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SUMMARY

Worldwide, bacteriocins, particularly those produced by food-related lactic acid bacteria, are

receiving attention due to the possible use of these peptides as natural preservatives in food,

replacing potentially harmful chemical preservatives.

Bacteriocins are ribosomally synthesized proteins or peptides that inhibit closely related

microorganisms. Most bacteriocins produced by lactic acid bacteria are small, heat resistant

peptides that inhibit other Gram-positive bacteria, including food-borne pathogens such as

Listeria monocytogenes, Bacillus cereus, Clostridium perfringens and Staphylococcus aureus,

but do not inhibit Gram-negative bacteria, molds or fungi. Bacteriocins are produced as

inactive prepeptides that become active after the N-terminal leader peptide is cleaved off.

Small heat resistant bacteriocins are either lantibiotics (Class I), containing unusual post-

translationally modified amino acids, or peptides that are non-Ianthionines (Class II). The

Class II bacteriocins are further divided into four different groups: Class lIa, the anti-listerial

bacteriocins containing the YGNGV consensus sequence in the N-terminal of the protein,

Class lib, bacteriocins consisting of two peptides, Class IIc, bacteriocins that are secreted via

the sec pathway, and Class lid, bacteriocins that do not belong in the previous three

subgroups.

A bacteriocin producing lactic acid bacterium was isolated in our laboratory from

traditionally home fermented South African sorghum beer. The producing bacterium was

found to be a facultative heterofermentative Lactobacillus sp. and was identified as

Lactobacillus plantarum or Lactobacillus pentosus by using the API 50 CHL carbohydrate

fermentation system and numerical analysis of total soluble cell protein patterns. RAPD-PCR

analysis identified the strain as L. plantarum, but 16S rRNA sequencing confirmed its

identification as L. pentosus.

The bacteriocin, first designated plantaricin 423 and later bacteriocin 423, was identified as

a Class lIa small heat resistant anti-listerial bacteriocin containing the YGNGV consensus

motif. Bacteriocin 423 inhibited a variety of Gram-positive bacteria, including Lactobacillus

spp., Leuconostoc spp., Oenococcus oeni, Pediococcus spp., Enterococcus spp.,

Propionibacterium spp., Staphylococcus spp., Bacillus spp., Clostridium spp. and Listeria spp.

The bacteriocin was inactivated by proteolytic enzymes and active over a wide pH range (pH

1-10). Bacteriocin 423 lost 50 % of its activity after autoclaving for 15 min at 121°C, but was

not affected by lesser heat treatments.

Bacteriocin production was increased by optimizing the growth medium, which consisted of

glucose, tryptone, yeast extract, potassium phosphate, sodium acetate, ammonium citrate,
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manganese sulphate, Tween 80 and casamino acids.

The bacteriocin was found to be plasmid-encoded. Genetic analysis of the bacteriocin

operon indicated a high percentage of homology to the operon of another Class lIa

bacteriocin, pediocin PA-1, although the structural genes of the two bacteriocins were

markedly different. The structural gene of bacteriocin 423 was amplified by PCR and cloned

into a yeastJE. coli vector between the ADH1 promoter and terminator sequences and fused

in-frame to the MFa1 secretion signal sequence. Saccharomyces cerevisiae transformed with

this plasmid expressed the bacteriocin.

The sequence of prebacteriocin 423 (MMKKIEKL TEKEMANIIGGKYYGNGVTCGKHSCSVN

WGOAFSCSVSHLANFGHGKC) is similar, but not identical to any other reported Class lIa

anti-listeria I peptide.

Stellenbosch University http://scholar.sun.ac.za



OPSOMMING

Bakteriosiene, veral dié wat deur melksuurbakterieë geproduseer word, wek belangstelling

as gevolg van die moontlike gebruik van hierdie natuurlike antimikrobiese proteiëne as

preserveermiddels in voedselprodukte, in plaas van potensieël gevaarlike chemiese

preserveermiddels.

Bakteriosiene is ribosomaal-vervaardigde proteiëne wat naverwante bakterieë inhibeer.

Die meeste bakteriosiene wat deur melksuurbakterieë geproduseer word, is klein en

hittebestand. Hierdie bakteriosiene inhibeer ander Gram-positiewe bakterieë, insluitend

patogene soos Listeria monocytogenes, Bacillus cereus, Clostridium perfringens en

Staphylococcus aureus, maar inhibeer nie Gram-negatiewe bakterieë, giste of swamme nie.

Bakteriosiene word as onaktiewe prepeptiede geproduseer, wat ge-aktiveer word wanneer die

N-terminale leierpeptied afgesplits word. Klein hittebestande bakteriosiene is óf lantibiotika

(Klas I), met ongewone aminosure, óf normale peptiede (Klas II). Laasgenoemde klas kan

verder in vier groepe verdeel word. Klas lIa is anti-listeriese bakteriosiene met fn YGNGV-

aminosuurvolgorde in die N-terminale kant van die peptied. Klas lib sluit in bakteriosiene wat

uit twee peptiede bestaan. Klas lie is sec-afhanklike bakteriosiene, en Klas lid sluit in al die

bakteriosiene wat nie in die eerste drie groepe geklassifiseer kan word nie.

'n Bakteriosien-produserende melksuurbakterie is uit tradisionele tuisgefermenteerde Suid-

Afrikaanse sorghumbier geïsoleer. Die bakterie is as 'n fakultatief heterofermentatiewe

Lactobacillus sp. geïdentifiseer. Die bakterie is verder as 'n Lactobacillus plantarum of

Lactobacillus pentosus geïdentifiseer deur middel van die API 50 CHL-koolhidraat

fermentasiesisteem en numeriese analiese van totale oplosbare selproteiënprofiele. Met

RAPD-PCR analiese is die organisme as L. plantarum geïdentifiseer, maar 168 rRNA

nukleotiedopeenvolging het die identiteit van die organisme as L. pentosus bevestig.

Bakteriosien 423, aanvanklik geklassifiseer as plantaricin 423, is fn klein Klas lIa,

hittebestande en anti-listeriese bakteriosien met die YGNGV motief, wat verskeie Gram-

positiewe bakterieë inhibeer. Bakteriosien 423 het verskeie Gram-positiewe organismes

geïnhibeer, onder andere Lactobacillus spp., Leuconostoc spp., Oenococcus oeni,

Pediococcus spp., Enterococcus spp., Propionibacterium spp., Staphylococcus spp., Bacillus

spp., Clostridium spp., en Listeria spp. Proteolitiese ensieme inaktiveer die bakteriosien. Die

peptied was oor 'n pH reeks van 1-10 aktief. Outoklavering vir 15 min by 121°C het die

aktiwiteit van die peptied halveer, maar die bakteriosien is nie geïnaktiveer met ander

hittebehandelings nie.

Produksie van die bakteriosien is verhoog deur die groeimedium te optimiseer. Die
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groeimedium het bestaan uit glukose, triptoon, gisekstrak, kaliumfosfaat, natriumasetaat,

ammoniumsitraat, mangaansulfaat, Tween 80 en casaminosure.

Die bakteriosien se genetiese determinante is op In plasmied gesetel. Genetiese analiese

van die bakteriosien operon het 'n hoë homologie met In ander Klas lIa bakteriosien, pediocin

PA-1, getoon, maar die strukturele gene van die twee bakteriosiene verskil merkbaar. Die

strukturele geen van bakteriosien 423 is met PKR ge-amplifiseer en in 'n gistE. coli-vektor

tussen die ADH1 promotor- en termineerderopeenvolgings, in leesraam met die MFa1

sekresiesein, gekloneer. Saccharomyces cerevisiae wat met hierdie plasmied getransformeer

is, het bakteriosien 423 uitgedruk. Die aminosuurvolgorde van prebakteriosien 423

(MMKKIEKL TEKEMANIIGGKYYGNGVTCGKHSCSVNWGOAFSCSVSHLANFGHGKC) is ver-

want aan, maar nie identies aan, ander Klas lIa anti-listeriese peptiede.
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CHAPTER 1

INTRODUCTION

Consumers worldwide have become increasingly aware that chemical preservatives such

as sulfur dioxide, benzoic acid, sorbic acid, nitrate and nitrite may have adverse effects on

human health. This issue, as well as a demand for minimally processed food, have resulted in

research focussing on naturally occurring metabolites produced by lactic acid bacteria to

inhibit the growth of undesirable contaminants and food-borne pathogens (De Vuyst and

Vandamme, 1994; Harlander, 1993).

Bacteria are capable of producing a wide range of molecules that may be inhibitory towards

themselves or other organisms. These molecules include toxins, bacteriolytic enzymes,

bacteriophages, by-products of primary metabolic pathways, antibiotic substances, and

bacteriocins (Jack et aI., 1995). Bacteriocins are defined as antimicrobial peptides and

proteins that are ribosomally synthesized by bacteria, and which inhibit the growth of closely

related organisms. These peptides are produced as inactive prepeptides, which are

subsequently separated from a leader peptide to form biologically active peptides (Jack et aI.,

1995).

Lactic acid bacteria are used in the food industry as starter cultures for the fermentation of

raw milk, meat and vegetable products. These organisms alter the flavour, texture and

appearance of raw food products in a desirable way, and since these organisms have been

consumed by humans and animals for centuries without any adverse effects, lactic acid

bacteria have GRAS (generally recognized as safe) status. In addition, food is preserved due

to the production of antimicrobial substances, primarily acid from sugar fermentation, resulting

in a lower pH environment that is inhibitory to most microorganisms (Davidson and Hoover,

1993). Other antimicrobial substances such as bacteriocins are normal by-products, which are

recognized as a potential source of food biopreservatives, particularly for minimally processed

food and to control the emergence of psychrotrophic food-borne pathogens (Davidson and

Hoover, 1993). Bacteriocins are often heat resistant, and could therefore be applied to food in

combination with heat treatments. Bacteriocins appear to be stable in food, biodegradable,

digestible, safe to health, and active at low concentrations. In addition, the antimicrobial

spectrum of bacteriocins produced by lactic acid bacteria is restricted to Gram-positive

bacteria, and often includes food spoilage bacteria such as Bacillus cereus, Clostridium

perfringens, Listeria monocytogenes and Staphylococcus aureus (De Vuyst and Vandamme,

1994).

Although Antonie van Leeuwenhoek and Pasteur recorded observations of the antagonistic
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interaction between bacteria in 1676 and 1877, respectively, the first clear indication of the

inhibition of organisms by a bacteriocin, colicin V, produced by Escherichia coli, was

documented in 1925 (Jack et al., 1995). Nisin, a bacteriocin produced by Lactococcus lactis

was discovered in 1927, but only structurally characterized in 1971.

Numerous bacteriocins produced by lactic acid bacteria have been described in the last

decade. Continual research of bacteriocins produced by the different genera of lactic acid

bacteria is motivated by the potential use of these bacteriocins as preservatives. Several

factors may influence the successful application of bacteriocins as antimicrobial agents in

food, including the presence of proteolytic enzymes, lipid content and concentrations of certain

salts such as sodium chloride (Ray, 1994). Bacteriocins may be applied by using the

producers as starter cultures, using the bacteriocin as an additive to food, or genetically

engineering a starter culture to produce the bacteriocin (Harlander, 1993). Increased

knowledge of the structure and mode of action of bacteriocins may lead to the production of

gene cassettes that may enhance the activity of peptideswhich may not be appropriate for use

as preservatives in their native state (Stiles, 1993). The use of bacteriocins is not limited to

food products, but can also be applied to health care products such as toothpaste, skin care

products and possibly as an alternative therapeutic agent for the treatment of infections

caused by antibiotic-resistant Gram-positive bacteria (Harlander, 1993, Ross et al., 1999).

Nisin, a lanthionine-containing antimicrobial peptide produced by L. lactis subsp. lactis, is the

only approved food-grade bacteriocin used in the United States. Nisin is bactericidal against

Gram-positive bacteria, including food pathogens such as L. monocytogenes, and is used to

prevent mastitis in cows, control oral infections, dental caries and acne (Harlander, 1993, Ross

et al., 1999).

During 1993, 400 lactic acid bacteria were isolated in our laboratory from various typically

home-fermented South African food products. These organisms were tested for the

production of antimicrobial substances against various Gram-positive organisms, including

Pediococcus acidilactici, Lactobacillus casei, L. monocytogenes and Streptococcus mutans,

and E. coli. Several of the 400 isolates produced antimicrobial compounds. Strain 423,

isolated from sorghum beer, produced a broad-spectrum antibacterial protein that inhibited a

variety of Gram-positive bacteria, including Listeria spp., Bacillus spp., Clostridium spp.,

Staphylococcus spp., Propionibacterium spp., Leuconostoc spp. and Oenococcus oeni. The

aim of this study was to identify strain 423, to characterize the antibacterial protein (called

plantaricin 423, or bacteriocin 423) and to identify and characterize the genes encoding the

protein. This involved cloning of the structural gene of the bacteriocin and expression in a

different host organism. Since bacteriocin 423 inhibited Oenococcus oeni, the most common

2
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organism involved in malolactic fermentation in wine, Saccharomyces cerevisiae was chosen

to express bacteriocin 423. Malolactic fermentation is undesirable in wine produced in

countrieswith warmer climates, such as South Africa.

Strain 423 was subsequently identified as either a Lactobacillus plantarum or a

Lactobacillus pentosus, and therefore more attention is given to the taxonomy and

bacteriocins produced by these species in the literature survey. Similarly, since bacteriocin

423 was identified as a Class Iia bacteriocin, attention is focussed on the properties of Class

lIa bacteriocins.

1.1 REFERENCES
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Microbiology Reviews 59, 171-200.
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Ross, R.P., Galvin, M., McAuliffe, 0., Morgan, S., Ryan, M.P., Twomey, D.P., Meaney,
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Leeuwenhoek 76,337-346.
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THE LACTIC ACID BACTERIA
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CHAPTER2

THE LACTIC ACID BACTERIA

2.1 TAXONOMY OF FOOD-RELATED LACTICACID BACTERIA

2.1.1 Introduction

The taxonomy of lactic acid bacteria is currently primarily based on phenotypic and genetic

characteristics, rather than on the more traditional morphological and physiological differences

(Klein et aI., 1998). Other characteristics that are used to classify lactic acid bacteria into

different genera include mode of glucose fermentation, growth at different temperatures,

configuration of the lactic acid produced, growth at high salt concentrations, acid or alkaline

tolerance, fatty acid composition and mobility of lactate dehydrogenase (Axelsson, 1993).

Methods used for phenotypic and phylogenetic classification include comparative analysis of

SOS-PAGE of whole cell protein patterns, 16S and 23S rRNA sequence analysis, DNA base

composition, DNA homologies and RAPD-PCR (random amplified polymorphic DNA -

polymerase chain reaction) band patterns (Pot et al., 1994; Stiles and Holzapfel, 1997).

Phylogenetically, the Gram-positive bacteria form two lines of descent, the Clostridium

branch, with a G+C content of less than 50 mol%, and the Actinomyces branch, with a G+C

content higher than 50 mol% (Schleifer and Ludwig, 1995). Lactic acid bacteria are Gram-

positive, catalase negative, non-sporeforming rods, cocci or coccobacilli with a G+C content of

less than 53% (Stiles and Holzapfel, 1997). Lactic acid bacteria have complex nutrient

requirements. Homofermentative lactic acid bacteria convert hexoses to lactic acid, and do

not ferment pentoses or gluconate. Facultative heterofermentative lactic acid bacteria ferment

hexoses to lactic acid and pentoses to lactic acid and acetic acid. Some heterofermentative

lactic acid bacteria also ferment hexoses to acetic acid, ethanol, and formic acid under glucose

limitation (Pot et aI., 1994). Obligately heterofermentative lactic acid bacteria convert glucose

to lactic acid, carbon dioxide, ethanol and/or acetic acid, and pentoses to lactic acid and acetic

acid (Pot et aI., 1994). The genera of the lactic acid bacteria associated with foods include

Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus,

Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Bifidobacterium

spp. were originally considered as members of the lactic acid bacteria, since they produce

lactate and acetate as major fermentation end-products. Although the genus Bifidobacterium

has a G + C content of more than 50 mol%, and is therefore closer related to Actinomyces
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than to lactic acid bacteria (Schleifer and Ludwig, 1995), it is included in this review due to its

importance in the food industry.

Gram-positive, non-sporing lactic acid bacteria not involved with food production or

spoilage include the genera Alloiococcus (Aguirre and Collins, 1992) Aerococcus (Collins et

al., 1990; Stiles and Holzapfel, 1997) and Melissococcus (Bailey and Collins, 1982).

New species and strains with novel phenotypic characteristics are continually being

isolated, and therefore the classification of lactic acid bacteria remains dynamic and

intensively studied (Pot et aI., 1994).

2.1.2 The genus Lactobacillus

Based on their fermentative characteristics, the genus Lactobacillus is divided into three

groups, viz. obligately homofermentative, facultative heterofermentative, and obligately

heterofermentative (Stiles and Holzapfel, 1997). Lactobacilli from all three groups are used in

the food industry, and are associated with numerous different habitats, such as the normal

microflora in human cavities, plants, soil, water, sewage, food fermentations, cereal products,

silage and food spoilage (Hammes and Vogel, 1995).

Group I, the obligately homofermentative lactobacilli, ferments hexoses such as glucose

almost exclusively to lactic acid. These organisms lack the enzymes glucose 6-phosphate

dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-P-GDH) and cannot

ferment pentoses or gluconate (Pot et aI., 1994). The species in this group include

Lactobacillus acidophilus, Lactobacillus amylophilus, Lactobacillus amylovorus, Lactobacillus

aviarius subspp. araffinosus and aviarius, Lactobacillus crispatus, Lactobacillus delbrueckii

subspp. bulgaricus, delbrueckii and lactis, Lactobacillus farciminis, Lactobacillus gallinarum,

Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus jensenii, Lactobacillus johnsonii,

Lactobacillus kefiranofaciens, Lactobacillus kefirgranum, Lactobacillus mali, Lactobacillus

ruminis, Lactobacillus salivarius subspp. salicin us and salivarius, and Lactobacillus sharpeae.

A new species, Lactobacillus fornicalis, was recently added to this group (Dicks et aI., 2000).

Within this group, L. acidophilus, L. delbrueckii, L. helveticus, L. farciminis and L.

kefiranofaciens are important in the food industry (Klein et aI., 1998; Stiles and Holzapfel,

1997).

On the basis of DNA-DNA hybridization studies, two subgroups are identified within the

obligate homofermentative group. Subgroup I includes L. delbrueckii and L. jensenii.

Lactobacillus delbrueckii is associated with plant and dairy products that are fermented at high

temperatures (45-50°C). Lactobacillus delbrueckii subsp. bulgaricus is a yogurt starter
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organism, together with Streptococcus thermophilus, while it is also used with L. delbrueckii

subsp. lactis, L. helveticus and S. thermophilus in cheese starter cultures. Lactobacillus

delbrueckii and L. jensenii are indistinguishable by physiological tests, but have different mol%

G + C values (Pot et aI., 1994). Subgroup 2 includes L. acidophilus, a heterogeneous species

composed of several subgroups, viz. L. amylovorus, L. crispatus, L. gallina rum, L. gasseri and

L. johnsonii. These organisms cannot be differentiated phenotypically, and comparative

methods such as mol % G + C, electrophoretic analysis of total soluble cellular proteins or

lactate dehydrogenase and cell wall studies are necessary (Dicks and Van Vuuren, 1990; Pot

et aI., 1994). Certain strains of L. acidophilus are used in acidophilus milk production and as a

probiotic, while L. delbrueckii subsp. delbrueckii, L. acidophilus and L. farciminis are involved

with sourdough fermentation and L. johnsonii is also used in yogurts. Lactobacillus

acidophilus can be distinguished from L. gasseri with 23S rRNA sequencing (Stiles and

Holzapfel, 1997).

The facultative heterofermentative group (Group II) has both dehydrogenase enzymes (G-

6-PDH and 6-P-GDH). These organisms ferment hexoses to lactic acid and may produce gas

from gluconate, but not from glucose. Pentoses are fermented to lactic and acetic acid via an

inducible pentose phosphoketolase pathway (Pot et aI., 1994). Group II is represented by

Lactobacillus acetotolerans, Lactobacillus agilis, Lactobacillus alimentarius, Lactobacillus

bifermentans, Lactobacilllus casei, Lactobacillus coryniformis subsp. coryniformis and

torquens, Lactobacillus curvatus, Lactobacillus graminis, Lactobacillus hamsteri, Lactobacillus

homohiochii, Lactobacillus intestinalis, Lactobacillus murinus, Lactobacillus paracasei subspp.

paracasei and tolerans, Lactobacillus paraplantarum, Lactobacillus plantarum, Lactobacillus

pentosus, Lactobacillus rhamnosus and Lactobacillus sakei (Stiles and Holzapfel, 1997).

Three subgroups occur within this group (Collins et aI., 1991). Subgroup 1 is represented by

L. casei, an organism associated with sourdough and cheese fermentations, cheese spoilage

and is also used as a probiotic (Klein et al., 1998). The L. casei group comprises the species

L. casei, L. paracasei and L. rhamnosus (Klein et aI., 1998). A revision of this group was

proposed by Dicks et al. (1996) after an initial unsuccessful "Request for an opinion" (Dellaglio

et al., 1991). It has been suggested that the name L. paracasei be rejected and the species

designated L. casei, and the species Lactobacillus zeae be revived (Dicks et aI., 1996).

Subgroup 2 contains the species L. plantarum that is used as a starter organism in fermented

sausages, cereal products and may occur as a spoilage organism in citrus juice, wine and

cheese. Other species included in this subgroup are L. paraplantarum (Curk et aI., 1996) and

L. pentosus (Zanoni et aI., 1987). Lactobacillus pentosus is very closely related to L.

plantarum as determined by 16S rRNA sequence analysis (Collins et aI., 1991). Lactobacillus
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sakei, L. curvatus and L. bavaricus represent the third subgroup (Pot et a/., 1994). Although

they are phenotypically different, L. sakei and L. bavaricus cannot be distinguished by DNA-

DNA hybridization studies and it has been proposed to reject the name L. bavaricus (Torriani

et a/., 1996). Lactobacillus sakei and L. curvatus share 50% DNA similarity (Pot et a/., 1994).

Both of the latter two species are important starter cultures in fermented meat products and

are implicated in the spoilage of cold stored vacuum packed meat (Stiles and Holzapfel, 1997).

It has been suggested that L. sakei be divided into two subgroups on the basis of SOS-PAGE

protein patterns. These subgroups are represented by the organisms L. sakei subsp. sakei

and L. sakei subsp. carnosus (Torriani et a/., 1996). Similarly, L. curvatus should be divided

into two subgroups, represented by L. curvatus subsp. curvatus and L. curvatus subsp.

melibiosus (Klein et a/., 1996; Torriani et aI., 1996). Methods for the rapid detection and

identification of these organisms, using 23S rRNA probes (Hertel et a/., 1991) or RAPD-PCR

(Berthier and Ehrlich, 1999), have been developed.

Group III, the obligate heterofermentative lactobacilli, ferment hexoses to lactic acid, acetic

acid and/or ethanol and carbon dioxide. Gas is produced from glucose. Pentose is fermented

to lactic and acetic acids via the pentose phosphoketolase pathway (Pot et a/., 1994). The

species Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus collinoides, Lactobacillus

fermentum, Lactobacillus fructivorans, Lactobacillus fructosus, Lactobacillus hilgardii,

Lactobacillus kefir, Lactobacillus ma/efermentans, Lactobacillus oris, Lactobacillus panis,

Lactobacillus parabuchneri, Lactobacillus parakefir, Lactobacillus pontis, Lactobacillus reuteri,

Lactobacillus sanfranciscensis, Lactobacillus suebicus, Lactobacillus vaccinostercus and

Lactobacillus vagina/is are obligate heterofermentative. Lactobacillus sanfranciscensis, L.

brevis and L. fermentum are used in sourdough fermentations (Stiles and Holzapfel, 1997).

Lactobacillus panis and L. pontis are associated with rye sourdough fermentations (Stiles and

Holzapfel, 1997). Lactobacillus reuteri produces a broad-spectrum antimicrobial substance

reuterin (Earnshaw, 1992). Lactobacillus reuteri and L. fermentum can only be distinguished

from one another genetically (Stiles and Holzapfel, 1997). Some species within this group

such as L. brevis and L. buchneri cause spoilage of food products (Stiles and Holzapfel,

1997).

2.1.3 The genus Carnobacterium

Collins et al. (1987) suggested the genus Carnobacterium to accommodate atypical

lactobacilli, based on biochemical, chemical and physiological criteria. Carnobacterium spp.

have been isolated from fresh and vacuum-packaged meat and meat products, poultry, fish
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and seawater (Schillinger and Holzapfel, 1995). 16S rRNA sequences of these species show

a high degree of homology, forming a phylogenetically closely related group, distinct from

other lactic acid bacteria (Collins et al., 1987). Carnobacterium spp. can be distinguished from

Lactobacillus spp. by its inability to grow at pH 4.5 or on acetate agar. Four species have

been identified: Carnobacterium divergens, Carnobacterium gallinarum, Carnobacterium

mobile and Carnobacterium piscicala. Carnobacterium divergens and Carnobacterium

piscicala occur mainly on vacuum-packaged meat products stored at low temperatures.

Carnobacterium gallinarum and C. mobile have only been isolated from chicken meat

(Schillinger and Holzapfel, 1995). Carnobacterium spp. are distinguished from each other

based on acid production and fatly acid content. Phylogenetically, the genus Carnobacterium

is closer related to the genera Enterococcus and Vagococcus than to Lactobacillus (Collins et

aI., 1987).

2.1.4 The genus Enterococcus

Originally part of the streptococci, the genus Enterococcus became a separate genus in

1984, with Streptococcus faecalis and Streptococcus faecium renamed as Enterococcus

faecalis and Enterococcus faecium, respectively (Schleifer and Kilpper-Bálz, 1984).

Subsequently, several Streptococcus spp. have been renamed Enterococcus. The genus

Enterococcus is closely related to the genera Vagococcus, Tetragenococcus and

Carnobacterium (Collins et aI., 1989).

Enterococcus faecalis and E. faecium are important in the food and health industry where

they are used as probiotics and starter cultures. Their success as probiotic organisms lies in

their ability to survive in the gastrointestinal tract (GIT) of humans and animals (Klein et aI.,

1998). Enterococcus faecium is associated with the fermentation of various southern

European cheeses. Enterococci may also indicate faecal contamination of food, are frequently

involved in human infections, and are possibly involved in food-borne illnesses (Stiles and

Holzapfel, 1997). Enterococcus faecium and E. faecalis can easily be distinguished from other

homofermentative lactic acid bacteria based on physiological characteristics (Devriese and

Pot, 1995).

Within the genus Enterococcus, 16S rRNA sequence analyses have revealed the

existence of several phylogenetically related species groups (Devriese and Pot, 1995).

Enterococcus faecalis does not fit in any currently identified group. This organism is often the

dominating enterococcal species in the human GIT. In animals, the occurrence of this

organism is age dependent (Devriese and Pot, 1995).
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The E. faecium species group includes the species E. faecium, Enterococcus durans,

Enterococcus hirae and Enterococcus mundtii. These species are distinguished from one

another by pigment production and biochemical characteristics. Enterococcus faecium occurs

mainly in the GIT of humans and animals, but has also been isolated from plants, frozen-,

dried- and processed food and raw milk and milk products (Devriese and Pot, 1995).

Enterococcus faecium is less pathogenic than E. faecalis, but its multiple drug resistance

properties, which have implications for possible hospital infections and epidemics, have

received much attention. Enterococcus durans usually occurs in milk and dairy products, E.

hirae in the gut of dogs and other domestic animals, and E. mundtii in plants (Devriese and

Pot, 1995).

The Enterococcus avium group consists of the species E. avium, Enterococcus

malodoratus, Enterococcus pseudoavium and Enterococcus raffinosus. These species are

differentiated by carbohydrate fermentations. They are mostly associated with animals and

are rarely isolated from humans (Devriese and Pot, 1995).

The Enterococcus gallinarum species group consists of the species E. gallinarum,

Enterococcus casseliflavus and probably Enterococcus flavescens. These organisms are

motile and have a natural low resistance to the antibiotic vancomycin. They differ from each

other by pigment formation, carbohydrate fermentations and haemolysis. The actual habitat of

E. gallinarum and E. flavescens has not been confirmed. Enterococcus casseliflavus occurs

mainly in plants (Devriese and Pot, 1995).

The Enterococcus cecorum species group currently consists of two species, E. cecorum

and Enterococcus columbae. Enterococcus cecorum is the enterococcal species most

frequently isolated from adult chicken intestines, and has also been isolated from the

intestines of other animals. Enterococcus columbae is isolated mostly from pigeons. The two

species are differentiated by carbohydrate fermentation reactions (Devriese and Pot, 1995).

Other enterococci that are unrelated to food and health include Enterococcus sulfureus,

Enterococcus saccharolyticus and Enterococcus dispar (Devriese and Pot, 1995).

2.1.5 The genus Lactococcus

Lactococci are non-motile spheres or ovoid cells that may occur singly, in pairs or in chains

(Teuber, 1995). Although the history of the lactic streptococci started more than a century

ago, the genus Lactococcus was only described 15 years ago (Schleifer et ai., 1985). The

nutritionally fastidious species of this genus can easily be distinguished from Pediococcus and

Leuconostoc spp. by the products produced from glucose fermentation. Lactococcus
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comprises the species Lactococcus lactis subspp. lactis, diacetylactis, cremoris and

hordniae, Lactococcus garvieae, Lactococcus plantarum, Lactococcus raffinolactis and

Lactococcus piscium (Klijn et al., 1991; Pot et al., 1994; Stiles and Holzapfel, 1997).

Lactococcus lactis have been isolated from raw milk and milk products. The subspecies lactis

and cremoris are the main starter cultures used in the production of cheese (Stiles and

Holzapfel, 1997). Lactococcus teetis subsp. cremoris can be distinguished from the closely

related L. lactis subsp. lactis by differential medium and SDS-PAGE of whole-cell proteins

(Descheemaeker et al., 1994). The use of oligonucleotide probes proved to be a highly

sensitive and rapid technique for the specific identification of L. lactis subsp. cremoris (Salama

et al., 1991).

The habitats of the other Lactococcus spp. have not been extensively researched.

Lactococcus garvieae has been isolated from cows with mastitis, L. plantarum from frozen

peas, L. raffinolactis from raw milk, L. lactis subsp. hordniae from a leafhopper, and L. piscium

from a diseased rainbow trout (Schleifer et al., 1985; Williams et al., 1990). Lactococci are not

found in faecal material or soil. Acid production from carbohydrates as well as rRNA gene

restriction analysis can be used to identify and differentiate the Lactococcus spp. (Kohler et al.,

1991; Rodrigues etaI., 1991; Teuber, 1995).

2.1.6 The genera Leuconostoc, Oenococcus and Weissella

Leuconostocs are classified as facultative anaerobic cocci, but in media other than milk

these organisms appear elongated and may be classified as rods (Stiles, 1994). Species from

this genus produces D (-) lactate from glucose, as opposed to L (+) lactate that is produced by

lactococci and DL-Iactate that is produced by heterofermentative lactobacilli (Stiles and

Holzapfel, 1997). Leuconostoc, Lactobacillus and Pediococcus spp. are phylogenetically

closely related (Collins et al., 1991). Leuconostoc is the predominant genus among lactic acid

bacteria on plants, but are also found in milk and dairy products (Garvie, 1986; Stiles and

Holzapfel, 1997) and vacuum-packed meats (Shaw and Harding, 1984). The genus

Leuconostoc is divided into the species Leuconostoc mesenteroides subspp. mesenteroides,

dextranicum and cremoris, Leuconostoc paramesenteroides, Leuconostoc

pseudomesenteroides, Leuconostoc lactis, Leuconostoc carnosum, Leuconostoc gelidum,

Leuconostoc amelibiosum, Leuconostoc citreum, Leuconostoc fallax and Leuconostoc

argentinum (Dellaglio et al., 1995).

The species Leuconostoc oenos (Garvie, 1986), an important organism in wine and related

habitats, was recently reclassified as Oenococcus oeni (Dicks et al., 1995).
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Following taxonomic studies on atypical lactobacilli isolated from dry fermented Greek

sausage, Collins et al. (1993) proposed the reclassificationof Leuconostoc paramesenteroides

and related organisms to the genus Weissella. Several species have been proposed:

Weissella paramesenteroides, Weissella hellenica, Weissella confusa, Weissella ha/otolerans,

Weissella kandIeri, Weissella minor and Weissella viridescens (Collins et aI., 1993). The

differentiation of these organisms from Leuconostoc requires the use of a combination of

taxonomic methods such as acid production from sugar fermentations, dextran formation,

lactic acid configuration and murein type.

2.1.7 The genera Pediococcus and Tetragenococcus

Pediococcus is a phylogenetically heterogeneous genus comprising eight species (Collins

et aI., 1990). Pediococci are non-motile cocci of uniform size. The mode of division of

pediococci to form tetrads is characteristic of this genus. Pediococcus damnosus is

associated with beer, wine and cider, Pediococcus dextrinicus with beer and silage,

Pediococcus parvulus with sauerkraut and silage, and Pediococcus inopinatus with sauerkraut

and beer. Pediococcus pentosaceus and Pediococcus acidilactici are associated with

vegetable material, milk and dairy products, while P. pentosaceus is also used as a starter

culture in fermented sausages (Simpson and Taguchi, 1995).

Collins et al. (1990) proposed the genus Tetragenococcus to accommodate the organism

Pediococcus halophilus. This species plays an important role in the production of soy sauce

(Stiles and Holzapfel, 1997). 16S rRNA sequence analysis revealed that the species is more

related to the genera Enterococcus and Carnobacterium than to Pediococcus and other lactic

acid bacteria (Collins et aI., 1990). The species Pediococcus urinae-equi is more closely

related to the genus Aerococcus (Collins et aI., 1990).

2.1.8 The genus Streptococcus

The streptococci are spherical or ovoid cells arranged in chains or pairs (Teuber, 1995).

This genus originally comprised four groups, the enterococci, lactic streptococci, viridans

streptococci and pyogenic streptococci. Before the advent of molecular taxonomy, the

streptococci were identified using properties such as haemolytic changes on blood agar plates

and serological methods, such as the Lancefield groupings (Hardie and Whiley, 1995). Lactic

streptococci mostly belonged to serological group N, pathogenic streptococci to groups A, B,
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and C, and the enterococci to group 0 (Teuber, 1995). The four groups comprising

Streptococcus have in recent years been subdivided into three genera, viz. Enterococcus,

Streptococcus and Lactococcus (Pot et al., 1994). The organisms still classified as

Streptococcus are of the oral (viridans) and the pyogenic groups. These organisms are of

medical importance since they occur in the alimentary, respiratory and urogenital tracts of

humans as normal flora, and some organisms, particularly of the pyogenic group, are

pathogens (Pot et al., 1994). The only food-related species is S. thermophilus (Streptococcus

salivarius subsp. thermophilus), an important starter culture for cheese and yogurt, together

with the organisms L. delbrueckii subsp. bulgaricus, L. lactis and (or) L. helveticus (Stiles and

Holzapfel, 1997).

2.1.9 The genus Vagococcus

Vagococcus fluvialis, a motile organism isolated from chicken faeces and river water, was

originally identified as Streptococcus fluvialis, reacting with Lancefield group N antiserum. 16S

rRNA sequence analysis revealed a closer relationship to the genus Enterococcus than to the

lactic streptococci (Lactococcus) and a new genus, Vagococcus, was proposed (Collins et al.,

1989). Based on the high level of 16S rRNA sequence similarities, two new species,

Vagococcus salmoninarum, isolated from rainbow trout (Wallbanks et al. 1990), and

Vagococcus lutrae, isolated from a common otter, (Lawson et al., 1999), have subsequently

been described.

2.1.10 The genus Bifidobacterium

Members of the genus Bifidobacterium are non-motile, anaerobic rods mainly found in the

intestinal tract of humans and animals (Stiles and Holzapfel, 1997). In addition,

Bifidobacterium spp. form part of the normal microflora of the vagina, cervix, oral cavity, insect

intestines and sewage (Sgorbati et al., 1995). Bifidobacterium spp. appear to contribute to the

maintenance of a balanced microflora in the intestine. This beneficial probiotic effect has

resulted in the inclusion of Bifidobacterium spp. in milk and milk by-products, and

pharmaceutical products (Sgorbati et al., 1995; Stiles and Holzapfel, 1997). Sgorbati et al.

(1995) listed 29 different species of Bifidobacterium, of which the most important in the food

industry are Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium breve.
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2.2 INDUSTRIAL IMPORTANCE OF LACTIC ACID BACTERIA

Historically, the fermentation of food was based on the activity of natural microflora that

contaminated raw material (De Vuyst and Vandamme, 1994). These fermentations were

gradually improved, and nowadays, worldwide, huge industries exist that produces fermented

food products. Milk alone can be fermented to more than 1000 products, each different in

flavour and texture. Therefore, great demands exist on the metabolic activity, stability and

bacteriophage resistance of starter cultures (Mayrá-Mëkinen and Bigret, 1993). Lactobacillus

spp. and Lactococcus spp. are usually the major components of starter cultures used in the

production offermented dairy products (Teuber, 1995).

Starter cultures can be mesophilic, growing at temperatures of 10-40°C, or thermophilic,

with optimum growth temperatures being 40-50°C (Máyrë-Mëkinen and Bigret, 1993). These

cultures may be a single strain of a specific species, different known strains of a species,

different known strains of different species, or species and strains that are partly or totally

unknown (Máyrá-Mákinen and Bigret, 1993). Most mesophilic starters include L. lactis subsp.

cremoris, L. leetis subsp. diacetylactis, L. lactis or L. mesenteroides subsp. cremoris.

Thermophilic starter cultures include S. thermophilus, L. delbrueckii subspp. lactis and

bulgaricus and L. helveticus (Mayrá-Mákinen and Bigret, 1993). The physiological functions of

starter cultures are important, since they influence the organoleptic quality of the end-product.

The function of starter cultures is to ferment sugars with a subsequent decrease in pH and

reduction of growth of adventitious microflora, to hydrolyze proteins to create the correct

texture and taste, to synthesize flavour compounds and texturing agents, and to produce

inhibitory components (Máyrá-Makinen and Bigret, 1993). Technological improvement of

lactococci in particular, has become a major area of research. Important functions such as

lactose utilization, casein degradation, citrate uptake, bacteriocin production, bacteriophage

resistance and polysaccharide formation are often associated with unstable and naturally

transferable plasm ids. Since lactococci have the ability to transfer genes by conjugation and

transduction, genetically improved starter cultures are being developed which, through their

acquired properties, will improve the overall quality of the food products (Teuber, 1995; Von

Wright and Sibakov, 1993).

Lactic acid bacteria are also utilized in the production of cereal based foods such as

sourdough breads, made from rye or wheat, and products made from maize, sorghum, millet

and other cereal grains (Salovaara, 1993). Sourdough fermentation renders dough with rye

flour more suitable for baking. Dough acidification and salt inhibit amylases that would

otherwise degrade starch after gelatinization. In addition, compounds that improve the flavour
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and aroma of bread are produced by the microorganisms (LOcke, 1996). Organisms

associated with sourdough fermentations include L. sanfranciscensis, L. pontis. P.

pentosaceus, L. plantarum, L. brevis, L. fructivorans, L. fermentum and L. reuteri (LOcke,

1996). In the production of fermented meat products, the organisms P. acidilactici, or other

Pediococcus spp., L. plantarum, Micrococcus varians, Staphylococcus xylosus and

Staphylococcus carnosus are used as starter cultures in combination with various

concentrations of sugar, salt and spices (LOcke, 1996; Mayra-Makinen and Bigret, 1993).

Lactic acid bacteria used in meat fermentations are all homofermentative. Production of lactic

acid decreases the pH, leading to inhibition of spoilage bacteria as well as accelerating the

formation of curing colour. In various types of spontaneously fermented sausages L. sakei

and L. curvatus were the most competitive at temperatures below 25°C (LOcke, 1996). To

ferment vegetables for the production of products such as sauerkraut, pickled cucumbers and

green olives, L. plantarum, various Pediococcus spp., L. mesenteroides and L. brevis are most

often used in combination with NaCI (Máyra-Mákinen and Bigret, 1993). The production of soy

sauce involves the initial fermentation of heat-treated raw materials by fungi (various

Aspergillus spp.), with subsequent fermentation by Tetragenococcus halophilus in the

presence of 13-19 % (w/v) salt (LOcke, 1996).

Lactic acid bacteria are claimed to be beneficial to human and animal health by improving

the integrity of the intestinal microflora (Salminen et al., 1993). Health benefits attributed to

lactic acid bacteria include the control of infections in the intestine and urogenital tract, control

of lactose intolerance, reduction of carcinogenic enzymes leading to the formation of tumors in

the colon, reduction of serum cholesterol levels and stimulation of the immune system and

bowel movement (Ray, 1996). Probiotics of lactic acid bacteria are used increasingly to

promote health. The term probiotic refers to viable bacteria, cultured dairy products, or food

supplements that contain viable lactic acid bacteria (Salminen et aI., 1993). Probiotic strains

for both humans and animals need to be antagonistic against pathogenic and carcinogenic

bacteria, but also stable in acidic environments and in the presence of bile salts. The

adherence to intestinal cells and colonization in the intestinal tract is an added advantage. In

vitro growth and safety in humans are also important considerations (Salminen et aI., 1993).

Various strains of L. acidophilus, L. casei, L. delbrueckii subsp. bulgaricus, E. faecium and

Bifidobacterium spp. are used as probiotics (Ballongue, 1993; Nousiainen and Setala. 1993;

Salminen et al., 1993).
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2.3 ANTIMICROBIAL ACTION OF LACTIC ACID BACTERIA

The antimicrobial action of lactic acid bacteria is often a complex interaction of several

phenomena to produce a combined effect (Earnshaw, 1992). The antimicrobial effect is

attributed to various factors, such as fermentation end-products, and production of substances

by individual strains of bacteria, including bacteriocins and other antagonistic systems

(Lindgren and Dobrogosz, 1990; De Vuyst and Vandamme, 1994).

2.3.1 Fermentation end-products

The species of the organism(s) involved, the chemical composition of the culture

environment and the prevailing physical conditions during the fermentation process, affect the

levels and proportions of fermentation end-products that accumulate (Lindgren and

Dobrogosz, 1990).

2.3.1.1 Organic acids

The rapid production of organic acids, primarily lactic acid, during the fermentation of

carbohydrate-rich food and feed, results in an acidic culture environment which inhibits the

growth and metabolic activities of other organisms that may be present (Lindgren and

Dobrogosz, 1990). Very few non-lactic bacteria are able to grow at pH levels lower than the

threshold pH (3.8-4.4) of lactic acid bacteria (piard and Desmazeaud, 1991). In addition to the

decrease in pH, the undissociated form of the acid molecule causes the collapse of the

electrochemical proton gradient, causing eventual cell death of susceptible organisms

(Earnshaw, 1992). Other organic acids that are produced include acetic acid, formic acid,

malic acid and citric acid. Acetic acid (pKa = 4.75) is a more effective inhibitor than lactic acid

(pKa = 3.08) (Davidson and Hoover, 1993). Preservation is usually affected by the

simultaneous presence of various acids and/or other antimicrobial compounds (Davidson and

Hoover, 1993). An example is the antimould activity observed in sourdough fermentations.

The activity was identified as a mixture of acetic, caproic, formic, propionic, butyric and n-
valeric acids produced by L. sanfranciscensis CB1 (Corsetti et a/., 1998).

2.3.1.2 Carbon dioxide

Carbon dioxide per se has antimicrobial activity. Carbon dioxide also creates an anaerobic
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environment by replacing existent molecular oxygen in the fermentation product, thereby

inhibiting the growth of aerobic organisms. The sensitivity of organisms to carbon dioxide can

vary greatly. Low concentrations of carbon dioxide may have no effect on the growth of some

organisms or may stimulate growth, while higher concentrations may inhibit growth of other

organisms (Lindgren and Dobrogosz, 1990).

2.3.1.3 Oxygen metabolites

The production of the oxygen metabolites hydrogen peroxide (H202), superoxide anions

(02-) and hydroxyl radicals (OH·) is dependent on the availability of oxygen and on the

particular strains present (Lindgren and Dobrogosz, 1990; Piard and Desmazeaud, 1991).

Hydrogen peroxide accumulates because lactic acid bacteria do not produce catalase

(Davidson and Hoover, 1993). The bactericidal effect of hydrogen peroxide may be attributed

to its strong oxidizing effect on the bacterial cell and to the destruction of basic molecular

structures of cell proteins (Lindgren and Dobrogosz, 1990). Free radicals and hydrogen

peroxide can damage bacterial nucleic acids (piard and Desmazeaud, 1991). In milk, the

antimicrobial lactoperoxidase system is activated by hydrogen peroxide, to which Escherichia

coli, Salmonella and Pseudomonas spp. are sensitive, but which minimally affects Gram-

positive bacteria (Earnshaw, 1992; Lindgren and Dobrogosz, 1990). The production of

hydrogen peroxide has many complicated controlling factors, and since the oxidizing nature of

this compound can have adverse effects on the sensory quality of foods, the use of this

compound as a preservative is limited (Earnshaw, 1992). In addition, oxygen metabolites may

affect both lactic acid bacteria and other unwanted organisms (piard and Desmazeaud, 1991).

2.3.1.4 Fatty acids

Under optimal conditions some lactic acid bacteria produce significant amounts of fatty

acids, which are known to show antimicrobial activity (Earnshayv, 1992). Short chain fatty

acids such as acetic-, propionic- and sorbic acids are used as preservatives in food, while

medium-chain fatty acids are used as surface active or emulsifying agents (Jay, 1992). Fatty

acids with a carbon chain length of 12 to 16 (C12 - C16) are primarily active against Gram-

positive bacteria and C1Q- C12 fatty acids against yeasts, while Gram-negative bacteria are not

inhibited by fatty acids (Jay, 1992). The most active antimicrobial lipid is monolaurin (Branen

et al., 1980; Jay, 1992; Kabara et al., 1977).

Ouattara et al. (1997) examined the antibacterial effect of the fatty acids lauric-, myristic-,
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palmitic-, palmitoleic-, stearic-, oleic-, linoleic-, and linolenic acid against the meat spoilage

organisms Pseudomonas fluorescens, Serratia liquifaciens, Brochothrix thermosphacta, C.

piscicola, L. curvatus and L. sakei. Lauric- and palmitoleic acids exhibited the greatest

inhibitory effect, while myristic-, palmitic-, stearic-, and oleic acid were ineffective. All the fatty

acids failed to inhibit B. thermosphacta, P. fluorescens and S. liquifaciens.

Rao and Reddy (1984) studied the effect of fermentation of whole milk by L. acidophilus, L.

bulgaricus (now L. delbrueckii subsp. bulgaricus) and S. thermophilus on fatty acid

composition. Only moderate changes occurred in the amount of glyceride fatty acids and total

cholesterol level, while significant increases in the level of the free fatty acids stearic acid and

oleic acid were observed. No unusual fatty acids present in lactic acid bacteria were detected.

2.3.1.5 Diacetyl

Diacetyl is produced by organisms able to ferment citrate, such as L. mesenteroides

subsp. cremoris and L. lactis subsp. diacetylactis. This compound produces a buttery flavour

in fermented dairy products and is used as a flavour additive in food (Davidson and Hoover,

1993). Diacetyl is also found in wine, brandy, roasted coffee and silage (De Vuyst and

Vandamme, 1994). This compound plays an important role as a biopreservative in

combination with other compounds, but the effective concentration is too high for it to be used

on its own as a biopreservative (Davidson and Hoover, 1993; Earnshaw, 1992).

2.3.2 Other compounds

Heterofermentative lactic acid bacteria can produce acetaldehyde during carbohydrate

fermentation to form ethanol. The absence of alcohol dehydrogenase may result in the

excretion of acetaldehyde. Although acetaldehyde appears to possess antagonistic properties

(piard and Desmazeaud, 1991), its antagonistic effect has been relatively undocumented (De

Vuyst and Vandamme, 1994). Acetaldehyde produced by L. bulgaricus in yoghurt contributes

to the aroma of the product (piard and Desmazeaud, 1991). During fermentation of peanut

milk with various lactic acid bacteria, hexanal, one of the substances responsible for

undesirable green/beany flavour in peanut milk, disappeared. Simultaneously, the

acetaldehyde content of the peanut milk increased during fermentation, with a significant

increase in creamy flavour (Lee and Beuchat, 1991).

Lactobacillus reuteri produces a wide spectrum antimicrobial compound, reuterin, during

anaerobic growth in the presence of glycerol (Earnshaw, 1992). Reuterin is active against a
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variety of Gram-negative and Gram-positive bacteria, yeasts, fungi and protozoa (Daeschel,

1989).

Various unidentified low-molecular mass non-protein antimicrobial substances produced by

lactic acid bacteria have been reported (De Vuyst and Vandamme, 1994). L. plantarum VlT-

E-78076 was found to produce antimicrobial compounds such as methylhydantoin,

mevalonolactone and benzoic acid. These low-molecular mass compounds appeared to act

co-operatively (Niku-Paavola et aI., 1999). Skytta et al. (1993) reported the broad-spectrum

antimicrobial activity of three Pediococcus spp. (P. damnosus VlT-E-76065, P. pentosaceus

VlT-E-76067 and P. pentosaceus VlT-E-76068) isolated from beer. Gram-positive and

Gram-negative organisms were inhibited, and the compounds were not sensitive to proteolytic

enzymes.

Other factors that play a role in the antimicrobial potential of lactic acid bacteria include

competition for nutrients, phage-induced antibacterial proteins (Iysins), and coaggregation (De

Vuyst and Vandamme, 1994).

2.3.3 Bacteriocins

Bacteriocins can be defined as biologically active proteins or protein complexes that

display a bactericidal mode of action towards usually closely related species (De Vuyst and

Vandamme, 1994). The potential use of bacteriocins as natural preservatives have resulted in

the report of numerous bacteriocins produced by all the genera of the lactic acid bacteria.

Bacteriocins are discussed in detail in Chapter 3.
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CHAPTER3

BACTERIOCINS OF LACTIC ACID BACTERIA

3.1 INTRODUCTION

Bacteriocins are biologically active proteins or protein complexes that display a bactericidal

mode of action towards usually closely related species (De Vuyst and Vandamme, 1994).

Numerous bacteriocins produced by most of the genera of lactic acid bacteria have been

reported during the last decade, some of which are discussed or mentioned in Sections 3.3.1-

3.3.8. More than thirty of these bacteriocins have been fully characterized (Carolissen-Mackay

et al., 1997, Nettles and Barefoot, 1993, Piard and Desmazeaud, 1992), but the extent of

bacteriocin diversity is still unknown, since several bacteriocins that have been characterized

do not belong to any of the currently recognized classes of bacteriocins as described in

Section 3.2.1.

Biochemical characterization of several bacteriocins have indicated that they are often

identical, even if produced by the same species, but isolated from different sources, for

example pediocin PA-1 and pediocin AcH (Gonzalez and Kunka, 1987; Bhunia et al., 1988).

Identical bacteriocins such as sakacin A and curvacin A have also been isolated from different

organisms (Tichaczek et al., 1993; Holck et al., 1992).

Several bacteriocin-producing organisms have initially been identified incorrectly, for

instance the producer of pediocin 5 (Daba et al., 1991; 1994; Huang et al., 1996) and bavaricin

MN (Kaiser and Montville, 1996). Some bacteriocin-producing organisms produce only one

antimicrobial peptide for instance pediocin PA-1, produced by Pediococcus acidilactici PAC1.0

(Marugg et al., 1992), while other producers, for instance Leuconostoc mesenteroides TA33a,

secrete more than one bacteriocin (Papathanasopoulos et al., 1997).

3.2 CHARACTERISTICS OF BACTERIOCINS

Bacteriocins differ widely in molecular weight, pi, and presence and number of particular

groups of amino acids, although differences in antimicrobial activity can not be attributed to

particular amino acids or sequence of amino acids (Jack et al., 1995). Most of the low

molecular weight bacteriocins are cationic at pH 7, and many of these bacteriocins have

greater antimicrobial activity at low pH. Adsorption of bacteriocins to Gram-positive cell

surfaces is also pH dependent, with maximum adsorption at or above pH 6 (Jack et al., 1995).
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3.2.1 Classification of bacteriocins

Klaenhammer (1993) originally defined four distinct classes of lactic acid bacteria

bacteriocins: Class I: lantibiotics, Class II: small « 10 kDa) heat-stable membrane-active

peptides, Class III: large (> 30 kDa), heat-labile proteins, and Class IV: complex bacteriocins.

Class II bacteriocins were further divided into Listeria-active peptides with an N-terminal

consensus sequence (Class lIa), poration complexes requiring two different peptides for

activity (Class lib) and thiol-activated peptides that require reduced cysteine residues for

activity (Class IIc), such as laetoeoeein B (Venema et aI., 1993). Subsequent studies have,

however, suggested that the cysteine is not essential for activity, and that the thiol-activated

peptide group should be excluded from the classification (Nes et aI., 1996; Venema et aI.,

1996). The Class IV complex bacteriocins consisted of bacteriocins that contained a protein

and one or more chemical moieties, such as lipid or carbohydrate. The existence of this class

was supported by the inactivation of some bacteriocins by glycolytic and lipolytic enzymes.

Several bacteriocins produced by Leuconostoc spp., such as leuconocin Sand carnocin

LA54A, are inactivated by a-amylase (Keppler et aI., 1994; Lewus et aI., 1992). Subsequent

studies suggested that these complexes may be artifacts caused by interaction between cell

constituents or growth medium and regular peptide bacteriocins (Nes et aI., 1996).

Cintas et al. (1998) proposed a new class of bacteriocins that are unrelated to that defined

for Class II. Enterocin L50, produced by Enterococcus faecium L50, are secreted without an

N-terminal leader sequence or signal peptide, and are more related to a group of cytolytic

peptides secreted by staphylococci.

Currently, bacteriocins are classified as follows (Moil et aI., 1999; Nes et aI., 1996). Class

I, lantibiotics, is further divided into type A lantibiotics and type B lantibiotics. Type A

lantibiotics are elongated, cationic, pore forming peptides. Type B lantibiotics are compact,

with globular structures, are enzyme inhibitors and are immunologically active (De Vuyst and

Vandamme, 1994). Class II, the small heat-stable non-Ianthionine peptides, is divided into

four groups: Class lIa consists of Listeria-active peptides with an N-terminal consensus

sequence. Class lib are two-peptide bacteriocins. Class IIc contains sec-dependent

bacteriocins, and Class lid contains the small heat-stable non-Ianthionine bacteriocins that do

not belong to any of the three groups within Class II. Class III consists of large heat labile

bacteriocins (Moil et aI., 1999). Most of the bacteriocins belang to Class I or Class II.

Research has focussed on these two classes, since they are the most abundant and have the

best potential for industrial application (Nes et aI., 1996). Bacteriocins of food-related lactic

acid bacteria that have been charcterized are summarized in Table 3.1.
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Table 3.1. Some characterized bacteriocins representing the genera of the lactic acid bacteria and classified according to Nes et al. (1996).

C. divergens

Bacteriocin 1 Clasalflcatlon" Reference

bifidocin B Class Iia Yildirim et aI., 1998
carnocin U149 Class I Stoffels et aI., 1992
carnobacteriocin BM1 Class Iia Ouadri et al., 1994
carnobacteriocin B2 Class Iia Ouadri et al., 1994
carnobacteriocin A Class lid Worobo et al., 1994
piscicocin V1a Class Iia Bhugaloo-Vial et aI., 1996
piscicolin 61 Class lid Holck et al., 1994
divergicin 750 Unknown Holck et aI., 1996
divergicin A Class Ilc Worobo et al., 1995
divercin V41 Class Iia Métivier et al., 1998
enterocin A Class Iia Aymerich et aI., 1996
enterocin B Class lid Casaus et al., 1997
enterocin CRL 35 Class Iia Farias et al., 1996
enterocin P Class IIc Cintas et al., 1997
enterocin I Unknown Floriano et al., 1998
cytolysin Class I Gilmore et al., 1994
enterocin AS-48 Unknown Gálvez et al., 1989
bacteriocin 31 Class Ilc Tomita et al., 1996
mundticin Class Iia 8ennik et al., 1998

lactacin F Class lib Fremaux et aI., 1993
acidocin J1132 Class lib Tahara et al., 1996
acidocin A Class Iia Kanatani et al., 1995a
acidocin B Class Ilc Leer et al., 1995
acidocin 8912 Class lid Kanatani et aI., 1995
helveticin J Class III Joerger and Klaenhammer,1986
helveticin V-1829, Unknown Vaughan et al., 1992
lactobin A Class lib Contreras et al., 1997
salivaricin A Class I Ross et aI., 1993

plantaricin C19 Class Iia Atrih et al., 1993
plantaricin C Class I González, et al., 1994
plantaricin EF Class lib Andersson et al., 1998
plantaricin JK Class lib Andersson et al., 1998
plantaricin S Class lib Jiménez-Diaz et aI., 1993
plantaricin-149 Unknown Kato et al., 1994

Genera Organism

Bifidobacterium sp.
Carnobacterium sp.

B. bifidum
C. piscico/a

Enterococcus sp. E. faecium

E. faecalis

E. mundtii
Lactobacillus sp.

Homofermentative Lactobacillus sp.
L. johnsonii
L. acidophilus

L. helveticus

L. amylovorus
L. salivarius

Facultative heterofermentative Lactobacillus sp.
L. plantarum
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"ldentical bacteriocins were not repeated
2Classification:

Class 1, lantibioties
Class II, small heat-stable non-Ianthionine bacteriocins

Class Ila, Listeria-active peptides with an N-terminal consensus sequence (YGNGV)

Class lib, two peptide bacteriocins
Class lie, sec-dependent bacteriocins
Class lid, Class II bacteriocins that do not belong to Class lIa, b or c

Class III, large heat labile bacteriocins
Unknown, sequence data is available, but the classification of the bacteriocin has not been published

L. casei
L. curvatus
L. sakei

Lactococcus sp.
L. bavaricus
L. lactis subsp. lactis

L. lactis subsp. cremoris

L. lactis

Leuconostoc sp. Leuconostoc MF215B
L camosum
L. mesenteroides

Pediococcus sp.
Streptococcus sp.

L. gelidum
P. acidilactici
S. thermophilus Sfi13

Table 3.1 (continued)

easeiein 80 Class III Rammelsberg et ai., 1990
eurvaticin FS47 Class lid Garver and Muriana, 1994
laetoein S Class I M0rtvedt and Nes, 1990
sakacin P Class Iia Tiehaezek et al., 1992
sakacin 674 Class Iia Holck et al., 1994
sakaein A Class Iia Holck et al., 1992
bavariein MN Class Iia Lewus and Montville, 1992
bavaricin A Class Iia Larsen et al., 1993
nisin A Class I Teuber, 1995
nisin Z Class I Mulders et ai., 1991
laetoeoeein 972 Class lie Martinez et ai., 1996
laetoeoeein A , Class lid Van Belkum et ai., 1992
laetoeoeein B Class lid Van Belkum et al., 1992
laetococein M Unknown Van Belkum et al., 1992
laeticin 481 Class I Piard et ai., 1990
laetoeoeein G Class lie Nissen-Meyer et ai., 1992
laetiein 3147 Class I Ryan et al., 1996
leueocin H Class lib Blom et al., 1999
leueoein B-TA11a Class Iia Felix et al., 1994
mesentericin Y1 05 Class Iia Héchard et al., 1992a, b
mesenteriein 52B Unknown Revol-Junelles et ai., 1996
leucoein B-TA33b Unknown Papathanasopoulos et al., 1998
leucocin C-TA33c Class Iia Papathanasopoulos et ai., 1998
leucocin A-UAL 187 Class Iia Hastings and Stiles, 1991
pedioein PA-1 Class Iia Gonzalez and Kunka, 1987
thermophilin 13 Class lib Mareiset et al., 1997

Noe
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3.2.1.1 Class I: lantibiotics

lantibiotics (Ianthionine-containing antibiotic peptides) are small (less than 5 kDa, with 19

to 38 amino acids) membrane-active peptides that contain unusual, posttranslationally

modified amino acids such as lanthionine (lan), l3-methyl lanthionine (Melan) and dehydrated

residues (Klaenhammer, 1993, Sahl and Bierbaum, 1998). Posttranslational peptide

modification usually involves only the amino acids serine, threonine and cysteine, although

lysine, aspertate and isoleucine residues may also be found in modified form (Sahl and

Bierbaum, 1998). All lantibiotics currently documented are produced by Gram-positive

bacteria (Nes and Tagg, 1996). The gene cluster encoding lantibiotic peptides usually also

contain a gene or genes that encode specific enzymes able to facilitate the dehydration of

certain residues in the propeptide region, followed by the addition of cysteine residues to form

characteristic lan and Melan sulfur ring structures (Nes and Tagg, 1996). Considerable

differences in the leader peptide sequence of type A lantibiotics have been observed. Nisin A

and nisin Z, produced by Lactococcus lactis, have a proline residue at the -2 cleavage site,

together with several lantibiotics produced by other Gram-positive bacteria such as subtilin,

produced by Bacillus sub tilis , and pep5, epilanein K7, epidermin and gallidermin, produced by

Staphylococcus epidermides (Nes and Tagg, 1996). The leader peptides of the lantibiotics

saliva ricin A, produced by Lactobacillus salivarius, lacticin 481 (= laetoeoeein DR) produced by

L. lactis, streptococcin A-FF22, produced by Streptococcus pyogenes, cytolysin. II and

cytolysin lS, produced by Enterococcus faecalis are all of the double glycine type (Nes and

Tagg, 1996). Other lantibiotics produced by lactic acid bacteria include lactocin S, produced

by Lactobacillus sakei, carnocin U149, produced by C. piscicola and mutacin, produced by

Streptococcus mutans (Nes and Tagg, 1996). A two-peptide lanthionine, cytolysin, has also

been reported (Gilmore et aI., 1994).

3.2.1.2 Class II: Small heat-stable bacteriocins

These bacteriocins can be defined as small (less than 10 kDa), do not contain any unusual

amino acids, are membrane-active and heat resistant up to temperatures of 1aaoc, or

autoclavable. Most of these bacteriocins are characterized by the so-called double glycine (G-

G) processing site in the bacteriocin precurser (Klaenhammer, 1993). The bacteriocins of

Class II share various features, such as the occurrence of a high content of small amino acids

such as glycine, being strongly cationic with pI's between 8 and 11, and the possession of

hydrophobic and amphiphilic domains (Abee, 1995).

29
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3.2.1.2.1 Class Ila: Listeria-active bacteriocins

Members of this group, also referred to as pediocin-like bacteriocins, are produced by a

wide variety of lactic acid bacteria, and several have been biochemically characterized.

Although the antimicrobial spectrum of these bacteriocins is different, they are all active

against Listeria spp. and share a conserved amino acid sequence, YGNGV, in their structure

(Table 3.2). The function of the YGNGV consensus motif is not clear, since the mechanism for

initial binding of the bacteriocins to the target membranes involves electrostatic interactions

between positive amino acid residue groups and negatively charged membrane phospholipid

groups, without involvement of the YGNGV motif (Chen et aI., 1997a).

Pediocin PA-1 is the most characterized bacteriocin within this group. The production of

pediocin PA-1 is associated with a 9.4 kbp plasmid (pSRQ11) in the producing organism, P.

acidilactici PAC1.0. A 5.6 kbp fragment of this plasmid, when introduced into Escherichia coli,

produced the bacteriocin (Marugg et aI., 1992). A bacteriocin designated pediocin AcH,

produced by P. acidilactici LB42-923 and production associated with a 8 877 bp plasmid

designated pSMB74, was found to be identical to pediocin PA-1 (Bukhtiyarova et aI., 1994).

Other bacteriocins that are part of this group include curvacin A (Tichaczek et aI., 1993),

leucocin A (Hastings et al., 1991), sakacin P (Tichaczek et al., 1994), mundticin (Bennik, et al.,

1998), enterocin A (Aymerich et aI., 1996), bavaricin A (Larsen et aI., 1993), piscicolin 126

(Jack et aI., 1996), mesentericin Y105 (Héchard, et aI., 1992a, b), carnobacteriocin B2 (Quadri

et aI., 1994), and bavaricin MN (Kaiser and Montville, 1996).

3.2.1.2.2 Class lib: Two-peptide complexes

The activity of these bacteriocins depends on the complementary activity of two peptides.

Examples include lactacin F and lactacin X (Fremaux et al., 1993; Muriana and Klaenhammer,

1991), laetoeoeein G (Nissen-Meyer et aI., 1992), plantaricin Sa and b (Jiménez-Diaz et aI.,

1995; Stephens et el., 1998), thermophilin 1 and 2 (Marciset et al., 1997), acidocin J1132a and

b (Tahara et aI., 1996), plantaricin J and K (Anderssen et aI., 1998; Diep et aI., 1996), lactobin

A (Contreras et aI., 1997) and plantaricin E and F (Anderssen et al., 1998; Diep et aI., 1996).

Same two-peptide bacteriocins such as laetoeoeein G and lactococcin M need bath peptides

for activity, while one or both peptides of plantaricin S, lactacin F and thermophilin 13 are

active. The combined effect of the two peptides of these bacteriocins is much greater than the

total activity calculated from the individual effect of these peptides (Cintas et al., 1998).
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Bacteriocin Mature peptide Reference

Table 3.2. Amino acid sequences of Class lla bacteriocins with anti-Listeria activity containing the YGNGV consensus sequence

Acidocin A
Bavaricin A

Bavaricin MN

Bifidocin B
Carnobacteriocin B22

Carnobacteriocin BM13

Curvacin A4

Divercin V41
Enterocin A
Leucocin A5

Leucocin Ta11 a

Mesentericin Y 1056

Mundticin
Pediocin PA_17

Piscicocin V1 as

Plantaricin C1~

Sakacin p9

MKHLKI LSI KETQLlYGG TTHSGKYYGNGVYCTKNKCTVDWAKA TTCIAGMSIGGFLGGAI PGKC
MNNMKPTESYEQLDNSALEQWGG KYYGNGVHCTKSGCSVNWGEAFSAGVHRLANGGNFW

Leader peptide 1

MISMISSHQKTL TDKELALlSGG

MNSVKELNVKEMKQLHGG

MKSVKELNKKEMQQINGG
MNNVKELSMTELQTITGG

MKNLKEGSYTAVNTDELKSINGG

MNNMKSADNYQQLDNNALEQWGG
MTNMKSVEAYQQLDNQNLKKWGG

MKKIEKLTEKEMANIIGG

MEKFIELSLKEVTAITGG

KTYYGTNGVHCTKKSLWGKVRLKNVIPGTLCRKQSLPIKQDLKILLGWATGAFGKTFH Kanatani et al., 1995a

KYYGNGVHXGKHSXTVDWGTAIGNIGNNAAANXA TGXNAGG
TKYYGNGVYXNSKKXWVDWGQAAGGIGQTWXGWLGGAIPGK
KYYGNGVTCGLHDCRVDRGKATCGIINNGGMWGDIG.

VNYGNGVSCSKTKCSVNWGQAFQERYTAGINSFVSGVASGAGSIGRRP

AISYGNGVYCNKEKCWVNKAENKQAITGIVIGGWASSLAGMGH
ARSYGNGVYCNNKKCWVNRGEATQSIIGGMISGWASGLAGM

TKYYGNGVYCNSKKCWVDWGQASGCIGQTWGGWLGGAI PGKC

Larsen et al., 1993

Kaser and Montville, 1996
Yildirim et al., 1999
Ouadri et a/., 1994)

Ouadri et a/., 1994)
Tichaczek et a/., 1993

Métivier et a/., 1998
Aymerich et al., 1996
Hastings et a/., 1991

Felix et a/., 1994
Fleury et a/., 1996
Bennik et a/., 1998
Marugg et a/., 1992
Bhugaloo-Vial et a/., 1996

Atrih et a/., 1993

Tichaczek et a/., 1994

KYYGNGVHCTKSGCSVNWGEAFSAGVHRLANGGNGFW

KYYGNGVHCTKSGCSVNWGEAASAGIHRLANGGNGFW
KYYGNGVSCNKKGCSVDWGKAIGIIGNNSAANLATGGAAGWSK
KYVGNGVTCGKHSCSVDWGKA TTCIINNGAMAWATGGHQGNHKC
KYYGNGVSCNKNGCTVDWSKAIGIIGNNAAANL TTGGAAGWNKG

KYYGNGLSCSKKGCTVNWGQ AFSCGVNRVATAGHGK

KYYGNGVHCGKHSCTVDWGTAIGNIGNNAAANWATGGNAGWNK

1Leader peptide where available

2Carnobacteriocin B2 = Carnocin CP52 (Herbin et aI., 1997)

3Carnobacteriocin BM1 = Piscicolin V1b (Bhugaloo-Vial et aI., 1996) = Carnocin CP51 (Herbin et aI., 1997)

"Curvacin A = Sakacin A (Holck et aI., 1992)

5 Leucocin A = Leucocin A-TA33a (Papathanasopoulos et al., 1998)

6Mesentericin Y105 = Mesentericin 52A (Revol-Junelles et aI., 1996)

7Pediocin PA-1 = Pediocin AcH (Motlagh et aI., 1992)

8Piscicocin V1a= Piscicolin 126 (Jack ef aI., 1996)

9Sakacin P = Sakacin 674 (Holck ef aI., 1994b)

w.-
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3.2.1.2.3 Class Ilc: The sec-dependent bacteriocins

Some bacteriocins do not possess a double-glycine leader peptide, but are synthesized

with a sec-type N-terminal leader sequence, leading to secretion and processing via the sec

pathway (Nes et al., 1996). These type of bacteriocins include divergicin A (Worobo et al.,

1995), enterocin P (Cintas et al., 1997), acidocin B (Leer et al., 1995), lactococcin 972

(Martinez et al., 1996; 1999) and bacteriocin 31 (Tomita et al., 1996).

3.2.1.2.4 Class lid: Unclassified small heat-stable non-Ianthionine

bacteriocins

Bacteriocins that do not meet the criteria of the previous sections within the Class II

bacteriocins are included in this class. Moll et al. (1999) included carnobacteriocin A (Worobo

et al., 1994), enterocin B (Casaus et al., 1997), enterocin I (Floriano et al., 1998), enterocin

L50 (Cintas et al., 1998), curvaticin FS47 (Garver and Muriana, 1994), laetoeoeein A (Holo et

al., 1991), acidocin 8912 (Kanatani et al., 1995b) and lactococcin B (Van Belkum et al., 1992)

in this group.

3.2.1.3 Class III: Large heat-labile bacteriocins

These bacteriocins are more than 30 kDa in size. The bacteriocin helveticin J is

representative of this group. The operon of the bacteriocin has been cloned, and expressed in

Lactobacillus acidophilus (Fremaux and Klaenhammer, 1994).

3.3 BACTERIOCINS PRODUCED BY LACTIC ACID BACTERIA

3.3.1 Bacteriocins produced by Lactobacillus spp.

Numerous bacteriocins produced by Lactobacillus spp. have been reported, dating as far

back as 1947 (De Vuyst, 1994a; Grossowics et al. 1947). These antimicrobial substances

often did not meet the basic criteria for bacteriocins and several of these bacteriocins have not

been fully characterized. Those bacteriocins that have been characterized usually belong to

Class I or Class II (Table 3.1). Helveticin J and caseicin 80 belong to Class III (Table 3.1).

Several bacteriocins produced by unidentified Lactobacillus spp. have been reported.

Lewus et al. (1991) and Ahn and Stiles (1990) reported the production of bacteriocins by
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several Lactobacillus spp. isolated from meat. Kelly et al. (1996b) isolated several bacteriocin-

producing Lactobacillus spp. from meat, fish and dairy products.

3.3.1.1 Bacteriocins produced by obligate homofermentative Lactobacillus

spp.

Lactacin F (=Iacticin F), produced by Lactobacillus johnsonii VPI11 088 [originally identified

as L. acidophilus 11088 (NCK88)] is a small heat resistant bacteriocin that inhibits several

Lactobacillus spp. and E. faecalis. The production of lactacin F is pH dependent, with

maximum levels obtained in MRS broth maintained at pH 7 (Allison et al., 1994; Fremaux et

al., 1993; Muriana and Klaenhammer, 1987, 1991). Molecular analysis of the bacteriocin

genes indicated that the bacteriocin is dependent on two peptides, lactacin F and lactacin X,

for maximum activity (Fremaux et al., 1993). Similarly, L. acidophilus JCM1132 produces the

two-peptide acidocin J1132 (Tahara et al., 1996). Acidocin A, produced by L. acidophilus

TK9201, a starter organism for fermented milk, is active against several closely related lactic

acid bacteria and Listeria monocytogenes (Table 3.2) (Kanatani et al., 1995a). Acidocin B is a

. plasmid-encoded bacteriocin produced by L. acidophilus strain M46, and is active against L.

monocytogenes, Clostridium sporogenes, Brochothrix thermosphacta, Lactobacillus

fermentum and Lactobacillus delbrueckii subsp. bulgaricus, but inactive against most other

Lactobacillus spp. (Leer et al. 1995; Ten Brink et al., 1994). Lactacin B is produced by L.

acidophilus N2 (Barefoot and Klaenhammer, 1983), and acidocin 8912 by L. acidophilus strain

TK8912 (Kanatani et al., 1995b). KiliC;et al. (1996) reported the bacteriocin production of

several L. acidophilus and L. delbrueckii strains. Lacticin A and B are produced by L.

delbrueckii subsp. lactis (Toba et al., 1991).

Bacteriocins produced by Lactobacillus helveticus include lactocin 27, produced by strain

LP27 (Upreti and Hinsdill, 1975), helveticin J, produced by strain 481 (Joerger and

Klaenhammer, 1986) and helveticin V-1829, produced by strain V-1829 (Vaughan et al.,

1992).

Bacteriocins produced by Lactobacillus amylovorus include lactobin A, produced by strain

LMG P-13139 isolated from corn steep liquor (Contreras et al., 1997) and amylovorin L471

produced by strain DCE471 (Callewaert et al., 1999). Salivaricin A is produced by L. salivarius

20P3 (Ross et al., 1993), salivaricin B by L. salivarius M7 (Ten Brink et al., 1994) and salivacin

140, a pH dependent bacteriocin, is produced by L. salivarius subsp. salicinius T140 (Arihara

et al., 1996). Gassericin A is produced by Lactobacillus gasseri LA39 (Kawai et al., 1998).

Only lactacin F (Class lib), acidocin J1132 (Class lib), acidocin A (Class Ila), acidocin B
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(Class lie), acidocin 8912 (Class lid) and helveticin J (Class III) have been characterized

(Table 3.1).

3.3.1.2 8acteriocins produced by facultative heterofermentative Lactobacillus

spp.

Numerous plantaricins have been described in the literature, and have also been reviewed

by Olasupo (1996). The dearth of bacteriocins recorded in the literature as being produced by

Lactobacillus pentosus could probably be attributed to the loss of species status of this

organism for a decade until 1987 (Zanoni et aI., 1987).

Plantaricin ST31 (Todorov et aI., 1999) is produced by Lactobacillus plantarum ST31

isolated from sourdough. The bacteriocin inhibits strains of the genera Lactobacillus,

Leuconostoc, Pediococcus, Streptococcus, Bacillus and certain food-borne pathogens such as

Staphylococcus aureus. Plantaricin ST31 is inactivated by the proteolytic enzymes protease

IV, protease VIII, trypsin and pronase, is active in the pH range 3-8 and heat-stable (100°C for

10 min). The detergents SOS, Tween 20 and Tween 80 have no effect on the bacteriocin

activity. Activity is inhibited by urea. Production of the bacteriocin is first detected in early

logarithmic phase, with maximum inhibitory activity observed in the stationary phase of the

producing organism. The total mass of the bacteriocin as determined by electrospray mass

spectrometry is 2755.63 Da. Twenty amino acid residues have been sequenced:

KRKKHRXQVYNNGMPTGMYR. No plasm ids were detected, indicating that the gene

encoding bacteriocin production is located on the chromosome.

Plantaricin C19 (Atrih et aI., 1993) is produced by L. plantarum C19 isolated from

fermented cucumbers. Plantaricin C19 is active against several Gram-positive pathogenic and

spoilage bacteria, but the activity against lactic acid bacteria is weak or nonexistent. The

bacteriocin is produced during the logarithmic phase, is stable at pH 2-6, heat-stable (95°C for

60 min), and sensitive to proteolytic enzymes. The size of the peptide is about 3.5 kOa, with

the sequence of the first six amino acids being KYYGNG.

Plantaricin C (González, et aI., 1994), produced by L. plantarum LL441, isolated from

Cabrales cheese, is inhibitory to several strains of lactobacilli, leuconostocs, pediococci and

Streptococcus thermophilus. Some food spoilage bacteria are also inhibited. Production of

plantaricin C is detected during exponential growth, with maximum inhibitory activity at the

beginning of the stationary phase. Plantaricin C is sensitive to pronase, trypsin and a-

chymotrypsin, but is not affected by pepsin, proteinase K, a-amylase or lipase. The

bacteriocin is resistant to treatments with methanol, chloroform and acetonitrile, heat-stable
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(100°C for 60 min, 121°C for 15 min), and stable at acid and neutral pH. The sequence of the

first 11 amino acids of plantaricin C is KKTKKNXSGDI. The mode of action of plantaricin C is

bactericidal (González et al., 1996). Turner et al. (1999) recently identified plantaricin C as a

lantibiotic.

L. plantarum C-11, isolated from fermented cucumbers (Daeschel et al., 1990), produces

two two-peptide bacteriocins, plantaricin EF and plantaricin JK (Anderssen et ai., 1998).

Plantaricin A, previously incorrectly identified as the bacteriocin responsible for inhibitory

activity by L. plantarum C11 (Nissen-Meyer et ai., 1993), induces the production of these two

two-peptide bacteriocins (see also Section 3.4.2.5).

Plantaricin UG1 (Enan et ai., 1996) is produced by L. plantarum UG1 isolated from dry

sausage. The bacteriocin is able to inhibit several strains of lactobacilli and lactococci, and

certain food borne pathogens, such as Bacillus cereus, L. monocytogenes, C. sporogenes and

Clostridium perfringens. Plantaricin UG1 is sensitive to a-chymotrypsin, trypsin, proteinase K

and pronase E, but treatment with lipase, acetone, chloroform, diethyl ether, ethyl alcohol,

hexane, isopropanol and toluene does not affect its activity. The bacteriocin is stable at pH

4.5-7 and is produced in mid-logarithmic phase of growth. Plantaricin UG1 is between 3 and

10 kDa, and chromosomally encoded.

Plantacin B (West and Warner, 1988) is produced by L. plantarum NCDO 1193. This

bacteriocin inhibits the growth of various strains of L. plantarum, L. mesenteroides NCDO

8015 and Pediococcus damnosus NCD01832. Plantacin B is sensitive to the enzymes

pronase, pepsin, trypsin and a-chymotrypsin, lipase and a-amylase. Since the molecule

cannot be isolated in liquid media, the mode of action and size of the protein has not been

determined and no DNA or fermentation studies have been reported.

Plantaricins Sand T are produced by L. plantarum LPC010, isolated from green olive

fermentations (Jiménez-Diaz et ai., 1993). Plantaricin S is inhibitory towards several

Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus Micrococcus and

Propionibacterium spp. and towards E. faecalis, and Clostridium tyrobutyricum. Plantaricin S

is resistant to heat (100°C for 60 min) at pH 4, 6 and 7. Lysozyme does not affect the

bacteriocin, but treatment with the enzymes a-amylase, dextranase, lipase A, phospholipase

C, a-chymotrypsin, trypsin, ficin, pronase E, proteinase K, thermolysin and subtilopeptidase

causes inactivation of the peptide. Plantaricin S is produced during the logarithmic phase of

growth. A second bacteriocin, plantaricin T, is secreted once the producing organism reaches

the stationary phase of growth. Plantaricin T exhibits the same heat resistance as plantaricin

S, but is not inactivated by a-amylase or lipase A. Plantaricin T also exhibits a lower level of
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inhibition against the various organisms tested than plantaricin S. Plantaricin S is 2.5 kOa in

size, while plantaricin T is slightly smaller. The genetic determinants for both bacteriocins do

not appear to be plasmid encoded.

Plantacin 154 (Kanatani and Oshimura, 1994) is produced by L. plantarum LTF 154

isolated from fermented sausage. Plantacin 154 inhibits various Lactobacillus spp. such as L.

acidophilus, Lactobacillus casei, L. fermentum and L. plantarum, Pediococcus spp. such as P.

acidilactici and Pediococcus pentosaceus, Streptococcus spp. such as Streptococcus lactis

and S. thermophilus, E. faecalis and Propionibacterium spp. such as Propionibacterium

acidipropionici, Propionibacterium jensenii and Propionibacterium theonii. Other Gram-

positive bacteria (B. cereus, Bacillus licheniformis, B. subtilis and S. aureus) and the Gram-

negative bacteria E. coli and Salmonella typhimurium are not inhibited by plantacin 154. The

antibacterial activity is stable during heat treatment at 80°C and boiling for 30 min. Treatment

of plantacin 154 with proteolytic enzymes causes inactivity, suggesting that plantacin 154 is

proteinaceous. The mode of action has not been reported. The molecular mass estimated by

SOS-PAGE is 3.0 kOa or less. Bacteriocin-deficient mutants obtained after treatment of cells

with acriflavin, coincided with the loss of a plasmid of 9.5 mOa, designated pLP1542. The

bacteriocin-deficient mutants are immune to plantacin 154, suggesting that the genes coding

for immunity are located on the chromosome.

Plantaricin KW30 (Kelly et al., 1996a) is produced by L. plantarum strain KW30 isolated

from fermented corn (Kaanga Wai). The inhibition spectrum of plantaricin KW30 is restricted

to other lactobacilli. Plantaricin KW30 inhibits the growth of one out of five (1/5) Lactobacillus

brevis, 014 Lactobacillus paracasei subsp. paracasei, 0/2 L. pentosus, 5/6 L. plantarum, 0/3 L.

lactis subsp. lactis and 0/3 Leuconostoc citreum strains isolated from Kaanga Wai. Bacterial

strains isolated from other sources (not published) and that are sensitive to plantaricin KW30

includes L. delbrueckii subsp. leetis and 5/8 L. plantarum strains. Proteinase type XIV, a-

chymotrypsin, thermolysin, trypsin, and proteinase K inactivate plantaricin KW30, but

antibacterial activity is not affected by lipase A, a-amylase and lysozyme. The surfactants

SOS, N-Iauryl sarcosine, Triton X-100, Tween 20 and Tween 80 increase the bacteriocin titre.

This suggests that plantaricin KW30 exists as a multimeric form which can be dispersed to

release more active units. Activity of the bacteriocin remains stable over a pH range of 2-10,

but is lost after incubation at pH 12. The bacteriocin is resistant to boiling water for up to 60

min, but all activity is lost after autoclaving.

Plantaricin-149, produced by L. plantarum NRIC 149 and isolated from pineapple (Kato et

aI., 1994), inhibits strains of L. plantarum, L. delbrueckii, L. helveticus, L. casei, L. fermentum,

L. mesenteroides, P. acidilactici, Pediococcus cerevisiae, Enterococcus hirae and L. lactis.
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The bacteriocin is inhibited by proteinase K, pronase, papain, pepsin, pancreatin and trypsin

and is heat resistant (115°C for 10 min). Triton X-100 and Tween 80 do not affect plantaricin-

149, but loss of activity is observed after treatment with SOS. Further studies have indicated

that the genes coding for bacteriocin production are chromosomal. The sequence of the first

22 N-terminal amino acids of the bacteriocin is YSLQMGATAIKQVKKLFKKKGG (Kata et ai.,

1994).

Plantaricin LC74, produced by L. plantarum LC74 isolated from crude goat's milk, inhibits

strains of L. plantarum, L. brevis, Lactobacillus buchneri, Leuconostoc paramesenteroides and

Bacillus stearothermophilus. (Rekhif et al., 1994). The bacteriocin is sensitive to several

proteases and stable at neutral and acidic pH. The detergents Triton X-100, Brij 35, SOS, as

well as urea and l3-mercaoptoethanol have no effect on the activity. Plantaricin LC74 is

produced in the exponential phase of growth, and appears to be less than 5 kOa in size.

Plantaricin SA6, produced by L. plantarum SA6 isolated from fermented sausage, exhibits

antimicrobial activity against several strains of the lactic acid bacteria L. plantarum, L. brevis,

L. buchneri, L. paramesenteroides, L. mesenteroides and Listeria grayi (Rekhif et ai., 1995).

The bacteriocin is inactivated by the proteolytic enzymes lysozyme, proteinase K, lipase, a-

amylase, but not by urea and l3-mercaptoethanol. The activity of the bacteriocin is more stable

at acidic pH (pH 2-6) than at pH 8-12. The size of the bacteriocin is 3.4 kOa.

Plantaricin F, produced by L. plantarum BF001 isolated from spoiled catfish fillets, can only

be detected after growth of the producing organism on solidified medium, or after a 50-fold

concentration of liquid medium (Fricourt et al., 1994, Paynter et al., 1997). Strains of several

genera of lactic acid bacteria are sensitive to plantaricin F. Foodborne pathogens such as L.

monocytogenes, S. aureus, Pseudomonas aeroginosa and salmonellas are also inhibited.

The bacteriocin is heat-stable (100°C for 30 min) and stable at acidic pH. Activity is lost at pH

7. Plantaricin F appears to be produced in the early stationary phase of growth.

Plantaricin 0 is produced by L. plantarum BFE 905 isolated from "Waldorf' salad (Franz et

ai., 1998). This bacteriocin has a narrow spectrum of inhibition, being antagonistic against

only one strain of Lactobacillus sakei, one strain of L. plantarum and several L.

monocytogenes strains. The bacteriocin is inactivated by several proteolytic enzymes, is heat

resistant and active at pH 2 to 10, although activity decreases at pH 8.

Schillinger and LOcke (1989) isolated various bacteriocin-producing lactobacilli from fresh

meat and different meat products. Antagonism as a result of hydrogen peroxide or acetic acid

was minimized by using anaerobic culture conditions. Lactobacillus plantarum strains Lb 75

and Lb 592 inhibit L. sakei strains Lb 68, Lb 693, Lb 699, Lb 790, Lactobacillus curvatus Lb

730, Lactobacillus divergens Lb 836, L. monocytogenes strains 8732 and 17a, but does not
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inhibit L. plantarum Lb 828.

Okereke and Montville (1991a) investigated the ability of several lactic acid bacteria to

produce bacteriocins and inhibit Clostridium botulinum spores at refrigeration and abuse (15

and 35°C) temperatures in the presence of various concentrations of sodium chloride as used

in cured meats. Abuse temperatures were included to simulate temperature abuse conditions

of minimally processed refrigerated meat products. Lactobacillus plantarum Lb 75 and L.

plantarum Lb 592 produces inhibition zones at 15°C and 30°C, but not at 4"C or 10°C.

Plantaricin BN, produced by L. plantarum BN forms inhibition zones at 4, 10, 15 and 30 "C, is

resistant to pepsin, pronase E and trypsin, but sensitive to proteinase K. Lactobacillus

plantarum strain Lb 75 is resistant to pepsin and trypsin, but sensitive to proteinase K,

chymotrypsin and pronase E. Lactobacillus plantarum strain Lb 592 is resistant to all

proteases tested, except proteinase K and chymotrypsin (Lewus et aI., 1991; Okereke and

Montville, 1991 b).

Garriga et al. (1993) isolated several bacteriocin-producing L. plantarum strains from

fermented sausages obtained from different manufacturers at different times of ripening. Six

of the 22 isolates of L. plantarum (designated CTC 242, CTC 244, CTC 272, CTC 305, CTC

306, CTC 316) produce antagonistic activity against two or more of the indicator strains (L.

plantarum ATCC 8014, L. plantarum DSM 20174, L. curvatus NCDO 2739, L. curvatus

(Researchers' own collection) and L. sakei DSM 20017). Lactobacillus plantarum strains CTC

242, CTC 244, CTC 305, CTC 316 inhibit L. plantarum ATCC 8014. Lactobacillus plantarum

DSM 20174 is inhibited by all six isolates. Lactobacillus curvatus NCDO 2739 is not inhibited.

A laboratory strain of L. curvatus is inhibited by CTC 242, CTC 244, CTC 306, and L. sakei

DSM 20017 is inhibited by CTC 242, CTC 244, CTC 272. Further studies on L. plantarum

CTC 305 and L. plantarum CTC 306 have indicated inhibition of L. monocytogenes 17a

(Schillinger and LOcke, 1989) and E. faecalis (laboratory strain). Both compounds from L.

plantarum CTC 305 and CTC 306 are resistant to heat of 100°C for 20 min, and sensitive to

the enzymes trypsin, pepsin, proteinase K and Nagarse (B. subtilis protease). Both isolates

have a bactericidal mode of action against L. monocytogenes 17a. The molecular weight of

the compounds is larger than 10000 Da. Loss of activity and immunity after curing

experiments do not coincide with loss of any plasmids, indicating chromosomal coding of the

bacteriocins.

Plantaricin NA is produced by a L. plantarum sp. isolated from vegetable origin (Olasupo,

1998). The bacteriocin inhibits L. monocytogenes, and is inactivated by proteolytic enzymes,

heat-resistant and active over a pH range of 2-10.

Olukoya et al. (1993) reported the production of plantaricin K, produced by L. plantarum
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DK9 isolated from "fufu", a fermented cassava product, and pentocin 0, produced by L.

pentosus DK7, isolated from "ogi", a fermented maize product. The antagonistic effect of

these two compounds disappears after treatment with trypsin. Both bacteriocins lose some

activity after heat treatments at 80°C for 30 min. Both bacteriocins inhibit strains of

Lactobacillus, Leuconostoc and Enterobacter.

Lactobacillus plantarum TMW 1.25 produces plantaricin 1.250. and plantaricin 1.25[3, which

are 5979 and 5203 Da in size, respectively. Partial sequencing of the a. fraction is not

homologous to any known bacteriocins, while the [3peptide displays strong homology to the N-

terminal of brevicin 27 (Remiger et aI., 1999).

Olasupo et al. (1997) found that the bacteriocinogenic L. casei starter organism for the

production of an African fermented maize product "ogi" improves the shelflife of this product.

Caseicin 80, a bacteriocin produced by L. casei B 80, was reported by Rammelsberg et al.

(1990). The bacteriocin is sensitive to heat, with a narrow spectrum of inhibition and the

apparent size of caseicin 80 is between 40 and 42 kDa. The bacteriocin has not been purified.

Lactocin 705 is produced by L. casei CRL 705 isolated from dry sausages (Vignolo et aI.,

1995).

Curvacin A (Table 3.2), a bacteriocin produced by L. curvatus LTH1174 isolated from, and

a possible starter culture for, fermented sausage (Tichaczek et aI., 1992). This bacteriocin

inhibits several strains of Lactobacillus, L. monocytogenes and E. faecalis. Proteinase K and

trypsin inhibit the bacteriocin, but not pepsin, BSA or RNAse. The inhibitory effect of the

bacteriocin is only slightly affected by heat treatment, but no activity remains after autoclaving.

The bacteriocin is produced in the late logarithmic phase of growth. Other bacteriocins

produced by L. curvatus include curvaticin FS47, produced by strain FS47 isolated from meat

(Garver and Muriana, 1994), and curvaticin 13, produced by strain SB13 (Sudirman et aI.,

1993).

Several bacteriocins produced by L. sakei have been reported, including sakacin M

(Sobrino et al. 1992) and lactocin S (Mortvedt and Nes, 1990). Garriga et al. (1993) reported

bacteriocin production by L. sake; CTC 372. Hugas et al. (1995) reported the inhibition of

Listeria spp. by L. sakei CTC 494. Schillinger and LOcke (1989) reported the production of

antimicrobial compounds by six L. sakei strains isolated from meat. Schillinger et al. (1991)

reported the control of L. monocytogenes by L. sakei Lb706.

Sakacin P (Table 3.2), a bacteriocin produced by L. sakei LTH673, has similar

characteristics to curvaticin A, although sakacin P appears more active (Tichaczek et aI.,

1992). Sakacin 674 (Table 3.2), produced by L. sakei Lb674 inhibits the growth of several

Lactobacillus spp. and L. monocytogenes (Holck et al., 1994b). Subsequent studies have
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shown that sakacins Pand 674 are identical (Huhne et al., 1996). Sakacin A (Table 3.2),

produced by L. sakei Lb706 (Holck et al., 1992) is identical to curvacin A. Bavaricin MN (Table

3.2), originally reported to be produced by Lactobacillus bavaricus MN (Lewus and Montville,

1992), is produced by L. sakei MN (Kaiser and Montville, 1996). Bavaricin A (Table 3.2),

produced by L. bavaricus MI401, has a bactericidal mode of action against several L.

monocytogenes strains (Larsen et al., 1993).

Numerous bacteriocins produced by the facultative heterofermentative Lactobacillus spp.

have been reported as discussed in this chapter, but only a few have been fully characterized.

Two bacteriocins, plantaricin C and lactocin S are Class I lantibiotics, while plantaricin EF,

plantaricin JK and plantaricin S are Class II two-peptide bacteriocins. The data available on

plantaricin C19 suggests that this bacteriocin may be a Class lIa bacteriocin. Curvacin A

(=sakacin A), sakacin P (=sakacin 674) and bavaricin MN are Class Iia bacteriocins as

depicted in Table 3.2.

3.3.1.3 Bacteriocins produced by obligate heterofermentative Lactobacillus

spp.

Considering the amount of species within this group (19), the lack of published data on

bacteriocins produced by obligate heterofermentative Lactobacillus spp. is surprising. It may

be speculated that this group is industrially not as important as the previous two groups, and

that this group is usually associated with food spoilage rather than food fermentation.

Several bacteriocins produced by L. brevis have been reported. The bacteriocin brevicin is

produced by L. brevis 37 (Rammelsberg and Radler, 1990). Brevicin 27 is produced by L.

brevis strain SB27. This bacteriocin inhibits mainly strains of closely related L. brevis and L.

buchneri. The protein is about 5200 Da in size and protein sequencing of the first 25 N-

terminal amino acids revealed a high proprotion of lysine and hydrophobic amino acids (Benoit

et al., 1997). Brevicin 286 is produced by L. brevis VB286 isolated from vacuum-packaged

meat. This bacteriocin is inactivated by several proteolytic enzymes and heat-stable (Coventry

et al., 1996).

Bacteriocins produced by other species within this group include fermenticin, produced by

L. fermentum (DeKlerk and Smit, 1967) and reutericin 6, produced by Lactobacillus reuteri LA6

(Kabuki et al., 1997).

3.3.2 Bacteriocins produced by Carnobacterium spp.

Several bacteriocins produced by Carnobacterium spp. have been reported. Most of these
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bacteriocins have been fully characterized and belong to the Class II group of bacteriocins as

described in Section 3.2.1 and Table 3.1. Carnocin U149 is a Class I lantibiotic, while

divergicin 750 does not fit into any of the currently described groups. The production of

bacteriocins by several Carnobacterium spp. isolated from meat, particularly Carnobacterium

piscico/a and Carnobacterium divergens has been reported (Ahn and Stiles, 1990; Lewus et

aI., 1991).

Carnocin U149 is a 4635 Da bacteriocin produced by C. piscico/a, isolated from fish

(Stoffels et aI., 1992). Carnobacterium piscico/a LV178, isolated from meat, was found to

produce carnobacteriocins 8M1, 82 and A (Ahn and Stiles, 1990; Quadri et aI., 1994).

Carnobacteriocins 8M1 and 82 (Table 3.2) are active against various Carnobacterium spp.,

Listeria innocua, L. monocytogenes, E. faecium and E. faeca/is. Worobo et al. (1994) reported

the production of carnobacteriocin A by C. piscicola LV17A. This relatively heat and solvent

resistant bacteriocin differs from most other small hydrophobic peptides since activity is easily

lost. The bacteriocin is produced during the early logarithmic phase of growth, and therefore is

thought to have an ecological advantage in mixed fermentations. The amino acid sequence of

the prepeptide of this bacteriocin is identical to that of piscicolin 61 (Holck et aI., 1994a).

Herbin et al. (1997) reported the production of carnocin CPS, produced by C. piscicola

CPS, isolated from French mold-ripened cheese. Purification of the bacteriocin indicated that

two anti-listerial bacteriocins, carnocin CPS1 and carnocin CPS2 are produced. Carnocin

CPS1 shares homologies with carnobacteriocin 8M1, and carnocin CPS2 is similar to

carnobacteriocin 82 (Table 3.2). The two producing bacteria are, however, not identical, since

strain CPS has four plasm ids and strain LV17 three plasmids. Furthermore, the bacteriocin

carnobacteriocin A is not produced by strain CPS and its genetic determinants could not be

detected with PCR. The two strains were isolated from different food products.

Two bacteriocins, piscicocin V1a (4416 Da) and piscicocin V1b (4526), produced by C.

piscicola V1, isolated from fish, were purified and characterized (8hugaloo-Vial et aI., 1996;

Pilet et aI., 1995). Both bacteriocins inhibit various Gram-positive bacteria, including L.

monocytogenes, although piscicocin V1a is more active than piscicocin V1b (Table 3.2).

Piscicolin 126, a heat resistant bacteriocin produced by C. piscico/a isolated from spoiled

ham, inhibits several species of Enterococcus, Lactobacillus, Leuconostoc, Listeria and S.

thermophilus (Jack et aI., 1996). The amino acid sequence of this bacteriocin is identical to

piscicocin V1a (Table 3.2).

Holck et al. (1994a) reported the production of a bacteriocin produced by C. piscico/a LV61

isolated from meat, called piscicolin 61. This bacteriocin inhibits several Carnobacterium,

Lactobacillus, Leuconostoc, Pediococcus, Enterococcus and Listeria spp.
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Divergicin 750 (Table 3.2), a bacteriocin produced by C. divergens, inhibits species of

Carnobacterium, Enterococcus and Listeria, as well as C. perfringens (Holck et al., 1996).

Worobo et al. (1995) described divergicin A. produced by C. divergens LV13, isolated from

meat. Divercin V41 (Table 3.2) is a bacteriocin produced by C. divergens V41, isolated from

fish viscera (Métivier et al., 1998; Pilet et al., 1995).

3.3.3 Bacteriocins produced by Enterococcus spp.

Numerous bacteriogenic enterococci have been reported (De Vuyst, 1994b). Most of the

bacteriocins described in the literature are produced by E. faecium and E. faecalis. These

bacteriocins are more diverse than those produced by Carnobacterium spp., and several

bacteriocins such as enterococcin Sf25 (Reichelt et al., 1984), enterocin 81 (Ennahar et al.,

1998), enterocin 01 (Olasupo et al., 1994), enterocin I (Floriano et al., 1998), enterocin L50A

and B (Cintas et al., 1998), enterocin EJ97 (Gálvez et al., 1998), enterocin AS-48 (Gálvez et

al., 1989), enterocins 1071A and B (Balla et al., 2000) and enterocin 012 (Jennes et al., 2000)

either do not belong in any of the currently described groups, or have not been characterized

to the extent that they can be classified (Section 3.2.1 and Table 3.1). Other enterocins

described belong to either the Class I or Class II groups of bacteriocins.

Arihara et al. (1991) isolated six strains of E. faecalis that showed inhibitory activity

towards L. monocytogenes. Other bacteriocins produced by E. faecalis include enterocin

EJ97, produced by E. faecalis EJ97 isolated from municipal waste water (Gálvez et al., 1998),

cytolysin (Gilmore et al., 1994), bacteriocin 31 (Tomita et al., 1996) and enterocin AS-48

(Gálvez et al., 1989), which is identical to enterocin 4 (Joosten et al., 1996). Balla et al. (2000)

reported the characterization of enterocin 1071A and enterocin 1071B, two bacteriocins

produced by E. faecalis BFE 1071, isolated from minipig faeces. These two peptides showed

64 and 61% homology with the a and f3 peptides of laetoeoeein G (Section 3.3.4), respectively.

Reichelt et al. (1984) described the production of enterococcin Sf25, produced by

Streptococcus faecium (= E. faecium) strain 25 isolated from human sources. Torri Tarelli et

al. (1994) isolated bacteriocin-producing strains of E. faecium (strains 7C5 and CNRZ EFM4)

and E. faecalis strains (X1, X2 and X3) from dairy sources.

Enterocin A. produced by E. faecium DPC1146, was originally designated enterocin 1146

(O'Keeffe et al., 1999). This bacteriocin is identical to enterocin A (Table 3.2) produced by E.

faecium CTC492, which was isolated from fermented Spanish sausage (Aymerich et al. 1996).

Enterococcus faecium CTC492 also produces enterocin B (Nilsen et al., 1998). Enterococcus

faecium T136, also isolated from fermented Spanish sausage, produces enterocin A and B as
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well (Casaus et al., 1997). Enterocin 8 is also produced by E. faecium 8FE 900 isolated from

black olives (Franz et al., 1999). Enterocin 81, produced by E. faecium WHE 81, isolated from

Muster cheese, shows a narrow spectrum of inhibition against Enterococcus and Listeria spp.

(Ennahar et al., 1998). Farias et al. (1996) isolated a pediocin-like enterocin CRL 35 from

Argentinean cheese. The N-terminal amino acid sequence is

KYYGNGVTLNKXGXSVNXXXA. Other bacteriocins produced by E. faecium include

enterocin 01, produced by strain NA01 isolated from "wara" (Olasupo et aI., 1994), enterocin

P, produced by strain P13 isolated from a Spanish dry-fermented sausage (Cintas et al.,

1997), enterocin I, produced by strain 6T1 a, isolated from a Spanish green olive fermentation

(Floriano et al., 1998) is identical to enterocin LSO,produced by E. faecium LSO (Cintas et al.,

1998).

8ennik et al. (1998) reported the characterization of a bacteriocin, mundticin, produced by

a strain of Enterococcus mundtii, associated with vegetables. Jennes et al. (2000) described

enterocin 012, produced by Enterococcus gallinarum strain 012, isolated from the duodenum

of ostrich.

3.3.4 8acteriocins produced by Lactococcus spp.

A variety of bacteriocins are produced by Leetoeoecue spp. These include the three Class

I lantibiotics nisin (Teuber, 1995), lacticin 481 (piard et al. 1990), and lacticin 3147 (Ryan et

aI., 1996), laetoeoeein G, a Class lib two peptide bacteriocin (Nissen-Meyer et aI., 1992), and

lactococcins A, 8, and M, which are produced by various strains of L. lactis.

Nisin is a lantibiotic produced by many strains of L. lactis subsp. lactis. The host range of

nisin includes most Gram-positive bacteria such as staphylococci, enterococci, pediococci,

lactobacilli, leuconostocs, listerias, corynebacteria, Mycobacterium tuberculosis, and

germinating spores of bacilli and clostridia (Teuber, 1995). Nisin is the first bacteriocin to be

granted GRAS status and is used commercially in various food products as a preservative

(Teuber, 1995). Nisin Z, produced by L. leetis subsp. leetis strain NIZO 22186, is a natural

variant of nisin A (Mulders et aI., 1991).

Lactococcins A, 8, and M are produced by L. lactis subsp. cremoris 984. These

bacteriocins are inhibitory towards other lactococci only (Teuber, 1995, Van 8elkum et aI.,

1991; 1992). Lactococcus lactis subsp. diacetylactis DPC938 produces three bacteriocins

identical to lactococcins A, 8 and M (Morgan et aI., 1995). The L. lactis subsp. diacetylactis

DPC938 plasmid encoding these bacteriocins is larger than that reported by Van 8elkum et al.

(1989) for lactococcins A, 8 and M produced by L. lactis subsp. cremoris 984 (Morgan et aI.,
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1995). Lactococcin A is also produced by L. lactis subsp. cremoris LMG 2130 (Holo et al.,

1991) and L. lactis subsp. diacetylactis WM4 (Stoddard et al., 1992).

Piard et al. (1990) reported the production of lacticin 481, produced by L. lactis CNRZ 481.

This small (5500 Da) heat resistant bacteriocin inhibited most Lactococcus spp. tested as well

as some Lactobacillus, Leuconostoc and Clostridium spp. Maximum production was obtained

at a maintained pH of 5.5.

Laetoeoeein G, produced by L. lactis LMG 2081, is a two-peptide bacteriocin that inhibits

various lactic acid bacteria and different clostridia (Nissen-Meyer et al., 1992).

The lantibiotic laetoeoeein DR, produced by L. lactis subsp. lactis ADRIA 85L030 (Rince et

aI., 1994) is identical to lacticin 481. Lactococcus lactis subsp. leetis IPLA 972, isolated from

home-made cheese, produces lactococcin 972 (Martinez et aI., 1996). Other bacteriocins

produced by Lactococcus spp. include lacticin 3147, produced by L. lactis DPC3147 (Ryan et

aI., 1996), and lactostrepsin, produced by L. lactis subsp. cremoris strain 202 (Zajdel et aI.,

1985).

3.3.5 Bacteriocins produced by Leuconostoc and Weissella spp.

Several bacteriocins produced by Leuconostoc spp. have been described. Most of these

bacteriocins belong to the Class Iia group of bacteriocins, such as mesentericin Y105

(Héchard et aI., 1992a), leucocin A-UAL 187 (Hastings and Stiles, 1991), and leucocin C-

TA33c (Papathanasopoulos et al., 1997; 1998). Leuconocin S (Lewus et al., 1992) and

carnocin LA54A (Keppler et aI., 1994) are two of the few bacteriocins that are sensitive to a-

amylase. Mesentericin 52A (Revol-Junelles et aI., 1996) is identical to mesentericin Y105

(Héchard et aI., 1992a), and leucocin A-TA33a (Papathanasopoulos et aI., 1997; 1998) is

identical to leucocin A-UAL 187 (Hastings and Stiles, 1991). Several characterized

bacteriocins in this group cannot be classified in the currently described groups, such as

mesentericin 52B (Revol-Junelles et aI., 1996) and leucocin B-TA33b (Papathanasopoulos et

aI., 1997; 1998).

Ahn and Stiles (1990) and Lewus et al. (1991) reported the production of bacteriocins

produced by several Leuconostoc spp. isolated from meat. Leuconocin J is produced by

Leuconostoc sp. J2, isolated from Korean Kimchi (Choi et al., 1999). Leucocin H is a two-

peptide bacteriocin produced by Leuconostoc MF215B (Blom et aI., 1999). Kelly et al. (1996b)

isolated several bacteriocin-producing Leuconostoc spp. from meat, fish and dairy products.

Carnocin LA54A, a 4 kDa, heat resistant bacteriocin produced by Leuconostoc carnosum

LA54A, isolated from meat, is sensitive to a-amylase as well as other proteolytic enzymes,
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suggesting a proteinaceous and a carbohydrate moiety (Keppler et aI., 1994). Other

bacteriocins produced by L. carnosum include leucocin F10, produced by strain F10 isolated

from meat (Parente et al., 1996), leucocin B-TA 11a, produced by strain TA 11a isolated from

meat (Felix et el., 1994), and carnosin, isolated from vacuum packaged Vienna-type sausages

(Van Laack et aI., 1992).

Mesentericin Y10S, produced by L. mesenteroides strain Y10S, inhibits L. monocytogenes

and is a 37 amino acid heat resistant bacteriocin active over a pH range of 4 to 8.5 (Fleury et

a/., 1996; Héchard, et aI., 1992a, b). Papathanasopoulos et al. (1997) reported the production

of three bacteriocins, leucocin A-TA33a, leucocin B-TA33b and leucocin C-TA33c. Leucocin

A-TA33a is identical to leucocin A-UAL 187 (Papathanasopoulos et aI., 1998). Other

bacteriocins produced by L. mesenteroides include mesentericin 52A and mesentericin 52B

produced by L. mesenteroides subsp. mesenteroides FRS2 (Revol-Junelles et al., 1996) and

dextranicin 24, produced by L. mesenteroides subsp. dextranicum J24 (Revol-Junelles and

Lefebvre, 1996).

Hastings and Stiles (1991) reported the production of a bacteriocin-like substance,

leucocin A-UAL 187 (= leucocin A) produced by Leuconostoc gelidum UAL 187 isolated from

. vaéuum-packaged meat (Table 3.2). The producer organism grows well· at refrigeration

temperatures, but not at 35°C. The bacteriocin is resistant to heat and inhibited by protease

and trypsin. The bacteriocin is active against several Leuconostoc, Lactobacillus,

Pediococcus, and Carnobacterium spp., E. faecalis and L. monocytogenes (Hastings et aI.,

1991).

Leuconocin S, an a-amylase sensitive bacteriocin (Lewus et aI., 1992) and leucocin C-

LA7a (Hastings et aI., 1996) is produced by Weissella paramesenteroides.

3.3.6 Bacteriocins produced by Pediococcus spp.

Pediocin PA-1, which belongs to the Class lIa group of bacteriocins as discussed in

Chapter 3, has been extensively researched. Gonzalez and Kunka (1987) reported the

production of pediocin PA-1 by P. acidilactici PAC1.0. Pediocin PA-1 is active against a wide

spectrum of Gram-positive lactic acid bacteria as well as L. monocytogenes (pucci et al.

1988). Pediocin PA-1 also inhibits L. monocytogenes in fermented semidry sausage (Berry et

aI., 1990) and fresh meat (Nielsen et aI., 1990). The bacteriocin is produced by two

Pediococcus parvulus strains isolated from minimally processed vegetables (Bennik et aI.,

1997). A bacteriocin produced by a P. acidilactici strain isolated from commercial starter

cultures by Nieto Lozano et al. (1992) is identical to pediocin PA-1. Pediocin AcH, produced
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by a P. acidilactici isolated from fermented sausage (Bhunia et al., 1988) is identical to

pediocin PA-1 (Marugg et aI., 1992).

Pediocin 5 is produced by P. acidilactici UL5, originally identified as L. mesenteroides UL5

(Daba et aI., 1991; 1994, Huang et aI., 1996). Pediocin PD-1, is produced by P. damnosus

NCFB 1832 (Green et aI., 1997). Pediocin A is produced by P. pentosaceus FBB61 (Piva and

Headon, 1994). Pediocin L50 has been renamed enterocin L50 (Cintas et aI., 1998).

3.3.7 Bacteriocins produced by Streptococcus spp.

Tagg (1992) reported the production of numerous bacteriocin-like inhibitory substances by

streptococci, which at the time were still identified using the Lancefield groupings. The

potential use of mutacins, produced by mutans streptococci, in the prevention of dental caries

has been reported (Chikindas et aI., 1997; Novák et aI., 1994). Lewus et al. (1991) reported

the production of a bacteriocin by a Streptococcus sp. isolated from meat. Bacteriocin

production by several S. thermophilus strains have been reported (De Vuyst, 1994c). These

include thermophilin 13 produced by S. thermophilus Sfi 13 (Marciset et al., 1997), thermophilin

347, produced by strain 347 isolated from yoghurt (Villani et aI., 1995), and thermophilin T

produced by strain ACA-DC0040, isolated from "feta" cheese (Aktypis et aI., 1998).

3.3.8 Bacteriocins produced by Bifidobacterium spp.

Bifidobacteria are one of the predominant groups of bacteria in the human intestinal tract

and are thought to have several advantageous effects on the health of the host, but little work

has been done on the production of bacteriocins by this group of organisms (Yildirim and

Johnson 1998). Bifidocin B, produced by Bifidobacterium bifidum NCFB 1454 has a wide

antimicrobial spectrum, inhibiting several species of Enterococcus, Lactobacillus,

Leuconostoc, Listetie and Pediococcus. Staphylococcus, Clostridium and Streptococcus spp.

were not inhibited (Yildirim and Johnson, 1998). The molecular mass of this bacteriocin was

determined to be 3.3 kDa. The bacteriocin was heat-resistant, inactivated by trypsin, a-

chymotrypsin, papain, proteases and pepsin, and activity was retained at pH values of 2 to 12.

Yildirim et al. (1999) reported the protein sequence of bifidocin B (Table 3.2). Production of

the bacteriocin was associated with an 8 kbp plasmid.

Stellenbosch University http://scholar.sun.ac.za



3.4 GENETICS OF CLASS II BACTERIOCIN PRODUCTION

3.4.1 Gene location

Bacteriocins may be either chromosomally or plasmid-encoded, for example, enterocin A

(Aymerich et ai., 1996) and sakacin P (Tichaczek et ai., 1994) are chromosomally encoded,

while curvacin A (Tichaczek et ai., 1992), leucocin A (Hastings and Stiles, 1991), mesentericin

Y105 (Héchard et al., 1992a), bifidocin B (Yildirirn et al., 1999) and pediocin PA-1lAcH

(Marugg et al., 1992; Bukhtiyarova et al., 1994) are plasmid-encoded. Plasmids associated

with bacteriocin production vary considerably in size. Some plasm ids are known to carry the

genetic determinants for several bacteriocins (Jack et al., 1995). Where more than one

bacteriocin is produced, the bacteriocins can be plasmid (carnobacteriocin B2) and

chromosomally (carnobacteriocin BM1) encoded (Quadri et ai., 1995).

3.4.2 Genetic organization

The general genetic structure leading to synthesis of cationic bacteriocins usually

encompasses four genes that encode the functions required for production of extracellular

antibacterial activity (Nes et al., 1996). These are the structural gene which encodes the

prebacteriocin, an immunity gene, a gene which encodes an ABC-transporter and an

accessory gene that is also necessary for bacteriocin externalization. These genes are

usually organized in one or two operons (Nes et ai., 1996), with an upstream promoter area.

The genetic structure of several Class lIa bacteriocins has been analysed, including pediocin

PA-1 (Marugg et ai., 1992), mesentericin Y105 (Fremaux et ai., 1995), leucocin A (Van

Belkum and Stiles, 1995), divercin V41 (Métivier et ai., 1998), sakacin P (Hunne et ai., 1996),

acidocin A (Kanatani et al., 1995a), sakacin A (Axelsson and Holck, 1995) and enterocin A

(O'Keeffe et ai., 1999). For several bacteriocins, including the plantaricins of L. plantarum

C11, divercin V41, sakacin A, sakacin Pand enterocin A, regulatory genes involved in

bacteriocin production have also been identified. These regulatory systems are discussed in

Section 3.4.2.5.

The DNA sequence of the pediocin PA-1 operon revealed four open reading frames

(ORF's ), designated pedA, pedB, pedC and pedO, with an upstream promoter area (Fig. 3.1).

pedA encodes pre-pediocin PA-1, the structural gene of with its leader peptide, a protein of 62

amino acids. pedB encodes the immunity protein, consisting of 112 amino acids. pede

encodes an accessory protein of 174 amino acids found to be necessary for protein
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externalization, while pedO encodes an ABC transporter protein of 724 amino acids (Marugg

et al., 1992) .

.-.. ~ --_.._-------_.
pedA pedB

62 aa 112 aa

pedG

174 aa

pedO

724 aa

Fig. 3.1. Schematic representation of the pediocin PA-1 operon (Marugg et ai., 1992). The

promoter (.) and filled arrows indicate the individual genes and the direction of transcription.

The gene clusters of mesentericin Y105 and leucocin A are very similar and are arranged

in two operons (Fig. 3.2). mesY the gene encoding the 61 amino acid structural gene of

mesentericin Y105, and mesl encoding the immunity gene which consists of 113 amino acids,

are preceded by a promoter and followed by a terminator, indicating an operon. A second

operon-like structure consisting of ORF's mesC, mesO and mesE is transcribed in the

opposite direction. mesO encodes an ABC transporter of 722 amino acids. mesE encodes an

accessory factor consisting of 457 amino acids. The function of the protein encoded by mesC

has not been determined (Fremaux et al., 1995).

B

mesl mes Y mesG

113aa 61aa 137aa
~ ~. c=> ~ ..

IcaB IcaA IcaE

154 aa 61 aa 149 aa

mesO

722 aa

mesE

457 aa

A

IcaG

717 aa

leaD

457 aa

Fig. 3.2. Schematic representation of the (A) mesentericin Y105 (meslYand mesCOE)

(Fremaux et ai., 1995) and (B) leucocin A (IcaAB and IcaECO) operons (Van Belkum and

Stiles, 1995). The promoter (.) and filled arrows indicate the individual genes and the direction

of transcription.

Leucocin A has a similar genetic arrangement. IcaA encodes a 61 amino acid structural

protein, and IcaB encodes the 154 amino acid immunity gene of leucocin A. IcaE encodes a

protein of unknown function consisting of 149 amino acids. LcaE shows 85% similarity to

MesC. LcaC encodes an ABC transporter that consists of 717 amino acids, with 99%

similarity to MesO. LcaD is an accessory factor consisting of 457 amino acids, which shows
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96% similarity to MesE (Van Belkum and Stiles, 1995).

The chromosomal DNA fragment identified as the divercin V41 gene cluster consists of the

genes ORFA, dvnA, dvnT1, dvnT2, dvn1, dvnR and dvnK, which encodes the structural gene,

ABC transporter, immunity protein, a second immunity protein, response regulator and

histidine kinase, respectively (Fig. 3.3). No homology was found between ORFA and any

previously described protein. Predicted structural conformation of the protein implied that it

could form a transmembrane helix, suggesting that the protein could be anchored in the

cytoplasmic membrane (Métivier et aI., 1998) .

. . .

ORFA dvnA

127 aa 66 aa
dvnT1 dvnT2 dvn1

819 aa (T1fT2) 97 aa
dvnR dvnK

Fig. 3.3. Schematic representation of the gene cluster of divercin V41 (Métivier et aI., 1998).

Filled arrows indicate the individual genes and direction of transcription. The dashed box

encodes an ORF whose product is similar to the C-terminus of an ATP-transporter.

Two genes were identified for acidocin A (Fig. 3.5). acdA encodes the structural gene of

acidocin A, while it was suggested that ORF2 encodes an immunity protein (Kanatani et aI.,

1995a).

.~ ..
acdA ORF2

81 aa 55 aa

Fig. 3.5. Schematic representation of the gene cluster of acidocin A (Kanatani et aI., 1995a).

The promoter ( • ) and filled arrow indicate the individual genes and direction of transcription.

Six ORF's were identified in the DNA sequence of the chromosomal fragment encoding

sakacin P (Fig. 3.4). These were identified as sppK, encoding a histidine kinase protein

consisting of 448 amino acids, sppR, encoding a response regulator of 248 amino acids, sppA,

encoding the structural gene of sakacin P (61 amino acids), spiA, encoding a putative

immunity protein of 98 amino acids. spp Tand sppE encode the transporter proteins, which

consist of 718 and 458 amino acids, respectively (HOhne et al., 1996). The function of ORF1

was not determined, but the N-terminal residues of the putative protein encoded by this gene
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showed significant similarities to the leader sequences of Class II bacteriocins, indicating a

possible role in the sakacin P system.

"r_"__ ~_. _ -. ... ..
ORF1 sppK sppR sppA spiA

448 aa 248 aa 61 aa 98 aa

sppT

718 aa

sppE

458 aa

Fig. 3.4. Schematic representation of the gene cluster of sakacin P (Huhne et al., 1996). The

promoter ( .) and filled arrows indicate the individual bacteriocin genes and the direction of

transcri ption.

Ten ORF's were identified on the plasmid DNA fragment encoding sakacin A production

(Fig. 3.6) (Axelsson and Holck, 1995). ORF1, encodes a bacteriocin-like protein. saiA

encodes the 51 amino acid immunity protein. sapA encodes the 59 amino acid structural

protein of sakacin A. ORF's 2, 3 and 4, sapK, sapR, sapT and sapE are transcribed in the

opposite direction. ORF's 2 and 3 overlap each other. ORF4 encodes a bacteriocin-like

protein that shares homology with plantaricin A, a bacteriocin-like induction factor for

plantaricins EF and JK (Anderssen et al., 1998). sapK encodes a 432 amino acid histidine

kinase protein. sapR encodes a 247 amino acid response regulator. sapT, encodes a 719

amino acid protein, and sapE encodes a 461 amino acid protein. SapT and SapE are the

transporter proteins.

Between sapA and sapK, and overlapping ORF's 2 and 3, is the insertion element IS1163.

This insertion element is also found in the vicinity of the genetic determinants of lactocin S, a

lantibiotic produced by L. sakei L45 (Skaugen and Nes, 1994). This transposable element

occurs in L. sakei and is a member of the IS3 family of insertion sequences that are found in a

wide range of bacteria (Fayet et al., 1990). In the sakacin A genetic structure, the IS element

is flanked by two inverted repeat regions UR (left inverted repeat) and RIR (right inverted

repeat). The inverted repeat UR was found to be essential for expression of the bacteriocin

and for immunity, while the inverted repeat RIR was essential for bacteriocin production but

not for immunity. It was speculated that ORF's 2 and 3 probably encodes a fusion protein

(Axelsson and Holck, 1995). Although sakacin A is identical to curvacin A, the IS1163 element

and inverted repeat sequences are not present in the curvacin A DNA sequence (Axelsson

and Holck, 1995).
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UR IS1163 RIR

\ DI
I I

<=J ~ ... c:> _....
ORF1 saiA sapA rRF3 ORF4 sapK sapR sapT

51 aa 59 aa 432 aa 247 aa 719 aa

ORF2

sapE

461 aa

Fig. 3.6. Schematic representation of the gene cluster of sakacin A (Axelsson and Holck,

1995). The promoter ( • ) and filled arrows indicate the individual genes and the direction of

transcri ption.

O'Keeffe et al. (1999) characterized the genetic arrangement of enterocin A produced by

E. faecium strain DPC1146. The enterocin A gene cluster comprises 12 ORF's (Fig. 3.7).

entA, encoding the structural protein, entl, encoding the immunity protein, entF, an induction

factor, entK, a histidine kinase protein and entR, a response regulator, are followed

downstream by ORF's 3, 2 and1, which are oriented in the opposite direction. No function

could be determined for ORF's 1 and 3. ORF2 showed homology to components of

laetoeoeein Mand lactacin F. Downstream, again oriented in the opposite direction from

ORF's 3, 2 and 1 are entT, encoding an ABC transporter, entD, encoding an accessory factor,

and ORF4, which possibly encodes a serine protease that may playa roll in the degradation of

signal peptides in the cell membrane. No function could be determined for ORF5 (O'Keeffe et

al., 1999).._-- "'aCJ

entA I entF entK entR entT

65 aa 48 aa 427 aa 250 aa 717 aa

entl ORF's3,2,1

103 aa 71; 71; 59 aa

.. ~~

entD ORF4 ORF5

455 aa 166 aa 115 aa

Fig.3.7. Schematic representation of the gene cluster of enterocin A (O'Keeffe et aI., 1999).

The promoter ( • ) and filled arrows indicate the individual genes and direction of transcription.
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It has not been determined whether the genetic structure of the enterocin A locus of E.

faeeium DPC1146 (O'Keeffe et aI., 1999) is identical to the genetic structures of enterocin A

loci of strain T136 (Casaus et aI., 1997) and strain CTC492 (Aymerich et aI., 1996). The latter

two strains also produce a second bacteriocin, entereein B.

The genetic organization of several other Class II bacteriocins have been determined.

These include the Class lib two-peptide bacteriocins, lactacin F and plantaricins EF and JK,

the Class IIc sec-dependent bacteriocin enteracin P and the Class lid unclassified bacteriocin

laetoeoeein A.

Analysis of the two-peptide lactacin F DNA region revealed a small operon that encodes

three ORF's, called lafA, laf)( and ORFZ. LafA was identified as the structural gene for

lactacin F. Expression of both genes lafA and laf)( is necessary for bacteriocin production,

while ORFZ is a putative immunity protein (Fremaux et aI., 1993).

Lactobacillus plantarum C11 produces six bacteriocin-like structures, PlnA, PinE, PlnF,

PlnJ, PinK, and PlnN. The genes encoding these bacteriocin-like structures, are arranged in

five operons. plnABGD, plnEFI, plnJKLR, plnMNOP and pInGHSTUV. plnEF and plnJK

encode two two-peptide bacteriocins. plnl, plnL, plnM and plnP probably encode immunity

proteins. plnB, pInG, and plnD encode proteins involved in signal transduction, and pInG and

plnH encode secretion and processing proteins. No function could be determined for the

protein encoded by plnN (Anderssen et aI., 1998).

Genetic characterization of the DNA sequence encoding the sec-dependent enterocin P

revealed two ORF's. The first ORF encodes a 71 amino acid protein containing an N-terminal

sec-dependent leader sequence. The second ORF encoded an 88 amino acid putative

immunity protein (Cintas et aI., 1997).

Analysis of the DNA fragment encoding the production and immunity of lactococcin A, a

Class lid bacteriocin, showed four ORF's. These genes occurred in the order lenG, lenD, lenA

and leiA. lenA and leiA encoded the structural and immunity genes, respectively. LcnC, a

protein of 716 amino acids and LcnD, a 474 amino acid protein are the ABC transporter and

accessory proteins (Stoddard et aI., 1992).

3.4.2.1 The structural prebacteriocin gene

The structural gene encodes a prebacteriocin, called a precursor or prepeptide. These

prepeptides have always been thought to be biologically inactive, and contain an N-terminal

leader sequence and aC-terminal propeptide which is cleaved from the N-terminal leader

sequence to form a mature, antimicrobial peptide (Jack et aI., 1995; Kolter and Moreno, 1992).
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All Class II bacteriocins are produced as precursors with an N-terminal extension (Van Belkum

and Stiles, 1995). Most of the leader peptides differ from typical signal secretion peptides that

direct polypeptides into sec-dependent secretion pathways (Jack et al., 1995).

The function of leader peptides appear to be the prevention of biological activity of the

bacteriocin while still in the producer cell, and to provide a recognition signal for the ABC

transporter (Nes et al., 1996; Kolter and Moreno, 1992). Leader peptides may prevent activity

of prebacteriocins by increasing the solubility of prebacteriocins in water, causing the peptides

to partition into the aqueous phase rather than into the membrane. Leader peptides may also

interact with mature peptides and thus reduce their affinity for membranes. Recently, Ray et

al. (1999) found the precursor of pediocin AcH to be 80% as active as the mature peptide,

suggesting that the leader peptide has little effect on the function of mature domains. This

indicates that producer cells with active prebacteriocins need other mechanisms to protect

themselves from the prebacteriocin. Suggested mechanisms include the limitation of

prebacteriocins to bind successfully to the putative receptor of pediocin AcH, limited

membrane insertion activity due to the reverse orientation of the membrane electrochemical

potential inside the cell, and neutralization of the prebacteriocin by immunity proteins. Since

some bacteriocins require disulfide bonds for activity, the cystein thiol groups may be

maintained in a reduced state, resulting in inactivity of the prebacteriocin. In this case, the

question arises why it is necessary for the leader peptide to be cleaved during secretion. A

possible explanation is that the prebacteriocin is more susceptible to proteases produced by

target cells (Ray et al., 1999).

The N-terminal leader peptides of Class lIa bacteriocins are referred to as double-glycine

leader peptides. These peptides have two glycine residues at the C-terminus before the

cleavage site. Other consensus elements include conserved hydrophobic and hydrophilic

regions. The minimum length of the leader peptide of non-Ianthionine bacteriocins appears to

be 14 amino acids, while the length of the mature bacteriocins identified to date varied from 30

to more than 100 residues (Nes et al., 1996).

3.4.2.2 The immunity gene

The immunity gene encodes a protein that protects the producer organism from its own

mature bacteriocin (Nes et al., 1996). Potential immunity proteins have been identified next to,

or downstream from, all bacteriocin structural genes studied. Immunity genes not directly

associated with the bacteriocin cluster have also been identified (Eijsink et al., 1998).

Variation in the presence and expression of these genes may account for the large variation in
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sensitivity displayed by lactic acid bacteria towards bacteriocins. Immunity proteins range in

sizes from 51 to 150 amino acids. While significant homology exists among the structural

genes of the pediocin-like bacteriocins, this trend does not occur with immunity genes,

although some resemblances do occur (Aymerich et al., 1996; Moll et al., 1999). The

mechanism of action of immunity proteins is not currently understood, but could entail the

shielding of a receptor, prevention of pore formation, pore blocking or bacteriocin degradation

(Moll et al., 1999).

Several immunity proteins have been identified. Deletion analysis and overexpression of

the pedB gene of the pediocin PA-1 operon in P. acidilactici were conducted to confirm that

PedB was the immunity gene of pediocin PA-1 (Venema et al., 1995). Similarly, the

confirmation of LcaB as the immunity protein of leucocin A was confirmed by deletion analysis

(Van Belkum and Stiles, 1995).

Although the bacteriocins carnobacteriocin B2 and carnobacteriocin BM1 which are

produced by the same organism, share significant amino acid homology, the immunity gene of

carnobacteriocin B2 does not confer immunity to carnobacteriocin BM1 (Quadri et al., 1995).

3.4.2.3 The transporter gene

Bacteriocins, similar to other molecules synthesized in the cytoplasm of bacteria and

secreted, need to cross one or more membranes to reach their destination. This transport is

facilitated via the general sec signal secretion pathway, or by using a dedicated export system

(Fath and Kolter, 1993; Wickner et al., 1991).

Bacteriocins containing the double-glycine type leader sequences (G-G) are translocated

by a dedicated export system identified as ABC (ATP-binding cassette) transporters (Fath and

Kolter, 1993; Nes et al., 1996). The gene encoding the bacteriocin ABC transporter is usually

part of the bacteriocin operon, or can be found on an operon near the vicinity of the bacteriocin

operon (Nes et al., 1996). ABC transporters facilitate the secretion of a wide range of products

in both prokaryotic and eucaryotic organisms. These products include periplasmic permeases

(bacterial importers), which transport oligopeptides, amino acids, sugars, phosphate, metal

ions and vitamins, eukaryotic exporters, which transport lipophylic drugs, peptides and

pigments, and bacterial exporters, which transport molecules such as large protein toxins,

small peptide antibiotics, polysaccharides, antibiotics, and possibly heme molecules (Fath and

Kolter, 1993).

The bacteriocin ABC transporters have a dual function, facilitating both the removal of the

leader peptide from its substrate and the transport of the substrate across the cytoplasmic
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membrane (Hávarstein et aI., 1995). Bacteriocin ABC-transporters contain three domains on

the same polypeptide, consisting of a cytoplasmic N-terminal proteolytic domain, a

hydrophobic integral membrane domain, and a cytoplasmic C-terminal ATP-binding domain

(Fig.3.8) (Hávarstein et aI., 1995; Nes et aI., 1996). Two polypeptides appear to be required

for the bacteriocin ABC transporter to be functional (Hávarstein et aI., 1995).

A unique feature of bacteriocin ABC transporters is that they carry an N-terminal extension

of approximately 150 amino acids, the proteolytic domain, which appears to be involved in the

processing of the bacteriocins (Nes et aI., 1996). Two conserved motifs, the cysteine motif

(QX40/ECX2AX3MX4Y/FGx4I1L) and the histidine motif (HY/FYNVX10IlLXOP) have been

identified in the proteolytic domain and appear to be necessary for translocation (Hávarstein et

aI., 1995). Hávarstein et al. (1995) hypothesized that the proteolytic domain of the double-

glycine leader bacteriocins binds the bacteriocin precursor. The processing site is part of the

transporter, which indicates that the processes of cleavage and translocation are integrated,

and that the leader peptide serves as a recognition signal for the transmembrane transport

process of the bacteriocin (Nes et al., 1996; Van Belkum et aI., 1997). Studies on the ABC

transporter of pediocin PA-1 suggest that the N-terminal part of PedO is required for cleavage

and that this process can be uncoupled from secretion (Venema et aI., 1995). Franke et al.

(1996) proposed a model of LcnO, a protein involved with the transport of several bacteriocins

from L. lactis, where the N-terminal part of the protein is located intracellularly and one

transmembrane helix spans the cytoplasmic membrane.

The membrane spanning domains (MSO's) consist of six membrane spanning segments

(Fig. 3.8). ABC transporters (or traffic ATPases) use ATP hydrolysis as a source of energy

required for translocation and have a highly conserved ATP-binding cassette (Fath and Kolter,

1993). The conserved ATP-binding motif can be found in all the ABC transporters of the

bacterial export subfamily.

The removal of the leader peptide from its substrate and the subsequent translocation of

the bacteriocin across the cytoplasmic membrane effectively prevent the mature and active

bacteriocins from remaining in the cytoplasm (Hávarstein et aI., 1995).

Some bacteriocins do not possess a double-glycine leader peptide, but are synthesized

with a sec-type N-terminal leader sequence, leading to secretion and processing via the sec

pathway (Nes et aI., 1996). Secretion via the sec-dependent pathway requires that the

product be a protein with an N-terminal signal sequence (Fath and Kolter (1993). The Class

IIc bacteriocins divergicin A (Worobo et el., 1995) and enterocin P (Cintas et aI., 1997) are

secreted in this manner. McCormick et al. (1996) reported the successful secretion of

carnobacteriocin B2, which is usually exported by an ABC-transporter, using the signal peptide
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of divergicin A, a sec-dependent peptide. Similarly heterologous expression of mesentericin

Y105 using both the dedicated transport system and the sec pathway has been reported (Biet

et al., 1998).
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Fig. 3.8. ABC translocator with the N-terminal proteolytic domain, 6 membrane spanning

domains and the ATP-binding domain in the C-terminal of a single polypeptide. (Redrawn

from Hávarstein et al., 1995).

3.4.2.4 The accessory protein

Several studies have indicated the presence of an additional gene within bacteriocin

operons, called the accessory protein (also accessory factor), that is required for the ABC-

transporter dependent translocation process. These additional factors have been identified in

several Gram-negative systems to be needed when the secreted product is destined for

immediate release into the extracellular medium (Fath and Kolter, 1993). It is hypothesized

that the accessory factor is anchored in the inner membrane and spans the periplasm,

probably connecting the inner and outer membranes to facilitate the export of products through

both membranes of Gram-negative bacteria. In Gram-positive bacteria, the function of the

accessory factor is unclear, since the secreted product only needs to cross one membrane

(Fath and Kolter, 1993; Nes et al., 1996). Accessory factors involved in bacteriocin secretion

include pedC, of the pediocin PA-1 operon (Franke et aI., 1996; Marugg et aI., 1992; Venema

et aI., 1995).
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3.4.2.5 Regulation of bacteriocin synthesis

Regulatory genes associated with the gene clusters of several bacteriocins produced bv

lactic acid bacteria have been reported (Diep et al., 1994; Nes et al., 1996). The

autoregulatory system usually consists of three components, a response regulator (RR) gene,

a sensor histidine protein kinase (HK) gene and an induction factor (Nes et al., 1996).

Histidine kinase proteins, which are associated with the cytoplasmic membrane, respond to

environmental signals, which are communicated to the response regulators. The response

regulators transcribe and regulate the expression of target operons (Diep et al., 1995).

Activation of the histidine kinase by the induction factor appears to be cell-density-dependent,

with a secreted peptide pheromone (induction factor) functioning as the input signal for a

specific sensor component of the regulatory system in a quorum-sensing manner

(Kleerebezem et al., 1997; Nes et al., 1996). Although induction factors are structurally similar

to bacteriocins, they are usually considerably shorter and lack antimicrobial activity

(Kleerebezem et al., 1997; Nes et al., 1996).

Nisin induces the transcription of its own structural gene and downstream genes by signal

. transduction, acting as an extracellular signal for the NisK sensor histidine kinase (Brurberg et

al., 1997; Kuipers et al., 1995). The genes of the inducer molecule (nisin) do not occur in the

same transcriptional unit as the two-component signal transduction system (Brurberg et al.,

1997).

The mechanism of signal transduction for the plantaricins of L. plantarum C11 have been

extensively researched (Anderssen et al., 1998; Diep et al., 1994; 1996). Plantaricin A, a

bacteriocin-like peptide, induces transcription of several bacteriocin operons of L. plantarum

C11. The gene encoding plantaricin A occurs in an operon, plnABCO (see also Section 3.4.2)

but unlike other bacteriocin operons, none of the other genes in this operon encode an

immunity protein (Diep et al., 1995).

EntF is a 41 amino acid peptide with a G-G leader peptide which is necessary for enterocin

A and B production by the producing strain Enterococcus faecium CTC492 (Nilsen et al.,

1998). Similarly, sakacin P production is dependent on an induction factor, which also induces

the immunity protein as well as itself (Brurberg et al., 1997; Eijsink et al., 1996; HOhne et al.,

1996). Signal transducing systems have also been identified for sakacin A (Axelsson and

Holck, 1995) and carnobacteriocins B2 and BM1 (Quadri et al., 1997). For sakacin A, orf4

(Fig. 3.6) encodes the putative precursor of a 23 amino acid peptide, termed Sap-Ph. Sap-Ph

has been identified as a pheromone that regulates bacteriocin production (Diep et al., 2000).

It has also been shown that the production of sakacin A is temperature sensitive, with
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production reduced or abolished at temperatures of 33.5-35°C, while production occurred at

25-30°C. Whether the sensitivity to temperature plays a role in the initiation of bacteriocin

production is not known (Diep et aI., 2000).

3.5 MODE OF ACTION OF CLASS II BACTERIOCINS

Although the mode of action of lantibiotics, particularly nisin, have been studied in detail,

much less is known about the interaction between Class II bacteriocins and the membranes of

target organisms.

The Class II bacteriocins demonstrate a bactericidal mode of action against other closely

related organisms. These bacteriocins dissipate the proton motive force by disrupting the

transmembrane potential and/or the pH gradient of sensitive cells (Montville and Bruno, 1994).

Pediocin PA-1, mesentericin Y105 and laetoeoeein A permit the efflux of relatively large

molecules (Chikindas et aI., 1993; Maftah et a/., 1993; Van Belkum et aI., 1991). Two-peptide

bacteriocins appear to form relatively specific pores, dissipating the transmembrane potential.

Lactococcin G dissipates the membrane potential, which causes the selective efflux of

potassium ions from sensitive cells (Moll et aI., 1996). Lactococcin G activity is dependent on

the extracellular pH (Moll et al., 1998). Plantaricin E/F dissipates the pH gradient, causing a

pH increase (Moll et al., 1999). Acidocin J1132 permits efflux of molecules such as glutamate

(Tahara et al., 1996). Lactacin F induces the efflux of potassium ions and phosphate (Abee et

al., 1994. Acidocin J1132 (Tahara et aI., 1996) and thermophilin 13 (Marciset et aI., 1997)

immediately dissipate the pH gradient.

It is proposed that bacteriocin mediated transmembrane ion flow results in cytotoxic

effects, causing a drop in the intracellular pH and inhibiting enzymatic processes. An influx of

cytotoxic sodium ions and a depletion of ATP due to futile cycles are caused by ion gradient

dissipation. Dissipation of the proton motive force and the transmembrane potential arrest

processes dependent on these gradients (Bruno and Montville, 1993; Moll et a/., 1999).

Bacteriocins form pores in the membranes of target cells (Abee, 1995; Abee et al., 1995).

It is hypothesized that the mode of action involves various steps such as binding, insertion and

pore formation (Montville and Chen, 1998). Binding of the bacteriocin to the target membrane

is necessary for subsequent insertion and pore formation. Although the interaction of a

receptor-like factor has been implicated for pediocin PA-1 (Chikindas et aI., 1993) and leucocin

A (Fregeau Gallagher et a/., 1997), a protein receptor does not appear to be essential for

binding .. Studies by Breukink et al. (1999) have indicated that nisin specifically interacts with

the membrane-anchored cell wall precursor Lipid II. Chen et al. (1997b) suggested that the
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binding step primarily involved electrostatic interactions between positive areas of amino acid

groups in the bacteriocin and negatively charged phospholipid groups in the target membrane.

Jack et al. (1995) also implied that anionic cell surface molecules in the cell wall of Gram-

positive bacteria might playa role in the initial interaction with cationic bacteriocins. Analysis

of chimers that consist of pediocin-like peptides, indicated that the C-terminal part of the

molecule is responsible for target specificity (Fimland et a/., 1996). A C-terminal fragment of

pediocin PA-1 inhibited the activity of pediocin PA-1 peptide, indicating that this fragment

competed with the intact peptide for binding sites on the target membrane (Fimland et a/.,

1998). Kaiser and Montville (1996) observed that the C-terminal of bavaricin MN was probably

essential for membrane interaction. Lactococcin G, a two-peptide Class lib bacteriocin also

showed strong membrane interaction, with the two peptides being capable of binding to the

membrane independently (Hauge et a/., 1998).

Bacteriocins are unstructured in an aqueous solution, but have the ability to form a-helical

structures when exposed to structure promoting solvents, or when mixed with anionic

phospholipid membranes (Moll et a/., 1999). Studies on the three-dimensional structure of

leucocin A (37 amino acids) has shown that the peptide exists as a random coil in water, but

two domains can be identified in lipophilic media. These domains are an amphiphilic a-helix

from residues 17-31, and a three-stranded antiparallel l3-sheet from residues 2-16, that is

linked by a disulfide bridge (Fregeau Gallagher et a/., 1997). It is hypothesized that the highly

conserved N-terminal of the Class Iia bacteriocins contributes to membrane binding. This

allows the low homologous C-terminals to transform from random conformations to defined

secondary structures, which are essential for pore formation (Montville and Chen, 1998).

Specific amino acids playa role in the antimicrobial activity of Class lIa bacteriocins. The

presence of cysteins in the structure of these bacteriocins with subsequent modification of

pairs of cysteine residues to form disulfide bridges affects the activity of bacteriocins (Miller et

a/., 1998). Comparative studies by Eijsink et al. (1998) showed that pediocin PA-1 and

enterocin A, which both contain two disulfide bonds, were more active than sakacin Pand

curvacin A, which contain only one disulfide bond. Pediocin PA-1 lost its activity completely

when its sulfide bonds were reduced with dithiothreitol (Chikindas et a/., 1993).

Aromatic amino acids are also involved with antimicrobial activity. Removal of tryptophan

from the C-terminus of mesentericin Y105 (Fleury et a/., 1996), substitution of phenylalanine

with serine in carnobacteriocin B2 (Quadri et a/., 1997) and substitution of tryptophan with

arginine in pediocin PA-1 (Miller et a/., 1998) resulted in reduction of activity of these

bacteriocins. Loss of activity when small fragments of the N-terminal or the C-terminal are

removed suggests that the whole sequence of the bacteriocin is necessary for activity (Fleury
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et al., 1996; Miller et a/.1998).

Two models are proposed for pore-formation by the Class II bacteriocins. It is thought that

the bacteriocins may form a barrel-stave-like bundle of a-helical peptides upon membrane

insertion causing the formation of a pore (Fig. 3.9) (Moll et a/., 1999). The presence of a helix-

breaking amino acid residue in the middle of their sequence may facilitate the insertion of the

peptide into the membrane from an initial surface bound state. The hydrophilic faces of a

bundle of amphiphatic a-helical peptides form the inner wall of the water-filled pore. The outer

hydrophobic side of the helical bundles is oriented towards the fatty acyl chains of the

membrane lipids (Moil et al., 1999).

Alternatively, a carpet-like model could explain membrane pore formation. Single peptide

molecules might be orientated parallel to the membrane surface and interfere with the

membrane bilayer organization without forming a peptide aggregate. Once sufficient peptides

are present, temporary membrane collapse due to a strong phospholipid mobilizing activity

occurs, resulting in a local and transient permeability (Moll et al., 1999). Homblé et al. (1998)
suggested that the negative charge of the membrane lipids confer cation selectivity to such

pores.

Bundle of oc-helical peptides in membrane

Fig.3.9. The barrel-stave method as hypothesized. Reproduced from Moll et al. (1999).

The mode of action of laetoeoeein 972, a sec-dependent bacteriocin, appears to differ from

other bacteriocins, since cell wall biosynthesis is the primary target and not the plasma

membrane. Laetoeoeein 972 inhibits septum formation in susceptable lactococci, causing

deformation and gross structural changes that lead to cell death (Martinez et al., 2000).

Further studies on the primary target of lactococcin 972 may lead to the creation of a new

subgroup within the Class II group of bacteriocins (Martinez et al., 2000).
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3.6 FUTURE PROSPECTS FOR BACTERIOCIN APPLICATION AND RESEARCH

Several questions about bacteriocins remain unanswered:

Although the use of bacteriocins produced by lactic acid bacteria is efficient for the

inhibition of organisms such as C. tyrobutyricum in cheese, the application of bacteriocins to

dairy products requiring lactic acid starter cultures may be limited, due to the inhibition by

bacteriocins of various lactic acid bacteria. The use of bacteriocins proved successful in the

preservation of meat and fish products (Abee et al., 1995). Various factors influence the

activity of bacteriocins in food, such as pH, proteolytic enzymes, lipid content, solid or liquid

systems, salt content and temperature (Abee et al., 1995; Ganzie et al., 1999). Bacteria may

also become resistant to bacteriocins (Abee et aI., 1995; Gravesen et al. 2000; Maisnier-Patin

and Richard, 1996). To date several factors such as inactivation, low production, genetic

instability and regulation of bacteriocins by starter cultures, have made cultures producing

bacteriocins not widely successful in food fermentation processes (Nes et aI., 1996).

Improvement in production efficiency, stability and activity of bacteriocins could be

achieved by protein engineering (Nes et aI., 1996). The solubility of nisin, for example, is

strongly dependent on pH and ionic strength, with the highest solubility observed at low pH

and low ionic strength. Similarly optimal stability is observed at pH 3. Using site-directed

mutagenesis, Rollema et al. (1995) found that the solubility and chemical stability of

constructed nisin Z mutants could be significantly improved, while the antimicrobial spectrum

and activity remained similar.

The mechanism of the immunity gene and the existence and identity of bacteriocin

receptors remain unresolved (Moil et al., 1999; Nes et al., 1996).

How bacteriocin production is activated is explained by two models (Nes et al., 1996). If

induction factors are produced in low amounts, the gradual accumulation of induction factors

will take place during growth until it exceeds the concentration required to induce the start of

bacteriocin production. Alternatively, the production of the induction factor could be balanced

at a concentration just below that required for induction. Nutritional, physical or chemical

changes in the environment may also trigger a temporarily increased production of induction

factors, which would lead to induction of bacteriocin production (Nes et aI., 1996).

The observation that bacteriocin-like substances do not always have antimicrobial activity,

but may function as induction signals for gene expression, points to a wider function of

bacteriocin peptides and raises questions about their biological function, as well as their

evolutionary history that is still unexplored (Nes et aI., 1996).
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Lactobacillus pentosus
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Abstract. Lactobacillus plantarum and Lactobacillus pentosus grouped into

one protein profile cluster at r ~ 0.70, separate from Lactobacillus casei,

Lactobacillus sake and Lactobacillus curvatus. Similar sugar fermentation

reactions were recorded for representative strains of L. plantarum and L.

pentosus. Representative strains, including the type of each species, were

selected from the different protein profile clusters and their genetic relatedness

determined by using numerical analysis of random amplified polymorphic DNA

(RAPD)-PCR. The type strains of L. plantarum (ATCC 14917T) and L. pentosus

(NCFB 363T) displayed different RAPD profiles and grouped into two

independent clusters, well separated from L. casei, L. curvatus and L. sake.

Numerical analysis of RAPD-PCR proved a reliable and accurate method to

distinguish between strains of L. plantarum and L. pentosus.

The species Lactobacillus plantarum consists of a genetically heterogeneous collection of

strains that are difficult to differentiate from Lactobacillus pentosus by simple physiological

tests [3, 9]. Pentose-fermenting strains of streptobacteria were originally classified as L.

pentosus [8]. However, the name L. pentosus (Fred, Peterson and Anderson) was not listed in

the Approved Lists of Bacterial Names [12] and strains that fermented pentose sugars were

classified as L. plantarum [9]. Dellaglio et al. [3] were the first to show that a group of pentose-

fermenting strains of L. plantarum, some of which were originally classified as L. pentosus by

Fred et al. [8], are genotypically not closely related to L. plantarum. Extensive DNA-DNA

hybridization studies [13] confirmed the results reported by Dellaglio et al. [4] and the name L.

pentosus was revived.

DNA similarity studies are the most reliable method to differentiate L. pentosus from L.

plantarum. However, DNA-DNA hybridizations are tedious to perform and often involves the

use of radioactive nucleotides. RAPD-PCR analysis, on the other hand, is a safe, rapid and
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accurate technique that can be performed in most laboratories. The technique proved

valuable in differentiating Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus

amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri and Lactobacillus johnsonii [7].

In this study we evaluated numerical analysis of RAPD-PCR profiles as a method to

distinguish between L. plantarum and L. pentosus.

Materials and Methods

Bacterial strains and growth conditions. The strains included in this study are listed in Fig.

1. Strains with CTC numbers were received from M. Hugas (Institut de Recerca i Tecnologia

Aqroaumentárles, Monells, Spain). Strains CTC 309, CTC 306, CTC 381, and CTC 378 were

originally classified as L. plantarum; CTC 287 as Lactobacillus casei subsp. pseudoplantarum;

CTC 368, CTC 372, CTC 376, CTC 13 and CTC 41 as Lactobacillus sake; and CTC 253 and

CTC 285 as Lactobacillus curvatus. Strains with LO numbers were received from F. Dellaglio

(Istituto Policattedra, Universitá degli Studi di Verona, Verona, Italy) and were designated as L.

sake (LD-1 and LD-23) and L. curvatus (LD-4, LD-3, LD-15, LD-8, LD-17, LD-16, LD-14, and

LD-2). Strains without alphabetical numbers were isolated from sorghum beer. Reference

strains were from the American Type Culture Collection (ATCC), the National Collection of

Food Bacteria (NCFB), and the Deutsche Sammlung von Mikroorganismen (DSM).

Numerical analysis of total soluble cell protein patterns. Cultures yvere grown in MRS

broth [5] for 18h at 30°C. Preparation of cell extracts, polyacrylamide gel electrophoresis,

densitometry, normalization of densitometric tracings, and numerical analysis of normalized

electropherograms were done as described by Dicks et al. [6].

Carbohydrate fermentations. Carbohydrate fermentation reactions were determined using

the API 50 CHL system (La Balme Les Grottes, Montalieu Vercieu, France). Results were

recorded after 48 h at 30°C.

RAPD-PCR analysis. DNA was isolated according to the method of Dellaglio et al. [2].

Polymerase chain reactions (PCR) were performed in duplicate. Each reaction of 25~1

contained 50mM KCI, 10mM Tris-HCI (pH 8.8), 2 mM MgCI2, 0.1% Triton X-100, 200IJM of

each dNTP, 5 picamoles of a single 10 base primer (Operon Kit L, Operon Technologies,

Alameda), 40 ng of genomic DNA, and 2.5 units of Taq Polymerase (Advanced

Biotechnologies, West Hampstead, England). Four single primers [GGCATGACCT (OPL-01),
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TGGGCGTCAA (OPL-02), GACTGCACAC (OPL-04), and ACGCAGGCAC (OPL-05)] were

used. DNA amplification was performed in a Biometra Trio-thermoblock. The cycling program

used was 45 cycles of 94°C (1 min), 36°C (1 min), and 72°C (2 min). Final incubation was

performed at 72°C for 5 min, followed by cooling to 4°C, until samples were retrieved.

Amplification products were analyzed by electrophoresis in 1.4% agarose gels using TAE

buffer [10]. Lambda DNA, digested with EcoR1 and HindiII (Boehringer Mannheim), was used

as molecular weight marker.

Numerical analysis of RAPD-PCR profiles. The four RAPD-PCR gels were individually

photographed and printed to the same size. An overhead transparency was placed on each of

the gel photographs and divided into 24 vertical columns (one column for each lane) and

several horizontal rows (one row for each DNA band on the gel). A value of 1 was allocated to

a block containing a DNA band. A value of 0 (zero) was allocated to a block without a DNA

fragment. The data was analyzed using the CLUSTER program of the SAS Institute Inc. [11].

Dendrograms were constructed from the normalized average linkage cluster analysis.

Distances between clusters were expressed in R2-values.

Results and Discussion

Twenty-eight strains of L. plantarum and L. pentosus, including the type strains (ATCC 14917T

and NCFB 363T, respectively) grouped into one protein profile cluster at r ~ 0.70, separate

from Lactobacillus casei and Lactobacillus paracasei (cluster II), L. sake (cluster III), and L.

curvatus in cluster IV (Fig. 1). The overall protein profiles of L. plantarum and L. pentosus

corresponded well, confirming that the species are phenotypically closely related.

Similar sugar fermentation reactions were recorded for representative strains of L.

plantarum, with little difference in the profiles between these strains and the type strain of L.

pentosus, NCFB 363T (Table 1). D-Xylose was fermented by L. pentosus NCFB 363T, but not

by strains of L. plantarum, confirming the results reported by Kandler and Weiss [9] and

Zanoni et al. [13]. Strains of L. plantarum included in our study were unable to ferment

glycerol (Table 1) and are in this respect different from the type strain of L. pentosus (NCFB

363\ However, two out of 14 strains of L. plantarum studied by Zanoni et al. [13] fermented

glycerol. The fermentation of glycerol can thus not be used to differentiate L. plantarum from

L. pentosus. The inability of L. pentosus to ferment a-methyl-D-mannoside [13] was confirmed

(Table 1). However, this characteristic is not unique to L pentosus. Four out of eight strains

of L. plantarum which we have studied (Table 1), and six out of 14 strains of L. plantarum
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studied by Zanoni et al. [13]. were unable to utilize a-methyl-D-mannoside.

The RAPD profiles of representative strains selected from protein profile clusters I - IV

(Fig. 1) are shown in Fig. 2. Six RAPD-PCR profile clusters were obtained at R2
~ 0.49 (Fig.

3). Twelve of the 15 strains of L. plantarum, including the type strain (ATCC 14917T), grouped

in cluster I at R2
~ 0.50. Three strains of L. plantarum (CTC 306, CTC 381 and CTC 378)

grouped in cluster II at R2
~ 0.95. Two strains of L. pentosus (NCFB 1194 and NCFB 363T)

grouped at R2 = 0.88 in cluster IV, well separated from strains of L. plantarum. Strains of L.

casei, L. curvatus and L. sake grouped into three well-defined clusters.

Lactobacillus paracasei NCFB 151T, NCFB 2713 and DSM 20006, and L. casei LHS

and ATCC 334 formed a tight cluster at r ~ 0.80 (Fig. 1). The RAPD-PCR profiles of L.

paracasei NCFB 151Tand L. casei ATCC 334 corresponded well (Fig. 2) and they grouped at

R2 = 0.60 (Fig. 3). These results confirmed our previous findings [4], that is, that strains of L.

paracasei are genotypically closely related to L. casei ATCC 334, one of the original strains of

L. casei.

The protein profiles of strain CTG 13 and CTC 41, received as L. sake, corresponded

well and grouped with strains of L. curvatus in one protein profile cluster at r ~ 0.80 (Fig. 1).

However, the RAPD-PCR profile of strain CTC 13 is very similar to that obtained for L. sake

ATCC 2714T (Fig. 2) and they formed a tight cluster at R2
~ 0.70 (Fig. 3). The classification of

strains CTC 13 and CTC 41 as L. sake is confirmed.

Strain CTC 287, received as L. casei subsp. pseudoplantarum, grouped with strains of

L. plantarum and L. pentosus at r ~ 0.70 in cluster I, separate from strains of L. casei and L.

paracasei (Fig. 1). The classification of strain CTC 287 as L. casei subsp. pseudoplantarum is

questioned.

Numerical analysis of RAPD-PCR profiles proved valuable in the differentiation of

strains of L. plantarum and L. pentosus, which grouped in the same protein profile cluster and

displayed similar sugar fermentation reactions. Distinctive differences were recorded in the

RAPD-PCR profiles of L. plantarum, L. pentosus, L. casei, L. curvatus and L. sake. Groupings

obtained by numerical analyses of RAPD-PCR profiles and total soluble cell protein patterns

are summarized in Table 2.
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Table 1. Differential carbohydrate fermentation reactions among strains of Lactobacillus plantarum, Lactobacillus pentosus,
Lactobacillus casei, Lactobacillus paracasei, Lactobacillus sake and Lactobacillus curvatus a

L. pen- L. para- L. cur-
L. plantarum tosus b L. casei .c L. sake vatuseasel

Carbohydrate ATCC NCFB ATCC ATCC NCFB NCFB NCFB
81 780 413 I 412 759 423 285 14917T 363T 334 393"r__ 151T 2714T 2739T

.- ---- --_ .. _-

Adonitol - - - - - - - - d
Amidon + - - - + + + - - d
Amygdalin + + + + + + + + + + + +
D-Arabinose - - - - - - - - - - d
L-Arabinose + - - - - + + + + - - - + +
D-Arabitol - - + - - - - d - d
Arbutin + + + + + + + + + + + + +
Dulcitol - - - - - - - d - d
D-Fucose - - - - - - - - d
j3-Gentiobiose + + + + + + + + + - + d + +
Gluconate - - + + + - - - + - - d - +
Glycerol - - - - + + - d
Glycogen + - - - + + + - - NO

Inositol - - - - - - - - - d
Inulin - - - - + + - + d
Lactose + + + + + + + + + + + d + +
D-Lyxose - - - - - - - - d
Mannitol + + + + + + + + + + + + - +
Melezitose + + + - + + + + d - - + - +
Melibiose + + + + + + + + + - NO + +
a-Methyl-D-glucoside - - - - - - - - d + d
a-Methyl-D-mannoside - - - - + + + +
D-Raffinose + + + - + + + + + - - NO - +
Rhamnose - - - - - d
Ribose + + - + + + + + + + + d + +
Sorbitol + + + + + - - + + - + d - +
L-Sorbose - - - - - - - - - + d
Sucrose + + + + + + + + + + d + +
D-Tagatose - - - - - - - + + +
Trehalose + - + + + + + + + + + + + +
D-Turanose + - - - + - - + d + + d - +
D-Xylose - - - - - +
a +, positive reaction; -, negative reaction; d, variable reaction; NO, not determined.
All strains fermented N-acetyl-O-glucosamine, cellobiose, O-fructose, galactose, o-glucose, maltose, O-mannose, salicin and hydrolized esculin.
None of the strains fermented l-arabitol, erythritol, l-fucose, 2-keto-gluconate, 5-keto-gluconate, j3-methyl-o-xyloside, xylitol and l-xylose.

b From Zanoni et al. [13].
c From Collins et al. [1].

00
00
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Table 2. Genotypic relatedness among Lactobacillus plantarum, Lactobacillus pentosus,

Lactobacillus casei, Lactobacillus paracasei, Lactobacillus sake, and Lactobacillus curvatus

Strain Protein cluster" RAPO-PCR cluster"

L. plantarum

81,780,4131,412,759,423,

285, CTC 309, ATCC 14917T,

ATCC 8014, NCFB 340, NCFB 965,

415,413d, 410,448,453, 780, NOc

427, CTC 287, 447, 411, 414, NO

CTC 306, CTC 381, CTC 378, II
L. pentosus

NCFB 1194, NCFB 363T IV
L. casei

ATCC 334, II III
LHS II NO

L. perecesei

NCFB 151T, II III
NCFB 2713, DSM 20006 II NO

L. sake

NCFB 2714T, CTC 376, III VI
LO-1, CTC 368, CTC 372, III NO

CTC 13 IV VI
LO-23, CTC 41 IV NO

L. curvatus

NCFB 2739T, LO-14 IV V
LO-4, LO-3, LO-15, LO-8, CTC 253, IV NO

LO-17, LO-16, CTC 285, LO-2 IV NO

a From Fig. 1.

b From Fig. 3.

C NO, not determined.
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Fig. 3. Dendrogram showing the clustering of Lactobacillus plantarum, Lactobacillus casei,

Lactobacillus paracasei, Lactobacillus pentosus, Lactobacillus curvatus and Lactobacillus sake

obtained by numerical analysis of RAPD-PCR profiles (Fig. 2). Clustering was by the

normalized average linkage analysis. Distances between clusters are expressed in R2-values.
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Lactobacillus plantarum 423, isolated from sorghum beer, produces a

bacteriocin (plantaricin 423) which is inhibitory to several food spoilage

bacteria and food-borne pathogens, including Bacillus cereus, Clostridium

sporogenes, Enterococcus faecalis, Listeria spp. and Staphylococcus spp.

Plantaricin 423 is resistant to treatment at 80°C, but loses 50% of its

activity after 60 min at 100°C and 75% of its activity after autoclaving

(121°C, 15 min). Plantaricin 423 remains active after incubation at pH 1-

10 and is inactivated when treated with pepsin, papain, a-chymotrypsin,

trypsin and Proteinase K. Plantaricin 423 was partially purified and its

size estimated at 3·5 kDa, as determined by tricine-SDS-PAGE. The

mechanism of activity of plantaricin 423 is weakly bactericidal, as

determined against Oenococcus oeni (previously Leuconostoc oenos).

High DNA homology was obtained between the plasmid DNA of strain 423

and the pediocin PA-1 operon of Pediococcus acidilactici PAC 1,0,

suggesting that plantaricin 423 is plasmid-encoded and related to the

pediocin gene cluster.

INTRODUCTION

Bacteriocins produced by lactic acid bacteria have received considerable attention during

recent years for their possible use as preservatives in food, with a resultant reduction in the

use of chemical preservatives. Lactobacillus plantarum is one of the most important lactic

acid bacteria used for the production of fermented meat, grass and vegetable products (Ruiz-

Barba et al. 1991; Kata et al. 1994). Various bacteriocins produced by Lact. plantarum have

been described, i.e. plantaricin A (Daeschel et al. 1990; Nissen-Meyer et al. 1993; Diep et al.



1994), plantacin B (West and Warner 1988), plantaricin C (González et al. 1994), plantaricin

C19 (Atrih et al. 1993), plantaricin F (Fricourt et al. 1994), plantaricin S (Jiménez-Diaz et al.

1993, 1995), plantaricin T (Jiménez-Diaz 1993), plantaricin LC74 (Rekhif et al. 1994),

plantaricin SA6 (Rekhif et al. 1995), plantaricin 149 (Kato et al. 1994), plantacin 154 (Kanatani

and Oshimura 1994), plantaricin 406 (Larsen et al. 1993), plantaricin UG1 (Enan et al. 1996),

plantaricin KW30 (Kelly et al. 1996), and plantaricins produced by Lact. plantarum strains BN,

LB75, LB592, CTC 305 and CTC 306 (Schillinger and LOcke 1989; Lewus et al. 1991;

Okerere and Montville 1991a, 1991b; Garriga et al. 1993).

Four distinct classes of bacteriocins have been identified on the basis of biochemical

and genetic characterization: (I) lantibiotics, (II) small heat-stable, non-Ianthionine peptides,

(lIa) Listeria-active peptides, (lib) poration complexes consisting of two peptides for activity,

(lie) thiol-activated peptides, (III) large heat-labile proteins, and (IV) complex bacteriocins

(Klaenhammer 1993). A number of bacteriocins produced by Lactobacillus spp. are inhibitory

to Listeria spp., i.e. acidocin A (Kanatani et al. 1995), curvacin A (Tichaczek et al. 1992),

sakacin A (Schillinger et al. 1991; Holck et al. 1992), sakacin 674 (Holck et al. 1994) and

enterocin A (Aymerich et al. 1996). These bacteriocins share conserved regions in their

amino acid sequence with pediocin PA-1 and bacteriocins produced by other genera of lactic

acid bacteria, referred to as pediocin-like bacteriocins (Aymerich et al. 1996). Various

plantaricins have been reported to inhibit Listeria spp. (Atrih et al. 1993; Garriga et al. 1993),

but their relatedness to the class lIa bacteriocins has, to the authors' knowledge, not been

established. Plantaricins A, S, C and 149 have been completely characterized (Jiménez-Diaz

et al. 1995), but none of these are classified as Listeria-active peptides and they do not show

DNA homology with any of the pediocins described.

Several bacteriocin-producing strains have been isolated from traditional South African

fermented beverages. The antimicrobial peptide produced by one of these strains, later

identified as Lact. plantarum (Van Reenen and Dicks 1996), inhibits the growth of a number of

food spoilage bacteria, including the pathogen Listeria monocytogenes. This paper reports on

the spectrum of antimicrobial activity, production, characteristics, isolation and mode of activity

of plantaricin 423. The genetic relatedness of this bacteriocin to pediocin PA-1 is also

discussed.

MATERIALS AND METHODS

Bacterial strains and growth conditions

Lactobacillus plantarum 423 was isolated from sorghum beer. The indicator strains used in
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this study are listed in Table 1. The strains were from ATCC (American Type Culture

Collection, Rockville, MD, USA), LMG (Laboratorium voor Microbiologie, University of Ghent,

Ghent, Belgium), NCFB (National Collection of Food Bacteria, Reading, UK), NCTC (National

Collection of Type Cultures, Colindale, UK) and our own culture collection (Department of

Microbiology, University of Stellenbosch, Stellenbosch, South Africa). All lactic acid bacteria

were grown in MRS broth (Biolab Diagnostics, Midrand, South Africa), except Oenococcus

oeni (previously Leuconostoc oenos, Dicks et al. 1995) and the malolactic bacteria starter

cultures of O. oeni (Leuc. oenos, Lallemand SA, St Simon, France and Viniflora oenos,

Christian Hansen's Laboratory, Harshelm. Denmark), which were grown in acidic grape

medium (Dicks et al. 1990). All other strains were cultured in BHI broth (Biolab), except

Clostridium spp. which were grown in DRCM medium (Merck, Darmstadt, Germany) and

Propionibacterium spp., which were cultured in GYP medium (glucose 5g r', yeast extract 3g r
'. peptone 10g r', meat extract 10g r', NaCI 5 g r\

Inhibitory activity

Lactobacillus plantarum 423 was inoculated into MRS broth (Biolab) and incubated at 30°C

without aeration until mid-logarithmic phase of growth (0.D.600=1-4). The antimicrobial activity

of plantaricin 423 was tested against the organisms listed in Table 1. An aliquot of 10 !-IIcell-

free culture supernatant fluid was spotted onto an agar plate (0'7 % wlv agar) seeded with
6 -1

active growing cells of the test organism (approximately 10 cells ml ). Plates were incubated

at the optimal growth temperature of the test organism, as indicated in the respective culture

collection catalogues. A clear zone of inhibition of at least 2 mm in diameter was recorded as

positive.

Isolation and purification of plantaricin 423

Lactobacillus plantarum 423 was grown in MRS broth (Biolab ) at 30°C until mid-logarithmic

phase (O.D.600=1-4). The cells were harvested and the bacteriocin isolated from the cell-free

supernatant as described by Green et al. (1997). After evaporation in the Rotavapor (BOchi,

Labortechnik, Flawil, Switzerland), the pH of the sample was adjusted to 7·0 with 0·5 N NaOH

and desalted by filtration through a 3 kDa cut-off dialysis membrane. The desalted sample

was lyophilized, resuspended in sterile distilled water, and stored at -20°C.

Further purification of plantaricin 423 (sample of 300 !-lI (approximately 650 !-lg)) was

performed by reverse phase FPLC (Pharmacia LKB LCC-501 Plus), using a PepRPC HR 5/5

column (Pharmacia). The method described by Green et al. (1997) was used. Fractions of
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0·70 ml were collected, Iyophilised, resuspended in sterile distilled water and stored at -20°C.

Size determination

The molecular size of plantaricin 423 was determined by separation of partially purified,

concentrated (Iyophilised) cell-free supernatant fluid and the protein fraction obtained after

reverse phase FPLC by using tricine-SDS-PAGE (Schaqqer and von Jagow 1987). A low

molecular weight protein marker with sizes ranging from 2·35-46 kDa (Amersham

International, UK) was used. The gels were fixed and one half stained (Schaqqer and von

Jagow, 1987), except that Coomassie Blue R250 (Saarchem, Krugersdorp, South Africa) was

used instead of Serva Blue G. The position of the active plantaricin 423 peptide was

determined by overlaying the other half of the gel (not stained and extensively pre-washed

with sterile distilled water) with cells of Listeria innocua LMG 13568 (approximately 106 ml"),

embedded in Brain Heart Infusion (BHI) agar (0·7 % agar w/v).

Sensitivity to heat, pH and proteolytic enzymes

Crude extract samples of plantaricin 423 (cell-free supernatant fluid of the producer strain, 10

x concentrated by lyophilization) were used in these tests. Listeria monocytogenes LM1 was

used as indicator organism. Aliquots of plantaricin 423 were exposed to heat treatments of

40,60,80 and 100°C for 10,30 and 60 min, respectively, and 121°C for 15 min. The samples

were then tested for antimicrobial activity, as described before. In a separate experiment

samples of plantaricin 423 were adjusted to pH values ranging from 1 to 10, incubated at 3rC

for 30 min, neutralised to pH 7, and tested for bactericidal activity. Resistance of plantaricin

423 to proteolytic enzymes was determined by incubation of the bacteriocin samples in the

presence of Proteinase K (10 U mg-1 plantaricin 423), pepsin (1250 U mg-1 plantaricin 423),

papain (15 U mq' plantaricin 423), a-chymotrypsin (45 U mg-1 plantaricin 423), and trypsin (55

U mq' plantaricin 423) at 3rC for 1 h. After incubation the enzymes were heat-inactivated (3

min at 100°C) and tested for antimicrobial activity.

Mode of action

Partially purified plantaricin 423 was added (0·25 I-Ig rnl') to mid-logarithmic growth phase

cells of 0. oeni 19CI in 200 ml acidic grape medium. Concentrated MRS medium was added

to a control flask. Changes in the turbidity of the cultures were recorded at an O.O. of 600 nm

and the number of colony-forming units (cfu) was determined by plating the samples on acidic

grape agar (Dicks et al. 1990).
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Isolation of DNA

Total DNA was isolated according to the method of Dellaglio et al. (1973). Plasmid DNA was

isolated using the method described by Burger and Dicks (1994), after which the DNA was

further purified by CsCI density gradient centrifugation (Sam brook et al. 1989). The DNA was

separated on an agarose gel, according to the method described by Sambrook et al. (1989).

Lambda DNA digested with EcoRI and HindiII (Promega, Madison, USA) was used as

molecular weight marker.

Southern blot hybridizations

Southern blot hybridizations were performed as described by Sambrook et al. (1989). Total

and plasmid DNA were hybridised with probes made from the 5·6 kb EcoRIISa/1 fragment of

the pSRQ220 plasmid encoding pediocin PA-1 (Marugg et al. 1992), the 5 kb HindIII fragment

of plasmid pGH3 encoding plantaricin A (Diep et al. 1994), and the 0·5 kb EcoRI/Xbal

fragment of plasmid pCE36 containing the nisA gene (A.M. Ledeboer, personal

communication).

Isolation of bacteriocin-deficient mutants

Curing experiments were conducted as described by Ruiz-Barba et al. (1991). Lactobacillus

plantarum 423 was incubated with various concentrations of novobiocin (0,125 - 8 J.Jg ml")

and incubated for 72 h. Those cultures which displayed growth at the highest concentration of

novobiocin were serially diluted with sterile saline and plated out on MRS agar plates. After

48h of incubation at 30°C, the colonies were replica plated and the original plates overlaid with

Lactobacillus sake DSM 20017. After 24 h of incubation at 30°C, the colonies were checked

for loss of plantaricin 423 production.

RESULTS

Plantaricin 423 is active against Bacillus cereus, Clostridium sporogenes, Enterococcus

faecalis, several Lactobacillus spp., (including Lact. plantarum), 0. oeni, L. innocua, L.

monocytogenes, Ped. acidilactici, Pedo pentosaceus, Propionibacterium acidipropionici,

Propionibacterium sp., Staphylococcus carnosum, Streptococcus thermophilus, and the

malolactic starter cultures of O. oeni (Leuc. oenos, Lallemand SA and Viniflora oenos,

Christian Hansen's Laboratory), as indicated in Table 1.

97



Isolation of plantaricin 423 with Amberlite XAD-1180 and separation on a tricine-SDS-

PAGE gel yielded an active peptide band corresponding in size to 3·5 kDa (Fig. 1b,c,d).

Further separation of the Amberlite fraction by reverse phase FPLC yielded one active peak

(Fig. 2). Separation of this fraction by tricine-SDS-PAGE yielded a peptide band of 3·5 kDa

(Fig. 1c), corresponding to the peptide band obtained after the Amberlite XAD-1180

separation (Fig. 1b).

Plantaricin 423 is resistant to heat treatments of 40, 60, 80 and 100°C for 10 and 30

min, respectively. However, 50% activity was lost after 60 min at 100°C, and 75% activity was

lost after the bacteriocin was autoclaved (121°C for 15 min). Incubation in buffers at pH

values ranging from 1 to 10 had no effect on the activity of plantaricin 423. Plantaricin 423 is

sensitive to pepsin, papain, a-chymotrypsin and trypsin and Proteinase K. No rest-activity of

plantaricin 423 was obtained after treatment with these proteolytic enzymes.

The addition of plantaricin 423 to active growing cells of 0. oeni 19CI (at 36 h of

growth) resulted in a slow decrease in the number of viable cells (2'5 x 106 to 1 x 106 du mt")

over a period of 24 h, after which the cell count stabilized for the remainder of incubation (Fig.

3). The optical density readings of O. oeni 19CI increased for 6 h after the addition of

plantaricin 423, after which it stabilized for the remainder of the incubation period (Fig. 3).

Southern blot hybridizations revealed DNA homology between the plasmid DNA of

Lact. plantarum 423 and probes made from the 5·6 kb EcoRI/Sa/l fragment of the pSRQ220

plasmid encoding pediocin PA-1. No DNA homology was obtained with probes from the 5 kb

HindiII fragment of plasmid pGH3 encoding plantaricin A, or the 0·5 kb EcoRlIXba/1 fragment

of plasmid pCE36 containing the nisA gene.

Curing with novobiocin yielded two mutants of Lact. plantarum 423, designated 423/1

and 423/4, which both lost a plasmid of approximately 6 kbp (Fig. 4) and the ability to produce

plantaricin 423.

DISCUSSION

The spectrum of antimicrobial activity of plantaricin 423 (Table 1) and its heat stability (up to

30 min at 100°C) is similar to that reported for other plantaricins, e.g. plantaricin A (Daeschel

et al. 1990), plantaricin C19 (Atrih et al. 1993), plantaricin S (Jiménez-Diaz et al. 1993),

plantaricin 149 (Kata et al. 1994) and plantaricin SA6 (Rekhif et al. 1995). However, the

strong bactericidal activity obtained against L. innocua and L. monocytogenes distinguishes

plantaricin 423 from the other bacteriocins produced by Lact. plantarum. According to the
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classification system proposed by Klaenhammer (1993), plantaricin 423 belongs to the group

Iia (anti-Listeria) bacteriocins.

Separation of plantaricin 423 by Amberlite XAD-1180 suggests that the bacteriocin

molecule is hydrophobic and, in this sense, similar to many other bacteriocins. Plantaricin 423

is in the region of 3·5 kDa in size, as determined by tricine SOS-PAGE. This also conforms to

the classification of Klaenhammer (1993). Plantaricins that have been completely

characterized are all smaller than 10 kDa (Nissen-Meyer et al. 1993; González et al. 1994;

Kata et al. 1994; Jiménez-Diaz et al. 1995).

The slight decline in number of living cells of 0. oeni 19CI recorded over a period of 24

h after the addition of plantaricin 423 (2·5 x 106 to 1 x 106 du ml") suggests that the mode of

activity of the peptide is only weakly bactericidal (Fig. 3). This was supported by the slow

increase in absorbency (O.O.) readings recorded for the first 6 h since the addition of

plantaricin 423, before the readings stabilized. The stable O.O. readings recorded for the

remaining period of incubation (Fig. 3) suggests that the cells of 0. oeni 19CI were not lysed.

DNA hybridization studies have shown homology between the plasmid DNA of Lact.

plantarum 423 and the pediocin PA-1 operon. This suggests that plantaricin 423 belongs to

the anti-Listeria group of pediocin-like bacteriocins. Various anti-Listeria bacteriocins have

been described for Lactobacillus spp., such as acidocin A (Kanatani et al. 1995), curvacin A

(Tichaczek et al. 1992), sakacin A (Schillinger et al. 1991; Holck et al. 1992), and sakacin 674

(Holck et al. 1994). Comparison of the amino acid sequences of these pediocin-like

bacteriocins with similar bacteriocins produced by other lactic acid bacteria, such as pediocin

PA-1, carnobacteriocin BM1, and leucocin A-UAL 187 (Kanatani et al. 1995) revealed

conserved regions which have been suggested to be important for the activity of the anti-

Listeria class of bacteriocins (Lozano et al. 1992).

Based on the results obtained with the curing experiments, plantaricin 423 is encoded

by a plasmid of approx. 6 kbp in size (Fig. 4). Pediocin-like bacteriocins may be either

plasmid encoded (Gonzalez and Kunka 1987; Garriga et al. 1993; Quadri et al. 1994;

Kanatani et al. 1995), or genomicaily encoded (Holck et al. 1994; Aymerich et al. 1996). It

might even be that only certain of the genes encoding plantaricin 423 are located on the 6 kbp

plasmid. The structural gene of plantaricin A was shown to be located on the chromosome

(Diep et al. 1994). All the genes encoding the anti-Listeria bacteriocin sakacin P, on the other

hand, are located on a 7.6 kbp chromosomal fragment (Huhne et al. 1996). The genes

encoding the secretion and maturation of laetoeoeein A are located on the chromosome of

Lactocossus leetis IL 1403 (Venema et al. 1996). The structural gene of carnobacteriocin

BM1 is located on the chromosome. However, expression of this chromosomal bacteriocin
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and its immunity function required the presence of a 61 kbp plasmid encoding the

carnobacteriocin 82 structural gene (Quadri et al. 1994). The 6 kbp plasmid of Lact.

plantarum 423 is currently being sequenced to determine the exact location of the structural

gene of plantaricin 423.
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Table 1 Spectrum of antimicrobial activity of plantaricin 423

Organism Strain Result

AcetobaGter aceti ATCC 23746
Bacillus cereus LMG 13569 +
Clostridium sporogenes LMG 13570 +
Enterococcus faecalis LMG 13566 +
Lactobacillus brevis ATCC 11577 +

ATCC 14869 +
Lactobacillus buchnerii ATCC 4005T +
Lactobacillus bulgaricus LMG 13551

ATCC 11482T +
Lactobacillus casei ATCC 334

ATCC 393T
LMG 13552
T395
LHS

Lactobacillus curvatus LMG 13553 +
Lactobacillus fermentum ATCC 23271

LMG 13554 +
ATCC 9338 +

Lactobacillus fructivorans NCFB 2167
Lactobacillus helveticus LMG 13555 +
Lactobacillus plantarum ATCC 14917 +

LMG 13556 +
NCFB 1193

Lactobacillus reuteri LMG 13557
DSM 20016 +

Lactobacillus sake LMG 13558 +
DSM 20017 +

Leuconostoc mesenteroides subsp. cremoris LMG 13562
LMG 13563

Listeria innocua LMG 13568 +
Listeria monocytogenes LM1 +
Oenococcus oeni ML34 +

19CI +
Oenococcus oeni ( = Leuconostoc oenos, NLO-09 +
Lallemand SA)
Oenococcus oeni ( = Viniflora oenos, Christian DSM 7008 +
Hansen's Laboratory)
Pediococcus acidilactici ATCC 12697 +
Pediococcus pentosaceus LMG 13560 +

LMG 13561
Propionibacterium acidipropionici LMG 13572 +
Propionibacterium sp. LMG 13573 +
Salmonella enteritidis SE1
Staphylococcus carnosum LMG 13567 +
Streptococcus mutans NCTC 10449
Streptococcus thermophilus LMG 13564

LMG 13565 +
+, Sensitive to plantaricin 423.

-, Resistant to plantaricin 423.



Fig. 1 Separation of plantaricin 423 by tricine-SDS-PAGE. (a) Rainbow protein molecular

weight marker; (b) partially purified crude extract and (c) fraction after reverse phase FPLC,

both gels stained with Coomassie brilliant blue R250; (d) gel overlaid with cells of Listeria

innocua embedded in BHI agar (0'7% (w/v) agar). The active protein bands are indicated by

the arrows
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Fig. 2 Separation of plantaricin 423 by reverse phase FPLC. A gradient of 20-50% 8 (0·1%

trifluoroacetic acid in acetonitrile) was used

Fig. 3 The effect of plantaricin 423 on the growth of Oenococcus oeni 19CI. (-0- and -.- =

turbidity of the cells [measured at O.O. of 600 nm] growing in the absence and presence of

plantaricin 423, respectively. -0- and -II~ = cfu ml" counts in the absence and presence of

plantaricin 423, respectively)
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Fig. 4 Plasmid profiles of Lactobacillus plantarum 423. (a) Lambda DNA digested with EcoRI

and Hind"l (Promega, Madison, USA); (b) plasmid profile before curing; (c, d) plasmid profiles

after curing with novobiocin (mutants 423/1 and 423/2, respectively)
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ABSTRACT

Bacteriocin 423, a small heat stable bacteriocin, is produced by Lactobacillus pentosus

423. Nucleotide sequencing of the DNA of plasmid pBAC4 encoding bacteriocin

production by L. pentosus 423, revealed an operon-like structure similar to that described

for pediocin PA-1. Four open reading frames (bacA, bacB, bacC and bacO) were

identified. BacA encodes a 56-amino acid prepeptide consisting of a 37-amino acid mature

peptide with a 19 N-terminalleader peptide. BacB encodes a putative immunity protein with

protein sequence similarities to several bacteriocin immunity proteins described in the

databases. The bacC and bacO genes are virtually identical to pedC and pedO of pediocin

PA-1. Although a part of the pedB gene of pediocin PA-1 also occurs in the bacteriocin

423 operon, this stretch of DNA does not appear to be part of any ORF. Bacteriocin 423

(KYYGNGVTCGKHSCSVNWGQAFSCSVSHLANFGHGKC as predicted by nucleotide and

protein sequencing) was successfully expressed by Saccharomyces cerevisiae. Although

inhibition zones were detected on agar plates, activity levels were very low, and no

inhibitory activity could be detected in the unconcentrated supernatant of the transformed

yeast.

INTRODUCTION

Bacteriocins of food related lactic acid bacteria have received much attention during the

last decade for their possible use as natural preservatives in food and beverages. In food

products, bacteriocins may replace or reduce the use of preservatives such as nitrates and

nitrites. In wine, the use of bacteriocins as preservatives may reduce the use of sulfur

dioxide (39). Bacteriocins that inhibit Oenococcus oeni may possibly also playa role in the

control of malolactic fermentations in wine. Bacteriocins are ribosomally synthesized

peptides that usually exhibit a narrow range of antimicrobial activity, affecting only

organisms closely related to the producer. Bacteriocins are classified into four groups (28).

Class I are lantibiotics, Class II are small heat-stable membrane-active peptides, Class III

are large, heat-labile proteins and Class IV are complex proteins. Most of the bacteriocins

characterized to date belong to Class II. Class II is subdivided into four different groups.
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Class IIa bacteriocins share a YGNGV consensus sequence near their N-termini and

several of these peptides have been fully characterized, such as pediocin PA-1 (30),

mesentericin Y105 (16), leucocin A (42), divercin V41 (31), sakacin P (24), acidocin A (27),

sakacin A (3) and enterocin A (4, 35). Class IIa bacteriocins are also referred to as anti-

Listeria peptides, or pediocin-like peptides, after pediocin PA-1, the first characterized

bacteriocin representative of this group. Class lib are two-peptide bacteriocins, Class IIc

are sec-dependent bacteriocins, and Class lid are Class II bacteriocins that do not belong

to any of the three defined groups (34).

Bacteriocin 423, also referred to as plantaricin 423, is produced by Lactobacillus

plantarum 423 (43). Strain 423 is, however, phylogenetically (based on 16S rRNA

sequence analysis) more related to L. pentosus (Collins, M.D., Department of Food

Science and Technology, University of Reading, Reading RG66AP, UK, personal

communication). Bacteriocin 423 is a small (approximately 3.5 kDa) plasmid-encoded

peptide that remains active after several heat treatments, loses activity when treated with

proteolytic enzymes, and is stable over a pH range of 1 to 10. Several Gram-positive

bacteria are inhibited by bacteriocin 423, including Lactobacillus spp., Leuconostoc spp.,

O. oeni, Pediococcus spp., Enterococcus spp. and Propionibacterium spp., and food-

spoilage or pathogenic bacteria such as Staphylococcus, Bacillus, Clostridium and Listeria

spp. (43). High DNA homology between plasmid pBAC4 (initially referred to as p423(4)) of

the bacteriocin 423 producer organism and the operon of pediocin PA-1 has been reported

(43).

In this article the primary structure and genetic organization of bacteriocin 423 is

examined. Bacteriocin 423 was also successfully expressed in S. cerevisiae.

MATERIALS AND METHODS

Microbial strains and media: The organisms included in this study are listed in Table

1. The bacteriocin producer, L. pentosus 423, and the indicator organism, Lactobacillus

sakei LMG 13558, were cultured in de Man-Rogosa-Sharpe (MRS) medium (Biolab

Diagnostics, Midrand South Africa) at 30°C. Listeria monocytogenes was propagated in

Brain Heart Infusion (BHI) medium (Biolab Diagnostics, Midrand South Africa) at 3rC.

Escherichia coli DH5a was propagated in Luria-Bertani (LB) medium (tryptone 1% miv,

yeast extract 0.5% miv, NaCI 1% miv) at 3rC. E. coli transformants were grown in LB

broth containing ampicillin (100 IJg/ml). S. cerevisiae I1278 was propagated in YPD

(yeast extract 1% miv, peptone 2% miv, glucose 2% miv) medium at 30°C. Yeast

transformants were grown in synthetic complete minimal medium (SC) containing 0.67%

yeast nitrogen base without amino acids, 0.5% (NH4hS04, 2% glucose and all the required



amino acids except uracil (2).

Inhibitory activity: The inhibitory activity of bacteriocin 423 was monitored by the spot-

on-lawn method as described previously (43), using L. monocytogenes LM1 or L. sakei

LMG 13558 as indicator strains. One arbitrary unit of bacteriocin 423 was defined as 10 IJl

of the highest dilution of protein sample yielding a zone of growth inhibition. Protein

concentrations were determined spectrophotometrically (2).

Bacteriocin production and protein purification: The supernatant of an overnight L.

pentosus 423 culture was clarified by centrifugation and the proteins precipitated with

ammonium sulfate (75% w/v, final concentration). After centrifugation the precipitated

proteins were resuspended in MilliQ water. The pH of the sample was adjusted to neutral

with 1M NaOH before overnight dialysis using Spectrapor 1000 Da molecular weight cut off

tubing (Spectrum Laboratories Inc., Gardena, California, USA). A 1:2 methanol:chloroform

solution was added to the dializate (1 :25 dilution) and stirred at 4°C for 1 hour. After

centrifugation, the pellet was resuspended in 2 ml deionized water. To this sample,

deionized water and 100 mM ammonium acetate was added (1:4:5) and then subjected to

cation exchange chromatography (Spectragel fastflow SP Sepharose, Spectrum

Laboratories Inc., Gardena, California, USA). The protein was eluted using a 0.1 to 0.8 M

ammonium acetate step gradient. Fractions collected from the column at each of the

ammonium acetate concentrates were pooled and tested for activity. The active pool was

freeze-dried and stored at -20°C.

Electrospray mass spectrometry and amino acid sequencing: The active

lyophilized sample was dissolved in 1:9 acetonitrile-water containing 0.01% formic acid and

the mass of the purified peptide determined using a Quattro triple quadropole mass

spectrometer (Micromass, Manchester, United Kingdom) as described (5). The peptide

was sequenced using an automated Edman degradation protein sequencing apparatus

(Applied Biosystems Procise 491, PE Biosystems SA [Pty] Ltd.).

DNA preparation and analysis: Plasmid DNA was isolated from L. pentosus 423 as

described previously (43). The 9 kb plasmid, designated pBAC4, (previously incorrectly

described as 6 kb), already established as carrying the bacteriocin genetic information (43),

was separated from the four other plasmids by agarose gel electophoresis and purified

using a Biotrap BT 1000 (Schleicher and Schue") apparatus. Standard techniques were

used for DNA restriction enzyme analysis and ligations (2). Partial Smal DNA fragments

and a 2000 bp Hind" I fragment of pBAC4 were cloned and sequenced. The enzymes

used were from Roche Molecular Chemicals, Mannheim, Germany. DNA was sequenced

on an automatic sequencer (ABI Prism™ 377, PE Biosystems SA [Pty] Ltd.), using dye

terminator chemistry (Biosystems, Warrington, England). To sequence the operon of

bacteriocin 432, primers were designed to sequence upstream of the Hindi" and Smal
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fragments homologous to sections of the pedO gene of pediocin PA-1, and to fill in gaps.

The primers for sequencing were obtained from Genosys Biotechnologies (Europe) Ltd.

(Pampisford, United Kingdom).

Sequence analysis: Computer alignment and comparison of the pBAC4 DNA

sequence to that of pediocin PA-1 and other homologous sequences were facilitated using

the Sequence Navigator (PE Biosystems SA [Pty] Ltd.), DNAMAN for WindowS® (Lynnon

Biosoft, Quebec, Canada) and BLAST (Basic Local Alignment Search Tool) programs.

Cloning of the structural gene and plasmid construction for expression in S.

cerevisiae: The techniques used were similar to that described previously (39). The

putative structural gene of the mature bacteriocin 423 protein was amplified by PCR. The

two primers used for amplification were:

423A5' GTCGCCCGGGAAA TACTATGGT AATGGGG and

423A3' GCGTCCCGGGTTAATTAGCACTTTCCATG. Both contained a Smal site

(underlined). Plasmid pBAC4 from L. pentosus 423 was used as template. The amplified

product was cut with Smal and cloned into the Smal site of the pBluescript SK vector.

Using Smal, the PCR generated fragment was cloned into the filled in HindiII site of pPRL2

(Fig. 1). Plasmid PRL2 is the 6.11 kb single-copy yeast- E. coli shuttle vector YCplac111

(amp', leu2) (18), with the yeast alcohol dehydrogenase promoter and terminator, and

mating pheromone a-factor secretion signal insert, as constructed previously (39). The

Sa/l-Smal DNA fragment from pPRL2 containing AOHIp- MFa1 s-bacA-AOHlr was cloned

into the multiple cloning site of the multicopy yeast-E. coli shuttle vector YEp352. This

constructed plasmid (YEpBac423) was used to transform S. cerevisiae 2:1278.

Standard DNA manipulation, cloning of the DNA fragments, and E. coli and yeast

transformation techniques were used (2).

RNA isolation and Northern blot analysis: Total yeast RNA was isolated and

analyzed using standard techniques as described (2) and a Random Primer DNA Labeling

Kit (Roche Molecular Biochemicals, Mannheim, Germany). The 114 bp bacA PCR

fragment encoding bacteriocin 423 was used as probe.

Yeast bacteriocin activity assays: Yeast transformants were grown in SC-ura

overnight at 30eC. Twenty IJl of cells, concentrated from a 10 ml overnight culture, was

spotted onto SC-ura plates, incubated for 3 days at 30eC, overlaid with a 1% (v/v) overnight

culture of L. monocytogenes LM1, suspended in 0.7% BHI agar. After incubation at 3rC

for 24h, the plates were examined for inhibition zones. Yeast cells transformed with

YEp352 without the bacteriocin 423 gene cassette were used as negative controls.

Nucleotide sequence accession number: The DNA sequence was submitted to

GenBank (Los Alamos, USA). Accession number: AF304384.
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RESULTS

Characterization of bacteriocin 423: The total protein concentration, activity, specific

activity and percentage recovery are given in Table 2. Electrospray mass spectrometry

analysis indicated the presence of a single peptide of 3930.1 Da in the active sample

collected from the SP-Sepharose gel (Fig. 2). Peptide sequencing revealed the 37 AA

peptide KYYGNGVTXGXHSXSVNXGQAFSXSXSHLANFGHGKX. Positions X indicate

ambiguous residues that could not be resolved. Comparison of the protein sequence to

known protein sequences in the databases revealed significant homology to the Class lIa

bacteriocins (Table 3).

Genetic analysis of bacteriocin 423: Bacteriocin 423 production was previously

shown to be associated with the presence of an (approximately) 9 kbp plasmid, designated

pBAC4. Southern hybridization using the operon of pediocin PA-1 as probe had also

revealed extensive homology between the DNA encoding pediocin PA-1 and pBAC4 (43).

In an attempt to clone sections of pBAC4, the DNA was incubated with several restriction

enzymes. BamHI, Bg/II, EcoRI, EcoRV, Pstl, Sacl and Smal failed to linearize the plasmid.

Sa/I cut the plasmid DNA once, but attempts to clone the complete plasmid into either

pBR322 or pBluescript SK failed. Hind III and Xbal cut pBAC4 several times. The one end

of a 2000 bp Hind III fragment and several Smal fragments derived from partial restriction

enzyme digestions were homologous to sections of pedO, the fourth gene in the pediocin

PA-1 operon (30). From this result, reverse primers were used to sequence the original

pBAC4 DNA upstream to locate the structural gene of bacteriocin 423. Sequencing was

continued until a whole operon-like structure was identified (Fig. 3). The nucleotide

sequence revealed significant homology to the pediocin PA-1 operon (Fig. 4). The

presence of at least four open reading frames (ORF's) was revealed when the DNA was

translated.

The first open reading frame (bacA) encodes a protein consisting of 56 amino acid

residues followed by a TAA stop codon. Comparison of this sequence with the mature

bacteriocin 423 peptide sequence showed that bacA was the structural gene with a 37-

residue C-terminal corresponding to the amino acid sequence of bacteriocin 423 and a 19

or 18 residue N-terminal extension with a glycine-glycine (GG) cleavage site (Fig. 3). This

N-terminal extension is identical to the N-terminal extension of pediocin PA-1, except for an

extra M residue at the start of the ORF. Although computer analysis of the ORFs indicate

that bacA starts at the first M-residue, DNA sequence comparison of the promoter area and

ribosome binding site of pediocin PA-1 with the bacteriocin 423 DNA sequence indicates

that bacA may start at the second M residue.

A second open reading frame (bacB) follows directly downstream of bacA encoding a

protein consisting of 72 amino acid residues followed by a TAA stop codon. Comparison of



the DNA sequence with those in the databases did not reveal any homology. However,

comparison of the protein sequence predicted by this ORF to previously submitted protein

sequences revealed significant homology to the putative immunity proteins of leucocin A,

mesentericin Y105, divercin V41 and enterocin A, indicating that this ORF could be the

immunity protein of bacteriocin 423.

The third open reading frame (bacC), located 355 bp downstream of bacB codes for a

protein which starts with a TIG initiation codon and consists of 174 amino acid residues

followed by a TAG stop codon. Further downstream, a fourth open reading frame was

located, consisting of 724 amino acid residues with a TAA stop codon. These two ORF's

are virtually identical to the pedC and pedO genes of pediocin PA-1 (30), respectively, and

may thus be necessary for crossmembrane translocation of bacteriocin 423. The

sequences of the putative -35 and -10 regions are TIGACA and TAGAAT, respectively.

Although the bacteriocin 423 operon contains a DNA sequence identical to that which

encodes the C-terminal of pedB, the immunity protein of pediocin PA-1, this stretch of DNA

does not appear to be part of any predicted ORF in the bacteriocin 423 operon.

Heterologous expression of bacteriocin 423: A PCR fragment of 114 bp cloned into

pBluescript SK and sequenced revealed an identical DNA sequence to that encoding the

predicted mature peptide. This fragment was reisolated using Smal and cloned in-frame

into pPRL2 containing the yeast AOHI transcriptional regulatory sequences and the MFa1

secretion signal (pBac423). The constructed ADHIp- MFa1 s-bacA-ADHlr cassette was

isolated from pBac423 and ligated into the multicopy YEp352 vector. The final constructed

plasmid, YEpBac423 was introduced into S. cerevisiae. Saccharomyces cerevisiae

transformants grown on agar plates were overlaid daily after 2, 3 and 4 days of growth with

soft agar containing L. monocytogenes. Clear zones of inhibition were observed around

colonies of the yeast YEpBac423 transformants after 3 days. No zones could be detected

around the negative controls (Fig. 5). Inhibitory activity displayed by yeast transformants

was very low, with no inhibitory activity detected in the unconcentrated supernatant of the

yeast transformants.

Northern blot analysis: Northern blot analysis of yeast RNA isolated from

transformants indicated a transcript of approximately 700 nucleotides (Fig. 6).

DISCUSSION

L. pentosus produces a small heat-stable bacteriocin, designated bacteriocin 423 (43).

This anti-listeria I bacteriocin has a relatively wide spectrum of inhibition. Initial studies

indicated a plasmid-encoded peptide of approximately 3.5 kDa in size. Here, data is

presented on the partial nucleotide sequence of pBAC4, the plasmid implicated in
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bacteriocin 423 production, and conclusions made based on the protein sequence,

heterologous expression of bacteriocin 423 and computer comparisons of various

nucleotide and protein sequences in the databases.

Characterization of bacteriocin 423: Several Class lIa bacteriocins have been

isolated (Table 3). These bacteriocins all share the YGNGV consensus sequence in the N-

terminal of the mature peptide, although the exact function of this consensus motif is not

clear (9). The first 16 amino acid residues in the N-terminal of mature bacteriocin 423 is

identical to that of pediocin PA-1, whereas the C-terminal of bacteriocin 423 differs

considerably from pediocin PA-1 and other Class lIa bacteriocins (Table 3). The amino

acid sequence of bacteriocin 423 appears to be most homologous to plantaricin C19 (1).

Studies on the primary and three-dimensional structures of Class lIa bacteriocins

suggest that these peptides consist of two functional domains: a well-conserved hydrophilic

N-terminal l3-sheet domain and a more diverse hydrophobic or amphiphilic C-terminal a-

helical domain. It is hypothesised that the N-terminal domain may mediate the initial

unspecific binding of the bacteriocins to target cells through electrostatic interaction, while

the C-terminal domain interacts with the hydrophobic part of the target membrane (13).

Bacteriocin 423 may form an a-helix between residues 17 and 31 (Fig. 7) similar to those

described for pediocin AcH (32), leucocin A (15) and mesentericin Y 105 (14).

Bacteriocin 423 has four cystein residues, similar to pediocin PA-1 (3D), enterocin A (4)

and divercin V41 (31). Most bacteriocins of the Class lIa group only have two cysteine

residues. Pairs of cysteine residues form disulfide bonds that stabilize the structure of the

peptide and affect the activity of bacteriocins (32). Studies have shown that enterocin A

and pediocin PA-1 were more active than sakacin Pand curvacin A, the latter both

containing only one disulfide bond (11). Some studies also suggested that in those

bacteriocins containing more than one disulfide bridge, thioester linkage might be

necessary for activity (10). Protein mutants of pediocin AcH generated by PCR random

mutagenesis showed that for pediocin AcH, all four cysteins were required for activity (32).

Genetic analysis of bacteriocin 423: Four genes are usually required for bacteriocin

production. These genes include a structural gene which encodes a prebacteriocin, an

immunity gene which protects the producer cell against the bacteriocin, a gene encoding

an ABC transporter, and an accessory gene which is also required for bacteriocin secretion

(34). Although the operons that encode for the production of the Class lIa bacteriocins

possess all the necessary genetic information, organization of these genes may vary

considerably.

The gene cluster of bacteriocin 423 is arranged in a single operon identical to the

genetic arrangement of pediocin PA-1 (30). The gene bacA appears to encode a 56 amino
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acid precursor of bacteriocin 423. This was concluded after comparison of the gene-

derived bacteriocin with the direct sequence data of bacteriocin 423 and confirmed by the

expression of the mature peptide in S. cerevisiae.

Downstream of bacA, a second gene, bacB, encoding a protein of 72 amino acids is

located. The homology of the protein derived from the nucleotide sequence of this gene to

the immunity genes of leucocin A (19), mesentericin Y105 (16), divercin V41 (31) and

enterocin A (4), suggests that bacB is the putative immunity gene of bacteriocin 423. This

protein shares no homology with the 112 amino acid immunity gene of pediocin PA-1 and

is much smaller.

The 174 amino acid bacC and 724 amino acid baeD is located further downstream from

bacB. The bacC gene is identical to pede, the accessory gene of pediocin PA-1 and baeD

shares 99 % homology with pedO, the ABC trans locator of pediocin PA-1. Similarity of

pediocin PA-1 to bacteriocin 423 does not appear to be that unusual. Leucocin A (42) and

mesentericin Y105 (16) are different Class lIa bacteriocins, but the organization of the

genetic determinants of these bacteriocins is identical. The gene clusters of these two

bacteriocins are arranged in two operons, and the genes share between 85 and 99%

homology.

Heterologous expression of bacteriocin 423: We conclude from the occurrence of

inhibition zones around colonies of S. cerevisiae transformants that, like pediocin PA-1

(39), bacteriocin 423 can be used to develop a bactericidal yeast. As was found previously

(39), activity could be detected on agar plates, but the level of bacteriocin production was

low in the yeast supernatant. Schoeman et al. (39) postulated that the bacteriocin

remained cell wall associated. Further research is needed to improve the antimicrobial

activity of yeasts. Fermentation studies are to be conducted to optimize production and

test the viability of bactericidal yeasts used in food and wine products.
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Table 1. Microbial strains and plasm ids
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1LMG, Culture collection of the Laboratory of Microbiology, University of Gent, Belgium

2ADHlp-ADHlr, yeast alcohol dehydrogenase I promoter-terminator cassette; MFa 1_s,

mating pheromone a-factor secretion signal

3 Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa

Strain or plasmid Characteristics

Bacterial strain

L. pentosus 423

L. sakei LMG 13558

L. monocytogenes LM1

E. coli DH5a

Yeast strain

S. cerevisiae I1278

Plasmid

pBR322

pBluescript SK

pSRQ220

Bacteriocin 423 producer

Sensitive to bacteriocin 423

Sensitive to bacteriocin 423

Wild-type haploid strain; ura3

Apr; Tcr

Apr; LacZ

pBR322 with 5.6-kbp insert containing

the pediocin PA1 operon

wil~ type plasmid with bacteriocin 423

operon

bla; URA3

bla; LEU2; Single-copy (YCplaclll)

expression vector with ADHIp-

MFa1 s-ADHlr inserf

pPRL2 with bacteriocin 423 PCR

fragment (bacA) insert

YEp352 with ADHIp- MFa1 s-bacA-

ADHlr insert

pBAC4

YEp352

pPRL2

pBac423

YEpBac423

Reference

(43)

LMG1

This laboratory'

(2)

(17)

(8)

(2)

(30)

(43)

(21)

(39)

This study

This study
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Table 2. Purification of bacteriocin 423 from Lactobacillus pentosus 423

Fraction Volume Protein Activity Total1 Sp. act.' Fold Yield3

(ml) (mg/ml) (AU/ml) activity (AU/mg) increase (%)

(AU) in sp. act.

Supernatant 750 12.20 1.28 X 104 9.6 X 106 1.05 X 103 100

Precipitation 42 3.16 1.02 X 105 4.3 X 106 3.24 X 104 31 44.8

(NH4hS04

Methanol- 2 1.95 2.06 X 105 4.1 X 105 1.05 X 105 100 0.04

chloroform

extraction

Cation 0.56 2.05 X 105 2.05 X 105 3.6 X 105 343 0.13

exchange

'Bacteriocin activity units/ml X volume (ml).

2Specific activity represents bacteriocin activity divided by protein concentration.

3% yield of protein.



Table 3. Comparison of bacteriocin 423 to other Class lIa bacteriocins (YGNGV sequence underlined)

Bacteriocin Leader peptide 1 Reference

MKHLKILSIKETQUYGG TTHSGKYYGNGVYCTKNKCTVDWAKATTCIAGMSIGGFLGGAIPGKC

Bacteriocin 423
Acidocin A
Bavaricin A
8avaricin MN
Bifidocin B
Carnobacteriocin B22

Carnobacteriocin BM 13

Curvacin A4

Divercin V41
Enterocin A
Leucocin A5

Leucocin Ta11a
Mesentericin Y 1056.
Mundticin
Pediocin PA_17

Piscicocin V1a8

Plantaricin C 19

Sakacin p9

MMKKIEKL TEKEMANIIGG

MISMISSHQKTL TDKELAUSGG

MNSVKELNVKEMKQLHGG

MKSVKELNKKEMQQI NGG

MNNVKELSMTELQTITGG

MKNLKEGSYTAVNTDELKSI NGG

MNNMKPTESYEQLDNSALEQVVGG

MNNMKSADNYQQLDNNALEQVVGG

MTNMKSVEAYQQLDNQNLKKVVGG

MKKIEKL TEKEMANIIGG

MEKFIELSLKEVT AITGG

1Leader peptide where available
2Carnobacteriocin B2 = Carnocin CP52 (20)
3Carnobacteriocin BM1 = Piscicolin V1 b (7) = Carnocin CP51 (20)
"Curvacin A = Sakacin A (22)
5Leucocin A = Leucocin A-TA33a (36)
6Mesentericin Y105 = Mesentericin 52A (38)
7Pediocin PA-1 = Pediocin AcH (33)
8Piscicocin V1 a = Piscicolin 126 (25)
9Sakacin P = Sakacin 674 (23)

Mature peptide

KYYGNGVTCGKHSCSVNWGQAFSCSVSHLANFGHGKC

KTYYGTNGVHCTKKSLWGKVRLKNVIPGTLCRKQSLPI KQDLKI LLGWATGAFGKTFH

KYYGNGVHXGKHSXTVDWGTAIGNIGNNAAANXA TGXNAGG

TKYYGNGVYXNSKKXWVDWGQAAGGIGQTVVXGWLGGAIPGK

KYYGNGVTCGLHDCRVDRGKA TCGIINNGGMWGDIG

VNYGNGVSCSKTKCSVNWGQAFQERYTAGI NSFVSGVASGAGSIGRRP

AISYGNGVYCNKEKCWVNKAENKQAITGIVIGGWASSLAGMGH

ARSYGNGVYCNNKKCWVNRGEATQSIIGGMISGWASGLAGM

TKYYGNGyyCNSKKCWVDWGQASGCIGQTVVGGWLGGAIPGKC

KYYGNGVHCTKSGCSVNWGEAFSAGVHRLANGGNFW

KYYGNGVHCTKSGCSVNWGEAFSAGVHRLANGGNGFW

KYYGNGVHCTKSGCSVNWGEAASAGIHRLANGGNGFW

KYYGNGVSCNKKGCSVDWGKAIGIIGNNSAANLATGGAAGWSK

KYYGNGVTCGKHSCSVDWGKA TTCIINNGAMAWATGGHQGNHKC

KYYGNGVSCNKNGCTVDWSKAIGIIGNNAAANL TTGGAAGWNKG

KYYGNGLSCSKKGCTVNWGQAFSCGVNRVATAGHGK

KYYGNGVHCGKHSCTVDWGTAIGNIGNNAAANWATGGNAGWNK

This study
(27)
(29)
(26)
(44)
(37)
(37)
(40)
(31 )
(4)
(19)
(12)
(14)
(6)
(30)
(7)

(1)

(41 )

.....
N

"""
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bacA (111 bp)

Smal V Smal

Sail EcoRIBamHI HindIII BamHISmal

,,/ <:>
II I

AOHlp MFa/s AOHlr

419bp 262bp 450bp

+ ... ... ~
700 bp

Fig. 1. Schematic representation of the yeast expression cassette used to express the

bacteriocin 423 (bacA) gene in S. cerevisiae.
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100 3930.1

>........U)
C %
(])......c

3968.9

2947.1 4101.1 4441.2

3648.2 5479.0

ol
3038.9 3150.0 3501.9 I

~jl. lj
2676.0

\1\1.111 i.ltll.l 33r 11 I I 3861.1

lkl~ll.l ,I il! I I I,~ I I .I fl . mass
2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

Mass

Fig. 2. Molecular mass of bacteriocin 423 calculated from the electrospray ionization-mass

spectroscopy multiple charged spectra.



1 TCTAACTAATACTTGACATTTACATTGAGTAGGAACTAGAATGACCGCGTATTAAAAATGATTTAAGAAG~TTTTTATGATGAA
-35 -10 RBS M M K

91 AAAAATTGAAAAATTAACTGAAAAAGAAATGGCCAATATCATTGGTGGTAAATACTATGGTAATGGGGTTACTTGTGGTAAACATTCCTG
KIE K L T EKE MAN I I G G tK Y Y G N G V T C G K H S C

181 CTCTGTTAACTGGGGCCAAGCATTTTCTTGTAGTGTGTCACATTTAGCTAACTTCGGTCATGGAAAGTGCTAATTAATTAATGGGGGGGA
S V N W G Q A F S C S V S H LAN F G H G K C *

271 TTATCTTTGGCTGAAGATACTCGCAATATGGCTGAGCAGTACGTAACTGAACTATATAAAAAATTAAAGTCTCGAGATTCAAAAACATCT
MAE Q Y V TEL Y K K L K S R D S K T S

361 GGCCTTTTAGATATTTTAGATGTTCTTATCCAAGTTCAAAAAAACTTATCAACGGTGAAAAACCCTGAGGCATTAGTAAATCGTTGCGTT
G L L DIL D V L I Q V Q K N L S T V K N PEA L V NRC V

451 CAATATATATACGTAGTGTTGCCATCAAAGACAAATTATATTTTCCTCCAGCAGAAGAAAATATAATTATTAATTTAGAAGTTATTGGCC

Q Y I Y V V L P S K T NYl F L Q Q K K I *

541 AAAAAGCAGGTTGGAACGGTAGCTATATGGCTGATTTTAGTGATAAATCACAGTTTTATAAACTTTCAGAATCAATCCCACACCATTAGA

631 TTTGAGCTTCCACTATATTAGTATTTAGCCTGATAGATGGTGAACGACAAGATTGCGTAGTCTACAATAAGATTGCTAGTCAAGCGGTAG

721 TAGATAAGTTACATTTTACTGCCGAAGAAACCAAAGTTCTAGCAGCCATCAATGAATTGGCGCATTCTCAAAAAGGGTGGGGCGAGTTTA

811 ACATGCTAGATACTACCAATACGTGGCCTAGCCAATAGTACTGATAAA~ATATTGTAGTTGTCTAAGAAATTTTGGTCAAATATCTT
RBS L S K K F W S NIF

901 TTTAGCATTAGGCGTCTTTCTTGCTTTTGCAGGAGTTGCTACCATATCGGTGAGTGCTGACAGTTCCGCTACTATAGAATCAAATACTAG
LAL G V F LAF A G V A TIS V SAD S SAT lES N T S

991 CTCGAAAATCATCGATGGTGCAACTTATGAAGAAAACATCAAGGGCGTTATTCCTATTACGCTAACTCAATATTTGCATAAAGCTCAAAC
SKI I D GAT Y EEN I K G V I PIT L T Q Y L H K A Q T

1081 TGGAGAAAAATTTATTGTCTTTGTCGGGTTCAAGGAGTGTGTGCATTGTCGTAAATTTTCTCCAGTCATGAAACAGTACTTACAACAAAG
GEK F I V F V G F K E C V H C R K F S P VMK Q Y L Q Q S

1171 TCAGCATCCCATTTATTACTTAGACTATGGGAACAACGGGTCTTTCAGCATGGCTTCTCAAAAACAAATAACTGATTTCTATTCAACTTT
Q H PlY Y L D Y G N N G S F SMA S Q K Q lTD F Y S T F

1261 TGCAACCCCCATGAGTTTTATGGGAACGCCAACTGTTGCCTTGCTCGATAATGGTAAGGTGGTATCAATGACCGCTGGTGATGATACCAC
A T PMS F MGT PTV ALL D NGK V V S M TAG DDT T

1351 TTTATCTGATTTACAACAGATTACTGCTGATTACAATAATCAGTAGTCACCTGGTTAATATGGTTTTGTAACCAATGTAAAAGGCGATGG
LSD L Q Q I TAD Y N N Q *

1441 ATCTTTGAAATCGTCTTTTTTTATGCACAAATTTTAAAGATC~TTTGCTTATGTGGACTCAAAAATGGCACAAATATTATACAGCA
RBS M W T Q KWH K Y Y T A

1531 CAAGTTGATGAAAATGACTGTGGTTTAGCTGCACTAAATATGATCCTAAAATACTATGGCTCCGATTACATGTTGGCCCATCTTCGACAG
Q V DEN D C G L A ALN MIL K Y Y GSD Y M L A H L R Q

Fig. 3. Nucleotide sequence of the bacteriocin 423 gene cluster and deduced amino acid

sequences (shown below the nucleotide sequence). Translational termination codons are

depicted by asterisks. Predicted -10 and -35 promotor sites and putative RBS are underlined.

GG cleavage site depicted by tstop codon by ".
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1621 CTTGCCAAAACAACTGCTGACGGTACAACTGTTTTGGGGCTTGTTAAAGCAGCAAAACACTTAAATTTAAATGCCGAAGCTGTGCGTGCT
LAK T TAD G T T V L G L V K A A K H L N L N A E A V R A

1711

1B01

1B91

19B1

2071

2161

2251

2341

2431

2521 .

2611

2701

2791

2BBI

2971

3061

3151

GATATGGATGCTTTGACAGCCTCACAATTGCCATTACCAGTCATTGTTCATGTATTCAAGAAAAATAAGTTACCACACTACTATGTTGTC
D M DAL TAS Q L P L P V I V H V F K K N K L P H Y Y V V

TATCAGGTAACTGAAAACGATTTAATTATTGGTGATCCTGATCCAACCGTTAAAACCACTAAAATATCGAAATCACAATTTGCTAAAGAA
Y Q V TEN D L I lGD PDP T V K T T KIS K S Q FAK E

TGGACCCAGATTGCAATTATCATAGCCCCAACAGTTAAATATAAACCCATAAAAGAATCACGGCACACATTAATTGATCTAGTGCCTTTA
W T Q I A I I I APT V KYK PIK E S R H T LID L V P L

TTGATTAAACAAAAAAGATTAATTGGACTAATTATTACCGCAGCAGCTATAACAACATTAATCAGTATTGCTGGTGCATATTTCTTTCAG
LIK Q K R LIG L I I T A A A ITT LIS I A GAY F F Q

TTAATTATCGATACTTATTTGCCGCACTTGATGACTAATAGGCTTTCACTAGTTGCCATTGGTCTGATTGTAGCTTATGCTTTCCAAGCA
L I I D T Y L P H L M T N RLS L V A I G L I V A Y A F Q A

ATTATCAACTATATACAAAGTTTTTTTACGATTGTATTAGGACAACGTCTCATGATCGACATCGTTTTAAAATACGTTCACCATCTTTTT
I I NYl Q S F F T I V L G Q R L MID I V L K Y V H H L F D

GATTTACCAATGAATTTTTTTACTACCCGTCATGTCGGTGAAATGACCTCACGCTTTTCTGATGCAAGCAAAATTATTGATGCACTTGGA
L P M N F F T T R H V GEM T S R F S DAS K I I DAL G

AGTACAACGCTCACCCTTTTTTTAGACATGTGGATTTTATTAGCAGTAGGGTTATTTTTGGCCTATCAAAACATCAATTTATTTTTATGC
S TTL T L F L D M WIL L A VGL F LAY Q NIN L F L C

TCGTTAGTTGTGGTTCCAATTTACATCTCGATTGTTTGGCTATTTAAAAAAACTTTTAATCGTTTAAATCAAGATACAATGGAAAGCAAT
S L V V V PlY I S I V W L F K K T F N R L N Q D T MES N

GCAGTTCTTAATTCTGCTATTATTGAAAGTCTCAGTGGCATAGAAACCATTAAATCACTAACTGGTGAAGCAACTACAAAAAAAAAGATT
A V L N S A I lES LSG IET I K S LTG EAT T KKK I

GACACACTATTTTCTGACTTATTGCATAAAAACTTGGCTTATCAAAAAGCTGATCAAGGACAACAAGCTATCAAAGCAGCTACTAAATTA
D T LFS D L L H K N LAY Q K A D Q G Q Q A I K A A T K L

ATCCTAACTATTGTTATCCTTTGGTGGGGTACTTTTTTTGTTATGCGACACCAACTGTCTTTAGGTCAGCTGTTAACTTATAATGCTTTG
I L T I V I L W W G T F F V M R H Q L S L G Q L L T Y N A L

CTCGCTTACTTCTTGACCCCATTAGAAAATATTATTAATTTACAGCCTAAACTACAAGCTGCCAGAGTGGCTAATAATCGATTAAATGAG
LAY F L T P LEN I I N L Q P K L Q A A R V ANN R L N E

GTTTATCTAGTAGAGTCTGAATTTTCTAAATCTAGGGAAATAACTGCTCTAGAGCAACTAAATGGTGATATTGAGGTTAATCATGTTAGT
V Y L VES E F S K S REI TAL E Q LNG DIE V N H V S

TTTAACTATGGCTATTGTTCTAATATACTTGAGGATGTTTCTCTAACAATTCCACATCATCAGAAGATTACTATTGTAGGCATGAGTGGT
F NYG Y C S NIL E D V S L TIP H H Q KIT I V G M S G

TCGGGGAAAACGACCCTAGCCAAGTTGCTAGTTGGTTTTTTTGAGCCTCAAGAACAGCACGGTGAAATTCAGATTAATCATCACAATATA
S G K TTL A K L LVG F FEP Q E Q H GEI Q I N H H N I

TCTGATATTAGTCGCACAATTTTACGCCAATATATTAATTATGTTCCTCAAGAACCTTTCATTTTTTCGGGCTCTGTATTAGAAAATTTA
SDI S RTl L R Q YIN Y V P Q E P F lFS G S V LEN L

Fig. 3 (continued)
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3241 TTGTTAGGTAGCCGTCCTGGAGTAACTCAACAAATGATTGATCAAGCTTGTTCCTTTGCTGAAATCAAAACTGATATAGAAAATTTGCCT

L L G S R P G V T Q Q MID Q A C S F A EIK T DIE N L P

3331 CAAGGTTATCATACTAGATTAAGTGAAAGTGGATTCAACTTATCTGGTGGGCAAAAACAGCGGTTATCAATAGCTAGAGCATTATTGTCT
Q G Y H T RLS E S G F N LSG G Q K Q RLS I A RAL L S

3421 CCGGCACAATGTTTCATTTTTGACGAATCAACCAGTAATTTAGACACCATTACTGAACATAAAATAGTCTCTAAGCTATTATTCATGAAA
P A Q C F I F DES T S N L D TIT E H K I V S K L L F M K

3511 GACAAAACGATAATTTTTGTAGCACATCGTCTCAATATTGCGTCTCAAACCGATAAAGTTGTCGTTCTTGATCATGGAAAGATTGTTGAA
D K T I I F V A H R L N I A S Q T D K V V VLD H G K I V E

3601 CAGGGATCACATCGACAATTGTTAAATTATAATGGGTATTATGCACGGTTAATTCATAATCAAGAATAACCTATCAAGAACCAGTCTGCT
Q G S H R Q L L N Y N G Y Y A R L I H N Q E *

3691 ATTGATAGACTATTCTTGTCCGTAAAATCCTCGCGTATTCCCGTGAGGATCATAGTATATTTAGCGCTCTTCTTAAAATTTTAAGTATAT

3781 TGATTCATATGTTTATCCMCCTAAGTTTGAAGACAAACCGGTNCATGTTATAATACTTCTACCGGCTTGTCCGGTGTTNGGGANCATTAC

3871 TCGAACTTTCTGTGGTAATCAAGTGAGT

Fig. 3 (continued)



Bacteriocin 423 produced by L. pentosus

bacA bacB bacC

1324 bPi'.. ' ..
pedA pedB

bacD

pedC pedD

Pediocin PA-1, produced by Pediococcus acidilactici

Fig.4. Schematic overview of the similarity between the putative operon of bacteriocin 423

and the pediocin PA-1 operon. The two operons are identical except for a 522 bp fragment

of DNA that occurs in the bacteriocin 423 operon, but not in the operon of pediocin PA-1.

Similarly, a 324 bp fragment of DNA occurs in the operon of pediocin PA-l, but not in the

bacteriocin 423 operon.

Fig. 5. Zones of inhibition produced by Saccharomyces cerevisiae transformants without

(A) and with (8) the bacteriocin 423 gene cassettes.
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a b

1049 bp
575 bp
310 bp

Fig. 6. Northern blot analysis of RNA prepared from a negative control yeast transformant

(a) and a YEpBAc423 transformant (B). RNA ladder sizes are indicated on the left. The

arrow on the right indicates the transcript.

24 17
Polar face

..,?..)_

27

25
34

18
23

Apolar face

19 26 33

Fig. 7. Edmundson a-helical wheel representation of the amphiphatic regions of

bacteriocin 423. Grey circles depict apolar (hydrophobic) amino acids.
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CHAPTER 7

GENERAL DISCUSSION AND CONCLUSIONS

7.1 TAXONOMY OF Lactobacillus pentosus 423

Lactic acid bacteria are widespread in fermentable materials. The taxonomy of these

organisms is complex, and with the advent of modern molecular techniques, many of the

lactic acid bacteria have been reclassified. Strain 423, a bacteriocin-producing lactic acid

bacterium isolated from sorghum beer was initially identified as a Gram-positive and

catalase negative rod. The lack of CO2 production from glucose fermentation and

carbohydrate fermentations using the API 50 CHL system (La Balme Les Grottes,

Montalieu Vercieu, France), identified the organism as a strain of Lactobacillus plantarum.

Lactobacillus pentosus is usually distinguished from L. plantarum by the production of acid

from glycerol and/or D-xylose but not melezitose, although in many cases these

characteristics were found not to be sufficient for differentiation (Bringel et aI., 1996).

Some strains of L. plantarum may also ferment glycerol (Zanoni et aI., 1987). Isolate 423

did not ferment glycerol or D-xylose, but did ferment melezitose. Results obtained by

numerical analysis of total soluble protein patterns clearly indicated that strain 423

belonged to L. plantarum, with some relatedness to L. pentosus (Van Reenen and Dicks,

1996).

Nucleic acid probes are increasingly being used for the rapid identification of

economically important organisms (Hertel et aI., 1991). Bringel et al. (1996) differentiated

among strains of L. plantarum, L. pentosus and Lactobacillus paraplantarum by using

genes encoding enzymes in the pyrimidine de novo pathway of L. plantarum as a probe.

Polimerase chain reactions (PCR) using random amplified polymorphic DNA (RAPD)

primers have also proved useful to differentiate between several Lactobacillus spp. (Du

Plessis and Dicks, 1995), and to distinguish L. plantarum, L. pentosus and L.

paraplantarum (Dellaglio, personal communication). Johansson et al. (1995) evaluated the

use of RAPD-PCR for rapid typing of known L. plantarum and L. pentosus strains. Some

results showed unacceptable species designation, prompting a cautionary conclusion that

one should be aware of the limitations in discrimination power between closely related

strains. Numerical analysis of RAPD-PCR profiles grouped L. pentosus and L. plantarum

into separate phenotypic clusters, with strain 423 related to the L. plantarum group. This

study included several strains and type strains of L. plantarum, Lactobacillus casei,

Lactobacillus sakei and Lactobacillus curvatus, and the type strain of L. pentosus.

16S rRNA sequence analysis identified strain 423 as L. pentosus (Collins, M.D.,
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Department of Food Science and Technology, University of Reading, Reading RG66AP,

UK, Personal communication). The discrepancy in the results of this study could be due to

the selected primers used for the RAPD-PCR profiles, or to the unavailability of more

reference strains of L. pentosus, which did not have separate species status before 1987

(Zanoni et aI., 1987). In an attempt to differentiate L. plantarum and L. pentosus, Berthier

and Ehrlich (1998) found that the 16S rRNA sequences of these two species displayed

more than 99% identity. The differentiation of the two species therefore remains difficult.

Since L. plantarum and L. pentosus share such a high degree of DNA homology, it may be

hypothesized that they are two subspecies within the same species. Due to this result, the

bacteriocin produced by strain 423 is referred to as bacteriocin 423, rather than plantaricin

423 or pentocin 423.

7.2 PROTEIN CHARACTERIZATION OF BACTERIOCIN 423

Bacteriocin 423 inhibited various Gram-positive organisms, such as Oenococcus oeni,

Streptococcus thermophilus and several species of the genera Lactobacillus, Leuconostoc,

Pediococcus, Propionibacterium, Staphylococcus, and Listeria. This indicated a broad

spectrum of inhibition. The bacteriocin was inactivated by the proteolytic enzymes

proteinase K, pepsin, papain, a-chymotrypsin and trypsin. Heat treatments at 40°C, 60°C,

80°C and 100°C had no effect on the activity of the bacteriocin, but 50% activity was lost

after 60 min at 100°C, and 75% activity was lost after autoclaving . The bacteriocin

remained active at pH 1-10. A bactericidal mode of action was observed against

Oenococcus oeni as well as Listeria monocytogenes.

Using tricine-SDS-PAGE, the purified bacteriocin was determined to be approximately

3.5 kDa, indicating a small, heat resistant peptide. Electrospray mass spectrometry

determined the mass of the peptide to be 3930 Da. The amino acid sequence of the

bacteriocin was determined as KYYGNGVfCGKHSCSVNWGQAFSCSVSHLANFGHGKC,

a 37 amino acid peptide showing homology to several other Class lIa anti-listeria I

bacteriocins such as plantaricin C19 (Atrih et al., 1993), pediocin PA-1 (Marugg et al.,

1992), mesentericin Y105 (Fremaux et aI., 1995), leucocin A (Van Belkum and Stiles,

1995), divercin V41 (Métivier et aI., 1998), sakacin P (HOhne et aI., 1996), acidocin A

(Kanatani et aI., 1995), sakacin A (Axelsson and Holck, 1995) and enterocin A (O'Keeffe et

aI., 1999). The peptide contains the consensus sequence YGNGV in the N-terminal of its

structure. Similar to the bacteriocins pediocin PA-1, enterocin A and divercin V41,

bacteriocin has four cystein residues in its primary structure, that probably form two

disulfide bonds. Most Class lIa bacteriocins only have. two cystein residues.

We have also studied the fermentation optimization of bacteriocin 423 (Verellen et aI.,

1998). The bacteriocin, produced during exponential growth, reached maximum activity at
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the beginning of stationary growth, after which activity declined towards the end of

fermentation. Bacteriocin activity increased if the initial pH of the MRS broth was 4.9.

Meat extract, casamino acids, tryptone and peptone increased the activity of the

bacteriocin. Low concentrations of manganese sulfate and magnesium sulfate stimulated

the growth of L. pentosus 423, but only manganese sulfate further increased bacteriocin

activity.

7.3 GENETIC CHARACTERIZATION OF BACTERIOCIN 423

Southern blot hybridizations, using the operon of pediocin PA-1 (Marugg et aI., 1992) as

probe, indicated that bacteriocin 423 was plasmid-encoded. This was confirmed with

curing studies using novobiocin, where loss of a plasmid of about 9 kb in size coincided

with loss of bacteriocin production. The DNA sequences of the operons of bacteriocin 423

and pediocin PA-1 were virtually identical. The structural genes were identical in the N-

terminal area of the peptides, but the C-terminal of the two peptides differed. The putative

immunity gene of bacteriocin 423 was completely different to the immunity gene of pediocin

PA-1. The putative accessory and transporter genes of bacteriocin 423 were homologous

to that of pediocin PA-1. The functions of bacB, bacC and baeD could in future be verified

by deletion analysis and overexpression of these genes as described for pediocin PA-1 by

Venema et al. (1995).

The only major difference was observed between nucleotide 1177 and 1509 (332 bp) of

pediocin PA-1 (Marugg et aI., 1992) and nucleotide 187 and 717 (531 bp) of bacteriocin

423 (Chapter 6). For pediocin PA-1, this section of DNA encodes the C-terminal of the

structural gene and the N-terminal of the immunity gene. For bacteriocin 423, this section

of DNA encodes the C-terminal of the structural gene and the complete putative immunity

gene. In the operon of bacteriocin 423 the DNA encoding the C-terminal of the immunity

protein of pediocin PA-1 is also present, although no function could be ascribed to this

section of DNA. From this observation, one may conclude that bacteriocin 423 originated

from pediocin PA-1, but evolved after DNA exchange took place at some stage. The lack

of inverted repeats indicating an insertion element suggests a different mode of horizontal

gene transfer (Kolste, 1997; Smith et aI., 1992; Syvanen, 1994). The high percentage of

identical or virtually identical bacteriocins produced by different organisms indicates that

bacteria have genomic plasticity, with genetic material continually exchanged among

organisms. This could also explain why some organisms produce one or more identical

bacteriocins, but with different genetic arrangements, such as lactococcins A, Band M

(Morgan et aI., 1995; Van Belkum et aI., 1989).

The high homology of the bacteriocin 423 operon with that of pediocin PA-1 could be

explained by their phylogenetic relatedness. Based on rRNA homology, lactobacilli can be
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subdivided into three major phylogenetically related groups: the Lactobacillus delbrueckii

group, the Lactobacillus casei-Pediococcus group, and the Leuconostoc group.

Lactobacillus pentosus, L.plantarum and Pediococcus acidilactici, the species that

produces pediocin PA-1, all fall within the L. casei-Pediococcus group (Vandamme et al.,

1996).

7.4 HETEROLOGOUS EXPRESSION OF BACTERIOCIN 423

A PCR fragment identical to the DNA sequence of the mature peptide was ligated into

a yeast expression/secretion system as described by Schoeman et al. (1999). Expression

of the bacteriocin could only be detected on agar plates inoculated with a concentrated cell

solution. No inhibitory activity could be detected in the unconcentrated supernatant,

indicating that bacteriocin production was dependent on cell concentration. This result is

similar to that found by Schoeman et al. (1999), who speculated that the recombinant

pediocin molecule remains bound to the cell wall, or becomes stuck within the yeast

plasma membrane. Although glycosylation may inhibit the secretion of heterogenous

proteins, no potential glycosylation sites (Kukuruzinska et al., 1987) occur in the mature

peptide of bacteriocin 423. Northern blot analysis of yeast transformants did however

. indicate the presence of a transcript of approximately 700 nucleotides in size, which was

absent in the negative controls.

Yeast growth became increasingly slow and after about three weeks did not produce

bacteriocin, indicating that the peptide could be toxic to the yeast. Inclusion of the

immunity protein in the yeast expression gene cassette may improve the longevity of the

yeast.

The development of yeasts with bactericidal properties remains an exciting prospect.

This biological control of spoilage organisms could lead to a reduction in the use of

chemical preservatives in products such as wine, beer and bakery products. Several

strains of lactic acid bacteria, such as Leuconostoc spp., Lactobacillus spp., Pediococcus

spp. and Oenococcus oeni occur in wine and play an important role. Sometimes the

growth of lactic acid bacteria may be beneficial, as in malolactic fermentation, where malic

acid is enzymatically oxidized to form lactic acid and carbon dioxide, resulting in a

reduction of total acidity. Malolactic fermentation is useful in high acid, low pH wines. In

low acid, high pH wines, however, the sensory properties, and chemical and microbial

stability may be adversely affected (Zoecklein et al., 1995). Growth of lactic acid bacteria

in wine may result in wine spoilage due to overproduction of polysaccharide or flavour

compounds such as diacetyl (Colagrande et al., 1994; Davis et al., 1985; Wibowo et al.,

1985). Yeasts producing antimicrobial peptides such as bacteriocin 423 may thus be

useful in the control of these organisms in wine and in other yeast fermented food
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products.

Much more research is necessary to optimize production of antimicrobial peptides in

yeast. Expression levels of antimicrobial peptides may be enhanced using different

promoters and secretion systems. Other factors that may playa role in optimization of

yeast bacteriocin production include proteolytic activity and hyperglycosylation (Schoeman

et al., 1999).

In conclusion, bacteriocin 423 is a Class lIa anti-listerial peptide produced by

Lactobacillus pentosus 423. The bacteriocin is plasmid-encoded by an operon-like

structure. The peptide was successfully expressed in Saccharomyces cerevisiae.
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More than 15 bacteriocins of Lactobacillus plantarum have been

described. However, little information has been published on the

fermentation optimization of these peptides. Plantaricin 423, produced by L.

plantarum 423, is produced during exponential growth and reaches a

maximum activity [6000 activity units (AU)/ml] at the beginning of stationary

growth (i.e. after 15 h). This activity level is maintained for 3 h, but declines

to 2600 AU/ml towards the end of fermentation (i.e. after 31 h). The

increase in plantaricin 423 activity coincided with a decrease in pH from 5.8

to 4.0 during the first 15 h of fermentation. However, when the number of

cells are taken into account (ODmax-value), a higher concentration of

plantaricin 423 is produced in medium with an initial pH of 4.90 (2961

AU/ml/ODmax) than at pH 5.80 (2368 AU/ml/ODmax). A much lower activity of

plantaricin 423 was obtained during the same fermentation period (15h)

when cells were grown in MRS broth (Merck) with an initial pH of 6.9. The

production of plantaricin 423 increased from 6000 AU/ml in MRS broth

(Merck) to 9600, 12,800 and 19,200 AU/ml when the medium was

supplemented with 1.9% (w/v) meat extract (Oxoid), 3.4% (w/v)

casaminoacids (Oxoid) or 1.9% (w/v) tryptone (Oxoid), and 1.7% (w/v)

bacteriological peptone (Oxoid), respectively. The activity of plantaricin 423

was even further increased with the addition of 1% (w/v) Tween 80 to MRS

broth (Merck). Low concentrations of MnS04·H20 (0.014%, w/v) stimulated

the growth of strain 423 and increased the activity of plantaricin 423.

Although the addition of MgS04·7H20 had the same stimulating effect on the

growth of strain 423, the activity of plantaricin 423 was not increased.

Bacteriocins are defined as proteins or protein complexes antagonistic against bacteria
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genetically closely related to the producer organism (1, 2). Since the discovery of colicine V in

1925, the first bacteriocin described for Escherichia coli, many papers have been published on

the production, isolation and characterization of bacteriocins from various species, including

lactic acid bacteria (3). Bacteriocins produced by Lactobacillus, Lactococcus and

Pediococcus, and to a certain extent Streptococcus, Enterococcus and Leuconostoc spp.

received considerable attention during recent years, with the emphasis on genetic

manipulation of the producer strain and overproduction of the bacteriocin (reviewed by 4).

This is not surprising, since lactic acid bacteria have GRAS (generally recognized as safe)

status and are used as starter cultures in many fermented food products (5), and more

recently as probiotics for humans and farm animals (6, 7).

Lactobacillus plantarum is one of the most widely distributed lactic acid bacteria in nature

and is often included in mixed starter cultures for the production of fermented meat,

vegetables, silage and certain dairy products (5). Since the description of lactolin A2 (B) and

plantaricin SIK-B3 (9, 10), no less than 13 additional bacteriocins of L. plantarum have been

described (Table 1), of which plantacin B (11), plantaricin A (12), plantacin BN (13) and

plantaricin S (14) are the best studied. Most of these studies dealt with the characterization of

the bacteriocin, its antimicrobial spectrum and mechanism of activity (reviewed by 4).

Little information is available on the fermentation optimization of the bacteriocins

produced by L. plantarum. A few papers have been published on the growth stimulation of L.

plantarum (15, 16) and only one paper has been published on the fermentation optimization of

plantaricin T (14).

In this paper we report on the fermentation optimization of plantaricin 423, a bacteriocin

produced by L. plantarum 423 which has been isolated from traditionally fermented sorghum

beer.

MATERIALS AND METHODS

Bacterial strains and growth conditions L. plantarum strain 423 was grown in MRS

broth (Merck, Germany) at 30°C. The indicator strains used in this study are listed in Table 2.

The strains were from LMG (Laboratorium voor Microbiologie, University of Ghent, Ghent,

Belgium), ATCC (American Type Culture Collection) and our own collection (Department of

Microbiology, University of Stellenbosch, Stellenbosch, South Africa). The indicator strains

were maintained in the growth media as recommended in the respective culture collection

catalogues. Oenococcus oeni (previously Leuconostoc oenos, 17) was grown in acidic grape



broth (18).

Inhibitory activity of plantaricin 423 L. plantarum 423 was inoculated (1%, v/v) into

MRS Broth (Merck) and incubated at 30°C until mid-logarithmic growth (00600=1.4). The

culture was then centrifuged (10 min at 8000 x g) and 10 ,ui of the supernatant used to

determine the inhibitory activity of plantaricin 423 against the indicator strains listed in Table 2.

The antimicrobial units (AU) of activity of plantaricin 423 was determined against Listeria

monocytogenes LM1, as described by Green et al. (19).

Production of plantaricin 423 Production of plantaricin 423 was followed during

fermentation in 200 ml MRS broth (Merck). At specific time intervals, optical density readings

(at 600 nm) and the pH of the culture were determined. The AU of plantaricin 423 were also

determined, as described previously.

Resistance of plantaricin 423 to heat, pH and proteolytic enzymes These tests were

conducted on crude extract samples of plantaricin 423 (10 x concentrated by lyophilization).

L. monocytogenes LM1 was used as indicator strain. Aliquots of plantaricin 423 were exposed

to heat treatments of 40°C, 60°C, 80°C and 100°C for 10, 30 and 60 min, respectively, and

autoclaved (121°C for 15 min). Resistance to pH and proteolytic enzymes were determined

as described by Green et al. (19).

Effect of initial pH on the growth of strain 423 and the production of plantaricin 423

The effect of pH on the growth of strain 423 and the production of plantaricin 423 was studied

in 200 ml MRS broth (Merck). The medium was buffered with 0.25 M Na2HP04 and the pH

adjusted to 7.1,6.9,6.7,6.2 and 5.8, respectively, by adding 10 N HCI. To obtain initial pH

values of 5.4 and 4.9, the MRS broth (Merck) was buffered with 0.25 M CH3COONa and

adjusted with filter-sterilized 2 N NaOH. All pH adjustments were done after autoclaving. The

medium was inoculated with 1% (v/v) of L. plantarum 423 (00600 approx. 1.4). Fermentations

were conducted at 30°C for 20 h. At specific time intervals the pH of the fermented medium,

optical cell density (absorbance at 600 nm) and activity (AU per ml) of plantaricin 423 was

determined. L. monocytogenes LM1 was used as indicator strain. The experiment was done

in duplicate.

Influence of medium compounds on the production of plantaricin 423

Nitrogen The influence of different nitrogen sources were tested in MRS-PM broth [MRS

broth of de Man, Rogosa and Sharpe (20), but without bacteriological peptone and meat

extract], supplemented with the following: 6.7% (w/v) corn steep liquor (Cerestar), 1.9% (w/v)

meat extract (Oxoid), 1.9% (w/v) tryptone (Oxoid), 2.5% (w/v) yeast extract (Oxoid), 1.7%

(w/v) bacteriological peptone (Oxoid), and 3.4% (w/v) casaminoacids (Oxoid), respectively.
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The fermentations were conducted in 3 I fermentors (Applikon") at 35°C. The pH was

automatically controlled at 5.7 by adding 10 N NaOH with a BioController (Applikon"),

Manganese The effect of manganese on the production of plantaricin 423 was

determined by using MRS-PM medium, supplemented with 2% (w/v) tryptone (Oxoid) and

various concentrations of MnS04·H20 (0.004-0.044%, w/v). The initial pH of the medium was

adjusted to 6.0 with 10 N HCI before autoclaving. The medium was inoculated with 0.4% (v/v)

of an active growing culture of L. plantarum 423. The fermentations were conducted in 200 ml

medium at 30eC for 19 h. The pH, optical density (OD600 nm) of the culture and activity (AU/ml)

of plantaricin 423 were determined after 15.5 and 19 h, respectively.

Magnesium The influence of MgS04·7H20 on the production of plantaricin 423 was

studied by using the same medium, growth conditions and inoculum size as described for the

manganese experiments, except for adjusting the MnS04·H20 level to 0.0045% (w/v). Only

two experiments were conducted; one without any MgS04·7H20 and the other with 0.041%

(w/v) MgS04·7H20 added to the medium. The pH, optical density (OD600 nm) of the culture and

activity (AU/ml) of plantaricin423 were determined after 15 and 19 h, respectively.

Tween 80 The effect of Tween 80 on the production of plantaricin 423 was studied in

200 ml MRS-PM medium with tryptone (2%, w/v) as sole nitrogen source. Concentrations of

0-2.0% (w/v) Tween 80 were used.

RESULTS AND DISCUSSION

Plantaricin 423 was active against Bacil/us cereus, Clostridium sporogenes,

Enterococcus faecalis, several Lactobacillus spp. (including L. plantarum), 0. Oeni, Listeria

innocua, L. monocytogenes, Pediococcus acidilactici, Pediococcus pentosaceus,

Staphylococcus carnosum and Streptococcus thermophilus (Table 2). This spectrum of

antimicrobial activity is similar to that reported for other plantaricins, e.g. plantaricin A (12),

plantaricin e19 (21), plantaricin S (14), plantaricin 149 (22) and plantaricin SA6 (23).

However, the strong bactericidal activity obtained against L. innocua and L. monocytogenes

distinguishes plantaricin 423 from the other bacteriocins produced by L. plantarum. According

to the classification system proposed by Klaenhammer (24), plantaricin 423 belongs to the

group lIa (anti-Listeria) bacteriocins.

Plantaricin 423 is heat stable for up to 30 min at 100°C and 60 min at 80°C, but looses

50% of its activity after 60 min at 100°C and 75% of its activity after autoclaving (15 min at

121°C) (Table 3). The heat stability (up to 30 min at 100°C) is similar to that reported for



other plantaricins (12, 14,21-23).

After a short lag phase of approximately 4 h the cells of L. plantarum increased to a

maximum 00(600 nm) of 1.9 (Fig. 1). During this time (27 h) the pH decreased from 5.80 to

3.75. The stationary phase was reached after 15 h, at which point the highest concentration

of plantaricin 423 was recorded (6000 AU/ml). This level of plantaricin activity was retained

for 3 h, but declined to 4000 AU/ml during the following 3 h, after which it remained stable for

approximately 6 h and then declined to 2600 AU/ml over the remaining 4 h of fermentation.

The highest plantaricin activity was recorded at a pH of 4.0 (Fig. 1). This increase in

plantaricin 423 activity as fermentation commences could be ascribed to less stringent binding

of the peptide to the cell wall of L. plantarum as fermentation continued and the pH

decreased. This phenomenon has been described for nisin, produced by Lactococcus lactis

subsp. lactis (25). More than 80% of nisin remained adsorbed to the producer cell at a pH of

6.8. However, at a pH below 6.0, more than 80% of the lantibiotic was present in the culture

supernatant (25). Similar results were recorded for pediocin AcH, i.e. maximum adsorption to

the producer cells at pH 6.0-5.5 and an almost complete release at pH 1.5 (26). In the case of

pediocin AcH, pre-pediocin modifying enzymes are activated at a pH below 5.0, which

converts the inactive pre-pediocin AcH into its active form (27).

To determine if pre-plantaricin enzymes are involved in the activation of plantaricin 423,

fermentation studies were conducted in MRS broth (Merck) at different initial pH values. The

results are shown in Table 4. The best growth was obtained with an initial pH of 5.8 (ODmax =

1.52), followed by pH 6.2, 6.7, 5.4, 6.9, 7.1 and 4.9. The changes in pH that were recorded

during growth (~pH) coincided with the ODmax - values recorded for each of the fermentations,

i.e. the culture with the highest cell density produced more acid, which in turn resulted in a

lower end pH (Table 4). The lowest final pH (pH 4.4) was obtained for cells which started at

an initial growth pH of 5.8 (Table 4). The highest activity of plantaricin 423 was obtained in a

medium with an initial pH of 5.8 (3600 AU/ml) and the lowest activity at pH 6.9 (300 AU/ml).

According to these results, plantaricin 423 is maximally produced at the optimum growth of the

strain, suggesting that primary metabolite kinetics is followed, similar to what has been

reported for nisin (28). However, when the number of cells are taken into account (ODmax -

value), a higher concentration of plantaricin 423 is produced in medium with an initial pH of

4.90 (2 961 AU/ml/ODmax) than at pH 5.80 (2 368 AU/ml/ODmax), as shown in Table 4. This

phenomenon is further accentuated by the fact that the pH decreased with only 0.05 unit from

4.90 to 4.85, compared to the more drastic decrease in pH (1.40 units) from 5.80 to 4.40

(Table 4). Concluded from these results and that obtained in Fig. 1, a pre-plantaricin might be
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involved in the activation of plantaricin 423 between pH 4.90 and 4.85. Increased bacteriocin

activity at pH values lower than the optimal growth pH of the producer cells has been reported

for other bacteriocins, viz. plantaricin S produced by L. plantarum LPC010 (14), lacticin 481

produced by L. lactis subsp. lactis (29), leuconocin Lcm1 produced by Leuconostoc carnosum

and sakacin A produced by Lactobacillus sake (30).

The effect of tryptone, bacteriological peptone, yeast extract, meat extract and corn steep

liquor on the production of plantaricin 423 is shown in Fig. 2A and 8. The best growth was

obtained in MRS supplemented with corn steep liquor (OOm.ax= 2.3; Fig. 2A), but this

fermentation yielded the lowest activity of plantaricin 423 (6400 AU/ml; Fig. 28). The most

active plantaricin 423 production was obtained in MRS broth (Merck) supplemented with

bacteriological peptone (19,200 AU/ml), followed by casaminoacids and tryptone (both 12 800

AU/ml), and meat extract (9600 AU/ml), as shown in Fig. 28. Corn steep liquor,

bacteriological peptone and casaminoacids supported the optimum production of plantaricin

423 for a period of 6 h, which is much longer than what has been obtained with meat extract,

tryptone and yeast extract, respectively (Fig. 28). Although cells grown in the presence of

meat extract, tryptone and yeast extract did not produce the highest levels (AU/ml) plantaricin

423 and the activity levels of the bacteriocin decreased after a few hours, production was

maintained over the remaining time of fermentation (Fig. 28).

The effect of MnS04·H20 on the growth of strain 423 and the specific activity of

plantaricin 423 (AU/ml/OOmax) is shown in Fig. 3. Tryptone was selected as nitrogen source,

since it is one of the compounds which supported the stable production of plantaricin 423,

especially during the latter half (12 h) of fermentation (Fig. 28). A concentration of 0.004%

MnS04·H20 yielded a specific plantaricin 423 activity of approximately 36,000 AU/ml/OOmax

(00=1.32) after 15.5 h of fermentation, whereas a level of 0.014% MnS04·H20 produced

approximately 48,000 AU/ml/OOmax plantaricin 423 (00 = 1.34) during the same period (Fig.

3). Higher concentrations of MnS04·H20 did not result in a further increase in the specific

activity of plantaricin 423 after 15.5 h of fermentation (Fig. 3), despite the increase in cell

density (00=1.38 and 1.43 at 0.024 and 0.044% MnS04·H20, respectively). At each of the

MnS04·H20 concentrations tested, lower specific activity values were recorded after 19 h of

fermentation, despite better growth of the culture, as reflected in the higher optical density

values recorded (00=1.44, 1.56, 1.59 and 1.60 at 0.004, 0.014, 0.024 and 0.044%

MnS04·H20, rspectively). The specific activity values of plantaricin 423 recorded in this study

were determined at two specific time intervals. The production of plantaricin 423 is higher

144



during the first half (approx. 12 h) of fermentation (Fig. 2B), which may lead to higher specific

activity readings. The addition of MgS04·7H20 (0.041%, w/v) resulted in a growth increase of

strain 423 which was similar to that recorded with MnS04·H20, but it did not increase the

production of plantaricin 423 (data not shown). The' role which manganese plays in the

stimulation of bacteriocin production is not yet clear and has to be resolved.

The specific activity of plantaricin 423 could even be increased further (up to 63,200

AU/ml/OOmax) with the addition of 1% (w/v) Tween 80 to MRS broth (Fig. 4). A slightly lower

specific activity value (58 400 AU/ml/OOmax) was recorded in the presence of 2% (w/v) Tween

80 (Fig. 4), despite the increase in cell density as reflected in the 00 readings of 1.38 (in the

presence of 2%, w/v, Tween 80) versus 1.28 (in the presence of 1%, w/v, Tween 80). In all

the experiments, except with 0.5% (w/v) Tween 80, lower activities were recorded after 19 h of

fermentation, despite the recorded increase in cell density readings (not shown). Based on

the results obtained in the present study, a higher specific concentration of plantaricin 423 is

produced after 15.5 h of fermentation than after 19 h. The production of plantaricin 423 is,

however, higher during the first half (approx. 12 h) of fermentation (Fig. 2B), which may lead

to higher specific activity readings. Equivalent concentrations of Tween 80, dissolved in sterile

distilled water, had no inhibitory effect on the growth of L. monocytogenes. Stimulation of

bacteriocin production by Tween 80 has been reported for pediocin AcH (31) and lactocin 705

(32).

Results obtained in this study have clearly shown that the amount of plantaricin 423

produced (measured as activity units) is highly dependent on the composition of the growth

medium. We have also shown that certain growth stimulating medium compounds do not

increase the production of plantaricin 423. Further studies will have to be conducted to

determine the effect of other ions on the production of plantaricin 423.
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TABLE 1. Bacteriocins produced by Lactobacillus plantarum

Bacteriocin Strain Reference

lactolin A2 8

plantaricin SIK 83 SIK83 9

plantacin B NOCO 1193 11

plantaricin A C-11 12

plantaricin S LPCO-10 14

plantaricin T LPCO-10 14

plantacin BN BN 13

plantaricin 406 MI406 33

plantaricin SA6 SA6 34

plantaricin C 19 C 19 21

plantaricin 149 NRIC149 22

plantaricin C LL441 35

plantaricin F BF001 36

plantaricin LC74 LC74 37
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TABLE 2. Spectrum of antimicrobial activity of plantaricin 423

Organism Strain a
Result

Bacillus cereus

Clostridium sporogenes

Enterococcus faecalis

Lactobacillus brevis

Lactobacillus buchnerii

LMG 13569

LMG 13570

LMG 13566

ATCC 14869

ATCC 4005
T

ATCC 11482T

ATCC 334

LMG 13553

ATCC 14917

LMG 13558

LMG 13562

+

+

+

+

+

Lactobacillus bulgaricus +

Lactobacillus casei

Lactobacillus curvatus

Lactobacillus plantarum

Lactobacillus sake

Leuconostoc mesenteroides subsp. cremoris

+

+

+

Listeria innocua LMG 13568

Listeria monocytogenes LM1

OenoCoccus oeni (previously Leuconostoc ML 34

oenos)

Pediococcus acidilactici ATCC 12697

Pediococcus pentosaceus LMG 13560

LMG 13561

+

+

+

+

+

Staphylococcus carnosum

Streptococcus thermophilus

LMG 13567

LMG 13564

LMG 13565

+

+
a

+, sensitive to plantaricin 423; - resistant to plantaricin 423.
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TABLE 3. The effect of heat, pH and proteolytic enzymes on the activity of plantaricin 423a

Treatment Activity

Heat:

40°C, 60°C, BO°C and 100°C for 30 min

40°C, 60°C, BO°C for 60 min

100°C for 60 min

121°C for 15 min

pH:

pH 1-10

Proteolytic enzymes:

Proteinase K

Pepsin

Papain

a-Chymotrypsin

Trypsin

+

+

(+)

(+)

+

a
The tests were done as described by Green et al. (19).

b
L. monocytogenes LM1 was used as indicator organism. +, Active; (+), slightly

active.
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TABLE 4. Effect of pH on the growth of strain 423 and the production of plantaricin 423
a

Initial pH 7.10 6.90 6.70 6.20 5.80 5.40 4.90

Final pH 6.55 6.30 6.00 5.10 4.40 4.80 4.85

Ll pH 0.55 0.60 0.70 1.10 1.40 0.60 0.05

ODmax 0.84 1.16 1.35 1.40 1.52 1.28 0.38

Maximum bacteriocin 500 300 900 2700 3600 3375 1125

production (AU/ml)

Specific bacteriocin 595 259 667 1929 2368 2220 2961

production (AU/ml/ODmax)

a The values represent the average of two experiments.
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FIG. 1. Production of plantaricin 423 during growth of L. plantarum 423. Symbols: e, optical

density at 600nm; _, plantaricin 423 activity in AU/ml; A, changes in pH.
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FIG. 2. (A) The effect of corn steep liquor, meat extract, tryptone, yeast extract,

bacteriological peptone and casaminoacids on the growth of L. plantarum 423. (8) The effect

of corn steep liquor, meat extract, tryptone, yeast extract, bacteriological peptone and

casaminoacidson the production of plantaricin 423. Symbols: (A, 8) x, corn steep liquor; e,

meat extract; *, tryptone; _, yeast extract; .Á., bacteriological peptone; +, casaminoacids.
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