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Abstract

Broadly speaking Reverse Engineering is the process of digitising a physical object

and creating a computer model of the object. If sharp edges formed by two surfaces

can be extracted from a point cloud (which is the set of measured points) it can speed

up the segmentation of the point cloud and the edges may also be used to construct

swept surfaces (or various other types of surface that best captures the design intent).

A strategy is presented to "scan" edges. The strategy simulates a CMM (Coordinate

Measurement Machine) as it would scan a sequence of short lines straddling the edge.

Rather than measuring on a physical object, the algorithm developed in this

dissertation "scans" on the points in the point cloud. Each line is divided in two parts,

or line sections, belonging to the surfaces fanning the edge. The points of the line

sections are then approximated with polynomials. Each edge point is the intersection

of two such polynomials. In many engineering components sharp edges are replaced

with fillet radii or the edges become worn or damaged. This algorithm is capable of

reconstructing the original sharp edge without prior segmentation.

A simple analytical model was developed to determine the theoretically achievable

accuracy. This Analytical accuracy was compared with the accuracy of edges

extracted from point clouds. A series of experiments were done on point clouds. The

input parameters of the experiments were chosen using the technique of Design of

Experiments. Using the experimental results the parameters that most significantly

influences the accuracy of the algorithm was determined. From the Analytical and

experimental analysis guidelines were developed which will help a designer to specify

sensible input parameters for the algorithm. With these guidelines it is possible to find

an edge with an accuracy comparably with an edge found with the traditional method

of finding the edges with NURBS surface intersections.

Finally the algorithm was combined with a swept surface fitting algorithm. The

scanned edges are used as rails and profile curves for the swept surfaces. The

algorithms were demonstrated by reverse engineering part of another core box for an

inlet manifold.
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If the edge detection parameters are specified according to the guidelines developed

here, this algorithm can successfully detect edges. The maximum gap size in the point

cloud is an important limiting factor, but its effect has also been quantified.
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Opsomming

In Truwaartse Ingenieurswese word 'n fisiese voorwerp opgemeet en 'n rekenaar

model word daarvan geskep. Die segmentering van die puntewolk (dit is die

versameling gemete punte) sal aansienlik vergemaklik word indien dit moontlik is om

skerp rante in die puntewolk te identifiseer. Die rante sal dan gebruik kan word om

veegvlakke (swept surfaces), of enige ander tipe oppervalk wat die ontwerp die beste

beskryf, te konstrueer.

Hierdie proefskrif beskryf 'n strategie wat die rante kan opmeet. Dit simuleer die

manier waarvolgens 'n Koërdinaatmeetmasjien 'n reeks lyne, wat oor die rant lê, sou

meet. In plaas van op 'n fisiese voorwerp op te meet, "meet" die algoritme op 'n

puntwolk. Elke lyn word dan in twee dele verdeel (elke deel word 'n meetlynseksie

genoem). Elke meetlynseksie behoort aan een van die twee oppervlaktes wat die rant

vorm. Die rant punte word bereken as die interseksie van twee polinome wat deur die

punte van die meetlynseksie gepas is. Dit is dikwels die geval met meganiese

onderdele dat skerp rante vervang word met 'n vulstraal of dit kan ook gebeur dat die

rant verweer het of beskadig is. Die algoritme, wat hier beskryf word, kan selfs die

oorspronklike skerp rant in sulke gevalle herkonstrueer.

'n Eenvoudige analitiese model is ontwikkelom die teoretiese akkuraatheid van die

algoritme te bepaal. Die teoretiese akkuraatheid is vergelyk met die akkuraatheid van

rante wat uit puntewolke bepaal is. 'n Reeks eksperimente is op puntwolke gedoen.

Die parameters vir die eksperimente is gekies deur van Eksperimentele Ontwerp

gebruik te maak. Met behulp van hierdie tegniek kon bepaal word watter meet-

parameters die grootste invloed op die akkuraatheid van die gemete punte het. Die

teoretiese en eksperimentele resultate is gebruik om riglyne daar te stel waarmee die

intreeparameters van die algoritme gekies kan word. Met hierdie riglyne is dit

moontlik om 'n rant te vind met 'n akkuraatheid vergelykbaar met die tradisionele

metode om die rante te vind met behulp van NURBS oppervlakte interseksies.

Laastens is die algoritme gekombineer met 'n algoritme wat veegvlakke deur punte

kan pas. Die gemete rante word gebruik as spore en profiele vir die veegvlakke. Die
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tegnieke is gebruik om 'n CAD model van 'n sandkernvorm (vir die giet van 'n

inlaatspruitstuk) te maak.

Deur die riglyne te gebruik om die intreeparameters vir die algoritme te spesifiseer,

kan rante suksesvol uit puntewolke bepaal word. Die maksimum afstand tussen

naburige punte in die puntewolk beperk die gebruik van die algoritme, maar die effek

hiervan is ook vasgevat in die riglyne wat ontwikkel is vir die algoritme.
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Chapter 1.

Introduction

1. 1. What is Reverse Engineering?

Broadly speaking Reverse Engineering is the process of digitising a physical object

and making an electronic copy of it. Normally the electronic copy is used to make a

physical copy of the object. Often, the manufacturing step is not included. In these

instances the electronic copy is only used for record keeping, visualisation or

geometric input for analysis software such as Finite Element Methods or

Computational Fluid Dynamics packages. This thesis is mostly concerned with the

making of the electronic copies. Varady et al., 1997, give a good review of the

Reverse Engineering process and the related technologies.

There is nothing new about making copies of existing objects. However, Reverse

Engineering became a buzzword during the early 1960's (Bidanda and Hosni, 1994).

The increasing availability of Computer-Aided Design (CAD) technology, computer

hardware, Coordinate Measuring Machines (CMM) and Computer Numerically

Controlled (CNC) machining made it cost effective to make copies of objects with

really complex geometry. In 1972 David McMurtry developed and patented the first

touch trigger probe (Anonymous, 2001b). This made highly accurate computer

controlled scanning on standard CNC machines possible.

The Reverse Engineering process starts with digitising the object. Digitising is the

generic term for measuring any number of coordinates on the surface of the object.

Thus, digitising gives a discrete representation of the object. In rare cases this might

be sufficient. The set of coordinates is called a point cloud in Reverse Engineering

jargon. A typical point cloud can contain millions of coordinates. There is a very wide

variety of digitising techniques as will be described in the literature review.

1.1
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Usually some kind of surface representation of the points must be created so that the

object can be visualised on a computer screen and re-manufactured. This can be a

very difficult step. The sheer size of a point cloud can create numerous problems. The

topology of the points is also seldom known. Some heuristic must be used to

determine this. Measuring noise, combining point clouds scanned in different

coordinate systems and identifying surface patches in the point cloud are further

challenges addressed in recent and ongoing research projects. It is with the latter that

this thesis is concerned.

The two most important surface representations in Reverse Engineering are Non-

uniform Rational B-splines (NURBS) and STL (Stereolithography). NURBS curves

and surfaces are used by most of the surface modelling CAD packages on the market

today. Thus, if this format is used, the model can be modified using all surface

modelling capabilities of the CAD package. It can, however, be a rather time

consuming process. Creating a NURBS model normally involves a surface fitting

step. Surface fitting is the process of finding the surface parameters that best represent

the point cloud. STL models are a triangulation of the point cloud. Automatic

triangulation software is commercially available. Unfortunately it is hard to edit these

models and since the triangulation interpolates all the points, noise in the point cloud

must be kept to a minimum. The algorithms developed in this thesis is not aimed at

STLmodelling.

Once a surface representation is available various Computer Aided Manufacturing

(CAM) or Rapid Prototyping (RP) processes can be used to manufacture a copy of the

original object.

The rest of this chapter looks at some interesting applications of Reverse Engineering.

Then a pilot study conducted at the beginning of the project is described. The findings

ofthis study led to the identification of the research needs addressed in this thesis.

1.2. Interesting Applications ofReverse Engineering

A quick glance at the literature reveals many interesting applications of Reverse

Engineering. The die and mould industry is probably the most frequent user of

Reverse Engineering technology in South Africa, as the author's own experience at

1.2
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the Global Competitiveness Centre seem to indicate. The pilot study described in the

following paragraph is an example of this category.

One misconception that must be removed right away is that Reverse Engineering is

only about making copies of someone else's design, similar to making paper copies

on a photocopier. A good example to counter this misconception is the design of a

rear view mirror for an automobile as reported by Puttré (1994). In order to eliminate

vibrations caused by wind on the rear view mirror, the designer experimented with

alternative clay models and tested them in a wind tunnel. The fmal model was

Reverse Engineered in order to create the CAD documentation and manufacture the

production tooling. Similar examples can be found in Chant et al. (1998) and

Chapdelaine (1998).

Reverse Engineering is used for such diverse applications as developing replacement

tiles for NASA's space shuttles (Hosni and Ferreira, 1994; Perreault and Ward, 1999),

the interior design of the F16 fighter aircraft (Perreault and Ward, 1999) and shoe

lasts (Bao et aI., 1994; Danckaerts and Yudhira, 1997; Schneider, 2001). Reverse

engineering the classic teardrop-shaped fuel tank of a Harley-Davidson is a recent

project (Anonymous, 2000). Reverse Engineering is used to manufacture replacement

parts if it carmot be obtained from the original supplier for whatever reason (Metwalli,

et aI., 1999; Hegazi and Metwalli, 1999). The human form is also often reverse

engineered with applications in the garment industry (Au and Yuen, 1999), the

medical profession (e.g. Liu and Ma, 1999), and artistic sculpturing (e.g. lp and

Loftus, 1996).

As can be seen from the above, Reverse Engineering technology is certainly not

limited to the engineering profession. Some of the more imaginative applications are

found in the fields of archaeology and anthropology. Archaeologists use the

technology to scan broken artefacts and then they try to use intelligent software to

connect all the pieces and rebuild the original object, almost like building a puzzle

(D~oluk and Toroslu, 1999). Anthropologists use Reverse Engineering technology to

digitise human remains since they are under increasing pressure to return the remains

to the communities they belong to (puttré, 1994).

1.3
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Perhaps the example that will capture the imagination of most people, especially

mothers and fathers to be, is creating a 3D image of an unborn baby from ultrasound

scans of the baby in the mother's womb (Anonymous, 2001a).

1.3. Pilot Study

The die and mould industry mostly need complete NURBS surface models. Creating

such a model from a point cloud can be a very time conswning process. A pilot study

was undertaken to understand the difficulties inherent in the process and to identify

areas where time savings can be made by implementing intelligent techniques to

speed up the process.

1.3.1. Selection of a Product

A core box was chosen as a typical example of a product in the automotive industry.

It is used to make sand cores for an IC inlet manifold.

Plenum

Pipes

Figure 1 Core Box (Bottom Core Box on the Right).
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1.3.2. Reverse Engineering Facilities

The Global Competitiveness Centre (GeC), at the University of Stellenbosch, uses a

Mitutoyo Bright 710 CMM with a Renishaw PHI0M tactile probe. Scanning and

manipulation of the surface data are done with the METRIS software. Briefly, reverse

engineering is done as follows with the METRIS software. A point cloud is measured

with SURFEYOR. The cloud is manipulated in SHAPID. Then the cloud is

approximated with a base surface. Finally a least squares approximation of the surface

is done to obtain a NURBS surface representing the data.

jil

1iiiiiJii!-

Figure 2 The Mitutoyo CMM at the GCC.

1.3.3. Time Study Results

A complete summary of the time study can be found in Appendix B. It took 44.43

hours to reverse engineer the bottom core box and 32.02 for the top core box. Ibis is

the operator hours. Some of the measuring and modelling operations were done

simultaneously and therefore the total time is not simply the sum of the measuring and

modelling time. A summary of the measuring and modelling time of the two core

boxes is given in Table 1.
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Table 1Summary of Reverse Engineering the Core Box.

Bottom Core Box Top Core Box

Measuring 26.9h 28.4 h

CADModelling 30.8 h 9.1 h

Actual Total 44.43 h 32.02 h

The difference in the modelling time is largely due to the fact that the modelling of

the split plane is included in the time for the bottom core box. The modelling of the

split plane took 12 hours 51 minutes. The learning curve also contributes to the

difference. The reason the split plane took so long is that it was necessary to

accurately define the edges of the split plane. It is best that this process be described

in some detail.

Surfaces were fitted to different point cloud patches, for example the pipe sections,

the plenum chamber or the split plane. There was a gap between these point cloud

patches due to the manual subdivision process. This gap can be fairly large, in this

case a few millimetres, due to such factors as the roughness of the scan or

irregularities near the edge. The edges were then found by extending the surfaces and

finding their intersections. Extending NURBS surfaces can cause some very erratic

behaviour of the surface as shown in the figure below. Considerable time goes into

trying to reduce the gap to improve the result of the surface extension. This figure

shows a surface on the right and its extension on the left. It was extended using

AutoCAD (2000). The extension is done over a longer than normal distance to

highlight the problem of surface extensions. Note the waviness that appears, and

increases, towards the end of the extension.
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Figure 3 Surface Extension.

Since the two parts are largely similar, many of the modelling difficulties were sorted

out while modelling the bottom core box. It was more difficult to model the plenum

chamber on the bottom core box due to the deep hole and the flat surface at the

bottom of the chamber. It took 5 hours 54 minutes to model the plenum on the bottom

core box and only 43 minutes for the plenum part on the top core box. It must be

stated that a complete, machine ready, CAD model was not generated.

Figure 4 CAD Drawing of the Reverse Engineered Core Box.
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1.3.4. Conclusions

The first question to ask is whether the time study results are representative of

industry practice. The core box was also reverse engineered by a South African

toolmaker. They also have a CMM with a touch trigger probe and reverse engineered

the core box to about the same level of detail as was done at the GeC. The toolmaker

reported a total time 52 hours (measuring and modelling) for the bottom core box and

34.5 hours for the top core box. This reflected the same trend as the result of the GeC

time study.

The times are also of the same order of magnitude. Two time studies are also reported

in the literature, but it is hard to compare the results from literature with this time

study. So many factors influence the result, such as the level of detail of the

modelling, experience of the designers and CMM operators, the software used,

number of free-form surfaces, etc. Milroy et al. (1996) report the reverse engineering

of a water timer housing consisting of 12 surface patches. The total modelling time

reported is 12 hours, Le. 1 hour per patch. They did a complete CSG (Constructive

Solid Geometry) model from the point cloud. Rolls et al. (1999) report the reverse

engineering of an automotive bracket consisting of 77 surfaces patches. The total

modelling time is 38 hours, i.e. almost 30 minutes per patch. The core box reverse

engineered by the GeC has 176 surface patches and took 39.9 hours to model, i.e.

almost 15 minutes per patch. Clearly the GeC times are by far the fastest, but too

much should not be read into this. As already stated there are so many factors that

playa role in the total modelling time, it is just not fair to blindly compare the time

study results. It does, however, seem that the times reported in the pilot study is

comparable with the findings of other researchers.

Obviously big improvements can be made in the scanning time. The CMM with a

touch trigger tactile probe is possibly the slowest method of scanning an object.

However, the scanning time is not addressed in this thesis since there are many

devices, such as laser scanners that can do the job much faster.

The difficulties with modelling the split plane are clearly illustrated in the time study

results. As it is shown, the problem is related to finding the intersection between the
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split plane and the neighbouring surfaces. An edge detection function will be very

useful in these cases.

Another important point to note is that a lot of the design intent is lost in the Reverse

Engineering process. Surfaces that were originally modelled as swept surfaces,

extrusions, etc. are now all NURBS surfaces. It is therefore rather difficult to make

changes to the design if that is required.

1.4. Research Objectives and Motivation

The main objective of this project is to address the need for an accurate tool that can

be used to detect edges in an unstructured point cloud. It cannot be expected that the

tool must conjure an edge that is more accurate than the accuracy of the points in the

point cloud. Therefore, the goal is to develop a tool that can detect an edge with an

accuracy of the same order of magnitude as the accuracy of the points in the point

cloud. Of course, the tool must also be easy to use and it must give results quickly.

The detected edges can be used in the modelling of swept surfaces. Integration of the

edge scanning algorithm with a swept surface approximation algorithm is presented

and demonstrated in a case study.

1.5. Thesis Outline

Since improving the Reverse Engineering time is one of the main themes of this work,

the literature review will look at the different scanning methods. Naturally, it will also

look at what other authors did about the edge detection problem.

Chapters 3, 4 and 5 are the main body of this thesis. They describe the edge detection

algorithm. Chapter 3 describes a virtual CMM that is used to "scan" the edge. Chapter

4 describes the various aspects of the algorithm and Chapter 5 describes the analysis

of the method.

Various aspects of NURBS surface construction related to Reverse Engineering are

discussed in Chapter 6. The chapter discusses NURBS surface fitting, surface

extensions, the calculation of NURBS surface intersections and finally the sweep
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surface fitting algorithm that is combined with the edge detection algorithm is also

described.

All the tools described in chapters 3 to 6 are combined in a simple computer program.

This is discussed in Chapter 7. Another case study is used to illustrate the practical

use of the tools.

The thesis ends with the usual conclusions.
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Chapter 2.

Literature Review

2. 1. Introduction

The purpose of this chapter is not to give an in depth account of the various edge

detection methods, but rather to introduce the alternative approaches. It is to raise the

different issues involved in edge detection. In the process a survey of the published

methods is done. In order to appreciate the intricacies of the proposed method, it is

necessary to understand the nature of the data used by edge detection algorithms.

Therefore a brief description of some of the most important digitising techniques is

given.

2.2. Digitising Techniques

Various techniques have been developed to sample points on the surface of physical

objects. On one end of the spectrum there are techniques that sample one view of an

object almost instantaneously. The other end of the spectrum is characterised by

techniques that laboriously sample one point at a time. The latter must be combined

with a scanning strategy that will guide the digitiser/probe over the entire unknown

surface. The scanning methods are normally classified as either contact scanners or

non-contact scanners. (Várady et al. (1997) and Rolls et al. (1999) present brief, but

comprehensive, reviews of digitising techniques.)

2.2.1. Point Scanners

Point scanners are probably the most important digitising devices for Reverse

Engineering because of their versatility and accuracy. Unfortunately, the advantages

often come at the expense of speed and cost. Tactile and laser probes belong to this

family. All these probes are held in a CMM (Coordinate Measuring Machine). A

CMM can take the form of either the traditional gantry system or an articulated arm.
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2.2.1.1. Laser Point Probe

Laser point scanners, such as the Hyscan 45C, measure the range by observing the

reflection of a laser spot on the object surface. This is schematically illustrated in the

figure below. The laser beam is focussed on the object surface and the range is

determined by the angular position of the rotating, two-sided mirror and the location

of the imaged spot on the photosensitive array (Milroy et al. 1996). Ruther and

Craigie (1998) developed an alternative laser based system at the University of Cape

Town. Their system uses three CCD cameras to determine the position of the laser

spot on the object's surface. Their system's accuracy is O.2mm compared to the

reported accuracy of O.lmm by Milroy et al. (1996). Yau et al. (2000) use two CCD

cameras to locate the laser spot.

Linear Photosensitive

Collecting Lens i Arrayc===:::...

Beam

Laser 2-sided,/
Source Mirror /,,,,,,

/ Diffusely
/ Reflected,

" Beam,,,,,,,
r,,

Figure 1 3D Range Sensing (Milroy et al. 1996).

The accuracy of systems such as Milroy's, depend on the focal length, i.e. the distance

from the probe to the object's surface. They report an accuracy ofO.lmm at 100mm.

Reported accuracies range from 0.05mm to 0.254mm for focal lengths from 40mm to

120mm (Hosni and Ferreira, 1994; Milroy et aI., 1996 and Ebenstein at aI., 1999). The

focal length restricts the depth of holes that can be measured.
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Ebenstein et al. (1999) argue that even though points scanned with a laser scanner

sometimes have high noise values, high accuracy results can still be obtained because

the noisy points can be filtered out. They suggest that after an initial entity

approximation, points having residuals of more than 2.4 standard deviations must be

discarded. With their procedure they were able to measure spheres to within 0.02mm.

Of course, this can only be done if the noise is Guassian. They also show that points

scanned on a sphere with a laser scanner have larger errors near the North Pole (due to

specular reflection) and the equator (due to too little diffuse reflection). Smith and

Zheng (1998) analysed the nature of these errors in detail. While the assertion of

Ebenstein et al. (1999) is valid if primitive analytic surfaces are scanned, such a

method can produce incorrect results if a NURBS surface is fitted to the data. NURBS

surfaces adapts itself to the local nature of the point cloud during the fitting process.

Therefore NURBS surfaces will approximate any structured error.

It is often necessary to reorientate parts during scanning in order to capture the entire

object. Most laser point scanners are not truly 3D, but in fact only 2.5D. There is a

time and risk penalty with every reorienation. It can also be very difficult to integrate

the point clouds if accurate reference points cannot be measured, a problem that led

Yau et al. (2000) to investigate the registration of multiple point clouds. If a point

cloud has any structure, it is lost through such reorientations. Milroy et al. (1996)

discuss the scanning of a water timer housing requiring scanning from five views.

They scanned 220000 points at a rate of 2000 points per second, yet it took 90

minutes to complete the scanning. It clearly shows that more time on a laser point

scanner can be spent at set up and reorienation than at the actual scanning.

As the angle between the surface normal and the laser beam, the incidence angle,

becomes smaller, the diffuse reflection of the beam becomes weaker. Ebenstein et al.

(1999) show that the errors increase under these conditions. This means that even if

the entire object can be viewed in one view, it may be necessary to reorientate the part

to scan surface areas where the angle of incidence is high. Laser scanners cannot

measure vertical walls. It is necessary to reorientate the object to measure these

surfaces. Scanning regions close to vertical walls can also be difficult, because the

wall obscures the reflection of the laser beam.
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2.2.1.2. Tactile Probes

Due to the high accuracy achievable with tactile probes, and their versatility, tactile

probes are used very often in coordinate metrology and Reverse Engineering.

Accuracies of O.OOlmm and lower are reported (Weckenmann and Knauer, 1998).

With a rotateable probe, occluded regions can be measured and it is not sensitive to

the inclination angle, such as is the case with laser probes. Deeper holes can also be

measured than with laser probes (Puttré, 1994). They are also insensitive to surface

effects such as colour and texture. Of course, the object must be able to withstand the

contact force exerted by the tactile probe. This eliminates soft clay models from being

measured with tactile probes.

Puttré (1994) reports that tactile probes can be significantly cheaper than laser probes,

although it is very hard to compare the cost of the probes, since it depends on so many

aspects.

The smallest feature that can be measured with a tactile probe is primarily limited by

the size of the probe ball. Another consideration is the method of placing the probe.

With manual placing, as is the case with articulated arms, the smallest feature that can

effectively be measured is O.8mm (Raab, 1994).

Most tactile probes work like an electrical switch. It rests on three, or more, contact

points. As soon as the probe ball makes contact with the object, the probe, which is

held down with a spring, deflects and at least one contact is broken. As soon as the

probe deflects the CMM will stop. This leads to a unique source of error, the probe

lobing error (Shen and Springer, 1998). The force needed to lift the probe off a

contact depends on the direction in which the probe is moving. This causes a

directional error. The deflection of the probe stem may also be a source of error.

However, compared to laser scanners, the errors of tactile probes are well understood

and very predictable. It depends mostly on the probe and CMM itself and not on the

characteristics of the object, such is the case with laser scanners.

Tactile probes of the touch trigger variety are very slow. It seems to be seldom used

for complete surface scans. If used for scanning, the point cloud is as sparse as

possible for economic reasons. Analogue probes are much faster, though not as fast as

laser scanners, but this comes with an accuracy penalty. (The Renishaw Cyclone used
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here is accurate within 0.05mm.) Much denser sampling is possible at a fraction of the

cost of scanning with a touch trigger probe.

The measured points must be compensated with the probe radius. This can be a source

of error and difficulty, especially if the points are randomly distributed.

2.2.1.3. Digitising Techniques

Bradley and Chan (2001) argue that digitising time is one of the most important

limitations in Reverse Engineering. Surface scanning strategies have automated the

process, but often sampling still happens at about one second per point. This is not

satisfactory .

Regular grid strategies, either Cartesian or polar, are most often used to digitise

surfaces with point scanners. Danckaerts and Yudhira (1997) developed such a

strategy for a laser scanner. They stated that at the time of their publication, surface

scanning strategies were very rare in commercial software. The biggest challenge to

developing such a strategy is to safely steer the probe over the unknown topology of

the surface using only the already measured points to prevent a collision

(unintentional contact) between the probe and the object.

It is important to select a strategy that covers all the features of the surface with

sufficient points in the minimum time. This consideration led Janssens (1998) to

develop a curvature based scanning strategy. After an initial grid scan the points are

triangulated and curvatures are approximated with height deviations. In regions of

high curvature, more points are measured until the density is sufficient.

Song and Kim (1997) developed a similar strategy. They also measure an initial grid

and then refine it based on curvature until sufficient density is obtained. They

calculate the centroid of each triangle and then try to measure it. If the deviation from

the expected point is more than a specified tolerance, the refinement will continue.

Janssens (1998) does not measure the centroid, but rather measures a point in the

middle of each side of the triangle and he then calculates the deviation from the

expected points to check if the refinement must continue. Janssens (1998) also checks

the length of the sides of the triangles. An additional tolerance is specified for the

length of the triangles' sides. It seems that the two strategies were developed
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independently at about the same time. No comparative study was found in the

literature. Itmight seem that by measuring three points on each triangle instead of just

one in the middle that Janssens's method is less efficient, but this thorough

measurement seems to make it more robust under local surface conditions, see Kruth,

et al. (1997). It may also converge faster. Song and Kim (1997) do not provide a

similarly thorough analysis of their method's robustness.

Chen and Lin (1997) also developed a curvature based method such as the two

described above. However, they start directly to refme the triangular mesh after

measuring a boundary. No initial grid scan is done. They use a rough bi-cubic B-

spline surface approximation to determine the scanning path and estimates of the next

points. As Song and Kim (1997) they also measure the geometric centre of the

triangular patches. Yau (1997) also use a B-spline surface approximation to determine

the scanning path. He starts with a grid and refmes the surface approximation with

new scanned points until the approximation is within the desired limits.

Both these methods provide a very thorough scan of a free-form surface. It can also be

a very economical scanning method. Timesavings are made by measuring fewer

points in reasonably flat areas. The CMM is then free to spend more time refining

intricate parts of the surface. It must be noted that point clouds scanned in this manner

are no longer structured in regular grids.

In some instances the CMM may spend too much time refining insignificant detail.

These surface patches will be cut from the point cloud after measuring and NURBS

surface approximation. For example, fillet radii can be added in the CAD software,

without doing another time-consuming surface fit. In such cases it is unnecessary that

so much time is spent on refining a fillet radius. The same is true for sharp edges.

2.2.2. Line Scanners

For surface scans, Bradley and Chan (2001) feel that laser line scanners are the best

compromise between speed and accuracy.

Rather than sampling one point at a time such as laser point scanners discussed

earlier, laser line scanners samples a line of points at once. A laser line is projected

onto the surface. This line moves a few times up and down the surface, rather like a
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paintbrush, until the entire surface is covered with points. This makes laser line

scanners a few orders of magnitude faster than point scanners.

Accuracy is not sacrificed in the process. Bradley and Chan (2001) report accuracies

similar to laser point scanners (±0.025mm over a 40mm depth offield).

Line scanners work on the same principles as a laser point scanner. Therefore the

same limitations and advantages apply as already discussed for laser point scanners.

2.2.3. Machine Vision Techniques

There are a number of digiti sing techniques that can be described under the generic

heading of Machine Vision. These techniques all take one, or more, image of an

object and use some method of assigning depth information to each pixel in the

image. These techniques are fast and often do not require expensive sensors.

2.2.3.1. Automatic Analysis of Silhouette Images

Huang and Motavalli (1994) mounted an object on a light table on a CNC machine

bed. A CDD (Charge Coupled Device) camera is secured in the tool holder of the

CNC machine. As the object traverses below the camera it takes small pictures

(50x50mm) of the object. The back lighting of the light table provides a good contrast

between the object and the environment. This is used to automatically find the profile

of the object. The reported accuracy is 0.254mm.

Armstrong and Adonis (2000) extended the idea to three dimensions. They mounted

the CCD camera on a gantry system so that it can accurately rotate around the object.

Any number of images of the object can then be taken. Each image provides a

boundary profile of the object. Using the principle of occlusion, the boundaries are

combined to obtain a 3D image of the object. Obviously it is not possible to measure

doubly concave surfaces in this way. They report an accuracy of 0.05mm.

2.2.3.2. Shape from Shading

Shape from Shading receives frequent attention m the literature. With standard

photographic equipment and a PC, very good reproductions of physical objects can be
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made. Shape form Shading is basically the reverse of the rendering algorithms used in

CAD software.

lp and Loftus (1996) tried the lighting models of Lambert and Phong to determine the

local surface normal at every point in the image. The surface normal vectors are then

integrated to determine the depth of every pixel. They mention that the main problem

with the method is that accurate illumination parameters are needed for every type of

material and light source. There are quite a few parameters that must be determined.

They used a trial and error method to fmd good values for these parameters. Their

investigation shows that there is a visible discrepancy between the original object and

the reverse engineered object. Peng and Loftus (1998a) report accuracy results when

using the Phong model. The average error varied from 2.13% to 6.31% for the case

studies they report. They aimed for a good machining dimensional tolerance of less

than 0.3%.

lp and Hou (1999) describe the reverse engineering of a computer mouse using

Phong's illumination model. The average error is 2.l5mm, which they grant is a bit

high. They ascribe the error to ambient light effects.

Peng and Loftus (1998b and 2001) found better results with a modified Torrance-

Sparrow illumination model. Their main contribution is that they use a neural network

to obtain the illumination parameters. The neural network uses an object of known

geometry, e.g. a sphere, to determine the illumination parameters of the material and

light sources.

2.2.3.3. CT Scanning

Menon et al. (1997) and Liu and Ma (1999) use ultrasonic scanning to digitise an

object. This process is often referred to as CT scanning, i.e. Computer Tomography.

Tomography refers to the cross sectional slices that are obtained during ultrasonic or

X-ray scanning. It is possible to scan internal geometry in this way. However, the

result is not very accurate. It suffers from speckle noise generated by the ultrasonic

scans. Nonetheless, the method has important bio-medical applications. Liu and Ma

(1999) state that medical CT scanners have an accuracy in the order of a few tenths of

a millimetre. They further claim that there are industrial CT scanners with accuracies

that can compete with CMMs and laser scanners.
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2.2.3.4. Moiré Contours

Moiré methods are very old, first described in 1948 according to Del Taglia et al.

(1995). Simply put, a fringe pattern is projected on an object and the depth

information is obtained by counting the light and dark fringes. Del Taglia et al. (1995)

used a laser beam to generate the fringe pattern and a CCD camera to capture the

image. All the equipment is standard, off the shelf equipment. This is maybe why the

accuracy is only O.lmm. Problems with automatic fringe analysis and poor fringe

resolution also contribute to the error. It is further important to note that the Moiré

method works best if the surface has a white matt finish. Wykes and Morshedizadeh

(1995) improved the accuracy to ±O.Olmm.They decreased the noise in the fringe

projection system by using better equipment.

The Moiré method, as in fact all the Machine Vision methods, suffer from the

problem of integrating multiple scans. Jun et al. (2001) addresses the problem by

minimising the square of the distance between point pairs. This is done at the loss of

the grid structure of the point cloud.

Bradley and Chan (2001) point out that there are often height discontinuities in the

scanned image, because one or more fringes may be hidden making the fringe

analysis difficult.

Another problem of this, and some other Machine Vision methods, is that of uniform

density. If measurements from only one view are taken, the density of the point cloud

varies with the angle between the local surface normal and the line of sight. These

techniques are analogues to projecting a regular grid of points onto a surface. In areas

where there is a large angle between the surface normal and the line of sight, or

projection direction, the density will be very low.

2.2.3.5. Photogrammetry

The intersection of rays can be used to determine depth values for stereo images. Only

two images are needed to measure one view of an object. However, the initial camera

calibration will require several redundant images. After this is done, the calibration

only needs to be updated periodically. The digitisation of the object can then continue

with only two images from different camera angles. Initial user interaction is required
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to define reference points in the images. Some tie points will also have to be measured

with some other device (e.g. a CMM) to provide scale and referencing with respect to

the coordinate system (Bonitz and Krzystek, 1997).

2.2.4. Hybrid Scanning Techniques

Speed, accuracy and cost are the important efficiency metries used when comparing

digiti sing techniques for reverse engineering. None of the above mentioned methods

is a clear winner in all three aspects. The CMM with a touch trigger probe is by far

the most accurate, but speed and cost are sacrificed. All the rest are attempts at faster

scans, but this is achieved at the cost of accuracy. A number of researchers tried to

avoid this seemingly inevitable compromise by using a hybrid scanning method. They

normally do a rough scan with one of the faster techniques and then a CMM is used to

take critical measurements.

Suzuki and Aoyama (1997) used a CCD camera to take three orthographic views of

an object. This is used to create a rough model of the object. Once the geometry is

known, the CMM scanning path can be optimised. There are quite a few studies on

finding optimum scanning (or rather inspection) paths for an object of known

geometry, for example those reported by Kim and Kim (1996), ElKott et al. (1999)

and Lin and Chen (2001). The method of Suzuki and Aoyama (1997) will run into

trouble with geometry that is hidden in all three orthographic views. Motavalli et al.

(1998) try to improve the situation by taking five orthographic views. Still, doubly

concave surface patches may create problems. Chan et al. (2001) solve this problem

by taking stereo images with a CCD camera and thus creating real 3D images of the

object. They also do not limit the number of views of the object. A very good 3D

model of the object is then used for the CMM inspection path planning. Deep holes,

causing shadow effects, are the only features that may not be detectable with the CCD

camera. Any other part of the object that is still not detected with the CCD camera

will in all likelihood not be measurable with a CMM.

Combining the scans from different devices may be a problem unless each device can

measure accurate reference points. Often this is not possible because the accuracies of

the two systems can differ by one or two orders of magnitude, e.g. a CMM and any of

the Machine Vision techniques. Rolls et al. (1999) investigated the problem of
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combining CMM data with laser scanned data. Although the two systems complement

each other well in terms of accuracy and speed, there is a loss of accuracy as soon as

the data sets are combined. In other words, the whole point of augmenting the

accuracy with CMM data is lost. They tried using reference spheres to determine the

transformation matrices, but found that the sphere fitting results from laser scanned

data often is not accurate enough. A least squares approach such as presented by Jun

et al. (2001) may address the problem.

Bradley and Chan (2001) use a laser line scanner to do a surface scan. A CMM, in

manual operating mode, is used to digitise the boundaries of the surfaces patches.

Their approach is aimed at fast and accurate segmentation of point clouds.

2.3. The Case for Edge Detection

There is a lively debate about edge detection in the research community. Researchers

in the fields of Reverse Engineering and also Machine Vision are the principle

participants. The debate revolves around whether a face-based or edge-based

(explained in the following paragraph) technique should be used to segment a point

cloud. There is a strong case for both methods. The fact that as yet there is no clear

winner in this debate is probably due to the fact that nobody was able to present a

segmentation technique that can solve all the problems the research community are

faced with. In the following paragraphs the difference between edge-based and face-

based methods is described and then the main arguments of the debate are presented.

2.3.1. Edge-based and Face-based Edge Detection

Várady et al. (1997) classified edge detection methods in two basic categories: edge-

based methods and face-based methods. Many researchers use this distinction.

Researchers that follow an edge-based approach segment a point cloud by first finding

the patch boundaries and then all the internal points that belong to the patch are

selected.

The face-based approach is basically the inverse of the edge-based approach. All the

points that belong to a patch are selected. Some surface definition is then assigned to
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the patch, e.g. plane, cylinder or B-spline. The patch boundaries are then the

intersections of these surfaces.

2.3.2. Amount of Information Used in Segmentation

Point clouds are only a discrete representation of the geometry of an object. It has no

topology. It seems obvious under these circumstances that all the points must be used

so that the best possible definition of the edge can be found. Yet, Várady et al. (1997)

point out that with the edge-based approach the cloud is segmented by only using the

edge points. The problem remains to fmd the points that belong to a patch once the

edge is known. Since the point cloud does not have any topology, there is no clear cut

way of knowing which points lie "inside" the boundary. Proponents of the edge-based

approach, e.g. Milroy et al. (1997), circumvent the problem by constructing a wire

frame model of the cloud, thus assigning topology to the points, before they do the

segmentation. This is a good solution provided that a unique wire frame can be

constructed. However, constructing a wire frame, or doing a triangulation of the point

cloud, is a very complex problem as the recent literature on the matter indicates

(Hoppe, et aL, 1992; Edelsbrunner and Mtïcke, 1994; Choi, et al., 1998;Bernardini, et

aL, 1999and Wang and Chen, 1999).

2.3.3. Face-based Methods Yield Edge and Surface Definition

Várady et al. (1997) and Besl and Jain (1988), both advocates of the face-based

approach, argue that face-based methods do not only provide the edge information,

but they simultaneously give the surface defmition of the patch. The surface definition

and edge definition are closely linked. This is a good approach if the correct surface

model is used. For example, the way to fmd the intersection between a cylinder and a

plane is first to fit the entities and then calculate their intersections. A smooth edge,

consistent with the rest of the model is obtained. On the other hand, an edge-based

method may yield a rather erratic edge that is not consistent with the definition of the

plane or cylinder.

However, Várady et al. (1997) and Peng and Loftus (l998a) point out that this

approach forces a specific surface model on the object that is not necessarily

appropriate. Furthermore, most face-based methods work only with simple algebraic
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surface models, e.g. cylinders, planes, quadratic polynomial surfaces, etc. It is simply

impractical to allow any surface model for the segmentation. However, many

engineering surfaces require a much more complex surface definition than one of the

above mentioned. Várady et al. (1997) actually argue for the use of face-based

methods if the surface definition is known to be one of the simple algebraic surfaces,

but their opinion is that a combination of face-based and edge-based techniques are

better if there are free-from surfaces in the point cloud. They point out that blindly

applying a face-based method means that the surface representation, albeit accurate,

may not be functional from an engineering point of view.

2.3.4. Face-based Methods do notWork for Free-form Surfaces

Quite a number of researchers argue that face-based methods do not work well for

free-form surfaces. Members of this camp are Fan et al. (1987), Várady et al. (1997),

Milroyet al. (1997), Fitzgibbon et al. (1997), Horváth and Vergeest (1998) and Yang

and Lee (1999). Most face-based methods use a region growing strategy to find the

surface that represents the object. Fitzgibbon et al. (1997) argue that region growing

strategies often do not work well for free-form surfaces. They propose a hybrid

method. First they do a rough edge-based segmentation based on curvature estimates

for each point. Then the patches are approximated with surfaces and, where

applicable, the surfaces are merged.

Fan et al. (1987) say that region growing methods require very complex control

algorithms. Normally some statistical goodness-of-fit testing is done to decide

whether or not to include a point in the patch. The algorithm must also know when to

stop growing. Variable order growing strategies such as those of Besl and Jain (1988)

and Taubin (1991) also have to determine the order of the surface patch. Not only are

the control algorithms very complex, but it also is very difficult to determine the

control parameters. The parameters normally are tolerances that are used in the

statistical testing. Park and Yun (2001), doing a rough edge-based segmentation based

on curvatures estimates, have the same difficulty. They say that it is mainly a problem

of finding control parameters that work for the general case. Good parameters for one

example may not be applicable in another case.
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Besl and Jain (1988) disagree with this view. They say that their method works fine

for free-form surfaces. It must be noted, however, that an algebraic polynomial

surface, of no more than degree four, is used to represent free-form surfaces in their

case.

2.3.5. Computation Time

Computation time is a highly contentious issue with representatives of both sides of

the divide arguing that the other approach is computationally more time consuming.

See for example Bradley and Chan (2001) who argue against edge-based methods and

Peng and Loftus (1998a) who argue against face-based methods, both on the same

ground. Actually this is a futile argument since computation times reported in the

literature are first of all hard to compare, because it is so hardware dependent. It is

also a function of how optimised the code is. Further, it depends on the details of the

specific method.

2.3.6. Edge-based Specific Problems

The edge based methods reported in the literature (Chen and Liu (1997), Horváth and

Vergeest (1998), Liu and Ma (1999) and Yang and Lee (1999» often use gradient or

curvature estimates to segment the point cloud. Some method is used to estimate a

gradient, or curvature, for each point in the cloud and then the points of gradient, or

curvature, extrema are labelled as edge points. Trucco and Fisher (1995), Várady et

al. (1997), Liu and Ma (1999) and Yang and Lee (1999) all point out that curvature

estimates calculated directly from the raw data are highly noise sensitive. Várady et

al. (1997) say that near the edges the effect is even worse due to sensor effects,

especially if the data is scanned with a laser scanner. Liu and Ma (1999) further say

that the curvature estimations of discrete data depend on the specific formula used and

they thus raise the question whether it is at all possible to have a unique solution. The

problems of finding good curvature estimates also make it very difficult to find

smooth edges. Furthermore, Fitzgibbon et al. (1997) point out that it often leads to

very erratic edges.

A further problem of some edge-based techniques is connecting the edge points if the

segmentation is done in the manner described above. Milroy et al. (1997) used an
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active contour, which behaves in the manner of an expanding snake moving over the

point cloud, to connect the edge points. Yang and Lee (1999) use a special edge-

neighbourhood chain-coding algorithm to do the same.

Park and Jun (2000) argue against edge-based methods because of the amount of user

interaction required in most reported methods. However, their attempt at an automatic

segmentation method is only designed for primitive analytic surfaces.

2.3.7. Summary

What then must be learned from this debate?

The debate describes the nature of the problem of point cloud segmentation very well.

The problems and pitfalls are well highlighted. It is, however, hard to determine a real

winner of the contest.

Maybe Várady et al. (1997) have the most balanced view in this author's opinion. As

already stated, they argue that face-based methods work really well if the surface

model is known beforehand as is the case with primitive analytic surfaces. They state

that for Reverse Engineering it might be necessary to capture the design intent of the

object and in this case, blindly applying a face-based method is wrong. They argue

that both methods must be available in a good Reverse Engineering system.

2.4. Edge Detection in Reverse Engineering

There is a vast number of segmentation methods coming from the Machine Vision

community, some of which have been referred to in the previous section. However,

the nature of point clouds in the field of Machine Vision is such that they are normally

in a regular grid and that they are intersected only once by the line of vision. These

are rather severe simplifying assumptions for Reverse Engineering where the point

clouds are often unstructured (structured clouds are often combined resulting in an

unstructured cloud) and the clouds often defme a closed volume of complex

geometry. Therefore Chen and Liu (1997) and Bradley and Chan (2001) advocate

methods specially developed for the Reverse Engineering community. In this section

some of the attempts at segmentation and edge detection in Reverse Engineering are

presented.
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2.4.1. Face-based Methods for Reverse Engineering

In the previous paragraph arguments are presented against the use of face-based

segmentation methods for free-form surfaces. In practice, it seems that most

successful systems do use a face-based method. Most practical systems follow the

approach of the SURFEYOR system reported by Kruth et al. (1997) and Janssens

(1998). In this system the user must cut the point cloud using the computer's mouse.

This is done after the point cloud is triangulated. Other researchers using this

approach are Sinha and Seneviratne (1996), Zhao et al. (1997) and Motavalli et al.

(1998). After the cloud is segmented, B-spline (or NURBS) surfaces are normally

fitted to the patches. The surfaces are then extended and trimmed if a sharp edge is

required, or joined smoothly otherwise.

It is simply not possible to accurately cut a point cloud manually on a computer

screen by picking points with the mouse. The practice is that the designer cuts the

cloud on the inside of the patch boundary to ensure that no points of another patch are

included. This leaves a gap between the patches, which must be bridged by extending

the surfaces. As explained in the introduction, this can be a considerable source of

error (and frustration for the designer). This method is also very time consuming and

sometimes leads to a long trial and error cycle. However, it is computationally robust

and it works!

In their discussion of the problem, Chiang and Chen (1999) suggest that a system

should be developed that can update the surface locally in the boundary region after

the manual segmentation. Local updating of B-spline surfaces is a topic addressed by

Ma and He (1998). It is possible to update the surface definition of the boundary

region with a refitting procedure without having to recalculate the interior region.

Remeasuring the boundary region seems like a good idea, but it would be very

difficult to decide whether to include points measured very close to the boundary.

Wrong inclusion will distort the surface definition.

Fitzgibbon et al. (1997) first do a rough edge-based segmentation using mean and

Gaussian curvatures and then they use a face-based region growing method. Provided

that the algorithm operates robustly, this method will include more points belonging

to the surface patch. This means that there will be no gaps between the surfaces. An
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unspecified Machine Vision system is used in their case study. Bearing this in mind,

the reported average accuracy of the surface fits of between O.2mmand 0.32mm is

perhaps not bad. However, only planar and quadric surfaces are used. Their system

operates automatically; therefore the system decides whether to fit quadric or planer

surfaces to the data. This algorithm is definitely much more difficult to control if

higher order or more complex surfaces such as B-spline surfaces are used. It also has

already been mentioned that such an approach does not necessarily lead to a

segmentation that captures the design intent of the part, neither will the surfaces

necessarily be functional from an engineering point of view.

A number of researchers have proposed a face-based region growing approach to fit

primitive analytic surfaces (e.g. planes, cylinders and spheres) to the data (Thomson

et al. 1999, Park and Jun, 2000 and 2001 and Goussard and Basson, 2001). Provided

that these methods allow the designer to control the type of surface that is fitted, this

technique is very useful. It leads to functional engineering surfaces and the designer

can embody the surface defmition in the design intent. However, it is necessary that

developers of these methods must give the designers good guidelines to help them

specify the control parameters necessary to fit the entities. The algorithm of Goussard

and Basson (2001) requires three different tolerances. A user that does not know the

intricacies of their method will be at a loss to understand the meaning and

implications of these parameters, let alone trying to specify intelligent values. In his

thesis, Goussard (2001) provides guidelines on choosing the tolerances.

Vergeest et al. (2000) extended these ideas in their feature based reverse engineering

system to extrusions and swept surfaces. They argue that the designer should

determine the feature type that must be extracted from the cloud.

2.4.2. Edge-based Methods for Reverse Engineering

Proponents of the edge-based approach in Reverse Engineering frequently stress the

importance of having edge information in an environment where free-form surfaces

are the order of the day. Horváth and Vergeest (1998) go so far as to propose a

Natural Shape Representation (N-rep), as against a Boundary Representation (B-rep).

Their philosophy is that the designer should start with modelling the edges and then

continue to fill in the surfaces. They propose a method to segment a regular grid point
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cloud essentially using the 2D gradients and curvatures to find Cl and C2 singularities.

Of course, the regular grid is an important impediment. They report no results on the

accuracy and robustness against noise. It must be noted that they only use their system

to propose hints for the segmentation. It is to be assumed that the user will ultimately

accept or reject the proposed edge points. Sarkar and Menq (1991a), Seiler et al.

(1996), Chen and Liu (1997) and Liu and Ma (1999) use the same concept, also for

regular grids, but their implementations differ considerably in the detail. Yang and

Lee (1999) used 3D curvatures, but they still require points in a regular grid in order

to calculate the curvatures. Motavalli and Bidanda (1994) used this idea to segment

the profile curve of a rotational part into lines and arcs.

All these gradient and curvature based methods have problems when segmenting

objects consisting of free-form surfaces. For example, the curvature of a cubic

NURBS surface changes continuously. For such objects it is very difficult to specify

good threshold values for the segmentation.

Milroyet al. (1997) use 3D curvature to segment an unorganised point cloud. They

construct a wire frame model (note, not a triangulation) of the point cloud to establish

the topology and then calculate the curvatures. They use an active contour to identify

and join the true edge points. Flexural stiffness and an inflation force must be

assigned to the active contour and a seed point must be specified. A gravity force

proportional to the principle curvature is assigned to the initial edge points. The

energy of the active contour is then minimised to expand it. From the discussion of

the case studies they did it is clear that false edge points can impede the expansion of

the active contour. High signal to noise ratios in the data is therefore a problem, but

this is probably always a problem. The point is that spurious points can cause

incorrect edge detections. They also describe the difficulty of assigning appropriate

flexural stiffness and inflation force values. Furthermore, it seems that these values

are geometry dependent. A proper guideline is needed.

From the same research group comes a very novel approach. Bradley and Chan

(2001) propose a sensor based approach. Realising the difficulties of manual

segmentation on the computer screen and the above mentioned methods, they

manually measure the patch boundaries with a CMM. These boundary points are then

used to construct a rough surface, e.g. a Coons patch. All points in the cloud that can
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be projected unto this surface and those that lie within a user specified tolerance

belongs to the patch. For complex surfaces it might be necessary to use some curves

across the interior of the patch so that a Gordon surface can be constructed. They

claim, without evidence, that the manual scanning of the boundaries is just as fast as

doing a manual segmentation on the computer screen. Furthermore, they claim that

the edge points will be more accurate because they are measured with a very accurate

CMM. This is, however, subject to how accurate the CMM operator can place the

probe ball on the edge. Raab (1994), for example, states that the smallest feature a

user can measure with an articulated arm is 0.762mm (O.03inches).Granted, placing

an articulated arm is not the same as guiding a CMM, but one wonders whether there

will be a big difference in the result, since in both cases the user has only his eyes to

determine the position of the probe. Chiang and Chen (1999) also agree that

measuring an edge with a CMM is a very great difficulty. Bradley and Chan (2001)

give no information on how to compensate the measured edge points with the probe

radius. If the points lie in a plane this is not too difficult, but how do they treat an

arbitrary edge in 3D? In the last case the compensation will definitely be a source of

error, possibly significantly larger than the measuring error.

2.5. Recommendation

The pilot study done in the beginning of this project, and reported in Chapter 1,

highlighted the need for a robust edge detection method. A number of useful methods

are proposed in the literature, but they all have important limitations or are only

applicable for specific purposes. There is clearly a need for a computationally robust

method in the field of Reverse Engineering. Simplicity and efficiency are also

important practical requirements. Any automatic method must not only detect edges

based on the geometry, but somehow it must also capture the design intent. This is a

topic of much research in the field of feature recognition. It does not seem that a

generally applicable method will be found soon. This rules out completely automating

the process.

Another shortcoming in the literature is that very few researchers report the accuracy

of their proposed methods. A thorough investigation of the accuracy of any new
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method must be done. Preferably guidelines must be given to help the designer know

beforehand what accuracy can be expected of the results.

Methods that work with unorganised point clouds, describing a closed volume, are in

short supply. Edge detection for regular grid point clouds is a well covered topic. New

methods must address the need for edge detection methods that work for unorganised

point clouds.

Judging from the comments made by the researchers cited in this chapter, it seems

that using an edge-based method is better when working with objects having free-

form surfaces.
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Chapter 3.

VirtualCMM

3. 1. Introduction

In order to implement the edge detection method proposed in this thesis, it is

necessary to be able to select a number of points, according to a pattern, from a point

cloud. The selection method must be independent from the point cloud structure, since

no structure is assumed in this research work. The accuracy of the scanned edge

depends on the maximum distance between points in the cloud. This has a rather

important implication. Itwas already stated that not all scanning methods gave a point

cloud with uniform density. Problems often occur near vertical walls. However, if

accurate edge information is required, care must be taken' that sufficient points are

scanned in the region of the edge. It cannot really be expected that the detected edge

will be accurate if there are relatively few points in the region of the edge.

3.1.1. Neighbour Finding Method

The literature suggests a number of ways that points can be selected in this fashion.

One way is to select a start point for the pattern and then search amongst its

neighbours for the next point that lies closest to the desired pattern. This method, as

all the methods described here, require that the points be stored in an octree data

structure (Meagher, 1982) to minimise the search time. A neighbour searching

method, such as developed by Goussard and Basson (2001) or Voros (2000), can then

be used to find the points lying on the desired pattern. This is a very efficient and

reliable method of finding neighbouring points. The neighbour finding algorithm

developed by these researchers use a simple binary numbering scheme to number

each node in the octree as it is built. From the binary number, it is possible to

determine in which level of the octree the node is contained and in which octant it

lies. By doing simple binary arithmetic on the number and stepping through the

3.1

Stellenbosch University http://scholar.sun.ac.za



octree, all the nodes neighbouring a specific point can be found. The algorithm uses

the previously selected points, and based on the specific pattern, calculates a direction

in which the next point should lie. If this direction is not a very reliable estimate of a

vector in the tangent plane of the current manifold, there is always the risk that the

neighbour search method can select a point that does not lie on the current surface.

Think for example of a thin walled object. If the wall thickness is of the same order of

magnitude as the cloud density, there is no guarantee that points belonging to the

same surface will in fact be selected.

3.1.2. Ball Pivoting Method

Bernardini, et al. (1999) successfully used a ball pivoting algorithm to triangulate an

unstructured point cloud. Their algorithm uses the analogy of a ball "rolling" on the

point cloud and thus filling in the triangles that connect the points. This "rolling ball"

can equally well be used to select an arbitrary pattern of points. The ball can "roll"

along the required pattern and the points touching the ball that lie closest to the

desired pattern are selected. This algorithm requires that a reasonable estimate of the

surface normal must be available at each point. In the application considered by

Bernardini, et al. (1999), this is not a problem, indeed for many reverse engineering

tasks this is not difficult to obtain. If points are scanned in a regular grid and the grid

contains only points from one viewpoint, it is easy to make good estimates of the

normal vectors. When the grids are combined, the normal vectors can be transformed

with the points. Unstructured point clouds present more difficulties to calculate the

normal vectors. It might require a complete surface triangulation. Suzuki and Aoyama

(1997) developed a scanning method that also returns the normal vectors at each

scanned point. Essentially their method does a 2.5D scan and then uses a triangulation

to find the unit normal vectors at each scanned point. The triangulation method of

Miyake, et al. (1997) can be used.

3.1.3. Virtual CMM Method

Another analogy from the physical world is to simulate a CMM. Janssens (1998)

developed such a method; he calls it a virtual CMM and uses it for cloud thinning.

Rather than scanning on a physical object, the virtual CMM "scans" on a point cloud.

Again, the points are stored in an octree data structure. The virtual CMM uses the
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octree to search for the point that lies closest to the line representing the movement. It

does this by first finding the cluster containing the closest points and then selecting

the closest point. This method is very efficient in computation time and it provides a

means of ensuring that the virtual CMM remains on the correct surface. (The details

of the last mentioned fact are discussed later in this chapter.)

There is another advantage to using a virtual CMM in context of this research project.

By replacing the virtual CMM with a real CMM, it should be possible to use the same

algorithm to scan an edge on a physical object. In order to study the viability of using

the method on a real CMM, a simple analytical model was developed on which a

virtual CMM can scan. The possibility of using the method on a real CMM is not

considered further than this investigation in this project.

For these reasons, it was decided to implement a virtual CMM to obtain the necessary

points from the point cloud. The implementation of the virtual CMM on a point cloud

is further discussed in this chapter. It follows the discussion of the analytical method.

3.2. Analytical Virtual CMM

The analytical method was used in the initial testing of the algorithm because it

eliminates the effect of point cloud density. As the experimental analysis shows later

in this thesis, density has an important influence on the success of the edge scanning.

By using an analytic CMM this effect was eliminated in the initial effort to understand

the intricacies of the algorithm.

Two intersecting torii are used as shown in Figure 2. This model makes it possible to

investigate all the parameters influencing the method. It is also simple to change the

parameters of the model so that a series of tests can be performed. A third torus can be

added as a fillet radius.

The axis of revolution of the torus model is the z-axis and the centre point can lie

anywhere on the z-axis. The points where the virtual CMM will touch the object are

the intersections of the lines representing the movement with the torii. The effect of

the probe ball radius can easily be incorporated by simply adding or subtracting the

probe ball radius to the section radius of the torii. Then the same algorithms for
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finding the intersection points can be used. The only tricky part is finding these

intersection points.

Let a be the major radius of the torus and r the section radius. The position of the

centre on the z-axis is b. Any point on the torus can then be defined in terms of

parameters u and v as shown in the equation below. The parameters are illustrated in

Figure 1. The torus is defmed by the revolution about the z-axis of the circle shown in

the figure. Parameter u, not shown, is the rotation angle about the z-axis.

t(u,v )=«a+rcosv )cosu,(a+rcosv )sinu,rsinv+b) (3.2.1.)

z

a

Figure 1 Torus Model.

Figure 2 Torus Model in 3D.

If the effect of measuring noise must be investigated, a noise vector can be added to

the point calculated with equation 3.2.1.

If the usual definition of a parametric line is used (see Appendix A), then the

intersection point can be found by solving the following three equations.
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Six +Aax ={a+rcosu)cosv (3.2.2.a)

S~v + Aay = {a + r cosu )sin v (3.2.2.b)

(3.2.2.c)

The only three unknowns in these equations are the parameters u, v and A. By

substituting the above three equations into each other and doing some algebraic

manipulations, a polynomial equation of degree four, given below, is obtained. The

equation is derived in Appendix G.

(3.2.3.)

with

Once A is known from equation 3.2.3., it is trivial to find the parameters u and v.

Unfortunately, it is not so trivial to fmd the A. One can easily think that values of A at

the start and end point of the CMM's movement can be used as search limits in a root

finding method such as Newton's method. There are two problems with this approach.

Newton's method can find only one root. It is certainly possible that there can be

more than one root between Aend and Astart. The virtual CMM must ensure that the A

closest to the start point of the movement is found. Newton's method cannot

guarantee that.
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A method such as Laguerre's method presented by Press, et al. (1997) finds all the

real roots of any polynomial equation. They state that Laguerre's method guarantees

convergence to all real roots from any start point. Although not proven, experience

also suggests that non-convergence to complex roots is "extremely unusual," in the

words of Press, et al. (1998). This algorithm was implemented with great success for

this project.

3.3. Discrete Virtual CMM

Three variations of the virtual CMM developed by Janssens (1998) are considered

here. The first variation is almost exactly the same as his virtual CMM, the only

significant difference is that non-measuring moves are also considered. The second

variation uses a virtual ball probe, with finite ball radius, to scan on the cloud. The

last variation returns the intersection point of the search line and a triangle formed by

three points close to the scan line. These three strategies are considered in this section.

They all require an efficient search algorithm to find specific points in a point cloud.

The search algorithm is considered first.

3.3.1. Search Algorithm

To make the edge detection algorithm as widely applicable as possible, no assumption

is made of underlying structure in the point cloud and, following Janssens (1998), an

octree data structure (Meagher, 1982) is used to handle the point cloud.

The octree algorithm first determines a box containing all the data. This is the root

node. This node and successive nodes can be divided into eight child nodes, hence the

term octree. Janssens (1998) suggested that the refinement of each node should

continue until the length of the shortest side of the child node is less than three times

the average pitch of the data or until the child node contains only one data point.

Figure 3 gives an illustration of an octree. The selective refinement of the nodes is

illustrated.

The octree has internal and leaf nodes. An internal node contains no data points, just

pointers to its eight child nodes. A leaf node is found at the end of a branch and may

contain data points, but has no children. This is illustrated in Figure 4 below.
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Figure 3 Example of an Octree.

o Leaf Node

• Internal Node

Figure 4 Octree Nodes.

The octree implemented here uses an object oriented programming approach adapted

from Jones (1999). Octree-node and octree objects were developed. The octree-node

object only contains data pertaining to the node: the position of one comer, the level
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of the node in the octree data structure and the node type. If it is a leaf node, it also

contains the number of points in the node and an integer pointing to the point in the

data array corresponding to the first data point in the leaf node.

When the octree object is constructed, it reads the point cloud from a text file and

calls the BuildTree procedure to create the octree data structure. Initially, all the data

points belong to the cube-shaped root node. They are then sorted, using the QuickSort

algorithm (Cooke, et al. 1985). The node is divided into eight equal cubes

representing the child nodes, and the sorted data points are assigned to the respective

child nodes. After a node has been divided into eight child nodes, the procedure is

repeated on each child node until the stop criteria are satisfied.

Finding a specific point in an octree data structure means that the box containing the

point must first be found. The child nodes of the root node are tested. All those that

can contain the point are selected and the algorithm repeats the search step for all the

selected nodes. This is best done in a recursive implementation. This process

continues until a leaf node is reached. If the leaf node contains points, all the points in

the node are tested. This minimises the search time, because only a fraction of the

points in the cloud are actually tested.

3.3.2. Point Selection

The search line will seldom actually intersect a specific point in the cloud. Therefore

the strategy suggested by Janssens (1998) selects the point that lies closest to the

search line. This is a very simple calculation (see Appendix A).

As already mentioned in this chapter, a very important consideration in finding a

specific pattern of points in a point cloud, is that the method must ensure that

selection of points is consistent. In other words, it must be certain that neighbouring

points in the pattern actually are neighbours in the manifold. The point selection

method attempts to ensure this in a number of ways. First of all, the start point of the

search line must lie outside the object represented by the points. Since the search line

is a parametric line, this means that only points that have a positive parameter when

projected onto the line have to be considered. (See Appendix A for projecting a point

onto a line.) Points that correspond to a negative parameter obviously lie on a surface
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in the opposite direction of the scanning movement. Thus, the point with the smallest

positive parameter is selected. This is illustrated in two dimensions in the figure

below. The line represents the search line. The arrow indicates the direction of the

search line. The black point at the top of the line is the origin of the search line. The

white points belong to the cloud.

o o o
o

Figure 5 Finding the Closest Point to the Search Line.

When scanning in the bottom of a valley, the points at the top of the valley

corresponds to a smaller, positive, parameter value than the ones at the bottom if the

scanning movement started near the top of the valley. So, another test is necessary.

The points at the top of the valley are removed from the list of candidates by

calculating the distance to the search line (see Appendix A). If this distance is more

than the cloud density, the point is removed from the list. This has an important

implication for the point cloud. The density must be sufficiently uniform so that gaps

in the point cloud that is more than the pitch apart really do represent a gap in the

surface.

o
o o

Figure 6 Selecting Points in a Valley.

Another problem arises when scanning close to a vertical wall. If the distance from

the search line to the wall is less than the point cloud density, then it is unavoidable
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that the point on the wall that corresponds with the smallest positive parameter value

will be selected.

o 0 0

o

o

Figure 7 Selecting Points Near a Vertical Wall.

Janssens (1998) does not simulate non-measuring movements. This means that during

a non-measuring movement the "probe" can move through the surface without the

scanner knowing it! If there is another surface behind the one being scanned upon,

there is a serious risk that the next scanning movement will be on the wrong surface.

Thus, non-measuring movements are simulated in the virtual CMM developed here.

This is another mechanism that helps to ensure that the scanner remains on the correct

surface. Thus, the virtual CMM can do "collision" testing. It will be stopped from

moving through the object.

This method has the advantage that it returns the best possible available data to the

downstream algorithms. No assumption is made about the nature of the surface

between the points. The only error is the noise in the point cloud. Another advantage

is that this method requires the least amount of computation time of the methods

presented in this chapter. The obvious disadvantage is that the selected points will not

lie on the desired pattern. This may cause problems when doing manipulations with

the pattern of points.

These reasons made this method the method of choice in this research project, but two

other methods, discussed below, were also considered.
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3.3.3. Scanning with a Virtual Probe

While simulating a CMM, why not simulate the probe as well? As with a real CMM,

the virtual CMM then returns the centre of the probe ball. This can at least solve the

problem of the points not lying on the search line.

If e is a point in the cloud, Rp is the probe radius and the search line is as given in

Appendix A, then the position of the probe ball centre can be found from the

following equation.

(3.3.3.1.)

Expanding this equation and remembering that a is a unit vector, gives the expression

for A in equation 3.3.3.2.

(e-{Sf +Aa)).{e-{sf +Aa))= R~

A = e·a-sf .a±~{Sf .a-e.aY _llaI12~lsfIl2+llel1
2 -2e.sf -R~)

IIal1
2

(3.3.3.2.)

The shortest distance from a point in the cloud to the line is given by the expression in

the []-brackets in equation 3.3.3.2. If this distance is equal to or less than the probe

radius, then the equation is used to calculate A. Both A-values (given by the ± sign) for

each point must be checked. Negative A-values can be ignored because they represent

situations where the CMM have to move in the negative a direction. The smallest

positive value of A given by all the points in the cloud represents the distance that the

CMM must move to make contact with the point cloud.

If the probe radius is larger than the point cloud density, this method helps to ensure

that the scanner remains on the correct surface. It also has no problem scanning near

vertical walls or down in valleys. There are two significant disadvantages though.
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Since the virtual CMM returns the points at the probe ball centre, these points must be

compensated with the probe radius. Under certain circumstances this can both be

difficult and inaccurate.

The second disadvantage is that this method induces noise. Scanning on a discrete

surface the probe can in fact already have passed through the actual surface when it

eventually touches a point in the cloud. If it is assumed that the surface connecting

three neighbouring points does not deviate significantly from a flat surface, the order

of magnitude of the noise can be determined as follows. In the following figure let A,

B and C be three neighbouring points. D is the centre of the probe ball. Let the

distance between any neighbouring point A, B or C be d. If the surface ABC is flat, the

contact point should be E, but the virtual probe will move beyond that point until in

makes contact with a point A, B or C. In the worst case, E it is exactly in the middle of

the equilateral triangle ABC. The noise is then the difference between the probe radius

and the distance DE.

D

c

Figure 8 Noise Induced by Scanning with a Virtual Probe.

The noise is found as follows.

BD=R p
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BC=d

BF=O.5d

BE= BF d
cos30° = .J3

(3.3.3.3.)

Clearly, if the probe radius is significantly larger than the point cloud density, the

noise is small. It decreases as the ratio of probe radius to point cloud density

increases.

3.3.4. Triangular Approximation

In order to scan points that lie on the desired pattern and that do not need radius

compensation the virtual CMM can scan on a triangulated surface. Triangulation of

points scanned on physical objects is a very difficult and unresolved problem, judging

by the number of papers that regularly appear on the topic (some of them are cited in

this section). Problems with triangulations also often arise near sharp edges, exactly

the region that is of interest for this project. A complete triangulation of the point

cloud is therefore not within the scope of this project. A much more simplified

approach is taken here.

A triangle is calculated for each scanning movement. This triangle is constructed by

first finding the two closest points to the search line using the point selection method

described above. These two points are A and B respectively in Figure 9. The

algorithm then selects a third point, C in Figure 9, to form triangle ABC. Triangle

ABC is formed so that the search line, represented by E, intersects it. C is the closest

point to E that will form such a triangle. Now there can be no other points in the

dashed circle, with centre point E and radius EC, which can be used to construct a

triangle with points A and B that will be intersected by the search line, E.
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A

Figure 9 Triangle Construction with Virtual eMM.

Is triangle ABC a "good" triangle, in other words, does it really represent the surface

on which the points A, B and C were scanned?

De Berg, et al. (1997) and Bernardini, et al. (1999) show that a 3D Delaunay

triangulation guarantees that the topology of the points is correct and that the surface

converges to the true surface as the point cloud density increases. Computing a 3D

Delaunay triangulation is expensive in terms of computational time and memory

required (Hoppe, et al., 1992; Edelsbrunner and Miicke, 1994; Choi, et al., 1998;

Bernardini, et aI., 1999 and Wang and Chen, 1999). For this project it is only

necessary to compute a 2.5D Delaunay triangulation of the region being scanned, as

described by De Berg, et al. (1997) since the virtual CMM is only concerned with a

small part of the surface during each scanning movement. Briefly, the requirement for

a 2.5D Delaunay triangulation as described by De Berg, et al. (1997) is as follows.

If triangle P1P2P3 (Figure 10) defmes a circumscribed circle and P4 lies inside the

circle, edge P2P3 is illegal and must be flipped. The Delaunay triangles are then

P1P2P4 and P1P3P4.
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Figure 10 2.5D Delaunay Triangulation Rule.

From this it follows that triangle ABC in Figure 9 is not necessarily a Delaunay

triangle. If there is a point, D, in the cross hatched region of that figure, it means that

the edge BC is illegal. The Delaunay triangles will be ACD and ABD.

Now, the question might be asked why a fourth point, D, is not tested in order to

ensure that Delaunay triangles are indeed formed. Well, the problem is that there can

be more points in the region that can complicate matters. Consider only triangle ABC

in Figure 9 as duplicated in Figure 11.

A

C

B

Figure 11 Regions that can Contain more Points.

There cannot be more points in the triangle AEB, because A and B are the closest

points to E. Ifthere was another point in the region described by the polygon CGEF, it

would have been used to complete the triangle that is used to form the triangle that is
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intersected by search line E. Therefore there cannot be more points in the polygon

region CGEF. The triangles AEG and BEF remain. Any point in one of these triangles

together with A and B cannot be used to form the initial triangle that is intersected by

the search line. Thus, it is possible that there can be one or more points in this region.

These points must also be considered in the Delaunay triangulation of the surface

region.

On top of all this, the surface does not necessarily end beyond the polygon ABCD.

Points outside this region must by triangulated until it is possible to say that all the

edges of the triangle intersected by search line E are legal. It becomes a complicated

triangulation process that is beyond the scope of this research project. So, the method

is left as it is.

The triangle that is intersected by the search line is not necessarily a Delaunay

triangle. In other words, it does not necessarily represent the real surface. Although

some tests were done with this scanning method, this reason and the extra

computation time are the most important reasons why this method is not further used

for edge detection.
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Chapter 4.

Edge Scanning Algorithm

4. 1. Introduction to the Edge Scanning Method

4.1.1. Background and Description of the Method

In previous chapters it is shown that segmenting point clouds presents many

difficulties, not only in terms of fmding the boundaries of surface patches, but also

with the subsequent surface modelling. It is often a very time consuming process to

reconstruct a CAD model consisting of many surface patches from a single point

cloud. The question is whether a tool that can segment the point cloud and

simultaneously find the intersection curves between neighbouring surfaces would not

make modelling much faster. In this chapter such a tool is described.

Here, a virtual CMM is used to scan the edge. Sometimes it might only be necessary

to find the surface boundaries and use these curves as generators when recreating a

surface model of the object.

Rather than defining some of the points in the point cloud as edge points, the method

described here calculates new edge points. This is an important advantage over image

segmentation methods such as described in the literature review. The errors in the

case of the image segmentation methods can be as large as the point cloud density,

which means that a very dense point cloud must be scanned to accurately define the

edge. Although the accuracy of the edge scanning method also depends on the point

cloud density, the error of the edge points is normally much less than the cloud

density.

The idea of the edge scanning algorithm is to scan as few as possible points in a small

region around the edge so that the scanning time is reduced as much as possible and

then calculating the edge points from the scanned points. This means that the
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algorithm must be able to anticipate direction changes of the edge. Another important

characteristic of the algorithm is that it must be robust against measuring noise. The

latter requirement proved to be the most difficult to achieve. An example of the

points scanned by the algorithm is shown in Figure 1.

Figure 1 Example of a Zigzag Edge Scan.

A brief description of the method is as follows. Given a starting condition, a line is

scanned and the point is calculated where the scan line intersected the edge. The edge

point is the intersection of two polynomial functions that approximate the scan line

sections (lines or quadratic polynomials). The position of the next edge point is then

estimated. The scanner then tries to scan the next line so that it will intersect the edge

near the estimated edge point. The process of estimating edge points, scanning lines

and calculating edge points continues until the calculated edge passes through a

"gate" defined by the user. Finally the polynomial curves are compensated with the

probe radius, if necessary, and the edge points are recalculated.

4.1.2. Definition of Terminology

Before starting the detailed description of the scanning methods, it is necessary to

define the terminology that is used in this chapter.

Two patterns that can be used to scan the edge are discussed. Since both patterns

share many basic algorithms and differ only in a few details, they are discussed
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simultaneously. Where there are differences, they will be pointed out. A zigzag

pattern (Figure 1) and a square pattern (Figure 2) are described.

z
Y A X
~

Figure 2 Example of a Square Edge Scan.

Each pattern consists of a sequence of scan lines. The scan line starts on one surface,

crosses the edge and terminates on the second surface forming the edge. The points

on the scan line that was scanned on the first surface are called the first line section,

and the points on the second surface form the secondline section. The scanned points

are designated with Pij, indicating the ï'th scanned point on the lth scan line. Where

the meaning is clear, the subscript j is dropped so that the notation is not

unnecessarily cluttered. Edge points are designated jj j , meaning the edge point of the

j 'th scan line. The line pitch is the distance that the scanned points must be apart. It

differs from the edge pitch, which is the distance that the calculated edge points are

apart. Edge points are calculated from the points on the scan line. The amplitude

defines the region around the edge where the scanner can safely sample points to

calculate the edge points. As shown in Figure 3 the amplitude is defmed in the way it

is normally done for waves. This figure also illustrates the schematic representation

of the scanning patterns that will be used further on. Rather than drawing a 3D view,

the pattern is drawn as though it is folded open. This is easier to view on paper.
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Edge
Point

Line

Edge
Pitch

Figure 3 Scanning Terminology.

When using the virtual CMM to scan on a point cloud, the point cloud pitch is very

important. Here it is defined as the average distance between neighbouring points in

the point cloud.

The rest of this chapter describes the edge scanning method in detail. The chapter

ends with a discussion of the limitations of the method. The evaluation of the method

is left for the next chapter.

4.2. Line Scanning

4.2.1. Defining the Scanning Plane

The CMM must scan a number of lines that straddle the entire length of the edge.

When scanning a surface using a standard parallel scanning pattern, the planes in

which the scan lines lie, are determined by the parallel pattern parameters. This is not

the case when scanning an edge. Each consecutive scanning plane depends on the

local geometry of the edge. The scanning plane should be orientated in such a way

that a safe scanning path can be obtained. Ideally this means that the scanning plane

must be perpendicular to both surfaces around the edge.

It is not possible to define such a scanning plane, Le. one that is perpendicular to both

surfaces, when using the zigzag pattern. However, by choosing the amplitude much

larger than the edge pitch, the scanning plane will be close to perpendicular to both

surfaces. Finding a reliable definition of the scanning plane orientation in the case of

the zigzag pattern proved difficult. Obviously, the vector from the last scanned point
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to the estimate of the next edge point, i.e. the new scanning direction, must lie in the

new scanning plane. Various other vectors were tested to completely define the

scanning plane, such as the normal vector on the current surface. This means that the

new scanning plane is at least perpendicular to the first surface, but not to the second

surface. The best compromise was to use the tangent vector at the last edge point and

the scanning direction. These two vectors are t and ds respectively in Figure 4. This

means that the new scanning plane orientation is given by the following equation.

(4.2.1.1.)

Figure 4 Determination of Scanning Plane Orientation.

The tangent vector, t in Figure 4, is the obvious definition for the scanning plane

orientation for the square pattern since it is perpendicular to the normal vector of both

surfaces at the edge. (This fact is demonstrated in paragraph 4.4.1.)

4.2.2. Ensuring a Constant Pitch

For reasons of economy and accuracy, it is necessary to keep the pattern in the

smallest possible region around the edge and to scan as few points as possible. The

first requirement is met by calculating the length of the scan line as it is being

scanned. As soon as the length is equal to the amplitude, the scanning will stop.

It is possible that the gap between the last point scanned before the scanner crossed

the edge and the first point scanned after it crossed, is much larger than the required

line pitch. The sharper the angle is between the two neighbouring surfaces, the bigger

is the chance that this will be the case. If corrective measures are not taken, it can

happen that there will not be enough points on the second section of the scan line to

accurately calculate the edge. When the algorithm detects that the gap between points
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is too large, it will go back and measure enough points in the gap to ensure that

consecutive points on the scan line are not more than the required line pitch apart.

4.2.3. Amplitude Adjustment

As the scanner moves along the edge, it can happen that the pattern slowly moves off

the edge. As it moves along the edge, the new edge points will no longer lie in the

middle of the scan lines. This phenomenon is schematically illustrated in Figure 5. It

can easily happen that the pattern moves completely off the edge. A further danger

related to this, is that there will be too few points on the one line section to calculate

the line or polynomial needed to calculate the edge point.

Figure 5 Schematic Illustration of a Zigzag Pattern Slipping Off an Edge.

The solution to this problem is to scan more points on the line if the second line

section is too short. From Figure 5 it might seem that another solution is to decrease

the pitch when scanning in a region of high edge curvature. Although this pitch

adjustment was implemented, see paragraph 4.4.4., it was found that it is sufficient to

extend the length of the scan lines.

Ideally, if the length of the second line section multiplied by the cosine of the angle

between the scanning plane normal and the edge tangent, ¢Jf in Figure 6, is shorter

than half the required amplitude, then more points must be scanned to make up the

deficit.

However, this method produces bad results if the tangent is not calculated very

accurately. With a bad tangent, the angle rjJ, is much larger than it should be, which in

turn means that a large deficit is calculated. The scanner will make up the deficit.

This causes much longer scan lines than desired. The calculation is made independent
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of the tangent by comparing the length of the scan line with half the amplitude, in the

case of a square pattern, and with O.5~p; + A 2 , in the case of a zigzag pattern.

Figure 6 Angle between Scanning Plane Normal and Edge Tangent.

4.3. Intermediate Edge Point Calculation

An intermediate edge point is calculated for each line of the scanning pattern. The

scanned line is first split in its two parts, the line sections. Then each part of the line

is approximated with a polynomial function. The intermediate edge point is the

intersection of these two functions.

4.3.1. Scan Point Projection

Measuring noise and the discrete nature of point clouds mean that the scanned points

do not necessarily lie on the scanning plane. This can cause considerable problems

when fitting curves to these points, because the degree of freedom of the fitting

process is often very small. The maximum distance between the fitted curve and the

scanning plane can be very significant. The fitted curves can then intersect the edge

very far from the scanning plane. This is illustrated in the Figure 7.

Figure 7 illustrates how noisy points can distort the curve approximations. The fitted

lines do not intersect at the edge. The distortion becomes much bigger as the gap at

the edge increases, due to a fillet radius. Edge points calculated with these lines often

have very large errors, sometimes so large that algorithm is unable to follow the edge.
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Fitted Lines

Figure 7 Problems Due to Curve Approximation of Noisy Points.

Projecting either the points or the polynomials to a common plane can solve the

problem. Both methods were tried (using only first order polynomials) and no

significant difference, in terms of accuracy, was found. Since it is easier to project the

points to a plane than a polynomial function, it was decided to project the points

before fitting a polynomial function to the points. The points are projected onto a

plane that is fitted to all the points of the scan line using the equation below. (The

equation is derived in Appendix A.)

(4.3.1.1.)

The projected points are then approximated with polynomial curves and these curves

are used to calculate the edge points as described in what follows.

4.3.2. Splitting the Scan Lines

A scan line straddles the edge. It is divided in two scan line sections at the point that

lies furthest from the line connecting the first and last point of the scan line. This

point is deleted from the scan line and is not further used in the calculation of the

edge point.

4.3.3. Cleaning the Line Sections

Often the edge between two intersecting surfaces is not sharp. A small fillet radius is

often added, or the edge might simply be worn out and damaged. Points scanned on
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this part of the object must first be removed before the edge can be calculated. These

points are identified by checking the distance from the projected point to the

polynomial. If there are points of which the distance to the fitted polynomial is more

than a user specified tolerance, the point closest to the edge is deleted and a new

polynomial fitted, This process is repeated until all the points are within the tolerance

or until the number of remaining points equals the degree of the polynomial.

The distance to the curve can easily be calculated using the equation below if it is a

line. (This equation is derived in Appendix A.)

(4.3.3.1.)

However, when a polynomial of degree more than one is used, the calculation is a

little more intricate. Since parameterised polynomials are used, the parameter of the

point on the polynomial closest to the scanned point must be found before the

shortest distance to the polynomial can be calculated. Brent's method (Press et al.

1997) is used to solve the non-linear problem. Since the polynomial represents only a

short curve on the surface of the object, the problems of fmding good initial values

for Brent's method and of having more than one point on the polynomial that are the

same distance to the scanned point, can be ignored.

It is important to note that the tolerance mentioned here is only to be used for deleting

points that do not belong to the surface, e.g. points on a fillet radius. As far as

possible, points on the actual surface must not be deleted. That will leave very few

points to fit a curve to. Therefore, the tolerance must at least be more than the noise

in the data. Since the algorithm works with as few points as possible, it cannot afford

to throwaway noisy points.

4.3.4. Fitting Polynomials

Polynomials are fitted to the projected points of each line section. Theoretically

polynomials of any degree can be fitted as long as there are enough points on the line

section. However, the polynomials will have to be extrapolated so that their

intersection can be calculated. In order to ensure a well behaved extrapolation, cubic
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polynomials is the practical limit. Typically there will be no more than ten points on

each line section, another reason not to fit polynomials of degree higher than three.

The type of polynomial that is fitted is another source of error in the calculation of the

edge points. Surfaces are seldom perfectly flat, so a straight line might be a very

rough assumption. However, it provides the opportunity to scan the least number of

points to calculate the edge and thus save scanning time. A quadratic polynomial is

probably the best option provided that the surfaces are not doubly curved in the

scanning region. Cubic polynomials will only be used in rare cases.

If a line is selected, the least squares fitting algorithm of Forbes (1991) is used. It is

not necessary to parameterise the scanned points before the lines are fitted.

In order to fit quadratic or cubic polynomials the scanned points must first be

parameterised using the chord length method. The usual least squares problem

(Lawson and Hanson, 1974) is then formulated as

[lJ] T [lJ] [C]=[ U]T [P] (4.3.4.1.)

1
,

UI u-
I

1
, [a, « a,]

where [U]= U2 ui and [C]= b, by bz

1
, Cx cy Cz

un u-n

In the above equation U and C are given for the quadratic case. The changes needed

to fit a cubic polynomial are trivial. C is the matrix of coefficients of the quadratic

polynomial in parametric form. P is the matrix of measured points. If U is known, C

can be solved using Gauss elimination.

Finding the coefficients is a non-linear problem since the parameterisation is

unknown. However, it was found that the initial parameterisation using the chord

length method is sufficient. A non-linear optimisation method, such as Powell's

method (press et al. 1997) will put an unnecessary computational burden on the

algorithm.
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4.3.5. Calculating the Intersection Point

The calculation of the intersection of two lines is straight forward. The calculation

thereof is separated from the calculation of polynomials of degree more than two.

4.3.5.1. Line Intersections

Finding the intersection of two lines in a plane is straight forward. Equations for

finding the intersection are derived in Appendix A. If the one line is represented by

x2 = S'2 + A2Q2' then A2 can be solved using the equation below. If the denominator

in this equation is zero, then one of the alternative equations given in Appendix A can

be used, provided that the lines are not parallel. Of course, the two lines must also lie

in the same plane.

(4.3.5.1.1.)

4.3.5.2. Polynomial Intersections

A polynomial of the fourth degree must be solved to find the intersection points of

two quadratic polynomials. For two cubic polynomials, a polynomial of the ninth

degree must be solved. For this reason, a numerical method is used to find the

intersection point. The distance between the two polynomials is minimised using

Powell's method (Press et al. 1997).

As shown in the figure below, the iteration algorithm uses the parameter values of the

points that lie closest to the edge as starting values. These normally are good starting

values. However, sometimes it happens that at least one of the polynomials looks like

the 2nd polynomial in Figure 8. In these cases it can happen that the algorithm finds

the wrong intersection. In the cases where this problem is known to occur, decreasing

the step size solved the problem.
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Figure 8 Finding Polynomial Intersections.

4.3.6. Discussion

Some edge detection techniques for reverse engineering do a search of the points in

the cloud and then define selected points as edge points (Milroy, et aI., 1997 and

Yang and Lee, 1999). This means that the selected edge points can be as far from the

real edge as half the point cloud pitch. Furthermore, these methods do not take into

account that the edge might be round due to a deliberate fillet radius or due to wear

and damage. The method proposed here in essence extrapolates the boundary region

of two neighbouring surfaces and calculates the intersection points. Provided that the

assumptions made for the extrapolation, i.e. linear or quadratic, are correct, the

calculated edge point should be much closer to the real edge than the point cloud

pitch. The measuring noise and the probe radius effect further influences the

accuracy. A quantitative analysis of the accuracy of the method follows in a later

chapter.

Robustness against noise in the measurements is achieved by first projecting each

scan line onto a plane that was fitted through the points of the scan line. Polynomial

approximation rather than interpolation further enhances the robustness against noise.
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4.4. Finding the Scanning Direction

Two methods are investigated to determine the direction that the pattern must take

after doing each line scan. The first method takes the estimated tangent of the edge as

the scanning direction. The second method takes the curvature of the edge into

account and determines the scanning direction accordingly. For both these methods, a

robust estimate of the edge's tangent direction is vital.

4.4.1. Finding the Edge's Tangent Direction

Three methods of finding the edge's tangent direction were tested. The challenge is to

find a robust estimate of the tangent direction since this determines the ability of the

algorithm to follow the edge without error.

4.4.1.1. Edge Point Interpolation

The obvious, and easiest way, to find a tangent vector is to interpolate the last two

edge points as

t. = Pj - Pj-I

} Ilpj - pj-III (4.4.1.1.1.)

Clearly, this method depends on the accuracy of the calculated edge points.

Inaccurate edge points will lead to inaccurate tangent vectors that can in tum direct

the algorithm away from the edge. If an occasional edge point is significantly

erroneous, one would still want the algorithm to complete the scan. It is therefore

desirable to have a method that does not depend on the calculated edge points.

4.4.1.2. Cross Product of the Surface Normals Using a Flat Surface

Approximation

A better estimate of the tangent direction can be done as follows. From differential

geometry it is known that the normal vector at a point on a surface is perpendicular to

the tangent plane at the same point (Do Carmo, 1976). The tangent vector at a point

on a curve in the surface lies in this tangent plane. Thus, when the normal vector of

the surface is calculated at a point on the edge, the edge's tangent vector lies in the

tangent plane. Since the edge is a curve mutual to the two neighbouring surfaces, two
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surface normal vectors can be determined at the edge and their cross product gives

the direction of the edge's tangent vector.

The normal vector on the surface at the edge point is approximated by fitting a plane

to the points of the last two scan lines that also belong to the same surface. The cross

product of the normal vectors of these planes is the tangent direction.

This method of finding the tangent direction resulted in a very significant

improvement. The angle between the approximated tangent direction and the real

direction is plotted in Figure 9. In this figure, the two techniques are compared. The

tangent directions were calculated at about 50 points on the specific edge. The angles

for the old technique are very scattered and the deviation from the real tangent is very

high. The improvement with the new method is clearly visible.

-(I) 50Cl)

f 45 e Tangent with Old
~ o EstimateCl) 40c- -Tangent Using Surface- 35c
Cl) 30 Normals
~ <>C
ft! 25 o....
ii 20 <><> o <>
Cl) o o <><>
Il:: o <><> o o15 o
.c e o o <><>- 10 e.~ o e
Cl) 5 <><><><> <><><><><> <><><><><>
Q
Ji 0

0 10 20 30 40 50
Edge Point

Figure 9 Comparison of Tangent Vector Estimates.

This method often fails when the scan lines are much longer than they are apart, i.e.

the ratio AI Pe is very large. This means that a flat surface is fitted to points that are

almost co-linear. The approximation of the surface as flat might also be over

simplified.
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4.4.1.3. Cross Product of the Surface Normals Using Polynomial

Approximations

A very accurate approximation of the tangent vector is

nJI(u) ®nJ2(l-u)
t u=l
j = Iln~(u)®n~(l-u)II'

(4.4.1.3.1.)

n/(u) are the unit surface normal vectors at the parameter u of the polynomial curve

approximating the scan line sections. The nomenclature used in this and the following

equations is explained in the following figure. Two polynomials are shown. They can

be of any degree. These are the curves as they are fitted to the line section, thus they

do not meet at the edge point. The curve on the left was scanned first (the superscript

1 is used to indicate this). In the following equations the superscript k replaces the

superscripts J and 2 in the above equation. The superscript k is used to indicate the

specific scan line section of the j'th scan line. Thus p/(u) is the polynomial fitted to

the k'th scan line section of the j'th scan line. The parameterisation of the curves is

such that the parameter at the first point is 0 and the last point is 1. The subscript j

indicates that this curve belong to the j'th scan line. The unit normal vector to the

surface at u is n/(u). The subscript and superscript have the same meaning. This

nomenclature is illustrated in Figure 10. In this figure the scanning was done from

left to right.

The cross product of the two unit surface normal vectors at the edge has the same

direction as the edge's tangent vector. Instead of a flat surface approximation, the

curves that were fitted to the scan line sections are used. The surface normal is taken

as the cross product of the tangent vector of the polynomial curve with the vector

connecting the end points of the last two polynomial curves. This is done in the next

equation.
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with

lFO

n/(u)

Scanning Direct~

p/(u)

Figure 10 Polynomial Nomenclature.

(f p~ (U)) ® (p~(u) - P~~I(1- u))

(~ p; (u)}~(p; (u)- p;:,(l-U)l '
(4.4.1.3.2.)k=I,2

k'=1, u=O if k=2 and k' =2, u=1 if k=1

The following graph shows an instance when this method produced a significantly

better result than the method of using flat surface approximations. This method

provided the most robust results. For this reason it is the preferred method used in

this project.
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Figure 11 Comparison of Tangent Vector Estimates.

4.4.2. Tangent Extrapolation

The simplest method of steering the pattern is to follow the tangent direction. Using

the tangent direction and the required edge pitch, the position of the next edge point is

guessed and the virtual CMM will scan the next line of the pattern towards this point

(equation 4.4.2.1.)

(4.4.2.1.)

Since the estimates of the tangent direction and the edge point are very robust, this

method gives a robust pattern direction. However, where the curvature of the edge is

high, the pattern does not follow the edge closely. Extending the scan lines (discussed

in 4.2.3.) and changing the edge pitch (discussed in 4.4.4.) ensure that the pattern

continues following the edge even in regions of high curvature.

4.4.3. Curvature Based Extrapolation

A curvature based method for steering the pattern was tested. A circle is interpolated

through the last three scanned points and then the next edge point is estimated to be

on the circle at a distance equal to the edge pitch away from the last edge point. This

method proved to be highly sensitive to the accuracy of the calculated edge points. In
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fact, it was not possible to obtain a successfully scanned edge using this method. It

was thought that the method would be more robust if the edge points are projected

onto the osculating plane of the edge curve. (See Do Carmo, 1976, pp 17 for a

definition of the osculating plane of a curve.) However, a robust method of finding

the osculating plane was not found. Therefore, the method of curvature based

extrapolation was discarded due its sensitivity to errors in the edge point calculation.

4.4.4. Edge Pitch Adjustment

In order to optimise the scanning time the edge pitch can be adjusted according to the

edge curvature. Fewer points can be scanned on sections of the edge where the edge

curvature is small. Similarly, the pitch can be decreased when the curvature becomes

very high in order to improve the definition of the edge. This will also improve the

robustness of the algorithm as described in paragraph 4.4.2.

The chordal deviation is used as an indication of the local edge curvature. The

chordal deviation can be defined as the shortest distance from a point B to the line

connecting points A and C. The chordal deviation of the three edge points can be

found as follows (referring to Figure 12.)

B

Figure 12 Determination of Chordal Deviation.

Let A, B and C be the last three edge points. !!DB!! is the chordal height for these

points. IIBFl! is the prescribed chordal height. lIDBIl can then be found by using the

cross product to find the sine of the angle BAD.

II II IIAB®ACII
DB IIACII (4.4.4.1.)
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The ratio of lIDBIl to IIBFlI is used to adjust the pitch. The pitch, liBEII, that would
have resulted in the correct chordal height can easily be derived from Figure 12.

However, the pitch that is thus calculated cannot be used as the new pitch. The

triangle ABC in Figure 12 is normally very slender, i.e. LABC is very close to 180°.

This means that the value determined for IIBEII is very sensitive to errors in the

calculation of the points A B and C. For this reason, the ratio of lIDBIl to IIBFlI is

rather used as an indication of the adjustment that must be made to the edge pitch.

The adjustment is further limited to ensure that the pattern does not suddenly make a

very big or very small step compared to the previous step. Currently the adjustment

ratio is limited between 0.5 and 3. These values seem to balance the requirements for

a fast scan and a robust scan.

When scanning on a point cloud, it is also necessary to check that the edge pitch does

not decrease below some multiple of the cloud pitch. When scanning diagonally

across a regular grid, the distance between consecutive points would be J2 times the

cloud pitch if it is assumed that the grid has the same pitch in the two grid directions.

(See Figure 13.) It makes no sense to scan at a pitch less than the distance between

these points. Therefore the pitch is further limited to be no less than 1.5 times the

cloud pitch, which is on the safe side of J2 times the cloud pitch.

d
J2d

d

Figure 13 Maximum Distance between Points in a Regular Grid.

Sometimes it happens that the zigzag pattern degenerate due to a systematic deviation

from the desired scan lines. This is illustrated in Figure 14. Ideally, the zigzag pattern

should look like the isosceles triangle ABC. The virtual CMM cannot follow the

desired scan direction exactly due to the discrete nature to the cloud. It sometimes

happens that a systematic deviation to the same side of the desired scan line occurs at

the end point of the scan line, as shown in the figure. The result is that the pattern
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degenerates unless it recovers by itself due to a deviation to the other side of the

desired scan line. This can happen rather quickly, after only a few scan lines,

especially if the cloud pitch is large compared to the pattern's amplitude.

Systematic deviation to the left of the scan direction

Dashed lines indicate
" ,scan line direction
',~\

~"
\ "
\ " ...

\ '-'...
\ -.

Ideal pattern

Systematic deviation to the
left of the scan direction

Figure 14 Degenerate Zigzag Pattern.

4.5. Probe Radius Compensation

When scanning with a probe of finite radius, the points must be compensated with the

radius before the edge can be calculated. Experimentation showed that the accuracy

of the edge is very dependent on the accuracy and robustness of the compensation

method. Furthermore, the compensation must be done very carefully since points on

two surfaces in a small region around a sharp edge are used to calculate the edge.

Three alternative methods were tested. But, first it will be shown that the scan line

sections do not necessarily intersect once they are compensated.

4.5.1. Why Line Sections do not Intersect

In order to accurately compensate the scanned points for the probe radius, the

compensation on each line section is done separately. This, however, causes a

problem for calculating the edge points. The compensated points do not lie in the

same plane and neither do the polynomial curves that are fitted to the compensated
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Corrpensated
Line Section

points. Therefore, the curves will not intersect each other. The problem is illustrated

in the figure below.

Uncorrpensated
Line Section

Corrpensation
Direction

z

Y~X

Figure 15 Errors Due to Probe Radius Compensation.

4.5.2. Point Compensation

Early testing of the edge scanning method was done with a point compensation

method (Schreve and Basson, 2000). With this method, the local surface normal

vector must be calculated for each point. The local surface unit normal of a

parametric surface is found from equation 4.5.2.1.

oS(u,v)®oS(u,v)
n( u, v) :-;;--....::.o=u__ --=Ov:...;__---:7

IloS~:'V) eOS~,V)II
(4.5.2.1.)

4.21

Stellenbosch University http://scholar.sun.ac.za



The local surface unit normal for the i'th point on the i'th scan line can be calculated

by replacing the partial derivatives in equation (4.5.2.1.) with central differences as

follows.

as(u,v)
au Pi+l,j - PH,j (4.5.2.2.a)

as(u,v)
av Pi,j+1 - Pi,j-I (4.5.2.2.b)

In equation (4.5.2.2.) Pi+lJ and Pi-i; are the immediate neighbours on the same scan

line of the point, Pij. PiJ+ 1 and Pu-t are the closest points to Pij on the i + I 'th and i-I 'th

scan lines. The cross product of the vectors constructed with these points is a good

approximation of the local surface normal vector provided that the distances from the

point Pij to be compensated to the four other points (PiJ+l, PiJ-l, Pi+lJ and Pi-lj) are the

same. The method is illustrated in Figure 16. The compensation vector is found by

multiplying the unit normal with the probe radius.

Corrpensation
Direction

Line Sections
Corrpensated
with Probe Radius

Vectors Used to Corrpute
Offset Vector

Line
Section

z

Y~X

Figure 16 Point Compensation Method.

4.22

Stellenbosch University http://scholar.sun.ac.za



This method implies that the points on each line section are first compensated with

the probe radius and then the curves are fitted which are used to calculate the edge

points. Very good results are obtained with this method provided that the distance

between consecutive points on the line sections are significantly more than the

measuring error. Thus, the estimate of the local surface normal vector is very

sensitive to noise in the data.

Another source of error is the fact that the two line sections do not meet at the same

point on the edge. This problem is discussed in paragraph 4.5.1. It has the same result

as the problem discussed in paragraph 4.3.1. and Figure 7, but the cause is completely

different. In paragraph 4.3.1. the lines do not meet because the points do not lie in the

scanning plane. Even if the points are projected onto the scanning plane, the two line

sections still will not meet at the edge after radius compensation, because of the

reason discussed in paragraph 4.5.1.

4.5.3. Curve Compensation

Due to the sensitivity of the point compensation method to noise in the data, a curve

compensation method was also tested. This implies that the curves are fitted to the

uncompensated points and then the curve is compensated with the probe radius.

4.5.3.1. Compensation Plane

In order to compensate the curves in R3
, a plane must be defmed on which the

compensation will be done. The curves of both line sections are compensated on the

scanning plane that is fitted to the scan line. This means that a small error is made if

the scan line is not perpendicular to the edge. This error is described in paragraph

4.5.1. Note that the point compensation method does not have this problem, but the

error then occurs when projecting the points on the scan plane before calculating the

curves. Thus, this error is unavoidable with these methods, but a careful selection of

the scanning parameters can minimise this error.

4.5.3.2. Line Compensation

A line is easy to compensate, since only the line origin has to be moved, the line

direction remains unchanged. If x=sj+ Aa is the defmition of the line, n is a normal
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vector to the scanning plane, then the compensated line, x', can be found from

equation 4.5.3.2.1.

a®n R
Ila®nll p

(4.5.3.2.1.)

4.5.3.3. Polynomial Compensation

Ifp/ (u) is a point on a polynomial curve, tlu) is the tangent to the curve at the point,

n is a normal vector to the scanning plane, then a corresponding point on the

compensated curve can be found with equation 4.5.3.3.1.

(4.5.3.3.1.)

This equation looks similar to equation 4.5.3.2.1., but it should be noted that the

curve obtained from compensating a polynomial curve in this way is not a

polynomial anymore. However, the same numeric procedure used to calculate the

intersection of the polynomials (see paragraph 4.3.5.2.) can be used to calculate the

intersection of the compensated curves.

4.5.4. Intersection Curve Compensation

The above two methods both suffer from the fact that the two compensated line

sections do not meet each other at the edge. The reason, as discussed earlier, is that

the plane in which the points lie is not perpendicular to the edge. The intersection

curve method calculates new curves that lie in a plane that is perpendicular to the

edge. It does this by using the curves of the neighbouring scan lines as rails for a

ruled surface. The curve that is formed by the intersection of the ruled surface and the

perpendicular plane is then used to calculate the edge.

The direction of the edge's tangent vector is the desired orientation of the

perpendicular plane. The tangent vector can be found using equation 4.4.1.3.1., but a

better approximation of the surface normal is
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k=I,2 (4.5.4.1.)

with

k'=I,u=O if k=2 and k' =2,u=1 if k=1

The above equation uses a central difference to calculate the derivative in the

direction parallel to the edge. This is a good approximation as long as the distances

between points Pj+/ (I-u) and p/ (u) and points pj} (I-u) and p/ (u) are the same. This

is the case close to the edge where this distance is equal to the edge pitch. In the case

of the zigzag pattern this will be a very bad approximation at the start and end points

of the scan lines. However, the calculation of the edge point is not done in this region,

but rather in the region near the edge where the distances are equal (the curves are

extrapolated to find their intersection), so the approximation is a good one.

The position of the perpendicular plane must be on the edge point, but this point is

not known beforehand. It is sufficient to position the perpendicular plane halfway

between the endpoints of the two line sections, as shown in the following equation.

P~(1)+P~(0)
bj

2
(4.5.4.2.)

The position and orientation determines the perpendicular plane.

The nomenclature is illustrated in Figure 17. Here, only the compensated curves are

shown for the sake of clarity. The ruled surface that is used to calculate the

intersection curve is shown in thin solid lines. The intersection curve is shown as a

dashed curve. The perpendicular plane that is used to calculate the intersection curve

is not shown. The origin of this plane is at the point bj and the orientation is the

tangent vector to the edge, lj.
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S/{u,v}

Figure 17 Illustration of Intersection Curve Compensation Method.

Any point on the compensated curves can now be found with the following equation.

(The superscript 0 in this and following equations indicates the compensated curve.)

(4.5.4.3.)

The surface between the k'th line section of the j-l'th and j + l'th compensated scan

lines is now approximated as a ruled surface. The edge is found by calculating the

intersection of the curves that is formed by the intersection of the perpendicular plane

and the ruled surface. Points on this curve are found by calculating the intersection of

lines in the rule direction and the perpendicular plane. The ruled surface is given by

the following equation.

k ( k' )0 [(pk' )0 (pk' )0] _Sj(u,v)=Pj_t(l-u) +v~ j+t(l-u) - j-t(l-u) (u,v-O .. l) (4.5.4.4.)

with

k= 1 if k=2 and k' =2 if k=1

Any line in the rule direction is found by keeping the parameter u constant. The

parameter in the rule direction is v. Any point on the curve formed by the intersection

of the ruled surface and the perpendicular plane is calculated by taking the

intersection of the lines in the rule direction with the plane. The equation for
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calculating the intersection of a line and a plane IS given in Appendix A. The

intersection curve is

(4.5.4.5.)

with

k'=I, u=O if k=2 and k' =2, u=1 if k=1

Note that the above equation is derived in terms of the parameters of the polynomials

representing the original, uncompensated points. The intersection point, or edge

point, is the intersection of the curves c/(u) and c/(u). Powell's method (Press et al.

1997) is used to find the intersection points.

4.5.5. Discussion

In the figures below, the three probe radius compensation methods are compared.

(The results are for the Experiment I with a square quadratic scan in Appendix E.)

The three methods follow the same trend, except for tests 6, 15 and 16, where the

point compensation method compares badly. This is due to the noise sensitivity of the

method as explained earlier. If the data is good, the point compensation method can

produce very good results, as indicated in experiment 12. However, since the method

cannot produce consistent and reliable results, it is not useful for engineering

purposes.
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Figure 19 Comparison of Maximum Errors of the Compensation Methods.

The intersection curve compensation method is consistently better than the other

methods, because the two compensated curves meet at the edge. The quadratic

polynomials are only an approximation of the actual surface. Furthermore, the

polynomials must be extended over the gap between the two surfaces caused by the

fillet radius. It cannot be guaranteed that this quadratic extrapolation will follow the
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actual surface. Finally, there was measuring noise of between O.Olmm and O.02mm in

all the tests. These factors all contribute to the errors observed in the experiments.

Due to the combination of robustness and accuracy, the intersection-curve method is

the best way to compensate the points for the probe radius and calculating the edge

points.

4.6. Start and End Conditions

In addition to specifying all the scanning parameters such as the edge pitch,

amplitude, line pitch, etc., the user must specify a start point and scanning direction.

The start point will be the first point on the first scan line. The scanner will scan the

first line in the prescribed scanning direction. The orientation of the first scanning

plane is determined by this initial scanning direction and the orientation of the probe.

The scanner must also know if the edge lies in the direction of the scanning plane

normal vector or in the opposite direction. These parameters can easily be determined

by scanning three points on the object, the first being the start point, the second fixing

the scanning direction and the third indicating the direction of the edge.

The scanner must also know where to stop. A gate is defined by an end point and an

end direction. The width of the gate is equal to the amplitude. As soon as the

calculated edge passes through the gate, the scanning will stop. The gate is defined by

scanning two points on the object, the first point is the end point and the second

determines the gate direction.

4.7. Error Handling

This paragraph does not describe computer or programming related error handling

such as checking the type of input parameters, it rather describes the way the

algorithm handles errors related to the scanning process itself. If any of these errors

occur, it will not be possible the continue scanning the edge. Whether the virtual

CMM should be stopped at once if such an error occurs, is debateable since it may be

possible to find some way around the error and still continue scanning. However, the

philosophy during the development of the algorithm was that it is better to stop and

allow the user to make a decision about correcting the error.
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4.7.1. Unacceptable Input Parameters

When using the virtual CMM to scan on a point cloud, it does not make sense to

specify an edge pitch or line pitch that is less than the point cloud density.

Experimentation has indicated that the line pitch should preferably be at least 1.5

times the point cloud pitch if it can be assumed that the point cloud has uniform

density. If the point cloud's density is non-uniform, it would be best to specify a line

and edge pitch that is more than the largest gap in the point cloud.

There must be enough points in each line section to do the curve approximation. This

means that the following inequality must be satisfied, where q is the degree of the

curve that will approximate the line section.

A
-->q+l
2PL

(4.7.1.1.)

The ratio of the amplitude to the line pitch indicates the number of points there will

be on the scan lines, so half that ratio must be the number of points on the line

section. Normally, there must be more than A/PL points per scan line, because some

points will always be removed from the scan line during the line splitting and

cleaning operations. The above ratio serves as minimum ratio. A more accurate ratio

can be obtained by taking the fillet radius, probe radius and intersection angle into

account.

4.7.2. CMM and Scanning Errors

As stated in Chapter 3, the virtual CMM used here simulates non-measuring moves

as well and therefore the edge scanning algorithm must be able to handle "collisions"

that occur during these movements. When scanning an unknown surface, collisions

often happen, but they can be minimised by selecting good scanning parameters. This

largely depends on the experience of the operator. When the virtual CMM collides,

this algorithm will try to re-measure a point at the point of collision. In this way the

scanner should be able to complete the scan line.

If the calculation of the tangent vectors becomes unstable, there is a big risk that the

algorithm will try to steer the scanner far from the actual edge. The scanner will start
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moving outside the region that the operator tried to specify. For this reason, the

algorithm will stop immediately if a collision occurs while the scanner is trying to

measure the first point of the scan line. This will stop the virtual CMM before it

moves outside the unspecified, and thus unsafe, region.

It can happen that the virtual CMM selects the same point twice. The risk of this error

increases if the point cloud pitch and line pitch are approximately the same. Since the

algorithm uses the last two points on the scan line to estimate the next point on the

scan line, it will fail under these circumstances. One way of solving the problem

would be to increase the line pitch and try again to measure a new point. However,

increasing the line pitch holds some risk of collisions since the operator probably

selected the maximum pitch with which the scanning can safely be completed.

Therefore, the algorithm will stop scanning and display an error message.

4.7.3. Errors Prohibiting the Calculation of the Edge Points

The calculation of the edge points requires that the curves representing the line

sections are good approximations. Of course, enough points are needed to fit the

curves, in the case of a line at least two points and at least three points in the case of a

quadratic polynomial. The algorithm will try to ensure that there are always enough

points on the scan lines to estimate the curves by scanning additional points if

necessary and splitting the scan line so that there are enough points on both line

sections.

If the algorithm is unable to scan additional points, because it reached the end of the

search region, it can try to reduce the degree of the polynomial so that an edge point

can still be calculated. If the user chose to use line approximations, this is not

possible. The algorithm then stops and displays an error message. One can argue that

it might be better to move outside the search region so that one or two more points

can be scanned simply to keep the virtual CMM going. However, it is the author's

opinion that it would be safer, and it would ultimately produce more accurate results,

if the virtual CMM is stopped immediately with an appropriate error message. The

user can then specify better scanning parameters and repeat the scan.
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4.8. Limitations of the Edge Scanning Method

There is a number of instances when this algorithm will fail to detect an edge. These

instances are described in the following figures. Where necessary, the results of

quantitative analysis into these limitations are presented in a later chapter.

• When scanning in a section of the edge with high curvature and a sharp angle

between the two intersecting surfaces, it is possible that the scanner will be

unable to remain on the object (Figure 20). Increasing the search distance can

partly solve the problem, but this is not always feasible. (The search distance is

the distance that the scanner will move beyond the point where the scanner

expects to make contact with the object before it will give up the search for the

object.) The first time that the scanner reaches the end of the search distance, it

will try to correct itself by trying to scan a point between the last point of contact

and the position of the probe at the end of the search movement. If the virtual

CMM again does not make contact with the object, the algorithm will stop the

scanning and display an error message.

Figure 20 Scanning beyond Search Envelope.

• It must be possible to specify a scanning region that does not contain any other

sharp edges. Should the scanner intersect another edge, the results will firstly be

very inaccurate and secondly, it is possible that the algorithm will start following

the wrong edge (Figure 21). This might be a problem when trying to find the

boundaries of thin walled objects.
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Figure 21 Error Due to Scanning on Multiple Edges.

• When a bad selection of scanning parameters is made, it is possible that a line

will be scanned that never intersects the edge (Figure 22). In its current form the

algorithm will detect that the scanner did not intersect the edge. An error

message will be returned and the scanning will stop. No corrective measures are

taken, because a similar problem will occur if the intersection angle between the

surfaces becomes very blunt. In the latter case, corrective measures might steer

the scanner away from the edge. The best way of avoiding this kind of problem is

to follow the guidelines for specifying the scanning parameters. The selection of

the edge pitch will be very important in this case.

Figure 22 Error Due to Smooth Edge.

• The algorithm can only detect an edge curve that is itself at least Cl continuous

(Figure 23). If a vertex on the edge is reached it will not be possible to accurately

calculate the edge point and there is the further risk that the scanner will start

following the wrong edge. Since the algorithm is able to scan filleted edges, the
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same problem might occur when there is a section of the edge with very high

curvature.

Figure 23 Scanning tbe Wrong Edge.
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Chapter 5.

Analytical and Experimental Evaluation

5.1. Object Model Used for Testing

The torus object described in Chapter 3, and discussed in detail in Appendix G, is

used in all the tests of the edge scanning algorithm. Point clouds are generated from

this object so that the distance between the points in the parametric directions is

always at the specified point cloud pitch. With this model it is easy to test all the

parameters that govern the algorithm. The experiments can be automated with little

difficulty. The surface curvature is constant in the direction perpendicular to the edge.

The edge curvature is also constant. This is very convenient because it simplifies the

interpretation of the results.

5.2. Analytical Accuracies

In this section a simple analytical model is derived to study the edge scanning

algorithm's analytical performance. The influence of the main scanning parameters is

explained and finally the analytical results are compared with actual edge scanning

results.

5.2.1. Analytical Error Model

Some simplifying assumptions are necessary to derive the analytical error model. It is

assumed that the surface on which the scanning is done is a perfect cylindrical

section. This means that the principle curvatures are constant. The curve that best

approximates the scan line section is found by approximating the continuous line

section rather than a discrete line section. In other words, instead of approximating a

number of measured points by minimising the square of the distance between the

curve and the points, the square of the distance between the curve and the arc is

minimised. This will give the polynomial curve that best represents a given arc.
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Measuring norse is not included. It is also assumed that the scanning plane is

perpendicular to the edge. This means that the scan line sections are perfect arcs. The

analysis is done in two dimensions, since it is only necessary to calculate the

intersection point of the two curves. Therefore, the subscripts used in the previous

chapter are dropped.

Figure I illustrates the object and approximating arcs that is used to derive the

analytical model. The object is hatched. The path of the probe ball centre is shown

only for the upper cylindrical surface. The curve that approximates the path of the

probe ball centre is shown as a dashed line. The unconventional orientation of the

probe is chosen so that the angle r starts at the 0 for the arc described by the probe

ball centre. This simplifies the subsequent derivation of the analytical model. Since

the object is symmetrical about the line AB, the calculated edge point is the

intersection of the compensated curve and the line AB. The radius of the probe ball is

Rp and the fillet radius between the two cylindrical surfaces is Rf-

The angle rjJ, which is half the angle of the fillet arc, is equal to

rjJ = arcsin
RSin(T)

(5.2.1.1.)

The angle a is the arc angle that the circle segment must extend over the gap formed

by the fillet radius to the intersection point.

a = arccos
RSin(T) o

2
(5.2.1.2.)

With a known, the actual intersection point is

p=( Rco.sa)
-Rsma (5.2.1.3.)
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of Probe Ball Centre
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Fitted Curve Corrpensated
with Probe Ball Radius

B

Line of Symmetry

Actual
Intersection
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Figure 1 Model Used for Calculating the Analytical Accuracy.

5.2.2. Best Approximation of the Offset Curve

The curve that best approximates the circle segment is found by minimising equation

(5.2.2.1.). Here,lc(u) is the arc andfp(u) is the curve approximating the arc. If the arc

is approximated by a quadratic polynomial its six coefficients must be found. (Three

coefficients for the X coordinate and three for the Y coordinate. The Z coordinate is

not considered in this discussion.) Iffp(u) is a line, then four coefficients are needed.

s ,

F = ]I/c(u)- /p(u)ll- du
o

(5.2.2.1.)
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Equations for the six coefficients of the quadratic polynomial are derived inAppendix

C and repeated below. The same is done for the lines in Appendix D. In these

equations s is the arc length of the circle segment formed by the uncompensated

points, i.e. the curve spanned by the angle r in Figure 1, and r is the radius of

curvature of the same segment, thus r=R-Rp• (The rest of this discussion focuses

mainly on the quadratic polynomial curves. Similar results derived for lines are given

in Appendix D.)

30r2 ( , • (s) '. (s) (s))Cx = ---;s s: sm -; -12r- sm -; + 6rs cos -; + 6rs (5.2.2.2.)

b, ~ s" (12r' cos(~) +6r' SSin(~ ) - c,s' -12r' ) (5.2.2.3.)

a, ~ ;S( -3b,s' -2s'e, +6r' SinU)) (5.2.2.4.)

30r2 (? ? (s) . (s) , , (s))cy =---;s s: -s-cos -; +6rssm -; -12r- +12rcos -; (5.2.2.5.)

(5.2.2.6.)

(5.2.2.7.)

With these coefficients the maximum deviation from the circular curve to the curve

that approximates it is derived in Appendices C and D. The result is represented in the

figure below. The maximum deviation and the arc length are both made non-

dimensional by dividing by the radius of curvature. Notice the power relationship

between the arc length s and the maximum error. From this result it is clear that the

arc length must be kept at a minimum to achieve the best results with the edge

scanning algorithm.
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Figure 2 Maximum Deviation from a Circle Segment for a Best Fit Curve.

1

The next step is to find the offset curve. The offset vector is

R dfp)'(u)
p du

(4f~U»)' +(4f;:U»)'
-R dfpx(u)

p du

Any point on the offset curve is given by

5.2.3. Anallytical Error

(5.2.2.8.)

(5.2.2.9.)

The calculated intersection point is shown in Figure 1. It is the intersection of the

offset curve and the line AB. This is the point where the offset curve of the second

surface intersects the one of the first surface, because the second curve is a mirror

image of the first curve.
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The line AB is given by

(5.2.3.1.)

The intersection point is where c(U)=LAB(}"). If cru) is a line, the intersection is found

with the equation for line intersections derived in Appendix A. An explicit solution

for u or }.,for the quadratic polynomial is not possible, so any of the root finding

algorithms can be used to find Uint, the parameter value at the intersection point.

It is clearly illustrated in Figure 1 that the calculated intersection point and the actual

intersection point are not the same point. The distance between these points is the

analytical minimum error of the edge points. Therefore, the analytical error is

(5.2.3.2.)

5.2.4. Influence of the Process Parameters on the Analytical
Error

The influence of the scanning parameters is investigated with the analytical error

model. The results are given in the graphs in this paragraph.

The first observation to note from all the graphs given below is that the analytical

error shows a power relationship with the arc length of the surface. As shown in

Figure 2 the maximum deviation of the approximated curve also shows a power

relationship with the arc length. This means that the scanning amplitude must be kept

as small as practically possible in order to achieve the best accuracy.
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0.3~-----------------------------------------.
R=50
R-lr:
R =0p

0.25
....... (}=rr./2
--- (}=2rc/3
-- (}=5rc/~

.......

50

Clearly the intersection angle of the two surfaces has an important influence on the

analytical error, as shown in Figure 3. As the intersection angle between two surfaces

becomes sharper, the distance that the offset curve must be extrapolated increases.

The further the curve is extrapolated, the more it deviates from the circle segment.

That is why the error increases as 8 decreases. It also seems that the error does not

increase linearly with a decrease of the intersection angle. The same analytical error

can be achieved for a smaller intersection angle by decreasing the length of the line

section, by implication the scanning amplitude.

I 0.2
.__.

Figure 4 shows that the error increases with the probe radius. The deviation of the

polynomial curve from the object is amplified through the offset process; therefore the

analytical error must increase with the probe radius. This increase is linear with the

probe radius. Again the implication is that the amplitude must be decreased to achieve

the same analytical error if the probe radius increases, only now it decreases linearly

with the probe radius. Since the relationship between the error and the probe radius is

linear, it is not expected that its influence will be as significant as the intersection

angle's influence.

] 0.15

I
«) 0.1

,
.'
.'

0.05

Ot---~----~·~_·~~----~----~
o 10 20 30 40

s [mm]

Figure 3 Influence of Intersection Angle on the Analytical Error.
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Figure 4 Influence of the Probe Radius on the Analytical Error.

The gap between the two surfaces increases as the fillet radius increases. Therefore

the error must increase. This is clearly shown in Figure 5. It is further clear that the

error increases linearly with the fillet radius. This implies that the amplitude must

decrease in proportion to the increase of the fillet radius to obtain the same error.

0.5~----------------------------------------~
0.45
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Figure 5 Influence of the Fillet Radius on the Analytical Error.
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5.2.5. Difference between Analytical and Experimental Results

The comparison of the analytical model with results obtained with the edge scanning

algorithm reveals some interesting insights into the influence of the noise in the point

cloud. The results shown in the following two graphs were obtained with square

scans. The average error of the edge points is compared with the analytical error.

Theoretical Error
x • ,,=O.OOSmm

x x ,,=O.OSmmx
x x T]=0.1mm

x
x x x.. x x xe x x.. o.

~ x x xo. x• x• • • • •
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

sir

P tP e=2mm Rp=0.5mm e =02mm for'l =().005mm
IC e=().004mm-1RrOmm e =025mm for'l =().05mm
B=rt/2 p c=lnm e =03mm fiJT'l =Odrnm

r=50mm

Figure 6 Comparison of the Analytical Error with Results from the Edge

Scanning Algorithm for Square Quadratic Scans.

First of all Figure 6 shows the significant influence of noise in the point cloud on the

results. The error decreases as sir increases. A reason for this can be that as sir

increases, the number of points on the scan line section increases, and therefore the

approximation of the curve improves. Clearly then, it is desirable to have a reasonable

number of points on the scan line. At the point where slr=OA there were about 20

points per scan line section.

This also indicates that the remark made earlier in this chapter that the amplitude must

be as small as possible is also not correct for real scans. The remark was based purely

on the analytical model. Figure 6 and Figure 7 indicate that there is an optimum
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scanning amplitude. A guideline for finding the optimum amplitude is given at the

end of this chapter.

Then, at a certain point, the error starts to increase with sir. At this point, the deviation

of the approximated curve from the arc becomes more significant than the noise.

From this point, the analytical error and the real error grow together. This is better

illustrated in Figure 7. This turning point happens at different values of sir for the

three curves. One possible explanation for this is that noise actually has a positive

influence in the region of this point. Perhaps, due to the random distribution of the

points the approximated curve remains for a short while closer to the desired curve.

This can also be the explanation of why the experimental results are slightly better

than the analytical results for this part of the curves.

Figure 6 also indicates that the ratio sir should be kept below about 0.4 to 0.6 to avoid

that the errors goes into the power region. Figure 7 shows that this ratio must be much

lower when linear scans are used. For linear scans it must be as low as 0.1.

0.5
Theoretical Error

...
0.45

0.4 ... ,,=O.OO5mm Á

ëO.35
x ,,=O.05mm

=O.1mm
El O.

e 0.25

~ O.
0.15

0.1 ~
0.05

0
0 0.05 0.1 0.15 0.2

sir

P fP e=2mm Rp=0.5mm &=02mm furT] =O.005mm
IC e=O.004mm-1RrOmm e =025mm fur T] =O.05mm
B=rr./2 pc=lnm &=03mmfurT]=O.lmm

r=50mm

Figure 7 Comparison of the Analytical Error with Results from the Edge

Scanning Algorithm for Square Linear Scans.
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Figure 7 shows how quickly the errors reach the power region for the linear scans.

Once this region is reached, the experimental errors and the analytical error grow

closely together.

Should the quadratic scans then always be used? The results in Figure 6 and Figure 7

indicate that the error at low values of sir is about the same order of magnitude. When

scanning in this region, and if the point cloud pitch allows only a few points per scan

line section, it is advisable to use a linear scan. It is computationally more robust since

the linear approximation has one more degree of freedom than the quadratic

approximation for the same number of points. When scanning with only 4 or 5 points

per scan line section, this difference can be significant.

There is a number of reasons why the experimental results deviate from the analytical

results.

• First of all the experimental results include the effect of measuring noise. lts effect

has been discussed in detail above.

• The number of points used for curve fitting determines how well it approximates

the ideal curve derived in paragraph 5.2.2. The more points there are per scan line,

the better this approximation should be.

• In Chapter 4 it is shown that the offset vector is the cross product of the tangent

vector to the curve and a vector that connects points on the two neighbouring

curves. Even in the analytical model, the tangent of the curve is not tangent to the

actual surface. The second vector can also not be tangent to the actual surface.

This further increases the error of the offset vector.

• The analytical model assumes that the scanning plane is perpendicular to both

surfaces, therefore, the scan line segments form perfect arcs. In practice the '

orientation of the scanning plane depends on the tangent vector calculated for the

edge. It is shown in Chapter 4 that this vector can deviate considerably from the

actual tangent vector. This means that the scanning plane is not necessarily

perpendicular to the surfaces and the line segments therefore not necessarily

perfect arcs.
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• The scanning tolerance determines how many points are included in the curve

approximation. If the tolerance is too small, many points are ignored that might

have improved the polynomial approximation. If it is too large, points that lie on

the fillet radius are included in the curve approximation. This has a very adverse

effect on the error.

5.2.6. Comparison of Zigzag and Square Patterns

The results shown in the previous paragraph were all obtained with square scans. In

the following two graphs, these results are compared to zigzag scans on the same

objects and with the same scanning parameters.

• Zigzag; ------ Square, 'FO.OO5mm
• Zigzag; -- Square, 'FO.05mm
x Zigzag; Square, 'F0.1mm

0.12

0.141-------;::========================~

•
•

O+-----.------r-----.-----.------r-----.-----~
o 0.1 0.6

0.1

0.2 0.3 0.4 0.5 0.7

sir

Ë
E 0.08
a.
~ 0.06

I";;Iil

0.04

0.02

P lP e=2mm ~ =0.5 mm e =02mm fur TJ =O.005mm
IC e=O.004mnr 1 Rj=Omm e =025mm fur TJ =O.05mm
()=rt12 pc=lnm &=03mrnfurTJ=O.lmrn

r=50mrn

Figure 8 Comparison of Zigzag and Square Patterns for Quadratic Scans.

Figure 8 shows that the zigzag and square patterns very closely follow the same trend

for quadratic scans except for the one scan with lFO.005mm. For this scan, the square

pattern performs better for low values of sir. In Chapter 4 it is mentioned that the

points on the scan line sections are projected unto the scanning plane before the curve

approximation is done. If the scanning plane orientation is not perpendicular to the

local surface normal, a small error is induced by this projection. The scanning planes
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of the zigzag cannot always be perpendicular to the local surface normal. However,

the square pattern was developed so that the orientation of the scanning plane is

parallel to the edge's tangent vector. As mentioned earlier, this means that the

orientation of the scanning planes of the square pattern most closely represents a

plane that is perpendicular to the local surface normal. This can explain the difference

between the two curves. It can further be that the noise in the point cloud has a more

significant effect than this induced error as the noise becomes larger. Therefore the

curves do not deviate significantly for the higher noise values.

The difference diminishes as the value of sir approaches the point where the optimum

amplitude is reached.

All this means that when it is necessary to do a very accurate scan at less than the

optimum amplitude it is better to use a square pattern. Of course, this means that the

point cloud noise must be very small. A value of lFO.005mm corresponds to the noise

that can be expected from a CMM with a touch trigger probe, as shown in Chapter 2.

0.5
0.45 •
0.4 •

x
ëO.35
ë 0.3
... 0.25e 0.2...
~ 0.15
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0
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Zigzag; Square, ,,=O.1mm
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sir
0.15 O.
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r=50mm

Figure 9 Comparison of Zigzag and Square Patterns for Linear Scans.

Figure 9 shows that the zigzag and square patterns follow each other closely when

doing linear scans. However, it is perhaps interesting to note that the zigzag scans
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follow each other very closely, whereas there is some difference between the three

square scans. The reason, if it is significant, is not understood at the time of writing.

5.3. *Experimental Testing

A series of experiments were done to test, first of all, the robustness of the edge

scanning algorithm. The technique of Design of Experiments was used to ensure a

good coverage of the range of parameters that influence the algorithm. A short

background of this technique is given in the following paragraph. This section also

contains a discussion of the experimental results. (The actual results are given in

Appendix E.) The section closes with some general observations of the experimental

results.

5.3.1. Design of Experiments

In this study the influence of 11 parameters are investigated. If the relationship

between these parameters and the outcome of the experiments is linear, then at least

211 experiments must be done to study all the combinations! After the testing the

researcher must draw some conclusions from 2048 experiments. In this case the

relationship between the parameters and the outcome of the experiments is not linear.

This means that many more than 211 experiments are needed.

Design of Experiments is a technique developed to analyse the sensitivity of a process

to any number of parameters without testing all the possible combinations (O'Connor,

1991). Standard tests can be used or derived with the method of O'Connor (1991).

This method reduces the number of experiments dramatically. For example, in this

case only 16 experiments (using a standard test from the Statistica (2000) package)

are enough to analyse the sensitivity of the parameters. (This specific experiment is

given in Appendix E.)

• Although the experimental work is discussed after the analytical model, it was actually done the other

way round. This is mentioned simply because some of the parameter selections for the experiments

turned out to be very unfortunate once the results from the analytical model were known. The insight

gained from the experimental work is nonetheless very useful as described in this chapter.
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The interaction of the parameters can also be investigated, but then more experiments

are needed to avoid the aliasing effect. Basically, aliasing means that the effect of two

or more parameters or interaction of parameters cannot be separated in the results.

However, in the experiments done in this project, the interactions are not investigated.

The experiments assume that the relationship between the experimental outcome and

the parameters is linear. This shortcoming is avoided to some degree by not doing one

experiment for the entire parameter range. The range is divided into smaller regions

and the investigations are done for each region individually.

5.3.2. Choice of Parameters

Eleven parameters were identified that influence the accuracy of the results.

The surface curvature (Ks) in the direction perpendicular to the edge (hereafter simply

referred to as the surface curvature) determines how much the chosen curve, either

linear or quadratic, deviates from the scanned line section. Surface curvatures

between O.002mm-1 and O.125mm-1 were tested. This translates to a radius of

curvature between 8mm and 500mm.

The scanning amplitude is one of the input parameters to the scanning algorithm and

therefore an obvious choice. Amplitudes (A) between 4mm and 50mm were tested.

Noise (1/) values between O.Olmm and O.2mm were tested. This is the noise

associated with the points in the cloud. These values are representative of most of the

scanning methods described in the Chapter 2.

The line pitch (PL) is the distance between consecutive points on a scan line. This is

one of the input parameters to the algorithm. The range tested is from OAmm to 4mm.

The edge pitch (Pe) is the desired distance between consecutive edge points. This is

also an input parameter to the edge scanning algorithm. The range tested is from

O.6mm to 6mm.

The edge curvature (Ke) can influence the ability of the algorithm to follow the edge

and is therefore included in the testing. The range tested is from O.0033mm-1 to

O.033mm-1 and translates to a radius of curvature between 30mm and 300mm.
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Intuitively the intersection angle (fJ) of the two surfaces must have an influence. The

values tested are between 900 and 1500•

The scanning tolerance (e) is another input parameter for the algorithm. Values tested

are between 0.05mm and O.3mm.

One of the objectives of this algorithm is that it must be able to detect the original

edge if there is a fillet radius (Rf) between two surfaces. The ability of the algorithm to

do this is tested by incorporating fillet radii between Omm and 4mm.

The algorithm must also be able to scan on a cloud uncompensated with the probe

radius (Rp). Probe radii from 0.25mm to 2.5mm were tested. This is representative of

the probes in the laboratory.

Lastly, it is hinted in Chapter 4 that the point cloud pitch (Pc) can have an influence in

the outcome. A point cloud pitch between O.lmm and l.4mm was tested.

5.3.3. Discussion of Experimental Results

Twelve experiments were done to test the performance of the edge scanning algorithm

within this parameter domain. The specific parameter range for each experiment is

given in Appendix E and represented in graph form in this chapter. The outcome of

each experiment is also given there. A sensitivity analysis for the parameters was also

done, following the method of O'Connor (1991). The results are given in Appendix E

and in graph form in this paragraph.

The range of the parameters in the twelve experiments was selected randomly to

cover the selected global parameter range. Twelve experiments were enough to draw

the conclusions given in this chapter.

In each experiment a series of 16 tests were done. This was done for the zigzag and

square scan with linear and quadratic approximations of the scan line sections, i.e.

12x16x4=768 tests in total. However, this is by no means an exhaustive test of the

algorithm's ability to detect edges in a point cloud.
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5.3.3.1. Experiment 1

5.3.3.1.1. lrrrors

The parameter range of this experiment is represented in the following graph. The

numbers on the top and bottom axis indicate the global parameter ranges for the

specific parameter. The black bar represents the range of parameter tested in this

experiment. The numerical values of the range is given in Appendix E. This graph is

repeated for each of the experiments discussed hereafter without further explanation.
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Figure 10 Parameter Range of Experiment 1.

Test number IS1.12t failed to detect the entire edge. The analytical model shows that

high ratios between the length of the scan line section and the surface curvature

t The numbers of the tests have the following meaning. It all contains either an S or Z. It refers to

square and zigzag patterns respectively. The number before the S or Z is the experiment number, Le. it

is a number between 1 and 12. The number after the S or Z is either 1 or 2. It refers to linear and

quadratic scans respectively. This is followed by a period and then another number indicating which of

the 16 tests in the experiment it is.
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(hereafter only referred to as S*Ks) should not exceed 0.1 for the linear

approximations. In this case it is 0.334.

5.3.3.1.2. Sensitivity Analysis

0.7 ,--------------------,

0.6

0.5

0.4

0.3

0.2

0.1

o -&..&...---.....

Figure 11 Sensitivity Analysis Results of Experiment 1.~

The errors for the quadratic approximations are significantly smaller. With the high

surface curvature for this experiment, it is not surprising.

The error is sensitive to the amplitude and line pitch for both approximations. Only 3 -

7 points were scanned per scan line section, therefore it is not surprising that the

amplitude and line pitch are so important. This combination determines how well the

curve approximates the line on the surface.

The quadratic approximations are more noise sensitive than linear scans. With so few

points per scan line section the noise has a stronger influence on the approximation of

: The legend of this and the following graphs has the following meaning. ZI means a zigzag pattern

with linear approximations of the scan line section was done. Z2 refer to a zigzag pattern with

quadratic approximations. SI refer to a square pattern with linear approximations and S2 to a square

pattern with quadratic approximations.
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quadratic polynomials than on the lines. Therefore it contributes significantly to the

errors.

5.3.3.2. Experiment 2

5.3.3.2.1. Errors
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Figure 12Parameter Range of Experiment 2.

Test 2Z2.1 and 2Z2.6 both failed to complete the edge. The failure can be related to

the ratio of the length of the section of the scan line that is scanned on the fillet radius,

dj, to the length of the scan line that is scanned on the surfaces, s. The ratio is 1.748

and 1.220 respectively. That means that more points were scanned on the fillet radius

than on the actual surface. Depending on the algorithm's ability to ignore the points

on the fillet radius, this can result in very bad approximations of the scan line sections

and consequently in bad estimates of the edge points. The algorithm needs a

reasonable estimate of the edge points in order to follow the edge reliably.
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5.3.3.2.2. Sensitivity Analysis
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Figure 13 Sensitivity Analysis Results of Experiment 2.

The fillet radius has the most important influence for all scans. The high ratios of df/s

and the fact that only 3 - 7 points were scanned per scan line section can explain it.

This means that the curve approximation is not good enough to extrapolate over the

relatively large gap between the surfaces.

The intersection angle has an important influence in all cases. With larger intersection

angles, the position of the calculated edge point is sensitive to the approximation of

the curve. Small deviations of the approximated curve have a larger effect on the

accuracy of the edge point for larger intersection angles. This is perhaps better

explained in the figure below. In this figure, the approximated lines are shown as solid

lines and the actual surfaces as dashed lines. The deviation of the approximated lines

from the surface is exaggerated.
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Figure 14 Explanation of the Influence of the Intersection Angle.

The amplitude is important for all cases. It determines whether 3 or 7 points per scan

line are scanned. This has a very significant effect on the accuracy of the curve

estimates.

The surface curvature is important for the linear scans. Together with the amplitude it

determines how well the line represents the scan line section.

5.3.3.3. Experiment 3

5.3.3.3.1. ~rrors
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Figure 15 Parameter Range of Experiment 3.
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Test 3Z2.1 possibly failed due to a high ratio of df/s. In this case df/s =1.949.

Tests 3S1.7, 3S1.11 and 3S1.15 most likely failed due to values of S*Ks in the excess

of0.43, much higher than the recommended value ofO.l derived for linear scans.

5.3.3.3.2. Sensitivity Analysis
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Figure 16 Sensitivity Analysis Results of Experiment 3.

The errors in this example are very high. As already mentioned for the tests that

failed, this experiment has high df/s and s *Ks values. The ratio of the line pitch to the

cloud pitch also varies between 1.4 and 4. The higher this ratio, the further the

scanned points lie from the desired pattern. All these factors contribute to the high

average errors for this experiment. The fact that the amplitude, fillet radius and

surface curvature stand out in all the tests supports this observation.

The analysis indicates that the linear approximations are sensitive to the ball radius.

This is not well understood. It seems to have a very small effect on quadratic

approximations. Possibly bad line approximations are amplified during the

compensation process.

It is also interesting to note that the effect of the intersection angle, explained for

Experiment 2, has a larger effect for quadratic approximations. This is possible since
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the angle between the quadratic polynomials at the intersection point is larger than the

angle between lines fitted to the same points due to the curvature of the polynomials.

5.3.3.4. Experiment 4

5.3.3.4.1. Errors

max 0.125 50 0.2 4 6 0.033 150 0.3 --------,4 2.5 0.1

I II II II III
min 0.002 4 om 0.4 0.6 0.003 90 0.05 0 0.25 1.4

II)~~ jI '~I~I ~~ a~-7 =~ ~I ~I ~I .c ~
~ -;"ê 0::"'" .g ê... - .~ ê ~- ê "': ~
!:! ~ :.= ....... z~ Q.,~ Q., ~ ~ u_ E~ ~~ ~~ Q.,~

ê'
II) C>I)

.Jl 'B!;/)!:!~ .~ a !:!~
~~ ~ - II)u -c -l ~ U II) .0 .sa.s s ct u

"'"

Figure 17Parameter Range of Experiment 4.

The following tests all failed to scan the complete edge: 4Z1.3; 4Z1.7; 4Z1.11;

4Z1.15; 4Z2.11; 4S1.1; 4S1.3; 4S1.4; 4S1.5; 4S1.7; 4S1.9; 4S1.11; 4S1.12; 4S1.13;

4S1.15; 4S1.16; 4S2.11.

With this experiment, the significance of the ratio s *Ks was first noticed. With values

of this ratio between 0.318 and 0.67 it is not surprising that so many of the linear tests

failed.

5.3.3.4.2. Sensitivity Analysis

The high errors for the tests that failed completely overwhelm the sensitivity analysis

for the linear approximations. The errors are an order of magnitude larger than the
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errors of the successful scans. It was therefore decided not to include the sensitivity

analysis for the linear approximations in the graph below.

0.7
0.6

.... 0.5E
E.... 0.4 OZ2f
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!
ID 0.2rn

0.1
0

The high sensitivity of the quadratic approximations to the cloud pitch stands out.

This can be due to the large difference between the minimum and maximum cloud

pitch used in the experiment (0.36mm and O.7mm respectively). The ratio of the line

pitch to the cloud pitch is also very important as explained earlier. It determines how

close the actual pattern will be to the desired pattern.

Figure 18 Sensitivity Analysis Results of Experiment 4. (Quadratic

Approximations Only.)

Fillet radius stands out for both quadratic scans. Due to the high s *Ks ratios,

decreasing the fillet radius has the effect of including more points on the surface and

thus helping to improve the results.

5.3.3.5. Experiment 5

5.3.3.5.1. Errors

The following tests all failed to scan the complete edge: 5Z1.9; 5Z1.11; 5Z2.6; 5Z2.8;

5Z2.11; 5Z2.14; 5Z2.15; 5S1.1; 5S1.7; 5S1.11; 5S1.15; 5S2.1; 5S2.5; 5S2.11; 5S2.14;

5S2.15.
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Figure 19 Parameter Range of Experiment 5.

The high number of failures can be explained by an observation that was only made

after all the experimental work was completed. It is given here.

The purpose of the scanning tolerance is to exclude points that lie on the fillet radius.

lts purpose is not to exclude noisy points that belong to the surface. Since the edge

scanning algorithm works with only a few points on each scan line section, it is better

to do the calculations with a few noisy point than very few not so noisy points.

Therefore the scanning tolerance must be larger than the noise level of the point

cloud.

However, it was observed that the point cloud noise is not the only source of noise.

The scanned points are projected onto the scanning plane before the curves are fitted.

If the scanning plane normal and the local surface normal vector at the point is

perpendicular the projection is perfect. However, this is seldom the case. There is an

additional component to the noise that is inherent to the edge scanning algorithm. The

following picture explains this. The point A must be projected onto the scanning plane

prior to fitting the polynomials. This projection is done along the scanning plane

normal represented by line AB. If line AB is not parallel to the surface, but deviates

by the angle ¢J then additional noise is incurred, i.e. if ¢J =0, then the projected point
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will be C and only the cloud noise, 17,is incurred. The maximum length of line AB is

pc, the point cloud pitch.

The point should not be further away from the scanning plane than the cloud pitch.

Through experimentation, it was found that tP is seldom more than 10°. A better

guideline for specifying the scanning tolerance is then

(5.3.3.5.1.1.)

In this experiment, the tolerance is often smaller that the one specified by this

guideline. Combined with reasonably high noise values, O.lmm, and few points per

scan line section (4-8 points), it is understandable that many of the curves do not

represent the scan line sections well. This in turn leads to poor edge point estimates

and therefore to the inability of the algorithm to complete the scanning ofthe edge.

Curve Representing
Actual Surface

A

Figure 20 Additional Component of Noise Due to Point Projection.

It is also interesting to note that the linear scans are slightly more robust than the

quadratic scans (6 vs. 8 failures). This is the opposite of Experiment 4. The reason is
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probably the better S*1Cs ratios in this experiment. Also, the tolerance ratios (O&"'in) are

worse than in Experiment 4, which may mean that the quadratic scans are more

sensitive to the noise in the data.

5.3.3.5.2. Sensitivity Analysis

30

25
....
E 20 oZ1.§.

f .Z2
15

E .51
•c 10 .52
~

5

0

Due to many failures the errors are high and it is therefore dangerous to draw too

many conclusions from the sensitivity analysis. It is significant that the tolerance

stands out for the all tests, especially the quadratic scans - this supports the theory for

the many failures.

Figure 21 Sensitivity Analysis Results of Experiment 5.

5.3.3.6. Experiment 6

5.3.3.6.1. Errors

All tests were successful.
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5.3.3.6.2. Sensitivity Analysis
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The amplitude, surface curvature and intersection angle stand out for the linear scans.

This shows the importance of choosing these parameters so that a good linear

I

Figure 22 Parameter Range of Experiment 6.
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Figure 23 Sensitivity Analysis Results of Experiment 6.
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approximation can be made when the linear model does not really represent the

surface.

The quadratic scans are sensitive to the choice of the amplitude, intersection angle and

fillet radius. The amplitude to fillet radius ratio determines how well the curve

extrapolates. It was already shown that the edge point calculation is sensitive to

intersection angle, especially for the quadratic scans. Therefore these parameters have

an important influence on the calculation of the edge points.

I I IIII- II
min 0.002 4 0.01 0.4 0.6 0.003 90 0.05 0 0.25 1.4
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Figure 24 Parameter Range of Experiment 7.

5.3.3.7. Experiment 7

5.3.3.7.1. Errors

max 0.125 50 0.2 4 6 0.033 150 0.3 4 2.5 0.1--------------------------------

The following tests all failed to scan the complete edge: 7Z1.1; 7Z1.6; 7Z1.8; 7Z2.8;

7S2.14.

This experiment has much the same input values as Experiment 6, but the cloud pitch

is higher. This leads to a higher &min. It can explain the failure of some tests to,
complete the scan.
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5.3.3.7.2. Sensitivity Analysis
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Figure 25 Sensitivity Analysis Results of Experiment 7.

The linear model follows the same trend as Experiment 6; therefore the same

observations can be made.

Due to the high error of test 7S2.14, which failed, there is not a significant difference

between the sensitivities of the different parameters.

The cloud noise and cloud pitch are prominent for the quadratic ZIgzag. The

observations already made about the influence of these parameters are again

applicable here. The absolute value of the pitch is about twice that of the pitch in

Experiment 6, thus the noise effect is much higher than in Experiment 6.

5.3.3.8. Experiment 8

5.3.3.8.1. Errors

The following tests all failed to scan the complete edge: 8S1.4; 8S1.11; 8S1.15.

All but the first failed one has tolerance ratios more than 1. The tolerance ratio for

8S1.4 is still high, 0.747.
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5.3.3.8.2.

II

The sensitivity of the linear scans to amplitude, surface curvature and line pitch

supportswhat have been said for previous experiments.

Figure 26 Parameter Range of Experiment 8.

Sensitivity Analysis
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Figure 27 Sensitivity Analysis Results of Experiment 8.
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Line pitch, amplitude and noise are again important for the quadratic scans. The

reasons are the same as mentioned for earlier experiments. It is probably sensitive to

the line pitch, because it helps determine the number of points per line section, which

is between 3 and 9 for this case. (Three being rather low for quadric scans.)

5.3.3.9. Experiment 9

5.3.3.9.1. Errors
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Figure 28 Parameter Range of Experiment 9.

The following tests all failed to scan the complete edge: 9Z1.16; 9Z2.11; 9Z2.14;

9S2.14. The tolerance ratios for all these cases are more than 1.

5.3.3.9.2. Sensitivity Analysis

The same observations made for Experiment 8 can be repeated for this experiment.
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Figure 29 Sensitivity Analysis Results of Experiment 9.

5.3.3.10. Experiment 10

5.3.3.10.1. Errors
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Figure 30 Parameter Range of Experiment 10.
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The following tests all failed to scan the complete edge: 10Z2.8; 10Z2.14; 10S1.4;

10S1.7; 10S1.14; 10S1.15; 10S2.14. The tolerance ratios for these cases range from

0.747 to 1.495.

5.3.3.10.2. Sensitivity Analysis
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Figure 31 Sensitivity Analysis Results of Experiment 10.

Again, the surface curvature and amplitude are very prominent for the linear scans.

There is nothing of real prominence for the quadratic zigzag. The noise is significant

for the quadratic square. With high tolerance ratios and few points per line section (5

- 11 points per scan line section) it is not surprising. It influences the accuracy of the

curve approximation.

5.3.3.11. Experiment 11

5.3.3.11.1. Errors

The following tests all failed to scan the complete edge: 11Z2.14; 11S2.9; l1S2.11.

The tolerance ratios for all these cases are in the excess of 1.
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Figure 32 Parameter Range of Experiment 11.

Sensitivity Analysis
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5.3.3.11.2.

The high error for test 11Z 1.1 overwhelms the results for the linear zigzag. The large

error is due to the inadequate tolerance ratio (1.491). This led to bad edge point and

II
I

Figure 33 Sensitivity Analysis Results of Experiment 11.
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tangent estimations, which in turn led to a bad estimation of the next point that the

27th and 28th scan lines aimed for. This is why the error is so high, see Figure 34.

What is surprising is not the high error, but the fact that the scan was completed at all.

The bad scans at lines 26-28 caused the offset direction to flip. That is why the error is

the same order of magnitude as the probe diameter.

Figure 34 Zigzag Pattern for Test nZ1.1. (One part ofthe scan is shown. Notice

the circled area.)

For this reason, the sensitivity results for the linear zigzag is not included in Figure

33. It makes it hard to see the trends for the rest of the scans. The same observations

made in the previous experiment can be repeated for the results in Figure 33.

5.3.3.12. Experiment 12

5.3.3.12.1. Errors

Due to the lower cloud pitch in this experiment than in the previous experiment, the

specified tolerance is adequate to complete the scan.

5.3.3.12.2. Sensitivity Analysis

This is the only experiment where the edge pitch has a significant influence on the

linear scans. Seen with the high prominence of the ball radius, it seems that it

influences the quality of the offset vector. The line pitch and fillet radius are also

important, probably for reasons mentioned earlier.

The amplitude, fillet radius and intersection angle override the influence of the edge

pitch for the quadratic scans. The influence of these parameters was discussed earlier.
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Figure 35 Parameter Range for Experiment 12.
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Figure 36 Sensitivity Analysis Results of Experiment 12.
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5.3.4. General Conclusions

5.3.4.1. Sensitivity Analysis

The dominance of the surface curvature and amplitude in all the linear scans is clear.

This is not surprising since the lines are a much worse approximation of the scan line

sections than the quadratic polynomials. It seems that this effect is so strong that it

completely overwhelms the influence that any other parameter might have.

The amplitude again features as the most important parameter for the quadratic scans,

but the surface curvature seldom features at all. Since the line pitch is prominent with

the amplitude, it seems that the effect of the amplitude is on the number of points in

each scan line section rather than how well a quadratic polynomial can approximate a

circular segment. In fact, the analytical model shows that the quadratic polynomials

approximate the circular segments very well for the arc angles used in the

experimental testing. The amplitude and line pitch determines the number of points in

the scan line section and this has a more important influence on the quality of the

quadratic polynomial. This observation is supported by the comparison of the

analytical model with actual scans done earlier in this chapter.

The scanning tolerance and point cloud noise also feature prominently for the

quadratic scans. Mostly it seems that the approximation is very noise sensitive when

working with a small number of points. The scanning tolerance influences the number

of points that is included in the approximation.

The intersection angle's effect is more significant for quadratic scans than the linear

scans. This was explained in the discussion of Experiment 2.

The effects of the fillet radius and the point cloud pitch were discussed earlier. It

seems that they only have an important effect on the quadratic scans. It is possible that

the strong influence of the surface curvature and amplitude suppresses the importance

of these two parameters for the linear scans, because there does not seem to be any

reason why they should not also be significant for the linear scans. The effect of the

fillet radius is further diminished for linear scans because they are more robust in

extrapolation than the quadratic scans.
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5.3.4.2. Range of the Intersection Angle

The range of the intersection angle that was tested is not very large. Some initial tests

showed that failures often resulted if angles much larger than 1500 were used.

However, there is certainly room for further investigation of the practical range of this

parameter.

5.3.4.3. Ratio of df/s

The significance of the ratio of df/s was alluded to in the discussion of Experiment 2.

The experiments in general showed that this ratio should be kept below 1 whenever

possible. There are some tests that completed the edge scan despite ratios more than 1.

It is, however, a good practical guideline to keep df/s<l. It also influences the

accuracy of the results.

If it is not possible to scan with df/s<l, matters can be improved by selecting the

scanning parameters such that the maximum number of points per scan line section

can be achieved. This improves the curve approximation, which improves the chance

that the edge point calculated after extrapolating the curve is close to the actual edge.

5.3.4.4. Success Rate

62 out of the 768 tests were unable to complete the scanning of the edge. This is a

success rate of 92%. This is however under laboratory conditions where all the object

parameters are known and the distribution of the points in the cloud is also ideal.

It is interesting to note that the square pattern has more failures than the zigzag (37 vs.

25). The reason for this possibly lie in the way with that the scanning plane is

determined for the two patterns. The square pattern uses the estimated edge tangent as

the scanning plane orientation. The plane origin is at the estimated next edge point.

The zigzag pattern uses the edge's tangent as well as the vector from the end point of

the last scan line to the estimated next edge point to determine the orientation vector.

Therefore, the next scan line starts at the last scanned point. Essentially this means

that there is a better chance to minimise the effect of a bad estimate of the edge's

tangent when determining the scanning plane orientation for the zigzag pattern than

for the square pattern. This leads to a more robust scan.
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5.3.4.5. Selection of Scanning Tolerance

Another guideline that was derived as a result of the experimental investigation is the

guideline for selecting the scanning tolerance given in equation (5.3.3.5.1.1.). The

significance of this guideline is illustrated by its ability to explain many of the failed

scans.

It leads to the question whether it is good to project the points to the scanning plane

before doing the curve approximation. As explained in paragraph 4.3.1. this is done to

improve the robustness of the algorithm.

5.3.4.6. Selection of Scanning Amplitude

The analytical investigation earlier in this chapter indicated that there is an optimum

amplitude to scan at. It also hinted, and the experimental investigation further

supports the observation, that there is a maximum acceptable amplitude for a specific

object. The experimental investigation further shows that there is a minimum

amplitude, first of all due to the number of points required on each scan line section

and secondly to satisfy df/s< 1. With this it is possible to bracket the range of practical

amplitudes for a specific object.

First, since df/s must be smaller than 1, s must at least be equal to dj. Thus, the total

length of the scan line, i.e. the amplitude, must be greater than 3 times dj. According

to the analytical model, df=2~Rp+Rf)' where t/J is found from equation 5.2.1.1.

Therefore

(5.3.4.6.1.)

Also, there must be at least 3 points per scan line section. Since

If there must be 3 points on the scan line section, s/PL=3. Therefore
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Thus

(5.3.4.6.2.)

The maximum amplitude obtained with equation (5.3.4.6.1.) and (5.3.4.6.2.) is the

minimum practical amplitude.

By comparing the analytical error with some experimental results in Figure 6 it seems

that the sir must not exceed 0.6 for quadratic scans. With s=0.6r the maximum

amplitude for the quadratic scan can be derived. Again, since A=2s+df

(5.3.4.6.3.)

With (slr)max=O.l from Figure 7 for linear scans, a maximum amplitude for linear

scans can be derived in the same way.

(5.3.4.6.4.)

In Figure 6 it appears that the optimum amplitude is reached at about slr=O.4. Thus, in

the same way that the maximum amplitude is derived, the optimum amplitude for

quadratic scans is

(5.3.4.6.5.)

For linear scan it appears from Figure 7 that the optimum sir is 0.08. Thus, for the

linear scans the optimum amplitude is

AOplimum=0.16r+2(I,Rp+Rf) (5.3.4.6.6.)

It can happen that inconsistent values of the maximum and minimum amplitudes are

found with these equations. It does not mean that it is impossible to scan the edge if

this happens, but it does mean that the results can be very inaccurate.
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5.3.4.7. Selecting a Good Point Cloud Pitch

The considerations that made it possible to determine the maximwn and optimum

amplitude can also be used to determine good values for the point cloud pitch. §

First of all, since there must be at least 3 points per scan line section and remembering

from paragraph 4.3.2. that the point at which the scan line is divided is not used

thereafter, the length of the scan line section must be at least 3PL. In paragraph 4.4.4.

it is also determined that PL~1.5pc. It is shown that s~0.6r for quadric scans.

Therefore the maximwn allowable cloud pitch is

3( 1.5pc)~0.6r

pc~0.133r (5.3.4.7.1.)

The ideal cloud pitch for quadratic scans is determined by the fact that the best value

of sir is 0.4 from Figure 6. For this test about 20 points where scanned.

20(l.5pc)=0.4r

(Pc)ideal=O.O 13r (5.3.4.7.2.)

Similarly a maximwn and ideal pitch can be derived for linear scans.

pc~0.022r (5.3.4.7.3.)

(5.3.4.7.4.)

The equations for the ideal pitch for the quadratic scans can already result in very

dense point clouds. If, for example, the edge of a 60mm diameter pipe must be found,

the ideal cloud pitch is O.4mm. This can result in a massive point cloud that can be

very cwnbersome to handle on a computer. It can also be very expensive and time

consuming to generate such a cloud. The maximwn pitch for this example is 4mm.

§ Of course, often the designers will have to work with what they have. It can happen that they cannot

pre-select the cloud pitch. In this case the guidelines developed here can only be useful to decide

whether it is feasible to use the edge scanning algorithm at all.
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The above equations show that it can also be more practical to use a quadratic scan

from the point of view of the size of the point cloud and the cost and time needed to

generate it.

Depending on the cost, time and accuracy constraints, together with the available

facilities, a cloud pitch between these two values must be used.

It must also be noted that nothing is gained by scanning at a cloud pitch below the

ideal scanning pitch.

5.3.4.8. Summary of Guidelines

A summary of the guidelines developed in this and the previous chapter are presented

in Table 1. These guidelines must be used to select effective scanning parameters.

Table 1Summary of Guidelines.

Parameter Scan Type Guideline Equation
Number

-e Linear pc:::;;0.022r 5.3.4.7.3.
:s
..9,.c: Linear (Pc)ideal=0.003r 5.3.4.7.4.u.s- .- Quadratic 5.3.4.7.1.s::=.. pc:::;;0.133r.-0=.. Quadratic (Pc)ideal=O.O Br 5.3.4.7.2.

Line Pitch All PL~1.5pc Paragraph
4.4.4.

Edge Pitch No guideline was developed. The best is to make it equal to the line
pitch.

All A~6¢(Rf+Rp)and 5.3.4.6.1.

A~6PL -2¢(Rp -Rf) 5.3.4.6.2.

~:s Linear A:::;;0.2r+2rfi,Rp+Rf) 5.3.4.6.4..":
P..e Quadratic A:::;;1.2r+2¢i...Rp+Rf) 5.3.4.6.3.«

Linear Aoptimum=0.16r+ 2¢i...Rp+Rf) 5.3.4.6.6.

Quadratic Aoptimum=O.8r+ 2¢i...Rp+Rf) 5.3.4.6.5.

Scanning All Gmin=".r Pcsin( 10°) 5.3.3.5.1.1.
Tolerance
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5.4. Scanning Time

Figure 37 shows the scanning time for 16 scans done on a point cloud containing

123426 points. The experiment was done on a Pentium ill 733MHz computer with

128MB RAM. The increase in amplitude means that the number of points per scan

line increased linearly for each scan. A quadratic square pattern was used for all 16

scans. Clearly the scanning time is proportional to the amplitude if all other

parameters remain the same. The times shown exclude the time for building the

octree.

160
•140 •- •u

~ 120 • •-S 100 ••
~ •80 •r ••·e 60 •= •= 40 •u •00- •20

0
0 20 40 60 80 100 120 140

Amplitude [mm]

P lP e=2mm ~=O.5mm E=02mm
IC e=O.004mnrl RrOmm IC s=O.Olmnrl
()=n/2 P c=lnnn 17=O·OO5mm

Figure 37 Scanning Time with Increasing Amplitude.

The rectangular box representing the root node of the octree is such that it will just

enclose all the points in the point cloud. As explained in Chapter 3 the root node is

refined until the length of the smallest side of any node is below a specified minimum

length. This will determine the number of levels in the octree. An investigation into

the search time for point clouds with increasing number of points was done and the

results are presented in Figure 38. The first six tests shows an almost constant time to

scan the edge. Then there is a small step and the next 10 tests again took almost the

same time. By keeping all the other scanning parameters the same while increasing

the number of points in the cloud, the size of the box containing the points increased
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for each test. Therefore the root node in the first 6 tests were refmed 4 times while

that of the last 10 tests were refined 5 times. It is interesting to note that the scanning

time does not depend on the number of points in the cloud, but rather on the number

of levels in the octree. This is a great advantage of storing the points in an octree data

structure. Note that in Figure 38 the octree build time is not included.
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Figure 38 Scanning Time with Increasing Point Cloud Size.
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Chapter 6.

Surface Modelling

6. 1. Introduction

The edge scanning algorithm developed in the preceding chapters is aimed at

expediting the approximation of point clouds with parametric surfaces. The surface

modelling techniques discussed in this chapter are used in the next chapter. There it is

shown how the edge information can be combined with these techniques in order to

accelerate the Reverse Engineering process.

This chapter does not contain new work. It should rather be seen as a literature

review. The only exception is the section on surface-surface intersections and possibly

the section on surface extensions. In the latter, an interesting result is presented on the

surface extension method used in AutoCAD (2000). In the former, a comparison is

made with the new edge detection algorithm.

The chapter introduces the terminology and notation used in this thesis. Various

NURBS surface techniques are discussed, such as least squares fitting, lengthening

surfaces, finding surface-surface intersections, etc. The chapter concludes with a

paragraph on the modelling and approximation of swept surfaces.

6.2. Basic B-spline and NURBS Theory

The purpose of this paragraph is simply to introduce the notation used in the rest of

this chapter. This is done by giving the well known equations for B-spline and

NURBS curves and surfaces. In the process, some terminology is also clarified. As far

as possible, this thesis follows the notation adopted by Piegl and Tiller (1997).

6.2.1. B-Spline Curves and Surfaces

B-spline curves are defined by the following well known parametric equation:
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n

C(U)= LN;,k(U)P;
;=1

(6.2.1.1.)

In this equation, Pi are the n three dimensional control points of the B-spline. The

parameter, u, is defined between fixed real numbers a and b, such that a su 5b and a

< b. Ni,k(U) is the polynomial basis function of degree k (order k+1) on the variable u.

The basis polynomials are completely defined by the degree k and a knot vector,

{Uj }~:~ such that Uj 5 Uj+I for j=O ... n+k. In this thesis, it is assumed that the knot

vector is defined as follows:

a = UI = U2 = ... = Uk< Uk+I 5Uk+2 5...su; < Un+I = ... = Un+k= b

Knots of multiplicity greater than one are allowed.

The basis polynomials, Ni,k(U), for a fixed U are calculated with the recurrence relation

for B-splines given by De Boor (1978) and shown in the following equation:

~,k(U) = 1, Uj 5u < Uj+I for k=O

= 0, otherwise

N kJ.

U-Uj Uj+k-U
---=---Nj.k_1 (u)+-__:_--N;+I k-I (U)
Uj+k-I -U j Uj+k -U j+1 '

(6.2.1.2.)

The B-spline tensor product surface is given by the following equation:

n m
S(u,v)= LLN;.k(U)Nj,l (v)P;j

;=1j=1
(6.2.1.3.)

There are n times m control points for the surface.

6.2.2. NURBS Curves and Surfaces

NURBS (or Non-Uniform Rational B-spline) was formulated by Tiller (1983).

Rational B-spline curves are defined by
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n

LNi,P(U)WJ~
C(u) ....:...i=....:...I _

n

LNi,p(U)Wi
i=1

(6.2.2.1.)

Ni,p(u) is the lh B-spline basis function of degree p on the parameter u, as defined by

equation 6.2.1.2. NURBS are defined in 4D homogeneous space. The control points

in 4D space are plv=(wx,wy,wz,w/. The lh homogeneous coordinate, or weight, is Wi.

Pi is the lh 3D control point, Pi=tx.y.zl':

A NURBS surface, as given by equation (6.2.2.2.), is a bi-variate extension of the

NURBS curve.

n m

LLNi,p (u)Nj,q (V)wi,jP;,j
i=1 j=1S(U,V) n m

LLNi,p ««; (v)wi,j
i=1 j=1

(6.2.2.2.)

The knot vector definition and the calculation of the B-spline basis functions are the

same as the B-spline curves and surfaces. Note that when Wi=1 for all i=1,...,n, the

original B-spline representation is again obtained.

6.3. NURBS Surface Approximation

NURBS surface approximation is a very common method of reconstructing a surface

in Reverse Engineering. It has several advantages over triangulating the data (also a

very common reconstruction approach). For one it gives a much more compact

representation of the surface. It gives a surface of arbitrary continuity. (Cubic surfaces

are at least C2 continuous.) The nature of the approximation process is such that it will

filter out noise in the data. It gives a designer more opportunity to modify the model if

that is necessary as well as better control of the final shape. Approximation is

however a very time consuming process requiring constant involvement by the

designer. A lot has been published about the problem in the last decade. This

paragraph briefly refers to the methods used in this project.

The distance between the NURBS surface and the point cloud must be minimised.
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,
m -

minofIllQj -C(uj,Vj)11
j=1

(6.3.1.)

e:, j= L,... .m are the data points. C(Uj, vj) is the corresponding point on the NURBS

surface and (Uj,vj) are the parameters assigned to each point. This is a non-linear

problem since the parameters for each point, (Uj,vj), as well as the control points of the

surface must be determined. The knot vectors of the surface must also be found.

It appears that when working with unstructured point clouds that the base surface

parameterisation method suggested by Ma (1994) (see also Ma and Kruth, 1995a) is

the best option. Essentially, the designer must construct a surface that roughly

approximates the point cloud. The points are then projected onto this surface to obtain

their parameters. The better the base surface approximates the point cloud, the better

the parameterisation will be.

The base surface method seems cumbersome since the designer must construct a

separate surface simply to parameterise the cloud, but Piegl and Tiller (2001) argue

that the process cannot be automated and they agree that this method is the best

available to date. A number of researchers have tried various methods to iteratively

optimise the parameterisation, see for example Hosehek (1988), Rogers and Fog

(1989), Sarkar and Menq (1991b) and Lai and Lu (1996). However, it is this author's

experience that the improvement made during parameter optimisation is not worth the

computational time. Rogers and Fog (1989) agree that the initial parameterisation is

often good enough.

After parameterisation, the knot vectors must be selected. Here, the method proposed

by Piegl and Tiller (1997, pp. 412) is used. This results in a uniform distribution of

the knots. However, this is not always ideal. In regions of higher surface curvature

more control over the surface's shape can be obtained by inserting more knots in that

region, provided that the cloud is dense enough. This is why Sarkar and Menq (1991a)

and Ma (1994) suggest that in a good Reverse Engineering system, the designer must

be able to refine the knot vectors interactively.

Once the parameterisation and knot vectors are known, equation 6.3.1. is rewritten in

matrix form, equation 6.3.2., and the control points can be solved with Gauss

elimination. In equation 6.3.2. N is the matrix containing the B-spline basis functions,
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P is the vector of control points and Q is the vector containing the point cloud's

points. Dierckx (1993) and Piegl and Tiller (1997), amongst others, discuss the

derivation of this equation.

(6.3.2.)

Strictly speaking, the weights of the NURBS surface's control points must also be

calculated. However, this is seldom done, probably because little is gained at

considerable additional computational cost. Most researchers assume that the weights

are known. In practice this means that the weights will most likely all be 1, in which

case the problem of NURBS surface approximation reduces to the problem of B-

spline surface approximation. This author knows only about the attempts by Ma and

Kruth (1995b) and Yau and Chen (1997) to calculate the weights. In this work, the

weights are assumed to be 1 for all control points.

6.4. Lengthening NURBS Surfaces

As mentioned earlier in this thesis, there often are gaps between the approximated

surface due to the point cloud segmentation. If no boundary conditions are applied,

gaps will exist regardless of the segmentation. One way of avoiding the gaps, as

already implied, is to apply boundary conditions during surface approximation. Kruth

and Kerstens (1998) show how this can be done, but they warn that problems occur if

the edges where the surfaces meet are not of equal length. Lai and Lu (1996) create

blending surfaces between the fitted surfaces.

This author's experience is that extending the surfaces and calculating the intersection

curve is a very robust method. Only the paper by Shetty and White (1991) was found

on this topic. They present a method for extending surfaces using tangential or

curvature continuity. Their method is presented in Appendix H.

Their method was implemented for linear extrapolations. The results obtained with

their method were compared to surface extensions done with AutoCAD (2000). It is

interesting to note that in at least one case, the extension done with AutoCAD (2000)

did not result in the promised tangential continuity. It is not clear why this error

occurred. It is also not easy to see, because the tessellation of the surface in the

AutoCAD (2000) graphical interface hides the discrepancy. The error was noticed
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when the derivatives across the boundary were checked. The extension with Shetty

and White's (1991) method produced a perfect extension for the same surface. (The

results and surface definitions for this case are given in Appendix H.) AutoCAD

(2000) apparently produce no problem when the weights of the surface's control

points are all one. In the case mentioned here, the weights were not all equal to one.

6.5. Surface-surface Intersections

6.5.1. Intersection of NURBS Surfaces

There are essentially two approaches in the literature for calculating intersections of

NURBS, or B-spline, surfaces.

The first approach is the divide-and-conquer algorithm implemented by Peng (1984)

for B-spline surfaces. The convex hull property of B-spline surfaces is used. The

surface is subdivided (see Bëhm, 1981) until the patch is small enough so that it can

be considered a flat surface. The convex hull property is used to do the checking. This

is done for both surfaces. The intersection points are found from the intersection of

the small flat surfaces. Numerous refmements are possible to limit the subdivision to

the region of the intersection. Of course, NURBS surfaces have the same convex hull

property as B-spline surfaces and can be subdivided in the same way as the B-spline

surfaces.

This type of algorithm has the advantage that it is computationally robust. The trouble

is that it only gives a number of intersection points without any indication whether the

points belong to the same intersection curve. Peng (1984) implemented an

extrapolation method that traces the entire length of the intersection curve.

The alternative method of finding the intersection is an iteration method. After

selecting starting points, the distance between surfaces are minimised until the

intersection points are found. Chen and Ozsoy (1988) implemented such a method for

parametric surfaces in general. One of the major problems with this method is finding

good starting values for the iteration scheme. Therefore, convergence of the algorithm

is not guaranteed. Abdel-Malek and Yeh (1997) address this issue. Interestingly they

remark that divide-and-conquer methods are most often used.
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Due to the comments of Adbel-Malek and Yeh (1997) a divide-and-conquer method

was implemented for NURBS surfaces for this project. Refer to Peng (1984) for

details of the algorithm.

6.5.2. Comparison with Edge Scanner Method

The surface extension method described earlier in this chapter is used with the

intersection algorithm to create trimmed NURBS surfaces that ensures a closed

surface model. In a simple test the results obtained with this approach are compared

with results obtained with the edge scanning algorithm in this paragraph. (This is not

intended as a comprehensive comparison of the two methods. Such a comparison is

beyond the scope of this project.) Experiment 2S1.11 (Appendix B) is used in the
. .

companson.

The parameters of the base surfaces, constructed in AutoCAD (2000), are given in

Appendix I. The base surfaces and the approximated surfaces are shown below.

Figure 1 Base Surfaces Used to Parameterise the Point Cloud.

• This specific example was selected because the object has a reasonable fillet radius (lmm) and the

size of the object combined with the point cloud density means that the point clouds used in the surface

approximation are easier to handle.
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Figure 2 Fitted Surfaces Used to Calculate Intersection Points.

The average errors of the outer and inner surfaces respectively are O.027mm and

O.046mm. The surfaces were extended and the intersection curve calculated. The

intersection curve was compared with the real intersection circle. The average error is

O.086mm. The average error of the edge detected with the edge scanning algorithm is

O.094mm.

The first observation is that the errors are of the same order of magnitude. This is as

expected. Both the surface intersection method and the edge scanning method use a

linear extrapolation to find the intersection curve.

The surface intersection method's result is a little better than the edge scanning

method. In this case it is expected since the surface curvature is significant enough to

make the influence of the deviation from the line approximation important.

Lastly, the surface intersection method's result can be improved by improving the

surface fit. The fitting result is not the best if the maximum point cloud noise of only

O.Olmm is considered. The high errors are probably due to the particular base surfaces

used in this example. No attempt was made to improve the surface approximation.

6.6. Swept Surfaces

6.6.1. The Use of Swept Surfaces in Reverse Engineering

In the literature review the point is made that it is often necessary to extract surfaces

with engineering "meaning" from the point cloud. When an object is simply copied,
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any surface definition that satisfies the requirements for smoothness and accuracy can

be used. However, as soon as the designer has to modify parts of an object, it is

necessary to have surfaces that can be manipulated within a standard CAD package.

This can be done to some extent with free-form surfaces.

However, most often engineering components, such as the core box for the manifold

described in the pilot study, are modelled with standard surfaces such as extrusions,

surfaces of revolution, ruled surfaces and swept surfaces. These surfaces are well

suited to parametric modelIers such as AutoCAD Mechanical Desktop (2000).

Under certain circumstances it is therefore useful to extract the original surface type

from the point cloud. Elsasser and Hosehek (1996) describe the approximation of

point clouds with surfaces of revolution. Ueng and Lai (1998) (also Ueng et aI., 1998)

discuss approximation by swept surfaces.

6.6.2. Swept Surface Definition

A swept surface is defined as a profile curve that is traversed along a trajectory. It can

either be only translated or rotated and translated along the trajectory. In equation

6.6.2.1. Ttu) is the trajectory curve, Ptv) is the profile curve and M(u) is the

transformation matrix representing the translation or translation and rotation. M(u)

can also be used to scale the profile curve.

S(u, v) = T(u) +M(u)P(v) (6.6.2.1.)

If the profile curve must be rotated as well, some difficulties arise to ensure a

consistent rotation. This is described by Piegl and Tiller (1997), amongst others.

Ueng et al. (1998) avoid this problem by only translating the profile curve, but adding

blending functions. This makes it possible to use two profile curves and two

trajectories. Given two profiles (superscript PI and P2) and two trajectories (superscript

Tl and T2) as follows, the swept surface definition of Ueng et al. (1998) is given in

equation 6.6.2.6. (The nomenclature of this and the following equation is explained in

paragraph 6.2.)

6.9

Stellenbosch University http://scholar.sun.ac.za



m

ePI(v) = "LNj,q(v)pt
j;1

(6.6.2.2.)

(6.6.2.3.)

n

c" (u) = "N (u)pTlL.... ',p , (6.6.2.4.)
i;1

(6.6.2.5.)
i;1

Po(v)r(v)[Ni,p (u) - ao (u)Ni,p (0) - al (u)Ni,p(l) T p;T!
PI (v)r(v)[Ni,p(u) - ao (u)Ni,p (0) - al (u)Ni,p (1)] pT2

S(u, v) = 'PI (6.6.2.6.)
ao(u)Nj,q(v) Pj

al(u)Nj,q(v) p:2

or

S=NP (6.6.2.7.)

with

(6.6.2.8.)

(6.6.2.9.)

Po(v)=I-v (6.6.2.10.)

(6.6.2.11.)

IlePI(v) - eP2(v)11rev) = --."-----"------,,,------:-:-"------;:-
Po(v)llePI (0) - eP2(0)11 + PI (v)lIePI (1) - eP2(1)11

(6.6.2.12.)

An important disadvantage of swept surfaces is that equation 6.6.2.1. cannot be

written in the compact form for NURBS surfaces given in equation 6.2.2.2. The

implication is that separate algorithms for such operations as lengthening and fmding

intersections (as presented earlier in this chapter), must be written. This is not a
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problem for some of the other standard surface types such as ruled or revolved

surfaces (piegl and Tiller, 1997).

Due to this shortcoming a number of researchers (Bronsvoort and Waarts, 1992, Piegl

and Tiller, 1997 and Jiittler and Wagner, 1999) have made a skinning approximation

of the swept surface. A skinned surface is a surface that interpolates a number of cross

sectional curves. Sometimes a spine curve can be added to aid in the orientation of the

skinned surface. When approximating a swept surface with a skinned surface, the task

is to find a number of cross sectional curves, essentially the profile curve of the swept

surface translated and rotated a number of times, that best represent the swept surface.

6.6.3. Approximating Point Clouds with Swept Surfaces

From equation 6.6.2.7. the usual least squares equation can be written.

Q contains the point cloud points and N contains the B-spline basis function for the

parameters (u,v) of a specific point in the cloud. This part is essentially the same as

the approximation of tensor product NURBS surfaces discussed earlier in this chapter.

Again, it is a non-linear problem since the parameterisation of the point cloud is

unknown. Ueng et al. (1998) use points in a structured grid. Thus, they are able to get

away with the usual chord length parameterisation. Since no assumption is made

about the structure of the cloud in this thesis, a base surface parameterisation is more

appropriate.

There is an additional problem with fitting the swept surfaces. Note the equation for

J{v), equation 6.6.2.12. An estimate of the two profile curves is needed before the

approximation can start. Ueng et al. (1998), working with a structured grid,

approximated the first and last row of points with B-spline curves. They use these

curves to start the fitting process.

When using a base surface parameterisation such initial estimates of the profile curves

are harder to make. In this project the profile curves of the base surfaces are used if

the base surface is a swept surface. If a tensor product surface is used, the curves on
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the two opposite ends of the surface can be extracted and used to start the

approximation.

Ueng et al. (1998) go on to iteratively improve the parameterisation using Powell's

method (see for example Press et al. 1997). Their results of five examples show that

the approximation does not improve much beyond three iterations. In this work the

parameters are not improved after the initial parameterisation for the reasons

discussed earlier in this chapter.

6.7. Segmenting a Point Cloud

If a good base surface can be constructed, it can also be used to cut the point cloud.

The method is suggested by Bradley and Chan (2001). They suggest that the point

cloud can be segmented by finding all the points that lie within a certain distance from

the base surface. The same algorithm that is used to parameterise a patch of the point

cloud can be used to do this segmentation.

This is a very intuitive way of segmenting a point cloud. However, it can require

considerable work from the designer depending on the complexity of the base surface

that is needed to segment the cloud.
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Chapter 7.

Case Study

7. 1. Description

The core box of an IC engine's inlet manifold shown below was used to test the edge

scanning strategy, as well as the swept surface approximation method, in a practical

example. The surfaces of the pipes appear to be swept surfaces. They are bounded by

well defined Cl edges that appear to be ideally suited for extraction with the edge

scanning algorithm.

Trajectory 1

Trajectory

Trajectory 3

Trajectory 4

Figure 1 Core Box Used in Case Study.

The diameter at the narrowest section of the pipes is about 34mm. A scanning pitch of

O.5mm was chosen in order to remain within the limits of the edge scanning algorithm

set in Chapter 5. The scanning was done on the Renishaw Cyclone. The Cyclone

scans a regular gird pattern. It ensures that the pitch along the scan lines is no more

than O.5mm despite the curvature of the object. Unfortunately, the step over distance
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between the scan lines, also O.5mm in this example, is a step along the coordinate axis

only and does not take the object's curvature into account.

Figure 2 Renishaw Cyclone. (Anonymous, 2001 b)

The choice of scanning parameters is further limited by the narrowest gap between

neighbouring edges. This gap is shown in Figure I. The gap is 3mm. Enough points

must be scanned in this region to ensure that a line or polynomial can be fitted to

calculate the edge.

This scan was completed in 5 hours, excluding set up time. (The time study results are

given in Appendix F.) The result is a 22MB text file containing the scanned points.

These points are not compensated with the probe diameter of2.01Imm.

The ideal scanning pitch, according to equation 5.3.4.7.2. is O.22Imm. However, a

O.5mm scanning pitch resulted in a point cloud of 22MB. This is already rather large.

For practical purposes it was decided not to scan at a higher resolution. Itmust also be

remembered that the scanning time on the Cyclone increases dramatically, and so too

the scanning cost, if scanning at a resolution of O.221mm rather than O.5mm. The
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7.2. Edge Detection

0.5mm pitch is still safely below the maximum allowable pitch of2.26lmm (equation

5.3.4.7.1.).

The edge scanning algorithm developed in this project was used to find the four

trajectories indicated in Figure 1. Scanning parameters were selected according to the

guidelines developed in Chapter 5. The intersection angle between the pipe's surface

and the split plane was estimated as 90° and the minimum surface radius of curvature

as 34mm. The edges are sharp enough to ignore the fillet radius caused by wear.

These estimates of the surface parameters indicate that the scanning amplitude must

be between 6.75mm and 22mm (according to equations 5.3.4.6.2. and 5.3.4.6.3.).

Initially the line pitch and edge pitch were 1.5 times the point cloud pitch. However,

there was one unforeseen obstacle. The edge scanning started where the grid direction

is perpendicular to the pipes' centrelines. In this region it can be assumed that the

cloud pitch is sufficiently uniform in all directions. However, towards the end of the

edge the centrelines of the pipes are in the same direction as the grid. This resulted in

large gaps between points in the cloud, as can be seen in the figure below. For clarity,

not all the scan lines are shown in this figure. Note the large gaps where the scan lines

move up the sides of the pipes.

First Scan Line

Grid direction and

Figure 3 Scan Lines. (Only every 10th line is shown.)
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The virtual CMM assumes that these large gaps are real gaps in the surface. Thus, it is

not possible to scan in that region with an assumed cloud pitch of O.5mm. The way to

overcome this problem is to increase the pitch that the virtual CMM uses; in this case

the pitch was increased to 2mm. The line pitch used by the edge scanning algorithm

must also be increased so that it can step over the gaps.

In other words, there are two pitches of concern here. The first is the cloud pitch that

the virtual CMM uses to select points in the cloud. If there are gaps in the cloud larger

that this pitch, the virtual CMM assumes that it represent true gaps in the surface. The

cloud pitch must therefore be larger than the largest gap in the cloud that the virtual

CMM will encounter. The negative effect of increasing the cloud pitch is that the

voxels of the octree contain more points since they are larger. Thus the time it takes to

find a point in the cloud increases.

The second pitch of concern is the line pitch. (Actually the edge pitch as well, but it is

assumed that the two are normally equal.) The line pitch is used by the edge scanning

algorithm and determines how far consecutive points on a scan line are apart. This

pitch cannot be less than the cloud pitch used by the virtual CMM. More guidelines

on selecting this pitch are given in Chapter 5.

In this case study the edges were scanned in two or three stages with different

scanning parameters for each stage simply to overcome the problem of the variable

cloud pitch. The scanning parameters are given in Appendix F. The scanned edges are

shown below. Note the erratic nature of the edges near their right ends. This is the

area where larger amplitudes and pitches were used. Clearly this resulted in less

accurate edges. This then is why the larger scanning parameters were not used to scan

the entire edge.
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Figure 4 Scanned Edges.

The scanning tolerance is also an important parameter to select. A guideline is given

in equation (5.3.3.5.1.1.). The Cyclone in the laboratory's accuracy is O.05mm. This is

taken as the noise level of the point cloud. The noise component attributed to the

projection of the scanned points onto the scanning plane must be added to this

according to the mentioned equation. The scanning tolerance must be larger than this

value. The scanning tolerance used here is given with the other scanning parameters

in Appendix F.

The experiments reported in Chapter 5 seem to indicate that the zigzag pattern is a

little more robust than the square pattern. Thus the zigzag was used in this case study.

There is a region in the core box, indicated in Figure I, where the gap between the

pipes is only 3mm. This means that at best 4 points can be used to calculate the edge

points there. It is probably less due to points that are ignored because of noise and

because the pattern does not necessarily start exactly at the edge. Due to the small

number of points it was decided to use a linear approximation to calculate the edge

points.
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7.3. Surface Reconstruction

7.3.1. Base Surfaces

Four profile curves were extracted by selecting points at the start and end of the pipes.

These were used with the scanned edges to construct base surfaces. Splines were

fitted to the edges and used to construct a swept surface according to Ueng et al.'s

(1998) model. These are shown below.

Figure 5 Base Surfaces.

7.3.2. Segmenting the Point Cloud

Once the edges were extracted the very dense point cloud was no longer necessary.

This cloud was filtered using the Cyclone's modelling software. The resulting point

cloud is a 5mm by 5mm grid. These points are also compensated with the probe

radius.

The base surfaces were used in a way suggested by Bradley and Chan (2001) to

segment the point cloud. The distance from each point in the cloud to the surface is

calculated. If this is less than a prescribed value it is assumed that the point belongs to

that specific surface. The extracted cloud patches are shown with the base surfaces in
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the figure below. All points that are closer than 3mm to the base surfaces were

selected.

. .................... ..

Figure 6 Cloud Segmentation.

Notice that in the middle of the bottom part a number of points are missing. This is an

indication that the swept surface of Ueng et al. (1998) does not represent the points

very well. The reason is that their model does not include rotation of the profile curve,

but rather a blending function of the profile curves at both ends ofthe surface.

7.3.3. Fitting Swept Surfaces

Lastly a least squares approximation of the surfaces were made. The base surfaces

were used to parameterise the cloud patches. The approximation results are given in

Table 1.
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Figure 7 Approximated Surfaces.

The average errors are rather large. Increasing the number of control points does not

seem to have a significant effect except for Pipe 2. It is possible that Ueng et al.'s

(1998) model is not a good representation of the surfaces. The profiles curves of the

pipes are definitely rotated as they are swept along the trajectories. Ueng et al.'s

(1998) swept surface model does not include rotation of the profile curve; it rather

blends the curve at the beginning and end of the swept surface. The fact that the

approximation results do not improve much when the number of control points is

increased supports this observation.

Table 1 Approximation Results.

Pipe 1 Pipe2

\O~ 8avg O.224mm O.426mm
x .-
s:!C5 8max 1.183mm 2.114mm

r--~ 8avg O.224mm O.384mm
x .-::!:C5

0nax 1.058mm 1.632mm

7.4. Conclusions

Clearly the edge scanning algorithm has problems dealing with point clouds of non-

uniform density. Most of the scanning methods mentioned in the literature review

give clouds with a structure similar to that of the Cyclone. This means that the grid

direction must be carefully selected. In many cases, of which this core box is one

7.8

Stellenbosch University http://scholar.sun.ac.za



example, multiple scans might be necessary to ensure that the maximwn gap size in

the point cloud is at an acceptable level. Such small stumbling blocks can cause

considerable frustration for the designer even if he/she is aware of them. When

working with large point clouds, such as the one in this example, it takes a minute or

two to scan the edge. The success or failure of the method is therefore not

immediately apparent, thus the frustration.

Point clouds can quickly become very unmanageable if the scanning is done at the

best, recommended resolution. In some cases, where the curvature is too high, it is

simply not practical to scan a dense enough cloud. In fact, in some cases this

algorithm requires a point cloud much denser than one required for following the

traditional route of fitting surfaces, extending them and calculating the intersections.

Small surface features such as the 3mm gap between the edges indicated in Figure 1

can further limit the practical use of the edge scanning algorithm.

It further seems that Ueng et al.' s (1998) surface model is not appropriate for this

example. This is a problem for any feature based Reverse Engineering system. If the

original feature used to construct the object is not included in the set of available

features in the Reverse Engineering system a bad surface approximation is always

possible. The alternative is to use a more general model such as a tensor product

NURBS surface. This is of course done at the loss of feature information that might

be useful for geometry manipulation in a parametric modeller.

On the positive side it is encouraging the note that good base surfaces can be

constructed by edge scanning and swept surface construction. The guidelines

developed in Chapter 5 also gave good direction in selecting the scanning parameters

- at least once the stumbling block of the non-uniform density was noted!
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Chapter 8.

Conclusion

8. 1. Have the Goals been Achieved?

The pilot study reported in Chapter 1 highlighted the need for robust edge detection

and segmentation methods for Reverse Engineering. In that study a significant amount

of time was spent at finding the intersection of the surface patches. The literature

review showed that there are many good techniques for segmenting point clouds if

they contain only primitive entities. There are also many techniques to segment

regular grids of points. However, few methods are available for segmenting point

clouds of arbitrary structure. It is in fact an unresolved problem. A further problem

touched on by the literature is that of design intent. Many Reverse Engineering

systems blindly approximate the point cloud with an arbitrary surface definition. This

makes it very difficult to edit the model if that is necessary.

The edge scanning algorithm is an attempt at bridging this gap. It is designed to work

on unstructured point clouds. The resulting curves can be used as generator curves in

a feature based CAD system to reconstruct the surface. This was demonstrated in a

case study reported in Chapter 7. Chapter 5 showed that the average accuracy of the

edge points can be of the same order of magnitude as the noise in the point cloud

provided that good scanning parameters are specified. Guidelines for doing this are

given in that chapter.

Another requirement was that the algorithm must be able to detect the original edge if

it was replaced by a fillet radius or simply if it is worn or damaged. This was achieved

and makes this edge detection algorithm unique.

This method, however, has a number of shortcomings. An important condition is that

the accuracy of the detected edge is limited by the largest gap between points in the

cloud. Arguably this will be a limiting factor in any edge detection algorithm. The

8.1

Stellenbosch University http://scholar.sun.ac.za



problems that occur if this is not the case are illustrated in the case study in Chapter 7.

The investigation reported in Chapter 5 showed that in many cases a very dense point

cloud would be needed. These two conditions mean that careful attention must be paid

when scanning the point cloud. The point cloud can be very huge, making it very

cumbersome to use. It may also be very expensive and time consuming to scan a point

cloud that is suitable for use by the edge scanning algorithm.

In the beginning of this thesis it was mentioned that one consideration during the

development of the edge scanning algorithm was to implement it on a real CMM. It

was not done simply because the access to the communication protocol between the

PC and CMM was not available. Although it was not tested on a real CMM, it is the

opinion of this author that there is no reason why this algorithm can not be

implemented on a real CMM. The scanning strategy with the virtual CMM carefully

follows the principals of a real CMM, complete with collision detection. The

algorithm is divided in separate objects in C++, therefore the virtual CMM object can

be replaced with an object that controls a real CMM. It is expected that no changes

will be necessary to the scanning algorithm once this replacement is done.

If the edges are scanned directly on a real CMM, the need for very dense point clouds

is eliminated. In many cases it will only be necessary to scan the edges in order to

reconstruct a surface. This can lead to considerable time savings both during scanning

and modelling.

An attempt was made to combine the edge scanning algorithm with feature based

surface reconstruction by trying to fit swept surfaces to the data. The result from the

edge scanning algorithm produced very good base surfaces, but the swept surface

definition used here proved to be inadequate for the example used in Chapter 7. This

highlighted the need for a larger library of features.

8.2. Future Work

Obviously the library of features must be extended in a practical Reverse Engineering

system.

The most immediate need is that the algorithm must be extended that it can scan the

entire boundary of a surface patch. It will be useful if the algorithm can scan around
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the comers of a surface patch and thereby scan all the edges bounding a specific

surface. Special attention should be paid so that the designer only has to specify one

set of input parameters. It is also important that a good definition of the edges must be

obtained near the comers. The current algorithm cannot scan effectively in that

region.

The edge scanning algorithm can be extended to scan edges formed by surfaces joined

with C2 continuity.
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Appendix A

Geometric Formulae

A1. Introduction

This appendix contains general geometric formulae used in this thesis. Mostly it

consists of various calculations with lines and planes. Most of the formulae are

derived with the familiar scalar product and cross product. Readers unfamiliar with

these definitions can refer to Kreyszig (1988) pp. 322 and pp 332.

A2. Definitions

A2.1. Lines

In this thesis the parametric definition of a line in R3 is used as defined in the figure

below.

z
Figure Al Definition of a Line in Rl.

A.l

Stellenbosch University http://scholar.sun.ac.za



The origin of the line is at SI and a, a unit vector, indicates the direction of the line.

Any point on the line is then given by the equation below.

(A2.1.1.)

A2.2. Planes

The scalar product is used to define a plane. Let sp be a point in a plane and n be a

unit vector normal to the plane. Then the vector from sp to any point in the plane must

be perpendicular to n and so the scalar product of this vector with n must be zero. The

plane is then defined by the equation below.

(A2.2.1.)

z

Figure A2 Definition of a Plane in R3•

A3. Intersection of Two Lines

Two lines in R3 do not necessarily intersect each other. The method described here

can be used to find out if an intersection exists and, if it does, it will give the

intersection point. There is also the possibility that the two lines lie on top of each

other. A separate check for this case is necessary. First check if the two lines are

parallel, i.e. the scalar product is either 1 or -1. If this is the case, check if the origin

of the one line lies on the other line. (To do this, the distance from the one origin to

the other line can be calculated. A method to calculate the distance from a point to a
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line is given later in this appendix.) If the origin lies on the other line and the lines are

parallel, then there are an infinite number of solutions.

If the lines are not co-linear on each other, then the intersection point, if it exists, can

be found as follows.

The two lines are

(A3.I.)

By breaking the above vector equation into it's components, the parameter, 12, at the

intersection point can be found.

(A3.2.)

By substituting equation A3.2. into A3.I. and breaking the vector equation into it's

components 12can be found.

(A3.3.)

The intersection point is the point on the second line corresponding to 12.

Since the denominator in equations A3.2. and A3.3. can be zero, other equations must

be found in these instances. This is done by selecting other combinations of the vector

components in equation A3.1. Without going through the derivation, these equations

are given below.

G (s - S )- G (s - S )1, = Ix 11z liz Iz 11x Ilx if G, G - G, G "# 0
_ _x Iz _z Ix

G2xGlz - G1zGlx

(A3.4.)
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(A3.5.)

(A3.6.)

a (s -s )-a (s -s )A" = Iz 12x IIx Ix 12z liz if a, a - a, a ~ 0
_ _z lr _x Iza2zalx - a2xalz

(A3.7.)

(A3.8.)

A4. Distance from a Point to a Plane

From the definition of the scalar product, the cosine of the angle between the plane's

unit normal, n, and the vector from the plane's origin, sp, to an arbitrary point in R3, p,

can be found.

_ n ·(p-sp)

cos(B) - Ilnllllp _ spil

This cosine multiplied by the length of the vector from sp to p is the shortest distance,

d, from the point p to the plane.

d = lip - spil cos(B)

(A4.l.)

A5. Projection of a Point onto a Plane

The projection of a point, p, onto a plane is found by first finding the shortest vector

from the point p to the plane. Of course, this vector will be parallel to the plane's unit

normal, n. The length of this vector is the distance from p to the plane, given by

equation A4.1. So, the shortest vector is n(n. (p - sp)).

The projected point, r'. isp minus the shortest vector.
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(A5.I.)

This is illustrated by the figure below.

p

y

x
z

Figure A3 Projecting a Point onto a Plane.

A6. Distance from a Point to a Line

The definition of the vector product is used to find the sine of the angle () in the figure

below.

The distance, d, from p to the line, is the sine of () multiplied by the length of the

vector from SI to p.

d = lip - s,llsin«(})

(A6.I.)
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x
z
Figure A4 Distance from a Point to a Line.

A7. Projection of a Point onto a Line

Referring to Figure A4 the projection of p onto the line can be found. The value of A.

corresponding to the projected point,p', is the cosine of 8multiplied by length of the

vector from SI to p.

a .(p -SI)

cos( 8) = IIallllp _ S /11

Thus A. = lip - S /11cos( 8)

(A 7.1.)

By substituting the value of A. in the equation of the line, the projected point, p', can

be found.
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AS. Intersection of a Line and a Plane

To find the intersection of a line and a plane, substitute the equation of a line,

equation A2.1.1. into the equation of a plane, equation A2.2.I. This gives the

following equation.

Then, solve for A.

n·s +).n·a-n·s =0I P

n·(s -s )
A = I P if n- a "* 0

n·a
(A8.I.)

If n .a = 0 it means than the line is parallel to the plane and there is either no solution

or an infinite number of solutions if the line lies in the plane. The intersection point, if

there is one, can be found by substituting the solution for A in the equation for the

line, equation A2.1.1.

Ag. Projecting a Line onto a Plane

The origin point of the line, SI, is projected onto the plane using equation A5.I. The

direction vector of the line is orientated by taking cross products of a and n as

follows.

, (n®a)®na = .,,-;---;---,:-
II(n®a)®nll

(A9.I.)

The cross product of n with a defines a plane (or rather the normal vector there of)

that, at the same time, contains the original line and is perpendicular to the plane.

Thus, the cross product of this new normal vector with n must give the direction

vector of the line in the original plane.

If the line is perpendicular to the plane, the cross product of n with a will be null. In

this case, the projection of the line onto the plane results only in a point in the plane,

which can be found as stated above.
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A10. Intersection Line of Two Planes

The algorithm that finds the intersection curve of two B-spline surfaces uses the

intersection line of two planes during the subdivision process.

Given two planes as, nr(XrSpl)=O and n]·(xz-sp2)=O, with nrn];rl then the

intersection line is found as follows.

y

z

Figure AS Definitions for finding the intersection line between two

The direction of the intersection line is simply

(AIO.I.)

Now, a point on the intersection line is needed to complete the definition of the line.

The perpendicular direction from SpIto the intersection line is the cross product of the

direction a and normal vector nl. Therefore the line from SpI to the intersection line is

spl+A(a®nl). The point where this line intersects plane 2 is also a point on the

intersection line. Thus, it is only necessary to determine A. where this line intersects

plane 2. Using equation A8.1., the value of A. is easily determined. That gives the

following equation for the intersection line of two planes. (Note that in this equation A.

is now the independent parameter of the intersection line of the two planes.)

A.8

Stellenbosch University http://scholar.sun.ac.za



(
nl (spl - SpI) ( ))

x = SpI + ( ) a® nl + Aa
n1a®nl

(AIO.2.)

A11. Line Offsets

Line offsets are simple to calculate since only the line origin must be translated along

the offset vector. The orientation vector is not changed; otherwise the new line will no

longer be parallel to the original line. The offset vector is the cross product of the

orientation vector of the line with the orientation vector of the plane in which the line

must be compensated. If the line must be offset a distance d, the new line is

(AIl.l.)

A12. Distance from a Point to a Circle

What is the shortest distance from a point p in R3 to a circle with centre at the origin

of the coordinate system, radius r and lying in the XY plane?

The distance of p to the centre of the circle, projected onto the XY plane is

The distance of the point to the circle is found from the Z height of the p and the

difference between d and r. Therefore the distance from the point to the circle is

(AI2.l.)

If the circle does not lie in the XY plane, but in a plane parallel to this plane, and the

origin is still on the Z axis, the above equation is modified as follows to find the

distance. In this equation c= is the Z coordinate of the circle's origin.

(AI2.2.)
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AppendixB

Pilot Time Study Results
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Study No: 1 TIME STUDY FORM
Observer: K. Schreve Date: 06-Jan-99 IMachine Code: Mitut~o Br!9_ht710
Operator: K. Schreve Part Name: Core Box Bottom IPart No: CBB
Operation Description: Measurements for Reverse Engineering I ime Units: n.mm

Time Time
Date Element Description Started Finished Time

1/6 Set up comupter; Clamp part 08:30 08:35 00:05
1/6 Clean core box 08:35 08:41 00:06
1/6 Calibrate probe; Measure coordinate system 08:41 08:50 00:09
1/6 Set up point cloud measurement #1.0 08:50 09:12 00:22
1/6 Start measurement #1.0 09:12 10:00 00:48
1/6 (Stop #1.0) Set up cloud #2.0 10:32 10:40 00:08
1/6 Start measurement #2.0 10:40 10:48 00:08
1/6 Restart after crash #2.1 10:48 10:51 00:03
1/6 Start again #2.1 10:51 11:04 00:13
1/6 Add #2.1 to #2.0 11:04 11:06 00:02
1/6 Set up refinement of #2.0 11:06 11:08 00:02
1/6 Start refinement of #2.0 11:08 11:48 00:40
1/6 Restart in new Geopak 11:48 11:56 00:08
1/6 Measure inlet ports 11:56 11:59 00:03
1/6 Remeasure coordinate system + inlet ports 12:06 12:59 00:53
1/6 Set up measurement of left pipe, 33.0 14:03 14:15 00:12
1/6 Start measurement #3.0 14:15 15:01 00:46
1/6 Resume#3.0 15:36 16:30 00:54
1/7 Resume#3.0 07:20 09:52 02:32
1/7 Calibrate probe; Measure coordinate system 09:59 10:17 00:18
1/7 Measure connection pin origens and other miscellaneous 10:17 11:03 00:46
1/7 Remeasure coordinate system for METRIS 11:03 11:09 00:06
1/7 Set up point cloud measurement #4.0 11:09 11:21 00:12
1/7 Start measurement #4.0 11:21 11:48 00:27
1/7 Set up point cloud measurement #S.O 11:48 11:58 00:10
1/7 Start measurement #S.O 11:58 12:35 00:37
1/7 Resume#S.O 13:48 14:47 00:59
1/7 Resume#S.O 15:59 16:49 00:50
1/7 Set up point cloud measurement #6.0 16:49 16:55 00:06
1/7 Start measurement #6.0 16:55 18:11 01:16
1/8 Resume#6.0 07:10 08:18 01:08
1/8 Resume#6.0 09:00 09:29 00:29
1/8 Set up measurement #7.0 (#3 port) 09:29 09:35 00:06
1/8 Start measurement #7.0 09:35 10:19 00:44
1/8 Set up measurement #8.0 (left plenum blend) 13:23 13:30 00:07
1/8 Start measurement #8.0 13:30 14:30 01:00

1/11 Calibrate probe; Measure coordinate system 07:15 07:23 00:08
1/11 Set up measurement #9.0 (#1 port) 07:23 07:39 00:16
1/11 Start measurement #9.0 07:39 11:03 03:24
1/11 Set up measurement #10.0 (#4 port) 11:12 11:18 00:06
1/11 Start measurement #10.0 11:18 11:20 00:02
1/11 Redo set up of measurement #10.0 (Crashed across border) 11:20 11:28 00:08
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1/11 Restart measurement #10.0 11:28 11:30 00:02
1/11 Redo set up of measurement #10.0 (Crashed across border) 11:30 11:37 00:07
1/11 Restart measurement #10.0 (Now do only one half of the pipe) 11:37 12:27 00:50
1/11 Set up measurement #10.1 (the other half) 15:09 15:19 00:10
1/11 Start measurement #10.1 15:19 15:54 00:35
1/11 Set up measurement #11.0 (Plenum top wall) 15:56 16:00 00:04
1/11 Start measurement #11.0 16:00 16:04 00:04
1/11 Redo set up of measurement #11.0 (Crashed across border) (Discard) 16:08 16:34 00:26
1/12 Measure splines on plenum top and bottom wall with METRIS 07:19 07:34 00:15
1/12 Set up measurement #12.0 (Plenum right blend) 07:34 07:39 00:05
1/12 Start measurement #12.0 07:39 08:14 00:35
1/12 Set up measurement #6.1 (Gap in cloud #6.0) 09:18 09:23 00:05
1/12 Start measurement #6.1 09:23 09:37 00:14
1/12 Set up measurement #3.1 (Gap in cloud #3.0) 09:37 09:40 00:03
1/12 Start measurement #3.1 09:40 09:55 00:15
1/12 Splines measurement #12.1 (Splines for plenum right blend) 09:55 10:02 00:07
1/15 Set up measurement #15.0 (more points for plenum) 14:16 14:19 00:03
1/15 Measure coordinate system 14:19 14:27 00:08
1/15 Set up measurement #15.0 14:27 14:33 00:06
1/15 Start measurement #15.0 14:33 14:38 00:05
1/15 Set up measurement #15.1 14:38 14:40 00:02
1/15 Start measurement #15.1 14:40 14:46 00:06
1/15 Set up measurement #15.2 14:46 14:48 00:02
1/15 Start measurement #15.2 14:48 15:00 00:12
1/15 Set up measurement #15.3 15:07 15:09 00:02
1/15 Start measurement #15.3 15:09 15:14 00:05
1/18 Set up measurement #15.4 07:10 07:20 00:10
1/18 Start measurement #15.4 07:20 07:36 00:16

Total (hours): 26.88
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Study No: 2 TIME STUDY FORM
Observer: K. Schreve Date: 06-Jan-99 IMachine Code: Mitutoyo Bri_ght710
Operator: K. Schreve Part Name: Core Box Bottom [Part No: CBB
Operation Description: CAD Modelling lime Units: n.rrun

Time Time
Date Element Description Started Finished Time

1/6 Start modelling left interior split plane 11:27 11:48 00:21
1/6 Model inlet ports + inlet step 14:18 15:01 00:43
1/6 Resume 15:36 15:46 00:10
1/6 Split plane 15:46 16:14 00:28
1/7 Wedge cavity 07:22 08:44 01:22
1/7 Plenum 11:21 11:42 00:21
1/7 Inlet port shoulders 11:42 11:48 00:06
1/7 Resume 12:00 12:07 00:07
1/7 Redo split plane outside 12:07 12:35 00:28
1/7 Thumbnails 13:55 14:32 00:37
1/7 Find interior split surface's edge 17:36 18:11 00:35
1/8 Resume 07:12 08:17 01:05
1/8 Resume 09:00 09:27 00:27
1/8 Resume 09:35 10:06 00:31
1/8 Interior split surface 10:06 10:19 00:13
1/8 Resume 13:30 13:47 00:17
1/8 Resume 13:52 14:23 00:31

1/11 Resume 07:39 08:30 00:51
1/11 Resume 11:18 12:27 01:09
1/11 Resume 15:19 15:56 00:37
1/11 Resume 16:00 16:08 00:08
1/12 Resume 07:39 08:14 00:35
1/12 Resume 09:23 09:34 00:11
1/12 Resume 09:40 09:55 00:15
1/12 Resume 10:02 10:27 00:25
1/12 Resume 10:54 11:31 00:37
1/12 Redo front Ends 11:31 12:04 00:33
1/12 Resume 14:50 15:20 00:30
1/12 Resume 16:02 17:07 01:05
1/13 Resume 07:18 07:49 00:31
1/13 Finish split plane 08:36 08:57 00:21
1/13 Resume 09:28 10:10 00:42
1/13 Resume 10:43 12:04 01:21
1/13 Resume 14:20 14:43 00:23
1/13 Resume 14:53 15:34 00:41
1/14 Left pipe 09:40 09:42 00:02
1/14 Resume 09:54 10:39 00:45
1/14 Resume 10:46 10:56 00:10
1/14 Resume 11:50 12:22 00:32
1/14 Right pipe 12:22 12:25 00:03
1/14 Resume 14:23 15:34 01:11
1/14 Resume 16:05 16:55 00:50
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1/15 Resume 11:47 12:09 00:22
1/15 Plenum blends 12:09 13:00 00:51
1/15 Resume 13:36 14:15 00:39
1/18 Plenum blends 07:20 08:06 00:46
1/18 Resume 08:30 10:00 01:30
1/18 Resume 10:20 11:09 00:49
1/18 Resume 11:34 12:32 00:58
1/18 Intersection between ports and pipes 13:46 15:00 01:14
1/18 Resume 15:30 15:52 00:22
1/18 Draft on pipes 15:52 16:19 00:27

Total (hours): 30.8
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Study No: 3 TIME STUDY FORM
Observer: K. Schreve Date: 06-Jan-99 IMachine Code: Mitutoyo Bright 710
Operator: K. Schreve Part Name: Core Box Top IPart No: CBT
Operation Description: Measurements for Reverse Engineering Time Units: h:min

Time Time
Date Element Description Started Finished Time
1/14 Set up part on machine 07:44 07:51 00:07
1/14 Calibrate probe and measure coordinate system 07:51 07:56 00:05
1/14 Set up measurement #13.0 (Plenum) 07:56 08:07 00:11
1/14 Start measurement #13.0 08:07 08:11 00:04
1/14 Stort out problem with probe contact 08:11 08:21 00:10
1/14 Calibrate probe and measure coordinate system 08:21 08:31 00:10
1/14 Redo set up of measurement #13.0 09:22 09:27 00:05
1/14 Start measurement #13.0 -> unexplained error 09:27 09:30 00:03
1/14 Set up measurement #13.1 (first half of plenum) 09:30 09:38 00:08
1/14 Start measurement #13.1 09:38 09:42 00:04
1/14 Redo set up of measurement #13.1 (Top patch) 09:42 09:52 00:10
1/14 Start measurement #13.1 09:52 10:39 00:47
1/14 Set up measurement #14.0 (left pipe) 10:39 10:44 00:05
1/14 Start measurement #14.0 10:44 10:56 00:12
1/19 Calibrate probe and measure coordinate system 11: 11 11:18 00:07
1/19 Measure origens 11:18 11:22 00:04
1/19 Measure front step (5 planes) 11:22 11:28 00:06
1/19 Inlet ports contour 11:28 11:44 00:16
1/19 Print data 11:44 11:53 00:09
1/19 Calibrate probe and measure coordinate system 11:53 12:03 00:10
1/19 Set up measurement #16.0 (left pipe) 12:03 12:12 00:09
1/19 Start measurement #16.0 12:12 12:30 00:18
1/19 Set up measurement #17.0 12:30 12:34 00:04
1/19 Start measurement #17.0 12:34 12:44 00:10
1/19 Restart measurement #17.0 14:29 15:11 00:42
1/19 Calibrate probe and measure coordinate system 15:29 15:39 00:10
1/19 Redo set up of measurement #16.0 15:39 15:44 00:05
1/19 Restart measurement #16.0 15:44 16:01 00:17
1/19 Redo set up of measurement #17.0 16:06 16:09 00:03
1/19 Restart measurement #17.0 12:44 16:50 04:06
1/19 Set up measurement #16.1 (more points on left pipe) 19:51 19:57 00:06
1/19 Start measurement #16.1 19:57 20:02 00:05
1/19 Set up measurement #16.2 (more points on left pipe) 20:02 20:05 00:03
1/19 Start measurement #16.2 20:05 20:07 00:02
1/19 Set up refinement #16.3 (left pipe) 20:07 20:10 00:03
1/19 Start refinement #16.3 (operator left at 21 :01) 20:10 00:59 04:49
1/20 Set up measurement #18.0 (Right pipe) 07:18 07:31 00:13
1/20 Start measurement #18.0 07:31 07:46 00:15
1/20 Set up measurement #18.1 07:46 07:51 00:05
1/20 Start measurement #18.1 07:51 08:08 00:17
1/20 Set up measurement #18.2 (Refinement) 08:43 08:50 00:07
1/20 Start measurement #18.2 08:50 11:30 02:40
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1/20 Set up measurement #19.0 (#2 Port) 11:30 11:38 00:08
1/20 Start measurement #19.0 11:38 14:47 03:09
1/21 Intersection between inlet ports and pipes; Measure coordinate system 07:29 07:39 00:10
1/21 Set up measurement #20.0 (#3 Port) 07:39 07:45 00:06
1/21 Start measurement #20.0 07:45 09:25 01:40
1/21 Set up measurement #21.0 (#4 Port) 09:25 09:30 00:05
1/21 Start measurement #21.0 09:30 11:49 02:19
1/21 Set up measurement #22.0 (Wedge top) 12:08 12:12 00:04
1/21 Start measurement #22.0 12:12 12:45 00:33
1/21 Set up measurement #23.0 (Plenum middle section) 12:48 12:54 00:06
1/21 Start measurement #23.0 12:54 13:34 00:40
1/21 Set up measurement #18.4 (More points for gap in right pipe) 13:45 13:48 00:03
1/21 Start measurement #18.4 13:48 13:54 00:06
1/21 Redo set up measurement #18.4 (sticking colision) 17:08 17:13 00:05
1/21 Restart measurement #18.4 17:13 17:20 00:07
1/21 Calibrate probe and measure coordinate system 17:20 17:32 00:12
1/21 Measure more points for right pipe in new Geopak software 17:32 17:47 00:15
1/21 Measure plenum in Geopak 17:47 18:23 00:36

Total (hours): 28.43
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Study No: 4 TIME STUDY FORM
Observer: K. Schreve Date: 19-Jan-99 IMachine Code: Mitutoyo Bright 710
Operator: K. Schreve Part Name: Core Box Top [Part No: CBT
Operation Description: CAD Modelling Time Units: h:mln

rime Time
Date Element Description Started Finished Time
1/19 Inlet port step 14:52 15:11 00:19
1/19 Transform coordinate system of Port102.txt, LeftPipe02.txt (Did not work) 15:11 15:29 00:18
1/19 Model inlet ports 16:12 16:54 00:42
1/19 Import left pipe clouds 19:47 19:51 00:04
1/19 Model inlet ports (Resume) 20:10 21:01 00:51
1/20 Import left pipe clouds 07:14 07:18 00:04
1/20 Import split plane 07:31 07:46 00:15
1/20 Resume 07:51 08:08 00:17
1/21 Intersection between inlet ports and pipes 07:49 08:11 00:22
1/21 Model inlet ports step 08:33 08:40 00:07
1/21 Model left pipes (Middle triangle) 08:49 09:24 00:35
1/21 Resume 09:30 09:43 00:13
1/21 Model #1 Port 09:43 09:55 00:12
1/21 Model #2 Port 10:32 10:43 00:11
1/21 Model main left pipe 12:12 12:34 00:22
1/21 Import clouds for right pipe 12:34 12:48 00:14
1/21 Resume 13:39 13:45 00:06
1/21 Import plenum clouds 18:23 18:32 00:09
1/21 Manipulate right pipe clouds 18:32 18:40 00:08
1/21 Model Right pipe (Middle triangle) 18:40 18:51 00:11
1/22 Model #3 Port 07:23 07:34 00:11
1/22 Model #4 Port 07:34 07:46 00:12
1/22 Model main right pipe 07:46 07:55 00:09
1/22 Resume 08:50 09:12 00:22
1/22 Redo middle section (A good stich could not be achieved) 09:12 09:35 00:23
1/22 Resume 11:48 11:55 00:07
1/22 Redo main right pipe 11:55 12:16 00:21
1/22 Model plenum 12:16 12:50 00:34
1/22 Model wedge top 13:47 14:00 00:13
1/22 Model inlet step 14:00 14:17 00:17
1/22 Fil gaps 14:25 14:57 00:32
1/22 Resume 15:36 15:39 00:03

Total (hours): 9.07
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AppendixC

Polynomial Approximation of a Circle

Inorder to find the polynomial that best approximates any circle segment, the distance

between the polynomial and the circle must be minimised. The circle and the

polynomial use the same parameterisation so that the problem can be simplified. Here

the circle segment will always start where the parameter value is zero and the

parameter will never exceed 27t. The parameterisation of the circle segment is shown

in the figure below. The radius of the circle is r and u is the arc length.

y

Figure 1 Parameterisation of a Circle.

The equation of the circle is

[
r.cos( ~)]

fc{u) = . (u)
r·sm -

r (Cl.)

and the equation of the quadratic polynomial is

(C2.)
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The objective is to find the six coefficients of the polynomial that will minimise the

distance between the polynomial and the circle, i.e. the following equation must be

minimised. In this equation s is the total arc length of the circle segment.

F= r (lfc(u)-fp(u)IYdu
o

F =r (fc(u).fc(u) - 2.fc(u).fp(u) + fp(u).fp(u))du
o (C3.)

If the partial derivatives of the above equation with respect to the polynomial

coefficients are taken, six equations are obtained that will be used to find the

polynomial coefficients. With this in mind, the first term in the above equation can be

eliminated because it does not contain any of the polynomial coefficients and will

therefore play no role in the differentiation process. This makes the rest of the

discussion a little easier to follow. So, the equation is rewritten as follows.

F = f (-2.f c(u)·f p(u) + f p(u)·f p(u)) du
o (C4.)

The result of the integration is too long to present here. After integration, the partial

derivatives are taken.

of
-= 0 yields
oOx

. (s) 2 2 3 2-2·sm - -r + -·s·c + b -s + 2·a -s = 0r 3 x x x (C5.)

oF . Id-=0 yle s
obx

3 ( ( S ) S . (s)) 1 4 2 3 2 3-2·r· cos - + -·sm - + -·c -s + -·s·b + a -s + 2·r = 0
r r r 2x 3 x x (C6.)

oF . Id-=0 yle soCx
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(2 () ( ) ( ))
4S.S .s ss 251423

-2·r· -·sm - - 2·sm - + 2·-·cos - + -·c -s + -.bx·s + -·ax·s = 0
ir r r r SX 2 3

(C7.)

aF . Id-=0 yte s
aay

(s) 2 2 3 2 22·cos - ·r + -·s·c + b ·S + 2·a ·S- 2·r = 0
r 3 Y Y Y (C8.)

aF . Id--=0 yie s
aby

3 ( . (s) s ( s )) 1 4 2 3 2-2·r· sm - - -·cos - + -·c -S + -·s·b + a -S = 0
r r r 2Y 3 Y Y (C9.)

aF . Id-=0 yie s
acy

( 2 () ( ) ( ))
4-S S S s.s 2514234

-2·r· -·cos - + 2·cos - + 2·-·sm - + -·c ·S + -·b ·S + -·a ·S + 4·r = 0
2 r r r r SY 2Y 3Y
r

(CIO.)

The above six equations are now used to find the six coefficients of the polynomial

curve that best approximates the circle segment of arc length s. Algebraic

manipulation of these equations yield the following six equations for the coefficients.

(Cll.)

(CI2.)

( 2 3 .(S)2)1 -3·b x·s - 2·s ·c x+ 6·sm -; ·r
ax= -.6 s (CB.)
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(3.b .S2 + 2.s3.C - 6.i + 6.cos(~).i)
-1 Y Y r

a = -.-'-------------'-....:..._~
Y 6 s

(CI4.)

(CI5.)

(CI6.)

The polynomial curve is plotted against the circle segment for four different cases in

the figures below. The curves are compared with circle segments with arc lengths of

2m, rtr, m/2 and m/6.

-1.5

1.5

2

-1.5

Figure 2 Quadratic Polynomial Approximation of a Full Circle.
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1.5-1.5 -1 -0.5 0.5
-0.2

Figure 3 Quadratic Polynomial Approximation of a Half Circle.

1.2

0.8

0.6

0.4

0.2

-0.2 0.2 0.4 0.6 0.8 1.2

-0.2

Figure 4 Quadratic Polynomial Approximation of a Quarter Circle.
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0
~ 0.2 0.4 0.6 0.8 1

-0.1
1.2

Figure 5 Quadratic Polynomial Approximation of a Twelfth Circle.

As expected the approximation improves as the arc length decreases. In the last

figure, the difference between the polynomial and the circle segment is barely

detectable. The coefficients for the above polynomials are given in the table below.

Table 1 Quadratic Polynomial Coefficients for Circle Approximation.

Full Circle Half Circle Quarter Circle Twelfth Circle

ax 1.519818 1.215854 1.019373 1.000265

hx -1.451319 -0.774037 -0.133133 -0.005406

Cx 0.230985 0 -0.33824 -0.480603

ay 0.95493 -0.050466 -0.024325 -0.001161

hy -0.303964 1.312236 1.195745 1.026749

cy 0 -0.417698 -0.33824 -0.128777

The distance between the polynomial curve and the circle segments for the four cases

given above are plotted in the figures below. Clearly they all have the same shape,

with the maximum distance at the beginning and end of the circle segments.
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0.8
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J! 0.6
(I)

ë
0.4

0.2

0
0 1 2 3 4 5 6 7

Arc Length

Figure 6 Distance between Best Fit Quadratic Polynomial and a Full Circle.

0.25

0.2

• 0.15uc
J!
(I)

ë 0.1

0.05

0
0 0.5 1 1.5 2 2.5 3 3.5

Arc Length

Figure 7 Distance between Best Fit Quadratic Polynomial and a Half Circle.

C.7

Stellenbosch University http://scholar.sun.ac.za



0.035

0.03

0.025

CD 0.02uc
J!.,

0.015is
0.01

0.005

0
0 0.5 1 1.5 2

Arc Length

Figure 8 Distance between Best Fit Quadratic Polynomial and a Quarter Circle.
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CD 0.0008uc
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0
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0.1

Figure 9 Distance between Best Fit Quadratic Polynomial and a Twelfth Circle.

The distance between the polynomial and the circle is given in the following equation.

(C17.)

expression,

The distance at u=O, the maximum distance, is then given by the following
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(CI8.)

It turns out that this maximum distance of the polynomial from the circle can be non-

dimensionalised by dividing it by the radius, r. The non-dimensional distance is

plotted against the ratio of the arc length to the radius in the graph below.

0.03

0.025

0.02
I...

') 0.015
t...l

0.01

0.005

0
0 0.2 0.4 0.6 0.8

sir
1.2 1.4 1.6

Figure 10 Maximum Deviation from a Circle Segment of a Best Fit Quadratic

Polynomial.
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AppendixD

Line Approximation of a Circle

01. Introduction

In this appendix, a theoretical model of the expected error of the edge scanning

algorithm is presented assuming that a line approximation of the points is made. The

line that best approximates a given circular segment is first derived. Then, the

maximum distance from the line to the circular segment is determined. The best line

is used to determine the maximum theoretical error for the given scanning parameters.

Of course, the scanned points will seldom lie on a circular segment. This is

assumption that is made to simplify the analysis. It assumes that the curvature in the

direction perpendicular to the edge is constant.

02. Best Fit Line

In order to find the line that best approximates any circle segment, the distance

between the line and the circle must be minimised. The circle and the line use the

same parameterisation so that the problem can be simplified. The unity restriction that

is often placed on the direction vector of the line is also dropped since it only

complicates the analysis and does not contribute any insight. Here the circle segment

starts where the parameter value is zero and the parameter never exceeds 21t. The

parameterisation of the circle segment is shown in the figure below. The radius of the

circle is r and u is the arc length.

The equation of the circle is

fJu)=
rco{~)
rSin(~ )

(D2.1.)
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y

Figure 1 Parameterisation of a Circle.

The equation of the line, using the same parameterisation, is

(D2.2.)

The four coefficients of the line that will minimise the distance between the line and

the circular segment must be found. The following equation must be minimised. In

this equation s is the total arc length of the circular segment.

s

F = ~Ifc (u) - f p(u )11
2
du

o

s

F = J(fc(u)fc(u)-2fc(u)fp(u)+ fp(u)fp(u)~u
o

(D2.3.)

If the partial derivatives of the above equation with respect to the line coefficients are

taken, four equations are obtained that is used to find the coefficients. With this in

mind, the first term in the above equation can be eliminated since it does not contain

any of the coefficients and therefore it is anyway eliminated during differentiation.

This makes the rest a little easier to follow. So, the equation is now rewritten as

follows.

s

F = J(- 2fc (u)fp (u) + I,(u)fp (u)}iu
o

(D2A.)
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The partial derivatives with respect to the line coefficients are taken to obtain four

equations.

dF = 0 yields
dax

(D2.5.)

dF = 0 yields
db"

(D2.6.)

dF = 0 yields
day

(D2.7.)

dF = 0 yields
db;

(D2.8.)

The above four equations are now used to find the line's coefficients that best

approximates a circle segment of arc length s. Algebraic manipulation of these

equations yield the following four equations for the coefficients.

(D2.9.)

(D2.l0.)
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- r'2 ( (s) 6r . (s))ay = -s- - 2cos -; - 4 + --;-sm -; (D2.11.)

(D2.12.)

The line is plotted against a circle segment for three different cases below. The lines

are compared with circle segments with arc length of m, rtr/2 and m/6. The line

representing a full circle lies on the Y-axis. The coefficients of this and the other three

lines are given in Table 1.

-1.5 -1 -0.5 o 0.5

1.2

0.4

0.2

1.5

Figure 2 Line Approximation of a Half Circle.

The coefficients for the line in figures 2 to 4 are given in the table below.

Table 1 Line Coefficients for Circle Approximation.

Full Circle Half Circle Quarter Circle Twelfth Circle

ax 0 1.215854 1.158469 1.022225

hx 0 -0.77404 -0.66444 -0.25705

ay 0.95493 0.63662 0.114771 0.004723

by -0.30396 0 0.66444 0.959322
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Figure 3 Line Approximation of a Quarter Circle.

0.6
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0.3

0.2
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0
0 0.2 0.4 0.6 0.8 1

Figure 4 Line Approximation of a Twelfth Circle.

03. Distance between Line and Circle

The distance between the line and the circle segments for the four cases given above

are plotted in the figures below. Clearly they all have the same shape, with the

maximum distance at the beginning and end of the circle segments. It must be noted

1.2
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that the distance is actually not the shortest distance between the line and arc, but

rather the between points on the line and circle with the same parameter.

1.6
1.4
1.2-E 1.E.

Q) 0.8()
c
I 0.6
is

0.4
0.2
0

0 1 2 3 4 5 6 7
Arc Length [mm]

Figure 5 Distance between Best Fit Line and a Full Circle.

0.8
0.7
0.6-E 0.5.E.

Q) 0.4()
c
I 0.3
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0.2
0.1

0
0 0.5 1 2.51.5 2 3

Arc Length [mm]

Figure 6 Distance between a Best Fit Line and a Half Circle.
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Figure 7 Distance between a Best Fit Line and a Quarter Circle.
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.5. 0.015
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Figure 8 Distance between a Best Fit Line and a Twelfth Circle.

The distance between the line and the circle is given in the following equation.

0.6

2

(D3.I.)
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From the above figures it is clear that the maximum distance deviation is at the

beginning and end of the line. The distance at u=O, the maximum distance, is then

given by the following expression.

(D3.2.)

It turns out that the maximum distance can be non-dimensionalised by dividing it by

the radius, r. The non-dimensional distance is plotted against the ratio of the arc

length to the radius in the graph below.

0.2
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0.14

l 0.12
0.1

ti)

0.08
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0.02

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

sir

Figure 9 Maximum Deviation from a Circle Segment of a Best Fit Line.

04. Influence of the Process Parameters on the

Theoretical Error

The equation for the theoretical error derived in Chapter 5 can be used without change

by simply substituting in the equation of the line derived above rather than the

equation of a quadratic polynomial.

There are five parameters that determine the theoretical error, that is the probe radius,

Rp, the radius of curvature of the surface in the direction perpendicular to the edge, R,

the fillet radius between the surfaces or the gap, Rf, the intersection angle of the two

surfaces, B, and the length of the scan line on the surface, s.

D.8
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In this section three graphs are presented that show how changes to these parameters

influence the theoretical error. For a discussion of these results, please refer back to

the main body of this thesis.

5
4.5 R=50 ....... {}=1t/2
4 Rrl --{}=21t/3

Ë 3.5 ~=O -{}=51t/6

Ei 3......
li 2.5
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- .'0
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Figure 10 Influence of Intersection Angle on Theoretical Error.
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Figure 11 Influence of the Probe Radius on the Theoretical Error.
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Figure 12 Influence of the Fillet Radius on the Theoretical Error.
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AppendixE

Design of Experiments Results

This Appendix contains the results of an experimental investigation into the

performance of the edge scanning algorithm. A level 16 experiment was chosen from

the Statistica (2000) software package. This is shown in Table 1. Eleven parameters

were identified that influence the algorithm's performance. They are given in the

same table.

Table 1 Level16 Experiment.

Intersec
Surface Ampli- Line Edge Edge tion Toler- Fillet Probe Cloud

Curvature tude Noise Pitch Pitch !curvature Angle ance Radius Radius Pitch

Test [mm"] [mm] [mm] [mm] [mm] [mm"] [radians] [mm] [mm] [mm] [mm]

1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1
2 1 -1 -1 -1 1 -1 1 1 -1 -1 -1
3 -1 1 -1 -1 1 1 -1 1 -1 -1 1
4 1 1 -1 -1 -1 1 1 -1 1 1 -1
5 -1 -1 1 -1 1 1 1 -1 -1 1 -1
6 1 -1 1 -1 -1 1 -1 1 1 -1 1
7 -1 1 1 -1 -1 -1 1 1 1 -1 -1
8 1 1 1 -1 1 -1 -1 -1 -1 1 1
9 -1 -1 -1 1 -1 1 1 1 -1 1 1
10 1 -1 -1 1 1 1 -1 -1 1 -1 -1
11 -1 1 -1 1 1 -1 1 -1 1 -1 1
12 1 1 -1 1 -1 -1 -1 1 -1 1 -1
13 -1 -1 1 1 1 -1 -1 1 1 1 -1
14 1 -1 1 1 -1 -1 1 -1 -1 -1 1
15 -1 1 1 1 -1 1 -1 -1 -1 -1 -1
16 1 1 1 1 1 1 1 1 1 1 1
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Experiment 1

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.1

High 0.125

4 0.01 0.4 0.6 0.029

6 0.02 0.6 0.8 0.033

1.745 0.15 0 0.25 0.1

1.920 0.2 0.3 0.5 0.2

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.041 0.072 162 0.027 0.082 160

2 0.060 0.091 123 0.017 0.034 122

3 0.098 0.142 104 0.015 0.039 103

4 0.107 0.138 142 0.012 0.032 142

5 0.032 0.065 105 0.021 0.049 103

6 0.054 0.088 141 0.024 0.056 136

7 0.096 0.126 170 0.018 0.043 167

8 0.085 0.121 124 0.020 0.039 120

9 0.060 0.129 143 0.023 0.111 142

10 0.091 0.143 102 0.028 0.091 99

11 0.136 0.202 125 0.018 0.058 125

12 0.136 0.210 159 0.011 0.037 162

13 0.060 0.104 119 0.030 0.085 113

14 0.075 0.136 165 0.043 0.154 160

15 0.119 0.177 138 0.018 0.037 137

16 0.134 0.212 107 0.023 0.067 103

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.041 0.051 166 0.019 0.068 165

2 0.059 0.086 126 0.016 0.034 126

3 0.103 0.163 106 0.014 0.028 106

4 0.103 0.134 144 0.012 0.035 145

5 0.030 0.074 107 0.020 0.041 106

6 0.058 0.094 142 0.017 0.046 142
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7 0.095 0.121 171 0.018 0.043 172

8 0.083 0.123 125 0.020 0.044 126

9 0.058 0.136 144 0.022 0.080 144

10 0.087 0.141 106 0.023 0.060 107

11 0.135 0.224 123 0.016 0.040 124

12 0.162 0.888 Error 0.011 0.026 170

13 0.046 0.078 126 0.025 0.087 125

14 0.079 0.163 170 0.043 0.205 168

15 0.118 0.162 142 0.023 0.056 145

16 0.125 0.174 104 0.024 0.050 105

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 0.125 0.153 0.011 0.007 0.163 1.003 0.011 0.075

Amplitude 0.553 0.634 0.097 0.392 0.593 1.473 0.061 0.379

Noise 0.096 0.124 0.061 0.058 0.142 1.058 0.071 0.255

Line Pitch 0.300 0.592 0.048 0.337 0.301 1.419 0.066 0.335

Edge Pitch 0.009 0.003 0.004 0.112 0.060 0.865 0.010 0.220

Edge
Curvature 0.004 0.044 0.023 0.062 0.023 0.830 0.016 0.189

Intersection
Angle 0.022 0.054 0.002 0.101 0.017 0.744 0.023 0.144

Tolerance 0.015 0.060 0.032 0.088 0.039 0.845 0.035 0.196

Fillet
Radius 0.069 0.018 0.016 0.016 0.002 0.985 0.019 0.108

Ball Radius 0.095 0.066 0.017 0.011 0.109 0.639 0.022 0.101

Cloud Pitch 0.041 0.072 0.049 0.250 0.024 0.704 0.038 0.228
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Experiment 2

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.067

High 0.100

4 0.01 0.4 0.6 0.029

6 0.02 0.6 0.8 0.033

1.745 0.05 0.5 0.25 0.1

1.920 0.1 1 0.5 0.25

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.103 0.117 163 0.224 0.401 Error

2 0.052 0.077 123 0.025 0.061 123

3 0.067 0.077 102 0.031 0.045 100

4 0.119 0.147 143 0.064 0.089 138

5 0.036 0.067 103 0.040 0.137 103

6 0.128 0.170 138 0.171 0.301 Error

7 0.092 0.108 167 0.063 0.171 163

8 0.132 0.264 114 0.040 0.072 123

9 0.035 0.066 140 0.038 0.378 138

10 0.112 0.138 100 0.091 0.170 98

11 0.099 0.219 119 0.055 0.109 123

12 0.113 0.157 166 0.014 0.058 161

13 0.111 0.226 117 0.155 0.345 118

14 0.072 0.225 159 0.051 0.510 158

15 0.089 0.121 137 0.021 0.079 134

16 0.124 0.207 103 0.085 0.171 103

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.103 0.117 164 0.236 0.402 170

2 0.053 0.073 126 0.019 0.050 126

3 0.070 0.083 103 0.030 0.081 103

4 0.116 0.139 146 0.067 0.116 142

5 0.030 0.054 107 0.034 0.089 107

6 0.125 0.178 141 0.177 0.319 141
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7 0.090 0.104 172 0.059 0.166 169

8 0.124 0.222 122 0.038 0.089 125

9 0.036 0.059 138 0.034 0.104 142

10 0.102 0.135 106 0.080 0.167 105

11 0.094 0.142 123 0.054 0.113 122

12 0.113 0.151 170 0.017 0.065 172

13 0.095 0.144 125 0.134 0.290 124

14 0.065 0.189 Error 0.044 0.321 160

15 0.085 0.130 145 0.022 0.053 147

16 0.118 0.143 103 0.065 0.187 104

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 0.279 0.485 0.107 0.293 0.268 0.503 0.122 0.019

Amplitude 0.237 0.271 0.534 1.911 0.253 0.211 0.514 1.101

Noise 0.105 0.492 0.107 0.603 0.058 0.333 0.046 0.525

Line Pitch 0.034 0.422 0.186 0.687 0.002 0.156 0.265 0.016

Edge Pitch 0.022 0.207 0.158 1.110 0.060 0.089 0.256 0.606

Edge
Curvature 0.081 0.505 0.109 0.456 0.071 0.278 0.117 0.480

Intersection
Angle 0.287 0.196 0.412 0.194 0.272 0.325 0.451 0.405

Tolerance 0.049 0.265 0.002 0.047 0.022 0.242 0.049 0.112

Fillet
Radius 0.367 0.349 0.821 0.528 0.337 0.181 0.800 1.149

Ball Radius 0.079 0.147 0.190 0.259 0.067 0.005 0.175 0.093

Cloud Pitch 0.103 0.117 0.278 1.111 0.066 0.257 0.310 0.786
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Experiment 3

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.050

High 0.025

10 0.02 0.5 2

20 0.04 1 4

0.007

0.010

1.571 0.2

2.094 0.3

1

2

1

2

0.25

0.36

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.327 0.370 215 0.460 1.179 Error

2 0.069 0.111 105 0.058 0.158 106

3 0.762 1.168 67 0.110 0.181 67

4 0.221 0.253 146 0.122 0.169 145

5 0.102 0.141 67 0.065 0.156 68

6 0.367 0.427 136 0.581 0.799 145

7 0.766 1.252 176 0.075 0.172 219

8 0.221 0.319 105 0.120 0.172 104

9 0.099 0.143 146 0.058 0.153 146

10 0.353 0.498 64 0.490 0.847 67

11 1.230 2.008 109 0.051 0.120 107

12 0.259 0.277 218 0.171 0.245 214

13 0.317 0.414 105 0.395 0.685 108

14 0.062 0.113 220 0.053 0.160 223

15 1.028 1.187 141 0.051 0.114 141

16 0.224 0.277 67 0.088 0.189 67

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.331 0.375 222 0.441 0.560 223

2 0.067 0.105 106 0.043 0.152 106

3 0.693 0.938 67 0.111 0.190 67

4 0.219 0.239 146 0.124 0.176 146

5 0.102 0.177 68 0.068 0.170 67

6 0.385 0.475 146 0.574 0.770 146

E.6

Stellenbosch University http://scholar.sun.ac.za



7 0.822 1.082 Error 0.075 0.140 224

8 0.211 0.260 108 0.129 0.176 107

9 0.096 0.131 145 0.059 0.135 146

10 0.263 0.401 67 0.417 0.627 67

11 2.203 4.364 Error 0.052 0.112 106

12 0.257 0.279 225 0.167 0.242 224

13 0.282 0.353 108 0.342 0.475 107

14 0.063 0.115 222 0.049 0.160 224

15 1.083 1.252 Error 0.047 0.113 146

16 0.210 0.249 68 0.102 0.205 68

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 3.613 5.578 0.532 0.024 4.982 8.282 0.518 0.776

Amplitude 3.813 5.723 1.734 3.511 5.198 8.266 1.503 2.144

Noise 0.295 0.884 0.119 0.764 1.227 3.630 0.037 0.020

Line Pitch 0.934 1.104 0.296 0.596 2.060 4.418 0.417 0.334

Edge Pitch 0.186 1.155 0.244 0.612 0.981 3.668 0.344 0.239

Edge
Curvature 0.119 0.974 0.231 0.356 1.498 3.884 0.258 0.470

Intersection
Angle 1.090 0.458 2.28~ 3.725 0.349 2.692 2.095 2.409

Tolerance 0.860 1.038 0.157 0.424 2.104 4.517 0.185 0.272

Fillet
Radius 1.523 2.581 1.995 3.569 2.713 5.416 1.839 2.185

Ball Radius 3.626 5.779 0.010 0.502 4.897 8.437 0.080 0.159

Cloud Pitch 0.327 0.370 0.119 0.514 1.389 3.818 0.298 0.267
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Experiment 4

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.050

High 0.025

20 0.05 1

30 0.1 2

4

5

0.007

0.010

1.920 0.2

2.094 0.3

2

3

1

2

0.36

0.7

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 1.312 2.639 103 0.159 0.209 106

2 0.245 0.297 83 0.079 0.191 83

3 3.679 5.734 Error 0.124 0.268 52

4 1.361 1.649 67 0.086 0.226 68

5 1.887 4.546 50 0.144 0.342 53

6 0.293 0.402 66 0.210 0.485 66

7 7.194 10.073 Error 0.096 0.246 106

8 1.307 1.847 83 0.096 0.200 82

9 1.293 3.645 64 0.131 0.379 66

10 0.362 0.465 51 0.133 0.274 51

11 8.933 17.014 Error 0.244 1.751 Error

12 0.899 1.288 107 0.059 0.153 104

13 0.733 1.444 82 0.137 0.391 82

14 0.371 1.053 106 0.122 0.363 105

15 8.641 15.335 Error 0.101 0.216 67

16 1.205 2.483 51 0.110 0.299 52

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 1.598 2.284 Error 0.177 0.312 104

2 0.228 0.284 83 0.069 0.181 83

3 14.291 26.554 Error 0.111 0.196 51

4 1.385 4.081 Error 0.103 0.184 69

5 2.278 3.986 Error 0.133 0.314 53

6 0.294 0.378 68 0.232 0.429 67
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7 4.407 5.941 Error 0.078 0.257 107

8 1.230 1.684 82 0.081 0.167 82

9 2.281 4.424 Error 0.099 0.289 66

10 0.336 0.487 52 0.083 0.194 53

11 12.465 20.578 Error 0.232 1.894 Error

12 0.918 3.666 Error 0.060 0.159 107

13 1.445 5.183 Error 0.108 0.312 83

14 0.332 0.629 105 0.115 0.323 106

15 3.663 4.050 Error 0.105 0.250 68

16 1.561 3.705 Error 0.177 0.403 52

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 34.949 64.440 0.306 2.038 45.718 73.472 0.156 2.256

Amplitude 33.802 51.774 0.254 0.919 39.372 66.539 0.087 1.464

Noise 4.487 5.629 0.001 1.149 23.139 46.550 0.120 1.208

Line Pitch 6.528 19.655 0.054 2.099 3.427 3.123 0.008 2.259

Edge Pitch 3.811 2.853 0.131 1.823 23.978 46.814 0.034 1.841

Edge
Curvature 2.874 1.764 0.061 1.286 4.384 9.381 0.157 1.700

Intersection
Angle 6.656 14.682 0.009 2.025 1.471 0.833 0.064 2.309

Tolerance 10.921 24.263 0.175 1.480 2.703 15.629 0.119 1.785

Fillet
Radius 3.884 3.064 0.402 2.237 2.189 3.341 0.527 2.664

Ball Radius 24.945 39.000 0.238 2.019 29.499 37.806 0.108 2.004

Cloud Pitch 1.312 2.639 0.456 2.422 24.527 41.182 0.612 2.732
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Experiment 5

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.025

High 0.013

20 0.05 1.5 4

30 0.1 2 5

0.007

0.010

2.094 0.1

2.269 0.2

3

4

1

2

0.7

1

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.742 8.228 99 0.306 4.952 102

2 0.162 0.394 83 0.106 0.290 83

3 1.545 2.396 48 0.172 0.357 51

4 0.791 1.522 63 0.120 0.715 65

5 0.837 1.743 51 0.474 7.436 50

6 0.238 1.366 65 0.756 12.816 Error

7 1.518 3.367 98 0.098 0.287 105

8 0.852 2.074 79 0.439 4.669 Error

9 0.603 2.174 Error 0.158 0.569 66

10 0.251 0.476 52 0.175 0.484 51

11 4.722 15.202 Error 7.024 11.198 Error

12 0.319 0.600 104 0.102 0.294 105

13 0.337 0.721 82 0.226 0.656 81

14 0.500 4.654 101 0.682 7.955 Error

15 2.631 38.112 56 2.816 17.104 Error

16 0.499 1.561 49 0.163 0.297 52

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 1.598 19.233 Error 0.191 0.732 Error

2 0.148 0.249 83 0.098 0.300 82

3 1.573 3.928 50 0.164 0.247 51

4 0.631 1.039 66 0.104 0.271 67

5 0.978 2.730 49 0.515 8.896 Error

6 0.202 0.477 66 0.306 0.742 66
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7 2.562 5.724 Error 0.104 0.308 107

8 0.736 1.890 82 0.235 1.891 78

9 0.548 2.262 64 0.228 2.102 63

10 0.210 0.393 52 0.126 0.373 52

11 9.778 42.882 Error 3.744 8.208 Error

12 0.286 0.490 106 0.114 0.255 106

13 0.306 0.499 83 0.197 0.639 83

14 0.330 1.333 102 0.640 4.653 Error

15 4.498 8.569 Error 0.166 0.702 Error

16 0.399 1.567 48 0.147 0.416 52

Design of Experimehts Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 11.792 75.006 11.043 19.022 23.906 99.153 4.477 16.360

Amplitude 11.648 57.018 10.183 0.300 20.421 49.220 3.135 7.766

Noise 2.178 28.596 3.173 40.933 6.022 60.319 3.112 7.284

Line Pitch 4.020 53.644 11.225 8.899 10.026 28.747 4.611 5.010

Edge Pitch 2.358 44.849 4.732 24.418 4.391 18.987 4.265 14.172

Edge
Curvature 2.224 17.851 5.249 11.985 8.480 64.932 4.511 4.095

Intersection
Angle 3.437 29.546 4.849 15.918 7.544 28.216 5.160 24.756

Tolerance 7.725 75.176 12.973 49.264 16.106 79.527 5.520 26.206

Fillet
Radius 2.086 24.924 4.958 9.196 8.336 63.705 3.492 9.304

Ball Radius 8.333 59.885 12.446 39.089 17.480 42.811 4.578 0.418

Cloud Pitch 0.742 8.228 7.060 19.666 7.013 68.152 5.352 9.166
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Experiment 6

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.010

High 0.013

20 0.05 1

30 0.1 2

4

5

0.004

0.007

1.920 0.15 2

2.094 0.2 3

1

2

0.2

0.7

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.154 0.197 178 0.222 0.356 178

2 0.129 0.174 144 0.071 0.221 144

3 0.247 0.597 81 0.083 0.199 81

4 0.422 0.573 106 0.068 0.154 106

5 0.093 0.176 82 0.089 0.273 82

6 0.178 0.220 104 0.204 0.387 104

7 0.215 0.301 184 0.071 0.176 183

8 0.511 1.777 144 0.071 0.190 143

9 0.105 0.265 105 0.107 0.264 105

10 0.217 0.267 80 0.154 0.318 80

11 0.330 0.577 144 0.095 0.237 144

12 0.302 0.402 181 0.063 0.170 179

13 0.199 0.316 140 0.236 0.500 140

14 0.155 0.497 182 0.146 1.093 178

15 0.325 0.552 104 0.094 0.208 103

16 0.346 0.593 82 0.112 0.314 82

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.155 0.182 182 0.249 0.350 183

2 0.116 0.158 146 0.065 0.206 146

3 0.210 0.249 83 0.082 0.219 82

4 0.386 0.508 107 0.070 0.133 107

5 0.092 0.203 83 0.104 0.228 83

6 0.172 0.255 106 0.232 0.433 107
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7 0.211 0.308 186 0.085 0.208 186

8 0.421 0.723 145 0.061 0.162 146

9 0.102 0.152 106 0.078 0.205 105

10 0.171 0.228 83 0.138 0.304 83

11 0.276 0.424 144 0.078 0.229 144

12 0.293 0.363 186 0.076 0.200 186

13 0.133 0.250 146 0.224 0.502 146

14 0.141 0.307 184 0.129 0.517 183

15 0.307 0.555 106 0.116 0.263 107

16 0.299 0.564 83 0.117 0.269 83

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 0.749 1.925 0.137 0.802 0.649 0.990 0.161 0.026

Amplitude 1.857 4.123 0.727 2.232 1.671 2.478 0.677 1.341

Noise 0.149 1.746 0.201 1.544 0.087 1.141 0.293 0.930

Line Pitch 0.040 0.691 0.162 1.450 0.053 0.329 0.009 0.697

Edge Pitch 0.271 1.859 0.082 0.703 0.061 0.215 0.213 0.239

Edge
Curvature 0.080 1.264 0.079 1.044 0.007 0.000 0.039 0.405

Intersection
Angle 0.430 1.484 0.467 0.510 0.302 0.231 0.573 0.555

Tolerance 0.615 2.213 0.010 0.755 0.521 1.052 0.020 0.069

Fillet
Radius 0.244 1.765 0.554 0.224 0.154 0.011 0.610 0.542

Ball Radius 0.425 1.409 0.063 0.781 0.347 0.581 0.071 0.419

Cloud Pitch 0.154 0.197 0.242 1.289 0.085 0.359 0.187 0.431
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Experiment 7

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius

Low 0.010 30 0.05 2 4 0.004 1.920 0.15 2 1

High 0.013 40 0.1 4 5 0.007 2.094 0.2 3 2

Cloud
Pitch

1

1.4

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.380 4.631 Error 0.204 4.016 172

2 0.428 0.794 145 0.080 0.185 145

3 0.877 1.190 78 0.100 0.378 80

4 1.325 1.866 94 0.086 0.255 102

5 0.441 1.257 80 0.243 6.349 79

6 1.067 20.404 Error 0.347 6.404 92

7 0.768 1.169 170 0.085 0.241 182

8 1.630 17.255 Error 0.985 15.873 Error

9 0.411 1.179 99 0.223 2.001 101

10 0.840 2.824 82 0.172 0.471 79

11 1.100 1.939 130 0.188 0.786 140

12 1.165 1.694 172 0.092 0.353 177

13 0.396 0.855 139 0.231 1.385 138

14 0.757 2.690 169 0.410 2.537 175

15 1.161 5.845 96 0.145 0.635 101

16 1.263 1.994 74 0.347 9.457 78

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.344 1.514 174 0.160 0.612 175

2 0.396 0.713 143 0.081 0.204 143

3 0.796 1.216 80 0.070 0.142 78

4 1.279 1.753 105 0.077 0.191 104

5 0.302 0.594 82 0.114 0.272 82

6 0.402 0.831 104 0.186 0.618 101
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7 0.772 1.088 179 0.084 0.226 184

8 1.291 2.171 141 0.138 0.860 143

9 0.444 0.914 98 0.197 1.124 99

10 0.633 1.239 83 0.136 0.367 83

11 1.186 7.224 136 0.126 1.155 140

12 1.148 1.570 179 0.078 0.208 184

13 0.376 0.749 143 0.153 0.643 144

14 0.752 3.183 169 0.985 19.813 Error

15 1.014 1.839 103 0.132 0.332 106

16 1.265 2.307 75 0.144 0.328 81

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 3.720 39.788 1.391 24.975 2.442 1.736 1.001 22.875

Amplitude 5.779 2.126 0.145 5.856 6.455 11.930 1.470 25.564

Noise 1.207 44.716 2.085 43.559 0.066 4.278 1.280 24.146

Line Pitch 0.227 37.374 0.408 20.335 1.564 11.569 1.316 26.369

Edge Pitch 0.075 14.381 0.955 23.330 0.114 4.452 1.186 24.225

Edge
Curvature 0.965 6.997 0.773 0.726 0.163 9.510 0.946 25.737

Intersection
Angle 1.294 52.884 0.779 9.742 0.496 8.407 0.953 24.705

Tolerance 1.593 11.420 1.173 13.302 1.521 12.814 1.109 25.437

Fillet
Radius 0.341 4.777 0.781 6.700 0.145 5.697 0.920 23.797

Ball Radius 0.014 7.746 1.118 35.482 0.631 7.288 0.935 23.550

Cloud Pitch 0.380 4.631 2.114 39.946 0.709 12.413 1.456 28.094
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Experiment 8

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.007

High 0.010

30 0.1 2

40 0.2 4

4

5

0.004

0.007

2.094 0.25 2

2.443 0.3 4

1

2

0.5

1

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.184 0.282 182 0.180 0.468 181

2 0.268 0.575 145 0.106 0.279 145

3 0.256 0.350 82 0.125 0.210 82

4 0.577 1.030 99 0.102 0.305 104

5 0.164 0.416 83 0.187 0.326 83

6 0.217 0.363 106 0.182 0.570 106

7 0.237 0.596 182 0.168 0.457 182

8 0.699 2.291 141 0.177 1.237 143

9 0.280 0.684 102 0.275 0.781 104

10 0.474 0.795 82 0.169 0.478 80

11 0.412 0.806 143 0.192 0.941 145

12 0.603 0.991 181 0.114 0.331 177

13 0.256 0.618 140 0.309 0.986 137

14 0.589 13.847 166 0.457 3.643 175

15 0.371 0.746 104 0.242 0.586 102

16 0.775 1.791 77 0.276 0.679 79

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.174 0.267 185 0.199 0.529 185

2 0.251 0.578 145 0.117 0.275 146

3 0.219 0.302 83 0.128 0.211 82

4 1.256 5.538 Error 0.109 0.382 107

5 0.169 0.665 82 0.208 0.464 83

6 0.212 0.370 106 0.200 0.788 107
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7 0.232 0.695 185 0.172 0.446 186

8 0.590 1.494 144 0.150 0.394 146

9 0.246 0.600 102 0.243 0.729 105

10 0.394 0.624 84 0.175 0.557 85

11 0.890 6.358 Error 0.184 0.689 143

12 0.578 0.863 183 0.117 0.284 184

13 0.209 0.455 146 0.296 0.794 145

14 0.600 2.091 161 0.562 4.260 167

15 0.322 0.473 Error 0.212 0.516 106

16 0.786 1.883 77 0.292 0.953 83

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 2.582 21.736 0.118 3.499 2.790 4.587 0.102 4.443

Amplitude 1.895 11.356 0.596 3.523 3.311 15.124 0.804 5.718

Noise 0.319 19.167 0.931 5.931 1.123 8.860 1.038 6.272

Line Pitch 1.465 18.181 1.023 5.788 1.166 4.350 1.010 6.695

Edge Pitch 0.309 13.782 0.228 2.537 0.145 1.849 0.331 4.550

Edge
Curvature 0.169 17.495 0.185 5.575 0.102 2.968 0.295 3.885

Intersection
Angle 0.307 16.835 0.332 3.220 2.191 17.151 0.520 5.219

Tolerance 0.732 18.022 0.190 4.668 2.103 14.881 0.297 4.187

Fillet
Radius 0.124 17.226 0.133 3.173 1.490 11.542 0.140 2.525

Ball Radius 0.905 12.618 0.028 2.593 1.123 0.343 0.172 4.066

Cloud Pitch 0.184 0.282 0.590 6.048 0.384 4.393 0.698 6.115
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Experiment 9

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.007

High 0.010

30 0.1 2

35 0.2 3

4

5

0.004

0.007

2.094 0.25 2

2.443 0.3 4

1

2

0.5

1

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.184 0.282 182 0.180 0.468 181

2 0.268 0.575 145 0.106 0.279 145

3 0.199 0.338 82 0.132 0.313 82

4 0.326 0.587 104 0.103 0.236 105

5 0.164 0.416 83 0.187 0.326 83

6 0.217 0.363 106 0.182 0.570 106

7 0.190 0.453 185 0.181 0.572 183

8 0.377 1.044 141 0.170 0.801 142

9 0.222 0.546 101 0.212 1.892 101

10 0.346 0.553 82 0.122 0.313 81

11 0.269 0.829 143 0.227 14.451 Error

12 0.377 0.589 182 0.103 0.297 180

13 0.166 0.314 141 0.212 0.620 140

14 0.365 0.898 171 0.699 4.453 Error

15 0.250 0.579 103 0.203 0.728 103

16 0.450 4.546 Error 0.243 0.568 82

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.174 0.267 185 0.199 0.529 185

2 0.251 0.578 145 0.117 0.275 146

3 0.184 0.298 83 0.133 0.269 82

4 0.307 0.465 106 0.102 0.424 107

5 0.169 0.665 82 0.208 0.464 83

6 0.212 0.370 106 0.200 0.788 107
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7 0.188 0.594 184 0.174 0.421 185

8 0.319 0.777 144 0.151 0.353 145

9 0.243 0.667 106 0.165 0.534 105

10 0.295 0.438 84 0.137 0.375 84

11 0.268 0.548 144 0.144 0.480 146

12 0.358 0.506 184 0.099 0.255 185

13 0.144 0.397 145 0.226 0.693 145

14 0.424 2.232 172 0.446 7.057 Error

15 0.231 0.635 106 0.205 0.483 106

16 0.450 1.523 81 0.264 0.690 83

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 1.366 6.827 0.247 14.994 1.284 3.566 0.078 8.024

Amplitude 0.639 6.347 0.681 11.442 0.496 0.341 0.540 9.287

Noise 0.014 5.456 1.130 12.157 0.073 4.332 0.983 9.875

Line Pitch 0.657 6.068 0.986 24.989 0.770 3.708 0.509 8.909

Edge Pitch 0.136 5.462 0.590 10.694 0.074 0.648 0.262 8.718

Edge
Curvature 0.029 3.722 0.626 21.499 0.043 1.058 0.180 7.634

Intersection
Angle 0.176 6.056 0.828 23.612 0.484 4.533 0.341 8.350

Tolerance 0.241 3.205 0.655 21.080 0.200 1.383 0.272 7.892

Fillet
Radius 0.092 3.721 0.457 11.019 0.179 2.219 0.100 6.694

Ball Radius 0.206 4.729 0.559 20.833 0.140 0.540 0.181 7.850

Cloud Pitch 0.184 0.282 1.049 25.480 0.417 3.040 0.549 9.247
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Experiment 10

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.004 40 0.1 2 4 0.003 2.094 0.25 2 1 0.5

High 0.007 50 0.2 3 5 0.004 2.443 0.3 4 2.5 1

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.167 0.221 259 0.135 0.311 258

2 0.273 0.413 208 0.095 0.237 207

3 0.213 0.330 143 0.106 0.195 143

4 0.582 0.837 172 0.089 0.298 180

5 0.148 0.437 144 0.182 0.723 145

6 0.245 0.541 182 0.171 0.462 180

7 0.206 0.533 257 0.167 0.400 261

8 0.682 1.309 194 0.434 13.970 Error

9 0.166 0.417 180 0.135 0.547 182

10 0.335 0.467 143 0.109 0.281 142

11 0.264 0.500 205 0.112 0.263 205

12 0.441 0.627 257 0.081 0.182 256

13 0.136 0.374 203 0.190 0.573 201

14 0.479 7.649 240 1.732 16.385 Error

15 0.283 0.744 176 0.179 0.484 177

16 0.635 9.490 137 0.207 0.552 140

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.169 0.256 265 0.145 0.377 263

2 0.259 0.439 208 0.096 0.241 208

3 0.209 0.294 145 0.104 0.211 144

4 1.091 8.000 Error 0.092 0.284 186

5 0.146 0.383 146 0.181 0.424 146

6 0.247 0.477 185 0.154 0.546 184
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7 0.205 0.777 Error 0.162 0.391 262

8 0.674 1.471 202 0.146 0.520 207

9 0.176 0.422 184 0.118 0.547 183

10 0.328 0.507 146 0.115 0.267 145

11 0.267 0.407 207 0.106 0.305 207

12 0.431 0.686 262 0.088 0.202 262

13 0.120 0.334 208 0.192 0.512 208

14 0.629 12.134 Error 0.252 3.637 Error

15 0.361 4.343 Error 0.176 0.352 186

16 0.603 1.589 137 0.217 0.644 145

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 2.644 22.488 2.165 36.517 3.302 22.876 0.029 4.076

Amplitude 1.718 4.869 1.738 4.015 2.237 3.306 0.207 4.606

Noise 0.475 21.840 3.038 39.509 0.072 13.279 0.778 5.805

Line Pitch 0.283 19.791 1.725 3.378 0.107 10.529 0.232 4.390

Edge Pitch 0.147 2.217 1.586 2.877 0.891 27.410 0.034 4.064

Edge
Curvature 0.051 2.074 2.234 36.405 0.516 0.618 0.038 3.680

Intersection
Angle 0.318 19.811 1.663 3.724 1.058 19.964 0.131 4.411

Tolerance 0.789 0.710 2.303 37.398 1.792 28.439 0.103 3.632

Fillet
Radius 0.146 1.310 2.230 37.420 0.184 9.897 0.031 3.552

Ball Radius 0.834 3.205 1.539 1.961 1.144 7.887 0.016 3.087

Cloud Pitch 0.167 0.221 2.456 37.325 0.042 2.001 0.176 5.203
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Experiment 11

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.003

High 0.004

30 0.05 1.5 4

40 0.1 3 5

0.003

0.004

2.094 0.15 2

2.443 0.2 4

1

2.5

0.5

1

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 5.394 10.560 256 0.148 0.305 258

2 0.078 0.139 208 0.059 0.177 208

3 0.104 0.214 144 0.101 0.196 145

4 0.139 0.171 184 0.060 0.201 184

5 0.061 0.217 145 0.096 0.294 145

6 0.089 0.183 181 0.121 0.335 180

7 0.085 0.191 262 0.082 0.266 262

8 0.140 0.688 202 0.070 0.397 205

9 0.092 0.498 187 0.123 0.435 183

10 0.146 0.256 142 0.107 0.325 141

11 0.133 0.690 204 0.090 0.347 205

12 0.170 0.263 258 0.055 0.155 257

13 0.123 0.336 201 0.178 0.507 200

14 0.163 0.716 257 0.250 3.299 Error

15 0.129 0.279 180 0.101 0.260 178

16 0.157 0.463 144 0.138 0.338 145

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.087 0.159 263 0.154 0.246 262

2 0.079 0.146 208 0.056 0.130 208

3 0.095 0.132 144 0.076 0.187 145

4 0.135 0.182 185 0.055 0.223 186

5 0.069 0.179 146 0.099 0.283 146

6 0.094 0.167 184 0.134 0.318 184

E.22

Stellenbosch University http://scholar.sun.ac.za



7 0.084 0.159 263 0.084 0.223 263

8 0.114 0.250 207 0.066 0.162 207

9 0.102 0.396 181 0.258 7.220 Error

10 0.120 0.175 145 0.085 0.247 146

11 0.144 0.403 205 0.495 20.725 Error

12 0.168 0.236 263 0.050 0.116 264

13 0.101 0.262 209 0.157 0.481 207

14 0.211 5.245 256 0.374 11.343 391

15 0.116 0.230 185 0.109 0.230 185

16 0.162 0.630 145 0.125 0.298 146

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 6.373 12.783 0.076 3.311 0.360 6.467 0.613 21.194

Amplitude 6.438 12.580 0.487 4.446 0.197 5.703 0.327 2.399

Noise 6.715 12.291 0.373 4.496 0.028 6.693 0.102 19.930

Line Pitch 6.296 11.211 0.386 4.421 0.463 7.848 1.174 49.190

Edge Pitch 6.728 12.468 0.127 3.383 0.147 5.816 0.075 3.281

Edge
Curvature 6.790 14.294 0.111 3.881 0.120 6.033 0.624 30.888

Intersection
Angle 6.812 12.261 0.023 3.642 0.115 7.245 0.905 48.648

Tolerance 6.841 14.283 0.084 3.819 0.140 5.940 0.630 30.972

Fillet
Radius 6.739 12.443 0.087 3.276 0.033 5.917 0.256 3.906

Ball Radius 6.765 13.317 0.057 3.253 0.005 5.520 0.566 30.829

Cloud Pitch 5.394 10.560 0.381 4.386 0.173 7.353 1.249 48.782
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Experiment 12

Input Parameters

Surface Ampli- Line Edge Edge Intersec- Toler- Fillet Probe Cloud
Curvature tude Noise Pitch Pitch Curvature tion Angle ance Radius Radius Pitch

Low 0.002

High 0.003

20 0.05 1

40 0.1 2

4

6

0.003

0.004

2.094 0.15 2

2.618 0.2 4

1 0.25

2.5 0.5

Experimental Results - Zigzag

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.081 0.178 256 0.324 0.546 260

2 0.057 0.140 172 0.072 0.195 172

3 0.080 0.113 119 0.068 0.148 119

4 0.093 0.148 185 0.054 0.226 183

5 0.096 0.194 120 0.130 0.346 120

6 0.078 0.168 180 0.272 0.490 183

7 0.058 0.146 263 0.079 0.266 262

8 0.088 0.180 171 0.076 0.196 171

9 0.060 0.215 185 0.104 0.369 186

10 0.152 0.303 117 0.192 0.439 116

11 0.092 0.187 171 0.071 0.186 171

12 0.096 0.139 258 0.060 0.174 258

13 0.168 0.438 166 0.307 0.583 170

14 0.096 0.324 263 0.186 0.677 263

15 0.061 0.145 182 0.087 0.179 181

16 0.127 0.329 120 0.111 0.386 120

Experimental Results - Square

Linear Quadratic

Average Maximum Number of Average Maximum Number of
Test Error Error Points Error Error Points

1 0.073 0.136 263 0.340 0.587 264

2 0.056 0.148 172 0.080 0.193 172

3 0.079 0.121 120 0.070 0.158 120

4 0.086 0.127 186 0.059 0.193 186

5 0.098 0.217 120 0.126 0.294 120

6 0.083 0.189 185 0.275 0.503 185
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7 0.050 0.131 263 0.080 0.234 264

8 0.078 0.142 173 0.082 0.196 172

9 0.058 0.259 185 0.096 0.628 185

10 0.082 0.218 120 0.168 0.420 120

11 0.085 0.171 172 0.071 0.177 172

12 0.092 0.138 263 0.056 0.172 264

13 0.125 0.362 172 0.281 0.718 172

14 0.086 0.287 262 0.179 0.723 262

15 0.055 0.129 186 0.090 0.172 186

16 0.116 0.307 120 0.127 0.375 120

Design of Experiments Sensitivity Analysis

Zigzag Square

Linear Quadratic Linear Quadratic

Average Maximum Average Maximum Average Maximum Average Maximum
Error Error Error Error Error Error Error Error

Surface
Curvature 0.111 0.147 0.187 0.203 0.073 0.038 0.160 0.243

Amplitude 0.118 0.726 1.240 2.382 0.025 0.692 1.152 3.018

Noise 0.077 0.635 0.383 1.063 0.100 0.564 0.381 0.868

Line Pitch 0.280 1.028 0.054 0.733 0.120 0.835 0.054 1.299

Edge Pitch 0.301 0.532 0.180 0.565 0.168 0.366 0.213 0.861

Edge
Curvature 0.017 0.148 0.199 0.305 0.017 0.068 0.200 0.325

Intersection
Angle 0.158 0.022 0.734 0.132 0.043 0.268 0.689 0.139

Tolerance 0.043 0.036 0.061 0.233 0.020 0.290 0.064 0.275

Fillet
Radius 0.274 0.565 0.795 1.061 0.124 0.251 0.786 0.849

Ball Radius 0.168 0.377 0.176 0.310 0.189 0.371 0.193 0.739

Cloud Pitch 0.081 0.178 0.291 0.746 0.018 0.178 0.380 1.203
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AppendixF

Second Case Study Results

F1. Time Study

The time study measurements for the Reverse Engineering of the core box in Figure 1

are given in the following table.

Figure 1 Core Box.

F.1
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Study No: 1 TIME STUDY FORM

Observer: K. Schreve Date: 03-Sept-2001 Machine Code: Cyclone

Operator: K. Schreve Part Name: Core Box Part No: CB02

Operation Description: Reverse Engineering of core box I Time Units: h:min

Date Element Description Time Time Time
Started Finished

3/9 Set up measurement 16:02 16:28 0:26

Calibrate probe and set up coordinate system 16:28 16:42 0:14

4/9 Start Scanning 12:31 17.34 5:03

17/9 Copy data into CADLAB and set up CAD database 09:30 09:45 0:15

Scan edges 09:45 10:20 0:35

11:00 12:30 1:30

14:00 15:10 1:10

Join edge sections 16:10 16:30 0:20

Construct base surfaces 16:30 16:50 0:20

Cut point cloud 20:30 20:43 0:13

19/9 Fit swept surfaces 17:40 17:56 0:16
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F2. Input Parameters for Edge Scanning

The edges were scanned in different sections. The scanning parameters used to detect

the edges are given in the following tables.

Table 1 Edge 1 Parameters

Section 1 Section 2 Section 3

Cloud Pitch [mm] 0.5 0.5 2

Prehit Distance [mm] 2 2 8

Search Distance [mm] 30 30 30

Probe Direction [] (0,0,-1) (0,0,-1) (0,0,-1)

Probe Diameter [mm] 1 1 1

Line Pitch [mm] 0.75 1 3

Edge Pitch [mm] 1 2 3

Amplitude [mm] 7 10 20

Tolerance [mm] 0.15 0.15 0.15

Start Point [mm] (52,167,0.5) (312,133,0.5) (335.7,102.5,0.5)

Start Direction [] (0,-1,0) (-0.777,-0.629,0) (-0.906,-0.424,0)

End Point [mm] (342,42,0.5) (342,42,0.5) (342,42,0.5)

End Direction [mm] (-1,0,0) (-1,0,0) (-1,0,0)
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Table 2 Edge 2 Parameters.

Section 1 Section 2

Cloud Pitch [mm] 0.5 2

Prehit Distance [mm] 2 8

Search Distance [mm] 30 30

Probe Direction 0 (0,0,-1) (0,0,-1)

Probe Diameter [mm] 1 1

Line Pitch [mm] 0.75 3

Edge Pitch [mm] 1 3

Amplitude [mm] 7 20

Tolerance [mm] 0.15 0.15

Start Point [mm] (52,128,0.5) (290,42,0.5)

Start Direction 0 (0,1,0) (1,0,0)

End Point [mm] (295,42,0.5) (287,83,0.5)

End Direction [mm] (1,0,0) (1,0,0)

Table 3 Edge 3 Parameters.

Section 1 Section 2 Section 3

Cloud Pitch [mm] 0.5 1 2

Prehit Distance [mm] 2 4 8

Search Distance [mm] 30 30 30

Probe Direction 0 (0,0,-1) (0,0,-1) (0,0,-1)

Probe Diameter [mm] 1 1 1

Line Pitch [mm] 0.75 1.5 3

Edge Pitch [mm] 1 2 3

Amplitude [mm] 7 10 20

Tolerance [mm] 0.15 0.15 0.15

Start Point [mm] (52,69,0.5) (148.6,56.7,0.5) (298,42,0.5)

Start Direction 0 (0,-1,0) (0.921,-0.391,0) (-1,0,0)

End Point [mm] (292,42,0.5) (292,42,0.5) (296,70,0.5)

End Direction [mm] (-1,0,0) (-1,0,0) (-1,0,0)
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Table 4 Edge 4 Parameters.

Section 1 Section 2

Cloud Pitch [mm] 1 2

Prehit Distance [mm] 4 8

Search Distance [mm] 30 30

Probe Direction [] (0,0,-1) (0,0,-1)

Probe Diameter [mm] 1 1

Line Pitch [mm] 1.5 3

Edge Pitch [mm] 2 3

Amplitude [mm] 10 20

Tolerance [mm] 0.15 0.15

Start Point [mm] (52,30,0.5) (237,42,0.5)

Start Direction [] (0,1,0) (1,0,0)

End Point [mm] (242,42,0.5) (249,60,0.5)

End Direction [mm] (1,0,0) (1,0,0)
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AppendixG

Torus Model Detail

G1. Introduction

A simple model constructed of two torii was used for testing the scanning algorithm.

It is described here. The model consists of two segments of two torii that intersect

each other. The one torus has a smaller major radius than the other and both have the

same section radius. An example of the model is shown in the figure below. As shown

in the figure, a fillet radius can easily be added as a third torus. It is also very easy to

simulate the effect of uncompensated points by increasing or decreasing the section

radius of the torii depending on the situation.

Figure 1 Example of the Torus Model.

The rest of this Appendix describes the method by which the torus parameters are

derived so that the object parameters governing the scanning algorithm can be

studied. These parameters are the surface curvature in the direction perpendicular to

the edge (i.e. the section radius of the torus), the intersection angle between the two

surfaces and the gap that might be formed by something like a fillet radius, chamfer or
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damaged edge. It is also necessary to know the parameters of the circle that represents

the edge so that the accuracy of the edge points can be calculated.

Scanning on a point cloud is much more difficult than scanning on a continuous

surface. Thus, it is wise to make the algorithm to work on a continuous surface before

going on to a discrete surface. The torus model was used for this purpose as well as

for generating point clouds with which the algorithm can be tested. The last section of

this appendix presents the method that is used to find the intersection of the rays that

represent the movement of the CMM with the torii.

G2. Model Description

-----------

Figure 2 Description of Torus Model.

The model is derived as follows (the symbols are described in Figure 2).

Given:

o the intersection angle between the two torii

R section radius of the torii
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x radius of the intersection circle

Rf section radius of the fillet torus

Rp probe ball raius

The major radius of the torii must be determined. These are a, a' and a" as shown in

the Figure 2. The torii are orientated such that the axis of revolution is the z-axis

(Figure 3). Thus, the position of the centre of the torii must also be determined. They

are b, b' and b " in the Figure 2. It is assumed that b is 0 and also that the edge circle

has the same radius as major radius of the largest torus. Therefore, x=a in Figure 2.

z

u

y

x

Figure 3 Torus Parameterisation.

Only the half of the torii with non-negative y-value is used in the model. Also, only an

arc of length s (arc angle p) is used to create the section of the torus on which will be
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scanned. This is used to determine the parameterisation of the torii. The

parameterisation is shown below.

The torii parameters are found as follows using simple geometric and trigonometric

rules. The meaning of these parameters is clear from Figure 2. (All angles are in

radians.)

d = 2R Sin( "; 0) (G2.1.)

( O.5d) 0a = arccos -_
R+Rf 2

(G2.2.)

b'= Rcos(" - 0)- R (G2.3.)

a'= x - Rsin(" - 0) (G2.4.)

a"= a'+(R + Rf )sin(" -0 -a) (G2.5.)

b"= b'-(R + Rf )cos(" - 0 - a) (G2.6.)

The position of the edge circle's centre on the z-axis is

y = b'-Rcos(" - 0) (G2.7.)

The parameterisation for the torus with major radius a is

us=I.Yn+a (G2.8.)

(G2.9.)

The parameterisation of the torus with major radius a ' is

ut '=1.5,,+(,,-B)-a=2.5,,-~a (G2.10.)

uo'=urp (G2.11.)

The parameterisation of the fillet torus with major radius a" is
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uo "=0.5tr+a (G2.12.)

UI "=uo"+7t-8-2a=I.57t-a-8 (G2.13.)

G3. Analytic Line Intersections

The torus model described in the previous section was also used to test the edge

scanning method on a continuous surface. A method of finding the intersection of the

ray representing the CMM movement with the torus model is needed to do this. In this

section a method is presented to find the intersection between a torus and a line. This

method is used twice (or thrice if a fillet torus is part of the model) to fmd all the

possible intersections. The point that the CMM will touch first is then easily

determined.

The parametric model of a torus as given by Do Carrno (1976) is used. This is

repeated in the equation below. The parameter b is added so that the torus's origin can

be anywhere on the Z-axis.

t(u, v) = (a + r cosu)cos v, (a + rcosu)sin v, r sin u + b) (G3.I.)

The intersection points of the line and torus will be where the torus equals the line.

This gives three equation with which the three unknowns, u, v and A- can be solved. (A-

is the parameter of the line.)

s, +Aax =(a+rcosu)cosv (G3.2.a)

Sy + Aay = (a + rcosu)sin v (G3.2.b)

(G3.2.c)

Taking equation G3.2.a and remembering that cosx+sirr'x=I a new expression for

sin(v) is

sm v = )~
1 s, +Aax -

-(a +rcosu
(G3.3.)

The same is done to find another expression for cos(u) from equation G3.2.c.
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~1 (Sz +A.az _h)2cosu = -
r

(G3.4.)

Now, substitute equations G3.3. and G3.4. in equation G3.2.b and simplify the

equation.

(G3.5.)

From now on it is to cumbersome to work with equation G3.5. as a hole. The square

of the left hand side (LH) can be simplified a bit if it remembered that the direction

vector of the line, a, is a unit vector.

(G3.6.)

Defme the constants K, and K2 to fmd the polynomial expression of equation G3.6. as

given in equation G3.9.

(G3.7.)

(G3.8.)

(G3.9.)

A similar process is followed for the square of the right hand side (RH) of equation

G3.5.

(G3.10.)

(G3.11.)

(G3.12.)

(G3.13.)
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Equations G3.9. and G3.l0. can now be combined to give the following quartic

polynomial with which A can be solved.

(G3.l4.)

In the implementation of the algorithm, an eigenvalue method (Laguerre's method)

given by Press et al. (1997) is used. With hindsight, it is probably better to use the

direct solution of the quartic equation as given by Spiegel (1968).

If the real roots of this equation are substituted into the equation for the line, all the

intersection points are easily obtained. The next step is to determine if the points lie

on the section of the torus that is used for the model. (See the parameter range as

defined in the previous section.) Thus, the parameters of the points on the torus (u, v)

must be determined and compared with the parameter range of the model.

Let p be an intersection point. Ifp~O then the parameters on the torus are obtained as

follows. The v parameter is obtained from the X and Y components of the point p.

v = arctan( ~:) if pr'(l (making sure that v is in the correct quadrant)( G3 .15.a)

(G3.I5.b)

(G3.l5.c)

The u parameter is simply

u = arcsin( pz r-
b
)<making sure that u is in the correct quadrant) (G3.I6.)
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AppendixH

Lengthening NURBS Surfaces

*H1. Shetty and White's Method

It is often necessary to lengthen NURBS surfaces. The problem is that their extension

is not intuitive as is the case with cylinders and planes for example. The reason for

this is that to lengthen a NURBS surface without changing the shape of the existing

part of the surface means that the surface must be extended beyond the existing

parameter space. In other words, some assumption must be made about how the

surface will behave outside its existing parameter domain. An assumption must also

be made about the degree of continuity at the boundary where the surface will be

extended.

Literature on the topic is hard to find. The method described below is based on the

work of Shetty and White (1991). The method makes the assumption that the

extension will be a ruled surface with tangent-plane continuity on the boundary.

In Figure 1, S (u, v) is the original surface. It will be extended on the boundary where

u=O. R(ur,vr) is a ruled surface. On the boundary v=vr and Stu,v) =R(ur,vr) =Rtu,»). S

and R are defined on the following knot vectors.

such that C=Vo=V]= ... =vq and vm+q+]=vm+q=... =vm+]=d and c<d

• Please note that further explanations of the nomenclature can be found in paragraph 6.2.
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Ur ={ }nr+p+1
uri 0

such that e=urn=ur,= ... =ur.; and urnr+p+]=urnr+p= ... =ur.-i i=a and e<a

v=v

R s

Figure 1 Surface Extension.

In order to maintain geometric tangent plane continuity the following equality must

hold.

Sura, v)+.:i(v)R,l a, v)+a(v)Sv( a,v)=0 (Hl.l.)

.:i(v) and a(v) can be any function of v and .:i(v)~. For brevity, Su(a,v) will be written

just as S" in the rest of this discussion and similarly for .:i(v), a(v), R,,(a, v) and Sv(a, v).

The equations for the derivatives are (where W is the homogenous coordinate)

Since S=R at the boundary, sH=Jtlws/wR• Now, this and the above equations for the

derivatives can be substituted in equation HI.I. After simplifying, the following

equation can be written. In the equation below 0)=Ws/WR.

If r represent the term in brackets, this equation can be decoupled so that one equation

is only a function of r and the weights. The continuity conditions can also be further
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restricted so that S; =kR,~. This means that a in the above equations must be O.For

geometric continuity 1 is set to a constant, say Aa. With all these simplifications, the

equations for tangent-plane continuity are:

(H1.2.a)

(H1.2.b)

The derivatives in the above equations can be calculated using the equations for the

B-spline surface derivatives. Doing this for equation Hl.2.a the following equation is

obtained. (The superscript S and R above the P and w refer to the surfaces S and R in

Figure 1 respectively.)

n m n-I m S pS _ S pS
"" () ()WS S "" () ()W

i
+
I
,) i+I,} Wi,} i,}tLJLJNi,p a N },q v i,}I';,} =P LJLJNi+I,P-1 a N },q v I---:"::'_____:'::""_______:'::____:':'_

i=O}=O i=O}=O U p+i+1-Ui+1

This equation can be further simplified when it is noted, from definition of the B-

spline basis functions and the definition of the knot vectors for the surfaces R and S,

that No,p(a) =N1,p-I(a) =1 and N;,p(a)=N;+I,p-I(a)=O, 'r1'i;t!(). The result is shown here.

m m WS p's _ws p's m wR pR _WR pRr"N (V)wS .p'S = "N (V) I,} I,} O,} O,}+1 " N. (v) n,} n,} n-I,} n-I,}
~ },q O,} o} P LJ },q oaJp LJ },q
}=o }=o U p+1-UI }=o urnr+ p -urnr

If this equation is written in matrix form, the next simplification becomes obvious. It

is done as follows.
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[:: «;(v) WISPIS_WOS POSpS ,j ,j ,j ,j
1': O,j-P

Up+I-UI

(m+I)<1

N j.q (v) ]
• (m+I)«m+l)

(m+I)<1

The matrix containing the B-spline basis functions on both sides of the equation are

the same. If the surfaces are defined in such a way that the inverse of these matrices

exists, then they can be taken out of the equation by pre-multiplying with the inverse

of these matrices. This leads to the following result.

WISP.IS-WOSP.OS. wR pR ._wR
I pR I .

S p'S _ ,j ,j ,j ,j A nr,j nr,) nr-,} nr- ,}

ZWO,} O,} - P + 00lfJ
Up+l-Ul urnr+p -Unr

(Hl.3.)

If the new control net is numbered as is shown in Figure 2, the new control points in

(r-l)'th column is obtained from the equation above equation. A similar equation for

the new weights is found by following the same procedure for deriving equation HI.3.

The equations HIA.a and HIA.b are the resulting two equations, using the control net

numbering of Figure 2. Here, r is the number of new control point columns that must

be added, it is equal to the degree of the surface in the u parametric direction, i.e. r=p.

The new surface is defined on the new knot vector U, equation Hl.S., and the original

knot vector V.The equations HIA.a and HIA.b are derived using the new knot vector

U.
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-t·R:-··········t·····[8········· _ .

o 1 r-I r r+l on

Figure 2 New Control Net Numbering.

WIP I -w .P . W P -w I PI'.D _ r+,j r+v.] r,j r,j 1 r,j r,j r-,j r- ,j
rrr,j-P +Aollp

U2p+1-U p+1 U2p-U p
(Hl.4.a)

Wr+l,j -W r,j
iWr,j=P

U2p+I-Up+1

W .-W I'A. r,j r- ,j
ollp

U2p-Up

(Hl.4.b)

(Hl.5.)

such that e=un = ... =uP' a=up+l= ... =U2p and Unn+p+l=Unn+p= .. ·=u-i-i=b and

e<a<b

The only unknowns in the above equations are Pr.lJ, Wr.lJ' and t: Now, the procedure

to extend a surface, using a linear extrapolation and tangential continuity at the

boundary, is as follows.

• Choose Wr-lJ=Wr+lJ'

• Select a value for e in the new knot vector. A criterion such as the percentage

extension of the knot vector is suitable when a cord length parameterisation

was used. This means that the percentage extension of the knot vector directly

translates in the lengthening of the surface by the same percentage.
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• Using equation HI.4.b, calculate a r for every j and then select the maximum

value of t. (This procedure for finding the value of r was suggested by Shetty

and White, 1991.)

• Using 'max, recalculate the weights Wr-lJ.

• Calculate the new control points Pr-lJ.

• The last step is to find the remaining control points POJ ... Pr-2J' A linear

extrapolation using the Euclidian control points, equation HI.6., is used. The

linear extrapolation can be written as follows in terms of the homogeneous

control points.

WIP I·i r- ,) r- ,)

Wr_l,j
( )w P .i-I r,) r,)

Wr,j
25i5r

Choose Wr-iJ=Wr-lJ' Then:

" (" )wr_l,j
Pr-i)· =ZPr_1 ). - z-I Pr)·

, , W.'
r.t

(HI.6.)

A similar procedure and equation can be derived to extend a NURBS surface along

the other three boundaries.

Figure 3 Surface Extension Using Linear Extrapolation and Tangential

Continuity. (The original surface is shown on the left.)
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H2. Comparison with AutoCAD

Shetty and White's (1991) method was compared with the surface extension of

AutoCAD (2000). The surface definition that was used in the comparison is given in

the following table.

Table 1Definition of Original Surface.

Surface Degree U'-direction
1
3 V-direction

1
3

Knot Vectors U=(O,O,O,O,1,1,1,1) V=(0,0,0,0,1,2,2,2,2)

Control Polygon

U-direction

(0,0,0,1) (0,1,1,0.5) (0,2,1,0.5) (0,3,0,1)
:.:: (1,0,1,1) (1,1,2,1) (1,2,2,1) (1,3,1,1)Cl..........
IJ

(2,0,2,1) (2,1,3,1) (2,2,3,1) (2,3,2,1)IU
I....-s

(3,0,1,1) (3,1,2,1) (3,2,2,1) (3,3,1,1)~
(4,0,0,1) (4,1,1,0.5) (4,2,1,0.5) (4,3,0,1)

The extension of the surface in Table 1 is given in Table 2. This is a linear extension

using AutoCAD (2000). Note that the knot vector was normalised after extension.

Table 2 Extension of Original Surface Using AutoCAD (2000).

Surface Degree U-direction
1
3 V-direction

1
3

Knot Vectors U=(O,O,O,O,I,I,I,I) V=(0,0,0,0,0.2,0.2,0.2,0.6,1,1,1,1)

Control Polygon

U-direction

(-1.125,0,-1.1875,1) (-1.2,1,-0.267, (-1.2,2, (-1.125,3,-1.188,1)
0.938) -0.267,0.938)

(-0.875,0,-0.875,1 ) (-1,1,0,0.875) (-1,2,0,0.875) (-0.875,3,-0.875,1 )

:.:: (-0.5,0,-0.5,1) (-0.667,1,0.333, (-0.667,2,0.333, (-0.5,3,-0.5,1)
Cl 0.75) 0.75)..........
IJ
IU (0,0,0,1) (0,1,1,0.5) (0,2,1,0.5) (0,3,0,1)I....
~
~ (1,0,1,1) (1,1,2,1) (1,2,2,1) (1,3,1,1)

(2,0,2,1) (2,1,3,1) (2,2,3,1) (2,3,2,1)

(3,0,1,1) (3,1,2,1) (3,2,2,1) (3,3,1,1)

(4,0,0,1) (4,1,1,0.5) (4,2,1,0.5) (4,3,0,1)
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This extension was repeated with the method of Shetty and White (1991). The result

is given in Table 3.

Table 3 Extension of Original Surface Using Shetty and White's (1991) Method.

Surface Degree U-direction
1
3 V-direction

1
3

Knot Vectors U=(O,O,O,O,I,I,I,I) V=(0,0,0,0,0.2,0.2,0.2,0.6,1,1,1,1)

Control Polygon

U-direction

(-1.286,0, (-4.5,1,-3.5,0.333) (-4.5,2,-3.5,0.333) (-1.286,3,
-1.286,1.167) -1.286,1.167)

(-0.857,0, (-3,1,-2,0.333) (-3,2,-2,0.333) (-0.857,3,
-0.857,1.167) -0.857,1.167)

~ (-0.429,0, (-1.5,1,-0.5,0.333) (-1.5,2,-0.5,0.333) (-0.429,3,Cl._
-0.429,1.167) -0.429,1.167).....

<:.:l~.::; (0,0,0,1) (0,1,1,0.5) (0,2,1,0.5) (0,3,0,1)~
~ (1,0,1,1) (1,1,2,1) (1,2,2,1) (1,3,1,1)

(2,0,2,1) (2,1,3,1) (2,2,3,1) (2,3,2,1)

(3,0,1,1) (3,1,2,1) (3,2,2,1) (3,3,1,1)

(4,0,0,1) (4,1,1,0.5) (4,2,1,0.5) (4,3,0,1)

When the first partial derivatives with respect to v to the left and right of v=0.2 are

checked it is seen that the extension generated by AutoCAD (2000) is not continuous.

Due to the tessellation of the surface for display by AutoCAD this is not seen on the

graphical display. The reason for this discrepancy is not clear. It is possible that it is a

programming error. The implementation of Shetty and White's (1991) method is

indeed continuous. The partial derivatives are compared in Table 4.
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Table 4 Comparison of Continuity of the AutoCAD and Shetty and White (1991)

Surface Extension.

AutoCAD Shetty and White (1991)

as(0~,0.2)1_ (4.508,0,4.508) (12,0,13.8)

as(0.5,0.2)1 (12,0,13.8) (12,0,13.8)

av +
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Appendix I

Tables with Surface Definitions for Surface

Intersection Investigation

The following definition of a NURBS surfaces is used

n m

IIN;,p (u)Nj,q (v)w;,jP;,j
S(u,V) :-;=-I J;__"=I _

n m
IIN;,p »«,(v)w;,j
;=1 j=1

(1.)

The following two tables contain the definition of the base surfaces.

Table 1Base Surface Used for Parameterising the Outer Surface.

Surface Degree U-direction
1
3 Vsdirection

1
3

Knot Vectors U=(0,0,0,0,0.25,0.5,0. 75,1,1,1,1) V=(0,0,0,0,0.5,1,1,1,1)

Control Polygon The indices i,j refer the equation 1.

(i,}) Control Point (i,j) Control Point

(0,0) (41.968,0,-13.283,1) (3,3) (0,40.722,-14.877,1)

(0,1) (40.961,0,-13.742,1) (3,4) (0,39.504,-14.986,1 )

(0,2) (38.946,0,-14.659,1) (4,0) (-34.022,32.887,-13.283,1)

(0,3) (36.746,0,-14.877,1 ) (4,1) (-33.205,32.097,-13.742,1)

(0,4) (35.647,0,-14.986,1 ) (4,2) (-31.572,30.518,-14.659,1)

(1,0) (39.319,10.962,-13.283,1 ) (4,3) (-29.789,28.795,-14.877,1)

(1,1) (38.376,10.699,-13.742,1) (4,4) (-28.897,27.933,-14.986,1)

(1,2) (36.488,10.173,-14.659,1) (5,0) (-39.319,10.962,-13.283,1)

(1,3) (34.427,9.598,-14.877,1) (5,1) (-38.376,10.699,-13.742,1)

(1,4) (33.397,9.311,-14.986,1) (5,2) (-36.488,10.173,-14.659,1)

(2,0) (34.022,32.887,-13.283,1) (5,3) (-34.427,9.598,-14.877,1)

(2,1) (33.205,32.097,-13.742,1 ) (5,4) (-33.397,9.311,-14.986,1)

(2,2) (31.572,30.518,-14.659,1) (6,0) (-41.968,0,-13.283,1 )

(2,3) (29.789,28.795,-14.877,1) (6,1) (-40.961,0,-13.742,1)
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(2,4) (28.897,27.933,-14.986,1) (6,2) (-38.946,0,-14.659,1)

(3,0) (0,46.509,-13.283,1) (6,3) (-36.746,0,-14.877,1)

(3,1) (0,45.393,-13.742,1) (6,4) (-35.647,0,-14.986,1)

(3,2) (0,43.160,-14.659,1)

Table 2 Base Surface Used for Parameterising the Inner Surface.

Surface Degree U-direction
1
3 V-direction

1
3

Knot Vectors U=(0,0,0,0,0.25,0.5,0.75,1,1,1,1) V=(0,0,0,0,0.5,1,1,1,1)

Control Polygon The indices i.j refer the equation 1.

(i,}) Control Point (i,j) Control Point

(0,0) (34.668,0,-15.833,1) (3,3) (0,35.184,-20.205,1)

(0,1) (34.193,0,-16.787,1) (3,4) (0,34.358,-20.961,1)

(0,2) (33.241,0,-18.694,1) (4,0) (-28.104,27.166,-15.833,1)

(0,3) (31.749,0,-20.205,1) (4,1) (-27.719,26.794,-16.787,1)

(0,4) (31.004,0,-20.961,1) (4,2) (-26.947,26.048,-18.694,1)

(1,0) (32.480,9.055,-15.833,1) (4,3) (-25.738,24.879,-20.205,1)

(1,1) (32.035,8.931,-16.787,1) (4,4) (-25.133,24.295,-20.961,1)

(1,2) (31.143,8.683,-18.694,1) (5,0) (-32.480,9.055,-15.833,1)

(1,3) (29.746,8.293,-20.205,1) (5,1) (-32.035,8.931,-16.787,1)

(1,4) (29.047,8.098,-20.961,1 ) (5,2) (-31.143,8.683,-18.6941 )

(2,0) (28.104,27.166,-15.833,1) (5,3) (-29.746,8.293,-20.205,1)

(2,1) (27.719,26.794,-16.787,1) (5,4) (-29.047,8.098,-20.961,1)

(2,2) (26.947,26.048,-18.694,1) (6,0) (-34.668,0,-15.833,1)

(2,3) (25.738,24.879,-20.205,1) (6,1) (-34.193,0,-16.787,1)

(2,4) (25.133,24.295,-20.961,1 ) (6,2) (-33.241,0,-18.694,1)

(3,0) (0,38.419,-15.833,1) (6,3) (-31.749,0,-20.205,1)

(3,1) (0,37.892,-16.787,1) (6,4) (-31.004,0,-20.961,1)

(3,2) (0,36.838,-18.694,1)

The following two surfaces are the result of the surface approximation.

1.2

Stellenbosch University http://scholar.sun.ac.za



Table 3 Surface Approximation of Outer Surface.

Surface Degree U-direction
13 V-direction

1
3

Knot Vectors U=(0,0,0,0,0.197,0.403,0.598, V=(0,0,0,0,0.106,0.312,
0.804,1,1,1,1) 0.522,0.745,1,1,1,1 )

Control Polygon The indices i,j refer the equation 1.

(i,j) Control Point (i,j) Control Point

(0,0) (42.033,-0.117,-13.254,1) (4,0) (-14.992,42.531,-13.271,1)

(0,1) (41.863,0.017,-13.343,1) (4,1) (-14.828,42.329,-13.376,1 )

(0,2) (41.222,-0.030,-13.669,1 ) (4,2) (-14.658,41.709,-13.688,1)

(0,3) (40.155,0.002,-14.111,1) (4,3) (-14.247,40.620,-14.127,1)

(0,4) (38.839,-0.008,-14.533,1) (4,4) (-13.789,39.283,-14.541,1)

(0,5) (37.310,0.012,-14.854,1) (4,5) (-13.247,37.773,-14.849,1)

(0,6) (36.358,-0.005,-14.957,1) (4,6) (-12.893,36.737,-14.958,1)

(0,7) (35.690,-0.046,-14.981,1) (4,7) (-12.422,36.134,-14.991,1)

(1,0) (41.172,9.033-13.700,1) (5,0) (-35.909,26.414,-13.232,1)

(1,1) (39.344,8.631,-14.552,1 ) (5,1) (-36.144,26.029,-13.2071 )

(1,2) (39.447,8.613,-14.399,1 ) (5,2) (-35.399,25.783,-13.607,1)

(1,3) (37.938,8.303,-14.871,1) (5,3) (-34.598,25.034,-14.031,1 )

(1,4) (36.736,7.985,-14.987,1 ) (5,4) (-33.427,24.261,-14.489,1)

(1,5) (35.137,7.694,-15.136,1 ) (5,5) (-32.168,23.280,-14.822,1)

(1,6) (34.246,7.340,-15.0321) (5,6) (-31.301,22.710,-14.946,1)

(1,7) (32.565,7.961,-15.196,1 ) (5,7) (-31.168,22.130,-14.954,1)

(2,0) (35.871,26.501,-13.228,1) (6,0) (-41.178,8.980,-13.698,1)

(2,1) (36.115,26.120,-13.198,1) (6,1) (-39.354,8.582,-14.547,1 )

(2,2) (35.367,25.872,-13.602,1) (6,2) (-39.455,8.565,-14.397,1)

(2,3) (34.570,25.121,-14.025,1) (6,3) (-37.948,8.256,-14.866,1)

(2,4) (33.401,24.346,-14.485,1) (6,4) (-36.748,7.941,-14.985,1 )

(2,5) (32.130,23.363,-14.810,1) (6,5) (-35.141,7.651,-15.135,1 )

(2,6) (31.279,22.790,-14.945,1 ) (6,6) (-34.260,7.300,-15.031,1 )

(2,7) (31.140,22.203,-14.953,1) (6,7) (-32.582,7.905,-15.195,1 )

(3,0) (14.842,42.583,-13.274,1) (7,0) (-42.031,-0.113,-13.254,1 )

(3,1) (14.678,42.377,-13.381,1) (7,1) (-41.859,0.019,-13.346,1)

(3,2) (14.510,41.757,-13.692,1 ) (7,2) (-41.221,-0.029,-13.669,1)

(3,3) (14.103,40.667,-14.131,1 ) (7,3) (-40.150,0.003,-14.113,1)
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(3,4) (13.649,39.328,-14.543,1) (7,4) (-38.831,-0.008,-14.533,1)

(3,5) (13.114,37.816,-14.850,1) (7,5) (-37.323,0.012,-14.854,1 )

(3,6) (12.761,36.778,-14.959,1) (7,6) (-36.349,-0.004,-14.957,1)

(3,7) (12.295,36.179,-14.991,1) (7,7) (-35.683,-0.041,-14.982,1)

Table 4 Surface Approximation of Inner Surface.

Surface U-direction 3 V-direction 3
Degree

Knot Vectors U=(0,0,0,0,0.197,0.403,0.598, V=(0,0,0,0,0.138,0.339,0.550,
0.804,1,1,1,1) 0.769,1,1,1,1)

Control The indices i.j refer the equation 1.
Polygon

(i,j) Control Point (i,j) Control Point

(0,0) (34.686,-0.095,-15.813,1) (4,0) (-12.377,35.102,-15.816,1)

(0,1) (34.591,-0.077,-16.052,1) (4,1) (-12.296,34.989,-16.097,1)

(0,2) (34.271,-0.070,-16.727,1) (4,2) (-12.210,34.683,-16.745,1)

(0,3) (33.704,-0.067,-17.741,1 ) (4,3) (-11.988,34.102,-17.772,1)

(0,4) (32.968,-0.064,-18.830,1) (4,4) (-11.737,33.355,-18.860,1)

(0,5) (32.073,-0.033,-19.919,1 ) (4,5) (-11.389,32.460,-19.947,1)

(0,6) (31.431,-0.052,-20.571,1 ) (4,6) (-11.201,31.786,-20.608,1)

(0,7) (31.043,-0.061,-20.952,1) (4,7) (-10.911,31.430,-20.978,1)

(1,0) (34.533,7.684,-16.146,1) (5,0) (-29.615,21.739,-15.784,1)

(1,1 ) (34.036,7.658,-17.155,1) (5,1) (-29.641,21.512,-15.941,1)

(1,2) (33.890,7.536,-17.413,1) (5,2) (-29.306,21.434,-16.666,1)

(1,3) (33.113,7.415,-18.667,1) (5,3) (-28.874,21.013,-17.651,1)

(1,4) (32.259,7.136,-19.763,1) (5,4) (-28.233,20.600,-18.743,1)

(1,5) (31.142,6.972,-20.915,1) (5,5) (-27.539,19.994,-19.821,1)

(1,6) (30.546,6.609,-21.474,1 ) (5,6) (-26.915,19.662,-20.491,1)

(1,7) (29.683,7.242,-21.924,1) (5,7) (-26.821,19.191,-20.818,1)

(2,0) (29.579,21.807,-15.781,1) (6,0) (-34.537,7.630,-16.144,1)

(2,1) (29.608,21.580,-15.933,1) (6,1) (-34.042,7.605,-17.150,1)

(2,2) (29.272,21.501,-16.660,1 ) (6,2) (-33.895,7.483,-17.409,1)

(2,3) (28.841,21.079,-17.644,1) (6,3) (-33.119,7.362,-18.662,1)

(2,4) (28.202,20.666,-18.736,1) (6,4) (-32.264,7.088,-19.758,1 )
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(2,5) (27.509,20.060,-19.814,1) (6,5) (-31.148,6.924,-20.911,1)

(2,6) (26.888,19.726, -20.482,1 ) (6,6) (-30.552,6.565,-21.468,1)

(2,7) (26.793,19.251-20.815,1) (6,7) (-29.695,7.183,-21.923,1)

(3,0) (12.262,35.139,-15.819,1 ) (7,0) (-34.684,-0.091,-15.814,1)

(3,1) (12.181,35.026,-16.102,1 ) (7,1) (-34.588,-0.072,-16.053,1)

(3,2) (12.095,34.719,-16.749,1 ) (7,2) (-34.268,-0.064,-16.729,1)

(3,3) (11.876,34.137,-17.776,1) (7,3) (-33.702,-0.062,-17.742,1)

(3,4) (11.627,33.389,-18.865,1) (7,4) (-32.966,-0.061,-18.831,1)

(3,5) (11.281,32.492,-19.951,1) (7,5) (-32.072,-0.031,-19.920,1)

(3,6) (11.096,31.817,-20.614,1) (7,6) (-31.428,-0.049,-20.574,1)

(3,7) (10.807,31.463,-20.980,1) (7,7) (-31.040,-0.056,-20.952,1)
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