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Summary

Gray leaf spot (GLS) of maize, caused by the fungus Cercospora zeae-maydis,

can reduce grain yields by up to 60% and it is now recognized as one of the most

significant yield-limiting diseases of maize in many parts of the world. The most

sustainable and long-term management strategy for GLS will rely heavily on the

development of high-yielding, locally adapted GLS resistant hybrids.

Molecular markers could be useful to plant breeders to indirectly select for genes

affecting GLS resistance and to identify resistance genes without inoculation and

at an early stage of plant development. Only two studies in the USA have

examined quantitative trait loci (QTL) association with GLS resistance.

The aim of this study was to map GLS resistance genes in a resistant Seed Co

LTD, Zimbabwean inbred line. Molecular markers linked to the GLS resistance

QTL were identified by using the amplified fragment length polymorphism (AFLP)

technique together with bulked segregant analysis. Eleven polymorphic AFLP

fragments were identified and converted to sequence-specific PCR (polymerase

chain reaction) markers. Eight of the 11 converted AFLP markers were added to

the maize marker database of the University of Stellenbosch.

Five of the 8 converted AFLP markers were polymorphic between the resistant

and the susceptible parent. They were amplified on the DNA of 230 plants of a

segregating F2 population and linkage analysis was performed with

MAPMAKER/EXP. Two linkage groups consisting of two markers each, with a

linkage distance of 10.4 cM (LOD 22.83) and 8.2 cM (LOD 55.41) between the

two markers, were identified. QTL mapping with MAPMAKER/QTL confirmed the

presence of QTL in both linkage groups.

III

Stellenbosch University http://scholar.sun.ac.za



Two publicly available recombinant inbred families (Burr et a/., 1988) were used

to localize the converted AFLP markers on the genetic map of maize. The QTL,

which were identified with the AFLP markers, were mapped to chromosomes 1

and 5. Another AFLP marker was mapped to chromosome 2 and a further to

chromosome 3.

To obtain more precise localizations of the QTL on chromosomes 1 and 5,

sequence-tagged site markers and microsatellite markers were used. The

markers were amplified on the DNA of the 230 plants of the F2 population and

linkage analysis was performed with MAPMAKER/EXP. The order of the markers

was in agreement with the UMC map of the Maize Genome Database. Interval

mapping using MAPMAKERlQTL and composite interval mapping using QTL

Cartographer were performed. The QTL on chromosome 1 had a LOD score of

21 and was localized in bin 1.05/06. A variance of 37% was explained by the

QTL. Two peaks were visible for the QTL on chromosome 5, one was localized in

bin 5.03/04 and the other in bin 5.05/06. Both peaks had a LOD score of 5 and

11% of the variance was explained by the QTL.

To test the consistency of the detected QTL, the markers flanking each QTL

were amplified on selected plants of two F2 populations planted in consecutive

years and regression analysis was performed. Both the QTL on chromosome 1

and the QTL on chromosome 5 were detected in these populations. Furthermore,

the presence of a QTL on chromosome 3 was confirmed with these populations.

A variance of 8 -10% was explained by the QTL on chromosome 3.

In this study, a major GLS resistance QTL was thus mapped on chromosomes 1

and two minor GLS resistance QTL were mapped on chromosomes 3 and 5

using a resistant Seed Co LTD, Zimbabwean inbred line. Markers were identified

which could be used in a marker-assisted selection program to select for the GLS

resistance QTL.
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Opsomming

Grys blaarvlek (GBV) van mielies, veroorsaak deur die swam Cercospora zeae-

maydis, kan graanopbrengs met tot 60% verlaag en word beskou as een van die

vernaamste opbrengs-beperkende siektes wêreldwyd. Die toepaslikste

langtermyn stragtegie vir GBV beheer sal wees om plaaslike mieliebasters met

hoë opbrengs en GBVweerstand te ontwikkel.

Molekulêre merkers kan nuttig deur plantetelers gebruik word om

weerstandsgene te selekteer. Seleksie is moontlik in die afwesigheid van

inokolum en op 'n vroeë stadium van plant ontwikkeling. Slegs twee vorige

studies (in die VSA) het kwantitatiewe-kenmerk-Iokusse (KKL), vir GBV-

weerstand ondersoek.

Die doel van hierdie studie was om die GBV weerstandsgene in 'n

weerstandbiedende ingeteelde lyn (Seed Co BPK, Zimbabwe) te karteer.

Molekulêre merkers gekoppel aan die GBV weerstands KKL is geïdentifiseer

deur gebruik te maak van die geamplifiseerde-fragmentlengte-polimorfisme-

(AFLP-) tegniek en gebulkte-segregaat-analise. Elf polimorfiese merkers is

geïdentifiseer en omgeskakel na volgorde-spesifieke PKR (polimerase

kettingreaksie) merkers. Agt van die elf omgeskakelde AFLP-merkers is by die

mieliemerker databasis van die Universiteit van Stellenbosch gevoeg.

Vyf van die 8 omgeskakelde AFLP-merkers was polimorfies tussen die bestande

en vatbare ouers. Hulle is geamplifiseer op die DNA van 230 plante van 'n

segregerende F2-populasie en is gebruik in 'n koppelingstudie met

MAPMAKER/EXP. Twee koppelingsgroepe, elk bestaande uit twee merkers, met

onderskeidelik koppelingsafstande van 10.4 eM (LOD 22.83) en 8.2 eM (LOD

55.41) tussen die merkers, is geïdentifiseer. KKL-kartering het getoon dat KKL in

albei koppelingsgroepe aanwesig is.

v
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Twee kommersieël beskikbare, rekombinant-ingeteelde families (Burr et aI.,

1988) is gebruik om die omgeskakelde AFLP-merkers op die mielie genetiese

kaart te plaas. Die KKL wat met die AFLP-merkers geïdentifiseer is, is gekarteer

op chromosome 1 en 5. 'n Verdere AFLP-merker is op chromosoom 2 gekarteer

en 'n ander op chromosoom 3.

Ten einde die KKL op chromosome 1 en 5 meer akkuraat te karteer, is volgorde-

ge-etikeerde en mikrosatelliet merkers gebruik. Die merkers is geamplifiseer op

die DNA van die 230 plante van die F2-populasie en koppelings-analises is

uitgevoer. Die volgorde van die merkers was dieselfde as die van die UMC-kaart

in die Mielie Genoom Databasis. Interval kartering met MAPMAKER/QTL en

komposiet interval kartering met QTL Cartographer is uitgevoer. Die KKL op

chromosoom 1 het 'n LOD-telling van 21 gehad en is in bin 1.05/06 geplaas. Die

KKL was verantwoordelik vir 37% van die variansie. Twee pieke was

onderskeibaar vir die KKL op chromosoom 5, een in bin 5.03/04 geleë en die

ander in bin 5.05/06. Elke piek het 'n LOD-telling van 5 gehad en die twee KKL

was verantwoordelik vir 11% van die variansie.

Om die herhaalbaarheid van die effek van die KKL te toets is die merkers naaste

aan elke KKL geamplifiseer op geselekteerde plante van twee F2-populasies wat

in opeenvolgende jare geplant is. Regressie analise is op die data gedoen. Beide

die KKL op chromosoom 1 en die KKL op chromosoom 5 kon in hierdie

populasies geïdentifiseer word. Verder kon die aanwesigheid van 'n verdere KKL

op chromosoom 3 in hierdie populasies bevestig word. Laasgenoemde KKL was

verantwoordelik vir 8-10% van die totale variansie.

In hierdie studie is daar dus 'n hoof GBV-weerstands KKL gekarteer op

chromosoom 1 en twee kleiner GBV-weerstands KKL gekarteer op chromosome

3 en 5. Merkers is geïdentifiseer wat moontlik in merker-gebaseerde-

telingsprogramme gebruik kan word om plante te selekteer wat die GBV-

weerstands KKL het.
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Chapter 1

Introduction

1.1 GLS (gray leaf spot) disease in maize

Gray leaf spot (GLS) of maize, caused by the fungus Cercospora zeae-maydis

(Tehan and Daniels, 1925), has become a major threat throughout the maize

growing regions of the United States during the past decade and appears to be

increasing each year (Wang et al., 1998 and Ward et al., 1999). In South Africa,

the disease was first observed in KwaZulu-Natal in 1988 and has since spread

rapidly to neighbouring provinces and countries. During the 1990 to 1991

growing season the first economic losses caused by C. zeae-maydis were

reported in South Africa (Ward et al., 1999). GLS can reduce grain yields by 30

to 60%, depending on hybrid susceptibility and favorable weather conditions and

it is now recognized as one of the most significant yield-limiting diseases of

maize in many parts of the world (Ward et al., 1999).

Symptoms of GLS are normally first observed on the lower leaves (Ward et al.,

1999). Lesions first appear as small tan spots that are rectangular to irregular in

shape and have chlorotic borders that are more easily discernible when diseased

leaves are viewed through transmitted light. Mature GLS lesions are gray to tan

in color, sharply rectangular, long and narrow, and run parallel to the leaf veins

(LatterelI and Rossi, 1983) (Figure 1). The name gray leaf spot was derived from

the grayish cast produced by sporulating lesions (Ward et al., 1999).

Stellenbosch University http://scholar.sun.ac.za



GLS losses occur when photosynthetic tissue is rendered non-functional due to

lesions and/or the blighting of entire leaves. The blighting and premature death of

leaves limits radiation interception and the production and translocation of

photosynthate to developing kernels (Ward et al., 1999). The number of kernels

per ear and the kernel size are the two components of yield most affected by

GLS epidemics (Ward et al., 1999). In severely infected fields, stalk lesions are

common, resulting from the spread of the fungus through leaf she~,hs (LatterelI
"

and Rossi, 1983). When the leaf lesions cover most of the photosynthetic surface

and extreme water loss occurs, the stalks deteriorate and become so weak that

lodging precludes mechanical harvesting (LatterelI and Rossi, 1983). GLS

normally does not begin to develop until several days after flowering and laté

maturing lines tend to be more resistant than early lines (Bubeck et al., 1993).

If maize residue from a previous crop affected with gray leaf spot is left on the.

surface and minimum tillage is practiced, the disease is likely to be far more

severe the following season, as the pathogen overwinters in infected maize

debris (LatterelI and Rossi, 1983, Thompson et al., 1987, Elwinger et al., 1990

and Ward et al., 1997). GLS is an extremely environmentally sensitive disease

2
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requiring high humidities and extended leaf wetness (LatterelI and Rossi, 1983,

Thompson et al., 1987, Donahue et al., 1991, Gevers et al., 1994, Wang et al.,

1998 and Ward et al., 1999).

The severity of GLS may be greater in the absence of other foliar pathogens as

more tissue is available for the colonization of C. zeae-maydis, and the

development of maize hybrids with resistance to other pathogens may thus have

contributed to the increase in gray leaf spot (Wang et al., 1998).

Wang et al. (1998) obtained 91 monoconidial isolates of C. zeae-maydis from

diseased leaves collected throughout the United States and analyzed them for

genetic variability at 111amplified fragment length polymorphism (AFLP) loci. By

using cluster analysis, two very distinct groups of C. zeae-maydis isolates were

revealed. These results were confirmed by nucleotide sequence differences of

the 5.8S ribosomal DNA (rONA) and the internal transcribed spacer (ITS) regions

in the two groups. They found that isolates from the one group, that was most

prevalent, were generally distributed throughout the main maize-producing

regions of the United States, whereas isolates of the other group were mainly

found in the eastern third of the country. Both groups of isolates were present in

the same fields at some locations.

Methods to control GLS include the discontinuation of conservation tillage, the

use of crop rotation, the application of foliar fungicides, and the use of hybrids

with resistance (LatterelI and Rossi, 1983, Ward et al., 1997 and Coates and

White, 1998). As inoculum can spread between different fields, the effectiveness

of crop rotation and conventional tillage for GLS control may depend on the

number of growers in the region that utilize these controls (Coates and White,

1998). As it is also important to preserve the economic and environmental

advantages of conservation tillage systems, tillage is not a viable control option

and crop rotation may not be an effective control (Coates and White, 1998).

Foliar applied fungicides provide an effective control (Ward et al., 1997), but may

3
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not be economical for grain production (Coates and White, 1998). Furthermore,

the pathogen may develop resistance to the fungicides (Ward et aI., 1999). Host

resistance is therefore expected to be the most cost-effective, efficient and

acceptable control measure (Huff et aI., 1988, Ulrich et aI., 1990, Gevers and

Lake, 1994, Saghai Maroof et aI., 1996, Coates and White, 1998 and Ward ef aI.,

1999).

1.2 GLS host resistance

Corn germplasm has been evaluated for the inheritance of resistance to GLS by

using diallel analysis (Thompson ef aL, 1987, Huff et aI., 1988, Ulrich et aI., 1990,

Donahue ef aI., 1991, Gevers ef aI., 1994 and Hohls et aI., 1995), generation

mean analysis (Thompson ef al., 1987 and Coates and White, 1998), and

statistical modeling of resistance (Elwinger et aI., 1990), and by examination of

quantitative trait loci (QTL) and restriction fragment polymorphisms (RFLPs)

associated with resistance (Bubeck et aI., 1993 and Saghai Maroof et aI., 1996).

In the diallel analyses both the general combining ability (Huff et aI., 1988,

Thompson ef aI., 1987, Ulrich et aI., 1990, Donahue ef aI., 1991, Gevers et aI.,

1994) and the specific combining ability (Huff ef aI., 1988, Donahue ef aI., 1991

and Gevers et aI., 1994)were significant for the inbreds under study. Ulrich ef al.

(1990) and Donahue ef al. (1991) found resistance to be highly heritable and

controlled by additive gene action. Thompson et al. (1987) and Huff et al. (1988)

also concluded that additive gene action was more important than nonadditive

gene action for their sets of inbred lines. Both additive and nonadditive genetic

effects played a major role in the resistance mechanism in South African maize

breeding material (Gevers et aI., 1994). Breeding material, presumably

4
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originating from teosinte germplasm, which exhibited levels of resistance due to a

major gene, GLS1, was also identified (Gevers and Lake, 1994). Hohls et al.

(1995), using South African inbred lines, found that GLS in maize can be

expressed in terms of an additive-dominance model, with dominance almost

complete.

Generation mean analysis in the study by Thompson et al. (1987) indicated that

resistance is not very complex and is mainly controlled by additive gene action.

Coates and White (1998) found that a simple additive-dominance model was

able to explain the inheritance of resistance for all populations. Dominance

effects were detected in all populations, with dominance being significant at early

ratings, but not at late ratings. In both studies, the expression of resistance was

environmentally dependent.

Statistical modeling of resistance indicated that dominance was important and

that a model more complex than simple additivity was required to fully explain

inheritance of resistance to gray leaf spot (Elwinger et al., 1990). It was also

found that few, rather than many genes controlled the inheritance of resistance to

GLS.

Bubeck et al. (1993) studied QTL associated with GLS resistance in three

populations and by means of 109 RFLP marker loci identified QTL associated

with resistance on all maize chromosomes. Only one region on chromosome 2

was associated with GLS resistance in all three populations under study. Some

marker-associated effects showed dominance, but most indicated additive gene

action. Some of the favorable factors observed originated from the susceptible

parent. The QTL effect on GLS resistance was found to be inconsistent over

environments. Individual markers in their study accounted for 4-26% of the

phenotypic variation.

5
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Saghai Maroof et al. (1996) identified five independent OTL. They crossed the

inbred Va14 (resistant) with the inbred 873 (susceptible) to obtain a large F2

population. The plants were scored for GLS disease reaction at six different

times throughout the disease season. Each F2 was selfed to produce a F2

derived F3 line. F3 lines were planted in two separate GLS disease blocks.

Seventy-one RFLP markers were used to screen 239 F2 individuals including

those with extreme GLS disease phenotypes. The OTL located on chromosomes

1, 4 and 8 had large effects on GLS resistance and were remarkably consistent

across three disease evaluations over 2 years and 2 generations. The OTL on

chromosome 1 explained 35-56% of the variance and the OTL on chromosome 4

and 8 explained 8.8-14.3% and 7.7-11%, respectively. Cumulatively, the OTL on

chromosome 1, 4 and 8 explained 44-68% of the variance in the different

populations. Smaller OTL effects were found on chromosomes 2 and 5 which

explained 4.8-7.7% and 5.7% of the variance, respectively. As the OTL on

chromosome 5 was not reproducible over replications it was assumed to be a

false positive. The resistance OTL were derived from parent Va14, except for the

OTL located on chromosome 4, which was from the susceptible parent 873. The

OTL on chromosome 1 and 2 appeared to have additive effects, whereas those

on chromosome 4 seemed to be dominant and those on chromosome 8

recessive.

Resistant inbred lines are being used in breeding programs to transfer gray leaf

spot resistance to susceptible elite lines which are widely used as parents in

commercial hybrids. Attempts to transfer resistance from one source to the other

have not always been successful (Coates and White, 1998). Difficulties in

transferring resistance may be due to the number of genes involved, difficulty in

selecting the best genotypes, the evaluation of an insufficient number of families,

or a combination of these factors. Furthermore, the development of the disease

is highly dependent on environmental effects and it is therefore very difficult to

make assessments of the disease for inheritance studies and resistance

breeding (Saghai Maroof et al., 1996). Marker-assisted selection programs may

6
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thus be useful to plant breeders to indirectly select for genes affecting GLS

resistance, thus selecting desirable individuals on their genotype rather than their

phenotype, independent of environmental influence (Berloo and Stam, 1998 and

Toojinda et aI., 1998).

1.3 MAS (marker-assisted selection)

Marker-assisted selection (MAS) is the method whereby molecular markers

enable plant breeders to select indirectly for genes affecting quantitative traits by

selecting for molecular markers closely linked to these genes (Berloo and Stam,

1998).

The ability to select desirable individuals in a breeding program based on

genotypic configuration is an extremely powerful application of DNA markers and

QTL mapping (Young, 1996). Partial resistance loci can be treated as Mendelian

factors and manipulated just like any other major gene (Young, 1996 and

Yamamoto et aI., 1998) and several resistance genes can therefore be

pyramided into a valuable genetic background by using marker-assisted

selection (Melchinger, 1990, Young, 1996, Qi et aI., 1998a, Yamamoto et aI.,

1998). QTL from diverse donors can be rapidly introduced into a desirable

background or deployed in a set of cultivars, resulting in a higher level of

resistance (Ragot et aI., 1995, Young, 1996 and Qi et aI., 1998a). MAS is also

useful to check for the resistance genes without inoculation (Melchinger, 1990,

Kelly, 1995, Pelsy and Merdinoglu, 1996 and LUbberstedtet aI., 1998a) and at an

early stage of plant development (Melchinger, 1990, LUbberstedtet aI., 1998a,b

and Qi et aI., 1998b).

7
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By using markers, lines with cross-overs very near to a gene of interest can be

selected, thereby reducing "linkage drag" from the donor parent. In a backcross

program, markers can also be used to select for lines with minimal donor

germplasm in regions unlinked to an introgressed segment, since such

chromosomal segments are sometimes associated with undesirable traits

(Melchinger, 1990, Tanksley and Nelson, 1996, Young, 1996, Toojinda et aI.,

1998 and Yamamoto et aI., 1998).

Furthermore, desirable alleles from the parent with an otherwise less desirable

phenotype can be selected to create new cultivars with phenotypes superior to

the parents (Bubeck et aI., 1993, Saghai Maroof et aI., 1996, Toojinda et aI.,

1998 and Pernet et aI., 1999a). Bernacchi et al. (1998) applied an advanced

backcross O'Tl, strategy to cultivated tomato using a wild species as the donor

parent, and found that a significant portion of the O'Tl, had allelic effects opposite

to those of the parents. These agronomically useful and novel alleles would have

been overlooked in phenotypic evaluations of exotic germplasm, but could be

detected and transferred with a MAS approach.

A prerequisite for MAS is that the initial population is polymorphic for the marker

and the gene of interest, and that both are in extreme linkage disequilibrium

(Melchinger, 1990). lande and Thompson (1990) and Berloo and Stam (1998)

have investigated the efficiency of MAS compared to conventional phenotypic

selection. Both found that the relative efficiency of MAS is greatest for characters

with low heritability, if a moderate or large fraction of the additive genetic

variance is significantly associated with the marker loci. lande and Thompson

(1990) also found that MAS is very useful to select traits on the basis of their

molecular markers when individuals do not express the phenotypic traits of

interest, such as before development of the adult phase.

Miklas et al. (1996) suggested that a backcrossing program, that utilizes

coupling-phase linkages (marker and resistant allele on the same homologous
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chromosome or chromatid), may be the most effective way to transfer resistance

traits via indirect selection. The utility of the marker-QTL associations for indirect

selection would depend on recombination frequency between the loci and the

unwanted occurrence or absence of the informative markers in germ plasm to

which the resistance is to be introgressed. Marker-assisted backcrossing has

been applied in barley to introgress stripe rust resistance QTL into a genetic

background unrelated to the mapping population (Toojinda et al., 1998).

The efficiency of MAS depends on the consistency of the estimated QTL position

and effects across populations (Bohn et al., 1997). Because of the poor

consistency of QTL across populations, QTL mapping must be performed in each

population separately as a pre-requisite for MAS (Lubberstedt et al., 1998a).

In recent years a number of molecular marker techniques have been developed,

making the selection of plants based on molecular markers more efficient. These

include, amplified fragment length polymorphism (AFLP; Zabeau and Vos, 1993

and Vos et al., 1995), restriction fragment length polymorphism (RFLP; Botstein

et al., 1980), microsatellite or simple sequence repeat polymorphism (SSR;

Tautz, 1989) and random amplified polymorphic DNA (RAPD; Williams et al.,

1990).

1.4 AFLPs (amplified fragment length polymorphism markers)

The AFLP technique developed by Zabeau and Vos (1993) is based on the

selective amplification of genomic restriction fragments using the peR

(polymerase chain reaction, Saiki et al., 1988). DNA is digested with a frequent

(e.g. Msel or Taql) and a rare cutter restriction enzyme (e.g. EcoRI, Mlul or Pstl)

9
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and double-stranded DNA adapters are ligated to the ends of the DNA fragments

to generate template DNA for amplification. Primers complementary to the

adapters and to the restriction sites are designed with two or three selective

nucleotides added at the 3' ends of the primers. Restriction fragments will only be

amplified if the nucleotides flanking the restriction site correlate with the selective

nucleotides. Only one of the primers used in the selective amplification is labeled

and therefore, only the restriction fragments containing the primer site of the

labeled primer are detected. The amplified fragments are analyzed by denaturing

gel electrophoresis. To visualize the fragments, the primers can either be labeled

with radioactivity (Vos et aI., 1995) or fluorescence (Hartl and Seefelder, 1998),

or the fragments can be detected by silver staining the polyacrylamide gel (Cho

et aI., 1996). Alternatively, AFLP products can be blotted onto a nylon membrane

and subsequently hybridized with an alkaline phosphotase-IabeledAFLP probe,

which hybridizes to the primer sequence (Lin et al., 1999).

Polymorphisms such as the presence or absence of restriction enzyme sites,

sequence polymorphisms adjacent to these sites, insertions, deletions and

rearrangements are detected by the AFLP technique (Cervera et aI., 1996).

The following reasons are given by Vos et al. (1995) for using two restriction

enzymes:

i. The frequent cutter will produce small DNA fragments easily amplified and

separated on denaturing gels.

ii. Only the rare cutter/frequent cutter fragments are amplified, and therefore

using the rare cutter reduces the number of fragments amplified. This in

turn reduces the number of selective nucleotides needed for selective

amplification.

iii. With the use of two restriction enzymes it is possible to label only one

strand of the double stranded PCR products, thus preventing the
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occurrence of doublets on the gels due to unequal mobility of the two

strands of the amplified fragments.

iv. By using two restriction enzymes the flexibility in tuning the number of

restriction fragments to be amplified is greatest.

v. By using various combinations of a low number of primers large numbers of

different fingerprints can be generated.

A very important advantage of the AFLP technology is the high number of loci

that can be analyzed per experiment (Vos et ai., 1995, Russell et ai., 1997,

Vuylsteke et ai., 1999 and Zhu et ai., 1999a). The AFLP analysis detects a

greater number of loci than RAPD or microsatellite analysis (Thomas et al., 1995,

Cervera et ai., 1996, Maughan et ai., 1996 and Sharma et ai., 1996) and is also

more efficient at detecting informative markers than RFLP analysis (Sharma et

al., 1996, Walton et al., 1996, Ajmone Marsan et al., 1998 and Castiglioni et al.,

1999). Besides the ability to detect multiple discrete genetic loci, AFLP analysis

is also fast, robust and reliable (Thomas et ai., 1995, Vos et ai., 1995, Cervera et

ai., 1996, Maughan et ai., 1996, Sharma et ai., 1996 and Castiglioni et ai., 1999)

and does not require prior sequence knowledge of the DNA (Vos et al., 1995 and

Vuylsteke et ai., 1999).

The disadvantage of this analysis is the inability to provide a known degree of

genome coverage. It is therefore possible that some proportions of the

polymorphic markers scored are from the same region of the genome, and that

other regions are under-represented (Walton et ai., 1996, Rouppe van der Voort

et ai., 1997 and Shan et ai., 1999). The clustering of AFLP bands has been noted

around the centromeres of maize (Walton et ai., 1996, Castiglioni et ai., 1999 and

Vuylsteke et al., 1999) and barley (Qi et al., 1998b). A difference in clustering

was, however, observed when enzymes differing in methylation sensitivity were

used to digest the genome. EcoRl/Msel fragments were clustered in the

centromeric regions, whereas methylation sensitive Pstl/Msel fragments were

randomly distributed (Castiglioni et al., 1999 and Vuylsteke et al., 1999). It is
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believed that the centromeric suppression of recombination is the main reason

for the clustering of markers (Castiglioni et al., 1999). As recombination occurs

primarily in genes, or perhaps unique sequences, and hypomethylated regions of

the maize genome are associated with genes, the methylation sensitive

PstllMsel fragments were more randomly distributed than the EcoRIIMsel

fragments which may contain repetitive sequences and are therefore mainly

clustered around the highly repetitive regions at the centromere (Castiglioni et al.,

1999 and Vuylsteke et al., 1999).

Donini et al. (1997) found that partial restriction of wheat DNA occurred only in a

small number of cases (1%). However, they did detect a variable number of

differences within an accession between the amplification profiles of wheat DNA

extracted from bulked seeds and those of wheat DNA extracted from leaves.

These differences were shown to be neither due to genotypic mixtures nor to

pathogen contamination, but were likely a result of differences in DNA

methylation between organs. It was therefore suggested that DNA is extracted

from physiologically uniform tissue in phylogenetic studies based on AFLP

fingerprinting.

Rouppe van der Voort et al. (1997) investigated whether AFLP markers can be

used to align genetic maps obtained from different potato genotypes. The ability

to collate information from genetic maps obtained from different crosses is

important in the application of molecular markers for genetic studies in crop

plants. They showed that 89% of the AFLP markers, characterized by primer

combination and mobility, are indeed allelic. Sequencing of the homologous

AFLP markers confirmed that 19 out of 20 markers were identical. Qi et al.

(1998b) and Zhu et al. (1999a) also indicated that AFLP fragments of similar size

and intensity are homologous and are therefore transferable between

populations.
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AFLP markers can be converted into sequence-specific PCR markers (Bradeen

and Simon, 1998 and Shan et al., 1999). The AFLP fragments are isolated from

the polyacrylamide gel, re-amplified, cloned and sequenced, and primers

designed. A PCR assay, which is less expensive and less time and labour

consuming (au et al., 1998 and Shan et al., 1999), can thus be used to screen

the progeny (Cervera et al., 1996). The isolation of AFLP fragments from YAC

clones instead of plant DNA is easier, as yeast has a simpler genome structure

and contamination with co-segregating bands is less likely (Cnops et al., 1996).

The AFLP approach has been used:

i. in species diversity studies in maize (Walton et al., 1996 and Ajmone

Marsan et al., 1998), soybean (Maughan, et al., 1996), lens (Sharma et al.,

1996), wild barley (Pakniyat et al., 1997), barley (Schut et al., 1997) and

hops (Hartl and Seefelder, 1998);

ii. to construct a high-density linkage map in maize (Castiglioni et al., 1999 and

Vuylsteke et al., 1999), potato (Rouppe van der Voort et al., 1997), rice

(Zhu et al., 1999a), barley (Lahaye et al. 1998, ai et al., 1998b and Richter

et al., 1998) and sugar beet (Schondelmaier et al., 1996 and Nilsson et al.,

1999);

iii. to target markers linked to dominant genes of interest in Populus (Cervera et

al., 1996), soybean (Maughan, et al., 1996), barley (Simons et al., 1997),

potato (Ballvora et al., 1995), Arabidopsis thaliana (Cnops et al., 1996) and

tomato (Thomas et al., 1995);

iv. to identify markers linked to aTL in barley (Powell et al., 1997 and Oi et al.,

1998a) and Brassica oleracea (Voorrips et al., 1997);

v. in selective amplified microsatellite polymorphic locus (SAMPL) analysis in

lettuce (Witsenboer et al., 1997);

vi. in the cDNA-AFLP method to detect differentially expressed transcripts in

potato (Bachem et al., 1998); and

vii. to generate mRNA fingerprints in wheat (Money et al., 1996).
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1.5 Converted RFLPs (restriction fragment length

polymorphism markers)

RFLP technology is very reliable and provides a known degree of genome

coverage based upon mapped locations of the RFLP probes (Walton et aI.,

1996). However, large amounts of DNA are needed for the technique and it is

time-consuming, tedious and expensive (Kelly, 1995, Beaumont et aI., 1996,

Larson et aI., 1996, Schondelmaier et aI., 1996, Castiglioni et aI., 1999 and

Vuylsteke et al., 1999).

The conversion of RFLP markers to sequence-tagged site (STS) or cleaved

amplified polymorphic sequence (CAPS) markers captures some of the

advantages of the RFLP technique, while avoiding the disadvantages of

Southern blot analysis (Tragoonrung et aI., 1992 and Rafalski and Tingey, 1993).

Selection with these markers is thus faster and cheaper, and only a little DNA is

needed in the amplification reaction. For STS markers to be useful they must co-

segregate with the RFLP locus from which they derive and they should also

provide co-dominant and reliable assays (Larson et aI., 1996). A number of

studies have reported that STS markers co-segregate with RFLP markers

(Tragoonrung et aI., 1992, Talbert et aI., 1994, Larson et aI., 1996 and Zaitlin et

aI., 1993).

The sequence information for the locus of interest is used to create primer pairs,

which are about 20 bases long, contain 50% GC nucleotides and harbor no

inverted repeat sequences (Tragoonrung et aI., 1992). These primer sets are

then used to amplify a segment of DNA at the locus. To identify RFLPs among

individuals, which do not show size polymorphisms on an agarose gel, the

amplified bands are digested with a number of restriction enzymes. These

markers are termed CAPS (Rafalski and Tingey, 1993).
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Insertion/deletion or point mutation polymorphisms can be distinguished with

converted RFLPs (Tragoonrung et a/., 1992). RFLPs in the amplified bands may,

however, be difficult to identify, because variation outside the STS region can not

be detected as in RFLP analysis (Rafalski and Tingey, 1993 and Tragoonrung et

a/., 1992).

1.6 Microsatellite markers

Microsatellites are stretches of tandemly arranged short sequence motifs that

individually range from two to six nucleotides. Primers complementary to the'

conserved sequences flanking the repeat are used to amplify the intervening

microsatellite. Polymorphisms are detected when the alleles differ in the number

of tandem repeats in the amplified fragment (Chin et a/., 1996 and Smith et a/.,

1997). Some amplified bands can be separated on agarose gels (LObberstedtet

a/., 1998c and Senior et a/., 1998). Others need to be separated on non-

denaturing polyacrylamide gels stained with ethidium bromide (Brown et a/.,

1996), or denaturing polyacrylamide gels (Saghai Maroof et a/., 1994 and Smith

et a/., 1997). Primers for the amplification of microsatellites, which need to be

separated on denaturing polyacrylamide gels, can either be labeled f1uorescently

(Smith et a/., 1997) or radioactively (Saghai Maroof et a/., 1994).

The development of microsatellite markers, also known as simple sequence

repeat polymorphism (SSR) markers, is time consuming and expensive as

genomic libraries have to be developed, clones have to be sequenced and

primers synthesized before the markers can be amplified and run on a gel

(Brown et a/., 1996, Maughan et a/., 1996 and Witsenboer et a/., 1997). However,

once the primers have been developed, the primer sequences can be published
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and used by different laboratories (Rafalski and Tingey, 1993). To date more

than 1000 microsatellites have been published for maize. The primer sequences

are listed in the Maize Genome Database and can be accessed via the World

Wide Web at http://www.agron.missouri.edu/ssr.html.

Microsatellite markers are highly polymorphic, co-dominant, locus specific and

can be analyzed quickly and simply with the inexpensive PCR-based assay.

Furthermore, they require very little DNA and are usually fully transferable

between crosses. Microsatellite markers are therefore very useful in studying

genome regions of particular interest (Chin et al., 1996, Brown et al., 1999 and

Zhu et al., 1999a).

Microsatellite sequences have also been used to develop inter-simple-sequence-

repeat (ISSR) markers (Ratnaparkhe et al., 1998). As microsatellites are often

clustered in a genome, they can be used to identify different markers in the same

region. The technique uses the sequence of the microsatellite with variation at

the 5' and 3' anchors.

1.7 eSA (bulked segregant analysis)

The identification of markers linked to desirable genes is facilitated by the

availability of nearly isogenie lines (NILs). To develop NILs, a donor parent

carrying a gene of interest is crossed to a recurrent parent with economically

favorable properties. Progeny with the desirable gene are selected for

backcrossing to the recurrent parent. Backcrossing is continued for a number of

generations until the newly developed line is theoretically nearly isogenie with the

recurrent parent, except for the segment containing the target gene (Melchinger,
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1990). The development of these lines is, however, time consuming, costly and

often unnecessary in breeding programs (Chagué et al., 1996). Furthermore, the

power to detect markers linked to the desired gene is limited by the occurrence of

residual DNA from the donor cultivar at scattered sites in the genome of the NILs

(Jean et al., 1998).

Alternatively, bulked segregant analysis (BSA) can be used to rapidly identify,

from a large pool of markers, those putatively linked to targeted genes

(Michelmore et al., 1991). By means of this approach polymorphic markers are

evaluated across two DNA pools with the individuals for the trait or gene of

interest being identical within each pool but arbitrary for all other genes. Thus,

markers polymorphic between the two bulks are likely to be genetically linked to

the loci determining the trait used to construct the bulks. The selected markers,

which are polymorphic between the pools, can then be mapped across the entire

population and analyzed for association with a specific trait (Miklas et al., 1996).

The most important limitation to BSA is the chance occurrence of shared

homozygosity at specific unlinked chromosomal regions in the bulks and it is very

likely that with a segregating population derived only one generation after the

initial intercross (e.g double haploid, F2 and BC1 populations), some genomic

regions will not yet have been randomized through meiosis and recombination

(Jean et al., 1998).

As the phenotype in polygenic traits is influenced both by multiple genetic loci

and the environment, individuals can have extreme phenotypes due to different

sets of QTL or due to non-genetic factors. Therefore, the success of BSA for the

identification of QTL is dependent on the magnitude of the phenotypic effect of

individual QTL, the population size sampled and the influence of non-genetic

factors on the phenotype (Wang and Paterson, 1994). A disadvantage of DNA

pooling strategies is that it may not always detect QTL of smaller effects which
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normally influence a complex trait (Wang and Paterson, 1994 and Grattapaglia et

aI., 1996).

Wang and Paterson (1994) and Ouarrie et al. (1999) have indicated that

backcross populations are better than F2s, but poorer than recombinant inbred or

double haploid (DH) populations for identifying OTL using BSA. Recombinant

inbred lines (RILs) or DH populations are useful in BSA, as polymorph isms with

both dominant and co-dominant markers are informative.

BSA has been applied in a number of studies to identify markers linked to

quantitative traits. Two DNA pools, one consisting of plants with generalized

mosaic symptoms and another with dispersed, chlorotic spots and ring symptoms

were used by McMullen et al. (1994) to identify 3 genes controlling resistance to

wheat streak mosaic virus in maize. Each pool consisted of 25 plants. Ouarrie et

al. (1999) illustrated how BSA coupled with physiological studies can help to

identify traits important in determining drought resistance in maize. Fifty plants

were pooled in each bulk. Using BSA, 4 RAPD markers linked to a locus involved

in quantitative resistance to tomato yellow leaf curl virus have been identified

(Chagué et aI., 1997). Their resistant bulk consisted of 100 individuals and the

susceptible bulk of 29 individuals. BSA was also used together with the RAPD

analysis to identify 3 loci linked to aTL controlling leaf rust resistance in bread

wheat (William et aI., 1997) and to identify 14 markers, distributed over 3 linkage

groups, associated with low linolenic acid loci in canola (Somers et aI., 1998).

Miklas et al. (1996) used selective mapping together with BSA and identified 14

RAPD markers linked to 7 OTL conditioning disease resistance in common bean.

In these studies between 3 and 10 plants were used per bulk. Wang and

Paterson (1994) suggested that 10 plants in a pool are sufficient to avoid

detecting false positive markers, even with moderate deviations from Mendelian

segregation.
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1.8 Linkage analysis

The construction of genetic maps involves both the ordering of loci and the

measurement of distance between them (Lynch and Walsh, 1998). Genetic maps

are calculated from the recombination rates between loci as a result of

chromosome crossovers at meiosis (Qi et aI., 1998b). The probability of a

recombination event occurring between two loci is called the recombination

fraction. The recombination fraction ranges from 0 for loci right next to each other

through 0.5 for loci far apart or on different chromosomes, so that it can be taken

as a measure of the map distance between gene loci (Terwilliger and Ott, 1994).

The recombination fraction is, however, underestimated for loci, which are further

apart because of the occurrence of multiple crossovers. The recombination

fraction must therefore be transformed by a map function into the map distance.

Mapping functions such as Haldane or Kosambi were derived to predict the

number of crossovers from the observed recombination frequency. Map distance

is reported in Morgans or centiMorgans (cM), where 100 cM = 1 Morgan (Lynch

and Walsh, 1998). One cM corresponds to a recombination fraction of 1%

(Terwilliger and Ott, 1994). There is no universal relationship between the actual

physical distance and the map distance between loci, as a cM can correspond to

a span of between 10 kb (kilo bases) to 1000 kb, depending on the species

(Lynch and Walsh, 1998). As the maize genome is 3000 Mb (mega bases) in

size and the total map distance is about 1700 cM, 1 cM corresponds to

approximately 1800 kb.

Environmental factors may influence recombination rates and therefore genetic

distance may vary between different mapping populations (Powell and Nilan,

1963 and Qi et aL, 1998b). However, in general, recombination rates are under

genetic control and mainly depend on chromosome structure (Qi et aI., 1998b). A

number of studies have indicated that genetic linkage maps are stable with the
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orders of the anchor markers being identical and the distances between tightly

linked markers being very similar (Burr et a/., 1988 and ai et a/., 1998b).

With the computer program MAPMAKER/EXP linkage maps can be constructed

from genotype data of F2 or backcross populations by simultaneous multipoint

analysis of any number of loci (Lander et a/., 1987 and Lincoln et a/., 1992a). The

program uses the maximum LaO scores for a test of two-point linkage where the

maximum LaO score is defined as the log10of the ratio of the likelihoods

obtained for the maximum likelihood estimate p and for p = 0.5 (Melchinger

1990).

1.9 QTL (quantitative trait locus/loci)

Most complex traits (e.g. resistance traits that cannot be fitted to Mendelian

ratios) are controlled by multiple loci. Their phenotypes are measured

quantitatively, so they are known as quantitative characters. The genetic loci

associated with quantitative traits are called quantitative trait loci (Young, 1996).

A aTL is a segment of chromosome affecting the trait, not necessarily a single

locus (Falconer and Mackay, 1996).

Because all metabolic and developmental pathways are influenced to some

degree by aspects of the environment, the expression of most quantitative traits

is not completely under genetic control (Lynch and Walsh, 1998). A quantitative

resistance trait can result from the expression of a unique gene and

environmental factors (Pelsy and Merdinoglu, 1996).
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The difference between qualitative and quantitative traits depends not so much

on the magnitude of the effect of individual genes as on the relative importance

of heredity and environment in producing the final phenotype (Lee, 1995). As

environmental factors have a large effect on QTL, common QTL cannot always

be detected across environments (Bubeck et al., 1993, LObberstedt et al., 1998b,

Tuberosa et al., 1998 and Agrama et al., 1999) and across populations (Bubeck

et aI., 1993, Bohn et aI., 1997 and LObberstedt et aI., 1998a, b). Some QTL are,

however, stable across environments (Ragot et aI., 1995, Saghai Maroof et aI.,

1996 and Pernet et aI., 1999a, b).

Earlier mapping investigations in maize showed that although QTL affecting a

number of quantitative traits were distributed throughout the genome, certain

chromosomal regions appeared to have larger effects than others (Stuber, 1995).

To date, a number of different complexly inherited traits have been mapped in

maize, such as QTL affecting grain yield (Edwards et aI., 1992, Beavis et aI.,

1994 and Graham et al., 1997), morphological traits (Beavis et al., 1991,

Edwards et aI., 1992 and Veldboom et aI., 1994), disease and insect resistance

(Bubeck et aI., 1993, Freymark et aI., 1994, Jung et aI., 1994, Byrne et aI., 1996,

Saghai Maroof et aI., 1996, Bohn et aI., 1997, Holland et aI., 1998, LObberstedt et

aI., 1998a, b, Agrama et aI., 1999, Pernet et aI., 1999a, b, and Welz et aI., 1999)

and physiological traits such as abscisic acid concentration in leaves of drought-

stressed maize (Tuberosa et al., 1998 and Sanguinet et al., 1999), low-

phosphorous stress (Reiter et aI., 1991), thermotolerance (Ottaviano et aI., 1991)

and protein and starch concentration (Goldman et aI., 1993).

Marker-based techniques together with segregating populations have made it

possible to locate QTL to chromosomal regions and to estimate the effects of

QTL (Quarrie et aI., 1997 and Tuberosa et aI., 1998). Molecular markers can also

be used across related species and therefore QTL for a particular trait can be

compared across species, to search for homoeologous genes (Quarrie et al.,

1997). This enables the comparison of related species to determine whether
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complex traits have the same biochemical, physiological and developmental

mechanisms. Furthermore, it is possible to compare the localization of QTL with

that of mutants and/or cDNA and EST (expressed sequence tagged) clones of

known function, thus obtaining important clues on possible candidate genes

which are essential in the expression of the trait under investigation (Gilpin et ai.,

1997 and Tuberosa et ai., 1998).

1.10 QTL mapping

QTL mapping is a highly effective approach for studying genetically complex

forms of plant disease resistance as the roles of specific resistance loci can be

described and race-specificity of partial resistance genes can be assessed.

Furthermore, interactions between resistance genes, plant development, and the

environment can be analyzed. QTL mapping also provides a framework for

marker-assisted selection of complex disease resistance characters and the

potential cloning of partial resistance genes (Young, 1996).

The basic methodology for mapping QTL involves making a cross between two

inbred strains differing substantially in a quantitative trait. Segregating progeny

are scored both for the trait and for a number of genetic markers (Lander and

Botstein, 1989). Experimental designs for estimating effects and map positions of

QTL are extensions of standard methods for mapping single genes, and are

based on linkage disequilibrium between alleles at a marker and alleles at the

linked QTL (Falconer and Mackay, 1996). A linkage map of polymorphic marker

loci that adequately covers the whole genome, and variation for the quantitative

trait within or between populations or strains, are needed to map QTL (Falconer

and Mackay, 1996).
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DNA-based markers are very useful to map aTL as they are (Falconer and

Mackay, 1996):

i. highly polymorphic, so that pairs of individuals or lines are likely to carry

different alleles at each locus;

ii. abundant, so comprehensive marker coverage of the genome is achieved;

iii. neutral, both with respect to the quantitative trait of interest and to

reproductive fitness; and

iv. co-dominant, so that all possible genotypes at a maker locus can be

identified.

To identify aTL by linkage to marker loci, individuals are scored for their

genotype at the marker locus and the phenotype for the quantitative trait. If a

difference in mean phenotype among marker genotype classes is detected, the

presence of a aTL linked to the marker can be inferred (Falconer and Mackay,

1996).

If alleles that increase the value of the trait are homozygous in one parental line

and the alleles that decrease the value of the trait fixed in the other parental line,

the alleles are in association. The alleles are in dispersion if each line has some

increasing and some decreasing alleles fixed. The number of aTL detected by

linkage with markers is always an underestimate of the number of loci, because

two closely linked aTL may appear as only one if in association, or may not be

detected at all if in dispersion (Falconer and Mackay, 1996).

Darvasi and Soller (1994) found that fairly wide marker spacings of about 50 eM

are optimum for initial studies of rnarker-O'Tl, linkage. Once a aTL has been

detected additional markers at chromosomal regions of interest should be used

to provide a better estimation of the aTL map position (Darvasi, 1997). If too few

markers are used, the loci may not be very closely linked to the aTL producing

the effect and the total phenotypic variation explained by the marker locus may

23

Stellenbosch University http://scholar.sun.ac.za



be underestimated (Edwards et al., 1992). Employing a larger number of linked

markers may also be useful to determine whether different traits occurring in the

same region are controlled by two or more linked genes or by pleiotropic effects

of one gene (Veldboom et al., 1994).

Large populations may not be necessary to characterize traits conditioned by few

QTL of intermediate to major effect, as 40 RILs were as effective as 70 RILs for

identifying QTL affecting greenhouse-leaf and field resistance to common

bacterial blight (Miklas et al., 1996). The larger population was, however, more

effective in identifying and resolving QTL of relatively minor effect.

The F2 design, derived from selfing of F1s, has an advantage over designs which

use backcross, RIL or DH populations, as it generates three genotypes at each

marker locus, which allows the estimation of the degree of dominance associated

with detected QTL (Lynch and Walsh, 1998). As F2 intercrosses provide

information about twice as many meioses as backerosses of the same size,

fewer progeny are required for detecting QTL having purely additive effects

(Lander and Botstein, 1989 and Falconer and Mackay, 1996). In the case of

dominant effects, one backcross will be more efficient than the F2 and the other

less efficient (Lander and Botstein, 1989 and Falconer and Mackay, 1996). To

estimate homozygous effects, backerosses to both parents are necessary, which

are also less efficient than the F2population (Falconer and Mackay, 1996).

All estimates of the number of QTL are minimum estimates of the true number of

loci affecting a trait, because (Falconer and Mackay, 1996 and Young, 1996):

i. experiments are limited in their power to separate closely linked loci;

ii. there must always be other loci with effects too small to be detected by an

experiment of particular size;

iii. the loci found are those differentiating the two strains compared, other loci

would probably be found in other strains;
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iv. inappropriate choice of cut-off for declaring a QTL; and

v. inadequate disease scoring methods.

To increase the power of QTL mapping the environmental noise should be

reduced by progeny testing and the genetic noise can be reduced by studying

several genetic regions simultaneously (Lander and Botstein, 1989).

To introgress QTL by marker-assisted selection, the location of the QTL need not

be known with great accuracy (Lee, 1995 and Kearsey and Farquhar, 1998).

QTL mapping will thus be sufficient to identify useful QTL, which could have been

missed by conventional mass selection, and incorporate them into elite lines

(Veldboom et ai., 1994 and Kearsey and Farquhar, 1998).

The ultimate achievement of QTL mapping technology will be the molecular

cloning of the underlying genes, including those that confer partial resistance

(Young, 1996). Map based gene cloning of QTL and their detailed analysis,

however, will require somewhat greater mapping precision than is currently

available (Lee, 1995 and Kearsey and Farquhar, 1998).

The candidate gene approach has been employed as a method to combine QTL

analysis with the extensive data available on the cloning and characterization of

genes involved in plant defense (Faris et ai., 1999). This method involves the use

of genes, potentially involved in the biochemical pathways leading to trait

expression, as molecular markers for QTL analysis. Candidate genes that

contribute to quantitative resistance provide breeders with a very useful

molecular marker, which can be used to select desirable alleles at QTL and to

make the most desirable combinations. Furthermore, the molecular cloning of the

QTL is circumvented. Resistance QTL involving candidate genes, however, will

have to be mapped at a much higher resolution to determine if they actually do

coincide with the candidate gene of a distinct, but related, function (Faris et ai.,

1999).
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1.11 Interval mapping and composite interval mapping

The traditional approach to mapping aTL involves studying single genetic

markers one-at-a-time. For example, if at any particular marker, M, in a F2, the

individuals which were homozygous M1M1 were significantly taller on average

than those which were M2M2, then it could be deduced that there was a aTL

affecting height linked to this marker (Kearsey and Farquhar, 1998). There are,

however, a number of short-comings with this approach (Lander and Botstein,

1989):

i. if the aTL does not lie at the marker locus, its phenotypic effects may be

seriously underestimated;

ii. the genetic locations of aTL are not well resolved because distant linkage

cannot be distinguished from small phenotypic effect; and

iii. if the aTL does not lie at the marker locus, substantially more progeny may

be required.

Interval mapping of aTL was introduced to remedy these problems. Intervals

between adjacent pairs of markers along a chromosome are scanned and the

likelihood profile of a aTL being at any particular point in each interval is

determined, i.e. the log of the ratio of the likelihoods (LOD) of there being one vs.

no aTL at a particular point (Lander and Botstein, 1989). This approach has the

following advantages (Lander and Botstein, 1989):

i. aTL are efficiently detected, while the overall occurrence of false positives

is limited;

ii. phenotypic effects are accurately estimated;

iii. the probable position of the aTL is given by support intervals;

iv. it requires fewer progeny; and
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v. O'Il, likelihood maps can also be used to distinguish a pair of linked O'Tl,

from a single O'Tl., provided that they are not so close that recombination

between them is very rare.

Although the interval mapping technique has become the standard method for

mapping O'Il., it has a problem in distinguishing multiple linked O'Tl, effects

(Zeng 1994). To overcome the problem of testing whether one or more than one

OTl, are present on the same chromosome, Zeng (1994) introduced the

composite interval method. This method combines interval mapping with multiple

regression and involves an interval test in which the test statistic on a marker

interval is made to be unaffected by O'Il, located outside the defined interval. To

achieve this other genetic markers are fitted in the statistical model as a control

when performing interval mapping. This method has several advantages over the

interval mapping method (Zeng, 1994):

i. it reduces a multiple dimensional search problem for multiple O'Tl, to a one

dimensional search problem by confining the test to one region at a time;

ii. the sensitivity of the test statistics to the position of the individual O'Tl, is

increased and the precision of O'Tl, mapping improved by conditioning

linked markers in the test; and

iii. the efficiency of O'Tl, mapping is improved by selectively and

simultaneously using other markers in the analysis.

Although statisticians have developed a number of methods of O'Tl, analysis, all

produce essentially similar O'Tl, locations and gene effects, while there is only a

slight variation in the confidence intervals. This is largely due to the low chiasma

frequency per chromosome, around two on average, which limit recombination

and hence O'Tl, resolution. Because of the wide confidence interval, it is difficult

to identify more than three O'Tl, per chromosome (Kearsey and Farquhar, 1998).

In order to reduce the confidence interval significantly, populations of several

thousand individuals have to be scored (Kearsey and Pooni, 1996).
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1.12 The utilization of RILs (recombinant inbred lines) to map
new markers

RILs are produced by inbreeding the progeny of individual members of a F2
population derived from two well-established progenitor inbreds. After sufficient

generations of inbreeding to achieve homozygosity, each recombinant inbred line

is fixed for a different combination of linked blocks of parental alleles (Burr and

Burr, 1991).

RILs undergo multiple rounds of meiosis before homozygosity is reached and,

therefore, the probability of recombination between very closely linked markers is

high. As a result map distances can be more accurately estimated (Burr and

Burr, 1991).

RILs represent a permanent population, because all alleles are fixed and can

therefore be used indefinitely for mapping of new DNA probes and passed on to

other research groups (Burr et aI., 1988). A number of publicly available RIL

families have been produced in maize. These can be used to map new markers,

as long as the parental genotypes can be distinguished. As maize contains a

high degree of polymorph isms it is particularly well suited for mapping. To map a

new marker one merely types each RIL for the parental allele it received and

compares this data by computer with the existing RIL database containing more

than 1000 markers (Burr and Burr, 1991). By using computer programs such as

MAPMAKERlEXP linkage and map positions can thus be obtained.
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Aim of study

In Southern Africa, gray leaf spot was first observed in KwaZulu-Natal in 1988

and the disease has since spread rapidly to neighbouring provinces and

countries. GLS can reduce grain yields by up to 60% and it is now recognized as

one of the most significant yield-limiting diseases of maize in many parts of the

world. Methods to control GLS such as tillage and crop rotation may not be

viable, as it is important to preserve the economic and environmental advantages

of conservation tillage systems. Although foliar applied fungicides are an effective

control, they may not be economical for grain production and the pathogen may

develop resistance to these fungicides. The most sustainable and long-term

management strategy for GLS will therefore rely heavily on the development of

high-yielding, locally adapted GLS resistant hybrids.

The development of GLS is highly dependent on environmental effects, field

assessment of the disease is problematic and heritability of resistance is

relatively low. Recovery of resistance genes through conventional breeding is

therefore difficult and to date only a few high-yielding maize hybrids resistant to

GLS are available in South Africa. Maize inbred lines, which exhibit resistance to

GLS and also maintain other agronomically important traits, are in demand.

Molecular markers could be useful to plant breeders to indirectly select for genes

affecting GLS resistance and to check for the resistance genes without

inoculation and at an early stage of plant development. Only two studies in the

USA have examined quantitative trait loci association with GLS resistance

(Bubeck et al., 1993 and Saghai Maroof et al., 1996).

The aim of this study was to map GLS resistance genes using a resistant Seed

Co LTD, Zimbabwean inbred line.
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To achieve this aim the objectiveswere:

.:. to identify molecular markers linked to the GLS resistance QTL by

using the AFLP technique together with bulked segregant analysis,

.:. to amplify the polymorphic AFLP fragments on the DNA of the

individual plants constituting the bulks to measure the frequency with

which the particular fragments occur in each bulk,

.:. to convert the polymorphic AFLP fragments to sequence-specific PCR

markers,

.:. to amplify the converted AFLP markers on the plants of a F2 population

and to then perform linkage analysis with MAPMAKER/EXP and to

identify QTL with MAPMAKER/QTL,

.:. to map the converted AFLP markers to one of the maize chromosomes

using existing linkage maps of two commercially available RIL

populations (Burr et al. 1988),

.:. to obtain a more precise localization of the QTL by using converted

RFLP and microsatellite markers,

.:. to produce linkage maps with MAPMAKER/EXP using the genotype

data obtained with a F2 population for all markers,

.:. to perform interval mapping and composite interval mapping with

MAPMAKER/QTL and QTL Cartographer, respectively, using the

genotype and phenotype data of each plant of a F2 population,

.:. to test the consistency of the detected QTL by amplifying the markers

flanking each QTL on selected plants of F2 populations planted in

different years and performing regression analysis.
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Chapter 2

Materials and methods

2.1 Plant material

The plant material used in this study was obtained from the seed company

Sensako. F2 plants were visually assessed by the breeder and scored for

resistance on a rating scale of 1-9, where 1 is most resistant and 9 is highly

susceptible. Although the plants were grown in field plots with naturally infested

corn debris, each plant was artificial inoculated to ensure high disease pressure.

At least three rows of the susceptible parent were planted in each generation to

determine the progress the disease has made. The first disease ratings were

recorded when the susceptible parent had a GLS score of 7 and on average two

to three ratings were taken.

The F1 single cross between a GLS resistant male parent (P1, Seed Co LTD,

Zimbabwe) and a susceptible female parent (P2, Sensako, South Africa) was

backcrossed to P2 during the summer of 1995/6. During the winter of 1996 the

backcross F1 generation was selfed to produce a segregating F2 generation,

which was planted on Sensako's research farm at Hillcrest in the 1996n season

(Table 1A). From the F2population ten resistant and ten susceptible plants with

scores of 1 and 9, respectively, were chosen for bulk segregant analysis (8SA,

Table 1A). These bulks will be referred to as 897R (resistant) and 897S

(susceptible) in the text.
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Table 1. List of F2 populations used in this study. The number of plants scored
for GLS resistance in each population and the number of plants used in DNA
extractions are given. The type of analysis performed with each population is
indicated.

Another F1 single cross between the GlS resistant male parent (P1) and the

susceptible female parent (P2) was selfed during the summer of 1995/6. This F2

segregating population was planted on the research farm at Hillcrest in 1998

(Table 18), 1999 (Table 1C) and 2000 (Table 1D). Two-hundred and thirty, 977

and 1063 plants from the 1998, 1999 and 2000 F2 populations, respectively,

were scored for resistance. The distributions of the GlS disease scores in the F2

populations of 1998, 1999 and 2000 are given in Figure 2.
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Figure 2. Distributions of the GLS disease scores in the 1998,1999and 2000 F2
populations.

The 230 plants of the 1998 F2 population were used in linkage analysis and O'Il,

mapping. The 20 most resistant and 16 most susceptible plants of this population
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were also used in bulk segregant analysis (Table 1B). In the text these bulks will

be referred to as B98R (resistant) and B98S (susceptible).

Of the 1999 and 2000 F2 populations 111 and 48 plants, respectively (Table 1C

and 1D), were selected and used in the regression analysis to test the

consistency of the aTL detected in the 1998 F2 population.

Furthermore, two publicly available recombinant inbred families (Burr et a/.,

1988) were used to map cloned AFLP fragments. Population I, T323 X CM37

and population II, C0159 X Tx303 consisted of 48 and 41 lines, respectively.

2.2 Genomic DNA extraction, quantification and pooling

For genomic DNA extraction the protocol described in the CIMMYT Applied

Molecular Genetics Laboratory manual (Saghai Maroof et a/., 1984), based on

the method used by Murray and Thompson (1980), was followed. Two to three

leaves of a plant were sampled, rolled and placed in a 50 ml centrifuge tube,

which was capped and placed on ice until it could be taken to the laboratory to be

frozen at -80°C. The frozen leaves were dried in a lyophilizer for at least 3 days.

After lyophilization the leaves were stored in a freezer at -20°C.

Prior to DNA extraction, lyophilized leaves were ground to a fine powder with a

coffee grinder. Four hundred mg of this tissue was weighed into a 50 ml

centrifuge tube. Nine ml prewarmed (65°C) CTAB extraction buffer (1% CTAB,

100 mM Tris-HCI pH 7.5, 700 mM NaCl, 50 mM EDTA pH 8.0 and 140 mM 13-
mercaptoethanol) was added and tubes were gently inverted for a number of

times to mix. The mixture was incubated with continuous gentle rocking in a
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water bath at 65°C for 1.5 h. After tubes had cooled down for 5 min at room

temperature 4.5 ml of chloroform-octanol (24:1) was added and then mixed

gently for 10 min. The suspension was centrifuged at 1500 x 9 for 10 min at room

temperature and the top aqueous layer was pipetted into a 30 ml glass tube. The

chloroform-octanol step was repeated once. After centrifugation, the top aqueous

layer was pipetted into a 15 ml glass tube containing 40 III of 10 mg/ml RNase A,

gently inverted and incubated for 30 min at room temperature.

The DNA was precipitated with 6 ml isopropanol (2-propanol), mixed gently by

inversion and removed by coiling it around a sterile, plastic inoculation needle.

The inoculation needle with the DNA wound around it was placed in a 15 ml

glass tube containing 1 ml TE-buffer and dissolved overnight at room

temperature. The needlewas removed once the DNA had dissolved off it.

The DNA was again precipitated by adding 50 III 5 M NaCI and 2.5 ml absolute

ethanol and mixed by gentle inversion. Another inoculation needle was used to

remove the precipitated DNA and the needle was placed in a 5 ml plastic tube

containing wash 1 (76% ethanol, 0.2 M NaOAc) for 10 min. Hereafter the DNA

wound around the inoculation needle was briefly rinsed in wash 2 (76% ethanol,

10 mM NH40Ac), removed from the needle into an Eppendorf, briefly dried and

then dissolved overnight in 50-200 III ddH20. Samples were stored at -20°C.

The DNA was quantified on a gel against a known concentration of lambda DNA

and by spectrophotometry (Ultraspee III spectrophotometer). Equal volumes of

standardized DNA were pooled in the two contrasting DNA bulks.
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2.3 AFLP analysis

The AFLP methodology was based on the method used by Vos et al. (1995) and

Zabeau and Vos (1993). Genomic DNA (150 ng) was digested with the two

restriction enzymes Msel (frequent-cutter) and Mlul (rare-cutter). Digestions were

carried out with 10 U Msel, 10 U Mlul and 1X One-Phor-AII Buffer PLUS [100 mM

Tris-acetate (pH 7.5), 100 mM Mg-acetate, 500 mM K-acetate, Pharmacia

Biotech] in a total volume of 50 ul. The reactions were incubated in a 3rC

waterbath for 1 h.

The 50 JlI digested DNA mixture was supplemented with 10 JlI adapter/ligation

solution, containing 50 pmol Mse adapter and 5 pmol 5'-biotinylated Mlu adapter,

1.2 Jll10 mM ATP, 1X One-Phor-AII Buffer PLUS [100 mM Tris- acetate (pH 7.5),

100 mM Mg-acetate, 500 mM K-acetate, Pharmacia Biotech] and 1 U T4 DNA

ligase, and incubated overnight at 37°C. The structure of the adapter sequences

was:

Mse: 5'- GACGATGAGTCCTGAG
TACTCAGGACTCAT-5'

Mlu: 5'- biotin - CTCGTAGACTGCGTAAC
CTGACGCATTGGCGC-5'

The complexity of the DNA mixture was reduced by selecting the biotinylated Mlu

fragments using streptavidine beads (Dynal). The beads were washed four times

with 10 mM Tris-HCI, 0.1 mM EDTA, 100 mM NaCI in a volume equivalent to that

of the beads (20 JlI per reaction) and resuspended in the same volume. Twenty

JlI of beads was added to each 60 JlI digested/ligated DNA sample and the

mixture was incubated on ice for 30 min with gentle agitation every 5-10 min.

Hereafter 120 JlI wash solution (10 mM Tris-HCI, 0.1 mM EDTA, 100 mM NaCI)

was added and the beads were collected with a magnet and washed 3 times with

200 JlI wash solution. Finally, the remaining Mlu-Mse and Mlu-Mlu fragments

were suspended in 100 JlI of TE buffer and stored at -20°C.
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Only the Mse primer was labeled. One JlI (300 ng) of the Mse primer was added

to 1X One-Phor-AII Buffer PLUS [100 mM Tris- acetate (pH 7.5), 100 mM Mg-

acetate, 500 mM K-acetate, Pharmacia Biotech], 1 JlI [y_33p]ATP (1 JlCi)and 5 U

T4 Polynucleotide Kinase in a total volume of 10 JlIand incubated at 3rC for 1 h.

The reaction was terminated by placing it in a heating block at 65°C for 10 min.

One JlI of the biotinylated DNA fragments was added to 100 JlM of each dNTP,

2.5 mM MgCI2, 1X NH4buffer [160 mM (NH4)2S04,670 mM Tris-HCI (pH 8.8 at

25°C), 0.1% Tween 20], 0.5 U Taq DNA polymerase (BIOTAQ™ polymerase,

Bioline), 30 ng labeled Mse primer and 30 ng Mlu primer in a total volume of 20

ul. The Mse primers and the Mlu primers had 3 and 2 selective nucleotides,

respectively. The PCR cycle profile was performed in a Hybaid PCR Express

thermocycler. The cycle profile used for amplification was as follows: one cycle of

72°C for 1 min, one cycle of 94°C for 2 min, followed by 12 cycles of 94°C for 20

sec, 65°C for 30 sec, 72°C for 2 min, followed by 25 cycles of 94°C for 20 sec,

56°C for 30 sec, 72°C for 2 min and one cycle at 72°C for 30 min.

After amplification 10 JlIof formamide loading buffer was added to each sample.

The reactions were denatured at 90°C for 5 minutes in a heating block and

quickly chilled on ice. Four JlI of each sample was loaded on 4%

acrylamide/bisacrylamide, 7.5 M urea and 1X TBE gels and run at 60 Watts for

approximately 2 h. The gels were dried on 3MM Whatman chromatographic

paper using a gel drier and exposed to X-ray film overnight. AFLP bands were

identified as dominant markers, where a polymorphism is defined as the

presence of a given band in one of the bulks and the corresponding parent and

absent in the other bulk and corresponding parent.
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2.4 Conversion of AFLPs to sequence-specific PCR markers

The gel was run as described above. Autoradiography glo-stickers (Bel-Art

products, Penquannock, NJ) were used to mark the dried gel for orientation

purposes. The gel was exposed to X-ray film for 1-2 days. To recover a specific

AFLP fragment a small rectangle containing the autoradiographic image of the

fragment was cut out from the X-ray film with a scalpel. The glo-stickers were

then used to align the film over the gel in the exact orientation as during

exposure. The segment of gel underneath the rectangular hole in the film was

excised with a scalpel and transferred into a 1.5 ml microfuge tube containing 50

JlI of TE buffer. It was incubated at 37°C overnight. The gel was re-

autoradiographed to confirm that the correct band had been excised.

One to 3 JlI of the TE buffer containing the excised DNA fragment was used in

the amplification reaction with the same set of AFLP primers. The DNA was

added to 50 JlM of each dNTP, 2.5 mM MgCI2, 1X NH4 buffer [160 mM

(NH4)2S04, 670 mM Tris-HCI (pH 8.8 at 25°C), 0.1% Tween 20], 0.5 U Taq DNA

polymerase (BIOTAQ™ polymerase, Bioline), 30 ng Mse primer and 30 ng Mlu

primer in a total volume of 20 ul. The PCR cycle profile was performed in a

Hybaid PCR Express thermocycler. The cycle profile used for amplification was

as follows: one cycle of 94°C for 2 min, followed by 35 cycles of 94°C for 30 sec,

58°C for 30 sec, 72°C for 2 min and one cycle at 72°C for 10 min.

Amplification products were electrophoresed at 80 V for approximately 1 h in a

1.5% low melting point agarose gel. The desired fragments were excised from

the gel and transferred to a 1.5 ml microfuge tube and heated in a heating block

at 65°C. Once the agarase had melted, water was added up to the 500 JlImark

indicated on the tube and the DNA was extracted by phenol/chloroform

extraction. Five-hundred JlIphenol was added to the tube and the samples were

vortexed and centrifuged for 10 min at room temperature. The supernatant was

transferred to a new tube and the samples were vortexed and centrifuged again.
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The supernatant was then transferred to another tube and 500 JlI chloroform was

added and the samples were vortexed and centrifuged. After the supernatant had

been transferred to a new tube 20 JlI 5 M NaCI was added together with 2

volumes of 100% ethanol. The samples were centrifuged, left to dry for a few

minutes and redissolved in 10 JlI ddH20. One JlI of each sample was loaded onto

an agarose gel together with standard concentrations to determine the

concentration of the fragments.

The fragments were cloned using the pGem®- T Easy Vector System II

(Promega, Madison, WI). Instructions given by the supplier were followed for the

ligation and transformation reactions. To make sure that the clones contained

fragments of the correct size, 5 white colonies were selected of each cloned

fragment, amplified with the same AFLP primer pairs and run on a

polyacrylamide gel together with the AFLP fingerprints of the parents. One clone

containing the correct size fragment was cultured overnight at 37°C in 3 ml LB

medium.

Plasmids were extracted using the Perkin Elmer Miniprep kit and sequenced at

the DNA Sequencing Facility of the University of Stellenbosch with an ABI

PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer)

using the T7 and SP6 primer. Samples were loaded onto an ABI PRISM 377

automatic sequencer and run at 1.5 V for 8 h. The Primer Designer - version 1.01

software program (Copyright 1990, Scientific & Educational Software Serial

number 50132) was used to design unique 20-bp primer pairs.

Thirty ng of each new primer was used in a 25 JlI amplification reaction

containing 20 ng genomic DNA as a template, 2 mM MgCI2, 50 JlM of each

dNTP, 1X NH4 buffer [160 mM (NH4)2S04, 670 mM Tris-HCI (pH 8.8 at 25°C),

0.1% Tween 20] and 0.5 U Taq DNA polymerase (BIOTAQ™ polymerase,

Bioline). The PCR cycle profile was performed in a Hybaid PCR Express

thermocycler. The cycle profile used for amplification was as follows: one cycle of
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94°C for 2 min, followed by 35 cycles of 94°C for 30 sec, 45-68°C (depending on

the primer pair) for 30 sec, 72°C for 2 min and one cycle at 72°C for 10 min. The

amplification products were electrophoresed at 100 V for 1-2 h in a 1.5-2 %

agarose gel prepared with 1X TBE buffer containing ethidium bromide (6 JlI of a

50 mg/ml solution). The 1-kb plus ladder (Gibco BRL) was used as a molecular

weight marker. The products were visualized by illumination with ultraviolet light.

Primer pairs, which did not indicate a size difference between the DNA of the

parents on an agarose gel, were run on a polyacrylamide gel. Either the forward

or the reverse primer was labeled. One JlI (300 ng) of the primer was added to 1X

One-Phor-AII Buffer PLUS [100 mM Tris- acetate (pH 7.5), 100 mM Mg-acetate,

500 mM K-acetate, Pharmacia Biotech], 0.5 JlI [y_33p]ATP (1 JlCi) and 5 U T4

Polynucleotide Kinase in a total volume of 10 JlI and incubated at 37°C for 1 h.

The reaction was terminated by placing it in a heating block at 65°C for 10 min.

Amplification was as above using 30 ng labeled primer per reaction. After

amplification 10 JlI of formamide loading buffer was added to each sample. The

reactions were denatured at 90°C for 5 minutes in a heating block and quickly

chilled on ice. Two JlI of each sample was loaded on 4%

acrylamide/bisacrylamide, 7.5 M urea and 1X TBE gels and run at 60 Watts for

approximately 1 h. The gels were dried on 3MM Whatman chromatographic

paper using a gel drier and exposed to X-ray film overnight.

Primer pairs, which did not indicate a size difference between the DNA of the

parents on an agarose gel nor on a polyacrylamide gel, were digested with

restriction enzymes (Rsal, A/ui, Cfol, Tsp5091, Hpall, Mnll, Ac/l, Mspl, Tru91,

HaelII, Naill, Taql or Hin(1). Restriction enzyme digestions were carried out

directly on 20 JlI of the amplification products. Three units of the restriction

endonuclease were added and the amplification products were incubated at 37°C

for 1 h. Digested fragments were electrophoresed in a 2% agarose gel at 100 V

for 1-2 h.
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2.5 Conversion of RFLPs and analysis

Probes received from the University of Missouri, Columbia, Mo., USA were

immediately streaked onto LB medium plates containing 100 Jlg/ml ampicillin and

grown overnight at 37°C. Individual colonies were picked and cultured overnight

at 3rC in 50-100 ml LB medium containing 100 Jlg/ml ampicillin. Plasm ids were

extracted using the Nucleobond® AX PC Kit 100 (Macherey-Nagel). Plasmid

DNA concentrations were determined with a spectrophotometer (Ultraspec III

spectrophotometer). All probes were amplified by the polymerase chain reaction

to verify that the insert sizes were correct. Twenty ng of plasmid DNA was

amplified in a 25 JlI reaction containing 2 mM MgCb, 50 JlM of each dNTP, 15

pmol each of the M13 forward and the M13 reverse primer or the T7 and SP6

primer, 1X NH4 buffer [160 mM (NH4)2S04, 670 mM Tris-HCI (pH 8.8 at 25°C),

0.1% Tween 20] and 0.5 U Taq DNA polymerase (BIOTAQ TM polymerase,

Bioline). The following PCR cycle profile was performed in a Hybaid PCR

Express thermocycler: one cycle of 94°C for 7 min, followed by 35 cycles of 94°C

for 45 sec, 60°C for 1 min, 72°C for 2 min and one cycle at 72°C for 2 min. The

PCR products were loaded onto a 1% agarose gel in 1X TBE buffer containing

ethidium bromide (6 JlI of a 50 mg/ml solution) and run at 100 V for 2 h. The

products were visualized under ultraviolet light.

The probes were sequenced at the DNA Sequencing Facility of the University of

Stellenbosch with an ABI PRISM Big Dye Terminator Cycle Sequencing Ready

Reaction Kit (Perkin Elmer) using the M13 forward and M13 reverse primers.

Samples were loaded onto an ABI PRISM 377 automatic sequencer and run at

1.5 V for 8 h. The Primer Designer - version 1.01 software program (Copyright

1990, Scientific & Educational Software Serial number 50132) was used to select

unique primer pairs. Two 20-bp primers were selected for each probe.

To amplify the new primer pairs 30 ng of each primer was used in a 25 JlI

amplification reaction containing 20 ng genomic DNA as a template, 2.5 mM
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MgCb, 50 J.1Mof each dNTP, 1X NH4 buffer [160 mM (NH4)2S04, 670 mM Tris-

HCI (pH 8.8 at 25°C), 0.1% Tween 20] and 0.5 U Taq DNA polymerase

(BIOTAQ™ polymerase, Bioline). The following cycle profile was performed in a

Hybaid PCR Express thermocycler: one cycle of 94°C for 2 min, followed by 35

cycles of 94°C for 30 sec - 1 min, 54-60°C (depending on the primer pair) for 30

sec - 1 min, 72°C for 2 min - 2.3 min and one cycle at 72°C for 10 min. The

amplification products were electrophoresed at 100 V for 4 h in a 2% agarose gel

prepared with 1X TBE buffer containing ethidium bromide (6 J.11of a 50 mg/ml

solution). A 1-kb plus ladder (Gibco BRL) was used as a molecular weight

marker. The products were visualized by illumination with ultraviolet light and

photographed.

Restriction enzyme digestions were carried out directly on 20 J.11of the

amplification products. Three units of the restriction endonuclease (Rsal, A/ui,

Cfol, Tsp5091, Hpall, Mnll, Ac/l, Mspl, Tru91, HaelII, Naill, Taql or Hinfl) were

added and the amplification products were incubated at 37°C for 1 h. Digested

fragments were electrophoresed in a 1.5% agarose gel at 100 V for 1-2 h.

2.6 Microsatellite analysis

The microsatellite primer sequences were obtained from the Maize Genome

Database website (http://www.agron.missouri.edu/ssr.html).Thirty ng of each

microsatellite primer was used in a 20 J.11amplification reaction containing 10 ng

genomic DNA as a template, 2 mM MgCI2, 50 J.1Mof each dNTP, 1X NH4 buffer

[160 mM (NH4)2S04, 670 mM Tris-HCI (pH 8.8 at 25°C), 0.1% Tween 20] and 0.5

U Taq DNA polymerase (BIOTAQ™ polymerase, Bioline). The PCR cycle profile

was performed in a Hybaid PCR Express thermocycler. The cycle profile used for
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amplification was as follows: one cycle of 94°C for 2 min, followed by 35 cycles of

94°C for 30 sec, 45-70°C (depending on the primer pair) for 30 sec, 72°C for 30

sec and one cycle at 72°C for 30 min. The amplification products were

electrophoresed at 80 V for 1-2 h in a 2% agarase gel prepared with 1X TBE

buffer containing ethidium bromide (6 f.!1of a 50 mg/ml solution). The products

were visualized by illumination with ultraviolet light.

Microsatellite primer pairs, which did not indicate a size difference between the

DNA of the parents on an agarase gel, were run on a polyacrylamide gel. Either

the forward or the reverse primer was labeled. One f.!1(300 ng) of the primer was

added to 1X One-Phor-AII Buffer PLUS [100 mM Tris- acetate (pH 7.5), 100 mM

Mg-acetate, 500 mM K-acetate, Pharmacia Biotech], 0.5 f.!1 [y_33p]ATP (0.5 f.!Ci)

and 5 U T4 Polynucleotide Kinase in a total volume of 10 ul and incubated at

37°C for 1 h. The reaction was terminated by placing it in a heating block at 65°C

for 10 min. The microsatellites were amplified as above using 30 ng labeled

primer per reaction. After amplification 10 ul of formamide loading buffer was

added to each sample. The reactions were denatured at 90°C for 5 minutes in a

heating block and quickly chilled on ice. Two to 4 f.!1of each sample was loaded

on 4% acrylamide/bisacrylamide, 7.5 M urea and 1X TBE gels and run at 60

Watts for approximately 1 h. The gels were dried on 3MM Whatman

chromatographic paper using a gel drier and exposed to X-ray film overnight.

2.7 QTLanalysis

2.7.1 Chi-square analysis

Chi-square analysis was performed on each marker to detect deviations from the

expected Mendelian segregation of a 1:2:1 and a 3:1 ratio for co-dominant and
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dominant markers, respectively. All calculations were performed on a

spreadsheet using the program Microsoft® Excel97.

2.7.2 Linkage analysis

Linkage analysis and the order of the markers were determined for the F2
population and the RIL populations by using the software package

MAPMAKER/EXP version 3.0b (Lander et al., 1987and Lincoln et al., 1992a).

The database used in the linkage analysis with the 1998 F2 population is given in

Addendum III (page 137). Only the recessive genotype data were used for the 2

dominant markers and the genotypes of the homozygous dominant and

heterozygous plants were designated as missing data. The datafiles used in

linkage analysis with the RIL populations were obtained from the Maize Genome

Database website (http://www.agron.missouri.edu).

MAPMAKER's error function was on and the order function was used to

determine the linear order of the markers. Multipoint analysis was used to

determine the distances between the markers. To include a locus in a linkage

group a minimum LOD threshold of 3.0 and a distance threshold of 50 Haldane

cM were used.

2.7.3 QTL mapping

The chromosomal location of the QTL was determined by interval mapping

(Lander and Botstein, 1989) using MAPMAKER/QTL version 1.1b (Paterson et

al., 1988 and Lincoln et al., 1992b) at a LOD threshold of 2.0. The genotype and

phenotype data used is given in Addendum III (page 137).

QTL mapping was also performed with the interval mapping and composite

interval mapping method (Zeng, 1994) using the program QTL Cartographer
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version 1.13 (Baston et a/., 1994 and Baston et a/., 1997). Models 3 (interval

mapping) and 6 of aTL Cartographer were applied. For model 6, 5 markers were

used to control the genetic background (np) and the window size (ws) was 10.

2.8 Linear regression analysis

Linkage of molecular markers to genetic factors responsible for GLS resistance

was investigated by standard ANOVA for linear regression of GLS scores on

genotypes for each marker, scored as 1, 2 and 3 for the homozygous resistant,

heterozygous and homozygous susceptible allele, respectively.

The regression of GLS score on marker genotype was used to calculate the

proportion of the total phenotypic variance explained by each marker and uses

the standard F-statistic. All calculations were performed on a spreadsheet using

the program Microsoft® Excel 97.
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Chapter 3

Results

3.1 AFLP analysis

The aim of this study was to map GlS resistance genes in a Seed Co lTD,

Zimbabwean inbred line. To identify molecular markers linked to the GlS

resistance QTl, bulked segregant analysis was used together with the AFlP

technique.

Two pairs of bulks, one made from plants of the 1997 F2population (Table 1A,

page 32) and the other made from plants of the 1998 F2population (Table 1B,

page 32), were used to target the GlS resistance QTL. Equal volumes of

standardized DNA of 10 plants with a GlS disease score of 1 and 10 plants with

a GlS disease score of 9 from the 1997 population and 20 and 16 plants,

respectively, of the 1998 population were pooled in the two contrasting bulks.

Ten AFlP primer combinations (Table 2) were used to screen the Msel/Mlul-

digested parental and bulk DNA. Between 35 and 75 distinguishable bands were

amplified with the different primer combinations with an average of 45 bands per

primer combination. In total about 450 loci were screened. Approximately 50% of

the fragments were polymorphic between the parents.
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Table 2. Primer combinations used in AFLP analysis. The Mlu-5 primer was used
in combination with the ten Mse

Of the 10 primer combinations tested, 7 showed polymorphic fragments with both

the parent and the 1997 bulk DNA and one or two polymorphisms could be

identified per primer combination. Eleven polymorphisms were detected in total

(Figure 3). (The fragments were named after the Mse primer that was used to

amplify them. If more than 1 polymorphic fragment was amplified with the same

primer combination, the polymorphic fragments were indicated with a 1 or 2 after

the primer number, e.g. AF2.1 was amplified with primer Mse-2 and it was one of

2 fragments polymorphicwith the same primer combination.)

Of the 11 polymorphisms detected with the 1997 bulks, 6 could also be detected

between the resistant and the susceptible 1998 bulk. No polymorphism could be

detected with fragments AF2.1 and AF2.2 between the resistant and the

susceptible 1998 bulk (Figure 3A). It was assumed that the intensity of the

fragments AF2.1 and AF2.2 was the same in the 1998 bulks as the overall

intensity of the fragments of lane 898S with the primer Mse-2 (Figure 3A) seems

to be lower than the intensity of the other lanes.

The AFLP fragment AF5.1 was not amplified on either 1998 bulk DNA, while

fragment AF5.2 was amplified on both the resistant and susceptible bulk DNA

(Figure 38). A difference in the intensity of the bands of the resistant and the

susceptible 1998 bulk was visible with fragment AF6.1, whereas fragment AF6.2

was present in the 1998 susceptible but not the resistant bulk (Figure 3C).
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AF2.1
(iF

A) Mse-2 G) Mse-10

AF2.2
(iF

Figure 3. AFLP primer Mlu-5 amplified with primers A) Mse-2, B) Mse-5, C) Mse-6, D) Mse-7,
E) Mse-8, F) Mse-9, and G) Mse-10 on the DNA of the parents (lane P1 = resistant parent,
lane P2 = susceptible parent) and the bulks (lane B97R = 1997 resistant bulk, lane B975 =
1997 susceptible bulk, lane B98R = 1998 resistant bulk, lane B985 = 1998 susceptible bulk).
The polymorphic fragments are indicated. 47
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With fragments AF7 (Figure 3D) and AF8 (Figure 3E) a difference in the intensity

of the bands of the resistant and susceptible 1998 bulk could be detected.

Fragment AF9 did not amplify successfully on the 1998 bulk DNA (Figure 3F).

Fragments AF10.1 and AF10.2 were present in the resistant 1998 bulk and

absent from the susceptible bulk (Figure 3G).

Once polymorphisms had been identified, the primers were amplified on the 20

individual plants making up the 1997 bulks to measure the frequency with which

the particular alleles occur in each bulk. A summary of the polymorphisms

detected and the frequency of a particular allele in each bulk is given in Table 3.

The highest number of plants having the same polymorphic fragment in coupling

with the resistance allele was 8, produced by the primer combination Mlu-5/Mse-

6. Six polymorphic fragments (AF2.1, AF2.2, AF5.1, AF7, AF8 and AF9) were

present in 7 individual plants of the resistant bulk, 1 fragment (AF10.2) was

present in 6 and 2 fragments (AF5.2 and AF10.1) were present in 5 individual

plants of the resistant bulk. Only 3 of the primer combinations amplified a

fragment from one of the susceptible plants (fragments AF2.1, AF6.1 and

AF10.2, Table 3). Only one fragment linked in repulsion phase with the

resistance allele was identified (AF6.2, Table 3). This fragment was present in

the 10 plants of the susceptible bulk and 2 plants of the resistant bulk.

Table 3. Summary of the 7 polymorphic Mlu/Mseprimer combinations and the
of the alleles in the individual nts of the 1997bulks.
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The 11 polymorphic AFLP fragments were converted to sequence-specific peR

markers. They were excised from the polyacrylamide gel and cloned. To make

sure that the clones contained fragments of the correct size, 5 white colonies

were selected of each cloned fragment, amplified with the AFLP primer pairs and

run on a polyacrylamide gel together with the AFLP fingerprints of the parents.

Between 3 and 5 of the 5 clones had the correct size fragment. One of the clones

with the correct size fragment was cultured, plasm ids were extracted and the

fragment was sequenced. The sequence of each fragment is given in Addendum

I (page 129). All the sequences had the Mlu-5 primer sequence at the one end

and a Mse primer sequence at the other end (note that reverse primer

sequences are in reverse complement). The newly identified primer pairs, which

were used to amplify the converted AFLP markers, are highlighted in

Addendum I.

3.2 Converted AFLP markers

The new primer pairs were amplified on the resistant and the susceptible

parental DNA. To detect size differences between the parents the amplified

products were run on agarose gels. If no polymorph isms could be depicted on

agarose gels the amplified products were separated on polyacrylamide gels to

detect smaller size differences of one or more nucleotides. If no polymorph isms

could be observed on polyacrylamide gels the amplified products were digested

with 13 different restriction enzymes (Rsal, A/ui, Cfol, Tsp5091, Hpall, Mnll, Acil,

Mspl, Tru91, HaelII, Naill, Taql or Hint!) and run on agarose gels to search for

point mutation polymorph isms within the amplified products.

The primer pairs for the marker obtained from fragment AF9 did not amplify a

fragment with the expected size and was therefore discarded. Two other
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markers obtained from the fragments AF2.2 and AF7 were also discarded as

multiple bands were amplified with the primer pairs for these markers.

Even after restriction enzyme digestion with 13 different enzymes, no

polymorphisms could be detected between the parents with the 3 markers

obtained from the fragments AF2.1, AF6.2 and AF10.2. Five markers (obtained

from the fragments AF5.1, AF5.2, AF6.1, AF8 and AF10.1) were polymorphic

between the parents. The 3 non-polymorphic and 5 polymorphic markers were

added to the maize marker database of the University of Stellenbosch (us). The

marker obtained from the fragment AF2.1 was designated as us39, AF5.1 as

us40, AF5.2 as us41, AF6.1 as us42, AF6.2 as us43, AF8 as us44, AF10.1 as

us45 and AF10.2 as us46.

The 5 markers, which were polymorphic between the parents (us40, us41, us42,

us44 and us45), were amplified on the DNA of the 20 individual plants of the

1997 bulks to determine if the same F2 plants as in the AFLP analysis had the

allele of the resistant and the susceptible parent. This was done to confirm that

the correct fragment had been isolated and cloned. With all markers except for

marker us45 the same plants, which had the allele of the resistant parent and the

allele of the susceptible parent with the original AFLP primers, had the allele of

the resistant and susceptible parent with the sequence-specific PCR primers.

Marker us45 was amplified on the DNA of two plants on which the AFLP

fragment was not amplified (discussed under section 3.2.5, page 53).

3.2.1 Marker us40

Marker us40 was amplified at an annealing temperature of 66°C on the parental

DNA and the products were loaded onto a polyacrylamide gel. A fragment of

about 160 bps was amplified with this marker. A size difference of 2 base pairs

(bps) could be detected between the parents (lanes P1 and P2; Figure 4). The

plants in lanes 2, 4,5,6,8,9 and 10 (Figure 4), making up the resistant bulk, had
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the allele of the resistant parent. Six of these 7 plants (lanes 2, 4, 5, 6, 8 and 9;

Fi~ure 4) were heterozygous. The plants making up the susceptible bulk (lanes

11-20; Figure 4) had the allele of the susceptible parent.

Figure 4. Marker us40 amplified on the DNA of the parents (lane P1 = resistant
parent, lane P2 = susceptible parent) and the bulks (lane BR = 1997 resistant bulk,
lane BS = 1997 susceptible bulk) and the DNA of the 10 resistant (lanes 1-10) and
10 susceptible (lanes 11-20) plants making up the bulks.

3.2.2 Marker us41

Marker us41 amplified a fragment of about 240 bps on the resistant and a

fragment, approximately 10 bps larger, on the susceptible parental DNA at an

annealing temperature of 60°C. The polymorphism could be visualized on a

polyacrylamide gel. Five of the ten plants (lanes 2, 4, 6, 8 and 9; Figure 5) of the

resistant bulk had the allele of the resistant parent, of which 3 (lanes 6, 8 and 9;

Figure 5) were heterozygous. None of the plants (lanes 11-20; Figure 5) of the

susceptible bulk had the allele of the resistant parent.

Figure 5. Marker us41 amplified on the DNA of the parents (lane P1 = resistant
parent, lane P2 = susceptible parent) and the bulks (lane BR = 1997 resistant bulk,
lane BS = 1997 susceptible bulk) and the DNA of the 10 resistant (lanes 1-10) and
10 susceptible (lanes 11-20) plants making up the bulks.
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3.2.3 Marker us42

Marker us42 amplified a fragment of about 160 bps on the DNA of the parents at

an annealing temperature of 56°C. A 2 bps size difference between the parents

was visible on a polyacrylamide gel. Eight of the ten plants (lanes 2, 4, 5, 6, 7, 8,

9 and 10; Figure 6) of the resistant bulk had the allele of the resistant parent, of

which 5 (lanes 4, 6, 7, 8 and 9; Figure 6) were heterozygous. The ten plants

(lanes 11-20; Figure 6) making up the susceptible bulk had the allele of the

susceptible parent with one of the plants (lane 17; Figure 6) being heterozygous.

Figure 6. Marker us42 amplified on the DNA of the parents (lane P1 = resistant
parent, lane P2 = susceptible parent) and the bulks (lane BR = 1997 resistant bulk,
lane BS = 1997 susceptible bulk) and the DNA of the 10 resistant (lanes 1-10) and
10susceptible (lanes 11-20)plants making up the bulks.

3.2.4 Marker us44

A 270 bps fragment was amplified on both the resistant and the susceptible

parental DNA with the marker us44 at an annealing temperature of 60°C. Marker

us44 was polymorphic after digestion with restriction enzyme Cfol and produced

fragments of about 120 bps and 150 bps in the resistant and susceptible parent,

respectively. Seven of the ten plants (lanes 1, 3, 4, 5, 6, 7 and 9; Figure 7) of the

resistant bulk had the allele of the resistant parent of which two (lanes 6, 7;

Figure 7) were heterozygous. The ten plants (lanes 11-20; Figure 7) of the

susceptible bulk had the allele of the susceptible parent.
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F!gure 7. Marker us44 amplified on the DNA of the parents (lane P1 = resistant
parent, lane P2 = susceptible parent) and the bulks (lane BR = 1997resistant bulk,
lane BS = 1997susceptible bulk) and the DNAof the 10 resistant (lanes 1-10) and
10 susceptible (lanes 11-20) plants making up the bulks and digested with efol.
The 1-kb plus ladder is the molecular mass marker.

3.2.5 Markerus45

At an annealing temperature of 66°C marker us45 amplified a fragment of

approximately 600 bps on the resistant but not the susceptible parental DNA and

was thus a dominant marker. This marker was present in 7 (lanes 1, 3, 4, 5, 6, 7

and 9; Figure 8) of the ten plants making up the resistant bulk and absent in the

susceptible bulk (lanes 11-20; Figure 8). Except for the plants in lanes 1 and 3,

the same F2 plants as in the AFLP analysis had the allele of the resistant parent.

The AFLP fragment was not amplified on the DNA of the plants of lanes 1 and 3

in the AFLP analysis.
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Figure 8. Marker us45 amplified on the DNA of the parents (lane P1 = resistant
parent, lane P2 = susceptible parent) and the bulks (lane BR = 1997 resistant bulk,
lane BS = 1997 susceptible bulk) and the DNA of the 10 resistant (lanes 1-10) and
10 susceptible (lanes 11-20) plants making up the bulks. The 1-kb ladder plus is
the molecular mass marker.

3.3 QTL analysis with the converted AFLPmarkers

The 5 polymorphic markers (us40, us41, us42, us44 and us45) were amplified on

the 230 plants of the 1998 F2 population (Table 1B, page 32) and linkage

analysis was performed with MAPMAKER/EXP version 3.0b. Two linkage groups

were identified, one group included the two markers us44 and us45 and the other

included markers us40 and us42. The two-point linkage distance between the

markers us44 and us45 was 10.4 cM (LOD 22.83) and between markers us40

and us42 was 8.2 cM (LOD 55.41). Marker us41 was unlinked.

Interval mapping with MAPMAKER/OTL using the two linkage groups and the

genotype and phenotype data of the 230 F2 plants confirmed the presence of

OTL in both linkage groups. A LOD value of 18.12 and a variance contribution of

43% was calculated with the markers us44 and us45 and a LOD value of 4.85

and a variance contribution of 10% was calculated with the markers us40 and

us42.
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3.4 Mapping of the AFLP markers using RIL populations

Two publicly available recombinant inbred families (Burr et ai., 1988) already

mapped for more than 1000 markers, were used to localize the converted AFLP

markers on the genetic map of maize. RIL family I (T323 X CM37) consisted of

48 lines and RIL family II (C0159 X Tx303) consisted of 41 lines. Four of the five

markers (us40, us41, us44 and us45), which were polymorphic between the

parents of the F2 population, were polymorphic between the parents of at least

one of the RIL populations. Two other converted AFLP markers (us39 and us46),

which were not polymorphic between the parents of the F2 population, were

polymorphic between the parents of at least one of the RIL populations. The 6

polymorphic markers were amplified on the DNA of the individual plants of the

RIL populations. The genotype data were added to the existing datafiles of the

RIL populations and linkage analysis was performed.

Markers us44 and us45 were mapped to chromosome 1 in bin 1.05 and 1.04,

respectively (Figure 9A). Marker rz421 from the RIL database was the nearest

marker to marker us44 at a distance of 1.2 cM (LOD value 11.15) and the

nearest marker to marker us45 was rz672a at a distance of 5.3 cM (LOD value

7.41) (Figure 9B). With the RIL population a two-point linkage distance of 14.9

cM (LOD value 3.55) was calculated between markers us44 and us45.

Marker us40 was localized on chromosome 5 in bin 5.04 (Figure 10A), 1.3 cM

(LOD value 10.28) distal to marker bn15.71from the RIL database (Figure 10B).

As marker us42 showed linkage with marker us40 in the F2 population (section

3.3), it can be inferred that this marker is also localized on chromosome 5.

Marker us41 was localized on chromosome 3 in bin 3.04 (Figure 11A), 1.3 cM

(LOD value 9.7) distal to marker npi220b (Figure 11B) and marker us39 was

localized on chromosome 2 in bin 2.02 (Figure 12A), 6.9 cM (LOD value 5.12)

distal to marker umc6 (Figure 12B). No linkage could be detected between
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marker us46 and the markers of the RIL population and this marker could

therefore not be localized to a chromosome.

To determine whether the converted AFLP markers us41 on chromosome 3 and

the us39 on chromosome 2 are associated with GLS resistance, a simple linear

regression analysis was performed (section 3.5).

The QTL identified with the linkage group consisting of the markers us44 and

us45 was mapped to chromosome 1 (QTL1) and the QTL identified with the

linkage group consisting of the markers us40 and us42 was mapped to

chromosome 5 (QTL5). To obtain a more precise localization of the QTL on
"

chromosomes 1 and 5, converted RFLP and microsatellite markers were used

(sections 3.6 - 3.9).
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3.5 Regressionanalysis

As marker us41 on chromosome 3 was not linked to any of the other converted

AFLP markers, QTL mapping could not be performed with this marker. To

determine whether it is associated with GLS resistance, a standard ANOVA for

linear regression of GLS score on marker genotype was performed, using the

1998 F2 population. This indicated no significant regression (P = 0.204), therefore

no linkage for this marker.

Furthermore, the converted AFLP marker us39 on chromosome 2 was not

polymorphic between the resistant and susceptible parent. To test for a link

between GLS resistance and this marker, a microsatellite marker (bnlg125, Table

4) was obtained, occurring in the same bin (bin 2.02) as the non-polymorphic

AFLP marker.

Table 4. Microsatellite marker bnlg125 with its bin position, primer sequences and
annealin tem

Amplification of microsatellite marker bnlg125 on the parental DNA (annealing

temperature of 48°C) resulted in a size difference which could be depicted on an

agarose gel. The alleles produced with bnlg125 from the resistant and

susceptible parental DNA had sizes of about 350 and 410 bps, respectively

(lanes P1 and P2; Figure 13).
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Figure 13. Photograph of agarose gel indicating microsatellite marker bnlg125
amplified on the DNA of the parents (lane P1 = resistant parent, lane P2 =
susceptible parent).The 1-kb plus ladder is the molecular massmarker.
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The microsatellite marker was amplified on the DNA of the 230 plants of the 1998

F2population. A standard ANOVA for linear regression of GLS score on marker

genotype indicated no significant regression (P = 0.757), therefore no linkage for

this marker.

The AFLP markers on chromosomes 2 and 3 could thus be false positive

markers (i.e., markers that appear polymorphic between bulks but are not linked

to the trait expression (Grattapaglia et al., 1996)). However, neither marker was

polymorphic in the 1998 bulks, and it could thus be that the markers were

associated with GLS resistance in the 1997 population, in which they were

polymorphic, but not in the 1998 population.
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3.6 Converted RFLPson chromosome 1

Sixteen RFLP probes, spread over chromosome 1, were received from the

University of Missouri (Table 5). To make screening of the progeny easier and

faster, the RFLP probes were converted into STS (sequence-tagged site)

markers. They were thus sequenced and primers identified. The sequences of

the probes and the identified primers are given in Addendum II (page 131). No

suitable primer pairs could be identified for probe asg75.

Table 5. List of RFLP probes obtained from the University of Missouri. The bin
position of each probe is given together with the probe vector, selective agent,
insert size and the e . M13F/R= M13forward and M13reverse rimers.
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Each STS primer set was amplified on the DNA of the resistant and susceptible

parent. The following 6 converted RFLPs had to be discarded, because multiple

fragments were amplified in both parents: umc11, umc13, npi262, umc227,

uaz249 and umc23. One of the converted RFLPs (umc58) was polymorphic

between the parents after agarose gel electrophoresis. To search for point

mutation polymorphisms within the amplified products, the 9 remaining converted

R,FLPswere digested with the following 13 different restriction enzymes: Rsal,

A/ui, Cfol, Tsp5091, Hpall, Mn/I, Acil, Mspl, Tru91, HaelII, Naill, Taql and Hinfl.

A 700 bp fragment was amplified with the primer pairs for marker umc58 on the

DNA of the resistant parent (lane P1; Figure 14) whereas a slightly smaller

fragment of 670 bp was amplified on the susceptible parent (lane P2; Figure 14).

Figure 14. The converted RFLP marker umc5S, amplified on the DNA of the
parents (lane P1 = resistant parent, lane P2 = susceptible parent). The 1-kb plus
ladder is the molecular massmarker.
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After restriction enzyme digestion, 4 other converted RFLPs produced PCR

products, which were polymorphic between the resistant and susceptible parent.

PCR products amplified with markers npi286, asg30 and bn15.59and digested

with restriction enzymes Hpall, Cfol, and Tru91, respectively, resulted in length

polymorphisms that made the markers co-dominant. Marker php20855 was
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polymorphic between the parents after restriction enzyme digestion with Hpall.

The plants having the allele of the resistant parent could, however, not be

distinguished from the heterozygous plants, and the marker was thus recorded

as a dominant marker.

With the primers for probe npi286 a fragment of approximately 400 bps was

amplified at an annealing temperature of 600e on the resistant and susceptible

parent DNA. Upon digestion with the restriction enzyme Hpall a fragment of 310

bps was produced in both parents together with a 280 bps fragment in the

resistant parent (lane P1a; Figure 15) and a 380 bps fragment in the susceptible

parent (lane P2a; Figure 15).

2000
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Figure 15. The converted RFLPs (a) npi286, (b) asg30, (c) bn15.59, and (d)
php20855amplified on the DNAof the parents (lane P1= resistant parent, lane P2
= susceptible parent) and digested with Hpall, Cfol, Tru91 and Hpall, respectively.
The 1-kb plus ladder is the molecular mass marker.

100

The primers for probe asg30 amplified a fragment of approximately 1500 bps on

the resistant and susceptible parent DNA at an annealing temperature of 55°e.

Upon digestion with the restriction enzyme Cfol a fragment of about 800 bps was

produced in both parents and a fragment of 420 bps and 400 bps was produced

65

Stellenbosch University http://scholar.sun.ac.za



in the resistant parent (lane P1b; Figure 15) and the susceptible parent (lane

P2b; Figure 15), respectively.

With the primers for probe bn15.59 a fragment of approximately 2 kb was

amplified on the parent DNA at an annealing temperature of 60°C. Upon

digestion with the restriction enzyme Tru91 three distinguishable fragments were

produced, including a 915 bp fragment in the resistant parent (lane P1c; Figure

15) clearly distinguishable from a slightly larger 980 bp fragment in the

susceptible parent (lane P2c; Figure 15).

At an annealing temperature of 55°C marker php20855 amplified a fragment of

about 1300 bps on both the resistant and the susceptible parent DNA. After

restriction enzyme digestion with Hpall, marker php20855 produced a fragment

of approximately 900 bps in both the resistant and the susceptible parent (lane

p.~d and P2d, respectively; Figure 15) and a slightly larger fragment of

approximately 1100 bps in the resistant parent (lane P1d; Figure 15). The

absence of the larger fragment in the susceptible parent allowed for the

distinction of the susceptible plants from the heterozygous plants and the plants

dominant for the allele of the resistant parent.

As only five of the 16 converted RFLP markers were polymorphic, microsatellite

markers were also chosen to saturate chromosome 1.
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3.7 Microsatellite markers on chromosome 1

Seventeen microsatellite primer pair sequences were accessed via the Internet

(Table 6). The primer pairs were tested for polymorph isms by amplification on the

parental DNA.

Table 6. The microsatellites on chromosome 1 are listed with their bin positions,
primer sequencesand annealing temperatures.An indication of the polymorphism
is given: (a) polymorphism can be detected on an agarose gel, (p) on a
nelvacrvlamlde and ism could be detected.
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The annealing temperatures used to amplify each microsatellite marker are given

in Table 6. Of the 17 microsatellite markers, the following 8 did not reveal a

polymorphism between the resistant and susceptible parent DNA: bnlg1886,

bnlg421, bnlg1057, bnlg257, bnlg615, phi094, bnlg400 and phi120. With 3 of the

17 microsatellite markers (phi001, bnlg652 and bnlg1832) a polymorphism

between the parents could be seen on a 2% agarose gel. Microsatellite markers

phi056, bnlg147, bnlg2086, bnlg1598, phi037 and bnlg504 produced polymorphic

fragments, which could be depicted when the samples were loaded onto a 4%

polyacrylamide gel (Table 6).

A size difference between the resistant and susceptible parent could be detected

with microsatellite marker phi001 and it was thus a co-dominant marker. A band

of about 120 bps was amplified from the resistant (lane P1a; Figure 16) and a

smaller band of about 90 bps was amplified from the susceptible parent (lane

P2a; Figure 16). Microsatellite markers bnlg652 and bnlg1832 were dominant. A

fragment of about 100 bps was amplified from the resistant but not the

susceptible parent DNA with the primer pairs for marker bnlg652 (lanes P1band

P2b, respectively; Figure 16). With the primer pairs for marker bnlg1832 a

fragment of about 210 bps was amplified from the susceptible but not the

resistant parental DNA (lanes P2c and P1c, respectively; Figure 16).

400
300
200
100

Figure 16. Photograph of 2% agarose gel indicating microsatellite markers (a)
phi001, (b) bnlg652 and (c) bnlg1832 amplified on the DNAof the parents (lane P1
= resistant parent, lane P2 = susceptible parent). The 1-kb plus ladder is the
molecular mass marker.
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The microsatellite markers, which produced polymorphism depicted by

polyacrylamide gel electrophoresis, were co-dominant. The alleles produced by

the primer pair for microsatellite marker phi056 from the resistant and susceptible

parent DNA were 93 and 84 bps in size, respectively (lanes P1a and P2a; Figure

17). Microsatelite marker bnlg147 produced alleles of 118 and 114 bps (lanes

P1b and P2b; Figure 17) and marker bnlg2086 produced alleles of 232 and 234

bps (lanes P1c and P2c; Figure 17) from the resistant and susceptible parental

DNA, respectively.

Figure 17. Photograph of polyacrylamide gel indicating microsatellite markers (a)
phi056, (b) bnlg147, (c) bnlg2086, (d) bnlg1598, (e) phi037 and (f) bnlg504 amplified
on the DNA of the parents (lane P1 = resistant parent, lane P2 = susceptible
parent). The allele of the resistant and the susceptible parent is indicated with an
arrow on the left and the right side, respectively. The 30-330 ladder is the
molecular mass marker.
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Alleles of 110 and 100 bps were produced by marker bnlg1598 (lanes P1d and

P2d; Figure 17) from the resistant and susceptible parent DNA, respectively.

With marker phi037 alleles of 130 and 134 bps (lanes P1e and P2e; Figure 17)

and with marker bnlg504 alleles of 169 and 175 bps (lanes P1f and P2f; Figure

17) were amplified on the resistant and susceptible parent DNA, respectively.

3.8 Microsatellite markers on chromosome 5

Sequences of nine microsatellite primer pairs on chromosome 5 were obtained

from the Maize Genome Database website (Table 7). The primer pairs were

tested for polymorph isms by amplification on the parental DNA.

Table 7. The microsatellites on chromosome 5 are listed with their bin positions,
primer sequences and annealing temperatures.An indication of the polymorphism
is given: (a) polymorphism can be detected on an agarose gel, (p) on a

and could be detected.

n
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The annealing temperatures used to amplify each microsatellite marker are given

in Table 7. Two of the 9 microsatellite markers on chromosome 5 (umc1019 and

bnlg389) were not polymorphic between the parents of the F2 population. The

size difference produced by marker mmc0282 could be detected on a 2%

agarose gel and the polymorphisms produced by the remaining microsatellite

markers could be depicted on a 4% polyacrylamide gel (Table 7).

With the primer pairs for microsatellite marker mmc0282 an allele of 90 bps was

amplified on the resistant and an allele of 170 bps on the susceptible parental

DNA (lanes P1 and P2, respectively; Figure 18).

Figure 18. Photograph of 2% agarose gel indicating microsatellite marker
mmc0282amplified on the DNAof the parents (lane P1 = resistant parent, lane P2
= susceptible parent). The 1-kb plus ladder is the molecular mass marker.

200

100

By running the amplified products on a polyacrylamide gel, the polymorphisms of

markers bnlg143, bnlg565, bnlg557, bnlg150, bnlg1847 and bnlg1306 were

detected. Microsatelite marker bnlg143 produced alleles of 224 and 232 bps

(lanes P1a and P2a; Figure 19) from the resistant and susceptible parental DNA,

respectively. Alleles of 77 and 131 bps (lanes P1b and P2b; Figure 19) were

amplified with the primer pair for marker bnlg565 and alleles of 102 and 104 bps

(lanes P1c and P2c; Figure 19) were amplified with the primers for marker

bnlg557 on the resistant and susceptible parental DNA, respectively. Marker
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bnlg150 produced alleles of 66 and 63 bps (lanes P1d and P2d; Figure 19),

bnlg1487 produced alleles of 97 and 95 bps (lanes P1e and P2e; Figure 19) and

bnlg1306 produced alleles of 162 and 184 bps (lanes P1f and P2f; Figure 19)

from the resistant and susceptible parental DNA, respectively.

Figure 19. Photograph of polyacrylamide gel indicating microsatellite markers (a)
bnlg143, (b) bnlg565, (c) bnlg557, (d) bnlg150, (e) bnlg1847, and (f) bnlg1306
amplified on the DNA of the parents (lane P1 = resistant parent, lane P2 =
susceptible parent). The allele of the resistant and the susceptible parent is
indicated with an arrow on the left and the right side, respectively. The 30-330 bps
ladder is the molecular mass marker.
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3.9 QTLanalysis

3.9.1 Chi-square analysis

The converted RFLP markers (npi286, asg30, bn15.59, umc58 and php20855) on

chromosome 1, and the co-dominant microsatellite markers bnlg147, phi001,

bnlg2086, bnlg1598 and phi037 on chromosome 1 were amplified on the 230

plants of the 1998 F2 population. The microsatellite markers on chromosome 5

(bnlg143, bnlg565, bnlg557, bnlg150, mmc0282, bnlg1847 and bnlg1306) were

also amplified on the 230 plants of the 1998 F2 population.

These markers and the converted AFLP markers (us44, us45, us40 and us42)

were tested for segregation according to the 1:2:1 and 3:1 expected Mendelian

ratio for co-dominant and dominant markers, respectively, using the chi-square

test. One converted RFLP marker, npi286, one converted AFLP marker, us45

and one microsatellite marker, bnlg143 showed distorted segregation at the 5%

significance level (Table 8). Markers npi286 and us45 were skewed towards the

allele of the susceptible parent, whereas marker bnlg143 was skewed towards

the heterozygous genotype. When the significance level was increased to 1%

only marker npi286 showed distorted segregation (Table 8). As marker npi286

showed distorted segregation with P ~ 0.001 it was not used in the construction

of the linkage map.
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Table 8. Number of observed and expected alleles (RR is homozygous for the
allele of the resistant parent, SS is homozygous for the alleles of the susceptible
parent and RS is heterozygous) for the markers on chromosome 1 and 5. Results
of the ch re test for distorted are

* Significantly different at P ~ 0.05
** Significantly different at P s 0.01

3.9.2 Linkage map construction

The datafile used in linkage analysis is given in Addendum III (page 137). The

linkage analysis results produced by MAPMAKER/EXP version 3.0b are given in

Addendum IV (page 140). In linkage analysis only the recessive genotype data

were used for the dominant markers us45 and php20855 and the genotypes of

the homozygous dominant and heterozygous plants were designated as missing
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data. MAPMAKER's error detection function was used to eliminate mistakes due

to mistypings of a locus in the raw data. The order command was used to

determine the linear order of the markers. Multipoint analysis was used to

determine the distances between the markers. Two linkage maps, consisting of

the 11 markers on chromosome 1 and 9 markers on chromosome 5, were

produced.

The order of the markers on chromosome 1 and the distance between the

markers is indicated in Figure 20A. MAPMAKER's multipoint analysis indicated

that the 11 markers on chromosome 1 spanned a total distance of 73.8 cM. The

order of the markers was in agreement with the order of the markers on the UMC

1998 maize map (circled markers, Figure 20A and 20B) and the position of the

markers us44 and us45, obtained with the RIL population, was thus confirmed.

In Figure 21A the order of the markers on chromosome 5 and the distance

between the markers is indicated. A total distance of 104.6 cM was spanned with

the 9 markers. The position of marker us40 in bin 5.04 obtained with the RIL

population (section 3.4, page 55) is in agreement with the position obtained with

the F2 population, if compared to the bin positions of the microsatellite markers

(Table 7, page 70).

3.9.3 QTL mapping

The linkage maps of chromosomes 1 and 5 produced by MAPMAKER/EXP were

used together with the genotype and phenotype data (Addendum III, page 137)

of each F2 plant to localize the QTL with the programs MAPMAKER/QTL and

QTL Cartographer. Models 3 (interval mapping) and 6 of QTL Cartographer were

applied to the data. The interval mapping results for chromosomes 1 and 5

produced by MAPMAKER/QTL are given in Addendum IV (page 146).
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MAPMAKERlEXP. (B) Map of chromosome 1 obtained from the Maize Genome Database
(http://www. agron.missouri.edu). Markers which occur on both maps are circled. Map
distances are given in centiMorgans.
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Figure 21. (A) Linkage group obtained with the 230 plants of the F2 population using
MAPMAKERlEXP. (B) Map of chromosome 5 obtained from the Maize Genome Database
(http://www. agron.missouri.edu). Mapdistances are given in centiMorgans.
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As the phenotypic GLS data showed deviations from the normal distribution

(Figure 2, page 33), the data were transformed prior to analysis. The

transformation of the score data to the log10of the score data did not alter the

OTL that was identified and the original data were therefore used in OTL

analysis.

Using MAPMAKERIOTL, the highest peak with a LOD value of 20.7 was

identified on chromosome 1 between markers us44 and bnI5.59, 3.1 cM proximal

to marker us44 (Figure 22). The boundary of the confidence interval was 6 cM

proximal to marker bnlg2086 and 6 cM proximal to marker us44. The phenotypic

variance explained by OTL1was 36.7%.

25 QTL1
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G)o 15
(,)
Cl)

8 10
..J

5 Distance(cM)
N LO (") <0 ~ <O<O"<t~
oj oj -.i to to tON-.i1l"i

Figure 22. Likelihood map of QTL effect on GLS resistance as generated by
MAPMAKERlQTL using the genotype and phenotype data of 230 F2 plants with 11
markers on chromosome 1. The distances between the markers are given in cM.
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Two peaks were visible on chromosome 5 (Figure 23). A lOD value of 5.2 was

calculated for the highest peak between markers mmc0282 and bnlg1847, 3.6

cM proximal to marker mmc0282. The second peak was located between

markers bnlg557 and bnlg150, 4.6 cM proximal to marker bnlg557 and the lOD

value for the second peak was 4.82. The boundary of the confidence interval was

16 cM proximal to marker bnlg565 and 10 cM proximal to marker bnlg1847.

10.6% of the total phenotypic variance was explained by the highest peak and

10.5%was explained by the lower peak.
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Figure 23. Likelihood map of the QTL effect on GLS resistance as generated by
MAPMAKERlQTL using the genotype and phenotype data of 230 F2 plants with 9
markers on chromosome 5. The distances between the markers are given in cM.

By examining QTl1 and QTl5 simultaneously, the cumulative variance

explained was 46.6% (Addendum IV, no. 16). No substantial difference in

cumulative variance was observed if one (45.9%) or both peaks (46.6%) were

included for QTl5 (Addendum IV, no. 14 and 16).
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Interval mapping with O'Il, Cartographer (model 3) produced the same results as

MAPMAKER/aTl (dotted line, Figure 24). The lOD score for the highest peak of

chromosome 1 was the same as that produced by MAPMAKER/aTl (20.7). The

lOD values for the 2 peaks of chromosome 5 were slightly lower than those

produced by MAPMAKERlaTl (4.3 for the highest peak and 4.08 for the lower

peak).
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Figure 24. Interval mapping (1M - dotted line) and composite interval mapping
(CIM- black line) results generated by QTL Cartographer on chromosome 1 (A) and
chromosme 5 (B).

Further analysis using composite interval mapping (model 6) resulted in more

prominent peaks (solid line, Figure 24), albeit localized between the same

markers as those identified by interval mapping (dotted line, Figure 24). The lOD

scores calculated using composite interval mapping were, however, lower (15.49

for the peak on chromosome 1 and 1.78 and 0.9 for the highest and lowest peaks

on chromosome 5, respectively).
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The gene action of the QTL was tested using MAPMAKER/QTL, to determine

whether it was largely additive, dominant or recessive (Addendum IV, no. 7-12).

N.oneof the models could be deemed unlikely by 1 LOD (10-fold) or more for

either QTL1 or QTL5. The free model, however, accounted for most of the

variance with 37% (LOD 20.87) for QTL1 and 10.6% (LOD 5.19) and 10.6%

(LOD 4.82) for the two peaks of QTL5, respectively. The additive model also

accounted for a high percentage of the variance with 36.2% (LOD 20.44) for

QTL1 and 10.5% (LOD 5.14) and 10.4% (LOD 4.77) for the two peaks of QTL5,

respectively.

3.10 Consistency of the QTL

To determine the consistency of the QTL identified on chromosomes 1 and 5

using the 1998 F2 population, the flanking markers for each QTL were tested on

F2 populations planted in 1999 (Table 1C, page 32) and 2000 (Table 10, page

32). Furthermore, the markers on chromosomes 2 and 3 were also tested on the

populations to determine whether an association between these markers and

GLS resistance could be detected.

T9 limit the number of progeny to be genotyped, selective genotyping as

introduced by Lander and Botstein (1989), was used. DNA was extracted from

111 plants of the 1999 F2 population, including 19 plants with a GLS score of 1,

18 plants with a GLS score of 2 and 31 plants with a GLS score of 9. Of the F2

population of 2000, DNA was extracted from 48 plants, including 5 plants with a

GLS score of 2, 14 plants with a GLS score of 3 and 14 and 9 plants with a GLS

score of 8 and 9, respectively. Figure 25 shows the distribution of the plants
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scored for GLS resistance and the distribution of the plants which were

genotyped (black) in the 1999 and 2000 F2 populations.

350 400
300 1999 350 2000
250 oWthout genotype data 300 oWthout genotype data

J!! UI.. 250c • Wth genoty pe data c • Wth genotype data1<1 200 oSQ. Cl. 200
'0 150 -0 150
~ 100 ~ 100

50 50
0 0

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

GLS disease score GLS disease score

Figure 25. Distribution of GLS disease scores in the 977 plants of the 1999 F2

population and the 1063plants of the 2000F2 population. Marker genotypes were
determined for the 111 and 48 plants shown in black for the 1999 and 2000
population, respectively.

The following flanking markers were amplified onthe 111 and 48 F2 plants of the

1999 and 2000 population, respectively: us44 and bnlg1598 on chromosome 1,

and bnlg557, bnlg150, mmc0282 and bnlg1847 on chromosome 5. Markers us41

on chromosome 3 and bnlg125 on chromosome 2 were also amplified on the F2

plants. Marker bnlg1598 was chosen as the right flanking marker for QTL1

instead of the actual flanking marker bn15.59, as this marker was easier to

amplify without the need for restriction enzyme digestions. The genotype data of

the 1999 and 2000 population is given in Addenda V (page 153) and Addendum

VI (page 156), respectively. A standard ANOVA for linear regression of GLS

score on marker genotype was used to calculate the proportion of the total

phenotypic variance explained by each marker (Table 9).
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.'

Table 9. Regression analysis results for the association betweenmarkers and GLS
resistance in the 1998, 1999 and 2000 F2 populations. R2 = proportion of
phenotypic variation explained by the markers, F = Fisher F-ratio, P = significance.

markers P < O. hted.

1999 F2 population 2000 F2 population

Bin Marker pF
Chromosome 1
1.05 us44
1.06 bnlg1598

Chromosome 5
5.03 bnlg557
5.04 bnlg150

0.763 0.385
I~ll, .a

5.05 mmc0282
5:.06 bnlg1847

F p

1.594 0.209 0.078 3.897 0.054
0.843 0.361 0.042 2.021 0.162

Chromosome 3
3.04 us41 0.007 1.626

Chromosome 2
2.02 bn 125 0.000 0.096 0.757 0.018 1.586 0.211 0.413 0.524

The markers on chromosome 1 accounted for the highest proportion of the

variance in both the 1999 and 2000 F2 populations. Marker us44 explained 40%

of the variation in the 1999 population (P < 0.001) whereas marker bnlg1598

explained 32% (P < 0.001) of the variance in the 2000 population. Of the

chromosome 5 markers, bnlg150 explained the highest proportion of the variance

inboth the 1999 population (8%, P = 0.004) and the 2000 populations (21%, P =
0.001). Marker us41 on chromosome 3 accounted for 10% (P = 0.002) and 8%

(P = 0.049) of the variance in the 1999 and 2000 populations, respectively, and

could therefore be linked to GlS resistance in these populations. Marker bnlg125

on chromosome 2 explained an insignificant (P> 0.05) amount of the phenotypic

variance and the marker could therefore not be associated with GlS resistance.

In comparison, the regression analysis results obtained with the 1998 F2

population are also given in Table 9. aTl1 explained the highest amount of the

variance (31-40%) in all three populations. Markers bnlg557 and bnlg1847
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explained the highest proportion of the variance (9%, P < 0.001 and 10%, P <

0.001, respectively) for the two peaks of QTL5 in the 1998 population, whereas

only marker bnlg150 explained a significant amount of the variance in the 1999

and 2000 population (P = 0.004 and 0.001, respectively). Although the QTL on

chromosome 3 (QTL3) explained between 8 and 10% of the variance in the 1999

and 2000 population, no significant amount of the phenotypic variation was

accounted for by this marker in the 1998 population. Marker bnlg125 on

chromosome 2 explained an insignificant amount of the phenotypic variance in all

three populations.
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Chapter 4

Discussion

Resistance to GLS is an essential trait in most maize improvement programs

(Scheehert et al., 1999), but only a few high-yielding maize hybrids resistant to

GLS are available in South Africa. Maize inbred lines, which exhibit resistance to

GLS and maintain other agronomically important traits are therefore in demand.

Recovery through conventional breeding is difficult, because the development of

GLS is highly dependent on environmental effects, field assessment of the

disease is problematic and the heritability of resistance is relatively low.

Molecular markers linked to the resistance genes may thus be useful to plant

breeders to support the introgression of the resistance alleles into elite high-

yielding inbred lines. Furthermore, this can be done without inoculation and at an

early stage of plant development.

The main aim of this study was to map GLS resistance genes using a resistant

Seed Co LTD, Zimbabwean inbred line. Markers closest to the QTL could be

used to indirectly select for GLS resistance genes in breeding programs. As QTL

are environmentally sensitive the usefulness of the selected markers across

seasons was determined.
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4.1 AFLPanalysis

To detect GLS resistance QTL, bulked segregant analysis was used together

with the AFLP technique. The AFLP technique was applied as a high number of

loci can be analyzed per experiment, it is fast, robust and reliable, and it does not

require prior sequence knowledge of the DNA.

4.1.1 The AFLP technique

Genomic DNA was digested with the enzyme combination Mlul and Msel to

increase the likelihood of obtaining single copy regions. As Mlul is a methylation

sensitive enzyme it will only digest the non-methylated regions of the genome

enriched for single copy sequences (McCouch et aI., 1988) and will thus

recognize relatively few sites in maize DNA (Burr et a/., 1988).

Castiglioni et al. (1999) and Vuylsteke et al. (1999) used both the restriction

enzyme EcoRI and the methylation sensitive enzyme Pstl in combination with

Msel to digest the maize genome. Their studies indicated that the Pstl/Msel

primer combinations amplified less AFLP bands than the EcoRl/Msel primer

combination and produced more randomly distributed AFLP markers across

chromosomes and chromosome regions. It was believed that the more random

distribution of the Pstl/Msel AFLP bands on the genetic map was due to the

preferential localization of the markers in the distal genomic regions of the

genome associated with genes. As the restriction enzymes EcoRI and Msel have

AT-rich target sequences, the EcoRl/Msel AFLP bands can contain repetitive

sequences and the probability of identifying these markers in highly repetitive

regions near centromeres is greater.

By using the Msel-Mlul restriction enzyme combination in this study, between 35

and 75 distinguishable bands were amplified with the ten different primer

combinations with an average of 45 bands per primer combination. Thus in total
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approximately 450 loci were screened. Approximately 50% of the fragments were

polymorphic between the parents. In comparison, Ajmone Marsan et al. (1998)

used the MseilEcoRI restriction enzyme combination to digest the maize genome

and observed between 30 and 120 distinguishable fragments after amplification

with six different primer combinations. An average of 34.8 of these amplified

fraqrnents was polymorphic among the maize lines.

Castiglioni et al. (1999), who used both the MseilEcoRI and the Pstl/Msel

restriction enzyme combinations to digest the maize genome, found that the

EcoRI assay produced an average of 14.9 and the Pstl assay an average of 19.6

polymorphic fragments per primer combination. It was also observed that the

profiles generated by the PstllMsel primer combinations were clearer and easier

to score than the profiles generated by the MseilEcoRI primer combinations due

to a lower number of bands per gel and a reduced background. Vuylsteke et al.

(1999), who generated two high-density linkage maps of maize using AFLP

markers, also observed that the methylation sensitive enzyme Pstl produced

more polymorphisms than the enzyme EcoRI. A greater number of

polymorphisms were also detected with the Pstl/Msel primers than the

EcoRl/Msel primers in barley (Powell et al., 1997).

4.1.2 Bulked segregant analysis

Equal volumes of standardized DNA of ten resistant plants with a GLS score of 1

and ten susceptible plants with a GLS score of 9 of a F2 population planted in

1997 were pooled in two contrasting bulks. AFLP analysis was used to identify

from a large pool of markers, those putatively linked to the GLS resistance

genes. Ten plants in a pool are sufficient to avoid detecting false positive

markers, even with moderate deviations from Mendelian segregation (Wang and

Paterson, 1994). Additionally, two contrasting bulks consisting of DNA of 20

resistant and 16 susceptible plants of a F2 population planted in 1998 were
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made. Miklas et al. (1996) suggested the use of separate contrasting bulks for

each individual environment to identify QTL with minor effects.

With seven of the 10 AFLP primer combinations used, one or two polymorphic

fragments per primer combination could be detected between both the parents

and the 1997 bulks. Amplification of the AFLP markers on the individual plants

constituting the bulks, indicated that most of the fragments, which were

polymorphic between the bulks, were present in 7 of the individual plants

constituting the resistant bulk and absent in the plants constituting the

susceptible bulk.

Three of the 11 polymorphic fragments detected with the 1997 bulks could also

be detected in the 1998 bulks by an absence/presence of band polymorphism.

Three other fragments were distinguishable in the 1998 bulks by a difference in

band intensity. The 5 fragments, which were polymorphic in the 1997 bulks but

not in the 1998 bulks, were also cloned and sequenced, to determine whether

they were indicative of a QTL in the 1997 population, which could not be

detected in the 1998 population.

Fewer polymorphisms were thus observed between the 1998 bulks than the

1997 bulks. This could be, because the 1997 population had been backcrossed

to the recurrent parent, whereas the 1998 had not, or due to the difference in the

number of plants, which were pooled per bulk (10 in the 1997 bulks versus 20

and 16 in the resistant and susceptible bulk, respectively of 1998). Pooling a

larger number of plants in each bulk would be a more stringent control and

should thus reduce the number of false positive markers. This, however, would

perhaps make the detection of minor QTL by using BSA more difficult. To solve

this problem two or more comparative bulks consisting of fewer plants could be

used from the same population, e.g. four bulk pairs of 10 individuals each have

been used and it was found that a marker, which was polymorphic in three of the

four bulks, was associated with a QTL (Grattapaglia et aI., 1996).
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4.2 Converted AFLP markers

The eleven fragments, which were polymorphic in the 1997 bulks, were isolated

from the gel, cloned and sequenced and sequence-specific primer pairs were

identified. This was done to make the screening of the plants of the F2 population

easier, faster and less expensive and also to enable the mapping of the markers

on the maize chromosomes using the publicly available RIL populations (Burr ef

al., 1988). As the alleles produced by the converted AFLP markers were single

bands, multiple loadings of amplified products could be made onto a single

polyacrylamide gel and the running costs were thus reduced.

4.2.1 Conversion of AFLPs
A summary of the AFLP fragments, which were cloned, is given in Table 10. Of

the 11 converted AFLP markers, 3 were discarded because multiple fragments

were amplified on the DNA of the parents or the amplified products did not have

the expected size. The cloned AFLP fragments for these three markers were

very small (between 174 and 235 bps) and it was difficult to identify suitable

primer pairs for them. It is therefore more useful to isolate and convert larger

(>240 bps) fragments.

The 8 converted AFLP markers were added to the maize marker database of the

University of Stellenbosch. As the positions of most of these markers are known,

they may be useful in other projects. They could also be added to the existing

datafiles of the RIL populations and to the UMC map of the Maize Genome

Database and would thus contribute to the coverage of the maize genome maps.

Five of the eight remaining converted AFLP markers were polymorphic between

the parents (markers designated us40, us41, us42, us44 and us45). Amplification

of these markers on the individual plants constituting the 1997 bulks confirmed

that the correct fragments had been isolated. The same plants having the original
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AFLP fragments had the fragments produced with the primer pairs for the

converted AFLP markers, with the exception of marker us45. Marker us45 was

amplified on the DNA of two additional plants. The absence of this fragment in

two plants in the AFLP analysis could be due to partial restriction during the

MsellMlul digestion of the genome, or due to a mutation at the restriction site.

The latter is, however, more likely as a mutation was observed with the same two

plants and a marker on chromosome 1 in a previous study (Lehmensiek, 1998).

Table 10. Summary of the AFLP markers. The name of the AFLP fragment and
the sequence-specific peR marker is given together with the original primer
combination. An indication of the polymorphisms betweenthe parents, the type of
marker and the itions are

In this study 5 of the 11 AFLP markers were successfully converted into

sequence-specific PCR markers. An experiment by Shan et al. (1999) indicated

that only 6 out of 26 wheat or barley AFLP markers retained their specificity after

they had been converted to sequence-specific PCR markers. Inefficient

conversion of the AFLP markers may occur, as the primers are designed from

sequences internal to the original AFLP primers and nucleotide and restriction

site differences specific to the AFLP primers will thus not be reflected in the

primers developed from an internal sequence (Shan et aI., 1999).
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Djfferent methods could be applied to obtain polymorphisms for the markers,

which were not polymorphic between the parents. The inverse PCR procedure

could be used to generate larger DNA fragments and to thereby improve the

ability to design appropriate primers (Bradeen and Simon, 1998). Inverse PCR

amplifies DNA sequences outside the region of the cloned AFLP fragment by

using primers that point away from each other into the unknown DNA sequence.

Alternatively, outwardly orientated locus-specific primers can be designed from

the internal AFLP fragment sequence and used in conjunction with adapter

primers to amplify from up to 22 different restriction-ligation reactions unknown

regions that flank the internal sequence (Schupp et al., 1999).

Conversion of the AFLP markers into sequence-specific PCR markers not only

made the screening of the F2 plants easier, faster and cheaper, but also resulted

in the conversion of four of the dominant AFLP markers into co-dominant

markers. It has been stated that the use of dominant markers in linkage analysis

using an F2 population can lead to errors, as the amount of information produced

by each data-point is decreased in situations where heterozygous genotypes are

found (Beaumont et al., 1996, Schondelmaier et al., 1996 and Jiang and Zeng,

1997). It is therefore important to combine dominant markers with co-dominant

markers in a QTL mapping study. Alternatively, DH or RIL populations could be

used to avoid the problems associated with dominant markers. These

populations, however, are time-consuming and costly to develop.

4.2.2 Amplification with the converted AFLP markers

A large number of plants of the resistant bulk of 1997 were heterozygous when

amplified with the sequence-specific PCR markers (6 and 5 plants with marker

us40 and us42, respectively on chromosome 5; 3 with marker us41 on

chromosome 3 and 2 with marker us44 on chromosome 1). Only 1 and 3 plants

were homozygous for the allele of the resistant parent with markers us40 and

us42, respectively and 2 plants with marker us41. A larger number of plants (5)
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were homozygous for the allele of the resistant parent with marker us44. The

difference in the number of homozygous resistant and heterozygous plants with a

marker could be an indication of the effect of the QTL, as a greater number of

homozygous resistant and less heterozygous plants were observed with the

marker of the more significant QTL1 (us44) than with the markers of the less

significant QTL3 (us41) and QTL5 (us40 and us 42).

The AFLP fragment AF5.1 was not present in the bulks of the 1998 F2 population

(Figure 3, page 47). Amplification of the co-dominant sequence-specific PCR

marker, produced for this fragment (marker us40, page 50), on the DNA of the

plants of the 1998 F2 population, however, indicated that the allele of the

resistant parent should have been represented in the resistant 1998 bulk. The

absence of the original fragment in the 1998 F2 population could, therefore have

occurred due to incomplete digestion of the genome or a mutation at the

restriction site. Partial restriction of DNA has only been observed in a small

number of cases (1%) with bread wheat (Donini et aI., 1997) and is also unlikely

in our study, as aberrant AFLP patterns resulting from partial restriction should

be easily recognized (Vos et aI., 1995).

4.3 QTL analysis with the converted AFLP markers

The 5 sequence-specific PCR markers, which were polymorphic between the

parents, were amplified on the 230 plants of the 1998 F2 population. Linkage

analysis was performed and 4 of the 5 markers were linked in two linkage

groups. The two-point linkage distance between one group of markers was 10.4

eM (LOD 22.83) and between the other was 8.2 eM (LOD 55.41). As only two
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flanking markers are needed with the program MAPMAKER/OTL to determine

whether a OTL is present, OTL could be indicated at both linkage groups.

4.4 Mapping of the AFLP markers using RIL populations

RILs represent a permanent population, which can be used indefinitely to map

new markers, as long as the parental genotypes can be distinguished. Two

publicly available RIL populations (T323 X CM37 and C0159 X Tx303; Burr et

aI., 1988) were used in this study. The datafiles of the RIL populations, which

were used to map the AFLP markers, consisted of more than 1000 markers and

they should thus present adequate coverage of the maize genome.

Four of the markers (us40, us41, us44 and us45), which were polymorphic

between the GLS resistant and the susceptible parent, were also polymorphic

between the parents of one of the RIL populations and could therefore be

mapped. Both markers us44 and us45 were mapped on chromosome 1, whereas

markers us40 and us41 were mapped on chromosomes 5 and 3, respectively

(Table 10, page 90). As marker us42 showed linkage with marker us40 in the F2

population, it could also be mapped to chromosome 5 (Table 10, page 90).

Marker us39 was not polymorphic between the parents of the F2 population but

was polymorphic between the parents of one of the RIL populations and could

therefore be mapped to chromosome 2 (Table 10, page 90).
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4.5 Regression analysis

A standard ANOVA for linear regression of GLS score on marker genotype

indicated that the markers on chromosomes 2 and 3 were not linked to GLS

resistance QTL in the 1998 F2 population.

Interestingly, the original AFLP fragments AF5.2 on chromosome 3 and AF2.1 on

chromosome 2 were not polymorphic in the 1998 bulks (Figure 3, page 47). This

would thus indicate no association with GLS resistance using BSA. Possibly,

these markers were associated with minor GLS resistance QTL that were

present in the 1997 but not in the 1998 population. Regression analyses with two

other populations, one planted in 1999 and the other in 2000, confirmed the

presence of a QTL on chromosome 3. This therefore suggests that the

expression of the QTL may be environment dependent and fortifies the use of

separate bulks for each individual environment. Bubeck et al. (1993) planted the

same population in the same location in two different years and also found that

only one of the eight detected GLS resistance QTL was present in both years.

Similarly, Agrama et al. (1999) found that two of the three QTL controlling the

resistance to Sorghum downy mildew were significant in the one season but not

the other.

As the marker on chromosome 2 was not associated with GLS resistance in any

of.the 3 F2 populations, it is assumed that this is a false positive marker (i.e., a

marker that appears polymorphic between bulks but is not linked to the trait

expression (Grattapaglia et al., 1996». BSA analysis is limited by the chance

occurrence of shared homozygosity at specific unlinked chromosomal regions in

the bulks. In a segregating population derived only one cross after the original

intercross (e.g. DH, F2 and BC1 populations), it is very likely that some genomic

regions will be uncovered where the markers have not yet been randomized

through meiosis and recombination (Jean et al., 1998).
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4.6 Converted RFLPs on chromosome 1

QTL analysis using the F2 population and mapping of the AFLP markers using

the RIL populations indicated the presence of QTL on chromosomes 1 (QTL1)

and 5 (QTL5). To obtain a more accurate position for the QTL on chromosome 1,

converted RFLP markers were used.

Sixteen RFLP probes were converted into STS markers to make the screening of

the progeny easier. Only 5 of the 16 RFLPs could be successfully converted to

STS markers. One marker showed a size difference whereas the other 4 markers

showed restriction site differences. Tragoonrung et al. (1992) also observed

more site than size polymorphisms in barley.

After restriction enzyme digestion, two of the converted RFLPs produced

fragments, which were of equal size in each parent, together with the fragments,

which were polymorphic between the parents (npi286 and php20855, Figure 15,..
page 65). The sum of the 2 fragments of each parent was larger than the size of

the undigested fragment. It could thus be possible that the marker had been

amplified on another segment of DNA homologous to the segment on

chromosome 1. A duplication of chromosome segments has been reported in

maize and it has been found that the bins 1.06 - 1.07, in which marker php20855

resides, are duplicated on chromosome 9 (McMullen and Simcox, 1995).

4.7 Microsatellite markers on chromosome 1

Nine out of 17 microsatellite markers on chromosome 1 were polymorphic

between the resistant and susceptible parent (53%), compared to 5 out of 16
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converted RFLPs (31%). The microsatellite markers were thus more polymorphic

than the converted RFLP markers.

Three microsatellite markers amplified products, which could be visualized on a

2% agarose gel. This eliminated the need to label the primers with radioactivity

and made microsatellite analysis faster than STS analysis, because restriction

enzyme digestions were not necessary.

The number of publicly available microsatellite markers is increasing very rapidly.

Oyer 1000 microsatellite primer pairs have already been published for maize and

can be accessed via the Internet. The increasing number of available

microsatellite primer pairs and the higher number of polymorphisms detected

with these markers, make them more feasible to study genome regions of

particular interest than converted RFLPs.

4.8 Microsatellite markers on chromosome 5

Both microsatellite markers and converted RFLP markers on chromosome 1

were used and it was found that microsatellite markers are more polymorphic

than converted RFLP markers. Microsatellite markers were therefore used to

obtain a more accurate position for the aTL on chromosome 5.

Seven of the 9 microsatellite markers obtained, were polymorphic between the

resistant and the susceptible parent and one of the microsatellite markers

amplified products, which could be visualized on a 2% agarose gel. Chromosome

5 seems to be more polymorphic between the resistant and susceptible parent

than chromosome 1, as 78% (7 out of 9) of the microsatellite markers on
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chromosome 5 were polymorphic opposed to 53% (9 out of 17) on chromosome

1.

A'number of extra bands were visible with some of the microsatellite markers on

both chromosomes 1 and 5 (Figures 17, page 69 and 19, page 72). These bands

are probably PCR artefacts resulting from slippage during PCR amplification

(smaller bands) or due to chance homologies of the primers at other sites (Tautz,

1989). As was stated previously, a duplication of chromosome segments has

been reported in maize and one of the microsatellite markers, with which an extra

band was amplified (bnlg1598) is localized in bin 1.06, one of the segments that

has been found to be duplicated (McMullen and Simcox, 1995).

4.9 QTL analysis

To identify QTL by linkage to marker loci, individuals are scored for their

genotype at the marker locus and the phenotype for the quantitative trait. If a

difference in mean phenotype among marker genotype classes is detected, the

presence of a QTL linked to the marker can be inferred (Falconer and Mackay,

1996). A linkage map of polymorphic marker loci that adequately covers the

whole genome is needed to map QTL (Falconer and Mackay, 1996).

4.9.1 Chi-square analysis

The majority of the markers followed Mendelian segregation. Markers npi286 and

us45 on chromosome 1 were both skewed towards the alleles of the susceptible

parent, while marker bnlg143 on chromosome 5 was skewed towards the

heterozygous genotype, As marker us45 is a dominant marker, no distinction
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could be made between a susceptible plant and a faulty amplification and a few

genotypes could thus have been recorded incorrectly. This is a disadvantage

when using dominant markers. Only marker npi286 was eliminated from further

analysis, because P was smaller than 0.001 for this marker.

A significant deviation of the segregation ratio from the expected 1:2:1 F2 ratio for

co-dominant and the 3: 1 ratio for dominant markers has been recorded in a

number of studies in maize (Veldboom et aI., 1994, Tuberosa et aI., 1998,

Castiglioni et al., 1999 and Vuylsteke et aI., 1999) and also in barley (Larson et

aI., 1996 and Zhu et aI., 1999b) and rice (Xu et aI., 1997). Genetic, physiological

and/or environmental factors are known to cause segregation distortion (Xu et

aI., 1997).

4.9.2 Linkage map construction

Eleven markers on chromosome 1, and 9 markers on chromosome 5 were used

to construct two linkage groups using MAPMAKER/EXP. As MAPMAKER/EXP

could not place the 2 dominant markers into the linkage group, only the recessive

genotype data were included for these 2 markers and the genotypes of the

homozygous dominant and heterozygous plants were designated as missing

data. MAPMAKER's error detection function was on to eliminate mistakes due to

mistypings of a locus in the raw data. Genotyping errors can increase the genetic

map length and it has been shown that a 3 per cent error rate in genotyping can

double the genetic map length (Kearsey and Farquhar, 1998).

The linear order of the markers on the linkage map of chromosome 1 obtained

with the F2 population was in agreement with the order of the markers on the

published map of the Maize Genome Database. Linkage analysis of the AFLP

markers on chromosomes 1 and 5 with the locus-specific markers confirmed the

localizations of the AFLP markers obtained with the RIL populations.
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A,. two-point distance of 10.4 cM and a multipoint distance of 12.7 cM was

calculated between the markers us45 and us44 on chromosome 1 and a two-

point distance of 8.2 cM and a multipoint distance of 7.7 cM was calculated

between the markers us40 and us42 on chromosome 5. The distances

calculated between markers using multipoint analysis and two-point analysis may

be considerably different, as multipoint analysis can take much more information,

such as flanking marker genotypes and some amount of missing data, into

account (Lander et al., 1987).

A slight difference in the linkage distance between markers on chromosome 1

was observed between the maps of the F2 population, the RIL population and the

Maize Genome Database (Figure 9, page 57 and Figure 20, page 76). Slight

differences in distance occur, when the number of markers used differ between

maps, different inbred lines are used in each cross, and the cross-over

frequencies between the lines vary (Chagué et aI., 1996 and Voorrips et al.,

1997).

4.9.3 QTL mapping

As a normal distribution of phenotypes is an inherent assumption for interval

mapping (Lander and Botstein, 1989), the phenotypic GLS data, which showed

deviations from normality (Figure 2, page 33), was transformed prior to analysis.

Similarly to the results of Beavis et al. (1994) and LObberstedtet al. (1998b), the

transformation did not alter the QTL that was identified. Therefore, the original

data were used in QTL analysis.

The results obtained by interval mapping with the programs MAPMAKER/QTL

and QTL Cartographer were very similar. The peak of QTL1 was between

markers us44 and bn15.59with a LOD score of 20.7. The confidence interval

surrounding the QTL peak was 6 cM in length. Two peaks, 28 cM apart, were

visible for QTL5. One peak was situated between markers mmc0282 and
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bnlg1847 and the LOD score of the peak was 5.2 and 4.3 with MAPMAKER/QTL

and QTL Cartographer, respectively. The other peak was situated between the

markers bnlg557 and bnlg150 and had a LOD score of 4.8 and 4.1 with

MAPMAKER/QTL and QTL Cartographer, respectively. The confidence interval

surrounding the QTL peaks was 50 cM in length. By using interval mapping it

was not clear whether one or two QTL are present on chromosome 5 as both

peaks were prominent and the confidence interval was large.

Composite interval mapping using QTL Cartographer was performed, as this

program is supposed to overcome the problem of testing whether one or more

than one QTL is present on the same chromosome (Zeng, 1994). Composite

interval mapping provides an interval test in which the test statistic on an interval

is unaffected by all those QTL which are located outside the interval being tested

and its adjacent two intervals (Zeng, 1994). Firstly a stepwise regression analysis

is run. The stepwise regression analysis ranks the markers for their effect on the

quantitative trait. A marker with the largest F-statistic is assigned rank 1. The test

is repeated until all the remaining markers are ranked. Model 6 of QTL

Cartographer chooses the most important markers from the prior run stepwise

regression analysis to control for the genetic background. When testing at any

point on the genome it will use the number of specified markers (in our case 5). A

default value of 10 was used for the window size. The window size blocks out a

region of the genome on either side of the markers flanking the test site. Since

the flanking regions are tightly linked to the testing site, the signal from the

flanking regions will be eliminated from the test site (Basten et aI., 1997).

Composite interval mapping resulted in more prominent peaks, localized

between the same markers as those identified by interval mapping. The LOD

scores calculated using composite interval mapping were, however, lower (15.49

for QTL1 compared to 20.7 using interval mapping and 1.78 and 0.9 for the

highest and lowest peak of QTL 5, respectively, compared to 4.3 and 4.1 using

interval mapping). The increase of precision of composite interval mapping is
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gained by making the test conditional on nearby markers so that the sensitivity of

the test statistic to the position of a OTL is emphasized in a short region of the

interval conditioned. As the test under composite interval mapping is a

conditional test, the test statistic on many intervals is smaller than those

produced by interval mapping. This is a disadvantage of the program (Zeng,

1994).

Fr.omthe mapping results, we can thus maintain that one OTL is present on

chromosome 1 and at least one OTL, but probably two, are present on

chromosome 5. OTL1 had the largest effect on GLS resistance and explained

37% of the variance. A smaller OTL effect was explained by OTL5 (11%).

Cumulatively, the OTL explained 47% of the variance. Examining multiple OTL

simultaneously can extend the sensitivity of OTL mapping by reducing the

unexplained noise that must be accounted for and the estimates of OTL effects

are thus considered to be more accurate (Paterson et ai., 1988).

The effect of different gene dosages on phenotype can be determined in a F2

population, because all three possible gene dosages (homozygous and

heterozygous) at a locus are represented. A 1-LOD (10-fold) reduction in

likelihood was considered to mean that a type of gene action was unlikely.

However, if a type of gene action is not rejected, it is still not sufficient evidence

to assert that the relevant gene exhibits only that type of gene action (Paterson et

ai., 1991). In our study the free model accounted for most of the variation of both

OTL1 and OTL5.

It is worth mentioning that both OTL1 and the highest peak of OTL5 localized to

the regions where the OTL for GLS resistance, introgressed from the inbred line

Va14, were reported by Saghai Maroof et al. (1996). Interestingly, they assumed

that the OTL on chromosome 5 was a false positive OTL, as it was not

reproducible in their F3 populations. OTL in common across different mapping

populations have been reported by Bubeck et al. (1993), who detected one
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region on chromosome 2 associated with GLS resistance in three different

populations. The occurrence of QTL in the same chromosomal regions in

different inbred lines could indicate that genetically similar sources of resistance

were used in the parental lines.

4.10 Consistency of the QTL

It has been reported that the consistency of the identification of QTL in one

population across seasons is low. Bubeck et al. (1993) for example planted the

same population in the same location in two different years and found that only

one of the eight detected GLS resistance QTL could be identified in both years.

Tuberosa et al. (1998) identified QTL controlling leaf abscisic acid concentration

in maize in field trails conducted over two years and found that of the 16 different

QTL identified in at least one sampling, only 4 QTL were significant across

samplings.

In our study, the consistency of QTL1 and QTL5 was tested on selected plants of

F2 populations planted in 1999 and 2000. The flanking markers of each QTL

were amplified on the DNA of the selected plants. Furthermore, the markers on

chromosome 2 and 3 were tested on the populations to determine whether an

association between these markers and GLS resistance could be established. A

standard ANOVA for linear regression of GLS score on marker genotype was

employed to confirm an association between GLS resistance and the markers.

The results of the regression analysis indicated that the highest proportion of the

variance (32-40%) was accounted for by the markers on chromosome 1 in both

the 1999 and 2000 population. Only the flanking markers for the first peak of
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QlLS (Figure 23, page 79) explained a significant amount of the variance (7-

20%) in the 1999 and 2000 population. This could confirm that two QTL are

present on chromosome S and that only one of the two QTL was detectable in

the 1999 and 2000 population.

Furthermore, regression analysis confirmed the presence of a QTL on

chromosome 3. QTL3 was detectable in both the 1999 and 2000 population. The

variance accounted for by the marker on chromosome 3 was 10% in the 1999

and 8% in the 2000 population. Interestingly, Bubeck et al. (1993) also identified

a GLS resistance QTL where QTL3 was localized. The detection of QTL3 in the

1999 and the 2000 population but not the 1998 population could indicate that the

environment has an effect on QTL3 and that this QTL will not always be detected

across seasons.

If a large number of QTL are segregating for a given trait, only a fraction will be

identified per experiment and therefore the chance that any two independent

experiments will have the same set of QTL is very small (Beavis et al., 1994).

Beavis et al. (1994) also maintains that if the number of QTL is large and the

power to identify QTL is small, it is possible that two independent experiments

will not identify any QTL in common. This suggests that two breeders selecting

for the same trait in the same environment on independent samples of progeny

from the same cross will select for different arrays of QTL.

Since only one marker for the QTL on chromosome 3 was used in regression

analysis, the precise localization of the QTL could not be determined. The

distance between the marker and the GLS resistance QTL may still be great and

therefore the QTL effects calculated could be under-estimated.

Although the genetic effects calculated by regression analysis were fairly

consistent, the difference in the number of plants used per population in the

regression analysis was large. The calculated genetic effects could, therefore, be
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biased and should only be used as an indication of the presence or absence of a

alL.

4.11 Resistance genes in maize

Resistance genes in maize (McMullen and Simcox, 1995, Bohn et ai., 1997, Ming

et ai., 1997 and Welz et ai., 1999) as well as in barley (Richter et ai., 1998)

seemed to be clustered instead of being equally distributed among

chromosomes. The clusters may be closely linked resistance genes or the gene

action at the all may be pleiotropic, either through shared physiological

pathways or through multi-functional gene products (McMullen and Simcox, 1995

and Welz et ai., 1999). Except for a few cases, the biochemical and physiological

bases of resistance to pathogens and pests have yet to be elucidated in maize.

The GlS resistance O'Tl,t, identified in this study, occurs in the same region as

all for resistance to southwestern corn borer and sugar cane borer (Bohn et ai.,

1997), northern corn leaf blight (Freymark et ai., 1994), maize streak virus

(pernet et ai., 1999a, b), common smut (U.ibberstedtet ai., 1998a), common rust

(li.ibberstedt et ai., 1998b) and the com earworm resistance factor maysin

(Byrne et al., 1996).

OTl for resistance to sugar cane borer (Bohn et ai., 1997), northern corn leaf

blight (Schechert et ai., 1999 and Welz et ai., 1999 and 2000), Fusarium stalk rot

(Welz et ai., 2000), common rust (li.ibberstedt et ai., 1998b) and common smut

(li.ibberstedt et ai., 1998a) have been detected in the same region as the GlS

resistance cn,s.
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In the region of the QTL on chromosome 3, a major maize mosaic virus

resistance gene (Ming et al., 1997) and a wheat streak mosaic virus gene

(McMullen et ai., 1994) have been identified and QTL for resistance to sugarcane

mosaic virus (Xia et ai., 1999), sugar cane borer (Bohn et ai., 1997), Fusarium

stalk rot (Welz et ai., 2000), and common rust (LObberstedtet ai., 1998b).

It has been speculated that minor wild-type allelic variants at major qualitative

mutant loci are responsible for substantial amounts of quantitative genetic
..

variation, and therefore qualitative and quantitative loci should be localized on

the same chromosomal region (Beavis et ai., 1991, Freymark et ai., 1993,

Goldman et aI., 1993 and Richter et ai., 1998 ). Although net blotch resistance

loci have been found in the neighbourhood of mapped QTL in barley (Richter et

ai., 1998), QTL for resistance against common rust in maize were not

preferentially located in map positions close to qualitative gene loci (LObberstedt

et ai., 1998b). In the latter study it was concluded that different biological

mechanisms appear to be involved in quantitative versus qualitative resistance.

4.12 MAS using flanking markers for QTL1, QTL3 and QTL5

Kelly (1995) described the most desirable marker as one that retains linkage with

the resistance gene and is clearly expressed and functional across a broad range

of genetic backgrounds.

Flanking markers us44 and bnlg1598 on chromosome 1, markers bnlg557,

bnlg150, mmc0282 and bnlg1487 on chromosome 5 and marker us41 on

chromosome 3 could be used to support breeders in the introgression of the

resistance QTL into high-yielding inbred lines through backcrossing. By selecting
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for the presence of these markers, the need for subjective disease screening

may be reduced and the speed and efficiency of backcrossing increased. By

combining several O'I], with different environmental specificities into a single

genotype, one might be able to improve the phenotype which is somewhat

shielded against the vagaries of environment.

With respect to the populations of 1998, 1999 and 2000 used in our study, only

one plant of each population was homozygous for the allele of the resistant

parent at all 7 loci. These 3 plants were resistant (GlS score of 1 in the 1998 and

1999 populations and a GlS score of 3 in the 2000 population), thus indicating

that the flanking markers are useful in MAS. However, a high number of plants

will have to be screened to obtain plants which are homozygous for the allele of
..

the resistant parent at all loci. The usage of these markers in MAS in breeding

programs will, therefore, have to be assessed.
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Chapter 5

Conclusion

The AFLP technique together with bulked segregant analysis was useful to

identify GLS resistance QTL on three chromosomes. It is, however, not known

how many QTL were unidentified in the populations under study and whether the

undetected QTL have larger or smaller effects on GLS resistance, than the ones

identified. Other studies have indicated that BSA is more useful in tagging QTL of

large effects and that some QTL might be missed (Grattapaglia ef al., 1996,

Miklas ef ai., 1996, Chagué ef ai., 1997 and William ef ai., 1997).

Afternatively, QTL could be identified by using the AFLP technique to construct a

high-density linkage map and using this map together with the genotype and

phenotype data of each marker in QTL mapping. This approach to identify QTL

has been used in barley (Powell ef ai., 1997 and Qi ef aI., 1998a, b). By using 21

PstlMse primer combinations, 550 and 565 AFLP markers could be mapped

using a maize RIL and F2 population, respectively (Vuylsteke ef ai., 1999). The

markers were uniformly distributed and the average distance between the

markers was 2 and 2.5 cM for the RIL and F2 population, respectively. A good

coverage of the genome was thus obtained with the 21 primer combinations used

and over 5 times more markers could be used in QTL mapping than the average

number of markers (about 100) which is normally used in maize QTL mapping

studies.

Map based gene eloning of QTL is the ultimate achievement of the QTL mapping

technology (Young, 1996). This, however, will require great mapping precision
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and therefore a very large mapping population. Alternatively, different candidate

genes could be used as molecular markers in OTL analysis. Although molecular

cloning of the OTL is circumvented, resistance OTL involving candidate genes

will have to be mapped at a high resolution to determine if they actually do

coincide with the candidate gene of a distinct, but related, function (Faris et aI.,

1999).

In this study, it was possible to identify marker loci associated with GLS

resistance genes in maize by using BSA and the AFLP technique. Furthermore,

markers were identified, which could be used in a MAS program to select for the

GLS resistance OTL on chromosomes 1, 3 and 5. The main aim of this study, i.e.

to map GLS resistance OTL, thereby identifying markers close to the OTL which

could be used for MAS in breeding programs for GLS resistance, was therefore

achieved.
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Addendum I: Sequences of cloned AFLP fragments

The original primer combination used to amplify the AFLP fragment is given in

brackets. The size of each fragment is given in base pairs (bps) and the newly

identified primer pairs are highlighted.

AF2.1 (Mse-2/Mlu-5) 760 bps

GATGAGTCCTGAGTAAACAAGC~~rill;@~QSi,Q~~jlii~GCCTTGTCCCTGCTTTCTCTGTGCAG
AGGTCAAGCTTAGCCTGCCCACGGGATAGGAGAGGGATGCCAGGATGGGATTGGGCGCCAGGGTCAA
AGGTGACGGGTGAGGGGTCGCTTTTCCCGGCTCGGTTGCCTGCACTGCACTGCAGCACcTGCACCCTC
TAGTTGACCGCAACCTGTTTCTcTCtGTCTCTCTCTCTCTCTCTCTCTTCGTGGCAGCAGGAGCGTTTTCT
CTACCTTTTTCCCAGCTTTACGTTCGGCCTCGCTTGAGTCTTTTGTTTTATTTTCAAACACCCCGGGCTG
CCCGCCCCGTCTGCGTCTTTTGIIIIIIIIICCCCGGAGGTGGGACCTGGGCCGGGCCTCGCGCGTAC
CCATCCGTTGACCTAGCGAGCGTACCGAGCCGTGCGGAGCACAGGAGTCTTTGCTTGACACCCACGT
CTGTCTGATACTCTGATCTCTGATCTGCCCTCCGCTTTCCTCTGTTTGCCAGCCCAGGGACTGCTGTGA
CTAATGAGCTGAAGCGACACCTCCACAGCTCCACTAGACATTAGTCAACCGTCGGTGAATGGTCGTGG
TTGCAAGGCAGGTGTTGTTGCTAGTGGAGTACTAGCCCTTTA IIIIIIlGIIIIIIIIIIGTTTTTGGCGG
GAAAAGCAAGC~&~~'l~1!f~é~~~ATTTTATGCCAATGTATGGTCCGTGCACGCGGTTACG
CAGTC

AF2.2 (Mse-2/Mlu-5) 174 bps

AF5.1 (Mse-5/Mlu-5) 298 bps

GACTGCGT AACCGCGTGCGp;;"ïtA'j"'i(J~BWj:EG1\:G..l3::lr§.CGGCGATCTGATAGCCAACTTGGTGTCG
TCGTGACCGTGATGATGTGAGAGCCACAGCGCGGGCCTGAGCGTTTTGTGTGCAATGAGCTAGCAGC
ACTGCATCTGCATGCACCGCAGTCAAGGlïrllllll(~~I[~l[,TAGTAGTAGTAGCAGTGTGG
GTCAGAAAACCATTTTCTCGCTCATCCAGAAAGCCCCGCCGGTCCATTTATCCCACGCCAGCCTTGCCA
GGCCCAGGCGCCTTACTCAGGACTCAT

AF5.2 (Mse-5/Mlu-5) 303 bps

GACTGCGTAACGCGTGCACACGGCGCTT~~~1II1'1I1!~!I~TGGAATTCTTGATTAGTGCCGG
GGAAATATCTCTCGTGGGAGGGCATCGGCATCTGTTASGGCTTATACAACCTAGATAATATGTTACGAT
TTTCTAAAAACTAGATGCATCTAAGAAACTCCTTCATATAACCTAACATATCTAAGCCTTATATCTTATTCA
CTAGAATCCATCAAGATATGGACTGTATATGTGTGATATGGTAG~j[~~~Jill[ê~!iICC;ATATTCTGG
TCTAAGCCTTACTCAGGACTCAT

AF6.1 (Mse-6/Mlu-5) 251 bps

GATGAGTCCTGAGTAATTGTATATATCCATAGAGGGTAAACGGATTTACGTACATGAGTATAAAGATTTT
ATA~C:lIi~llII[itGlf.JIICACGTTCTTATATCTCTGTCTGTCACTACGGAACATAGACACTACTA
ACGCTGTTGTATTACTGTCGCTCTCTTGCTACGCGCCCTCCCTCACTTGAAGATCTTCACCGAGAAAGG
AAGTCAAAllti~~~1[~CACGCGGTTACGCAGTC
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AF6.2 (Mse-6/Mlu-5) 258 bps

GATGAGTCCTGAGTAATIGGTAGCTCTGTGTTTCACGCAAAAGAG~tmG[SEïeA(sGeA6~ ~CGA
TGATCCGAAGTIACGCGGGAACAAGCTAGCTAAGCGTIGGGGGGTAAAACACATGTTTGTGGTACGTA
GTACTGCTGCTAGACTAGCACGAGGATTTCACACAACAGTICCAGTGGAAGGCCATGTAcm~tI~m
~t$1II!'JIICGTIGAGGATCCCTCCGCCGCCGCACGCGGTIACGCAGTC

AF7 (Mse-7/Mlu-5) 224 bps

GACTGCGTAACCGCGTGCAGGCACCGGCTGAAGCTGTICCGCGCCGACCC~lI~aqlAe~1t~
roCgcCGATGCCGTGCGGGGCTGCgCCGGCGTCTICTGCATGTICAACACGCCCGACGACCAGGCCCAA
TGCGATGTGAGTACAAGACGGCAGCTIGCTIGCTTTCII[Q~QI!~~CCTCTGCATATIA
GTATIACTCAGGACTCATC

AF8 (Mse-8/Mlu-5) 271 bps

Gi'TGAGTCCTGAGTAAGAGGGGAAGAAGGGCGCCGGACCTAGGCCCACTGC II[f':I1~I:~~lt~~.(;
~CGGTCCCGAGTGCTAGCAACGGATCCCGCATCCCGCGCTKGTGCTCCGAGCTCCGCGGAGTCGGA
CGCGCGTGGGAAGAGGATGGACTGGGATCGTGGGCCCGCGATICAGAGACAGCGATCCGGCGAATG
CAGCATCAGTGGCTGACGGGCGGTCCcl~t~GfD2(G~~~~~~iGCAGTGGCACGCGGTIACGC
AGTC

AF9 (Mse-9/Mlu-5) 235 bps

GACTGCGTAACCGCGTGCTAATCCTAATIccAlml~ïlIl11'1i1:tl~ACGTIQ~T~gG~9~l}T
I~:rrCCATGAAAGTGATATATGATGTAAAGAATGAGTGAGTGGCTAGATGGTTTG.~~I);1IiI11:.1
~~~ICTGTCAACATCACAAACCGTTCTCTGGCTGAGACGTIGAAATGCCACATCTTTATICCATGAAAGT
GATATATGATGTIACTCAGGACTCATC

AF10.1 (Mse-10/Mlu-5) 771 bps

GATGAGTCCTGAGTAACACCTCACATGTCGACACGCCATGCATIAGGCACAGCTAGCTAGCTIACCTIG
TICCCGJ1[~1I~~~j[~~1mCGCCCTGAAGGTCCTCTGGTGGTICCTGCAAGCGCGGTICGC
CGCCGGGGACAGGAACCATATCAGAACCGGTICAGGCCGCCGGGAGAGGAAGAGTAGTAAACTGACT
AATAAGATCTCTGCTIGCGTACTIGCTGCCGCCGCCGGAGAAGAAGCTCATCTIGGTCCACACCTAGCT
AGCTCCGGCCGGAACGAACGAAAGACCGTACCTAACCTGACGATGAGCAGAAGCTGAGTAGCTAGCTA
GTCGTCGGCACTGCACACAGATCACTGCATACTGTGTGTTIACGTATATATAATAATACTATIACATACT
GCTGGCTCTGCGCTGCTGGGCCTIGCCTGGCAAAnCTGCGTGAGCGGTGCGTCTGGATTTCAGTTTCA
CCGGCCGCGCCGGCGCCGCTAGATCTIGCGTGTIGCGCTGCGTCGGGCTCGGGGCCAGCTGCCTGC
TGCATGTCATCATCATICATCACCATGCATATIATIACGAGATCGTICATCAGCCGCGCCCCTGAGTGC
ATAGATGTGGTGTAAAGAGATGGCGGAAATAGGGCGCA~~~£~1[~J~~~TAGCTCA
AATAAAGACTAGCCTGGCTCGCACCACTGATCGAGCTAGCGATGCTCTICATGGCCAGACGTACATGA
GGAGCACGCGGTIACGCAGTC

AF10.2 (Mse-10/Mlu-5) 247 bps

GACTGCGT AACCGCGTGCTCGTGCCTAGCGAGAAGCnnCGAA nnG'I'~Ii'I1lI:~'Iilltlllll1i
CCATGGCCATCAGTATTGACCTAAGATGGTAGAGTGAGATGATGTIAGCGTAAAAAACAGAAACTACAC
ACTGATATATAGTACAATGCACAÏil~~~~ATGAATAAATATIACATITIATCCAGT
CAAAAGATCTAGAAAGTIATGTGTIACTCAGGACTCATC
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Addendum II: Sequences of RFLP probes

The probes were obtained from the University of Missouri. The identified primer
pairs are highlighted. Sequencing ambiguities are indicated with a 'N'.

npi286

GTTTGNAAANCGACGGCNNNGTTGAATTTCNAGCTCGGGTACCCGGGGNATCNTNTAGAGNCGACNTG
CAGGCNTGTCCATCCATATCCCACTGCCACTGGCCAGTGGGCACGGGTCACGCACGCACTGTGGGTG
GGGGTAGGCCTTGTGGCATTGGATTCCCGGCGTCGATCAGCGTCGTCGCGCAGATGTGGGCCTTGTG
GCTTGGGCGCACAATAAAGGAAGGllttDtllll.&II:t'"))lcAACCGCGTCAGTCAGCAGGCTCA
CGGCATGCACGCACGCACGCACACAGCGCTGCGCCCGTCCCTCGTCTCGTCTCTCATCTGCGCCAGG
ACACCAGCGCACCGCACAGAGGCCACGCACGCAGCAGTCTAGAATAGAACGAGAGAATCATCATTCGA
GAGGAAGAGGTCAACAAGAGCTACAGCTACCTATCTATAGGGTGTGGTGCGTGCCGTGCCGCGACCG
ACGTGCCGTGCGCCCGTGCCATTGGCGCTGGTACTGGCCGTCGTCCGTCGTCCAAGTAGCCTCTGAG
TCTGATTATTCCGGNCGCTTCACTGTGCCTGGCGGCG~IIIIIIJm~jlNTCCTACTA
CCACAGNCCACGNCGCATCCCATAACCTGGTGTCGCGNTGGCTCTTGAAACCCACGTNGTCCCCTGNG
NCGNGCCGNNCTNNANGCANGCAANNTTNGCGDNATCATNGNCNNNNNNGGTTCTGNGTGNAAATGT
ATCCGNTCACAATTCACACAACATNCAAGCCGGAANATAAAGTGNAAANNCTTGGGNNCCTAATGNGTG
NGCTTANCTNNNATTAATTGGG

umc11

GTTNCAAACGACGGCNAGNGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGCATA
AATGTATGGTGCATGGTIi.III:'I ••• tlltJ:~i:,ACACCANCACTNTNTTTGNGDTNAANATCGTT
NCNAANAACCTNTGNNTCTNGACTCTGANTNAAGNNNAACTTCCTTCCGGNACGCGNNNNCNGGGGGC
NGNAANANATACNGANGGTNCNNNATCATCAATCCANAATTCATANANNCANAATGCANCGANGTTANA
NANCNAGGTTANGCGGNATGNATGTGTATAGAAAATATNCAATGGNTNCAANGCATCACAANTGCCAAT
NCGTGTCANGACTNATGANCAATCTAATAATNANTATTTTATTCCCCGCCTAACGTGAGGCTTCAGGGAT
AAGCAGGTAAAAAGCCHCAATTCTAGTAAATGATGCCCCCCNGGNCGTCTACCAAACACGACATCTTTC
AAGCTAAGGGGCGTGGTGGATGCATGAACTCGTTCGCTTGTNCTTTCCCTTCTAATAACTTATTAGACC
TGGCATCAGTTNCATCTTCCTAGCTTTGAGTCGGGACTAAAACAACTCGAGGACCGGAAACTGTGCTAC
GgCAGAGCTGGTCCAACCTACCAGTNCCAATCCCAACTAGNAAAATGTTGTTNCGGTTGNTTGAGATAG
AATTTAGTTTNACGTTCCACTGTAATAACATATATGTGGAATGATGCGGATTTGACTATATCCAAATAATA
CTTTAGTGCTAACATGTCTTATTATTCGCAAAAAAAGGCACACCAAATTAACCCATATAAATGTTTCTTGC
GCGTTGGAAACACACGTCCCAATTTACGCTCGGACATGCATGGGACGAATAATGGGTGATGCCTGGAC
AATGCATGGTAGTAGTATCTCCGGCGCGCCGTCCAGc.lIIl~i.~lcACCCTGCAGG
CATGCAAGCTTNGCGAATCA

umc76

AAANCGACGGCNANTGAATTCGAGCTCGGTACCCGGGGATCNTCNANAGTCGNCCTNCAGNATGTNAT
Acc~~1II11r~'I~IIIrJl.GCTTTGACTGTATTATTCGGNGTCCAGCCCCCTACCAGNTCCCCCA
TNTCCACTATTGCTCGGTAATAATTCTGGCTGCGATGGCACCCATATTCCTGTGAAACAGGACATTGAT
GAGCCGCTTCCTACTCCTACATAGACACTACGAAAAGCCCACTGGGCAGCAGTAAAGTATGGCAATGT
ACAACGTGCAATAATAGAACAGGTGGTGTTTGTTAGGAAAGACCTAATTTCACGGCAGTTGGCAGTGTG
GAAGGACTATCTCGTGGTGATGCCAACATGCAAGTACCCAATCAGGCTTCCACAAGAGAAGTATTTGTG
TGCTTGCTGTTGCTGCTATGTTTACTGGGTGTAGAAAAAAAAAATAATATTTGGCGGTGAAAGCCTGGT
GGAGAACTGTTTTCAGTCGTGGCCACATGTGCGCACGGCATTCATGGTGAAAACTATTCACTCTAGCAA
AGGG~t~,.1III1iI1IB1Ir~ATCAGATCGAAAGAGGAACAGGGGAGCAGCAGCTNTCACCGCT
GGTAACAAGAAAATCATGCTCTATTATTGATACTTTATGTGTACTGNGGCATGCTCTTTTGGGAATANGN
CTGNATTCNGGACAAGTACAGGTGCNTGGTACCTTATTTCANCIII IIIICCTTTCTTTAATTTGCTACTN
GGCGCNTGCANGCATNNCAAGCTTTGGCGTAATNATNGNCNNAGCTGT
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urne13

GTTGTAAAACGACGGCNAGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGCTC
TTACAAAGGTTTTCTCIIIIIIIAAGAAAAAAAATCTGCCTCCATTTACCGTAGGTGATTCTTCCTGGACA
TTTTTGTTCCGCGGCAAATTAAATAGTAATTGAACCTATGTTTCACATGAGAAAATTGCTAGTAATCGGG
TGTTTGGAAATGATTCTGAATCTTGCGGACTTAAATCTGAAACCAATCGTCIiIt~~~~~
mAATTGATCTGTTCATTTCCAATCAGTCAATCACCAAGCCCTAGAAAACGGACAGCTAGTTCAGTAGTTC
CCGCATCAGCGCCATTGCTGATGGATCGAACAGCTGACGCGAATGAAAACGACATGACACCGTCGGG
GAGATCGTTGGATGAGTTCCGAGCGATAACGAACTGTACGGGCAGTGACATACACAATGCGTGCGCGC
ATGCAAAGTTGATTGGAATCCAATGCGTCCAGCTGATAGGAGTATTTACACTACAGATACACTCATAGTT
GCTAGGGTAGGTGATCTTGAGATGCATCTTGATCCCTCGCTAGTTAGTACTATTCATGCTATTTGCTGCA
GGCATGCAAGCTTGCGTAATCATGGCATAGCTGTTTCCTGNGTGAAATTGGTATCCGNTNACAATTCCA
~~~f~,II~l3G~NTTAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA
ATTGGGGTTGCGCTTNNCTGGNCCGGTTTTCCAATNGGGNAAANCCTGNNCNNGNCCAANTNGNATTT
AAANGAAATTGGGNCCAANNCCCCCCGGGGGAAAAAGGCCGGGTTTTGNCGTTNTTTGGGGGCCGCN
IIIIIIICCGGGTTTTCCTT

urne8

GTTGNAAAACGACGGCCAGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGCT
GAATTTCCTTCTTGCCAGCATCATTTTCATATTTGAGAGCATACTTTGTGAAA~~~~~~~
~;CCAGTTCTTGTAGAACCTTCTCCTCACTTCTTCGCTAAGATGTTGGGCCCAAACAGAGTTGAGTGTG
CGGAGGCCACGAGGAGTCTTCACATATGCCACGAGCCCAACAATGACAAGAGGAGGGGTTTCAATGAT
GGTAACAGCCTCACAAGTTTCCTTCTTATGGAGTTCTGTAGAAATCAAGTAGGCAGAGCAGTTACGATA
ATGGAGTGAAATGGTATCCATATACTCGAGATTCATGGGTGCAAGCAGTTGTGGATATTCNAACCAGAA
AANTCTATTGTTTTGAAGTAANTCTATGGNCCTTGTNAANANNATAGTTGTGNNGGCTTATNCATCNAAA
ATTTAAGTGCCNTCAAATTCATAAAAAAAACTTAAAACTNNTTGGTCAGAAATNCAAATCATGCTTATGTT
NCAATTCATTTTTCAGATATAANCAAACTTGGACTATGTCATCAGCTTAATTGATTANCAAAANCGAAGG
GGGTGGACATACTGGATCCTGGCTTCTCAACCTCACGGNCAATGTGAGTCATGCCAGCCTTGTAGCCA
AGGAAGNCAGTGAGATGGCANGGCTTCTTGGGGNCATCCCTAGGGAATGACTTCACTGNAAAAACAGG
AAAACTACTATCAGATTTTGGACATTAAGTAAACCTGCCAAAGGAATGTGNATNACCATACTAAACAGGT
TAATGTTCACAGCAACATAATTCAATTGTACAGCACGTTTTCAGATTATACATAATGTTGGATTGCACTTA
TATGCAATAGACAATCCTTCACTGACGGAAGACAACCCTATGAAAATTATTACTTAAAAACACCACTAGC
GGAGTACATGTTGTTTAAATAGAAGGAACATAAATAATACTTCAAGTTCTAAAGGTTGAAGGGTAGAACA
TTTCAGATGACACGTATCGGGACAAGGCAAGCGAACAAAGAGGGAGTAAGAGATGCGAGCGTACCCTT
GCCGCGGTGACGGGAGGAGCGCTTCCTGGGAAGGAAGCCGAGGGAGCCGTGCCTCGGGTGCTCGAI
~i[~;(~1[~~CCCTCCTCCTCTTCCTTACCTGCAGGCATGCAAGCTTNGCGNAATCATNG
TCANAGCTG

a5g30

AAACGACGGCNAGTGAATTGTNATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCGGGGATCC
TCTAGAGTCGACCTGCAGCACCTTCCGGGTAAGTAATATTTTAATGGGTTTTTATCTGATTTCTAACCTG
GTATACTCATCAATTATGTGTATGGTGTACAAGTAATTGACCATATCGATATIm~~~0~~~m1[t,J1~
~GCCTCCACTACCTGTCTTACTGCCTTCGACTACAGGTCAAGGACTGCAAATTAGTGCACAACTAACAC
GGCGTGATGGCCAGATATACTATGACATATCTTTTGAGAATGGCACCCAAGGTGTCCTAGATGGATTTA
TGATTCAGTTTAACAAGAACACATTTGGTCTTGCTGCTGGTGAAGCACTTCAGGTTCTATAGTGATTATA
TTCAATAAGTTACACCAACAACIIIIIIGTTTGAGTTTCATGGACTGAGCTCGATGTTTGTCTGTGATTAA
GGTTACTCCACTGCAACCAGGCCAATCAACAAGGACACTTTTACAAATGACCCCGTTCCAGAATATCAG
CCCTGGTGCACCAAACTCGCTACTACAGGTTGCTGTGAAAAATAATCAGCAGNCAGTGTGGTACTTCAA
TGACAAAATTCCGCTGCATGTTTTCTTTGGTGAAGATGGAAAAATGGACGAGCTGGGTTTCTTGAGGTA
AAAAGCGAACTCATGAACTCATGTTTGCGNGGGTTTCCTGGTTCCTTTTCTTGGNTTTGCAGTCAAGGC
GAATGATGNNTNNTTACAGNCTNNGTTGATTAAAGCNNNNCAGTGNATCAAGAAANCCATGTTTGGTCT
TTATTTGAAACNNAANGNNTNGTTTGACNCAGGCCTGGAATNTTNNNGNNNACATNAATTCCAAAAATT
CCGGCTTTTCNNNNNNN NNNNNNNNNNCCCCCCCCCAATGGTTTTTGGGGTTTNCCTTTT
CCAAAAAANGGNAAAATTNNTTAAAAANGNNNCCCCGGGGAAAAAAATGGNCCCCCCCCAAGGGNCCC
TTTGGNAAAANTTNCCTTTTGGGCCCCTTAAANTNGCCCAANTTGGAATTTTTNNCCAAAAANGAAATTT
TCCCCNGGGGGGTTTCCGGGTCCAATCCAAGCNAGGCCAATAANAAGGCNAACTTGTTTAAAGCCCCN
TTGGTANGCATCCAAAATGNGGTTCTTTCANAAGCCAAAGCGGAAAAAAATGCGGAACATGGAATGTTT
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CTGGATCCTCTCCNGCGAAANATGCCCCGTGGAATCCCCTTCCCTTATAGAGGTTACANCCGTGGTTG
GTGTTCCTGGTGTNAAGTGTNCAGTCAAAACACCAAATAGGGAGATGGTTCCTCTCTTCTTTGAAGCTA
TGGAGGCTCTCACCAAGTGACGACAAACTTAATGGATCTGGATCGGTGGTTCTACAAAAAAAATACCAG
TCGATGAGCTGCTATAGGTGTTTGGACGTGGCATTTTATTTTTCACGGAAGCTGGTGTGAATTGTAGTTT
TTTTGGTATTAGATTACAGTATTTAAACTGCTAGTTTCCTGGTTCCAAAGIIIIIICACCAG~r~ct~~
I~IIII~~~~ITTGCATGATTTGTACATCTTACCATGTTGTATGAAGCGATGAAATTGTAGGTGACGA
AAAAGTAGAATAAGCATAGATTAACTGGTACGATTGTGGATTGTTATTAATTTCCCTGCAACCCAATCAC
TATTTTAATGGTGATGTATCTATATTTTTCAAATGGACCACAATTCTATCTAATTACTACATCAAACCTAAA
AGAATAGTCTACATAAAAAAAAACTACTTAGTGATTTCTATGATAGGTTCCTATGTCCTGCAGGCATGCA
AGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTNGCGNAATCANNGTCAAGCTGTT

npi262

AAACGACGGCNNGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGTCGAGTCA
AGCCCGCGAAGliQm[~~~JiI~~CCACCTGGACGAGTCGTACGCAGCTTACCTCGTCGC
GCACTAGCCAAAAGCGGCTTTGCAAGAGCCTCAAGATCGCGCCACCCCTGCTGGTTGCCGCGAAGGC
CCCCCCACTCCIIIIIIGCGTCGTTGCGCGCCCTGGGCTGGGCGGCTCACATGTGCTTCACAGCTAAT
CTCTAGGCGAGCGTTGAGAGCGAGCNGGAAACGCNTCTCGTCACGTCGTGTTCCATCGNCTCGAGAAT
GTTTTCACCAACTCTCCACCCGGCTCCTAATCCTCGGGTTTTTAAACCCTNCCCTCCTGAGATTCTCCAA
TCAACATAACACTTGGCTCG~h1lIfJrfl~,;Jte~NATTcTTCTTCTTCTGGCTAGTAGGGTTTT
ATCATCTGGCCGCTCATTGCTGCCAACAATCTGCTGTCACTTCTGCAGGCATGCAAGCTTTGGCGTAAT
CATGGCATAGCTGTTTCCTGTGTGAAATTGGTATCCGCTCACAATTCCACACAACATACGAGCCGGAAG
CATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGNTTACTGGC
CGNTTTNCAGTCCGGNAAACCTGTCGTGCCAAGCTNGCATTAATNGAATCGGNCCAACGCNCCCGGG
GANNAGGCNGGTTTGCCGTANTTGGGCGCTTNTTTCCGGGTTTCCTTTGGTTNAATTNGACTTNGTTTG
AGCTTTGGGTCNGNTTNNGGNTNTNNGGCCAAANCNGGGNTTNNAGGTTTNNCTTTAAAANGGNNGGG
GAATTACNGGGTTTTTNCCCCCGAAATTNNGNGGGGGTNACCCCCCCGGG

asg75

GTTNCAAACGACGGCNNGNGAATTGNAANNCGACTCACTATAGGGCGAATTCGAGCTCGGTACCCGG
GGATCCTCTAGAGTCGACCTGCAGCATGTGCTATGTTGTCTTGAATCTTACATGAGCTAAATTCTGAAGT
GTTTTCTTACTGACGAAACCATACACACCTTTGCAACGCCATCCTAAACTCTTCACATGTGTTATTAGGT
GTGGGAACATGAAGTCGATGGCAACACAACCTATCAAGTCTGTGATGGCAGCGGTGAAGACCCAAACT
GTTGCAGGTGGGGGGCGGGCGCCTGTTTCGATTCGGCACTGGTAGCTTCAGCCTGTCGCTGCCTAGC
TCAACACTTGTTCTTATATATGATTAGGGCTCTCTGTTTTTCCTTTCCTTCTCCAGGAGTGTGTTTGCGCT
GTTCTGGAGCGCTTCTGACCATTTGACCTACATGGGAGTTGAGATAGCGGCCGACGACTGGAGCACCT
GCAGGCATGCAAGCTTGAGTATTCTATAGTGNACCTAAAATAGCTTGGCGTAATCATGGTCATAGCTGG
TTNCTGTGTGAAATTGGTATCCGNTCACAATTTCACACAACATNCGANCCGGAAGCATAAAAGTGTAAA
GNCTGGGGGTGNCTAATNANGGAGCTAACTNACATTTAATTGCGTTNCGCTTAANTGNCCGCTTTCCAG
TCNGGAAACCTNTNNGTGNCNACNTGCATTNATGGAATNGGGCAACNCNCGGNGANAAGGCGGGTNG
CNTATTGGGCGCT

umc227

NAAACqACGGc:NNGTGAA TTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGG~~Ï,.
~:@im~~~'irAl[~CCAAGCTGGTGTTCATGTCCCTGAGGAGCAACCAGATGTTCTCGGAGTCGGAG
CTCGCGGCGTGGCGCCANAAGGCACGCGGACCAGATGCAGCAAGCNGATCACGCCGGANGGNAAGA
GAGGNCGNCGGNCAGGGGACCACCACGTCACACGGGCTGNTGCGCCGNTTGTTGCAGCCGTCCGCC
GCCACGCCGAGGAAGAGGAGCGCCGCCGAGACGAAGAAGCAGGAGGACGCCCGCACCGGCGGGAA
CGGCTACGGGGAACCAGAGAGGGAGGCCGCGCGGCGCCAGGGAGACCAAGGCCACGGCGCCCACG
CCGNCGGGAAAGAGGGCGAGAAAAGGTGTCAATTTGCCGTAAGCCTGCGCTGTTTCTGAGTTCTAACA
CTGAAACAAAATGTAGCTGACACGCTGTTCCGATCCATTGGAGACGCAGCAGCAACGGCGGGCTTTAA
CGGCGGCCGCGGTCTGGTAGCTNGAAGAAGGCTCACTTACAATGACGAAGCTTGCTNGCCGATCAAA
GGCTGGCGGGAAGATAGCCGGCGACGCCNGTCTTNCAAGGCCG~~I[~K~~~G~G~TAAG
ACCCACTGACCGACCACTGGGGGAGTTCGGGTGGCCAAAAGTCTATTCTGAAGCATTTTTCTGGTGCA
AATGCAACGCAAACCGTGCAGCAGCCGCAGGAGCAGACGTTCCGAGGCAGCCTGCAGGCATGCAAGC
TTGGCGNAATCATNGTCAAG
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npi279

AAACGACGGCNAGTGAATTCNAGCTNGGNACCNGGGGATCNTNTAGAGTCGACNTGCAGGNTACTTCT
~~~~'~ G~ NACGGATCANAAGACACTACTGCAACAGTTTCTGTACTTCAGTTC
ACCTAATTAATTTACATGTGTCTTAATTATATATACATATGAACTCAGCCATGAATGGTTCTAAGTTTCTCA
TCGGTACAAGATATATATCGATGTGCCGATTAGATGAAAAAGAAGCATAAATCCAGACTAGACAGTACA
ACGACACAAGGGAANCANCAGAAANCAACAACGACGAAAGCAACAAAAACAAAACAACAACAACCACG
GTGAATTAAGTAGATTTAATCTGTGCAGTGATGTTTTCAGTCTATGTTTGTTTGGTTGGTGTGCGTGGGT
ATCCAGTGGTTGTTACCTGGAGCTGATCTTGTTCTGGGACTGAGTGCATGAGTGCTCTCAGATTCACTG
ACAGTAGA TTTGTGCAGTGCCCAcAccGA'A"GJm~~S~:i\GCIGm?~ATGCTGTTCCCCGGGACACTC
ACCTGCAAAACACTGTACGATTAGCCATATAAATTAACAAAGAATTGAGAAACAAATGAAATCAAAGATC
AAGGTAGATCGAGAGANGACTGGAGTGAGATTTCACGCCAGGTATATATAGCTTTTCTAGCCCTACTTT
TGNTGNCCGTCGTCAGNATTTCTCACTTTAAGCAGCTAGCTACCANCGCTGCAGGCATGCAAGCTTNG
CGNAATCATGGCATNCTGGTTCCTGGGNGAAATGGTANT

npi598

NAAACGACGGCNNGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGAATATAAA
TCACCAAATTTTCCTCCCTCATACAGTCAGAAGGCTTCTGIIIIIIIIAACTTGTGAAGACACACACATTT
CACAGCAGATCTACCGTTTCTTGGAA~IIl$GA~$~l~I~~~cATcccAATAACCAGCACTGTG
CTCTGGCTGTCACTCACGCCGCGCAGAAACATGGCCACCTCCTTCTGCGGCAGCTCCGCCGGCCCCG
AGTAGATTGCTTCACCCCATCCGAAGTCCGCCGCGCGAAACCTGAGTCGATTCCAAGCAGTGACCAGG
GTGGTTGCCATTAGCGACGGGCGAGCACCGCTGTTCAACTCGATGTAGTCAACGGCGGAACGGATGA
ACGCGTCGTCGGTGCGGACGATGGCTTCTCTGATGGAACGGGCAGCCGCGGACAGTGGTTTGCTGAG
GAGATCCCTGGCAGTGGAGATGCAGCAGGCGAAGATGATGGCGTTACCCCAGAAGCCGGGCGGCAA
GGGCGGGTCGACGCGCAGACGGGCGTNCACCGCGAACAGCAGCTTGNTCTTCTGATCGGGGAGCAT
NCGCAGGGCCCGCGTCCTTGATACCCACACGAAAAGCCCGTGAGNGCGACGAAGACGGAGCTCTTGG
TGCCTCCTTGCCCTTGTTCGCTTGCGGCTTGCTTCAGCCTGTGCAGCTTGCCTGCGTCGAAAGTGAAG
GAGCGGTAAACGCACGGCTCCTTGCCGAATGTGCCGGCGAGGCCGGAGACGTCCTCGATCTCTGCGA
ACTCGTCATGTGCGAAGTCAACCGTCGGGATCGGCCTGGCGCGCTGCACCGTGCGGTCGAGGTACGG
CGGCGTCGACATGGCCACACCACGCGCGGTCTCCGCCCAGGAGCAGATGAACTCGGCGGCGGACTG
GCCGTCTGCCAAGCAGTGGTTCATGGCGAGCCCGAGGACAAAGCCGCCGCACTTGAACGTGGTCACC
~~C~CGGTCAGCATCGGCGCTTCCAGGGCGTTCTCGTGCTGCATGCTGACG!t"1J~i~lllp~~I~tt
I~~GTCAGAACCCGGGGCCGTTGCGTCACAGACCACCTGCAGGCATGCAAGCTTGGCGNAATCATN
GTCATAGCTGT

bn15.59 forward

CNAGCTCGCCCGGGGGATCCTCTAGAGTCGACCTGCAGCTCCTGTGCTGTCGTCTGTACATGGCACG
GACTGCTTCTGGTGGCCCTGCTAATACAGATTGCTATGAAATGGCCTGTTTGCGTTCTGTGCTGGGATT
T~~~~m~~~~~GGTCACCTCCCCGGCTGACGGCATTGCTGAACGTATGGTGCACTGC
GGATGTATGTGCGTGCTCTGTACGGGACATTACGCGTTGTTCAAACGGCACGGGCAGCACGGCTGTGC
CACAGGCGAGTGGTCGTCGGCAATGGCAAGGGCATGTCGGCCAGTCGCGTCCCGCCGACGATGCCG
TGCCCCGAGCCGTTTCTCTTGGATTTCAGTCAACAGCTGACTTTTGGATAGTTTGATGGAAAATGGTTGT
GGAACTCGCTTTTGGGAGAAAAAAAAAAGTAGCTCTGGCATGAGCAGAACAGCTGCCGACTGCCGAGG
GCGCCCACAAGGTTAGCCTTAAAAGAAGTGCAACAAGGGAANGGCACCATTGGCAGTANGATTTGGGC
CACAGCCACTATTTCTGTTAGTTGCANCGTGTGCTCGCCANTGATCACACGTCCTCTACGAAACTGCTG
CTGTCTTGTGGGCCTCACATCTAANCATCCTCGCCCAACTGTCACCTCNCTTCGTAAACGGCGCTCCAC
TNCTCCAANTCCNAAACCTNTCCAATCNATTTNGAATTTAAAANTTCNNAANAAAAAGNAAAAC
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bn15.59 reverse

AGCTATGACCATGATTACGCCAAGCTTGGGCTGCAGCCGTGACTGCCTGTACTTGTCCCTTGTAGTCG
GCATCACGTTCCAGGGGATCCCTTGCATATCCTTCCCCTTCCTCACGTCCATAGCCGTGATGTGCTCAG
TCGCTTTACTCGTCTACAAACAAGCACACACAAAAAAAATTTGCGTTCGTGTTAGACCATAAACAAAACG
TTTCTAGCTGCATT~t~~e~~~aT4~~IIIATGATGATGATGAGACTAAAATTAAACGAACCAAAA
CAATGGTCAAACAAAAAAAAAGGTCTGCATTGAACCTGATAGGCATTCATCAGTTCAGGAGCAGCATCG
CATATACACGTATAATTTCAAGGCATGGGCACGGAATCAGCAGGGGATTGAGGTTGAAAGACGAAGAA
GTGAAGAGAACGGGGCTAAGAAAAGCAGGAGCGTCTCACACCAAAATCCCACGTCCGCGACTCGGAC
TCTCAATGACAAAGAACAGATGAGCGGGTGGTTGCGCTTACANGTTGGTCCAGCTCATCGTCGTCGGA
GCCATCCATTCGAACGGCGTGGCGGTCTCCTTCTTCCGGATGAACTCCGGTGAAGTCCCCGTCGCGCT
NCGACATGGNCCGTAAGAACGCCCGCCGCCCCGCAGGCAAAAAGGCAANTTTGAACCAGACCANATTT
TTGCNCCANGGTCTCCNGGAAANNTTTGCTGCAAATTCTTNCGTTNGCNCCTTGANNGGNTTCNCCGG
NNTCCAAACCAAAGGANCNANCCCTGGGNTTGTNTTGGGTTNAAAATNTGGGTTCCNANTTTTC

uaz249

TGTAAACGACGGCNNGTGAA TTGAATTTAGGTGACACTATAGAAGAGCTATGACGTCGCA ~l!11.~'I
[~ATCCTCTAGAGCGGCCGCCCIIII I11111111111111111111111111IIIIIGATA
GATACTACTGCTCCATTTAAGTTTCAACCTCAGACAGATCTAAATGAGATACAATTTGAGTAACCAACAT
CTGAATGCTTGATAGGTTGGCGGATAAAGCAAATCGGGGCAAGCAATTACGCCTTCTGGTTGTAGACAT
AGGTGAGGCCGCACTTGCCG~~ill[~~êml~]i~~GTTGGCCATGAAGACGCCCGCGCCGC
ACTCTGTGTTGGGGCACTCCTTGCGGAGGCGGGTCACCTTGCCTGTGGCGTCGTCCACCTTATAGAAC
TGCAGCACGGAGAGCTTCACGGACGCGTGGGCGGACGCGTGGGTCGACCCGGGAATTCCGGACCGG
TACCTGCAGGCGTACCAGCTTTCCCTATAGTNAGTCGTATTAGAGCTTNGCGNNATCATNGTCANGCTG

urne5S

TGCAGCCTGGCTCAGGCGCAAGGAGAGTGGGTCGTCTGCCGCGTCTTCCAGAAGGGCGGCAACAGG
CCGAGGAGGAGGCAGCGAGAAGCGTCGCCGCCGCCGTCCGCTAGCAGCAGCTGCGTCACGGATGCG
TCGAGCTCGGACC~~!~l~ll(~~~~CTTAGCTAGCTAGCTAGCAGAACCGACCGTACGT
GCCGGCTGGCCACAACATGCAGTCAAGAACGTACGTACGTATATGTATACCGCCACCAGCTCGTCGCG
CGCGCAGCTGTGCTTGTGCATGCCGTACGTGTGCGGCCGGCCTNGNACNTCGATCTTCGANGAGAGG
ATGTGATCAAGCTGAGTTACGGATAAGGGGGAACAACCCATCCACACGCACTTCTCCTCCGATCCAAC
ATTATTTGTTGTTAACTAGIIIIIIICTTTTCTTTATCTCTTTCTTTTGCACTCTGTACGTGTAATGTAATGC
AGTGTAATTTAATTAGTGAGAGAAGCATGACGCCCTACTACCGGCCGGATTATTAGTTAACAGCAAATTA
ATTACTACGTACCTACTACTCGCGTCAGCAGCTTCTACTGTACTTGAGGTTTCAGAAGCCCAATATGTAT
ATTGTCAAATTTGTAACCTGCATTATATGCAGAGGTCGTCGTCGTACGTGTCCTTAAATTAGTGTCTTTG
TAATATCTCTTCATGAAGCGAGGAGGAAGGAAGGAACCTGAATCCATGCGTAACAGCGCAGTCGTTGC
TGCATATATGCGTTGGGCTCTGTGTTATTTGACTGTGTTTCTGCCAAATCTGGATTTAATTTGATCGCTC
ATTAATTACATTTTTCAGRlliIMI.~.It.f,IAAAAcAGGACGGGCTCGCACCGTGCCGCGCC
CCTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCT
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php20855

GTGNAAAACGACGGCNNGTGAATTGTNATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCGGG
GATCCTCTAGAGTCGACCTGCAGGTAGGTGCCACGGGCAGCCGTCGACTTCTCACTCCCTCTCTCACG
CGCG~~~T~tiG~~CTCGATCCGCCGCCCTGATCCCCGCGTGGTCGCTTCCGCAGGC
CGTTCAGCGACGATGAGGTCCGAAGCAACGCGCCGCAGGTCATCACCTGCAACGACTACCAGCGGGA
GGTCGCCGTCACGCAGAGCATCGCCGGGAAGCAGTTCGACCGGGTCTTCACCTTCGACAAGGTCTGC
TGCCCCCTACCTCATTTGTAACCCGAGATCTGGGAGTTTCAGTGACAGGATGCGTTTTCCCATTCCTTT
GTTTGGTTGCATTTGATTTTACTGCGACGAGGCTGTGGCTAGCTCAAGTTTCAGTGTGACCATTTCAAAA
CTTGTCAACGCTTAGCGAATCCCCACCAGTATTATTTTGTGTTCGTTCCCCTGATTGACTCTGGGGACAT
TTGATACCTAGGGTTGCTTAACCAATTANAGGTGTTGGTTGCATCCAAACCAAGCTCNATTTNGTAGTNG
NAGCGCCTAACNTGTGANTTTAAACAAGTCATGTTTGNCTNCANTAAAATATNCAATACTCATGCTAGTA
TAAGTGCTCTGTGNTAAANGCAGTGNAAGACAGTGATNCAATCATGGTAAGCTNCCATNNAAAAGNTAG
TGNAAGNTTGNACCACAAAGNCACNAAAGCCTTATTTNGGTTCAAGGTTTGGCTTGCCANGTNNANANN
TTGNAACATGCAGNGCCTTCATTCTATTNCCAGGTTTTTGGACCGACAGCAAAGCNGAANGGACTTGTN
TGACCAANNCANTTATTCCTNTCGNNAATGAAGGTCTTTGGANGGGTTTCAANTGGCNCCATATTTGCG
TACGGCCAGACAGGCACTGGAAAAACATACACCATGGAAGGCGAGTGCAGGAGGGCCAAGGCAAGTC
TATGCTGII IIIIATGACTGTATTATGCTTCATGGTTGTCTCATTCGCTGATGACTACTTGTGCTCGAGTG
CTTGCAGAGTGGGCCAAAAGGTCAATTACCTGCTGACGCTGGAGTTATACCTCGGGCAGTGAAGCAAA
TCTTTGATACTTTGGAGl6l'im!i1Ja~l:tg.U!9<lTGTTAAGGTCACGTTTCTTGAGCTGTACAA TG
AGGAAATTACAGATCTTCTTGCACCTGAAGAGATATCTAAGGCCACATTTGAGGATAGACAGAAGAAAA
CCTTACCTCTTATGGAGGATGGGAAGGGCGGAGTTCTTGTTCGAGGTCTAGAGGAAGAAATTGTCACG
AATGCAAGTGAAATATTCTCTCTATTAGAAAGGGGGTCTGCAAAGCGCCGCACTGCAGGCATGCAAGC
TTTTGTTCCCTTTAGTAGGGTTAATTTCGAGCTTNGCGTNATCA

umc23

GGAATGTACTCTCCTCGCCCTGCACCGGCCGCTCGACGG~;:fml"I~IIII!tl~tl~TCTCCTCG
CCCTGCACCGGCCGCTCGACGGAGCAGTCGCGCGGAGGAGGAGGAGGAGGACGTCACGCAGCTGTC
GGCGGAGCGGTGGCGCATCGGGGAAGGCGAGGTGGAGCAGCAGGAGGTGGTGGAGGACAGGCACC
CGGTCCCGGTCTCCACCGCGGAGGCCAGCTCCGAGAGCTCTGCCTCCGCGCCGGTGGCCGGCGAGC
CCAGTATGTGGTCGGCGAGGGCCTCGTGCGCCCGGCGCAGCACGGACTGCATGTACCTCCCCTGCGC
CTCGATCCTCAGCTGGAGATGCCGCTGCACCTGGCATGCATGAATGAACCGAGCTCAGCAGCTTGATC
AGAAACCAACCATAAACAAAATCTGAAACCACGAGCTCGGAATGGTGATCGACCGACACCGACCCATC
GTTTACCTCGATCTGCATCTGCTCATGCCGCTTCCTTTTCGCCTCTCTCTGCACCCGCGCCGCCATGCA
ACCGGAAGAATCACCATGCAGGTCANNCGACGGAACCGTCGTCGTACTTCGTTCCACCTGGCTCTCNC
GAGI~IIl~I~~]iGCCCCACCTTCCTTTGGTCGCCCTCGCCCCCACCGGGGGACGCC
GGTGGCCCTTGGGCTCACCGGCCAGCCCCGGTACCC
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Addendum III: Datafile used in QTL analysis

A = homozygous for the allele of the resistant parent
B = homozygous for the allele of the susceptible parent
H = heterozygous
C = homozygous for the allele of the resistant parent and heterozygous
(dominant marker)
- = missing genotypes

data type f2 intercross

230 21 1

*bnlg147 HHHHABHHAHAHHHHHAAAAHHHAHAHHAAHAAAHAHBBHAHHAHHHHHHHBAHHHAAH
HH.BHBHBHHBAAABAHAA-HABHHHAAHBAHHAHHBHHHHABBBHABHBHBHHHAAHBA-BHBHHHHAAHB
HHHHHHHHHHHHAHBAHAHBHHHBHBBBHHHBHBHHBBBHHHHBHABBHHHBBBHHBBBBHBHHHBBHHHB
BBAHHBBHHHBBHHBHHHABAABBBBHBB

*phi001 HHHHABHHAHAHAHHHAAAAHHHAHAHHAAHAAAHAHBBHAHHAHHHHHHHHHHAHAAH
HABHBHBHHHAAABAHAABHABAHHAAHBHAHAHABHAHAABBBHABHBHBHHB-AHBAHBBBHBHHHAAA
HHHHHHHHHHBHABBAHAHBHBHBHBBBHHBBHHHABBBHHAHHHABBHHBAHBHHBHBBHBHBHBHHBBB
BBAHHBBHHHBBBHBHHHABAABBBBHHB

*asg30 HHBHAB--AHAHAAHHAAAAHHHAHAHHHA-AAAHAAHAAAHHAAHHHHHHH--AHA-H
HABHBHBHHHHAABA-AA-HAHHHHA-A-H--HH-BHHHAAHBBHABHBHBHHBAHBBABBBBHBH-HAHH
HA-HHHHHHHBHABBHHHBBHBBH-BBBHH-BBH-ABBBHHH-HHABB-HBBBHHHBBHBHBBBHBHHBB-
BBA-HBBHHHBBBHBHHBABAABBBBHBB

*us45 CCBBCBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCBCBCCCCCCCCBCCCCBCCCCBBCCCBCCCCCBCCCCCCCBBCCBCBCBCCBCCBBCBBBCCBCBCCCC
CCCCCCCCCBBCCBBCCCBBCBBCCBBBBCBBBCCCBCBCCCCCCCBBCCBBBCCCBBBBBBBBCBCCCBB
BBCBCBBCCBBBBCBCCCCBCCBBBBCBB

*b.nlg2086 HHBBABHHHAAHAAHHAAHAHHHAHAHHAAHAAAHAAHAAAHAAABAHHHAHHHAHAAH
HABHBHBHHHHHABAHAHHHAHHBBAAABAAHHHAHHHHAHHHBHHBHBABHHBHHBHABBBHHBHHHAHH
HHAHHHHHHBHHHBBHHHBBHBBHHBBBBHBBBHHHBBBHHHHHHHBBHHBBHHHHBHBBHBBBABHHHBB
HBAHHHBHHBBHBHHHHBHBHABBBBHHH

*us44 AHBHABHHHAAAAAHHAAHAHHHAHAHHAAHAHAHAAAAAAHAAAHAHHHHHHHAHA-H
HABHBHBHHHHHABAHA-AHAHHBHAAA-AAH---H-HHA-H--HHHHHABHHBHHBHHBBBHHHHH-AHH
H-AHHHHHHBHHHBBHHHBBHBBHH-BBBHBBBHHHBHBHHHH---BBHHBBBHHHBBHBBBBBHBHHHBB
BBAHHBBHHBBHBHBBBBBBHABBBBBBB

*bn15.59 AHBAABHAHAAAAAHHAAHAAHHAAHHHAAHAHAHAAAABAHAAAHAHAHHHHBAHAAH
HHHHBHBBHHHHABHAAB-HAHHHHAHA-AA-HH-HBHHAHHHBHHHH-ABHHB-HB-HBBBBHHH-HAHH
HHAH-HHH--HA--BHHHBBHBBHH-BBHHBB-HHAHHHHHH-HHHBBHHBBBHBHBBHBBBBBHBHHHBB
BBAAHBBHHBBHBHBBBBBBHHBBBBBBB
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*bnlg1598 AHBAABHAHAAAAAHHAABAAHHAAHHHAAHAHAHAAAAAAHAAAHAHAHHHHBAHAAH
HHHHBHBBHHHHABHAABAHHHHHHAHAHAAAHHAHBHHAHHHBHHHHHABHHBHHBHHBBBBHHHBHHHH
AHAABAHHHBHHHHBHHHBBHBBHHBBBHHBBHHHAHHHHHHHBHHBBBHBBBHBHHBHBBBBBHBHHBBB
BBAAHBBHHBBHBHBBHBBBHHBBBBB-

*umc58 AHBAHBHAHAAAAAHAAAHAAHHAAHHHAAHAHAHAAAAAAHAAAHAHAHHHHBAHAAH
BHHHBABBHHAHABHHABAHBHHHHAHAHAHAHHAHBHHAHHHBHAHHHABHHBHHBHHBBBBHHH-HHHH
AHAABAABHBHHHHBHHHBBHBBAABBBHHBB-HHHHHAHHHBBHHBBBHHBBBBHHBHBBBBB-BHHBBB
BBAAHBBHHBBBBHBBBBBBHHBBBHBBB

*php20855 CCBCBBCCCCCCCCCCCCCCCCCCCBCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCCC
CCCCCCCCCCCCCBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCBCCCCCCCCBBCCCCCCCCCC
CCCCBCCCCBCCCCCCCCBBCBBCCCBBCCBCCCCCCCCCCCBCCCBBBCCBBBBBCCCBCCBBCB-BBBB
CCCCBBCCCCCBCBBBBBBCCBBCCCBC

*phi037 AHBABBAAHAHHHABHAAHHHHHHHBHHHHHHHHAAAAAAHAHAAAHHHHHHHBAHAHA
HHHHBAHHHBHHABHHAHAAAHHHHBAHHAHAAHAHBHBAHHHBHAAHHABHAAAHHHHBHBHAHB-HHHH
AHAABAHHHBAHHAHHBAHBHBBAABBBHHHHBBBAHAABHHBBHHHBBHHBBBHHHBHBBHBBAHHHHBB
HHAAABHHHHHHHHBBBBBBHABBHHHHH

*bnlg143 HAAHHHAHHAHABHHHBHHHAHHHHABBBBAHAHHBHBBHHHHBHHHHHHHBAHHHHBH
HBAHHBHBAHAHBHABHABBHHHHABHHHAHBABBHHHHHHHBAHHHABAHHHHHHABBBHHHHBAHHBHH
BHHHHBHHHHBHHBHAHHHAHAAHBHHH-AHB-BHAHABHA-AHBHHBBBHAHAHHHHBHHHHHHAHAHH-
AHBHHHHBABABBHBHBAHBHBHBAHHAB

*bnlg565 HAAHHHHAAAAABHHHBHHHHHHHHABBBHHAAHHBHAAHHAHBHHHHHHHBHHHHHHH
HBAHHBHBHHA--HABHHHHHHHHABHHHHHHABBHHHHHHBHABBHHBHHHBAHHAHBHAHHHBH-HHHA
BAAAHHHHHHB-HBHAH-AAAAAHBHHAAAHBBBHHHHBHABHABHHBHBHAHAHHHH-HHHHHABHHHBA
HBHHHBHABABBHBHBAHBBBHBABHAB

*bnlg557 HAAAHHHAAAAAHBHHBHHHHHHHHAHBHHAHABABAAAHHAHBBBHHHHHHHAHHHHH
HAAHABHBAHAHHHABHAHHHHHBBBHAHHHHHHBAHHHHHBHBBBAHBAABBAHHAABBAHHHBBHHHBA
BABAHHHHBHBHHHHHHHHHBBAABBHHHHHBBBHHHHBBHHHAHBBBBBHHHHBBHHBHHHHBHABHHHH
AHHHHBBHHBABHHHBBHHBBBBBHBBHB

*bnlg150 AAAAHAHAAAAHHBAHBHHAHHHBHAHHHHAHABABAAAHHAHBBBHHHHHHHAHHHHH
HAAHAHHHAHAAHHAHHAHHHHHBBHHHAHBHHHB-HHHHHHHBHBABBAABBAHHHABHAHHHBBHHBBA
BHHAHHHBBABHAAHHHHHHHHAABAHAHHHBBBHHHHBBABAAHHHBBBHAAHBBHHHHHHHBHAHHHHH
ABHHHBBBHBHBAHHHBHHBBBBBABBBB

*us42 AAAAHAHAAAAHHBAHBHHAHHHBH-HHHHAHABABAAAHHAHBHBHAHHHHHAHHHHH
HAAHAHHHAHAAHHAHHAHHH HHBBHHHAHBHHHBAHHHHAHHHHBABHAABBABHHABHAHHHBBAHBB
ABHHAHHHBBAHHAAHHHAHHHHAABAHA-HABBHHHHHBBABHAHHHBBBHAAHBBHHHHHHHBHABHHB
HABHHHBBHHBABAHHBBHHBBBBBABBBB

*us40 AHAAHAAAAAAHHHAHBHHAHHHBHAHHHAAHABHBAHABHAHBHBHAHHHHHAHHHHH
HAAHAHHHHAAABHAHHAHHHHHBBHHHHHHHHHHAHHHHAHHHABHBHAABBABHHHBHAHBHBBABBBA
BHHHAHBHBAHHAAHHHAHBAHAHBAHAHHABHHHHHHBBABHAHHHBBBBHHHBBHHHHHHHHHABAHBH
ABHHHBBHHBABHHHBBHHBBBBBAHBBB

*mmc0282 AHAAHAAAAAAHHHAHBHHAHHHBHAHHHAAHABHBAHABHAHBHBHAHHHHHAHAHHH
HAHHAHHHHAHHHHAHHAHHHHHBBHHHHHHHHHHAHHHHHBHHABHBHAABBABHHHBHAHBHBBHBBBA
BHHAHHBBBAHHAAHHHAHBAAAHBHHHHHABHHHBHHBBHBHAHHHBBBBHHHHBBHHHHHHHHABAHBH
AHHHHBBHHBABHHHBBHHBBBBBAHBBB
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*bn1g1847 AHAAHHAAAAABHHAHBHHAHHHBHAHHHAAHABHBAHABHAHHHBHHHHHHHAHAHHH
HAHHAHHAHAAABHAHBAHHHHHBHHHHHBHHHH-AHHHHHBHHAHHBHAABBAHHHHBHAHBBBBBBBBH
BHHAHHBHBAHHAAHHHHHHAAAHB-HHHBABBHHBHHBBBBHHAHHHHBBH-HBBHHHHHHHHHABAHHH
ABB-HBBBHBHBHHHBBHHBBBBBAHBHB

*bn1g1306 AHAABBAHAHAHHHABBBHAHHHBHABHBAAHHHBBAHHHHHHHHHBHHBHHBHHAHHH
BABHABAHBABAHABHBAHHHHHBHBHAHHHAAHHAAAAHABHHABHAHHHBBAHBHBHHHHBBBHABHHA
BAAAHBBAHHHHHAAHAHBHHAABHAHHHBHBAHBAHHBBBBHHABHAHBABBHBBAHHBHBHHHABAAHH
AABAHBAHHHHHHHHBBBHHBHHHAHBBH

*us41 HAHBAAHHBHAHABHBHHAHHAHHHHHBBBHAHHHHHHHHHHHHHAHHAHBABAHBHHA
AHHHHBABHHHBHABHAHBH-BAHHABBHBB-HH-HHHH--HHHBB-AHHAHHHHHBBHHAAAA---BHHH
BAAHHABHBHHHABHHAHAHBHHBAHBHHBHHHBHBBHHBBHB-HHBBHHHBHHHABBHHHHHAHAAAHBA
HBHHHHBAHBHABHAHBBHHBBHHHABHA

*gls 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
222 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
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Addendum IV: QTL analysis results using MAPMAKER

************************************************************************
* Output from:
*

Tue Jul 12 20:09:32 2000 *
*

*
MAPMAKER/EXP
(version 3.0b)

**
*

* *
******.******************************************************************

data from 'GLS.TXT' are loaded
F2 intercross data (230 individuals, 21 loci)

'photo' is on: file is 'GLS.OUT'

3> sequence all
sequence #1= all

4> group
Linkage Groups at min LOD 3.00, max Distance 50.0

group1= 1 2 3 4 5 6 7 8 9 10 11

group2= 12 13 14 15 16 17 18 19 20

unlinked= 21

5> error detection on
'erro~ detection' is on.

6> order
Linkage Groups at min LOD 3.00, max Distance 50.0
Starting Orders: Size 5, Log-Likelihood 3.00, Searching up to 50 subsets
Informativeness: min #Individuals 1, min Distance 0.9
Placement Threshold-1 3.00, Threshold-2 2.00, Npt-Window 7
===============================================================================
Linkage group 1,

1 bnlg147
6 us44

11 phi037

11 Markers:
2 phi001
7 bn15.59

3 asg30
8 bnlg1598

4 us45
9 umc58

5 bnlg2086
10 php20855

Most informative subset: 1 2 3 11 5 6 7 8 9 10
Searching for a unique starting order containing 5 of 10 informative loci ...
Got one at log-likelihood 3.84

Placing at log-likelihood threshold 3.00 ...
Start: 1 5 6 7 10
Npt-En.d: 1 5 6 7 10 (11)
Npt-Err: 1 (2) 5 6 7 10 11
Npt-Err: 1 2 5 6 7 (8) 10 11
Npt-Err: 1 2 5 6 7 8 (9) 10 11
Npt-Err: 1 2 (3) 5 6 7 8 9 10 11
Npt-Err: 1 2 3 (4) 5 6 7 8 9 10 11
Uniquely ordered all 11 markers
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Map: Apriori
Markers Distance Prob Candidate Errors

1 bnlg147 8.2 eM
2 phi001 8.6 eM 1.0% [#182 B-A-B 4.00) [#130 B-A-H 2.16) 7 more
3 asg30 4.4 eM 1.0% [#189 B-H-B 1.81) [#132 H-A-- 1.44) 1 more
4 us45 6.6 eM 1.0% [#94 --B-A 3.58) [#191 H-B-H 1.73) 2 more
5 bnlg2086 6.1 eM 1.0% [#207 B-H-B 1.79) [#216 B-H-B 1.79) 9 more
6 us44 6.6 eM 1.0%
7 bn15.59 2.6 eM 1.0% [#40 A-B-A 5.21) [#142 H-A-H 2.16)
8 bnlg1598 4.4 eM 1.0% [#218 B-H-B 2.33) [#19 H-B-H 2.32) 1 more
9 umc58 5.1 eM 1.0% [#80 H-B-- 1.84) [#16 H-A-- 1.38) 6 more

10 php20855 21.0 eM 1.0% [#186 H-B-H 1.40) [#108 H-B-H 1.40)
11 phi037 ----------

73.8 eM 11 markers log-likelihood= -504.37

order1= 1 2 3 4 5 6 7 8 9 10 11
other1=
===============================================================================
Linkage group 2, 9 Markers:

12 bnlg143 13 bnlg565
17 us40 18 mmc0282

14 bnlg557
19 bnlg1847

16 us4215 bnlg150
20 bnlg1306

All markers are informative ...
Searching for a starting order containing 5 of all 9 loci ...
Got one at log-likelihood 5.64

Placing
Start:
Npt-4:
Npt-End:
Npt-Err:
Npt-Err:
Uniquely

at log-likelihood threshold 3.00 ...
12 14 15 16 18
12 (13) 14151618
12 13 14 15 16 18 (20)
12 13 14 15 16 18 (19) 20
1213 14 15 16 (17) 181920
ordered all 9 markers

Map:
Markers
12 bnlg143
13 bnlg565
14 bnlg557
15 bnlg150
16 us42
17 us40
18 mmc0282
19 bnlg1847
20 bnlg1306

Apriori
Distance Prob Candidate Errors
14.7 eM
22.6 eM 1.0% [#133 H-A-B 1.33) [#151 H-A-B 1.33)
11.4 eM 1.0% [#156 H-B-A 1.78) [#152 A-B-H 1.48) 6 more
3.4 eM 1.0% [#173 H-A-H 1.81) [#209 H-B-H 1.81) 3 more
7.7 eM 1.0%
3.1 eM 1.0% [#135 H-A-H 2.02) [#134 A-H-A 2.01) 2 more
7.3 eM 1.0% [#187 H-B-H 2.03) [#185 B-H-B 2.02) 6 more

34.5 eM 1.0% [#126 H-B-A 1.48) [#163 H-B-A 1.40) 9 more
----------
104.6 eM 9 markers log-likelihood= -545.24

order2= 12 13 14 15 16 17 18 19 20
other2=
===============================================================================
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7> list loci

Error Linkage Haplotype
Num Name Genotypes Prob Chrom Group Group Class New?

1 bnlg147 228 eodom 1.00% group1
2 phi001 229 eodom 1.00% group1
3 asg30 208 eodom 1.00% group1
4 us45 74 eodom 1.00% group1
5 bnlg2086 230 eodom 1.00% group1
6 us44 214 eodom 1.00% group1
7 bn15.59 214 eodom 1.00% group1
8 bnlg1598 228 eodom 1.00% group1
9 ume58 227 eodom 1.00% group1

10 php20855 48 eodom 1.00% group1
11 phi037 229 eodom 1.00% group1
12 bnlg143 226 eodom 1.00% group2
13 bnlg565 223 eodom 1.00% group2
14 bnlg557 230 eodom 1.00% group2
15 bnlg150 229 eodom 1.00% group2
16 us42 228 eodom 1.00% group2
17 us40 230 eodom 1.00% group2
18 mme0282 230 eodom 1.00% group2
19 ·bnlg1847 226 eodom 1.00% group2
20 bnlg1306 230 eodom 1.00% group2
21 us41 220 codom 1.00% unlinked

8> sequence 1-11
sequence #2= 1-11

9> make chromosome chr1
chromosomes defined: chr1

10> anchor chr1
1 - anchor locus on chr1
2 - anchor locus on chr1
3 - anchor locus on chr1
4 - anchor locus on chr1
5 - anchor locus on chr1
6 - anchor locus on chr1
7 - anchor locus on chr1
8 - anchor locus on chr1
9 ~ anchor locus on chr1
10 - anchor locus on chr1
11 - anchor locus on chr1
chromosome chr1 anchor(s) : bnlg147 phi001 asg30 us45 bnlg2086 us44 bn15.59
bnlg1598 umc58 php20855 phi037
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11> frame chr1

setting framework for chromosome chrl. ..

====================================================== =========================
chr1 framework:

Apriori
Markers Distance Prob Candidate Errors

1 bnlg147 8.2 eM
2 phi001 8.6 eM 1.0% [#182 B-A-B 4.00) [#130 B-A-H 2.16) 7 more
3 asg30 4.4 eM 1.0% [#189 B-H-B 1.81) [#132 H-A-- 1.44) 1 more
4 us45 6.6 eM 1.0% [#94 --B-A 3.58) [#191 H-B-H 1.73) 2 more
5· bnlg2086 6.1 eM 1.0% [#207 B-H-B 1.79) [#216 B-H-B 1.79) 9 more
6 us44 6.6 eM 1.0%
7 bn15.59 2.6 eM 1.0% [#40 A-B-A 5.21) [#142 H-A-H 2.16)
8 bnlg1598 4.4 eM 1.0% [#218 B-H-B 2.33) [#19 H-B-H 2.32) 1 more
9 umc58 5.1 eM 1.0% [#80 H-B-- 1.84) [#16 H-A-- 1.38) 6 more

10 php20855 21.0 eM 1.0% [#186 H-B-H 1.40) [#108 H-B-H 1.40)
11 phi037 ----------

73.8 eM 11 markers log-likelihood= -504.37
===============================================================================

12> lod
Bottom number is LOD score, top number is centimorgan distance:

1 2 3 4 5 6 7 8 9 10

2 9.6
50.81

3 15.2 10.7
35.33 46.08

4 23.5 18.6 6.4
13.17 16.79 27.18

5 27.1 20.3 12.3 13.1
20.24 29.39 41.58 21. 63

6 26.6 24.7 11.8 10.4 7.3
19.00 22.03 40.78 22.83 55.84

7 35.5 31. 9 16.9 14.4 15.4 6.9
13.36 16.42 30.93 17.59 35.02 55.22

8 42.2 37.9 20.6 22.4 18.4 10.1 3.5
10.47 13.38 26.79 13.82 32.25 47.87 72.07

9 43.7 43.6 25.4 23.5 24.5 14.1 8.2 5.3
10.39 11.09 22.46 13.17 24.47 39.24 54.94 69.42

10 40.3 36.8 18.0 0.0 26.9 15.8 8.7 9.3 4.4
4.22 4.99 10.03 20.47 7.56 12.37 15.88 16.41 21. 68

11 65.6 79.4 49.3 60.0 47.3 36.4 34.1 28.8 25.8 15.8
3.69 2.27 6.92 2.92 7.71 12.64 14.15 19.48 23.20 12.37
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13> sequence 12-20
sequence #3= 12-20

14> make chromosome chr5
chromosomes defined: chr1 chr5

15> anchor chr5
12 - anchor locus on chr5
13 - anchor locus on chr5
14 - anchor locus on chr5
15 - anchor locus on chr5
16 - anchor locus on chr5
17 - anchor locus on chr5
18 - anchor locus on chr5
19 - anchor locus on chr5
20 - anchor locus on chr5
chromosome chr5 anchor(s) : bnlg143
bnlg1847 bnlg1306

bnlg565 bnlg557 bnlg150 us42 us40 mmc0282

16> frame chr5
setting framework for chromosome chr5 ...
===============================================================================
chr5 framework:

Apriori
Markers Distance Prob Candidate Errors
12 bnlg143 14.7 cM
13 bnlg565 22.6 cM 1.0% [#133 H-A-B 1.33] [#151 H-A-B 1.33]
14 bnlg557 11.4 cM 1.0% [#156 H-B-A 1.78] [#152 A-B-H 1.48] 6 more
15 bnlg150 3.4 cM 1.0% [#173 H-A-H 1.81] [#209 H-B-H 1.81] 3 more
16 us42 7.7 cM 1.0%
17 us40 3.1 cM 1.0% [#135 H-A-H 2.02] [#134 A-H-A 2.01] 2 more
18 mmc0282 7.3 cM 1.0% [#187 H-B-H 2.03] [#185 B-H-B 2.02] 6 more
19 bnlg1847 34.5 cM 1.0% [#126 H-B-A 1.48] [#163 H-B-A 1.40] 9 more
20 bnlg1306 ----------

104.6 cM 9 markers log-likelihood= -545.24
===============================================================================

17> lod
Bottom number is LOD score, top number is centimorgan distance:

12 13 14 15 16 17 18 19

13 15.2
31. 88

14 40.8 24.3
9.08 20.31

15 49.9 33.3 12.6
5.96 13.41 41. 96

16 60.9 35.3 15.0 4.0
3.99 12.38 37.18 72.43

17 58.4 39.9 22.9 13.2 8.2
4.38 9.68 24.09 41.06 55.41
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12 13 14 15 16 17 18 19
18 61.8 40.1 21.7 15.6 11.4 4.4

3.54 9.44 24.95 35.44 45.15 69.58

19 64.0 44.3 26.0 17.8 17.5 9.7 8.6
2.99 7.47 19.60 30.81 31.40 48.51 52.07

20 106.6 86.2 67.5 69.5 63.1 43.9 42.1 34.9
0.68 1.43 3.42 3.05 4.03 9.34 9.81 13.18

19> quit
save data before quitting? [yes] y
saving map data in file 'GLS .MAP' ... ok
saving two-point data in file 'GLS.2PT' ... ok

...goodbye ...
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************************************************************************
* Output from:
*

Tue Jul 12 20:26:28 2000 *
*

* MAPMAKER/QTL
(version 1.lb)

*
* *
* *
************************************************************************

'photo' is on: file is 'GLS.OUT'

3> show trait

Trait 1 (gls):

distribution:
mean
5.43

sigma
2.47

skewness
-0.45

kurtosis
-1.10

quartile
ratio
1.20

fraction within n
1/4 1/2 1
0.20 0.20 0.59

deviations:
2 3
1.00 1.00

0.48
1.72
2.96
4.19
5.43
6.66
7.90
9.13

10.37
11.60

1*********************
1**************************
1***********************************
1*****************
1*********************************
1************************************************************
1****************************************************

4> sequence [all]
The sequence is now '[all]'

5> scan

QTL maps for trait 1 (gls):
Sequence: [all]
LOO threshold: 2.00 Scale: 0.25 per '*'

No fixed-QTLs.
Scanned QTL genetics are free.

POS WEIGHT DOM %VAR LOG-LIKE
1-2 8.2 eM

0.0 1.231 -0.123 11.8% 6.244
2.0 1.257 -0.160 12.7% 6.475
4.0 1.249 -0.201 13.0% 6.526
6.0 1.210 -0.252 12.6% 6.408
8.0 1.140 -0.315 11.7% 6.152

*****************
******************
*******************
******************
*****************

--------------------------------------- 2-3 8.6 eM
0.0 1.131 -0.323 11.5% 6.119 *****************
2.0 1.308 -0.333 15.3% 7.703 ***********************
4.0 1.429 -0.288 18.1% 9.135 *****************************
6.0 1.509 -0.243 19.9% 10.364 **********************************
8.0 1.550 -0.215 20.8% 11.356 1 ************************************
---------------------------------------1 3-4 4.4 eM
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0.0 1.557 -0.209 20.9% 11.614
2.0 2.196 0.404 28.8% 12.622
4.0 2.461 0.362 21.7% 10.374
---------------------------------------
0.0 2.369 0.199 17.5% 9.341
2.0 2.342 0.569 26.2% 11.515
4.0 2.136 0.696 28.0% 12.435
6.0 1.760 0.627 22.9% 11.813
---------------------------------------
0.0 1.621 0.562 20.5% 11.444
2.0 1.874 0.392 27.6% 14.681
4.0 1.970 0.255 30.8% 17.122
6.0 2.003 0.170 31. 6% 18.788
---------------------------------------
0.0 2.005 0.166 31.6% 18.878
2.0 2.139 0.372 36.7% 20.700
4.0 2.134 0.391 36.7% 20.707
6.0 2.030 0.359 33.5% 19.292
----------------------- ----------------
0.0 1.937 0.340 30.9% 18.429
2.0 2.000 0.372 32.9% 19.035
---------------------------------------
0.0 1.902 0.378 30.4% 18.114
2.0 1.973 0.321 33.5% 19.050
4.0 1.866 0.202 30.9% 17.883
---------------------------------------
0.0 1.808 0.145 29.4% 17.342
2.0 2.417 0.692 39.9% 18.169
4.0 2.632 0.555 33.3% 14.081
---------------------------------------
0.0 1.541 -0.776 19.5% 9.763
2.0 2.307 0.060 22.3% 9.675
4.0 2.242 0.069 24.0% 9.422
6.0 2.109 0.006 24.2% 8.988
8.0 1.867 -0.191 22.3% 8.410
10.0 1.613 -0.421 19.6% 7.792
12.0 1.467 -0.501 17.6% 7.180
14.0 1.362 -0.503 15.6% 6.565
16.0 1.267 -0.465 13.6% 5.958
18.0 1.179 -0.395 11.6% 5.375
20.0 1.087 -0.318 9.7% 4.833
---------------------------------------

************************************
************************************
******~***************************
4-5 6.6 cM
******************************
************************************
************************************
************************************
5-6 6.1 cM
************************************
************************************
************************************
************************************
6-7 6.6 cM
************************************
************************************
************************************
************************************
7-8 2.6 cM
************************************
************************************
8-9 4.4. cM
************************************
************************************
************************************
9-10 5.1 cM
************************************
************************************
************************************
10-11 21.0 cM
********************************
*******************************
******************************
****************************
**************************
************************
*********************
*******************
****************
**************
************

---------------------------------------1 12-13 14.7 cM
0.0 0.053 -0.239 0.3% 0.130 1

2.0 0.087 -0.349 0.6% 0.254 1

4.0 0.123 -0.453 1.0% 0.410 1

6.0 0.157 -0.546 1.4% 0.580 1

8.0 0.195 -0.606 1.8% 0.746 1

10.0 0.237 -0.633 2.1% 0.892 1

12.0 0.282 -0.627 2.2% 1.012 1

14.0 0.326 -0.603 2.3% 1.108 1
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---------------------------------------1 13-14 22.6 eM
0.0 0.341 -0.590 2.3% 1.137 1

2.0 0.438 -0.604 2.9% 1.300 I
4.0 0.540 -0.598 3.7% 1.504 I
6.0 0.644 -0.559 4.5% 1.747 I
8.0 0.750 -0.494 5.3% 2.031 1 *
10.0 0.850 -0.400 6.2% 2.357 I **
12.0 0.938 -0.291 7.0% 2.717 I ***
14.0 1.011 -0.188 7.7% 3.097 1 *****
16.0 1.063 -0.095 8.3% 3.474 I ******
18.0 1.093 -0.014 8.7% 3.828 I ********
20.0 1.100 0.054 8.8% 4.146 I *********
22.0 1.093 0.110 8.7% 4.420 1 **********
---------------------------------------1 14-15 11.3 eM
0.0 1.089 0.124 8.6% 4.493 1 **********
2.0 1.158 0.159 9.9% 4.737 1 ***********
4.0 1.187 0.153 10.5% 4.823 I ************
6.0 1.173 0.106 10.4% 4.740 1 ***********
8.0 1.122 0.027 9.7% 4.515 1 ***********
10.0 1.043 -0.067 8.5% 4.201 1 *********---------------------------------------1 15-16 3.4 eM
0.0 0.982 -0.124 7.6% 3.968 I ********
2.0 1.007 -0.279 8.4% 4.234 I *********
---------------------------------------1 16-17 7.7 eM
0.0 0.984 -0.355 8.2% 4.253 1 **********
2.0 1.049 -0.333 9.1% 4.488 I **********
4.0 1.075 -0.297 9.4% 4.567 I ***********
6.0 1.062 -0.267 9.0% 4.482 1 **********
--------------------------------------- 17-18 3..1 eM
0.0 1.019 -0.244 8.2% 4.286 **********
2.0 1.101 -0.189 9.3% 4.744 ***********
--------------------------------------- 18-19 7.3 eM
0.0 1.113 -0.173 9.3% 4.868 ************
2.0 1.170 -0.175 10.3% 5.126 *************
4.0 1.187 -0.148 10.6% 5.184 *************
6.0 1.162 -0.094 10.1% 5.027 *************
--------------------------------------- 19-20 34.5 eM
0.0 1.119 -0.044 9.2% 4.818 ************
2.0 1.136 -0.073 9.6% 4.616 ***********
4.0 1.146 -0.103 9.9% 4.378 **********
6.0 1.146 -0.133 10.0% 4.105 *********
8.0 1.132 -0.157 9.9% 3.796 ********
10.0 1.106 -0.183 9.6% 3.455 ******
12.0 1.064 -0.200 9.0% 3.088 *****
14.0 1.008 -0.211 8.1% 2.705 ***
16.0 0.941 -0.224 7.2% 2.315 **
18.0 0.859 -0.220 6.1% 1.933
20.0 0.766 -0.200 4.9% 1.572
22.0 0.670 -0.184 3.8% 1.243
24.0 0.571 -0.158 2.8% 0.954
26.0 0.479 -0.143 2.0% 0.711
28.0 0.390 -0.126 1.3% 0.513
30.0 0.310 -0.115 0.9% 0.358
32.0 0.240 -0.113 0.5% 0.240
34.0 0.177 -0.111 0.3% 0.156 I---------------------------------------1
Results have been stored as scan number 1.
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6> show peaks

LOD score peaks for scan 1.1 of trait 1 (gls).
Sequence: [all]
No fixed-QTLs.
Scanned QTL genetics are free.
Peak Threshold: 2.00 Falloff: -2.00

=============================================================
QTL-Map for peak 1:
Confidence Interval: Left Boundary= 2-3 + 8.0

Right Boundary= 2-3 + 0.0

INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
3-4 4.4 2.0 free 2.1955 0.4037

chiA2~ 58.128 (2 D.F.)
mean= 2.545 sigmaA2= 4.348

log-likelihood= 12.62
variance-explained= 28.8%

QTL-Map for peak 2:
Confidence Interval: Left Boundary= 5-6 + 6.0

Right Boundary= 6-7 + 6.0

INTERVAL
6-7

LENGTH
6.6

QTL-POS
4.0

GENETICS
free

WEIGHT
2.1338

DOMINANCE
0.3914

chiA2= 95.359 (2 D.F.)
mean= 2.948 sigmaA2= 3.863

log-likelihood= 20.71
variance-explained= 36.7%

QTL-Map for peak 3:
Confidence Interval: Left Boundary= 13-14 + 16.0

Right Boundary= 19-20 + 10.0

INTERVAL
18-19

LENGTH
7.3

QTL-POS
4.0

GENETICS
free

WEIGHT DOMINANCE
1.1873 -0.1477

chiA2~ 23.874 (2 D.F.)
mean= 4.268 sigmaA2= 5.457

log-likelihood= 5.18
variance-explained= 10.6%

7> sequence [6-7:try]
The sequence is now' [6-7:try]'

8> map

QTL map for trait 1 (gls):

INTERVAL
6-7

LENGTH
6.6

QTL-POS
3.1

GENETICS
free

WEIGHT
2.1447

DOMINANCE
0.3898

chiA2= 96.108 (2 D.F.)
mean=··2.936 si.qmar Zr= 3.843

log-likelihood= 20.87
variance-explained= 37.0%
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QTL map for trait 1 (gls):

INTERVAL
6-7

LENGTH QTL-POS
6.6 3.4

mean= 2.936
chi"'2= 67.404 (2 D.F.)

sigma"'2= 4.369

GENETICS
dominant

WEIGHT
1.5938

DOMINANCE
1.5938

log-like1ihood= 14.64
variance-exp1ained= 28.4%

GENETICS
recessive

=============================================================
QTL map for trait 1 (gls):

INTERVAL
6-7

LENGTH
6.6

QTL-POS
2.1

INTERVAL
6-7

chi"'2= 52.882 (2 D.F.)
mean= 4.698 sigma"'2= 4.797

QTL map for trait 1 (gls):

LENGTH
6.6

QTL-POS
3.0

chi"'2= 94.125 (2 D.F.)
mean= 3.164 sigma"'2= 3.896

WEIGHT DOMINANCE
1.2622 -1. 2622

log-like1ihood= 11.48
variance-exp1ained= 21.4%

GENETICS
additive

WEIGHT
2.1127

DOMINANCE
0.0000

log-like1ihood= 20.44
variance-exp1ained= 36.2%

9> sequence [18-19:try]
The sequence is now' [18-19:try] ,

10> map

QTL map for trait 1 (gls):

INTERVAL
18-19

LENGTH
7.3

QTL-POS
3.6

chi"'2= 23.898 (2 D.F.)
mean= 4.273 sigma"'2= 5.456

QTL map for trait 1 (gls):

INTERVAL
18-19

LENGTH
7.3

QTL-POS
4.3

chi"'2= 12.931 (2 D.F.)
mean= 4.247 sigma"'2= 5.748

QTL map for trait 1 (gls):

INTERVAL
18-19

LENGTH
7.3

QTL-POS
3.4

chi"'2= 17.950 (2 D.F.)
mean= 5.016 sigma"'2= 5.596

QTL map for trait 1 (gls):

GENETICS
free

WEIGHT DOMINANCE
1.1872 -0.1545

log-like1ihood= 5.19
variance-exp1ained= 10.6%

GENETICS
dominant

WEIGHT
0.7413

DOMINANCE
0.7413

log-like1ihood= 2.81
variance-exp1ained= 5.9 %

GENETICS
recessive

WEIGHT DOMINANCE
0.8252 -0.8252

log-like1ihood= 3.90
variance-exp1ained= 8.3 %
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INTERVAL
18-19

LENGTH
7.3

QTL-POS
3.6

chiA2= 23.677 (2 D.F.)
mean= 4.181 sigmaA2= 5.464

GENETICS
additive

WEIGHT
1.1941

DOMINANCE
0.0000

Iog-likelihood= 5.14
variance-explained= 10.5%

=============================================================

Il> sequence [14-15:try]
The sequence is now' [14-15:try]'

12> ma.p

=============================================================
QTL map for trait 1 (gIs):

INTERVAL
l4-15

LENGTH
Il. 3

QTL-POS
4.6

chiA2= 22.177 (2 D.F.)
mean= 4.083 sigmaA2= 5.459

GENETICS
free

WEIGHT
1.1883

DOMINANCE
0.1457

Iog-likelihood= 4.82
variance-explained= 10.6%

=============================================================
QTL map for trait 1 (gIs):

INTERVAL
l4-15

LENGTH
Il. 3

QTL-POS
4.1

chiA2= 15.398 (2 D.F.)
mean= 4.025 sigmaA2= 5.615

QTL map for trait 1 (gIs):

INTERVAL
l4-15

LENGTH
Il. 3

QTL-POS
5.8

chiA2= 14.278 (2 D.F.)
mean= 5.041 sigmaA2= 5.692

QTL map for trait 1 (gIs):

INTERVAL
l4-15

LENGTH
Il. 3

QTL-POS
4.8

chiA2= 21.986 (2 D.F.)
mean= 4.181 sigmaA2= 5.470

GENETICS
dominant

WEIGHT
0.8752

DOMINANCE
0.8752

Iog-likelihood= 3.34
variance-explained= 8.0 %

GENETICS
recessive

WEIGHT DOMINANCE
0.7288 -0.7288

Iog-likelihood= 3.10
variance-explained= 6.8 %

GENETICS
additive

WEIGHT
1.1705

DOMINANCE
0.0000

Iog-likelihood= 4.77
variance-explained= 10.4%
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13> sequence [6+4] [18+4]
The sequence is now '[6+4] [18+4] ,

14> map

=============================================================
QTL map for trait 1 (gIs):

INTERVALS
6-7
18-19

LENGTH
6.6
7.3

QTL-POS
4.0
4.0

WEIGHT
2.1050
1.1340

DOMINANCE
0.2792
0.0839

chiA2= 127.812 (4 D.F.)
mean= 1.804 sigmaA2= 3.306

Iog-likelihood= 27.75
variance-explained= 45.9%

15> sequence [6+4] [18+4] [14+5]
The se.quence is now' [6+4] [18+4] [14+5]'

16> map

QTL map for trait 1 (q Ls ) :

INTERVALS LENGTH QTL-POS WEIGHT DOMINANCE
6-7 6.6 4.0 2.0910 0.2923
18-19 7.3 4.0 0.7801 -0.0318
14-15 11. 3 5.0 0.5160 0.2283

chiA2= 131.530 (6 D.F.)
mean= 1.576 sigmaA2= 3.258

Iog-likelihood= 28.56
variance-explained= 46.6%

17> sequence [18+4] [14+5]
The sequence is now' [18+4] [14+5]'

18> map

=============================================================
QTL map for trait 1 (gIs):

INTERVALS
18-19
14-15

LENGTH
7.3
11.3

QTL-POS
4.0
5.0

WEIGHT DOMINANCE
0.7398 -0.2143
0.6559 0.1533

chiA2= 27.518 (4 D.F.)
mean= 3.995 sigmaA2= 5.367

Iog-likelihood= 5.98
variance-explained= 12.1%

19> quit
save data before quitting? [yes] n

...goodbye ...
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Addendum V: Phenotype and genotype data of the selected plants of
the 1999 F2 population

Bin 1.05 1.06 5.03 5.04 5.05 5.06 3.04 2.02
Score us44 bnlg1598 bnlg557 bnlg150 mmc0282 bnlg1847 us41 bnlg125

1 A A H H H H H B
1 A A H H H H B H
1 H H H H H H A H
1 H H A A H H A H
1 A A - A A A H H
1 A A H H B B H A
1 H H H H A A A H
1 - - H A H H H A
1 A A H H A A H A
1 A A B A H H - H
1 A H H H H A A H
1 A A A A A A A H
1 A A H H H H H A
1 A A H H B B A A
1 A A H A H H H A
1 A A B H A A A H
1 A H H A A A - A
1 A H H A A A H A
1 - A - A H - H -
2 H H H A A A H A
2 A A H H H B H B
2 A A H A A A A H
2 H A H A H H H B
2 A A H H A H H -
2 H H A A A A B H
2 A A B H H H A H
2 A - B B B B A A
2 A A H A H H H B
2 H A B B B B H H
2 A A H B H B A B
2 - A B H H B A A
2 - A A A H H B B
2 A A - A A - A -
2 A A - H H - A -
.? - A - H H - H -
2 - H - H H - H -
2 A A - H H - A -
3 - H B A H H B B
3 A A H H H A A H
3 A A A A A A H A
3 A H H A H H H B
3 - H H A A A A A
3 - A A A A A H H
3 A A - H H - B -
3 - A - H B - H -
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Bin 1.05 1.06 5.03 5.04 5.05 5.06 3.04 2.02

Score us44 bnlg1598 bnlg557 bnlg150 mmc0282 bnlg1847 us41 bnlg125
3 - A - A A - H -

4 H H H H H H H H
4 A A A H A A H H
4 H A B A A A H A
4 H H A A H H H B
4 H H H H A A B H
4 A H H A A A A A
5 A H H A A A H B
5 H H A A A - B H
5 H H B B B - A H
·5 A H H H A A A A
5 A H B B H H H H
5 A H H H H H H H
6 H H H H H H A H
6 B H A A A A A H
6 A A H H A A H A
6 H B B B B B H B
6 A A B B B B B H
6 - H H H H H B A
7 - H A A A H A H
7 - H A A H A B A
7 - A B A A A H A
7 - B H A H B A B
7 - A A H A A H H
7 - H H H H H H A
7 H A - H H - H -
7 H H - H A - B -
.7 H H - H H - H -
7 - H - A H - A -
8 - B A A A A H A
8 - H H H H H B H
8 - H H H B B H H
8 - A H H H H A H
8 - H B B H H B H
8 - H H H H A A H
9 - H B B H H H H
9 - H H H H B H H
9 - H H H H H A H
9 - H H H A A B H
9 H H B H H H B B
9 H H H H H H A H
9 H H H H H H B H
9 B B H H B B B B
9 H H H H H H B A
9 - H H A A A B A
9 H H H H H H A H
9 H A B B H B H B
9 H B B H H H H A
9 B B A A A A A H
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Addendum VI:
th 2000 F2e popu a Ion.

Bin 1.05 1.06 5.03 5.04 5.05 5.06 3.04 2.02
Score us44 bnlg1598 bnlg557 bnlg150 mmc0282 bnlg1847 us41 bnlg125

2 H H A H A H A H
2 A H H H A H A H
2 H H A A A A H A

2 .' H A H H B B A A
2 A A H H H H H H
3 A A H H H A B A
3 A A A A A H H B
3 H H H H H H A B
3 A A H H H H A H
3 A A A A A A A A
3 A A B H B B A H
3 H A A A A H H H
3 H H A A H H H A
3 A A H H H H H B
3 A A A H H B A A
3 A A A A A A H H
3 A A B H H A H H
3 A A H H B B A H
3 H B A A A A H A
4 A A H A A A H B
4 A A H H H H A A

4 .' H H H A H H H A
4 H H A A A A H H
4 A A A A A A B H
4 A A H H H H H B
8 A A H H H H H H
8 H H H H H H A H
8 A H H H H H A B
8 A A H A A H H H
8 A A H H H H H A
8 B B H H B B B H
8 B H B B B B H A
8 H H H H H H B H
8 H A B B H H H A
8 H H A A A A H H
8 H B A A H H A H
8 A H A A A H A H
8 H H A B B B B H
8 H H H H H H A A
9 .' H H B H A A B A
9 H H H H H H H H
9 B B B B B B H B
9 B B H H H H A A
9 H H B B H H B B
9 B B H B B H B B
9 B B B B B B H H
9 - B A A A .... A H H
9 B B B B B B H H

Phenotype and genotype data of the selected plants of
If
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Bin 1.05 1.06 5.03 5.04 5.05 5.06 3.04 2.02
Score us44 bnlg1598 bnlg557 bnlg150 mmc0282 bnlg1847 us41 bnlg125

9 H H B H H A B A
9 - H B H H B H B
9 H H H H H H H A
9 H H B B H H B B
9 B B H H H H H -
9 B B H H H H B B
9 H H H H H H B B
9 H H H H B - B B
9 H A H H H - H B
9 - B A A A A B H
9 H H B B B H B H
9 B H H H H H H A
9 A H - H H - H -
9 - B - B H - H -
9 A H - H H - H -
9 - A - H H - H -
.9 B B - A A - H -

A = homozygous for the allele of the resistant parent
B = homozygous for the allele of the susceptible parent
H = heterozygous
- = missing data
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