L (Novo Nordisk), a cellulase

preparation produced by submerged fermentation of a selected strain of Trichoderma reesei was

selected because of the promising enzyme levels obtained with T. reesei Rut C30 during a study by

Schi.ilein (1988).

Celluclast has optimal activity at about 50 to 60°C and a pH of 4.5 to 6. It catalyses the

breakdown of cellulose into glucose, cellobiose and other higher glucose polymers. It also has a

pronounced viscosity-reducing effect on soluble cellulosic substrates (Celluclast information sheet).

4.2.2.2. Enzyme assays

The various enzyme activities tested (Table 4.5) showed relatively high values, especially the

different cellulases and xylanase, which play the major roles in lignocellulosic breakdown. T. reesei

is an established source of cellulolytic enzymes which produces two cellobiohydrolases (CBH-I and

CBH-II) and four endoglucanases (EG-I, II, ill, and IV), with CBH-I as the most abundant enzyme

(Medve et al., 1998; Schi.ilein, 1988).

TABLE 4.5. Enzyme activities (U/mg protein) ofCelluclast 1.5 L.

Assay Activity (U/mg)
Xylanase 23016.8±1739.4
Xylosidase 1814.9±50.3
Arabinofuranosidase 1103.5±36.7
Cellulase (Total) 338.5±41.0
Endoglucanase 197.1±59.0
Cellobiase 227.9±12.0
[protein] 26.0 mg/ml

Values are indicated as the average of two determinations ± range.
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4.2.2.3. SDS-PAGE analysis

SDS-PAGE analysis (Fig. 4.4) showed prominent bands at ca. 65, 55, and possibly 45 kDa, with

few other bands present. This confirmed the findings of Schiilein (1988), who observed purified

enzymes from Celluclast at 65 (cellobiohydrolase, CBH), 52 (endoglucanase I, EG-I), and 48 kDa

(endoglucanase II, EG-II). In addition, Schiilein (1988) determined their respective pI to be 3.8 to

4.0 (CBH), 4.0 to 5.0 (EG-I), and 7.0 (EG-II) (Schiilein, 1988). Therefore, this commercial product

was considered to have good potential to increase the digestibility of various feeds and was used in

some digestion experiments. T. reesei has several isoforms of endoxylanase II (XYL II), with a

molecular mass of 20 kDa as determined by SDS-P AGE analysis (Lappalainen et al., 2000). This

might explain the high xylanase yield detected in Celluclast.

FIGURE 4.4. SDS-P AGE analysis of Celluclast

Samples: 1, Molecular weight (MW) Marker; 2, Celluclast.
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4.3. DIGESTION OF FEED SAMPLES WITH RUMEN FLUID WITHOUT ADDED

ENZYMES

The relative in vitro dry matter (DM) and neutral detergent fibre (NDF) digestibility values of both

wheat straw and lucerne hay was determined over time, without the addition of enzymes. Figs. 4.6

and 4.7 presents these values for wheat straw and lucerne hay without addition of enzymes.

Wheat straw normally has DM and NDF digestibility values in the order of 40 to 45 %,

whereas lucerne hay normally has a DM digestibility value ranging between 50 and 60 % and a

NDF digestibility value of 50 %. In rare cases, the NDF digestibility value might be higher than the

DM digestibility value (National Research Council, 2001). Considerable variation was found in the

in vitro digestibility of wheat straw, whereas the variability was considerably less with lucerne hay.

Furthermore, the NDF digestibility value was greater than the DM digestibility value of wheat

straw, which is unusual. The reasons for the variability in digestibility are uncertain. The diet of the

ruminant, as well as the environment where the ruminant is kept, can influence the composition of

the rumen fluid. For example, the rumen fluid was obtained from sheep kept either at the

Welgevallen Experimental farm of the University of Stellenbosch or at the Elsenburg Experimental

farm, and this might contribute to the variability of the control data. The sheep were kept on an oat

hay (60 to 70 %) and lucerne hay (30 to 40 %) diet and had ad libitum access to feed and water,

which might have led to variability in rumen fluid among different animals. In addition, this might

have stimulated competition between animals within the same pen, resulting in each animal

receiving different levels of feed. Therefore, the small variations in the experimental procedure

might have influenced the digestion ability of the rumen fluid (Jones and Theodorou, 2000).
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FIGURE 4.6. Mean changes in dry matter (DM) and neutral detergent fibre (NDF) of wheat straw

in the absence of enzymes, as determined in various experiments. Error bars indicate the standard

deviation of triplicate values.
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FIGURE 4.7. Mean changes in dry matter (DM) and neutral detergent fibre (NDF) ofluceme hay

in the absence of enzymes, as determined in various experiments. Error bars indicate the standard

deviation of triplicate values.
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4.4. DIGESTION OF FEEDS WITH COMMERCIAL AND LABORATORY ENZYME

PREPARATIONS

4.4.1. Fibrozyme as feed supplement

The digestibility of wheat straw and lucerne hay, by the addition of Fibrozyme, at different

concentrations, was evaluated to determine the optimal enzyme levels for both wheat straw (Fig.

4.8) and lucerne hay (Fig. 4.9).

40.00

~
== 30.00,.Q:c..
~
Q
'$. 20.00

Control FIX F2X FlOXF5X FIOOX

Samples

FIGURE 4.8. Mean digestibility of dry matter (DM) of wheat straw with addition of Fibrozyme to

rumen fluid. Error bars indicate the standard deviation of triplicate values. F ~ Fibrozyrne; Ix

(O.03U xylanase), 2x (O.06U xylanase), 5x (O.15U xylanase), lOx (O.30U xylanase), IOOx (3.0U

xalanase) ~ enzyme level added per gram feed.

The addition of the recommended level ofFibrozyme (I-fold) to wheat straw resulted in a ca. 16 %

improvement in digestibility, relative to the control. Addition of higher levels of Fibrozyme also

resulted in similar levels of digestibility improvement (Table 4.6). Beauchemin et al. (1995) also

reported an optimum level of fibrolytic enzyme addition, above which no further increase in

digestion improvements could be found. However, the DM digestibility value of wheat straw's

control is ca. 6 % below its normal value, and therefore this result is inconsistent.

The addition of Fibrozyme to lucerne hay resulted in only a slight or no Increase In

digestibility (Fig. 4.9; Table 4.6). This result suggests that the lucerne hay might not be suitable as a
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feed where enzyme addition could lead to increased digestibility. It appears that an enzyme

supplement's ability to enhance feed digestibility is dependent on the diet's nature (Howes et al.,

1998).

g 40.00
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FIGURE 4.9. Mean digestibility of dry matter (DM) of lucerne hay with addition of Fibrozyme to

rumen fluid. Error bars indicate the standard deviation of triplicate values. F ~ Fibrozyrne; 1x

(0.03U xylanase), 2x (0.06U xylanase), 5x (0.15U xylanase), lOx (0.30U xylanase), lOOx (3.0U

xalanase) ~ enzyme level added per gram feed.

TABLE 4.6. Effect of Fibrozyme addition to wheat straw and lucerne hay on change in in vitro

digestibility relative to the control".

Fibrozyme level % Increase (-decrease)
(U xylanase) Wheat straw Lucerne hay
l x (0.03U) 16.0 1.4
2x (0.06U) 19.5 4.1
5x (0.15U) 16.2 2.9
lOx (0.30U) 12.0 0.7
100x (3.0U) 20.2 -1.0

"The digestibility of the control sample of wheat straw and lucerne hay was 33.9 % and 50.4 %, respectively.

Digestion assays (dry matter and neutral detergent fibre) were also performed with Fibrozyme to

assess the effect of an incubation of the enzyme with the feed prior to in vitro evaluation with

rumen fluid. Fig. 4.10 revealed that Fibrozyme failed to enhance the digestibility of wheat straw,

even after a pre-incubation period of2 hours between enzyme and feed. However, the control's DM

and NDF values are not in the normal range expected for wheat straw. Therefore, this result might
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also reflect problems with the rumen fluid used in the experiments. Fig. 4.11 also shows no

significant effect on enhancing the digestibility of lucerne hay, even after a pre-incubation period of

2 hours.
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Fibrozyme l Ox
(2hr)

Control Fibrozyme
Ix (Ohr)

FIGURE 4.10. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of wheat

straw with addition of Fibrozyme to rumen fluid. Error bars indicate the standard deviation of

triplicate values. F ~ Fibrozyme; l x (0.03U xylanase), lOx (0.30U xylanase) ~ enzyme level added

per gram feed; Ohr, 2hr ~ time of adding enzyme prior to feeding.

The results obtained in Figs. 4.10 and 4.11 do not correspond with the results shown in Figs. 4.8

and 4.9 and, where the experiments were conducted in a similar way except for pre-incubation with

Fibrozyme. This variation might be due to the changes related to the rumen fluid source. According

to Jones and Theodorou (2000), the main disadvantage of using rumen fluid in feed digestibility

studies is the variability in the potency of the microbial inoculum from week to week. In addition,

significant variation in the inoculum's activity occurs between different donor animals and even for

the same animal on different days. This might also be dependent on water consumption at varying

intervals before collecting rumen fluid (Jones and Theodorou, 2000).
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FIGURE 4.11. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of lucerne

with addition of Fibrozyme to rumen fluid. Standard error bars indicate the standard deviation of

triplicate values. F ~ Fibrozyme; Ix (O.03U xylanase), lOx (O.30U xylanase) ~ enzyme level added

per gram feed; Ohr, 2hr ~ time of adding enzyme prior to feeding.
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4.4.2. Crude enzyme extracts as feed supplements

The in vitro digestibility of lucerne hay and wheat straw was evaluated by addition of crude enzyme

extracts obtained from fungi (see 4.l.3 for details of enzyme preparations). Results are shown in

Figs. 4.12 to 4.15 and Table 4.7 below.

Figure 4.12 shows a definite increase in DM and NDF digestibility of wheat straw for all the

enzyme preparations tested. However, the samples, including the control (no enzyme supplement),

had aIO to 15% lower digestibility value than normally expected since wheat straw normally has a

DM and NDF value of ca. 45 % and 55 %, respectively. Nevertheless, T. reesei increased DM and

NDF digestibility by ca. 45 and 25 % respectively. A. pul/ulans showed increases of ca. 59 and 35

%, and T. lanuginosus ca. 62 and 35 %.

~.OO~----------------------------------------------------------.
fJDM
~MF------------~~--------~~--------~~~50.00

10.00

2 3 4

Samples

FIGURE 4.12. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of wheat

straw with addition of crude enzyme levels of 2U xylanase per gram feed to rumen fluid. Error bars

indicate the standard deviation of triplicate values. 1, Control (without enzyme); 2, T. reesei;

3, A. pullulans; 4, T. lanuginosus.

Figure 4.13 indicates no increase in both the DM and NDF digestibility of wheat straw due to

addition of enzyme preparations, thereby implying that the enzymes had no effect on increasing

wheat straw's digestibility. Considering the result obtained in Fig. 4.12, this current result (Fig.

4.13) is probably more reliable because the control's DM and NDF values are in the normal range

expected for wheat straw.
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FIGURE 4.13. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of wheat

straw with addition of crude enzyme levels of 2 or 4U xylanase per gram feed to rumen fluid. Error

bars indicate the standard deviation of triplicate values. 1, Control (without enzyme);

2, A. aculeatus (2U); 3, A.pullulans (4U).

Fig. 4.14 indicates no increase in either the DM and NDF digestibility of lucerne hay with the

various enzyme applications, while Fig. 4.15 shows only marginal increases in both the DM and

NDF digestibility. Although these results (Figs. 4.14 and 4.15) were obtained at different weeks, it

shows a reasonable correlation between data, and therefore indicates that in vitro digestibility assays

with rumen fluid can yield a constant result at different time intervals. However, this observation

was only achieved with lucerne hay, and almost never with the poorly digestible wheat straw.
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FIGURE 4.14. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of lucerne

hay with addition of crude enzyme levels of 2U xylanase per gram feed to rumen fluid. Error bars

indicate the standard deviation of triplicate values. 1, Control (without enzyme);

2, A. pul/ulans (2U); 3, T. reesei (2U).
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FIGURE 4.15. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of lucerne

hay with addition of crude enzyme levels of 2 or 4U xylanase per gram feed to rumen fluid. Error

bars indicate the standard deviation of triplicate values. I, Control (without enzyme);

2, A. aculeatus (2U); 3, A. pul/ulans (4U).
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Table 4.7 summarises the effect of enzyme addition from various fungi on the in vitro digestibility

as presented in Figs. 4.12 to 4.15. It is apparent that the largest increase in digestibility by enzyme

addition occurred with wheat straw, while a much lower or no increase was found with lucerne hay.

However, the inconsistencies in the data made it impossible to draw firm conclusions as to whether

enzymes improve digestibility, or whether the enzyme extract from one fungus was better than

another. Therefore there is a need for a means of evaluation that would yield consistent and reliable

data.

TABLE 4.7. Effect of the addition of crude enzyme preparations from various fungi on change

in in vitro digestibility.

Organism
(xylanase activity)

% Increase (-decrease)
Wheat straw Lucerne hay
DM/NDF DM/NDF

T. reesei (2U)
A. pullulans (2U)
A. pullulans (4U)
T. lanuginosus (2U)
A. aculeatus (2U)

45.3/26.9 -l.1 / -3.6
59.2/36.1 0.03/-2.5
-8.6/7.6 3.9/2.7
6l.6 / 36.4 N.D.
l.8 /2.0 2.2 / l.5

N.D., not determined
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4.4.3. Celluclast as feed supplement

Because of the difficulties with the in vitro digestibility experiments using wheat straw and lucerne

hay, as well as the inconsistent contribution of the enzyme preparations to the improvement in

digestibility, it was decided to evaluate digestion of other feed samples using Celluclast, an efficient

fibrolytic enzyme preparation containing a range of enzyme activities (Table 4.5). The in vitro

digestibility of four different feed samples, oat hay, lucerne hay, oat silage and NaOH-treated wheat

straw, was evaluated for a possible increase in their digestibility, by addition of the commercial

enzyme product Celluclast l.5 L (Novo Nordisk). The obtained results are given in Figs. 4.16 to

4.19 below.

Oat hay gave a ca. 5 % increase in DM and NDF digestibility relative to the control,

whereas lucerne hay showed no positive effect after enzyme addition (Fig 4.16). The failure of the

higher enzyme activities in Celluclast to improve digestibility was unexpected. This might be due to

the rumen fluid containing all necessary enzymes for digestion and therefore enzyme addition was

unable to further improve digestibility. Incubation of the Celluclast with the feed for 24 hour prior

to the in vitro digestibility assay (Fig. 4.17) also failed to improve the digestibility in both DM and

NDF for oat hay, whereas lucerne hay showed a ca. 4 % increase in both DM and NDF digestibility.

It was also noticeable that the percent digestibility of both feeds showed a ca. 10 % decrease

relative to the values obtained and shown in Fig. 4.16. Both results were inconsistent in Fig. 4.17,

especially that of oat hay, which shows higher NDF values (ca. 15 % higher than the DM

digestibility value). The in vitro assay and the rumen fluid might be responsible for the fluctuation

in results. Therefore, the results obtained were not conclusive in showing a possible improvement in

the digestibilities of these two feeds by Celluclast addition or by incubation of the enzymes with the

feed prior to the digestibility assays.
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FIGURE 4.16. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of oat hay

and lucerne hay after Celluclast addition to rumen fluid. The enzyme was added at enzyme levels of

ca. 443U xylanase and 4U cellulase per gram feed (52 mg protein per gram feed). Error bars

indicate the standard deviation of triplicate values.
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FIGURE 4.17. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of oat hay

and lucerne hay after Celluclast addition, 24 hours prior to the in vitro assay. The enzyme was

added at levels of ca. 443U xylanase and 4U cellulase per gram feed (52 mg protein per gram feed).

Error bars indicate the standard deviation of triplicate values.
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Figs. 4.18 and 4.19 give the results of in vitro digestibility assays performed with oat silage and

NaOH-treated wheat straw under the same experimental conditions as for oat hay and lucerne hay

given above. In Fig. 4.18 oat silage shows a ca. 8 and 13 %, and NaOH-treated wheat straw a ca. 6

and 10 % increase in DM and NDF digestibility, respectively. However, both their NDF values are

higher than the DM values, which indicate possible inconsistencies within the in vitro assay and the

rumen fluid. Again, the effect of enzyme addition to the feed samples 24 hours prior to the in vitro

digestibility assay was evaluated (Fig. 4.19). Oat silage showed DM and NDF digestibility increases

of ca. 43 and 70 %, respectively, with no enhanced effect for NaOH-treated wheat straw (ca. 10 %

decrease in digestibility). However, the percentage digestibility increases are ca. l O to 20 % lower

for oat silage in Fig. 4.19 relative to that shown in Fig. 4.18. Also, all the NDF values are higher

than the DM values, indicating that both the results shown in Figs. 4.18 and 4.19 are inconclusive

and therefore are not an indication of the real effect that Celluclast have on the feed samples under

study.

60.00 -,----------------------------------,

51.48faDM
50.00 E::INDF -....,."...=------~~~----------------_l

10.00

Oat silage hay control Oat silage hay + Celluclast NaOH-treated wheat straw NaOH-treated wheat straw
control + Celluclast

Samples

FIGURE 4.18. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of oat

silage and NaOH-treated wheat straw after Celluclast addition to rumen fluid. The enzyme was

added at enzyme levels of ca. 443U xylanase and 4U cellulase per gram feed (52 mg protein per

gram feed). Error bars indicate the standard deviation of triplicate values.
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FIGURE 4.19. Mean digestibility of dry matter (DM) and neutral detergent fibre (NDF) of oat

silage and NaOH-treated wheat straw after Celluclast addition, 24 hours prior to the in vitro assay.

The enzyme was added at enzyme levels of ca. 443U xylanase and 4U cellulase per gram feed (52

mg protein per gram feed). Error bars indicate the standard deviation of triplicate values.
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As a result of the inability to show conclusively that enzymes could improve the digestibility of

various feeds, an attempt was made to establish whether an enzyme preparation such as Celluclast is

able to hydrolyse feed samples in the absence of rumen fluid. Five feed samples were evaluated and

sugarcane bagasse was included as a poor digestible feed. The results are shown in Figs. 4.20 to

4.24 and the data is summarised in Tables 4.8 and 4.9.

Sugarcane bagasse hydrolysis reached saturation at a lower enzyme level than the other feed

samples, but lower amounts of reducing sugars was released. All the feed samples tested show

optimal values with the 520 mg protein treatments. Oat hay, lucerne hay, and oat silage show the

highest release of reducing sugars, with the two low quality feeds, sugarcane bagasse and wheat

straw performing the poorest. The protein levels used in the in vitro experiments with Celluclast (52

mg per gram feed) showed significant hydrolysis and release of reducing sugars. This shows that

Celluclast would be able to contribute to the digestibility of feed. The failure to observe significant

in vitro digestibility suggest that the enzymes might be inactive in the assay. This requires further

investigation.
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800.0 1000.0 1200.0200.0 400.0 600.0

FIGURE 4.20. Release of reducing sugars from sugarcane bagasse (gig feed) via Celluclast

addition after 24 and 48 hours incubation at 50°C. Values are plotted as the mean of duplicate

determinations. Controls (no enzyme added) showed minimal release of reducing sugars (data not

shown).

Protein added (mg/g feed)
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FIGURE 4.21. Release of reducing sugars from lucerne hay (gig feed) via Celluclast addition after

24 and 48 hours incubation at 50°C. Values are plotted as the mean of duplicate determinations.

Controls (no enzyme added) showed minimal release of reducing sugars (data not shown).
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FIGURE 4.22. Release of reducing sugars from oat hay (gig feed) via Celluclast addition after 24

and 48 hours incubation at 50°C. Values are plotted as the mean of duplicate determinations.

Controls (no enzyme added) showed minimal release of reducing sugars (data not shown).
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FIGURE 4.23. Release of reducing sugars from oat silage (gig feed) via Celluclast addition after 24

and 48 hours incubation at 50 oe. Values are plotted as the mean of duplicate determinations.

Controls (no enzyme added) showed minimal release of reducing sugars (data not shown).
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FIGURE 4.24. Release of reducing sugars from NaOH-treated wheat straw (gig feed) Via

Celluclast addition after 24 and 48 hours incubation at 50 °C. Values are plotted as the mean of

duplicate determinations. Controls (no enzyme added) showed minimal release of reducing

sugars (data not shown).
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TABLE 4.5.Release of reducing sugars from ruminant feeds (gig feed) via Celluclast addition after 24hr incubation at 50°C.

Feed Enzyme added (mg protein per gram feed)
sample 0.00 0.52 5.2 52 260 520 780 1040

Sugarcane bagasse O.OO±O.OO 0.02±0.01 0.14±0.00 0.27±O.02 0.30±O.01 0.36±0.03 0.35±0.08 0.34±0.20
Lucerne hay O.Ol±O.OO 0.07±0.02 0.18±0.01 0.38±O.02 0.56±0.09 0.65±0.02 0.71±0.22 0.55±0.03
Oat hay 0.08±O.05 0.03±0.00 0.31±0.00 0.40±O.05 0.60±0.00 0.71±0.05 0.72±O.20 0.52±0.09
Oat silage O.OO±O.OO 0.20±0.01 0.24±0.02 0.46±O.01 0.66±0.03 0.64±0.08 0.65±0.02 0.49±0.08
NaOH-wheat straw O.OO±O.OO 0.13±0.02 0.20±0.01 0.33±0.01 0.40±0.04 0.50±0.005 0.47±O.07 0.48±0.20

Values are indicated as the mean of duplicate determinations ± range of variation.
Control values are shown as 0 mg protein added per gram feed.

TABLE 4.6.Release of reducing sugars from ruminant feeds (gig feed) via Celluclast addition after 48hr incubation at 50°C.

Feed Enzyme added (mg protein per gram feed)
sample 0.00 0.52 5.2 52 260 520 780 1040

Sugarcane bagasse O.OO±O.OO 0.05±0.01 0.16±O.01 0.30±0.03 0.35±0.04 0.39±0.14 0.39±0.03 0.28±O.01
Lucerne hay 0.08±0.02 0.11±0.01 0.25±0.03 0.44±0.03 0.66±0.03 0.72±0.01 0.70±0.01 0.58±0.01
Oat hay 0.19±0.05 0.26±0.00 0.36±0.00 0.40±0.04 0.69±0.03 0.77±0.02 0.69±O.09 0.52±0.10
Oat silage 0.02±0.00 0.08±0.01 0.31±0.05 0.54±0.00 0.65±0.02 0.65±0.05 0.65±0.20 0.49±0.20
NaOH-treated straw O.OO±O.OO 0.15±0.00 0.24±0.02 0.35±0.01 0.43±0.01 0.51±0.05 0.50±0.06 0.33±0.01

Values are indicated as the mean of duplicate determinations ± range of variation.
Control values are shown as 0 mg protein added per gram feed.
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5. DISCUSSION

The results obtained during this study failed to consistently show that enzyme supplements improve

the digestibility of all the feed samples evaluated. However, all the enzyme preparations showed

diverse enzyme activities with mainly xylanase and cellulase activities. The crude enzyme

preparations and Celluclast had high xylanase and cellulase levels. However, the commercial

fibrolytic enzyme Fibrozyme had low activity for all the enzymes tested.

Fibrozyme addition to both wheat straw and lucerne hay did not improve their respective in

vitro digestibilities. Possibly the enzyme activity is not optimal for the two feeds' composition, or

the pre-incubation period of 2 hours is too short, relative to a 12 hour incubation period that gave a

ca. 44 % increase in the in vitro dry matter disappearance of a 100 % grass hay diet in the studies of

Howes et al. (1998). In the studies of Tricarico et al. (1998), Fibrozyme showed a ca. 44 % increase

in the in vitro dry matter disappearance of a grass hay diet, but no effect on a 50 % concentrate diet.

In addition, Fibrozyme supplementation to a basal diet increased the ruminal NDF digestion of

Holstein steers by ca. 23 % and by ca. 4.5 % in the DM intake of crossbred steer calves (Howes et

al., 1998). In conclusion, it is apparent that while some reports show an improvement in feed

digestibility by addition of Fibrozyme, in our hands this improvement was not consistent. These

differences could be due to feed composition such as high lignin content, or presence of pectins that

make the feed recalcitrant to enzymatic hydrolysis (Buxton and Redfearn, 1997).

Crude enzyme supplementation to both wheat straw and lucerne hay gave inconsistent

results. Possible reasons for no improvement in the in vitro digestibility might be: 1) the enzyme

levels are too low; 2) the enzymes might not be resistant to microbial degradation in the rumen, and

3) the in vitro assay protocol used is too unreliable. Hristov et al. (1998), indicated that CMC-ase

and xylanase activities could be resistant to microbial degradation in the rumen, but is dependent on

the enzyme source, and also the specific enzyme activities contained within the crude enzyme

preparation (Hristov et al., 1998). Morgavi et al. (2000), also found that the ~-1,4-endoglucanase

activity of Aspergillus niger remained stable for ca. 6 hours after incubation in rumen fluid. The ~-

1,4-endoglucanases Trichoderma viride and Irpex lacteus had half-lives of ca. 2 hours and ca. 4

hours, respectively. The xylanase activity of both A. niger and T. viride remained stable for more

than 6 hours, while 1. lacteus lost 60 % of its activity after ca. 2 hours of incubation in rumen fluid.

The ~-glucosidase and ~-xylosidase activities of all three organisms were unstable in rumen fluid,

particularly those of T. viride (Morgavi et al., 2000). Therefore, crude enzyme preparations

apparently remain stable long enough for digestion by the enzymes to occur. However, it is of

utmost importance that the enzymes be applied to the feed prior to incubation, to establish a

significant enzyme-feed complex (Rode and Beauchemin, 1998).
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Enzyme activity is normally measured at optimal pH, which generally differs from that of rumen

fluid. In principle, this means that exogenous enzymes are likely to contribute less fibrolytic activity

than estimated, after been incubated in the rumen (Beauchemin and Rode, 1997). In addition, the

change in pH (when differing from the optimal pH of an enzyme) can also mean that enzyme

supplements first have to adapt to the rumen environment. The same applies for a change in

temperature. These adaptations can therefore be time-consuming and enzyme supplements can be

completely degraded before adapting to its new environment. Therefore, by increasing the interval

between applying the enzyme to the feed and feeding creates a stable enzyme-feed complex that

increases the enzyme's effectiveness (Beauchemin and Rode, 1997).

Celluclast supplementation gave marginal increases in the in vitro feed digestibility of oats

hay, oats silage, and NaOH-treated wheat straw. However, it was supplemented at ca. 200-fold

higher concentrations relative to the crude enzyme preparations. Celluclast have optimal activity at

about 50 to 60°C and a pH of 4.5 to 6.0 (Celluclast information sheet). In vitro digestibility assays

were performed at 39°C and pH 6.5, which meant that Celluclast's activity was not optimal.

Optimal enzyme activity conditions therefore needs to be taken into account when deciding on

using enzymes as feed supplements, relative to the conditions within the rumen environment. This

might explain why supplemented Celluclast did not enhance the in vitro digestibility significantly,

because it had to deal with a poor substrate in its new environment, as well as functioned below its

optimal activity conditions.

Enzyme hydrolysis with Celluclast was optimal at the same enzyme concentrations for all

the feed samples tested. Oats hay, lucerne hay, and oats silage showed the highest release of

reducing sugars, whereas the 2 low quality feeds, sugarcane bagasse and wheat straw performed the

poorest. Colombatto et al. (1999) found that a commercial enzyme preparation, containing mainly

xylanase and cellulase activities, enhanced the hydrolysis of maize silage and a total mixed ration.

The optimum pH appeared to be 4.5 for hydrolysis of all the feeds used (Colombatto et al., 1999).

In the current study higher hydrolytic increases was obtained for all the feed samples evaluated,

relative to the results of Colomb atto et al. (1999). This indicates that Celluclast was a better enzyme

product than the one used in their studies. Also, this result was more positive than the in vitro

digestibility analysis during this study, because Celluclast supplementation improved all the feed

samples' nutritive values. This might be due to the fact that enzyme hydrolysis was performed at 50

°C and pH 4.5, which is in the enzyme's optimal activity range (50°C, pH 4.5 to 6.0). In addition,

the enzyme hydrolysis experiments were done in a buffer solution, whereas the in vitro digestibility

analysis took place in a rumen solution that varied over time. Therefore, enzyme hydrolysis

experiments should probably exceed the in vitro digestibility analysis to evaluate an enzyme's effect

on feed samples at its optimal conditions.
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The in vitro digestibility assays in this study showed too much variation to yield reliable data and

this suggest that alternative assay methods should be considered. This should include the in vivo, in

sacco, and in situ methods of analysis, as well as gas production (C02, C~ and traces of H2)

measurement (Stem et al., 1997). Another alternative would be the DAISyII system, which contains

four 4 litre digestion vessels that slowly rotate in a digestion chamber maintained at 39.5 °C

(Holden, 1999). However, these methods have the disadvantage of being expensive and more time

consummg.

In future a more detailed study of feed digestibility should be investigated by determining

which feeds are hydrolysable, their chemical composition, i.e. how accessible the feeds are, and

also evaluation of feed mixtures. The enzyme supplements also need to be evaluated for optimum

temperature and pH, as well as the compilation of enzyme cocktails.
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