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Abstract
The purpose of this thesis is to investigate the nature of digital image compression

and the calculation of the quality of the compressed images. The work is focused on

greyscale images in the domain of satellite images and aerial photographs. Two

compression techniques are studied in detail namely the JPEG and fractal

compression methods. Implementations of both these techniques are then applied to

a set of test images. The rest of this thesis is dedicated to investigating the

measurement of the loss of quality that was introduced by the compression. A

general method for quality measurement (signal To Noise Ratio) is discussed as well

as a technique that was presented in literature quite recently (Grey Block Distance).

Hereafter, a new measure is presented. After this, a means of comparing the

performance of these measures is presented. It was found that the new measure for

image quality estimation performed marginally better than the SNR algorithm. Lastly,

some possible improvements on this technique are mentioned and the validity of the

method used for comparing the quality measures is discussed.
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Opsomming

Die doel van hierdie tesis is om ondersoek in te stel na die aard van digitale

beeldsamepersing en die berekening van beeldkwaliteit na samepersing. Daar word

gekonsentreer op grysvlak beelde in die spesifieke domein van satellietbeelde en

lugfotos. Twee spesifieke samepersingstegnieke word in diepte ondersoek naamlik

die JPEG en fraktale samepersingsmetodes. Implementasies van beide hierdie

tegnieke word op 'n stel toetsbeelde aangewend. Die res van hierdie tesis word dan

gewy aan die ondersoek van die meting van die kwaliteitsverlies van hierdie

saamgeperste beelde. Daar word gekyk na 'n metode wat in algemene gebruik in die

praktyk is asook na 'n nuwer metode wat onlangs in die literatuur veskyn het. Hierna

word 'n nuwe tegniek bekendgestel. Verder word daar 'n vergelyking van hierdie

mates en 'n ondersoek na die interpretasie van die 'kwaliteit' van hierdie

kwaliteitsmate gedoen. Daar is gevind dat die nuwe maatstaf vir kwaliteit net so goed

en selfs beter werk as die algemene maat vir beeldkwaliteit naamlik die Sein tot Ruis

Verhouding. Laastens word daar moontlike verbeterings op die maatstaf genoem en

daar volg 'n bespreking oor die geldigheid van die metode wat gevolg is om die

kwaliteit van die kwaliteitsmate te bepaal.
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1. Introduction

Moore's law [Schal] states that computer memory, speed and disk space doubles

approximately every eighteen months. Although high, the increase in demands made

on computer capabilities is even more rapid.

Computer graphics is one of the fields where it seems that user requirements grow

faster than technology. With the growing popularity of the internet, many people have

access to large amounts of digital image data. These images may vary from pretty

pictures used as background screens for personal computers, to archives of satellite

photographs used for weather prediction.

Digital images generally take up large amounts of disk space. Consider for example

the previously mentioned example of an archive of satellite images that is used for

long term weather prediction. Such an archive would typically contain sets of images

covering the whole planet or parts thereof. These images would be taken at daily or

even more frequent intervals. The images would require a high resolution and there

could possibly be more than one image per region (for instance infra red photographs

to give temperature measurements and water vapour images to study cloud

formations). Given a long enough observation period, the amount of space necessary

to represent such an archive could reach considerable proportions. It is therefore

understandable that image compression can play a vital role in many computer

application fields.

The main purpose of this work is to investigate the measurement of digital image

quality after degradation due to compression. In order to achieve this goal, more

must be learned of compression techniques themselves and this work will consider

the JPEG and fractal compression methods in some detail. Armed with this

knowledge of image compression, the rest of this work will be focused on the

measurement of the quality of these techniques applied to satellite images and the

evaluation of the value or quality of these measures.

There are currently an abundance of different image compression technologies

available. The two main categories that separate these methodologies are lossless

and lossy compression. Lossless compression will not be discussed in this work for

two reasons. Firstly, the gains achieved from this technique are minimal and have an

upper bound ([Shan] and [SarnC, chapter 5]). Secondly, the theme of this work is to

3
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find some way to objectively measure the quality of a compressed image and

lossless compression suffers no quality degradation, thus making the exercise trivial.

In chapter 2, two specific lossy compression techniques will be discussed. These are

respectively the JPEG and fractal image compression techniques. The theory of each

method will be discussed and an example of the implementation of each will be

given. Due to the relative youth of fractal image compression in comparison with the

methods underlying JPEG, a brief description will be given on the history of the

development of fractal image compression and some of the early advances made in

this field will be discussed shortly. Some test results of both methods will also be

given in these chapters.

By the end of chapter 2, armed with a basic understanding of these compression

methods, the focus will be shifted to the measurement of the performance of these

compression techniques. The general performance of an image compression

technique is measured by three parameters: the compression ratio, the

compression/decompression time and the compression quality or degradation. The

first of these three parameters is easily quantifiable since it is simply the ratio of the

file size of the original image to that of the compressed image (this value is generally

expressed as bits per pixel). The calculation of the quality of a degraded image in

comparison with its original image is not as simple to obtain as this is a more

subjective measure. There are several methods available for calculating this value

but they do not always correlate very well with each other. This gives rise to many

variations that are used by different people, making it difficult to perform a

comparative study from different sources.

Chapter 3 describes the problem involved in this particularly difficult task. Some

existing quality measures are examined and implemented, and their results are listed

in Table 11.

In section 3.1.5, a new measure of image quality is proposed and implemented. A

variation of this implementation is also investigated and implemented. The results of

both of these methods are listed in Table 11.

It is however easy to invent arbitrary measures to calculate the difference between

images without having any tools for evaluating the 'quality' of these quality measures

in comparison with existing measures, The real test lies in how well these results

correlate with human perception of image quality. For this reason, section 0 of

chapter 3 describes a method for collecting some subjective judgement information

4
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on image compression quality. This data is then interpreted to produce a baseline for

comparison of different image grading techniques.

Chapter 4 examines the results of the different quality measurements that were

implemented in the previous chapter and tries to find the reasons for the good or bad

comparison that was achieved using the technique also described in that chapter.

This chapter also examines some possible improvements to the two quality

measurement techniques that were presented in this work.

In chapter 5, the fractal and JPEG compression techniques are compared and a

critical look is taken at the subjective image qualification test that was performed for

this work as well as the validity of the cross correlation calculation used to grade the

different image quality measures.

5
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2. Image Compression

There are currently many different methods for compressing image data, each with

its own good qualities and drawbacks. Currently popular compression techniques

include the JPEG, fractal and wavelet compression techniques. A comparison of

these three methods can be found in [Fisher]. Fractal and wavelet compression

methods are based on transforms by that same name and JPEG is based on the

discrete cosine transform. A very good introductory article for JPEG compression can

be found in [Wall].

The choice of which method to use is largely dependent on the application

requirements. This can become a nontrivial exercise in linear programming to

optimise the compression results with the requirements.

Image compression can be subdivided into two main categories namely lossless and

lossy compression. In both these categories, there are many techniques available.

These include transform coding, predictive coding, vector quantisation, pixel coding

and hybrid coding. Chapter 11 of [Jain] and chapter 5 of [Kak] supply a good

introduction to image compression in general.

The statistical nature of digital image data imposes strict upper bounds on the

performance of lossless compression techniques depending on the entropy of the

source (see p. 42 of [Jain]). Current implementations can achieve a maximum

compression ratio of about 3:1.

Due to the nature of real world images (image energy is concentrated at the lower

spatial frequencies) and the effect of the human visual system on the perception of

these images, much information can be removed from an image without noticeable

loss of quality. This happens because the human visual system acts as a filter to

what is perceived so that some aspects of an image are attenuated and need not be

represented with full accuracy. The human brain also performs image processing on

what it sees and can fill in detail that might not be present in an image merely

because it expects the information to be there. The understanding and successful

exploitation of these functions of the human visual system and brain leads to the

category of lossy image compression.

Lossy image compression is performed when a specific level of degradation is

allowed, and this in turn will influence the compression ratio. The general level of

6
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degradation and compression ratio is dictated by the specific implementation with an

attempt at optimising the cost and effectivity equation. The cost and effectivity

equation for image compression consists of a trade-off between compression quality,

compression ratio and the compression/decompression time. The compression ratio

and compressed image quality can only be increased at cost to each other after a

certain point. This can be deduced logically as follows: Consider an image containing

a fixed amount of information in a fixed size. The size can be larger than that

necessary to contain all the information as is generally the case in most data

collections. This information can now be stored more optimally up to a point where

there is no more data redundancy and the data size is the same as the amount of

information. This is the maximum level of lossless compression that may be obtained

for a certain amount of information and can be calculated from Shannon's coding

theories [Shan]. Any further compression will lead to the loss of information that

cannot be recovered during decompression, thus leading to a decrease in image

quality. The compression and decompression time is largely a function of the type of

compression used. Fractal image compression for instance has a very slow encoding

time but is very fast to decode. JPEG on the other hand is very fast to both compress

and decompress. This feature makes it viable for the type of application where

images are compressed and decompressed continually for transmission. This can

also be seen from the fact that the JPEG image format is one of the Internet

standards used today.

Most implementations of image compression algorithms available today consist of a

combination of lossy and lossless techniques. The lossy of part the compression

algorithm is generally based on some form of transform coding, as has already been

mentioned. The principle of transform coding is to find a transformation on a data set

with very good energy packing properties. After transformation of an image, most of

the image energy is concentrated in relatively few of the transform coefficients and

compression is achieved by discarding coefficients that have a negligible influence

on the final result as interpreted by the human visual system. To apply this in practice

an image is divided into smaller rectangular blocks that are transform coded

separately. More information on transform coding can be found in chapter 5.3-4 of

[Jain]. Fractal coding is somewhat different in nature to general transform coding.

The fractal transform does not truly pack image energy into a more compact form but

exploits image redundancy to achieve compression.

The above mentioned techniques can achieve compression ratios of 10:1 to 50:1

depending on the image, with acceptable levels of image degradation. All these

7
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techniques consist of a main lossy transform compression that is optimised by a

combination with some lossless technique like entropy or runlength coding.

It is difficult to make a quantitative comparison between all these compression

techniques since each has its own weaknesses and strengths and some are

optimised for specific types of images, or to perform optimally on certain features of

an image. The specific application therefore plays a very important role in judging the
performance of a compression algorithm.

The problem is also made more difficult by the fact that the performance of a

compression technique is measured by the three factors already mentioned. It is

therefore important to decide which factors will be used to judge the techniques and

to keep the other factors constant and similar to provide reliable test data.

This thesis is concerned with the estimation of the quality of the image and as far as

possible, the compression ratio of the test images will be kept similar. The

compression time for these two methods differ by a few orders of magnitude and will

be ignored in this work since it does not affect the compression ratio or quality if the

test algorithms are not constrained by the compression time in any way.

For the purpose of this thesis, a set of thirty images were selected as test data. The

images are all either satellite images or aerial photographs of the earth's surface.

The image content varies between weather phenomena, continental views and cities.

Some of the images were taken in the visual range whilst some are infra red images

or water vapour photographs. The images also differ in resolution, scale and quality

to provide a general combination of images from this category. The images are

contained in the CD-ROM accompanying this thesis.

The first section in this chapter examines the fractal image compression method.

Section 2.1.1 serves as an introduction to the mathematical theory required for the

understanding and proof of this technique. Section 2.1.2 describes the development

of fractal image compression from the groundbreaking work done by Barnsley and

Jacquin ([Barn], [JacqA], [JacqB], [JacqC], [JacqD]) in the early 1990's and also

takes a closer look at some of the later contributions that improved on this initial

work. This is by no means a definitive history of the work done on fractal image

compression but only serves as a brief introduction to this topic. An extensive list of

published articles and some very good introductory works can be found at

ftp://ftp.informatik.uni-freiburg.de/papers/fractal/. The bibliography and some of these

articles are also included on the CD-ROM. This section is followed by a detailed

description of an actual compression algorithm as implemented by Fisher in

8
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[FisherB]. Section 2.1.4 concludes the discussion of fractal image compression by

looking at some of the results obtained from application of the algorithm described in

section 2.1.3.

The last section of this chapter deals with the JPEG compression method. Section

2.1.5 describes the discrete cosine transform upon which JPEG compression is

based and also discusses all other necessary techniques required to understand the

application of JPEG compression. This is followed by a description of the actual

JPEG compression algorithm and the last section of this chapter looks at some of the

results obtained from JPEG compression.

Two other methods of image compression that are currently undergoing active

research but is not discussed in this work are the zero-tree wavelet and set

partitioning in hierarchical trees. These methods may be incorporated into the JPEG

2000 standard and are well worth some further investigation.

Fractal Image Compression

2.1.1 Mathematical background

This section examines some of the preliminary concepts necessary for the

understanding of fractal image compression. Firstly, a brief description of fractals

is given and then some necessary definitions and theorems are considered. This

is followed by the discussion of two methods for generating fractals. The latter of

these two methods is then used in an example to illustrate the basic idea of fractal

image compression.

The field of fractals is much too diverse to discuss in detail in this work. Interested

readers are referred to two classical books by Mandelbrot ([MandA] and [MandB])

for a good background on fractals. Two other sources are the book Fractals for

the Classroom [Peitg] which is aimed at the reader without a strong mathematical

background and the more advanced text by Michael Barnsley, Fractals

Everywhere [BarnB].

The following short introduction of the term fractal and the definition thereof was

adapted from the introduction of Benoit B. Mandelbrot's book Fractals: Form,

Chance, and Dimension [MandA].

9
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The term fractal was coined by Benoit B. Mandelbrot. It is derived from the Latin

adjective fractus which means irregular or fragmented and is related to the Latin

word frangere which means to break. The concept of fractal geometry was

introduced to resolve some of the shortcomings of classical Euclidian geometry to

describe the behaviour of certain natural as well as artificial phenomena. Classical

geometry deals with objects like lines and circles and properties such as their

derivatives. Problems arose for example when trying to measure the length of a

coastline or its derivative at some point. Intuitively, measurements should be more

accurate with a smaller resolution or scale of measurement. In the example

mentioned however, the measured length of the coastline increases with every

increase in scale and the derivative changes with every change in scale and does

not seem to converge to a fixed value. An artificial example of this phenomenon is

the now famous Mandelbrot set which features on several pages of Barnsley

[BarnB].

In order to obtain a definition for fractals, it is necessary to first introduce the

concept of dimension of a set. There are two definitions of dimension to be

considered. The first is the topological dimension denoted by Dr which is used in

Euclidian geometry. The other is the Hausdorf-Besicovitch or fractal dimension

which is denoted by D. See Peitgen [Peitg] for a detailed desription of these two

definitions and how to calculate them for specified sets. The two dimensions equal

at least 0 and at most the dimension E of the Euclidian space in which the set is

embedded. Furthermore: D 2:: DT• The cases where D = Dr include all Euclidian

sets. This leads to the definition of fractals proposed by Mandelbrot in [MandA]:

A fractal will be defined as a set for which the Hausdorf-Besicovitch dimension

strictly exceeds the topological dimension.

An important feature of fractals which is worth mentioning here and on which the

key to fractal image compression rests, is the fact that many fractals are invariant

to certain transformations of scale and many fractals are self-similar. This can be

seen in natural fractal shapes like that of a cauliflower or the vein system in the

human liver, and also in artificial fractals like the Sierpinski triangle (see Figure

2-3) and the Koch snowflake.

To get to the purpose of this chapter, which is the application of fractal theory to

obtain compression of images, some definitions and theorems are given. The

following definitions and theorems are directly related to the concept of fractal

image compression and although it might seem like a slight digression from the

10
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topic, the purpose and relevance of this will become clear as the chapter
progresses.

Definition 1 ([BarnB, p50]): A transformation lV:~z -7 ~z of the form

w(x) = A (x) + B

or

where a, b, C, d, e and f are real numbers is called a two-dimensional affine

transformation.

This transformation can rotate, scale, shear, reflect or translate a region of the

plane to another region. The B matrix is responsible for the translation of points.

To better understand the effect of the A matrix in this transformation, it can be

rewritten in the form

-rz SinBz]
rz cosBz

The effects of the new parameters on the transformation is illustrated in Figure

2-1.

1

oo 1

Original set Transformed set

Figure 2-1 Effects of an affine transformation on the unit square

11
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Definition 2 ([BarnB, p73]): Let f:X-7X be a transformation on a metric space. A

point

X,E X such that f (x f) = X J is called a fixed point of the transformation.

Definition 3 ([BarnB, p75]): A transformation t. X -7 X on a metric space (X, d) is

called contractive or a contraction mapping if there is a constant °$; S < 1such

that d(j(x),f(y»$;s·d(x,y)Vx,YEX. Any such number s is called a

contractivity factor for f.

Theorem 1 [The Contraction Mapping Theorem] ([BarnB, p76]): Let t. X -7 X be a

contraction mapping on a complete metric space (X, d). Then f posesses exactly

one fixed point x, EX and moreover for any point x E X, the sequence

{fon (x) :n = O,1,2... }converges to x,. That is, Limj"'" (x) = x f' for each XE X.
n-4~

The proof of this theorem can be found on p.76 of Barnsley [BarnB].

This theorem implies that no matter what the initial set to which a contraction

mapping is repetitively applied, it will eventually converge to a specified fixed point

- in other words, if the fixed point of some contraction mapping is a circle image,

the result of iteratively applying this contraction mapping to the image of a tree,

will still be an image of a circle.

Definitions 4, 5, 6 and 7 and theorem 2 are specifically related to the iterated

function system method for generating fractals.

Definition 4 ([BarnB, p82]): An iterated function system (lFS) consists of a

complete metric space (X, d) together with a finite set of contraction mappings (l)n:

X -7 X, with respective contractivity factors Sn, for n = 1, 2, ... , N. The notation for

the lFS is

{X; (l)n,n = 1, 2, ... , N) and its contractivity factor is s = Max{sn: n = 1, 2, ... , N}

Definition 5 ([BarnB, p30]): Let (X, d) be a complete metric space. Then H(X)

denotes the space whose points are compact subsets of X, other than the empty

set.

Definition 6 ([BarnB, p34]): Let (X, d) be a complete metric space. Then the

Hausdorf distance between points A and B in H(X) is defined by

h(A,B) =d(A,B) vd(B,A) (2.4)

with

12
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d(A,B) =Max{d(x,B) :XE A},

d(A,B) is the distance from the set A E H(X) to the set B E H(X). The symbol v is

used to denote the maximum of the two real numbers given by drA, B) and d(B,

A).

Theorem 2 ([BarnB, p82]): Let {X; (J)n, n = 1, 2, ..., AA be an lFS with contractivity

factor 5. Then the transformation W: H(X) ~ H(X) defined by

N

WeB) = UlUn (B)
n=l

for all B E H(X), is a contraction mapping on the complete metric space (H(X),

h(d» with contractivity factor 5. That is

h(W(B),W(C» '5,s'h(B,C)

for all B, CE H(X). Its unique fixed point, A E H(X), obeys

N

A = W(A) = UWn (A),
n=l

and is given by

A = Lim Won (B)
n~~

for any B E H(X).

Theorem 2 is basically the same as theorem 1 but the contraction mapping

considered in this case is an lFS.

Definition 7 ([BarnB, p82]): The fixed point A E H(X) described in theorem 2 is

called the attractor of the lFS.

Theorem 3 [The Collage Theorem - Barnsley 1985] ([BarnB, p97]): Let (X, d) be a

complete metric space.Let LE H(X) be given, and let E ~ 0 be given. Choose an

lFS {X; 001, (J)2, ... , (J)N} with contractivity factor O:S;s:S;1, so that

where h(d) is the Hausdorf metric. Then

h(L,A)'5, /(l-S)

where A is the attractor of the lFS.
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This theorem can be interpreted as follows: An lFS can be found whose attractor

is arbitrarily close to any given set (image) by finding a collection of

transformations on the given set such that the union of the transformations on the

given set is arbitrarily close to the given set itself. Or more simply, an lFS can be

found that is an arbitrarily close approximation of a specified image, by finding

different transformations that approximate different regions of the specified image.

An approximation of the specified image is then found by uniting these

transformations.

A simple but illustrative example of a fractal that can be generated with an

iterated function system is the Sierpinski gasket. This fractal is created with the

three simple transformations shown in Figure 2-2.

Initial Set: S First application of the
Transformation: W(S)

Figure 2·2 Affine mappings for the Sierpinski gasket

The three transformations for the Sierpinski gasket can be written as follows:

o~tH~]
o~]~Ho~]

ta = [0.5 ° ][x] + [0.5]
3 ° 0.5 y °

[
0.5

())t=

°
[
0.5

())z=

°
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The attractor for W = (1)1 U (1)2 U (1)3 is shown in figure 3.

Figure 2-3 Sierpinski gasket

An extension of the concept of iterated function systems, is partitioned iterated

function systems (PIFS). With PIFS, each transformation is only performed on a

segment of the set and is then translated to some region of the plane. This is

illustrated in Figure 2-4.

/~

CD --
~~(l)a(A)

a

A

B '--_

~
~~(B)---b

Initial Set: S First Iteration: W(S)

Figure 2-4 Illustration of a Partitioned Iterated Function System

The application of PIFS in image compression is perhaps best explained with the

help of a simple example. Consider the image shown in Figure 2-5. Assume that

this is a 1bit/pixel, 128x128 pixel image. To digitally represent this image would

require
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16kBytes of memory. The idea of fractal image compression is to represent this

image by a PIFS of which the attractor is close to the image.

Figure 2-5 Image to be represented by a PIFS

Firstly the image is segmented into nonoverlapping blocks of size 8x8 and 16x16

pixels (see Figure 2-6). The smaller blocks will be called range blocks and the

larger ones domain blocks. Next an affine mapping must be found for each range

block so that some domain block can be mapped to an exact replica or as close

as possible match to it. The notation adopted to represent the PIFS is

(2.15)

where Ri denotes the range block in question, Di denotes the

matching/approximating domain block and A is the transformation matrix.

No translational terms are necessary since the range and domain block numbers

already specify any necessary translations completely (see Figure 2-6). The fixed

domain and range block sizes also implies a fixed contractivity factor of 0.5 for all

the transformations and therefore the transformation matrix A for this case is given

by:

A = [0.5 0]° 0.5 (2.16)

The complete set of PIFS also includes two non affine transformations. These will

be called the zero and fuif transformation. The zero transformation simply replaces

a range block by an empty block and is denoted by D, ~ R: The full
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transformation replaces a range block with a fully coloured/all black block and is

denoted by Df -7 R, .

These transformati'ons might seem trivial but are necessary for the existence of

the desired attractor. In the absence of the full transformation, a black and white

image that is contractively transformed will eventually become all white since the

black areas keep shrinking and no 'substance' is added.

All the transformations necessary to represent the image in Figure 2-5 are shown

below.

A:D -7 R2 1,3,5,6,8,9,11,14,15,16

D z -7 Rz,4,IZ

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

3 4

Range blocks Domainblocks

Figure 2-6 Range and domain block division
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To reconstruct the original image from this mapping, it can simply be applied

iteratively to any initial image. This is illustrated with a solid black starting image

and the successive iterations are shown in Figure 2-7. As can be seen, this

specific PIFS converges to an exact copy of the original with no degradation. To

store the transformations required to create this image, much less memory than

the pixel representation of the image is required.

Since all A matrices in this example are the same, further compression can be

achieved by only saving the domains for each range. This means that each range

block can be stored using three bits since there are only four domains and two

special transformations. The image is then completely represented by 48 bits - a

compression ratio of 341:1. There are only six possibilities for each range so

three bits are actually a waste of storage space. This can be reduced further by

some lossless coding technique like Huffman coding. In practice however,

compression ratios such as this one will not be encountered due to the nature and

complexity of real world images. Although very simple, this is the basis for most

fractal image compression algorithms in use today.

Figure 2-7 First 7 iterations of the PIFS

The examples only considered the case of black and white images. The

progression to grayscale images is somewhat more complicated. A grayscale

image can be viewed as a three dimensional landscape where height represents

grayscale intensity values. An affine transformation for grayscale images will look

as follows:
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(2.17)

where Sj represents the scaling or contrast and OJ represents the offset or

brightness of the grayscale colour values. Grayscale fractals can be generated in

the same way as before, but overlapping transformed blocks have their pixel

values added together to find the resulting intensity value in overlapping regions.

The extension to full colour images can be done in several ways. Colour images

can be broken up into their red green and blue components (RGB) and each of

these can be treated as a separate grayscale image on its own. This is not a very

effective way to accomplish the extension to colour images. A better way is to

convert the colour image into its luminance and chrominance representations

(YIQ- or YUV- models). The conversion formulas for these representations can be

found in chapter 14 of Watt [Watt] and chapter 3 of Jain [Jain]. The luminance

component is equivalent to a grayscale representation of the image and carries

most information. The luminance component is then treated as a standard

grayscale image whilst the chrominance components can be represented at a

lower resolution without loss of quality. This method will have a higher

compression ratio than the RGB-separation method.

This section should leave the reader with an understanding of the basic theory of

image compression through fractal methods. The next section takes a look at

some of the research that has been done in this field to improve the basic

compression method.

2.1.2 Development

The concept of fractal image compression is based on the mathematical results of

iterated function systems. This theory can be traced back to work done by

Williams and Hutchinson ([Will], [Hutch)). It was Barnsley and Sloan however, who

first connected this theory with the compression of digital images in their 1988

publication [Barn]. The compression method tries to exploit image redundancy by

modelling it as self-similarity, ie. the redundancy present in fractal objects. This

can be accomplished in two steps. Firstly, an image is broken into segments and

in the second step these segments are replaced by similar fractals from an

existing library of fractals. The results of applying this method showêd very slow

encoding and decoding times although encoding was more than an order of
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magnitude slower than decoding. The compression ratios achieved however were

extremely high. The method unfortunately did not lend itself very well to complete

automation. In 1990 and 1991 Barnsley and Sloan were granted two patents': 2

which led to commercial compression software and hardware.

The first fully automated fractal image compression routine was developed by

Arnaud Jacquin, a student of Barnsley, and was presented in his PhD thesis and

followed up by several now classic articles on this topic ([JacqB], [JacqC],

[JacqD], [JacqE]). The compression scheme discussed hereafter is based on

greyscale images. The progression to colour images is a logical extension where

each of the colour components can be treated as a greyscale image in itself (end

of Section 2.1.1).

Many publications after the ground breaking work of Jacquin are based on his idea

and attempt to improve some aspects of it. The rest of this section will be

dedicated to discussing Jacquin's method and some of the improvements that

have been made on it.

Most publications referred to in this section compare their results with some

standard form of fractal compression. This standard form is generally based on

Jacquin's article without any improvements but varies from article to article. This is

a very slow and inefficient method on which remarkable improvements have been

made. When compared with published results that seem very much improved it

must just be kept in mind that they are compared to a very slow and sub optimal

algorithm. Different measures for compression quality are also used in different

publications and these measures are difficult to compare to each other in absolute

terms.

Since the execution of this type of algorithm is also image dependent, it is difficult

to obtain quantitative results for the effect on performance of some parameter

changes in the algorithm. At best, compression ratio, encoding and decoding time,

as well as signal to noise ratio can be calculated for a specific set of images, and

these results can be used for comparison. The question of distortion is also a

difficult one to resolve. Because of the properties of the human visual system

(Chapter 3 of [Jain]), some images with a specific SNR are perceived to be of a

1 Bamsley, M. F., Sloan, A. D., Methods and apparatus for image compression by iterated function
system, United States Patent # 4 941 193.

2 Bamsley, M. F., Sloan, A. D., Method and apparatus for processing digital data, United States Patent
# 5065447.
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better quality whilst others with a higher SNR are perceived to be of a lower

quality. There are also a few definitions for the calculation of SNR which all yield

different results for different types of images and different types of distortion. To

adhere to some standard, the distortion measure used in this section is the same

as that used by Jacquin in [JacqD]. This is the peak-to-peak signal-to-noise-ratio

given by:

SNR = lOlOg( dr(j.l)2 J
d(j.l,jJ)lr2

(2.18)

where dr(ll) denotes the dynamic range of the image Il,

r2 is the number of pixels in Il,

d tu, jJ) is the RMS metric given by:

MN

d (j.l, jJ) =I~(j.li - jJ) 2

i=1

(2.19)

with j.l the original image and jl the distorted image.

Section 0 will consider some alternative measures for compression quality

calculation and also investigate how they compare to each other. The rest of this

chapter will use the definition for signal to noise ratio given above to quantify

image compression quality.

Once the effects of some changes to the basic algorithm have been calculated for

a general set of images, it must be decided whether the trade-offs in the features

of this scheme are viable for its specific application. In an image archiving

application for example, it would make sense to increase compression time for

higher image quality but not at the cost of too much compression ratio.

The aim of Jacquin's fractal encoding is to construct a contractive image

transformation W defined from the metric space (X, d) of digital images to itself

such that a specified original image !lorig is the fixed point of the transformation. d

is a given metric, the distortion measure already discussed.

Jacquin defines a set of allowed transformations for a PIFS. He separates each

transformation into a geometric and massic part. The geometric transformation is

simply a spatial contraction. The massic part of the transformation affects specific

pixel values. It consists of the eight possible rotations through 900 and the

associated reflections about the x and y axes. These rotations and reflections are
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called isometries. Apart from the isometries, the massic part of the transformation

can also consist of the following four operations:

i) Absorption at a specified grey level.

ii) Luminance shift.

iii) Contrast scaling.

iv) Colour reversal.

He partitions the image into non-overlapping range blocks and searches from a

pool of transformed domain blocks for a best match for each range block. The

domain pool consists of a collection of subimages of the original image upon

which the possible transformations have been carried out. To keep the domain

pool size to a manageable level, he restricts the choice of domain blocks to all

blocks of a certain size starting at specific intervals of pixels. The choice of the

domain block size depends on the contractivity factor of the allowed

transformations and is generally twice the size of the range blocks. He chooses

the domain pool source blocks to be all the blocks with their bottom left corner at

the origin or a multiple of B or B/2 pixels in both directions (with B the height and

width of the range blocks).

Finally, the image can be represented by the transformation W consisting of the

union of the respective transformations for each range block. The fact that the

attractor will be similar to the original image is guaranteed by the Collage

Theorem (Theorem 3 section 2.1.1). Therefore the distance between the fixed

point A and the given image !-!orig can be minimised by minimising the distance

between !-!orig and the collage of !-!orig which is W(!-!orig). This transformation

constitutes a lossy compressed representation of the original image. To

decompress this image, the transformations need to be carried out iteratively on

any initial image. After about eight iterations, the image generally converges to

within 0.1dB of its fixed point. Convergence depends on the contraction factor

s::; 1. For more detailed information on the specifics of Jacquin's algorithm, see

[JacqD] and [JacqE].

One of the biggest drawbacks of fractal image compression is the lengthy

encoding time due to the extensive domain pool searching that must be carried

out for each range block. This prohibits the use of fractal compression for any real

time applications. There is much work being done in this field and there are

several publications regarding the use of fractal compression for video coding.
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Looking at Jacquin's work, there are some obvious improvements that

immediately come to mind. Firstly, the allowed transformations seem somewhat

limited. In any image, a better match for some domain block to a certain range

block might be found if for instance the domain block is rotated by some angle not

equal to one of the existing isometries. More transformations would therefore

certainly result in better encoding quality, but with more transformations to

represent, the compression ratio would decrease and the larger domain pool that

needs to be searched would drastically increase encoding time. In this same line

of thought, the choice of possible domain blocks also seem to impair the quality of

compression but the price of a wider choice of domain blocks is again a loss of

compression ratio and an increased encoding time.

Fisher replaced the four transformations that Jacquin used to change the

grayscale pixel values with a simple transformation that consists of a contrast and

brightness adjustment.

The search time required to compare a range block with all possible domain

blocks and all the different combinations of brightness and contrast scaling for

each block would become ridiculously large. Fisher however wrote down a closed

form solution to find values for brightness and contrast scaling that minimise the

difference between two image blocks as follows:

Consider two images a and b that contain n pixels each. It is desirable to

transform a to minimise the difference R given by:

n

R = '" (s rz. +0 _b.)2L.J I I
(2.20)

;-1

with s-brightness(offset), o-contrast(scaling)

By partial differentiation with respect to sand 0, the solution for the minima can be

found and is given on p 21 of Fisher [FisherB].

This method will of course remove a considerable amount of unnecessary

comparisons and thus reduce the compression time.

In an article of 0ien et al. [0ien], the abovementioned problem is tackled

somewhat differently. The idea is again to find a match for the subimage b by the

scaling and offset of a. This gives a new subimage :

b'<s-a+t (2.21)

with t =o·m
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where m is the unity matrix of size b.

b' is now an element of a two-dimensional subspace spanned by the basis

{SI ,sz} = {m,a} or in simpler terms, b' is a linear combination of mand a. It must

be kept in mind that if band b' are of size K x L pixels, the images can be seen as

K·M-dimensional vectors. By the projection theorem ([Kreysig, p147]), it then

follows that the minimum distance drnin (b,b') is found by making b-b' orthogonal to

the subspace Sj for all i. Thus: (b - b' 'Si) = 0 i = 1, 2. These are called the

orthogonality equations.

The next logical step from here, is to try and reduce dmin (b,b') by making b' an

element of a higher dimensional subspace and thus finding a better match for b

through the solution of (b - b' 'Si) = 0 for i = Ln. This is exactly what B. Bani-

Eqbal did in [Bani]. He kept the greyscale scaling of pixels constant across the

whole image block but made the offset value a linear term given by:

Dij = al +azi +a3j with i and j the x and y indices of the sub image. This offset

can represent any plane of greyscale values in an image block. The idea of the

offset is to match the planar component of the range block and the residue must

then be fitted by the scale factor multiplied by the domain block. Solutions for the

coefficients e, is then given by oR/oai = 0 where R is the difference given above

(equation 2.20) except for the offset which is now variable over the summation of

all pixels.

Munro and Dudbridge used the same approach in their article [Munro], but set the

offset to a third degree polynomial in i and j. This will increase computation time

for the calculation of optimal coefficient values but this added cost was negated by

restricting the set of domain blocks considerably.

Jacquin tried another method to decrease encoding time by classifying image

blocks into different categories. His classification is based on block classification

work done by Ramamurthi and Gersho [Ramam]. He defined three types of blocks

- shade blocks, edge blocks, and midrange blocks and classified all blocks into

these categories. The domain to range search is then limited to domain blocks of

the same class as the range block under scrutiny.

Yuval Fisher went further with this idea by defining three main classes and a

further 24 sub classes for each of the main classes. This classification is based on

the average and variance distribution of pixel values in an image block [FisherB,
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chapter 3]. This classification scheme produced 72 available classes that

shortened encoding time considerably but Fischer also showed that this

decreases the signal to noise ratio of the decompressed image noticeably.

Another approach to the segmentation problem was attempted by J. Jang and S.

A. Rajala [Jang], They segmented the image according to properties of the human

visual system (HVS). The modulation transfer function (MTF) of the HVS was

used to calculate two thresholds of fractal dimension. These thresholds are used

to classify image regions into three textural classes. Since the human eye has a

response to spatial frequencies similar to that of a bandpass filter, the eye is less

sensitive to some regions and image blocks in different classes can be encoded

with different accuracies. This will decrease compression time by decreasing the

number of range to domain comparisons and also result in higher compression

ratios since some transformations can be represented with less accuracy. The

calculation of fractal dimension will add to encoding time but this is still

considerably less than the time saved on shortening the comparison time.

To further improve encoding time Jacquin stated in [JacqE, p1458] that optimal

domain blocks are normally found in the region of the specified range block and

therefore search times can be reduced by starting a search in the vicinity of the

range. Fisher contradicts this statement in [FisherB, p76] by saying that there is

no local self similarity that can be exploited. Some further evidence is therefore

necessary to resolve this issue.

Another method that seemed to deliver very good results in speeding up the

encoding of images was discussed by B. Bani-Eqbal ([Bani]). Apart from

increasing image fidelity by better block matching as already discussed, he

created a tree structure where each node is a pixel value. Each node can

therefore branch off into the number of colours available and tree depth is given

by the number of pixels in the image. This will create a tree containing all possible

images. He reduces the tree by retaining only the branches of a certain range

block and all the domain blocks to be compared with it. As the tree is being

constructed, a cumulative error calculation between the range and domains are

being done. Whenever a domain falls below some tolerance level, the rest of its

branches are discarded. This means that it is not necessary to do a complete

domain to range comparison for every domain block as before. In practice

however this method still seemed inefficient and not only was it slow but the tree

structure used up huge amounts of memory. To effectively implement this idea,

the tree length had to be decreased. He accomplished this by using averaged
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pixel subsets. With this improvement, the results were drastically better. The

'Lenna' image was encoded 58 times faster than the full search method with no

visible degradation in image quality.

Up to now, most of the work discussed, regarded the improvement of

compression time. This has been one of the main areas of interest in fractal image

compression since the long compression times are one of the biggest drawbacks

of this method.

In work done by L. Thomas and F. Deravi [Thorn], they have managed to double

the compression ratio and more than halve the encoding time by a further

progression of the segmentation problem. This method seems to be a step closer

to a more intelligent and natural compression algorithm. A" algorithms discussed

so far use a square or rectangular segmentation of images. Because of the 'more

random' nature of real world images, it seems logical that better compression

ratios as we" as higher image fidelity can be obtained by using regions of

uniformity as segmented image blocks. This is exactly what they did in this work.

Image segments were built up with 8x8 blocks to try and fill a whole self-similar

region. As these segments grew, a" potential domains would also be enlarged

similarly and discarded once they crossed a specified error margin. This

decreased the comparison time since domains could be discarded without a full

error calculation and the larger ranges also meant less ranges to search for.

Fewer ranges to represent would also mean higher compression ratios if the

shape information of each range can be represented effectively. This method is

very image dependent and the results can therefore only be calculated for specific

images. For the 'Lenna' image this method achieved a compression ratio of 41:1

with a PSNR = 26.56 dB as opposed to the 'standard' method which achieved

19:1 with PSNR = 27.86 dB. This method was 2.188 times faster than the

'standard' search method. Details of their standard method can be found on pp

832-833 of Thomas [Thorn].

2.1.3 Implementation

This section examines an implementation of the fractal image compression

method described by Yuval Fisher in his book on Fractal Image Compression

([FisherB]). It was decided to use this particular implementation since it closely

resembles the original work presented by Jacquin ([JacqD]) and can serve as a
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basic algorithm to work from. The source code for this algorithm was also

available on the Internet and did not have to be implemented from scratch.

A detailed description of the algorithm can be found in chapter 3 of Fisher's book

and sample C code of this implementation is given in Appendix A of the same

source. The source code can also be downloaded from Fisher's website at

http://inls.ucsd.edu/y/ or it can be found on the accompanying CD-ROM. Since the

basic theory of this technique has already been discussed in section 2.1.1 and

more complete information is available from the source already mentioned, only a

brief description of the technique and algorithm will be given here to avoid

unnecessary duplication of work.

The quadtree implementation of fractal image compression described here, is

based on the algorithm presented by Jacquin in [JacqD). It can be considered as a

very basic method that can serve as a point of reference with which to compare

and measure the results of other algorithms and improvements. A flow diagram of

the algorithm is shown in Figure 2-8.
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Figure 2-8 Fisher's quadtree compression algorithm

28

Stellenbosch University http://scholar.sun.ac.za



The idea of the quadtree algorithm is to take each square range block for which

no suitable domain transformation could be found and partition it into four

subsquares. In this way, the range blocks form a tree like structure with the largest

subsquare of the image as root. For each range block, the domain pool consists of

image blocks twice the size otthe range block. The pixel values of the domain

blocks are averaged in groups of four to shrink the domain to the range block size.

The optimal affine transformation is then found to match the domain with the

range through a scaling and offset adjustment of the pixel values. The optimal

transformation is found through equation 1.5 on p.21 of Fisher ([FisherS]).

Unfortunately, the optimal scaling values can be found to be greater than some

arbitrary Is; I and this can cause the resulting map not to be eventually contractive.

There is however, no closed form solution to calculate the upper limit of scaling

values at which contractivity will be lost. This parameter must therefore be

experimented with to obtain some value for Sj. It must also be kept in mind that the

scaling and offset values must be quantised. Storing the exact calculated values,

would reduce compression ratio considerably.

As was mentioned earlier, the domain pool is made up of image blocks twice the

size of the range block that must be covered. Looking at all possible blocks twice

the size of a certain range block would increase comparison time drastically.

Fisher uses three types of domain libraries 01,2,3 whose components are

subsquares of the image with their upper left corners positioned on a lattice with

spacing I. The domains are defined as follows:

01, a lattice with fixed spacing I.

O2, a lattice with spacing equal to the domain block size divided by I. Thus, the

smaller the domain, the more domain blocks.

D3, a lattice with the opposite spacing size relationship than the previous domain

group.

All of these possible domain blocks must still be rotated/flipped in the 8 allowed

orientations, and from these the optimal scaling and offset coefficients must then

be calculated.

Choosing one of the defined domain libraries still leaves a lot of domains that

need to be compared with each range block. To further decrease the comparison

time, Fisher classified domain blocks according to their average and variance
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distributions. By calculating the average pixel values of each quadrant, all blocks

can be put into one of three categories (see fig. 3.2 p. 58 of Fisher [FisherB]). By

further calculating the variance of each quadrant, every category can be

subdivided into an additional 24 sub classes. Negative scaling values also

influence the ordering of the three main classes to give an additional three

orientations. Thus there are two orientations with three main classes each, and an

additional 24 subclasses to each of these.

Encoding time can therefore be influenced by deciding whether all domains are

compared to a specific range or just a main class or even just a subclass. This

decision can be made during operation and is dependent on the encoding time

and quality tradeoffs required by the application.

The data format of the encoded image with its domain to range mappings and the

quantised transformation values are by no means optimally stored and can still be

compressed losslessly through some statistical method like Huffman coding or run

length encoding.

Decoding is accomplished by simply performing the transformations W iteratively

upon any initial image. This process is repeated with the resultant image of each

iteration until the successive images do not increase significantly in quality from

one iteration to the next.

As was mentioned earlier, it must just be kept in mind that that convergence is not

necessarily guaranteed and the maximum scaling must be set so that divergence

is avoided in decompression. The speed of convergence is also influenced by the

choice of the initial image, but this effect is small and not very important.

A feature of fractal image compression is that an image can be decoded at

different sizes, independent of the size of he original image. This implies that an

image can be enlarged and due to the nature of this decompression method, there

is no occurrence of pixelization that accompanies the pixel doubling methods of

enlargement. Edges and lines are therefore maintained with enlargement at the

price of some artifacts being introduced into the decompressed image. These

artifacts are however more natural looking and therefore less disturbing to the

human eye than other methods. An example of this effect can be found on p. 60 of

Fisher [FisherB].

In the final decoded image, there are also edge effects visible at the borders of all

range blocks. One way to reduce this effect is to perform some form of post

processing on the last iteration of the decoded image. There are several ways to
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accomplish this and Fisher uses a simple averaging formula to adapt the values of

pixels a and b at the 2 sides of a range block boundary. The new values of the

pixels are given by a' and b' in the equations given below.

(2.22)

and

(2.23)

with

(2.24)

Ranges at the maximum quadtree depth are averaged with (J)1 = 5/6 and (J)2 = 1/6

whilst other ranges use (J)1 = 2/3 and (J)2 = 1/3.

The source code supplied for this algorithm was incorporated into a Windows

graphical user interface application for ease of use and is included in the

accompanying CD-ROM. The software can load any Windows bitmap image and

compress it according to the specified parameters. The compressed image can be

decompressed from any selected initial image and each step can be viewed to

follow the convergence of the final image. The application also calculates the SNR

of the decompressed image against a given original image.

2.1.4 Performance

2.1.4.1 Test Data

In order to have a consistent set of test data that can be used throughout this

work, 30 digital images were acquired through various means. The set of

images all share the common theme of satellite images and aerial photographs.

The images vary from very high altitude high resolution images to lower

resolution photographs and include everything from natural landscapes and

man made structures to weather phenomena. The images also include images

. taken in the visual range, water vapour and infra red ranges. The images also

differ in quality from very high quality images to very blurry images.

The test images have all been cropped to the same size of 512x512 pixels and

are displayed as 256 level grey scale images. The images are supplied on the

accompanying CD-ROM.
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The test images have all been cropped to the same size of 512x512 pixels and

are displayed as 256 level grey scale images. The images are supplied on the

accompanying CD-ROM.

2.1.4.2 Test Results

Using the Fisher Quadtree implementation described in section 2.1 .3, the 30

test images were compressed with the parameters given in Table 1.

Parameter Value

Tolerance level 2.0

Min recursion depth 4

Max recursion depth 6

Domain pool step size 1

Domain pool type 0

Domain pool step type 0

Scaling bits 5

Offset bits 7

Max scale factor 1.0

Positive scale values only Yes

Search 24 domain Yes

classes

Search 3 domain classes Yes

Table 1 Quadtree compression parameters

The implications of the parameters on the compression is described in section

2.1.3 and explained in more detail in Appendix A of [FisherS]. Table 2 lists the

results obtained from application of this algorithm to the 30 test images. The

images required between 7 and 15 minutes to compress on a 90Mhz Pentium

processor running the Windows NT operating system. This time is not very

accurate however since the tests were performed in conjunction with other

processes executing simultaneously on a multitasking system. To correctly
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measure the compression time, it would be best to calculate the number of

operations required for compression. This value can then be used for

comparison to other techniques regardless of relative CPU speed.

Image Compression Image Compression

Ratio Ratio

1. Bangladesh 18.7440: 1 16. isle2 25.2540: 1

2. Clouds 18.8717: 1 17. night1 18.7480: 1

3 Clouds2 19.1574:1 18. night2 18.7440: 1

4. Clouds3 19.1811: 1 19. night3 18.7440: 1

5. frozen 18.8043: 1 20. ray1 24.1134: 1

6. frozen2 18.7453: 1 21. ray2 22.5825: 1

7. frozen3 18.7440: 1 22. ray3 22.7033: 1

8. goes1 19.2555: 1 23. san francisco 19.1004: 1

9. goes2 19.2808: 1 24. seattle 20.6497: 1

10. goes3 19.1671 : 1 25. spain 18.7440: 1

11. goes4 19.1017: 1 26. typhoon1 21.6163: 1

12. hurricane1 21.3498: 1 27. Typhoon2 20.0413: 1

13. hurricane2 18.7949: 1 28. Valley1 19.1253: 1

14. hurricane3 19.2583: 1 29. Valley2 18.7694: 1

15. isle1 24.7273: 1 30. Venus crater 18.7440: 1

Table 2 Fractal compression results

The decompressed images are available for viewing on the accompanying CO-

ROM. As can be seen from the table above, the compression ratios achieved

are relatively high and although the perceived quality of the compressed

images is somewhat degraded, they are still acceptable for certain applications.

The effects of fractal compression techniques are clearly visible in the example

shown below.
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Figure 2-9: Effects of fractal compression on an image (enlarged 2 x)

As can be seen from the decompressed image segment on the right in Figure

2-9, the blocky effects resulting from the image segmentation is clearly visible.

Even with the segmentation effects, it is also possible to see that this method

does retain curves (observe part of the top right arm of the cloud spiral).

JPEG Image Compression

The Joint Photographic Experts Group proposed this method of compression to set a

standard that can be used across different systems and in many different

applications. JPEG image compression exploits redundancies in image data as well

as non linearities of human vision.

JPEG compression can be divided into four different modes or techniques as listed

below:

• Sequential OCT-based encoding: This method encodes images in left to right top

to bottom 8x8 segments.

• Progressive OCT-based encoding: This method encodes an image at multiple

scans to provide a rough first image and iteratively increase the image quality as

more data is received. This method is particularly suited to cases where

transmission times are very slow and a preview of the image can be very helpful.

• Lossless encoding: This method produces an exact copy of an original image

with the related bounds on compression ratio.
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• Hierarchical encoding: This technique is used to compress the image at several

resolutions. Small images are then decompressed at lower resolutions and

gradually decompressed to maximum resolution.

Sequential OCT-based encoding is the most popular technique currently used and

also the one that will be discussed in this chapter. This compression method is based

on the two dimensional discrete cosine transform which is described in the next

section. That section will also consider the Huffman coding technique for lossless

compression and any other necessary theory for JPEG compression.

Section 2.1.6 puts all of these tools together in a description of the JPEG

compression algorithm and illustrates this with a step by step example.

In section 2.1.7, the algorithm is applied to the test data used in the fractal image

compression test and these results are discussed.

2.1.5 Mathematical background

2.1.5.1 The two dimensional discrete cosine tranform

The N x N discrete cosine transformation v for an image u, is defined by

equation 2.25 and its inverse is given by equation 2.26. The crux of this

transform is given by the cosine transform matrix c(k.n) given in equation 2.27.

The inverse transform can be found by using the complex conjugate of the

transform matrix, but since this matrix is real, its complex conjugate is identical

to itself.

N-IN-l

v(k,l) = L Lc(k,m)u(m,n)c(l,n)
m:On:O

(2.25)

N-IN-l

u(m,n) = LLc*(k,m)v(k,l)c*(I,n)
m:On:O

(2.26)

{rIN k = 0, 0 s n ~ N -1

c(k,n) = f2T ;r(2n+1)kv7jycos 2N 1~k~N-1,0~n~N-1
(2.27)

This transform has many properties including some that make it particularly

suitable to image compression.
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Firstly, the OCT has very good energy packing qualities. Looking at the results

of a 2 dimensional OCT upon a standard image, it can easily be seen that only

the lower spatial frequencies (those closer to the (x=O, y=O) axis) have any

significant va_luesand the higher spatial frequencies have much smaller values

or are generally zero. Consider the example given in section 2.1.6.3.

The OCT is also a very fast transform and can be calculated in OeN log2N)

operations via an N point FFT. Since the cosine terms of equation 2.27 are also

independent of the pixel values, the OCT calculation can be reduced to a matrix

multiplication with a precomputed 2 dimensional cosine matrix to save

calculation time.

More information on the properties and uses of the OCT can be found in

chapter 5.6 of [Jain].

2.1.5.2 Run length Coding

Run length coding is a simple technique that exploits repetitions of a single

symbol or sub sequence within a sequence. This form of coding is lossless but

also very limited in compression ratio due to the constraints on loss less coding

and the occurrence of the data property that this technique tries to exploit.

The technique can best be illustrated using a simple and very contrived

example.

Consider a 256 level gray scale image where the pixels are stored sequentially

from the top left to the bottom right pixel. Assume that although pixel values are

stored in 8 bit values, the image only contains pixel values in the range [0 ..254]

with 255 being reserved to indicate a run length of a specified symbol.

Whenever a long sequence of the same value appears in an image (in a very

uniform region for example), the actual row of pixel values can now be replaced

by the predefined run length symbol followed by the pixel value of the

sequence and the number of consecutive pixels with this value. If there are

more pixels with the same colour than can be represented by one byte, the

sequence of run length symbol followed by colour value and sequence length

can be repeated as many times as necessary. Obviously, this technique will

only be useful for sequences longer than 3 consecutive symbols.

This method can be expanded to not only include repetitions of single symbols

but also repetitions of symbol sequences. This expansion forms the basis of the
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Lempel-Ziv coding technique upon which the GIF image compression format is
based.

2.1.5.3 Huffman Coding

The idea of Huffman coding is to assign each possible value a certain binary

code with more likely values given shorter codes whilst unlikely values are

coded with more bits. Depending on the statistical nature of the data to be

coded, this can cause a considerable saving in storage space (Approximately

35% in English text [BarnC, chapter 5]). An example would best illustrate the

idea:

Consider 5 symbols with the probabilities: PA=0.264, PB=0.053, Pc=0.108,

Po=0.137, PE=0.438.

To construct a Huffman code for these symbols, rearrange them from smallest

to highest probability. Assign the two smallest values a binary 1 and o. Next
merge the two smallest values to form a new symbol BC with a probability the

sum of the two separate values and start again from the top. Repeat this

process until only one symbol remains that contains all the others. To find the

Huffman code for a certain symbol, start from the main symbol and simply

follow the tree down to where it terminates in the wanted symbol, reading off

the binary values after each branch. It is easy to see that more likely symbols

will have less branch points and thus shorter codes. To decode a message,

each symbol must simply be followed down the code tree until a terminating

symbol is reached. One drawback to this method is that when there are very

many symbols, this can lead to extremely long code words for unlikely symbols.

If the codebook has to be included in the compressed file, this can easily

negate the effect of the compression. The codebook for a certain set of

symbols with probabilities is also not unique and therefore two machines using

different algorithms to calculate the codebooks might not necessarily

understand each other.

2.1.6 Implementation

This two dimensional discrete cosine transform on which JPEG compression is

based, has very good energy packing qualities [Jain, chapter 5] as has already

been mentioned in section 2.1.5.1 and will be illustrated later in this chapter. This

transform is combined with several other compression techniques to achieve
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maximal compression with minimal visible loss in image quality. This section

examines each step of the compression technique in detail and includes an

example to show the actual implementation of each step as the compression

progresses. The example given in the following sections is taken from [Fuhrt).

Figure 2-10 shows the different steps of the JPEG compression algorithm.

il 8x8 digital image1\ segment

Offset Calculation

DCT Calculation

Quantisation

DC Coding and
coefficient reordering

Entropy coding

00ded image segm3

Figure 2-10 JPEG Compression Algorithm
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2.1.6.1 Image Segmentation

As with most forms of image compression, the actual application of the
compression algorithm is not performed on the image as a whole, but on
segments of the image and all the compressed segments are put together in
the end to rebuild the decompressed image. JPEG has decided to use a default
block size of 8 x 8 pixels and each of these blocks are separately coded using
the rest of this algoritm.

The choice of 8x8 image segments is based on the fact that the 8x8 2
dimensional DCT for real world images has very small or zero coefficients in
the higher spatial frequencies [Fuhrt, p55]. This value is based on extensive
research and experimentation on the eventual difference in compression ratio
given different segment sizes.

The block size also imposes the condition that images must be of a size that is
a multiple of the segment size. This limitation is overcome by various means
that are not discussed in this work.

As an example, consider the following 8 bit (256 level) grey scale image
segment u(m,n) shown in Table 3. This image segment will be used in the
examples of the rest of the steps required for the compression algorithm.

140 144 147 140 140 155 179 175

144 152 140 147 140 148 167 179

152 155 136 167 163 162 152 172

168 145 156 160 152 155 136 160

162 148 156 148 140 136 147 162

147 167 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136

Table 3 8x8 Gray scale image segment

2.1.6.2 Offset calculation

During this stage, the pixel values are offset to the signed range [-2 (p-1), 2 (p-1) -

1] from the unsigned range [0, 2P -1], where p is the bits per pixel of the image.

For an 8 bit 256 level grey scale image (as used in the test data) this equates
to a translation of pixel values in the range from [0, 255] to [-128, 127].

The reason for this step in the process of compression, is to further reduce the
size of the data. If it is assumed that the average grey scale level of an image is
close to the middle of the range of possible pixel values, a translation as
described above, would put the average very close to zero. Since the DCT
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coefficient of a two dimensional cosine transform is the average and also the
element with the most image energy, it would seem that this translation is ideal
for minimising the size of the representation of this component of the image
data.

The results of the offset calculation on the sample data shown in Table 3 can
be seen in the table below.

12 16 19 12 11 27 51 47

16 24 12 19 12 20 39 51

24 27 8 39 35 34 24 44

40 17 28 32 24 27 8 32

34 20 28 20 12 8 19 34

19 39 12 27 27 12 8 34

8 28 -5 39 34 16 12 19

20 27 8 27 24 19 19 8

Table 4 Image segment after offset calculation

During the decompression phase, the pixel values are offset to their original
range by performing the reverse of this operation.

2.1.6.3 Discrete Cosine Transformation

The discrete cosine transform and its inverse given in equations 2.25 and 2.26
can be specialised for 8x8 image segments to give the following equations:

( ) _ C(u) C(v) ~ ~ ( ) (2x+l)u,," (2y+l)v,,"VU,v -----~~u x,y cos 16 cos 16
2 2 x=Oy=O

(2.28)

u(x,y) =.![±±C(U)C(V)V(U,V)COS (2X~~)U,," cos (2
y;t""]

4 u=O v=O

(2.29)

1
C (u) = - for u = 0

J2 (2.30)

C(u) = 1 for u> 0

Application of the forward cosine transform on the image segment given in
Table 4 results in the data shown below. The values shown in the table have
been rounded to the equivalent integer values since the quantisation step that
wlll follow this phase will cause a much bigger data loss, effectively negating
the rounding error.
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185 -17 14 -8 23 -9 -13 -18

20 -34 26 -9 -10 10 13 6

-10 -23 -1 6 -18 3 -20 0

-8 -5 14 -14 -8 -2 -3 8

-3 9 7 1 -11 17 18 15

3 -2 -18 8 8 -3 0 -6

8 0 -2 3 -1 -7 -1 -1

0 -7 -2 1 1 4 -6 0

Table 5 Cosine transform of image sement of Table 4

2.1.6.4 Quantisation

This is the step that performs the actual compression, and is also where the
data loss occurs. The compression ratio and image fidelity is set by changing
the quantization levels. Since the different frequency components contain
different amounts of the image energy, each component can be quantized by a
different amount. Several quantization tables have been suggested that
truncate the coefficients so that none is represented by greater precision than
is necessary for a desired image quality. Borko Fuhrt [FuhrtJgives a routine for
the generation of a quantization table for any specified quality factor. The
recommended quality factors lie between 1 and 25 where 1 gives the highest
quality but lowest compression ratio. Other quantization tables can also be
used, but these must be included as part of the compressed image(thus
reducing compression quality somewhat).
The formula for generating a quantization table for an n x n image segment
given in [FuhrtJ is shown below:

QuantizationValue[i,j) = 1+ (1+i+j)*quality

For i = 0 to n {

Forj = 0 to n {

Using this algorithm, the quantization table shown in Table 6 is generated.
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3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Table 6 8x8 Quantization table for a quality factor of 2

The 8x8 image segment is then quantized using equation 2.31 where Q(u, v)
are the quantization coefficients produced in Table 6 and this results in the
image segment shown in Table 7.

Fq (u, v) = Round [_F_(U_'V_}]
Q(u, v}

(2.31)

61 -3 2 0 2 0 0 -1

4 -4 2 0 0 0 0 0

-1 -2 0 0 -1 0 -1 0

-1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 7 Image segment after quantization

2.1.6.5 DC Coding and coefficient reordering

The DC coefficient of each block is a measure of the average pixel value of the
block. For real world images, there is a strong correlation between adjacent
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blocks and therefore the DC coefficient is coded as the difference from the DC
term of the previous block. This is worthwhile since a significant amount of
image energy is contained in the DC coefficients and the difference can be
coded with higher accuracy. The range of the DC coefficients is also double
that of the AC coefficients.

All these coefficients are then reordered into a zig-zag sequence as shown in
[Wall, p35]. This specific sequence is in order of ascending spatial frequency
and this correlates well with the actual descending pixel values at this stage of
the compression process. This greatly facilitates the entropy coding step.

The reordering phase reduces the 8x8 matrix give in Table 7 to the sequence
listed below:

61, -3, 4, -1, -4, 2, 0, 2, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1,
0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,
0,0,0,0

2.1.6.6 Entropy Coding

The entropy coding stage achieves additional loss less compression by making
use of the statistical properties of the already compressed data.

Firstly, the data sequence is converted into an intermediate symbol sequence.
AC coefficients are coded as a pair of symbols as shown below

symbol1: (runlength, size)

symbol 2: (amplitude)

The runlength symbol gives the number of consecutive zero valued AC
coefficients preceding a nonzero AC coefficient. The value of runlength is in the
range ° to 15 which requires 4 bits to represent. The size symbol is the number
of bits used to encode amplitude which is the value of the non zero coefficient.
If the runlength is greater than 15, the symbol 1: (15, 0) is interpreted as an
extension symbol with 16 zeros. There can be up to 3 consecutive run length
extensions before a terminating symbol 1. The symbol 1 that actually ends the
sequence is designated by the special symbol (0, 0) to signal the end of the
block.

The DC coefficients are coded in the same way but without the runlength
symbol and with double the range of the AC coefficients's amplitudes.

The symbol sequence for the example data sequence shown in the previous
section is shown below:

(6)(61),

(0, 2)(-3),

(0, 3)(4),

(0,1)(-1),

(0, 3)(-4),

(0,2)(2),

(1, 2)(2),

(0, 2)(-2),

(5,2)(2),
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(3,1)(1),

(6,1)(-1),

(2,1)(-1),

(4,1)(-1),

(7, 1)(-1),

(0,0)
The next part of the entropy coding stage is the Huffman coding stage. [Wall]
mentions arithmetic coding as an alternative but also states that this method is
too complex for certain implementations.

To effectively implement this in the JPEG compression, the following can be
done. At this stage the data is in the intermediate symbol form. The amplitude
symbols have too many possibilities to code effectively and they will simply be
coded using the standard binary representation. The DC component size
symbol can have 11 possible values and the AC component's (runlength, size)
symbols can have a further 162 possible values (see [Wall]). By calculating the
intermediate symbol sequence for a specific image, a codebook can be
constructed for the image that has maximum efficiency. This calculation for
every image will however be very time consuming and the codebook for every
image must be included in the compressed file. For very large images, the
codebook does not affect the compression ratio too much but it can influence
smaller files considerably. Another more effective way to overcome this
problem is to define some specific codebooks based on certain types of images
and include these codebooks as standard in both the coder and decoder
software. Only a pointer to the specific codebook needs to be included then. To
keep code words from becoming unmanageably long, the JPEG group have
also specified that code words may only be Huffman coded to a length of 16
bits. After this, each word must be designated by an additional 4 bits using
standard binary representation. This is an acceptable trade-off since the
additional bits allow for all possibilities arising from the possible distribution of
the available symbols.

After the Huffman coding phase, the data is represented by the following bit
sequence:
111011110100100100000100011011011011100101111111101111011101011
111011011100011101101111101001010
The original image segment has been reduced from 64 pixels at 8 bits per pixel
(512 bits) to a total of 98 bits. This is a compression ratio of 5.22:1.

2.1.6.7 Decompression

Decompression of the image can be achieved by applying each of the above
steps in reverse by using the inverse equations given in the relevant steps. All
the decompressed image segments must then be added to reproduce the
original image with the losses introduced by the quantisation step.

2.1.7 Performance

The JPEG algorithm was tested using a freely available compression program

([ftp]) which is included in the accompanying CD-ROM. The program takes as
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parameters only a single value between 0 and 100. This value determines the

level of compression where 100 means the lowest level of compression for the

highest quality.

There are other parameters available for greater control over the compression

algorithm but for this case only the quality level was used.

As was already mentioned in a previous chapter, the three parameters that image

compression are measured by is compression/decompression time, compression

ratio and compression quality. In order to make any useful comparison between

different methods of image compression, some of these factors have to be fixed.

Since the next chapter explores some methods for calculating image quality, the

compression ratio will be fixed to the same level as that obtained for each image

using the fractal compression algorithm. The speed of compression and

decompression will be ignored for now since they are difficult to compare. It can

be noted however that the fractal compression algorithm is several orders of

magnitude slower than the JPEG algorithm.

Since the JPEG compression algorithm is controlled by a quality factor which

results in a level of compression corresponding to that quality value, the quality

values for specified compression ratios were calculated iteratively. A small

program was written to compress each image at the average quality setting. If the

compression ratio was too high, the image was compressed again using a higher

quality value and a lower quality value if the compression ratio was too low. The

closest possible match to the required compression ratio was normally found

within 7 or 8 iterations. This technique might seem like a very expensive operation

but since it was only required to be performed once, it was the quickest and most

accurate way. The source code and executable for this program can be found on

the accompanying CD Hom. The following paragraph shows an excerpt from the

program output describing the iteration steps for obtaining the compression quality

values for required compression ratios. Table 8 shows the required compression

ratios with the actual obtained values and the corresponding quality values for the

30 test images.

Image 18: night3

Attempting compression ratio of 18.744001

Trying quality factor 50 => getting ratio of 11.357525

Trying quality factor 25 => getting ratio of 19.871810

Trying quality factor 38 => getting ratio of 14.034764
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Trying quality factor 32 => getting ratio of 16.274391

Trying quality factor 29 => getting ratio of 17.553985

Trying quality factor 27 => getting ratio of 18.595691

Trying quality factor 26 => getting ratio of 19.188074

Trying quality factor 27 => already calculated getting ratio of 18.595691

So I think the best qf is: 27 with a compression ratio of 18.595691

Image Desired JPEG Quality

Compression Compression factor

Ratio Ratio

1. Bangladesh 18.744001 18.123244 7

2. Clouds 18.871666 18.585187 7

3 clouds2 19.157351 20.012317 7

4. clouds3 19.181083 19.547156 13

5. Frozen 18.804258 18.760031 33

6. frozen2 18.745335 18.932748 31

7. frozen3 18.744001 18.788151 31

8. goes1 19.255450 19.605393 11

9. goes2 19.280838 19.643433 7

10. goes3 19.167116 18.862200 11

11. goes4 19.101742 19.554416 14

12. Hurricane1 21.349826 21.424548 41

13. Hurricane2 18.794859 18.685455 57

14. Hurricane3 19.258267 19.009316 50

15. isle1 24.727290 24.836950 15

16. isle2 25.253958 25.434535 21

17. night1 18.748006 18.962755 21

18. night2 18.744001 18.765381 22

19. night3 18.744001 18.595691 27

20. ray1 24.113412 24.485767 47
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21. ray2 22.582533 22.740562 48

22. ray3 22.703295 22.561241 47

23. san francisco 19.100356 19.708146 10

24. seattle 20.649722 19.826906 10

25. spain 18.744001 19.801550 8

26. typhoon1 21.616326 21.351557 10

27. typhoon2 20.041267 20.726142 8

28. valley1 19.125336 19.135068 8

29. valley2 18.769395 18.366034 8

30. venus crater 18.744001 18.919140 43

Table 8: JPEG Compression results

The decompressed images listed in the table above, are available for viewing

on the accompanying CD-ROM.

The effects of the JPEG compression scheme can clearly be seen in the

example shown below.

Figure 2-11: Effects of JPEG compression on an image (enlarged 2 x)

The decompressed image segment on the right in Figure 2-11, clearly shows

the regular 8x8 block segmentation effects caused by JPEG compression. It
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can also be seen that the high resolution detail (regions with high spatial

frequency) are degraded most as can be expected from the nature of the OCT.
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3. Image Quality Measurement

In the previous chapters, the Signal to Noise Ratio was mentioned as a measure of

the amount of degradation introduced by the compression algorithm. It has also been

hinted that this measure is not ideal for the calculation of the perceptual quality of

compression. Yuval Fisher devotes an appendix of his book on fractal image

compression to the comparison of different compression techniques [FisherS] using

the SNR measure, but he also gives a long list of reasons why this method is not

ideal. Although it seems that there are some problems with SNR as a measure for

image quality, it is still the most widely used in publications for lack of something

better.

The calculation/measurement of the quality of image compression differs from other

types of quality measurements in that the original image is available for comparison

and therefore the error is exactly quantifiable to give what is expected to be a good

objective judgement of the image quality. The calculated quality is therefore purely a

function of the original and compressed images.

With image restoration and enhancement, the resulting image is influenced by the

means of acquisition. This means for example that a bad lens or movement of the

camera can lead to degradation in quality. Unfortunately, the original image is not

available and it is difficult to quantify the quality of an image. It can however be

derived from knowledge of the cause of degradation.

This chapter will describe some of the problems involved in measuring image

compression quality and will then take a look at some specific measures. The last

part of this chapter discusses the means of comparing the results of these different

measures to find an acceptable reference for performance evaluation.

Performance Criteria

3.1.1 The problem

As described in the introduction to this section, image quality measurement should

be a straightforward operation for compressed images where the source images

are available. Unfortunately the results obtained from standard quality calculations
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have very little correlation with human perception of image quality. This is

because the nature of different types of image distortion have varying degrees of

effect on the human visual system. Image degradation due to compression can be

caused by block artefacts, brightness scaling, segmentation borders and many

other factors induced by the specific type of compression used.

Another factor which plays an important role is the perceived quality of the image

being compressed. If the original image used for compression did not have very

high perceptual quality, it is very easy for a subjective judge to give the

compressed image a bad quality rating although the original and degraded image

might be a very close match. It is important to keep in mind that in judging the

quality of image compression, only the comparison between images should be

used and not the absolute quality of the test image.

There are two main types of image fidelity criteria namely the quantitative and

subjective methods. The quantitative method is easy to implement and automate

and gives consistent results for the same tests. The subjective method requires

human intervention and is normally very slow and not at all consistent. It seems

obvious which is the better choice but unfortunately these two methods do not

correlate very well in their results. Since humans are the ultimate users of most

digital images, their subjective perception of image quality cannot simply be

discarded in favour of the more easily obtainable measure. This is especially true

for the case where these measures disagree strongly. It would be useless to

grade image compression quality through a quantitative method if the humans that

used the compressed images were not happy with the level of quality.

Obviously the object is to find some objective measure that agrees better with

human perception. Consider as an example, some of the images used in the

previous two chapters. The quality of the compressed images shown below were

calculated using the SNR as defined in equation 3.34 in section 3.1.3.

Consider the following examples:

Figure 3-1 shows a section of a GOES satellite image together with the same

image compressed and decompressed using fractal compression (refer to Section

0) and JPEG compression (refer to Section 0). The JPEG image has an SNR of

more than 3dB better than the fractal image which implies that it should be twice

as good as the fractal image when compared to the original.

Figure 3-2 shows a portion of an aerial photograph of a hurricane. In this case, the

JPEG image is approximately 0.2dB better than the fractal image. The cloud
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pattern in this image very subtle and the images are very similar, but this example

was specifically included to illustrate the point that SNR calculations can show a

difference that is visually insignificant.

Figure 3-3, which shows an aerial shot of a valley, the JPEG image's SNR is 2dB

better than the fractal image although the images both resemble the original

closely. The segment borders introduced by compression are more visible in the

JPEG image that should result in a lower SNR than that of the fractal image.

It would be wrong to subjectively decide that the SNR measure is inaccurate but it

would also be fair to surmise from the examples that there is at least room for

improvement in the measurement of image compression quality through SNR

calculation. The examples used small portions of larger images because a larger

image can easily conceal mistakes and the human eye tends to be very forgiving

of something in the proper context. The examples were also enlarged to

accentuate the errors introduced during compression (which is incidentally also a

very good illustration of the errors introduced by the two different methods of

compression).
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(a)

SNR = 19.928788dB

Compression ratio:19.2555:1

SNR = 23.029817dB

Compression ratio: 19.6053: 1

Figure 3-1 A 3x enlarged portion of the 'goes1' image with the original (a),
fractal (b) and JPEG (c)
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(a)

(b)

SNR = 37.517610dB

Compression ratio: 18.7948:1

SNR = 37.719941dB

Compression ratio: 18.6855:1

Figure 3-2 A 3x enlarged portion of the 'hurric2' image with the original (a),
fractal (b) and JPEG (c)
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{a}

SNR = 16.362210dB SNR = 18.216901dB

Compression Ratio: 19.1253:1 Compression ratio: 19.1351:1

Figure 3-3 A 3x enlarged portion of the 'valley1' image with the original (a),

fractal (b) and JPEG (c)

3.1.2 Quality Evaluation

In the following sections on different image quality measures, the 60 test images

that were generated during the implementation of the JPEG (Section 0) and fractal

image compression (Section 0) sections, will be used as sample data for the

calculation of quality for each measure. Since the JPEG images were

compressed as closely as possible to the compression ratios achieved by the

fractal compressed images, the resulting quality values should reveal interesting

information regarding the quality of compression of these two methods compared

against each other.
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Section 0 describes a subjective test that was designed and used to obtain quality

information on these test images. This data can be used as a measure of the

accuracy with which the measures listed in this section can be described.

Section 0 shows the results of each of the techniques described in the next

section applied to the test images and compares these results with the results

derived from human evaluation.

3.1.3 Signal to Noise Ratio

The term signal to noise ratio (SNR) is self explanatory in that it gives the ratio of

a signal to the noise that is superimposed on that signal. This figure is normally

expressed as the ratio of the signal powers and is expressed in decibels (dB).

Generally in the field of signal processing, this calculation is performed for non-

deterministic signals and noise and can be a very complex problem. Fortunately

for this application, both the signal and noise are available for calculation. There

are many variations on the expression defining the signal to noise ratio ([Jain],

[JacqD] and [FisherB]) for digital images but most of these usually only differ by

some constant factor.

The average least squares image error between two images urm, n) and u'(m, n)

with size MxN pixels, is given as:

1 N Ma,;=-I I!u(m,n) -u'(m,n)!2
MN n=l m=l

(3.32)

The signal to noise ratio is then expressed as (Section 3.6 of [Jain]):

SNR=1010g( :;J (3.33)

with cr the variance of the reference image. The variance is sometimes replaced

with the dynamic range (peak to peak value) of the pixel values of the reference

image which yields higher results. Another variation is to use the maximum

possible pixel variation of the reference image. For an 8 bit grey scale image the

value 256 will therefore be used.

In this work, the dynamic range of the reference image will be used for all SNR

calculations since for certain cases, using the variance of the reference image can

result in negative values for SNR. The dynamic range of the image is taken as the

difference between the values of the lightest and darkest pixels. Source code for
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the implementation of the calculation of the SNR between two images is supplied

on the accompanying CD-ROM.

(3.34)

3.1.4 Grey Block Distance

The grey block distance (GBD) as a distance measure was proposed by Juffs,

Beggs and Deravi in [Juffs]. The idea of this measure is to approximate visual

quality as perceived by the human visual system. Since the aim of this work is to

find such a measure that performs better than current methodologies, it was

considered worthwhile to examine the GBD in some detail. The theory will be

briefly discussed, and the implementation will then be applied to the test data set

generated in the previous chapters. Section 0 will compare the results of this

experiment with the other measures examined in this chapter to find some idea of

its relative performance.

3.1.4.1 Theoretical Description

The grey block distance between 2 digital images I and I' is defined as:

N

G(l,I') = Ldr

r=!

(3.35)

where N is determined by the resolution of the image and d, is given by:

(3.36)

The value gij is calculated at each resolution from 1 to N as follows:

• Consider an image I at resolution r ;;;;;1. g is defined as the average pixel

value (gray level value) over the entire image.

• At resolution r ;;;;;2, the image is quadtree partioned into four segments as

shown in Figure 3-4 and the average grey level (gij) is calculated for each

segment.
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9

Figure 3-4 Image segments at different resolutions

Section II of [Juffs] continues to give a more formal definition of this measure

and then goes on to prove that the GBD is a metric in the space of digital

images.

The rest of the article is dedicated to comparing the GBD with the Hutchinson

metric [BarnB, p355] and finally shows that the GBD performs as least as good

at separating images as the Hutchinson metric. The GBD is however much less

computationally intensive.

3.1.4.2 Application

A program that calculates the GBD between two digital images was

implemented In C++ and applied to the 60 test images (The source code for

this implementation is available on the accompanying CD-ROM).

The Grey Block Distance is subtly different from the other image quality

measures in that it calculates the difference between images as opposed to the

closeness between images. This means that the other quality measures will

have high values for images that are closer to each other with an infinite value

for identical images. The GBD on the other hand, will have a zero result for

identical images and this value should increase with increasing dissimilarities

between images. Some sort of transformation needs to be performed in order

to be able to compare the results of these techniques with each other, but this

will be discussed in the next section.

The algorithm was implemented to calculate the normalised quality values as

described in the article. The source code and executable file for this program

can be found on the accompanying CD ROM.
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3.1.5 Gradient Method

Consider the images shown in Figure 3-5. The image on the left is a section taken

from a satellite photograph and the right hand image is the same section but

degraded by fractal compression. In comparison, the obvious differences between

these two images seem to be in regions where the image changes quickly, for

example at borders of uniform areas. These are the regions with a high spatial

frequency or high gradient.

Figure 3-5 Segments from the same image showing areas of high and
low gradients.

Since differences between images seem more visible in these regions, it seems

logical to try and exploit this in calculating the quality value of a degraded image.

There are many ways in which this can be applied and this section examines

some of the possibilities. The two methods discussed below were named purely

for convenience and to be descriptive.
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3.1.5.1 Gradient Weighted SNR

As a first approach to try and exploit image gradient to measure quality, one

could simply calculate the difference between the original and degraded

images as a weighted sum where the regions of high gradient carry more

weight. This weighted error image can then be used in the standard SNR

formula given by equation 3.34. The first step in this process is to decide how

the regions of high spatial frequency or gradient will be identified and calculated

and then how the weighting scheme must be applied.

In section 9.4 of [Jain], a set of gradient operators called the compass

operators, are described. The compass operators consist of 8 spatial masks

representing the 8 compass directions (refer to Table 9). The gradient of the

image at any point is then the maximum of the results of the 8 masks

convoluted with the image at that point. The direction of the gradient is the

direction of the corresponding maximum value mask. This definition of the

gradient operator for discrete data is a simplification of the definition for the

continuous case as given in section 8.8 of [Kreysig].

There is however a problem in calculating the gradient at the borders of the

image since the outside of the image will result in a discontinuity. The easiest

solution at this stage will be to calculate the gradient of the image only for the

regions where the compass masks are completely surrounded by the image

itself. This means that the outer layer of pixels will be ignored which will not be

a problem as long as this is done consistently.

Another approach would be to use the rate of change of the gradient as the

image border is neared to predict a value for the border gradient and use this

value for the calculation of the weight of the error.

The final step would be to actually calculate the relative weights for pixel errors

corresponding to the gradient of the original image. From the definition used for

the gradient, it can be seen that the actual gradient value can range from 0 to

three times the maximum pixel value. The simplest form of weighting to apply

here is to use the normalized gradient value as the actual weight for the error

value.

The image quality value calculated from this method will be slightly less than

the values obtained from equation 3.34 since the outer pixel frame is ignored

and the SNR equation effectively uses weighted values of 1 for every pixel
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whereas this method uses weights that are mostly less than 1. This should not

pose any problem if the method is applied consistently. For comparison with

other methods, correlations should be used instead of the actual calculated

quality values.

To summarize:

1. The average least squares gradient weighted image error (a:w/s) is given by:

1 N-l M-l

a:wls = L La(m,n)lu(m,n) -u'(m,n)l
z

(M - 2)(N - 2) n=Z m=Z

wherea(m,n) is the gradient calculated weight given by

1
a(m,n) = -g(m,n)

G

with G the maximum possible gradient value for an image (3 times the

maximum possible pixel value)

and g (m, n) the gradient of the image at location (m, n) given by

g (m,n) = max{lg k (m,n)l}
k

g k (m,n) is the result of one of the 8 compass masks applied to the pixel at

location (m,n).

The definition of the 8 compass masks are shown in Table 9.

The gradient weighted signal to noise ratio will then be given by:

SNR = 10 I (dr(U)2 Jgw/s og 2
agwls

North North West West South West

1 1 1 1 1 0 1 0 -1 0 -1 -1
0 0 0 1 0 -1 1 0 -1 1 0 -1
-1 -1 -1 0 -1 -1 1 0 -1 1 1 0

South South East East North East

-1 -1 -1 -1 -1 0 -1 0 1 0 1 1
0 0 0 -1 0 1 -1 0 1 -1 0 1
1 1 1 0 1 1 -1 0 1 -1 -1 0

Table 9 Compass gradient masks
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3.1.5.2 Gradient Error

As an alternative to the previously discussed method, the gradient of the error

image can be calculated and this can be used to obtain the signal to noise ratio

using equation 3.34.

The gradient error signal to noise ratio is given as:

(
dr(g)2]SNRge = 10 log 2

CYge/s
(3.41)

where the average least squares image gradient error is given by:

1 N-l M-l

a:e/s = (M _ 2)(N _ 2) ~ ~lg(m,nW (3.42)

with g(m,n) the gradient of the image produced by the absolute difference

between the test and original images The gradient is the same as defined in

equation 3.39 and dreg) is the dynamic range of this error image.

There are many other variations on the two methods explained above, but these

are the ones that will be used for comparison against other methods. Section

4.1.1 will consider some approaches that could possibly lead to improvements on

these algorithms. The results of this comparison will be discussed in section O.

Subjective image quality analysis

3.1.6 Image comparison test

The previous section describes some methods for calculating image compression

quality. In this section, a method for obtaining some sort of measure of image

quality based on human interpretation is proposed and implemented. Section 0

compares this method with the results of the methods discussed in the previous

section.

To try to get a good average of human image quality estimation, a computerised

test was put together. Research (section 3.6 of [Jain]) shows that the human eye

can discern between 5 and 7 levels of image quality with reasonable certainty.

The evaluation program presents a quarter section of each original image against

the equivalent section of either the JPEG or fractal compressed image. The test

subject is then prompted to select a quality value for the degraded image. The
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choice of quality values varies from 1 to 5 where 1 is the lowest possible quality

and 5 is the least degradation.

The test subject uses the first few images to get an idea of the general spread of

image quality. This is done to try to force a maximum variance of values in the five

point quality range since this range is already very limited. Furthermore, the test is

also set up to prevent participants from reviewing previous choices before making

a new choice to let every participant adjust to the image values in a natural way

without being influenced by previous choices.

The test images were presented in quartered sections of the original images. The

images were cropped into four quarter sections for two reasons. Firstly, it is

desirable to view both the original and test images alongside each other for best

comparison and since these images are 512 pixels wide, this would only be

possible on computers with video cards that are able to handle screen resolutions

above at least 1024 pixels. This would narrow down the field of possible test

stations considerably. The second reason for separating images is that it provides

a convenient mechanism for judging the consistency of each participant since

each test image is presented four times during the duration of the test.

The actual test was presented as a web based program. This presented a

problem since most Internet browsers automatically dither images according to

what they believe the machine can display properly. Unfortunately, the browser

performs this task without any warning and different browsers can also use

different dithering techniques. Any of these techniques applied to an image will

invalidate the results since dithering introduces different artefacts to the image. To

try and avoid this problem, the image comparison test starts off with a range of 16

and 256 shade grey scale images created by different dithering methods. If any of

these images cannot be discerned, it means that the test cannot be completed at

the current display settings.

Each participant of the test was allocated a unique session id and the results of

each completed test was stored in text format on the web server machine with this

identifying number.

All relevant source code and image data used for this test is available on the

accompanying CD-ROM.
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3.1.7 Interpretation of test results

Once enough tests have been completed to start calculating averages, the data

must be sorted in some meaningful way to provide an average that describes

image quality on this five point scale.

The subjects were volunteers that visited the test website on the request of the

author and completed the test. Due to the long time required to complete the test

and the monotonous nature of the test, many subjects did not complete the test.

The incomplete results were discarded. Server problems also caused many

browsers to freeze during the test and these results were also discarded. Due to

these reasons, only 27 sets of completed test data was collected. The test data

was then analysed using a C++ program (the source code can be found on the

accompanying CD ROM) that was written for this purpose.

The analysis program parses each test separately and tests the candidate for

consistency. The program counts the number of times that a candidate has a

certain deviation in his/her grading of the four quarters of the same image. The

deviations are calculated from a zero error to an error of four quality points for the

same image.

The test program also calculates the average quality value for each of the 60 test

images per test subject, and also the total average of all of the tests. The average

per image of each subject is then cross-correlated with the average of the total to

measure the similarity of each candidate to the average. The correlation is also

calculated without the first 40 test image segments to try and determine whether

there is some sort of learning curve whereby the test candidate acclimatises to the

general spread of image quality.

Lastly, the analysis program also calculates the average test score and standard

deviation of each candidate for all the images together.

An example of the output of this program for two test results is shown below:

Test case 10: 1575520122.tst

Error Margin : Deviation

o 41

1 13
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2

3

4

o

o

o

Correlation coefficient with average: 0.755634

Correlation coefficient without first 40 samples: 0.756720

Average: 4.345833

Standard Deviation: 0.617609

Test case 17: 333774550.tst

Error Margin : Deviation

o 56

18

3

1

2

3 1

4 o

Correlation coefficient with average: 0.740336

Correlation coefficient without first 40 samples: 0.755597

Average: 2.654167

Standard Deviation: 0.878080

The two samples clearly show two rather diverse interpretations on the quality of

the test images. The first case shows an average of 4.35 with a small deviation of

0.62 around this value. The second candidate on the other hand graded the

images with a much better average and a larger spread: The absolute average

and deviation values are not really important. The purpose of the test is to find

some sort of value set that can be used to check correlation with other measures.

It is however, up to the candidate to find some meaningful average and

distribution of the image quality values from the already very limited range of five

discrete values.
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After these values have been calculated for all the test cases, the results were

studied. It was found that ignoring the first 40 test images did not improve the

correlation values with the average test scores. The results of this and the 2

subsequent analyses are included on the accompanying CD-ROM together with

the source code for the analysis program. To try to get a better test sequence, the

five test subjects with the lowest correlation coefficient were removed from the set

of test data. A new average sequence was calculated from the remaining 22 test

samples and the analysis was repeated. After this, the average correlation

coefficient increased by 0.0228 from 0.8063 to 0.8291. Another five test samples

were removed and the test was repeated again, resulting in a further increase in

average correlation coefficient of 0.0172 from 0.8291 to 0.8463. It was decided to

stop trying to refine the final set of subjective image quality values for fear of 'over

training'. The smaller the number of tests used to calculate an average, the higher

the correlation of each individual test with the average. The set of 17 tests left

after the two refinements will be considered sufficient for a good average quality

value. Table 10 shows the final average image quality values for the test images

that will be used for the grading of the quality measures discussed earlier.

Appendix B gives a brief discussion on the use of the cross correlation calculation

as a means for this comparison and its validity in this capacity.
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JPEG Fractal JPEG Fractal

1 3.21 3.19 16 4.79 4.71

2 2.76 2.87 17 4.66 4.69

3 3.09 3.07 18 4.81 4.68

4 3.06 3.15 19 4.82 4.84

5 4.41 4.54 20 4.88 4.82

6 4.46 4.46 21 4.87 4.90

7 4.76 4.57 22 4.81 4.85

8 3.01 2.91 23 2.63 2.50

9 3.04 2.90 24 2.13 2.26

10 3.28 3.26 25 1.99 1.99

11 3.65 3.69 26 2.79 2.90

12 4.59 4.66 27 2.97 2.96

13 4.65 4.51 28 2.60 2.51

14 4.68 4.78 29 2.35 2.32

15 4.63 4.71 30 3.87 3.88

Table 10: Final average image quality values

The next section will examine the quality values as calculated by the methods

discussed earlier. These values will then be correlated with those determined in

Table 10 to see how these measures perform against each other. The definition of

the cross correlation coefficient shows that the result is linearly independent for two

series. This means that the different techniques can be compared directly without

having to do any normalisation.

Test results

This section begins by listing the image quality values as calculated by the different

techniques discussed in section 0 as shown in Table 11 and Table 12. ,

As was mentioned in section 3.1.4, the calculation of the Grey Block Distance is

fundamentally different from that of the other measures.

The subjective measure ranges from 1 to 5 with 5 being the highest possible image

quality value.

The Signal to Noise Ratio, Gradient Weighted SNR and Gradient Error SNR

measures cannot be put in such easy categories. The SNR for very similar images
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tend towards infinity for identical images, and the SNR for very dissimilar images can

reach negative values. It is very difficult to find the lower bound on these measures.

The worst possible SNR would be two images with pixel values as far as possible

from each other. An easy example of this would be to calculate the SNR between a

completely white images (pixel values = 255 in the test images) and completely black

images (pixel values = 0). This method unfortunately leads to a problem since the

equation for SNR also makes use of the variance or dynamic range of the original

image and for a completely uniform image this value is zero. Substituting the relevant

equations leads to the calculation of the log of zero, which of course does not provide

any solution.

An obvious solution would be to simulate the worst possible SNR by using images

with alternating black and white pixels throughout the image such that the two

images always have oppositely coloured pixels in the same positions. Substituting

this into equation 3.34 results in a signal to noise ratio of -6.055 dB. This value can

be decreased even further by decreasing the dynamic range of the reference image.

This in turn will decrease the calculated error between the two image, but with much

smaller influence to the final solution. It does not however fall in the scope of this

work to try and optimise 2 images for the worst possible signal to noise ratio, but only

to get an idea of the range of possible values. It is also important to note the final

range of results of any SNR, GWSNR or GESNR calculations is very much

dependent on the size and depth of the images involved.

This leaves the Grey Block Distance whose results fall in the range of 0 to 1 (for

discrete digital images where pixel values x lie in the range x E,[O..255]) with 0 being

the quality values for identical images. This is completely opposite from the other

measures where higher values imply better quality. To be able to compare these

values to the other measures, the GBD must be inverted. The easiest way to

accomplish this, is to simply invert the calculated values (multiply by -1) and then

translate by 1 to keep the values in the 0 to 1 range. This new value will be referred

to as the Grey Block Distance in the rest of this section since it is essentially the

same.
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Image Signal To Grey Gradient Gradient Subjective

Noise Block Weighted Error Image

Ratio Distance SNR grading

test

1. Bangladesh 18.547 0.985 19.753 15.848 3.191

2. Clouds 18.865 0.998 20.670 16.170 2.868

3 clouds2 20.072 0.997 21.277 16.308 3.074

4. clouds3 25.277 0.999 28.195 19.627 3.147

5. Frozen 35.712 0.999 43.605 18.951 4.544

6. frozen2 34.494 0.998 42.866 17.623 4.456

7. frozen3 35.248 0.998 42.835 21.097 4.574

8. goes1 22.719 0.998 24.752 17.944 2.912

9. goes2 19.817 0.997 20.584 15.829 2.897

10. goes3 22.212 0.997 24.763 17.603 3.265

11. goes4 24.364 0.998 25.768 19.233 3.691

12. hurricane1 38.395 0.999 45.368 23.225 4.662

13. hurricane2 38.698 0.999 51.010 13.975 4.515

14. hurricane3 36.463 0.999 47.683 17.320 4.779

15. isle1 29.302 0.999 33.749 17.345 4.706

16. isle2 33.977 1.000 40.056 19.145 4.706

17. night1 27.239 0.999 34.692 13.879 4.691

18. night2 29.601 0.999 37.122 14.407 4.676

19. night3 28.808 0.998 36.472 14.823 4.838

20. ray1 41.324 0.999 53.083 18.648 4.824

21. ray2 41.455 0.999 53.038 16.529 4.897

22. ray3 41.028 0.999 51.937 16.348 4.853

23. san francisco 22.980 0.997 25.522 17.324 2.500
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24. seattle 21.602 0.998 23.521 16.515 2.265

25. spain 19.679 0.990 22.902 14.677 1.985

26. typhoon1 22.647 0.999 24.327 17.885 2.897

27. typhoon2 20.852 0.997 22.378 15.620 2.956

28. valley1 19.517 0.997 21.277 16.035 2.515

29. valley2 19.605 0.996 21.490 15.417 2.324

30. venus crater 34.235 0.998 41.799 21.735 3.882

Table 11 Fractal Image results
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Image Signal To Grey Gradient Gradient Subjective

Noise Block Weighted Error Image

Ratio Distance SNR grading

test

1. Bangladesh 19.249 0.999 20.983 14.211 3.206

2. Clouds 19.902 0.999 21.984 13.452 2.765

3 Clouds2 21.499 0.999 23.163 15.192 3.088

4. Clouds3 26.873 1.000 30.552 16.150 3.059

S. Frozen 37.029 1.000 46.455 14.640 4.412

6. frozen2 35.803 1.000 45.421 12.932 4.456

7. frozen3 36.705 1.000 46.016 13.557 4.765

8. goes1 24.525 0.999 27.226 16.058 3.015

9. goes2 21.220 0.998 22.396 16.214 3.044

10. goes3 23.907 0.999 26.992 15.383 3.279

11. goes4 26.790 0.999 29.170 17.843 3.647

12. hurricane1 40.022 1.000 50.117 13.583 4.588

13. hurricane2 39.133 1.000 51.548 11.521 4.647

14. hurricane3 37.068 1.000 48.662 11.911 4.676

15. isle1 31.954 0.999 36.950 17.234 4.632

16. isle2 35.835 1.000 42.842 14.607 4.794

17. night1 27.579 1.000 35.219 13.392 4.662

18. night2 30.061 1.000 37.931 14.844 4.809

19. night3 29.681 1.000 37.993 12.953 4.824

20. ray1 41.667 1.000 54.461 12.251 4.882

21. ray2 41.921 1.000 54.449 12.032 4.868

22. ray3 41.752 1.000 53.798 12.693 4.809

23. san 24.898 0.999 28.017 15.352 2.632

francisco

24. seattle 23.189 1.000 25.785 14.851 2.132
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25. spain 20.291 0.999 23.688 13.438 1.985

26. typhoon1 24.540 1.000 27.057 18.209 2.794

27. typhoon2 22.415 0.997 24.494 14.818 2.971

28. valley1 20.663 0.999 22.769 14.086 2.603

29. valley2 20.759 0.998 23.000 14.051 2.353

30. venus crater 35.999 1.000 45.116 16.139 3.868

Table 12 JPEG Image results

Table 13 shows the cross correlation coefficients of the quantitative image quality

measures with the subjective quality values represented by the three series of

subjective test results A, Band C.

The three series used as control series for these correlation calculations are

calculated as follows:

A: The average image quality values of all 27 test sets.

B: The average image quality values with 5 samples that correlate worst with the

average series removed.

C: The average image quality values of the remaining 17 test sets with 5 tests

removed that correlated wost with the average of the remainder series B.

The two graphs below shows the image quality values (for the JPEG and Fractal

image sets) on a normalised scale to illustrate the correlations listed in Table 13.

The graphs are drawn as line graphs although the data is discrete. This was done

purely so that the different data sets could be seperated more easily. The

correlations in Table 13 are the correlations for all sixty test images represented as a

single discrete time series.
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A B C

Signal To Noise Ratio 0.866403 0.866374 0.858422

Grey Block Distance 0.378475 0.380775 0.385403

Gradient Weighted SNR 0.869851 0.870472 0.863873

Gradient Error -0.041678 -0.046209 -0.053598

Table 13 Quality measure cross correlation coefficients for all the test images

Normalised Fractal Image Quality Values
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Normalised JPEG Image Quality Values
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4. Discussion and interpretation of

results

Image Quality Measurement

The results in section 0 show a widely varying range of image quality measures and

their correlation with subjective results. The two measures that clearly stand above

the rest are the Signal to Noise Ratio and Gradient Weighted SNR (GWSNR).

This section will attempt to explain the reasons for the good performance of the

GWSNR and SNR and explore some possible improvements on the GWSNR. The

rest of the chapter will investigate reasons for the poor performance of the Grey

Block Distance and Gradient Error SNR and will finish off with a closer scrutiny of the

reliability of the subjective image quality test as a means of comparison.

4.1.1 Gradient Weighted Signal To Noise Ratio

The results achieved with the application of the Gradient Weighted SNR confirm

that the method is based on sound assumptions. As a first implementation, the

GWSNR already performed slightly better than the traditional SNR. This leaves

the way open for further enhancements to this algorithm.

The most obvious attempt at improvement to this algorithm is the weighting

factors assigned to the gradient values. The weight assigned in the current

algorithm is a normalised linear factor of the size of the gradient between adjacent

pixels. If some value could be found to quantify the sensitivity of the human eye to

different gradient levels, this information could be used for a superior grading

technique. This information could be found by doing some research using

fabricated samples in much the same way as the original quality analysis test was

presented.

An alternative to using a weighted function based on a priori knowledge of the

human visual system would be to try some non linear function that assigns a

larger weight to higher gradients. There are many functions that could be used
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towards this end and only the experimental results would show which are most

suitable.

Another approach would be to utilise the rate of change of the derivative. The

second derivative of the gradient could be used to estimate the gradient at the

borders of the image so that these pixels can also be used in the quality

calculations.

The second derivative can also be used to get a better judgement of the nature of

the image. As it was originally assumed that the human eye is more sensitive to

regions of high gradient, it also seems logical that a region where the rate of

change of the gradient is higher than other regions would also be more visible to

the eye. Such regions should therefore weigh more heavily in the calculation of

image degradation.

The above argument could be taken further. If the second derivative of an image

would help in finding regions where change is more rapid, and thus more visible to

the human eye, the higher order derivatives would by the same reasoning provide

even more information regarding the nature of the image. Unfortunately, the

effects of these higher order derivatives on the human visual system have not

been researched or investigated in the course of this work and any speculation in

this regard would be groundless. It would be relatively simple to put together a

subjective test to measure the sensitivity of the human visual system towards

these higher order image components.

Since no work has been done towards exploring any of the possibilities mentioned

above, it is difficult to estimate the effect that any of these methods could have on

the GWSNR measure.

It is impossible to judge the level of influence of a non linear weighting function on

the GWSNR. If the human eye has a sensitivity to gradient error that is very

different from the linear scale used in this work, the difference that such a variant

could introduce to the final quality calculation could be substantial. This line of

thought definitely warrants further investigation.

Using the second derivative (or any other technique) to estimate the values of the

image gradient at the border pixels, will have a minimal effect on the final

GWSNR. This is true because the additional gradient values in the summation of

equation 3.37 will be cancelled by the division of the increased size of the gradient

image. Even if these estimations are inaccurate, the additional number of points

used for this calculation will only be a small percentage of the total number of
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points and will therefore have a negligible effect (for larger images) on the
averaged total given by equation 3.37.

The best solution to improving this measure would be to investigate all of the

possible improvements discussed above and implementing them in some sort of a
hybrid scheme.

4.1.2 Signal To Noise Ratio

The GWSNR and SNR are mathematically similar with the GWSNR having a

additional weighing factor that is a function of the gradient of the image. This

explains the high cross correlation coefficients between the two measures (Table

13). This high correlation also shows that the Signal to Noise ratio should

definitely not be disregarded as a measure of image quality. Apart from the good

correlation that this measure has with subjective test results, it is also

computationally less intensive that the GWSNR. This can be seen from the

similarity between the calculation two measures with the addition of the gradient

based weighing factor in the GWSNR (compare equations 3.32 and 3.37).

4.1.3 Grey Block Distance

The results for the GSD method are not very good compared to the subjective test

results. The variance of the calculated image quality values is very small

compared to that of the other methods as can be seen from the graphs comparing

the image quality values.

To try and find the reason for this poor performance, it would be prudent to first

confirm the validity of the implementation of this algorithm.

Towards this end, the algorithm was reapplied with the 30 original images, each

compared to all the others. The table in appendix A shows the results of this test.

The inversion and scaling used in the previous section to adjust these values for

comparative reasons have been removed for simplification. As should be

expected, all the values with the same row and column number have a zero

distance value since this is the GSD of an image with itself. The actual values are

all small considering that the values were calculated between completely different

images.
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extent of GSD values for dissimilar images. The algorithm was applied to a black
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and a white image and also to the first test image and its inverse. These results

are shown in Table 14.

Test Grey Block Distance

Black image vs white image 0.993958

Test Image vs inverse image 0.076367

Table 14 Grey Block Distance for dissimilar images

Many conflicting conclusions can be drawn from the results of Table 14. The black

and white images show a large distance value that seems correct since these

images are complete opposites. The inverse of the Bangladesh river image shows

a much lower distance value with its original. It can be argued that these images

although opposites are visually much closer since they can still be recognised as

the same image. Unfortunately, by that same argument, the only difference

between the black and white images is a scaling or inversion and they are also

essentially the same. They are however much more visually dissimilar than the

positive/negative image pair.

Since these GBD values range between 0 and 1, it seems that they would have a

better chance at good correlation with the subjective test results since these are

also constrained to a fixed range (as opposed to the other measures which have a

much wider range - refer to equation 3.32 where it can be seen that the SNR for

identical images tend to infinity), but this is not the case.

Despite all these conflicting observations, the grey block distance does seem to

have merit as a measure of visual image similarity, but this technique might not be

best suited for the application used in this work. Before this technique can be

applied to its best advantage, some rules must first be established as to what is a

good and bad match between images. As can be seen from the figures in Table

14, two images although exact opposites are still interpreted as very similar using

this measure. This subject also warrants further investigation.

4.1.4 Gradient Error Signal To Noise Ratio

The GESNR was the most uncorrelated measure of all those investigated when

compared to the subjective tests.
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The idea upon which this method was built still seems to make sense, but

unfortunately the calculated results do not concur. At this time, no reason for this

behaviour can be found and this result definitely warrants further investigation.

A first approach in this regard would be to confirm that the correctness of the

implementation of this technique.
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5. Conclusion and recommendations

This chapter will begin by looking at the relative performance of the two compression

techniques discussed in chapter 2. In the previous chapter, different measures are all

compared to a subjective measure that was obtained through experimental methods.

The 'accuracy' of these measures were calculated through a cross correlation with

the results obtained from the subjective tests. In this chapter, the validity of the

subjective test as a measure for the quality of other measures will be investigated.

Fractal vs JPEG compression

Since the idea of finding a new image quality measure resulted from a need to

measure the comparative performances of the 2 compression techniques against

each other, it would be worthwhile to use this new found measure to compare the two

techniques.

Table 15 shows the average scores for image quality measurements using the 4

discussed methods and also includes the average compression ratio for the 2 sets of

images.

Fractal Images JPEG Images

GBD 0.998 0.999

GESNR 17.236 14.453

SNR 28.158 29.431

GWSNR 33.416 35.475

Subjective test 3.736 3.742

Compression Ratio 20.029 20.125

Table 15 Average quality values for the JPEG and Fractal image sets

As can be seen from the above table, the JPEG method performed consistently

better on average quality measurement with all but the GESNR measure. This

exception is also the measure with the lowest cross correlation coefficient to the
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subjective test results and can therefore be disregarded as a measure for image

quality. The table also shows that the JPEG images were compressed to a slightly

higher compression ratio although this difference is so small as to be negligible.

The above results do not however imply that JPEG compression is superior to fractal

techniques. The JPEG algorithm employed for this work was obtained from source

code that is available in the public domain. This code has been improved by several

users over a period of a few years. The JPEG algorithm also includes additional

image enhancements such as low pass filtering around image segment borders after

decompression to reduce the block like effect that is found in JPEG compression.

This will obviously further improve the subjective image quality and can be applied to

the fractal algorithm with the same gains since fractal compression also introduces a

edge effect on image segment borders. The fractal compression algorithm that was

used on the other hand is based on the original work presented by Jacquin in

[JacqD]. Given enough time, this algorithm could be improved upon considerably as

is obvious from the host of other articles that appeared on this topic after the

publication of Jacquin's first work. The accompanying CD-ROM contains a list of

sources for further reading on this topic. The articles themselves can be obtained

from several internet sites (the addresses are listed on the CD-ROM), but copyright

restrictions prevent them from being reproduced on the CD-ROM.

Subjective Image Quality Evaluation

The subjective image quality estimation test was constructed to find a way to

evaluate the performance of different image quality measurement techniques. Since

the processed results from this test was used as the absolute gauge of the quality of

all the other discussed measures, these results must be obtained with a high degree

of certainty.

The results were filtered to remove all those subjects that correlated badly with the

average and a new average was calculated with the remainder. This process was

performed twice but cannot be performed too many times since this will lead to

specialisation where very few subjects influence the eventual average.

Another technique employed to try and filter out inconsistent test subjects, was to

partition all image into four separate quarters and present each of these as a

separate image at different stages of the test. Unless the content of a specific image

is divided so that a single quarter might have a lot of high spatial frequency

components whilst another quarter might contain regions of low spatial frequency, it
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can be assumed that the sub images will have the same quality factor on average.

Using this assumption, candidates with too high an average quality value spread per

image can be disregarded in calculating the final values. It was found however that

some candidates that occasionally have a very high spread per image can also still

have a high correlation with the average, and candidates should not be disregarded

on their consistency alone but on a combination of consistency and correlation with

the average.

As was already mentioned in section 3.1.7, regarding a certain amount of the first

images as training data and ignoring these in the calculations did not seem to

produce any significant improvement on either candidate consistency or correlation

with the average series. The fact that the test was also presented in such a way as to

prevent a candidate from viewing their previous selections, and thus 'learning' how to

grade the images, reinforces the finding that there seems to be no general trend in

the statistical nature of the series of test values as they were entered.

The amount of raw data used for these results was also not enough to try and use

the final set of quality values as a standard for measurement. It would seem prudent

to have the final results be the average of as many as possible separate test subjects

to avoid any specialisation in the final result. It would also be good practice to have

more than one set of test data using different types of images and a wider range of

distortion types to put together some sort of baseline for image grading measures to

be compared against. Some completely independent tests would also serve as a

confirmation or not, of the validity of this type of test. Chapter 3 of [Jain] describes

some image quality measures and discusses subjective tests as well.
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Appendix A

Image Bangladesh Clouds Clouds2 Clouds3 Frozen frozen2 frozen3

Bangladesh 0 0.191921 0.107282 0.153261 0.11699 0.173829 0.157286

Clouds 0 0.20947 0.094654 0.089155 0.038734 0.062009

Clouds2 0 0.121299 0.153472 0.189513 0.157928

Clouds3 0 0.046605 0.069788 0.038583

Frozen 0 0.05819 0.041502

Frozen2 0 0.043261

Frozen3 0

Table 16 Grey Block Distances between some of the test images to illustrate

correctness of calculation
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Appendix B

Cross Correlation as a means of calculating

degree of comparison

In this work, the cross correlation coefficient (normalised second order central

moment) is used as a means to describe how well one set of test data compares with

another. This method is usually applied to noisy time sequences of signals in order to

try and detect or extract the signal data from the noise.

The subjective test data in this work can be considered as a time series of 30

samples and all the measures can then be considered as noisy variants on the

original.

The cross correlation coefficient is given by:

P=[(X-X)~]
ax ay

(5.43)

The properties of this function make it ideal for the type of comparison that it was

used for.

• -1:S;p:S;1 The range of values for the correlation measure can be

interpreted as 1 being a perfect match, 0 implies no

correlation, and -1 implies inverse series.

• p(x.X) =1 The function correlates perfectly with itself. This is what we

would expect from a function used for calculating the similarity

between 2 series.

• p(X.(a}(+b» = 1 The cross correlation coefficient of two time series is linearly

independent. This means that we can compare the control

series to any other measure without any scaling or translation.

The mathematical proof of the above 3 properties is relatively simple and falls

beyond the scope of this work.
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The CD-ROM accompanying this work contains a section with source code for the

generic implementation of the correlation coefficient and other statistical operators

that were used during this project.

Finally, since the cross correlation coefficient between two series is such an effective

measure for determining similarity, it stands to reason that this could be expanded to

the two dimensional case and used as a measure for image quality in itself. This

topic is definitely worth further investigation.
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