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SUMMARY 

Tourette syndrome has been reported in most populations throughout the world. 

Overall, there appears to be similar clinical phenomenology and psychopathology, 

which may serve as an indication of the biological nature for the condition. 

The diagnosis of Tourette syndrome represents a challenge for physicians because of 

clinical heterogeneity and often-present comorbidity with other known 

neurobehavioural conditions. Due to these clinical overlaps Tourette syndrome may 

serve as a model disorder for investigating the relationship between various 

neurological and behavioral domains of childhood reflecting either the expression of a 

common biological pathway or a common genetic background. The understanding of 

the genetic basis of Tourette syndrome is therefore of special importance, because it 

may provide useful insights for the study of other developmental disorders. However, 

the lack of objective biological markers of clinical manifestation together with a 

possible high phenocopy rate, unclear mode of inheritance, incomplete penetrance, 

and frequent bilinear transmission of predisposing genes represent major obstacles for 

those attempting to elucidate the genetic basis ofTourette syndrome. 

The research presented in this document is a result of six years' effort of the author 

and her collaborators to generate cytogenetic and molecular genetic data contributing 

to a better understanding of genetic and environmental factors affecting the 

phenotypic expression of Tourette syndrome. Theoretical and experimental results of 

this collaborative effort are assembled in seven articles (four published, three 

currently submitted for a publication) and a general introductory section relating to 

the problems, methods and methodology described and utilized in data collection for 

the individual papers. 

Taken as a whole, while the study of chromosome fragile site expression in Tourette 

syndrome probands yielded equivocal results leading to a number of rather 
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speculative but interesting interpretations, the results of subsequent molecular genetic 

studies are far clearer. 

The three most valuable outcomes of these studies for future genetic investigations in 

Tourette syndrome gene-mapping efforts in the Afrikaner population, and complex 

genetic traits in general, are: 

I. The evidence for association/linkage of at least three genomic regions with 

Tourette syndrome in the Afrikaner population, with two of the regions (11q23 

and 8q22) being suggestively linked to Tourette syndrome by others in different 

populations and employing different analytical methods. 

2. The evidence for extended background linkage disequilibrium in the general 

Afrikaner population (> 5 cM) which further strengthens existing experimental 

data demonstrating the suitability of this popUlation for gene-mapping efforts 

involving complex traits. 

3. The proof based on real rather than computer-simulated data that sequential and 

semiparametric methods of analysis could be sufficiently powerful to generate 

cumulative evidence for positive linkage with the trait in the regions which 

repeatedly yielded both highly significant as well as suggestively significant 

disease-marker associations in the initial set of samples. 
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OPSOMMING 

Tourettesindroom is 'n algemene oorerflike neurobiologiese probleem wat in verskeie 

bevolkingsgroepe vanoor die wereld beskryf is. As gevolg van identiese 

fenomenologie en psigopatologie ten spyte van omgewingsverskille, is dit aanduidend 

van 'n sterk biologiese grondslag vir die toe stand. 

Die teenwoordigheid van kliniese meersoortigheid en die verhoogde voorkoms van 'n 

verskeidenheid komorbiede probleme by 'n subgroep van individue met 

Tourettesindroom, veroorsaak dikwels probleme met die akkurate identifisering 

hiervan. Dit skep egter ook geleenthede vir die bestudering by kinders, van verskeie 

neurologiese en gedragsmanifestasies gebaseer op 'n gemene genetiese substraat. 

Insig in die genetiese-omgewings wisselwerking by Tourettesindroom baan dus die 

weg vir begrip van ander ontwikkelingsprobleme wat ook by kinders aangetref word. 

Die afwesigheid van 'n betroubare biologiese merker of merkers vir hierdie kliniese 

entiteit, die algemene voorkoms van fenokopiee, komplekse oorerwingspatroon, 

onvolledige penetrasie en algemene verskynsel van oorerwing vanaf beide ouers, 

verteenwoordig 'n aantal formidabele struikelblokke ten opsigte van die analise van 

die genetiese basis van Tourettesindroom. 

TS word as een van die komplekse oorerflike toestande beskou, wat beteken dat daar 

duidelike oorerflike faktore by betrokke is, maar dat die oorerwing nie-mendelies van 

aard is. Die gebruiklike reduksionistiese benaderings wat so suksesvol was vir die 

analise van die enkelgeentoestande, werk nie meer onder hierdie omstandighedenie, 

en vir die rede word verskeie nie-parametriese of semiparametriese modelle ingespan. 

Die gedokumenteerde resultate verteenwoordig die navorsing uitgevoer tesame met 

plaaslike en oorsese medewerkers op hierdie gebied gedurende die laaste ses jaar. Die 

teoretiese en eksperimentele resultate word weergegee in sewe publikasies. 

Hiertydens is sitogenetiese en molekulere gegewens versamel in 'n poging om die 

genetiese en omgewingsfaktore onderliggend tot die ekspressie van Tourettesindroom 
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te bepaal. Die teoretiese en eksperimentele resultate van hierdie poging word 

weergegee in sewe publikasies, waarvan vier reeds gepubliseer is, en 'n algemene 

inleidende afdeling wat die probleme en metodes bespreek soos tydens die 

versameling en analise van die data ervaar is. 

Die resultate word in twee afdelings aangebied: eerstens is daar die teoretisering ten 

opsigte van die bevinding van chromosomale breekbaarheid, wat aangedui is om 

verhoog te wees in die Tourette groep. Die betekenis van hierdie bevinding is tans 

nog onduidelik, en as gevolg van resolusieverskille nie direk met die DNA bevindings 

korreleerbaar nie. Hierdie merkerareas moet egter deurgaans in gedagte gehou word 

as moontlik aanwysend van die ligging van kandidaatgene vir Tourettesindroom. 

Die belangrikste gedeelte behandel egter die benadering tot die totale genoomsifiing, 

sowel as die veilgheidsmaatreels ingebou deur die heranalise van verskeie subgroepe 

en gevolglike replisering van resultate. 

Die mees waardevolle implikasies van hierdie navorsing ten opsigte van die 

uitstippeling van die pad vorentoe vir Tourettesindroom geenkartering by die 

Afrikaner, en komplekse oorerflike toestande in die algemeen, sluit die volgende in: 

1. Die bewyse gevind vir die bevestiging van 3 genomiese streke soos 

oorspronklik deur die eerste fase assosiasiestudies aangetoon by die 

manifestering van Tourettesindroom in die Afrikaner, en waar ten minste twee 

van die gebiede (Uq23 en 8q22) ook deur ander navorsers in ander 

bevolkingsgroepe met hierdie toestand gekoppel is; 

2. Die kwantifisering van die stand van koppelings-disekwilibrium by 'n aantal 

lokusse in die Afrikaner genepoel van < ScM. Hierdie gegewens versterk die 

gedagtes met betrekking tot die geskiktheid van hierdie bevolkingsgroep vir 

geenkarteringspogings vir komplekse toestande; 
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3. Die bewys, gebaseer op reele in stede van gemodelleerde data, dat 

opeenvolgende, semiparametriese analisemetodes oor voldoende statistiese 

krag beskik om kumulatiewe getuienis te verskaf vir positiewe koppeling van 

IS met streke wat ook in die oorspronkilke siektemerker assosiasiestudies 

betekenisvolle resultate gelewer het. 
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"The day after I saw Ray, it seemed to me that 
I noticed three Touretters in the street 
downtown New York. I was confounded, for 
Tourette's syndrome was said to be 
excessively rare . 

. . . Was it possible that I had been overlooking 
this all the time, either not seeing such patients 
or vaguely dismissing them as 'nervous', 
'cracked', 'twitchy'? 

The next day, without specially looking, I saw 
another two in the street. At this point I 
conceived a whimsical fantasy or private joke: 
suppose (I said to myself) that Tourette's is 
very common but fails to be recognized but 
once recognized is easily and constantly 
seen. " 

Sacks o. (1987) 
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1 

CHAPTER 1 

General introduction 

1.1. History 

1.11. Recognition and clinical description of Tourette syndrome 

The movement disorder known as Tourette syndrome has been recognized since 1885, 

the year in which Georges Gilles de la Tourette (1857-1904) published a two-part 

article describing the case histories of 9 French men 

and women with the syndrome (Lajonchere et al. 

1996). His description of the disorder, which now 

carries his name, was based on 'the case of the 

cursing marquise' reported by Itard (1825) (MIM 

137580). The marquise's life history was selected by 

Gilles de la Tourette, who himself never examined 

her, as a prototypical example of the syndrome's 

major features such as involuntary movements and 

sounds (Le. barking), markedly enhanced startle 

reactions, coprolalia (inappropriate and involuntary 

swearing), and tendency to repeat both vocalizations (echolalia) and movements 

(echopraxia). In his article, Gilles de la Tourette assumed that the condition manifests 

itself in childhood, and does not affect the senses or intellect. Finally, he considered 

the condition to be hereditary with varying severity throughout a person's life-span 

and incurable. 

Another man, who deserves credit for the description and recognition of the syndrome 

is lean-Martin Charcot (1825-1893), the leading French neurologist of the time and 

Tourette's mentor. He urged Gilles de la Tourette to undertake the task of classifying 

movement disorders, and more importantly, he recognized the disorder, described by 
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his intern, as different from other movement disorders commonly understood at the 

time as "hysteria~'. 

For nearly a century after its original description, Tourette syndrome was considered 

rare with only 485 cases reported worldwide by 1973 (Robertson and Baron-Cohen 

1998). The situation changed dramatically mainly as a result of the work of Shapiro et 

al. (1982, 1989) at the Sinai Medical School in New York, who found, that many 

patients with Tourette-like symptoms responded to treatment with haloperidol, a 

dopamine D2 receptor inhibitor. Today, 'rourette syndrome has become of great 

interest to neurologists and medical professionals in general, which led to the 

realization that the syndrome and related conditions are much more common than had 

previously been considered. 

It is generally accepted that Tourette syndrome can assume many forms. For some 

people it may involve mild facial tics and odd vocalizations. For others it involves 

more dramatic uncontrollable movements, often accompanied by additional problems 

such as hyperactivity, poor attention, obsessions and compulsions (Robertson and 

Baron-Cohen 1998). 

The diagnostic criteria for Tourette syndrome presently included in Diagnostic and 

Statistical Manual of Mental disorders, 4th ed. (DSM-IV) provide a reasonable basis 

for the diagnosis, however, they do not provide an adequate description of the 

numerous symptoms that can co-occur as part of the phenotype. DSM-IV criteria also 

fail to recognize the developmental course of the disorder typically characterized by 

varying severity of expression of multiple symptoms, as well as diminution of the 

symptoms in adolescence (Leckman et al. 1998). 

The initial signs of Tourette syndrome are usually involuntary tic-like movements, 

which may progress in the course of disease to echolalia, grunting, coprolalia, and 

self-mutilation. Earlier studies have found, that self-mutilation symptoms are present 

in -40% of clinic-patient populations (van Woert et al. 1977). Coprolalia, on the other 

hand, previously thought to be one of the most notorious symptoms of the syndrome, 
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occurred less frequently (-10%) in studied patient populations (Goldenberg et al. 

1994) and may be a culturally related phenomenon due to widely different prevalence 

in Japanese and US individuals with Tourette syndrome (Nomura and Segawa 1982, 

Robertson and Stem 1997). 

While the diagnosis of Tourette syndrome is quite straightforward for the physician, 

the degree to which other behaviors are associated and represent the spectrum of 

Tourette symptoms is not clear. In a controversial presidential address. to the 

American Society of Human Genetics, Comings (1989) extended the phenotypic 

range of Tourette syndrome to include attention deficit disorder, conduct disorder, 

major depressive disorder, manic-depressive disorder, panic disorder, schizoid 

disorders, sleep disorders, specific reading disability, stuttering, male type II 

alcoholism and a female type of familial obesity. He suggested that the spectrum of 

behaviors associated with Tourette syndrome could be explained on the basis of a 

gene causing an imbalance of the mesencephalic-meso limbic dopamine pathways, 

resulting in dis-inhibition of the limbic system. 

Pauls et al. (1988) criticized the methods and conclusions of the above· author. In a 

family study of 86 probands the authors found only chronic tics (CT), and obsessive­

compulsive disorder (OCD) with increased frequency in the first degree relatives. 

They did not observe an increased frequency of any other behavipral condition 

suggested by Comings (1989) as part of Tourette syndrome spectrum phenotype by 

comparing the first degree relatives of Tourette index patients with the relatives of 

control subjects. 

Further investigations of these initial observations led to the conclusion that at least 

some forms ofOCD and CT are etiologically related to Tourette syndrome (pauls et al 

1991). The conclusion was also supported by data from families of OCD probands, 

where the rates of Tourette syndrome and CT in the relatives were elevated (Leonard 

et al. 1992, Pauls et al. 1995). In the course of the above studies it became apparent 

that the nature of obsessions and compulsions that occur among the relatives of 

Tourette syndrome probands as well as the treatment responses with respect to OCD 
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are different than those experienced by patients/families with pure OCD (no personal 

or family history of tics) (Eapen et al. 1997, Leckman et al. 1997, Zohar et al. 1997). 

Considerable effort has been made in an attempt to elucidate the relationship between 

Tourette syndrome and attention deficit hyperactivity disorder (ADHD). While 

Comings and Comings (1987) proposed ADHD to be a variant expression of the 

etiologic factors responsible for the manifestation of Tourette syndrome and CT, 

Pauls et al. (1986a, 1993) found no support for such a proposed relationship in their 

studies. They suggested that while it is possible for ADHD to be associated with 

increased clinical severity of Tourette syndrome, it is unlikely that in the absence of 

tics, ADHD was a variant expression of genetic factors underlying Tourette 

syndrome. 

In 1993, Kiessling et al. reported an increase in tic disorder frequency in children 

following a community outbreak of streptococcal infection in Providence, Rhode 

Island. Not only did tics begin abruptly following the infection, antineuronal 

antibodies directed against human caudate were found in 45% of tic cases (n=30), 

compared to 20% of controls. The authors speculated that some cases of Tourette 

syndrome may result from antibodies that cross-react with streptococcal antigens 

mainly in the basal ganglia, in a process similar to Sydenham Chorea (SC). 

In 1995, Allen et al. reported four cases of a new, infection-triggered, autoimmune 

subtype of Tourette syndrome and pediatric OCD, called pediatric autoimmune 

neuropsychiatric disorder associated with streptococcal infections (PANDAS). 

Subsequent reports have indeed suggested that an autoimmune reaction triggered by 

infection and directed against the brain may contribute to the pathogenesis of tics, 

GTS and OCD. Moreover, Swedo et al. (1997) reported that 23 of 27 (85%) 

PANDAS patients, eight of nine (89%) SD patients, and four of 24 (17%) healthy 

children were positive for a B-cell antigen, known as D8/17, an immune marker for 

rheumatic fever (RF). The fmdings were confirmed by Murphy et al. (1997). 
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Finally, an animal model was constructed to support the role. of antibodies 10 

producing tic-like movements and sounds in rats micro-infused with JgG from serum 

derived from Tourette patients. Brain slides of these rats showed preferential staining 

of striatal regions with JgG from Tourette patients but not with JgG from controls 

(Hallett et al. 1996, 1997). 

The precise relationship between the core phenotype of the tic disorder and the 

associated features await the elucidation of the nature of this condition on molecular 

level. 

1.12. The inheritance of Tourette syndrome 

The familial nature of Tourette syndrome was fIrst noted and commented on by de la 

Tourette himself in his 1885 article. 

Since a study of Eisenberger et al. was reported (1959), familial aggregation of the 

syndrome has been confmned in a large number of published and unpublished 

Tourette syndrome pedigrees. The results of most family studies were remarkably 

consistent (for review see Alsbrook and Pauls 1997) with reports of elevated rates of 

Tourette syndrome and CT among fIrst degree relatives when compared to the rates in 

control samples or the general popUlation. 

To prove the existence of genetic factors in the manifestation of the disorder, results 

of family studies were followed by the analysis of concordance rates for the affection 

status in twins. Price et al. (1985) and Hyde et al. (1992) reported signifIcantly higher 

concordance rates among monozygotic (MZ) twins as compared to dizygotic (DZ) 

twins when either Tourette syndrome, CT or OCD were considered as affected. The 

MZ twin data also suggested that non-genetic factors playa role in the manifestation 

of Tourette syndrome, since the concordance rates in affection status were < 1.0, and 

severity of affection status varied. 
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Earlier segregation analyses performed on collected family history data demonstrated 

that a single-major-Iocus hypothesis best explained the patterns of observed Tourette 

syndrome transmission (Comings et al. 1984, Devor et al. 1984, Price et al. 1988) and 

provided strong evidence for an autosomal dominant model of inheritance (pauls and 

Leckman 1986b). 

The results of two more recent segregation analyses (Hasstedt et al. 1995, Walkup et 

al. 1996) provide evidence for a major gene model with a more complex mode of 

inheritance. According to this mixed model of inheritance, it can be predicted that 

0.01 % of individuals in the popUlation are homozygous for the susceptibility allele, 

1.89% are heterozygous, and 98.1 % are homozygous for a normal allele. The 

placement of the threshold for liability indicates that all individuals homozygous for 

the susceptibility allele at the major locus are affected, whereas only 2.2% of males 

and 0.3% of females heterozygous at the major locus are affected. Parameter 

estimates from the mixed model of Tourette syndrome inheritance predict that 38% of 

individuals affected are homozygous for the major locus, whereas 62% of affected 

individuals have only one copy of the susceptibility allele. The contribution of the 

multifactorial background accounts for an estimated 40%-45% of the phenotypic 

variance (Walkup et al. 1996). 

While the mode of inheritance is not simple, it is clear that Tourette syndrome has a 

significant genetic basis and that some individuals with Tourette syndrome, CT and . 

OCD manifest variant expression of the same genetic susceptibility factors. The 

localization and characterization of genetic factors responsible for the expression of 

Tourette syndrome is of major importance for our understanding of the pathogenesis 

of this disorder. 

Attempts to localize the responsible gene(s) have thus far not yielded consistent 

positive results. Linkage analysis of data from series of mUltiply affected families 

resulted in the exclusion of> 90% of the genome (see Barr and Shandor 1998 for 

review). These analyses were completed assuming a dominant mode of inheritance 
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and locus heterogeneity for Tourette syndrome and spectrum disorders, which could 

have led to false exclusion of relevant genomic region(s). 

1.2. The aims of the study 

To elucidate the genetic basis of Tourette syndrome, different methods were 

employed during the course of the study: 

1. Increased expression of chromosomal fragile sites has been documented for 

several psychiatric and neurological disorders including schizophrenia and 

bipolar disorder. In order to systematically search for subtle chromosomal 

abnormalities and/or Tourette syndrome specific fragile site expression, 

cytogenetic investigations have been initiated in a random group of Tourette 

syndrome index cases. The initial study (Chapter 2) involved the evaluation of 

spontaneous, rare-folate sensitive and BrDU-inducible FS expression in the 

Tourette syndrome males as opposed to age-matched controls. 

2. Because the rare-folate sensitive and BrDU-inducible fragile sites represent only 

a small fraction of all fragile sites inducible on human chromosomes, a second 

study was initiated in order to investigate the expression of common fragile sites 

in the Tourette syndrome index cases as opposed to the controls (Chapter 3). The 

aim of this study was to defme those common fragile sites, which could serve as 

discriminatory cytogenetic markers for Tourette syndrome. 

3. The overvIew of literature, spannmg two decades of fragility studies was 

condensed and published with the intention to provide a theoretical background 

for our chromosomal fragility fmdings in association with the Tourette syndrome 

phenotype, as well as the identification of a new group of common aphidicolin­

inducible fragile sites, not previously reported (Chapter 4). 

4. Our initial idea to follow up a particular subgroup of chromosomal regions 

characterized by increased fragility in the Afrikaner Tourette syndrome 
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individuals on the molecular level was eventually substituted by a different 

method. The new strategy, which ·represents a unique approach to mapping a 

common complex trait, consisted of several subsequent steps. The whole genome 

search for marker-disease association was performed using pooled DNA samples 

genotyped with > 1,000 genetic markers distributed throughout the genome. 

Markers with differences in allelic distributions between case and control pools 

were then subjected to individual typings in two non-overlapping sets of case­

control samples and subsequently to the statistical evaluation of marker allele 

distributions. The published results of the work (Chapter 5) represent an 

important contribution to current Tourette syndrome gene-mapping efforts. 

5. The Afrikaner population of South Africa is regarded as genetic isolate suitable 

for gene-mapping efforts, particularly because a strong founder effect has been 

repeatedly documented for several monogenic traits with an increased prevalence 

rate in the population. For a number of these disorders, extensive haplotype 

sharing was documented among affected individuals at or near the disease loci. 

However, until recently no investigations were performed in order to examine the 

background linkage disequilibrium (LD) distribution in the general Afrikaner 

population. Our preliminary investigation of the extent of background LD 

distribution (Chapter 6) represents an important step in paving the way for 

utilizing the Afrikaner population in whole genome association studies. 

6. Significant case-control association fmdings, even when achieved in young 

genetically isolated population, may still be a result of population stratification, 

therefore all association fmdings require to be confirmed by nuclear-family-based 

linkage methods such as the transmission disequilibrium test (TDT) and/or 

haplotype relative risk method (HRR). The results of our marker-disease 

association fmdings for Tourette syndrome are regarded as preliminary, until 

confirmed by semiparametric linkagelLD methods using nuclear-family 

genotyping data in genomic regions of interest (Chapter 7). 
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1.3. Introduction to the methods utilized to investigate the genetics of 
Tourette syndrome during the present study 

1.31. Fragile sites on human chromosomes 

Agents known to inhibit DNA replication induce the expression of chromosomal 

fragile sites (FS), which appear as gaps, breaks, or discontinuities in chromosome 

structure. When examined in metaphase preparations, it is not possible to distinguish 

between a random gap or break in chromosomal structure and chromosomal FS. Only 

statistically significant recurrence of gaps, breaks, or lesions at the same chromosomal 

band (region) and under the same culture conditions delineates FS (Sutherland and 

Richards 1999). 

The majority of culture conditions resulting in FS expression cause inhibition of DNA 

repair or replication, either due to nutrient deprivation (e.g. perturbed nucleotide 

pools) or inhibition of DNA replication enzymes (e.g. DNA polymerase alpha). As a 

consequence, under-replicated DNA sequences, primarily at FS (Hansen et al. 1997, 

Le Beau et al. 1998) do not package completely before the G2 phase and manifest as 

discontinuities in chromosomal structure. 

1.311. Rare fragile sites 

FS were initially chissified according to the methods of their induction (Sutherland et 

al. 1998). The two main classes were "rare" and "common" FS. The common FS 

appear to be part of normal chromosome structure and are present at all common FS 

loci in every individual. The frequency of their expression differs among the 

individuals and is modulated by factors like age, sex, and hormonal status (Tedeschi 

et al. 1992). 

The most widely studied subgroup of the rare FS are so called rare-folate sensitive 

sites, induced by folic acid and thymidine deprivation in the cell culture media. The 

frequencies of their expression are relatively low (in -4%-20% investigated 
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metaphases) and also the population frequency of individuals carrying one of these 

sites is low (- 5%). 

Rare folate-sensitive FS comprise the most studied class of FS at the molecular level 

and their relationship with tandemly repeated sequences of varying complexity has 

been well established. The ftrst cloned FS site was FRAXA, a rare-folate sensitive FS 

at the chromosome Xq28 region, cytogenetically expressed in association with the 

most common form of male mental retardation called Fragile X syndrome. The DNA 

sequence at the FRAXA locus is characterized by tandemly repeated CCG units with 

interspersed CCT repeat units (Hirst et al. 1994). Due to increased copy numbers of 

CCG units alone (>55 repeat units), the sequence becomes prone to the expansion and 

subsequently a full fragile X mutation. A common haplotype of surrounding 

sequences has recently been characterized, which can be used to predict which alleles 

at FRAXA locus are likely to proceed to expansion (Gunter et al. 1998). 

Four other rare FS have been cloned: FRAXE and FRAXF at Xq28, FRAIIB at 

llq23.3 chromosomal region and FRA16A at 16q22. All of these sites are associated 

with (CCG)I(CGG)n triplet repeat expansions which become hyper-methylated 

beyond a critical size/number of repeats. Three of them are associated with clinical 

problems and in two cases, gene responsible for disease state was identifted: FMRI in 

FRAXA (MIM 309550) and CBL2 (MIM 165360) in FRAIIB. FRAXE has also been 

associated with a mild form of mental retardation, expansion of (CCG)n arrays (>200 

repeats) and hypepermethylation of a CpG island adjacent to a gene called FMR2 

(MIM 309548)(Gecz et al. 1996). 

FRA16A is characterized by longer CCG repeat units that lack CCT interruptions and 

are more prone to expansion (Nancarrow et al. 1994, 1995). FRAllB was found in a 

mother and brother of a child with Jacobsen syndrome, suggesting that the breakage 

in FS during early development could have resulted in a chromosome deletion in the 

patient. This FS has been assigned to an interval of approximately 100 kb containing 

the 5' end of the CBL2 gene, which includes a CCG trinucleotide repeat. The 

chromosomal deletion breakpoint in the patient was mapped within the same interval 
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(Jones et al. 1994). In later reports the association of the Ilq23.3 deletions with eeG 

expansions in CEL2 and FRAllB expression was not confmned (Michaelis et al. 

1998). 

1.312. Common fragile sites 

A large number of common FS are expressed as a result of aphidicolin (APe) 

treatment of cell cultures 24 hours before harvesting. The most frequently observed 

(-70% - 80% metaphases) in all individuals is FRA3B, the FS on chromosome 

3p14.2. The second most frequently expressed is FRAI6B, the FS on chromosome 

16q23. The frequencies of expression differ in various reports and are mainly due to 

different culture conditions and also to APe being dissolved in dimethyl sulphoxide 

(DMSO) (resulting in lower expression rates at most FS), or in ethanol. This enhances 

overall fragility caused by APe, even though ethanol itself does not induce FS 

expression and has no clastogenic effects. The rank orders of expressed FS per 

metaphase remain relatively consistent between different studies. 

Although they comprise the vast majority of fragile sites, much less is known at the 

molecular level about the "common" fragile sites. These FS sites are seen as a 

constant feature of all chromosomes and have been shown to display a number of 

characteristics of unstable, highly recombinogenic DNA in vitro, including 

chromosome rearrangements, sister chromatid exchange and, more recently, 

intrachromosomal gene amplification (Glover 1998). 

Only one such fragile site, FRA3B at 3pI4.2, has been extensively investigated at the 

molecular level. It extends over a broad region of about 500 kb, and no trinucleotide 

or other simple repeat motifs have been identified in the region. The FS lies within the 

FHIT gene locus (MIM 601153), which is unstable in a number of tumors and tumor 

cell lines (Heubner et al. 1997, 1998). It thus appears that genomic instability at 

common fragile regions has a potential to facilitate chromosome rearrangements 

associated with cancers (popescu et al. 1990, Paz-y-Mino et al. 1992, Popescu et al. 

1994, Wilke et al. 1996, Huang et al. 1998, Smith et al. 1998, Huang et al. 1999). The 
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co-occurrence of oncogenes and cancer suppressor genes at the same chromosomal 

bands as common FS has long been recognized, but only recently, studies of 

environmental and genetic factors that influence FS expression and instability became 

an important field of research aiming towards a better understanding of malignancy. 

FRAI6B, the FS on chromosome 16q23 induced by DNA minor groove-binding 

agents such as distamycin A and berenil, and FRAlOB, induced by BrdU and/or 

BrdC, have also been cloned (Yu et al. 1997, Hewett et al. 1998). Both FS are caused 

by highly expanded (up to several thousand copies to yield a fragile site) AT-rich 

microsatellite repeats, which vary in size and composition due to somatic and 

intergenerational instability. 

Different aspects of chromosomal fragility currently under investigation are: the 

potential of certain viruses to induce specific FS expression in infected cells (Li et al. 

1998) and the association of common fragility with early events of DNA 

amplification leading to acquired resistance to drugs (Kuo et al. 1998). Both types of 

observation suggest that high local levels of transcription can interfere with 

metaphase chromatin packaging and are sufficient to generate fragile chromosome 

areas. The fact that common FS could represent the cytogenetic expression of 

transcriptionally active regions was also supported by Sbrana et al (1998) in their 

study of FS expression modulation by camptothecin, a specific inhibitor of 
\ 

topoisomerase I. 

1.32. Genetic mapping 

1.321. The principles 

Genetic mapping in principle means comparing the inheritance pattern of disease 

traits with the co-inheritance pattern of certain chromosomal regions. Mendel's laws 

of genetic inheritance, and mathematical formulae developed by J. B. S. Haldane that 

relates map distances to recombination frequencies provided the key elements in early 

systematic searches for disease-causing genes in experimental crosses. After the 
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recognition of naturally-occurring DNA sequence variations as a source of genetic 

markers, it became possible to trace the Inheritance in human pedigrees. 

The aim of genetic mapping therefore, is to evaluate how often two loci (e.g. disease­

marker locus, marker-marker locus) are separated by meiotic recombination. Three 

conimon but distinct measures of the separation ofloci are used in the process: 

11 Recombination fraction, e, the probaB,ility that two loci will be separated by 

recombination at meiosis. 

2/ Map distance, measured in centimofgans, cM, named after the American 

3/ 

geneticist . Thomas Hunt Morgan, ~epresents the expected number of 
I 

recombinations occurring between tWo loci at meiosis. 1 cM equals a 
I 

crossover value of 1 %. i 
Physical distance, measured in base pairs, bps, of DNA. 

A single recombination event during meiotic ciell division produces two recombinant 

and two non-recombinant chromatids (progeny). If two loci under investigation are on 
i 

different chromosomes, they will segregate independently and the chance that a 

daughter cell will be recombinant or non-recrmbinant for these loci on particular 

chromosomes is 50%. In average, two loci cannot produce more than 50% 

recombinants, not even in the case of tlouble or triple crossover events. 

Recombination will rarely separate loci, wrich lie very close together on a 

chromosome, because only a crossover located precisely in the small space between 
I 

the two loci will create recombinants. The: further apart two loci are on the 

chromosome, the more likely it is that a cro;ssover will separate them. Thus the 
I 

recombination fraction is a measure of genetic distance between the two loci. 
I 
I 

The relationship between the recombination I fraction, genetic map distance and 

physical distance is non-linear and variable it). different parts of the genome and 
! 

between the sexes. For small distances there is ah approximate equivalence between e 
= 0.01, map distance = 1 cM and physical dis~ce = 106 bp (one Megabase). The 
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haploid human genome comprises approximately 109 Mb and has a sex-averaged map 

length of approximately 3,300 cM. 

The only possible way to recognize recombinants from non-recombinants at two 

genetic loci is to use loci with more than one sequence variant (allele) in the human 

population. Such allelic sequence variation is described as a DNA polymorphism if 

more than one variant at a locus occurs with a' frequency greater than 0.01 in a human 

population. It has been calculated that DNA polymorphisms occur approximately in 11 
, 

250 to 11 300 bases in human genomic DNA. 

The identification of different types of DN~ polymorphisms made it possible to 

develop different sets of polymorphic genetic! markers. The flrst generation of DNA 

markers, were called restriction fragment length polymorphisms (RFLPs), owing their 
1 

nomenclature to the existence of restriction site polymorphisms. They had only two 

alleles (the restriction site was either present or absent), which made most of the 

meioses uninformative for the RFLPs (the recombinants could not be distinguished 

from non-recombinants). Minisatellite (VNTR) markers were a great improvement, 

since large number of alleles became available for which most meioses were 
, 

informative. Classical minisatellites, however, have been difficult to handle with 

standard PCR techniques, because they span a large area and often fail to amplify. In 

addition, they seem to cluster in subtelomeric regions of chromosomes. 

The standard tools in current genetic mapping' efforts are microsatellites, which are 

moderately sized arrays of tandemly repeated DNA sequences, highly polymorphic 

and dispersed over considerable portions of the nuclear genome. The bulk of them are 

(CA)n repeats (Genethon). The disadvantage of markers based on dinucleotide repeat 

sequences for large-scale genotyping is that they are prone to replication slippage 

during PCR amplification. This means, each allele gives a ladder of 'stutter bands' on 

a gel, which makes genotyping results difficult to read. Tri- and tetranucleotide 

repeats usually give clearer results with a single band from each allele and are 

gradually replacing dinucleotide repeats as the markers of choice. Much effort is 

being devoted to producing compatible sets of microsatellite markers which can be 
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amplified together in a multiplex PCR reaction, and have allele sizes which allow 

them to be run in the same gel lane without producing overlapping bands (Center for 

Medical Genetics, Marshfield). 

Typing suitable families with highly polymorphic genetic markers equally spaced 

throughout the genome and scoring of the genotypes is usually followed by statistical 

evaluation of the likelihood that disease and marker loci are linked. When large and 

sufficiently informative families are used in gene mapping efforts, such an analysis is 

relatively simple. Usually, however, only imperfect family data are available and 

recombinants cannot be identified unambiguously. Computer-generated lod score 

methods subsequently have to be applied for extracting linkage information from such 

'imperfect' families. 

The lod score, Z, is the logarithm of the odds that two loci are linked (with 

recombination fraction 9) rather than unlinke~ (recombination fraction 0.5). The lod 

scores are calculated for a range of e values by looking at each meiosis, marker after 

marker (two-point linkage analysis), or by analyzing genotyping data for more than 

two markers simultaneously (multipoint linkage analysis). Alliod scores are zero at 

9=0.5 since they measure the ratio of two independent probabilities. If there are no 

recombinants between the disease and mar~er locus, the lod score will reach a 

maximum at 9=0. If there are recombinants, the thresholds for a single test are Z=3.0 

and Z= -2.0. The threshold for accepting linkage, with a 5% chance of error is Z=3.0 

or 1000: 1 odds. Linkage can be rejected if Z<-2.0. 

Values of Z between -2.0 and 3.0 are inconclusive when applying multiple marker 

typings (e.g. in whole genome searches) since t;he chances of spurious positive results , , 

are greater when compared to a situation where only one marker was typed. The 

threshold lod score for a study using n markers:would then be 3 + log(n). In practice, 

lod scores below 5, whether with one marker or many are regarded as provisional and 

require to be followed up by confirmatory studies (Ott 1991, Terwilliger and Ott 

1994). 
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Standard lod score analysis is a tremendously powerful method for scanning the 

genome in 20-30 Mb segments to locate disease genes. Unfortunately, it has some 

drawbacks, in that it can be effectively applied only for Mendelian monogenic 

disorders: 

• Standard lod score analysis requires specification of a precise genetic model, 

including the mode of inheritance, the gene frequency and a penetrance of 
I 

each genotype. 

• It has limits with respect to the achievable resolution - not < than 1 Mb - an 

uncomfortably large genetic region for positional cloning of an unknown 

disease gene. 
, 

• Locus heterogeneity (the disease phe~otype is produced by mutations in two 

or more unlinked genes) can cause a failure to identify linkage in either of the 

regIOns. 

Not all of the 65,000 - 80,000 human genes will be identified as disease-causing 

genes. Those genes, which are indispensable to embryonic development, where 

mutations are mostly lethal, will remain unre~orded in humans. Out of the currently 

listed 5,000 Mendelian traits, about 1I1Oth have been placed on the human genome 

map and only about 1I100th of the disease gen~s were identified by positional cloning 

(OMIM). 

1.322. Gene mapping strategies for:complex traits 

The term 'complex trait' refers to any phenotype that does not exhibit classic 

Mendelian recessive or dominant inheritance ;attributable to a single gene locus. In 

general, complexities arise when the simple 90rrespondence between genotype and 

phenotype breaks down, either because the same genotype results in different 

phenotypes (due to the effects of chance, environment, or interaction with other 

genes) or different genotypes result in the same phenotype. Most common traits of 

medical relevance belong to this category, including those responsible for 
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susceptibility to heart disease, hypertension, diabetes, cancer, infectious diseases, and 

the majority of neuropsychiatric disorders (Lander and Schork 1994). 

After impressive successes in mapping single gene disorders, the attention of many 

investigators is turning to more challengin$ problems of the genetic dissection of 

complex traits. The majority of these 'gene-hunting' efforts were, however, hampered 

by a fundamental genetic complication such as the 'imperfect co-segregation' of 

genetic markers with complex traits caused by: 
I 

11 Incomplete penetrance and high phenocopy rate, which means that the 
I 

genotype at a given locus may affecf the probability of the disease, but not 

fully determine the outcome. The predisposing allele may than be present in 
! 

some unaffected individuals and abse~t in some affected individuals. 

21 Genetic (locus) heterogeneity, implying that mutations in anyone of several 
I 

genes at different chromosomal lqci may result in identical disease 

phenotypes. One of the chromosomal loci will then co-segregate with a 

disease in some families but not in others. Genetic heterogeneity is different 
, I 

from allelic heterogeneity, in which one fmds multiple disease-causing 
I 

mutations at a single gene locus. Allelic heterogeneity tends not to interfere 

with gene mapping. 

3/ Polygenic inheritance, ( refer to those, traits which require the simultaneous 

presence of several mutations at multiple loci. Polygenic traits can be 

classified as discrete traits, measured by a specific outcome, or quantitative 

traits, measured by a continuous variable. Polygenic inheritance complicates 

genetic mapping, because no single lbcus is strictly required to produce a 

discrete trait or a high value of a quantitative trait. 

4/ High frequency of disease-causing alleles in the popUlation, often resulting in 

bilineal transmission of disease allele~ in affected pedigrees. This interferes 
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with traditional linkage analysis and becomes an even greater problem if 
, 

combined with genetic heterogeneity.l 

I 

The flrst challenge in the genetic dissestion of a complex phenotype is the 

identiflcation of a candidate map location of the genes underlying 
I 

susceptibility/resistance to the trait via cpnducting a genome-wide search for 

linked/associated genetic loci. The second cHallenge is the fme-structure localization 
, I 

I 

of any component gene to physical segments small enough to facilitate positional 
, 

cloning or recognition of candidate genes (Deylin and Risch 1995). 
I 

The methods available for genetic dissection of complex traits fall into four 
I 

categories: linkage analysis, allele-sharing methods, association studies in human 

population, and genetic analysis of large crosses in model organisms such as the 

mouse and rat. The latter will not be discussed in this thesis. 

Linkage analysis 

If a limited number of loci are major determinants of susceptibility to a complex trait, 

it should be possible to map such loci by linkage analysis (Risch 1990). Large 

pedigrees typically contain a broad spectrum of phenotypes for a complex disease, 

therefore, only families characterized by a strong history of disease, with ostensible 

mendelian inheritance can be chosen for analysis. This approach has been 

successfully applied to mapping and later identiflcation of the BRCAl (MIM 113705) 

breast cancer susceptibility gene on chromosome 17, when using age of disease onset 

as a quantitative trait (QT). By examining the inheritance pattern of pairs of regions, 

multiple sclerosis has been mapped in large Finnish kindreds to both HLA (MIM 

142830) on chromosome 6p21.3 and the gene for myelin basic protein on 

chromosome 18 (Tienari et al. 1992). 

Like any model-based method, linkage analysis can be very powerful, if the correct 

genetic model has been specifled. The use of a wrong model, however, can lead to 

misspeciflcation of true linkages or accepting false ones. For some psychiatric 

disorders this approach has been a source of false positive fmdings, e.g. in mapping 
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schizophrenia to a locus on chromosome 5 (Kennedy et al. 1995), particularly because 

the model requires persons to be classified clearly as affected or unaffected. Such a 

classification depends mainly on the age of onset of the disease, on the diagnostic 

criteria used and their reliability, and also on the validity of diagnostic categories for 

genetic research (Farmer et al. 1994). For these and other difficulties, model-free, 

non-parametric methods are preferred in psychiatric genetics. These methods ignore 

unaffected people, but look for shared chromosomal segments in affected individuals. 

Allele sharing methods 

Shared segment methods can be used in nuclear families, e.g. sib pair analysis (Fulker 

and Cardon 1994), within known extended families, or in populations that are 

descended from a small founder group (Holmas 1993, Holmans and Craddock 1995, 

Houwen et al. 1994). Pairs of sibs are expected to share 0,1 or 2 parental haplotypes 

with a frequency of Y4, Y2 and Y4, respectively. If both sibs are affected by a genetic 

disease, they will share a chromosomal region carrying the disease locus with higher 

frequency than predicted by random segregation. Sib-pair studies require no prior 

assumptions about parameters such as mode of inheritance, penetrance, phenocopy 

rate, and disease allele frequency (Kruglyak and Lander 1995a). 

The affected sib pair approach has been successfully applied to mapping the non-HLA 

susceptibility locus for type 1 diabetes on chromosome 11 (Davies et al. 1994), and is 

strongly pursued with other complex diseases, including schizophrenia, manic 

depression, alcoholism, and Tourette syndrome (The International Tourette Syndrome 

Genetic Linkage Consortium). 

Because allele-sharing methods are non-parametric (that is, they assume no model for 

the inheritance of the trait), they tend to be more robust but less powerful than a 

correctly specified linkage model. The power of allele-sharing methods to 

demonstrate linkage for a complex trait depends on a number of factors: number of 

sibships (trios, case-control individuals), degree of genetic heterogeneity, risk ratio for 

the sibs versus population prevalence, and informativeness of the marker (Goring and 

Ott 1997). In the next couple of years, the application of non-parametric methods in 
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genetic mapping is expected to produce a large number of susceptibility loci, with 

many false positive fmdings as a tradeoff. The true susceptibility loci will then have 

to be sorted out by well-designed confmnatory studies. 

An important difference between linkage mapping of single and complex disorders is 

that, whereas for single gene diseases recombination events can defme an exact 

interval in which the disease gene must lie, in complex diseases recombination events 
, 

can only alter the probability that the susceptibility locus is localized within a 

particular interval. Fine linkage mapping for complex traits, therefore, requires very 

large samples. For example, localizing a susceptibility gene to a 1 cM interval 

requires a median of 200 sib pairs for a locus causing a fivefold increased risk to a 

first degree relative and 700 sib pairs for a locus causing a 2-fold increased risk. To 

narrow the candidate chromosomal regions defmed by allele-sharing methods, 

population-based linkage disequilibrium or candidate gene approaches may be applied 

(Craddock and Owen, 1996). 

1.323. Population association studies in mapping susceptibility loci 

An alternative to linkage mapping in families is to look for statistical association 

between a disease and some marker genotype at the population level (Owen and 

McGuffm 1993, Risch and Merikangas 1996). While linkage implies a relationship 

between loci, association represents a relationship between alleles, meaning that 

unrelated people across the whole population, who have a certain allele at one locus 

have a statistically more than random chance of having some particular allele at a 

second locus. Linkage is usually necessary, but never sufficient, for allelic association 

(Hodge 1993). 

Diseas(}'-marker association studies are based on a comparison of unrelated affected 

(case) and unaffected (control) individuals with the same population background. The 

marker-allele at a particular locus of interest is associated with the disease trait if it 

occurs at a significantly higher frequency in affected as compared to control 

individuals. In the case of a positive association fmding, the associated allele may 
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directly cause susceptibility to the trait and will be associated with the disease in 

every human population. Alternatively, a particular marker is in a close proximity to 

the disease gene, which means that the allele is in linkage disequilibrium (LO) with 

the disease-causing mutation (Greenberg 1993, Hodge et al. 1981, Hodge 1994, Jorde 

1995). 

Positive association can also arise as an artifact of population admixture, meaning that 

affected and control individuals originate predominantly from ethnically different 

populations with different marker-allele frequencies (Kidd 1993). To prevent spurious 

association arising from population admixture, association studies should be 

performed within genetically homogeneous populations or by using 'internal controls' 

for marker-allele frequencies: a study of affected individuals and their parents, such as 

the haplotype relative risk method (HRR) (Falk and Rubinstein 1987, Terwilliger and 

Ott 1992), and transmission disequilibrium test (TOT) (Spielman et al. 1993, 

Spielman and Ewens 1996). 

Genomic searches for association are most meaningful if performed in young, 

genetically isolated populations in which LO extends over greater genetic distances, 

and the number of disease-causing mutations is likely to be fewer. Suitability of a 

population for the localization of disease genes by disequilibrium mapping is usually 

assessed from the demographic history of particular population,and from the 

existence of a founder effect for the disease under the study in particular population 

(Laan and Paabo 1997). 

When positive association fmdings are reported, various research groups attempt to 

replicate the original fmdings in independent studies (Sobell et al. 1993). Each of such 

conftrmatory studies, however, might slightly differ from the original design, e.g. by 

revising the defmition of the disorder. This raises a question, whether each 

conftrmatory step is in fact a valid attempt to replicate the original fmding, or whether 

each step should rather be considered an exploratory analysis generating new 

hypotheses after failing to support the original hypothesis. 
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Such 'defmition drift' can be minimized if a single group of investigators attempts to 

replicate their initial positive fmdings on discrete subsamples using uniform 

diagnostic criteria and laboratory procedures. Such a sequential approach to the study 

design and analysis of case-control data includes a reduction of the number· of 

candidates investigated (genomic areas, candidate genes, genetic markers) by testing 

(analyzing, genotyping) them subsequently and separately on several independent 

subsamples (discrete or cumulative sample approach). After each stage, significant 

candidates are tested further, until only true associations are likely to be retained. If 

1,000 candidates were tested initially, then only 1 false "positive" result is expected 

after 3 stages of testing, which minimizes the chance of a type 1 statistical error 

without seriously decreasing the power of the study (Schaid and Sommer 1994, Sham 

1994). 

Typing hundreds of markers in order to achieve sufficient coverage of the genome for 

LD studies, apart from the amount of labor and cost of genotyping, raises a serious 

problem of multiple hypothesis testing. The threshold for the genome-wide (multiple 

hypothesis testing) significance is set at p=0.05/n, where n is the number of 

independent potential associations checked (Kruglyak and Lander 1995b, Lander and 

Kruglyak 1995, Morton 1998, Kruglyak 1999). Such correction of statistical 

significance may cause important findings to be missed, because only extraordinarily 

strong association fmdings would remain significant after the correction (Curtis 1996, 

Witte et al. 1996). Having to deal with the statistical complications and with high 

false positive rates, have led most researchers to accept consistent replication as the 

best evidence for a true association. It is therefore recommended by many, that even 

the fmdings which did not produce assigned genome-wise significance, and only 

achieved point-wise significance level should be followed up in a multiple testing 

manner. 

1.324. DNA pooling and case-control association stUdies 

Determination of genotypes at several hundred polymorphic loci in hundreds of 

individuals is required for mapping complex traits. The idea of using pooled DNA 
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samples to reduce the burden of labor and cost intensive genotyping was ftrst 

suggested by Arnheim et al. (1985) in the context of case-control studies. This author 

argued that alleles in LD with a disease would be enriched (or deftcient) in a pooled 

DNA sample of affected individuals in comparison with a pooled control DNA 

sample. 

Initially, the pooled DNA sample approach has been applied as a genetic mapping 

tool in isolated populations with reduced allelic diversity, e.g. in mapping the gene for 

Bardet-Biedl syndrome (Sheffield et al. 1994), cerebellar ataxia (Nystuen et al. 1996), 

and autosomal recessive non-syndromic hearing loss (Scott et al. 1996). In all the 

above studies it was expected that affected individuals would be homozygous for a 

single marker allele at a locus closely linked to the disease gene. Thus the markers 

were identiftable by visual examination of either silver-stained or radioactively 

labeled markers. 

For complex phenotypes it is inevitable to quantify the marker allele frequencies, 

since the prevalence of individuals homozygous for a marker allele linked to the 

disease locus will not reach or be close to 100%. The quantification of marker allele 

frequencies is only possible by direct genotyping, but can also be estimated from 

pooled PCR products (Graff et al. 1997). It has been well documented that the allele 

frequencies estimated from pooled DNA samples show a correlation with allele 

frequencies obtained by direct genotyping. Estimations were mostly made using 

GENES CAN software for quantifying allele ampliftcation at polymorphic markers 

using 5' fluorescently labeled forward PCR primers. 

A good correspondence of the PCR products from the pooled samples with those 

obtained by direct genotyping was also achieved for shorter alleles, even though it is 

well known that PCR may be biased towards greater efficiency of ampliftcation of 

shorter, rather than longer, DNA templates. The trend of frequencies from smaller 

alleles to be overestimated and larger alleles to be underestimated in pooled PCR 

products is, however, minor and does not appear to signiftcantly affect overall allele 

frequency estimations (pacek et al. 1993, Shaw et al. 1998a). 
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DNA pooling can be efficiently used as an initial searching tool for a candidate map 

location of susceptibility/protective genes via a genome-wide screen. The method can 

also be employed to follow up and confIrm regions identified in linkage studies or to 

investigate candidate disease loci. The experimental designs using a pooled DNA 

approach should also include application of correction methods for stutter artifact and 

preferential ampli~cation (Barcellos et al. 1997, Daniels et al. 1998). 

When initial identification of relevant loci is followed by individual genotyping, the 

estimation of actual allele frequencies in pooled samples is not crucial. Rather it is 

important to recognize the variance in allele distributions between applicable DNA . 

pools at a large number of loci. It is expected, that by employing such a research 

strategy, subtle differences in allele distributions could be missed in the initial screen 

without any major consequences, since they are not important and will not give rise to 

statistically significant differences between case and control groups following 

genotyping of individual DNA samples. The visual examination of radioactively 

labeled peR products is therefore expected to be sufficiently powerful to recognize 

significant differences between applicable DNA pools. 

1.325. Linkage disequilibrium mapping 

It has long been recognized that classical linkage methods which had been 

successfully used for mapping genes with major effects have limited power to detect 

genes of modest effect, which are more likely to be responsible for complex traits 

(Risch and Merikangas 1996). Gene-mapping efforts have therefore been redirected 

towards linkage disequilibrium (LD) mapping which relies on the assumption that a 

single ancestral mutation is responsible for a large proportion of disease cases in a 

present day popUlation. Such a mutation is considered to have arisen originally in a 

chromosomal region carrying a particular set of marker alleles.,.. the ancestral 

haplotype (Kruglyak 1997). 

The size of the preserved original ancestral haplotype in the present day population 

largely depends on the number of generations since the introduction of the mutation 
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into the population, and the recombination frequency between loci at a particular 

chromosome region. The detection of identity by descent (IBD) region (ancestral 

haplotype) among affected individuals on a population level provides a strong 

evidence for the presence of a relevant disease gene in the region. 

Formal analysis of IBD in population samples is usually based on the evaluation of 

LD - that is, non-random association between individual marker and disease alleles 

(Service et al 1999). Associations between any flanking marker alleles in general, can 

be produced by several factors: recent mutation at one of the loci; population founder 

effect; admixture between populations with different allele frequencies at the loci; 

selection; or demographic history of the popUlation (Luo 1998). The magnitude ofLD 

is maintained by the recombination frequency between the loci and dissipates more 

rapidly with physical distance in telomeric regions of the chromosomes than in 

centromeric regions (Watkins et al. 1994). 

In the human genome, LD has been studied mainly in genetic regions surrounding 

disease genes on affected chromosomes. LD has been successfully applied for the ftrst 

time in cloning the cystic ftbrosis gene (Riordan et al. 1989) and since then widely 

used for the fme-mapping stage of the localization of disease genes in single founder 

popUlations (Devlin and Risch 1995, Jorde 1995, Peterson et al. 1995), because it 

incorporates information on recombinations that have occurred during the entire 

period from the mutational event to the present time (de la Chapelle and Wright 

1998). 

Although there is growing interest in the employment of LD for initial genome­

screening studies of complex diseases, the use of the method has been limited until 

recently to the mapping of rare monogenic diseases in genetic isolates (Friedman et al. 

'. 1995, Houwen et al. 1994, Newport et al. 1996). This limitation has mainly been 

technological, since in most populations, LD extends over very small genetic 

distances and to identify shared segments or disease associated genetic regions on the 

population level requires typing of an impractically dense set of genetic markers. 
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For example, in mixed populations, such as the American population, LD is not 

expected to exceed ~ cM, in which case at least 6,000 markers would be required to 

examine disease-marker associations. The exception are young, genetically isolated 

populations in which LD extends over greater genetic distances (Peltonen 1996). In 

these populations, LD is expected to stretch a distance of up to 3 cM around disease 

loci, in which case testing of 1,100 evenly spaced genetic markers is required for a 

genome-wide LD study. 

Today, the problems with utilization of LD are no longer technological. The key 

issues are analysis and interpretation of large-scale genotyping data. There is a 

growing consensus among geneticists that full utilization of current and forthcoming 

technological tools will require a better understanding of population genetics and the 

distribution ofLD across the human genome (Freimer et al. 1997). 

It has been speculated that genes for rare monogenic traits are caused by relatively 

recent mutations, which are more likely detectable in populations with 'star-like' 

genealogies and so called founder effects. The reverse situation would prevail in the 

case of alleles involved in complex traits. Such alleles, which are generally common 

in the population, are likely to be old. According to computer simulation studies, a 

large area of LD in populations with a constant size will surround such an old 

mutation, whereas in recently expanded populations, the area will display very little 

LD (Slatkin 1994, Terwilliger et al. 1998). Consequently, there is a substantial 

probability of obtaining significant nonrandom associations between closely spaced 

neutral loci in populations with a constant size (at equilibrium under mutation and 

genetic drift), while there is a very little chance of fmding nonrandom associations 

even between completely linked loci if the population growth has been sufficiently 

rapid. 

The conclusions achieved by computer simulations have been supported by studies of 

Laan and PiUibo (1997) in populations of Saami, Swedish, Finnish and Estonian 

males. Finns and Saami (formerly known as Lapps) are two populations living in 

close geographical proximity, but with a completely different demographic history. 
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While the Finnish population expanded rapidly in the last few thousand years, the 

Saami do not present evidence of any such expansion. The authors established their 

genotyping results from 7 dinucleotide repeat loci spanning a region of about 4 cM 

on chromosome Xq13. While several pairs of loci in the Saami contributed to the 

fmding of non-random allelic associations in the region, only one pair of closely 

spaced loci displayed significant LD level in the Finish population. This pair of loci 

shows strong association in two admixed populations from Fenno-Scandinavian 

region (Swedish and Estonian) used for comparison purposes under the same study 

circumstances (cryptic duplicate markers? - Center for Medical Genetics, Marshfield). 

On the contrary, Peterson et al. (1995), who studied background LD distribution in 

Finns over several regions on chromosome 4, detected LD between· a number of loci 

separated by more than 1 cM. Freimer et al. (1997) argues that the divergent fmdings 

of the two studies are probably caused by two factors, which have been proven to 

influence the ability to detect LD: variable genomic regions and marker 

heterozygosity. Freimer et al. (1997) also criticized the conclusion, that rapidly 

expanding popUlations will not be useful for mapping genes that contribute to disease 

susceptibility, mainly because of a difference between methods for quantifying 

background LD and those that search for LD around a disease locus. 

1.325. Linkage analysis in nuclear families. 

It has long been recognized that combining association and linkage strategies in 

mapping genes for complex diseases is inevitable (Rutter 1994). The two methods 

have different advantages and disadvantages. While the strength of linkage studies has 

been proven by mapping large number of rare monogenic mendelian disorders, the 

great strength of association studies lies in their power to detect genes of very small 

effect not detectable by classical linkage methods (a crucial asset When studying a 

multiple gene disorder). 

The power of association studies is, however, compromised by numerous weaknesses. 

Firstly they are successful only if the marker itself is of pathological importance, or it 

/ 
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is very close to a susceptibility locus, which usually means impractically dense 

marker maps have to be typed in order to detect genome-wide associations. Secondly, 
, 

the use of anonymous markers for association studies is limited by the fact, that if 

linkage exists between an anonymous marker and a disease locus, yet the alleles at 

both loci are in linkage equilibrium, then an association between them will not be 

detected (Schaid and Sommer 1993). Third, an important weakness of conventional 

association studies is a high rate of spurious associations resulting from inadequate 

matching of cases and controls, especially when there is ethnic heterogeneity within 

sampled populations. 

The development of family-based association methods helped to overcome high rates 

of false positive association findings by allowing an artificial well-matched control 

sample to be constructed from marker data generated from family members of 

probands in the same study (Craddock and Owen 1996). 

Rubinstein et al. (1981) and Falk and Rubinstein (1987) recommended using the 

affected offspring's genotype (made up of alleles transmitted from parents to the 

affected child) at the marker locus as the 'case' sample, and an artificial genotype 

made up of the alleles not transmitted to the child from its parents as the 'control' 

sample in an association test. This method is sometimes called the affected family­

based control or haplotype relative risk (HRR) method and can be applied either to 

genotypes or alleles. Statistically, HRR is a weighted average of two odds ratios: (1) 

the odds of the presence of a particular marker among either of the two alleles 

transmitted to the affected child are divided by the odds (2) that the marker is among 

either of the two non-transmitted alleles (Schaid and Sommer 1993). The validity of 

HRR methods as tests for association or linkage depends on the structures of the 

pedigrees (i.e., simplex or mUltiplex pedigrees) as well as the popUlations to which 

they are applied (Spielman and Ewens 1996). 

Ott (1989) and Terwilliger and Ott (1992) further dermed the statistical properties of 

the HRR for diseases with a recessive-like mode of inheritance. They developed a 

haplotype-based haplotype relative risk method (HHRR) in order to make a better use 
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of all the information present in the nuclear family data via discrimination between 

parental homozygotes and heterozygotes for a particular allele. Genotype-based HRR 

(GHRR) of Falk and Rubinstein (1987) does not treat each of the two parental 

genotypes as independent observations, which makes the HHRR method more 

powerful for mapping complex traits with recessive-like inheritance. In the case of a 

dominant disease with reduced penetrance, it is better not to distinguish between 

parental homo- and heterozygotes for associated alleles. In this case GHRR is more 

powerful as a gene-mapping tool. 

As an alternative to the HRR method of analysis, Spielman et al. (1993)· proposed the 

transmission/disequilibrium testing (TDT) as means to test for linkage in the presence 

of association. The TDT method evaluates whether the frequency of transmission of 

alleles from heterozygous parents to their affected children deviates from 50%, the 

expected; mendelian frequency when there is no linkage. The TDT method can be 

applied to large pedigrees with many affected subjects as well as to a single disease 

case per family (simplex family), provided that genotypes for both parents of the 

affected subjects are available (Schaid. 1998). However, a simplex family is 

informative for linkage only when linkage disequilibrium exists - that is, when the 

likelihood of the coupling and repulsion linkage phases in the parents are not equal 

(Spielman et al. 1994). 

The TDT methods allow computation of P values by means of the "I} distribution, 

which is valid only when the number of informative (i.e., heterozygous) parents in the 

study is large. Although designed as a linkage test, the TDT is also valid as a test of 

association in simplex families, even in the presence of admixed population structure. 

The TDT is not valid as a test for association if the families are multiplex (contain 

affected sibs) or have affected members in multiple generations (Spielman and Ewens 

1996). The reason is that any "I} test assumes independent observations for the data, 

and marker data sampled from related affected individuals are not necessarily 

independent, even when association is absent (i.e., under the null hypothesis for tests 

of association). 

Stellenbosch University  https://scholar.sun.ac.za



30 

When the TDT is. used to test for linkage, it is valid to use all affected subjects who 

have parental data: The false positive rate for linkage is not inflated, even if subjects 

are genetically related, because under the null hypothesis of no linkage, the 

transmission of parental marker alleles follows Mendel's law of transmission, so that 

sibs are independent (Spielman and Ewens 1996). 

Shortly after the introduction ofTDT, the intended use was as a test for linkage with a 

particular marker - for example, at or very near a candidate gene. Since then, the TDT 

has also been used as a screening test and applied to data from many markers 

throughout the genome. This is usually associated with a large increase in type I error 

(false-positive) rate and as a result of that, for each individual marker, a significance 

level smaller (more extreme) than the nominal level should be required. While for 

standard lod score analysis or the affected sib-pair method the maximum lod scores 

are considered statistically significant if > 3 (which approximately translates to 

P=.0001), the TDT method is often claimed to be statistically significant if P<.05. 

Even though stringent, the suggested per-locus significance levels are still achievable 
) 

when standard lod score analysis, or affected sib-pair methods are used, because there 

is a high correlation with the evidence for linkage at closely linked markers. In the 

case of TDT, scores for closely spaced markers do not necessarily exhibit high 

correlation (Spielman and Ewens 1996). Therefore, in order to achi,eve a specific 

genome-wide significance level, the per-locus significance level must be essentially 

equal to the genome-wide rate divided by the number of marker loci (standard 

correction for multiple independent tests derived from the Bonferroni inequalities). 

In general, TDT has greater power to detect linkage for a genetic trait with a 

recessive-type inheritance model than for a dominant-type model. Its power is also 

higher when there is a greater difference in marker allele frequency between disease 

and normal chromosomes (the presence of association). On the other hand, factors 

like increased recombination rate, decreased penetrance, recurrent mutation at the 

marker or at the disease locus, older age of the mutant disease allele, and incomplete 
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initial LD between marker and disease locus (Xiong and Guo 1998), all negatively 

influence the power ofTDT. 

Apart from the above reasons, collecting DNA from parents of affected probands is 

also useful for the construction of multimarker haplotypes, which can be much more 

informative for mapping disease genes than to study single markers at a time (Lander 

and Schork 1994). As was discussed in the previous chapter (1.324), associations are 

preserved between alleles at tightly linked loci under conditions of LD. This means 

that LD can be evaluated through identification of conserved haplotypes among 

affected individuals, rather than with statistical tests of association (Houwen et al. 

1994). The detection ofIBD-shared haplotypes (chromosome segments) in the case of 

rare recessive conditions is possible from marker analysis of a handful of disease 

chromosomes, provided patients are distantly related. In the case of dominant traits, 

the search for shared chromosome segments is only feasible with a larger sample size, 

depending on disease penetrance, and disease heterogeneity (either allelic, locus, or 

etiological). 

In order to distinguish haplotypes 'identical-by- state' (IBS) from those 'identical-by­

descent' (IBD), dense maps of highly informative markers have to be typed spanning 

existing regions of interest. The probability of IBD haplotype sharing among affected 

individuals on the population level at or near non-disease loci is very small. Such 

sharing may, however, occur as a result of a background kinship - that is, individuals 

share an IBD haplotype for a different reason than a common affected ancestor. In 

heterogeneous populations, the extent of background kinship is very small; 

characterized by a kinship coefficient < .0001. In isolated popUlations, on the other 

hand, the kinship I coefficient increases dramatically, as a result of higher 

consanguinity rates, and is often> .01 (Kruglyak 1997). 
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CHAPTER 2. 

American Journal of Medical Genetics (Neuropsychiatric Genetics) 60:444-447 (1995) 

Increased Chromosomal Breakage in Tourette syndrome 

Predicts the Possibility of Variable Multiple Gene Involvement 

in Spectrum Phenotypes: Preliminary Findings and Hypothesis 

George S. Gericke*, Ingrid Simonic*, Elma Cloete*, Cecile Buckle*, and Piet J. 

Becker** 

*Department of Human Genetics and Developmental Biology, University of Pretoria, and **Center for 

Epidemiological Research in Southern Africa, MRC, Pretoria, South Africa 

Increased chromosomal breakage was found in 12 patients with DSM-IV 

Tourette syndrome (TS) as compared with 10 non-TS control individuals with 

respect to untreated, modified RPMI, and BrdU treated lymphocyte cultures 

(P<O.OOI in each category). A hypothesis is proposed that a major TS gene is 

probably connected to genetic instability, and associated chromosomal marker 

sites may be indicative of the localization of secondary genes whose altered 

expression could be responsible for associated comorbid conditions. This concept 

implies that genes influencing higher brain functions may be situated at or near 

highly recombinogenic areas allowing enhanced amplification, duplication and 

recombination following chromosomal strand breakage. Further studies on a 

larger sample size are required to confirm the findings relating to chromosomal 

breakage and to analyze the possible implications for a paradigmatic shift in 

linkage strategy for complex disorders by focusing on areas at or near unstable 

chromosomal marker sites. 

KEYWORDS: 

© 1995 Wiley-Liss, Inc. 

Tourette syndrome, chromosomal instability, spectrum 

disorder, behavioral genetics, brain evolution 

Stellenbosch University  https://scholar.sun.ac.za



33 

The extent of comorbid behavioral abnormalities described in association with 

Tourette syndrome (TS) and related tic disorders (Singer and Rosenberg 1989, 

Trimble 1989, Sverd 1991, Comings and Comings 1993) complicates both diagnostic 

precision as well as optimal research design as required for demonstration of linkage 

or significant association with a defmed marker. 

While most pedigree analyses predict TS to be due to a single autosomal gene 

disorder (Baron et al. 1981, Kidd and Pauls 1982, Comings et al. 1984, Devor 1984, 

Pauls and Leckman 1986) almost the whole autosomal genome has now been 

screened without linkage being demonstrated (Heutink et al. 1993). The possibility of 

heterogeneity has been invoked to explain the inability to reproduce linkage fmdings. 

Both linkage and association studies have failed to yield the expected insight into 

many complex neurobehavioral disorders (Crowe 1993, Kidd 1993). 

In this paper we suggest another approach based on the fmding of increased 

spontaneous and chemically induced chromosomal instability in TS patients which 

could possibly supply marker sites for identification of the genes involved in the 

heterogeneous presentation of this, and possibly other neurobehavioral spectrum 

disorders. 

The study was initiated because of the fmding of increased fragility observed during a 

fra-X cytogenetic workup of a retarded nondysmorphic male with tics where 14 

percent of metaphases showed chromosome breakage at 3p13 and expression of an 

Xq26 fragile site; and the presence of a 46,XY, t(7;12)(q22q24.1) karyotype in 

another mildly retarded child with tics and self-injurious behavior. The breakpoint at 

7q22 in this patient was similar to that described in several relatives in a TS kindred: 

46,XX/XY, t(7;18)(q22;q22.1) by Comings et al. (1986). 

Spontaneous, modified RPMI (modRPMI)(lrvine Scientific) and BrdU(Sigma) 

inducible breaks (Sutherland and Ledbetter 1989, Sutherland 1991) were studied in 12 

males with DSMIV Tourette syndrome (7 children, 5 adults) and 10 unaffected junior 

male students. Blood samples were collected after informed consent was obtained. 
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For patient and control subjects three lymphocyte cultures were set up simultaneously. 

Investigator who treated the cultures, and analyzed all slides, was blind to the 

affection status of the individual cases. RPMI 1640 (Highveld Biological) medium 

supplemented with 10% fetal calf serum (SteriLab) was used in two cultures, and mod 

RPMI (folic acid and thymidine deficient medium) with the fetal calf serum 

supplement reduced to 5% was used to establish a third culture. Cultures were 

maintained for 72 hours. 40mg/L BrdU was added for the last 16 h to one of the 

cultures growing in RPMI 1640 medium. Colcemid (0.2/..lg/ml) was added to all 

cultures 35 min prior to harvesting. Chromosome spreads were obtained according to 

the standard procedure: 0.075M KCI for 10 min, methanol:acetic acid 3:1 fixation. 

For the analysis of breakage rate and the location of breakpoints, 100 G-banded 

metaphases at 400-band level from the spontaneous (untreated) cultures and 50 

metaphases from mod RPMI and BrdU-treated cultures were scored for each 

individual. Chromatid and/or chromosome breaks were assigned as a single event; the 

few chromatid type of exchanges were considered as double events. After testing for 

equality of variance in the TS and control groups, these groups were compared with 

respect to the mean number of aberrations per cell using the appropriate two-sided 

Student t-test at the 0.05 level of significance. In view of the small sample size, the 

results from the t-test were confirmed employing non-paramatric Mann-Whitney test. 

The only specific rare folate-sensitive fragile site induced in TS cells was 

fra(10)(q25). For each of the 3 categories-untreated, mod RPMI-, and BrdU-treated 

categories - the TS and control groups differed significantly (P<0.001 in each 

category) with respect to the mean number of aberrations per cell (Table 1). These 

results indicate that TS cells manifest chromosomal instability in this preliminary 

study. 

Although an analysis of the relevance of particular breakpoints has not been possible 

due to the small sample size, breakage sites observed in our patients may be of 

pathogenetic importance because some of them appear to be at areas previously 

implicated in linkage studies for neurobehavioral disorders. Some interesting 

differences in this preliminary study were fragility at 22q 12-q 13 in all TS patients and 
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none in the controls; this area has recently been considered with regard to potential 

linkage with schizophrenia (Pulver etal. 1994); involvement of 18q22 previously 

considered to be associated with TS (Comings et al. 1986; Donnai 1987) and 

Xp221Y q 11-12 homologous areas implicated frequently in TS patients indicating a 

possible involvement of pseudo-autosomal genes. 

TABLE 1 

Mean number of aberrations per cell for the TS and control groups 

No. of cells 
Treatment analyzed 
Category per patient 

Untreated 100 

ModRPMI 50 

BrdU 50 

Mean (sd) no. 
of aberrations/cell 

Patients Controls 
(n=12) (n=lO) 

0.121 0.052 
(0.034) (0.026) 
0.255 0.086 
(0.074) (0.044) 
0.163 0.092 
(0.050) (0.033) 

P-values 

t-test 

<0.001 

<0.001 

<0.001 

Mann-
Whitney 
test 

<0.001 

<0.001 

=0.0024 

In addition one patient with TS and 47, XXY with paternal pseudoautosomal 

nondisjunction as a possible mechanism being responsible for the 47, XXY karyotype 

and two with fragility at Xq27.3 in association with TS were observed before 

initiating the study protocol as reported here. 

Barletta et al. (1991) reported the association of other fragile sites in three families 

with the fragile X-syndrome and considered the existence of some underlying genetic 

mechanism in both autosomal fragile sites and fragile X-syndrome. The degree of 

fragility in obliga~e female carriers of the fragile X chromosome was found to be a 

potentially important predictor of psychopathology among women with normal IQ 

(Freund et al. 1992). Women with positive fragility scored highest on the "odd 
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communication" and "peculiar mannerisms" (?tics) items. Increased fragility was 

found to be associated with schizotypal· features. The authors stated that a need exists 

to clarify the nature of the association between the clinical neuropsychiatric 

phenotype and fragile site expression. 

Garofalo et al. (1992) found increased fragility in association with schizophrenia and 

considered the possibility that this fmding may be useful for the search for the 

location of major genes for that disease. The existence of significant overlap between 

schizophrenia and severe TS has been documented (Comings 1990). 

Several investigators have published reports of an association between TSand 

chromosomal abnormalities. At the Sixth Genetic Workshop on TS in the Netherlands 

in 1990, case studies were reported with TS like symptoms and changes in 

chromosomes 3, 8, 9, and 13. TS phenotype co-segregating in two instances with an 

18q22.1 abnormality was reported by Comings et al. (1986) and Donnai (1987). Co­

occurrence of TS with FRAXA (Kerbeshian et al. 1984), trisomy 21 (Barabas et al. 

1986), karyotype 47, XYY (Marskey, 1974),47, XXX and 9p monosomy (Singh et al. 

1982), and 9p monosomy alone (Taylor et al. 1991) were also reported. 

The high prevalence for tic related disorders could indicate an evolutionary 

advantage, and a proportion of any population would harbor this "instability" 

phenomenon and benefit from it by increased recombination, preventing inbreeding 

depression of genes coding for higher brain functions. In this regard, the term 

"recombination-enhancing areas" may be more appropriate than the negative 

connotation ascribed to "instability". Models have been proposed (Windle et al. 1991, 

Kimmel et al. 1992) indicating the possible importance of chromosome breakage and 

subsequent gene deletion resulting from resection of broken chromosome ends, as 

initial events in gene amplification. Are we witnessing genetic changes relevant to the 

evolution of a more complex nervous system? Although instability makes the genome 

more sensitive to environmental input, this may, however, render it more vulnerable 

to injury, for which certain mental disorders could represent the penalty. 

Stellenbosch University  https://scholar.sun.ac.za



37 

Phenotypic heterogeneity could result from environmentally precipitated genetic 

instability in susceptible individuals, varying degrees of which might predict severity 

of behavioral dysfunction in TS gene carriers. 

Over time, a complex and expanded list of behavioral and medical problems could 

presumably result from the same underlying phenomenon. In this regard, it would be 

interesting to consider the possibility of a fundamental interrelationship between TS 

and other conditions such as fra-X and auto-immune problems, all recorded as 

problems with an increased prevalence in inbred old Colony Mennonites (Jaworski et 

al. 1989). This may be informative for the study of possible pathogenic relationships . 

between such conditions in larger outbreed populations. 

TS appears to represent a condition where more comorbid disorders cosegregate, and 

as proposed here, more genes be differently expressed than would be expected in 

circumscribed psychiatric syndromes. If confIrmed, this phenomenon may allow 

multiple gene involvement in TS to be used as an entry to identification of major 

genes for other disorders not manifesting as spectrum conditions, but which are 

usually expressed as comorbid disorders in TS pedigrees. 

The need for a heuristic model in complex multifactorial neurobehavioral disorders is 

evident. In this regard, comments concerning studies on alcoholism, (Devor 1993) 

may be considered relevant for the study of TS as well; namely, that a paradigmatic 

shift in linkage strategy away from the search for the gene should be redirected 

towards fmding regions of interest that can be more fully explored by other molecular 

techniques. It is not (yet) possible to make this assumption, and for this reason a 

further study on a larger patient sample is in progress. 
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CHAPTER 3 

American Journal of Medical Genetics (Neuropsychiatric Genetics) 67:25-30 (1996) 

Increased Expression of Aphidicolin-Induced Common Fragile 

Sites in Tourette Syndrome: The Key to Understand the 

Genetics of Comorbid Phenotypes? 

George S. Gericke*, Ingrid Simonic*, Elma eloete*, and Piet J. Becker** 

* Department of Human Genetics and Developmetal Biology, University of Pretoria, and 

** Center for Epidemiological Research in Southern Africa (CERSA), Medical Research Council, 

Pretoria, South Africa 

In a comparison of 80 common aphidicolin-inducible fragile sites (FS) between 

26 DSM-IV Tourette syndrome (TS) and 24 control individuals, the mean of the 

summed break frequencies following mild aphidicolin pretreatment was 

significantly higher in TS individuals than in controls (P<O.OOI). Other 

breakpoints encountered during this study, i.e., random breaks, breaks 

corresponding to rare FS, and breakpoints recorded by others but not listed as 

common FS according to the Chromosome Coordinating Meeting (1992) were 

listed as category II breakpoints. By using the most significantly different mean 

FS breakage figures !between TS and control individuals, further stepwise 

discriminant analysis allowed identification of TS individuals from only a few 

sites in both the common FS and category II breakpoint groups. Future research 

needs to focus on confirmation of altered common fragile site expression in 

association with behavioral variation, whether expression of certain 

discriminatory sites concurs with specific comorbid disorder expression; the 

nature of the molecular alterations at these FS and the implications of a genomic 

instability phenotype for the mapping of a primary TS gene or genes. 

© 1996 Wiley-Liss, Inc. 
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Tourette syndrome (TS) is a common, heritable tic disorder associated with obsessive 

compulsive behavior and attention deficit-hyperactivity which are regarded as integral 

components of the phenotype (KurIan et al. 1994), while the relationship to a wide 

range of additional reported comorbid problems (Comings and Comings 1993) 

remains controversial. Most research fmdings indicate that TS is due to the effect of a 

single major autosomal gene (Baron et aL 1981, Kidd and Pauls 1982, Comings et aL 

1984, Devor 1984, Pauls and Leckman 1986), which is supported by genealogical 

research indicating a gene founder effect in South Africa (Torrington and Gericke, 

unpublished data). Alternatively, the complex spectrum of manifestations suggested 

to others the possibility of polygenic inheritance (Comings 1994). 

The recent observation of increased chromosomal breakage in TS has been proposed 

as a basis for the consideration of variable multiple secondary gene involvement at 

chromosomal fragile sites in complex behavioral disorders (Gericke et aL 1995). 

Fragile sites (FS) are nonrandom heritable sites on chromosomes that can be induced 

to form gaps, breaks, and rearrangements under specific conditions (Jordan et al. 

1990). Both rare and common FS are expressed in culture under conditions which 

inhibit DNA synthesis. FS may represent "active genomic sites that are vulnerable to 

physiological and environmental disturbance" (Yunis and Hoffinan 1989). Because 

the different classes of FS reveal cross induction (Yunis et al. 1987, Hecht et al. 

1988), it was suggested that FS may be indicative of areas of shared molecular 

homology in the sequence composition of nonrandom chromosomal DNA (Stopera 

1989), and that such sites can be general targets of mutagenic action. 

Since aphidicolin-induced common FS have been postulated to be of pathologic 

importance (Hecht 1991), we decided to investigate whether increased fragility of 

these sites are present in TS individuals, and whether any specific aphidicolin-induced 
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breakpoints could be demonstrated to be characteristically associated with TS clinical 

diagnosis. 

Material and methods 

Five to ten milliliters of heparinized blood for chromosome culturing was collected 

from individuals after informed consent was obtained. 

Patients 

This group of young adult Caucasians included 15 males and 11 females. All of these 

26 individuals had mild, though clearly recognizable motor and/or vocal tics, but were 

moderately to severely handicapped by associated obsessive-compulsive disorder, 

residual learning problems, or conduct disorders. Nineteen relatives from 6 families 

were included in this group. They were diagnosed as having TS by means of DSM-IV 

criteria, had positive family histories of a tic disorder in all instances, and were 

selected according to whether their clinic visits coincided with days that were 

convenient to the laboratory, whether they gave informed consent to participate in the 

study and whether matched controls were available. The choice of this age cohort 

allowed a clear retrospective evaluation of the longitudinal patient histories and 

permitted exclusion of other potentially confounding psychiatric or neurologic 

differential diagnoses. 

Controls 

Twenty-four randomly selected emotionally stable Caucasian medical students 

volunteers consisting of 14 males and 10 females. There were no significant 

differences in the mean age between patients and controls, and in the mean age of 

males and females within the groups. 
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Procedure 

Coded blood specimens from both patients and controls arrived simultaneously to the 

laboratory in batches of varying sizes. Patient and control specimens were thus 

handled together, and culture preparation and analysis of slides were performed by a 

single investigator who had no knowledge of the clinical status of the individuals 

being tested. 

Cell cultures 

Phytohemagglutinin (PHA) stimulated blood lymphocytes were cultured in RPMI 

1640 medium (Highveld) supplemented with 10% fetal calf serum (GIBCO) for 72 

hours at 37°C. Twenty-four hours prior to harvesting, aphidicolin dissolved in 70% 

ethanol (MERCK) was added to each 10 ml culture to obtain a fmal concentration of 

O.1J.lM. Colcemid (0.2 ml)(SIGMA) was added for the last 35 minutes. Cells were 

then treated with a hypotonic 0.075 M KCI solution for 12 minutes and ftxed in 

methanol: acetic acid ftxative. Slides were made, air dried and GTG banded. 

Analysis 

Three to four slides from each individual were analyzed, and for each patient one 

hundred complete metaphases were assessed at 350-400 band level. Aberrations (gaps 

and breaks) were counted as single event at the band(s) involved. In some 

metaphases, it was not possible to identify the individual chromosomes and 

chromosome bands because of the extent of breakage. Such pulverized cells were not 

included in the analysis. 

All events on the band were recorded, i.e. chromatid gap or break, chromosome gap 

or break, or chromatid exchange. In case a gap or break occurred on both homologues 

in the same band, it was counted as two events. 

Frequencies of 80 common aphidicolin-inducible FS were evaluated according to 

criteria formulated by the Chromosome Coordinating Meeting (CCM) (1992). (Table 
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1) All other breakpoints, including rare FS, breaks reported by others but not listed by 

the CCM 1992 as common fragile sites, and all breakpoints regarded as random, were 

listed separately. (Table 2) These sites included only those breakpoints from the 

group, which occurred in most of the individuals in low frequencies, or which 

occurred in only some of the samples, but in higher frequencies, comparable to those 

of common FS, in both TS and non-TS groups. 

Results 

The differences in the mean number of aberrations per cell between TS and controls 

for known aphidicolin-inducible FS, and for breakpoints, not listed as common FS by 

CCM 1992 are shown in Tables 1 and 2. 

In order to develop a classification function for characterization of TS patients, a 

stepwise discriminant analysis was utilized. The sample size was not adequate to 

include all the sites into the analysis. Hence to decide which sites to include, the two 

groups were compared with respect to the mean percentage of breaks at each site, 

using the appropriate t-test after comparing the groups for equal variance using 

Levene's test. Those sites for which the two groups were significantly different 

(P<O.05) with regard to the mean percentage of breakages, and who additionally 

displayed mean differences >5% between patients and controls were subsequently 

included into a further stepwise discriminant analysis. 

Standard Aphidicolin-Inducible Sites (Table1) 

From the sites, Ip21, lq44, 3p14, 6q26, 7p22, 7q31, 7q32, llpl4, llql4, 16q23, 

22q 12, Xp22, and Xq22, utilization of stepwise discriminant analysis indicated 

optimum standardized coefficients for the sites lq44, 16q23, and 22q12 which were 

used in the classification function: 

TS: y = -16.922 + O.934(lq44) + 0.395(16q23) + 0.321(22qI2) 
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Non-TS: y = -5.085 + 0.295(lq44) + 0.245(16q23) + 0.133(22qI2) 

This could be simplified to the single function: 0.639(lq44) + 0.150(16q23) + 

0.188(22qI2). With all controls scoring less than 11.837, this function indicated 100% 

specificity (all controls can be assigned to non-TS group by means of these three FS 

expression frequencies), and 88% sensitivity (88% of clinically diagnosed TS 

individuals can be assigned to TS group by means of above three FS expression 

frequencies/cell) under these study circumstances. 

Category II Sites (Table 2) (Fig. 1) 

It was decided to keep the analyses separate for the two categories of sites defined in 

this article. The overall difference in category II sites between TS and control 

individuals were significant (p=O.OO 1). By including sites 3p26, 3q 13, lOp 11.2, 

12qI2-q13, 14qI2-q13, and Xq13, utilization of stepwise discriminant analysis 

indicated optimum standardized coefficients for the sites lOpl1.2, 14q13, and 3q13. 

Employing these sites in an analysis similar to the one performed for group I FS, 

73.1% of clinically diagnosed TS patients were assigned to the affected group by 

means of FS expression (sensitivity), as was the case for 79.2% of controls 

(specificity). 

The classification function for category II sites was: 

TS: 

Non-TS: 

y = -5.810 + 0.888(10pl1.2) + 1.184(14qI2-q13) + 

0.766(3q13) 

y = -1.812 + 0.346(10pl1.2) + 0.623(14qI2-q13) + 

0.336(3qI3) 

This could be reduced to the single classification function: 

0.542(lOpl1.2) + 0.561(14qI2-q13) + 0.430(3q13), 

meaning that an individual could be classified as TS if the observed value of this 

function for above three sites was more than 4. 
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Table 1 
Mean (SO) percentage of common aphidicolin-inducible breaks at different sites for TS and control individuals 

TS TS Control TS TS Control 
Site Mean SO Mean SO t-test Site Mean SO Mean SO t-test 

1p36 2.69 1.57 1.42 1.25 0.003 7q21 4.31 2.15 2.42 1.72 0.001 
1p32 5.00 2.95 2.83 1.61 0.002 7q22 2.85 1.89 1.33 1.24 0.002 
1p31 4.65 3.15 2.00 1.22 0.001 7q31 12.62 4.93 6.83 2.97 0.000 
1p22 0.77 1.07 0.75 1.03 0.949 7q32 17.38 5.26 9.29 3.22 0.000 
1p21 14.42 5.12 7.83 3.20 0.000 7q36 1.35 1.13 0.46 0.59 0.001 
1q21 1.42 1.33 0.67 0.92 0.025 Sq22 5.38 2.97 3.29 1.99 0.005 
1q25 6.19 3.15 2.63 1.79 0.000 Sq24.1 3.08 2.28 1.88 1.73 0.042 
1q31 1.50 1.24 0.75 0.85 0.016 Sq24.3 2.15 1.54 1.13 0.99 0.007 
1q42 0.73 1.28 0.67 0.96 0.844 9p21 1.31 1.38 0.54 0.78 0.019 
1q44 9.85 0.67 3.96 2.03 0.000 9q12 0.85 0.88 0.54 1.18 0.303 
2p24 9.96 4.27 6.04 2.97 0.001 9q22 3.27 1.89 2.08 1.47 0.017 
2p16 6.77 2.57 3.92 1.95 0.000 9q32 12.73 4.88 8.04 3.26 0.000 
2p13 6.96 2.86 3.50 1.79 0.000 10q21 0.73 0.96 0.46 0.78 0.279 
2q21 6.58 2.91 2.71 1.78 0.000 10q22 3.00 1.96 1.58 1.32 0.005 
2q31 5.96 4.15 2.04 1.70 0.000 10q25 3.08 2.33 1.25 1.07 0.001 
2q32 7.77 3.66 5.79 2.20 0.025 10q26 6.50 2.94 4.29 2.89 0.010 
2q33 5.69 3.21 2.21 1.47 0.000 11p15 3.62 1.94 2.42 1.18 0.011 
2q37 8.12 3.70 4.42 2.70 0.000 11p14 10.38 4.01 5.08 2.93 0.000 
3p24 7.19 4.07 4.67 2.58 0.012 11p13 9.27 3.64 5.92 3.60 0.002 
3p14 58.50 13.64 38.42 9.10 0.000 11q14 10.19 4.38 5.75 2.66 0.000 
3q25 4.00 2.48 2.71 2.81 0.091 11q23 0.85 0.83 0.54 0.72 0.175 
3q27 3.73 2.22 2.25 1.65 0.011 12q21 4.00 2.51 2.13 1.60 0.003 
4p16 2.85 1.85 2.21 1.35 0.173 12q24 2.65 1.92 1.92 1.35 0.121 
4p15 2.92 1.90 2.46 1.64 0.361 13q13 8.50 3.71 4.29 2.37 0.000 
4q21 3.19 2.47 1.96 1.71 0.047 13q21 1.35 1.44 1.17 1.37 0.655 
4q31 12.19 3.90 8.17 3.13 0.000 13q32 2.65 1.72 1.21 1.25 0.002 
5q31 2.04 1.40 0.96 0.86 0.002 16q23 49.62 10.18 27.92 9.49 0.000 
6p25 6.62 3.58 3.42 1.74 0.000 17q23 2.88 1.99 0.63 0.65 0.000 ~ 

6p22 1.08 1.23 0.67 0.92 0.191 1Sq12 5.85 2.65 3.08 1.77 0.000 ~ 

--1 
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Table 1 Continued 

TS TS Control TS TS Control 
Site Mean SO Mean SO t-test Site Mean SO Mean SO t-test 

6q15 1.58 1.45 1.46 1.06 0.744 1Sq21 1.65 1.47 1.08 1.25 0.147 
6q21 3.23 1.75 2.29 1.57 0.052 19q13.1 1.50 1.50 1.17 1.43 0.427 
6q26 12.15 4.86 7.13 2.91 0.000 20p12 5.73 3.21 3.33 2.04 0.003 
7p22 9.23 3.87 4.13 2.89 0.000 22q12 10.48 4.35 5.83 3.38 0.000 
7p14 1.96 1.48 0.54 0.83 0.000 Xp22.3 23;00 8.60 14.96 6.84 0~001 

7p13 11.85 4.22 6.04 3.64 0.000 Xq22 15.46 6.41 9.22 3.68 0.000 
7q11 4.62 2.14 3.00 1.82 0.006 Xq27 2.27 1.97 1.21 1.28 0.028 

Table 2 
Mean (SO) percentage of other breaks for TS patients and controls 

TS TS Control Control TS TS Control Control 
Site Mean SO Mean SO t-test Site Mean SO Mean SO t-test 

3p268 2.42 2.32 1.21 1.32 0.027 13q348 0.42 0.81 0.46 0.66 0.867 
3q138 3.73 2.44 1.63 1.17 0 14q13 3.92 1.94 2 1.38 0 
4q238 0.65 0.94 0.25 0.53 0.065 15q13-q14 0.5 0.65 0.67 0.82 0.426 
4q278 0.69 1.09 0.5 0.72 0.469 1Sp11.2 1.15 1.35 0.96 1.27 0.6 

4q34-q35 1 1.26 0.63 1.01 0.256 1Sq22 0.96 1.08 0.46 0.88 0.079 
5q13 1.38 1.27 0.67 0.82 0.022 20q11.2 0.73 0.78 0.5 0.72 0.283 

5q33-q34 2.15 1.8 1.42 1.5 0.125 21q22 0.92 0.8 0.46 0.66 0.03 

Sp21 0.62 0.75 0.33 0.56 0.139 22q13b 0.42 0.75 0.08 0.28 0.041 
Sq11.2 0.35 1.02 0.46 0.98 0.693 Xp22.1 0.96 1.15 0.29 0.55 0.012 
10p13 1.19 1.3 1.96 1.49 0.583 Xq13 2.08 1.38 0.96 1.04 0.002 

10p11.2 3.08 1.72 1.29 1.27 0 Xq24 0.58 0.76 0.29 0.69 0.172 
10q11.2 0.12 0.33 0.21 0.41 0.381 Xq26 0.62 0.9 0.5 0.72 0.621 
12p12 0.77 0.82 0.75 0.79 0.933 Xq27.3b 0.04 0.2 0.13 0.34 0.28 
12q13b 1.23 1.21 0.38 0.65 0.003 

a Breakpoints detected in our study and reported by others, but not listed in CCM92 ~ 

b Breakpoints considered as rare folate-sensitive FS 00 
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Figure 1 

Examples of some category II breaks in TS patients: A. 3q13; B. 4q33-q34; C. 
5q13; D. 10p13; E. 10p11.2; F. 14q13; G. 1Sq13-q14; H. 18p11.2-p11.3; I. 
18q22;J.21q22; L.Xq13. 

A B c o 

F . ' 
G 

I .~ J K L 

In six instances, similarly affected family members of index cases with TS formed 

part of the study. The sites recurring within these families include: 

family lea male and a female): lSqlS in 2/2 family members; 

family 2 (three females and a male): 3q2l in 4/4 cases and 6q23 in 3/4 cases; 

family 3 (three males and a female): l7p12 in 3/4 cases and Yqll-ql2 in 2/3 

males; 

family 4 (three males and a female): 1 7p 12 in 4/4 cases and Y q ll-q 12 in all 

males; 

family S(a male and two females): 8p23 in 2/3 cases. 
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In family 6, in two females, there was no concordance with regard to any FS 
, 

expression. Y q ll":q 12 fragile site was expressed in 7/8 males from the above family 

groups. Some of these breaks are not reflected in Table I or II because they do not 

qualify for inclusion according to the criteria mentioned in the methods section of this 

paper. 

Discussion 

This paper reports increased aphidicolin induced common fragile sites (FS) 

expression associated with Tourette syndrome (TS), as well as the possible existence 

of discriminatory FS with regard to TS patients. The particular sites found to be 

indicative of TS during this early study may be altered during subsequent research. 

ConfIrmation of increased aphidicolin-induced FS expression in TS needs to take into 

account the large number of conditions which may influence chromosome breakage 

(Craig-Holmes et al. 1987, Chudley et al. 1990, Smeets and Merkx 1990, Tedeschi et 

al. 1992), including tissue specifIcity ofFS expression (Morgan et al. 1988, Murano et 

al. 1989), culture conditions such as ethanol concentration (Kuwano and Kajii 1987), 

menstrual stage cycle in females (Furuya et al. 1991 ), and knowledge of the 

population background with regard to common aphidicolin-induced FS (Rao et al. 

1988). Although our study could be criticized for not adequately evaluating the role of 

such variables, the differences between TS and control individuals were consistently 

distinct to such a marked degree that it was considered worthwhile to open this 

avenue of research to the widest possible scrutiny. 

A major question arises whether increased expression of aphidicolin-induced FS in 

individuals with TS could be potentially informative for the molecular analysis of 

genes involved in the expression of a TS spectrum disorder. The future isolation and 

cloning of the DNA sequences involved at some of these sites might show that they 

are polymorphic regions and targeted association studies could potentially be applied 

to examine their role in TS as well as other neuropsychiatric disorders. 
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A number of reports correlating behavioral alteration with chromosomal breakage 

have already been published and include schizophrenia (Delisi et al. 1988, Garofalo 

et al. 1992), the psychopathology found in obligate fra-X female carriers (Freund et 

al. 1992), and Rett syndrome (Telvi et al. 1994). 

To our knowledge, the only published fmding relating chromosomal fragility to TS by 

another author can be found in an article on Huntington disease and childhood-onset 

Tourette syndrome (Kerbeshian et al. 1991), where the karyotype 46, XY / 46, XY, 

fra(16)(q22) was found in 12% of cells. The authors stated that the clinical 

significance of FS in phenotypically normal individuals is unknown. 

In addition to being considered genetically active areas (Yunis et al. 1987, Hecht et al. 

1988, Hecht and Hecht 1991, Austin et al. 1992), FS may represent regions of DNA 

repeat sequences (Sutherland et al. 1985). Organized repetitive DNA sequences in the 

genome are considered to bear a relationship to a highly conserved chromatin folding 

code (Vogt 1990) and may predispose these areas to selective forces such as 

environmentally induced breakage. 

Individuals expressing the rare folate-sensitive sites FRAXA and FRAXE have 

unstable expanded CCG repeats and methylation of adjacent CpG islands. An 

explanation has been proposed according to which GCC and CGG repeat sequences 

lead to delayed replication because they form unusual DNA structures that present a 

block for the replication apparatus (Knight et al. 1993). Chromatin is subsequently 

rendered fragile through late replication following failure to erase an imprinted X­

inactivation signal in these instances (Laird et al. 1987). 

In addition, the molecular basis ofFRAI6A, another autosomally located, rare folate 

sensitive fragile site, was found to be expansion of a normally polymorphic p(CCG)n 

repeat (Richards et al. 1994). It is not clear whether one is allowed to extrapolate from 

these fmdings concerning rare fragile sites. Molecular analysis of a 4.5kB fragment 

containing 6 of 13 aphidicolin-induced breakpoints at constitutive fragile site 3p14.2 

failed to identify traditional motifs, such as a trinucleotide repeat sequence to explain 

fragility (Paradee et al. 1994). However, in a cell line with a reciprocal translocation 
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between human chromosome 3 (with breakpoint at 3pI4.2) and a hamster 

chromosome, the fragile site was expressed on both derivative chromosomes, 

suggesting in this instance that the fragile site represents a repeated sequence (Glover 

and Stein 1988). 

If multiple genes, acting either independently (genetic heterogeneity), additively 

(polygenic inheritance), or epistatically are required for expression of a 

neurobehavioral spectrum phenotype, this will create obstacles for linkage detection 

of a major gene by the standard lod score method (Crowe 1993). Nonparametric 

linkage analyses, such as the affected sib-pair method, which is useful for the analysis 

of multifactorial disorders, and which was suggested as the next step in TS-gene 

linkage at the Tenth Genetic Workshop on Tourette syndrome held during August 

1994 in Toronto (personal communication, J. Weber) is less powerful to detect 

linkage and cannot satisfactorily address a situation where multiple genes may be 

operative, which is what our fragility studies could suggest. 

For TS, a dual situation may exist, according to which various associated phenotypes 

may arise through modified gene activity at fragile sites ("the component factors of 

multidimensional phenotypes"){Cloninger 1994), but the primary phenotype for 

which the TS gene is responsible may actually be chromosomal instability. 

A heritability estimate of 0.88 for aphidicolin-inducible common FS expression in a 

twin study indicated that fragility could be considered to represent the secondary 

expression of a more fundamental mechanism operative within the genome (Austin et 

al. 1992). Similarly, a basic genetic mechanism was proposed for the concurrent 

expression of both autosomal FS and fragile-X sites in individuals from three families 

with the fra-X syndrome (Barletta et al. 1991). This concept was also discussed by 

other groups (Amarose et al. 1987, Smeets and Ares 1990). 

Since individuals with TS are usually phenotypically normal, an association between 

FS and neurobehavioral characteristics (rather than with dysmorphic or disease­

related phenomena) may easily have been overlooked during earlier popUlation based 

surveys of common FS. The quotation by Roger KurIan that" ... there is at least a little 
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bit ofTS in us all" (KurIan 1993) seems entirely appropriate in view of the population 

frequency of expression of common FS and the proposed role of some change at these 

sites being associated with neurobehavioral alteration. 

In conclusion, if differential expression of certain fragile sites can be conftrmed to be 

associated with variant behavior, and these FS can also be demonstrated to show a 

consistent relationship with certain classes of repeat sequences, such sites may be 

important with regard to both normal evolutionary processes (King 1994), as well as 

having the potential to be involved in potentially deleterious dynamic mutations. 

As indicated, these fmdings do not rule out the need to search for a major TS gene, 

which may however not be as strongly linked to any of the behavioral phenotypical 

features as to the chromosomal phenotype which is described in this paper. 
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Abstract 

One hundred and fifty breakpoint sites were recorded during an analysis of 

aphidicolin-ethanol inducible fragile sites (FS) in 56 blood samples and 13 amniocyte 

cultures and were classified according to the criteria formulated by the Chromosome 

Coordinating Meeting. The fmding of previously unlisted FS in this sample, the 

altered expression of FS in conditions not usually associated with chromosomal 

abnormalities and the apparent lack of tissue specificity indicate the importance of 

one or more fundamental mechanisms operating to produce the diverse associated 

clinical phenotypes, with the chromosomal fragility representing an intermediate 

phenotype. Several lines of evidence converge towards the conclusion that FS are a 

manifestation of an altered state of genetic activity at areas associated with 

transcriptional regulation, because of their concordance with CpG islands, nuclease 

sensitive sites, replication origins, zinc fmger protein domains and viral integration 

sites. An investigation is required whether this phenomenon could contribute both to 

evolutionary diversity through increased recombination, the formation of unstable 

repeat sequences and variable methylation, and to the expression of multigene disease 

processes resulting in the production of variable and complex phenotypes, even within 

families. 
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Introduction 

The basic biology and evolutionary significance of chromosomal fragile sites (FS) 

remain enigmatic. FS on human chromosomes can be defmed as vulnerable regions 

where lesions occur spontaneously or after induction with certain break-inducing 

agents (Smeets and Merkx 1990). These sites have been divided into two main 

groups, viz. "rare" and "common" FS (Hecht 1986). Those present in less than 2.5% 

of the population are considered to be rare (Berger et al. 1985), whereas common FS 

are considered to be present in more than 50% of the population (Hecht 1986) or in 

almost every individual (Samadder et al. 1993). 

Aphidicolin-inducible common FS appear to be Ubiquitous in humans and other 

mammals. The estimated high degree of genetic determination for pooled FS 

frequencies suggests that these sites result from a common process that is under 

stringent genetic control (Austin et al. 1992). Aphidicolin-induced common FS have 

been considered as candidates of pathological importance (Hecht 1991). 

We have documented the increased expression of these common FS in individuals 

with Gilles de la Tourette syndrome (TS), a complex neurobehavioural spectrum 

disorder (Gericke et al. 1995, 1996). This fmding has raised questions concerning 

possible relationship between FS and gene activity and suggests an underlying role for 

these genomic areas with regard to the pattern of expression of co-morbid disorders in 

TS. If FS expression reflects altered transcriptional activity at multiple sites, common 

FS may playa role in the expression of polygenic disorders in general. 

Materials and methods 

Specimens from 21 Caucasians (4 females and 17 males) diagnosed as having TS by 

means of DSM IV criteria, were analysed as one group. These criteria require the 

presence of both motor and one or more vocal tics, occurring many times a day for 

more than 1 year with onset before age 18, causing significant social and occupational 

impairment and are not due to the effects of a medical condition or substance use 
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(American Psychiatric Association 1994). A separate group consisted of randomly 

chosen Caucasian blood samples referred to our laboratory for chromosomal analysis, 

viz. Five for fragile X (fra-X) screening, one patient with velocardiofacial 

(Shprintzen) syndrome together with blood samples from non-affected sibling and 

both parents, two patients with Duchenne muscular dystrophy, two patients with 

Cornelia de Lange syndrome and a patient with Russel-Silver syndrome, two couples 

with a history of recurrent fetal loss and three healthy males referred for chromosomal 

damage screening after being exposed to ethylene dioxide together with matching 

control blood specimens. The remainder included blood samples of newborn children 

with dysmorphic features where a syndromic diagnosis had not been made. The 

number of patients included in the second group consisted of 13 females and 22 

males. All individuals included in the study had normal karyotypes, according to 

standard banded chromosome analyses and no cytogenetic evidence was found for 

any of the suspected fra-X cases having increased breakage at Xp27.3 in folate­

deficient culture media. 

In total, 56 blood samples were aphidicolin treated. Thirteen amniocyte cultures, 

reported to be "well growing", 48 h before harvesting, were also included on a 

random basis. 

Two phytohaemaglutinin (PHA)-stimulated lymphocyte cultures were established for 

each individual by using 0.5ml whole blood in RPMI-1650 medium supplemented 

with 10% fetal bovine serum (FBS). After 48 h, aphidicolin dissolved in 70% ethanol 

was added (24 h treatment) to each 10 ml culture to obtain a final concentration of 

0.1 JlM. Standard cytogenetic techniques were used for harvesting and slide 

preparation. 

Complete metaphase spreads (n=50) for each culture (100 per individual) were 

assessed at the 350-400 band level. All types of aberrations (gaps, breaks, chromatid 

exchanges) were scored as single events at the band(s) involved. 
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Fibroblasts derived from amniotic fluid were maintained and subcultured in Ham's 

FlO medium and 20% FBS. Aphidicolin dissolved in 70% ethanol was added to 

obtain a fmal concentration of O.IIlM, 25h prior to harvesting. Cultures were treated 

with colcemid for the last three hours. Cells were processed in the standard manner 

for the preparation of chromosomes. Cultured amniocytes were shown to be 

extremely sensitive to aphidicolin-ethanol treatment and the mitotic index in most 

samples was low. However it was decided to evaluate all available complete 

metaphases for the distribution of gaps and breakpoints. 

Results 

In total, 150 breakpoint sites were recorded. These site were grouped and evaluated 

separately according to their status as common FS, rare FS (Chromosome 

Coordinating Meeting 1992), breakpoints recorded by others, but not . listed as 

common FS (Table 1), and so-called random breakpoints (Tables 2, 3). All sites 

reported as being tissue-specific for other tissues were also found in T-Iympocyte 

cultures. It was therefore decided to include the analysis of 576 metaphases from 13 

amniocyte cultures to observe differences in their expression when compared with 

lymphocytes. A breakpoint was counted as "one" when occurring on one of the 

chromosomes, and as "two" when occurring on both homologues. 

There was no intention, from the beginning of the study, to make any statistical 

comparison of FS expression between samples from different groups of patients. Our 

only interest was to screen for the frequencies of random breaks. As a much higher 

expression at most sites assessed as random breakpoints was found in patients with 

TS, we decided to evaluate FS expression in this group separately. 

The computed means per 100 cells of common FS in T -lymphocyte cultures of both 

investigated groups of patients are summarized in Table 1. Despite the observation 

that the rank orders of most expressed sites differed between the two groups (TS and 

non-TS) in agreement with previous fmdings (Gericke et al. 1995, 1996), we found 
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the sites 3p14, 16q23 and Xp22.3 as being the most prevalent in both groups. The 

hierarchy of the remaining sites in the TS group was: lq44, 7q32, Xq22, 14q24, Ip21, 

7p22, 7p13, 6q26, 2p24, 4q31, llp13, 8q22, 2q32, 9q32, 22q12, 2q37, etc. The 

hierarchy of these sites in the non-TS group was: 7q32, lq44, Xq22, 14q24, Ip21, 

7p21,6q26, 7q31, 2p24, 4q31, 7p13,2q32, Ilp13,9q32,8q22,22q12,etc. 

Some 22 breakpoints are listed according to their frequencies of occurrence in Table 

2. All of these are expressed at least in one subject in 4% or more of the metaphase 

spreads, which is a cut-off frequency necessary to cytogenetically classify an 

individuals as fra-X positive (Jacobs et al. 1980). The rank orders of the means for the 

above ~escribed group of aphidicolin-inducible FS were found to be different between 

the patient groups, viz. for the TS group: 10p12-p13, lOp 1 1.2, 14q13, 6p21.1, Xq13, 

18pl1.2, 6q23, Xp22.l, 17q25, 8ql1.2, 4q34-q35, 15qI2-q13, Xq12, 21q22, 9q34, 

4q31, 3p13, 5qI2-q13, 15qI4-qI5, 18pl1.3, 5q34, 20q11.2; and for the non-TS 

group: lOpI2-p13, 18pl1.3, lOp 1 1.2, Xp22.l, 5q12-q13, 6q23, Xq13, 14q13, 

18pl1.2, 4q34-q35, 6p21.1, 8ql1.2, 15q14-q15, 15q12-q13, Xq12, 20ql1.2, 9q34, 

5q34, 14q31, 17q25,21q22,3p13. 

The means for the listed group of breakpoints is in most cases approximately twice as 

high in the TS group. The insufficient scope of the study and the lack of complete 

clinical data for non-TS individuals, especially with regard to their neurobehavioral 

status, do not allow defmite conclusions to be made from the observed differences in 

this study. 

The localization of all other breakpoints repeatedly found in our study is given in 

Table 3. According to the most widely used criteria discussed in Jordan et al. (1990), 

they cannot be assigned as FS. These sites can only be recognized as being fragile 

based on Craig-Holmes et al. (1987) approach, where the site is scored as positive if it 

is expressed at least once in two or more subjects. 
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Table 1 

Mean frequency (%) of common aphidicolin-inducible fragile sites 
for TS and non-TS patients. 

TS TS non-TS non-TS TS TS non-TS non-TS 
Site (mean) (SO) (mean) (SO) Site (mean) (SO) (mean) (SO) 

ip36 2.43 1.37 1.54 1.25 Sq24.3 4.19 2.7 2.29 1.28 
ip32 3.29 1.58 2.86 1.99 9p2i 1.24 1.34 0.8 0.91 
1p3i 3.19 2.04 2.94 3.08 9q12 0.86 0.89 0.49 0.79 
ip22 0.62 0.72 0.77 0.88 9q22 0.9 1.11 0.71 0.8 
ip2i 15.86 5.37 10.8 4.45 9q32 9.33 5.15 7.03 3.91 
iq21 0.52 0.66 0.63 0.88 9q34 1.24 1.44 0.66 1.12 
1q25 6.57 2.95 3.94 1.82 i0p13 5.81 3.25 3.31 2.55 
iq3i 0.9 0.75 0.97 0.96 i0p11.2 3.43 1.99 1.2 1.24 
1q42 1.48 1.18 0.69 0.87 10q2i 0.67 1.21 0.89 0.87 
iq44 22.9 5.66 15.86 7.72 10q22 1.81 1.1 1.77 1.56 
2p24 11.81 3.02 9.4 4.87 i0q23b 0.52 0.66 0.49 0.72 
2p16 3.57 1.73 2.89 2.31 10q25 2.81 2.28 1.83 2.06 
2p13 4.67 2.83 3.69 2.02 10q26 6.1 3.19 5.06 3.06 
2q13b 1.05 0.95 0.83 1.21 11p15 3.14 1.39 2.77 1.9 
2q21 6.1 4.87 3.71 2.71 11p14 4.05 2.95 2.91 1.69 
2q31 2.67 1.83 2.4 2.06 11p13 10.95 4.25 7.54 3.02 
2q32 9.81 3.2 7.54 2.86 iiqi3 0.62 0.65 0.2 0.4 
2q33 5.1 2.86 3.91 2.27 1iqi4 6.57 2.84 5.03 3.3 
2q37 8.29 5.03 5.43 3.06 11q23 0.81 1.1 0.63 0.92 
3p36a 5.76 2.67 3.23 2.16 12q13b 1.19 1.53 0.8 1.02 
3p24 3.76 1.9 2.74 2.4 12q21 3.81 2.11 2.54 1.6 
3p21a 2.1 1.27 0.89 0.87 i2q24 2.67 2.1 1.86 1.51 
3p14 59.05 9.51 52.31 12.82 13q13 7.24 4.46 4.94 2.32 
3pi3 1.19 1.1 0.54 0.69 i3q2i 0.95 1.05 1.2 1.15 
3q13a 4.71 2.6 2.74 1.85 13q32 1.86 1.64 1.06 0.78 
3q21 8 1.1 1.06 0.71 0.84 13q34a 1.57 1.22 0.89 1.15 
3q25 2.19 1.82 1.4 0.95 14q13 3.48 1.99 1.2 1.24 
3q27 5.1 2.16 3.29 2.13 14q23 2.86 1.96 1.86 1.55 
4p16 3.52 2.77 2.49 2.24 14q24 16.14 4.33 11.83 4.37 
4p15 3.67 2.51 2.29 1.89 14q31 1.24 1.19 0.63 0.96 
4q21 1.24 1.41 1.26 1.01 i5q12-13 1.57 1.26 0.74 0.81 
4q23a 1.9 1.51 1.83 1.36 15q14-15 0.97 1.09 0.86 0.83 
4q2r 1 1.02 0.66 0.66 i5q22 1 1.02 0.57 0.86 
4q31 11.24 3.83 8.29 3.3 16p13b 1.1 1.06 0.46 0.76 
4q35 1.62 1.86 0.97 1.16 16q22 4.67 5.54 1.89 1.74 
5p14 3.29 3.47 2.83 2.6 16q23 49.9 10.88 41.71 10.19 
5p13 2.14 1.73 1.69 1.45 17p12b 1.14 0.99 0.17 0.37 
5qi3 1.14 1.28 1.34 1.37 17q23 1.62 1.81 1.23 1.06 
5q15 5.43 1.84 4.54 2.7 17q25 2.14 1.93 0.63 1.07 
5q21 2 1.88 1.14 1.18 1Sp11.3 0.48 1.01 2.2 3.62 
5q31 0.81 0.85 0.77 0.75 1Sp11.2 2.52 1.79 1 1.33 
6p25 12.29 4.24 7.31 3.84 1Sq12 5.24 3.04 4.49 2.91 
6p22 2.29 1.61 1.26 1.66 1Sq2i 1.38 1.17 0.71 0.93 

6p21.i 3.05 2.17 0.91 0.94 1Sq22 1.62 1.33 0.74 0.76 
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Table 1 

Continued 

T8 T8 non-T8 non-T8 T8 T8 non-T8 non-T8 
8ite (mean) (SO) (mean) (SO) 8ite (mean) (SO) (mean) (SO) 

6q15 1.81 1.56 1.03 0.83 19q13.1 2.43 1.73 1.46 1.36 
6q21 3.71 1.86 3.66 2.28 20p12 6.81 3.22 4.69 2.16 
6q25 2.29 1.93 1.23 1.12 20q11.2 0.76 0.87 0.49 0.82 
6q26 11.1 5.31 10.14 3.79 20q13.2 0.33 0.47 0.23 0.59 
7p22 15.57 5.96 10.51 4.03 21q21 0.14 0.35 0.11 0.4 
7p14 1.05 1.17 0.66 0.78 21q22 1.43 1 0.63 1.15 
7p13 12.43 3.49 8.17 4.62 22q11.2 0.67 0.94 0.49 0.73 
7q11 3.71 1.86 3.74 2.53 22q12 9.24 4.56 5.71 3.15 
7q21 2.81 1.68 2.29 1.91 22q13b 0.67 0.84 0.49 0.72 
7q22 0.71 0.7 0.91 0.92 Xp22.3 31.05 12.27 15.8 10.19 
7q31 11.33 3.68 10.03 4.62 Xp22.1 2.24 1.41 1.69 1.41 
7q32 21.33 5.19 15.94 5.62 Xq13 2.52 1.99 1.23 1.53 
7q36 0.9 0.97 0.86 1 Xq22 17.05 5.35 13.89 6.27 
8p21 1.05 0.79 0.6 0.73 Xq26 0.38 0.65 0.23 0.42 

8q11.2 2.05 1.86 0.89 1.04 Xq27 1 1.2 0.71 0.9 
8q21 b 0.24 0.43 0.09 0.28 Yq11 0.71 1.39 0.34 0.75 
8q22 10.19 2.91 5.83 2.93 Yq12 0.48 0.73 0.2 0.58 

8q24.1 4.38 2.68 2.74 1.95 

a Breakpoints detected in our study and reported by others but not listed 
as common FS in Chromosome Coordinating Meeting (1992) 

b Breakpoints considered as rare folate-sensitive FS 

Table 2 

Mean frequency (%) of non-specific aphidicolin-inducible breakpoints 
for TS and non-TS groups 

T8 T8 non-T8 non-T8 T8 T8 non-T8 non-T8 
8ite (mean) (SO) (mean) (SO) 8ite (mean) (SO) (mean) (SO) 

3p13 1.19 1.1 0.54 0.69 14q31 1.24 1.19 0.63 0.96 
4q35 1.62 1.86 0.97 1.16 15q12-13 1.57 1.26 0.74 0.81 
5q13 1.14 1.28 1.34 1.37 15q14-15 0.97 1.09 0.86 0.83 

6p21.1 3.05 2.17 0.91 0.94 17q25 2.14 1.93 0.63 1.07 
6q25 2.29 1.93 1.23 1.12 18p11.3 0.48 1.01 2.2 3.62 
8p21 1.05 0.79 0.6 0.73 18p11.2 2.52 1.79 1 1.33 

8q11.2 2.05 1.86 0.89 1.04 18q22 1.62 1.33 0.74 0.76 
9q34 1.24 1.44 0.66 1.12 21q22 1.43 1 0.63 1.15 
10p13 5.81 3.25 3.31 2.55 Xp22.1 2.24 1.41 1.69 1.41 

10p11.2 4.1 2.24 2.03 1.78 Xq11-12 1.52 1.74 0.74 1.02 
14q13 3.48 1.99 1.2 1.24 Xq13 2.52 1.99 1.99 1.53 
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Table 3 
Mean frequency (%) of sporadically occurring aphidicolin-inducible breakpoints 
for TS and non-TS groups 

15 15 non-15 non-TS 15 15 non-1S non-1S 
Site (mean) (SO) (mean) (SO) Site (mean) (SO) (mean) (SO) 

2p12 0.48 0.91 0.17 0.51 17q21 0.52 0.73 0.4 0.73 
4q12 0.33 0.47 0.37 0.59 19q13.3 0.62 0.72 0.29 0.78 
5q33 0.76 1.06 0.66 0.79 20q11.2 0.76 0.87 0.49 0.82 
Sp25 0.62 0.79 0.31 0.52 20q13.2 0.33 0.47 0.23 0.59 
9p24 0.62 0.84 0.46 0.65 21q21 0.14 0.35 0.11 0.4 

10p14-15 0.38 0.58 0.23 0.48 22q11.2 0.67 0.94 0.49 0.73 
10q11.2 0.76 1.11 0.34 0.58 Xp21 0.1 0.29 0.03 0.17 
12p12 0.67 0.71 0.74 0.73 Xp11.4 0.14 0.35 0.34 0.58 
12q12 0.48 0.66 0.03 0.17 Xp11.2 0.29 0.55 0.11 0.32 

12q24.3 0.29 0.63 0.09 0.28 Xq21 0.19 0.39 0.03 0.23 
14q12 0.67 0.99 0.66 0.79 Xq24 0.24 0.53 0.31 0.62 
14q32 0.52 1.14 0.2 0.47 Xq26 0.38 0.65 0.23 0.42 

16p11.2 0.24 0.68 0.17 0.38 Yq11 0.71 1.39 0.34 0.75 
16q12 0.24 0.43 0.11 0.32 Yq12 0.48 0.73 0.2 0.58 
16q21 0.57 0.73 0.37 0.48 

Table 4 
Mean frequency (%) of aphidicolin-inducible breakpoints 

in cultured amniocytes 

Site Mean Site Mean Site Mean Site Mean 

1p31 14.93 3q13 2.6 7q21 1.22 15q22 1.39 
1q25 1.04 3q27 7.81 7q31 2.08 16q23 15.1 
1q44 1.39 4q23 2.26 7q32 1.04 1Sq12 1.39 
2q21 2.26 4q31 1.04 10q11.2 4.69 1Sq21 4.86 
2q32 1.04 4q35 1.04 10q26 1.22 19q13.1 1.91 
2q33 1.04 5q13 2.97 11q14 1.74 20q12 2.6 
3p26 2.26 6q26 2.43 12p13 1.39 22q12 1.57 
3p21 1.04 7p22 1.04 13q32 3.47 Xq12 1.04 
3p14 14.1 7q11 9.9 14q24 1.39 Xq22 1.74 
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Figure 1 

Examples of some breakpoints (arrows) included in Tables 2 and 3, and breakpoint 
Xq28 included in Table 1. A. 4q35, B. 5q13, C. 5q34, D. 6p21.1, E. 6q25, F. 8p25, O. 
8ql1.2, H. lOp13, 1. lOpl1.2, 1. 10ql1.2, K. 14q13, L. 15q14-q15, M. 17q25, N. 
18pl1.2, O. 18q22, P. lOql1.2, Q. 21.q22, R. Xp22.1, S. Xpl1.2, T. Xq12, U. Xq13, 
V. Xq26, W. Xq28 
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Breakpoints expressed in cultured amniocytes (Table 4) usually corresponded to those 

frequently found in skin fibroblasts from normal individuals (Murano et al. 1989a). 

The average number of FS induced in amniocytes was low compared with PHA '" 

stimulated T -lymphocytes, and because there was a strong inhibition of cell division, 

a comparison of induced frequencies between these cell types was meaningless. 

Whereas fragile sites at 16q23 and 3p 14 were again most frequent, Xp22.3 expression 

was low. In addition, sites at Ip31, 7ql1, 3q27 (probably described as 3q26.2 in the 

above mentioned study), 10ql1.2, 18q21, 13q32, 5q13, 3p26, 20p12.1 or 2q21 were 

not the most frequently seen in cultured T-Iymphocytes. 

Sites at the 4q23 and 7q 1 i.2 bands were previously regarded as bone-marrow-specific 

(Morgan et al. 1988) and but were subsequently found in B lymphocytes and skin 

fibroblasts by Murano et al. (1989a) together with the site at 1 Oq 11.2. These sites 

were also observed in cultured amniocytes and a low level of their expression 

compared with other common FS was found in T lymphocytes. This fmding appears 

to support our conclusion that aphidicolin-induced FS is not as tissue-specific as 

suggested. It remains to be seen whether the differences in cell-type-dependent 

frequency of expression are attributable to either different replication rates or the 

sequence of DNA replication, differences in gene activity, or tissue sensitivity to 

aphidicolin treatment (Murano et al. 1989b). Most of the sites included in Table 2 

were also sporadically found in cultured amniocytes. 

It was not possible to localize all "new" breakpoints at the sub-band level because of 

differences in chromosomal resolution (Fig. 1). In some cases, involved areas 

coincided with cancer chromosome breakpoints (Hecht 1988): 5q13, 5q35, 9q34, 

14q32, 18ql1.2, 20q13, 21q22, 22ql1.2, Xpl1.2. The breakpoint in 14q13 was 

reported in patients with possible acquired chromosomal instability (Tedeschi et al. 

1987). 

Sites at 5q13, 17q21, 20ql1.2, 20q13.3, 2Iq22, 22qI1.2, Xq13 were recognized as 

common chromosome breaks (not FS) by Michels (1985) and Xq26 as a FS by the 

same author. The breakpoint at 6p21, discussed by Tedeschi et al. (1992) as being a 

common FS, is not listed as such by the Chromosome Coordinating Meeting (1992). 
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The 18pll.3 breakpoint reported to be associated with· translocation and heritable FS 

at 2q13 and fetal demise at 10 weeks of gestation (Jacky et al. 1995) was expressed, 

respectively, in 14% and 16% of cells in patients with Cornelia de Lange and Russel­

Silver syndromes. 

Discussion 

In this paper, we report FS expression phenomena in a wide range of genetically 

compromised individuals. The fmding of previously unlisted FS in this sample, the 

altered expression of FS in conditions not usually associated with chromosomal 

fragility and the apparent lack of tissue specificity indicate the importance of one or 

more fundamental mechanisms operating to produce the diverse associated 

phenotypes recorded here, with the chromosomal fragility representing an 

intermediate phenotype. In this regard, the comment by Hecht (1991) that common FS 

can be classified by means of chemical inductive methods, with a large currently 

unclassified group representing a "wastepaper basket", could perhaps be 

reinvestigated by ascertainment of the type of individuals in which their expression is 

altered. 

It will be of interesting to see whether groups of common FS exist that are over- or 

underexpressed in specified groups of patients. The high frequency of breakpoints in 

18pl1.3 in the patients with Cornelia de Lange syndrome and Russel Silver syndrome 

as included in our study; or the overall higher expression of breakpoints as 

summarized in Table 2 in TS patients may serve as examples of the sofar unknown 

importance of "fragile" chromosome areas or the specific regulatory mechanisms 

involved in their expression. 

Aphidicolin, an inhibitor of DNA polymerase alpha (Glover et al. 1984), may alter 

DNA synthesis in specific regions that concur with FS expression (Ahuja 1990). The 

enhancing action of ethanol (Kuwano and Kajii 1987) is considered to act through the 

suppression of RNA synthesis, which in tum probably influences the repair capacity 

of the cells (Obe and Ristow 1979). 
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The application of low stringency criteria for FS assignment and the enhancement of 

the effect of aphidicolin via the inhibition of DNA repair would probably lead to 

increased FS expression. This may have been responsible for the divergent results 

arising between studies attempting to correlate specific structural chromosome defects 

recorded in neoplasia with FS, or between breakpoints involved in reciprocal 

translocations and FS (Daniel 1986). 

An association of the localization of common FS with active gene regions has been 

postulated primarily according to their occurrence in the light G-bands (Hecht and 

Hecht 1991). The obvious example supporting this idea is. the expression of the 

common FS Xp22.3 in both homologues in females, whereas the site Xq22.1 is 

expressed only on the active X chromosome (Austin 1991). 

As shown in our study, additional breakpoints occurring on the X chromosome may 

represent active transcription areas, since some of them are present in bands, where 

genes escaping X-inactivation have been found, such as Xp22.l (ZFX), Xpll.2 (UBE 

1, SMeX), and Xq 13 (RPS4X) (Rappold 1993, Disteche 1995). The clustering of FS 

within light G bands, which represents areas of apparent GC richness with a high 

level of gene expression, and their concordance with CpG islands, nuclease-sensitive 

sites, replication origins, zinc fmger protein domains and viral integration sites have 

been demonstrated in many studies (Porfrrio et al. 1989, Ahuya 1990, Tadeschi et al. 

1991, Austin et al. 1991, 1992, Lichter et al. 1992, Nancarrow et al. 1994). Synergy 

seems to occur between adenoviruses and aphidicolin because adenoviruses type 5 

and 12 act at FS sensitive to aphidicolin (Caporossi et al. 1991). 

A histogram giving the distribution of sequences hybridizing with the isochores of the 

G + C-richest H3 family (Saccone et al. 1992) on the human G-banded chromosomes 

is in good agreement with the areas of highest expression of common FS. These 

hybridizing sequences can also be correlated with other breakpoints not currently 

classified as common FS (Tables 2, 3). 

A strong association has been found between bands sensitive to restriction enzymes 

MspI and Hpall and those bands containing common FS (Porfrrio et al. 1989, 

Tedeschi et al. 1991). Recognition sites of the isoschizomeric restriction 
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endonucleases Hpall and MspJ are more frequent in CpG islands than in bulk DNA. 

The high expression of MspJ breakpoints at some bands, which also coincide with FS 

areas, indicates a role for CpG islands in their expression. 

CpG sequences may represent one identifiable subset of DNase-I-hypersensitive sites 

(Elgin 1981). Moreover, agents known preferentially to attack chromatin DNase-l­

hypersensitive sites induce non-randomly distributed chromosomal damage in areas 

showing striking concordance to locations of known common FS (Austin 1991). 

The FS that have been cloned so far are the rare folate-sensitive sites FRAXA 

(Verkerk et al. 1991), FRAXE (Knight et al. 1993), FRAXF (parrish et al. 1994), 

FRA16A (Nancarrow et al. 1994) and FRAIIB (Jones et al. 1995) and all represent 

unstable poly (CCG)n repeats adjacent to CpG islands that become hypermethylated 

when the number of copies of the repeat exceeds certain limits. It has been suggested 

that FS originate at regions in the genome that are not normally associated with 

methylation and that the observed methylation associated with the above mentioned 

sites represents a consequence rather than a cause of FS mutation (Nancarrow et al. 

1994). 

Methylation is associated with imprinting; since both FS and imprinting appear to be 

evolutionary conserved responses and since more than 50% of breakpoints that have 

occurred during chromosome evolution in primates are reported at or close to FS 

(Miro et al. 1987), the possibility of a molecular basis for a link between the processes 

of imprinting and FS formation would clearly be of interest. Parent of origin effects 

have been recorded in relation to TS (Lichter et al. 1995) and as being associated with 

the processes of recombination, late replication and allelic expansion (J. G. Hall 

personal communication). These circumstances represent genetic conditions that can 

be considered as having an effect on FS expression. The possibility exists that FS 

represent a dynamic part of the process of imprinting. 

The localization of FRAIIB within a previously described gene indicates the 

possibility that other poly(CCG)n repeats contained within known genes are also 

associated with folate-sensitive FS expression. The association between FRAIIB and 

Stellenbosch University  https://scholar.sun.ac.za



70 

Jacobsen llq-syndrome represents the fIrst evidence and direct link between an 

autosomal FS and chromosome breakage (Jones et al. 1995). 

Several authors have suggested that FS represent an amplifIcation of specifIc DNA 

sequences (Sutherland 1985, Nussbaum 1986) including naturally occurring 

polypurine/polypyrimidine sequences (Sutherland and Hecht 1985). The (CG)n and 

(TG)n repeat families are not highly repetitive in the human genome and seem to be 

clustered. The potential of repeat unit involvement in areas other than rare FS has 

been discussed in connection with their preferential occurrence in promotor areas of 

active genes. 

(TG)n sequence blocks have been shown to have an enhancer function in vitro 

(Hamada et al. 1984) and the potential to adopt a Z-DNA structure (Rich et al. 1984) 

that may attract specifIc nuclear proteins and therefore be able to arrest the DNA 

replication fork (V ogt 1990) or produce a nuclease-sensitive site. Arrest of the DNA 

replication fork coupled with incomplete or aberrant DNA repair may result in FS 

expression and increase the probability of double-strand breaks where daughter 

strands that have just replicated will join with the unreplicated parental strand. When 

replication is completed, the normal ligation process at the junction will generate the 

exchange, which can be visualized as chromatid exchange in metaphase chromosomes 

(Ikushima 1989). 

Although no direct evidence exists for exchange between tandem arrays on sister 

chromatids or homologous chromosomes at minisatellite sequences, the results of 

several studies using simultaneous treatment for sister chromatid differentiation and 

common FS expression support the idea that sister chromatid exchanges on 

chromosomes may preferentially occur in FS regions (Hirsch 1991, Tsuji et al. 1991). 

It will be interesting to determine whether similar mechanisms are involved in rare 

but distinct phenomenon of partial endoreduplication which may originate in common 

FS, as documented in Figure 2. 

The 5' flanking regions of transcriptionally active genes can often be structurally 

distinguished as nucleosome-free zones occupied by non-histone DNA-binding 

proteins (Mitchell and Tjian 1989). Stabilization of these domains is one of the 
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properties of locus control regions (LCR). The LCRs are saturated with DNA-binding 

sequences for transacting factors that enter into cooperative binding interactions to 

keep the promoter free of histones. They guarantee that transcription factor binding is 

stabilized at the replication fork in dividing cells and that it does not dissociate during 

chromatin assembly (Felsenfeld 1992). 

Since DNA replication must be completed prior to initiation of mitosis (Navas et al. 

1995) and since the addition of colcemid to the. cell culture overcomes this important 

checkpoint, delayed or absent replication at the LCR may lead to incomplete 

packaging and collapse of the chromosome stru~ture during metaphase; a process that 

results in FS expression (Sutherland 1988). LCR play an important role in the 

regulation of gene cluster transcription (Craddock et al. 1995). Whether FS localized 

in areas with multiple zinc fmger protein domains (Lichter et al. 1992) are a 

cytogenetic expression of such regulatory regions, or whether increased frequencies 

of common FS in certain cliriically distinguished popUlation groups represent an 

induced response in active genes remains to be solved. 

In conclusion, several lines of information indicate that FS are a manifestation of an 

altered state of genetic activity at areas associated with transcriptional regulation. 

Despite the current lack of molecular evidence, our fmdings and observations from 

routine cytogenetic screening, together with reports published to date, strongly 

support the idea that FS observed under specific culture conditions represent the 

cytogenetic expression of so called chromatin folding code in specific areas (see Vogt 

1990, although the author himself denies any such correlation). If the processes 

described in this paper can be demonstrated to be an important interactive mechanism 

in the expression of genetic diseases, the potential for widespread changes caused by 

FS formation and/or repeat sequence formation could result in. the production of 

variable and complex phenotypes, even within families. This could be responsible for 

disease as well as evolutionary advantageous genetic diversification. If found to be 

true, the mechanisms responsible for producing such divergent outcomes merit further 

study. 
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Figure 2 

A-F Examples oftri-radials produced by chromatid breaks in a previous division, 
followed by nondisjunction of the distal fragment, where the origin of the partial 
duplication corresponds to the area of common FS expression. A. 1 p21, B. 2p24, 
C. 7p13, D. 7qll, E. 9q12, F. 18q12 
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Summary 

Because gene-mapping efforts, usmg large kindreds and parametric methods of 

analysis, for the neurologic disorder Tourette syndrome have failed, efforts are being 

redirected toward association studies in young, genetically isolated populations. The 

availability of dense marker maps makes it feasible to search for association 

throughout the entire genome. We report the results of such a genome scan using 

DNA samples from Tourette patients and unaffected control subjects from the South 

African Afrikaner population. To optimize mapping efficiency, we chose a two step 

strategy. First we screened pools of DNA samples from both affected and control 

individuals, using a dense collection of 1,167 short tandem-repeat polymorphisms 

distributed throughout the genome. Second, we typed those markers displaying 

evidence of allele frequency-distribution shifts, along with additional tightly linked 

markers, using DNA from each affected and unaffected individual. To reduce false 

positives, we tested two independent groups of case and control subjects. Strongest 

evidence for association (P values 10.2 to 10·s) were obtained for markers within 

chromosomal regions encompassing D2S 1790 near the chromosome 2 centromere, 
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D6S477 on distal 6p, D8S257 on 8q, DllS933 on llq, D14S1003 on proximal 14q, 

D20S1085 on distal20q, and D21S1252 on 21q. 

Introduction 

Gilles de la Tourette syndrome (MIM 137580) is a childhood-onset neurological 

disorder characterized by chronic, involuntary motor and vocal tics. Both twin and 

family studies have indicated a high degree of heritability of Tourette syndrome, 

especially when individuals with chronic motor tics are considered affected (Patel 

1996). Concordance rates, among MZ twins, of 53% and 56% for full-blown Tourette 

syndrome and 77% and 94% for Tourette syndrome plus chronic motor tics have been 

reported (Price et al. 1985). Earlier segregation analyses indicated an autosomal 

dominant mode of inheritance, with reduced penetrance (Comings et al. 1984, Pauls 

and Leckman 1986, Eapen et al. 1993). More-recent studies, however, have indicated 

a more complex mode of inheritance (Hasstedt et al. 1995, Walkup et al. 1996). 

Tourette syndrome has been reported to co segregate with several neuropsychiatric 

disorders. A connection between Tourette syndrome and obsessive-compulsive 

disorder is generally accepted (pauls et al. 1991, 1995). Connection between Tourette 

syndrome and obsessive-compulsive disorder is generally accepted (Pauls et al. 1991, 

1995). Conections between Tourette syndrome and attention deficit disorder and 

between other disorders such as alcoholism, panic attacks, and conduct disorders are 

controversial (Comings and Comings 1988, Pauls et al. 1988, Comings 1994). 

A number of large Tourette kindreds have been identified (Kurian et al. 1986, 

Robertson and Trimble 1991, McMahon et al. 1992, Hasstedt et al. 1995, Heutink et 

al. 1995). Several of these kindreds have undergone whole-genome polymorphism 

screening. Parametric linkage analysis of the resulting data, under the assumption of 

autosomal dominant inheritance, failed to locate genes (pakstis et al. 1991, Wilkie et 

al. 1992, van de Wetering and Heutink 1993). Reasons for the failure are unknown but 

may be related to the wide range of disease severity within Tourette kindreds and/or to 
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misspecification of the mode of inheritance. Associations between three dopamine 

receptor genes and Tourette syndrome have been reported (Comings et al. 1993, 

Nothen et al. 1994, Grice et al. 1996), but replication has not been achieved 

(Hebebrand et al. 1997). 

The South African Afrikaner popUlation arose largely from a small group of 

European, primarily Dutch, immigrants who began settling in Cape Town in 1652 

(Torrington et al. 1984; Jenkins 1990; see also Government Communication and 

Information System [South Africa]). By 1701, there were 1,265 Europeans at the 

Cape. In the 18th century, European immigration to South Africa was small. In the ftrst 

half of the 19th century, particularly in the 1830s, the Afrikaners began the "Great 

Treks," a series of migrations of Europeans away from the coastal areas, to establish 

farming communities in the interior of South Africa. The small number of European 

founders of the Afrikaner population at Cape Town, the lack of large waves of 

European immigration, the Great Treks, and the relatively rapid increase in the 

Afrikaner population, today at ~3 million, all have contributed to the genetic isolation 

and relative homogeneity of this population. Common mutations and/or marker 

haplotypes among Afrikaners have been established for a number of disorders, 

including variegate porphyria, keratolytic winter erythema, hypercholesterolemia, and 

progressive familial heart block (Jenkins 1990, 1996, Meissner et al. 1996, Warnich et 

al. 1996, Starfield et al. 1997, Groenewald et al. 1998). 

We report here our efforts to map Tourette syndrome genes, using Afrikaner patients. 

Starting with a whole-genome screen of > 1,000 polymorphisms, we have identified 

several markers that show significant differences in allele frequency distributions 

between affected and control individuals. 
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Subjects, Material and Methods 

Patients 

Pro bands were selected at random, on consecutive clinic days, from a group of 

existing patients at the Tourette Syndrome Clinic in Pretoria, South Africa. All 

subjects were previously identified as Tourette syndrome patients according to criteria 

of the Diagnostic and Statistical Manual of Mental Disorders. Motor and vocal tics 

were in the moderately severe to severe range in all affected individuals. Tics started 

at <18 years, occurred for ~1 year, and were not absent for any periods >3 months. 

Prior to their recruitment, pro bands and available family members were evaluated 

personally by two educational psychologists for history of tics and presence and 

severity of comorbid problems. The following diagnostic tools were used: a self-report 

form designed by the Tourette Syndrome Association Genetic Consortium (January 

1995 version), the Yale Global Tic Severity Scale (Leckman et al. 1989), 

observation/examination methods for the purpose of excluding other movement or 

neurological disorders and for confirming observable tics typical of those associated 

with Tourette syndrome, and the Stony Brook Psychiatric Exclusion Checklist (Gadow 

and Sprafkin 1998). English language versions of all forms were used, as most 

Afrikaners, including all patients, control subjects, and evaluators, were bilingual. 

Forty Tourette syndrome patients were recruited in the initial phase of the study. For 

the follow up investigations an additional sixty unrelated patients agreed to participate 

(second group). All study subjects spoke Afrikaans and had Afrikaner family names 

but were not known to belong to any Afrikaner subgroup. Individuals of ascertainable 

English descent were excluded. The first and second groups of patients (and control 

subjects) were selected from the same population base. All blood samples were coded 

and made anonymous prior to DNA isolation. Only the information on age, sex, tics 

severity range, and comorbid behavioral problems remained attached to each sample. 

The study was approved by the South African Medical Research Council Review 

Board. 

Stellenbosch University  https://scholar.sun.ac.za



81 

Controls 

The Afrikaner individuals (n = 96) included in the control group came from two 

sources: clinic personnel and medical students. Like the patients, all control subjects 

spoke Afrikaans and had Afrikaner family names. Control subjects were required to 

complete the same selfreport form used by the patients and, in addition, were 

personally evaluated by one of us (G.S.G.) for the presence of chronic motor and 

vocal tics. Their blood samples were coded and made anonymous prior to DNA 

isolation. 

Primers 

Primer pairs for the detection of short tandem-repeat polymorphisms (STRPs) were 

obtained from Research Genetics. Approximately 40% of the markers were tri- and 

tetranucleotide-repeat polymorphisms developed within the Cooperative Human 

Linkage Center, and nearly all remaining 60% Genethon dinucleotide-repeat 

polymorphisms. We determined allele sizes, using known genotypes of three CEPH 

individuals: 133101, 133102 and 134702. Marker spacing was determined and close 

flanking markers selected by use of comprehensive sex-averaged genetic maps 

produced by the program CRI-MAP (Lander and Green 1987, Broman et al. [in 

press], see also Center for Medical Genetics). 

Sampling and DNA Pooling 

Genomic DNA was isolated from individual blood samples by standard methods 

(Sambrook et al. 1989). DNA concentrations were measured by spectrophotometric 

readings at OD26o. Pools of template DNA were prepared by combining IJlg of DNA 

from each of 20 individuals from the fIrst group of subjects. Two non-overlapping 

pools were prepared from the affected individuals (AI and A2) and from the controls 

(Cl and C2). The pooled DNA was diluted to a fmal concentration of20nglJll. 
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Amplification ofSTRP markers was performed in 96-well microtiter plates with 45 ng 

of either pooled DNA or individual DNA in a 10-,.Ll volume containing 1.5 mM 

MgCh; 50 mM KCI; 10 mM Tris-HCI, pH 8.3; 0.01 % (w/v) gelatin; 200 ~M each 

dGTP, dATP, and dTTP; 2.5 ~M dCTP; 0.35 ~Ci aC2P]-dCTP (NEN Du Pont; 800 

Cilmmole, 10 ~CiI~I); lOng (-3 pmol) each PCR primer; and 0.3 U AmpliTaq 

polymerase (Boehringer Mannheim). In most cases, two markers were amplified 

simultaneously. Samples were subjected to 27 cycles consisting of 30 sec at 94°, 75 

sec at 55°, and 15 sec at 72°, with a fmal 6 min at 72° after the last cycle. PCR 

products were denatured by adding formamide and by heating for 10 min at 95° prior 

to loading (1~I) onto vertical 6.5% polyacrylamide, 7.7 M urea DNA sequencing gel 

and running at 70 W constant power for -3 hours. Gels were dried on filter paper and 

exposed on X-ray film. 

Statistical analysis 

The following statistics were calculated to compare affected and control allele 

frequency distributions for each polymorhic marker: 

"Heterogeneity" approach. - For the m alleles at a given marker, an m by 2 

contingency table was formed, with columns corresponding to alleles in case and 

control individuals. Rows were ordered by increasing allele size, and rows containing 

cells with expected values <1 were pooled with neighboring rows. From a X2 analysis, 

empirical (two-sided) significance levels were obtained. This approach is expected to 

be powerful when several alleles occur in different frequencies in the case and control 

subjects. 

"Single alleles" approach. - A given allele, i, was selected and all other alleles 

combined into a second category, not i. The resulting 2 by 2 table was analyzed by use 

of Fisher's exact test. The smallest (one-sided) P-value was selected (and the allele 

identified at which it occurred) and adjusted for multiple comparisons by means of a 
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Bonferroni correction. This approach is expected to be powerful when a single allele 

shows association. One-sided P values were used because, when the frequency of a 

given allele is increased in case versus control subjects, some other allele(s) must 

necessarily be decreased. When one allele is tested after another, each allele should 

thus be tested only for positive association. 

"t-test" approach. - Mean allele sizes for case and control subjects were compared 

with use of the t-test. Empirical p-values (two-sided) were calculated numerically. 

This approach is expected to be powerful when allele sizes are shifted in a constant 

direction between case and control subjects. 

Table 1 Chromosomal Breakdown of Markers Used in Whole-Genome 

Screen 

Chromosome NO.ofSTRPs Chromosome NO.ofSTRPs 

1 96 13 41 

2 91 14 48 

3 60 15 31 

4 65 16 35 

5 78 17 41 

6 69 18 47 

7 66 19 24 

8 67 20 32 

9 39 21 14 

10 43 22 17 

11 44 X 52 

12 67 
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Results 

A ftrst group of 40 Afrikaners clearly affected with Tourette syndrome, along with 40 

unaffected Afrikaner controls, were recruited. DNA was pooled from two 

nonoverlapping sets of 20 individuals for both affected (AI and A2) and control (CI 

and C2) subjects. Two sets of pools were chosen, to reduce the false-positive rate due 

to slight differences in DNA concentrations and pipetting inaccuracies. The pooled 

DNA, along with standard DNA from the parents ofCEPH family 1331, was used as 

template in the PCR ampliftcation of 1,167 STRPs distributed throughout the entire 

genome. Chromosomal breakdown of the STRPs is shown in table 1. Sex-averaged 

spacing between STRPs was 3.0 ± 3.2 cM (mean ± SD). Ninety-ftve percent of the 

intervals between markers were <9.0 cM. Fifteen intervals were >15 cM, with the 

very largest at 22 cM. 

Visual examination of the autoradiographic images of pooled PCR products revealed 

51 loci with consistent differences in allele distributions between the two affected and 

'two control DNA pools. Results from six of these loci are displayed in ftgure 1. 

Criteria for selection of the positive loci were (1) consistency of observed differences 

between affected and control subjects as determined by repeat PCR and by use of two 

independent sets of control and affected pools, and (2) prevalence of one allele in 

pooled PCR products from the affected pools (indicated by arrows in fig. 1). 

Ampliftcation of the vast majority of the markers resulted in indistinguishable 

radiographic images between affected and control pools. For a small proportion of 

STRPs, differences between affected and control pools were detected for AIICI or 

A2/C2, but not for both. This may be the consequence of pooling DNA from only 20 

individuals. 

To evaluate the statistical significance of the observed differences in pooled PCR 

products, we subjected the 51 putative positive markers to individual typing, using the 

same group of 40 affected and 40 control DNA samples used for the initial genomic 

screen. We than compared the resulting pairs of allele frequency distributions, using 

three different statistical approaches (see the Subjects, Material, and Methods section). 
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For 15 of the 51 loci, at least one of the calculated statistics showed significance at the 

.05 level (table 2). For the remaining 36 markers, apparent differences between 

affected and control subjects were not confmned at the .05 level. 

In an attempt to reproduce these initial results, a second group of unrelated Afrikaners 

(60 affected and 56 control individuals) were recruited, and their ONA was typed 

individually with the 15 positive markers from the first phase of the study. Results of 

the typings for the second group are also listed in table 2. For the majority of loci, 

evidence for association was not confmned. However, . in four instances (02S 1790, 

06S477, 011S933, 020S1085), the P-values for the second group also reached 

significance and were even lower than those for the first group. For all 15 markers, P 

(heterogeneity) . values from the first and second groups were then combined by 

summing X2 and dfvalues (table 2). This approach of combining results was chosen as 

a safeguard, to eliminate potential effects of sizing alleles differently in the two 

samples. Combining results increased support for association in nearly every case 

relative to the results from either the first or second group of samples. 

To extend these results, we typed a number of markers closely linked to positive 

markers from the whole-genome scan, using both groups of samples jointly. Markers 

at several of these loci gave significant results, including D2S440 adjacent to 

D2S1790, D8S257 and D8S1132 close to D8S1119, DllS1377 adjacent to DllS933, 

020S468 and 020S469, both very close to D20S1085, and GATA45C03 near 

D21S1252 (table 3). Results forDl1S1377 were particularly impressive. In addition, 

two tightly linked markers on chromosome 14 also produced significant results (table 

3). The marker at locus D14S742 was identified in the first stage of the study but did 

not quite yield P values <0.05 for the first set of samples. No additional markers with 

significant allele distribution differences were identified from chromosomes 1,4,5,6, 

12, or 13. Allele frequency distributions for DllS1377 and GATA45C03 are 

displayed in table 4. Note, that for each marker, more than two common alleles were 

enriched in the affected subjects compared with control subjects. 
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Figure 1 

Electrophoretic profiles for markers that demonstrated consistent allele frequency 
distribution between affected and control subjects in the fIrst group. Segments of 
autoradiographs from polyacrylamide gels are displayed for six STRPs at the indicated 
loci. The DNA templates used to generate the amplifIed DNA fragments were in the 
same order for each marker: standard DNA from CEPH family parents 133101 (1) and 
133102 (2), DNA pool from set 1 of unaffected control subjects (CI), DNA pool from 
set 1 of affected subjects (AI), independent amplifIcation of pools CI and AI , DNA 
pool from set 1 of affected subjects (A 1), independent amplifIcation of pools C 1 and 
AI, DNA pool from set 2 of unaffected control subjects (C2), and DNA pool from set 
2 of affected subjects (A2). Arrows mark alleles enriched in the affected subjects. 
Sizes (in nucleotides) for the enriched alleles are listed on the left. 
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1 2 C1 A1 C1 A1 C2 A2 

296-- .. 
• 

065477 
1 2 C1 A1 C1 A1 C2 A2 

... 
229-- .... 

. .... ... . 

0851119 
1 2 C1 A1 C1 A1 C2 A2 

0115933 
1 2 C1 A1 C1 A1 C2 A2 

255-

02051085 
1 2 C1 A1 C1 A1 C2 A2 

173-

02151252 
1 2 C1 A1 C1 A1 C2 A2 

273-

.4; 

Stellenbosch University  https://scholar.sun.ac.za



Table 2 
Loci associated with Tourette syndrome in first and second groups of affecteds 

FIRST & SECOND 
FIRST GROUP SECOND GROUP GROUPS 

OF AFFECTEOS OF AFFECTEOS COMBINED 

LOCUS cM P(single P(single 
P(het) alleles) P(t-test) P(het) alleles) P(t-test) P(het) 

001S0485 176.7 0.02 0.005 0.12 0.25 0.24 0.22 0.02 
00181665 136.2 0.01 0.001 0.04 0.12 0.06 0.45 0.008 
00281391 227.9 0.04 0.16 0.41 0.14 0.1 0.29 0.03 
00281790 113.4 0.01 0.04 0.03 0.006 0.01 0.86 0.0006 
00481551 40.7 0.01 0.02 0.12 0.42 0.64 0.34 0.03 
00580666 176.4 0.03 0.02 0.07 0.19 0.62 0.92 0.03 
00680477 9.2 0.005 0.06 0.08 0.02 0.04 0.41 0.0009 
00680470 17.9 0.0006 0.02 0.001 0.43 0.21 0.13 0.004 
00881119 133.4 0.03 0.06 0.66 0.09 0.05 0.82 0.01 
01180933 158.1 0.05 0.006 0.75 0.002 0.009 0.38 0.0009 
01280327 126 0.001 0.1 0.04 0.38 0.3 0.63 0.006 
01380788 50.7 0.005 0.16 0.5 0.56 0.43 0.95 0.02 
02081085 119.7 0.03 0.03 0.65 0.0005 0.0004 0.76 0.0001 
02181252 60.2 0.00001 0.006 0.42 0.07 0.12 0.36 0.000008 
02181435 41.9 0.04 0.05 0.03 0.46 0.17 0.24 0.09 

NOTE. - het = heterogeneity. P values indicate the probability of obtaining a difference as large 
or larger than the one observed if there is no association between disease and marker. 
Values were calculated by means of three different approaches, as described 
in the Subjects, Material, and Methods section. 

I 
I 
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00 
........ 
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Table 3 Additional Loci in 8elected Chromosomal Regions Associated 
with Tourette 8yndrome 

P VALUE FOR APPROACH 
LOCU8 cM Heterogeneity 8ingle Alleles t-test 

00280440 113.4 0.002 0.001 0.54 
00880257 145 0.01 0.004 0.74 
00881132 155 0.05 0.1 0.33 
01181377 119.2 <10-6 0.0005 0.01 
01480742 12.5 0.06 0.02 0.03 
01481003 12.5 0.002 0.003 0.00003 
02080468 121.3 0.05 0.06 0.005 
02080469 121.9 0.1 0.06 0.66 
GATA45C03 31.3 0.0004 . 0.004 0.04 

chromosome 21 

NOTE. - Results were obtained with DNA from affected and control individuals in 
both fIrst and second groups. See note for table 2. 

Table 4 Allele Frequency Oistributions for Two Markers with Especially 
Low PValues 

Mfd 316 GATA45C03 
at 01181377 at chromosome 21 

Allele Affected Control Allele Affected Control 

124 1 0 266 0 3 
128 4 0 268 62 66 
130 4 7 286 1 0 
132 2 6 288 10 5 
134 .45 20 289 6 5 
136 62 42 291 32 47 
138 22 52 302 1 3 
140 6 19 305 4 14 
142 16 5 308 15 16 
144 4 9 310 28 19 
146 8 6 312 14 1 
148 0 6 314 3 0 

318 0 1 

NOTE. - Results were obtained with DNA from affected and control individuals in 
both fIrst and second groups. 

88 
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Discussion 

The primary goal -of this study was to identify loci associated with Gilles de la 

Tourette syndrome in the Afrikaner population, using the straightforward comparison 

of polymorphic allele frequency distributions between severely affected probands and 

unaffected control subjects. We believe we have accomplished this goal for the 
I 

markers at the loci listed in tables 2 and 3. 

Several groups have identified linkage disequilibrium over broad chromosomal 

intervals in isolated populations. Disequilibrium has readily been detected over 

intervals ranging up to 15 cM in the Finish population (peltonen and Uusitalo 1997), 

which is likely to be considerably older than the Afrikaners. Among populations 

thought to be similar in age to the Afrikaners (-12 generations), Houwen et al. (1994) 

identified disequilibrium over a 19-cM interval in patients with intrahepatic 

cholestasis from an isolated Netherlands fishing village, and Puffenberger et al. (1994) 

found disequilibrium over at least 10 cM among American Mennonites with 

Hirschsprung disease. Among Afrikaners, Starfield et al. (1997) detected 

disequilibrium over 10 cM for keratolytic winter erythema, and Groenewald et al. 

(1998) recently reported shared haplotypes extending over -17 cM for variegate 

porphyria. Therefore our use of a highly informative marker density of 3.0 cM gave us 

a good chance of successfully detecting association among Afrikaner Tourette 

patients. 

The use of DNA pools in the whole-genome screen dramatically reduced the amount 

of required laboratory work. Allele frequency distributions obtained from pooled 

DNA templates have been found to match, reasonably well, those determined by 

typing individuals (Pacek et al. 1993, Graff et al. 1997). Pooling approaches are 

rapidly becoming standard for the mapping of rare recessive disorders within isolated 

populations (Sheffield et al. 1994, Peltonen and Uusitalo 1997). Although careful 

scanning of the electrophoretic profiles of the amplified fragments might be ideal 

(Barcellos et al. 1997, Graff et al. 1997), visual selection of markers with differences 

in allele frequency distributions is efficient and has worked well for recessive 
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disorders. The fact that only 15 of 51 loci that appeared positive visually were 

confmned by typing individuals indicated that we were generous in our selection of 

candidate loci and that, although false-negative loci cannot be completely ruled out, 

true-positive loci were not easily missed. 

Analysis of the amplified fragments from the DNA pools gave no indication that a 

single predominant Tourette gene exists among the Afrikaners or, that Tourette genes 

were introduced into the Afrikaner population by a single founder. Although specific 

alleles at various loci were clearly enriched in affected versus control subjects, no 

single predominant alleles were found at any loci (see, for example, table 4). 

Therefore, even in the isolated Afrikaner population, several founding Tourette alleles 

at several loci likely exist. 

Since no one yet knows how many Tourette genes exist, how they interact, how many 

Afrikaner founders introduced Tourette genes into this population, or when the genes 

might have been introduced, it is not possible to project how many patients would be 

required to detect association and what P values would be significant (Kruglyak 

1997). It is likewise impossible to completely rule out subtle, undetected population 

differences between the patient and the control groups. Nevertheless, we feel that the 

P-values displayed in tables 2 and 3 are very promising. Given 1,167 markers tested, 

and on the basis of the conservative Bonferroni correction for multiple testing, we 

would by chance expect 0.1 results significant at the 10-4 level. In fact, we found four 

such markers on chromosomes 11, 14, 20, and 2l. Our use of repeat PCR (testing 

pools A 1 and C 1 twice, as shown in the figure) and separate pools of affected and 

control individuals (pools AI, A2, CI, and C2), the confmnation of results using an 

entire separate group of Tourette patients, and the typing of additional STRPs tightly 

linked to the original positives were all designed to reduce the possibility of false 

positives. 

We assert that the only practical route to isolation of Afrikaner Tourette genes is to 

pursue loci that.give strong evidence for association and that eventually are confmned 

by independent studies. In this regard, Leppert and McMahon, in their whole-genome-
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polymorhism screen of unilineal branches of a very large Utah Tourette kindred 

(McMahon et al. 1992), obtained some of their strongest positive LOD scores for 

several markers (including D8S257) in the exact same region of chromosome 8q as 

that identified in this study (unpublished results). Also, Devor and Magee (in press) 

very recently reported a family in which individuals with Tourette syndrome or tics 

showed segregation with a balanced chromosome 1 - 8 translocation 

t[(l:8)(q21.1;q22.l)]. D8S257 is located at or very close to 8q22.l (Bray-Ward et al. 

1996). We plan to continue our efforts among the Afrikaners by collecting parents of 

affected individuals, so that shared haplotypes can be identified, and by collecting 

Tourette families from South African Gereformeerde Church members who are 

themselves a subgroup of Afrikaners (Torrington et al. 1984). 
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CHAPTER 6 

South African Medical Journal (submitted for publication, Jun 1999) 

THE SEARCH FOR TOURETTE SYNDROME GENES: AN 

OVERVIEW 

Simonic I., Gericke G. S. 

Neurogenetics Research Initiative, 1 Soutpansberg Rd., MRC Pretoria 

Clinical description of Tourette syndrome 

By working together in Paris in the 1880s on the classification of movement 

disorders, Jean Martin Charcot, the leading French neurologist at the time and his 

intern Georges Gilles de la Tourette were able to draw attention to a distinguished 

form of movement disorder that is of great interest today (Lajonchere et al. 1996) The 

major features of the disorder as described by Tourette in his 1885 article were 

involuntary movements and sounds, markedly enhanced startle reactions, a tendency 

to repeat both vocalizations (echolalia) and movements (echopraxia), and 

uncontrolable verbal obscenities (coprolalia). Tourette also believed that this 

childhood onset syndrome, later named after him, did not affect the senses or intellect, 

and that the condition was hereditary, variable in severity across the patient's life 

span, and incurable. 

According to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. 

(DSM-IV) (American Psychiatric Association 1994), the diagnostic criteria for Gilles 

de la Tourette syndrome (GTS) include: 

1. the presence of motor and one or more vocal tics at some time during the illness, 

although not necessarily concurrently; 

2. occurrence of tics throughout a period of> 1 year, with no tic-free period of >3 

consecutive months; 
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3. marked distress or significant impairment m social, occupational, or other 

important areas of functioning; 

4. onset at <18 years of age; 

5. lack of identifiable environmental causes or other contributing medical conditions. 

The primary symptom of GTS - tics - are defmed as sudden, rapid, recurrent, non­

rhythmic, stereotype movements or vocalization (Robertson and Stem 1997) and can 

range in affected individuals from simple tics, often around the eyes, simple clearing 

of the voice, or sniffmg to more complex utterances (Robertson 1989). Although of 

involuntary nature, tics can wax and wane and even be suppressed. Other symptoms 

including echolalia, arithmomania, grunting, and coprolalia may develop, as the 

disease progresses. Although coprolalia is often regarded as the most notorious 

symptom associated with GTS, it has been proven rather infrequent (- 8%) in the 

population of clinic patients (Goldenberg et al. 1994). 

It has been documented that biological relatives of GTS patients more frequently 

exhibit obsessive-compulsive symptoms and chronic tics, than relatives in control 

families (pauls et al. 1991). The rmding supports the hypothesis that obsessive­

compulsive disorder (OCD) and chronic tic disorder (CT) together with GTS are 

representing an alternative manifestation of the same underlying disorder. The 

distribution of OCD symptoms recognized in individuals with GTS (Frankel et al. 

1986, Pauls et al. 1986, Kurlan 1989, Leonard et al. 1992, Swedo and Leonard 1994) 

and those more prevalent in pure OCD patients are, however, different. Moreover, 

comorbid expression of OCD appears to be sex-related with OCD by itself occurring 

more frequently in female relatives ofGTS probands (Eapen et al. 1997a). 

GTS has been observed in all studied populations (Staley et al. 1997) with the vast 

majority of affected individuals being able to lead normal, productive lives, and 

remaining undiagnosed because their symptoms do not require medical attention 

(Leckman et al. 1997). However, with increasing severity of either tics or associated 

behavioral problems such as hyperactivity, temper control, aggressive behavior, and 

obsessive compulsive symptoms, GTS may become a socially and psychologically 

devastating condition. 
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A strong genetic component has been determined for GTS by twin, and family based 

studies (Price et al. 1986, LaBuda et al. 1993) which provoked attempts for the 

elucidation of its genetic basis. So far no biochemical or morphological impairment 

has been consistently associated with GTS. The suspected implication of head of the 

nucleus caudatus in GTS, based on one SPECT tomographical study is currently 

under further investigation. Therefore, the first step in the elucidation of the genetics 

of GTS is the identification of a genetic map location of GTS underlying gene(s). This 

can be done via genome-wide search for linked/associated genetic loci, or via 

candidate gene approach and association of the functional polymorphism in known 

candidate genes with GTS phenotype. 

Genetic models and linkage studies 

The most powerful method in genome wide searches for genetic loci linked to 

a trait is standard lod score (linkage) analysis. However, in order to be successfully 

applied, it requires precise specification of the phenotype (diagnostic criteria) and 

genetic model, including mode of inheritance, penetrance (a proportion of individuals 

with specific genotype that show the expected phenotype), and the population 

prevalence of the condition (Lander and Schork 1994). 

The diagnosis of GTS is a subject of ongoing debate and controversy (Patel 1996). 

Many scientists, attempting to elucidate the genetic basis of GTS expressed 

reservations about the DSM-IV criteria and proposed an alternative classification 

scheme, recognized by the Tourette Syndrome Association (TSA) Genetic Linkage 
., 

Consortium (KurIan 1997). The scheme emphasizes GTS as tic-based dysfunction, 

includes detailed exclusion criteria and a list of clinical features for increasing 

confidence for the diagnosis of GTS. 

In order to specify the mode of inheritance and penetrance, complex segregation 

analysis were carried out in both nuclear families and extended GTS pedigrees. 

Earlier studies supported a mixed model of inheritance for GTS including a major 

semidominant gene with low heritability of the multifactorial background variation 
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(Comings et al. 1984). In later family studies evidence was found for the presence of 

rare, semidominant, incompletely penetrant allele considered to lead to expression of 

the disorder (Devor 1984), autosomal dominant pattern of inheritance (Pauls and 

Leckman 1986) or intermediate pattern of inheritance (Hasstedt et al. 1995). All 

family studies consistently rejected purely polygenic and autosomal recessive models 
, 

of inheritance, with the latest accepted model indicating that the susceptibility for 

GTS is conveyed by an additive major locus in combination with a multifactorial 

background (Walkup et al. 1996). 

When fIrst described, GTS was considered to be rare. Currently, the population 

prevalence of about 4-5 per 10,000 is the most acknowledged estimate (Eapen et al. 
/ 

1997b) with the risks to fIrst-degree relatives of GTS individuals being about 200 

times the population prevalence (Santangelo et al. 1996). The most recent prevalence 

r estimates of GTS in mainstream school population, however, suggest that the mild 

form ofGTS is much more common than previously thought with a prevalence rate of 

almost 3/100 in the age group of 13-14 years (Mason et al. 1998). The reason for such 

differences is based on whether one just considers fully expressing cases versus all 

those that fulfIl diagnostic criteria in the community i.e. outside clinic settings. 

All attempts to link genetic markers with GTS in systematic genome searches to date 

were unsuccessful. The failure, as discussed by number of authors (Devor 1990, Patel 

1996, Robertson and Boardman 1996, Barr and Sandor 1998), could be due to 

ambiguous phenotypic delineation of GTS and, perhaps most importantly, a genetic 

model complicated by equivocal gene frequency, incomplete (reduced) penetrance, 

and bilineal transmission in GTS families (KurIan et al. 1994). Moreover, sex-specifIc 

expression of GTS behaviors and sex-associated differences in genetic transmission 

consistent with possible role of genomic imprinting in phenotypic expression of GTS 

have been documented (Lichter et al. 1995, Eapen et al. 1997c). 

The lack of success usmg a family based linkage approach has recently led 

researchers to the adoption of model-free, non-parametric methods which ignore 

unaffected people, and look for chromosomal segments that are shared by affected 

individuals (e.g. affected sib-pair studies). These methods do not require precise 
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specification of genetic model and concentrate on clearly affected individuals only. 

Another approach currently supported in a search for GIS gene(s) involves linkage 

disequilibrium (LD) mapping in historically isolated populations with greater genetic 

homogeneity . 

Candidate genes and association studies 

Among the human genes that have recently been characterized, no obvious 

candidates for GIS have been identified. Nevertheless, dopamine-receptor genes, 

which are very popular candidates for most neuropsychiatric disorders, because of the 

earlier observations of the therapeutic effects of dopamine inhibitor drugs, have been 

investigated for the association with GIS in numerous studies. An initial positive 

association of the Al allele of the dopamine D2 receptor gene (DRD2) with GIS was 

subsequently disproved in several studies (Devor et al. 1990, Gelender et al. 1994, 

Nothen et al. 1994). Ihe fmding of positive linkage disequilibrium (LD) reported 

between the dopamine D4 receptor allele (DRD4*7R) and GIS (Grice et al. 1996) 

was also not replicated (Barr et al. 1996). All other known dopamine receptor genes 

as well as the dopa,rnine beta hydroxylase gene and the tyrosine hydroxylase gene 

were excluded by classical linkage analysis in large pedigrees from playing a role in 

etiology of GIS (Brett et al. 1995a, Barr et al. 1997, Devor et al. 1998). 

Serotonergic pathway disturbances have also been implicated in number of 

neuropsychiatric disorders including GIS, substance abuse and depression. 

Significantly lower levels of hydroxyphenyl glycol and serotonin have been reported 

after examination of urinary amines and their metabolites in GIS patients (Bomstein 

and Baker 1992) and serotoninergic agents have been successfully used for treatment 

of GIS symptoms, particularly tics (Silvestri et al. 1994). Numerous searches were 

performed in order to defme an association between GIS and some of the variants of 

serotonin receptor genes with no success (Brett et al. 1995b, Gelender et al. 1995). 

Other candidate gene studies led to the exclusion of the whole chromosome regions 

from linkage with GIS (Devor et al. 1991, Brett et al. 1997), or when positive 

awaiting independent confirmation (Gate et al. 1998). 
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Since no sufficient support was found for association of the most obvious candidate 

genes with GTS, and virtually all the genes, expressed in brain, might be good 

candidates, further candidate gene approaches can only be effective if proceeded by 

the identification of suggestive chromosome location of GTS gene(s). Such areas of 

interest may be identified by linkage/association studies, or by identification of a 

chromosomal abnormality co-segregating with disease phenotype in proband and his 

affected family members. 

Chromosome abnormalities reported in probands with GTS 

There are no characteristic chromosome abnormalities associated with GTS. 

Most clinical cases are therefore not referred for cytogenetic analysis. Nevertheless, 

some investigators continue searching for chromosome abnormalities in their GTS 

probands, because such fmding may represent an additional valuable information 

about possible marker areas for genetic loci involved in the susceptibility to the trait. 

Numerous seemingly nonspecific chromosomal abnormalities have been reported in 

GTS families up to date. Among the most significant fmdings is an apparently 

balanced translocation, t(7;18)(q22-q31;q22.1), identified in a proband with GTS and 
, 

several of his relatives presenting various clinical GTS symptoms (Heutink et al. 

1990). Subsequently a proband with GTS and terminal deletion, del (18)(q22.2-qter) 

was identified (Donnai 1987), as a second reported case of chromosome 18q22 

abnormality in conjunction with GTS phenotype. Both fmdings led to the tentative 

assignment of GTS gene locus at 18q21-q22, a region currently subjected to 

molecular cloning (Boghosian-Sell et al. 1996). 

Among the chromosome areas detected more than once in probands with chromosome 

abnormality and GTS phenotype are chromosome 9p, deleted in two GTS probands 

(Sigh et al. 1982, Taylor et al. 1991), and sex chromosome abnormalities, namely 

47,XYY and 47,XXX karyotypes (Marskey 1974, Sigh et al. 1982). 

The GTS symptomatology has also been observed in several individuals with trisomy 

21 (Barabas et al. 1986, Karlinsky et al. 1986, Collacott and Ismail 1988), in a male 
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with Fragile X syndrome, moderate mental retardation and autism (Kerbeshian et al. 

1984), and in probands with Asperger's syndrome (Kerbeshian and Burd 1986, 

Marriage et al. 1993). In one instance a co-occurrence of childhood onset GTS and 

adult onset Huntington disease has been described (Kerbeshian et al. 1991). 

Traditional linkage approaches have not found evidence for a linked marker at most 

of the above chromosomal regions so far. As such, the co-segregation of any 

chromosome translocation, micro-deletion, or -duplication of chromosome region 

with GTS could be coincidental and unrelated to the phenotype, since the population 

frequency of balanced translocation carriers is 111,000 and the prevalence of 

chromosome deleti~ns / duplications is approximately 1110,000 at birth. It IS, 

however, possible that some of the above chromosome variations are causally related 

to the phenotype and their molecular identification will provide valuable insights into 

GTS. 

Similarly, a relatively high incidence of 111,000 live births for sex chromosome 

trisomies and 11800 for trisomy 21 argue against an interrelationship between sex­

chromosome abnormalities and GTS as well as Down syndrome and GTS (Myers and 

Pueschel 1995). 

More recently, a balanced chromosomal translocation, t(1;8)(q21;q22.l), co­

segregating with the GTS affection status in the family was described (Devor and 

Magee, in press). This is a third report associating GTS with the chromosome 8q22.l 

region. A suggestive linkage (=significant at low stringency level) was found between 

GTS and the 8q22 region by Leppert et al. (1996), as well as in a case-control 

association study in the Afrikaner popUlation of South Africa (Simonic et al. 1998). 

The cloning of the chromosome 8 breakpoint in the above family is therefore justified 

and currently well under way (J.L. Weber - personal communication). 
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GTS and environmental factors 

While the role of genetics in GTS etiology is now well documented and 

accepted, the environmental factors influencing penetrance as well as severity of 

phenotypic expression ofGTS gene(s) are in the early stages of investigation. 

Clinical observations and recent results of immunological studies indicate that 

infections with group A beta-hemolytic streptococci, among others, may trigger onset 

or worsening of tics in subset ofGTS pediatric cases (Allen et al. 1995). These cases 

have been identified as pediatric autoimmune neuropsychiatric disorders (OCD and 

TD) associated with streptococcal infections (PANDAS) (Garvey et al. 1998). 

It has been hypothesized that Sydenham's chorea (SC), a major manifestation of 

rheumatic fever (RF), may provid~ a medical model for OCD and GTS. SC is a sequel 

of an untreated Group A B-hemolytic streptococcal infection (GABHS) with the 

pathophysiology probably being due to antibodies to GABHS cross-reacting with 

certain brain regions. The expression of DS/I7, a B-Iymphocyte cell surface antigen, 

which was assigned as trait marker for susceptibility to SC and RF, has been also 

found greater in subset of patients with childhood onset OCD and GTS without 

documented SC or RF (Murphy et al. 1997). Furthermore, significantly higher serum 

levels of antineuronal antibodies against putamen have been demonstrated in children 

and adolescents with GTS than in the controls (Singer et al. 1998). 

Autoimmunity, T-cells and chromosome fragility 

The cells responsible for immune specificity are lymphocytes. During the 

1960s it was discovered that the two major classes of immune responses are mediated 

by different classes of lymphocytes: T - cells, which develop in the thymus, are 

responsible for cell-mediated immunity; B-cells, which in mammals develop in the 

adult bone marrow or the fetal liver, produce antibodies. The majority of T­

lymphocytes playa regulatory role in immunity, acting either to enhance or suppress 

the responses of other white blood cells. These cells are called helper T -cells or Th­

cells. 
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Differentiated Th-cells produce restricted set of lymphokines, allowing their 

subdivision into two major subsets, Thl- and Th2-cells, which led to a new paradigm 

for immunoregulationbased on the ThlITh2 dichotomy (Carter and Dutton 1996). In 

general, Thl cells produce interleukin (IL)-2 and interferon (IFN)-gamma, while Th2 

cells characteristically produce IL-4, IL-5, and IL-6. 

According to the results obtained in different experimental models of autoimmune 

diseases, the Thl-cells contribute to the pathogenesis of several organ-specific 

autoimmune diseases, whereas Th2-cells may inhibit disease development (Charlton 

and Lafferty 1995). There is a general agreement that the different functional subsets 

of Th-cells arise post-thymically from a common pool of precursors and as a 

consequence of antigen activation. However, the factors affecting differentiation of 

Th precursors into Thl or Th2 subsets are still unclear. 

Fragile sites (FS) on human chromosomes which are defmed as vulnerable regions 

where lesions occur spontaneously or after induction with certain break-inducing 

agents, have been divided into two main groups, viz. "rare" and "common" FS 

according to their expression frequencies and mode of induction. Most of the rare FS 

have been cloned by now, while the molecular and biological significance of common 

fragility remains enigmatic (Sutherland and Richards 1999). 

The fmding of increased breakage rates at numerous common FS in two subsequent 

studies (Gericke et al. 1995, 1996) indicate that for unknown reasons, the T­

lymphocyte DNA at the chromosomal level of organization is more sensitive to the 

inhibition of DNA synthesis in GTS individuals than in controls without GTS. Such 

observation may well be a result of different initial cell type ratio (e.g. Thl1Th2) prior 

to mitogen stimulation in two groups of samples and therefore it may prove important 

to investigate the T-Iymphocyte balance (e.g. ThllTh2) in purified T-cell samples 

from GTS vs. non-GTS individuals. Any alterations in such balance would be 

suggestive of the type of candidate genes contributing to the GTS phenotype. 

The relation between the markers for streptococcal infections, higher serum levels of 

specific antineuronal antibodies, increased common chromosome fragility and clinical 
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characteristics of GTS remain unknown. Nevertheless, if proven, autoimmune 

etiology of tics/OCD even in a subset of GTS/OCD patients will have large 

implications for the treatment, prevention (Swedo et al. 1997, 1998), and genetic 

studies ofGTS . 

. Summary 

The attempts to narrow phenotypic defmition of GTS and other 

neurobehavioral and neuropsychiatric traits will undoubtedly continue until genetic 

and environmental factors playing a role in their etiology are elucidated. 

The unsuccessful gene-mapping efforts and number of spurious candidate gene 

association fmdings over the years of searching for GTS loci are by most researchers 

in the field viewed as an argument for pursuing alternative strategies, rather than a 

failure. As a consequence, there is a move towards non-parametric methods of 

analysis, collection :of smaller, less densely affected families as well as analysis of 

large data sets obtained by international collaboration. Candidate gene and candidate 

loci association studies as well have good chances of success, if the results are 

interpreted with caution and are followed by well-designed confirmatory studies. 

It remains important to pursue the genetic studies to fmd a defmitive diagnostic test 

and understand the pathophysiology of a common neurobehavioral disorder which has 

the potential of disrupting the development of children of all population groups. 

Several discoveries in GTS research in recent years deserve further elucidation. One 

is the observation of tic- aggravation following streptococcal infections, offering a 

whole new perspective in understanding ofGTS. The other is a threefold independent 

association of one chromosome region (8q22.l) with GTS. Discoveries of similar 

kind are promise of even more challenging and hopefully successful future 

developments in the search for the GTS gene(s). 
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Significant Evidence for Linkage Disequilibrium over a 

5 cM region among Afrikaners 

Derek Gordon1, Ingrid Simonic2, Jurg Ott1 

1 Department of Statistical Genetics, Rockefeller University, New York; lNeurogenetics Research 

Initiative, MRC Pretoria, South Africa 

Abstract 

The extent of disequilibrium on the popUlation level, or background disequilibrium, 

can provide important information regarding complex-trait-mapping study design. 

Therefore, it is vitally important that the extent of background disequilibrium in 

differing popUlations be investigated. In this work, we explore the extent of deviations 

from Hardy-Weinberg equilibrium (HWE) at a marker locus and linkage 

disequilibrium (LD) between pairs of marker loci in the Afrikaner population of South 

Africa. DNA samples were used for genotyping of 24 loci at six chromosomes. The 

samples were collected from 91 healthy unrelated Afrikaner adults. Exact tests were 

used to determine evidence for deviations from HWE at a single marker locus or LD 

between pairs of marker loci. At the 0.05 level of significance, evidence was found 

for deviation from HWE at only one of the 24 loci. At the same level of significance, 

LD was found among 10 of the 38 intra-chromosomal pairs of loci. On chromosome 

21, there was evidence for LD between a pair of loci with an estimated genetic 

distance of5.51 cM (p = 0.0186). On chromosome 2, in which 5 loci were typed, one 

locus showed LD with three of the four other loci. The highest estimated genetic 

distance for pairs of loci with corrected p ~ 0.05 for LD was 5.28 cM (nominal p = 
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0.0019; p = 0.0268, corrected for multiple testing. Our fmdings indicate that 

Afrikaans-speaking Afrikaners represent one of those special populations deemed 

particularly suitable for disequilibrium mapping. This population may also be highly 

suitable for mapping genes underlying complex traits because strong LD is expected 

in the vicinity of disease loci, which can add power to genetic linkage analysis. 

Introduction 

Suitability of a specific population for the localization of disease genes by 

disequilibrium mapping may be assessed by investigating background LD, that is, LD 

among marker loci rather than between a disease and a marker locus (or loci). It has 

been pointed out that "quantifying the degree of such 'background' linkage 

disequilibrium is a crucial undertaking in paving the way for whole genome 

association studies" (Freimer et al. 1997). Studies of background LD have been 

performed in genetically isolated populations (Weir 1992; Peterson et al. 1995; Laan 

and Paabo 1997; Terwilliger et al. 1998); in larger outbred populations (Maiste 1993; 

Maiste and Weir 1995); among human and chimpanzee populations (Crouau-Roy et 

al. 1996); analytically (Terwilliger et al. 1998), and in computer simulations 

(Terwilliger et al. 1998; Kruglyak 1999). To date, we are unaware of any such studies 

in the Afrikaner population of South Africa, although, as described below, this 

population may be a strong candidate for the mapping of complex-trait genes through 

whole-genome association studies. 

The Afrikaner population of South Africa was formed by immigrants from Europe, 

primarily Dutch, German and French, who began settling in Cape Town in 1652 

(Torrington et al. 1984, Jenkins 1990). During the 18th century, the population was 

virtually cut from Europe and expanded from just over 1,000 to 17,000 in 85 years 

(Jenkins 1996). After Great Treks (mass movements of Afrikaners away from Cape in 

the 1830s), geographical isolation of new Afrikaner settlements was also 

accompanied by cultural isolation of the population, mainly due to the afrikaans 

language (derived from Dutch) and religion (Dutch reformed). The lack of larger 

immigration waves from Europe also contributed to the genetic isolation of the 
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Afrikaners, which was partially broken only around the turn of this century. Today 

after an estimated 12 generations since founding, there are about 3 million Afrikaners 

living in South Africa and abroad. Common mutations and/or marker haplotypes 

among Afrikaners have been established for several heritable disorders. Such 

disorders include variegate porphyria, keratolytic winter erythema, 

hypercholesterolemia, and progressive heart block (Jenkins 1990, Jenkins 1996, 

Meissner et al. 1996, Warnich et al. 1996, Starfield et al. 1997) suggesting that this 

recently founded popUlation has maintained its relative genetic homogeneity. The 

extent of conserved haplotypes around disease genes according to the above studies is 

between 8-11 cM, making the Afrikaner population of South Africa exceptionally 

valuable for genetic mapping studies (Groenewald et al. 1998). 

Methods 

Subjects 

Coded and anonymized DNA samples collected for a previous case-control 

association study (Simonic et al. 1998) were used for genotyping of 24 loci (22 

genetic loci and 2 cryptic duplicates) on six chromosomes. The samples were 

collected from paid healthy volunteers coming from two sources: medical students 

and personnel at the Afrikaans University. All study subjects were unrelated, older 

than 18 years, spoke Afrikaans and had Afrikaner family names. The male:female 

ratio in the group was - 1: 1. 

Primers 

24 primer pairs for the detection of short tandem repeat polymorphisms (STRPs) were 

obtained from Research Genetics (Huntsville, AL). 16 of the genetic markers were 

tetra- and trinucleotide repeat polymorphisms developed within the Cooperative 

Human Linkage Center (CHLC) and 6 genetic markers were Genethon dinucleotide 

repeat polymorphisms. Allele sizes were determined utilizing the known genotypes of 

three CEPH individuals: 1331-01, 1331-02 and 134702. Marker spacing was 

determined using comprehensive sex-averaged genetic maps (Broman et al. 1998). A 

list of all markers used may be found in Table 1. 
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Amplification of STRP markers was performed with 45ng of pooled DNA in a 10111 

PCR reaction mixture containing 1.51l1 PCR buffer (1.5mM MgCh, 50mM KCL, 

10mM Tris-HCI, 0.01% w/v gelatin); 200llM each dGTP, dATP, dTTP, 2.51lM dCTP, 

0.351lCi a32P-dCTP:(NEN Du Pont, 800 Cilmmole, 10IlCillll); lOng (about 3 pmoles) 

each PCR primer; and 0.3 U AmpliTaq polymerase (Boehringer Mannheim). Most 

markers were amplified in sets of two markers per amplification reaction in 96-well 

microtiter plate (Techno). Samples were subjected to 27 cycles consisting of 30 sec at 

94°, 75 sec at 55°, 15 sec at 72° and a fmal6 min at 72° after the last cycle. Products 

were denatured at 95° for 10 min, loaded (llll) onto a vertical 6.5% polyacrylamide 

DNA sequencing gel and run at 70 watts constant power for about 3 hours. The 

amplified DNA fragments for each marker were evaluated visually on the 

autoradiographs. 

Table 1 
Markers used in this study and their estimated locations 

Chromosome 1 Chromosome 2 Chromosome 5 

Marker cM Marker cM Marker cM 

GATA26CI2(D1SI648) 101.48 AFMI77xh4(D2S139) 101.56 GATA52AI2(D5S1501) 85.25 

GATA61A06(D1SI665) 102.02 GATA62BlO 103.16 AFM284vdl(D5S641) 92.38 

AFM294wgl(D1S481) 104.23 GATA88G05 103.16 GATA142H05 92.38 

GAATlD09 104.23 16AFM044xal(D2S289) 103.16 GATA91E02(D5S1726) 94.80 

Mfd 337(D2S417) 106.84 GATA69H12 94.80 

Chromosome 11 Chromosome 20 Chromosome 21 

Marker cM Marker cM Marker cM 

Mfd 316(DllS1377) 120.87 GATA45B 1 0(D20S480) 79.91 GATA45C03 31.26 

GATA64D03(DllS4464) 123.00 GATA46C01(D20S1085) 82.07 AFM276za5(D21S1254) 31.26 

GATA140F03 123.00 GGAAIIEI2(D20S469) 84.78 ATA27F01(D21S1440) 36.77 

AFM240yel(Dl1S933) 124.07 
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Statistical Tests 

There are several statistical methods available for testing deviations from HWE at a 

single locus (Guo and Thompson 1992; Zaykin et al. 1995) or LD among several loci, 

when haplotype information is available (Lazzeroni and Lange 1995; Slatkin 1994; 

Schneider et al. 1997) or not available (Zaykin et al. 1995; Slatkin and Excoffier 

1996; Schneider et al. 1997). Since haplotype information was not available for this 

data set, we used the tests implemented by Zaykin et al. (1995) in their MLD software 

(see Electronic Database Information). 

As outlined below, exact tests were used in all cases. To test for departure from HWE 

at a marker locus, the probability of the set of genotypes in the sample, conditional on 

the allelic counts (Le., the marginals) was calculated from multinomial theory under 

the null hypothesis of HWE (Guo and Thompson 1992; Zaykin et al. 1995). Alleles 

were permuted and, for each permutation, the conditional probability was calculated. 

The proportion of permutations no more probable than the original sample provided 

an estimate for the empirical significance level associated with the test result. Exact 

confidence intervals were computed based on the binomial distribution as 

implemented in the BINOM program (Ott 1999, Electronic Database Information). 

These tests of HWE are implemented in the MLD software program (Electronic 

Database Information), and all reported p-values are determined by use of that 

software. Here, 17000 permutations were selected for each run of MLD on a marker 

locus to narrow the 99 % confidence interval for p-value reported. 

For a given pair of loci, the probability of the set of multi-locus genotypes in the 

sample, conditional on the allelic counts (Le., the marginals) was· calculated from 

multinomial theory under the null hypothesis that each two-locus genotype frequency 

was the product of the respective one-locus genotype frequencies (Zaykin et al. 1995). 

Permutations were implemented by keeping the one-locus genotypes intact and 

permuting these genotypes among individuals at one of the loci (Zaykin et al. 1995). 

An estimate for the empirical significance level was determined as in the one-locus 

case. These tests are also implemented in the MLD software program, and all reported 
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p-values were determined by use of that software. As above, 17000 permutations were 

chosen for each run ofMLD (see Table 3). 

The one-locus test was applied to all markers, while the test for LD among pairs of 

loci was applied to all pairs of markers. Here and elsewhere, the term intra­

chromosomal pair refers to a pair of marker loci on the same chromosome, while 

inter-chromosomal pair refers to a pair of loci on two different chromosomes. Results 

of tests for intra-chromosomal markers are presented in Table 2. 

Results and Discussion 

One-Locus Tests 

Only one marker, D5S1501, had a p-value less than 0.05 when testing for deviations 

from HWE (p = 0.0299). By chance alone we would expect approximately one of 22 

markers (not counting the cryptic duplicates) to show a p-value less than 0.05, even if 

all the markers are in HWE. Thus, no markers showed a significant deviation from 

HWE. 

Two..:Locus Tests 

Table 2 presents those intra-chromosomal marker pairs for which the test for LD 

showed evidence for LD, along with the estimated genetic map distance between the 

markers. The reported distances were computed using Table 1. The p-values 

(uncorrected for multiple testing) for all intra-chromosomal marker pairs may be 

found in Table 3. One can see from Ta.ble 2 that there is evidence for LD in this 

sample between markers D21S1254 and D21S1440 on chromosome 21. The 

estimated genetic distance between these two markers is 5.51 cM. On chromosome 2, 

there is evidence for LD between D2S417 and all other markers (with the exception of 

D2S289). The estimated genetic distance between marker D2S417 and D2S139 is 

5.28 cM. In fact, 6 of the 10 marker pairs in Table 2 have estimated genetic distances 

over 2 cM. 
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Table 2 

Marker Pairs that show evidence for LD in sample of91 Afrikaners. 

Estimated p-value and 99% PeOrT and 99% 

Marker Pair Genetic Chromo- Confidence Interval Confidence Interval 

Distance some (not corrected for (corrected for 

(cM) 
multiple testing) multiple testing) 

D21S1254 D21S1440 5.51 21 .0186 .2733 

(.0160,.0214) 

D2S417 D2S139 5.28 2 .0016 .0269 

(.0009,.0026) (.0152,.0433) 

D2S417 GATA62B1O 3.68 2 .0004 .0068 

(.0001,.0010) (.0017,.0169) 

D2S417 GATA88G05 3.68 2 .0000 .0000 

(.0000,.0003) (.0000, .0051) 

D20S1085 D20S469 2.71 20 .0461 .5517 

(.0421,.0504) 

D20S480 D20S1085 2.16 20 .0233 .3302 

(.0204,.0264) 

D1S1648 D1S1665 0.54 1 .0021 .0351 

(.0013, .0032) (.0219,.0530) 

GATA62B10 GATA88G05 0.0* 2 .0000 .0000 

* 

(.0000,.0003) (.0000, .0051) 

D5S1726 GATA69H12 0.0* 5 .0000 .0000 

(.0000,.0003) (.0000, .0051) 

D11S4464 GATA140F03 0.0 11 .0104 .1628 

(.0085, .0126) 

indicates that one marker in pair was identified by Marshfield Labs as being a 

"cryptic" duplicate of another marker 

To correct for multiple testing, we applied a form of Bonferroni correction as follows. 

For N markers on a chromosome, we assume that N - 1 independent tests are carried 

out when all pairwise comparisons are considered. Over all chromosomes, this leads 

to 17 independent intra-chromosomal tests. Thus, a corrected empirical significance 

level is given by Peo" = 1-(1- p)17. With this, we observe that all p-values for 
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Chromosome 2 are still significant at the 0.05 level (Table 2). Additional marker pairs 

withPcorr < 0.05 are found on chromosomes 1 and 5. 

We also tested for LD among more than two marker loci jointly as implemented in the 

MLD program (Zaykin et al. 1995). Table 4 reports results for chromosome 2 in 

which the marker set tested includes D2S417 and excludes D2S289, since this marker 

showed no evidence for LD with any other marker. All p-values in Table 4 are 

significant at the 0.05 level, even when using the conservative assumption that 3 

independent tests have been performed (corrected p-value = 1-(1- p )3) . 

Table 3 

Exact Test p-values for all intra-chromosomal pairs 

99% confidence intervals for significant p-values « 0.05) determined by 

BINOM program (Ott 1999) 

Uncorrected for MUltiple Testing 

Chromosome 1 

01S1665 GAATlO09 01S481 
102,02cM 104.23cM 104.23cM 

O1S1648 .0021 .4878 .0885 
101.48cM J.0013, .0032) 
01S1665 .6745 .5837 
102.02cM *** 

GAATlO09 .6679 
104.23cM *** 

Chromosome 2 

GATA62BIO GATA88G05 D28289 D2S417 
103.16cM 103.16cM* 103.16cM 106.84cM 

02S139 .0656 .0856 .1474 .0016 
101.56cM (.0009,.0026) 

GATA62BI0 *** .0000 .6314 .0004 
103.16cM (.0000,.0003) (.0001,.0010) 

GATA88G05 *** .5521 .0000 
103.16cM* (.0000,.0003) 

02S289 *** .1033 
103.16cM 
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Chromosome 5 

D5S641 GATA142H05 D5S1726 GATA69H12 
92.38cM 92.38cM 94.8cM 94.8cM* 

D5S1501 .7798 .8395 .9601 .7597 
85.25cM 
D5S641 *** .7393 .4508 .4648 
92.38cM 

GATA142H05 *** .2444 .4784 
92.38cM 
D5S1726 *** .0000 
94.8cM (.0000,.0003) 

Chromosome 11 

DllS4464 GATA140F03 D11S933 
123.00 cM 123.00cM 124.07cM 

Dll S 1377 .5867 .1154 .3382 
120.87cM 
O11S4464 .0104 .7036 
123.00cM *** (.0085, .0126) 

GATA140F03 .7576 
123.00cM *** 

Chromosome 20 

D20S1085 D20S469 
82.07cM 84.78cM 

D20S480 .0233 .7953 
79.91cM (.0204,.0264) 

D20S1085 *** .0461 
82.07cM (.0421,.0504) 

Chromosome 21 

D21S1254 D21S1440 
31.26cM 36.77cM 

GATA45C03 .4415 .1180 
31.26cM 

D21S1254 *** .0186 
31.26cM (.0160,.0214) 

NOTE. - All map positions detennined by using the Marshfield Website sex-averaged maps 
(www.marshmed.org/genetics/) 
*marker was identified as being a "cryptic" duplicate of another marker 
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Table 4 

Multi-locus Exact-Test p-values for Chromosome 2 using sets of markers that 

include D2S419 and that exclude D2S289. 

3-Locus Tests 

Marker Set P-value Corrected 

P-value 

D2S 139 - GATA62B 1O-D2S417 .0025 .0075 

D2S139 - GATA88G05-D2S417 .0030 .0090 

GATA62BlO-GATA88G05-D2S417 .0000 .0000 

4-Locus Test 

Marker Set P-value 

D2S 139 - GATA62B 1 0-' GATA88G05-D2S417 .0000 

Our fmdings indicate that Afrikaans-speaking Afrikaners represent one of those 

special populations deemed particularly suitable for disequilibrium mapping (Figure 

1). This population may also be highly suitable for mapping genes underlying 

complex traits because "strong LD is expected in the vicinity of disease loci, which can 

add power to genetic linkage analysis. 
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Figure 1 

Evidence for disequilibrium (p-value) in some special 
populations 
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4 Afrikaners 
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'V Laan and Paabo (1997) 
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b. Simonic et al. (1998) 

Acknowledgements 

The authors gratefully acknowledge Dr. James Weber for providing resources for this 

study and enabling Ingrid Simonic to perfonn genotyping in his laboratory. Also, 

Harald Goring is gratefully acknowledged for software provided in early stages of this 

work. The authors thank Dimitri Zaykin for providing answers to questions regarding 

the theory and usage of the MLDprogram. Support for this research comes from grant 

HG00008 from the National Institutes of Health. 

Electronic Database Information 

History of the Afrikaners' migration to South Africa may be found at 

http://www.sacs.org.zalleve12lhistory/. 

Stellenbosch University  https://scholar.sun.ac.za



The Arlequin program is available via ftp from the URL 

http://anthropologie.unige.ch/arlequinl. 

The MLD program is freely available from the North Carolina State University 

Department of Statistics. The URL is http://statgen.ncsu.edul#sofiware/. 

124 

The BINOM program is available via ftp from the Rockefeller University Laboratory 

of Statistical Genetics. The URL is 

ftp://linkage.rockefeller.eduisofiware/utilities/. 

Documentation may be found at 

http://linkage.rockefeller.eduiottilinkutil.htm#BINOM. 

Information for the Marshfield Genetic Maps may be found at the URL 

http://www .marshmed.orglgenetics/. 

References 

Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive 
human genetic maps: individual and sex-specific variation in recombination. 
Am J Hum Genet 63 :861-869 

Crouau-Roy B, Service S, Slatkin M, Freimer N (1996) A fme scale comparison of 
the human and chimpanzee genomes: linkage, linkage disequilibrium and 
sequence analysis. Hum Mol Genet 5: 1131-1137 

Freimer NB, Service SK, Slatkin M (1997) Expanding on popUlation studies. Nat 
Genet 17,371-373 

Groenewald JZ, Liebenberg J, Groenewald 1M, Warnich L (1998) Linkage 
disequilibrium analysis in a recently founded popUlation: evaluation of the 
variegate porphyria founder in South African Afrikaners. Am J Hum Genet 
62:1254-1258 

Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg 
proportion for multiple alleles. Biometrics 48(2):361-72 

Jenkins T (1990) Medical genetics in South Africa. J Med Genet 27:760-779 

Jenkins T (1996) The South African malady. Nat Genet l3:7-9 

Stellenbosch University  https://scholar.sun.ac.za



125 

Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of 
common disease genes. Nat Genet 22:139-144 

Laan M, Paabo S (1997) Demographic history and linkage disequilibrium in human 
populations. Nat Genet 17: 435-438 

Lazzeroni LC, Lange K (1995) Markov chains for Monte Carlo tests of genetic 
equilibrium in multidimensional contingency tables. Technical Report No. 
178, Division of Biostatistics, Stanford University 

Maiste P J (1993) Comparison of statistical tests for independence at genetic loci with 
many alleles. Ph.D. Dissertation, North Carolina State University, Department 
of Statistics 

Maiste PJ, Weir BS (1995) A comparison of tests for independence in the FBI RFLP 
data bases. Genetica 96:125-138 

Meissner PN, Dailey TA, Hift RJ, Ziman M, Corrigall AV, Roberts AG, Meissner 
DM, Kirsch RE, Dailey HA (1996) A R59W mutation in human 
protoporphyrinogen oxidase results in decreased enzyme activity and IS 

prevalent in South Africans with variegate porphyria. Nat Genet 13:95-97 

Ott J (1999) Analysis of Human Genetic Linkage. Johns Hopkins University Press. 
Baltimore 

Peterson AC, Di Rienzo A, Lehesjoki AE, de la Chapelle A, Slatkin M, Freimer NB . 
(1995) The distribution of linkage disequilibrium over anonymous genome 
regions. Hum Mol Genet 4:887-94 

Schneider S, Kueffer J-M, Roessli D, Excoffier L (1997) Arlequin ver. 1.1: A 
software for population genetic data analysis. Genetics and Biometry 
Laboratory, University of Geneva, Switzerland 

Simonic I, Gericke GS, Ott J, Weber JL (1998) Identification of genetic markers 
associated with Gilles de la Tourette syndrome in an Afrikaner population. 
Am J Hum Genet 63:839-846 

Slatkin M (1994) Linkage disequilibrium in growing and stable populations. Genetics 
137: 331-336 . 

Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data 
using the EM algorithm. Heredity 76:377-383 

Starfield M, Hennies He, Jung M, Jenkins T, Wienker T, Hull P, Spurdle A, et al. 
(1997) Localization of the gene causing keratolytic winter erythema to 
chromosome 8p22-p23, and evidence for a founder effect in South African 
Afrikaans-speakers. Am J Hum Genet 61 :370-378 

Stellenbosch University  https://scholar.sun.ac.za



126 

Terwilliger JD, Ott J (1994) Handbook of Human Genetic Linkage. Johns Hopkins 
University Press. Baltimore 

Terwilliger ill, Zollner S, Laan M, Prutbo S (1998) Mapping genes through the use of 
linkage disequilibrium generated by genetic drift: 'drift mapping' in small 
populations with no demographic expansion. Hum Hered 48:138-54 

Torrington M, Botha JL, Pilcher GJ, Baker SG (1984) Association between familial 
hypercholesterolaemia and church affiliation. SA Med J 65:762;.767 

Warnich L, Meissner PN, Hift RJ, Louw JH, van Heerden CJ, Retief AE (1996) 
Mapping of Variegate Porphyria (VP) gene: contradictory evidence for 
linkage between VP and microsatellite markers at chromosome 14q32. Hum 
Genet 97:690-692 

Weir BS (1992) Disequilibrium on chromosome 21 in some Utah families. Cytogenet 
Cell Genet 59: 128-129 

Stellenbosch University  https://scholar.sun.ac.za



127 

CHAPTERS 

Human Molecular Genetics (submitted for publication, September 1999) 

CONFIRMATION OF GILLES DE LA TOURETTE SYNDROME 

(GTS) SUSCEPTIBILITY LOCI ON CHROMOSOMES 2p11, 8q22 

and 11q23-24IN SOUTH AFRICAN AFRIKANERS 

11. Simonic, 1G.S. Gericke, 20. Nyholt, 20. Gordon, 2 J. Ott, 3 J.L. Weber 

I Neurogenetics Research Initiative, MRC Pretoria, South Africa 

2 Department of Statistical Genetics, Rockefeller University, New York, NY 

3 Center for Medical Ge~etics, Medical Research Foundation, Marshfield, WI 

Summary 

Five genomic regions on chromosomes 2, 8, 11, 20, and 21 that gave evidence for 

association with GTS in previous case-control association studies were investigated 

for linkage and association with GTS utilizing DNA samples from 91 Afrikaner 

nuclear families with one or more affected children. Highly polymorphic markers 

with mean heterozygosity of 0.77 were typed and resulting genotypes evaluated using 

single marker transmission disequilibrium (TDT), single marker haplotype relative 

risk (HRR), and multi-marker 'extended' TDT and HRR methods. Single marker 

TDT analysis showed evidence for linkage or association, with p-values near 0.05, for 

markers D2S139, GATA28F12 and DllS1377 on chromosomes 2pll, 8q22 and 

Ilq23-24, respectively. Extended TDT and HRR analysis provided further evidence 

for linkage or association on chromosome 2 with p values of 0.007 and 0.025, and 

chromosome 8 with p values of 0.059 and 0.013. These results provide strong 

additional evidence for the location ofGTS susceptibility loci. 
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Introduction 

.' 

While the etiology of Gilles de la Tourette syndrome (GTS), a childhood-onset 

neurologic disorder characterized by chronic involuntary movements (either motor, 

vocal, or both at the time of the diagnosis) remains hidden, it has a strong genetic 

component (Price et al. 1985). According to recent complex segregation analyses, the 

susceptibility for GTS is more complicated than previously suggested, conveyed by 

an additive major locus in combination with a multifactorial background (Walkup et 

al. 1996). A failure to identify GTS-linked genetic loci in large, multiple affected 

kindreds motivated the redirection of gene-mapping efforts toward allele-sharing 

methods and linkage disequilibrium (LD) studies in genetically isolated populations. 

Lander and Kruglyak (Lander and Kruglyak 1995) proposed stringent guidelines for 

the assignment of genome-wide significance levels in linkage studies to diminish the 

rates of false positive results. In case-control LD studies, because of the danger of 

spurious associations due to mismatching of controls and population admixture, 

consistent replication may be the best evidence for a true association (Kidd 1993). 

Our previous whole-genome search for association with GTS among Afrikaners 

(Simonic et al. 1998) with 1,167 short tandem repeat polymorphisms, using a cross­

sectional case-control strategy, DNA pooling, and follow-up individual typing of two 

independent sets of case-control samples resulted in identification of 15 markers in 11 

chromosomal regions with significant allele distribution differences between the two 

groups of samples. 

For the reasons outlined above, our current study was designed as an attempt to 

replicate our previous results. Therefore, in this study, we collected additional 

independent affected individuals and their parents from the Afrikaner population. We 

then applied transmission disequilibrium (TDT) and haplotype relative risk (HRR) 

tests to genotype data generated at 5 earlier determined regions of interest, to further 

investigate the significance of our initial fmdings. In three instances, our previous 

results were confirmed (p < 0.05) even after the application of conservative 

Bonferroni cOI:rections for multiple testing. 
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Subjects, Material & Methods 

Patients 

85 randomly selected GTS individuals from 74 independent families (64 singletons, 9 

pairs and 1 affected trio), not participating in our previous studies, were invited 

together with their parents for interviews and blood sample collection. They were 

identified as GTS sufferers at previous visits at the Tourette Syndrome Clinic in 

Pretoria and interviewed for the second time using the criteria of the Tourette 

Syndrome Association Genetic Consortium (Simonic et al. 1998). For 19 individuals 

(including two pairs of siblings), only one parent was available for the study. In 

addition, parental and affected individual blood samples were collected for 22 GTS 

individuals from 17 independent families (12 singletons and 5 affected pairs), whose 

DNA samples were used in our initial genome screen. Our combined material thus 

consisted of 91 families with 107 GTS individuals, 88 with both parental DNA 

samples available, and 19 with one parental DNA only. All families spoke Afrikaans 

and had Afrikaner family names on both maternal and paternal sides. 

Polymorph isms 

In total, 31 short tandem-repeat polymorphisms (STRPs) mapping to 5 genomic 

regions were selected for this replication study (Table 1). The main criteria for 

marker selection were map position (Center for Medical Genetics, Marshfield), 

spacing (-1.5 cM separation on sex-averaged genetic map), and heterozygozity (mean 

0.77) (Broman et al. 1998). Primer pairs were mostly obtained from Research 

Genetics. Primers for CA dinucleotide repeat marker T7-27 were designed from the 

partial sequence of BAC clone 127D17, which contains the MTG8 gene. Allele sizes 

for the markers were determined using known genotypes of two CEPH individuals 

(133101 and l33102). 

Amplification of STRPs was performed in 96 well microtiter plates with 50 ng of 

DNA in a 5 J.lI volume containing 3 mM MgCh; 50 mM KCI; 10 mM Tris-HCI, pH 

8.3; 0.01% (w/v) gelatin; 200 J.lM each dGTP, dCTP, and dTTP; 2.5 J.1M dATP; 0.35 
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JlCi ae3p]-dATP (NEN Du Pont; 800 Ci/mmol, 10 JlCi/JlI); 10 ng (-3 pmol) each 

PCR primer; and OJ U Taq polymerase (Sigma). Samples were subjected to 29 cycles 

consisting of30 sec at 94°C, 75 sec at 55°C, and 30 sec at 72°C, with a fmal6 min at 

72°C after the last cycle. All markers were amplified individually. All genotyping 

was performed in duplicate to minimize errors. PCR products were denatured by 

heating for 10 min at 95°C prior to loading (O.5JlI) onto vertical 6.5% polyacrylamide, 

7.7 M urea DNA sequencing gels and running at 70 W constant power for -2 hours. 

Gels were dried on filter paper and exposed on X-ray film. 

Table 1 

31 markers in five genomic regions were selected for the replication study 

Chr. Marker Locus eM Het. Chr. Marker Locus eM Het. 

2 AFM177xh4 02S139 101.56 0.82 11 OR02 105 0.63 

2 GATA6F08 02S440 103.16 0.68 11 Mfd316 011S1377 120.87 0.78 

2 AFMa126zb1 02S2161 105 0.78 11 AFM331yc5 011S1353 122.47 0.79 

2 Mfd337 02S417 106.84 0.75 11 GATA64003 011S4464 123 0.78 
/ 

11 AFM240ye1 0115933 124.07 0.8 

8 ATA19G07 08S1119 101.01 0.8 11 Mfd251 011S975 126.21 0.79 

8 AFM147yb6 08S1707 101.69 0.7 

8 AFM165yb10 08S271 102.62 0.77 20 GATA45B10 020S480 79.91 0.74 

8 GATA8B01 103.69 0.74 20 GATA46C01 020S1085 82.07 0.86 

8 MTG8* 103.69 0.84 20 AFM276xh1 020S120 83.51 0.85 

8 T7-27** 103.69 0.43 20 GGAA11E12 020S469 84.78 0.79 1 

8 AFM165xh4 08S270 103.69 0.79 

8 GATA28F12 104.33 0.63 21 GATA45C03 31.26 0.7 

8 AFMa052wh1 08S1822 107.97 0.77 21 AFMa086yf9 021S1920 31.99 0.75 

8 GATA23012 08S1129 110.2 0.29 21 AFMb280xd9 021S1895 33.84 0.82 

8 AFM077ya5 08S257 111.68 0.71 21 AFM261zg1 021S1252 35.45 0.8 

8 AFM352td9 08S559 112.42 0.72 

8 AFM333vb9 08S1808 113.16 0.53 

* MTG8 3'UTR microsatetellite polymorphism (Wolford et al. 1998) 

** T7 -27 primers: AGCAT AACA llGCTGCTAGAG and GTT ACTTTGCAGATCTTTGAGC 
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Statistical Analysis 

Several different statistics were used to evaluate marker genotypes (calculation of p­

values is described in paragraph 4 below): 

1. Single marker transmission disequilibrium test (TDT), fIrst proposed by Spielman 

et al. (1996), based on a statistical comparison of the frequencies of transmissions 

and nontransmissions of a marker alleles from heterozygous parents to affected 

offspring. The distribution of transmitted versus nontransmitted alleles were 

compared using the T m (X2
) TDT statistic (Bickeboller and Clergot~Darpoux 

1995). 

2. Single marker haplotype relative risk (HRR) method, fIrst proposed by Falk and 

Rubinstein (1987), uses two alleles of the parents (both homo- and heterozygous 

for particular marker alleles) which are not transmitted to their affected offspring 

(only one affected offspring for each pair of parents is used) to create a so called 

"pseudo-control" (Schaid 1998). All case alleles are from the fIrst affected child in 

each pedigree. The control alleles are assigned in relation to the number of typed 

parents, using the following rules: (i) if both parents are typed then the two 

nontransmitted alleles in the parents of the affected children are included in the 

control sample; (ii) if only one parent is typed and there is an unambiguous 

solution (Le., parent and child have different genotypes) then the one remaining 

(nontransmitted) allele is included in the control sample; (iii) if neither parent is 

typed, or if only one parent is typed and has the same genotype as the affected 

child, in which case the probabilities of the transmitted and nontransmitted alleles 

are ambiguous, then no allele(s) is included in the control sample. The association 

of disease with marker alleles was then assessed by a traditional case-control X2 

statistic. 

3. Multipoint TDT and HRR methods were devised to increase meiotic 

informativeness within families. Multi-marker haplotypes were built across two or 

three contiguous markers (i.e., 1-2, 2-3, 3-4 and 1-2-3, 2-3-4, 3-4-5, etc.). A 
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transmitted haplotype consisted of alleles at contiguous loci which could be 

unambiguously detennined to be transmitted by a parent to an affected offspring, 

and non-transmitted haplotypes were defmed analogously. The only case in which 

transmitted haplotypes are ambiguous occurs when both of the typed parents plus 

the affected child are all heterozygous for the same alleles at the same locus, in 

which case these individuals were excluded from the analysis. The frequencies of 

these transmitted and non-transmitted haplotypes were then statistically tested for 

linkage and association using the same methods used for the single marker tests. 

4. Because the large number of allele and haplotype combinations produce large, 

sparse contingency tables, significance for all TDT and HRR tests was detennined 

by exact methods. Associated p-values were approximated by Monte Carlo 

simulation as implemented in the StatXact3 program (CYTEL Software Corp., 

Cambridge, USA) with 10,000 iterations. Also because this is a replication 

analysis focussing on previously identified genomic regions, p-values are reported 

without correction for multiple testing. 

Results 

Genotypes for 4, 13, 6, 4 and 4 markers (Table 1), mapping to the regions on 

chromosomes 2, 8, 11,20 and 21, respectively, previously found to be associated with 

GTS, were tested for linkage and association in 91 independent families. Results of 

single and multiple marker TDT and HRR analyses are summarized in Table 2. Single 

marker TDT analysis showed evidence for linkage or association, producing p-values 

of 0.039, 0.056 and 0.022, for markers D2S139, GATA28FI2 and DIIS1377 on 

chromosomes 2, 8 and 11, respectively. Extended TDT and HRR analysis provided 

further evidence for linkage or association on chromosomes 2 and 8, producing two­

marker p-values of 0.007 and 0.025, and 0.059 and 0.013, respectively. Moreover, 

three-marker HRR analysis on chromosome 8 also showed significant association, 

producing a p-value of 0.011. No evidence, however, was found for linkage or 

association with markers on chromosomes 20 and 21. 
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Table 2 

Results from TOT and HRR Analyses 

I 

Original.Case-Control Study (5) Follow Up Familial TOT and HRR Study 

Extended Haplotypes 
cM i-Locus 2-Locus 2-Locus 3-Locus 

Chromo Locus from p-tel TOT TOT HRR HRR 
Some Jsex-avg) P P P P P 

2 028139 101.56 0.039 0.007 0.025 028440 103.16 0.002 0.734 
028417 106.84 0.160 

8 0881119 101.01 0.01 0.349 
T7-27 103.69 0.835 
088270 103.69 0.823 0.059 0.013 

0.011 
GATA28F12 104.33 0.056 
088257 111.68 0.01 0.638 

11 01181377 120.87 < 0.000001 0.022 0.109 0.108 01181353 122.47 0.135 
0118933 124.07 0.0009 0.535 

20 020S1085 82.07 0.0001 0.240 
0208469 84.78 0.1 0.411 

21 GATA45C03. 31.26 0.0004 0.221 
02181252 35.45 0.000008 0.279 

Discussion 

Tests for disease-marker association within nuclear families via TDT or HRR are 

generally considered more rigorous than case-control studies. We therefore recruited 

Afrikaner families with affected children in an attempt to confirm our original case­

control GTS results. Although we used a relatively small sample, we were still able to 

confirm 3 out of 5 chromosomal regions identified previously. Regions centered at 

about 2pll, 8q22 and llq23-24 are therefore strengthened as locations of genes 

which influence GTS in the Afrikaner population. 
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There are several potential reasons why we could not conflrm the remaining two 

regions on chromosomes 20 and 21. Instead of true association with disease­

predisposing alleles, the results for these chromosomes could be due to factors such as 

population admixture, slight differences in ancestry between cases and controls, and 

multiple founding alleles. Alternatively, the original fmdings could be true, but 

replication failed because we searched in the wrong locations or selected markers, 

which had particularly high mutation rates or had common alleles associated with the 

disease allele. 

In general, TDT has greater power to detect linkage for a 'recessive' -type model of a 

genetic trait than for a 'dominant' -type. Its power is also higher when there is a 

greater difference in marker allele frequency between disease and normal 

chromosomes and the marker mutation rate is minimal (Xiong and Guo 1998). Given 

these limitations, it is exciting that we were able to conflrm even a fraction of the 

original locations. 

Our fmdings provide an important addition to the molecular genetics of GTS and will 

aid in further studies. For example, our evidence for linkage or association with GTS 

by TDT and HRR analysis, at marker locus GATA28F12, maps proximally to 

D8S257 which has previously been suggestively associated with GTS by us, and 

linked with GTS by Leppert et al. (1996). In addition, D8S257 is distal « 1.5 cM) to 

a breakpoint (unpublished results) in a family with GIS co-segregating with a 

chromosome translocation t(1,8) (q21.1, q22.1) described by Devor and Magee (in 

press). 

In summary, the results from this study represent significant replication and strong 

evidence for the presence of susceptibility loci in some of these genomic regions. In 

particular, the involvement of chromosomes 8q22, 2pll, and llq23-24 as candidate 

regions for GTS susceptibility deserves further study. We plan to continue these 

investigations either by increasing our current sample size; by focusing on historical 

subgroups of Afrikaners and thus escalating the chances for detection of shared 

haplotypes; and ultimately by screening of candidate genes in these regions. 
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CHAPTER 9 

Discussion 

9.1. Contributions made against the background of the current state of 

knowledge concerning the genetics of neuropsychiatric disorders. 

137 

Despite intense international efforts, utilization of classical genetic linkage studies 

and affected sib pair studies have not yielded any strong and consistent leads for any 

major psychiatric disorder such as schizophrenia, bipolar affective disorder, or 

behavioral traits such as the alcoholism. 

Positive fmdings from numerous whole genome scans are scattered throughout the 

genome with no apparent consistency among the results. Some chromosomes have not 

been putatively linked to any psychiatric disease. Others contain large genomic 

regions, with a spread of positive fmdings well over 40 cM, which may contain a 

susceptibility locus to several distinct neuropsychiatric traits. At this stage, however, 

none of the fmdings appear strong enough to be followed by physical cloning and 

sequencing of surrounding regions (Delisi and Crow 1999). 

Views vary widely from the notion that there is one major gene for all psychoses, to a 

single major gene within some families but several different genes within separate 

populations, to the concept that a number of interacting genes are necessary for the 

expression of the disorder within one individual. If the multitude of positive regions 

reported for neuropsychiatric traits by various research teams represent true psychosis 

vulnerability loci, this. would support the latter concept (Delisi and Crow 1999) as 

well as the view that some of the susceptibility loci will have different prevalence 

rates in different popUlations. Under such circumstances coordinated international 

collaboration in genetic mapping of neuropsychiatric traits is essential, including 

sample collection in various populations and integration of all existing and newly 

generated data. 
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A good example of such an international effort is the work of the International 

Tourette Syndrome Genetic Linkage Consortium, created as a result of the Tourette 

Syndrome Association (TSA) initiative. The Consortium has supported international 

collaborative studies for over 10 years, with both administrative and direct research 

funding provided by the TSA. The Consortium includes investigators from 11 centers 

in United States, Canada, United Kingdom, Netherlands, as well as the Neurogenetics 

Research Initiative at the Medical Research Council in Pretoria, South Africa. 

The molecular genetic investigations presented in this study were initiated and 

partially supported by the Tourette Syndrome Genetic Linkage Consortium and 

signify an important step forward in T ourette syndrome gene mapping efforts as well 

as mapping genes for neuropsychiatric illness in general. 

The design and the results achieved throughout the subsequent studies provide 

evidence that initial case-control association fmdings in special populations have the 

potential to be confmned by linkage in the nuclear family design. These studies also 

suggest that several genes at different chromosomal regions shape the susceptibility to 

Tourette syndrome. Even though the initial hypothesis of single founder effect for 

Tourette syndrome in the Afrikaner popUlation was probably incorrect, this type of 

population may still prove to be an extremely valuable source of genetic material for 

mapping complex traits, as documented in this study. 

9.11. The possible significance of cytogenetic findings 

It is sometimes assumed that there is no longer much scope for chromosome studies in 

genetic research because everything is known about phenotypic consequences of 

chromosome abnormalities and also because traditional cytogenetic techniques are 

slowly overtaken by molecular methods (Rutter 1994). Despite these developments, 

further exploration of cytogenetic investigations is needed: 
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1. in the area of submicroscopic chromosomal deletionlduplication(s) investigations 

in relation to complex phenotypes which are often characterized by comorbidity 

and phenotypic overlaps as exemplified by the contiguous gene syndromes; 

2. in the identification of cytogenetically detectable anomalies in proband(s) which 

may help to accelerate the search for disease gene location, as it was in case of 

neurofibromatosis type 1 or Duchenne muscular dystrophy; 

3. and fmally, in the search for disease-specific chromosome fragile sites, which may 

be expressed in the affected individuals as a consequence of sequence variations, 

such as repeat expansions, at the disease locus. 

Chromosome fragile sites (FS) are regarded as primary targets for environmental 

insults and as such may facilitate subtle DNA changes during prenatal and postnatal 

development resulting in susceptibility/resistance to a large variety of complex 

genetic traits and/or somatic cell mutations involved in malignancy. The role ofFS in 

amplification, loss of heterozygosity (LOH), or gain of function at or near cancer 

related genes is currently well recognized and there are several vague, but intriguing 

indications that a subgroup of chromosome FS may give rise to genetic variations 

involved in the expression of some neurological disorders or may appear 

consequently to such genetic variations. The best known example of such a 

relationship is the rare FS on chromosome X (FRAXA). 

Our fmdings of increased breakage rates at large number of common fragile sites in 

two subsequent case-control studies involving Tourette syndrome probands indicate 

that for unknown reasons their lymphocyte DNA at the chromosomal level of 

organization is more sensitive to the inhibition of DNA synthesis (due to folic acid 

deficiency or aphidicolin treatment). 

The number of FS exhibiting increased expression rates between Tourette syndrome 

and non-Tourette syndrome samples is high and the fragility itself may be influenced 

by numerous sample and culture related conditions, therefore the FS expression 

cannot serve as discriminatory cytogenetic marker for Tourette syndrome and it is 

improbable that the individual FS represent candidate chromosome regions for 

Tourette syndrome loci. 

Stellenbosch University  https://scholar.sun.ac.za



140 

Overall, there are several possible explanations for the findings of increased fragility 

rates in several groups ofTourette syndrome probands, two of which are: 

1. As discussed in chapter 6 one possible cause of increased fragility rates may be 

the lack or the presence of distinct T-Iymphocyte type(s) in the Tourette-positive 

group of samples as opposed to controls. This may be a consequence of an 

autoimmune reaction to certain types of bacterial infection, which is considered by 

some researchers associated with phenotypic expression of Tourette syndrome in 

at least a subgroup of cases. 

2. Another alternative, not discussed in Chapter 2, 3 and 6 could relate to a 

prolonged cell cycle in mitogen-stimulated T-Iymphocytes of Tourette syndrome 

probands. Such a prolonged cell cycle could result in the observation of earlier 

metaphase stages, consequently leading to an increased number of gaps and 

breaks in the chromosome structure due to DNA under-replication caused by 

aphidicolin treatment. 

Similar fmdings were documented for the group of genetic conditions known as 

chromosome breakage syndromes, which are characterized by increased breakage 

rates observed in cultured lymphocytes as a result of faulty DNA repair and 

packaging. Completion of DNA replication/repair/packaging is an important check­

point for cytokine induced initiation of mitosis, and if delayed may directly influence 

the duration of the whole cell cycle. 

If an increased FSexpression in Tourette syndrome T-Iymphocyte cultures is a 

function of a prolonged cell cycle, then genes directly or indirectly influencing the 

duration of certain cell cycle stages would be good candidates for Tourette syndrome 

susceptibility. Such candidates must, however, be different from the group of genes 

involved in the expression of chromosome breakage syndromes, which are 

characterized by a high prevalence of childhood cancers. 
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Increased rates of fragile site expression were also found in association with other 

disease states accompanied by neurological and psychiatric disturbances (Petronis and 

Kennedy 1995), e.g. schizophrenia (Garofalo et al. 1993, Chen et al. 1998), type I 

bipolar disorder (Turecki et al. 1995), autism (Arrieta et al. 1996), and Rett syndrome 

(Telvi et al. 1994, Simonic et al. 1997). Increased chromosome breakage was also 

observed in autoimmune disorders, e.g. scleroderma (Emerit et at 1976, 1980), 

rheumatoid polyarthritis (Vincent et al. 1986), and celiac disease (Fundia et al. 1996), 

suggesting that some common underlying mechanisms (certain type of immune 

responses?) playa role in phenotypic expression of all the above conditions including 

Tourette syndrome. In the case of Tourette syndrome, the latter conclusion is 

supported by a growing body of evidence that a subset of Tourette syndrome cases 

could be related to the presence ofD8/17, an immune marker for rheumatic fever. 

9.12. The significance of associationllinkage findings 

For most neurological, psychiatric, or neurobehavioral genetic disorders, the patterns 

of inheritance has proven to be more complicated than previously thought. Examples 

include schizophrenia, bipolar affective disorder, alcohol dependence, autism, 

obsessive compUlsive disorder (OCD), attention deficit hyperactivity disorder 

(ADHD), Tourette syndrome, conduct disorder, etc., where disease-associated 

psychopathologies presumably develop due to mUltiplicative and/or additive 

interactions of several genes rather than a single major gene. The interplay of several 

genes as well as unknown environmental factors could well explain other common 

features of this group of complex traits, such as clinical heterogeneity and 

comorbidity. These factors together with high phenocopy rates in the populations and 

frequent bilineal transmissions of susceptibility factors in families contribute to 

overall resistance of the traits to gene-mapping efforts. 

Heutink et al. (1995) performed an extensive computer simulation study in -order to 

investigate the best strategy for mapping Tourette syndrome gene(s) with respect to 

data collection and diagnostic classification of the disease. Their results suggested, 

that the scenario of multiple tests that included various Tourette syndrome diagnostic 
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models (narrow, mild, and broad) gives much higher probability for detecting linkage 

than does the use of a single test including narrowly defmed phenotype. However, 

classical linkage studies using large pedigrees with multiple affected relatives have 

not produced unambiguous results under the assumption of a single dominant model 

of inheritance, despite incorporating different diagnostic models into data analysis. On 

the contrary, the implementation of classical linkage methods resulted in exclusion of 

>90% of the genome for harboring Tourette syndrome genes. 

Complexities arising with more complicated models of inheritance cannot be assumed 

when parametric methods, such as classical linkage methods, are used for data 

analysis. Therefore, a great deal of hope in current Tourette syndrome gene-mapping 

efforts is focused on the notion that non-parametric methods, such as the affected sib­

pair method (ASP), which do not require assumptions with regard to a specific genetic 

model will provide a more powerful tool for genetic mapping. As a result, the 

International Tourette Syndrome Genetic Linkage Consortium has initiated a 

preliminary ASP genome-wide linkage study using hundred affected siblings 

collected at several sites in Canada, United States, United Kingdom and Netherlands. 

The results of single and multipoint maximum likelihood score (MLS) analyses were 

recently submitted for a publication in Am J Hum Genet (Aug 1999). 

The ASP approach is expected to have sufficient power for detection of linkage with 

complex traits only when extensive samples are subjected to statistical analysis, 

requiring about 200 to probably a thousand or more affected siblings. A similar 

situation with respect to robustness accounts for other analytical approaches based on 

nuclear family or case-control data collection. To overcome this problem, sequential 

approaches to data collection/generation/analysis have been proposed, based on 

subsequent follow-up studies using smaller sets of samples. Moreover, to avoid 

shortcomings of each different statistical method, combined semi parametric methods 

for mapping complex traits were established via linkage/linkage disequilibrium (LD) 

analysis. 

Two critical tasks regarding sequential and combined approaches in study designs are 

the selection of genetic markers with respect to their average genetic map spacing and 
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their mean heterozygosity, as well as the interpretation of the results and statistically 

generated significance levels. With this regard, a number of general rules were 

established: 

1. The average spacing of the markers in the whole genome searches has been 

recommended as < 0.5 cM for LD mapping efforts in heterogeneous populations 

and between 5-10 cM in young « 20 generations) genetically isolated 

populations. An efficient strategy in scanning the chromosomes for linkagelLD 

with disease genes also involves typing markers along sparse map, throughout the 

genome, and then following up on promising areas from the initial scan with a 

dense array of markers, to extract the full inheritance information (Durham and 

Feingold 1997). 

2. Historically, most methods for detecting LD (in particular) were designed for use 

with diallelic marker loci, for which the analysis is straightforward. These 

analytical methods have now been extended for use of polymorphic markers with 

many alleles, leading to an increase of the number of observations and 

corresponding loss of power. Altemativelly, multiallelic systems were reduced to 

diallelic systems by selecting one allele believed to be associated with the trait and 

collapsing the other alleles, leading to the introduction of substantial bias into the 

analysis (Terwilliger 1995). Ott and Rabinowitz (1997) examined the relationship 

between marker heterozygosity and the power to detect LD and concluded that, 

despite the penalties for multiple testing incurred with mUltiple alleles, in general 

greater heterozygosity of markers results in greater power. 

3. In interpreting linkagelLD fmdings, consistent significant results are usually 

considered suggestive for the identification of a candidate gene locus. However, 

inconsistent fmdings with positive linkage results and negative LD results could 

have several different interpretations: a/ markers significantly linked with disease 

locus may still be located far away from the actual disease locus, reSUlting in 

linkage-equilibrium; bl linked markers identify the disease locus, but may have 

multiple disease-causing mutations, diminishing the allelic association with 

closely spaced markers; 31 the linkage signals could be false-positive. On the other 
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hand, an inconsistent fmding with positive LD and negative linkage is likely to 

suggest that LD resulted from population-based forces other than co-segregation 

of disease and marker alleles. Finally, a consistent negative result between LD and 

linkage analyses provides a strong support that the corresponding region is less 

likely to include any major disease locus (Zhao et al. 1999). 

4. The interpretation of significance levels resulting from multi-locus analysis 

(particularly genome-wide) is matter of current debate and persistent controversy. 

Therefore, repeated replication of statistically significant or suggestive linkagelLD 

fmdings from several independent experiments is still regarded as the best 

evidence for candidate disease gene location. 

The study design, presented in this thesis, attempted to identify candidate gene 

location(s) for Tourette syndrome based on a modified sequential and semi-parametric 

model of analysis. Several independent studies were performed including an initial 

whole-genome search for association (case-control design), a confirmatory LD study 

with denser marker maps in regions of interest and two independent non-overlapping 

groups of case-control samples, and fmally the confirmatory linkage/association study 

of case-control data based on nuclear family design using TDT and HRR statistics. 

Throughout the study an attempt was made to comply with all the recommendations· 

discussed earlier with respect to marker density and heterozygosity, as well as the 

interpretation of the results. 

To date, three genetic regions were identified on chromosomes 8q22.1-q22.3, 

llq23-24, and 2pll during this study, as being suggestive for Tourette syndrome 

candidate loci. 

The chromosome 8q22 region was found to manifest a translocation breakpoint in a 

family with a cytogenetically balanced chromosome translocation co-segregating with 

T ourette syndrome. The breakpoint at 8q22 was found in close proximity to the 

marker D8S257, associated with Tourette syndrome in our study, and the MI'G8 gene 

(Weber, unpublished), also known as the CDR/ETO gene (MIM 133435). The 

'myeloid translocation gene on 8q22 (MI'G8), is juxtaposed to the acute myeloid 

Stellenbosch University  https://scholar.sun.ac.za



145 

leukemia (AMLJ) gene, which is the most frequent target for the AML associated 

chromosome translocation t(8;21). The MI'G8 gene encodes a protein with two 

putative zinc fmger motifs and several proline-rich regions, and is presumed to 
., 

function as a transcription factor (Kitabayashi et al. 1998). The MI'G8 mRNA is 

abundantly expressed in human adipose tissue, skeletal muscle and neural cells 

(Sacchi et al. 1998) and as such might be a good candidate for Tourette syndrome 

gene. 

Several other genes have been mapped at or near the 8q22 region, e.g. the tsBN51 

gene (MIM 187280), encoding for a temperature sensitivity complementation protein 

with cell cycle-specific expression. The mutations in the tsBN5 J gene lead to a block 

in progression through the G 1 phase of the cell cycle at non-permissive temperatures. 

Another interesting gene mapped to the region is GEM (MIM 600164), a GTP­

binding mitogen-induced T-cell protein, which is transiently overexpressed in human 

peripheral blood cells after the mitogen induction. The product of the gene has been 

found to be overexpressed in skeletal muscle and in individuals with type II diabetes 

mellitus. Both the above genes might be good candidates for Tourette syndrome, 

particularly from the standpoint of chromosomal fragility fmdings viewed earlier in 

this thesis. 

It is of interest, that the search for shared haplotypes at the 8q22 region among 

Tourette syndrome probands based on Afrikaner nuclear family data revealed only 

two individuals who shared an haplotype identical by state (IBS) throughout the 

investigated region (Appendix, Table 3). By narrowing the region towards marker 

GATA28FI2, which yielded the highest P-value with TDT statistics, the number of 

individuals sharing an IBS haplotype increased [Note, that two alleles 12 and 13 were 

pooled for the MTG8 polymorphism (Table 3). The reason is a high mutation rate of 

the marker, in which case clustering of neighboring alleles is common even in 

statistical analyses for linkagelLD. The Afrikaner haplotyping data have not been 

statistically evaluated and Table 3 is included in appendices for illustration purposes 

only.] However, significant values for haplotype sharing among affected individuals 

were not reached as one would expect from assuming a single founder effect for 

Tourette syndrome among Afrikaners. Without detailed genealogical study of the 
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ancestry of families sharing IBS haplotypes at 8q22, it is hard to predict whether 

identified regions are also identical by descent (IBD), and if so, whether they are 

linked to rourette syndrome or simply occur as a result of the background kinship in 

our study population. 

The region on chromosome llq23, suggestively linked to rourette syndrome 

throughout this study (Chapter 5 and 8), has previously been extensively investigated 

by others particularly because it harbors the dopamine D2 receptor (DRD2) gene. The 

initial positive association rmding between rourette syndrome and the Al allele of the 

DRD2 (MIMI26450) gene has been repeatedly disproved by linkage studies in large 

pedigrees. Due to the genetic location of the markers DllS933 and DllS1377 

(Chapter 5) mapped distal to the DRD2 locus (-15.l cM), transmission of one out of 

three allelic polymorhisms identified within DRD2 gene was investigated in Afrikaner 

nuclear families. The investigation did not yield any significant distortion of allelic 

transmission patterns in the group of samples used for the study reported in this thesis 

(Appendix, Table 5) which leads to the conclusion, that if there is a gene playing a 

significant role in susceptibility to Tourette syndrome at the llq23 region, it is 

probably distinct from the DRD2 gene and most likely located distal to the DRD2 

locus. 

Another obvious candidate for the rourette syndrome gene at the llq23.l-q23.2 

region is the 5-hydroxytryptamine (serotonin) receptor-3 gene (HTR3, MIM182139), 

which has not been investigated for association with rourette syndrome before. 

It is of interest, that the ASP study of the Tourette Syndrome Genetic Linkage 

Consortium identified marker DllS912 as one of 18 markers, which yielded positive 

single- and multipoint maximum likelihood scores (MLS) in their whole genome 

screen. Marker DllS912 is located distal from marker DllS1377 (-11 cM) and 

marker DllS933 (-7 cM away). 

The search for a common haplotype across the 11q23 region in South African patients 

did not reveal any IBS region present in > 4 individuals. It is, however, of interest, 

that a rare allele (236) of marker DllS975 present only four times across the entire 
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sample of >200 individuals (Appendix, Table 5), has been transmitted to affected 

probands three times, each time on the same background (IBS) haplotype (Appendix, 

Table 4). Only in one case was the allele not transmitted to the affected proband, in 
i 

which case it resided on a different background haplotype. A denser map of markers 

has to be typed at chromosome IIq23 to see whether this particular IBS haplotype 

also demonstrates IBD haplotype. 

There have been no prevIous reports of Tourette syndrome linkage with the 

chromosome 2p II region. As illustrated in Fig.1 (Appendix) several markers along 

the whole length of the chromosome 2 were identified in the initial Afrikaner genome· 

screen (Chapter 5) with consistent differences in marker allele distribution between 

affected and control pools. However, only two loci have subsequently been confirmed 

for association by individual typings (Appendix, Table I and 2). Increased haplotype 

sharing identified by extended HRR analysis among the markers at the 2pll region 

may either reflect the association with a putative Tourette syndrome gene locus, or 

may alternatively represent high levels of background LD in the region,. which has 

been documented for the same region in the Afrikaner background LD study 

(Appendix, Figure 2). Such high levels of LD may be explained by centromeric 

chromosomal location of the region, a site, which is usually characterized by lower 

recombination rates. 

There have been no obvious candidates for Tourette syndrome mapped to the 2qll 

region, however, genes important with respect to immune responses, such as CD8 

antigen, alpha polypeptide (CD8A, MIMI8691O), and immunoglobulin kappa light 

chain gene cluster (IGK@),been mapped to the region. 

A gene, such as transcriptional factor-9 (TCF9, MIMI89901), which binds GC-rich 

sequences (common fragile sites cluster in GC-rich chromosome regions), and maps 

to 2p 11.2-p 11.1, may also serve as a candidate gene in future studies with attempt to 

elucidate the genetics ofTourette syndrome. 

It is intriguing, that the 2q 12-q 11 region has also been associated with alcohol 

dependence in genome-wide linkage investigation of the Collaborative Study on the 
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Genetics of Alcoholism (COGA), with one of two largest lod scores in the region 

being achieved with marker D2S 1790 (Reich et al. 1998), positively associated with 

Tourette syndrome in the Afrikaner study. 

The regions on chromosome 20q and 21q21, associated with Tourette syndrome 

throughout the case-control study (Chapter 5), have not been confirmed for linkage by 

subsequent nuclear family study design (Chapter 8). The high original P-values for 

the markers in the region most likely resulted from spurious associations detected in a 

rather small initial group of samples (Appendix, Table 1 and 2). 

The remaining 10 regions associated with Tourette syndrome in earlier case-control 

study (Chapter 5) have yet to be subjected to confirmatory studies. Particularly the 

region on chromosome 1 p is of interest, where two markers (D 1 S485 and DIS 1665) 

span a -34 cM region harboring marker D1S1728, which also yielded a suggestive 

single point MLS value in the genome-wide ASP study of the Tourette Syndrome 

Genetic Linkage Consortium. The region has also been suggestively linked to 

schizophrenia in several recent studies (Shaw et al. 1998), bipolar disorder (Rice et al. 

1997), and alcohol dependence (Reich et al. 1998). 

The chromosome 6p22-p24 region has been subjected to extensive linkage and ASP 

analyses in connection with common psychoses, since the report by Straub et al. 

(1995) of linkage to schizophrenia. While markers which yielded suggestive 

association results throughout the Afrikaner study, D6S477 and D6S470 (Appendix, 

Table 1 and 2), map to the 6p24-p25 region, a. marker identified by the Tourette 

Syndrome Genetic Linkage Consortium in the ASP study with a positive (> 1) single 

point MLS value (D6SI053) maps proximal to the region (55.17 cM) in the HLA and 

dyslexia gene region (Grigorenko et al. 1997, Fischer et al. 1999, Gayan et al. 1999). 

Wide-spread positive linkage fmdings throughout the 6p region (-40 cM) are 

documented in the search for schizophrenia genes and may also become common in 

the search for Tourette syndrome genes as more linkage/association studies using 

non-parametric methods of analysis are performed. The HLA antigens (HLA-A, B, C, 
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and DR) have been excluded from linkage with Tourette syndrome in earlier studies 

(Caine et al. 1985). 

Chromosomes 12, and 14 markers associated with Tourette syndrome in the initial 

genome scan (Appendix, Table 1 and 2), have not been repeatedly associated with 

either Tourette syndrome or other major neurological or psychiatric traits (Detera­

Wadleigh 1999, Craddock and Lendon 1999). 

Chromosome 5q and 13q regions including markers D5S666 and D13S788 

(Appendix, Table 1 and 2) have been suggestively linked to schizophrenia and bipolar 

disorder respectively (Crowe and Vieland 1999, Barden and Morissette 1999). 

One of the potentially important areas also includes the Xpl1.4-p21 region, where 

differences were observed in marker allele distributions for two markers in the initial 

genome scan with DNA pools from affected and control males only (Appendix, 

Figure 1). These initial fmdings could not be conftrmed with subsequent evaluation of 

individual genotyping data (Appendix, Table 1 and 2). However, because of the fact 

that the male- to female-ratio in the prevalence of Tourette syndrome as well as other 

childhood onset neurological disorders (e.g. autism, ADHD) is distorted, our initial 

fmding may still be of importance because of the possibility of imprinted 

susceptibility loci at the Xp chromosome region. 

Further investigations are necessary to support this claim, e.g. by separate 

investigations of marker allele transmissions from fathers and mothers to affected 

probands in nuclear families. 

9.2. Future research strategies 

The localization and characterization of genes important for the expression of the 

Tourette syndrome phenotype would represent a major advance in the understanding 

of the pathogenesis of this disorder and would also provide a model for the study of 

other developmental disorders. Furthermore, once genes conferring susceptibility to 

Tourette syndrome and associated behaviors have been characterized, further research 
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will allow the identification of additional non-genetic factors important for the 

manifestation as well as amelioration of the symptoms of the disorders (pauls, 1990). 

It is generally accepted that co-segregation of a chromosomal abnormality with a 

disease phenotype, even in the case of common complex trait, may represent 

additional valuable information about the genetic locus or character of the gene 

product responsible for the susceptibility to the trait. Therefore, it is important, that at 

least until the genes responsible for Tourette syndrome are found, researchers will 

continue to search for chromosomal abnormalities in Tourette syndrome cases. 

Further research is needed to fmalize and confirm the molecular data generated 

throughout this study: 

1. Confirmatory linkagelLD studies in the remaining 10 loci identified during the 

initial whole genome screen (Chapter 5) are of immediate importance. 

2. A second complete genome scan on the Afrikaner Tourette syndrome nuclear 

families, which would allow replication and extension of the initial case-control 

association results. 

3. Further examination of current chromosomal areas of interest, based on the 

identification of regions that are shared identical by descent (lBD) among 

Tourette syndrome patients. These must preferably be drawn from genealogically 

well-characterized and presumably more genetically isolated sub-population of 

Afrikaners. 

4. The follow-up on the initial Xp association fmdings by linkagelLD analysis using 

nuclear families. Particularly differences in the parental marker allele 

transmissions (paternal vs. maternal transmissions) would be of interest in light of 

distorted male:female ratio among affected individuals and observed imprinting 

effects as a part of the inheritance pattern of certain Tourette syndrome-associated 

pathologies (e.g. tics vs. OCD). 

In agreement with the current goals of the Tourette Syndrome Genetic Mapping 

Consortium, the recommended gene-mapping designs for further exploration of the 

existing and newly generated data will incorporate extensive clinical information 

about the study participants for future quantitative trait loci analysis (QTL). E.g. tics 

Stellenbosch University  https://scholar.sun.ac.za



151 

plus associated psychopathologies (either OeD or ADHD, etc.) vs. tics only may 

serve as one discriminatory factor for QTL analysis, the presence/expression vs. non­

presence of DS/17 antibody in Tourette syndrome probands may serve as another 

discriminatory factor. 

The co-localization of some of the currently identified genetic regions of interest for 

Tourette syndrome with regions linked to other psychoses (schizophrenia, bipolar 

affective disorder) 'or neurobehavioral traits (alcohol dependence) may also serve as 

an alternative basis for further investigations aiming to identify susceptibility genes 

for this intriguing condition. 
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ELECTRONIC-DATABASE INFORMATION 

Advanced PubMed search: http://www.ncbi.nlm.nih.govlPubMedimedline.html 

Center for Medical Genetics, Marshfield, WI, for genetic marker and genetic map 

information: http://www .marshmed.org/ genetics 

Centre d'Etuds du Polymorphisme Humain (CEPH) database, for marker allele 

frequencies in Caucasians: http://www.cephb.fr/ 

Cooperative Human Linkage Center, for marker information: 

http://www .chlc.rglChlcMarkers.html; http://www.cephb.fr/quickmap .html 

Genethon, database, for genetic marker information: http://www.genethonJr 

Genemap database, for the physical location of over 30,000 genes: 

http://www .ncbi.nih. gov/genemap/ 
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Government Communication and Information System [South Africa], for Afrikaner 

history: http://www.sacs.org.zalleveI2lhistory.htm 

On Line Mendelian Inheritance in Man (OMIM), for information regarding Tourette 

syndrome (MIM 137580) and other genetic diseases: 

http://www3 .ncbi.nlm.nih.gov/Omimlsearchomim.html 

The NCBI Database, for the human gene map location of candidate genes: 

http://www.ncbi.nlm.gov/cgi-biniSCIENCE96 

The Tourette Syndrome Association: http://tsa.mgh.harvard.edu 
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APPENDICES 

Figure 1 

Electrophoretic profiles for additional markers (see Chapter 5) that demonstrated 
consistent allele frequency distribution between affected and control subjects in the 
fIrst group. Segments of autoradiographs from polyacrylamide gels are displayed for 
six STRPs at the indicated loci. The DNA templates used to generate the amplifIed 
DNA fragments were in the same order for each marker: standard DNA from CEPH 
family parents 133101 (1) and 133lO2 (2), DNA pool from set 1 of unaffected control 
subjects (CI), DNA pool from set 1 of affected subjects (AI), independent 
amplifIcation of pools CI and AI, DNA pool from set 1 of affected subjects (AI), 
independent amplifIcation of pools CI and AI, DNA pool from set 2 of unaffected 
control subjects (C2), and DNA pool from set 2 of affected subjects (A2). Arrows 
mark alleles enriched in the affected subjects. 

0181665 028293 
2 C1 A1 C1 A1 C2 A2 2 C1 A1 C1 A1 C2 A2 

028410 0281326 
1 2 C1 A1 C1 A1 C2A2 1 2 C1 A1 C1 A1 C2A2 
~ • 

~ .- ~.~ ,. !I .t!i ~ • 
0481551 0281391 

1 2 C1 A1 C1 A1 C2A2 1 2 C1 A1 C1 A1 C2A2 
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Figure 1 (Continued) 

058641 0581505 
2 C1 A1 C1 A1 C2 A2 1 2 C1 A1 C1 A1 C2 A2 

0781804 0881132 
1 2 C1 A1 C1 A1 C2 A2 1 2 C1 A1 C1 A1 C2 A2 

01282078 0138788 
1 2 C1 A1 C1 A1 C2 A2 1 2 C1 A1 C1 A1 C2 A2 

0148742 0208470 
1 2 C1 A1 C1 A1 C2 A2 1 2 C1 A1 C1 A1 C2 A2 

GATA31 010 GATA72E05 
1 2 C1 A1 C2 A2 2 C1 A1 C2 A2 
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Table 1 

Statistical analysis of the marker allele frequencies at the loci investigated in the fIrst 

set of samples (-40 cases,-40 controls). "2p(chi-sq)" refers to the (twr-sided) P-value 

of the chi-square test when all alleles are distinguished in an 2-by-n c0ntingency table 

(2 affection classes, n alleles); alleles with expected values smaller than 1 were 

suitably pooled. "Allele" is the marker allele most strongly (in terms of P-value) 

associated with disease (or control). "P(assoc)" refers to the (one-sided) P-value for 

Fisher's test in a 2-by-2 table, given allele versus all other alleles, cases versus 

controls. One such table was calculated for each allele. The value reported is the 

smallest P-value, adjusted for mUltiple testing using the Bonferroni correction. "t" and 

"df' refers to the t-test for a difference in mean allele sizes between cases and 

controls. Positive t-values mean larger allele sizes in the group of cases (affected 

individuals). The t-test is expected to be powerful when marker alleles generally are 

shifted in the length in cases versus controls (Chapter 5). 

Chr. Marker 2P(chi-sq) Allele P(assoc) t df 

1 01S485 0.017664 177 0.005112* -1.5556 178 
1 0181665 0.009487* 231 0.001256* 2.0439 180 
2 028410 0.237736 152 0.222738 -2.5914 180 
2 0281326 0.106139 236 0.075417 -1.3403 180 
2 0281360 0.066787 152 0.29132 1.3521 182 
2 0281391 0.04229 109 0.155708 -0.8236 178 
2 0281790 0.012772 324 0.034551 -2.1946 170 
3 0381261 0.217071 213 0.338027 -1.5857 176 
3 0381286 0.05662 141 0.47967 0.7068 180 
4 0481551 0.009769* 178 0.025258 1.5437 182 
4 0481613 0.234327 261 0.358959 -0.4513 172 
4 0481647 0.037058 152 0.012706 1.5706 180 
5 058666 0.025713 249 0.022373 -1.8311 182 
6 068274 0.124564 182 0.086487 -2.3028 180 
6 068277 0.433172 116 0.262028 1.3867 172 
6 068344 0.855934 141 0.692204 -1.8502 172 
6 06S429 0.216727 230 0.505481 0.9265 176 
6 068439 0.535595 284 0.63383 -0.499 174 
6 068470 0.000621** 134 0.022729 3.3466** 180 
6 06S477 0.004796* 229 0.06495 1.6926 178 
8 0881119 0.025608 182 0.057083 -0.4463 180 
8 0881128 0.453483 244 0.312992 -0.4471 178 
8 0881130 0.019856 148 0.076935 3.6133** 178 
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Table 1 

Continued 

Chr. Marker 2P(chi-sq) Allele P(assoc) t df 

8 0881145 0.111139 261 0.257379 -2.2015 180 
8 0881477 0.136501 159 0.088622 -0.3253 182 
9 098910 0.496543 105 0.504005 -0.2093 178 
9 098922 0.262896 255 0.218491 -1.95 150 
9 098925 0.369299 171 0.225581 1.2767 170 
10 0108186 0.001720* 155 0.000181** 0.3809 176 
10 0108198 0.8642 187 0.583652 0.5003 172 
10 01081432 0.254791 181 0.149307 0.097 180 
11 0118933 0.049813 255 0.005541* -0.3139 180 
12 0128327 0.001229* 196 0.101758 -2.0964 182 
12 0128356 0.360483 217 0.355306 0.749 182 
12 0128358 0.082245 256 0.024513 -0.0065 180 
13 0138788 0.005115* 258 0.163327 -0.6732 170 
13 01381493 0.227108 135 0.041064 -0.7115 174 
16 0168771 0.532954 253 0.694941 -0.2014 168 
16 01683253 0.289044 187 0.221844 -1.1191 170 
20 0208478 0.34899 263 0.31646 1.6931 180 
20 0208604 0.44301 127 0.331024 0.6893 174 
20 GATA46C01 0.027842 189 0.028089 0.4601 172 
20 GGAA7E02 0.088129 266 0.111662 1.3189 176 
21 02181252 0.000005** 243 0.006422* 0.8027 152 
21 02181435 0.04453 171 0.046633 -2.2074 180 

X(m) OX81218 0.312308 263 0.172211 1.9379 62 
X(m) OX81221 0.575005 155 0.304773 -0.6525 63 
X(m) OX86799 0.866395 257 0.692356 -0.3485 61 
X(m) OX86800 0.076792 197 0.100052 1.9878 60 
X(m) OX86810 0.159977 223 0.09872 -1.6041 61 
X(m) OX87132 0.304675 287 0.184667 -1.4221 61 

m - investigated in the male samples only 

* results with P = 0.01 or smaller 

** results with P = 0.001 or smaller 
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Table 2 

Statistical analysis of the marker allele frequencies at the loci investigated with the 

second set of samples (-60 cases, -60 controls). 

* results with P = 0.01 or smaller 

** results with P = 0.001 or smaller 

Chr. Marker 2P(chi-sq) Allele P(assoc) t df 

1 01S1665 0.120449 239 0.057488 -0.7509 200 
1 01S485 0.245221 173 0.242315 -1.2204 194 
1 GATA124802 0.722764 198 0.463694 0.6729 396 
1 01S495 0.415392 146 0.454405 0.6122 386 
2 02S428 0.244404 158 0.138064 -1.3824 420 
2 GATA6E12 0.512984 264 0.631871 0.7613 412 
2 GATA5807 0.930603 192 0.758404 -0.5789 410 
2 02S1396 0.158605 130 0.286638 -0.6296 376 
2 02S435 0.222442 215 0.079522 -0.9384 424 
2 02S440 0.001505* 207 0.001086** -0.6062 426 
2 02S1790 0.006018* 324 0.012406 -0.1754 198 
2 GATA62810 0.392579 161 0.740326 -0.7276 410 
2 02S1391 0.141234 133 0.103959 1.0698 179 
3 03S1286 0.777862 145 0.211394 1.326 200 
3 GATA123C09 0.156317 169 0.138956 -1.5572 386 
3 GATA8C11 0.909997 124 0.691808 -0.5488 406 
4 04S1551 0.416725 176 0.639875 -0.9522 189 
5 05S666 0.189512 233 0.624466 -0.1008 186 
6 06S477 0.02357 237 0.040963 0.8224 422 
6 ATA109H09 0.178322 203 0.204661 -0.2115 416 
6 06S470 0.434915 130 0.206133 -1.5249 242 
8 08S1130 0.42089 136 0.422439 -0.8546 210 
8 08S1138 0.238189 260 0.105402 1.3155 420 
8 08S273 0.130718 137 0.164897 -1.3345 420 
8 08S257 0.013695 118 0.003529* -0.3329 393 
8 Mfd45 0.164226 84 0.31805 1.5887 422 
8 08S0271 0.752514 271 0.750539 -0.4636 414 
8 08S1119 0.088352 182 0.052879 0.2282 409 
10 010S1222 0.27078 118 0.200439 -1.0616 212 
13 013S788 0.562724 270 0.429572 0.0673 196 
13 ATA17C06 0.92774 213 0.794166 -0.7704 374 
13 GATA148801 0.453457 188 0.533182 0.3577 428 
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Table 2 

Continued 

Chr. Marker 2P(chi-sq) Allele 

14 0148742 0.060972 399 
14 0148275 0.79853 201 
14 0148283 0.691032 133 
14 Mfd130 0.842671 180 
14 01481003 0.001486* 163 
20 0208913 0.613341 252 
20 020S1085 0.000462** 181 
20 ACT1A04 0.053424 194 
20 ATA7B01 0.543936 110 
20 0208469 0.097633 215 
21 0218260 

I 

0.150657 269 
21 ATA22G04 0.747804 320 
21 02181252 0.072452 249 
21 02181435 0.461993 179 
21 GATA116E08 0.360294 230 
21 021S1255 0.081902 118 

X(m) GATA186006 0.861824 204 
X(m) ATA70F04 0.371436 140 
X(m) OX81 068 0.379466 251 
X(f) GATA186006 0.040756 212 
X(f) ATA70F07 0.114496 140 
X(f) OX81 068 0.663063 249 

m - investigated in the male samples only 
f - investigated in the female samples only 

Thresholds for "t" values (absolute values) 

P(assoc) 

0.018396 
0.663896 
0.836835 
0.524172 
0.002918* 
0.46292 

0.000401** 
0.060856 
0.510919 
0.06269 

0.108757 
0.464855 
0.121975 
0.174308 
0.203998 
0.223159 
0.867496 
0.566302 
0.197329 
0.019096 
0.11832 

0.593089 

df P=O.OI P = 0.001 

120 2.617 3.373 

2.576 3.291 

171 

t df 

-2.1493 410 
-0.0732 392 
-0.3339 382 
-0.6704 396 
3.9910* 402 
-0.8893 396 
-0.3111 196 
2.8233 394 
-0.101 412 

-0.4355 420 
-0.3152 374 
0.3443 192 
-0.9262 189 
-1.1872 196 
0.7338 402 
-1.126 194 
-0.474 135 
1.7733 92 
-0.6172 117 
1.5016 132 
2.025 106 

-0.0499 136 

P=O.OOO 

4.025 

3.891 
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Figure 2 

Chromosomal regions investigated for the extent of the background LD in the 

Afrikaner population (Chapter 7). 
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Table 3 

Marker 

0881119 
0881707 
088271 
GATA8B01 
T7-27 
088270 
MTG8 
GATA28F12 
0881822 
0881129 
088257 
088559 
0881808 

Table 4 

IB8 haplotype sharing among unrelated Tourette syndrome probands on chromosome 8q22 (see Chapter 8,9) 

Tourette syndrome probands 
cM 2-3 7-3 16-3 18-323-324-333-338-341-344-346-349-350-357-361-3 69-3 79-381-305-308-3013-3016-4019-3020-3023-3 025-3 

.101.01 
101.69 107 
102.62 267 
103.69234 234 234 234 
103.69 4 4 4 4 4 4 
103.69 191 191 191 191 191 191 
103.69 13 13 13 13 13 12 
104.33 286 286 286 286 
107.97 14 14 
110.2 144 

111.68 110 
112.42 
113.16 

218 
174 

9 9 9 
107 107 107 

267 267 267 267 
234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 
44444444444444444444 

191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 
13 13 13 13 12 12 13 13 12 12 13 13 12 13 13 12 13 12 12 13 

286 286 286 286 286 286 286 286 286 286 286 286 286 286 286 286 
14 14 14 14 14 14 14 14 14 14 

144 144 144 144 144 144 144 
110 110 
218 218 
174 174 

IB8 haplotype sharing among unrelated Nontransmitted haplotype 
Tourette syndrome probands on chromosome 11q23 

Tourette syndrome probands 
Marker cM' 8-3 13-3 49-3 

01181377 120.87 136 136 
01181353 ·122.47 202 202 202 
01184464 123 4 4 4 
0118933 124.07 255 255 255 
0118975 126.21 236 236 236 

associated with the allele 236 (0118975) 

4-2 

136/136 
200/200 

2/5 
247/259 
224/236 --l w 
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Table 5 
Actual numbers of transmitted (T) versus non-transmitted (Nn alleles 
for investigated markers (Chapter 8) subjected to TOT and HRR statistics . 

. Only informative nuclear families for particular marker-allele are included. 

, . 

174 

"'" ,,,~-.,... .. ,,,,",.,.. """"", ;~",;-=-.,,~- , .... ,'.~, ... """--..... ~ .... ~-""'._~, . -,,~;;'''' .. ,,",,' ... ~--- =. ",u.";'J'''''':~'''''T'~V· .. '''''''''''''-<.'''''''~''''·''''<:··'' ·""" • .,.._·_h .. ;;,..;:.'"· ..... ,.,·"""-.,;".n"';.~' ....... A ....... ,. .. '.'-"'" .;>-........ ~"~,'?;J.c.,,.'-'"'$-"'"_ ... f_.,,""'- __ ..... .,h>-

0851119 0851707 085271 GATA8B01 MTG8 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 

1 0 1 107 40 39 272 1 1 258 0 1 19 2 1 
2 18 13 105 27 29 269 6 7 254 3 4 17 7 10 
3 14 23 103 7 11 267 40 36 250 7 5 16 17 17 
4 6 6 99 47 42 265 6 10 246 20 12 15 11 13 
5 12 17 263 21 22 242 7 16 14 10 4 
6 53 48 GATA28F12 261 8 2 238 29 18 13 28 32 
7 5 1 Alelle T NT 259 29 30 236 0 1 12 28 27 
9 26 25 298 2 1 257 35 37 ' 234 38 46 11 19 27 

294 2 2 253 0 1 230 5 8 10 20 30 
290 22 41 226 4 2 9 10 9 
286 44 28 8 3 6 
282 9 9 7 2 0 
274 4 2 5 1 0 

2 1 0 
,,,->t:!!I.!Is:tWtEt£&,,,,,%Z'~~,g9·.J.~.o-.W: ~,;....:::!2I1£:ee ... !i" • ."...a __ ~! -:tjS>r.diU ... =_",,-,",,~~-'i~~ ,~.-:.7M" .. Wi •. ,",".I!¢i.;..._>&::i&j;;;!W,.?l";. ":'. ~.-~ _-- ~'5:::v~'£'i&tta2r-\ .. 

T7-27 085270 0851822 0851129 085257 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 

11 26 26 197 3 4 2 0 1 148 3 4 122 0 1 
10 4 4 195 7 5 3 3 1 144 . 19 17 118 1 1 
6 5 1 193 28 24 4 1 1 140 6 8 116 14 19 
5 1 2 191 49 43 5 4 7 136 4 3 114 44 54 
4 35 35 189 12 18 6 10 13 130 7 7 112 37 31 
3 2 5 187 2 4 7 4 0 110 32 23 
2 1 1 185 1 2 8 12 13 108 1 i 

183 5 10 9 2 7 106 1 0 -181 31 27 10 42 34 
179 1 1 12 4 2 
175 0 1 13 4 5 

14 41 43 
15 14 14 

MWd$:l$!&J..::. ..... tfiCiSt!&\iAl~ 

085559 0851808 OR02 01151377 01151353 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 
238 1 0 176 1 0 1 1 3 146 8 6 214 0 1 
232 1 0 174 9 6 2 31 31 144 3 5 208 6 3 
230 4 6 172 6 11 3 49 43 142 19 8 206 34 38 
228 7 7 170 38 49 4 19 32 141 0 1 204 28 29 
226 30 29 168 51 39 5 24 14 140 10 19 203 5 0 
224 16 20 6 1 2 138 17 27 202 15 24 
222 5 9 136 26 37 200 33 28 
220 42 40 134 37 23 196 3 1 
218 24 19 132 8 2 
216 0 1 130 3 1 
212 1 0 128 5 7 

,....~,..,."'."'" '- . ~ --- -~ ....... 7'>r"'.~ ~,-.. - . . ,.,.. "< • .....,~ ........... ,~ ~ ......... _= ~. 
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Table 5 
Continued 

"*"_~"''''''~''''''''''''1,''~;.....:.Joo:-".,,,, .... ,,, .... ~~'.~;. "" '~ ..... ",,,---,.,, __ <,,f-"''''-''''.'''.~-~..:.'-:': '~~'~' ... .r.>'~ .-. ~-. ~,...." .. "' ..... '. -' ~-'~~''''''''':;;'>'''~'''''''''''''''''-'--. 

"'-'~"lD2s13ir""'~~' 
• ,""""' ......... ".,.,... ,~ .... -. "'''"'',. ,~_, ~--"> .,~u.~,~ ........ ~~ _ 

01184464 0118933 0118975 028440 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 

1 10 4 267 1 3 240 1 8 201 1 2 211 4 2 
2 13 20 265 3 1 238 0 1 199 1 2 207 8 8 
3 38 33 263 8 3 236 3 1 197 7 11 203 18 21 
4 38 43 261 3 4 234 11 14 195 30 27 199 44 39 
5 15 12 259 11 7 232 43 51 193 16 29 195 43 42 
6 8 10 257 31 37 230 6 1 191 13 9 191 12 16 

255 37 41 228 6 9 189 0 1 187 1 0 
253 6 7 226 3 1 187 0 3 183 0 2 
251 34 26 224 22 11 183 0 2 
249 3 3 222 36 33 181 29 32 
247 4 9 216 6 7 177 4 1 

175 43 25 
~'\.l'w.o;r.~. ~~~~. ~~ m!~~~~~~ ~~~,,~~ 

0282161 028417 0208480 0201085 0208469 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 
204 3 4 213 0 2 308 2 3 199 2 0 239 2 0 
202 4 7 211 6 5 304 4 10 195 1 2 235 1 0 
200 8 7 209 13 13 300 33 27 193 0 2 231 8 4 
198 9 16 207 32 23 296 36 31 191 8 8 229 0 1 
196 13 7 205 36 51 292 32 37 189 4 6 227 3 2 
194 33 42 203 47 34 288 13 12 188 2 1 223 8 3 
192 29 21 201 '. 1 4 284 2 2 187 20 22 219 15 17 
190 11 4 199 0 1 185 20 19 215 6 10 
188 3 5 197 7 9 184 6 2 211 32 41 
184 3 2 183 16 33 207 17 14 
180 1 0 181 20 25 203 1 1 
176 0 3 180 21 14 
172 1 0 179 5 4 

177 15 9 
176 14 9 
173 3 3 
171 2 0 

.~~~~~~ ~~.,glli£I'j;:;.i!!w!WiJiiM" ... ~ r· ': ~:gg;ssn.-"",~JU.~;(1!";x:;:;;;g..;,:,,,.~ 

0208120 GATA45C03 02181920 02181895 02181252 
Alelle T NT Alelle T NT Alelle T NT Alelle T NT Alelle T NT 
249 0 1 1 1 2 234 2 2 280 1 1 253 1 4 
247 0 1 2 0 2 232 23 22 278 10 8 251 2 3 
245 1 2 3 13 13 230 25 27 276 8 15 249 11 10 
243 8 7 4 19 18 228 9 8 274 18 17 247 21 22 
241 8 8 5 16 9 226 29 27 272 12 16 245 9 17 
239 27 19 6 2 2 224 33 39 270 27 27 243 5 0 
237 43 28 7 1 2 222 4 1 268 17 11 241 3 2 
235 12 15 8 32 33 220 11 10 266 11 22 239 25 23 
233 19 28 9 10 2 264 46 31 237 42 32 
231 20 23 10 2 2 262 3 4 233 2 2 
229 0 2 12 0 1 260 0 1 231 20 27 
223 0 1 16 1 1 227 1 0 
221 1 1 
219 6 11 
217 1 1 
213 8 6 
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