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Abstract 

This thesis is devoted to the development of relativistic Dirac-based models for describing com­

plete sets of quasielastic (p,p') and (p, ii) polarization transfer observables at medium energies. 

The original relativistic-plane-wave-impulse-approximation (RPWIA) model of Horowitz 

and Murdock is modified to include the phenomenological Horowitz-Love-Franey meson-exchange 

(HLF) model for the NN amplitudes, and new HLF parameter sets are generated between 80 

and 200 MeV. Medium effects are incorporated by replacing free nucleon masses in the Dirac 

plane waves with more refined effective projectile and target nucleon masses. 

For a 4°Ca target at a fixed momentum transfer of 1.97 fm-1, and incident energies between 

135 and 300 MeV, the sensitivity of complete sets of quasielastic (P,p') and (P, ii) polarization 

transfer observables is investigated with respect to nuclear medium effects, ambiguities in 1rNN 

coupling, exchange contributions to NN amplitudes, and spin-orbit distortions. It is seen that, 

(1) compared to (p,p 1
) scattering, the (p, ii) polarization transfer observables are more sensitive 

to pseudoscalar versus pseudovector forms of the 1rNN coupling, (2) as the incident proton 

energy is lowered, nuclear medium effects and spin-orbit distortions become more important, 

(3) nuclear medium effects are extremely sensitive to the type of pion coupling, (4) contrary 

to the original RPWIA, exchange contributions cannot be neglected at energies as high as 500 

MeV. For an optimal study of nuclear medium effects, this investigation stresses the urgent 

need for measurements of complete sets of quasielastic polarization transfer observables for both 

(p,p') and (p, n) reactions at energies lower than 200 MeV. Comparison of RPWIA predictions 

with the small amount of available data yields an inconsistent picture: The (P, p') data favour a 

pseudoscalar coupling for the pion, whereas the limited (P, n) data suggest a pseudovector form. 

Our poor treatment of distortions is considered to be the main source for this inconsistency. 

The issue of distortion effects on polarization transfer observables is addressed by develop­

ing the theoretical framework for the relativistic distorted wave impulse approximation. As an 

additional improvement over the RPWIA, models of nuclear structure (relativistic Fermi-gas 

model, relativistic mean-field approximation, and local-density-approximation) are developed, 

whereby the nuclear structure information is contained in a large set of nuclear response func­

tions, which are systematically evaluated using standard many-body techniques. 
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Samevatting 

Hierdie proefskrif handel oor die ontwikkeling van relatiwistiese modelle, gebaseer op die Dirac­

formalisme, vir volledige stelle parameters vir spinpolarisasie-oordrag in die geval van kwasi­

elastiese (p, p ') en (p, ii) verstrooiing by medium energiee. 

Die oorspronklike Relatiwistiese Vlakgolf-Impulsbenadering (RVI) van Horowitz en Mur­

dock is gewysig om ook die fenomenologiese meson-uitruilmodel van Horowitz, Love en Franey 

(HLF-model) vir die nuckleon-nukleon (NN) amplitudes in te sluit. Hiervoor is 'n nuwe stel 

HLF-parameters vir die energiegebied 80- 100 MeV bereken. Om effekte van die omringende 

kernmedium in te sluit, is effektiewe nukleon massas tans vir beide die projektiel- en die teiken­

nukleon op 'n nuwe, verfynde wyse bereken. 

Vir die kwasi-elastiese reaksies (p,p ') en (p, ii) met 4°Ca as teikenkern, invallende energiee 

tussen 135 en 500 MeV en 'n (vaste) momentum-oordrag van 1,97 fm-1, is volledige stelle 

polarisasie-parameters bereken. Laasgenoemde se gevoeligheid is ondersoek ten opsigte van 

effekte van die kernmedium, dubbelsinnighede ten opstigte van die 1r NN-interaksie, die bydraes 

van uitruilterme tot die NN-interaksie en die golfvervorming as gevolg van spin-baan koppeling. 

Die volgende is bevind: (1) Die polarisasieveranderlikes van die (p, ii)-reaksie is meer gevoelig 

ten opsigte van die keuse tussen 'n pseudoskalare of 'n pseudovektor term in die 1rNN-interaksie, 

as die van die (P,p ') reaksie; (2) Effekte van die kernmedium en spin-baan vervorming word 

belangrik by lae energiee; (3) Die effekte van die kernmedium is uiters gevoelig vir die tipe 

pion-koppeling; ( 4) In teenstelling met die oorspronklike RVI, kan uitruileffekte nie by hoer 

energiee, byvoorbeeld 500 MeV, verontagsaam word nie. 

Hierdie ondersoek beklemtoon dat, vir 'n behoorlike studie van effekte van die kernmedium, 

veral vir energiee laer as 200 MeV, volledige stelle van polarisasie-veranderlikes van beide (P,p') 

en (if, ii) reaksies gemeet moet word. Vergelykings met die beperkte beskikbare data (hoof­

saaklik vanaf onvolledige stelle veranderlikes) lewer 'n onsamehangende prentjie: Die (p, ii)­

polarisasieveranderlikes gee voorkeur aan 'n pseudovektor term in die 1rNN-interaksie, waar 

die (if, p ') veranderlikes egter 'n pseudoskalare-term verkies. Die oorsaak van hierdie nie­

konsistensie kan moontlik aan die weglating van vervorming van die invallende golf deur die 

kernmedium gewyt word. 
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Laagenoemde vervorming is aangespreek deur 'n rekenaarprogram te ontwikkel, waarmee ver­

vormde Dirac-golwe beken kan word. Verder is die totale formalisme is ontwikkel, waaruit verder 

polarisasie-parameters met sulke vervormde golwe bereken kan word. Dit wend die sogenaamde 

"reponse" -funksie vir veeldeeltjiesisteme aan, waarmee die kernmedium se nie-homogeniteite, 

geassosieerd met die vervorming (byvoorbeeld die benadering vir plaaslike digtheid) en ander 

effekte elegant hanteer kan word. 
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the HLF parameters, (b) PS versus PV forms of the 1rNN vertex, (c) PS medium 

effects, (d) PV medium effects, and (e) exchange contributions. The figures are 

plotted as a function of laboratory energy at the quasielastic peak. Open circles 

represent (if, ii) scattering, whereas solid circles represent (if, if') scattering. The 

notation is identical to that used in Figs. 3.19 - 3.22, except that dn?~E' is now 
I I 

117 

replaced by d~
2

dE. The solid lines serve merely to guide the eye. . ... . . .. . 119 
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3.24 Unpolarized double differential cross section as a function of transferred energy w 

over the quasielastic peak for 12C(p, n) at 186 MeV and 8lab=20°. The centroid 

of the quasielastic peak is at w ~ 50 MeV. Data are from Ref. [Wa94]. The 

solid lines indicate free mass (M) calculations [Free M], dotted lines represent 

effective mass (M*) PV calculations based on the HLF model [PV(M*)-HLF], 

dashed lines display effective mass (M*) PS calculations based on the HLF-model 

[PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations 

based on a direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT].122 

3.25 Polarization transfer observables as a function of transferred energy w over the 

quasielastic peak for 12C(p, n) at 186 MeV and 81ab=20°. The centroid of the 

quasielastic peak is at w ~50 MeV. Data are from Ref. [Wa94]. The solid lines 

indicate free mass (M) calculations [Free M], dotted lines represent effective mass 

(M*) PV calculations based on the HLF model [PV(M*)-HLF], dashed lines 

display effective mass (M*) PS calculations based on the HLF-model [PS(M*)­

HLF], and dashed-dotted lines show effective mass (M*) calculations based on a 

direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT] ....... 123 

3.26 Unpolarized double differential cross section as a function of transferred energy w 

over the quasielastic peak for 12C(p,p') at 290 MeV and 81ab=29.5°. The centroid 

of the quasielastic peak is at w ~ 80 MeV. Data are from Ref. [Ch90], where 

P and Ay refer to induced polarization and analyzing power respectively. The 

solid lines indicate free mass (M) calculations [Free M], dotted lines represent 

effective mass (M*) PV calculations based on the HLF model [PV(M*)-HLF], 

dashed lines display effective mass (M*) PS calculations based on the HLF-model 

[PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations 

based on a direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT).124 
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3.27 Polarization transfer observables as a function of transferred energy w over the 

quasielastic peak for 12C(ff,p' ) at 290 MeV and Otab=29.5°. The centroid of 

the quasielastic peak is at w ~ 80 MeV. Data are from Ref. [Ch90), where P 

and Ay refer to induced polarization and analyzing power respectively. The solid 

lines indicate free mass (M) calculations [Free M), dotted lines represent effective 

mass (M*) PV calculations based on the HLF model [PV(M*)-HLF), dashed lines 

display effective mass (M*) PS calculations based on the HLF-model [PS(M*)­

HLF), and dashed-dotted lines show effective mass (M*) calculations based on a 

direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT) . . . . ... 125 

3.28 Polarization transfer observables for a range of transferred energy w over the 

quasielastic peak for 54Fe(ff,p') 290 MeV and Btab=20°. The centroid of the 

quasielastic peak is at w ~ 40 MeV. Data are from Ref. [Ha88], where P and Ay 

refer to induced polarization and analyzing power respectively. The solid lines 

indicate free mass (M) calculations [Free M ], dotted lines represent effective mass 

(M*) PV calculations based on the HLF model [PV(M*)-HLF], dashed lines 

display effective mass (M*) PS calculations based on the HLF-model [PS(M*)­

HLF], and dashed-dotted lines show effective mass (M*) calculations based on a 

direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT) ....... 127 
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Chapter 1 

Scientific motivation 

1.1 Introduction 

Historically, work in medium energy nucleon-nucleus scattering physics started in the 1950's 

[Ra92] and has continued since. As we enter the new millennium, research in medium energy 

(,...., 100 MeV to ,...., 1 Ge V) proton-nucleus scattering continues to attract widespread theoretical 

interest, and accounts for a significant fraction of the experimental effort at medium energies. 

Traditionally, nuclear structure and nuclear reactions have been studied using models based 

on the nonrelativistic Schrodinger equation. In recent years, however, considerable attention 

has been devoted to relativistic descriptions of nuclei and nuclear reactions based on the Dirac 

equation. In particular, this thesis is concerned with the development of relativistic Dirac­

based models for the interpretation of complete sets of quasielastic (j!, p') and (j!, ii) polarization 

transfer observables (also called spin observables), for targets nuclei ranging from 12C to 208Pb, 

incident proton energies between 100 and 500 MeV, and for three-momentum transfers larger 

than rv0.5 fm- 1 . The next sections expand on the following: 

• quasielastic scattering, 

• both (p, p') and (p, ii) reactions, 

• complete sets of polarization transfer observables, and 

• relativistic models. 

1 
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CHAPTER 1. SCIENTIFIC MOTIVATION 2 

1.2 Why consider quasielastic proton scattering? 

At moderate momentum transfers (JqJ > 0.5 fm- 1) quasielastic proton scattering is the dom­

inant mechanism for nuclear excitation: the status of quasielastic scattering is reviewed in 

Chapter 2. Quasielastic proton scattering is considered to be a single-step process, whereby a 

projectile proton knocks out a single bound nucleon in the surface of the target nucleus, while 

the remainder of the nucleons act as "spectators" . This quasielastic process is characterized by 

a broad peak in the nuclear excitation spectrum, the centroid of which nearly corresponds to 

free NN kinematics, and a width resulting from the initial momentum distribution of the struck 

nucleon. At the high momentum transfers of interest, nuclear shell effects are unimportant, and 

the quasielastic peak is well separated from the discrete states and low-lying resonances in the 

excitation spectrum. Hence, deviations of the scattering observables from the corresponding 

free NN values could be attributed to medium modifications of the free NN interaction. Conse­

quently these reactions offer a direct means to study how the fundamental free NN interaction 

is modified by the surrounding medium of the nucleus in which it occurs. 

One of the aims of this thesis is to investigate to what extent a single-step, surface-peaked, 

NN interaction can account for data at the quasielastic peak. In addition, by comparing 

quasielastic scattering from a nuclear target to free NN scattering from a hydrogen target at 

the same kinematic conditions, differences in the observables are used to understand how the 

nuclear environment affects the free NN interaction. 

1.3 Why consider both (p, p') and (p, n) reactions? 

Quasielastic (p , p') and (p, n) reactions probe different parts of the medium-modified NN in­

teraction: (p,p') scattering probes both isovector and isoscalar parts of the NN interaction, 

whereas (p, n) charge-exchange reactions sample only the isovector components, particularly 

those directly related to pion exchange [Wa94, Ho94]. Furthermore, since the Lorentz character 

of the isovector amplitudes is totally different from that of the isoscalar amplitudes, one expects 

quasielastic (p, p') and (p, n) reactions to yield different, but complementary, information about 

the different components of the NN interaction. 
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1.4 Why consider complete sets of spin observables? 

With the recent developments in polarized proton beams and high resolution spectrometers 

with focal plane polarimeters, it now becomes possible to measure complete sets of quasielas­

tic polarization transfer observables (also called spin observables), in which incident proton 

beams polarized in an arbitrary orientation are utilized, to determine the components of the 

polarization of the scattered protons (see Appendix G). 

Polarization transfer observables are sensitive to any changes in the spin dependence of the 

NN interaction in the medium. The primary role of distortions on the incoming and outgo­

ing proton wave functions is to reduce the cross section. However, since polarization transfer 

observables are essentially ratios of cross sections, handwaving arguments suggest that these 

distortions largely cancel, and thus the polarization observables should be insensitive to distor­

tions. Hence, simple plane wave models, which ignore distortions, should provide an adequate 

first-order description of the quasielastic polarization transfer observables. In addition, experi­

mental data in the quasielastic region seem to be almost independent of the type of nucleus: at 

the high excitation energies of interest one nucleus looks like another. This suggests that one 

is extracting fundamental properties of nuclear matter, rather than the individual properties of 

a single state. Hence, by considering quasielastic scattering to the continuum, one minimizes 

the uncertainties in nuclear structure of discrete final states, and thus, relatively simple models 

of the target nucleus, such as a Fermi-gas description, should be adequate. Indeed, one of the 

aims of this thesis is to investigate to what extent nuclear matter at high excitation energies 

behaves as a collection of nearly free nucleons. 

Comparison of theoretical predictions of polarization transfer observables to data, for both 

quasielastic (p, p') and (p, ii) reactions, provide extremely stringent tests for the various models 

for quasielastic proton scattering. 

1.5 Why consider relativistic models? 

The term "relativistic", as used in this thesis, is associated with the use of the Dirac equation, 

with its relativistic treatment of the dynamics and kinematics, as opposed to the nomelativistic 

Schrodinger equation with either nomelativistic or relativistic kinematics. 
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Conventional wisdom claims that relativistic effects are unimportant for nuclear structure 

problems. Indeed, considering that the maximum kinetic energy Tmax of a nucleon (with free 

mass m) in the nucleus is determined by the groundstate Fermi momentum kp ~ 1.4 fm- 1 to 

be 

which corresponds to a velocity of about one-third that of light ( v ~ 0.28 c) , one expects only 

minor modifications due to relativistic kinematics and dynamics. Nevertheless, there are a 

number of compelling reasons for pursuing relativistic models of nuclear structure and nuclear 

scattering, a few of which are listed below [Se86, Ho91b, Ho94a]: 

• It is important to have a manifestly Lorentz covariant formalism, especially for reliable 

extrapolation of nuclear systems to extreme conditions of density, temperature, or mo­

mentum transfer. These conditions may arise in astrophysics (early universe, supernovas, 

neutron stars), relativistic heavy ion collisions, and in experiments performed at large 

momentum transfers. 

• Historically, the first great triumph of the Dirac equation was its explanation of the spin 

and magnetic moment of the electron. One can label spin as an intrinsically relativistic 

phenomenon. The relativistic 4-component Dirac equation provides a natural explanation 

of the nuclear spin-orbit force. Useful and successful relativistic formalisms have recently 

been developed for nuclei, for instance, the relativistic mean field theory [Se86]. 

• Nuclear saturation is a basic consequence of the nuclear force that causes all nuclei to 

have about the same density and binding energy per nucleon. A simple and intrinsically 

relativistic mechanism for nuclear saturation is found in a simple relativistic mean field 

approximation. 

• Simple relativistic models provide an excellent description of spin observables for elastic 

proton scattering at medium energies. Only very sophisticated state-of-the-art nonrela­

tivistic models [Al91] can describe elastic proton scattering with the same level of accuracy. 

• Compared to nonrelativistic Schrodinger optical potentials, relativistic Dirac optical po­

tentials exhibit a much more systematic and physical behaviour as functions of energy, 
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nuclear radius, and nuclear mass; for example, global Dirac optical potentials exist [Co92] 

which describe all elastic proton scattering observables in the 65 to 1040 MeV range, and 

for various nuclei from 12C to 208Pb. 

Although there are a number of theoretical reasons for preferring relativistic Dirac-based models 

to nonrelativistic Schrodinger-based models, the justification for the use of the Dirac equation, 

in this project, lies largely in the outstanding success of this phenomenological approach to date. 

Currently an extremely useful phenomenological theory, referred to as Dirac phenomenology, 

exists which yields a comprehensive description of many aspects of nuclear dynamics: for review 

articles, see Refs. [Pi84, Ce86, Se86, Wa87, Re89, Ho91b, Ra92, Se97]. 

It is interesting to understand exactly how Dirac phenomenology achieves its remarkable 

success. This is briefly discussed in the next section. 

1.5.1 How does Dirac phenomenology achieve its success? 

Most relativistic approaches to nuclear physics, such as mean field theories [Se86], optical fits 

to elastic proton-nucleus scattering data [Cl83], and the relativistic impulse approximation 

[Sh83a], suggest that the optical potential, involves large attractive Lorentz scalar (typically 

"'-400 MeV) and repulsive time-like vector (typically"' +350 MeV) contributions. Relativistic 

mean field theory relates these potentials to large sigma (scalar) and omega (vector) meson 

fields [Se86]. This theory is phenomenological in the sense that, once the scalar and vector 

couplings are adjusted to reproduce the saturation density and binding energy of nuclear matter, 

relativistic mean field theory provides a good description of the ground state properties of many 

nuclei, and also accounts for spin-orbit coupling in nuclei. 

The scalar potentials enter the Dirac equation on the same footing as the free nucleon mass 

m. Since these potentials are quite large ("' -400 MeV), they have the effect of introducing a 

major reduction of the nucleon mass when the nucleon is in nuclear matter. The combination 

of the attractive scalar potential and the free nucleon mass m is often referred to as an effective 

mass m*, and is equal to "'0.6 m in infinite nuclear matter. This concept of an effective mass is 

an essential element in the success of Dirac phenomenology, and will be discussed in more detail 

in Chapter 3. On the other hand, the time-like vector potentials enter the Dirac equation in 
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the same way as the energy eigenvalues. The combination of the large repulsive vector potential 

("' +350 MeV) and the larger attractive scalar potential ("' - 400 MeV), yields a dispersion 

relation, between the momentum and energy of a relativistic nucleon in nuclear matter, which 

is essentially the same as the corresponding relation for the nonrelativistic Schrodinger equation 

which, for decades, has provided a reasonably satisfactory description of nuclear structure [Ce82). 

An alternative approach to relativistic nucleon dynamics, which also gives large scalar and 

time-like vector potentials, comes from the work of Bunny Clark and collaborators [Cl83) who 

studied the phenomenology of the Dirac equation for elastic proton-nucleus scattering. In this 

work, the Dirac equation with phenomenological scalar and time-like vector potentials replaces 

the standard central and spin--orbit potentials of traditional Schrodinger phenomenology. Using 

just as many fitting parameters as in nonrelativistic phenomenology, Clark and collaborators 

provided a superior description of elastic scattering spin observables. Again, the strengths of 

the scalar and time-like vector potentials are "' -400 MeV and "' +350 MeV in the nuclear 

interior, with geometries following the nuclear densities. The relativistic potentials show less 

energy dependence than equivalent nonrelativistic potentials. There exists a relation between 

the relativistic scalar and time-like vector potentials and the usual spin-independent and spin­

orbit potentials of the Schrodinger equation: this is readily understood by reducing the Dirac 

equation to an equivalent Schrodinger-like second order differential equation [C183) as shown in 

Appendix A. The resulting effective spin-independent and spin-orbit potentials, which are an 

order of magnitude smaller than the relativistic potentials, are referred to as the "Schrodinger­

equivalent potentials". The large scalar and time-like vector potentials nearly cancel to form the 

relatively small spin-independent potential, whereas they constructively add to reproduce the 

relatively strong spin--orbit potential: the strengths of these central and spin-orbit potentials 

are in close agreement with those obtained by a pure nonrelativistic Schrodinger-based analysis 

of elastic scattering data. 

The successful description of elastic scattering spin observables, based on the Dirac phe­

nomenology of Clark and collaborators, was initially viewed with skepticism because, as pointed 

out by Stephen Wallace [Pi84), "you can fit almost anything with enough free parameters". 

However, to the surprise of McNeil, Shepard and Wallace, their parameter-free development of 

the relativistic impulse approximation (RIA) [C183a, Mc83, Sh83a), gave essentially the same 

nuclear potentials as those found by Clark's phenomenological fits: in the RIA, free NN ampli-
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tudes, from phase shift data in an invariant Dirac representation, are folded with nuclear target 

densities, determined from the relativistic Dirac-Hartree equations, to generate microscopic 

scalar and time-like vector optical potentials without any free parameters. Consequently, the 

RIA (and subsequent developments by Horowitz and Murdock [Mu87b], and Tjon and Wallace 

(Tj85, Tj85a, Tj85b, Tj87, Tj87a]) served to strengthen the idea of a Dirac phenomenology 

based on strong opposing scalar and time-like vector potentials. The RIA provides an excellent 

description of all elastic scattering spin observables over a wide range of energies and nuclei 

[Ho91b]. 

1.5.2 Dirac phenomenology and quasielastic scattering 

The failure of all nonrelativistic Schrodinger-based models [Sm88] to describe the quasielastic 

(p, p') analyzing power at 500 MeV, together with the tremendous success of Dirac phenomenol­

ogy discussed in the previous section, lead to the development of the Relativistic (Dirac) Plane 

Wave Impulse Approximation (RPWIA) by Horowitz and collaborators [Ho86, Mu87a, Ho88, 

Iq88], where the NN amplitudes are based on the Lorentz invariant parametrization of the stan­

dard five Fermi invariants, and the target nucleus is treated as a Fermi gas. Indeed, the accurate 

prediction of the above-mentioned quasielastic (P,p') analyzing power, based on the RPWIA, 

has been regarded as a "clear relativistic signature" [Ho86, Mu87a, Ho88, Iq88, Ho91b]. 

The success of the simple relativistic plane wave model is attributed to the implicit treatment 

of medium modifications of the NN interaction. These medium effects (often referred to as 

relativistic effects), which predict an enhancement of lower Dirac components of the nucleon in 

the presence of strong scalar and time-like vector potentials at nuclear densities, are incorporated 

by replacing free nucleon masses in the Dirac plane waves with effective projectile and target 

nucleon masses in the context of relativistic mean field theory [Se86]. To date, and to my 

knowledge, no nonrelativistic Schrodinger-based model has quantitatively explained the above­

mentioned (P, p1
) analyzing power, although a possible nonrelativistic explanation has been 

suggested by Brieva and Love [Br90]. 

Despite the successful prediction of the (P,p') analyzing power, however, the RPWIA model 

fails to predict some of the other polarization transfer observables [Ho88]. However, rather than 

abandon the original RPWIA in favour of more sophisticated relativistic models, and inspired 
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by the encouraging results of the original RPWIA, my approach in this project is to critically 

review the underlying assumptions and input parameters of the RPWIA, and to perform more 

refined calculations so as to reveal the limitations of the model. 

1.6 Scientific goals of this project 

The main goal of this project is to develop a consistent description of complete sets of polariza­

tion transfer observables for both quasielastic (ji,f/') and (ji, n) reactions. More specifically, the 

aims of this project are: 

• to verify that nuclear matter at high excitation energies behaves as a collection of nearly 

free nucleons, 

• to search for medium modifications of the NN interaction due to relativistic effects, 

• to critically review, and improve, the approximations of the original relativistic plane wave 

impulse approximation of Horowitz and Murdock [Mu87a, Ho88, Ho91b] , 

• to perform a systematic comparison of my refined, and improved, RPWIA calculations 

with the available data on complete sets of quasielastic (p, f/') and (f/, n) polarization 

transfer observables, so as to reveal any limitations of the model. 

1. 7 Organization of thesis 

The structure of this thesis is organized as follows: 

• In Chapter 2, the concept of "quasielastic scattering" is defined, and the current theoretical 

and experimental status of quasielastic polarized-proton scattering is reviewed. 

• The aim of Chapter 3 is to critically review, and improve, the approximations of the orig­

inal relativistic plane wave impulse approximation (RPWIA) of Horowitz and Murdock 

[Mu87a, Ho88, Ho91b], and to perform a systematic comparison of my more refined calcu­

lations to the available data on complete sets of quasielastic (f/, f/' ) and (f/, n) polarization 
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transfer observables, so as to reveal any limitations of the model. Some of the work in 

Chapter 3 is published in Refs. [Hi94, Hi95, Hi97, Hi98]. 

• Based on the conclusions of Chapter 3, a theoretical framework is developed in Chapter 4 

for calculating complete sets of quasielastic proton-nucleus polarization transfer observ­

ables, based on the relativistic distorted wave impulse approximation. 

iJ. s. ~ 
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Chapter 2 

Quasielastic proton-nucleus scattering 

2.1 Introduction 

The phrase "quasielastic proton-nucleus scattering", as used in the title of this chapter, refers 

collectively to both quasielastic (p, p') and (p, n) scattering. The aim of this chapter is to define 

and illustrate what is meant by the concept of "quasielastic scattering", and also to briefly review 

the current theoretical and experimental status of quasielastic polarized-proton scattering. 

2.2 What is quasielastic proton scattering? 

The aim of this section is to define and illustrate what is meant by quasielastic proton-nucleus 

scattering. Consider the inclusive proton-nucleus spectra in Fig. 2.1: the upper and lower figures 

display the double differential cross sections for inclusive (p,p') and (p, n) scattering respectively, 

as a function of the energy transfer w (also called excitation energy) to a 12C nucleus, at a fixed 

laboratory scattering angle of 20°, and for incident proton energies 1lab of 400 and 392 MeV 

[Ot97a]. Although the spectra in Fig. 2.1 are related to a specific nucleus, scattering angle, and 

incident proton energy, they are nevertheless representative of typical inclusive (p, p1
) and (p, n) 

spectra, for incident proton energies between 100 MeV and 500 MeV, and exhibit a number of 

characteristic features. The peak close to zero energy transfer in the (p,p') spectrum is produced 

by elastic scattering, which is defined to be a collision whereby the colliding particles only change 

their direction of motion, and possibly spin orientation; none of the kinetic energy is used to 

excite the colliding systems internally. The sharp peaks for nonzero values of w correspond to 

the excitation of discrete levels in the target nucleus. For small scattering angles, the excitation 

region just above the low-lying discrete states usually exhibits giant resonances associated with 

10 
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Figure 2.1: Double differential cross sections d~~ (in mb sr-1 MeV-1 ) for inclusive 12C(p,p') 

and 12C(p, n) scattering as a function of the energy transferred to the nucleus (w), for a labo­

ratory scattering angle of 20°, and incident laboratory kinetic energies (1lab) of 400 MeV and 

392 MeV respectively. The data are from Ref. [Ot97a]. 
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the collective behaviour of the nucleus [Sw89]. At higher excitation energies, one observes a 

broad peak (or bump) centered near the expected energy-loss for free nucleon-nucleon (NN) 

scattering, and appropriately called the quasielastic peak (a term first coined by Wall and Roos 

[Wa66]). If the nucleons in the target nucleus were at rest and free, a very sharp spike (or peak) 

would be seen at an energy loss w = lg! corresponding to free NN scattering (see Sec. I.9 

in Appendix I), where ltJ'I is the momentum transfer and m the free nucleon mass. However, 

instead of a sharp spike, a broad peak is observed, the width of which is attributed to the 

internal momentum distribution, or Fermi motion, of the target nucleons. 

Note that for incident proton energies larger than 500 MeV, a second broad peak called 

the quasielastic-~ peak is observed at energy transfers above the quasielastic peak [Ch80, 

Sm85, Fe88]. The quasielastic-~ peak occurs at energy transfers which are sufficient to excite 

individual nucleons to their first excited state, the delta (~), roughly 300 MeV above the 

quasielastic peak. This project is mainly concerned with incident proton energies between 100 

MeV and 500 MeV, where the quasielastic-~ is not observed. 

For the purpose of this project, the term quasielastic scattering (sometimes, also called 

quasifree scattering) refers to the process whereby a projectile nucleon knocks out a single bound 

nucleon in the target nucleus, while the remainder of the target nucleons act as "spectators"; the 

experimental signature for quasielastic scattering is a broad peak (in the inclusive spectrum), 

the centroid of which moves in accordance with momentum and energy conservation for free NN 

scattering. 

2.3 Empirical features of quasielastic proton spectra 

Unpolarized double differential cross section data for quasielastic proton scattering are now 

available for a wide range of target nuclei (2H - 238U) and incident beam energies (100 MeV-

800 MeV): see Tables 2.1 and 2.2, and also Refs. [Wa66, Wa72, Co72, Wu79, Ch80, An81, 

Mo82, Ma84, Mc84; Se85, Fo88, Sw89]. The aim of this section is to identify general empirical 

features of inclusive (p, p') and (p, n) spectra for quasielastic scattering of unpolarized protons. 

These features are extremely useful, and need to be incorporated when developing models for 

quasielastic proton reactions: see, for example, Sec. 3.2.1 in Chapter 3. 
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After the first observation of so-called quasielastic peaks by Wall and Roos [Wa66) for (p, p') 

reactions at 160 MeV, on a variety of targets ranging from 9Be to 209Bi, and for scattering 

angles between 10° and 60°, there was a great deal of controversy regarding the interpretation 

thereof as arising from genuine quasielastic scattering. However, it is now well established 

that for incident energies between 100 MeV and 200 MeV, inclusive spectra only exhibit clear 

quasielastic peaks for targets with mass numbers less than about 60, and scattering angles less 

than about 25° (see for example Refs. [Ch81, Se86, We85]). There are, however, exceptions to 

the rule. For example, the continuum spectra for 4He at 98.7 MeV and 149.3 MeV, show no 

pronounced quasielastic peaks [We85, Wh90). 

Generally, it has been observed that the quasielastic peak becomes more pronounced with 

increasing bombarding energy. Furthermore, as the angle increases, the width of the quasielastic 

peak broadens, the magnitude of the peak drops, and the centroid moves with free NN kine­

matics. This kinematic behaviour is in contrast to that for the discrete states, which move with 

the kinematics of a nucleon striking a heavy target, that is, with nucleon-nucleus kinematics. 

The above-mentioned features are beautifully illustrated in Figs. 2.2 and 2.3, which display 

inclusive spectra for (p, p') and (p, n) scattering, at various laboratory scattering angles, and in­

cident proton energies of 400 MeV and 392 MeV, respectively. Also, note the striking similarity 

between the quasielastic peak positions for the 2H data (which essentially represents free NN 

scattering [Sa94]) and the 12C data. 

Note, from Figs. 2.2 and 2.3, that at low excitation energies the quasielastic region overlaps 

with giant resonances and some low-lying discrete-state transitions: At high excitation ener­

gies the inclusive (p, n) spectra exhibit sharp cut-offs due to experimental limitations. For a 

quantitative analysis of quasielastic scattering, it is necessary to obtain stand-alone quasielastic 

spectra that are free from mixing with the low-lying structures, and which may be extrapo­

lated into the high excitation energy region. For these purposes, a useful semiphenomenological 

parametrization of the empirical quasielastic peak has been developed by Wang [Wa93, Wa94): 

the latter encompasses a semiphenomenological Lorentzian function which consistently describes 

all inclusive (p, n) spectra at 186 MeV for all targets and scattering angles. In addition, anum­

ber of phenomenological approaches have also been developed for studying the systematics of 

quasielastic scattering, so as to provide reliable estimates of the continuum background under 

the giant resonances: see, for example, Refs. [Mc86, Ch89, Sw89). 
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Figure 2.2: Double differential cross sections d~dw (in mb sr-1 Mev- 1 ) for inclusive (p,p') 

scattering from 12C and 2H at 400 MeV, as a function of the energy transferred to the nucleus 

(w) , for various laboratory scattering angles. The data are from Ref. [Ot97a]. 
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Figure 2.3: Double differential cross sections d~~ (in mb sr-1 Mev- 1) for inclusive (p, n) 

scattering from 12C and 2H at 392 MeV, as a function of the energy transferred to the nucleus 

(w), for various laboratory scattering angles. The data are from Ref. [Ot97a]. 
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Recently, Kalbach [Ka90] has studied and parametrized the systematics of quasifree (p,p') 

and (p, n) spectra for a range of scattering angles and target nuclei, at incident proton energies 

between 100- 1000 MeV. The following phenomenological trends are observed: 

• The position of the quasielastic peak closely tracks free NN kinematics. At incident 

energies above 400 MeV, the (p,p') quasielastic peak occurs at very nearly the energy 

calculated for free scattering, while the (p, n) quasielastic peak occurs 40 to 45 MeV below 

the free value. As the incident energy decreases, the peaks for the two reactions approach 

the same energy loss value. 

• The shape of the quasielastic peak is typically asymmetric (or Lorentzian-shaped [Wa93, 

Wa94]), with the low energy-loss side usually somewhat wider than the high energy­

loss side. The width of the peak generally increases with increasing emission angle up 

to at least 50° in the NN centre-of-mass. The general behaviour of the peak widths is 

parametrized in terms of the incident energy and sinO in the NN centre-of-mass. 

• The quasielastic peak positions and peak widths do not vary significantly or systematically 

with target mass. 

• The angle-integrated cross section is described in terms of a peripheral interaction with 

a single nucleon in the target nucleus, and has a threshold of 150- 200 MeV. For (p,p') 

scattering, the cross section roughly varies as A 113 , whereas for (p, n) scattering, for which 

the projectile must strike a neutron in the target, the cross section varies approximately 

as ( ~) Al/3. 

Besides the peaks exhibited by quasielastic proton spectra, inclusive studies carried out with 

other projectiles also show strong quasielastic peaks. For example, ( e, e'), ( 1r, 1r
1

) and (3He, t) 

reactions exhibit very pronounced quasielastic peaks for a range of target nuclei. Fig. 2.4 shows 

the energy loss w of the centroid of the quasielastic peak versus three-momentum transfer 

ltfl for different probes on a 12C nucleus [Ga90]. The quasielastic peak for (e, e') scattering 

behaves just like that obtained in the (p, n) reaction, that is, shifted about 30 MeV towards 

higher excitation energy, while that of the (p,p') reaction follows precisely the relation for free 
ln-12 

scattering (indicated by the solid line), namely w = ~ (see Appendix I), where m is the rest 

mass of a nucleon. The difference in quasielastic peak positions for the (p, p') and (p, n) reactions 
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has been explained through sum rules Refs. [Wa82, Pa94]; Distortions could also explain the 

difference [De91, De93]. 

Until the early eighties, most studies of quasielastic scattering focused on the interpreta­

tion of unpolarized double differential cross sections. More recently, however, the emphasis 

has shifted towards studying complete sets of polarization transfer observables, namely P, Ay, 

Dnn, Ds's, Dt'l, Dt's and Ds'l, for both quasielastic (f,p') and (p,ii) scattering: In each Di'j 

the primed and unprimed subscripts refer to outgoing and incoming spin directions, respectively 

(see Appendix G). Together with the unpolarized double differential cross sections, the polariza­

tion transfer observables provide extremely stringent tests of theoretical models for quasielastic 

proton scattering. 

2.4 Polarization data for quasielastic proton scattering 

With the recent developments in polarized proton beams and high resolution spectrometers with 

focal plane polarimeters, it is now possible to measure complete sets of quasielastic polariza­

tion observables (see Appendix G) in which incident proton beams polarized in an arbitrary 

orientation are utilized, to determine all the components of the polarization of the scattered 

protons. 

The aim of this section is to give an overview of existing polarization transfer observable 

data for quasielastic (f, p') and (p, ii) reactions for incident proton energies between 100 MeV 

and 800 MeV. In addition to the usual polarization transfer observables Di' j, more recently, 

attention has also shifted to other polarization observables, such as the spin-longitudinal and 

spin-transverse nuclear responses; this is briefly discussed in Sec. 2.4.3. 

2.4.1 Polarization transfer observables 

Tables 2.1 and 2.2 list the quasielastic (p, p') and (p, ii) polarization data, respectively, for 

incident laboratory kinetic energies 1lab between 100 MeV and 800 MeV, where a refers to 

the unpolarized double differential cross section d~~E, P is the induced polarization, Ay is the 

analyzing power, Di' j denotes complete sets of polarization transfer observables [Don = Ay, 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. QUASIELASTIC PROTON- NUCLEUS SCATTERING 

250 

200 

• 
,-.._ 

• • 

18 

> 150 
Q) 

0 : (p,n ) 

+ : (e,e ') 

• : (3He,t) 

D : (p,p') • 
• • ~ 

3 100 

50 

0 
1.0 1.5 

0 • 

• 
• • 

2.5 3.0 

Figure 2.4: The centroid energy of the quasielastic peak for 12C as observed in different reactions, 

plotted as a function oflaboratory energy-loss w versus three-momentum transfer q = IQ'I . The 

data are from Ref. (Ga90] . 
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Dnn, Ds's, Dee, Ds'e and De's - see also Appendix G], and Blab denotes the laboratory scattering 

angle, unless otherwise specified. 

The first measurements of complete sets of quasielastic polarization transfer observables Di' j 

for (if, if') and (if, fi)scattering, for targets heavier than 2H, were done as recently as 1984 [Ca84] 

and 1991 [Ta91] , respectively. Currently a number of experimental programs are in progress at 

RCNP (Research Centre for Nuclear Physics, Osaka, Japan) and IUCF (Indiana University Cy­

clotron Facility, Bloomington, Indiana, USA) to measure complete sets of polarization transfer 

observables for both (if, if') and (if, n) reactions [Sa96, Ra98]. 

2.4.2 Empirical features of polarization data 

Unfortunately, Kalbach's [Ka90] phenomenological analysis has not yet been extended to po­

larization data. With the current availability of polarization data, it would be a useful exercise 

to study the systematics thereof. Some of the interesting features exhibited by inclusive (if, if') 

polarization data in Table 2.1 , for energy losses spanning the quasielastic peak, are summarized 

below: 

• Within the experimental uncertainty, the 200 MeV analyzing power data on 60Ni and 

208Pb, for scattering angles between 6° and 20°, are identical [Li84]. The measured values 

fall somewhat below the free NN values, but the overall trend with angle follows the 

kinematics for free NN scattering. 

• The analyzing power for 2H, 4He, 12C and 4°Ca, at 200 MeV and 30°, is suppressed relative 

to the free NN values. Qualitatively, the latter suppression follows the trend of the nuclear 

density in that it appears to increase monotonically from 2H to 4°Ca [Ca95, Ca95a]. 

• For scattering angles less that 10° , the analyzing power for 208Pb at 290 MeV is identical to 

the corresponding values for free NN scattering [Ch88, Ch89a]. Above 10°, the analyzing 

power falls appreciably below the free NN values. At 26° the analyzing power is almost 

constant above excitation energies of 80 MeV. The slope of the Ay with excitation energy 

is relatively small for all scattering angles below 26°. 

• For a scattering angle of 20° at 290 MeV, the analyzing power for 54Fe, which is identical 

to the induced polarization P, is reduced relative to the corresponding free NN value. The 
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Table 2.1: List of quasielastic (jf,p') polarization transfer observables measured at incident 
laboratory kinetic energies Ttab below 800 MeV, where O" is the unpolarized double differential 
cross section, P is the induced polarization, Ay is the analyzing power, Di' j denotes complete 
sets of polarization transfer observables [Don = Ay, Dnn, Ds's, Dn, Ds'i and Dt's - see also 
Appendix G), and Otab denotes the laboratory scattering angle, unless otherwise specified. 

Tiab [MeV] Observables Target lhab [degrees] References 

50 a, Ay 5sNi 2: 60 [Sa83a] 
60 a, Ay 5sNi 15°- 40° [Ko76] 
65 a, Ay 6,7Li 6°-85° [To87] 
65 a, Ay 12C, 28Si, 45Sc, 58Nb 20°- 150° [Sa80] 
65 a, Ay 156Ho, 166Er, 2o9Bi 20°- 150° [Sa80] 
80 a, Ay 5BNi 2: 60 [Sa83a] 
100 a, Ay 2H, 3,4He, 12C, 58Ni 17.5°, 30°, 45°, 60° [We85] 
100 a, Ay 3,4He 0°-34° [Ed94] 
150 a, Ay 2H, 3,4He, 12C, 58Ni 17.5, 30°' 45°' 60° [We85] 
150 a, Ay 24Mg, 4oca, 51 y 5° - 140° in 5° steps [St97] 
165 a, Ay 24Mg, 4oca, 51 v 5° - 140° in 5° steps [St97] 
186 a, Ay 24Mg, 4oca, 51 v 5° - 140° in 5° steps [St97] 
200 a, Di' i 6oNi, 9ozr, 2ospb 6° - 20° in 2° steps [Li84] 
200 a, Ay, Dnn 40Ca 30° [Ma93a, Ca95] 
200 a, Ay 3,4He 0°-34° [Ed94] 
200 a, P, Ay, Dnn 2H, 3,4He 30° [Li94] 
200 a ,Ay 2H, 12C 30° [Ca95] 
200 a, Ay 2H, 3,4He 20°' 30°' 40° [Gu95] 
290 a, Di' j 12C 29.5° [Ch90] 
290 a, Ay 208pb 4°-26° [Ch88, Ch89a] 
290 a, Di' i 54 Fe 20° [Ha88, Ha91] 
316 a, Ay 12c ngo- 157° [Ka78] 
400 a,Ay 116Sn, 2osPb, 9ozr < 60 [Mo82] 
400 a, Ay 2H, 6•7Li, 9Bi 12° - 28° in 4° steps [Ot97a, Ot97b] 
400 a , Ay 12,1Jc, natca, natcu 12° - 28° in 4° steps [Ot97a, Ot97b] 
400 a, Ay 181Ta, natpb 12° - 28° in 4° steps [Ot97a, Ot97b] 
420 P, Dnn, D8' 8> Dt' 8 12c, 160 23.5° [Ch89] 
420 a, Di' i 12C 23.5° [Ch90] 
500 a, Ay 12C ngo- 157° [Ka78] 
500 a, Ay 4He, 58Ni, 181Ta 65°, 90°, 120°, 160° [Ro81] 
500 a, Ay n6sn, 2ospb, 9ozr < 60 [Mo82] 
500 a, Di' i 2H, natca, natpb 18.5° [ Ca84, Re86] 
500 a, Ay 208pb 4°-26° [Ch89a] 
500 a, Di' i 2H 22.4° - 55.4° t [Ma86] 
800 a, Ay 116Sn, 2osPb, 9ozr < 60 [Mo82] 
800 a, Ay 1H, 12C 5, no, 15°, 20° [Mc84] 
800 a, D i' i 1H, 2H, 12C 5°, no, 20° [Fe88] 
647 a, Di' i 2H 46.9° - n8.0° t [Ba89] 
800 a, Di' i 2H 58.3° - no.oo t [Ba89] 

t Scattering angle specified in NN centre-of-mass system 
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Table 2.2: List of quasielastic (P, n)polarization transfer observables measured at incident labo­
ratory kinetic energies 1lab below 800 MeV, where cr is the unpolarized double differential cross 
section, P is the induced polarization, Ay is the analyzing power, Di' j denotes complete sets of 
polarization transfer observables [Don = Ay, Dnn, Ds's• Dt'£, Ds't and Des -see also Appendix 
G], and Otab denotes the laboratory scattering angle, unless otherwise specified. 

11ab [MeV] 0 bservables Target Blab (degrees] References 

186 a, P, Ay, Dnn 6,7Li, 10,11 B 15.1°, 20.0° [Wag3, Wag4] 
186 a, P, Ay, Dnn 12,13c 15.1°, 20.0° [Wag3, Wag4] 

200 a, Di' i 2H, 3,4He, 12c 13°, 37° [Rag8] 
200 a, Di' i natca, natpb 13°' 24°37°' 48° [Hag8] 
200 a, Di' i 2H, 12c 24°, 48° [Rag8] 
200 a, Ay 3He, 4He 30° [Pag8] 
2go a, Ay 12C, 54Fe 20.4°, 27.0° (for 12 C) [Hig3] 
2g5 a, Ay 2H, 12C, 4oca 15° - 35° in 5° steps [Otg7a] 
346 a, P, Di' i 2H, 10Li, 12c 22° [Wag6] 
346 a, P, Di' i 40Ca, 2ospb 22° [Wag6] 
3g2 a, Ay 2H, 6•7Li, 9Bi 12° - 28° in 4° steps [Sag4, Otg7a, Otg7b] 
3g2 a,Ay 12,13C, natca 12° - 28° in 4° steps [Sag4, Otg7a, Otg7b] 
3g2 a, Ay natcu 12° - 28° in 4° steps [Sag4, Otg7a, Otg7b] 
3g2 a, Ay 181Ta, natpb 12° - 28° in 4° steps [Sag4, Otg7a, Otg7b] 
420 a, Ay 12C, 54Fe 24.0° [Hig3] 
4g5 a, Di' i 2H, 12c, 4oca 18° [Tag1] 
4g5 a, Ay 2H, 12C, natpb go- 22o [Tag1a, Prg5] 
4g5 a, Di' i 2H, 12C, 4oca 12.5°, 18°' 27° [Mcg2, Ch93, Tag4] 
500 a, Di' i 2H 22.4° - 55.4° t [Ma86] 
647 a, Di' i 2H 46.go - 118.0° t [BaBg] 
7g5 a, Ay 2H, 12C, natpb go- 18o [Tag1a, Prg5] 
800 a, Di' i 2H 58.3° - 110.0° t [BaBg] 

t Scattering angle specified in NN centre-of-mass system 
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most striking feature of the data is the variation (mainly a decrease) of the polarization 

transfer observables with increasing excitation energy [Ha88]. 

• For 12C, and scattering angles of 29.5° at 290 MeV, and 23.5° at 420 MeV, the symmetry 

relations amongst the polarization transfer observables for time-reversal invariance, which 

are strictly applicable only to free NN elastic scattering, are valid over the full width of the 

quasielastic peak [Ch90]. The induced polarization P is identical to the analyzing power 

Ay, and both are quenched relative to the corresponding free values. 

• The Ay data of Otsu et al. [Ot97a, Ot97b] at 295 and 392 MeV are reduced compared to 

the corresponding free values. 

• For a scattering angle of 23.5° at 420 MeV, all polarization transfer observables for 12C 

and 160 are identical. The variation of the polarization transfer observables as a function 

of excitation energy is smooth and without structure [Ch89]. 

• The polarization transfer observables (excluding Ay) for 2H and 208Pb, at 500 MeV and 

18.5°, are identical [Ca84]. 

• For scattering angles less than 15°, the analyzing powers for 116Sn at 800 MeV, 90 Zr at 

500 MeV, and 208Pb at 400 MeV, are similar to the corresponding free NN values [Mo82]. 

• At 800 MeV, the polarization transfer observables for 1 H, 2H and 208Pb are similar for scat­

tering angles 5°, 11 o and 20° [Fe88]. The variation of the polarization transfer observables 

as a function of excitation energy is smooth and without structure. 

Some of the interesting features exhibited by inclusive (ft, ii) polarization data in Table 2.2, for 

energy losses spanning the quasielastic peak, are summarized below: 

• At an incident energy of 186 MeV for a variety of p-shell nuclei (6'7Li, 10,11 B, 12,13C), 

the Ay data show a slight enhancement relative to the free NN values. The Dnn data 

at 15° are close to the free NN values, while at 20° the data in the quasielastic region 

(excitation energies greater than 30 MeV) are higher than the free values. In the lower 

excitation region (less than 30 MeV), interference between quasielastic scattering and the 

giant resonances makes the polarization observables change more drastically than in the 
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"pure" quasielastic region. Also, the induced polarization P is almost identical to the 

analyzing power Ay [Wa94]. 

• At 200 MeV, the Ay data for 3He are similar to those for free NN scattering, whereas for 

4He the Ay data are generally larger than the free values [Pa98]. 

• The Ay data of Otsu et al. [Ot97a, Ot97b] at 295 and 392 MeV are slightly enhanced 

compared to the corresponding free values. 

• Sakai et al. [Sa94] have measured double differential cross sections and analyzing powers 

for quasielastic (jJ, ii) scattering from a variety of targets ranging from 2H to natpb (6'7Li, 

natBe nate natca natcu natTa natpb) and for a wide range of scattering angles corre-
' ' ' ' ' ' 

sponding to momentum transfers ranging from 1.0 fm-1 to 2.4 fm-1, at incident proton 

energies of 300 and 400 MeV. The excitation energy of the quasielastic peak for the 2H 

reaction almost coincides with that expected for free NN scattering. Thus, the neutron in 

a deuteron behaves like a free neutron. Energy shifts of the quasielastic (p, n) peak from 

that of 2H to higher excitation energy is observed for all the targets studied at 300 MeV 

and 400 MeV, with a gradual increase with target mass reaching almost a constant value 

of rv26 MeV beyond 12C. The neutron- number dependence of the effective neutron num­

ber Neff (see Sec. 3.2. 7 in Chapter 3) for the (p , n) quasielastic scattering process is well 

represented by Neff = 0.85 N°·5 over a wide mass range from 2H to natpb, except for 6 '7Li 

and 9Be which deviate significantly. The quasielastic analyzing powers for the 2H(j/, ii) 

reaction are almost identical to the free NN values. However, the analyzing powers for the 

12C(j/, ii) and 4°Ca(p, ii) reactions behave very differently. In the range of small scattering 

angles (Jqj :-:::; 1.5 fm- 1) they agree with those of the 2H(p, ii) reaction, while they are 

significantly reduced at large angles (jq' j ~ 2 fm- 1). 

• At 346 MeV and 22°, the analyzing power Ay and induced polarization P are virtually 

identical for 2H, 6Li, 4°Ca and 208Pb [Wa96]. The latter is not true for 12C. All the 

polarization transfer observables (for 2H, 6Li, 12C, 4°Ca and 208Pb), except Dnn, show no 

target dependence, and essentially agree with the free values. This is beautifully illustrated 

by the data of Wakasa et al. [Wa96] in Fig. 2.5. 

• The Ay data for 12C at 420 MeV and 24.0° follow a different trend in excitation energy 

than for 54Fe at the same angle and beam energy [Hi93]. At the quasielastic peak, the 
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Figure 2.5: Polarization transfer observables (or coefficients) Ds' 5 , Dn,n, Dt' £, Ds' i and Dt' s 

for quasielastic 2H(P, n) {blue/black data points), 12C(P, ii) (red/grey data points), 4°Ca(P, n) 

{red/grey data points), and 208Pb(P, ii) (red/grey data points) scattering at Ttab and 22°. The 

vertical solid lines mark the energy- loss of the centroid of the experimental quasielastic peak. 

The data are from Ref. (Wa96]. 
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Ay data for 12C and 54Fe, at both incident energies of 290 and 420 MeV, are close to 

the free NN values. At both incident energies of 290 MeV and 420 MeV, the analyzing 

power data for 54Fe are more steeply sloped as a function of excitation energy, than the 

corresponding 12C data, suggesting the importance of structure effects. The Ay data for 

both 12C and 54Fe at 420 MeV exhibit trends that are closer to what is expected from 

quasielastic scattering than the 290 MeV data. 

• Polarization transfer observables for 2H, 12C and 4°Ca, at 495 MeV and 18°, are virtually 

identical. Also, the induced polarization P is almost identical to the analyzing power Ay 

[Mc92, Ch93]. 

• The Ay data for 12C and 208Pb, at incident energies of 495 and 795 MeV, show a slight 

enhancement relative to corresponding free NN values [Ta91a]. The angular dependence 

of the centroid of the quasielastic peak tracks very well with free NN scattering. 

• The analyzing power for 12C at 495 MeV, for angles between go and 22°, is consistent with 

the free charge-exchange value [Pr95]. The analyzing power for 12C at 795 MeV, however, 

is on average significantly below the free value. On the other hand, the analyzing power 

for natpb at 795 MeV is consistent with the free NN value. 

In general, it is seen that for excitation energies spanning the quasielastic peak, and for scat­

tering angles where the quasielastic peak is well above the low-lying resonances and well below 

the quasielastic-~ peak, the variation of both (p, p') and (p, ii) polarization transfer is smooth 

without any structure. As the momentum transfer decreases, so the polarization transfer ob­

servables start to exhibit pronounced slopes as a function of excitation energy. Furthermore, for 

quasielastic (p, ii) scattering most polarization transfer observables are consistent with free NN 

scattering. For (jl,p') scattering, however, the analyzing power is reduced relative to the values 

for free NN scattering. 

2.4.3 Combinations of polarization transfer observables 

Recently, several papers [B182, Mo82a, Ic92] have defined a new set of polarization observables 

(Do, Dx, Dy, Dz) which are appropriate for investigating specific spin channels in inelastic scat­

tering to discrete states, and also for studying inclusive quasielastic (jl, p') and (p, ii) reactions 
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[Bl82, Ca84, Re86, Fe88, Ch90, Mc92, Mo82a, Ic92, Os92, Ch93, Ra94, Ta94, Wa96, Ha98]. 

These new polarization observables merely represent an alternative parametrization of ex­

perimental results, and are expressed as linear combinations of the conventional polarization 

transfer observables Di' j (excluding Ay) defined in Appendix G. The advantage of using this 

parametrization is that the experimental longitudinal and transverse spin-flip probabilities are 

now directly related (albeit in a model-dependent way) to the theoretical spin-longitudinal and 

spin-transverse nuclear response functions, whose interpretation is currently the focus of much 

theoretical activity (see the references cited above). 

The disadvantage in studying the spin-longitudinal and spin-transverse nuclear response 

functions is that the "experimentally" extracted quantities are model-dependent, and hence do 

not represent true experimental data [Sh88j. Apart from experimental uncertainties, there are 

several potential sources of systematic errors in the absolute magnitude of the separated re­

sponses [Ch93], for example, the model dependence associated with the calculation of distortion 

factors [Ic97], uncertainties introduced by the choice of the phase-shift solution used to generate 

the NN amplitudes, and multiple scattering effects. Although a lot of interesting physics can 

be extracted from studies of spin-longitudinal and spin-transverse nuclear response functions, 

this project rather focuses on understanding complete sets of polarization transfer observables, 

the latter being directly measured by experimentalists. Once these are properly understood, it 

would seem more appropriate to study spin-longitudinal and spin-transverse nuclear response 

functions. 

2.5 Why is it important to study quasielastic scattering? 

The aim of this section is to briefly mention some of the interesting physics issues which are 

studied via quasielastic (if, if') and (if, ii) reactions. For more detailed information, the reader 

is encouraged to consult the references cited below. 

• The cross sections leading to bound states of the residual nucleus comprise only a small 

portion of the total cross section, whereas the quasielastic region, on the other hand, 

constitutes a large fraction of the inclusive proton-nucleus spectrum. Hence, it is impor­

tant that the mechanism for quasielastic scattering should be properly understood, and 
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included in the framework of theoretical models. 

• Quasielastic (ji, p') and (ji,ii) reactions probe different parts of the NN interaction: (p, p') 

scattering probes both isovector and isoscalar parts of the NN interaction, whereas (ji, fi) 

charge-exchange reactions sample only the isovector components, particularly those di­

rectly related to pion exchange [Wa94, Ho94]. Furthermore, since the Lorentz character 

of the isovector amplitudes is totally different from the isoscalar amplitudes, one expects 

quasielastic (p,p') and (p, fi) polarization transfer observables to yield different, but com­

plementary, information about the spin-dependent components of the NN interaction (see 

Chapter 3). Hence, measurements of complete sets of polarization transfer observables for 

both quasielastic (ji, p') and (jj, fi) scattering provide stringent tests of current theoretical 

models. 

• An important question in nuclear physics is how the nuclear environment modifies the 

scattering interaction between two nucleons. In free space, the NN interaction is well 

known. The recent interest in the role of relativity in nucleon-nucleus scattering [Ho86, 

Mu87a, Ho88, Iq88, Hi94, Hi95, Hi98] has suggested that the quasielastic polarization 

transfer observables may provide a clean signature of relativistic effects for the NN inter­

action in the nuclear medium. Hence, quasielastic reactions offer a means to study how 

the fundamental free NN interaction is modified by the surrounding medium of the nucleus 

in which it occurs. The latter topic is discussed in detail in Chapter 3. 

• Quasielastic scattering can also be used to study the residual particle-hole interaction, 

which induces collective motion as the struck nucleon interacts with other target nucle­

ons. Although signatures of shell structure, such as low-lying collective states and giant 

resonances, disappear at large excitation energies [Ch89, Wa96], the nucleus continues to 

respond collectively through the interaction of the residual particle-hole interaction. This 

collectivity does not manifest itself in sharp states or resonances, but in gross features 

of the spectrum, such as shifts in the position of the quasielastic peak and deviations of 

the polarization transfer observables from the free values [Sm88]. Quasielastic scatter­

ing, therefore, offers a means of studying the residual interaction in a region where it is 

currently not well known, namely at large energy- and momentum-transfers. 

• One of the major aims of experiments performed in the quasielastic region is to separate 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. QUASIELASTIC PROTON-NUCLEUS SCATTERING 28 

the spin-longitudinal from the spin-transverse nuclear response [Os92, Ra94] . Here an 

interesting question is whether the virtual pion field inside the nucleus is strong enough 

to cause a collective enhancement of the spin-longitudinal over the spin-transverse nu­

clear response. The existence of such a phenomenon would be very significant because 

of its direct relation to Migdal's original suggestion of the existence of a pion condensate 

at sufficiently high nuclear densities [Mi78]. The spin-longitudinal and spin-transverse 

nuclear response functions have simple connections to the exchange of p and 1r mesons 

between nucleons, and between nucleons and delta isobars, and hence are very relevant 

to current investigations into the effects of the isobar on nuclear properties. Beyond this, 

there are many issues connected with the spin-isospin resonances that carry over into the 

discussion of the role of quarks and gluons in the description of nuclear properties and 

interactions, such as the the so-called European Muon Collaboration (EMC) effect, for 

example [Ca84, Re86, Be93]. 

• Nuclear structure usually plays a minimal role in the quasielastic region [Ch89, Wa96] and, 

hence, from a theoretical point of view, quasielastic scattering is an attractive problem to 

study, that is, simple models of nuclear structure can be used. 

• During the past few years, several studies [Sw89, Os92, Ra94] have demonstrated the 

usefulness of inelastic proton scattering at medium energies for the study of giant reso­

nances. The continuum background under the giant resonances appears to be dominated 

by quasielastic scattering [Sw89]. The largest uncertainty in the determination of giant 

resonance strengths arises because of a lack of knowledge of the shape and magnitude of 

the underlying continuum [Be81] which needs to be subtracted. The empirical procedure 

often used in the past consists of representing the continuum shape with straight lines or 

smooth polynomial curves. Different choices of background can, however, lead to quite 

different resonance parameters. Hence, current progress in determining these parameters 

is closely coupled with the progress in modeling the quasielastic scattering to the nuclear 

continuum. 
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2.6 Models of quasielastic proton scattering 

In order to extract detailed information on collectivity and medium-modified two-body interac­

tions from experimental data, it is necessary to have a good theoretical handle on the important 

features of the reaction mechanism and the nuclear structure input. At small momentum- and 

energy-transfers, nuclear structure aspects can be incorporated into distorted-wave impulse ap­

proximation (DWIA) calculations either using a large-basis shell model or the random phase 

approximation. A large momentum- and energy-transfers, these calculations become more dif­

ficult and sometimes impossible to implement numerically [Sm88]. Approximate methods must 

be used. In this section, a brief overview is given of the successes and failures of various theo­

retical models which have been used for describing both the unpolarized double differential cross 

sections and polarization transfer observables for quasielastic (j),j)') and (p, n) reactions, for in­

cident proton energies ranging between 100 MeV and 800 MeV, and for target nuclei greater or 

equal to 12C. Additional, but less complete, reviews of the current status of quasielastic proton 

scattering can also be found in Refs. [Sm88, Os92, Ra94]. 

2.6.1 Simple Fermi-gas model 

Perhaps the simplest, but yet most instructive, model is the simple Fermi-gas model of Bertsch 

and Scholten [Be82]. This model ignores nuclear structure (as suggested by the experimental 

data of Refs. [Ch89, Wa96]) and treats the nuclear ground state as a Fermi sea with all states 

below the maximum Fermi momentum kF occupied. For quasielastic scattering, the struck 

nucleon is removed from the Fermi sea, and the recoiled ejectile is also left above the Fermi 

sea, that is, Pauli blocking is explicitly incorporated. Despite the simplicity of the Fermi-gas 

model, it does, however, provide a qualitative description of unpolarized double differential cross 

sections [Be82, Wa93, Wa94], as well as the most polarization transfer observables [Ch90]. For 

example, for quasielastic (p, n) scattering from p--shell nuclei at 186 MeV the simple Fermi-gas 

model qualitatively reproduces the centroid and width of the quasielastic double differential cross 

section [Wa93, Wa94]. For 420 MeV (j),j)') scattering on 12C, this simple model reproduces the 

general variation of the complete sets of polarization transfer observables with excitation energy, 

except for Dt' 8 and Ds' £ [Ch90]. Generally, for light nuclei (A :=::; 7), and small momentum 

transfers (lifl < k{ ), the simple Fermi-gas model breaks down and completely fails to describe 
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quasielastic scattering data [Be82, Wa93, Wa94]. 

2.6.2 Semi-infinite slab model (SISM) 

Hadronic probes are strongly absorbed in the interior of a nucleus, and hence, quasielastic proton 

reactions are strongly surface peaked. A better description than the simple Fermi-gas model, 

which takes account of the surface nature of the reaction, is the semi-infinite slab model (SISM) 

of Bertsch, Esbenson, Scholten, and Smith [Be82 , Es84, Es85, Es86, Sm88]: see Ref. [Sm88] for 

a review of the SISM plus subsequent modifications and extensions. In the original SISM model 

of Bertsch and Scholten [Be82], the nucleus is approximated as a semi-infinite slab of fermions. 

Absorption is treated via an approximate form of Glauber theory, and kinematic effects of Fermi 

motion and Pauli blocking are included. The SISM does not account for distortion effects other 

than eikonal attenuation of the initial and final nucleon waves. With the omission of distortions, 

the SISM reduces to the simple Fermi-gas model discussed in Sec. 2.6.1. 

The SISM model has been applied successfully to a wide variety of intermediate energy 

reactions which proceed primarily via one-step NN collisions. The model has three notable 

features: it redistributes some of the effects of the single-scattering response into a long tail, it 

smoothes the response in the low-excitation Pauli-blocking region, and it includes the binding 

energy of the nucleus [Ta91a, Pr95]. A distinguishing feature of slab model calculations is that 

peak shapes are well reproduced. Compared to Fermi-gas calculations, the slab model puts a 

long tail on the high energy-loss side of the quasielastic peak and fills in the region of low energy 

loss where Fermi-gas calculations produce a sharp cutoff. 

For large momentum transfers (lql > kF) the predictions of the SISM and simple Fermi- gas 

model are similar, and qualitatively predict the essential features of inclusive unpolarized double 

differential cross sections [Be82]. Generally, it is seen that, at intermediate scattering angles, 

predictions of the SISM for quasielastic (p, f)') scattering improve with increasing beam energy 

[Ch89a]. 

For quasielastic (P, n) scattering from p-shell nuclei at 186 MeV [Wa93, Wa94], the SISM 

provides a good description of the shapes of the spectra, whereas the overall magnitudes are not 

correctly predicted and need a lql-dependent normalization. A similar result was obtained by 
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Swenson et al. [Sw89]: For (p,p') scattering on 208Pb at 400 MeV, the SISM calculations had 

to be renormalized to fit inclusive data at high excitation energies above the giant resonances; 

It is not possible to fit the spectra at all the angles with the same renormalization factor. 

Esbenson and Bertsch [Es84] extended the SISM to include one-particle-one-hole random 

phase approximation (RPA) correlations due to the nuclear medium. In particular, no account 

was taken of spin-orbit distortion. Esbenson, Toki and Bertsch [Es85a] adapted the latter 

model to study the ratio of spin-longitudinal to spin-transverse nuclear response functions for 

quasielastic (p,p') scattering. Compared to the 500 MeV (p,p') data of Refs. [Ca84, Re86] 

on 4°Ca and 208Pb at lq'l = 1.75 fm- 1, which give a ratio of unity, the SISM model with 

RPA correlations overpredicts the data. With the omission of central distortions and RP A 

correlations, the SISM reduces to the simple Fermi-gas model. 

Okuhara et al. [Ok87] pointed out that the assumption of a semi-infinite slab geometry is 

not altogether realistic, especially for lighter nuclei: there work indicates that finite geometry 

and absorption effects are crucial in bringing the ratio of spin-longitudinal to spin-transverse 

nuclear responses closer to the 500 MeV (p,p') data of Carey [Ca84]. 

Smith and collaborators modified the RPA SISM to include 2-particle-2-hole (2p2h) states 

as well as two-step processes [Sm88]. Hausser et al. [Ha88, Ha91] compared data for complete 

sets of polarization transfer observables, for quasielastic 56Fe(p,p1
) scattering at 290 MeV and 

lq'l = 1.75 fm-1, to the SISM results of Smith [Sm88]. The calculated observables Ds' 8 , Ds'£, 

and Dt' s are predicted to be close to the free response values, showing little sensitivity to the 

residual interaction and to the inclusion of 2p2h damping or two-step processes. The SISM 

model of Smith et al. [Sm88] predicts Dnn, P, and Ay values which are substantially different 

from the free values. For the latter observables the slopes versus excitation energy are mainly 

caused by the residual interaction and are found to be in reasonable agreement with the data, 

although the absolute values for P and Ay are considerably larger than the data. Hausser et al. 

[Ha88] also find that the use of the Breit frame [Sm88), rather than the optimal frame, produces 

the wrong sign for the slopes of D l' l and D s' s. 

Hicks et al. [Hi89) compared their quasielastic (p, n) data (double differential cross sections 

and analyzing powers) measured for 12C and 54Fe targets at 290 MeV for a scattering angle of 

20.4 o, and at 420 MeV for a lab angle of 24.0°, to calculations using the nonrelativistic SISM 
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model of Smith [Sm88]. The shapes of the inclusive spectra as a function of excitation energy 

are in reasonable agreement with the model. It appears that the surface response model, which 

has been successful in predicting (i,p') data [Ha88], is also adequate to describe the shape 

of the quasielastic charge exchange cross sections. The model does not, however, consistently 

reproduce the analyzing power data. Smith's RPA calculations are always very close to the free 

NN values of Ay, and cannot explain the enhancement ( 54Fe data at 420 MeV) or suppression 

( 54 Fe data at 290 MeV, and 12C data at both 290 and 420 MeV) of the Ay data. For 12C(if,if') 

scattering at 800 MeV at scattering angles of so, 11 o and 20° [Fe88], the SISM model of Smith 

[Sm88] yields qualitatively good agreement with all the polarization transfer data (Dnn, Ds' 8 , 

Ds' £, D£' 5 ), except for D£' £ at so. The values of the polarization transfer observables at the 

quasielastic peak are often precisely predicted; far away from the calculated peak position, the 

agreement can become quite poor, as in D£' 8 at so, or Du at 11 o. With the accuracy of the data, 

typically about ±0.1, specific nuclear effects are essentially absent; the nucleus seems to behave 

approximately as a free Fermi-gas, and a single-step reaction mechanism seems sufficient [Fe88]. 

Smith and Wambach have developed a model for easily including the effects of 2p2h excita­

tions in calculations of the nuclear response function at large momentum- and energy-transfers 

[Sm88a]. They analyzed 54Fe(if,i/') data at 290 MeV [Ha88, Ha91], using the slab-model of Es­

benson and Bertsch [Es84, Es86], and found improved agreement with spin-flip cross sections, 

although calculations underpredict the data above rv2S MeV excitation. 

Prout et al. [Pr9S] have performed calculations which are similar to the SISM of Ref. [Es8S], 

and also include contributions from two-step scattering. Compared to cross section data for 

inclusive {p, n) scattering on 12C and natpb at 49S MeV and 79S MeV [Pr9S], the calculations are 

able to account very well for the shape, but not for the absolute magnitude, of the quasielastic 

peak at both energies and for both targets. The two-step contributions do not significantly 

alter the shapes of the calculations, but they do add substantial cross section at the largest 

momentum transfers. 

2.6.3 Nonrelativistic eikonal approximation 

Theoretical calculations by Tzeng and Tamura [Tz83], based on the eikonal approximation and 

utilizing spin-dependent amplitudes, provide a consistent description of quasielastic unpolarized 
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double differential cross sections and analyzing powers for (jf,p') data at 200 MeV [Li84], and 

800 MeV [Mc84, Mc84a]. In general, the analyzing power predictions are enhanced relative to 

the data, particularly at large scattering angles. 

Smith and Wallace [Sm85] have developed a formalism for calculating quasielastic (p,p') 

spin observables at incident energies larger than 800 MeV. They studied the spin dependence 

of quasielastic (p,p') scattering using Glauber's eikonal multiple scattering theory, which is 

extended to include multiple knockout collisions as well as the full spin dependence of the NN 

amplitudes. Calculations were done for both unpolarized double differential cross sections as well 

as complete sets of polarization transfer observables and compared to data (cross sections and 

analyzing powers) for 12C(jf,p') scattering at 800 MeV [Ch80, Mc84, Mc84a]. The normalization 

of the quasielastic peak agrees well with the data, although the peak position is shifted towards 

larger energy loss. Such a shift had been seen before in PWIA and DWIA calculations [Kr70, 

Ch80]. Distortions have little effect on spin observables. The normalization of the analyzing 

power is a little off: "'0.4 in the single knockout region compared to "'0.3 in the data. 

Brieva and Love have developed a nonrelativistic finite-nucleus model based on a local den­

sity approximation to the nuclear response, including nonlocal couplings and off-shell effects 

arising from the antisymmetrization of the NN interaction [Br90]. The model relies on the 

energy-dependent Franey-Love effective nucleon-nucleon interaction, the interacting Fermi-gas 

model, and the distorting nucleon-nucleus optical potential in a local density approximation. 

The distorting incoming and outgoing nucleon scattering wave functions are calculated in the 

eikonal approximation [Sm88, Br90]. By including the nonlocal couplings explicitly, they ob­

tained an estimate for the range of validity of the "standard" model of quasielastic proton 

scattering [Be82, Es84, Ho88, Sm88], which assumes a direct relation between the inclusive dou­

ble differential cross section and the nuclear response function. In addition, Brieva and Love 

also illustrated the level of uncertainty associated with the choice of the effective NN interaction 

used in calculating inclusive observables. Their calculations indicated that experimental results 

could be understood in terms of the nuclear response function with an uncertainty of "'10 %. 

At incident energies near 100 MeV and below, the nonlocal couplings are much more important 

and cannot reliably be neglected. The sensitivity of inclusive nucleon scattering to the choice of 

the effective NN interaction was also found to be non-negligible. It is interesting to note that 

the exact calculations of Brieva and Love [Br90] for the analyzing power, for incident proton 
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energies between 100 MeV and 300 MeV, are suppressed relative to the corresponding free NN 

values. Thus far, Horowitz and collaborators [Ho86, Mu87a, Ho88, Iq88, Ho91b, Ho97], have 

attributed the latter suppression to relativistic medium modifications of the NN interaction. 

The predictions of Brieva and Love have yet to be compared to quasielastic (i, p') data. 

Hicks et al. [Hi93] compared quasielastic (p, ii) data ( unpolarized double differential cross 

sections and analyzing powers) measured for 12C and 54Fe targets at 290 MeV for a laboratory 

angle of 20.4 o, and at 420 MeV for a laboratory angle of 24.0°, to the nonrelativistic calcula­

tions of Brieva and Love [Br90]. Shell effects accounting for the reaction Q-value, and target 

recoil were shown to be important for predicting the correct position of the quasielastic peak 

[Ta91]. The (i, n) analyzing power data at the quasielastic peak are in fair agreement with these 

nonrelativistic predictions. The calculations do not, however, properly describe the analyzing 

power data for (i, p') reactions in the quasielastic region. 

2.6.4 Nonrelativistic random-phase approximation of the nuclear response 

Based on a random-phase approximation calculation (RPA) in symmetric, infinite nuclear mat­

ter with one-pion exchange plus one-rho-meson exchange plus a contact interaction specified 

by the Landau-Migdal parameter g', the SO-(;alled 1r + p + g' model, Alberico, Ericson and 

Molinari [A182] predicted that, for momentum transfers larger than 1 fm- 1 in the quasielastic 

region, the isovector nuclear responses to mesonic fields are expected to show an enhanced ratio 

of the spin-longitudinal to the spin-transverse nuclear response functions. However, analysis of 

a variety of (p,p') [Ca84, Re86, Fe88, Ha88, Ch90, Ch93] and (p, ii) [Mc92, Ta94, Ch93] data did 

not reveal the expected enhancement. Applications of the latter model [A184], and the subse­

quent development of a random-phase approximation theory of the spin-isospin nuclear surface 

response by Alberico and collaborators [Al87, Al88], have failed to quantitatively describe the 

experimental data. Alberico et al. [A182] suggest that the latter discrepancy could be attributed 

to distortion (mainly absorption) of the probe, finiteness of the nucleus, and a larger value of 

g'. 

De Pace and Viviani [De93, De94] have calculated the spin-isospin responses within the 

continuum RPA framework. They employed an extension of the standard RPA to account for 

the spreading width of the single particle states through the inclusion of a complex and energy-
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dependent nucleon self-energy. The nuclear responses were then used as the basic ingredient 

to calculate hadronic reactions in the Glauber theory framework. Both one- and two-step 

contributions to the multiple scattering series were taken into account . Predictions of the 

quasielastic peak position for (p, p1
) at 795 MeV scattering came out in the wrong position 

[Ch80]. The model of De Pace and Viviani could not consistently predict both (p,p') [Ch80] 

and (p, n) [Ta91] double differential cross sections at 795 MeV. 

2.6.5 N onrelativistic distorted wave models 

Up to about 1989, the effects of distortion had been treated poorly (see Ref. [Ic89], and references 

therein). In most SISM [A184, Re86] and local density approximation analyses [Sh86, Ok87], 

the effects of absorption had only been taken into account in terms of a Glauber approximation 

with straight line trajectories. The distortion of the trajectory and the spin reorientation during 

scattering were rarely included [Sm88]. There had been very few quantum mechanical calcu­

lations including distortions. Ichimura et al. [Ic89] developed the continuum random-phase 

approximation with the orthogonality condition (OCRPA) for calculations of spin-longitudinal 

and spin-transverse nuclear response functions. The model takes into account the finite size 

of the nucleus, the continuum nature of the single-particle states, and the damping of the 

particle states. Ichimura and collaborators compared their calculations of the ratio of the spin­

longitudinal to the spin-transverse nuclear response functions to LAMPF data for quasielastic 

4°Ca(j1,p') scattering at 500 MeV, for various scattering angles [Ca84, Re86]. The combined 

effects of distortions, and the finiteness of the nucleus, reduced the ratio from the original SISM 

predictions [Es85a, Sh86] . The result is, however, still larger than the experimental ratio of 

unity. 

Ichimura et al. [Ic94, Ni95] extended the model in Ref. [Ic89], to study the effects of b..­

isobars, the dependence on effective interactions, and the effects of distortion in scattering. This 

model provides a very poor description of the unpolarized inclusive cross section for 12C(p, n) 

at 495 MeV [Mc92, Ch93, Ta94]. The calculation not only fails to predict the location of the 

quasielastic peak correctly, but severely underestimates the unpolarized double differential cross 

section. It is seen that distortions reduce the ratio of spin-longitudinal to spin- transverse nu­

clear response functions, though the RP A makes the ratio too large. The experimental ratio 
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is reasonably well reproduced by free response functions (with no distortions and RPA correla­

tions). 

Taddeucci et al. [Ta94] compared their data for ratios of spin-longitudinal to spin-transverse 

nuclear response functions for quasielastic (p, n) on 12C and 4°Ca at 494 MeV (for scattering 

angles of 12.5°, 18° and 27°) to the calculations of Ichimura et al. [Ic89, Ic92a, Ni95] . Two 

cases were considered [Ta94]: calculations employing the full RPA response, and calculations 

where the residual interaction was set to zero (free response). The free response calculations 

gave a good description of the data at all three angles. While this result highlights the possible 

importance of distortion effects, the disagreement with the full RPA + DWIA ratios also suggests 

that some important physics is being missed by describing the reaction entirely in terms of 

single-particle responses. 

McClelland [Mc92] and Chen (Ch93] compared their data for ratios of spin-longitudinal to 

spin-transverse nuclear response functions, for quasielastic (if, n) on 12C and 4°Ca at 495 MeV 

and 18°, to distorted wave calculations of Ichimura et al. [Ic89] with and without a random­

phase approximation to the nuclear response. The data are in good agreement with calculations 

omitting the RPA calculations. 

The experimental ratios of spin-longitudinal to spin-transverse nuclear response functions 

for quasielastic (if, n) reactions at 346 MeV and 22° on 6Li, 12C, 4°Ca, and 208Pb show no 

evidence of enhancement [Wa97], in contradiction with the calculations of Ichimura and collab­

orators [Ic94, Ni95]. 

In Ref. [Ic97], Ichimura investigated the effects of the finiteness of nuclear size, virtual 

.6.-excitation, removal of the universality ansatz, radial dependent effective masses, spreading 

widths of particle-hole states and correlations beyond RPA, on the response functions with 

RPA correlations. The extent to which distortions can be represented by the Neff prescription 

[Ic92] for the extraction of response functions was also investigated. Ichimura concluded that 

distortion effects are not necessarily adequately represented by the Neff prescription. Even 

considering the above mentioned effects and ambiguities, the large differences between theory 

and experiment could still not be explained. 

The DWIA model of Chant and Roos [Ch77a, Ch83] has also been applied to analyze in­

clusive (if, if') unpolarized double differential cross sections and analyzing powers [Ch80, We85, 
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Ca95, Ca95a], as well as the depolarization parameter Dnn [Ma93], following the procedure of 

Wesick and collaborators [We85]. The calculations represent a quantum mechanical treatment 

of the scattering process, relying on the factorization approximation, and assuming the validity 

of the impulse approximation. Strong final state interactions are incorporated via scattering 

state wave functions which are solutions to the Schrodinger equation with complex, energy­

dependent optical model potential (OMP) terms. The OMP parameters are generally fitted to 

elastic scattering data. Although the original DWIA model of Chant and Roos [Ch77a] was 

formulated to describe exclusive (p,pN) reactions (where N is either a proton or a neutron), 

the inclusive (p,p') observables are obtained by integrating the triple differential cross section, 

for (p, pN) scattering, over the solid angle of the unobserved nucleon N; the imaginary terms of 

the OMP for the associated nucleon are set to zero as there is no loss of flux if this particle is 

not observed [We85, Ca95, Ca95a]. For inclusive (jl,p') scattering on 4He, 12C, and 4°Ca at 200 

MeV and 30° [Ma93, Ca95, Ca95a], these DWIA calculations provide a satisfactory description 

of the magnitude and the position of the double differential cross section and the depolariza­

tion parameter Dnn at the quasielastic peak. The DWIA calculations, however, overpredict the 

inclusive analyzing power data. 

2.6.6 Relativistic plane wave impulse approximation (RPWIA) 

Traditionally, reaction dynamics have been described in the framework of the Schrodinger equa­

tion using nonrelativistic or relativistic kinematics for intermediate energy reactions. More 

recently, however, considerable success has been obtained using the Dirac equation to describe 

elastic and inelastic proton scattering: see Chapter 1 for more detail. 

A relativistic- plane-wave-mpulse-approximation (RPWIA) model for quasielastic proton 

scattering has been developed by Horowitz, Iqbal, and Murdock [Ho86, Mu87a, Ho88, Iq88, 

Ho91b, Ho97]. The RPWIA is based on a covariant form of the amplitudes describing the 

NN interaction, while the scattering is described through the use of the Dirac equation in 

infinite nuclear matter. In the nuclear medium the strong scalar potential enhances the lower 

two components of the four-component Dirac wave functions. Horowitz and Iqbal [Ho86, Iq88] 

developed a model in which this enhancement is parametrized by an effective mass m* calculated 

in an eikonal approximation; this effective mass m* is smaller than the free nucleon mass m, 
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due to the attractive scalar potential in the nuclear medium. These calculations were later 

extended by Horowitz and Murdock [Mu87a, Ho88, Ho91b, Ho97] to include averaging over 

Fermi-momentum distributions of the target nucleons. 

The following experimental data have been compared to the RPWIA predictions of Horowitz 

and Murdock [Ho88]: 

• Analyzing power data for quasielastic 208Pb(p,p') scattering at 290 and 500 MeV (for 

scattering angles between 4° and 27°) [Ch88, Ch89a]: For free scattering, that is m* = 

m, the calculations overpredict the analyzing power data, whereas the relativistic m* 

calculations are in acceptable agreement with the analyzing power at the quasielastic 

peak. The successful prediction of Ay at both 290 and 500 MeV has been attributed to 

the relativistic m* effect. 

• Unpolarized double differential cross sections for quasielastic 208Pb(p,p') scattering at 

400 MeV (for scattering angles between 5° and 15°) [Sw89]: The calculations agree with 

the data only at large scattering angles. At smaller scattering angles the relativistic 

calculations are not in good agreement with the data. 

• Complete sets of polarization transfer observables for quasielastic 54Fe(p, p') scattering at 

290 MeV and 20° [Ha88, Ha91]: The most striking feature of their data is the variation 

(mainly a decrease) of the polarization transfer observables as a function of excitation 

energy. This variation is reasonably well reproduced by the RPWIA calculations for D s' 8 

De£, and Ds' £, but not for -De 8 • The calculations for P, Ay and Dnn do not, however, 

predict the observed slopes in the data. The enhancement of the lower Dirac component 

(relative to free m) at the quasielastic peak goes in the right direction for every spin 

observable, with the exception of Dnn, where there is essentially no relativistic effect. 

The reduction of P or Ay at the quasielastic peak is quantitatively reproduced by the 

RPWIA, in agreement with previous observations [Ca84, Ch88] . The reduction of P or 

Ay at present cannot be explained by any other mechanism, and appears to be a purely 

relativistic effect. 

• The quenching of the analyzing power data relative to the values for free NN scattering, 

predicted by the RPWIA [Ho88], was also observed by Chan for 12C(p,p') at 290 (at 
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29.5°) and 420 MeV (at 23.5°) (Ch89, Ch90). However, the inclusion of relativistic m* 

effects via the RPWIA failed to yield the correct variation of Des and Ds'l as a function 

of energy loss at 420 MeV, and forDs' 8 , it destroyed the good agreement obtained with 

Fermi motion alone [Ch90), that is form* = m. 

• Unpolarized double differential cross sections and analyzing powers for quasielastic 12C(p,p1
) 

and 54 Fe(p,p1
) scattering at 290 MeV (20.4°) and 420 MeV (24.0°) [Hi89): The RPWIA 

adequately describes the shape, but not the absolute magnitude, of the double differential 

cross sections. Furthermore, the RPWIA model cannot consistently explain the enhance­

ment ( 54Fe data at 420 MeV) or suppression ( 54Fe data at 290 MeV, and 12C data at 

both 290 and 420 MeV) of the Ay data. 

• Quasielastic 12C(.P, n) analyzing power data at 300, 400, 494 and 795 MeV [Sa94): The 

calculations with pseudoscalar 1rNN coupling reproduce the Ay values for 300 MeV and 

795 MeV, while those with the pseudovector 1rNN coupling give a good description at 495 

MeV. The data at 400 MeV, on the other hand, favour free NN scattering: pseudoscalar 

and pseudovector coupling yield identical results for free scattering (se Chapter 3). 

• Unpolarized double differential cross sections and analyzing powers for quasielastic 12C(p, n) 

and 208Pb(.P, n) at 494 and 795 MeV [Ta91a): The relativistic m*-based Fermi-gas model 

does a good job of describing the main features of inclusive spectra. Although the model 

fails to predict the absolute magnitude of the quasielastic peak, the angular dependence 

of the double differential cross sections is well reproduced. The angular dependence of the 

quasielastic analyzing power tracks well with free NN analyzing power. 

• For quasielastic (.P, p') and (p, n) analyzing power data at 392 MeV and 400 MeV respec­

tively [Ot97b), on a variety of targets between 2H and natpb, the reduction in the (P,p') 

data [relative to free scattering) and the enhancement in the (P, n) data [relative to free 

scattering), are simultaneously reproduced by pseudovector 1rNN coupling in the RPWIA 

model of Horowitz and Murdock [Ho88). 

To summarize, the most striking feature of the RPWIA model is that the analyzing power and 

induced polarization for the inclusive (.P, p') reaction are predicted to be substantially reduced 

compared to conventional nonrelativistic calculations. The smaller effective mass of nucleons in 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. QUASIELASTIC PROTON-NUCLEUS SCATTERING 40 

the nuclear medium is responsible for this reduction. Such a reduction is observed in experiments 

performed at bombarding energies ranging from 200 to 500 MeV. The RPWIA model has, 

however, had mixed success in describing complete sets of quasielastic polarization transfer 

observables. 

2.6. 7 Relativistic random-phase approximation 

Horowitz and Piekarewicz [Ho94, Ho94a] have developed a relativistic random phase approxi­

mation to infinite nuclear matter for calculating complete sets of quasielastic (ff, ii) polarization 

transfer observables. A reduced value of the nucleon mass in the nuclear medium induces im­

portant dynamical changes in the residual isovector interaction relative to its nonrelativistic 

counterpart. As a result, good agreement is found for all polarization transfer observables, 

including the ratio of spin-longitudinal and spin-transverse nuclear response functions, when 

compared to the quasielastic 4°Ca(p, ii) of Chen et al. [Ch93] at 495 MeV and IQ'I = 1.72 fm- 1. 

In contrast, the ratio of spin-longitudinal and spin-transverse nuclear response functions is un­

derpredicted at IQ'I = 1.2 fm- 1 and overpredicted at IQ'I = 2.5 fm- 1. Horowitz and Piekarewicz 

[Ho94] suggest that the inclusion of distortions could remedy the latter shortcomings. For 

most polarization transfer observables, except for Dnn, the relativistic RPA model [Ho94] gives 

slightly better agreement with data compared to the original RPWIA model [Ho88]. This is 

also the case for the ratio of spin- longitudinal to spin transverse nuclear response functions. 

Hicks et al. [Hi89] compared quasielastic (p, ii) data ( unpolarized double differential cross 

sections and analyzing powers) for 12C and 54Fe targets at 290 MeV and 420 MeV to the 

relativistic RPA model of Horowitz and Piekarewicz [Ho94]. The relativistic model, which has 

been successful in predicting ""30% suppression of Ay for the (ff, p') reaction, does not properly 

describe the (p, n) analyzing power data. 

The relativistic RP A results for quasielastic (P, ii) scattering can be summarized as follows 

[Ho94a]: Everything else being equal, a relativistic calculation will have less of an enhancement in 

the longitudinal to transverse ratio than a nonrelativistic calculation with the same interaction. 

Thus, relativity helps the agreement between theory and experiment, but it may not be the 

only effect one needs to consider. However, this relativistic effect must be considered along with 

other possible effects from full distortions, multistep contributions, problems with the RP A 
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approximations, etc. 

2.6.8 Other models of quasielastic scattering 

The failure of all the above-mentioned nonrelativistic and relativistic models to consistently 

predict complete sets of quasielastic (if, if') and (if, n) polarization transfer observables, as well 

as the correct ratio of spin-longitudinal to spin-transverse nuclear response functions at different 

momentum transfers, questions the validity of the conventional meson-exchange picture of the 

NN interaction for describing quasielastic proton scattering. A number of suggestions have 

been made as to how the theoretical discrepancies may be remedied. Brown and Wambach 

[Br94] have offered an alternative explanation for the lack of enhancement, in the ratio of the 

spin-longitudinal to spin-transverse nuclear response functions, by invoking a rescaling of the 

p-meson mass in the nuclear medium. The experimental results seem to confirm the suppression 

at low energy loss. Yet, the data do not support the rapid variation with energy loss suggested 

by the model. Specifically, the rescaling model predicts a ratio of "" 1 at the position of the 

quasielastic peak, while the data remain constant at a ratio ""0.6. 

Bertsch, Frankfurt, and Strikman [Be93] have suggested that the answer may be found in 

the modification of the gluon properties in the nucleus, suppressing the pion field at distances 

below 0.5 fm. 

Ericson [Er94], on the other hand, points out that the s-wave interaction of pions in the 

nuclear medium has a complex behaviour: It is appreciably repulsive for space-like pions, but 

it becomes small for on-shell pions. The latter behaviour has consequences for a number of 

physical quantities, such as the quark condensate in nuclei, and the effective pion mass. It may 

also offer an explanation for the discrepancy observed between theory and experiment, where 

the s-wave part has been ignored up to now. 

Brown and collaborators [Br95] have proposed a solution to the problem based on arguments 

of partial restoration of chiral symmetry with density. 
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2.7 Concluding remarks 

42 

Of all the models reviewed in Sec. 2.6, the most successful models, for describing quasielastic 

(p, if') and (p, ii) polarization transfer observables, as well as the ratio of spin-longitudinal to 

spin-transverse response functions, have been the relativistic plane wave impulse approximation 

and relativistic random-phase approximation. In particular, for quasielastic (P, p') scattering, 

the relativistic models predict the observed quenching of the analyzing power relative to the free 

analyzing power. To date, all nonrelativistic models fail to predict the latter suppression: an 

alternative explanation, for the observed suppression in the (P,p') analyzing powers, has been 

suggested by Brieva and Love [Br90], who developed a nonrelativistic model including nonlocal 

couplings in the nuclear response, and the full off-shell behaviour of the NN interaction. 

Although relativistic models cannot successfully describe all polarization transfer observ­

ables, of all the models considered thus far, they (relativistic models) seem to be the most en­

couraging. Rather than abandon the original RPWIA in favour of more sophisticated relativistic 

models, the approach, in the next chapter, is to critically review the underlying assumptions 

and input parameters of the RPWIA, and to perform more refined calculations so as to reveal 

the limitations of the model. 
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Relativistic plane wave model 

3.1 Introduction 

Chapter 2 summarizes the current status of the measurement and interpretation of inclusive 

(if, if') and (if, ii) polarization transfer observables at the quasielastic peak. This chapter focuses 

on a relativistic Dirac-based plane wave description of quasielastic (if, if') and (if, ii) polarization 

observables. 

Recall, from Chapter 2, that quasielastic scattering is the dominant reaction mechanism for 

nuclear excitation at moderate momentum transfers ( IQ' I > 0.5 fm - 1). It is considered to be 

a single-step, surface-peaked reaction, whereby an incoming proton knocks out a single bound 

nucleon in the target nucleus while the remainder of the nucleons act as "spectators". This 

process is characterized by a broad bump in the excitation spectrum, the centroid of which 

nearly corresponds to free NN kinematics, and a width resulting from the initial Fermi motion 

of the target nucleon. At the momentum transfers of interest ( IQ' I > 1 fm - 1
), shell effects are 

unimportant, and the quasielastic peak is well separated from discrete states in the excitation 

spectrum. At the high excitation energies of interest, one nucleus looks like another. Essentially 

one is probing intrinsic properties of nuclear matter rather than details of the structure of a 

given nucleus. Hence, the quasielastic response is a fundamental property of nuclear matter. 

The primary difference between free NN scattering and quasielastic proton scattering is due to 

the presence of the nuclear medium in the latter. Consequently, deviations of the polarization 

transfer observables from the corresponding free NN values are expected to contain information 

on nuclear medium modifications of the free NN interaction. Hence, quasielastic scattering 

offers the possibility to study how the fundamental two-body nucleon-nucleon (NN) interaction 

is modified by the nuclear medium. 

43 
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In recent years several elastic and inelastic proton-nucleus spin observables have been suc­

cessfully analyzed using relativistic models based on the Dirac equation (see Chapter 2). This 

success, together with the fact that all nonrelativistic Schrodinger-based models [Es85, Sm85, 

Ha91] completely fail to successfully describe the analyzing power for quasielastic (jJ, p') scatter­

ing at 500 MeV from 4°Ca and 208Pb [Ho86, Ho88], lead to the development of the Relativistic 

(Dirac) Plane Wave Impulse Approximation (RPWIA) for quasielastic proton-nucleus scat­

tering [Ho86, Mu87a, Ho88, Iq88]. The relativistic NN amplitudes are based on a Lorentz­

invariant parametrization of the standard five Fermi invariants (the so-called SVPAT form), 

and the target nucleus is treated as a Fermi-gas. For both of the above-mentioned nuclei, the 

RPWIA predictions have been spot on, while all nonrelativistic models overestimate the exper­

imental values by~ 40%. The success of the RPWIA is attributed to the inclusion of nuclear 

medium effects (often referred to as relativistic effects) which are naturally incorporated as an 

enhancement of the lower components of projectile and target nucleon Dirac spinors resulting 

from strong scalar potentials. This amounts to replacing free nucleon masses in the Dirac plane 

waves with effective projectile and target nucleon masses within the context of relativistic mean 

field theory [Se86]. Besides being strongly motivated by empirical evidence, one of the main 

advantages of the RPWIA model is that it is relatively simple, and hence, allows one to sepa­

rately disentangle the effects of various model parameters without being swamped by unnecessary 

complexities. 

Despite the successful prediction of the analyzing power at 500 MeV, however, most of 

the other five polarization transfer observables allowed by parity and time-reversal invariance, 

namely Dnn, Ds's, Dt'£, Ds'£ and Dt's (the primed and unprimed subscripts refer to outgoing and 

incoming spin directions, respectively: see Appendix G) favour relativistic predictions based 

on free nucleon masses. This inconsistency requires some deeper investigation. Note, however, 

that the original RPWIA predictions were based on crude assumptions and unrefined input. 

For example, a 10% uncertainty in effective mass values can translate to a 30% effect on certain 

polarization transfer observables (see Sec. 3.2.2). 

Rather than abandon the original RPWIA in favour of more sophisticated relativistic models, 

my approach is to critically review the underlying assumptions and input parameters, and to 

perform more refined, and improved, calculations so as to reveal the limitations of the model. 
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The most important refinements to the original RPWIA include more sophisticated calcula­

tions of effective masses for both projectile and target nucleons, and also the implementation of 

a relativistic meson-exchange model for the NN amplitudes. For consistency, the latter model 

is also used to generate microscopic relativistic optical potentials required for the calculation of 

effective nucleon masses. Furthermore, contrary to the previously used SVPAT parametrization 

of the NN amplitudes, the meson-exchange model allows one to consider corrections to the 

RPWIA due to explicit treatments of exchange contributions to medium-modified NN ampli­

tudes. Indeed, it has been suggested (although not explicitly shown) that a proper treatment of 

exchange is crucial for predictions of polarization transfer observables at energies lower than 200 

MeV, whereas exchange effects are believed to be negligible at 500 MeV. For the first time, the 

importance of medium-modified exchange contributions is investigated via quasielastic (p, p') 

and (p, n) scattering. 

In the past, concern has been expressed about ambiguities in the SVPAT parametrization 

of the NN scattering operator. For example, replacing a pseudoscalar with a pseudovector 1rNN 

vertex yields identical matrix elements for free NN scattering. Hence, free NN scattering does not 

distinguish between these two different forms of 1rNN coupling. In the nuclear medium, however, 

certain quasielastic polarization transfer observables could be extremely sensitive to the different 

1rNN vertices. To date, however, no experimental evidence has resolved this ambiguity. Previous 

attempts to study this ambiguity [Ho88], for quasielastic proton scattering, were extremely crude 

and therefore yielded unreliable results. With a meson-exchange model, however, one is able to 

distinguish between pseudoscalar and pseudovector forms of the 1rNN vertex. Indeed, one of the 

aims of the project is to identify observables which are sensitive to this ambiguity. Comparison 

with experimental data could shed light on the preferred type of 1rNN coupling. 

Previous RPWIA studies were mainly concerned with relativistic effects on quasielastic po­

larization transfer observables at energies higher than 300 MeV [Ho86 , Mu87a, Ho88 , Iq88]. 

The question now arises as to how important these effects are at lower energies. Contrary to 

initial intuition, relativistic effects are expected to become even more important as the incident 

proton energy is lowered [Cl85, Wa85]: the magnitudes of the real parts of the Dirac scalar and 

vector optical potentials, which additively contribute to polarization transfer observables, both 

increase, and this may enhance relativistic effects on certain polarization transfer observables. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 46 

The effects of spin-orbit distortions on polarization transfer observables are also considered. 

Within the eikonal approximation, the effect of the spin-orbit potential is to rotate both initial 

and final state spinors, and in this way directly affects the polarization transfer observables. 

Previous studies of spin-orbit distortions (Ho86] focused on quasielastic (j), jl') scattering at in­

cident energies of 500 and 800 MeV. In this project, however, the effects of spin-orbit distortions 

on quasielastic (j), jl') polarization transfer observables at incident energies ranging from ,....., 100 

to ,.....,500 MeV, and for target nuclei between 12C and 208Pb, are investigated. 

Since this project is partially motivated by current experimental interest in the measurement 

of quasielastic (jl,jl') and (ff, n) polarization transfer observables at NAC (National Accelerator 

Centre, South Africa), IUCF (Indiana University Cyclotron Center, USA), and RCNP (Research 

Centre for Nuclear Physics, Japan), the primary focus is on incident proton energies ranging 

from 135 to 420 MeV. 

Both quasielastic (j), jl') and (jl, n) scattering are considered, the reason being that these 

reactions probe different parts of the NN interaction: Whereas (jl,jl') scattering probes both 

isovector and isoscalar parts of the NN interaction, (j), n) charge-exchange reactions sample only 

the isovector components, particularly those directly related to pion exchange (Wa94, Ho94]. 

Furthermore, since the Lorentz character of the isovector amplitudes is totally different from the 

isoscalar amplitudes, one expects quasielastic (p, p') and (jJ, n) polarization transfer observables 

to yield different, but complementary, information about nuclear medium modifications of the 

NN interaction. 

Besides modifying the free NN interaction, the effect of the nuclear medium is also to dis­

tort the incoming and outgoing plane waves. The effect of these distortions is to reduce the 

unpolarized double differential cross section relative to its plane-wave value. However, since 

polarization transfer observables are effectively ratios of linear combinations of polarized double 

differential cross sections (see Appendix G), one expects the effects of distortions to largely can­

cel, thus enhancing sensitivity to nuclear medium-modifications of the NN amplitudes. Thus, 

relative to unpolarized double differential cross sections, polarization transfer observables are 

expected to be less sensitive to distortions. Hence, a plane-wave model (such as the RPWIA) 

is expected to provide an adequate description of the polarization transfer observables. It is 

for these reasons that one mainly focuses on the description of polarization transfer observables, 
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rather than unpolarized double differential cross sections. In addition, comparison of theoret­

ical predictions of complete sets of polarization transfer observables, namely P, Ay , Dnn , Ds's, 

Dn, De 8 and Ds'£, to experimental data will provide very stringent tests on the validity of the 

RPWIA. 

The RPWIA formalism is presented in Sec. 3.2. Refined calculations of effective masses for 

both projectile and target nucleons are discussed in Sec. 3.2.2, the Fermi-gas model of the target 

nucleus is described in Sec. 3.2.3, and two different parametrizations of the NN interaction are 

presented in Sec. 3.2.4, namely a Lorentz- invariant parametrization based on the standard five 

relativistic invariants (the so-called SVPAT form) , and the relativistic Horowitz- Love-Franey 

(HLF) meson-exchange model. In Sec. 3.2.7 expressions are derived for the polarization transfer 

observables in terms of the invariant scattering matrix elements. The differences between (p,p') 

and (if, ii) reactions, in terms of the isospin content of the NN amplitudes and the reaction 

Q- values, are discussed in Sec. 3.2.8. 

Thereafter, for a 4°Ca target at a three-momentum transfer of 1.97 fm- 1, and incident ener­

gies below 500 MeV, the sensitivity of complete sets of quasielastic (p,p') and (if, ii) polarization 

transfer observables is investigated, both qualitatively and quantitatively, within the framework 

of the RPWIA, to medium effects, pseudoscalar versus pseudovector forms of the 1rNN vertex, 

exchange contributions to the NN amplitudes, and also spin-orbit distortions (Sees. 3.2.10 -

3.3.5). In Sec. 3.4, predictions based on the RPWIA model, are compared to published data. 

The generation of new Horowitz-Love-Franey meson- exchange parameters, between 80 and 195 

MeV, is discussed in Sec. 3.3.3. The summary and conclusions are presented in Sec. 3.5. 

3.2 RPWIA formalism 

The formalism for the Relativistic Plane Wave Impulse Approximation (RPWIA) is described 

in Refs. [Ho86, Mu87a, Ho88, Iq88]. However, since the RPWIA forms the core of this chapter, 

for completeness, the formalism is presented, and new or refined aspects are discussed in detail. 

For the purpose of this project, natural units (i.e. n = c = 1) are used [La90] , and the 

conventions of Bjorken and Drell [Bj64] are adopted. 

The RPWIA model is strongly motivated by a large number of experimental observations. 
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This is discussed in the next section. 

3.2.1 Experimental basis 

Although it may, at first, seem rather simple and extremely crude to model the quasielastic 

proton-nucleus scattering process in terms of a plane-wave formalism, the RPWIA is strongly 

motivated by the following empirical evidence (see Chapter 2): 

• The centroid of the quasielastic peak in the unpolarized double differential cross section 

roughly corresponds to free NN kinematics, i.e. the peak position is located at an en­

ergy transfer of approximately lg!, where m is the free nucleon mass, and IQ' I is the 

three-momentum transfer. The width of the quasielastic peak is attributed to the initial 

momentum distribution of the struck target nucleon (see Sec. I.9 in Appendix I) . 

• Most of the polarization transfer observables at the quasielastic peak correspond to those 

for free NN scattering. 

• At momentum transfers between 1 and 2 fm-1, the quasielastic peak is well separated 

from low-lying discrete states and resonances in the excitation spectrum. 

• Shell effects seem to be irrelevant at the high excitation energies of interest. 

The experimental evidence, in turn, suggests that: 

• The mechanism for quasielastic scattering is a single-step process, whereby a projectile 

nucleon knocks out a single bound nucleon in a target nucleus while the remainder of the 

nucleons remain inert. 

• Polarization transfer observables are insensitive to distortions. 

• Multiple scattering effects are negligible for polarization transfer observables. 

• Collective excitations are not important. 

• A Fermi-gas model, which totally ignores shell effects, should provide an adequate first­

order description of the target nucleus. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 49 

• Deviations of the polarization transfer observables from the corresponding free values could 

possibly be related to medium modifications of the free NN interaction. 

The above mentioned empirical evidence strongly suggests that the process of quasielastic scat­

tering can be depicted schematically by Fig. 3.1, where {k1(2), s1(2)} and {k~(2), s~(2)} denote 

respectively the initial and final laboratory momenta and spins of the projectile nucleon (sub­

script 1) and target nucleon (subscript 2) involved in the collision process. The lambdas (.Ai) are 

the five Dirac matrices listed in Table 3.2 and represent the relativistic prescription for the free 

NN amplitudes (see Sec. 3.2.4). Nuclear medium modifications (also referred to as relativistic 

effects in the RPWIA) are incorporated via effective masses for the projectile (mi) and target 

( m2) nucleons. These effective masses, which come about in a natural way in the Dirac-based 

formalism, serve to distort the incoming and scattered plane waves, and also correct the free 

NN interaction for nuclear medium effects. The calculation and role of these effective masses 

will be discussed in subsequent sections. 

3.2.2 Effective nucleon masses 

For a proper description of the NN interaction in quasielastic proton scattering, medium effects 

of the surrounding nucleus have to be incorporated. These are treated as distortions of the 

Dirac free-particle wave function by the nuclear scalar potential and, as distortions are generally 

larger on low-energy particle waves, they deserve some special attention in the present analysis. 

The concept of an effective mass for a Dirac particle in the nuclear medium was introduced 

in the relativistic Mean Field Theory (MFT) of the Walecka model [Se86). For quasielastic 

proton-nucleus scattering, the effective masses of both projectile and target nucleons, mi and 

m2 respectively, play a vital role in determining the nuclear medium (or relativistic) effects on 

scattering observables. Original RPWIA calculations [Ho86, Mu87a, Ha88, Ho88, Iq88) relied on 

rather crude values of the effective masses. However, some observables are extremely sensitive 

to small variations in the effective mass, and hence, much emphasis is placed on generating 

more refined values of the effective masses. To illustrate this point, Figs. 3.2 and 3.3 plot the 

polarization transfer observables (see Sec. 3.2.7) for different projectile effective masses between 

0.7m :-:::; mi < l.Om (m being the free nucleon mass) for quasielastic (jf,p ') and (jf,ii) 

scattering, respectively, from a 4°Ca target nucleus at an incident laboratory kinetic energy 
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Figure 3.1: Schematic diagram of the Relativistic Plane Wave Impulse Approximation (RPWIA) 

for quasielastic inclusive proton-nucleus scattering. The index i is summed over the five Lorentz­

invariant amplitudes listed in Table 3.2. Nuclear medium modifications of the NN amplitudes are 

incorporated via effective nucleon masses mi and m2 for the projectile and ejectile, respectively. 

The remainder of the notation is defined in the text. 
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of 200 MeV: the effective mass of the target nucleon is kept fixed at m2 = 0.795 m (see 

Table 3.1) . These predictions are based on a relativistic SVPAT parametrization of the NN 

amplitudes, with a pseudoscalar coupling for the pion: the meaning of this jargon, as well as the 

details of these calculations, are discussed in Sees. 3.2.4 to 3.2.9. Note the extreme sensitivity of 

certain polarization transfer observables to 10% variations in the effective nucleon mass. Hence, 

it is important to use refined values of these effective masses when testing the validity of the 

RPWIA. 

The generation of projectile and ejectile effective masses is discussed in the next section. 

The Dirac equation with relativistic scalar S(r) and time-like vector V(r) spherical potentials 

resembles the free-particle Dirac equation, with S(r) adding effectively to the mass m of a free 

nucleon [see Eq. (A.l7) in Appendix A with S(r)=/A (r) , V(r)=U~(r) , and U~ (r)=Ut(r)=O]: 

{ - io:· V + ,B[m + S(r)]- [E- V(r)]}?/J~)r) = 0 (3.1) 

where the subscripts (±) correspond to (~n~~g~:~:) distorted waves. In the eikonal approxima­

tion the wave function 7/; :i:. ( r) is given by [Am83] 
K, s 

. ,,± ( .... ) - / E + m ( 
1 

.... ) K. r iw± (f' ) 
'PK~ r - 2 u . K e e Xs ,s m 

E-V(r)+m+S(r) 

(3 .2) 

where the eikonal phase factor (or Hamilton's characteristic function) w ±(f') is written in 

integral form as [f' = (b, z)] 

w ±(b, z ) =- ~ rz dz' {Vc(b, z') + Vso(b, z')(u· bxK- iiKiz')} (3.3) 
IKI J'f'oo 

with b the impact parameter, and the z-axis is chosen along the direction of the average mo­

mentum K: 
(3.4) 

defined in terms of the initial (k) and final (k') momenta in the laboratory frame. Vc(r) and 

Vs0 (r) denote Dirac-equation- based central and spin-orbit potentials produced via the trans­

formation of the Dirac equation (3.1) to an equivalent Schrodinger equation (see Appendix A) . 

Note that in the semi- classical eikonal approximation the path of the scattered proton is ap­

proximated by a straight line through the nucleus (in direction z with impact parameter b). The 
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Figure 3.2: The sensitivity of complete sets of quasielastic 4°Ca(j,p ') polarization transfer 
mi observables to 10% variations in the projectile effective mass Mi, where Mi - The 
m 

incident laboratory energy is 200 MeV and the laboratory scattering angle is 30° . 
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Figure 3.3: The sensitivity of complete sets of quasielastic 4°Ca(p, n) polarization transfer ob-
* servables to 10% variations in the projectile effective mass mi, where Mi = m1 

. The incident 
m 

laboratory energy is 200 MeV and the laboratory scattering angle is 30° 
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effect of the nuclear medium is to distort the free-particle wave functions via the phase factor 

eiW(b,z). 

If, on account of the mean-field theory of the Walecka model, the Dirac fields in Eq. (3.1) 

are replaced by their mean values [Se86]: 

S(r) --+ (S) and V(r) --+ (V) , 

one obtains a truly free-particle Dirac equation with, however, an effective mass: 

m* = m+ (S). (3.5) 

The mean vector field (V) simply shifts the energies of all particles by a fixed amount and 

does not affect the scattering process. To incorporate effective masses in the Dirac scattering 

wave functions for subsequent calculations of polarization transfer observables, (S) needs to be 

evaluated in accordance with the circumstances of the specific nuclear reaction. The procedure 

of Horowitz and Iqbal [Ho86, Mu87a, Iq88] is essentially followed, and the mean scalar potential 

is taken to be 
(S) = I dr S(r) w(r) 

I drw(r) ' 
(3.6) 

where S(r) represents the real part of the scalar potential, and the weighting function w(r) 

expresses the probability that both projectile and target nucleons are present at position r in a 

spherically symmetric nucleus, that is 

w(r) = p(r) T(r) , (3.7) 

with p(r) the baryon density, and T(r) the probability that the incoming nucleon will not be 

absorbed before reaching position r. 

Since the imaginary component of the optical potential contributes to absorption of the 

beam, the probability for the beam being transmitted through the nucleus along an impact 

parameter b, becomes: 

T(b) [exp [iW+(b, z = oo)][ 2 

exp [( -2 Im w+(b, z = oo)] , (3.8) 

where ImW indicates the imaginary part of Win Eq. (3.3). For simplicity, the spin-orbit and 

Darwin terms in Eq. (3.3) are omitted, thus yielding 

4m looo T(b) = exp[---=-- dzimVc(b,z)]. 
[K I 0 

(3.9) 
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The effects of spin-orbit distortion on polarization transfer observables will be considered in 

Sec. 3.2.10. Calculations of T(b) show generally that, because of proton absorption in the 

nuclear interior, mainly the surface of the nucleus contributes to (S). In terms of cylindrical 

co-ordinates z and b, Eq. (3.6) is written as: 

(S) = J db b T(b) J dz S(b, z)p(b, z) 
J db b T(b) J dz p(b, z) 

(3.10) 

such that an explicit evaluation requires an appropriate nuclear density function p( r) [sometimes 

called the baryon density function] and Dirac potentials. Horowitz and Iqbal use the functions 

S(r) and p(r) of Kobos and Cooper [Ko85] to calculate mi for the incoming protons, both 

functions being of Woods-Saxon form. For m2 of the target nucleon they use directly a mean 

scalar field for nuclear matter in Eq. (3.5), which relies on the assumption that S(r) = ap(r) , 

but with constant a extracted from infinite nuclear matter. In the present project, apart from 

averaging scalar potentials as expressed by Eq. (3.10) [for eventually calculating both mi and 

m2] , my aim is to employ the most recent and refined functions for the Dirac optical potentials 

and nuclear densities. For the purpose of calculating effective masses for the target nucleons 

m2 , I consider the work of Horowitz, Murdock and Serot [Ho91a], who analyze the mutual 

interaction of nucleons in a nucleus by relativistic fields describing the exchange of mesons as 

in the Walecka model [Se86] , and perform selfconsistent Dirac-Hartree calculations to obtain 

the fields: they only considered spherically symmetrical closed-shell nuclei, which restricted the 

meson fields to the zero component of the vector field V 0 (r) and the scalar field ¢(r) : note 

that both V 0 ( r) and ¢( r) are real fields. The resulting field equation for the baryons yields a 

Dirac equation with -g8 ¢(r) as the scalar potential, adding to the baryon mass, where g8 is 

the scalar meson coupling constant. In the present case one considers -g8 ¢(r) to be the scalar 

potential for the struck nucleon and, therefore, in the mean field approximation, its effective 

mass becomes: 

m2 = m - 9s ( ¢) · (3.11) 

The computer code TIMORA, of Horowitz and Murdock [Ho91a], is used to calculate, in a 

selfconsistent Dirac- Hartree formulation, the potentials ¢(r) and V 0 (r) for a specific nucleus, 

as well as the scalar and baryon density functions p8 (r) and PB(r). After averaging ¢(r) via 

Eq. (3.10) with p(r) = PB(r) , one calculates m2 from Eq. (3.11). 

The calculation of mi from Eq. (3.5) requires a scalar optical potential S(r) for the projectile 
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nucleon. This potential is obtained by folding the components of a NN interaction t-matrix 

with the scalar density p8 (r) for the specific nucleus: the code FOLDER (Ho91a] is used. There 

are two parametrizations for the NN scattering amplitudes, namely the Horowitz-Love-Franey 

model (Ho85] discussed in Sec. 3.2.4 with its separation of direct and exchange amplitudes, and a 

parametrization by McNeil, Ray and Wallace which uses complex Gaussian functions and treats 

the full amplitude as a direct term (Ho91a]. The former is preferred for proton energies below 

400 MeV, while parameter sets exist at higher energies for the latter choice. For the t-matrix 

(below 400 MeV) one applies, for consistency, the same Horowitz-Love-Franey NN interaction 

which is to be used for calculating the polarization transfer observables in Sec. 3.2.7, and include 

pseudovector coupling for the pion, which formerly (Mc83] yielded by far the best agreement 

with phenomenological Dirac optical potentials. The real parts of the scalar potentials are then 

averaged according to Eq. (3.10) and consequently used to extract the mi values via Eq. (3.5). 

Table 3.1 lists various effective nucleon mass values for quasielastic proton scattering from 

the nuclei 12C, 160, 4°Ca, 54Fe and 208Pb, at incident laboratory energies of 135, 200, 300, 400 

and 500 MeV. Note that M* = m*, where m is the free nucleon mass. The subscript SC refers 
m 

to effective masses based on Self-Consistent optical potentials: the scalar optical potential, used 

for extracting mi, is obtained by folding the NN t- matrix with a scalar density generated via the 

self-consistent Dirac-Hartree procedure, and the bound scalar potential, used for calculating 

m2, is generated via the self-consistent Dirac-Hartree procedure. For comparison, the effective 

masses (subscripted by CP) calculated with recent global phenomenological optical potentials 

developed by CooPer et al. (Co92] are shown: they fitted proton elastic scattering data in 

the energy range 20 - 1040 MeV for targets 12C, 160, 4°Ca, 90 Zr and 208Pb. Table 3.1 also 

lists the M*-values reported by Horowitz and Murdock (Ho88] and which are subscripted 

by HM: the MH-M-values at 300 MeV are taken from Ref. (Ha88]. The sensitivity of the 

polarization transfer observables to the SC, CP and HM effective masses will be discussed 

in Sec. 3.3. The general trends exhibited by the more refined SC- and CP-effective 

masses are now analyzed. Firstly, for scattering from a specific nucleus, the effective masses of 

both projectile and target nucleons increase with projectile laboratory kinetic energy Ttab, the 

increase for the projectile being larger. This can be explained as follows: as T1ab increases, more 

reaction channels generally open for projectile absorption inside the nucleus, manifesting itself 

as an increase in the imaginary part of the optical potential. This decreases the projectile's 
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Table 3.1: Effective masses M* = m*, average impact parameters (b), Fermi momenta k p, and 
m 

effective number of struck nucleons Aeff for various nuclei and laboratory kinetic energies. The 
meaning of the various subscripts is defined in the text. 

Target Tlab M!sc M~sc M!cP M~cP M!HM M;HM (b) kp Aeff 

nucleus (MeV) (fm) (fm-1) 

12C 135 0.762 0.762 0.836 0.754 2.109 1.059 4.210 
12C 200 0.795 0.768 0.853 0.775 0.850 0.840 2.136 1.050 4.443 
12c 300 0.832 0.772 0.868 0.792 2.162 1.042 4.482 

12c 400 0.862 0.786 0.883 0.807 0.860 0.840 2.243 1.020 4.156 
12c 500 0.890 0.799 0.892 0.814 0.910 0.870 2.331 0.996 3.636 

160 135 0.847 0.779 0.828 0.765 2.409 1.029 4.875 
160 200 0.839 0.781 0.846 0.782 2.421 1.026 5.311 
160 300 0.855 0.786 0.862 0.798 2.458 1.017 5.302 
160 400 0.870 0.796 0.871 0.809 2.529 1.000 5.016 
160 500 0.893 0.809 0.885 0.815 2.631 0.976 4.330 

4oca 135 0.836 0.778 0.810 0.749 3.434 1.024 6.736 

40Ca 200 0.832 0.784 0.832 0.771 0.82 0.81 3.484 1.014 7.277 

40Ca 300 0.847 0.787 0.851 0.789 3.510 1.008 7.496 

40Ca 400 0.864 0.798 0.865 0.799 0.83 0.80 3.599 0.989 7.133 
4oca 500 0.892 0.817 0.879 0.810 0.90 0.85 3.759 0.955 5.973 

54 Fe 135 0.819 0.757 0.796 0.722 3.753 1.055 6.494 
54 Fe 200 0.817 0.766 0.819 0.748 3.822 1.041 7.066 

54 Fe 300 0.833 0.770 0.840 0.769 0.86 0.85 3.850 1.034 7.378 
54 Fe 400 0.853 0.783 0.855 0.781 3.948 1.012 7.044 
54 Fe 500 0.885 0.805 0.874 0.794 4.123 0.974 5.811 

208pb 135 0.828 0.835 0.807 0.767 6.929 0.986 7.670 
208pb 200 0.845 0.831 0.842 0.801 0.82 0.82 6.880 0.922 9.572 
208pb 300 0.860 0.825 0.866 0.822 6.808 0.934 11.140 
208pb 400 0.885 0.836 0.885 0.839 0.86 0.83 6.913 0.911 11.033 
208pb 500 0.916 0.857 0.896 0.850 0.88 0.85 7.114 0.868 9.146 
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transmission T(b) through the inner nucleus and shifts the region of proton scattering to the 

nuclear surface, where the magnitudes of all nuclear potentials start to decline substantially. 

Therefore, as Ttab increases, both (¢) and the magnitude of the real part of (S) decrease and, 

with S(r) being negative, this leads to an increase of both mi and m2, according to Eqs. (3.5) 

and (3.11) respectively. In addition, it is known that, as Ttab increases, the magnitude of the 

real part of the Dirac optical potential function S(r) decreases at all r [Mc83]. This leads to a 

further reduction in (S) and consequently, a further increase in mi. The last three columns in 

Table 3.1 list respectively: 

• the mean impact parameter (b), which is calculated by replacing S(r) with bin Eq. (3.6), 

• the Fermi momentum kp = (~7r2 (pB))k, which is calculated by replacing S(r) with PB(r) 

in Eq. (3.6), 

• the effective number of struck nucleons (in the nuclear surface) Aeff, which is calculated 

from 
Aeff =A J db b T(b) J dz p(b, z) 

J dz p(b, z) 
(3.12) 

The effective masses mi and m2 do not vary significantly with the mass number of the 

target nucleus. Also note, that the effective number of nucleons Aeff acting as scatterers does 

not increase much with nuclear size. This means that for heavier target nuclei, the scattering 

becomes more surface peaked and resembles more of a free NN interaction in which the remaining 

(heavy) nucleus plays a minor role. This is also reflected by the mi-values for 208Pb, where the 

effective masses are close to the free-mass value. On the other hand, the lightest nucleus 12C, is 

penetrated more by the incident beam and, on average, a third of all the nucleons partake in the 

scattering. Thus, contrary to initial intuition, medium effects are better studied by scattering 

protons on light nuclei: this is illustrated by the relatively large differences between effective 

masses for 12C and the free-mass value. Furthermore, one also sees that the effective number of 

target nucleons Aeff is mainly concentrated in the nuclear surface. This is due to the fact that, 

for each nucleus, the average impact parameter (b) is relatively close to the value of the nuclear 
1 

radius R = roA3, with ro = 1.2 fm. 

The effect of these M* -values on polarization transfer observables will be discussed in Sec. 

3.3. In Sec. 3.2.1 the choice of a Fermi-gas model for the target nucleus was motivated. In the 
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following section, the latter model is discussed in more detail. 

3.2.3 Fermi-gas model of the target nucleus 

At the large momentum transfers ( II] I > 1 fm- 1) and excitation energies (w ~ lg!) of interest, 

nuclear shell effects seem to be unimportant: the experimental polarization transfer observables 

are virtually identical for quasielastic (p,p') scattering from 12C and 160 at 290 MeV [Ch89], 

and for (P, ii) scattering from 2H, 6Li, 12C, 4°Ca and 208Pb at 346 MeV [Sa96, Wa96, Wa97). 

Hence, it seems reasonable to treat the nucleus as a system of noninteracting nucleons in a 

very large volume where one applies periodic boundary conditions for the wave functions, thus 

yielding plane waves. This model of the nucleus is referred to as the Fermi-gas model. The 

distribution of the plane wave states is represented by a sphere in momentum space whose radius 

is the Fermi momentum kp. Recall, from Sec. 3.2.2, that the Fermi momentum kp is directly 

related to the average nuclear or baryon density via 

(3.13) 

When the bombarding nucleon transfers momentum q and energy w to a target nucleon, the 

initial momentum k2 of the nucleon (before being struck) is limited to (See Sec. !.7 in Appendix 

I) 

(3.14) 

where 

kmin 

1 

max{l ICi I - ~ (1 - 4m22 ) 2 I 0} 
2 2 w2 -lq 12 ' 

(3.15) 

and 

1 

. ICi I w ( 4m2
2 

) 
2 

kmax = I kmax I = mm{ -
2 

+ -
2 

1 - __, 2 , kF} . 
w2 -lq I 

(3.16) 

Due to the Fermi motion of the target nucleons, all polarization transfer observables need to be 

averaged over the Fermi distribution of the target-nucleon momenta k2 (see Sec. 3.2.7). 
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Nonrelativistically, the energy- and momentum- transfer are related by (See Sec. I.9 in 

Appendix I) 

(k2 + if)2 lk21
2 

---w 
2m 2m 

lq .... l2 k.... .... 
2"Q 

----- (3.17) 
2m m 

where m is the free nucleon mass. The first term gives the energy loss of the centroid of the 

quasielastic peak which corresponds to free NN scattering from a stationary target nucleon, i.e. 

k2 = 0. The second term indicates how the width of the peak (FWHM) is related to the 

momentum of the struck nucleon [Fe71 , Ne88) . 

In the Fermi-gas model, the ground state of the nucleus is a Fermi sea with all states below 

kp occupied. When quasielastic scattering takes place, the struck nucleon is removed from the 

Fermi sea, and the recoiled ejectile also remains above the Fermi sea. No scattering takes place 

for either lkil ::; kp or lk~l ::; kp. This effect is called Pauli blocking, and becomes important 

when I if I < 2kp [Be82, Wa93). 

For quasielastic scattering the Fermi-gas model relates the inclusive unpolarized double 

differential cross section for quasielastic proton-nucleus scattering to the probability of exciting 

a target nucleon from an occupied state within the Fermi sphere to an unoccupied state outside 

the Fermi sphere, with momentum and energy being conserved in the transition [Fe71 , Ne88). 

For a relativistic description of quasielastic proton scattering, one requires relativistic NN 

amplitudes as input. These amplitudes form the subject of the next section. 

3.2.4 Relativistic NN amplitudes 

Most calculations of scattering observables require some form of empirical input, such as, for 

example, the experimental NN scattering amplitudes. In direct nuclear reaction theory most 

models make use of the impulse approximation which essentially relates scattering observables 

to the free NN scattering amplitudes. Normally this approximation is valid for incident beam 

energies much larger than the binding energy of the target nucleons, so that the binding energy 

can be neglected, and the interaction is considered to be between free nucleons [Ja70) . Although 

the validity of the impulse approximation, as used in low to medium energy nuclear reaction 
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models is questionable, it is nevertheless used due to the lack of any better approximation. 

However, for quasielastic proton scattering it has already been emphasized (see Chapter 2, and 

also Sec. 3.2.1 in this chapter) that direct experimental evidence supports the idea of a projectile 

interacting with a single, essentially free, target nucleon. Hence, the impulse approximation 

should be valid for quasielastic scattering. 

The free NN amplitudes are normally extracted from free NN scattering experiments via 

suitable phase shift analyses, such as the well- known Arndt phases [Ar86]. In the following two 

sections, relativistic parametrizations of the free NN scattering data will be presented. 

Relativistic representation of the NN amplitudes 

The nonrelativistic McNeil- Ray- Wallace (MRW) [Mc83a, Mu87a] parametrization of the on­

shell NN scattering operator f , which is consistent with rotation, parity, time-reversal and 

isospin invariance, is given by (see Appendix G in Sec. G.4) : 

where f is a 4 x 4 operator in the spin space of both initial and final nucleons. The subscript 

em refers to the NN centre-of-mass frame, the coefficients A , B , C, D and E are complex 

functions of the three-momentum transfer ll]' I = lk~m - kcml and collision energy Ecm = 

Vlkcml 2 + M 2 , and are obtained from phase shift analyses. Introducing the isospin dependence 

via (see Appendix B) 

(3.19) 

yields the following parametrizations for the nonrelativistic pp (or nn) and pn scattering oper­

ators, fPP (or fnn) and fPn, respectively (see Appendix B), namely 

(3.20) 

with an identical expression for (2i lkcml) -l rn, and 

(3.21) 
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The scattering amplitudes for particular spin directions are found by operating on the initial 

and final Pauli spinors. The orthogonal directions z, ij and n are defined as 

n=ijxz (3.22) 

where 

(3.23) 

The scattering matrix is normalized such that the polarized differential cross section for free 

NN scattering is given by 

(3.24) 

where the x's represent the usual Pauli spinors for the different spin projections of the incident 

and scattered particles. 

The preceding phenomenology can be parametrized in a form which displays the proper 

Lorentz-transformation character. The nonrelativistic scattering operator ----:--kf is replaced 
2z em 

by a relativistic scattering operator :F, where :F(Ecm, IQ' I) is a 4x4@4x4 matrix with 256 

components in the Dirac spinor space of the two interacting nucleons. The relation between the 

nonrelativistic and relativistic scattering matrices is given by [Mc83a]: 

(2ilkcmi)- 1 X~' 1 X~~J(Ecm, IQ' DXstXs2 

= U(k'cm, sDU( -k~m' s~):F(Ecm, IQ' I)U(kcm, s1)U( -kcm, sz) (3.25) 

where U(kcm, s) is a Dirac 4-component positive-energy (nucleon) spinor given by 

_. {E+;; ( I ) U(kcm,s) = y ~ u. kcm Xs · 

E+m 

(3.26) 

x is a two-component Pauli spinor of projection s, u represents the Pauli spin matrices, and 

E is given by 

(3.27) 

where m is the free nucleon mass. The Dirac spinors U are normalized such that 

[J u = 1. (3.28) 
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This normalization is used by Bjorken and Drell [Bj64] and differs from that used in the Walecka 

model [Se86], namely utu = 1. Again, there is an isospin label for :F, with :FPP for pp scattering 

and pn for pn scattering. Note that :F is an operator in the two-particle Dirac space; it has 

256 components when taken between all combinations of nucleon and antinucleon spinors at a 

given lq' I and Ecm. Just as symmetries reduce the number of possible independent spin matrix 

elements off to five (see Appendix G), parity, time-reversal, and isospin invariance reduce the 

number of independent amplitudes of :F to 44, for on-shell kinematics [Tj85]. Hence, there 

can be many different operators :F with the same five on- shell matrix elements, but different 

4x4@4x4 matrix structures. These different structures will give different negative energy spinor 

matrix elements of :F. The information contained in the measurement of the free NN amplitudes, 

which are related to the five complex Wolfenstein parameters, determines only a small number 

of the . components of :F, and so some assumptions need to be made about the form of :F in 

Eq. (3.25). A convenient parametrization, which was originally introduced in the relativistic 

impulse approximation, is given by [Mc83a] 

5 

:F(Ecm, lq' I) = L Fi(Ecm, lq I)A~l) · A~2) (3.29) 
i=l 

where the superscripts (1) and (2) refer to the projectile and target nucleons respectively. The 

i's stand for the five Dirac matrices listed in Table 3.2, and the dot product implies that t.he 

Lorentz indices are contracted. With Eq. (3.29), the right hand side of Eq. (3.25) can now 

be written as a sum of five terms: 

The scattering matrix in Eq. (3.29) is usually referred to as the SVPAT (Scalar-Vector­

Pseudoscalar-Axialvector-Tensor) parametrization of the relativistic NN amplitudes. 

With explicit expressions for the Dirac spinors and the 1 matrices, the right hand side of 

Eq. (3.30) can be written in terms of the independent set of spin operators and Pauli spinors, 

and the coefficients can be identified with those of the right hand side of Eq. (3.18). In this 

way, the five SVPAT amplitudes (Fs, Fv, Fp, FA, Fr) and the Wolfenstein amplitudes (A, 

B, C, D, E) can be written as linear combinations of one another. Hence, one can derive a 

5x5 nonsingular matrix O(Ecm, lkal, lq' I) which gives the MRW (centre-of-mass) amplitudes in 
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Table 3.2: Dirac matrix types parametrizing the free NN amplitudes. 

5 

:F(Ecm, I if I) = LFi(Ecm, lif 1)>-V) · A~2) 
i=l 

1 

S (scalar) 

V (vector) 

P (pseudoscalar) 

A (axial-vector) 

T (tensor) 

terms of the Fi invariants [Mc83a, Mu87a]: 

A 

B 

c 
D 

E 

Ai 

1 

Tf.l. 

/5 

/5/f.J. 

()f.J.V 

64 

(3.31) 

Explicit expressions for the individual matrix elements of the 5 x 5 matrix are given in the 

paper by McNeil, Ray and Wallace (Mc83a]. 

For application to quasielastic scattering, the commonly used SVPAT parametrization is 

limited in that it does not address the exchange behaviour of the NN amplitudes in the nuclear 

medium, and is also rather crude in distinguishing between different forms of the 1f NN vertex 

(see Sec. 3.2.6). These shortcomings are, however, overcome by using a relativistic meson­

exchange model of the NN amplitudes. The next section is devoted to a discussion of such a 

model. 
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Relativistic Horowitz-Love-Franey model 

In principle, the NN t-matrix can be obtained via solution of the Bethe-Salpeter equation, 

where the on-shell NN amplitudes are matrix elements of this t-matrix. However, the complex­

ity of this approach gives limited physical insight into the resulting amplitudes. An alternative 

approach is to fit the amplitudes directly with some phenomenological form, rather than generat­

ing the t-matrix from a microscopic interaction. Although the microscopic approach is certainly 

more fundamental, the advantage of phenomenological fits lies in their simple analytical form, 

which allows them to be conveniently incorporated in calculations requiring the NN t-matrix 

as input: see for example, the studies of elastic proton-nucleus scattering [Mu87a, Mu87b] 

and proton knockout reactions [Co89, Ma90, Ma93, Ma94, Ik95, Ma96a] based on the impulse 

approximation. 

The NN t-matrix employed in this work is based on the relativistic meson--exchange de­

scribed in Refs. [Ho85, Ho88, Ho91a], and will be referred to as the Horowitz-Love-Franey 

(HLF) model. Essentially this model parametrizes the NN t-matrix in terms of a number of 

Yukawa-type meson exchanges in first--order Born approximation, such that both direct and 

exchange NN diagrams are considered separately. The corresponding Feynman diagrams for 

the HLF model are shown Fig. 3.4. The HLF model is used to investigate the importance of 

exchange effects, and also to study the consequences of different forms of the 1r NN vertex on 

quasielastic polarization transfer observables at various incident energies. Furthermore, this 

model is also used to generate microscopic optical potentials as already discussed in Sec. 3.2.2. 

The meson-nucleon coupling constants and meson-nucleon form factors are adjusted to fit 

the relativistic NN amplitudes in Eq. (3.25). The fit provides a simple analytical form with 

a physical basis in the one-boson exchange mechanism. However, the price one pays for this 

simplicity is that: 

• the coupling constants have a systematic and small energy dependence, 

• the cutoff parameters vary dramatically from one energy to another, 

• and, the meson-nucleon coupling constants and cutoff parameters are complex. 

Horowitz [Ho85] emphasized that the (small) imaginary couplings are a purely phenomenological 
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1 

1-12 2 q +m; 

Figure 3.4: Feynman diagrams for the direct and exchange terms in the Horowitz-Love-Franey 

meson-exchange model. The notation is defined in the text. 
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means of obtaining the imaginary amplitudes, that is, they have no physical significance. The 

real coupling constants, on the other hand, agree with those obtained from one-boson exchange 

potentials. The mesons have different isospins and Lorentz types [Scalar (S), Vector (V) , Tensor 

(T) , Pseudoscalar (P) and Axial-vector (A)] such that there exists a simple relationship between 

individual Lorentz-invariant amplitudes and mesons exchanged. This relationship is lacking in 

the nonrelativistic Love-Franey model [Lo81a, Hi90] , where the NN interaction is represented 

by an arbitrary sum of Yukawa functions. 

The formalism for the HLF model is now presented. The intention is to parametrize the 

righthand side of Eq. (3 .25) in terms of a set of meson-exchanges for both the direct and exchange 

amplitudes depicted by the Feynman diagrams in Fig. 3.4. For a meson of spin zero and mass 

m, one uses the nonrelativistic limit of the Klein- Gordon propagator [Bj64] (valid when the 

recoil kinetic energies of the nucleons are neglected relative to their rest mass energies) so that 

the mesons have propagators of the form 

1 
(3.32) 

where if is the three-momentum transfer, and the meson- nucleon vertices have the following 

monopole form factors 

1 
(3.33) 

1 + 1U2 , 

with separate masses and cutoff parameters for the real and imaginary parts of the amplitude 

denoted by m, m and A, A respectively. From Feynman rules (Bj64, Sa67], the NN-meson 

vertex factor is 

9·( 1 ) )..L(i)(f )T; 
z lq 12 ' 

1+ At"" 
' 

(3.34) 

where L(i) E {S, V, T, A, P}, and Ti = (0,1) is the isospin of the ith meson. If one denotes 

the total isospin of the two- nucleon state by T, then the T = 0 scattered wave is symmetric for 

interchange of both spatial and spin coordinates, so that there is a relative ( +) sign between the 

direct and exchange diagrams in Fig. 3.4. For T =1 scattering, the wave function is antisym­

metric for interchange of both spatial and spin coordinates, and hence, there is a relative (-) 

sign between the diagrams. Then, up to an overall kinematic factor, the contribution of (real) 
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meson i to the ith (real) amplitude is [Bj64, Sa67, Br76] 

97 1 2 - L( ') - L( ") T. ul,[J2,;:iulu2 <X z .... 2 ( _ 2) u1,>. z u1u2,;.. z U2{r1 · r2} i 

m~+lql 1+~ 
A . 

+ ( -1)T gf .... 2 ( 1- 2 )2[J2,)..L(i)Ul[Jl,)..L(i)U2{Tl. T2}Ti (3.35) 
m~ + IQ I 1 + ~~~ 

where the magnitude of the direct three-momentum transfer ltf I is expressed in terms of the 

centre-of-mass scattering angle ()c:m (see Appendix D) 

(3.36) 

and IQ I is the magnitude of the exchange three-momentum transfer (see Appendix D) 

(3.37) 

The momentum of a nucleon in the centre-of-mass frame is (see Appendix D) 

(3.38) 

where Ttab is the incident laboratory kinetic energy of the projectile. The meaning of {r1·r2}'Ii 

is given by Eqs (3.52) and (3.53) (see also Appendix B). The imaginary part of the ith amplitude 

has the same form as Eq. (3.35) , except that the real values gi, mi and Ai are replaced by the 

corresponding imaginary values []i , mi and Ai, respectively. 

The first term in Eq. (3.35) is already of the form of the righthand side of Eq. (3.30) from 

which one can identify the contributions to the Fi 's in that expression. The second term is 

not of this form because of the different order of spinors in the product. However, it can be 

rewritten with a Fierz transformation [Br76, Na90] 

(u2,;..Lr~t)(ul,;..Lu2) = z:: cLL'(ul ,>..L'Vl)(u2,;..L'u2) (3.39) 
L' 

where 

2 2 1 -2 2 

8 -4 0 -4 -8 
1 

(3.40) CLL' = - 24 0 -4 0 24 8 
-8 -4 0 -4 8 

2 -2 1 2 2 
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with the rows and columns labeled in the order (S, V, T , A, P). Hence Eq. (3.30) is rewritten 

as 

(3.41) 

and the identification of the contributions to the invariants Fs, Fv, Fr, FA and Fp can now 

be made. Note, that while a meson always contributes to the Fi invariant of the same Lorentz 

type in the direct term, all the other meson types appear in the exchange term. With the 

normalization in Eq. (3.28), the kinematic factor (which differs from the factor presented in 

Ref. [Ho85]: see Ref. [Mu87a] and Appendix A in Ref. [Mu87b]) needed to give the free spinor 

matrix elements in Eqs. (3.25) and (3.29) is 

(3.42) 

where the NN centre-of-mass energy Ecm is defined in terms of the NN centre-of-mass momen­

tum kcm and the nucleon mass m, namely 

v.... 2 2 E cm = lkcml +m · (3.43) 

Combining all of these factors, the total contribution to the invariant FL, in Eqs. (3.29) and 

(3.30), from all of the N mesons exchanged is the sum of direct and exchange terms, namely 

(3.44) 

N 

Ff (lcl I) = L 8L,L(i){ 'Tl . 'T2}T; fi(lcl I) (3.45) 
i=l 

N 

Ff (IQ I)= (-1f L CL(i),d'Tl. 'T2}T; fi(IQ I) (3.46) 
i=l 

(3.47) 

2 2 . 9· X 2 
fk(x) = 2 z 2 (1 + A2 )-

x +mi i 
(3.48) 
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- 2 2 . g· X 2 
fi(x) = 2; - 2(1 + A_2) - ' 

x mi i 
(3.49) 

where x represents either l<f I or IQ I· The invariant amplitudes for pp and pn scattering are: 

(3.50) 

(3.51) 

The meaning of { r 1 · r 2}Ti is explained in Appendix B: for the T = 1 amplitudes 

1 for the exchange of Ti = 0 (isoscalar) mesons 
(3.52) 

1 for the exchange of Ti = 1 (isovector) mesons 

and, for T = 0 amplitudes 

1 for the exchange of 7i = 0 (isoscalar) mesons 
(3.53) 

-3 for the exchange of Ti = 1 (isovector) mesons 

The original HLF parameter sets exist only at incident proton energies of 135, 200, 300 and 400 

MeV [Ho85, Mu87a). More technical detail on the types of mesons and fitting procedure for 

extracting the HLF parameters can be found in Sec. 3.3.3. 

In relativistic quantum mechanics, most scattering observables are usually expressed in terms 

of invariant scattering matrix elements. The next section focuses on the invariant scattering 

matrix elements for quasielastic proton-nucleus scattering. 

3.2.5 Invariant scattering matrix elements 

Using the conventions of Bjorken and Drell [Bj64) , the invariant matrix element for the quasielas­

tic proton-scattering process, depicted in Fig. 3.1, is given by [Ho86, Mu87a, Ho88, Iq88) (see 

also Appendix E) 

T 

M = L U(mi , k~ , s~).\iU(mi , k1, s1)ti (O~ , T.{ff)U(m2, k~, s~).\i U(m2 , k2 , s2) (3.54) 
i= l 
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where the nucleon Dirac spinors U(m*, k, s) are given by 

*~ ~( u(m ,k,s)=y~ 

and are normalized such that 

I 

U· k 
E*+m* 

U(m* =m,k,s)U(m*= m,k,s) = 1. 

71 

(3.55) 

(3.56) 

x is a two-component Pauli spinor of projection s , u represents the Pauli spin matrices, and 

E* is given by 

(3.57) 

where m* is the effective nucleon mass defined in Sec. 3.2.2. The invariant functions ti (O~, T!ff) 

are related to the invariant amplitudes Fi (O~fF' , T!ff) , introduced in Sec. 3.2.4, via (see Ap­

pendix F) 

(3.58) 

where lkeff iEeff is an invariant flux factor [Gr94]. This relation enforces the normalization 

condition expressed by Eqs. (3.24) , (3.25) and (3.28) . The kinematic quantities Te7I , lke££ 1 and 

Ee££ are the effective laboratory momentum, kinetic energy and total energy of the projectile in 

the frame where the target nucleon is at rest (see Appendix I): 

(3.59) 

(3.60) 

where k2 is the target- nucleon momentum, which ranges between kmin and kmax defined by 

Eqs. (3.15) and (3.16) , and lk1l is expressed in terms of the incident laboratory kinetic energy 

1lab 

(3.61) 

For each momentum k2 and azimuthal angle ¢> between if and k2, the NN amplitudes ti are 

evaluated at the effective laboratory kinetic energy T!ff and NN centre-of- mass scattering angle 

O~fr (see Appendix I) 

I ~1 2 2 
ncrn 2 · -1 ( q - W ) ! Veff = Sill L 2 

2mTeff 
(3.62) 
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where the momentum transfer if is 

(3.63) 

and energy transfer w is 

(3.64) 

The starred quantities are defined in the NN laboratory system as 

E* 1 Vlk1l2 + mi2 

E'* 1 Vl k~l2 +mi2 
(3.6S) 

E2 Vlk2l2 +m22 

E'* 2 = Vlk~l 2 + m22. 

In practice, a large table of relativistic amplitudes, calculated from the summer 1986 Arndt 

phase shifts (with the Coulomb interaction removed), is interpolated quadratically every 2S 

MeV on Tiff (from 2S MeV to 1200 MeV) and linearly every so on 0~ (from so to 17S0
). 

In the next section, the ambiguities exhibited by the relativistic SVPAT parametrization of 

the NN scattering operator are discussed. 

3.2.6 Pseudoscalar versus pseudovector forms of the 7rNN vertex 

In the past, concern has been expressed about ambiguities in the form of the relativistic NN 

scattering operator :F given by Eq. (3.29) [Ma82, Se86, Ho88, Ho91b]. The form shown in 

Table 3.2 is sufficient to parametrize the free NN amplitudes. However, as already mentioned in 

Sec. 3.2.4, there are many operators with the same five on-shell matrix elements, but different 

4 x 4@4 x 4 matrix structures. Furthermore, recall that the impulse approximation assumes the 

same form (see Table 3.2) for both free and medium-modified NN scattering. 

The question now arises as to how the medium-modified scattering matrix, and consequently 

the polarization transfer observables, change when other forms of :F, different to that specified 
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in Eq. (3.29), are used. Once again, it is stressed, that although the different forms of :F must 

parametrize the same free NN observables, one may expect differences in the medium-modified 

polarization transfer observables. 

One of the major ambiguities concerns the choice of the 1rNN vertex in the amplitudes [Ma82, 

Se86, Mu87a, Ho88, Ho91a]. One could use either a pseudoscalar vertex, which simply uses the 

five amplitudes in Table 3.2, or a pseudovector vertex. The pion is a pseudoscalar particle 

with negative intrinsic parity. Hence the Lagrangian density for pion-nucleon interactions must 

contain a term which couples the pseudoscalar pion field 1r to the pseudoscalar density ;j;'Y5T'Ij; 

[Se86], where T is the usual isospin operator [Se86]. However, the other commonly used form 

contains a term which couples the derivative of the pseudoscalar pion field 8~-'1r [which is a 

pseudovector quantity] to the pseudovector density i/;r5rp,T'Ij;. 

Elastic proton- nucleus spin observables at energies higher than 400 MeV show no difference 

between pseudoscalar and pseudovector couplings of the pion. At lower energies, however, the 

differences become larger and the pseudovector coupling is more compatible with the strength 

and energy dependence of the real scalar and vector optical potentials [Ho85]. On the other 

hand, crude calculations of quasielastic (jJ, p') polarization transfer observables at 290 and 420 

MeV [Hi94] suggest a pseudoscalar form. However, various theoretical arguments [Se86] support 

the pseudovector form. At this stage, however, no overwhelming experimental evidence seems 

to clearly resolve this ambiguity, and hence, one of the aims of this thesis is to search for 

quasielastic polarization transfer observables that are sensitive to pseudoscalar or pseudovector 

forms of the 1rNN coupling. 

One can only talk about pseudoscalar (PS) or pseudovector (PV) forms of the 1rNN inter­

action within the context of a Yukawa- type meson- exchange model, such as the HLF model. 

Calculations of quasielastic proton-nucleus polarization transfer observables by Horowitz and 

Murdock [Ho88] assumed that the u,5u amplitudes in Eq. (3.30) were solely due to pion ex­

change. In this case the transition from a pseudoscalar to a pseudovector 1rNN coupling was 

made via the following substitution in Table 3.2: 

(3.66) 

where q~-' is the four- momentum transfer. As noted above, this substitution does not change 

the NN amplitudes obtained from fitting free NN data, because the free spinors U in Eq. (3.30) 
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satisfy [using the notation Ui(mi) = U(mi ,ki, si)] 

(3.67) 

thus giving the same free NN data: indeed, the PV 1rNN coupling in Eq. (3.66) is defined to 

yield the same free NN amplitudes as PS coupling. In a nuclear medium, the corresponding 

equality is 

such that the pseudoscalar and pseudovector amplitudes are no longer equal, but differ by a 

factor Mi M2 [recall that M* = m* ]. This approximation is acceptable if one assumes that all 
m 

the amplitudes are direct, and exchange contributions are negligibly small: recall that the Fierz 

matrix allows all mesons in Table 3.4 to contribute to each type of NN exchange amplitude. 

Furthermore, the SVPAT amplitudes do not explicitly incorporate the meson mediators of the 

NN force, such as the long range pions, for example, and hence, the SVPAT parametrization rep­

resents a fairly crude way of treating the different "pion" couplings: the relativistic SVPAT NN 

amplitudes are merely obtained via a matrix relation from a Wolfenstein-type parametrization 

of the Arndt phase shifts [see Eq. (3.31)]. 

A more appropriate way, to distinguish between PS and PV forms of the 1rNN vertex, would 

be to use the HLF model (or any meson-exchange model for the NN interaction) where the direct 

invariants in Eq. (3.30) are expressed as linear combinations of the five exchange invariants via 

the Fierz matrix [see Eq. (3.39)], such that the exchange terms from the "pion" contribute to each 

type of invariant. Analogous to Eq. (3.68), the transition from a pseudoscalar to a pseudovector 

1r NN vertex, within the HLF model, is made by performing the following substitution in all 

direct and exchange terms in Eq. (3.41) containing the "pion": 

2 2M*M* g'Tr ---t g'Tr 1 2 . (3.69) 

Horowitz [Ho85] points out that the values of the pion coupling are virtually energy indepen­

dent and agree with the corresponding values for one-boson-exchange-potentials. Hence, the 

substitution in Eq. (3.69) should give a fairly accurate description of the pseudovector form of 

the 1r NN vertex: this is one of the main motivations for using the HLF model. 

The ultimate test for the validity of the more refined version of the RPWIA, is to compare 

model predictions of observables to all available experimental data. The following section is 

concerned with explicit expressions for the scattering observables of interest. 
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3.2.7 Scattering observables 

Expressions for the (unpolarized and polarized) double differential cross section and polarization 

transfer observables, for quasielastic (p, p1
) scattering, are now derived in terms of the invariant 

scattering matrix M in Eq. (3.54). The corresponding (P, n) scattering observables will be 

discussed in Sec. 3.2.8. 

Double differential cross section 

The general expression for the differential cross section to scatter from initial spin state j = 8 1 

to final spin state i1 = 8i with particle 2 unobserved is [Bj64, Mu87a, Ho88, Gr92] (also see 

Sec. E.4 in Appendix E): 

1 *2 dk-+1 I dk-+1 *2 1 m1 1 2 m2 4 4 1 1 '"""' * 
dai-ti' = IV'1 - V'21 Ei Ei* (2?T)3 (2?T)3 E2 E~* (2?T) 8 (k1 + k2- k1 - k2) 2 L....;' M M 

S2,S2 

where, analogous to electron-proton scattering discussed in Sec. E.5.1 in Appendix E, and using 

Eq. (3.54), one can express the quantity I;52 s' M* M as a contraction of a projectile-tensor 
' 2 

Pmn with a target-tensor Tmn, that is 

where 

and 

L M*M 
S2,S~ 

- -, I - - _., I -+ 

[ U(m!, k1, 81)>.mU(m!, k1, 81)] [ U(m!, k1, 81).AnU(m!, k1, 81) ]* 

[ U(m! , ki , 8D.AmU(m!, k1, 81)] [ U(mr, k1, 81)>.nU(m!, ki, 8i)] 

[U(m2,k~, 8~)>.mu(m2, k2, 82)] [U(m2,k~, 8~)>.nu(m2, k2, 82) ]* 

[ U(m2,k~, 8~)>.mU(m2,k2, 82)] [ U(m2,k2, 82)>.nU(m2,k~, 8~)] . 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

Note that since the spinors are parametrized by effective masses mi and m2 [see Eq. (3.55)] and 

not the free mass m, the usual Feynman "}f' factors and the 8 function in the formula for da 
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are in terms of the E *'s. The approximate incident flux in nuclear matter is taken to be [Gr92] 

(also see Appendix E) 

(3.75) 

and, furthermore, one also makes use of the fact that [Bj64] 

dk~ = lk~l E~ dE~ dO~. (3.76) 

Note that there is no star (*) onE~ in Eq. (3.76), since one is interested in the differential free 

energy for the cross section, that is, free nucleons are eventually detected. The integral over k~ 

selects the value 

(3.77) 

from the 3-space part of the energy-momentum-conserving delta function. Finally, since the 

target is treated as a Fermi-gas, the Fermi motion averaging is done over the possible values of 

k2. Hence, the polarized double differential cross section for quasielastic proton scattering can 

now be expressed as 

dai --+i' _ lkil mi2 Ei fkmax dk2 m;2 8 (Ei + E~- E~*- Ei*) 1 * 
dO' dE' lk .... I E'* Jk . 17r k3 E* E'* (27r)2 2 L M M 

1 1 1 1 mm 3 F 2 2 s2 , s~ 

where kmin and kmax are defined by Eqs. (3.15) and (3.16). The factor ~ 7r k~ represents the 

volume of a Fermi- sphere in momentum space, and ensures that the double differential cross 

section is normalized per target nucleon, i.e. one calculates the double differential cross section 

for scattering from a single target nucleon. The integral over d k2 yields: 

1kmax dk2 8 (Ei + E~E~*E'~- E'~ ) = 1kmax d l k2 ~ ~~~ I d¢1 
kmin 2 kmin lq I x=xo 

(3.78) 

where the angle x between k2 and if is fixed by the energy-conserving delta function, yielding 

lifl2 + 2w E~ 
cosx = cosxo = .... . 

2lk2llifl 
(3.79) 

[See Appendix J for the explicit evaluation of the integral on the lefthand side of Eq. (3.78) .] 

This gives the following expression for the polarized double differential cross section 

. (3.80) 
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Defining 

.... Jk~J *2 E~ 1 m22 Jk2J E2* 
e (Jk2J) = JkiJ ml E~* !1rk} E2 E2* JqJ ' (3.81) 

the formula simplifies to 

(3.82) 

To get the unpolarized double differential cross section, one must average Eq. (3.82) over initial 

spins s1 and sum over final spins s~, that is 

(3.83) 

x=xo 

The additional factor of ~ comes from averaging over the initial spins. In the next section 

expressions for the quasielastic proton scattering polarization transfer observables are written 

down in terms of appropriate combinations of the polarized double differential cross sections 

given by Eq. (3.82). 

Polarization transfer observables 

The general expressions for the polarization transfer observables for free NN scattering are 

derived in Appendix G. For quasielastic proton-nucleus scattering the expressions for the po­

larization transfer observables are similar to those for free scattering, the only differences being 

that one now deals with a relativistic scattering matrix M, and one needs to integrate over 

the momenta of the target nucleon. First the initial and final laboratory coordinate frames are 

defined in terms of the initial (kr) and final (kD momenta in the laboratory frame, as shown in 

Fig. 3.5, 
.... ...., 

n k1 X k1 
Jkl X k~J 

i = kl (3.84) 

8 n x k1 

and 

n' n 
i' k~ (3.85) 

8 n x k' 1 
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where n is the "normal" spin direction, i (i') is the initial (final) "longitudinal" spin orientation, 

and s ( s') the "sideways" spin orientation. Expressions for the analyzing power Ay and the 

polarization transfer observables Di' j are now written down for an incident proton scattering 

from a single target proton; identical expressions also hold for the corresponding observables 

for an incident proton scattering from a single target neutron. The resulting (ji, p') observables 

are then taken as appropriate averages of the pp and pn observables. Recall, from Appendix 

G, that the induced polarization per target proton P(pp), which is also equal to the analyzing 

power per target proton Ay (pp) in this simple model of quasielastic scattering, is calculated by 

summing over the initial spin of the projectile, but not its final spin. Hence (see Eq. (G.154) in 

Appendix G) 

d~ ( A A) d~ ( A A) 
dD.' dE) pp, Sf= n - dD.' dE) pp, Sf= -n 

a~ ( A A) a~ ( A A) 
dn' dE' pp, Sf= n + dD.' dE' pp, Sf= -n 

1 1 1 1 

I dlk2l d¢8 (lk2l) ~ 2::: {M* M (sf= n)- M* M (sf= -n)} 
S1 1 S2 1 S~ 

I dlk2l d¢8 (lk21) 4 2::: {M* M (sf= n) + M* M (sf= -n)} 
SJ,S2 1 S~ 

d~(pp) 
dD.' dE' I unpol 

1 1 

(3.86) 

where da;,~~' lunpol is given by Eq. (3.83) with proton-proton SVPAT amplitudes as input. 
1 1 

Note that the notation sf = si_ is introduced to refer to the spin orientation of the ejectile in 

the rest frame of the nucleon. 

The polarization transfer observables per target proton, which express the "probability" for 

initial spin direction 3 going to final spin direction i', are defined as (see Eq. (G.l55) in Appendix 

G) 

(3.87) 
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Figure 3.5: The initial and final laboratory coordinate frames used for defining the polarization 

transfer observables 
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where 3 and i' refer to the projectile and ejectile spin orientations in the rest frame of the 

nucleons. The denominator is merely the unpolarized cross section, so that 

(3.88) 

where 

1 ~ {M* M (A ": A ~') M* (A ~ A ~') Mi' j =- L....,; Si = J, Sj = z - M Si = J, Sj = -z 
4 I 

S2,s 2 

M * M (A ": A ~') * M (A ": A ~')} - Si = - J, sf = z + M Si = - J, sf = - z . (3.89) 

Note that the notation Si = s1 is introduced to refer to the spin orientation of the projectile in 

the rest frame of the nucleon. 

Now to get the (p, p') double differential cross section per nucleus one uses the effective 

number of nucleons (see Table 3.1) Aeff extracted via the eikonal weighting procedure described 

in Sec. 3.2.2. The effective number of protons Zeff and neutrons Neff participating in the 

quasielastic scattering process are then assumed to be 

z 
Zeff =A Aeff and 

N 
Neff = A Aeff . (3.90) 

such that the double differential cross section for inclusive quasi elastic (p, p') scattering from 

Zeff protons and Neff neutrons is given by 

do- do- (pp) do- (pn) 
dO' dE' = Zeff dO' dE' + Neff dO' dE' 

1 1 1 1 1 1 
(3.91) 

do-(pn) 
where dO' dE' is given by Eq. (3.83) evaluated using the proton-neutron SVPAT amplitudes. 

1 1 
Similarly, the analyzing power Ay is given by 

[ 
do-(pp) do-(pn) J do-

Ay = Zeff dO' dE' Ay (pp) + Neff dO' dE' Ay (pn) I dO' dE' 
1 1 1 1 1 1 

[ 
do- (pp) do- (pn) ] do-

z dO' dE' Ay (pp) + N dO' dE' Ay (pn) I dO' dE' 
1 1 1 1 1 1 

and the polarization transfer observables (Di' j) are given by 

[ 
do- (pp) do- (pn) ] do-

Di' j = Zeff dO' dE' Di' j (pp) + Neff dO' dE' Di' j (pn) I dO' dE' 
1 1 1 1 1 1 

[ 
do-(pp) do-(pn) ] do-

Z dO' dE' Di' j (pp) + N dO' dE' Di' j (pn) I dO' dE' · 
1 1 1 1 1 1 

(3.92) 

(3.93) 

(3.94) 

(3.95) 
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Note that the A~tr factors in the numerators and denominators of Eqs. (3.92) and (3.94) cancel, 

and hence, the polarization transfer observables are not affected by the distortions (contained 

in Aetr)· The latter is only valid for the plane-wave formalism where the eikonal approximation 

is used to calculate values for Aetr· This justifies, to some extent, the claim that polarization 

transfer observables are relatively insensitive to distortions effects. 

3.2.8 Distinguishing between quasielastic (p, p') and (p, n) scattering 

In this section, one considers how to distinguish between quasielastic (p, p') and (p, ii) reactions 

in terms of isospin content and reaction Q-values. The quasielastic (P, ii) reaction probes only 

the isovector parts of the NN interaction, whereas the (P,p') polarization transfer observables 

sample both isovector and isoscalar components, and since the Lorentz character of the isovector 

amplitudes is totally different from the isoscalar amplitudes, one expects quasielastic (p, p') and 

(p, ii) polarization transfer observables to provide different, but complementary, information on 

the medium-modified NN interaction. 

Isoscalar and isovector scattering amplitudes 

The observables for quasielastic (P,p') scattering are given by Eqs. (3.91) - (3.95). For this 

reaction, an incident proton can scatter from either protons or neutrons in the nucleus, and hence 

the isoscalar (p,p') observables [isospin transfer is zero] are given by sum of the corresponding 

pp and pn observables: Recall that the polarized double differential cross section for quasielastic 

(p, p') scattering is obtained by weighting the pp and pn polarized double differential cross 

sections with Zetr and Neff respectively. 

For charge-exchange (p, ii) scattering, on the other hand, the incident protons either transfer 

charge to a target neutron and emerge as a neutron or else knock a neutron out of the nucleus. 

The direct amplitude corresponds to the incident proton exchanging its charge through the 

interaction with a neutron in the nucleus, whereas the exchange amplitude corresponds to the 

neutron being knocked out. To identify the charge-exchange amplitude, one calculates the 

matrix elements of Eq. (3.18) for Pl + n2 ~ n1 + P2 and n1 + P2 ~ Pl + n2 scattering. 
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With Eqs. (B.2) and (B.3) in Appendix B, for p1 + n2 ---+ n1 + p2 scattering it follows that 

(2ilkcml)-1 < Pl n21 f lnl P2 > = 2[Al + Blul. U2 + ilc71Cl(ul·n + U2. n) + 

lc7 12 Dlul . QU2. q + Elul . ZU2. z] (3.96) 

with an identical expression for n1 + P2 ---+ Pl + n2 scattering. Note that the charge­

exchange amplitude given by Eq. (3.96) is also equal to the difference between the amplitudes 

for p + p ---+ p + p scattering [see Eq. (3.20)] and Pl + n2 ---+ Pl + n2 scattering [see 

Eq. (3.21)], that is [By78, Gl83, Fe92] 

(3.97) 

In an analogous fashion, the relativistic isovector (p, n) amplitudes can be written as the differ­

ence between the relativistic SVPAT pp and pn amplitudes: 

p.(p,n) = p.(PP) _ p.(pn) 
z z z • (3.98) 

Hence, for (p, n) scattering, one uses Eq. {3.98} for the amplitudes in Eq. {3.54}, and also sets 

Zeff = 0 in Eqs. {3.91} - {3.95}. 

Reaction Q-value and energy transfer 

The conservation of energy for a nuclear reaction of the form A( a, b)B may be written as [Si90] 

(3.99) 

where Ea and E13 are kinetic energies of the entrance and exit channels, Ea and EA, Eb and 

E B are particle intrinsic energies in the entrance and exit channels respectively. If both a and b 

are elementary particles (e.g. nucleons in the case of medium-energy nuclear physics), then the 

intrinsic energies Ea and Eb may be expressed in terms of the particle rest masses, Ea = ma c2 

and Eb = mb c2, where c is the speed of light. Intrinsic energies of the nuclei A and B are 

functions of their rest masses and excitation energies EA. and EB: 

EA =mA c2 +EA_ 

EB = mB c2 + EB . (3.100) 
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The energy transfer w is defined as the difference between the relative particle motion kinetic 

energies in the entrance and exit channels: 

w = Ea.- E13 . (3.101) 

From the law of energy conservation, expressed by Eq. (3.99), Eq. (3.101) can be rewritten as 

(3.102) 

where the ground state Q-value is defined as 

(3.103) 

For quasielastic proton- nucleus scattering, the target nucleus is in its ground state, that is 

and, hence Eq. (3.102) becomes 

EA = 0 ' 

W E8- Qgs 

w'- Qgs 

(3.104) 

(3.105) 

where w' = E8 is the excitation energy w (or energy transfer) defined in Eq. (3.64). From 

Eq. (3.103) one sees that Q = 0 for (p ,p') scattering, and hence w' = w, whereas for (p, n) 

scattering Q < 0, and hence w' =I= w. Note that for the RPWIA all polarization transfer 

observables are calculated as a function of w'. However, experimental observables are plotted as 

a function of w. For comparison with experiment, one merely shifts thew' values of the (p, n) 

scattering observables by -Q99 to obtain the correct w. 

3.2.9 Calculational procedure 

One now considers how the theoretical expressions for the observables are converted to numbers 

which can be ultimately compared to experimental data, thus testing the validity of the RPWIA. 

All kinematic quantities in the RPWIA formalism are completely specified from the following 

input, namely 

• the laboratory kinetic energy 1lab of the projectile proton, 
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• the laboratory scattering angle Blab of the detected ejectile nucleon, 

• the free nucleon mass m, 

• the effective projectile and target nucleon effective masses, mi and m2 respectively, 

• the Fermi momentum kp, 

• the range of energy transfers w spanning the quasielastic peak. 

The exact expressions for all kinematic quantities of interest are derived in Appendix I. Note 

that the energy-transfer w is not calculated from Eq. (3.64), but is chosen to span the quasielastic 

peak of interest, that is 

(3.106) 

where Wi represents one of N values of w spanning the quasielastic peak, namely 

W = Wi = Wmin + i!:lw (3.107) 

with 

A Wmax -Wmin 
LlW = 

N 
(3.108) 

and i ranges from 0 to N. Without hindsight or access to experimental data, one may ask the 

question as to how one chooses values for Wmin and Wmax which span the allowed phase space 

and, hence, span the quasielastic bump in the excitation spectrum. Recall, from Sec. I.9 in 

Appendix I, that the centroid of the quasielastic peak corresponds to scattering from a single 

target nucleon at rest (k2 = 0), and the position of the centroid is approximately given by 

ll]l2 

w = --
2m 

(3.109) 

where, from Eqs. (D.1) and (D.8) [see Appendix D] and Eq. (G.140) [see Appendix G], for a 

given laboratory scattering angle Blab , the magnitude of the three-momentum transfer !l] I is 
approximately given by 

(3.110) 

With the centroid of the quasielastic peak known from Eq. (3.109), the values of Wmin and Wmax 

can be chosen arbitrarily to the left and right of centroid respectively. This procedure at least 
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gives one a method for choosing the initial values of Wmin and Wmax· For each value of w [within 

the range specified by Eq. (3.106)], one integrates the observables over the momenta of the 

target nucleons [J d I k2l], corrects for Pauli blocking as discussed in Sec. 3.2.3, and integrates 

over the azimuthal angle [J d¢]: for each value of lk2 1 [with the range specified by Eqs. (3.14, 

(3.15) and (3.16)] , the integral over ¢ [0 ~ ¢ ~ 27r] is performed. 

Finally, the units of the polarized and unpolarized double differential cross sections, given by 

Eqs. (3.82) and (3.83)respectively, are considered. The unit of the relativistic SVPAT amplitudes 

t i is Ge v-2
, and hence the unit of the invariant matrix elements squared is 

Gev-4 = 10-12 Mev-4 . (3.111) 

The unit of the factor preceding L M* Min Eqs. (3.82) and (3.83) is (1ic) 2 MeV= (MeV)3 fm2: 

note, that due to the fact that natural units are adopted, the "lie" factor is not explicitly shown 

in Eqs. (3.82) and (3.83). Hence the unit of the double differential cross section is 

(3.112) 

where the steradian (sr) serves as a reminder that the double differential cross section is nor­

malized per unit solid angle n. Making use of the fact that 

1 fm2 = 10 millibarns = 10 mb (3.113) 

one can rewrite Eq. (3.112) as 

10-12 x 10mb MeV-1 sr-1 . (3.114) 

Hence, the double differential cross sections are expressed in the usual units of mb Mev-1 sr-1. 

Besides studying the sensitivity of polarization transfer observables to nuclear medium ef­

fects, different forms of the 1rNN vertex, and exchange contributions to the NN amplitudes (see 

Sec. 3.3.2), the importance of spin-orbit distortions on the observables is also investigated. The 

subject of spin-orbit distortions is discussed in the following section. 

3.2.10 Spin-orbit distortions 

The inclusion of spin-orbit distortions at the centroid of the quasielastic peak in the expressions 

for polarization transfer observables is discussed in detail in Ref. [Ho86]. The main aspects of 

this paper are briefly reviewed. 
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In calculating the nucleon transmission probability T(b) in Sec. 3.2.2, only the central 

part of the (effective Schrodinger) optical potential is used. Within the eikonal approximation, 

the inclusion of a spin-orbit component adds an additional distortion factor e-iWso(r) to the 

incoming Dirac wave function [See Eq. (3.2)] with: 

Wso = R(b) · 0' , 

where 

R(b) = mb /_zoo dz V80 (b, z)b X k, 

and b is the impact parameter, now as a vector. 

The spin- orbit distortion manifests itself as a spin rotation operator, 

R(b) = e-iR(b). u ' 

(3.115) 

(3.116) 

(3.117) 

on the initial state vector, which identifies R(b) of Eq. (3.116) as the effective (complex) rotation 

angle in spin space. The treatment of this rotation is simplified by some approximations: Firstly, 

if the projectile scatters halfway through the nucleus [z = 0 in Eq. (3.116)], then one can express 

the spin-orbit effect as a rotation of the final state vector using the same R(b) of Eq. (3.117) 

with only a sign change. This is due to the fact that, in the corresponding eikonal integral for 

the final state, the same function V80 , being even in z, is now integrated from z = 0 to +oo. 

Secondly, bin R(b) of Eq. (3.116) is taken as the reaction average (b) obtained in Sec. 3.2.2. 

Consider now the angular average of R over the whole nucleus: First, in the special case 

where the projectile particle traverses the nucleus along a straight line (laboratory scattering 

angle () = 0), there is complete cylindrical symmetry with respect to the incoming beam di­

rection. Therefore, the net contribution to (R) equals zero, because the contributions of each 

pair of opposing directions of b cancel. However, in the general case of a non-zero scattering 

angle 0, contributions to the R-integral [Eq. (3.116)] from two opposing directions of b, one on 

the "inside" and one on the "outside" of the scattering bend, will be clearly different because 

of the different path lengths traversed through the nucleus. Keeping in mind that R(b) is al­

ways perpendicular to b [see Eq. (3.116)] and considering its components parallel and normal 

to the scattering plane separately, it becomes clear that the resultant rotation will only have a 

non- zero normal component, Rn. 
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Hence for (} i- 0, the distortion effect of Vso will be a space rotation of both the initial and final 

state vectors around an axis normal to the scattering plane. This is alternatively equivalent to a 

rotation on only the Pauli spin matrices; therefore the expressions for the polarization transfer 

observables [See Appendix G]: 
Tr(aiMajMt) 

Di'j = Tr(MMt) ' 

remain of similar form, except for the replacements: ai-+ af and aj-+ af, where: 

(3.118) 

(3.119) 

For the small rotation angles (presently I.Rnl ::; 0.2) the rotation can be expanded to first order 

in an. This leads, by means of the commutation relations among the components of u to 

linear combinations among the Di ,j's to form the new polarization transfer observables with 

spin-orbit distortion (see Ref. [Ho86] for explicit expressions). 

Fig. 3.6 presents graphically the amount of spin-orbit distortion on all six polarization 

transfer observables (Ay, Dnn, Ds's' D£'£' Ds'£ and D£ 's) as a function of the five chosen inci­

dent laboratory energies; these have been calculated for mi = m2 = m, at the centroid of 

the quasielastic peak for (ff,p ') scattering by 4°Ca, at a fairly large momentum transfer of 

1.97 fm- 1• The graphs show that the spin--orbit distortion is indeed not a negligible factor; 

although being fairly constant with laboratory energy Ttab, the relative values increase as Ttab 

decreases. At low energies (Ttab ::; 200 MeV) the spin-orbit effect becomes comparable with 

other phenomenological effects (relativity and the form of the 1rNN vertex) investigated in Sec. 

3.3. 

Fig. 3. 7 presents the spin--orbit distortion of the polarization transfer observables as a func­

tion of nuclear mass. These are calculated for mi = m2 = m at the centroid of the quasielastic 

peak and at a fixed incident laboratory energy Ttab = 200 MeV. The general increase of spin­

orbit distortions with nuclear size agrees with the natural expectation. The very small distortion 

effect on the Dnn-values deserves some physical explanation: If the spin rotation angleR were 

completely real, this rotation with its axis perpendicular to the scattering plane (R = Rn) would 

have no effect on Dnn, which relates polarization components which are also perpendicular to 

the scattering plane. However, due to the small absorptive part of the optical potential, R has 
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Figure 3.6: Spin- orbit distortion of the (i,p') polarization transfer observables Di'j as a function 

of the incident laboratory kinetic energy Tiab; these have been calculated for mi = m2 = m, 
at the centroid of the quasielastic peak, for scattering by 4°Ca, at a fairly large momentum 

transfer of 1.97 fm- 1. For each observable the open circles and crosses refer to the respective 

undistorted and spin-orbit distorted values. The solid and dashed lines serve merely to guide 

the eye. 
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Figure 3.7: The same as Fig. 3.6, except that the spin-orbit distortion is now plotted as function 

of the mass number A of the target nucleus at a fixed incident laboratory kinetic energy 11ab = 

200 MeV. 
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a small imaginary part (typically R = ±0.15 ± 0.05i), which leads to a generally non-unitary 

rotation operator R for Eq. (3.116), in which case Dnn might be slightly affected. The explicit 

expression for the spin-orbit distortion of Dnn (Eqs. ( 40) and ( 41) in Ref. [Ho86]) also displays 

this dependence on only the imaginary part of R. 

The insensitivity of Dnn to spin-orbit distortion enhances, however, its value as a probe for 

studying medium-modifications of the free NN interaction (see Sec. 3.3). 

3.3 Sensitivity of spin observables to RPWIA model parameters 

The aim of this section is to investigate the sensitivity of complete sets of inclusive quasielastic 

(j,p') and (p, ii) polarization transfer observables to model parameters of the RPWIA discussed 

in Sec. 3.2. One starts by comparing calculations of polarization transfer observables, based 

on the new, more refined, effective masses, to corresponding calculations based on the original, 

more crude, effective masses of Horowitz and Murdock [Ho88]. 

3.3.1 Sensitivity to different types of effective masses 

From Table 3.2, one observes that the largest differences between the more refined effective 

masses, Msc and M(;p, and the original effective masses (M'HM), occur at 300 MeV for 54Fe. 

For ll.f I = 1.36 fm- 1, our Msc and M(;p-based RPWIA calculations are compared with those 

using the cruder MH-M-values [Ha88] . 

The results, for the spin observables calculated at the centroid of the quasielastic peak, are 

shown in Table 3.3: one uses the SVPAT parametrization of the NN amplitudes (as opposed to 

the HLF model), and a PS coupling for the 1rNN vertex. Using the more refined effective 

masses, namely Mise = 0.833 and M2sc = 0.770 or MicP = 0.849 and M2cP = 0.0.769, 

compared to the cruder values used by Haiisser et al. [Ha88], MiHM = 0.86 and M;HM = 0.85, 

yields differences of up to 30% in some spin observables, the most sensitive observables being 

Ds's and Ay, and the least sensitive Des· These large variations illustrate the importance of 

using the more refined effective masses, Msc and/or Mcp· Note that the HLF model serves as 

input for calculations of both Msc effective masses as well as the relativistic NN amplitudes. 
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Table 3.3: Values of the spin observables at the centroid of the quasielastic peak for 
54Fe(P,p')11ab = 300 MeV at [q'[ = 1.36 fm-1, for the different types of effective masses listed 
in Table 3.1. 

Type of mass Ay Dnn Ds's Dt'£ Ds'l Dt's 

M 0.418 0.602 0.105 0.140 0.207 0.194 

MHM 0.317 0.582 0.366 0.232 0.347 0.394 

M8c 0.278 0.550 0.459 0.249 0.319 0.392 

M(;.p 0.280 0.546 0.454 0.244 0.310 0.383 

Hence, for reasons of consistency, one rather uses the Msc instead the Mcp-values for the 

investigations to follow. 

3.3.2 Qualitative investigations 

Due to the Fermi motion of the target nucleons, all quasielastic polarization transfer observables 

need to be averaged over the momenta of the target nucleons. This also means that the NN 

scattering amplitudes must be evaluated over a wide range of effective laboratory kinetic energies 

Tfff (see Sec. 3.2.5). Unfortunately, at the time of this investigation, published HLF parameter 

sets existed only at incident proton energies of 135, 200, 300, 400 and 500 MeV [Ho85, Mu87a]. 

Thus, to make use of this limited input, for a quasielastic proton-nucleus reaction at a specific 

incident energy, one considers only the HLF parameter set closest to the incident laboratory 

kinetic energy for all Tfff. Hence, this investigation is merely qualitative and serves only to give 

an initial "feel" for the sensitivities of observables to model parameters: the reader is cautioned 

against drawing any quantitative conclusions. If, however, one sees that certain observables 

exhibit enhanced sensitivity to model parameters, then it will be worthwhile performing a 

similar, but quantitative study. The results of this section have been published in Refs. [Hi94, 

Hi95]. 

In this section, the sensitivity of polarization transfer observables is explored with respect 

to pseudoscalar versus pseudovector 1rNN coupling, relativistic or medium effects, and exchange 

contributions to the HLF NN amplitudes. Typical trends are illustrated for incident protons 
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scattering from a 4°Ca nucleus at laboratory energies 135, 200, 290 and 420 MeV. At each 

energy, the scattering angle is chosen to correspond to a laboratory momentum transfer of 

1.97 fm- 1 for free NN scattering, such that the quasielastic peak is centered at w ~ 80 MeV. 

The momentum transfer and incident energies (specifically 290 and 420 MeV) are chosen to 

correspond to experimental data [Ch90], and also due to the availability of HLF parameters sets 

(at 135, 200, 300 and 400 MeV) at approximately these incident energies. 

The results are presented in graphical form, in Figs. 3.8 to 3.11, to highlight a specific ten­

dency: each figure is a set of six graphs for the six independent polarization transfer observables 

(Ay, Dnn, D8 r8 , Det, Ds'i and Dt's) , all on the same scale. The solid and open circles denote the 

calculated values, whereas the solid lines serve only to guide the eye along a particular calculated 

data set. Although these graphs speak for themselves, a few comments will be made. 

The notation D~f (M*) and D~Y (M*) is introduced to refer to polarization transfer observ­

ables calculated using a PseudoScalar (PS) and a Pseudo Vector (PV) coupling for the "pion" , 

both calculated with the effective masses Msc listed in Table 3.1. 

Pseudoscalar versus pseudovector 1rNN coupling 

One starts by studying the sensitivity of quasielastic (j/, p ') and (j/, ii) polarization transfer ob­

servables toPS versus PV treatments of the 1rNN vertex. Most RPWIA quasielastic calculations 

to date have been based on the SVPAT parametrization of the NN amplitudes (as opposed to 

the HLF model) and, consequently, ignore exchange contributions to the medium-modified NN 

amplitudes. The inclusion of medium-modified exchange amplitudes plays a crucial role when 

considering a PV form of the 1rNN vertex and hence the SVPAT parametrization and HLF 

model will yield different results for this coupling of the pion. Note that, per construction, both 

HLF and SVPAT amplitudes, and hence polarization transfer observables, are identical for a 

PS coupling, that is, 

(3.120) 

and, for free nucleon masses M, it follows from Eq. (3.68) with M* = M, that both PS and PV 

couplings yield identical polarization transfer observables 

D~r(M) = D~f(M). (3.121) 
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PV versus PS calculations for both the HLF model and a direct SVPAT parametrization of 

the NN amplitudes are compared using the Msc effective masses listed in Table 3.1. Fig. 3.8 

compares for all (jJ, p ') [solid- and open triangles] and (jJ, n) [solid- and open circles] polariza­

tion transfer observables Di'j, the values of IDf:j(M*)- DfG(M*)I based on a direct SVPAT 

parametrization (solid circles and triangles) and the HLF model (open circles and triangles) of 

the NN amplitudes. 

Over the entire energy range, all the quasielastic (jJ, n) polarization transfer observables are 

clearly much more sensitive to different forms of the pion coupling, compared to the corre­

sponding (p, p') polarization transfer observables, Dnn being by far the most sensitive observ­

able. Contrary to (p,p') scattering, both (p, n) polarization transfer observables Ds 's (except 

at 200 MeV) and Dt 's depend substantially on the 1rNN coupling terms. Furthermore, it is 

particularly noticeable that, in contrast to the (p,p') observables, at high energies the direct 

SVPAT parametrization and the HLF model give significantly different results for the (jJ, n) 

observables Dnn, D8 's and Dt 's; all three these observables clearly point to the necessity of 

a meson-exchange model for the NN interaction in order to correctly distinguish between PS 

and PV couplings of the pion. At 200 MeV IDfr(M*)- Df,f(M*)I exhibits maximum and 

minimum sensitivity for D 8 ' 8 for the SVPAT parametrization and HLF model respectively. On 

the other hand, Ay is totally insensitive to these differences. 

One can conclude that the widely used relativistic SVPAT parametrization ofNN amplitudes 

must be employed with caution when polarization transfer observables, based on the PV form 

of the 1rNN vertex, are calculated: rather, one must use a meson-€xchange model, such as the 

HLF model, which explicitly treats exchange contributions of the NN amplitudes in the nuclear 

medium. 

Relativistic or medium M* effects for a pseudoscalar 1rNN vertex 

The PS form of the 1r NN vertex is chosen, and the difference between effective mass M* and free 

mass M calculations of the polarization transfer observables is studied. Fig. 3.9 displays the 

energy variation of IDf~(M*)- Di 'j(M)I values which serves as a measure of the sensitivity 

to relativistic or medium effects of the specific polarization transfer observable Di' j. The solid 

and open circles represent the (jJ, p') and (jJ, fi) results respectively. The hatched areas display 
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Figure 3.8: The difference, IDf,'J (M*)- Df,'l(M*) I, between quasielastic (j/,p') and (j/, n') po­

larization transfer observables D i'j calculated with a pseudovector (PV) and a pseudoscalar (PS) 

1rNN vertex, as a function of laboratory kinetic energy, and at the centroid of the quasielastic 

peak. The solid circles [triangles] represent (j/, n) [ (j/,p') ] calculations based on the relativistic 

SVPAT parametrization of the NN amplitudes, whereas the open circles [triangles] represent 

(p, n) [ (j/, if') ] calculations based on the HLF model. The solid lines serve merely to guide the 

eye. 
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the differences between the (jl, p') and (j1, ii) results. For (p, ii) scattering, one sees that Dnn 

and Dn are the most sensitive observables to medium effects. At energies lower than 200 MeV, 

Dnn exhibits minimum and maximum sensitivity to relativistic effects for (p, ii) and (jl, p ') 

scattering, respectively. 

Relativistic or medium M* effects for a pseudovector 1rNN vertex 

Next, the PV form of the 1rNN vertex is chosen, and the difference between effective mass 

M* and free mass M calculations of the polarization transfer observables is studied. Fig. 3.10 

displays the energy variation of IDrs(M*)- Di 'j(M)I values which serves as a measure of 

the sensitivity to relativistic or medium effects of the specific polarization transfer observable 

Di' j. These calculations are based on the PV implementation of the 1r NN coupling given by 

Eq. (3.69). The solid and open circles represent the (jl,p') and (p, ii) results respectively. The 

hatched areas display the differences between the (jl, p') and (p, ii) results. Over the entire energy 

range Dee is extremely sensitive to relativistic M* effects. In addition, for (jl, ii) scattering at 

energies above 200 MeV, Dnn is much more sensitive to relativistic effects than the celebrated 

"relativistic signature" exhibited by Ay at 500 MeV [Ho88]. At energies lower than 200 MeV, 

Dnn exhibits minimum and maximum sensitivity to relativistic effects for (p, ii) and (jl, p ') 

scattering, respectively. 

Note that the nuclear medium effects differ for PS and PV forms of the 1rNN vertex. This 

emphasizes the need for data in order to distinguish between the different couplings. 

Exchange contributions 

Exchange is a fundamental phenomenon and in principle should be included in all calculations 

of (p, ii) and (jl, p') polarization transfer observables. The HLF model allows one to consider 

corrections to the RPWIA due to explicit treatments of medium-modified NN exchange ampli­

tudes. 

Calculations of elastic scattering polarization transfer observables at laboratory energies of 

500 MeV and higher seem to indicate that exchange contributions are not significant [Mc83]. 

However, Ref. [Mu87a] claims that a proper treatment of exchange is crucial for predicting 
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Figure 3.9: The values of IDf,~(M*)- Di 'j(M)I , based on the HLF model, for (jJ,n) (open 

circles) and (jl,p ') (solid circles and crosses) scattering, are plotted in precisely the same way 

as in Fig. 3.8 
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elastic scattering polarization transfer observables at large scattering angles and/ or low energies. 

Consequently, for the first time, the importance of exchange for quasielastic proton-nucleus 

scattering is studied in the 135 to 500 MeV range. 

For illustrative purposes, one chooses the PV form of the 1rNN vertex and the difference 

!Df,j(M*)Full- Di 'j(M)Directl is plotted, in Fig. 3.11, as a function of incident laboratory 

energy at the centroid of the quasielastic peak. These difference plots serve as a measure of the 

importance of exchange contributions to the polarization transfer observables. The subscript 

"full" refers to the direct plus exchange amplitudes given by Eq. (3.44), whereas the subscript 

"direct" refers to amplitudes where the exchange contributions are ignored, i.e. F{ (q) = 0 in 

Eq. (3.44). The solid and open circles in Fig. 3.11 represent the absolute differences between 

the latter calculations for both quasielastic (jJ, jJ ') and (jJ, ii) scattering, respectively. 

As expected, at low energies the exchange terms contribute significantly and, for quasielastic 

(jJ, ii) scattering, these terms are generally more pronounced than for (jJ,jJ') reactions. Note 

the extreme importance of exchange effects on Dnn· In addition, at higher energies the contri­

butions of exchange become important again for some (jJ, ii) polarization transfer observables, 

e.g. Dee and Ds'i· Thus, one concludes that in practice one cannot neglect exchange, not even 

at 500 MeV, when calculating medium-modified NN amplitudes and the resulting polarization 

transfer observables. 

Summary of qualitative study 

The sensitivity of both quasielastic (jJ, jJ') and (jJ, ii) polarization transfer observables has been 

investigated with respect to PS versus PV forms of the 1rNN vertex, relativistic medium effects, 

and exchange contributions to the NN amplitudes. The tendencies displayed in the figures 

speak for themselves. Generally the (jJ,ii) polarization transfer observables Dnn, Ds's and Dn 

exhibit the highest sensitivities to all these effects over the whole energy range. Relative to 

the above-mentioned observables, Ay is insensitive to all these effects (for both reactions). It 

was stressed that the commonly used SVPAT form does not correctly treat the PV form of the 

1rNN vertex: one should rather use a meson-exchange model, such as the HLF model, for this 

purpose. It has also been shown that medium-modifications of the NN amplitudes depend on 

the choice of the 1rNN vertex. It has also been shown that, contrary to former expectations, 
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Figure 3.11: The values of IDf's (M*)Full- nr:; (M*)Directl are presented again similarly as in 

Figs. 3.8 - 3.10. Open circles represent (p, ii) scattering, whereas solid circles represent (p, f)') 

scattering. The subscripts "Direct" and "Full" refer to calculations where the exchange terms 

have been neglected and included respectively. 
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exchange contributions cannot be neglected over the entire 135 to 500 MeV range. 

The next step is to make quantitative predictions of the sensitivities of polarization transfer 

observables to RPWIA model parameters. However, recall that due to the Fermi motion of the 

target nucleons, quantitative calculations require NN scattering amplitudes at a range of effective 

laboratory kinetic energies Te~ (see Sec. 3.2.5). Unfortunately, published HLF parameter sets 

exist only at incident proton energies of 135, 200, 300 and 400 and 500 MeV [Ho85, Mu87a]. 

Hence, to perform a similar, but quantitative investigation, it is necessary to generate new HLF 

parameter sets. 

Next, the acquisition of new HLF parameters at incident proton energies ranging from 80 to 

200 MeV is discussed, as well as the implementation of a recent energy-dependent parametriza­

tion by Maxwell [Ma96] between 200 and 500 MeV. 

3.3.3 New HLF parameter sets 

Recently Maxwell [Ma96] published an energy dependent parametrization of the HLF model 

between 200 and 500 MeV (see next section). However, calculations of polarization transfer 

o bservables of interest also require HLF parameters lower than 200 MeV. The lack of parameters 

in the latter range (except at 135 and 200 MeV), necessitated the generation of new HLF 

parameters between 80 and 200 MeV in 5 MeV intervals. 

A procedure similar to that of Horowitz [Ho85] is followed, whereby the free SVPAT ampli-

tudes are parametrized in terms of the exchange of the 10 mesons listed in Table 3.4. For 

each meson there are 6 parameters: 

• a real NN-meson coupling constant g{ 

• a real cutoff parameter A[ 

• real mass of the meson mi 

• an imaginary NN- meson coupling constant g{ 

• an imaginary cutoff parameter A[ 

• imaginary mass of the meson mi . 
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Table 3.4: Mesons associated with the Horowitz-Love-Franey model. 

Meson Isospin Type of 
exchanged of meson Coupling 

7f 1 pseudoscalar 
1} 0 pseudoscalar 
(7 0 scalar 
w 0 vector 
h 1 tensor 
a1 1 axial-vector 
8 1 scalar 
p 1 vector 
to 0 tensor 
ao 0 axial-vector 

Thus in total there are 60 parameters at each energy. Not all parameters, however, are varied to 

fit data. For example, the real meson masses mi correspond to the experimental values [Ho85] . 

The real coupling constants g[ and cutoff parameters A[ are varied to simultaneously fit the 

real T = 1 and T = 0 SVPAT amplitudes. For the imaginary amplitudes, the meson masses mi 

are chosen to be the same as those in Ref. [Ho85], whereas g[ and A[ are varied so as to fit the 

imaginary T = 1 and T = 0 SVPAT amplitudes. 

Fits are compared to the summer 1986 amplitudes of Arndt and Roper [Ar86] for centre­

of- mass scattering angles ranging from 0° - 90° in 5° steps. The fitting procedure is based on 

the Oak Ridge and Oxford minimization routine described in Ref. [Me66]. The quality of fits 

can be best judged by comparing HLF-based (dotted lines) to experimental data (solid lines) of 

free NN spin observables, as shown in Figs. 3.12- 3.17; for illustrative purposes one considers 

laboratory energies 80, 160 and 200 MeV. The expressions for the observables (~~ , P, D, 

Ayy, A, R), in terms of the ABCDE amplitudes in Eq. (3.31), are defined in Appendix C. The 

new parameter sets yield fits of comparable quality to the original 200 HLF parameter-fits: for 

example, compare the fits at 80 and 160 MeV to the original fit at 200 MeV (depicted by the 

dashed lines in Figs. 3.16 and 3.17, and also published in Ref. [Ho85]). All parameter sets 

between 80 and 200 MeV produce fits of similar quality to the original fits of Horowitz [Ho85]. 
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Figure 3.12: pp observables (using the notation of Ref. [Br78] ) at an incident laboratory 

kinetic energy of 80 MeV, versus the centre-of-mass scattering angle. The solid lines show the 

observables calculated directly from the Arndt amplitudes, while the dotted lines are based on 

the new HLF parameters. The observables are defined in Appendix C. 
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Figure 3.13: pn observables (using the notation of Ref. [Br78] ) at an incident laboratory 

kinetic energy 80 of MeV, versus the centre-of-mass scattering angle. The solid lines show the 

observables calculated directly from the Arndt amplitudes, while the dotted lines are based on 

the new HLF parameters. The observables are defined in Appendix C. 
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Figure 3.14: pp observables (using the notation of Ref. [Br78) ) at an incident laboratory 

kinetic energy of 160 MeV, versus the centre-of-mass scattering angle. The solid lines show the 

observables calculated directly from the Arndt amplitudes, while the dotted lines are based on 

the new HLF parameters. The observables are defined in Appendix C. 
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Figure 3.15: pn observables (using the notation of Ref. [Br78] ) at an incident laboratory 

kinetic energy of 160 MeV, versus the centre-of-mass scattering angle. The solid lines show the 

observables calculated directly from the Arndt amplitudes, while the dotted lines are based on 

the new HLF parameters. The observables are defined in Appendix C. 
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Figure 3.16: pp observables (using the notation of Ref. [Br78] ) at an incident laboratory 

kinetic energy of 200 MeV, versus the centre-of-mass scattering angle. The solid lines show the 

observables calculated directly from the Arndt amplitudes, while the dotted lines are based on 

the original HLF parameters. The dashed lines use the Maxwell parameters [Ma96] . The spin 

observables are defined in Appendix C. 
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Figure 3.17: pn observables (using the notation of Ref. [Br78] ) at an incident laboratory 

kinetic energy of 200 MeV, versus the centre-of-mass scattering angle. The solid lines show 

the observables calculated directly from the Arndt amplitudes, while the dotted lines are based 

on the original HLF parameters. The dashed lines use the Maxwell parameters [Ma96]. The 

observables are defined in Appendix C. 
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The new HLF parameter sets, including the original parameters [Ho85], are listed in Ap­

pendix H. Note that the coupling constants are not identical to those in Ref. [Ho85]: a correction 

has been applied in accordance with Ref. [Mu87b]. 

Next, an energy-dependent parametrization of the relativistic SVPAT amplitudes for NN 

scattering, between 200 and 500 MeV, is discussed. 

3.3.4 Energy-dependent Maxwell parametrization 

The HLF model has been successfully applied in studies of both elastic proton-nucleus scat­

tering and the (p, 2p) reaction [Mu87a, Co89, Ma90, Ma93, Ma94, Ik95], but suffers from the 

disadvantage that the various amplitudes are fitted separately to NN data at each laboratory 

kinetic energy, rather than as functions of energy. Not only is this inconvenient from a numeri­

cal point of view, since it necessitates interpolation between the energies used in the fit, but it 

also rules out any meaningful systematic comparison of the NN amplitudes at different energies, 

since these fits at are not related to one another. Note that, in this regard, the cutoff parameters 

in the HLF model vary quite dramatically from one energy to the next. However, since the NN 

amplitudes themselves vary quite smoothly and undramatically with energy, one might expect 

that a fit could be found in which the individual coupling constants and cutoff parameters also 

vary smoothly with energy. 

Motivated by the above-mentioned considerations, Maxwell [Ma96] published a new Lorentz 

covariant parametrization of the NN amplitudes {in the HLF model) with energy-dependent 

coupling constants and cutoff parameters. 

Maxwell generated two parametrizations: one with the energy dependence confined to the 

coupling constants: 

(3.122) 

and the other with energy dependence in both coupling constants (same as above) and cutoff 

parameters: 

(3.123) 
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These parameters are used in both real and imaginary parts of the amplitudes, such that 

T _ 1lab- To 
rei= To (3.124) 

where 1lab is the laboratory kinetic energy and To = 200 MeV. The parameters A0, /, g1 and 

g2 are extracted from fits to the summer 1994 Arndt amplitudes over the laboratory kinetic 

energies ranging from 200 to SOO MeV in 100 MeV intervals and over centre-of-mass scattering 

angles between so and 17S0 in S0 steps. 

Although the parametrization given by both Eqs. (3.122) and (3.123) gives better fits than the 

parametrization given solely by Eq. (3.122), both reproduce the empirical amplitudes reasonably 

well. In contrast to the earlier work by Horowitz, a single x2 minimization is carried out over 

the full energy range considered, namely 200, 300, 400 and SOO MeV. The parameter sets are 

published in Tables 1 and 2 of Ref. [Ma96]. The Maxwell parameters produce observables of 

comparable quality to our parameter-fits at 200 MeV; see for example Figs. 3.16 and 3.17 where 

the dashed line corresponds to the Maxwell parameters at 200 MeV. 

In the next section, the new HLF parameters, ranging from 80 to 19S MeV, are used, 

as well as the energy-dependent parametrization of Maxwell between 200 and SOO MeV, to 

quantitatively study the sensitivities of quasielastic polarization transfer observables to nuclear 

medium effects. 

3.3.5 Quantitative investigations 

The aim of this section is to quantitatively study the sensitivity of complete sets of quasielastic 

(p,p') and (p, ii) polarization transfer observables to relativistic or medium (M*) effects, PS 

versus PV forms of the 1rNN vertex, and exchange contributions to the NN amplitudes. Most 

of these results have been published in Ref. [Hi97, Hi98]. This quantitative study is made 

possible by the recent availability of HLF parameters between 80 and SOO MeV, that is, the 

new HLF parameters between 80 and 19S MeV, and the Maxwell parametrization, with both 

energy-dependent coupling constants and cutoff parameters, between 200 and SOO MeV. For 

a momentum transfer of 1.97 fm- 1 and a 4°Ca target, the effective laboratory kinetic energies 

(which range between 80 and SOO MeV) limit calculations of quasielastic polarization transfer 

observables to incident laboratory energies between 13S and 300 MeV. 
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As in Sec. 3.3.2, the results are presented as "difference " graphs in Figs. 3.19 - 3.22: the 

solid and open circles denote our calculated values, whereas the solid lines serve merely to guide 

the eye. The shaded areas accentuate differences between (if, if') and (if, fi) predictions. Based 

on the findings of Sec. 3.3.2, only calculations using the HLF model for the NN interaction, 

rather than a direct SVPAT parametrization, are considered. 

Theoretical uncertainty 

Recall that, per construction, the PS(M*)-HLF and PS(M*)-SVPAT polarization transfer ob­

servables are identical. However, the HLF parameter-fits are not perfect and, hence, slight 

differences occur. Furthermore, the Fermi-averaging procedure involves integrating over at 

least a 100 NN amplitudes, such that slight differences on individual amplitudes could add 

constructively, thus translating to relatively large differences after the integration. There­

fore , before performing a quantitative investigation, it is important to know what the the­

oretical uncertainty is on the various polarization transfer observables: this is indicated by 

IDf,J-HLF(M*)- Df,J- SVPAT(M*)I and displayed in Fig. 3.18. For the energies and momen­

tum transfers under consideration, these differences are smaller than 0.04 and will not change 

any of the conclusions of the subsequent sections. Values of the statistical experimental errors 

are typically about ± 0.03 (Ch90]. Hence, one can hope to experimentally distinguish between 

different model calculations only when the absolute differences presented are significantly larger 

than 0.06. 

Pseudoscalar versus pseudovector 1rNN coupling 

The solid and open circles in Fig. 3.19 denote the values of IDfs (M*)-nrr; (M*) I for quasielas­

tic (P,if') and (if,n) scattering, respectively. For (P,fi) scattering, Dnn, Ds's' and Dn are the 

most sensitive observables over the entire energy range. Generally, the sensitivities of the (if, fi) 

polarization transfer observables completely overshadow the corresponding (if, if') observables. 

Measurements of Dnn for both (if, fi) and (if, if') scattering, particularly at low energies, would 

be extremely useful in shedding light on the preferred form of the 1r NN vertex. 
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Figure 3.18: The difference, IDf,f-HLF(M*)- nf,f- SVPAT(M*)I, for (i,p') [solid circles] and 

(p, n) [open circles] polarization transfer observables D i'j based on a direct SVPAT parametriza­

t ion of the NN amplitudes and those based on the HLF model, as a function of laboratory energy, 

and at the quasielastic peak. All calculations use the PS form of the 1rNN vertex, and the solid 

lines serve merely to guide the eye. 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 112 

0.4 
~ 0.3 * 2 0.2 
'-....../ 0.1 (f) 

Q_ 
:_-. 0.0 

0 0.4 

0.3 

0.2 

0.1 
~ 

* 0.0 
2 0.4 

'-....../ 

> 0.3 
Q_ 

:_-, 0.2 

0 0.1 

0.0 
100 150 200 250 300 100 150 200 250 300 

T,ab (MeV) T,ab (MeV) 

Figure 3.19: The difference, IDfY (M*) - Df,l (M*) I, between the polarization transfer (jJ, ii ') 

observables D i'j calculated with a pseudovector (PV) and a pseudoscalar (PS) term in the 

NN interaction, respectively, as a function of laboratory energy, and at the quasielastic peak. 

Open circles represent (if, ii) scattering, whereas solid circles represent (jJ,p') scattering. All 

calculations are based on the HLF model of the NN amplitudes. The solid lines serve merely to 

guide the eye. 
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Relativistic or medium M* effects for a pseudoscalar 1rNN vertex 

The PS form of the 1rNN vertex is chosen, and the difference between effective-mass (M*) and 

free-mass (M) calculations is studied. The solid and open circles in Fig. 3.20 represent the values 

of IDf~(M*)- Di 'j(M)I for quasielastic (jJ,p') and (p,ii) scattering, respectively. Compared 

to (jJ,p ') scattering, the (jJ, n) polarization transfer observables Dnn, Ds'l and Ds'l are more 

sensitive to relativistic M* effects over the entire energy range. At higher energies for (p, p ') 

scattering, Dnn, Ds's and Dt's observables are insensitive to medium effects and yield results 

similar to free NN scattering. These results are consistent with complete sets of quasielastic 

(p,p') polarization transfer observables measured for 12C at 290 MeV and lq I = 1.97 fm- 1 

[Ch90]: the data show that most of the proton-nucleus observables are virtually identical to the 

corresponding free NN polarization transfer observables. Note that Dnn exhibits maximum and 

minimum sensitivity to medium effects for (jJ, p') and (p, ii) scattering respectively. 

Relativistic or medium M* effects for a pseudovector 1rNN vertex 

The PV form of the 1rNN vertex is chosen, and the difference between effective-mass (M*) and 

free-mass (M) calculations is studied. The solid and open circles in Fig. 3.21 represent the values 

of IDf:j (M*) - Di 'j(M) I for quasielastic (jJ,p ') and (jJ, ii) scattering, respectively. Compared 

to (jJ, n) scattering, the (p,p ') polarization transfer observables Dnn, Ds's and Det are more 

sensitive to relativistic M* effects over the entire energy range. This is totally the opposite 

effect compared to the case for PS coupling. At higher energies all the (p, ii) observables are 

insensitive to medium effects and yield results similar to free NN scattering. These results are 

consistent with Ay and Dnn measured at 186 MeV [Wa94], and also with preliminary RCNP data 

[Sa96, Wa96, Wa97). The latter group measured complete sets of quasielastic (jJ, n) polarization 

transfer observables for 2H, 6Li, 12C, 4°Ca and 208Pb at an incident energy of 346 MeV and a 

momentum transfer of 1.7 fm- 1: their data show that most of the proton-nucleus observables 

are virtually identical to the corresponding free NN polarization transfer observables (see section 

on "Comparison to data"). One sees that the effect of the nuclear medium, for both (jJ, n) and 

(P,p '), depends crucially on whether a PS or PV form of the pion coupling is used. Hopefully 

experimental data will shed light on the type of coupling favoured. Note the enhanced sensitivity 

of both Dnn and D s' s at low energies for both (jJ, n) and (jJ, p ') scattering. 
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Figure 3.20: The values of IDf;}(M*)- Di 'j(M)I, based on the HLF model, for (p, ii) (open 

circles) and (p,p') (solid circles) scattering, are plotted in precisely the same way as in Fig. 3.19 
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Figure 3.21: The values of IDf/j(M*)- Di 'j(M) I, based on the HLF model, for (p,fi) (open 

circles) and (jf,jf') (solid circles) scattering, are plotted in precisely the same way as in Fig. 3.19 
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Exchange contributions 

For illustrative purposes, the pseudovector form of the 1r NN vertex is chosen, and the difference 

I nr,j ( M* )Full - Di I j ( M)mrect I is plotted as a function of incident laboratory energy at the 

centroid of the quasielastic peak. These difference plots serve as a measure of the importance of 

exchange contributions to the polarization transfer observables. The subscript "Full" refers to 

the direct plus exchange amplitudes given by Eq. (3.44), whereas the subscript "Direct" refers 

to amplitudes where the exchange contributions are ignored, i.e. F{ (q) = 0 in Eq. (3.44). 

The solid and open circles in Fig. 3.22 represent the absolute differences between the latter 

calculations for both quasielastic (ff, p ') and (p, ii) scattering, respectively. Contrary to initial 

intuition, one sees that for some polarization transfer observables the exchange contributions 

become more important at higher energies. Generally, the (ff, p') observables are more sensitive 

to exchange contributions compared to the corresponding (ff, ii) observables. In particular, Ay 

and Dt'£ for (p,p1
) scattering are sensitive to exchange contributions over the entire energy 

range. Note the extreme sensitivity of Dnn at low energies and Dt'£ at higher energies for (ff, ii) 

scattering. Hence, as in the qualitative study of exchange effects, one concludes that exchange 

cannot be neglected, even at higher energies. 

Sensitivity studies of unpolarized double differential cross sections 

Thus far sensitivity studies of only polarization transfer observables have been considered. For 

completeness the investigation is extended to include unpolarized double differential cross sec­

tions for quasielastic (p, p ') and (ff, ii) scattering. Although a simple plane wave treatment 

often describes qualitative features, such as the shape and the centroid of the quasielastic peak, 

it usually fails to describe the absolute unpolarized double differential cross section. Strictly 

speaking, one should rather consider a full distorted wave treatment in the incident and exit 

channels: The question of distortions is dealt with in Chapter 4. The inclusion of distorted 

waves, however, masks the effects of nuclear medium-modifications and different forms of the 

1rNN vertex, thus preventing one from disentangling the various effects. However, handwaving 

arguments suggest that since polarization transfer observables are effectively ratios of polar­

ized double differential cross sections, the effects of distortions largely cancel, thus enhancing 

relativistic or medium effects. Hence a plane wave description should be sufficient for studies 
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Figure 3.22: The values of IDf,'j (M*)Full - Df,'j (M*)Directl are plotted in precisely the same 

way as in Fig. 3.11. Open circles represent (jt, ii) scattering, whereas solid circles represent 

(jt, if') scattering. The subscripts "Direct" and "Full" refer to calculations where the exchange 

terms have respectively been neglected and included respectively. 
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of polarization observables. The RPWIA does, however, incorporate central distortions in an 

approximate way: Recall that the effects of central distortions are incorporated in the effective 

number of nucleons Aeff calculated via the transmission probability T(b) [see Eq. {3.9)] within 

the eikonal approximation. 

Before embarking on a full relativistic distorted- wave treatment, it is instructive to study 

the sensitivity of the unpolarized double differential cross sections to medium modifications of 

the NN interaction, different forms of the 1rNN vertex, and exchange contributions. For sake of 

convenience, the unpolarized double differential cross section is often referred to as merely the 

cross section, and the notation a~
2

%E is used instead of dnf~E' [see Eq. {3.83) ]. 
1 1 

The theoretical uncertainty on the cross section is approximately ±0.1 mb sr-1 MeV- 1 

and is displayed in Fig. 3.23{a). Hence, a cross section may be classified as sensitive to a 

particular effect when the difference curves are greater than 0.2 mb sr-1 MeV-1 . Using the 

notation of previous sections, Figs. 3.23{b) to 3.23{ e) display the sensitivities of (p,jJ') and 

(p, n) cross sections to nuclear medium effects, different forms of the pion coupling, and exchange 

contributions to the NN amplitudes. The cross section is only sensitive to PS medium effects, 

whereas most of the other sensitivities are of the same order, if not smaller, than the theoretical 

uncertainty. We, therefore, conclude that cross section data are insensitive to the parameters 

under investigation, and once again, stress the importance of polarization transfer observables 

in isolating and studying various nuclear medium effects. 

3.4 Comparison to data 

The RPWIA calculations, based on the HLF model, are now compared to published experimental 

data. The availability of HLF parameter sets between 80 and 500 MeV limits this comparison 

to the following world (published) data: 

• 
12C{P, n) 1lab = 186 MeV at 20°: d~

2

%E, Ay and Dnn [Wa93, Wa94], 

• 
12C{P,i/') Tiab = 290 MeV at 29.5° (l<fl = 1.97 fm- 1

): d~
2

%E, Ay, Dnn,Ds's,Dl'l,Ds'l and 

Dl's[Ch90], 
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Figure 3.23: The sensitivity of quasielastic (ji,p') and (p, ii) unpolarized double differential cross 

sections (d2 ~udE) in mb sr-1 Mev-1 to (a) the theoretical uncertainty in the HLF parameters, 

(b) PS versus PV forms of the 1rNN vertex, (c) PS medium effects, (d) PV medium effects, and 

(e) exchange contributions. The figures are plotted as a function of laboratory energy at the 

quasi elastic peak. Open circles represent (if, ii) scattering, whereas solid circles represent (p, if') 

scattering. The notation is identical to that used in Figs. 3.19 - 3.22, except that dfi~E' is now 
1 1 

replaced by d~2dE . The solid lines serve merely to guide the eye. 
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• and, 54Fe(p,p') 11ab = 290 MeV at 20° (lq I= 1.97 fm- 1 
): d~

2

dE• P, Ay, Dnn, Ds's, Dfz, Ds'l 

and Dz's [Ha88]. 

A number of experiments [Wa94, Li94, Ca95, Ha98], partially motivated by our work [Hi94, 

Hi95], have been proposed [see Chapter 2] and preliminary data are now available in some 

cases. However, these data are not published, and so I refrain from a comparison to our model 

predictions. 

Results are displayed in Figs. 3.24 - 3.28 and exclude spin--orbit distortions. The effect of 

spin-orbit distortions must be inferred from Figs. 3.6 - 3.7 discussed in Sec. 3.2.10. The solid 

lines indicate free mass (M) calculations [Free M], dotted lines represent PV effective mass (M*) 

calculations based on the HLF model [PV(M*)-HLF], dashed lines display PS effective mass 

(M*) calculations based on the HLF-model [PS(M*)-HLF], and dashed-dotted lines show PS 

effective mass (M*) calculations based on a direct SVPAT parametrization of the Arndt phases 

[PS(M*)-SVPAT]. The difference between the PS(M*)-SVPAT and PS(M*)-HLF calculations 

gives an indication of the theoretical uncertainty attributed to HLF model parameters. The 

RPWIA model predictions are now compared to the above-mentioned published data. 

3.4.1 12C(p, fi) for 1lab = 186 MeV at 20° 

Figs. 3.24 and 3.25 display calculations for 12C(P, ii) 11ab = 186 MeV at 20° (lq I = 1.1 fm- 1 ). 

The data are from Ref. [Wa93, Wa94] and the centroid of the quasielastic peak is located at w ~ 

50 MeV. Note that, as explained in Sec. 3.2.8, the energy transfer w includes the reaction Q­

value of -18.6 MeV. In Fig. 3.24, one sees that the PS medium-modified calculation describes 

the overall shape and magnitude of the quasielastic peak surprisingly well. The PV M* -based 

calculation underpredicts the cross section, but still describes the qualitative features of the 

quasielastic peak. The free mass prediction describes the shape, but fails to account for the 

correct position of the peak. Fig. 3.25 shows that Dnn clearly favours a PV treatment of the 

1rNN coupling, whereas Ay fails to distinguish between PS and PV forms of the coupling. This 

illustrates the importance of measuring more than one polarization transfer observable when 

studying various effects. Note, however, that the free mass calculations do just as well as the 

PV(M*) in describing the data. The largest difference for the latter predictions occurs for 

Dt'li unfortunately the theoretical uncertainty is also the largest for this observable. Hence, for 
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all practical purposes, the PV(M*) calculations are identical to the free mass calculations. It 

would be interesting to see whether this is verified experimentally by comparing complete sets 

of 12C(P, ii) to 2H(p, ii) polarization transfer observables at 186 MeV. 

3.4.2 12C(p,p') for 11ab = 290 MeV at 29.5° 

Figs. 3.26 and 3.27 display calculations for 12C(p, ii) 1iab = 290 MeV at 29.5° (lif I = 1.97 fm- 1 ) . 

The data are from Ref. [Ch90] and the centroid of the quasielastic peak is located at w ~ 80 

MeV. From Fig. 3.26 one sees that the data do not have simple Lorentzian shapes [Wa94]. The 

data exhibit more strength at high and low w- values of the quasielastic peak, thus indicating 

modes of excitation not covered by the simple Fermi-gas model. 

From Fig. 3.27, one sees that Dnn , Ds's ' Ds'i and Dt' s correspond to the free mass predictions, 

whereas Dn favours a PS form ofthe 1rNN vertex. None of the calculations predict Ay correctly. 

However, the inclusion of spin-orbit distortion moves most of the M* -based polarization transfer 

observables (see Figs. 3.6 - 3.7), including Ay, closer to the data. Once again, as in Ref. [Ho88], 

the effect of relativity is to quench Ay for quasielastic (p, p') scattering relative to the free mass 

values. This quenching effect is not observed for quasielastic (P, ii) scattering. Furthermore, one 

sees that all the M *-based calculations fail to describe the Ds's data. 

3.4.3 54Fe(p,p') for 11ab = 290 MeV at 20° 

Fig. 3.28 displays calculations for 54Fe(P,p')1iab = 290 MeV at 20° (lif I = 1.36 fm- 1 ). The data 

are from Ref. [Ha88] and the centroid of the quasielastic peak is located at w ~ 40 MeV. This 

small momentum transfer was deliberately chosen so as to introduce some sensitivity to the 

nuclear response function resulting from Random- Phase-Approximation (RPA) correlations. 

Hence, in principle, one does not expect the RPWIA calculations to reproduce the data. Nev­

ertheless, it is instructive to compare our model predictions to these data. The most striking 

features of all the experimental polarization transfer observables, compared to corresponding 

observables at larger momentum transfers, are the pronounced slopes versus energy transfer w. 

The RPWIA calculations of Ref. [Ha88] are crude since they use M* ~ 0.86 rather than the 

M8c-values quoted in Table 3.1. As discussed in Sec. 3.3.1 this difference can cause a variation 
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Figure 3.24: Unpolarized double differential cross section as a function of transferred energy w 

over the quasielastic peak for 12C(p, n) at 186 MeV and 8tab=20°. The centroid of the quasielastic 

peak is at w ~ 50 MeV. Data are from Ref. (Wa94]. The solid lines indicate free mass (M) 

calculations (Free M], dotted lines represent effective mass (M*) PV calculations based on the 

HLF model (PV(M*)-HLF], dashed lines display effective mass (M*) PS calculations based on 

the HLF-model (PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations 

based on a direct SVPAT parametrization of the Arndt phases (PV(M*)-SVPAT]. 
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Figure 3.25: Polarization transfer observables as a function of transferred energy w over the 

quasielastic peak for 12C(p, n) at 186 MeV and 01ab=20°. The centroid of the quasielastic peak 

is at w ~50 MeV. Data are from Ref. [Wa94]. The solid lines indicate free mass (M) calculations 

[Free M] , dotted lines represent effective mass (M*) PV calculations based on the HLF model 

[PV(M*)-HLF], dashed lines display effective mass (M*) PS calculations based on the HLF­

model [PS(M*)- HLF] , and dashed-dotted lines show effective mass (M*) calculations based on 

a direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT]. 
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Figure 3.26: Unpolarized double differential cross section as a function of transferred energy 

w over the quasielastic peak for 12C{f,p 1
) at 290 MeV and Otab=29.5°. The centroid of the 

quasielastic peak is at w ~ 80 MeV. Data are from Ref. [Ch90], where P and Ay refer to 

induced polarization and analyzing power respectively. The solid lines indicate free mass (M) 

calculations [Free M], dotted lines represent effective mass (M*) PV calculations based on the 

HLF model [PV(M*)-HLF], dashed lines display effective mass (M*) PS calculations based on 

the HLF- model [PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations 

based on a direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT]. 
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Figure 3.27: Polarization transfer observables as a function of transferred energy w over the 

quasielastic peak for 12C(p,p1
) at 290 MeV and 01ab=29.5°. The centroid of the quasielastic 

peak is at w ~ 80 MeV. Data are from Ref. [Ch90] , where P and Ay refer to induced polar­

ization and analyzing power respectively. The solid lines indicate free mass (M) calculations 

[Free M], dotted lines represent effective mass (M*) PV calculations based on the HLF model 

[PV(M*)- HLF] , dashed lines display effective mass (M*) PS calculations based on the HLF­

model [PS(M*)-HLF] , and dashed-dotted lines show effective mass (M*) calculations based on 

a direct SVPAT parametrization of the Arndt phases [PV(M*)- SVPAT]. 
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of up to 30% in some of the polarization transfer observables. Once again, the quenching of the 

data relative to the free NN values is evident. With the inclusion of spin-orbit distortions both 

M* -based PS and PV calculations reproduce Ay and P at the centroid of the quasielastic peak: 

recall that the RPWIA model does not distinguish between Ay and P. With the exception of 

D s' s, the effective mass PS calculations correspond to the complete data set at the quasielastic 

peak. This good agreement is rather surprising in view of the above-mentioned limitations of 

the RPWIA model. Compared to the 12C(if,if') Ttab = 290 MeV data the free mass calculations 

do much worse and only agree for Dnn· Note that the RPWIA fails to reproduce the slopes 

of Dnn, Ay and P. Reference [Ha88] indicates that these slopes are well reproduced by the 

nonrelativistic RPA slab model. For the other polarization transfer observables the slopes can 

be attributed to Fermi-motion averaging. It would be interesting to see whether the success of 

the effective mass PS calculations persists for larger momentum transfers at 290 MeV. 

3.5 Summary and conclusions 

In recent years considerable attention has been devoted to the measurement and interpretation 

of inclusive (if, if') and (if, n) polarization transfer observables at the quasielastic peak. At 

moderate momentum transfers (lq'l > 0.5 fm- 1) quasielastic scattering (QES) becomes the 

dominant mechanism for nuclear excitation. It is considered to be a single-step process whereby 

a projectile knocks out a single bound nucleon in a target nucleus while the remainder of the 

nucleons remain inert. This process is characterized by a broad bump in the excitation spectrum, 

the centroid of which nearly corresponds to free NN scattering, and a width resulting from the 

initial momentum distribution of the struck nucleon. These reactions offer a means to study 

how the fundamental NN interaction is modified by the surrounding nuclear medium, and to 

probe the structure of the nucleus by seeing how it responds to large energy-, momentum-, 

spin- and isospin-transfer. 

The failure of all nonrelativistic Schrodinger-based models to describe the quasielastic (if, if') 

analyzing power at 500 MeV led to the development of the Relativistic (Dirac) Plane Wave 

Impulse Approximation (RPWIA), where the NN amplitudes are based on the Lorentz-invariant 

parametrization of the standard five Fermi invariants (the so-called SVPAT form), and the target 

nucleus is treated as a Fermi- gas. Medium effects are incorporated by replacing free nucleon 
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Figure 3.28: Polarization transfer observables for a range of transferred energy w over the 

quasielastic peak for 54 Fe(j1,p') 290 MeV and Btab=20° . The centroid of the quasielastic peak is 

at w ~ 40 MeV. Data are from Ref. [Ha88] , where P and Ay refer to induced polarization and an­

alyzing power respectively. The solid lines indicate free mass (M) calculations [Free M] , dotted 

lines represent effective mass (M*) PV calculations based on the HLF model [PV(M*)-HLF] , 

dashed lines display effective mass (M*) PS calculations based on the HLF-model [PS(M*)­

HLF], and dashed-dotted lines show effective mass (M*) calculations based on a direct SVPAT 

parametrization of the Arndt phases [PV(M*)- SVPAT]. 
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masses in the Dirac spinors with effective nucleon masses in the context of relativistic mean 

field theory. 

The original RPWIA predictions [Ho88] gave mixed, but encouraging results. However, these 

calculations were based on crude assumptions and unrefined effective masses. For example, a 

10% uncertainty in effective mass values translates into 30% effects on some polarization transfer 

observables. Rather than abandon the RPWIA in favour of more sophisticated relativistic 

models, the approach, in this chapter, has been to critically review the approximations, and to 

perform more refined calculations of effective masses so as to reveal the limitations of the model. 

The much-used SVPAT form is limited in that it does not address the exchange behaviour 

of the NN amplitudes in the nuclear medium, and is rather crude in distinguishing between 

pseudoscalar and pseudovector forms of the 1r NN vertex. Instead, one uses the phenomenological 

Horowitz-Love-Franey (HLF) model which parametrizes the relativistic SVPAT amplitudes as a 

sum of Yukawa-like meson exchanges where both direct and exchange diagrams are considered 

separately. Both projectile and target nucleon effective masses are evaluated in accordance 

with the circumstances of the specific reaction, and consequently the averaging procedure relies 

on the proton transmission probability (calculated in the eikonal approximation), relativistic 

nuclear scalar and vector potentials, as well as relativistic scalar and baryon densities. The 

scalar fields needed for calculation of the target effective nucleon masses, as well as the scalar 

and baryon densities, are based on a self- consistent Dirac-Hartree formulation. On the other 

hand, the scalar potentials required for evaluating the projectile effective nucleon mass, and in 

addition the vector potentials needed for calculating effective Dirac- equation-based central and 

spin-orbit potentials, are obtained by folding components of the HLF t- matrix with the scalar 

and baryon densities. An attractive feature of this approach is the consistent use of the HLF 

model for calculating both effective masses and relativistic SVPAT NN scattering amplitudes. 

For a 4°Ca target at lq I= 1.97 fm- 1, and incident energies between 135 and 500 MeV, the 

sensitivity of complete sets of quasielastic (p,p') and (P, ii) polarization transfer observables (Ay , 

Dnn, Ds' s, Dl'l, Ds'l and Dl's) is systematically investigated to study medium effects, pseudoscalar 

versus pseudovector forms of the 1rNN vertex, exchange contributions to the NN amplitudes, 

and also spin-orbit distortions. 

Although the Fermi motion of the target nucleons necessitates the input of NN amplitudes 
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over a wide range of effective laboratory kinetic energies Tiff, the small number of published HLF 

parameters limited the initial investigation in that the Fermi-averaging procedure considered 

only the HLF parameter set closest to the incident laboratory kinetic energy for all Tiff. Hence, 

this study was merely qualitative and served only to give an initial "feel" for the sensitivities 

of polarization transfer observables to model parameters. The tendencies displayed in Figs. 3.8 

to 3.11 speak for themselves. This study shows that certain (if, if') and (if, fi) polarization 

transfer observables are extremely sensitive to the effects of the nuclear medium and pseudoscalar 

versus pseudovector forms of the 1rNN vertex. It was also shown that, contrary to former 

expectations, exchange contributions cannot be neglected over the entire 135 to 195 MeV range. 

Our qualitative investigation highlights the need for a meson-exchange model (such as the HLF 

model), instead of the usual SVPAT parametrization of the relativistic NN amplitudes, when 

studying the effects of the nuclear medium and different forms of the 1r NN vertex. The results 

of this investigation have been published in Refs. [Hi94, Hi95, Hi97, Hi98]. 

Although the qualitative investigation emphasized the value of certain polarization transfer 

observables in studying nuclear medium effects, it failed to give an indication of the expected 

statistical uncertainty required by experiments for distinguishing between the various model 

predictions. Furthermore, the lack HLF parameter sets between 80 and 500 MeV prevented 

such a quantitative study. Hence, to perform a quantitative investigation, it was necessary to 

generate new HLF parameters between 80 and 195 MeV in 5-MeV intervals, and also utilize 

the recent energy-dependent parametrization of Maxwell between 200 and 500 MeV. 

Regarding pseudoscalar versus pseudovector forms of the 1rNN vertex, it was shown that 

most of the (if, fi) polarization transfer observables completely overshadow the corresponding 

(if, if') observables, whereas Dnn exhibits extreme sensitivity for both reactions. Measurements 

of Dnn for both (if, fi) and (if, if') scattering, particularly at low energies, would be extremely 

useful in shedding light on the preferred form of the 1rNN vertex. Medium effects are extremely 

sensitive to the type of 1rNN vertex: for a pseudoscalar 1rNN vertex, the (if, fi) polarization 

transfer observables Dnn, Ds'l and Dt's are much more sensitive to medium effects, whereas 

the opposite occurs for a pseudovector pion coupling. It was emphasized that most observables 

exhibit maximum sensitivity to medium effects at energies lower than 200 MeV. With respect 

to exchange contributions, it was shown that some (if, if') and (if, fi) polarization transfer ob­

servables are extremely sensitive to these effects, even at higher energies. 
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The effect of spin-orbit distortions on polarization transfer observables was also considered 

at the centroid of the quasielastic peak. The inclusion of spin-orbit distortions leads to a space 

rotation of both initial and final state spinors. Averaging this effect over the whole nucleus leads 

to a net rotation along an axis perpendicular to the scattering plane which directly affects the 

polarization transfer observables. Spin-orbit distortions become more important as the incident 

energy is lowered and the nuclear mass is increased. These effects are comparable to the nuclear 

medium effects under investigation, and hence must be included when eventually comparing 

RPWIA calculations to data. 

As with the original RPWIA calculations [Ho88), comparison with the small amount of 

available data still gives mixed, but encouraging results. The (j/, p') data favour a pseudoscalar 

coupling for the pion, whereas the limited (p, n) spin observable data suggest a pseudovector 

form. The latter ambiguity can perhaps be attributed to the simple Born approximation em­

bodied by the phenomenological HLF model. Hence calculations based on more sophisticated 

models of the NN interaction would be useful. 

The so-called relativistic signature for quasielastic (p,p') scattering at 500 MeV, which 

manifests itself as a reduction of the data compared to free-mass predictions, still persists at 

290 MeV for protons scattering from 12C and 54Fe nuclei. To date all nonrelativistic models fail 

to predict this quenching effect. Note, however, that this so-called "relativistic signature" is 

much smaller than medium-effects predicted for other polarization transfer observables at lower 

energies. For 12C(j/, fi) scattering a sizeable medium effect is predicted for Ay at I£] I ~ 1.97 

fm- 1. However at lif I~ 1.1 fm- 1 our calculations show no sensitivity to medium effects as is 

confirmed by the limited IUCF data set [Wa94]. Therefore, it would be interesting to measure 

Ay for a range of angles on a 12C target. 

For both (p,p') and (j/, n) scattering the number of observables that exhibit maximum 

sensitivity to the above-mentioned effects, increase as the incident beam energy is lowered. In 

general, there is a lack of complete sets of polarization data for quasi elastic (p, f)') and (p, n) 

scattering at medium energies. In particular, at energies lower than 200 MeV there exists 

absolutely no complete data set. Ideally one should measure the complete sets of polarization 

transfer observables for both the complementary (j/, f) ' ) and (j/, n) reactions for the same target, 

energy- and momentum-transfer. At these low energies the quasielastic bump in the (p, p') 
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excitation spectrum is less prominent and can only be seen for scattering from targets lighter 

than 4°Ca (see Chapter 2). On the other hand, for (p, ii) scattering, despite the fact that 

the unpolarized double differential cross section is approximately a factor 2 smaller than the 

corresponding (P, p') cross section, the quasielastic peak is fairly prominent (in terms of signal­

to-background ratio) as evidenced by the IUCF data at 186 MeV [Wa94]. Hence, it would 

be interesting to measure complete sets of quasielastic (P, ii) polarization transfer observables 

at energies lower than 200 MeV. However, the data are so scarce that measurements of any 

individual polarization transfer observable for a range of targets, for example 2H, 12C, 160 , 

4°Ca, at low energies will also provide invaluable guidance in developing and refining theoretical 

models of quasielastic scattering. 

Although the RPWIA seems to accurately describe the gross features of the quasielastic peak 

for (p, ii), it fails to predict the (P, p') peak position in the excitation spectrum. A number of 

effects, which have been neglected, could remedy the situation. For example, multiple scattering 

effects become sizeable in heavy nuclei and large scattering angles, which greatly increase the 

width of the peak [Ho88] . Furthermore, although signatures of low- lying collective states and 

giant resonances disappear at the large excitation energies of interest, the nucleus continues to 

respond collectively through the residual particle-hole interaction. This collectivity manifests 

itself in gross features of the spectrum, such as shifts in the position of the quasielastic peak and 

deviations of polarization transfer observables from the free values [Sm88]. Hence, one can im­

prove the simple Fermi- gas treatment of the nucleus by considering a relativistic random-phase 

approximation to infinite nuclear matter as done by Horowitz and Piekarewicz [Ho94]. Essen­

tially this description takes into account the interactions between the nucleons in the medium at 

the mean-field level. Furthermore, nonrelativistic Schrodinger-based DWIA calculations sug­

gest that distortion effects appreciably affect the shape and position of the quasielastic peak 

[Ic89]. As a result , Horowitz and Piekarewicz suggest that the inclusion of distortions via a full 

relativistic distorted wave treatment may yield a good description of the polarization transfer 

observable data. The effect of distortions will be considered in Chapter 4. 

Finally, it would be interesting to extend the quantitative RPWIA investigation to 500 MeV 

and to compare predictions to the 500 MeV (P,p') Los Alamos data [Ca84, Re86], where the 

effects of distortions on the polarization transfer observables are expected to be small (compared 

to distortion effects at lower energies). This would require additional HLF parameters between 
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500 and 800 MeV due to the effective laboratory kinetic energies used in the Fermi-averaging 

procedure. 
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Chapter 4 

Relativistic distorted wave model 

4.1 Introduction 

In the previous chapter, it was concluded that the relativistic plane wave impulse approximation 

(RPWIA) does not provide a consistent description of both (jl,p') and (jl, n) polarization transfer 

observables at the quasielastic peale the (jl,p') data favour a pseudoscalar coupling for the pion, 

whereas the (p, n) data suggest a pseudovector form. 

It has been suggested (Ho94, Ho97, Hi98) that the latter inconsistency could be attributed to 

the use of the five SVPAT invariants, rather than a more appropriate general Lorentz-invariant 

representation (Tj85, Tj87) of the NN amplitudes. Although the SVPAT approximation has 

worked surprisingly well for relativistic descriptions of elastic scattering (Mu87a, Mu87b) and 

proton- knockout reactions (Ik95) , the RPWIA analysis in Chapter 3 suggests that this approach 

may be too simplistic for inclusive quasielastic reactions. The Ph.D project of Brandon van der 

Vente! (currently in progress at the University of Stellenbosch) addresses the latter issue. 

It has also been suggested (Ho94, Ho97, Hi98) that the explicit inclusion of full relativistic 

distortions in the incident and exit channels could remedy the above-mentioned inconsistency. 

Until now, the effects of relativistic distortions have been treated poorly. In the RPWIA, 

for example, distortion effects are incorporated via effective nucleon masses due to medium 

modifications of the NN interaction, and also via effective numbers of protons and neutrons, 

Zeff and Neff respectively, partaking in the scattering process. The effect of the latter distortions 

is to reduce the value of double differential cross sections relative to their plane-wave values. 

However, for polarization transfer observables, which are effectively ratios of linear combinations 

of polarized double differential cross sections, the distortions cancel (see Sec 3.2. 7 in Chapter 3), 

thus enhancing sensitivity to nuclear medium- modifications of the NN amplitudes. In principle, 
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however, one knows that, besides modifying the NN interaction, the effect of the nuclear medium 

is also to distort the incoming and outgoing plane waves. These distortions could have large 

effects on certain polarization transfer observables. For example, Ichimura and collaborators, 

have shown that, based on the nonrelativistic distorted wave impulse approximation, distortions 

significantly influence the polarization transfer observables for inclusive (jJ, jJ') scattering at 500 

MeV [Ic94]. 

To our knowledge, no relativistic distorted wave calculations have ever been done for inclu­

sive proton-nucleus inelastic scattering. The aim of this chapter, therefore, is to develop the 

theoretical framework for calculating complete sets of quasielastic proton-nucleus polarization 

transfer observables based on the Relativistic Distorted Wave Impulse Approximation (RD­

WIA). In Sec. 4.4, it will be shown that, for the RDWIA model, all the inclusive scattering 

observables of interest can be expressed in terms of the contraction of a projectile distorted 

nucleon tensor with a spin-independent nuclear polarization tensor for the target nucleus. The 

projectile distorted nucleon tensor, defined in Sec. 4.4, contains information about the spin 

projections and full relativistic distortions of the projectile and ejectile scattering wave func­

tions (also called distorted wave functions). Partial wave analyses of the relativistic distorted 

wave functions are discussed in detail in Sec. 4.3. Compared to the RPWIA model (discussed 

in Chapter 3), whereby relativistic effects are included via effective nucleon masses in the free 

Dirac spinors, the RDWIA implicitly incorporates relativistic effects via the Dirac scattering 

wave functions which are solutions to the Dirac equation containing relativistic potentials. The 

spin-independent nuclear polarization tensor, on the other hand, which contains information 

about the nuclear response, can be evaluated to any level of sophistication, depending on the 

choice of model for the target nucleus. For simplicity, only the following three models are con­

sidered for describing the target nucleus: relativistic Fermi-gas model, relativistic mean-field 

approximation, and the local density approximation. 

For the formulation of the RDWIA model, the normalization procedure of Serot and Walecka 

[Se86] is adopted for the Dirac wave functions (see also Sec. E.6 in Appendix E), instead of 

the Bjorken and Drell normalization [Bj64, Gr92] employed in Chapter 3 for the RPWIA. The 

concepts of nuclear response functions and nuclear polarization tensors are now introduced in 

the following section. 
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4.2 Nuclear response functions 

One can extract information about physical systems via the analysis (both theoretical and 

experimental) of their response to a diversity of external probes [Fe71, Gr91]. The aim of 

this section is to develop the theoretical framework for calculating the nuclear response for 

inclusive quasielastic proton-nucleus scattering, for a variety of models of the target nucleus. 

In Sec. 4.2.3, the concept of a nuclear response function is introduced via a generalization of 

the simpler electromagnetic response for inclusive electron- nucleus scattering (discussed in Sec. 

4.2.1). Although a general framework is developed for calculating nuclear response functions to 

any level of sophistication, for the purpose of this project, only the following three models of 

the nuclear response are considered: the relativistic free Fermi-gas model (FGM), relativistic 

mean-field approximation (MFA), and the local density approximation (LDA). The FGM and 

MFA have already been encountered in Chapter 3, but not within the context of nuclear response 

functions discussed in this chapter. The LDA, on the other hand, represents an improvement 

over the FGM and MFA. 

In order to fully understand the complicated structure of the nuclear response, one starts 

by considering the simpler electromagnetic response of the nucleus. The discussion of electron 

scattering from nucleons and nuclei, in the next section, is considerably more detailed than 

would seem warranted, however, this detail is supplied so as to provide a familiar context for 

the treatment of inclusive nuclear proton- nucleus inelastic scattering in Sec. 4.4. 

4.2.1 Electromagnetic response of a nucleus 

In this section, the concept of the electromagnetic response of a nucleus is introduced, via 

a generalization of the proton electromagnetic response for electron-proton scattering. It is 

convenient to start by defining the invariant scattering amplitude for electron-proton scattering 

as (see Appendix E) 

( 4.1) 

where the four-momentum q is defined as 

q = Pi - P! = P1 - Pi (w,ij), (4.2) 
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and, Pi= (Ei,Pi), Pi= (EJ,Pt) [Pi= (Ei,A), Pt = (Ef ,Pt)] are the initial and final electron 

(proton] four-momenta, respectively. The free Dirac spinor for the incident electron u(pi, si ), 

for example, is given by 

1,;: ) = .J Ei + m u\Y, s 
2 €i 

I 

Xs (4.3) 

u·p 
Ei +m 

with normalization (see Sec. E.6 of Appendix E) 

( 4.4) 

where Xs is the Pauli spinor for spin projection s in the rest frame of the electron. An expression 

similar to Eq. (4.3) exists for the proton. Note that the normalization in Eq. (4.4) differs from 

the conventional normalization of Bjorken and Drell (Bj64] , u u = 1, adopted in Chapter 3. 

The definition of Mti in Eq. (4.1) is virtually identical to Eq. (E.58) in Appendix E , with 

the exception that the exchange term in the latter equation is ignored (electrons and protons 

are not identical particles) , and the dummy index vis used instead of f-l· 

Adopting the normalization in Eq. ( 4.4), and following a procedure similar to that presented 

in Sec. E.5 of Appendix E, the unpolarized (indicated by a bar over the sigma below) differential 

cross section for electron-proton scattering in the plane-wave Born approximation is given by 

dO' = -
1
- (4~)

2

2 LJ1V S11v 8(€j + Et- €i - Ei) dft 
Vrel q 

where the electron electromagnetic tensor L 11v is defined by 

1 2 2:[u(pi ,si )r11u(pf ,SJ)] [u(pf,sf)rvu(pi,si )] 
s f •S i 

(4.5) 

(4.6) 

(4.7) 

and Vrel is the magnitude of the velocity of the incident electron relative to the target proton. 

In going from Eq. (4.6) to Eq. (4.7) , Eq. (E.64) in Appendix E has been used. Similarly, the 

corresponding proton electromagnetic tensor S 11v is defined by 

1 2 L [u(Pt ,Sthvu(Pi ,Si)] [u(Pt,St)r11u(Pi ,Si)]* 
s1,s; 

(4.8) 

1 2 L [u(Pi ,Si)r11u(Pt,St)] [u(Pt,Sthvu(Pi ,Si )] . 
s1,s; 

(4.9) 
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Eqs. ( 4. 7) and ( 4.9) are readily evaluated via application of the usual well- known trace tech­

niques described in Sec. E.5.1 of Appendix E. 

For an electron scattering from a nucleus (as opposed to scattering from a single proton, 

as just discussed), the unpolarized differential cross section is obtained via a generalization of 

Eqs. (4.5) to (4.9) , giving [Ai83, We93, Pi95] 

( 4.10) 

where LJJ-v is the electron tensor already defined by Eq. ( 4. 7), and WJJ-v is the electromagnetic 

response of the nucleus defined by 

-~ Im [ITil-v(q, q; w)] 
1r 

( 4.11) 

where 

ITJJ-v ( .... .... '. ) _ j d .... - iq.x j d .... +iii' ·ii ITil-v (.... .... ) q,q ,w - xe ye x, y,w, (4.12) 

and the full interacting electromagnetic polarization tensor ITJJ-v(x, y; w) (also called the current­

current correlation function) is defined by [Fe71 , Ne88, Gr91, We93, Pi95] 

(4.13) 

T denotes the usual time-ordered product, ,j;a. (x) and ,j;a.(Y) represent the Heisenberg fields (for 

which explicit expressions will be given at a later stage for different models of the nucleus) , 

l ~i > represents the initial interacting ground state of the target in the Heisenberg picture, and 

for simplicity the electromagnetic interaction vertex r11- is taken to be [Gr92] 

(4.14) 

[Note that for an electron scattering from a pointlike proton, the electromagnetic interaction 

vertex r11- is given by Eq. (4.14).] It is convenient to express the full interacting polarization 

tensor, in Eq. (4.13) , in terms of the full interacting nucleon propagator (or Green's function) 

Ga.{3 (x, y), defined as 

iGa.(3(x, y) < wil T[,(f;a.(x)~f3(y)] lwi > 

O(xo- Yo) < Wil ,j;a.(x)~f3(y) lwi > 

- O(yo- xo) < wil ,J;f3(Y)~a.(x) lwi > , (4.15) 
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such that one can make use of well-known many-body techniques, such as the Feynman rules 

[Se86), to express the interacting propagators in order-by-order expansions of the coupling 

constants and the free noninteracting nucleon propagators G~,e(x, y) defined in Sec. 4.2.2. In 

Sec. 4.2 .2, different models for the interacting nucleon propagator Ga,e(x, y) will be considered. 

Applying Wick's theorem [Fe71, Gr91, Gr96) to Eq. (4.13), one can express the polarization 

tensor in terms of the interacting nucleon propagator [defined in Eq. ( 4.15)) as 

iiittv(x, y) = 
4 

L < 'llil T[ ~a(x) ~~,8 -J;,e(x) ~c(Y) r5€ -J;€(y)] l'lli > 
a,,B,6,€=1 

4 

L [ i G,ec(x, y)] [- i Gw(Y, x) ] ~~,8 r5€ 
a,,B,6,€=1 

4 

L Gw(Y, x) r~,B G,ec(x, y) 16€ 
a,,B,6,€=l 

Tr [ G(y, x) Itt G(x, y)rv) . ( 4.16) 

Comparing Eqs. (4.5) and (4.10), one sees that the differential cross section for electron-nucleus 

scattering can be obtained via a generalization of Eq. ( 4.5) for electron-proton scattering, by 

means of the following replacement: 

( 4.17) 

To show that this is a suitable generalization, one starts by expressing the electromagnetic 

response of the nucleus Wttv in terms of the matrix elements of nuclear many-body current 

operators in momentum space. Assuming translational invariance in time, the momentum-

space representation of Eq. (4.13) is given by [We93) 

IIttv(q, q'; w) = J d (xo- Yo) eiw(xo- Yo) J dx e-iq·x J dy' e+iq'·il IIttv(x, y) . ( 4.18) 

From the usual definition of a time-ordered product, and using Eq. (4.14), Eq. (4.13) is expressed 

as 

< ~il T[ ~(x)rtt-J;(x) ~(Y)'{-J;(y)] l~i > 

B(xo- Yo) < ~il if;(x)rtt-J;(x) ~(y)rv-J;(y) l~i > 

- B(yo- xo) < ~i l ~(y)rv-J;(y) if;(x)rtt-J;(x) l~i > 

= B(xo- Yo) < ~il J~(x) ]'fi(y) l ~i > 

- B(yo- xo) < ~il ]'fi(y) J~(x) l~i > (4.19) 
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where the nuclear current operator J~(x) is defined as 

( 4.20) 

and, the subscript "H" refers to the Heisenberg picture. The explicit time-dependence of the 

Heisenberg current operators is given by (Fe71, Gr96] 

J~(x) = J~(x,xo) = edlxoJ~(x,O)e-dlxo 

= edlxoJ~(x)e-iHxo (4.21) 

where ii denotes the full interaction Hamilton operator. Inserting a complete set of Heisenberg 

eigenstates 1'1/Jn >, of the full Hamilton operator, between the current operators in Eq. (4.19), 

and using Eq. (4.21), gives 

n 

- O(yo- xo) < '1/JileiHyo }'fi(y) e- iHyoi'I/Jn >< '1/JnleiHxo J~(x) e- iHxoi'I/Ji >] 

L [O(xo- Yo)e-i(En-Ei)(xo-Yo) < '1/Jil J~(x) 1'1/Jn >< '1/Jnl }'fi(y) I'I/Ji > 
n 

- O(yo- xo)ei(En-Ei)(xo- yo) < '1/Jil }'fi(y) 1'1/Jn >< '1/Jnl J~(x) I'I/Ji >] · (4.22) 

Inserting Eq. (4.22) into Eq. (4.18), and using the following identity (Fe71, Ne88] 

[
oooo d xo ei(w- Eo)t O(±xo) = ± i 

W =j= Ea ± iTJ 
( 4.23) 

gives 

and, with if 1 = if, one gets 

where 

1 "1 d -- - iif·x 1 d-- iif'·ii -: L.....t xe ye 
't n 

x [ (E +iE ) . < '1/Jil J~(x) 1'1/Jn >< '1/Jnl i'H(x) I'I/Ji > 
W- n- 0 + 'tTJ 

+ (E 
2 
E) · < '1/Ji l }'fi(y) 1'1/Jn >< '1/Jnl J~(y) I'I/Ji >] (4.24) 

W n- 0 - 'tTJ 

[J~i(-if)]* J~i(-if)} 
w +(En+ Eo)- iTJ 

(4.25) 

(4.26) 
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Using the following symbolic identity in Eq. (4.25), namely 

1 

W ± HJ 

1 
P- =f i1r8(w), 

w 

140 

( 4.27) 

where "P" denotes the Cauchy principal value, and taking the imaginary part of the latter, 

yields 

n 

( 4.28) 

For inelastic inclusive electron scattering, the energy transferred to the nucleus, 

( 4.29) 

is always greater than zero, and thus one can neglect the second term Eq. (4.28). Hence, with 

the definition of the electromagnetic response of the nucleus W1L11 given by Eq. (4.11), one can 

now write the electromagnetic response of the nucleus WIL11 as [Ho94, Pi95] 

( 4.30) 

The latter form of the electromagnetic response function is often quoted in the literature 

[Fe71, Ne88, Ho94, Pi95]. 

It is now shown that Eq. (4.30) reduces to Eq. (4.9) for the special case of electron-proton 

scattering. One starts by evaluating the non-vanishing matrix elements of the current operators 

in coordinate space, namely 

(4.31) 

where the nucleon field operators associated with the scattering process are given by [Se86] 

1 2: t .... .k-,-_ ~ - (k I ) -t ·X JV _ ak'su ,s e 
k ',s 

~( ) 1 " .... "k--'1/J- (x,xo = 0) = -~a- u(k s)e+t ·x. JV _ ks ' 
k,s 

( 4.32) 

[Note: the above field operators represent the discretized version of those defined in Sec. E.3 of 

Appendix E.] The nucleon creation and annihilation operators, at and ak- , satisfy the usual 
ks s 

anticommutation relation 

( 4.33) 
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where the vacuum state 10 > is defined by 

for all k, s 

and the initial and final proton scattering states are given by 

17/li > = IPi si > 

17/Jn > = IPt Sf> 

a1i s;IO > 

a1! StiO > 

With Eqs. (4.35) , (4.32) and (4.31) in Eq. (4.26) , one gets 

Using the anticommutation relation in Eq. ( 4.33) , Eq. ( 4.36) becomes 

Jnv,(q .... ) = 1 Jd .... i( if+k-k')·x "'"" "'"" - (k .... 1 ') v (k .... ) r r r r • V X e ~~U 1 8/U , s Ufit,k'USt ,s'Ufii,kUS;,s 

k ' s' ks' 

- 8if,fir fi; u(PJ , St )'·{u(Pi , Si ) . 

Similarly, for [ J~i (q) ]*, and making use of Eq. (E.64) in Appendix E, one gets 

Inserting Eqs. (4.37) and (4.38) into Eq. (4.30) , and replacing 

with 
n 

141 

( 4.34) 

( 4.35) 

(4.36) 

( 4.37) 

( 4.38) 

(4.39) 

that is, averaging over initial spins (which accounts for the factor ~), summing over final spins, 

and integrating over final momenta, one gets 

where S~-'11 is now identical to the proton tensor defined in Eq. (4.9) . Thus, it has been shown 

that, in the special case of electron- proton scattering, the electromagnetic response of the 
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target nucleus for electron-nucleus scattering W 11-v reduces to the well-known proton tensor 311-v. 

Hence, one concludes that the electromagnetic response of the target nucleus Wll-v in Eq. ( 4.30) is 

a suitable generalization of the proton tensor in Eq. (4.9). Moreover, it has also been shown that 

the electromagnetic response of the nucleus is given by the imaginary part of the polarization 

tensor IJ!l-v ( q, q ; w) [see Eq. ( 4.11) ] : The polarization tensor is a fundamental many-body 

quantity which can be systematically computed using well-known many-body techniques, such 

as, for example, Feynman diagrams. 

4.2.2 Models of the electromagnetic polarization tensor 

Thus far, the inelastic electron-nucleus differential cross section has been expressed as the 

contraction of an electron electromagnetic tensor for the projectile with the imaginary part of 

the electromagnetic polarization tensor for the target nucleus [see Eqs. ( 4.10) and ( 4.11) ] , where 

the latter can be systematically computed using well-known many-body techniques. Next, 

various models, of increasing sophistication, are considered for calculating the electromagnetic 

polarization tensor for inclusive electron-nucleus inelastic scattering. 

Relativistic free Fermi-gas model (FGM) 

One starts by deriving an expression for the polarization tensor based on the relativistic Fermi­

gas model (FGM) , which treats the nuclear ground state as a system of noninteracting fermions 

at finite density. 

Proceeding as in Sec. E.3 of Appendix E, and expanding the fermion field operators ~(x) 

and ~ ( x) in normal modes, with periodic boundary conditions in a large box of volume V [Se86], 

namely 

~(x) -
1
- ""[a- u(k s)e-ik·x + ht v(k s)eik·x] 

y'V ~ ks ' ks ' 
ks 

= - 1
- ""[at u(k s)eik·x + b- v(k s)e-ik·x] 

y'V ~ ks ' ks ' 
ks 

( 4.41) if;(x) 

where the Dirac unit spinors are defined in Sec. E.3 of Appendix E, and are normalized according 
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to Eq. ( 4.4). Note that in the limit of an infinitely large box 

1" 1 I .... v ~ -+ (21!")3/2 d k ' 
k 

( 4.42) 

and one recovers the continuum versions of the field operators given in Sec. E.3 of Appendix E. 

The only nonvanishing anticommutation relations are 

(4.43) 

where at and ak- are identified with nucleon creation and annihilation operators, and likewise, ks s 
h! and bk- are identified with antinucleon creation and annihilation operators, respectively. ks s 
In accordance with Serot and Walecka [Se86] , the noninteracting ground state IIJ!o > of the 

target nucleus is identified as containing positive-energy nucleon levels filled to some Fermi 

wave number kp and containing no antiparticles, that is 

bksiiJ!o > 0 for all k 

a1slwo > 0 for all k < kp 

aksiiJ!o > 0 for all k > kp 0 ( 4.44) 

Analogous to Eq. (4.16) , except that l7f'i > in now replaced by IWo >, the polarization tensor 

for the free Fermi-gas model is expressed in terms of the free noninteracting nucleon propagator 

G~,e (x, y), instead of the full interacting nucleon propagator Ga,e(x, y) defined in Eq. (4.15), 

that is [Se86] 

(4.45) 

where G~,e(x, y) is defined in terms of the free fields in Eq. (4.41) , namely 

< IT!o l T[~a(x)~,e (y)J I IT!o > 

O(xo- Yo) < IT!o l ~a(x)~,e(Y) IIJ!o > 

- O(yo- xo) < Wol ,(/;,e(y)~a(x) IWo >, ( 4.46) 

and the subscript "FGM" refers to the fact that one is dealing with the relativistic Fermi­

gas model. In order to explicitly evaluate the FGM electromagnetic response of the nucleus, 

which is just the imaginary part of the polarization tensor, an explicit form for the free nucleon 
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propagator is required. Assuming translational invariance, the Fourier transform of Eq. ( 4.45) 

is [Se86] 

j lf(x- y) e+iq·(x - y) iiiPGM(x- y) 

j d4(x- y) e+iq·(x-y) Tr [ G0(y- x) 1~-' G0(x- y)Tv] . (4.47) 

Substitution of the fermion fields, given by Eq. ( 4.41), into Eq. ( 4.46), and making use of 

Eqs. (4.42) - (4.44), plus the integral representation of the Heaviside step function 

. f dw e-iw(xo-yo) 
O(xo -Yo) = % -

2 
. , 

1r w+u 
( 4.48) 

where E is a positive infinitesimal, leads to 

·aD ( - ) - . f d4k GO (k) -ik·(x-y) 
% a/3 X y - % (21f)4 a/3 e ' (4.49) 

from which the free nucleon propagator in momentum space is identified as 

(4.50) 

where 

( 4.51) 

The three terms in Eq. ( 4.50) are interpreted as follows: 

• the first term corresponds to nucleon propagation above the Fermi surface. 

• the second term describes the propagation of "holes" inside the Fermi sea, just as in the 

nonrelativistic propagator [Fe71 ]. 

• the third term allows for the propagation of "holes" in the infinite Dirac sea, which are to 

be interpreted as antinucleons. 

Finally, the polarization tensor in momentum space is evaluated by substituting Eq. ( 4.49) in 

Eq. (4.47), and making use of the fact that 

( 4.52) 
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thus yielding 

(4.53) 

The latter expression represents the electromagnetic polarization tensor for the case where the 

nucleus is treated as a relativistic free Fermi- gas of nucleons. 

Relativistic mean-field approximation {MFA) 

One can improve the relativistic free Fermi-gas description of the target nucleus by taking into 

account, at least at the mean- field level, the interaction between the nucleons in the nucleus. 

In a relativistic mean- field-approximation (MFA) of the Walecka model [Se86] , the propagation 

of a nucleon through the surrounding nuclear medium is modified by the presence of constant 

scalar ¢o and time-like vector Vo mean- fields. These potentials induce a shift in the mass and 

energy of a nucleon in the nuclear medium, respectively. In the relativistic MFA, the Heisenberg 

field operator .(f;(x) in Eq. (4.41) is replaced by [Se86]: 

.(f; (x, xo) = )IT~ [Ak
8
U(k,s)ei(k·x- ei+lxo) + BksV(k, s)e-i(k·x +ei- lxo)] 

k s 

(4.54) 

where 

9vVo ± Eic ( 4.55) 

and 

M* M - 9s¢o · ( 4.56) 

n is the volume of the system, and 9s and 9v are the meson-nucleon scalar and vector cou­

pling constants, respectively. Here, AL and Aks are the creation and annihilation operators 

for quasinucleons, whereas Bks and Bks correspond to creation and annihilation operators for 

quasi-antinucleons, respectively, which satisfy the usual anticommutation relations. The word 

"quasinucleon (quasi- antinucleon)" refers to a nucleon (antinucleon) whose mass, energy, and 

Dirac wave function are modified by the constant scalar ¢o and time-like vector potentials VQ . 
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The nuclear ground state IF>, within the relativistic MFA, is defined as 

BksJF > 

.AtJF> 

Aks iF > 

0 

0 

0 

for all k 

for all k < kF 

for all k > k F . 

146 

( 4.57) 

The mean-field quasinucleon and quasi-antinucleon Dirac spinors, U and V respectively, are 

given by [Se86] 

EJ.+M* 
I 

U(k, s) Xs 
2EJ. 

if·k 

( 4.58) 

EJ.+M* 

if·k 

V(k, s) 
EZ+M* EJ.+M* 

Xs · 2EJ. 
(4.59) 

I 

Analogous to Eq. ( 4.46), the coordinate space representation of the mean-field nucleon propa­

gator (indicated by the superscript "MF") is defined as 

iG:!/ (x, y) = < FJ T[ ?j,a(x)~,B(Y) ]IF> (4.60) 

With the mean-field field operator defined in Eq. ( 4.54), the derivation of the MFA nucleon 

propagator G:!/(k) in momentum space proceeds in a similar fashion to the derivation of the 

free nucleon propagator given by Eq. (4.50), and gives 

1 *1-' O(lk I - kF) 
2EJ. {( 1~-'K + M)a.B [ ko- 9vVo- EJ. +it: 

+ O(kF - lk I) ] 
ko - 9v Vo - EZ - it: 

- ( 11-'K*~-' + M)a.B [ ko- 9v Vo 1+ EJ. -it:] } (4.61) 

where 

E'k1° - 1· k 

E * 0 .... k .... - k'Y - 'Y • ( 4.62) 

and 

k*l-' ( 4.63) 
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Thus, in the mean-field approximation, the interacting propagator in Eq. (4.61) takes a form 

that is similar to the free propagator in Eq. (4.50), the only difference being that k0 and Ek are 

replaced by k0 - 9v V 0 and E'k, respectively. As in Eq. (4.50) for the FGM, the three terms in 

Eq. (4.61) are easily interpreted as follows: 

• the first term corresponds to quasinucleon propagation above the Fermi surface. 

• the second term describes the propagation of quasinucleon "holes" inside the Fermi sea. 

• the third term allows for the propagation of "holes" in the infinite Dirac sea, which are to 

be interpreted as quasi-antinucleons. 

With the mean-field propagator defined in Eq. (4.61), and following a procedure analogous to 

that outlined in the previous section, the resulting mean-field polarization tensor is given by 

[Ch77, Ho84, Ku85, Li89, Ma82, Ho90, We93, Ho94, Pi95] 

( 4.64) 

Note that, in computing the response, one integrates over the four-momenta of the nucleons, 

and hence, the contribution from the constant vector potential Vo in Eq. ( 4.61) can be eliminated 

by a simple change of variables. Formally, then, the mean-field response is identical to that of 

the relativistic free Fermi-gas with, however, an effective mass M* instead of a free mass M. 

Local density approximation {LDA) 

One can improve the mean-field approximation of the electromagnetic polarization tensor by 

considering a local density approximation (LDA) [We87, Ho90, We93, Pi95] of the Walecka 

model. The latter approximation assumes that, at an average momentum transfer, the response 

of the nucleus is just the sum of the responses of its volume elements, each characterized by a 

local Fermi wave number kp(r), and a local effective mass M*(r), and treated as nuclear matter 

with these parameters. Hence, for the electromagnetic polarization tensor, the transition from 

the MFA to the LDA is made via the following replacement: 

IIP,V ( - ) IJP,V ( - -I ) MF q,w --+ LDA q,q ;w ( 4.65) 
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where 

IIf.W ( _, _, I ) 
LDA q,q jW 

and 

M*(R) 

kp (R) 

M- Ys¢o(R) 
3 2 1 

[27r PB(R)] 3 . 

148 

(4.66) 

( 4.67) 

¢0 (r) and PB(r) represent the local scalar field and baryon density, respectively, which are 

generated selfconsistently via the Dirac- Hartree approximation [Ho91a]. The exact meaning of 

will become clearer when analytical expressions are derived for the nuclear polarization propa­

gator in Sec. 4.2.3. For calculations of scattering observables in coordinate space (see Sec. 4.4) , 

the Fourier transform of Eq. ( 4.66) is required, namely [Recall that the imaginary part of the 

polarization tensor is directly related to the double differential cross section] 

d _, d .... , 
II,w ( .... .... , . ) - I q +iFI q -iq'· r'rrf.£11 ( ........ , . ) (4.68) 

LDA r , r ,w - (27r)3 e (27r)3 e LDA q, q ,w . 

Eq. (4.68), together with Eq. (4.66), can be simplified via the following change of variables 

if --+ ij 

if' --+ Q ( 4.69) 

where 

if ij+Q 

if' ij- Q (4.70) 

thus yielding the electromagnetic polarization tensor of the nucleus within the local density 

approximation, namely 

IIf.W (_, _,, ) 
LDA r , r ;w = I dij iq·(f"- f' ) rrf.£1/ r- · k ( lf'+f'' l ) M *(lf'+f'' I )J 

(27r)3 e LDA q,w, F 2 ' 2 . ( 4.71) 
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Relativistic random phase approximation {RPA) 

In the previous three sections, different models (relativistic free Fermi-gas model, relativistic 

mean- field approximation, and the local density approximation ) were presented for evaluating 

the electromagnetic response of the nucleus for electron-nucleus scattering. One can improve 

these models by considering, for example, the nuclear response in a relativistic random-phase 

approximation (RPA). The RPA is not considered in this thesis: for more information on the 

RPA, the interested reader is referred to Refs. [Pi95, We87, Ho90, Ho94, We93, Ki95]. 

4.2.3 Nuclear response of a nucleus 

Thus far, the primary focus has been on electromagnetic response functions for electrons scatter­

ing from nuclei. However, for calculations of quasielastic proton- nucleus scattering observables, 

one is interested in calculating nuclear response functions (see Sec. 4.4). 

For simplicity, one starts by generalizing Eq. ( 4.5), for electron-proton scattering, to the case 

of nuclear nucleon-nucleon scattering. This is done by replacing the electromagnetic interaction 

vertex, r11 = 111-, with the relativistic SVPAT interaction vertices for NN scattering (see Sec. 

3.2.4 in Chapter 3) , that is 

(4.72) 

where 

(4.73) 

Note that in Chapter 3, one used 1 5 , rather than i 15 , for the 1r N N vertex: both 1 5 and i 1 5 

yield identical results for the polarization transfer observables. Following a procedure similar to 

that presented in Sec. E.5 of Appendix E, and making use of the identity [Bj64] 

(4.74) 

the unpolarized differential cross section for nucleon-nucleon scattering in the plane-wave Born 

approximation is written as 

(4.75) 
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where t0 represents the relativistic SVPAT NN scattering amplitudes, and, analogous to Eq. ( 4.6), 

the projectile nucleon tensor La.f3 is defined by [compare to Eq. (3.71) for the invariant matrix 

element M in Chapter 3] 

(4.76) 

and, the nuclear response function of the target nucleon so.f3 is given by [compare to Eq. (3. 73) 

for the invariant matrix element M in Chapter 3] 

(4.77) 

For a nucleon scattering from a nucleus, the unpolarized differential cross section is obtained 

via a generalization of Eqs. (4.75)- (4.77), giving {compare to Eqs. (4.10), (4.12) and (4.7) for 

electron-nucleus scattering} [Ho94] 

- - 1 1 """ Cl. ( f3)* o.{3 d -+ da - - (2 )2 6 t t La.f3 S P! 
Vrel 7r o.{3 

(4.78) 

where La.f3 is the nucleon tensor already given by Eq. (4.76), and so.f3 is the nuclear response of 

the nucleus given by [compare to Eq. ( 4.30) for electron-nucleus scattering]: 

- ~ Im[ rro.f3 (if, if ; w) ] 
7r 

L [ J~i(if) ]* J~i(if) 8(w- En+ Ei) (4.79) 
n 

where 

( 4.80) 

and the nuclear current operator is given by 

l»(x) = ~(x) >.a. {i;(x) . (4.81) 

Note that, compared to electromagnetic electron-nucleus scattering, the nuclear response func­

tions for nucleon-nucleus scattering are more complicated due to the mixing of many different 

Lorentz structures of the NN interaction. 
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Analytical expressions for the nuclear polarization tensor 

As in the case for electron-nucleus scattering, the polarization tensor can be evaluated for a 

variety of models. In this section, analytical expressions are derived for the imaginary parts 

of the nuclear scalar polarization, based on the relativistic free Fermi-gas model, relativistic 

mean-field approximation, and the local density approximation, for which 

.\a = .\/3 = 1. ( 4.82) 

A similar approach can be followed to derive expressions for all the components of the nuclear 

polarization tensor rra/3. 

First, the relativistic mean-field approximation is considered. The corresponding expressions 

for the free Fermi-gas model can be obtained as a special case of the mean-field results. The 

expressions with the local density approximations, on the other hand, are obtained via a simple 

generalization of the mean-field results. 

Within the relativistic mean-field approximation, the nuclear polarization tensor is obtained 

via a generalization of Eq. (4.64) , namely 

i rrc;JF(ij, w) = J (~:~4 Tr [eMF (k) A a eMF (k + q) Af3] ( 4.83) 

where the mean-field nucleon propagator eMF(k) is given by Eq. (4.61), and .\a and _\/3 are 

given by Eq. (4.72). 

For the reaction kinematics of interest, namely incident laboratory energies smaller than 

500 MeV, and space-like momentum transfers (for which q~ < 0), the production of nucleon­

antinucleon pairs is kinematically forbidden, and hence, the last term in Eq. (4.61) can be 

omitted, thus yielding 

1 *11- 0( /k /- kF) O(kF -/k /) 
2E * { (rp,K + M)af3 [ k Vi E* + . + k Vi E* . ] (4.84) 

k 0 - 9v 0 - k u; 0 - 9v 0 - k - u: 
a;f/(k) = 

where the tilde serves as a reminder of the omission of antinucleon propagation. Note, however, 

that virtual nucleon-antinucleon pairs can be produced, and play an important role in the RP A 

response. The latter, however, does not form part of this project, and, for more detail, the 

interested reader is referred to Refs. [Ku85, Se86, Li89, Ho90, Ho94]. For simplicity, and to 

illustrate the approach, analytical expressions are now derived for the imaginary part of only 
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the nuclear scalar polarization. Essentially, the procedures outlined in Refs. [Ho84, Li89] are 

followed. Inserting Eq. (4.84) into Eq. (4.83), and taking >..a = >../3 = 1, yields the following 

expression for the nuclear scalar polarization: 

i IT}}p(q) = f (~:k)4 [ 2E*21E* ] Tr[(¥* + M*)(¥* + rj* + M*)] 
k k+q 

X [ O(lk I - kp) + O(kp- lk I) ] 
ko - 9v Vo - E'k + if. ko - 9v Vo - E'k - if 

X [ O(lk + q I - k~) . + O(kp- lk + qy . ] . ( 4.85) 
ko + qo - 9v Vo - Ek+q + '/.€ ko + qo - 9v Vo - Ek+q - '/.€ 

Using the usual trace techniques [Bj64, Gr92], as well as Eqs. ( 4.56) and ( 4.63), Eq. ( 4.85) is 

readily evaluated, giving 

Tr[(¥* + M*)(¥* + rj* + M*)] = 4[ (ko- 9vVo)2 -lk 12 + (ko- 9v Vo)(qo- 9v Vo)- k · q + M*2 K4.86) 

After elimination of the constant vector potential Vo in Eq. ( 4.85), by a simple change of vari­

ables, the integral over ko is evaluated via contour integration, giving 

- f dk 1 * 2 _, 2 * _, _, *2 iiT}}p(q) = (2 )3 [ 2E*2E* ] x 4 [ (Ek+q- qo) - lk I + (Ek+q- qo)qo- k · q + M ] 
1r k k+q 

X (27ri) { O(lk I*- kp )O(kp--: lk :- q I) - O(kp ~ lk) IO(Ik +!I -:- kp) } . ( 4.87) 
Ek+q - qo - Ek + '/.€ Ek+q - qo - Ek - u 

Now recall that scattering observables are eventually expressed in terms of nuclear response 

functions, which are given by the imaginary part of the polarization tensor [see Eq. (4.79)]. 

Using the relation [Bj64, Ne88] 

1 
Im( ± . ) = =f 8(w) 

w '/.€ 
( 4.88) 

the imaginary part of the nuclear scalar polarization in Eq. (4.88) is identified, namely 

(4.89) 

where 

f dk [ 1 * 2 _, 2 * _, _, *2 
- (2 )3 2E* 2E* ] x 4 [ (Ek+q- qo) -lk I + (Ek+q- qo)qo- k · q + M ] 

1r k k+q 

x 8(Ek+q- qo- Ek) [ O(kF -lk I)O(Ik + q 1- kp)] (4.90) 

and 

- j (:k)3 [ 2E*21E* ] x 4 [ (Ek+q- qo)2 -lk 12 + (Ek+q- qo)qo- k. q + M*2] 
1r k k+q 

x 1r8(E'k+q- qo- Ek) [ O(lk I - kp )O(kF- lk + q I)] . ( 4.91) 
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First fi0p(q) in Eq. (4.90) is evaluated. Using the fact that 

(4.92) 

one can write 

(k + if)2 + M*2 

Ek2 + 2lk II if I cos 0 + I if 12 (4.93) 

which implies that 

Ek2 
- Ek2 -I if 12 

cos 0 = _+--'q=------.... =-----
2lk llifl 

( 4.94) 

Introducing the following change of variables 

( 4.95) 

one can rewrite 

( 4.96) 

in Eq. (4.90), as 

(4.97) 

The constraint that I cosOI ~ 1 is incorporated via a Heaviside step function. From Eq. (4.94), 

it follows that 

(4.98) 

Finally, with Eqs. (4.97) and (4.98), and performing the integral J dEk+q in Eq. (4.90), yields 

fi0p(q) = - 81r~ifl (4M*2 -q~) J dEkO(Ej;.-Eic)O(q0 +Eic-Ej;.) 

4 

x 0( -Eic2q~- M*2 lifl2
- Ek qo q~- q;). (4.99) 

Next, IIfip(q) in Eq. (4.91) is evaluated. With the transformation of variables 

k --+ k + if, (4.100) 
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Eq. (4.91) can be rewritten as 

II~p(q) = - J (2d:)3 [2E* 1 2E*] x 4[(Ek- qo)2 -lk- q 12 + (Ek- qo)qo- (k- q). q + M*2] 
k-q k 

x 8(Ek- Qo- Ek-q)[O(Ik- ql - kp)O(kp - lk I)]. (4.101) 

Analogous to the procedure outlined from Eqs. (4.92) to (4.94), and with the following change 

of variables 

cos e --t Ek-q (4.102) 

one can rewrite 

(4.103) 

in Eq. (4.101), as 

(4.104) 

As before, the constraint I cos e I ::; 1 is incorporated via a Heaviside step function, that is 

( 4.105) 

Finally, with Eqs. (4.104) and (4.105), and performing the integral J dEk+q in Eq. (4.101), 

yields 

B1r~q I (4M*2
- q~) j dEk 0( -qo + Ek- EF) O(Ej;.- Ek) 

4 

x 0(-Ek2q~- M*2 lql2 + Ek Qo q~- q;). ( 4.106) 

The step function in the above equation implies that the energy of the scattered nucleon is 

larger than the Fermi energy, that is, 

Ek - qo 2:: Ej;. . ( 4.107) 

However, this is unphysical, since the initial energy is smaller that the Fermi energy, that is 

Ek < Ej;. (4.108) 
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and hence Eq. (4.107) does not hold. Therefore, Eq. (4.106) is omitted from Eq. (4.89), and, 

hence, the expression for the imaginary part of the polarization tensor is now given by Eq. ( 4.99): 

IT~p(q) = - 81r~q[ (4M*2 -q~) J dEic8(Ej;.-Ek)8(qo+Eic-EP,) 

4 

x 8( -Eic2q~- M*2 [q[ 2
- Eicqoq~- ~). (4.109) 

Finally, integration over Ef. in the latter equation, gives: 

(4.110) 

where the 8 functions imply the following integration limits: 

Eu = Ej;. J[k [2 +M*2 

Ed min[ Ej;., Emax) 

Em ax max[M*,EP,- Qo,Er] 

Er 1 p; -[[q[ 1-- -qo]. 
2 q~ 

(4.111) 

Eq. (4.110) is identical to the corresponding expressions in Refs. [Ho84, Li89, We93), with the 

exception that Ref. [Ho84) uses a different metric. 

For the free Fermi-gas model, the imaginary part of the polarization tensor is obtained by 

replacing M* by Min Eqs. {4.110) and (4.111) . The corresponding results for the local density 

approximations are obtained by replacing M* by M*(r) in Eqs. {4.110) and (4.111} and by 

making use of the LDA prescription in Eqs. {4.65) and {4.66). 

Following a procedure analogous to the one just sketched for the nuclear scalar polarization, 

one can derive analytical expressions for all the components of the polarization tensor rra.B. 

Analytical expressions for some of the components of the polarization tensor can be found in 

Refs. [Ho84, Li89, We93, Ki95). 

4.3 Relativistic distorted wave functions 

The aim of this section is to derive partial wave expansions for relativistic distorted wave func­

tions, which are scattering solutions to the Dirac equation, with scalar and time-like vector 
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potentials, for incoming and outgoing boundary conditions. The latter boundary conditions 

refer to the asymptotic behaviour of the scattering wave functions. For outgoing boundary con­

ditions, the asymptotic form of the scattering wave function is that of an incident plane wave 

plus outgoing (scattered) spherical waves (see also Sec. 4.3.4), whereas for incoming boundary 

conditions, the asymptotic form is that of an outgoing plane wave plus incoming spherical waves. 

The term "distorted wave", used for scattering wave functions, refers to distortion away from 

the corresponding plane waves due to the presence of scattering potentials. The relativistic dis­

torted waves will eventually be used for calculations of polarization transfer observables based 

on the relativistic distorted wave impulse approximation to be discussed in Sec. 4.4. 

Before deriving partial wave expansions for relativistic distorted waves, some of the under­

lying principles are illustrated by considering the simplest case of a partial wave analysis for 

nonrelativistic Schrodinger-based scattering wave functions. The discussion of the nonrelativis­

tic distorted waves is considerably more detailed than would seem warranted, however, this 

detail is supplied so as to provide a familiar context for developing the partial wave expansions 

of the relativistic distorted waves. Also note, at this stage, that both nonrelativistic and rel­

ativistic distorted wave functions are usually generated in the nucleon-nucleus centre-of-mass 

frame, and hence, most of the associated kinematic quantities {unless otherwise specified) are 

defined in the latter reference frame. 

4.3.1 Partial wave analysis of nonrelativistic spin-dependent plane waves 

For simplicity, the wave functions for a nonrelativistic free spin-~ particle are considered. By 

nonrelativistic free particle wave functions, one means the solutions to the Schrodinger equation 

for zero scattering potentials. The unnormalized wave function for a nonrelativistic free particle, 

with momentum k in the projectile-nucleus centre-of-mass system, spin projection s along an 

arbitrary quantization axis in the rest frame of the projectile, and outgoing boundary conditions 

[indicated by a superscript ( +) below], is given by [Sa83] 

(4.112) 

The spin functions xs, with spin projections s = ±~ along an arbitrary quantization axis in 

the rest frame of the projectile, are related to the usual basis spin functions {for which the 
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quantization axis is directed along the +z-axis in the rest frame of the particle), namely 

( 4.113) 

via the following relationship [Sa85, Va88] 

1 

Xs = L Xs, Df, s(a,(:J,/) (4.114) 
s. 

1 

where Dl. s(a, (:J, 1) is the well-known Wigner D-function, and (a, (:J, r) are the Euler rotation 

angles specifying the arbitrary quantization axis (relative to the .Z-axis). Explicit expressions 

for the basis spin functions in the rotated coordinate system (where the .Z-axis is rotated to an 

arbitrary quantization axis for which s = ±~) are given by [Va88] 

Xs--1 - 2 

f.l · (<>--y) 
sin(~) ez-2-

f.l ·(<>--y) 
-sin(~) e-z-2-

{3 . (<>+"Y) 
cos( 2 ) ez-2-

(4.115) 

Consider, for example, the quantization axis directed along the x-axis of a righthanded co­

ordinate system, for which (a = 0, (:J = ~ ' 1 = 0) . Then, the expressions in Eq. (4.115) 

yield 

Xs=-t (4.116) 
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On the other hand, for the quantization axis directed along they-axis, with (a = ~ , f3 = ~ , 

'Y = 0), Eq. (4.115) yields 

-e 4 1 -i?!. ( 1 ) 
v'2 i 

Xs=-t = 
-i?!. 1 ( -1 ) e 4 -

y"i i 
(4.117) 

The first step toward obtaining a partial wave expansion for Eq. (4.112), is to expand the 

spin-independent part of the plane-wave ( eik·f ) in terms of the spherical harmonics YL M as 

basis functions [Ne66, Sa83, Sa85], that is 

(4.118) 

where the radial part U£(kr) is related to the spherical Bessel function iL(kr) via 

uL(kr) = (kr) h(kr) (4.119) 

and k lk I· Substitution of Eqs. (4.118) and (4.114) into Eq. (4.112) gives 

+ ik·f - 47r "" ·L (k )Y* (kA)Y (A)Dt ( {3 ) e Xs - kr L..... 2 U£ r L M LM r s .. s a , , "( Xs .. · 
L Ms z 

(4.120) 

Next, eigenstates I LM > of L2 and L z are coupled with eigenstates I ~ Sz > of (~u)2 and 

~az , to construct eigenstates I J ~ L p, > . Denoting YLM(f)xs .. by< f ILM~ Sz > , the unitary 

transformations connecting the I J ~ L p, > and IL M ~ Sz > representations, namely [Br62] 

1 
IL 2 J 1-t > 

1 
ILM 2Sz > 

1 1 1 L ILM 2 Sz >< LM 2sziL2 Jp, > 
Msz 

1 1 1 L IL - J P, > < L- J ~-tiL M - Sz > , 
J (JL) 2 2 2 

define the Clebsch- Gordon coefficients 

(4.121) 

( 4.122) 

(4.123) 

For brevity, one usually writes< LM ~ SziJ p, >for< LM ~ Sz iL ~ J p, >. The values of J are 

restricted by the triangular condition 

1 1 
L+ - > J > IL- - l 

2 2 
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where J ranges from L+ ~ down to L- ~in integer steps. Furthermore, since Jz = Lz+ ~O"z, the 

Clebsch- Gordon coefficient vanishes for J.L =!= M + Sz, and hence the sum over J.L in Eq. (4.122) 

is purely formal, and, in fact, the sum is only over J. Substitution of the righthand side of 

Eq. (4.122) for YLM(f)Xsz = < fiLM~ Sz > in Eq. (4.120), and subsequent application of 

Eq. (4.121), yields the following partial wave expansion for Eq. (4.112) 

where (from the properties of Clebsch-Gordon coefficients) one sees that J.L M + Sz, and 

the functions YLJp.(f ), called the spinor spherical harmonics, defined as [Va88] 

YLJp.(r ) = L < LM' ~ s~ IJ J.L > YLM'(r)xs :, 
si (M') 

L < L J.L- s~ ~ s~IJ J.L > YLp.-si (f)Xsi , 
si 

(4.125) 

have been constructed from the spherical harmonics (eigenfunctions of L2 and Lz) and the basis 

spin functions Xsz (eigenfunctions of ( ~o? and ~ O"z ) in accordance with the coupling scheme 

of two angular momenta outlined above. Note that, since the spinor spherical harmonics are 

eigenfunctions of J 2 , Jz, L2 and (~o-)2 , where 

they satisfy the following eigenvalue relations: 

L 2YLJp.(f) 

(T . L YLJp.(f) 

L(L + 1) YLJp.(f) 

[J(J + 1)- L(L + 1)- ~] YLJp.(f) 

L YLJp.(r) for J = L + ~ 

-(L + 1) YLJp.(f ) for J = L- ~ 

(4.126) 

(4.127) 

(4.128) 
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For comparison to partial wave analyses in Refs. [Ch83, Sa83], the expression in Eq. (4.124) 

can be recast in the following form 

where 

(+ ) ... 
'lj;s' s (k , f) z z 

e+ik·f' Xs 

L DJ. s(a , {3, /) L 'lj;;t~,(k, f)Xs i (4.129) 
Sz si 

(4.130) 

In addition to the plane waves with outgoing boundary conditions given by Eq. ( 4.129), calcu­

lations of scattering observables usually require the hermitian conjugate of a scattering wave 

function with incoming boundary conditions (see Sec. 4.4). The latter wave functions are now 

considered. Once again, the simplest case of a spin-dependent plane wave with incoming bound­

ary conditions [indicated by the superscript (-) below] is considered. The latter wave function 

is related to the scattering wave function in Eq. (4.129) , with outgoing boundary conditions, 

via the following relation [Sa83, Sa85, Va88, Gr89] 

'lj; ~-) (f) = 8[ 'lj;~+) (f)] 
k' s' k' s' 

(4.131) 

where k' is the momentum of the ejectile in the nucleon- nucleus centre-of- mass system, s' is 

the spin projection along an arbitrary quantization axis in the rest frame of the ejectile, and e 
is the usual time-reversal operator, defined such that [Sa83, Va88] 

8 [ Xsi ) 
1 I 

(-)2-Sz X- s' 
z 

(4.132) 

1 

where d%. s' ({3) is a real function, with explicit expressions given by [Va88] 

1 

cos(~) d[ l ({3) 
2 2 

1 

-sin(~) d[ _l ({3) 
2 2 2 
I 

sin(~) d~ll ({3) 
2 2 

1 {3 
d~l_l ({3) cos( 2) . (4.133) 

2 2 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RELATIVISTIC DISTORTED WAVE MODEL 161 

Now, as already mentioned, for the calculation of scattering observables (see Sec. 4.4) , one 

requires the hermitian conjugate of the scattering wave function with incoming boundary con­

ditions, i.e. 1/J~~;,t (f'). With Eqs. (4.129) - (4.131), and using the relations in Eq. (4.132) , one 

can write 

1/J~-H (r) 
k' s' 

{ 8[ 1fJ1;-;,(f')] }t 
I :E n;. 8,(ci, !31

, ,
1

) :E( -) !-s~ 1/J~~;! (k1
, r)x~si (4.134) 

S z s~ 

where 

( -) s. - s~ .,,(+) (-kl r) 
'P- s z - Sz ' 

(4.135) 

and, from Eq. (4.130) , 

.,.(+) (-k' r) 
lf/_ sz -Sz ' 

471' L 1 I I 1 I I - <LM- -s J{L><L{L+ s - -s J{L> k 1r 2 z z 2 z 
LJM 

xiLuL(k1r)Y£M(-k1)YLtL+si (f). (4.136) 

The Euler rotation angles in Eq. (4.134) are labeled with primes 1
, so as to distinguish them 

from the Euler angles used for wave functions with outgoing boundary conditions. Using the 

relation [Sa85, Va88, Si90] 

( 4.137) 

in Eq. (4.136), gives 

.,,(+) (-k' r) 
"P - Sz -Sz ' 

The partial wave expansions for the spin-dependent plane waves, with outgoing and incoming 

boundary conditions, given by Eq. (4.129) [with Eq. (4.130)] and Eq. (4.134) [with Eqs. (4.135) 

and (4.138)] respectively, are simplified considerably for the choice of projectile and ejectile 

reference frames in Fig. 4.1. The unprimed and primed coordinate systems are convenient for 

describing the kinematics and spin projections for projectile and ejectile nucleons respectively, 

in the incoming and outgoing nucleon- nucleus centre-of-mass frames. First, simplifications to 

Eqs. (4.129) and Eq. (4.130) , for the choice of the initial (unprimed) reference frame in Fig. 4.1, 
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"I 
X 

" X 

" y -----
k 

Figure 4.1: The initial {unprimed) and final {primed) nucleon-nucleus centre-of-mass reference 

frames used for defining the kinematics and spins of the projectile and ejectile distorted wave 

functions. Bcm denotes the scattering angle in the nucleon-nucleus centre-of- mass frame. 
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are discussed. The direction of the momentum of the projectile (in the projectile-nucleus centre­

of-mass system), described by a wave function with outgoing boundary conditions, is chosen 

along the +z-axis, i.e. k = z. For the latter choice, the spherical harmonics Y£M(k) become 

(4.139) 

and, since M + Sz = p, (in the Clebsch-Gordon coefficient< LM ~ SziJ p, >)in Eq. (4.130), 

the delta function 8 M o implies that 

p, = Sz. (4.140) 

Consequently, Eqs. (4.129) and (4.130) can be written as 

e+ik·rxs 

L Dfzs(a,/3,/) L 1/J;t~Jk,r)xsi (4.141) 
Sz si 

where 

47r "' 1 I I 1 I I -k L...J <L02szJSz><Lsz-Sz2SzJSz> 
r LJM 

L J2L + 1 ~ Xi uL(kr) 
4

1!" YLsz-si(r) · (4.142) 

Next, simplifications to Eqs. (4.134), (4.135), and (4.138), for the choice of the outgoing 

(primed) reference frame in Fig. 4.1, are considered, where the momentum of the ejectile (in 

the ejectile-nucleus centre-of-mass system) is directed along the +z1-axis , i.e. k1 = ; 1• The 

primed system is obtained via an anticlockwise rotation of the unprimed system through an 

angle of Bern around the y-axis. For the latter rotation, the spherical harmonics (dependent on 

k) in the primed coordinate system, are given by [Sa85, Va88] 

* ~ ~ v2L + 1 YLM(k) = 
4

7r PL(cosBcm) 8Mo (4.143) 

where PL denotes the well-known Legendre polynomials, and Bern is the scattering angle between 

the incident and outgoing momenta, k and k1
, in the nucleon-nucleus centre-of-mass frame. 

Note that, since M + (-sz) = p, (in the Clebsch-Gordon coefficient< LM ~ - SziJ p, >)in 

Eq. (4.138), the delta function 8Mo implies that 

p, = -Sz. (4.144) 
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Hence, Eq. ( 4.138), for incoming boundary conditions, can be written as 

.,,( + ~ (-k' r) = 
lf/-sz -Sz ' 

47r "" 1 I I 1 I k' r fJ < L 0 2 - s z J - Sz > < L - s z + s z 2 - s z I J - s z > 

·-L (')J2L+1 ( ) (~) X z UL k r 
4

1f PL COS Ocm YL -sz+si r . ( 4.145) 

Substitution of the latter equation into Eqs. (4.135) and (4.134), and application of Eq. (4.114) 

to rotate the +z quantization axis to the +z'-axis, followed by an additional rotation of the 

+z' quantization axis to an arbitrary direction in the primed coordinate system, yields the final 

expression for the hermitian conjugate of the nonrelativistic plane wave with incoming boundary 

conditions, namely 

1/J~- lt(r) 
k' s' 

x L (-)t-8 (-)a-8 7j;~~)-a(-k',r)x~8 (4.146) 
8 

where 

.,.(+l (-k' r) 
'~-'-8-a ' 

( 4.147) 

1 

The Wigner D-function D;. 
8

, (a = 0, f3 = Ocm, 'Y = 0) rotates the spin quantization axis from 
z 

the +z-axis to the +z'-axis, which involves an anticlockwise rotation of the unprimed system 
1 

through an angle of Ocm around the y-axis, and the Wigner D-function D;, 
8

, (a', {3', 1') rotates 
z 

the + z'-axis quantization axis to any arbitrary direction, specified by the Euler angles (a', {3', 1'), 

in the primed system. For quantization along the x, y and z-axes, the values of the latter Euler 

angles are 

• (a' = 0, {3' = 0, 1' = 0) for quantization along the +z'-axis, 

• (a' = 0, {3' = ~' 1' = 0) for quantization along the +x'-axis, 

• and, (a' = ~' {3' = ~' 1' = 0) for quantization along the +y'-axis. 
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4.3.2 Partial wave analysis of nonrelativistic distorted wave functions 

In this section, a partial wave analysis is considered for distorted wave solutions of the Schrodinger 

equation with central, spin-orbit and Coulomb scattering potentials. The partial wave expan­

sions for the distorted wave functions with outgoing and incoming boundary conditions, denoted 

by the superscripts ( +) and (-) respectively, are virtually identical to the corresponding plane 

waves discussed in Sec. 4.3.1, with the exception that [Mc68, Sa83]: 

uL(kr) = (kr)iL(kr) is replaced by ULJ(kr)eiuL (4.148) 

in Eqs. (4.141) and (4.142) for outgoing boundary conditions, and Eqs. (4.146) and (4.147) 

for incoming boundary conditions, where 0'£ denotes the usual Coulomb phase shifts [Mc68, 

Mu87a]. The radial wave functions U£J(kr) are solutions to the radial Schrodinger equation 

with central, spin-orbit and Coulomb scattering potentials, V(r), Vc(r) and V80 (r) respectively, 

namely [Mc68] 

{ 
d? 2 2~-t n2 

( L ) L(L + 1) } dl-r + k - 1i2 [V(r) + Vc(r) + 2 -L _
1 

U80(r)]- r 2 U£J(kr) = 0 (4.149) 

where 1-l is the reduced mass, and k is the incident momentum of the nucleon in the nucleon­

nucleus centre-of-mass system. Note that, due to the presence of spin-orbit potentials, the 

radial wave functions depend on both quantum numbers Land J. 

With the substitution advocated by Eq. ( 4.148), the partial wave expansion for a distorted 

wave, with outgoing boundary conditions, is given by [compare to Eqs. (4.141) and (4.142)] 

7/Jt)(r') = L nl.s(a,{3,,) L 7/J;tL Xs'Jk,r) (4.150) 
Sz s~ 

where 

(+) -+ 

7/Js' s (k, f) z z 
47r " 1 I I 1 I I -k L...... <L0-

2
szJSz><Lsz-Sz-

2
szJSz> 

r LJM 

·L iuL (k )v2£+1v (A) 
X z e ULJ r 47r LLsz-S'z r (4.151) 
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and the corresponding distorted wave, with incoming boundary conditions, is given by [com-

pare to Eqs. (4.146) and (4.147)] 

L: (-)~-o (-t-8 '1/J~~)-u(-k' , r)x~o (4.152) 
0 

where 

.,,( +) (-k' f') 
<p -0 -(T , 

( 4.153) 

4.3.3 Partial wave analysis of relativistic plane waves 

Based on the partial wave analysis of the nonrelativistic distorted wave functions discussed in 

Sees. 4.3.1 and 4.3.2, the corresponding partial wave expansions are derived for the relativistic 

nucleon plane waves with outgoing and incoming boundary conditions. By relativistic plane 

waves, one means the solutions to the Dirac equation for zero potentials, that is (see Appendix A) 

(4.154) 

where k is the momentum operator, k is the momentum vector of the incident nucleon in the 

projectile-nucleus centre-of-mass system, and E is the energy of the incident nucleon in the 

projectile-nucleus centre-of-mass system (given by Eq. [(A.2) in Appendix A). 

For outgoing boundary conditions [indicated by the superscript ( +) below), the solution to 

the free Dirac equation in Eq. ( 4.154) is given by [Bj64, Se86, Gr90] 

where the free nucleon Dirac spinor 

.... JE+m u(k,s) = 2E 

I 

u·k 

E+m 

(4.155) 

Xs ( 4.156) 
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where Xs is a Pauli spinor for projection s = ±~ along an arbitrary quantization axis in 

the rest frame of the nucleon, I is a 2 x 2 unit matrix, and the Dirac spinors are normalized 

according to Eq. ( 4.4). The normalization of the Dirac spinors in Eq. ( 4.156) corresponds to the 

normalization adopted in relativistic many-body calculations (Se86], and differs from the one 

used by Bjorken and Drell (Bj64, Gr90] (see Sec. E.6 in Appendix E). Using the partial wave 

expansion for e+ik·rx s, given by Eq. (4.124) , one can write down the partial wave expansion of 

a Dirac plane wave, with outgoing boundary conditions, as 

4 JE+m 
7r 2E 

I 

u·k 

E+m 

Sz 

< LM ~ Szi J J.t > Y£M(k) jL(kr) YLJ ~(f) . ( 4.157) 

Note that, compared to the two-component Schrodinger plane waves, the Dirac plane waves for 

a nucleon, are four-component spinors. Using the operator relations given by Eqs. (A.26) and 

(A.27) in Appendix A, as well as the following relation for the spinor spherical harmonics (with 

"good" parity and total angular momentum J) (Bj64, Al73 , Gr90] 

(4.158) 

where L' is the "other" L with the same J , defined as 

L + 1 for J = L + ~ 
L' = 2J -L = (4.159) 

L - 1 for J = L - ~ 

one can derive the following relation 

. (4.160) 

(di£(x) + (L + 1)jL(x))YvJ for J = L- ~ 
dx x ~ 2 

where x = kr . Using the following recurrence relations (Ab70], for the spherical Bessel 

functions, in Eq. (4.160) 

L + 1 . ( ) di£(x ) 
--JL X+--

X dx 
jL-t(x) 
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yields 

u·k 
E + m [iL(kr)YLJIL(f)] 

L . ( ) di£(x) ( ) - JL X - -- = JL+l X 
x dx 

ik 
E+m 

-iL+l(kr) for J = L + ~ 

iL-1(kr) for J = L- ~ 

ik -
E JL'(kr) YL'J~L 

+m 

168 

(4.161) 

YL'JIL (4.162) 

( 4.163) 

where ]L'(kr) is defined by the Eq. (4.162). Substitution of Eq. (4.163) into Eq. (4.157), gives 

the following partial wave expansion for a Dirac nucleon plane wave with outgoing boundary 

conditions [Ro84, Sh84, Ro87] 

'1/J~+)(r) = 41fff? L Dts(a,{3,,) L iL < LM -2
1 

SziJ J.L > YiM(k) 
k ,s 

Sz LJM 

X (4.164) 

where L' is the "other" L with the same J, defined in Eq. (4.159). For comparison to relativistic 

partial wave expansions in Ref. [Ik95] , Eq. (4.164) can be recast in the following form 

where 

.,,(+)( ... ) JE+m "'n! ( {3 ) "'.,,(+) (k ... ... ) 
'~'k.,s r = 2E ~ Sz s a, '' ~ 'Ps'z Sz 'r Xs'z 

Sz si 

(+) ... 
1/Js' s (k, r) z z 

47r L iL < LM ~ SziJ J.L > Y£M(k) 
LJM 

X 

(4.165) 

(4.166) 

and the Euler rotation angles specify the rotation from the +z quantization axis to an arbitrary 

quantization axis in the rest frame of the projectile, and L' = 2J - L. 
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Now, with the choice of coordinate axes in Fig. 4.1, and analogous to the discussion in Sec. 

4.3.1 (except that, instead of working with two-component spinors, one now works with Dirac 

four-component spinors), the partial wave expansion for a Dirac plane wave, with outgoing 

boundary conditions, is once again given by Eq. (4.165), except that 'lj;t;.(k,r) in Eq. (4.166) 

now becomes 

·L j2L+1 1 47rLZ 
4 

<L0-
2

sz1Jsz> 
LJ M 7r 

X (4.167) 

< L' Sz- s~ ~ s~IJ Sz > ( E: m) i ]v (kr) Yv sz-si (f) I 

Similarly, for the ejectile reference frame in Fig. 4.1, the partial wave expansion for a Dirac 

plane wave, with incoming boundary conditions [indicated by a superscript (-) below], is given 

by 

·'·~-)t( .... ) 
'~-'k' s' r ~ L D}~s'(a',(J',,y') L n:si(a=O,(J=Bcm,'Y=O) 

v~ si u 

XL (-)~-5 (-)u- 5 x!['lj;~~)-u(k',f)*]t (4.168) 
5 

where 

< L - O" + 8 ~ - 8IJ - O" > jL(k'r)YL-uH(f) I, (4.169) 

< L' - O" + 8 ~ - 8IJ- O" > (E: m)i]v(k'r)Yv -u+5(f) I, (4.170) 

and Bcm is the scattering angle in the nucleon-nucleus centre-of-mass system. The Wigner 
1 

D-function DJ
8

, (a= 0,(3 = Bcm,'Y = 0) rotates the spin quantization axis from the + z-axis 
z 

to the +z'-axis, which involves an anticlockwise rotation of the unprimed system through an 
1 

angle of Bcm around they-axis, and the Wigner D-function D';, 
8
,(a' ,(J' ,I') rotates the +z'-

z 

axis quantization axis to any arbitrary direction, specified by the Euler angles (a', {31
, 'r'), in the 

primed system of the ejectile. 
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4.3.4 Partial wave analysis of relativistic distorted wave functions 

Based on the partial wave analysis of the relativistic nucleon plane waves discussed in the 

previous section, partial wave expansions are now derived for relativistic distorted waves '1/J;; 
8 

( r), 

which are solutions to the Dirac equation with nuclear scalar S(r) and time-like vector potentials 

V(r) (see Appendix A for the meaning of the terminolgy associated with the different types of 

relativistic potentials), as well as the usual Coulomb potential Vc(r), that is 

(4.171) 

where the symbols have already been defined in Sec. 4.3.3, 

Now, with the choice of coordinate axes in Fig. 4.1, and analogous to the discussions in Sees. 

4.3.2 (except that, instead of working with two-component spinors, one now works with Dirac 

four-component spinors) and 4.3.3, the partial wave expansion for a relativistic Dirac distorted 

wave, with outgoing boundary conditions, is given by 

.,,(+)(""') JE+m ""nt ( {3 ) "".,,(+) (k""' ""') '~'f,s r = 2E L...J Sz s a, , 'Y L...J '~'s'z Sz , r Xs'z 
Sz si 

(4.172) 

with 

( +) __, 
'1/Js' s (k, f') z z 

47r "" ·L i8c J2L + 1 LO 1 IJ -k L...J 2 e LJ 4 < -2 Sz Sz > 
r LJ M 7r 

X (4.173) 

< L' Sz- s~, ~ s~IJ Sz > i fL' J(kr)YL' sz-s'z (f) I 

where L' = 2J- L, and the Euler rotation angles specify the rotation from the +z quantization 

axis to an arbitrary quantization axis in the rest frame of the projectile. The normalization of the 

relativistic distorted waves is chosen to match the Dirac plane wave (in the absence of Coulomb 

effects) in Eq. (4.155), and of1 is the relativistic Coulomb phase (see the next section). In 

the following two sections the upper and lower radial wave functions, g L J ( kr) and f L' J ( kr) 

respectively, are shown to be solutions to Schrodinger-like radial differential equations which 

can be solved using standard techniques. 
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Similarly, for the ejectile reference frame in Fig. 4.1 , the partial wave expansion for a rela­

tivistic Dirac distorted wave, with incoming boundary conditions, is given by 

·'·~- )t( .... ) = '~"k' s' r 

where 

< L - o- + 8 ~ - 8IJ - o- > 9LJ(k'r)YL-u+c5(f) I, 

< L' - o- + 8 ~ - 8IJ - o- > i h J(k'r)YL' - u+c5(f) I , 

(4.174) 

(4.175) 

(4.176) 

( 4.177) 

and, Ocm is the scattering angle in the nucleon-nucleus centre-of-mass system. The Wigner 
1 

D- function DJ
8

, (a= 0,{3 = Ocm,/ = 0) rotates the spin quantization axis from the + 2-axis 
z 

to the +2'- axis, which involves an anticlockwise rotation of the unprimed system through an 
1 

angle of Ocm around they-axis, and the Wigner D-function DJ, 
8
,(a',{3',r') rotates the +2'-

z 

axis quantization axis to any arbitrary direction, specified by the Euler angles (a', {31
, 1'), in the 

primed system of the ejectile. 

Next, the generation of the upper and lower radial distorted wave functions, 9LJ and /LJ 

respectively, introduced in Sec. 4.3.4, is discussed. For simplicity, only the radial solutions in 

Eqs. (4.172) and (4.173) [for outgoing boundary conditions] are considered, for the special case 

where the spin of the projectile is quantized along the + 2-axis in Fig. 4.1, that is a = {3 = 

1 = 0, and the Wigner D-function in Eq. ( 4.172) reduces to [Va88] 

1 

Dfz s(a = 0, {3 = 0,/ = 0) = 8szs · (4.178) 

With the latter simplification, Eq. ( 4.172) can now be written as 

2: (4.179) 
LJ 
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where the upper and lower component wave functions, indicated by the superscripts u and f 

respectively, are given by 

'lj;tJ(r) 

7j;},J(r) 

L' = 2J - Land (is defined as 

( 9LJ(kr) YLJJL(f) 

( i !L' J(kr) YL'JJL(f) , 

,. = ~E+m47r.L iofJ LO~ IJ ~2£+1 
'> 2E kr 2 e < 2 Sz Sz > 47r . 

Upper radial wave functions 

(4.180) 

(4.181) 

( 4.182) 

The aim of this section is to show how to generate the upper component radial wave function 

9LJ(kr) in Eq. (4.180). Following the procedure outlined in Sec. A.3 of Appendix A, one starts 

by defining the auxiliary wave function ¢LJ(r), such that 

K(r) ¢tJ(r) 

( 9LJ(kr) YLJJL(f) 

where ( is given by Eq. ( 4.182), 

K(r) 

and 

E + m + S(r) + V(r) 
A(r) = 

E+m 

( 4.183) 

(4.184) 

(4.185) 

(4.186) 

Substitution of Eq. (4.183) into Eq. (4.171) yields the following Schrodinger-like equation for 

¢LJ(r) 

( 4.187) 

where the equivalent central and spin-orbit potentials, Ueff(r) and Uso(r) respectively, are given 

by 

(4.188) 
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with 

U Central ( r) 2EV(r) + 2mS(r) + 2EVc(r)- [V(r) ]2 + [ S(r) ]2
- [ Vc(r) ]2

- 21/;:(r)V(r) 

Unarwin(r) 

and 

1 8A 
Uso ( r) = - 2 ErA ( or ) ; . 

(4.189) 

(4.190) 

Recall that E is the total energy (including rest mass energy) of the projectile nucleon in the 

projectile-nucleus centre-of-mass system, and is given by Eq. (A.2) in Appendix A. From 

Eqs. (4.183), (4.184) and (4.185) , one can write down the following expression for ¢~J(f') 

-+.u ( ... ) r 9LJ(kr) Y ( ~ ) 'f'LJ r = ., ~ LJJL r . (4.191) 

Substitution of the latter into Eq. ( 4.187), using the fact that [Va88] 

k 

(4.192) 
1 2 - 2 L (0,¢), 

r 

and making use of Eqs. (4.127) and (4.128) , yields the following differential equation for the 

upper component radial wave function [Ro84] for a fixed L 

{ 
.!!!'_ k2 _ U. ( ) _ ( L ) U ( ) _ L(L + 1) } 9f(kr) 
cPr + eff r -L- 1 so r r2 ~ 0 (4.193) 

where k = lk I = v' E 2 - m2 is the momentum of the projectile in the projectile-nucleus 

centre-of-mass system, and the + and - superscripts refer to solutions for J = L + ~ and 

J = L - ~ respectively. Note that Eq. (4.193) has the same structure as the conventional 

radial Schrodinger equation (compare to Eq. (4.149)]. The similarity is even greater if one 

ignores the quadratic Coulomb term in Uetr(r) and also the Coulomb contributions to A(r) in 

Eq. (4.186). With these approximations the asymptotic Coulomb functions take on the simpler 

nonrelativistic forms which are far more convenient to handle numerically, and c5fJ reduces 

to the usual Coulomb phase (JL defined in Ref. (Mc68]. Rost et al. (Ro84] have shown that 

these approximations are very accurate for intermediate-energy proton-nucleus scattering. Note, 
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however, that for calculations of the distorted radial wave functions in this project, Vc(r) has 

been included in Eq. (4.186) for A(r), and [Vc(r)J2 has been ignored in Eq. (4.189) for the 

central potential. 

The outgoing boundary conditions are incorporated by specifying that the radial wave func­

tion must reduce to the incident wave (kr) ]L(kr) when there is no interaction, and must be such 

that only the outgoing spherical wave is modified by the potential. These boundary conditions 

are satisfied in the exterior (i.e. where the nuclear potentials are negligible) by the expression 

(4.194) 

where FL(kr) and GL(kr) are the normal regular and irregular Coulomb wave functions, respec­

tively, used in conventional scattering theory [Mc68). 

The radial equation Eq. ( 4.193) is solved numerically, using a Numerov algorithm [Ko86), by 

integrating it from the origin (with arbitrary complex normalization) up to a matching radius 

RM beyond which a potential U(r) is negligible. There is such a distance if 

rU(r) --t 0 as r --t oo. (4.195) 

This condition is satisfied by the short range nuclear forces, but not by the Coulomb potential. 

The Coulomb potential is never negligible, and serves to distort (deviate from plane wave) the 
± 

wave function at infinity. Hence the inner solution ~ is matched to the outer solution 
yA(r) 

[Eq. (4.194) containing the Coulomb wave functions) at r 2: RM: 

Df ~ = FL(kr) + Cf[GL(kr) + iFL(kr)], 
A(r) 

(4.196) 

where Dz and Cz represent the normalization and scattering amplitudes respectively. The 

coefficients Cz are usually generated by evaluating gz at two values of the radius r, R1 and R2 , 

larger than RM. Defining 

(4.197) 

where R1 and R2 are well outside the range of the nuclear potential, it follows from Eq. (4.196) 

that 

c± 
L (4.198) 
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Hence, the scattering amplitudes Cz 's can be determined, regardless of the normalization in 

Eq. ( 4.196). Note that Eq. ( 4.198) is only an approximate method for numerically matching 

both the inner wave functions and their derivatives to the corresponding asymptotic quantities. 

For computing radial wave functions and the associated Dirac distorted waves the normalization 

Dz must be known. From Eq. (4.196), the normalization Df is given by 

DL± -- {.jA"{r}[FL + CL±± (GL + iFL)]} (4.199) 
9L r=RM 

Lower radial wave functions 

The lower component radial wave functions rf can be obtained from the upper component radial 

wave functions gz via the relation [Gr90, Ro84] 

Jf(kr) = (E + m + S - V - Vc)-1 { dgf + ~ ( -L- 1 ) } gf(kr) . (4.200) 
.jA"{r) dr r L .jA"{r) 

However, as pointed out in Ref. [Ro84], the functions gz and rf oscillate rapidly for large values 

of the orbital angular momentum L at intermediate energies and, consequently, Eq. (4.200) is 

numerically inconvenient to apply directly. To overcome this numerical problem, a procedure 

is employed which is analogous to the one followed in the previous section (for the upper radial 

wave functions) to derive the following radial differential equation for the lower component 

radial wave function, for a fixed L, 

{ 
d2 ( -L- 2) 
d2r + k

2 
- Ueff(r) - L _ 

1 
Uso(r) _ L'(L' + 1) } Jf(kr) = O 

r2 ~ 
(4.201) 

where Ueff(r) and Uso(r) are functions of A(r) [defined in Eq. (A.36) in Appendix A] given by 

A(r) = E - m - S~)--mV(r) - Vc(r) (4.202) 

and L' = 2 J - L. 

Following a procedure analogous to the previous section (for the upper radial wave functions), 

and using the Coulomb function recurrence relations [Ab70], instead of those for the spherical 

Bessel functions in Eq. ( 4.161), determines the lower component matching conditions for r 2: RM, 

namely [Ro84] 

( 4.203) 
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where 

- k 
FL = _E_+_M_ (4.204) 

'fJ v 'fJ 2 1 --FL - 1 + (-) FL 1 for J = L--L L - 2 

and, Df and Cf represent the normalization and scattering amplitudes respectively. The pa­

rameter rJ is the usual Coulomb parameter given by 'fJ = Z~ E [Ro84]. The same equation holds 

for G L in terms of G L and G L±l· The fact that the scattering amplitudes Cf in Eqs. ( 4.203) and 

( 4.196) must be identical, provides a consistency check on the numerical accuracy of the lower 

component radial wave functions. Note that, as expected, Eq. (4.204) reduces to Eq. (4.163) in 

the limit of zero potentials. 

4.3.5 Numerical accuracy of the relativistic distorted waves 

The computer code HOOVER, of Horowitz and Murdock [Ho91a], was modified to generate 

the upper and lower component distorted waves via the methods discussed in Sec. 4.3.4. A 

number of stringent numerical tests were performed to check the implementation and numerical 

accuracy of our relativistic distorted waves. The latter wave functions will eventually serve as 

input for distorted wave calculations of quasielastic polarization transfer observables (see Sec. 

4.4). The various numerical checks are now discussed in the following subsections. 

Focusing effects of optical potentials 

Partial wave studies of optical-model wave functions reveal that there is a region called the 

"focus" where a nucleon is most likely to be found on the side of the nucleus furthest away 

from the incident beam [Ei59, Mc59, Au61, Mc62, Am63, Am66, Mc68, Au70]. In classical 

language this focus is due to the constructive interference among two or three partial waves 

grazing the nuclear surface [Ei59]. The aim of this section is to attempt to reproduce the 

quantum mechanical focusing effects, reported by McCarthy [Mc62, Mc68] and Amos [Am66], 

by explicitly calculating nonrelativistic distorted wave functions at incident proton and neutron 

energies below 30 MeV. Exact duplication of the focusing effects will provide stringent numerical 
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tests for the accuracy of the following quantities in our nonrelativistic partial wave expansions 

discussed in Sees. 4.3.1 and 4.3.2: 

• the Clebsch-Gordan coefficients, 

• the Legendre polynomials PL (cos B), 

• the spherical harmonics YL M (cos B), 

• the spinor spherical harmonics YLJtJ.(f) , 

• the partial wave summations, yielding the distorted wave functions, 

• the Numerov algorithm, used for generating the radial wave functions, 

• and, the Coulomb phases 0'£. 

Of course, these checks will also provide confirmation of the correctness of the latter quantities 

in the partial wave expansions for the relativistic distorted waves discussed in Sees. 4.3.3 and 

4.3.4. 

The above-mentioned focusing effects are now investigated by following the procedure de­

scribed in Ref. [Mc62], where the distorted wave functions are solutions of the traditional 

Schrodinger equation, namely 

(4.205) 

where E, given by Eq. (A.2) in Appendix A, is the total energy of the projectile nucleon in the 

nucleon-nucleus centre-of-mass frame, J.L is the reduced mass of the nucleon-nucleus system, Vc 

is the Coulomb potential, and V(r) is the central optical potential parametrized by 

(r-R) l 
V ( r) = (Vo + i Wo) [ 1 + e-a- r ( 4.206) 

1 
where R = r 0 A a, and the parameters depend on the energy of the incident nucleon and the 

type of target nucleus. Note that there are only four parameters: the real and imaginary well 

depths Vo and Wo, the radius parameter Ro and the surface thickness parameter a. 
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Neglecting the spin of the incident nucleon, and making use of the following identity in 

Eq. (4.118) [Sa85] 

(4.207) 

where PL refers to the usual Legendre polynomials, yields the following partial wave expansion 

for the scattering wave function x(+)(r) in Eq. (4.205), namely 

00 

x(+)(f') = L 7/JL(kr) PL(cosfJ) (4.208) 
L=O 

where 

(4.209) 

and uL(kr) is the solution of the radial Schrodinger equation 

{ 
J2 2!-L L(L + 1) } 
rFr + k

2 
- 1i2 [V(r) + Vc(r)] - r 2 uL(kr) = 0, (4.210) 

where k is the incident momentum of the nucleon in the nucleon-nucleus centre-of-mass system, 

and CJL is the usual Coulomb phase shift [Mc68]. Following the methods discussed in Sec. 4.3.4 

(for obtaining the upper radial wave functions), one can solve Eq. (4.210), thus yielding the 

radial wave function uL(kr). The radial differential equation is solved numerically using the 

procedure discussed in Sec. 4.3.4 (for the upper radial wave functions). 

For the scattering of 30 MeV neutrons (zero Coulomb potentials and Coulomb phase shifts) 

and 5 MeV protons from 12C, the magnitudes 17/JL(kr) I and phases c/JL(kr) for the most impor­

tant partial waves contributing to Eq. (4.208) , are calculated, where 

phase{ 7/J L( kr)} phase{iL} + phase{uL(kr)} 

L1r 
2 +<h(kr). 

(4.211) 

( 4.212) 

More detail can be found in Refs. McCarthy (Mc62, Mc68]. Figs. 4.2 and 4.3 display the phase 

angles <h(kr) and the magnitudes 17/JL(kr) I of the first four partial waves, for the scattering 

of 30 MeV neutrons and 5 MeV protons from 12C, respectively. The optical-model parameters 

used in both cases are Vo = -40 MeV, Wo = -8 MeV, r0 = 1.2 fm and a= 0.5 fm. Figs. 4.2 and 

4.3 are identical to Figs. 1 and 2 in Ref. [Mc62], respectively, thus confirming the correctness of 

our numerical approach. Next, an attempt is made to reproduce the focusing effect discussed 
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Figure 4.2: The phase angles (/>L(kr) and the magnitudes 11/JL(kr) I of the first four partial waves 

for the elastic scattering of 30 MeV neutrons on 12C. The optical- model parameters are given 

in the text. 
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Figure 4.3: The phase angles (/>L(kr) and the magnitudes J~L{kr) J of the first four partial waves 

for the elastic scattering of 5 MeV protons on 12C. The optical-model parameters are given in 

the text. 
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12C(p,p) E = 5 
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kr 

Figure 4.4: The square of the magnitude of the optical-model wave function lx( +) ( r) 12 , for the 

scattering of 5 MeV protons from 12C, on the scattering axis. The optical-model parameters 

are given in the text. 

by McCarthy in Refs. [Mc62, Mc68], by summing the first 8 partial waves for the scattering of 5 

MeV protons from 12C, and plotting lx(+l(r)l2 on the scattering axis defined by() = 0 (forward 

scattering) and()= 1r (backward scattering) in Eq. (4.208), that is, along the trajectory of the 

projectile through the centre of a nucleus. The focus appears as a large peak in Fig. 4.4, and 

is identical to Fig. 4 in Ref. [Mc62]. Another way of displaying the focus in Fig. 4.4 is to plot 

lx(+l(r)l in the scattering plane for¢ ~ ():::; 1r and¢ = 0 [Am66], that is, one only considers 

scattering in one half of the scattering plane. The focus appears as an intense spot in Fig. 4.5. 

One of the most spectacular illustrations of the focusing effect of optical potentials, is ob­

served in Figs. 4.6 and 4.7, for the scattering of 24 MeV neutrons from 118Sn, where the optical­

model parameters are V0 = -40 MeV, W0 = -11 MeV, ro = 1.25 fm and a= 0.7 fm. Fig. 4.6 

plots the phase variation of the distorted wave function x(+l(r)as a function of the impact pa­

rameter, defined as the perpendicular distance of the projectile from the scattering axis, where 

lines of equal phase are plotted at intervals of 100°. The result, in Fig. 4.6, is identical to 

Fig. 12 in Ref. [Am66]. As in Fig. 4.5, Fig. 4.7 plots the magnitude lx(+l(r)l of the distorted 
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12 
C(p,p) EP 5 MeV 

Figure 4.5: The magnitude of the optical- model wave function lx(+)(r)l, for the scattering of 5 

MeV protons from 120 using the parameters specified in the text. The direction of the incident 

beam is indicated by the arrow, and the focus is indicated by the most pronounced region. 
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wave function, which is identical to Fig. 11 in Ref. [Am66], thus providing confidence in our 

numerical procedures. 

Plane wave limit of relativistic distorted waves 

In this section, it is checked whether the relativistic distorted waves in Eq. (4.179) reduce to 

the Dirac nucleon plane wave solutions in Eq. (4.164) for zero relativistic potentials in the 

Dirac equation given by Eq. ( 4.171). A free incident nucleon is considered with spin projections 

Sz =±~,along the z quantization axis, in the rest frame of the nucleon, for which the relativistic 

plane wave solutions are given by [see Eq. (E.34) in Appendix E, and also Eqs. (4.155) and 

(4.156)] 

where 

such that 

cos a 

'lj;~+) 1 (f') 
k,sz=-2 

{E+;; 
V2E 

{E+;; 
V2E 

k . r = ( kr) cos a 

1 

0 

kx + iky 
E+m 

0 

1 

kx- ky 
E+m 

-ikz 
E+m 

ik·f' e 

ik·f' e 

cos Ok cos Or + sin Ok sin Or cos ( ¢k - ¢r) 

(4.213) 

(4.214) 

(4.215) 

( 4.216) 
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Figure 4.6: The phase variation of the optical-model wave function x<+) (f) for the scattering 

of 24 MeV neutrons from 118Sn, using the optical- model parameters specified in the text. The 

incident direction is that for increasing phase value. The double line indicates the approximate 

radius of the 118Sn nucleus. 
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118 
Sn(n,n) En 24 MeV 

Figure 4.7: The magnitude of the optical- model wave function JxC+)(r)J for the scattering of 

24 MeV neutrons from 118Sn, using the parameters specified in the text. The direction of the 

incident beam is indicated by the arrow, and the focus is indicated by the most pronounced 

region. 
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First, it has been verified numerically that Eqs. ( 4.213) and ( 4.214) are identical to Eq. ( 4.165) 

[Eq. (4.166)] for the spin-up and spin-down projections along the z quantization axis. This en­

sures that the partial wave summations for the upper and lower components are correct, and 

also that the spherical Bessel functions are correctly generated from the usual recursion relations 

[Ab70]. Thereafter, it has been verified numerically that Eq. (4.179) reduces to Eqs. (4.213) 

and ( 4.214) for the two different spin projections. 

Scattering amplitudes 

As an additional check for correctness of the upper and lower component distorted wave func­

tions, another stringent numerical test is discussed. As already mentioned in Sec. 4.3.4, for 

non-zero potentials in Eqs. (4.193) and (4.201), the scattering amplitudes c£ obtained from 

both the upper and lower component matching conditions in Eqs. (4.196) and (4.203) respec­

tively, must be identical. This provides a check on the numerical accuracy of the lower com­

ponent radial wave functions, as well as the associated matching conditions. To check whether 

the above-mentioned scattering amplitudes are equal, the elastic scattering spin observables 

(~~, Ay, Q) [see Sec. G.6 in Appendix G] based on the scattering amplitudes generated from 

Eqs. (4.196) and (4.203) as input, are directly compared: expressions for the observables in 

terms of the scattering amplitudes c£ were obtained from Refs. [Mc68, Mu87a, Ho91a]. 

Results are presented in Fig. 4.8 for elastic scattering of 200 MeV protons on 4°Ca using the 

microscopic Dirac optical potentials of Ref. [Mu87b, Ho91a]. The solid and dashed curves are 

calculated using the scattering amplitudes c£ generated from Eqs. (4.196) and (4.203). Note 

that from about 50°, in the nucleon-nucleus centre-of-mass system, the spin observables differ 

slightly. This difference increases as the centre-of-mass scattering increases. It is found that the 

latter discrepancy is related to the fact that the scattering amplitudes for partial waves with 

orbital angular momentum larger than L = 30 are different for upper and lower component 

matchings. The latter, in turn, is related to the fact that the upper and lower relativistic 

radial wave functions are matched to the asymptotic nonrelativistic Coulomb wave functions, 

and also due to the fact that the scattering amplitudes were generated via the approximate 

matching conditions given by Eq. (4.198). Note, however, that since Rost et. al. [Ro84] were 
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only concerned with scattering angles smaller than 30°, the above-mentioned discrepancies did 

not show up in their work. 

The above-mentioned shortcomings are addressed by 

• matching the inner radial solutions to full relativistic Coulomb wave functions [Ro60, 

Gr90, Co95], instead of the usual nonrelativistic Coulomb wave functions, 

• matching the inner upper radial wave functions and their derivatives to the corresponding 

asymptotic expressions at the matching radius RM , instead of using the approximation 

advocated by Eq. (4.198), that is [Mc68] 

c gz 1 .JA(rj )' 
(gzf.JA(rj) 

(FL)' + Cf [ (GL)' + i (FL)'] 

(FL) + Cf [ (GL) + i (FL)] 

which yields the following expression for Cz [instead of Eq. {4.198)] 

( 4.217) 

c± _ (gzj..jA[T}) (FL)'- (gzj..jA[T})' (FL) 
L- (gzj..jA[T})'(GL)-(gzj..jA[T})(GL)'+i[(gzj..jA[T})'(FL)-(gzj..jA[T})(FL)']' (

4
.2lB) 

where the primed quantities indicate first order radial derivatives. An identical expression also 

exists for the scattering amplitudes generated from the lower component matching conditions 

[Ro84]. 

Results are presented in Fig. 4.9 for elastic scattering of 200 MeV protons on 4°Ca using 

the global Dirac optical potentials of Ref. [Ha90]. The solid and dashed curves are calculated 

using the scattering amplitudes Cz generated from Eqs. (4.196) and (4.203). Note that the spin 

observables are identical, and don't exhibit the unphysical large-angle behaviour observed in 

Fig. 4.8. The latter result confirms the accuracy of the numerical procedures used for generating 

the relativistic upper and lower component radial wave functions. 

4.4 Relativistic distorted wave impulse approximation 

In this section, the Relativistic Distorted Wave Impulse Approximation {RDWIA) formalism, 

for calculating inclusive proton-nucleus inelastic polarization transfer observables, is developed. 

The basic ingredients of the RPWIA are: 
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Figure 4.8: Elastic scattering spin observables [differential cross section (~~) , analyzing power 

(Ay) and spin rotation function (Q)] for protons scattering from 4°Ca at 200 MeV, calculated 

using the global optical potential parameters from Refs. [Mu87b,Ho91a]. The solid and dashed 

curves are calculated using the scattering amplitudes C[ obtained from both the upper and 

lower component matching conditions in Eqs. ( 4.196) and ( 4.203) respectively. 
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Figure 4.9: Elastic scattering spin observables [differential cross section (~~), analyzing power 

(Ay) and spin rotation function (Q)], for protons scattering from 4°Ca at 200 MeV, calculated 

using the global optical potential parameters from Refs. [Ha90]. The solid and dashed curves, 

which are identical, are calculated using the scattering amplitudes C[ obtained from both the 

upper and lower component matching conditions in Eqs. ( 4.196) and ( 4.203) respectively. 
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• the relativistic SVPAT NN scattering amplitudes defined in Sec. 3.2.4 of Chapter 3, 

• the relativistic nuclear response functions introduced in Sec. 4.2, 

• and, relativistic distorted wave functions discussed in Sec. 4.3. 

Essentially, the RDWIA differs from the RPWIA developed in Chapter 3, as follows: 

• the mean-field Dirac spinors for the projectile and ejectile nucleons, given by Eq. (3.55) 

in Chapter 3, are replaced by the relativistic projectile and ejectile distorted wave func­

tions (discussed in Sec. 4.3.4), which are solutions to the Dirac equation with relativistic 

spherical scalar and time-like vector potentials. Consequently, the projectile and ejec­

tile mean-field Dirac spinors, U(mi, k1 , sl) and U(mi, ki, si) respectively, in the invariant 

matrix in Eq. (3.54) of Chapter 3, are replaced by the relativistic distorted waves 'lj;~+)(r) 
k,s 

and 'lj;k~~ ),t (r), respectively: 'lj;k~ +) ( f') is a relativistic distorted wave with outgoing bound-
s ~ 

ary conditions [given by Eqs. (4.172) and (4.173)), and 'lj;1~:,t(f') is a relativistic distorted 

wave with incoming boundary conditions [given by Eqs. (4.174) - (4.177)). Note that 

the RDWIA does not incorporate relativistic effects via effective masses of the projectile 

and ejectile nucleons. Instead, the relativistic effects are fully incorporated in the Dirac 

distorted waves which are solutions to the Dirac equation containing relativistic potentials. 

• compared to the RPWIA formulated in momentum space, the RDWIA formalism is de­

veloped in coordinate space; this is due to the fact that the relativistic distorted waves 

are conventionally generated in coordinate space. 

• compared to the Fermi-gas model (FGM) and mean-field approximation (MFA) descrip­

tions of the target nucleus in the RPWIA, a general framework is developed in which the 

nuclear response can be treated to any level of sophistication in the RDWIA; the nuclear 

response is related to the nuclear polarization tensor, which can be systematically com­

puted using well-known many-body techniques (see Sec. 4.2). For the purpose of this 

project, nuclear response functions, based on the relativistic free Fermi-gas model, rela­

tivistic mean field approximation, and the local density approximation, are considered. As 

in the RPWIA, the latter two models incorporate relativistic effects via effective masses 

of the target nucleons. 
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The RDWIA is similar to the RPWIA in that both formalisms employ the impulse approxima­

tion, that is the off-shell NN scattering matrix is replaced by the on-shell free NN scattering 

matrix. The impulse approximation is generally valid at energies where the mean free path 

of the incident nucleon is long compared to the size of the nucleus, and wavelength is short 

compared to the average distance between nucleons in the nucleus. This is usually the case 

at the intermediate bombarding energies of interest (between 100 and 500 MeV). Also recall, 

that the empirically observed features of quasielastic proton-nucleus scattering (see Chapter 

2), suggest that the interaction be modelled via a free NN interaction, and hence, the impulse 

approximation should be valid. 

In the following section, the RDWIA transition amplitude T~~s for inelastic proton- nucleus 

scattering is considered. 

4.4.1 Relativistic transition amplitude 

In order to calculate polarization transfer observables within the framework of the relativis­

tic distorted wave impulse approximation, it is necessary to define the appropriate transition 

amplitude. As in Ref. [Ro87], the RDWIA transition amplitude, for proton-nucleus inelastic 

scattering to discrete states, is taken to be 

where 

A 

T~~s = "L/ d4x'd4yjd4xd4yj[1/{;J,(x') ® ¢n(YI, ... ,yj, ... ,yA)] 
j=l 

x[<x'yjltlxyj >] [7/Ji~)(x) ® ¢o(Yr, ... ,yj, ... ,yA)] ( 4.219) 

• the symbol® indicates a kronecker (or direct) product, defined by Eq. (G.3) in Appendix 

G, and the products of square brackets refer to normal multiplication. In the section that 

follows, the symbol ® for the kronecker-product is often omitted, although it is obviously 

implied throughout the discussion that follows. 

• 7/Jt) ( x) is the relativistic distorted wave function of the projectile proton, with outgoing 

boundary conditions [indicated by the superscript ( + )], asymptotic incoming four momen­

tum k = [Ek, k] in the proton-nucleus centre-of-mass system, and spin projections 

along an arbitrary quantization axis in the rest frame of the projectile (see Sec. 4.3.4). 
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• 7}ii";-1, (x') = 1/Jk;-;,t (x'h0, where 1/Jk;-1, (x') is the relativistic distorted wave function of the 

ejectile nucleon, with incoming boundary conditions [indicated by the superscript (- )], 

asymptotic outgoing four momentum k' = [Ek' , k'] in the nucleon-nucleus centre-of­

mass system, and spin projection s' along an arbitrary quantization axis in the rest frame 

of the ejectile (see Sec. 4.3.4). 

• ¢o(YI, ... , Yj, ... , YA) is the initial many-body ground state of the nucleus, and is a function 

of all A constituent target nucleons. 

• ¢n(Yl, ... , Yj, ... , YA) is the final many-body excited state of the nucleus, and is a function 

of all A constituent target nucleons. 

• i is the relativistic NN interaction which drives the transition, and the tilde in< x'yj lilxyj > 

indicates explicit treatment of nucleon exchange, that is, the coordinate space matrix el­

ements of i are antisymmetrized. 

Introducing a complete set of four-momentum eigenstates, the transition amplitude in Eq. ( 4.219) 

can be written as 

A d4'd4 d4'd4 s' s '""'I Po Po Pj Pj 4 , .4 , 4 4 -(-) , - , 
Tno = ~ (27r)4(2·n-)4(27r)4(27r)4d x a-yjd xd Yi1/Jk's'(x)¢n(Yl, ... ,yj, ... ,yA) 

X e-ip~·x' e-ipj·Yj < P~PjitiPoPj > eipo·x eiPrYi1/Jk~) (x) ¢o(Yl , ... , Yj, ... , YA) · (4.220) 

Exploiting the harmonic time-dependence of the initial and final scattering and bound state 

wave functions, by assuming that they are solutions of the fixed energy Dirac equation, the time 

and energy integrations are readily performed, yielding 

T s's _ 
nO -

A d ... 1 d ... d ... 1 d ... 
'""'/ Po Po Pi Pi d .... 'd .... 'd .... d .... • J.(-)( .... '):i.. (.... .... , .... ) ifo'·x' ipi'·iii' 
~ (27r)3(27r)3(27r)3(27r)3 X Yj X Yj 'f'k' 8 , X 'f'n Yl, ... , Yj , ... , YA e e 

' ,~ltA I . -ijio·x -itir 'fii.J,(+)( .... ) A. (.... .... . .... ) X<PoPj POPJ>e e 'f'ks x c.pOYl, ... ,yJ, ... ,yA · (4.221) 

The impulse approximation is invoked by assuming that the off-shell NN t-operator i can be 

replaced by the on-shell t-operator iNN, which is a function of the relativistic Mandelstam 

invariants (see Sec. E.5.1 in Appendix E) 

s = Po+ Pi 

t Po-Po' 
, 

u - Po- Pi 

Po' +p/ 
, 

Pi -pj 
, 

Po -Pi· ( 4.222) 
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As an additional approximation, one assumes that the explicit dependence of iNN on s is ig­

nored, and iNN is evaluated at a fixed value so, taken from the asymptotic four-momentum 

in some appropriate frame such as the nucleon-nucleus centre-of-mass frame, Breit frame or 

"optimal frame" [Sm88, Ha91, Fe92, Ic92]. The customary choice for s0 , in impulse approxima­

tion calculations, is the Breit- frame energy, but in this project nuclear recoil is ignored, so so 

is taken to be the incident laboratory kinetic energy 11ab· One also makes the approximation 

that, in the nonrelativistic limit, t2 ~ -if· if [Si90], where if is the local three-momentum in the 

chosen reference frame, namely the nucleon-nucleus centre-of-mass system. Furthermore, for 

the relativistic on- shell NN amplitudes, one adopts the Horowitz- Love-Franey model, discussed 

in Sec. 3.2.4 of Chapter 3, for which the antisymmetrized matrix elements of the t-operator 

iNN are given by [Mu87a] 

I I I ~ I < PoPj tNN POPj > (2 )3 .r3 ( ... I ... I ... _. ) 
7r u Po +Pi -Po -Pi 

X L [ tf(11ab, lifl) + tff (11ab , IQ I)] ).~l) · )..~) 
(3 

( 4.223) 

where the superscripts (1) and (2) refer to the projectile and target nucleon respectively, the 

i 's stand for the five Dirac matrices listed in Table 3.2 (see Sec. 3.2.4 in Chapter 3), and the 

dot product implies that the Lorentz indices are contracted. The direct and exchange three­

momenta, if and Q respectively, are given by 

... ... I 
Po-po 

... I ... 
Pi -pi 

Q~ -+ ...... I 
= Po- Pi 

... I ... 
Po -Pi· (4.224) 

where all quantities are defined in the nucleon- nucleus centre-of-mass system. The t(3 functions 

are related to the usual relativistic SVPAT F (3 amplitudes of the HLF model via [see Appendix 

F , and Eq. 3.58 in Chapter 3] 

(4.225) 

where the momentum and energy of the projectile in the NN centre-of-mass system, lkcml and 

E cm respectively, are given by (see Appendix D) 

1 
2 V211ab M 

Vlkcml2 + m2 
· ( 4.226) 
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Substitution of Eq. (4.223) into Eq. (4.221), and subsequent integration over i/j ',gives 

A 
818 ~ ~~d .... 'd .... 1 d .... d ..... T.( - ) ( .... ')I.. (.... .... 1 .... ) Tno = ~ ~ X Yj X Yj '~'k,1 81 X 'f/n Yl, ... , Yj ' ... , YA 

j=l /3 

Po Po Pj · -~-~ '(P+- -~)- 1 D X .... J d .... 'd .... d .... 
X { (21T')3(21T')3(21T')3(21T')3 e~Po ·x e~ o Pi-Po 'Yi [ t/3 ('Ilab, IQ'I) + t/3 (Tlab, IQ I)] 

A (l) A (2) -ifio·x -iPi'iii} .,,( +) ( .... ) .+. (.... .... .... ) (4 227) X /3 · /3 e e '~'fs X 'f/0 Y1, ... ,yj, ... ,yA · · 

Making use of the following relationships [see Eq. (4.224)] 

flo' ilo-ii 

.... , 
Po i/j+Q ( 4.228) 

in the first and second terms of Eq. ( 4.227) respectively, the flo integrations in Eq. ( 4.227) are 

replaced by 

( 4.229) 

in the first and second terms respectively, thus giving 

A 

T 818 - ~~~d .... 'd .... 1 d .... d .... • T.(-)( .... ')l.. (.... .... 1 .... ) nO - ~ ~ X Yj X Yj 'Pf,1 81 X 'f/n Yl, ... , Yj , ... , YA 
j=l /3 

x {J difo di/j dq ei(po-q)·x 1 ei(Pi+q)-iii 1 tD('Il liil) e-ifio·x e-iPi'Yi 
(21!' )3 (21!' )3 (21!' )3 (21!' )3 {3 lab, 

x J difo di/j dQ ei(pj -Q )·x1 ei(po+Q )·iii 1 tx ('Il IQ I) e-ifio·x e-iPi'Yi} 
(21!')3(21!')3(21!')3(21!')3 {3 lab, 

xA~1) ·A~2) '1/Jt)(x) ¢o(Yl, ... ,fh, ... ,yA) . (4.230) 

Doing the momentum integrals in Eq. ( 4.230) yields 

A 

Tnsols = ~~~d .... 'd .... 'd .... d ..... T.(-)( .... ')l..( .... .... , .... ){tD(I .... ' .... ' 1)"3( .... ' .... ),.3( .... ' .... )} ~ ~ X Yj X Yj 'f/k1 81 X 'f/n Yl, ... , Yj , ... , YA {3 X - Yj u X -X u Yj - Yj 
j=l /3 

where 

+ { tff (lx'- y/1)83(0'- x)o3(x'- Yj)} A~1 ) · A~2 ) '1/Jt) (x) ¢o(Yl, ... , Yj, ... , YA) (4.231) 

tf(l x- yl) 

tff (lx- Yl) 

(2~)3 J dqtf(liil) e-iq.(x-ii) 

(2~)3 J dQtf(IQI) e-iQ·(x-ii). ( 4.232) 
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Performing the remaining coordinate space integrals gives 

A 

T s's _ ""'""'fd""'ld""' I.T,(-)( ... 1)]. (""' ... 1 ... ) ,(1) ,(2) nO - L....J L....J X Yj 'Pf/ s' X 'f/n Y1, ... , Yj ' ... , YA /\(3 • /\(3 
j=1 f3 

{tf(lx 1 -:Y/1) 1/Jtl(x1
) ¢o(Y1, ... ,y/, ... ,yA) 

+ tff (I x 1
- :Y/ 1)1/Jtl (:Y/) ¢o(:Y1, ... , x 1

, ••• , YA)} . 

Since x1 and Yi 1 are merely integration variables, Eq. (4.233) can also be written as 

A 

T~~s = LL/ dxdyj [7/}~~:,(x) ® <fin(Y1,···,Yi,···,YA)] [>.~1 ) ®.\~2)] 
j=1 f3 

{tf(lx-Yjl) [1/;tl(x) ® ¢o(Y1,···,Yh ···, YA)] 

+ tff(lx-:Yil) [V;1:l(Yj) ® ¢o(Y1, ... ,x, ... ,yA)]}. 

195 

( 4.233) 

( 4.234) 

The latter equation is identical to Eq. (2.3) in Ref. [Ro87]. Note that the second term in 

Eq. (4.234) has exchanged the labels x andy, and thus treats the explicit exchange of projectile 

and target nucleon. Application of the following identity (twice) 

(A® B)(C ®D) = (AC) ® (BD) (4.235) 

to Eq. ( 4.234), allows one to write Eq. ( 4.234) as: 

A 

T~~s = L L j dxdyi 
j=1 f3 

{ [ 7/J1~ ;, (x) >.131/Jt) (x)] [ ¢n(Y1, ... , Yj, ... , YA)>.13 ¢o(Yb ... , Yi, ... , YA) l tf (lx- Yil) 

+ [ 7/J~~ ;, (x) >.f31fJ1:) (Yj)] [ ¢n(Y1, ... , Yi, ... , YA) >.13 ¢o(Y1, ... , x, ... , YA)] 

x tff (lx- Yi I)} . ( 4.236) 

The plane-wave limit of Eq. ( 4.236) for free NN scattering is now investigated, for which 

A 1 

1/J~+l(x) 
ks 

.T.~-) (""') 
'~'k' s' X 

u(k, s) e-ik·x 

u(k1, s1) e+ik'·x (4.237) 

where the free-nucleon Dirac spinor is given by Eq. (4.156), with normalization ut u = 1, 

and all kinematic quantities are now defined in the NN centre-of-mass system. Analogous to 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RELATIVISTIC DISTORTED WAVE MODEL 196 

Eq. (4.236), the elementary free NN amplitude is now given by 

t N N = 2: J dx dif 
f3 

{[ 1/;~-J (x).\13 1/;~+l (x)J [1/;~-l (if).\13 1/;~+l (if)] tn(lx-ifl) 
k~ 8~ k1 81 k~ 8~ k2 82 f3 

+[1/;~-l (x).\13 1/;~+l (i/)][1/;~-l (if).\13 1/;~+l (x)]tx(lx-i/1)} 
k~ 8~ k1 81 k~ 8~ k2 82 f3 

( 4.238) 

where subscripts 1 (2) and 1' (2') refer to the projectile (initial target nucleus) and ejectile 

(final target nucleus) respectively. Substitution of Eqs. (4.237) and (4.232) into Eq. (4.238), 

and performing the coordinate space integrals, gives 

tNN = 2:[ u(k~, si).\13u(k1, s1)] [tf(ltl'l) + t% (IQ)I,] [ u(k~, s~).\13u(k2, s2)], (4.239) 
f3 

which is identical to the invariant scattering matrix element M defined in Eq. (3.54) (with 

m* = m) of Chapter 3. Thus, it is gratifying to see that, in the plane-wave limit of free NN 

scattering, our expression for the relativistic distorted wave transition amplitude for inelastic 

proton-nucleus scattering, given by Eq. ( 4.236), reduces to the well-known expression for the 

invariant matrix element M, given by Eq. (3 .54) in Chapter 3, for the free NN amplitude. 

In the next section, expressions for complete sets of polarization transfer observables, for 

inclusive proton-nucleus scattering for the RDWIA model, are derived. 

4.4.2 Polarized double differential cross sections 

The aim of this section is to derive expressions for polarized double differential cross sections for 

inclusive proton-nucleus inelastic scattering for the RDWIA model: One is eventually interested 

in calculating polarization transfer observables which, as shown in Sec. 3.2. 7 of Chapter 3, are 

ratios of linear combinations of polarized double differential cross sections. Following standard 

references [Bj64, Gr92] (see also Appendix E), and adopting the normalization procedure of 

Serot and Walecka [Se86] given by Eq. (4.4) for the Dirac wave functions, the differential cross 

section for proton-nucleus inelastic scattering is given by 

-, -
1 I 8' 8 12 d k d kn 4 ( I ) 

do-8 1 8 = IV'-V'ol Tno (21r)3 ( 21r)3 8 k +kn-k-ko (4.240) 

where 
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• v and vo are the velocities of the projectile and target nucleus respectively, 

• k and k' are three-momenta of the projectile and ejectile respectively, 

• and ko and kn are three-momenta of the initial and final target nucleus respectively. 

For inclusive proton-nucleus inelastic scattering, one must sum over final states n (where Ln 

also implies integrating over final momenta kn) of the final nucleus. Following the procedure 

outlined in Sec. E.5.1 of Appendix E, namely, integrating over the three-momenta kn, and 

writing 

(4.241) 

Eq. (4.240) can be rewritten as 

1 1 "'"' I s' s 12 1-+ 1 I I r( ) das' s = ( )2l-+ -+ I L....- Tno k Ek' dEk' dO u Ek' +En- Ek - Eo 
27r v- vo n 

( 4.242) 

where the Ek and Ek' denote the projectile and ejectile nucleon energies, Eo and En denote 

the initial and final energies of the target nucleus, and s' and s denote spin projections along 

quantization axes (to be specified in Sec. 4.4.4) in the rest frames of the ejectile and projectile 

respectively. The formula given by Eq. (4.242) is valid in any Lorentz system. However, for 

calculations of observables, it is necessary to choose a specific reference frame. Now since the 

relativistic distorted waves, discussed in Sec. 4.3, are traditionally generated in the nucleon­

nucleus centre-of-mass system, one adopts the latter reference frame for explicitly calculating 

the polarization transfer observables. The nucleon-nucleus centre-of-mass system is defined by 

--+ -+ .... , -+ 

k + ko = k + kn = 0 . (4.243) 

which implies that the scattering four-momenta are given by 

k (Ek, k) 

ko (Eo, -k) 

k' (Ek', k') 

(4.244) 

Conservation of energy is expressed by 

(4.245) 
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where m and mt refer to the masses of the nucleon and target nucleus respectively. From 

Eqs. (4.244) and (4.245), one sees that 

lkl = lk'l = p (say) , 

and hence the total energy in the proton-nucleus centre-of- mass system is given by 

Ecm Ek + Eo 

VP2+m2+VP2+m~. 

( 4.246) 

(4.247) 

1 
Next, an expression for the flux factor 

1

.... .... I in Eq. (4.242), in the nucleon-nucleus centre-
v -v0 

of-mass system, is derived. One starts by writing 

1 
( 4.248) IV'- V'ol 

where 

(4.249) 

is the Lorentz invariant flux factor (only in collinear frames) which, using Eqs. (4.244) and 

(4.246), is given by [Gr94] 

pEcm. (4.250) 

Substitution of Eq. (4.248) [with Eq. (4.250)] into Eq. (4.242), yields 

1 EkEo""l s'sl2 1 ( das' s = (2 )2 -E ~ Tno p Ek' dEk' dO 6 Ek' +En- Ek- Eo) 
1r P em n 

(4.251) 

and the resulting polarized double differential cross section, for inclusive proton-nucleus inelastic 

scattering, is given by 

( 4.252) 

where the explicit expression for T~~s, with the relativistic distorted wave impulse approximation, 

is given by Eq. (4.236) . 
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4.4.3 Zero-range no-exchange approximation 

In this section, additional approximations are invoked, so as to simplify the expression for 

the transition amplitude in Eq. (4.236). Firstly, the explicit treatment of nucleon exchange is 

ignored, which means that Eq. (4.236) can be written as 

A 

T~~s = 'L'L/ dxdf]j [ijj1~;,(x)>.p7/J1:)(x)] 
j=l {1 

[ ¢n (yl, ... , Yi, ... , YA)>.f1 ¢o(Yl, ... , ih, ... , YA)] tp(lx- fhl) ( 4.253) 

where 

(4.254) 

and the tp's are related to the relativistic SVPAT NN amplitudes via [see Eq. (4.225)] 

.... ) -87ri lkcmiEcm .... ) tp(11ab, lq I = 2 Fp(Ttab, lq I , 
m 

( 4.255) 

where 11ab is the laboratory kinetic energy of the projectile, and if is the three-momentum 

transfer given by Eq. ( 4.224) in the nucleon-nucleus centre-of-mass system. Eq. ( 4.253) is 

identical to Eq. (9) in Ref. [Sh84]. An additional approximation is made by assuming that NN 

interaction is a zero-range interaction, that is [Ik95] 

( 4.256) 

Substitution of Eq. ( 4.256) in Eq. ( 4.253) yields the following expression for the transition 

amplitude 

A 

L L tp(11ab, lifl) J dyj [ ifii~;,(Yj) Ap7j;t)(fh)] 
j=l {1 

[ ¢n(Yl, ... , Yj, ... , YA)>.f1 ¢o(Yl, ... , Yj, ... , YA)] · ( 4.257) 

Using second quantization for the target space matrix elements, one replaces 

( 4.258) 

by the second quantized form (see Sec. 4.2.1 and Appendix E), 

(4.259) 

where 
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• I<Po > = I<Po(iJI, ... ,fh, ... ,iJA) > = <Po(Yb···,iJj, ... ,iJA), is the initial interacting ground 

state in the Heisenberg picture 

¢n(Yb ... , Yj, ... , iJA), is the excited state of the nucleus 

with excitation energy 

w = En -Eo, (4.260) 

• ~(fh) is a nucleon field operator in the Heisenberg picture, the form of which depends on 

the model of the target nucleus. For example, for a Fermi-gas model, the field operator is 

given by Eq. (4.41), and within the mean-field approximation, the field operator is given 

by Eq. (4.54). 

• ~(iJj) )./3 ~(iJj) is the nuclear current operator. 

Substitution of Eqs. ( 4.259) and ( 4.257) into Eqs. ( 4.252) yields the following expression for the 

inclusive polarized double differential cross section [compare to Eq. (3.82), with Eqs. (3.70) -

(3.74), in Chapter 3] 

( 
d Cis's ) 

drl' dEk' em 

A 

K L L ta(11ab, k/1 )* t{3(11ab, k/1) 
i,j=l a ,/3 

fd d H s's(k ... k ... , ...... ) sa/3( ... ... ) 
X Yi Yi a/3 , iYj,Yi Yi,Yi (4.261) 

where the kinematic factor K is given by 

( 4.262) 

The projectile distorted nucleon tensor H:;~(k, k'; iJj, iJi) is defined by [compare to Eqs. (3.71) 

and (3. 72) in Chapter 3] 

s' s ( ...... , ... ... ) Ha/3 k, k; Yj, Yi (4.263) 

where '1/Jt) (iJi) is the relativistic distorted wave function of the projectile proton, with out­

going boundary conditions, given by Eqs. (4.172) and (4.173) [with c5fJ replaced by a-L], and 

7/11~ ;, (iJi) = ¢1 ~ ~; (iJi )'"yO, where ¢1 ~ ~; (iJi) is the hermitian conjugate of the relativistic distorted 

wave function of the ejectile nucleon, with incoming boundary conditions, given by Eqs. ( 4.17 4) -
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(4.177) [with of J replaced by a"£]. The spin-independent nuclear response sa.f3(yi, ih) is defined 

as [compare to Eqs. (3.73) and (3.74) in Chapter 3] 

(4.264) 

where 

sa. 13 (q,q1;w) = L [J~o(q)]* J~o(q1 ) o[w - (En - Eo)] (4.265) 
n 

(Note that the summation I:n in Eq. (4.265} contains the summation over final spins, thus 

yielding a spin-independent quantity) with 

( 4.266) 

where the nuclear current operator is given by 

(4.267) 

and the subscript "H" refers to the fact that the field operators ,(f;(x) are defined in the Heisen­

berg picture. Comparison of Eq. (4.265) with Eq. (4.79) enables one to identify the nuclear 

response sa. f3 ( q, q1
; w) with the imaginary part of the nuclear polarization tensor rra. f3 ( q, q1

; w) 

defined in Sec. 4.2.3, namely 

( 4.268) 

As stressed in Sec. 4.2.1, the advantage of expressing the nuclear response in terms of the 

nuclear polarization tensor, is that the latter can be computed using well-known many-body 

techniques. As an improvement of the relativistic mean-field treatment of the nuclear response 

in Chapter 3, one adopts a local density approximation (LDA), as discussed in Sees. 4.2.2 and 

4.2.3, which corresponds to taking 

rra./3 (y ... · y ... · · w) = J dij eiq·(y;-Yj)rra./3 [q- w · kp(l Yi + Yi I) M*(l ih + Yi I)] (4.269) 
LDA 1' z ' (27r)3 LDA ' ' 2 ' 2 

where IIt"vA(Yj,Yi 1 ;w), given by Eq. (4.68) for electromagnetic electron scattering, is general­

ized to II~~A(Yj,Yi 1 ;w) for nuclear proton scattering, for which >.a. is given by Eq. (4.72). 
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For inclusive (p, jJ') scattering, the polarized double differential cross section in Eq. ( 4.261) 

is written as (see Sec. 3.2.8 in Chapter 3) 

z 
(d~~~';k') em - K ( L L t~('llab' lql )* t1jf(Tiab' lql) 

i,j=l Q ,/3 
N 

+ L L t~n(Tiab, WI)* t~n(Ttab, lql)] 
i,j=l a,/3 

Jd d H s's(k_, k""'' _, ""') sa/3(""' ""') X Yi Yi a/3 , ;yj,Yi Yj,Yi , (4.270) 

where t1jf and ~n are related to F13(pp) and F13(pn) in Eqs. (3.50) and (3.51) in Chapter 3, 

respectively, via Eq. (4.225). 

For inclusive (p, ii) scattering, on the other hand, the relativistic SVPAT NN amplitudes t13 

in Eq. (4.261), are replaced by (see Sec. 3.2.8 in Chapter 3) 

(4.271) 

where t1jf and t~n are related to F13(pp) and F13(pn) in Eqs. (3.50) and (3.51) in Chapter 3, 

respectively, via Eq. ( 4.225). In addition, for inclusive (p, ii) scattering, the relativistic distorted 

waves for the ejectile neutron are generated with Vc(r) = 0 and fJL = 0 in the relevant 

expressions. 

4.4.4 Polarization transfer observables 

With the polarized double differential cross sections given by Eq. (4.261), one is now in a position 

to write down expressions for the quasielastic polarization transfer observables for the RDWIA 

model. 

The general formula for the polarization transfer observables, Di' j, namely Ay = Do'n, Dnn, 

Ds's, Dt'£, Ds'£ and Dt's' is given by (See Appendix G, and also Sec. 3.2.7 in Chapter 3) 

du ('"' ~') du ('"' ~') du ( ~ ~') du ( '"' ~') 
_ drl/dEk' J -T 2 - dfl/dEk' J -T - 2 - dfl.'dEk' -J -T 2 + dD.'dEk' -J -T - 2 (4.272) 

Di' j - du (~ ~,) du ('"' ~,) du ( ~ ~,) du ( '"' ~,) 
dD.'dEk' J -T 2 + dD.'dEk' J -T - 2 + dD.'dEk' -] -T 2 + dD.'dEk' -J -T - 2 

where ] refers to an arbitrary quantization axis in the rest frame of the projectile nucleon, 

which is chosen to be the unprimed x y z reference frame in Fig. 4.1, i' refers to an arbitrary 
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spin quantization axis in the primed x' y' z' reference frame in Fig. 4.1, and 

(i' j) E { (01 n), (nn), (s' s), (£' £), (s' £), (£' s)}. (4.273) 

The different polarization transfer observables are distinguished by the choice of spin projections 

along different quantization axes in the incoming and outgoing reference frames in Fig. 4.1, in 

the expression for the polarized double differential cross section given by Eq. (4.261). The 

only quantity in Eq. ( 4.261) that contains information about the projectile and ejectile spin 

projections, is the projectile distorted nucleon tensor defined in Eq. ( 4.263). The spin projections 

in the latter tensor are, in turn, determined by different choices of the Wigner D-functions in 

Eqs. ( 4.172) and ( 4.174), for the projectile and ejectile relativistic distorted waves respectively. 

For each polarization transfer observable, Ay = Do'n' Dnn, Ds's, Del, Ds'l and Dl's, 

Table 4.1 lists the values of the Euler angles and spin indices for the Wigner D-functions, 
I I 

D fz s(a,f3, /) [in Eq. (4.172)] and Dfz s(a',{3',1') [in Eq. (4.174)], for each of the polarized 

double differential cross sections [given by Eq. (4.261)] comprising the polarization transfer ob-
1 

servables Di' j defined by Eqs. (4.272) and (4.273) . The Wigner D-functions D]z 8 (a, {3, 1) are 

given by [Va88] 

I 

Dfz s(a, {3, 'Y) (4.274) 

1 

where explicit expressions for the dfz s ({3) functions, which are real, are given in Eq. ( 4.133). 

4.4.5 Kinematics 

A brief discussion is now given of the kinematic quantities relevant to calculating the various 

polarized double differential cross sections, which constitute the polarization transfer observ­

ables, for a range of excitation energies w spanning the quasielastic peak (see also Sec.3.2.9 in 

Chapter 3). 

The upper and lower radial components of the relativistic distorted waves, with outgoing 

boundary conditions [Eqs. (4.172) and (4.173)], are obtained via solutions of Eqs. (4.193) and 

( 4.201) respectively, for which the magnitude of the incident momentum of the projectile, ilh 
in the projectile--nucleus centre--of-mass frame, is given by 

(4.275) 
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1 

Table 4.1: Values of the Euler angles and spin indices, for the Wigner D-functions, Dlz s(a, (3, /) 
1 

[in Eq. (4.172)] and Dfzs(a',{3',1') [in Eq. (4.174)], for each of the polarized double differential 
cross sections [given by Eq. (4.261)] comprising the polarization transfer observables Di' j defined 
by Eqs. (4.272) and (4.273). 

Quantization Quantization Projection of Form of Projection of Form of 

axis] for axis i 1 for 
1 1 

Di' i projectile spin Dl. s(a,f3,'Y) ejectile spin D2 ( I (3' ') s~ s' Ct ' ''Y 
projectile spin ejectile spin along ]-axis in Eq. (4.172) along i '-axis in Eq. (4.174) 

i'=n'=iJ ' 
1. 1 

Dn'n j=n=fJ +f) D 2 1 (~,~,0) +f)' n;, 1.C~, ~,o) s. 2 • 2 

1 1 

-f) n; _ 1 (~, ~,o) 
~ I n;, _1. (~, ~,o) -y 

• 2 • 2 

i'=s'=x' 
1. 1. 

D s' B j=s=x +x D 2 
1 (0, ~,0) +x' D 2

, 1.(0, ~,0) s. 2 s. 2 

1 1 

-x n; _l.(o, ~,o) ~ I n;, _l.(o, ~,o) -x 
• 2 • 2 

]=i=z i'=f'=z' 
l l 

De'e +i D 2 
1 (0, 0, 0) +z' D 2, 1.(0, 0, 0) 

Bz 2 s. 2 

1 1 

-i n;. -~co, o, o) 
~ I D~ 1 (0 , 0, 0) -z 

Bz -2 

]=i=z i'=s'=x' 
1 1. 

Ds'( +i D 2 
1 (0,0,0) +x' D 2

, 1 (0, ~,0) 
B:z. 2 s. 2 

l 1. 
-i D 2 

1 (0,0,0) ~ I n;, _l.(o, ~,o) -x 
Bz -2 • 2 

i'=i'=i' 
1 1 

De, s j=s=x +x D 2 
1 (0, ~,0) +z' D~ 1 (0 , 0, 0) s. 2 B:z. 2 

1 I 

-x n: _l.(o,~,o) ~ I n ;, _1 (o,o,o) -z 
• 2 • 2 

Do'n j=n=f) i'=n'=iJ' +f) 
1. 

D 2 .1.(~,~,0) s. 2 

1. 
D :~ 8 , (a', (3', "'f1

) 

(Ay) is replaced by 
1 1 

-f) n: _1. (~, ~, o) I: a' D :~ s' (a'' (3'' 'Y') 
• 2 
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The energy of the projectile in the projectile-nucleus centre-of-mass frame Ek, is given by [see 

Eq. (A.2) in Appendix A] 

m2 c4 + mtc2 (mc2 + 1lab) 

J(mc2 + mtc2) 2 + 2mtc2 Ttab 
(4.276) 

where, m and mt are the masses of the projectile proton and target nucleus, respectively. For a 

fixed energy transfer w to the target nucleus, the energy of the ejectile nucleon in the ejectile­

nucleus centre-of-mass frame, is given by 

(4.277) 

The upper and lower radial components of the relativistic distorted waves, with incoming bound­

ary conditions [in Eqs. (4.174)- (4.177)], are obtained via solutions of Eqs. (4.193) and (4.201) 

respectively, for which the magnitude of the momentum of the ejectile I k 'I, in the ejectile-nucleus 

centre-of-mass frame, is given by 

( 4.278) 

Next, the magnitude of the momentum transfer 11]1, at which the SVPAT scattering amplitudes 

t/3(11ab, 11]1) in Eq. (4.261) are evaluated, is specified. For a specific scattering angle Ocm, in the 

ejectile-nucleus centre-of-mass system, shown in Fig. 4.1, the components of the momentum 

transfer are given by 

such that, 

k' X 

k' y 

k' z 

0 - lk'l sinOcm - lk'l sinOcm 

0 

lk 'I - lk 'I COS Ocm (4.279) 

(4.280) 

The explicit expressions for the kinematic factors lkcml and Ecm, relating the t13-amplitudes to 

the F13-amplitudes in Eq. (4.255), are given by Eq. (4.255). 

Finally, the kinematic factor Kin Eq. (4.262) is calculated via Eqs. (4.276) and (4.277), and 

Eo is the rest mass energy of the ground state of the target nucleus, that is 

(4.281) 
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4.5 Status of numerical program 

To calculate quasielastic polarization transfer observables Di'j' it is necessary to numerically 

evaluate the polarized double differential cross sections, given by Eq. ( 4.261), for different 

incident and outgoing nucleon spin projections. The latter cross sections, in turn, are ex­

pressed in terms of the contraction of a projectile distorted nucleon tensor H~(J(k, k'; ffi, Yi) [see 

Eq. (4.263)], expressed in terms of relativistic distorted waves, with the imaginary part of a 

spin-independent nuclear polarization tensor rra.B [see Eq. (4.268)]. 

Following the methods outlined in Sec. 4.3, the relativistic distorted waves, comprising the 

projectile distorted nucleon tensor, have already been generated, and checked for numerical 

accuracy (as discussed in Sec. 4.3.5). 

I still need to evaluate the imaginary components of the nuclear polarization tensor II~fbA (i}j, Yi ; w) 

within the local density approximation expressed by Eq. (4.269). 

Perhaps, the most challenging problem, from a numerical point of view, that still needs to be 

tackled, is to evaluate the six-dimensional integral in Eq. (4.261). One could, for example, use 

the (time-consuming) Monte Carlo integration method employed by Ikebata [Ik95]. However, 

to achieve acceptable computing times, it seems that the integration technique developed by 

Chant and Roos would be more appropriate [Ch83]. 

The numerical evaluation of the above-mentioned nuclear polarization tensor, within the 

local density approximation, as well as the numerical evaluation of the six-dimensional integral 

in Eq. (4.261), will be addressed in future research projects. 

4.6 Summary 

In this chapter, the theoretical framework has been developed for calculating complete sets of 

quasielastic proton-nucleus polarization transfer observables based the Relativistic Distorted 

Wave Impulse Approximation (RDWIA). 

For the simpler case of a zero-range NN interaction, and ignoring exchange effects, it was 

shown, in Sec. 4.4, that polarized double differential cross sections can be expressed as the 
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contraction between a projectile distorted nucleon tensor and a spin-independent nuclear po­

larization tensor for the target nucleus. 

The projectile distorted nucleon tensor contains information about the spin projections and 

full relativistic distortions of the projectile and ejectile distorted wave functions. Compared 

to the distortion effects, incorporated via effective masses in the mean-field Dirac spinors in 

the RPWIA, the relativistic distorted wave functions are solutions to the Dirac equation with 

nuclear scalar S(r) and time-like vector potentials V(r). In Sec. 4.3, partial wave expansions 

for the relativistic distorted wave functions were derived, with incoming and outgoing boundary 

conditions. 

The spin-independent nuclear polarization tensor, on the other hand, contains information 

about the nuclear response of the target nucleus, and is conveniently expressed in terms of 

the imaginary part of the nuclear polarization tensor which can be evaluated to any level of 

sophistication, depending on the choice of model for the nuclear response. In Sec. 4.2.3, the 

concept of nuclear response functions was introduced, via a generalization of the simpler electro­

magnetic response for inclusive electron-nucleus scattering discussed in Sec. 4.2.1. Although, 

a general framework was developed for calculating nuclear response functions to any level of 

sophistication, for the purpose of this project, I only focused on the following three models of 

the nuclear response: relativistic free Fermi-gas model (FGM), relativistic mean-field approxi­

mation (MFA), and the local density approximation (LDA). Furthermore, analytical expressions 

were derived for the imaginary parts of the nuclear scalar polarization for FGM and MFA mod­

els. Future theoretical work will involve deriving analytical expressions for all the components 

of the imaginary parts of the nuclear polarization tensor. 

The next phase is to perform numerical calculations of the quasielastic polarization transfer 

observables based on the zero-range no-exchange approximation, discussed in Sec. 4.4.3, so as 

to get a first order feel for the effects of distortions. 
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Appendix A 

Relativistic optical potentials 

A.l Introduction 

The aim of this appendix is to clarify the terminolgy associated with the various Dirac potential­

types, and also to derive the most general form of the Dirac equation, which is consistent with 

rotational and parity invariance, for describing elastic proton-nucleus scattering. In Sec. A.3 , 

the Schrodinger equivalent potentials, required for evaluating the transmission probability in 

Eq. (3.9) of Chapter 3 and for generating the relativistic distorted waves in Sec. 4.3 of Chapter 

4, are discussed. 

A.2 General form of Dirac equation for elastic scattering 

A fundamental characteristic of the Dirac equation is that the Lorentz character of the poten­

tials must be specified. Using the conventions of Bjorken and Drell [Bj64] , the most general 

local, time-independent Dirac equation contains five tensor types of potentials: scalar, vector, 

pseudoscalar, axial-vector (also called pseudovector) and tensor. In this case the Dirac equation 

for the scattering of a charged spin-~ particle from an external potential is [Mi91 J 

{co· p + ,6[mc2 + U8 (r) + 111-U~ (r) 

+ 15UP(r) + 'YI1-r5 U~(r) + o-11-vU!v(r)]}7JI(f') = E7/J(f') (A.l) 

where E is the energy of the incident (or scattered) nucleon in the nucleon-nucleus centre-of­

mass system, and a , ,6, 111- , 1 5 , and o-11-v are the usual4x4 Dirac matrices expressed as: 

209 
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{3 

0: 

For any four-vector potential X~-', where 

( -ou :) 

7' = ( ~ ~1) 
,o, 
if0rl'Y2'Y3 

i 
2

(rJ.£TV _ TVfJ.£) • 

the Lorentz-invariant quantity 1~-' X J.£ is defined as 

where the metric tensor 9J.£v = gJ.£L' is given by 

1 0 0 0 

0 -1 0 0 
9J.£v = 

0 0 -1 0 

0 0 0 -1 

The potential subscripts s, v , p, a and t denote scalar, vector, pseudoscalar, 

210 

axial-vector 

and tensor respectively. Section A.2.1 clarifies the context of this nomenclature. The symbols 

r and r denote the coordinate operators and vectors of the nucleon respectively, and p is the 

the momentum operator. E is the total energy of the projectile nucleon in the nucleon-nucleus 

centre-of-mass frame [Mu87a, Mu87b, Si90] 

m2 c4 + mt c2(m c2 + 1lab) E = 
J(mc2 + mtc2)2 + 2mtc2 1lab 

(A.2) 

where m is the free rest mass energy, mt is the mass of the target nucleus, and T 1ab is the 

incident laboratory kinetic energy of the nucleon. Note that for generality one can consider the 

electromagnetic four- potential AJ.£ = (A0' A) to be part of the four-potential u~ = (U0' U) in 

Eq. (A.1). 
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A.2.1 N omenclature 

For a covariant relativistic description of elastic proton-nucleus scattering, the nucleon-nucleus 

interaction potentials must be independent of the specific Lorentz frame. Hence, all poten­

tials must transform like scalar quantities (tensors of rank zero) under a Lorentz transfor­

mation. Within the context of the Dirac equation, this condition restricts the most general 

local, time-independent potential to the five tensor types (scalar, vector, pseudoscalar, axial­

vector/pseudovector and tensor) mentioned later on in Eq. (A.1). The context in which this 

nomenclature is used is now discussed. 

Using the conventions ofBjorken and Drell (Bj64], any 4x4 matrix can be expanded in terms 

of the following 16 linearly independent 4x4 matrices r~,a [Gr90, Bj64] 

rs 1 

rv 
11- 'YJJ-

rP iro1 11 21 3 = 1 5 = 15 

ra 
11- 'Y

5
'Y11-

r~~~ 
z 

~f.J-11 = 2(TJJ-Til- TIITJJ-) 

where the superscripts "s, v, p, a, t" refer respectively to "scalar", "vector", "pseudoscalar", 

"axial-vector" and "tensor". This nomenclature refers to the behaviour of the bilinear expres-

sions 

(nE{s,v,p,a,t}) (A.3) 

under a Lorentz transformation, where 

x = (ct,x,y,z) (A.4) 

and 'lj; is the solution to the time-dependent Dirac equation. The Lorentz transformation be­

tween the coordinates xJJ- and (x')JJ- for two observers in different inertial frames 0 and O' 

respectively, is given by 

3 

(x't L a~x11- = a~x11- = (axt. (A.5) 
JJ-=0 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. RELATIVISTIC OPTICAL POTENTIALS 212 

The transformation S(a) that guarantees form invariance of the Dirac equation, and enables 

observer O' to construct a wave function 'lj;'(x') from the wave function 'lj;(x) of observer 0 

through 'lj;'(x') = S(a)'lj;(x), such that both observers describe the same physical state, is given 

by [Gr90, Bj64] 

(A.6) 

or 

(A.7) 

Using the fact that for all proper Lorentz transformations (detlal=+1) 

[S(a), Is] = o (A.8) 

and, for the parity operator P (an improper Lorentz transformation for which detlal = -1) 

defined in Eq. (A.13), 

Prs = 1sP (A.9) 

one can readily obtain the transformation properties of the following complete set of linearly 

independent bilinear covariants [Gr90, Bj64] 

if/(x')r8'1j;'(x') = ij/(x')'lj;'(x') = 7/;(x)'lj;(x) 

(transforms like a Lorentz scalar) 

7/;'(x')rv'lj;'(x') = 7/;'(x')rv'lj;'(x') = av/.L7f;(x)r1-L7j;(x) 

(transforms like a Lorentz vector) 

(transforms like a Lorentz pseudoscalar) 

(transforms like a Lorentz axial-vector) 

7/;'(x')rt'lj;'(x') = 7/;'(x')CJI-Lv'lj;'(x') = ai-Laav 137/;(x)CJa/37/J(x) 

(transforms like a Lorentz tensor of rank 2) . (A.10) 

The prefix "pseudo" in pseudoscalar indicates that 7f;(x)r57f;(x) transforms as a Lorentz scalar, 

but reverses its sign, under the improper Lorentz transformation of space reflection. 
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The most general way to construct Lorentz scalar potential terms in the Dirac equation is 

by contraction of the rms (n = s, v, p , a, t) with the corresponding coordinate space Dirac 

potentials thus forming the following scalar bilinear covariants 

i{;(x)U5'lj;(x) 

if; (X )'y'-'U~ 'lj;( X) 

if;(x),.-/UP'lj;(x) 

if;(x)'-/r~'U~'lj;(x) 

if;(x )e7~'vU~v 'lj;(x) (A.ll) 

where the un's represent the various potential types specified later on in Eq. (A.l). Hence, it 

should be clear as to the context in which the s, v, p, a, t nomenclature is used, and why the 

terms 

(A.12) 

are treated with the same status as the Lorentz scalar rest mass m in Eq. (A.l) [i.e. lumped 

together with the mass term]. 

A.2.2 Parity and rotational invariance 

The question now arises as to what is the most general form of Eq. (A.l) that is consistent 

with rotational invariance and parity conservation. This reduces to the requirement that each 

potential term in Eq. (A.l) must commute with the relativistic parity 

(A.l3) 

and total angular momentum operators 

o)+~(u 
I 2 0 

(A.14) 

The operator PNR in Eq. (A.l3) is the usual nonrelativistic parity operator whose operation 

upon a function of coordinates changes r =: (r, 0, ¢) to -r =: (r, 1r- 0,¢ + 1r). The matrix I 

in Eq. (A.l4) is the 2x2 identity matrix, and u represents the usual 2x2 Pauli spin matrices. 
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The requirement that J and P commute with each term of the Hamiltonian in Eq. (A.1) intro­

duces simplifying restrictions on the potentials in Eq. (A.1). These restrictions are most simply 

imposed by introducing the spherical coordinate form for the angular momentum operator, 

L ·n{A a 1 A a} rxp = -z u.p----uo-ao sinO a¢ (A.15) 

and the Pauli spin matrix, 

( 

cosO sinO e- i¢) (-sinO -cosoe- i¢) ( 0 
=~ . ~ . ~ . 

sin 0 e~<P - cos 0 cos 0 e~t/J sin 0 i e~t/J 

The unit vectors in the r, 0 and ¢ directions, denoted by fin fi.o and fi.q, respectively, are defined 

as [Me70] 

fir sin 0 cos ¢ i + sin 0 sin ¢} + cos 0 k 

uq, - sin¢i +cos¢} 

fi.o sin 0 cos ¢ i + cos 0 sin ¢ J - sin 0 k 

where i, J and k are the usual cartesian unit vectors along the x, y and z axes respectively. The 

commutation relations are calculated in a similar fashion to those presented in Exercise 9.4 and 

Sec. 12.4 of Ref. [Gr90] . Consequently, the most general Dirac equation consistent with good 

J 2 , Jz, and Pis thus [Mi91], 

{ ca · p + ,B[mc2 + U8 (r ) + 1°U~(r) + r0Vc(r) 

_,ru;(r)- 'Yo'YrU[(r)]}'ljl(f') = E'ljl(f') 

where the Coulomb potential Vc(r) has been explicitly included. 

(A.l7) 

Most calculations of elastic scattering spin observables usually only consider U8 (r) and U~(r) 

and ignore all the other potential terms. The justification and consequences of the latter as­

sumption are discussed in Sec. A.3. 

A.3 Schrodinger-equivalent potentials 

In this section it is shown how Schrodinger- equivalent potentials [Cl83, Cl85] are obtained 

by transforming the Dirac equation Eq. (A.17) to a second order Schrodinger-like differential 
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equation which can be solved using the standard procedures discussed in Ref. [Mc68). 

Using the explicit forms for the a, {3 and 'Y matrices, and distinguishing between upper and 

lower components of 'lj; by writing 

(A.18) 

where 'lj;u{r) and 'lj;'-(r ) are two-component- type Pauli wave functions, Eq. (A.17) can be 

written as a pair of coupled equations for the upper and lower wave functions, that is 

[(m +Us)- (E- U2- Vc)]'lj;u(r) + 

[u · p- u · r(u; + iUt)]'lj;'-(r) = o 

[-(m +Us)- (E- U2- Vc)]'lj;'- (r) + 

[u · p- u · r(u; - iUt)]'lj;u(r) = o 

(A.19) 

(A.20) 

where all potentials are spherically symmetric, and natural units (1i = c = 1) are adopted. 

Solving Eq. (A.20) for 'lj;'-(r) yields 

(A.21) 

where 

A( ) = E + m + Us(r)- U2(r)- Vc(r) 
r E . +m (A.22) 

Substituting Eq. (A.21) into Eq. (A.19) gives an equation for 'lj;u{r), namely 

(A.23) 

where 

Q(r)=A(r)[u · p- u · r(u; + iUt)] A~r) [u · p- u · r(u;- iUt)] . (A.24) 

Carrying out the indicated algebra in Eq. (A.23) , and making use of the following operator 

relations 

(A.25) 
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p 

L 

(u·p) 

~v 
z 
rx p 

CJr [.... • L] - r· p+zu · 
r 

and vector identities for arbitrary scalar and vector functions , 'TJ and A respectively, 

yields 

v. (rJA) 

v X (rJA) 

(V x r)'TJ 

V· f 

A· (VrJ) + rJ(V. A) 

(VrJ) X A+rJ(V X A) 

-(f' X V)rJ 
2 
r 

216 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

This is an exact second order differential equation for 'lj;u that can be interpreted as a Schrodinger­

like equation with a nonlocal potential (due to first order derivatives of the potentials). To 

get an ordinary Schrodinger equation (i.e. with no first derivative terms) and a local 2 x 2 

nucleon-nucleus potential that is useful for comparison with commonly used local nonrelativis­

tic Schrodinger-based phenomenological potentials, one writes 

(A.30) 

where 

(A.31) 

such that 

K(r) --+ oo as r--+ oo. 

Substituting Eqs. (A.30) and A.31 into Eq. (A.29) gives the following Schrodinger-like equation 

for 'lj;u(f') 

(A.32) 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. RELATIVISTIC OPTICAL POTENTIALS 217 

with equivalent central Ueff(r) and spin-orbit Uso(r) potentials, also called Dirac-Equation­

Based (DEB) potentials, given by 

Ueff(r) = Ucentral(r) + UDarwin(r) (A.33) 

where 

U Central ( r) 

UDarwin(r) 

and 

1 1 8A Ut 
Uso(r) = -[ --(-) + 2-] . 

2E rA 8r r 
(A.35) 

Note that, compared to the traditional Schrodinger equation, there is no reduced mass 1-L in 

Eq. (A.32). To obtain an effective Schrodinger equation for the lower component wave function 

7j/(f'), one proceeds analogously to the method outlined between Eqs. (A.21) and (A.34), except 

that 

where 

and 

1 fT ·ur( ')d I JC(r) = A2eJo ~ v r r 

A(r) = E-m- U5 (r)- U~(r)- Vc(r) . 
E-m 

(A.36) 

The procedure yields a differential equation for ql(r) similar to Eq. (A.23), except that A(r) is 

now replaced by A(r) in Eq. (A.34). 

To summarize: a two-component reduction of Eq. (A.17) yields a Schrodinger-like differential 

equation, containing central, spin-orbit, and Darwin potentials, for both the upper and lower 

two components of the wave function. 

Notice that the space-like part of the vector potential does not explicitly appear in the 

second order equation. More generally, it can be shown that when the spatial portion of the 
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vector potential in Eq. (A.l7) is spherically symmetric it has no effect on elastic scattering 

[Ja83]. The only effect of the potential U~(r), and more precisely of its imaginary part, is to 

modify the amplitude of the wave functions ¢u (f) and ¢/ (f) inside the nucleus. Examination 

of Eqs. (A.32) to (A.35) indicates that, at a minimum, one should consider U~(r) and U8 (r) 

or U~(r) and Ut(r) or U8 (r) and Ut(r) in order to obtaine the required central and spin-orbit 

potentials. Most calculations of elastic scattering spin observables choose U~(r) and U8 (r), 

since these potential types appear in various mean field theories [Bo81 , Bo82, Ei81, Ho81, 

Ho81a, Lo81, No81 , Wa74, Ja81] , and these potentials are also the largest terms in relativistic 

Brueckner-Hartree-Fock calculations [Ce82, Sh83] of the optical potential. 

Finally, a number of important features of the DEB optical potentials are stressed: 

• the central potential has explicit energy dependence, 

• non-linear terms involving U~(r) and U8 (r) are present, 

• the spin-orbit potential occurs naturally, 

• the spin-orbit and central terms are constrained by the choice of U~(r) and U8 (r) , 

• Coulomb terms V? (r) and U~(r)Vc(r) are present. 

These considerations lead, in the case of the large repulsive potential U~(r) and large attractive 

potential U8 ( r) usually found, to central and spin-orbit potentials of reasonable size. In addition, 

the real central potential exhibits a radial dependence which changes with energy in a manner 

similar to that of nonrelativistic microscopic calculations of the real central potential [Je77, 

Ma79, Br77, Br77a, Br78, Br78a, Ke80, Fr81]. 
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Isospin dependence of NN amplitudes 

The aim of this appendix is to derive isospin-dependent expressions for the fPP and fnn scat-

tering operators given by Eqs. (3.20) and (3.21) in Sec. 3.2.4 of Chapter 3. 

Recall that the requirement of charge independence of the NN interaction is equivalent to 

demanding that the interaction be an isoscalar (i.e. isospin invariant). The only isoscalars 

which may be constructed from the isospin operators r 1 and r 2 for particles one [projectile] 

and two [target] are the identity operator 1 and r 1 · r2. Hence, the isospin dependence of the 

nonrelativistic scattering operator f is introduced via the following substitution in Eq. (3.18). 

(B.1) 

where the isospin operators rare identical to the usual Pauli spin operators u. In analogy with 

the ordinary spin operator u , the z-component of r is required to have two possible values, 

+1 and -1, which are related to the proton and neutron respectively. Defining the proton and 

neutron isospin wave functions[Wo90], IP > and In> respectively, as 

IP> = ( 01) 

In> U) 
such that 

Tz IP > +lp> 

Tz In> -In>' 

and using explicit forms of the isospin matrices, it follows that (where the subscripts 1 and 2 

below refer to the projectile and initial target nucleon respectively) 

219 
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r 1 · r2ln >1 In >2 

r1 · r2IP >1 In >2 

T1 · T2ln1 n2 > 

T1 · r2IP1 n2 > 

+ln1 n2 > 

21n1 P2 > - IP1 n2 > 

With the above relations it follows that the only non-zero matrix elements of r 1 · r 2 are 

< p PI T1 . T2 IP p > +1 

< n nl r1 · r2 Inn > +1 

< P1 n2l r1 · r 2 IP1 n2 > -1 

< n1 P2l r1 · r2 ln1 P2 > -1 

< n1 P2l r 1 · r2 IP1 n2 > +2 

< P1 n2l T1 · T2 ln1 P2 > +2. 

220 

(B.2) 

{B.3) 

With Eq. {B.1) in Eq. {3.18) [from Chapter 3], and making use of the relations in Eq. (B.3) for 

p + p --+ p + p scattering, it follows that 

{2ilkcml)-1 < P PI J IP P > 

(Ao +AI)+ (Bo + BI)u1. 0"2 + ilq I(Co + C1)(u1·n + 0"2. n) 

+ ll] I2(Do + D1)u1 · iju2 · ij +(Eo+ E1)u1 · zu2 · z 

and, for n + n --+ n + n scattering, it follows that 

(2ilkcml)-l fnn - (2ilkcml)-l < n nl f Inn> 

(Ao +AI)+ (Bo + BI)ul. 0"2 + ilq I(Co + CI)(ul·n + 0"2. n) 

(B.4) 

+ ll] I2(Do + DI)u1 · iju2 · ij + (Eo + E1)u1 · zu2 · z . (B.5) 

Similarly, for P1 + n2 --+ P1 + n2 scattering, it follows that 

(2ilkcml)-1 < P1 n2l f IP1 n2 > 

(Ao- Al) + (Bo- Bl)ul. 0"2 +ill] I(Co- CI)(ul·n + 0"2. n) 

(B.6) 

with an identical expression for n1 + P2 --+ n1 + P2 scattering. 

Our next aim is to find the relationship between the isospin of NN amplitudes and the isospin 

of the exchanged mesons (see also Refs. [Br76, Wo90]). 
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Clearly the identity operator allows no change of Tz at either vertex in the Feynman diagram 

depicted in Fig. 3.4 of Sec. 3.2.4 in Chapter 3, and hence represents the exchange of a neutral 

isoscalar meson (e.g. w, o"). The operator r 1 · r2, however, does permit changes in the z­

component of isospin at each vertex of ±1 or 0, and must therefore correspond to the exchange 

of an isovector meson (e.g. 1r+ 1r0 1r- or p+ p0 p-). For a given choice of the form of the 

interaction, matrix elements for the exchange of a meson of isospin Ti = ( 0, 1), for N N states 

of isospin T = (0, 1) are simply related. Considering only the isospin dependence of the matrix 

elements, one notes that, for the exchange of an isoscalar ~ = 0 meson [Br76, Wo90): 

1 for T = 0 
(B.7) 

1 for T = 1 

and, for the exchange of an isovector ~ = 1 meson [Br76, Wo90) 

-3 for T = 0 
(B.8) 

1 for T = 1 

where t 1 and t 2 are the isospin projections of particles 1 and 2. From the above result, one sees 

that the operator r 1 · T2 is able to distinguish a two-nucleon state with isospin T = 0 from one 

with T = 1. In contrast, the identity operator has the same expectation value, unity, in both T 

= 0 and T = 1 states. Hence, with Eqs. (B.7) and (B.8) , one obtains the isospin dependence, 

expressed by Eqs. (3.52) and (3 .53) in Sec. 3.2.4 of Chapter 3, of the Horowitz- Love-Franey 

model of the NN interaction. 
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Relating NN observables to amplitudes 

The aim of this appendix is to write down the relation between the NN spin observables ( ~~, 

P, D, Ayy, A, R), plotted in Figs. 3.12 - 3.17 [see Chapter 3], and the McNeil-Ray-Wallace 

(MRW) amplitudes for NN scattering [see Eq. (3.18) in Chapter 3]. 

A convenient form of the NN scattering matrix, which respects parity and time-reversal 

invariance, is [Br78] 

Here the amplitudes a, b, c, d and e are complex functions of two variables, e.g. the centre-of­

mass system energy and scattering angle 0. The centre-of-mass basis vectors are: 

(C.1) 

where ki and kJ are vectors in the direction of the incident and scattered particle momenta in 

the centre-of-mass system. The Pauli spin matrices u 1 and u 2 act on the projectile and target 

nucleon wave functions, respectively. The amplitudes a, b, c, d and e are related to the A, B, 

C , D and E of the MRW scattering matrix M in Eq. (3.18) [see Chapter 3] via 

a 1 1 0 0 0 A 

b 1 -1 0 0 0 B 

c 2kci 0 2 0 q2 1 c (C.2) 

d 0 0 0 q2 -1 D 

e 0 0 2q 0 0 E 

The NN spin observables plotted in Figs. 3.12 - 3.17 (see Sec. 3.3.3 in Chapter 3) are defined 

in terms of the a, b, c, d and e amplitudes in Eq. (C.1) [Br78] as follows: 

222 
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• Unpolarized differential cross section: 

(C.3) 

• Polarization of scattered particle: 

P = Re(a*e) (C.4) 

• Polarization correlation for initially unpolarized particles: 

(C.5) 

• Wolfenstein parameters or polarization transfer observables: 

~D = ~Dwmo = Re(b*e) (C.6) 

-Re(a*b) sin(~)+ Re(c*d) sin(~())- Im(b*e) cos(~) (C.7) 

() -{} () 
-Re(a*b) cos(2) + Re(c*d) cos( 2 )- Im{b*e) sin(2). (C.8) 
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Kinematics: Horowitz-Love-Franey model 

The Horowitz-Love-Franey (HLF) model, discussed in Sec. (3.2.4) of Chapter 3, deals with 

the scattering of free-mass nucleons as opposed to the scattering of effective-mass nucleons for 

quasielastic proton-nucleus scattering. The aim of this appendix is to derive expressions for the 

kinematic quantities pertaining to the HLF model discussed in Sec. 3.2.4 of Chapter 3. 

D.l Projectile momentum in NN centre-of-mass system 

Following a procedure analogous to that described in Sec. (1.10) of Appendix I, it is fairly 

straightforward to derive the following expression for the momentum of the incident nucleon in 

the NN centre-of-mass system (compare to Eq. (I.63) in Appendix I), namely 

2l(k )cml = )211ab m (D.l) 

where m is the free nucleon rest mass, and 11ab is the laboratory kinetic energy of the projectile 

nucleon. 

D .2 Direct and exchange three-momentum transfer 

The aim of this section is to derive expressions for the nonrelativistic limit of the square of the 

direct four-momentum transfer (qJ.L) 2 and the square of the exchange four-momentum transfer 

( Q J.L) 2 , in the laboratory frame, for free NN scattering. One starts by deriving an expression 

for the nonrelativistic limit of the square of the direct four-momentum transfer (qJ.L) 2 . From 

Eqs. (1.18), (1.14) [in Appendix I] and Eq. (3.64) [for the special case of free-mass scattering, 

224 
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i.e. mi = m2 = m] in Chapter 3, the square of the direct four-momentum transfer is given by 

Substitution of the relations 

lkl l2 + m2 

lk212 + m2 

(D.2) 

(D.3) 

in Eq. (D.2), and making use of the following Taylor expansions for the scattering energies (valid 

for IWI < 1) 

.... 2 _ v
1 

.... 
1
2 2 _ ( 1lkl ) E - k +m - m 1 + - - 2 + ..... 

2m 

k 
yields the nonrelativistic limit (i.e. 1-1 « 1) of Eq. (D.2) , namely 

m 
.... ...., 2 

-(kl- kl ) 

-1<112. 

(D.4) 

(D.5) 

Following an argument similar to the one leading to Eq. (I.68) in Sec. I.ll of Appendix I, the 

following expression is obtained for the square of the direct four-momentum transfer 

(D.6) 

where kern is the energy of the incident nucleon in the NN centre-of- mass system, and Bern is 

the centre-of- mass scattering angle. Combining Eqs. (D.5) and (D.6), one can now write down 

an expression for 1<1 I in the nonrelativistic limit, namely 

(qJL)2 - 1<1 12 

-4l(k )cml 2 sin2
(
0;n). (D.7) 

which implies the following expression (in the nonrelativistic limit) for 1<1 1: 

(D.8) 

Next , an expression for the nonrelativistic limit of the square of the exchange four-momentum 

transfer (Q11 ) 2 is derived. To this end, one makes use of the fact that the exchange four­

momentum transfer (often called the Mandelstam variable u) is an invariant quantity [Si90]) , 
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that is 

(D.9) 

where the subscripts "em" and "lab" refer to the laboratory- and NN centre-of- mass frames 

respectively. The centre-of-mass exchange four-momentum transfer is defined by 

(D.lO) 

and, the laboratory exchange four-momentum transfer Q/lo is given by 

(D.ll) 

where 

(D.12) 

With Eqs. (D.lO), (D.ll) and (D.12), Eq. (D.9) can be written as 

(D.l3) 

Making use of the fact that the NN centre-of-mass system (for scattering of free equal-mass 

nucleons) is defined by 

l(k)cml (say) (D.14) 

one can write Eq. (D.l3) as 

2 ... 2 ... 2 2 Ocm w -IQ I = -4l(k )cml cos (2). (D.l5) 

Following a discussion similar to the one leading to Eq. (D.7), it can be shown that the nonrel­

ativistic limit of (Q/1-) 2 is given by 

(D.16) 
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From Eqs. {D.l5) and (D.16) it follows that (in the nonrelativistic limit) 

... ... ()ern 
IQ I = 2l{k )em I cos( 2). (D.17) 

Combining Eqs. {D.7) and (D.l7) yields the following nonrelativistic relation between lq' I and 

IQI: 

(D.18) 
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Electron scattering 

E.l Introduction 

In this appendix, a systematic derivation is given of the S-matrix element for electron- electron 

scattering within the framework of quantum field theory, thereby confirming the Feynman rules 

quoted in standard texts such as Bjorken and Drell [Bj64] and Greiner [Gr92]. It is also shown 

how the physical scattering cross section is related to the S-matrix element, and how one applies 

the well-known trace techniques to explicitly evaluate the unpolarized and polarized differential 

and double differential cross sections to lowest order. 

E.2 Electromagnetic coupling and the S-matrix 

The conventions and notation of Bjorken and Drell [Bj64] are adopted, and Heaviside-Lorentz 

[Gu91 , Gr92], and natural units (n = c = 1) are also used. Furthermore, it is also assumed 

that the reader is familiar with the canonical quantization procedure of local field theories 

[Sa67, Na90, Gu91, Ka93 , Gr96] . 

In this section some of the background leading to the perturbation expansion of the S­

matrix for quantum electrodynamics (QED) is given, that is, the theory of a charged spin-~ 

field (electrons) coupled to a massless spin- 1 field (photons). This theory is ideally suited for 

a perturbative approach, since the electromagnetic coupling constant a = 4!~c ~ 1~7 is very 

small. 

The classical Lagrangian of QED is given by 

£ - £Dirac + cern + £ · - o o mt (E.1) 

228 
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with 

- 1 ++ 
'1/J(x)(rrJl. aJl. -m)'I/J(x) , 

-~FJJ.v(x)FJl.!l(x), 
-eif;(x)rJJ.'Ij;(x)AJJ. , 

229 

(E.2) 

(E.3) 

(E.4) 

where the interaction term .cift is introduced via substitution of the gauge invariant minimal­

substitution-prescription 

(E.5) 

FJJ.v is the usual electromagnetic field strength tensor. The equations of motion follow from 

independent variation of the Lagrangian density with respect to the fields 'lj;, if;, and AJJ.: 

0 ' 
- t-

'1/J(x)[rJl.i{aJl. -ieAJJ.} +m] 0, 

8vFJl.!l(x) 

The associated Hamilton density is defined in the usual way 

1l = 1f'lj;- £ 

where the momentum conjugate 1r to the field 'lj; is given by 

(E.6) 

(E.7) 

(E.8) 

(E.9) 

(E.lO) 

Substituting Eq. (E.l) into Eq. (E.9), and using Eq. (E.lO), gives the Hamilton density describ-

ing the interaction 

(E.ll) 

Quantizing this theory, and employing the usual normal-ordering prescription (denoted by : :) , 

yields the interaction term of the Hamilton density operator, namely 

(E.12) 

where the hat denotes quantized field operators in the Heisenberg picture. In order to evaluate 

cross sections for elementary scattering processes it is necessary to define the S-operator, the 
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matrix elements of which describe the probability amplitude for a system to make a transition 

from an initial to a final state under the influence of an interaction. Following standard texts 

[Sa67, Na90, Gu91, Ka93, Gr96], the perturbation series for the unitary S-operator in the 

interaction picture is 

(E.l3) 

where T is the usual chronological or time-ordering operator. In order to carry out the per­

turbation expansion, it is convenient to express all operators in the interaction picture. The 

transition from the Heisenberg to the interaction picture is accomplished by the transformation 

(E.14) 

where the superscripts "I", "S" and "H" refer to the interaction, Schrodinger and Heisenberg 

pictures respectively, and the full Hamiltonian ii is split into a noninteracting ii0 and an 

interacting part Hint, 

H (E.15) 

The Hamilton operator ii and Hamilton density operator il are related via 

(E.16) 

With the transformation defined by Eq. (E.l4), Eq. (E.12) retains its form, namely 

(E.l7) 

For the remainder of the discussion, it is assumed that all operators are in the interaction 

picture, unless otherwise specified, and hence the indices "I" are omitted. 

E.3 Plane-wave expansions for spin-~ field operators 

The aim of this section is to write down the plane-wave expansions of the spin-~ field operators 

and to define normalizations which are consistent with those of Bjorken and Drell [Bj64]. The 

momentum-space expansions for spin-~ Dirac fields in the interaction picture are [Gr96] 

(E.18) 
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where 

J dp E_"""' b (p ) -ip·x 
(21r)3/2 yEp L: psU , s e , (E.19) 

J dp E_"""' Jt (p ) ip·x 
(27r)3/2 YEp L: psv 's e ' (E.20) 

and Ep = If/ [2 + m2. The corresponding expansions for the adjoint field operator are obtained 

via the relation 

(E.21) 

The properties of the positive and negative energy Dirac spinors, u and v respectively, are 

compactly written by introducing the following notation 

WI(P) 

w2(i1) 

W3(P) 

W4(P) 

u(p, +s) 

u(p, -s) 

v(p, -s) 

v(p, +s) 

where the Dirac unit spinors wr(P) satisfy the algebraic equation 

(E.22) 

(E.23) 

The index r enumerates the four independent solutions of the free Dirac equation, where r = 1,2 

denotes the solutions with positive energy E = +Jlil [2 + m2, and r = 3,4 denotes solutions 

with negative energy E = - Jlil [2 + m 2. This is expressed by the sign function Er = + 1 

for r = 1,2 and Er = -1 for r = 3,4. With this notation, the plane-wave solutions of the free 

Dirac equation 

0, (E.24) 

are given by [Bj64, Gr90] 

'1/Jf;(x, t) = (21f)-3/2 [i;wr(i/)e-ier(Evt-p·x) (E.25) 

where the Dirac unit spinors Wr (P) satisfy the following orthogonality and completeness prop-

erties [Gr96]: 

(E.26) 
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Wr 1 (fJ )wr (p) Erlirr' , (E.27) 
4 

Ep L Wra(ErP)W~/3(ErP) -lia/3 ' (E.28) 
r=l m 

4 

L f.rWra(P )Wrf3 (P) lia/3 · (E.29) 
r=l 

Eq. (E.26) guarantees that the plane waves in Eq. (E.25) have the correct normalization, namely 

J d -+.1,(r')t( )·'·(r) ( ) _ J: /j3(-+ -+I) 
X 'Pfi' X 'Pp X - Urr' p- p . (E.30) 

The normalization conditions given by Eqs. (E.26) and (E.27), yield the following expressions 

for the Dirac unit spinors 

1 

~ 
0 

Wt (jJ) Pz 
m 

EP+ .m 
Px + 'tPy 

(E.31) 

Ep+m 

0 

~ 
1 

W2(jJ) Px - ipy 
m 

Ep+m 
(E.32) 

-pz 

Ep+m 
Pz 

Ep+m 

~ 
Px + ipy 

W3(jJ) Ep+m 
m 

1 

(E.33) 

0 

Px- ZPy 

Ep+m 

~ 
-pz 

W4(P) Ep+m 
m 

0 

(E.34) 

1 

The time-independent creation and annihilation operators in Eqs. (E.19) and (E.20) satisfy 

the usual equal-time anticommutation relations 

li3 (p- P1)1iss' , 

li3 (p- p')liss' , 

(E.35) 

(E.36) 
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whereas the anticommutators involving the remaining eight combinations of b, ht , d and ht 

vanish. The operators ht and b are associated with the creation and annihilation of particles, 

whereas the operators dt and dare associated with the creation and annihilation of antiparticles. 

Using these operators the Fock space can be constructed, starting from the vacuum state 10 >, 

defined to be that state containing neither particles or antiparticles, that is 

E.3.1 Feynman propagator for photons 

0 

0. 

{E.37) 

(E.38) 

The plane-wave expansions for the photon fields are not written down in this appendix. Quan­

tization of the photon field is more complicated, and the interested reader is referred to Refs. 

[Sa67, Na90, Gu91, Ka93, Gr96] . For our purposes, however, it is sufficient to quote the expres­

sion for the Feynman propagator for photons, namely 

iD';(x- y) = A1-t(x )A11 (y) 

= (OIT[Att(x)A11 (y)] IO) 

= . j d4k - ik·(x-y)nttv(k) 
z (27r)4e F 

{E.39) 

where the momentum- space Feynman propagator in the Feynman gauge is given by 

(E.40) 

E.4 Electron-electron scattering 

In this section, the preceding theory is applied to evaluate the cross section for electron-electron 

scattering, also known as M0ller scattering. 

E.4.1 S-matrix elements 

To explicitly evaluate a scattering process, one needs the matrix element of the S-operator taken 

between definite particle configurations. Consider M0ller scattering for which two electrons with 
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four-momenta and spin (p1, 81) and (p2, 82) in the initial state, are scattered into the final state 

with (pl', 81') and (p2', 82' ). 

One begins by defining single-particle fermion states of definite momentum within a box of 

volume V 

(E.41) 

with normalization 

-~-I (27r)3.r3(- -l).r < p, 8 p, 8 > = ----v-u P - P u81 8 • (E.42) 

For momentum states, the latter normalization implies that 

(E.43) 

which means that one has an awkward definition for the number of states. However, this is 

interpreted to mean that one is actually calculating particle densities inside a large but finite 

box of length Land volume V; that is, one defines 

3 1 ff!L/2 ·--0 (p) = lim [ (
2 

)3 dx dy dz e-wr]. 
L-too 7r -L/2 

(E.44) 

This implies that one takes the definition: 

(E.45) 

and, hence, Eq. (E.43) becomes 

<fflff>= 1. (E.46) 

One lets the volume V of the box tend to infinity only at the end of the calculation. The origin of 

this problem is that one is dealing with plane waves, rather than wave packets that are confined 

to a specific region of space and time. The price one pays for these nonlocalized plane waves 

is that one must carefully divide out infinite quantities proportional to time and the volume of 

space. 

For M0ller scattering, the initial state of the two-electron system (at timet -oo) is 

It (E.47) 
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The probability amplitude for finding two electrons of four-momenta Pl', p2, and spin orienta­

tions s1', s2' in the final state [t = +oo >, is given by the S-matrix element 

(E.48) 

where use has been made of Eq. (E.47), and Sis defined in Eq. (E.l3). One only considers the 

case in which a scattering has taken place, and hence the initial and final states in Eq. (E.48) 

are different, that is 

(E.49) 

For this case, the unit operator in the perturbation series of the S-operator in Eq. (E.13) [i.e, 

the term for which n = OJ does not contribute to the scattering process. The first correction 

term [term n = 1 in Eq. (E.13)] also does not contribute for the following reason: if one 

expresses Hint in Eq. (E.12) in terms of creation and annihilation operators via Eqs. (E.19) and 

(E.20), and the analogous expressions for the photon field operators [Gr96], then the photon 

creation and annihilation operators give zero when acting on the vacuum to the left and right 

respectively. Thus, the lowest order scattering (i.e. Born approximation) in the perturbation 

series given by Eq. (E.13) is to order e2 • Truncating the expansion at this term gives [Na90] 

(E. 50) 

This expression may at first seem rather complicated, however, one only needs to insert expan­

sions for the field operators in Eq. (E.19) and (E.20), and then use Wick's theorem to reduce 

the expression to a simpler form. The matrix element has the following structure: 

(E.51) 

One sees that A~-'(x1) can only be contracted with A11 (x2), yielding the photon propagator given 

by Eq. (E.39) and (E.40). If one further contracts all fermion operators, one finds no contribution 

when operators from .(f;(x1) and ~(x2 ) are paired. This is because here at least one contraction 

of an incoming with an outgoing electron operator occurs, and due to the condition expressed by 
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Eq. (E.49), one gets zero. The only nonzero contribution is obtained by contracting all operators 

of incoming and outgoing electrons with the field operators {/; and ~. For example, one must 

contract bb
181 

with {/;(xl ) and {/;(x2) in turn. Thus, applying Wick's theorem to Eq. (E.50), one 

gets 

The contraction denoted by A, for example, can be simplified by substitution of Eq. (E.18) 

into the latter expression, and by applying the anticommutation relations given by Eqs. (E.35) 

and (E.36) , thus yielding 

-f dp E " (OI [b' (p ) -ip·X2 d' t (p ) ip·X2]b' t IO) - (211')3/2 V Ep ~ psU 's e + psv 's e P 2 S2 

- 1 E (p ) -iP2 ' X2 
- (211')3/2 V Ep u 2, 82 e . 

(E.52) 
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Applying a similar procedure to the remaining contractions, gives 

. fi.; . + [ u(p2t, S2t )etP2t"X2'Yv Eu(p2, S2)e-tP2"X2] 

P2 

- (1 +----+ 2) - (2' +----+ 1') + (1 +----+ 2, 2' +----+ 1') . (E. 53) 

If this result is inserted into Eq. (E.50) then, since the contraction of fermion operators for 

it > t2 and it < t2 is the same, one obtains 

Collecting together terms which differ only in the symbols used for integration or summation 

variables, finally leads to 

(-ie)
2 E E ~ ~~ 4 4 ~ ~ 

s,i = V2 y EPl y EP2 y EPi yEp~ d Xid X2 < OIT[Atk(xi)A
11

(x2)]IO > 

[ u(pl', Sit htku(pi, si)u(p2t, s2t hvu(p2, s2 )ei(P~t-Pl)·x 1 ei(p2t -p2)·x2 

- u(p2t, s2t htku(pi, si)u(pit, sit hvu(p2, s2)ei(p2t-p!) ·x1 ei(p~t-P2 ) ·x2 ] . (E. 55) 

Replacing the photon propagator< OIT[Atk(x)A11 (y)]IO >= i Dj: (x-y) by the Fourier transform 

expressed in Eqs. (E.39) and (E.40), enables the integration over Xi and x2 to be easily carried 

out, yielding delta functions of four-momenta. Hence, the final result for the S-matrix element 

for M0ller scattering, to order e2 in Eq. (E.48), is 

(-i~)
2 E E ~ ~(27r)4 (pit +p2t -pi-P2) 

V y Ep1 y Ep2 y EPi y EP~ 
x[ u(pit, Sit htku(pi, st)iD';(pit- pt)u(p2t, s2t hvu(p2, s2) 

- u(p2t, S2t )'Ytku(pi, sl)iD'; (pit - P2)u(plt, sl')'Yvfi(p2, s2)] , (E.56) 

where the photon propagator D';(k) is given by Eq. (E.40). The minus sign in the second term 

of Eq. (E.56) is a consequence of the indistinguishability of the electrons and of the Fermi-Dirac 

statistics. 
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Direct Exchange 

Figure E .l: Direct and exchange Feynman diagrams for electron-electron scattering. 

The result in Eq. (E.56) is now compared to the corresponding expression obtained via 

application of the Feynman rules for M0ller scattering as described in Bjorken and Drell [Bj64). 

According to the latter reference, the lowest order Feynman (i.e. order e2 ) diagrams for electron­

electron scattering are the direct and exchange diagrams depicted in Fig. E.l: these are examples 

of "tree diagrams", that is, diagrams without loops. 

Using Feynman rules (see Appendix Bin Ref. [Bj64]) to write down the S-matrix element 

associated with the diagrams in Fig. E.l, yields an expression which is identical to Eq. (E.56). 

Thus, for M0ller scattering, the validity of the Feynman rules quoted by Bjorken and Drell 

[Bj64) has been explicitly confirmed. Note that Eq. (E.56) is also identical to the corresponding 

S- matrix element for M0ller scattering in section 3.3 of Ref. [Gr92). 
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E.5 Scattering cross sections 

The connection between the S-matrix element and the physical scattering cross section is now 

presented. This topic is discussed in more detail in Greiner's book on "Quantum Electrodynam­

ics" [Gr92]. Note that the latter reference uses Gaussian units, whereas Heaviside-Lorentz units 

[Gu91, Gr92] are considered here. 

Starting from the scattering matrix element Sti in Eq. (E.56), the Lorentz invariant ampli­

tude MJi is defined by extracting some kinematical factors. For the case of M0ller scattering, 

the connection between Sfi and Mti is given by (Bj64, Gr92] 

(E.57) 

where 

(E.58) 

Following standard references [Bj64, Gr92], the differential scattering cross section, which is the 

number of transitions per unit time per unit volume divided by the flux of incident particles, is 

given by 

where Ep = vi.PI 2 + m 2, and ih and ih are velocities of the incident collinear particles. This 

expression is integrated (summed) over all the undetected momenta (spins) of the final particles. 

Note that Eq. (E.59) is divided into two parts: first the invariant amplitude MJi, which is a 

Lorentz scalar and in which the physics lies, and second, the phase space and kinematical factors. 

The conservation of total energy and momentum is guaranteed by the factor 

(27r)484(pl' + P2' - Pl - P2)· Furthermore, there are exactly four factors of the type ~. In 

general, there occurs a factor E for every external fermion line of the corresponding graph of 

the scattering process. The (2~3 phase-space factors give the density of final states within the 

momentum range p to p + 8p. It is customary to express the relative velocities j'ih - v2! in 

Eq. (E.59) in a Lorentz "invariant" form ( which is only invariant in collinear frames, such as 
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laboratory and centre-of- mass frames [Gr92, Ka93]) 

Ep!EP21VI - VII = V(pi. P2)2 - m4 (E.60) 

h h d f - VI d - V2 w ere one as rna e use o PI = E an P2 = E . 
PI P2 

E.5.1 Unpolarized cross sections 

In this section an expression is derived for the unpolarized cross section for M!llller scattering. If 

polarizations are not measured, then one has to average over the initial spins and sum over final 

spins in Eq. (E.59) . Since the spin quantum numbers occur solely in the invariant amplitude 

squared, from Eq. (E.58) the spin-averaged squared invariant amplitude is defined as 

1Mtil2 = 

where the averaging over initial spins S I and s2 is responsible for the factor ~ - To illustrate the 

application of the usual trace techniques in deriving explicit expressions for differential cross 

sections, the problem is simplified by ignoring the second term (i.e. the exchange term) in 

Eq. (E.61), and considering only the first term (i.e. the direct term). The latter is a good 

approximation for a small momentum transfer (PI' - pr), that is, for forward scattering. Hence, 

one takes 

(E.62) 

One starts by noting that terms of the form 

[adjoint spinor] x [matrix] x [spinor] (E.63) 

are complex numbers, for which the operations of complex conjugation and taking the adjoint 

are identical, and hence 
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[u(Pl', 81' )'y~u(p1, 81}]* = [u(pl', 81' )'y~u(p1, 81)]t 

[u t (pl', 81' )'y0,~u(pl, 8l}]t 

u(p1, 81)1° (!~) t (/0) t u(Pl', 811 ) 

u(p1, 81)'y~u(p1', 81') 
4 

L u5(p1, 8l}'Yfeue(pl', 81') 
5,e=l 

where use has been made of the fact that [Bj64] 

('Yo) t 1o 

(10)2 1 

,o (!~) t ,o ,~ . 
The spin sum in Eq. (E.62) is now evaluated: 

3 

L { L[u(p2', 82' )'y~u(p2, 82)][u(p1', 81' )'y~u(p1, 81}]} 

3 

x { L[ii(P2', 82' )!~.~u(p2, 82)]*[u(pl', 81' )'yvu(p1, 81)]*} 
v=O 
3 

=2: 
4 

4 

L Ua(p2', 82' h~,af3Uf3(p2, 82)u5(p2, 82hv,5eUe(P2', 821 ) 

x L up(p1',81'h~uuu(p1,81)uT(pl,81)'Y~AuA(pl''81') [using Eq. (E.64)] 
p,u,T,A=l 

3 4 

=2: L L Ua(P21 , 821 h~,af3[L Uf3(P2, 82)U¢(P2, 82) bv,5eUe(P21 , 82') 

4 

x L 2:up(p1',81'h~u[Luu(P1,81 )uT(Pl,81)]'Y~AuA(pl',81'). 
p,u,T,A=l s1t 

241 

(E.64) 

(E.65) 

The spin summations in the square brackets are evaluated using the identity [Bj64, Gr92] 

(E.66) 

yielding 
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(E.67) 

With Eq. (E.67) in Eq. (E.62), the spin-averaged squared matrix element is now written as 

(E.68) 

where q = Pl'- Pl is the four-momentum transfer, and the projectile-tensor and target-tensor, 

LJ.£v and SJ.£v respectively, are defined as 

(E.69) 

(E.70) 

One has thus succeeded in expressing the invariant matrix element squared as the contraction 

of projectile and target tensors. Note that the factorization expressed by Eq. (E.68) is only 

valid as long as a single photon is exchanged in the scattering process: In general, for lowest 

order scattering processes depicted by Feynman diagrams similar to Fig. E.l, where only a 

single photon or meson is exchanged, the invariant matrix element squared can be written 

as the contraction of projectile and target tensors, yielding factorized expressions similar to 

Eq. (E.68). 

By applying the usual trace theorems (see, for example, Appendix A of Bjorken and Drell 

(Bj64] and section 3.3 of Greiner's book on "Quantum Electrodynamics" [Gr92]), the projectile 

and target tensors are easily evaluated. Since traces of odd numbers of ~-matrices vanish, 

Eq. (E.69) is immediately simplified to 

(E.71) 

In order to make use of the trace theorems, Eq. (E. 71) needs to be rewritten in terms of the 

"slash" notation. To this end, one introduces two unit four-vectors with a 1 for components f..L 
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and v respectively, and the other components are zero 

A (0, 1 ,0,0) 
'----....----" 

component p, 

B (0,0, ~ ,0). 
component v 

With this notation, and applying the usual trace theorems to the first term in Eq. (E.71), one 

can now write 

Tr(m, 4>- :h IJ ) 

Pl' · ATr(plQ ) - Pl' · P1Tr(4>- Q ) + Pl' · BTr(4>- pl) 

4(Pl' · A)(pl ·B) - 4(pl' · Pl)(A ·B) + 4(pl' · B)(A · Pl) 

(E.72) 

where the dot denotes a Lorentz contraction and 9p,v is the usual metric tensor. For the second 

term in Eq. (E.71) one gets 

(E.73) 

With Eqs. (E.72) and (E.73), the projectile tensor in Eq. (E.71) now reads 

LI.£V 1 1 [ 1.£ v 11- v 1.£V(p 2)] = 2m2 P1'P1 + P1P1'- 9 1' · Pl- m (E.74) 

with a similar expression for the target tensor in Eq. (E.70): 

(E.75) 

Substitution of Eqs. (E.74) and (E.75) into Eq. (E.68) and carrying out the implied summation 

over f-L and v yields 

4 

IM 1
2 e [ 1.£ v + 1.£ v p,v( 2)] fi = 4m2(q2)2 P1'P1 P1P1' -9 Pl' · Pl - m 

X [ (P2' )p,(p2)v + (p2)p,(p2' )v- 9p,v(p2' · P2- m2)] 
e4 

4m 2(q2)2 [(Pl' · P2' )(pl · P2) + (pl' · P2)(Pl · P2') + (p1 · P2' )(pl' · P2) 

+(Pl · P2)(Pl' · P2')- 2(Pl · Pl' )(p2' · P2- m2)- 2(p2 · P2' )(Pl' · Pl- m 2) 

+4(pl' · Pl- m2)(p2' · P2- m2)] 
e4 

2m2(q2)2 [(Pl · P2)(Pl' · P2') + (p1 · P2' )(Pl' · P2) 

(p1 · Pl' )m2 - (p2 · P2' )m2 + 2m4
] • (E.76) 
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The unpolarized differential cross section is now evaluated by replacing IMti 12 in Eq. (E. 59) 

with 1Mtil2
: 

(E.77) 

where 1Mtil2 is given by Eq. (E.76), and the incident flux factor is defined in Eq. (E.60). 

Next, the unpolarized differential cross section is explicitly evaluated for an electron scatter­

ing into a given solid-angle element dO', centred around the scattering angle (), in any collinear 

reference frame. The unpolarized double differential cross section is also evaluated. Since only 

one scattered electron is observed, Eq. (E.77) needs to integrated over all final momentum vari­

ables, except for Pl' (which one takes to be the momentum of the detected electron). Using the 

fact that 

lifldlifl EdE (E.78) 

which follows from 

(E.79) 

one starts by writing the volume element dp1' in spherical coordinates 

(E.80) 

where, for convenience, the notation E1' = Ep
1

, has been introduced. Integrating over the df12' 

in Eq. (E.77), one obtains [Ai83, Gr94] 

I dif2' 4 1 
-8 (pl' + P2' - P1 - P2) = -8(El' + E2' - E1 - E2) . 
E2' E2' 

(E.81) 

On the righthand side, IP2'1 and E 2' are no longer independent variables, but are now related 

by 

and (E.82) 

Eq. (E. 77) can now be written as 

m 4 --2 1 1 ( )I ... I ' 
do- = J(p )2 41Mtil (2 )2 -E 8 E 1' + E2'- E1- E2 Pl' dEl' dO. . 

1·P2 -m 7r 2' 
(E.83) 
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This formula is valid in any Lorentz system. To explicitly evaluate the differential cross section, 

it is necessary to adopt a specific reference frame. For the purpose of this discussion all kinematic 

quantities are defined in the electron-electron centre-of-mass system, defined by [Ai83, Gr94] 

For the scattering of two equal-mass particles, the centre-of-mass four-momenta are 

P1 = (E1,i/) = (E,p) 

P2 = (E2, -p) = (E, -p) 

Pl' = (El,,P') = (E,p') 

P2' = (~,, -p') = (E,-p') 

where 

li/1 li/' I= P 

E1 E2 = El' = E2' =E 

and p now stands for the magnitude of the three-momentum. Defining 

where the equality E1 = E2 = E is valid only for equal mass scattering, that is m1 

m, and introducing the free variable 

(E.84) 

(E.85) 

(E.86) 

(E.87) 

(E.88) 

[since E1, + E2, is only constrained to be equal to Ecm = E1 + E2 after performing the integral 

over the energy-conserving delta function in Eq. (E.83)], and noting that [see Eqs. (E.78) and 

(E.79)] 

one can write 

dE' 

pdp' 

_P_dp + _P_dp 
El' E2' 

E' 
--pdp 
El'E2' 
E' 
E 

dE1'. 
2' 

(E.89) 

(E.90) 
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Furthermore, in the centre-of-mass system, the flux factor in Eq. (E.60) reduces to 

(E.91) 

With Eqs. (E.86), (E.90) and (E.91) in Eq. (E.83), one gets 

(E.92) 

From this one can write down an expression for the double differential cross section 

(E.93) 

The unpolarized differential cross section is obtained by integrating over E' in Eq. (E.92) to 

yield 

( da-) 
dO/ em 

[from Eq. (E.87)] . (E.94) 

Next, 1Mtil 2 in Eq. (E.76) for electron-electron scattering, at small momentum transfers, is ex­

plicitly evaluated. For this purpose, one introduces the Lorentz-invariant Mandelstam variables 

which are related by 

s+t+u 

s = (P t + P2)2 = (Pt' + P2' )
2 

t = (p1 - Pt' )2 = (P2 - P2' )2 

u = (p1 - P2' )2 = (Pt' - P2)2 

(for equal-mass scattering) . 

In the centre-of- mass system the Mandelstam invariants have the values 

s = (p1 + P2)2 = 4E2 

t = (Pt' - P2)2 = -(p'- P)2 

= -2lfi l2(1- cosO) 

41 
.... ,2 . 8 = - p sm-

2 

(E.95) 

(E.96) 
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u = (P2' - Pl)2 = -( -p'- f/) 2 

= -2lf/ 12 (1 +cos 0) 

= -4lf/l2 cos ~. 

247 

(E.97) 

The scalar products in Eq. (E. 76) can be expressed in terms of the Mandelstam variables as 

follows 

yielding 

P1 · P2 = Pl' · P2' 

P1 · Pl' = P2 · P2' 

P1 · P2' = Pl' · P2 

1 2 
= - (s - 2m) 

2 
1 2 = - - (t- 2m ) 
2 
1 2 

= - - (u- 2m) 
2 

-- 41 1 1 2 2 22 2 
IMJil 2 = e 4

2
m2 t2 [( s - 2m ) + (u- 2m ) + 4m t] . 

With Eqs. (E.99) and (E.97), and defining 

(E.98) 

(E.99) 

(E.lOO) 

the explicit expression for the unpolarized differential cross section in Eq. (E.94) is now written 

as 

( da-) 
dD.' em 8E2 If/ 1

2 (1- cos 0) 2 

x [(2E2 
- m2

)
2 +(If/ 12 (1 +cos 0) + m2

)
2

- 2m2 If/ 1
2(1- cos 0)]. (E.101) 

E.5.2 Polarized cross sections 

Thus far only unpolarized M0ller scattering has been considered. In this section the generaliza­

tion of the latter to the case for polarized M0ller scattering is briefly discussed. More detail can 

be found in Greiner's book on "Quantum Electrodynamics" [Gr92]. 

Recall that a free electron is described by a Dirac spinor with positive energy, momentum 

pJ.I. and spin vector sJ.I. [Gr90, Gr92], denoted by u(p, s), where 

(j - m)a(J U(J(P, s) = 0. (E.102) 
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The four-spin vector 8~-' is a Lorentz vector which, in the rest system of the particle, is defined 

as a unit vector 

(8~-')rest system = (8~-')RS = (0, s 1) (E.103) 

where § 
1 refers to the quantization axis (also called spin orientation) in the rest frame of 

the particle. The components of 8~-' in an arbitrary frame, in which the particle moves with 

momentum p, are obtained by a Lorentz boost with the result 

~ "I "I -+ 

J.1. - [P...:..!___ ~I+ 8 . p .... ] 
8 - , 8 (E )P . m m +m (E.104) 

Because of the Lorentz invariance of the four-dimensional scalar product, it immediately follows 

that 

-1, (E.105) 

and with 

(p~-')rest system (m,O,O,O), 

it also follows that 

(E.106) 

In the rest frame, the unit spinors are eigenstates of the operator 

:E · § 1u(O, ±§ 1) = ±u(O, ±§ 1) (E.107) 

where ::E = r5'Y01 is the "double" Pauli matrix 

(E.108) 

The covariant generalization of Eq. (E.l07) is given by 

r5~ u(p, ±8) = ±u(p, ±8) (E.109) 

where an extra factor 1° is included in order to make this equation also valid for positron spinors. 

In order to take advantage of trace techniques in evaluating polarized cross sections, the spin 

projection operator f;(8) is introduced 

t(8) (E.llO) 
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with the property that [see Eq. (E.109)] 

t(s)u(p, +s) 

t(s)u(p, -s) 

t(s)u(p, s') 

u(p, +s) 

0 

249 

(E.111) 

Now consider, for example, the scattering of polarized electrons in which the final spin is mea­

sured. The polarized cross sections are obtained by following a procedure analogom. to that 

described in Sec. E.5.1. The only difference now is that one does not average over the initial 

spins and sum over the final spins when evaluating the invariant amplitude squared. Once again, 

the double differential cross section and differential cross section are given by Eqs. (E.93) and 

(E.94), respectively, with, however, 1Mtil2 in Eq. (E.62) replaced by 

With Eqs. (E.64) and (E.111), this expression is rewritten as 

2 3 

(
e) 2 L L {[u(p2' , sf')'y~i:(s2)u(p2,si')][u(p2 , si'hvi:(s2')u(p2' ' sf')] 
q ~v=O s !' S ;1 

x [u(p1' , s f' )'y~i:(sl)u(p1, si' )][u(p1, si' )-{f:(sl' )u(Pl' , s1' )]} , (E.113) 

which allows one to take advantage of trace techniques. Repeating the procedure between 

Eqs. (E.63) and (E.67) in Sec. E.5.1, the double sum over the spins can be transformed into 

traces yielding 

~Tr[ ~1+1sh1h +m v1+rsh'.z:il'+m] W2 , 2 2m , 2 2m 

Tr[ 1 +rs:/2 ·h +m 1 +rsh'P2'+ m] 
~~ 2 2m rv 2 2m · (E.114) 

As in Sec. E.5.1, these traces can be evaluated in a specific reference frame via application of 

the usual trace techniques. 

E.6 Alternative normalization for Dirac spinors 

It is fairly common, in applications of the relativistic many-body problem, to adopt the nor­

malization procedure of Serot and Walecka [Se86], which differs from that of Bjorken and Drell 
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given by Eqs. (E.26) and (E.27) in Sec. E.3, namely 

w~, ( Er'P )wr ( ErP) 

Wr'(P)wr(P) 
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(E.115) 

(E.116) 

With the above normalizations, the free Dirac unit spinors are given by Eqs. (E.31) - (E.34), 

with the exception that one needs to make the following substitution: 

(E.117) 

To derive the unpolarized differential cross section for electromagnetic electron-proton scatter­

ing, one follows a procedure analogous to that discussed in Sec. E.4. With the normalizations 

of Serot and Walecka, there are, however, a few minor differences. First of all, the following 

replacement needs to be made in the S-matrix element of Eq. (E.57): 

m 
--+ 1, 

Ep 

and , secondly, one must use the identity 

(E.118) 

(E.119) 

instead of Eq. (E.66), when deriving the factorized form of the differential cross section in 

Eq. (E.68). 
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Relation between ti and Fi amplitudes 

The aim of this appendix is to derive the relationship expressed by Eq. (3.58) [in Sec. 3.2.5 of 

Chapter 3] between the invariant amplitudes ti [Eq. (3.54) in Sec. 3.2.5] and Fi [Eqs. (3.29) and 

(3.30) in Sec. 3.2.4]. 

Following the procedure outlined in Sec. E.5 of Appendix E, one can write down the polarized 

differential cross section for NN scattering in the NN centre-of-mass frame, namely (compare 

to Eq. (E.94) for unpolarized M~ller scattering) 

(F.1) 

where Eem is the energy of the incident nucleon in the centre-of-mass frame, and the invariant 

matrix element M is defined by Eq. (3.54) in Sec. 3.2.5 of Chapter 3. Now let's assume that 

the invariant amplitudes ti [Eq. (3.54) in Sec. 3.2.5] and Fi [Eqs. (3.29) and (3.30) in Sec. 3.2.4] 

are related via 

(F.2) 

where e is the (complex) kinematic factor to be derived. With Eqs. (3.25) and (3.54) in Eq. (F.1), 

and making use of Eq. (3.25) in Sec. 3.2.4, one can write the following expression for the polarized 

NN differential cross section in the centre-of-mass system: 

( 
dif ) 2 m

4 
1 t t t t 2 

dO/ em = JeJ 1611"2 E~ 4JkcmJ2J(xl'X2'JfJXlX2)J (F.3) 

where f is the nonrelativistic scattering matrix given by Eq. (3.18). Now, from Eq. (3.24) one 

sees the nonrelativistic scattering matrix is normalized such that the polarized differential cross 

section is given by 

( 
dif) 
dO/ em 

(F.4) 
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To be consistent with the latter normalization, it follows from Eq. (F.3) that 

- 87riEcmlkcml e = 

and, hence, one can write Eq. {F .2) as 

ti = - 87r iEc2mlkcml Fi . 
m 
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{F.5) 

(F.6) 

where Ecmlkcml is an invariant flux factor [Gr94). Note that the phase factor -i just ensures 

that the real {imaginary) SVPAT amplitudes are related to the real {imaginary) Wolfenstein 

amplitudes. The factor of -i is excluded in the RPWIA of Horowitz and Murdock [Ho88): for 

calculating observables, which involve terms of the form titi (see Appendix K), one can omit this 

factor. For quasielastic proton-nucleus scattering discussed in Chapter 3, the latter expression 

is replaced by the corresponding expression in the effective laboratory frame, namely Eefflkeffl, 

and hence Eq. {F.6) is written as 

(F.7) 

where Te1£ and (J~ are given by Eqs. {3.59) and {3.62) [in Chapter 3), respectively. 
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Polarization formalism 

The aim of this appendix is to present the polarization formalism for the elastic scattering of 

nucleons by spin-zero nuclei, as well as for elastic nucleon-nucleon (NN) scattering. Before 

introducing the concepts of density- and scattering-matrices M, one first needs to consider a 

few mathematical preliminaries. 

G .1 Mathematical preliminaries 

Throughout the following section use is made of the following mathematical concepts: 

• the inner product of two matrices U and V, which is defined as 

(G.l) 

One can easily verify that this definition satisfies the requirements of an inner product: 

(i) < u, v > = < v, u > * 

(ii) < u + v, w > = < u, w > + < v, w > 

(iii) 

(iv) 

< kU, V > = k < U, V > 

and 

<V,V> = O if V = O 

• the direct product of two matrices A and B , which is defined as 

(A® B) ix j,kxl = A ik Bjt · 
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(G.2) 

(G.3) 
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• the direct product, which has the very useful property: 

(A®B)(C®D) = AC ® BD 

• the fact that any vector iJ transforms as 

3 

/3i = L ( R)ij /3j 
j =l 

under a rotation operator R, characterized by a 3 x 3 orthogonal matrix R. 

• under a rotation the Pauli spin matrices O'i transform according to: 

3 

nt (R) O'i D (R) = 2:: Rij O'j 
j =l 

254 

(G.4) 

(G.5) 

(G.6) 

where R is the rotation matrix that corresponds to the rotation of the physical system; 

e.g. if the rotation is around the z-axis, then 

cosO -sinO 0 

R = sin 0 cos 0 0 (G.7) 

0 0 1 

• any 2 x 2 matrix can be expanded in terms of the following linearly independent matrices: 

the 2x2 unit matrix, h, together with the three Pauli spin matrices, that is 

(: :) ~AI, +Ba, +Cay +Da, (G.8) 

where 

A 
1 
2 (a+ d) 

B 
1 
2 (b +c) 

i c --(c-b) 
2 

D 
1 
2 (a- d). 

Based on the definition of the inner product in Eq. (G.1) one can easily verify that the 

set of 2x2 matrices 

(G.9) 
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is orthonormal, that is 

(G.lO) 

where 

and i = 1, 2, 3 (G.ll) 

Consequently, the matrices indicated by 1l are orthonormal and span 2-dimensional space. 

G.2 Polarization of incident beam of spin-~ particles 

The aim of this section is to describe an incident beam of polarized spin-~ particles via the 

concept of a density matrix. 

The polarization of an ensemble (or beam) of N spin-~ particles is defined as [Pa81, Hi90] 

p= (u) (G.12) 

where u is the usual Pauli spin operator, and the overhead bar denotes the average of the 

underlying expectation value. Denoting the spin state of the nth particle of the ensemble by the 

Pauli spinor 

(G.l3) 

with normalization 

(G.l4) 

the polarization can now be written as 

p (u) 

ft 2:::~=1 (xnlulxn) 

_ ft 2:::~= 1 ( a~* a~* ) ( an 0"12 ) ( a~ ) 
a21 a22 a~ 

(G.15) 

I:~=1(la1nl 2an + la2nl
2
a22 + a!na2a12 + a2na10"21) · 
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Introducing the spin density matrix p 

p 
1 
N 

the polarization can now be written as 

if= Tr(pu) 

with the normalization in Eq. (G.14) translating to 

Tr(p) = 1. 

256 

(G.17) 

(G.18) 

"Tr" denotes the trace of a matrix, i.e. the sum of the diagonal elements of the corresponding 

matrix. 

For a beam of polarized spin-~ particles it is convenient to express the density matrix in 

terms of its polarization if. This is accomplished by expanding the density matrix in terms of 

a complete set of 2 x 2 matrices, namely the 2 x 2 unit matrix, I = 0', and the usual Pauli spin 

matrices O"i (i=1, 2, 3), that is 

3 

p= L:cp,a-p,. 
p,=O 

From the properties of the Pauli spin matrices it follows that 

and, hence, one can rewrite Eq. (G.19) as 

p ~[I+ Tr(pu) · u] 

~[I +if· u]. 

(G.19) 

(G.20) 

(G.21) 
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G.3 Description of scattered polarized spin-~ particles 

The aim of this section is to describe a scattered beam of polarized spin-~ particles for spin-~ 

particles scattering from spin-zero target nuclei. 

First, two very important relationships pertaining to the elastic scattering of polarized spin­

~ particles from a spin-zero target are derived, namely 

• the relationship between the density matrices for the incident and scattered particles: 

(G.22) 

• the relationship between the differential cross section ~~ and the density matrices for the 

incident and scattered particles: 

da Trpscatt 

(dO) = Trpinc (G.23) 

These relationships are ea~ily generalized to the case of nucleon-nucleon scattering. 

Per definition, the scattering matrix M, for the elastic scattering of spin-~ particles on a 

spin-zero target, is a 2x2 matrix which relates the scattered spin state to the initial spin state 

via 

Xscatt = M Xinc . 

With this definition, and making use of Eq. (G.16) for N 

scattered beam becomes 

where 

pscatt (xscatt) (X tscatt) 

(M X inc) (x tine Mt) 

MpincMt. 

(G.24) 

1, the density matrix for the 

(G.25) 

(G.26) 
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From conventional scattering theory [Ho92], the differential cross section ~~, for scattering 

through an area r 2df! subtended by a detector, is defined as 

number of particles scattered into df! per unit time (d~)dn 
df! number of incident particles crossing plane j_ to incident direction per unit area per unit time 

where 

Jscattr2df! 
iinc 

-1 - 1i t 
Jscatt/inc- ~Im(1f1scatt/inc V1f1scatt/inc) 

(G.27) 

(G.28) 

refers to the asymptotic flux density of particles, and J.L signifies the reduced mass of the system. 

If the direction of the incident beam is taken to be along the z-axis, then the incident and 

scattered wavefunctions, for a spin-~ particle, are [Pa81] 

•1•• _ eikzXinc 'f'mc- (G.29) 

and 

ikr 
.1. _e -xscatt 'f'SCatt r 

ikr . 
_e -Mxmc (G.30) 

r 

SubstitutionofEqs. (G.30) and (G.29) into Eq. (G.28), substitution of the latter into Eq. (G.27) , 

and making use of Eqs. (G.25) and (G.l6), yields the following expression for the differential 

cross section in terms of the incident and scattered density matrices 

d~ 

df! 

For an unpolarized incident beam 

Tr(Pscatt) 

Tr(Pinc) 

Tr(MPincMt) 

Tr(Pinc) 
[from Eq. (G.25)] . (G.31) 

(G.32) 

since for this density matrix Eq. (G.17) yields zero polarization. This implies that the differ­

ential cross section Eq. (G.31) reduces to 

(G.33) 
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where the bar above the sigma indicates that this is an unpolarized differential cross section. 

Next, a description is given for a beam of polarized spin-~ particles after scattering from a 

spin-zero nucleus. From Eqs. (G.l7) and (G.25), the polarization of a scattered beam of spin-~ 

particles is defined to be 

p' = 
Tr (Pscatt 0') 
Tr(Pscatt) 

Tr(Pinc) Tr(M PincMt 0') 
Tr(Pscatt) Tr(Pinc) 

With Eqs. (G.31) and (G.31) this becomes 

(d<7)p' = Tr(MPincMtu). 
dO Tr(Pinc) 

(G.34) 

(G.35) 

Consequently, one can write down an expression for the ith component of the polarization of 

the scattered beam [with normalization Tr(p) = 1] as 

( d<7) 1 

dO Pi 

!.Tr(MMt)[Tr(MMt<7i) ~ .Tr(M<7jMt<7i)] 
2 Tr(MMt) + f;;i_PJ Tr(MMt) 

d- 3 

- (d~)[Di'O + ~pjDi'j] 
J=l 

where 

(G.36) 

and the polarization transfer observables, which relate the ith component of the scattered beam 

polarization to the jth component of the initial beam polarization, are defined by 

(G.37) 
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and (~~) refers to the unpolarized cross section defined in Eq. (G.33). Eqs. (G.31) and (G.36) 

also hold for NN scattering, with the exception that the scattering matrix M and density matrix 

Pine are 4 x 4 matrices instead of 2 x 2 matrices: this will be discussed in Sec. G .4. 

Before writing down explicit expressions for the polarization transfer observables in terms of 

the scattering amplitudes, it is necessary to derive the form of the scattering matrix for spin-~ 

on spin-zero scattering, and also for NN scattering. The latter derivations can be found in Refs. 

[Pa81, Hi90]. However, in this appendix, an alternative approach is presented. 

G.3.1 Scattering matrix 

The aim of this section is to derive the most general form of the scattering matrix that is 

consistent with rotational, parity, and time-reversal invariance, for the scattering of polarized 

spin-~ particles from a spin- zero target nucleus. 

In Sec. G.3 it was shown that the scattering matrix for spin-~ on spin-zero is two­

dimensional. Using the basis of Eq. (G.9), the scattering matrix M (k, k') can be written 

as: 

3 

M (k, k') =a (k, k') I2 + L f3i (k, k') CJi , (G.38) 
i=l 

where the kinematical quantities k and k' enter in the expansion coefficients of M, and denote 

the incoming and outgoing momenta in an arbitrary reference frame respectively. The discus­

sion that follows is very general and is independent of a specific reference frame such as the 

conventional centre-of- mass and laboratory reference frames. 

First, the consequences of imposing rotational invariance on the scattering matrix M are in­

vestigated. Let us now perform a rotation on the scattering matrix M (k, k') to a new scattering 

process M (£: l') with the same collision energy and scattering angle. Such a rotation implies 

that the incident and outgoing momenta k and k' are simultaneously rotated to new incident 

and outgoing momenta, land l' respectively, indicated by 

k ---+ (R) ---+ l 

k' ---+ (R) ---+ l' (G.39) 
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where R denotes the rotation operation from (k, k') to (£: l'). Let x represent an arbitrary Pauli 

spin state, then the corresponding spinor in the rotated frame is given by: 

{G.40) 

where D (R) represents a 2 x 2 rotation operator. 

The original unrotated scattering amplitude, for scattering from an initial spin state Xi to a 

final spin state X! , is 

{G.41) 

and the scattering amplitude in the rotated frame is 

{G.42) 

Enforcing rotational invariance implies that 

{G.43) 

With Eq. {G.40) this condition can be rewritten as 

x} M (k, k') Xi= x} nt (R) M (£: l') D (R) Xi {G.44) 

and, consequently, rotational invariance can be restated as 

M (k, k') = nt (R) M (l, l') D (R) . {G.45) 

Combining Eqs. (G.45) and (G.38) , and making use of the fact that a and f3i are merely complex 

numbers, yields 

3 3 

a (k, k') + :L f3i (k, k') ()i = nt (R) a (l, l ') D (R) + :L nt (R) f3i (l, l') ()i D (R) 
i = l i= l 

3 

= a (l, l') + :L f3i (l, l') nt (R) ()i D (R). {G.46) 
i=l 

Hence, one sees that rotational invariance imposes the following condition on the a coefficients 

in Eq. (G.38) , namely 

a (k, k') = a(l, l') . {G.47) 
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Now for a to be invariant under a rotation, it can only be a function of quantities which are 

invariant under rotations, namely 

lkl2 k2 

lf'l2 k'2 

k·k k k' cosO (G.48) 

For elastic scattering k = k', and hence one can restate the condition of rotational in variance 

on the a coefficients as 

(G.49) 

Using the transformation property of the Pauli spin matrices expressed by Eq. (G.6), the second 

term in Eq. (G.46) becomes 

_, .... , t T _, .... , 3 3 ( 3 ) ~ f3i (£, £ ) D (R) t7i D (R) = [;_ ~ (R )ji f3i (£, £ ) t7j , (G.50) 

and since the Pauli spin matrices are linearly independent, rotational invariance imposes the 

following condition on the (3 coefficients, namely 

3 
_, .... , ~ T _, .... , 

{3j (k, k) = L....J (R )ji f3i (£, £ ) . (G.51) 
i=l 

According to Eq. (G.5) the latter condition implies that the f3i coefficients transform as the 

components of a vector, and hence one can write 

f3t (k, k') 

jJ (k, k') = f32 (k, k') 

f33 (k, k') 

(G.52) 

Consider a righthanded coordinate system defined by any orthonormal set of unit vectors, 

X, Z, n. These unit vectors are usually defined in terms of the incident and outgoing nucleon 

momenta in either the centre-of-mass or laboratory system. At a later stage, a convenient set 

of orthonormal unit vectors is chosen in accordance with the reaction kinematics. At this stage, 

however, an arbitrary reference frame is chosen. Expanding the vector jJ (k, k') in terms of this 

basis yields 

jJ (k, k') = f3x (k, k') x + f3z (k, k') z + f3n (k, k') n . (G.53) 
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The fact that iJ is a rotational vector function of k and k' implies that a rotation of k and k' 
will produce the same effect as a rotation of iJ itself [Ta72], therefore 

f3i (k, k') = f3i (£: l') . (G.54) 

Hence, for elastic scattering, rotational invariance implies that 

(G.55) 

Employing the notation 

' A a ax X + ann+ az Z , 

Eq. G.38 can be rewritten as 

(G.56) 

where 
3 

iJ · a - L:: f3i a-i • 
i=l 

Hence, the most general form of M, consistent with rotational in variance, for elastic spin-~ on 

spin-0 scattering is given by: 

(G.57) 

For spin-& on spin-zero scattering, it customary [Pa81, Hi90] to define the righthanded co­

ordinate system X, Z, n in terms of the incident and outgoing nucleon momenta, k and k' 
respectively, in the laboratory frame of the nucleon-nucleus system: 

k-k' 
lk- k'l 

k+k' 
lk+k'l 

k X k1 

ik X k'l 

(G.58) 

The unit vectors X and Z lie in the reaction plane, and the unit vector n is normal to the 

reaction plane. 

Next, let us consider the form of the scattering matrix after imposing additional symmetries 

on the scattering process, namely 
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• Parity invariance 

Under a parity transformation P, the momentum vectors transform as follows [Sa85]: 

k -t (P) -t -k 

k' -t (P) -t -k' . 

Hence, the unit vectors defined in Eq. (G.58) transform as 

x -t (P) -t -X 

Z -t (P) -t -Z 

n -t (P) -t n. 

The Pauli spin matrices are invariant under a parity transformation: 

a -t (P) -t a. 

(G.59) 

(G.60) 

(G.61) 

Since k 2 and cos() are invariant under parity [see Eq. (G.48 )], the expansion coefficients 

are also invariant under parity. Combining Eqs. (G.57) and (G.59) - (G.61) yields the 

most general form of M consistent with rotational and parity invariance, namely 

(G.62) 

• Time-Reversal invariance 

Under a time-reversal transformation T the momentum vectors transform as follows 

[Sa85]: 

k -t (T) -t -k' 

k' -t (T) ---t -k . 

Hence, the unit vectors defined in Eq. (G.58) transform as 

X -t (T) -t X 

Z ---t (T) -t -Z 

n ---t (T) -t -n . 

The Pauli spin matrices change sign under a time-reversal transformation: 

a -t (T) -t -a . 

(G.63) 

(G.64) 

(G.65) 
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As can be seen from Eq. (G.48), the expansion coefficients are invariant under time­

reversal. 

Combining Eqs. (G.57 and (G.63) - (G.65) yields the most general form of M consistent 

with rotational and time-reversal invariance, namely 

(G.66) 

• Parity and Time-Reversal invariance 

Combining Eqs. (G.57), (G.62) and (G.66), one sees that the most general form of M 

consistent with rotational, parity and time-reversal invariance is given by 

(G.67) 

Next, an analogous procedure is followed for the derivation of the scattering matrix for elastic 

NN scattering. 

G .4 Scattering matrix for elastic NN scattering 

The aim of this section is to derive the most general form of the scattering matrix that is 

consistent with rotational, parity, and time-reversal invariance for elastic NN scattering. 

For NN scattering the scattering matrix which relates xscatt to xinc, analogous to Eq. (G.24), 

is four-dimensional. This is due to the fact the both xscatt and xinc are a direct product of 

projectile and target nucleon Pauli spinors, that is, the spinors in Eq. (G.24) generalize to 

xscatt = x~catt ® x~catt (G.68) 

and 

(G.69) 

where the subscripts "1" and "2" refer to projectile and target nucleons respectively. Hence the 

scattering matrix can be expanded in terms of sixteen linearly independent 4 x 4 matrices. For 

the projectile one has the following basis 

(G.70) 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX G. POLARIZATION FORMALISM 266 

and, similarly for the target, the basis is 

(G.71) 

where the O"'s are the usual Pauli spin matrices. A suitable basis 1l for the combined space is 

then given by the direct product, defined in Eq. (G.3), of 1lp and 1lt, that is 

(G.72) 

where 

(G.73) 

Consequently, one can now expand the NN scattering matrix M in terms of this basis, that is 

3 

M (k, k') = a (k, k') 14 + L f3i (k, k') (h ® O"r) 
i=l 

(G.74) 
i=l i,j=l 

where 

14 = h ® 12 = 4 x 4 unit matrix . (G.75) 

First, the consequences of imposing rotational invariance on the scattering matrix M are inves­

tigated. Let us now perform a rotation on the scattering matrix M (k, k') to a new scattering 

process M ( l, fi) with the same collision energy and scattering angle. Such a rotation implies 

that the incident and outgoing momenta, k and k', are simultaneously rotated to new incident 

and outgoing momenta land l' respectively: 

k --+ (R) --+ l 

k' --+ (R) --+ l' (G.76) 

where R denotes the rotation operation. Let x represent an arbitrary Pauli spin state (which 

is actually a direct product of arbitrary spin states for the projectile and target nucleons), then 

the corresponding spinor in the rotated frame is given by: 

XR=D(R)x (G.77) 
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where D (R) represents a 4 x 4 rotation operator. 

Now, following a procedure which is analogous to that outlined between Eqs. (G.41) and 

(G.44), it follows that rotational invariance can be restated as 

M (k, k') = nt (R) M (£: f') D (R). (G.78) 

Using the expansion forM in Eq. (G.74), the above condition can be restated as: 

i=l i=l i,j=l 

3 3 

a(£:f') + L f3i(£:f')nt(R)(Il ®al)D(R) + L ri(£:f')nt(R)(at ®h)D(R) 
i=l i=l 

3 

+ L Ei,j(£:f')nt(R)(at ® aJ)D(R). (G.79) 
i,j=l 

Comparing the first terms on the left and right sides of this equation yields the condition on 

the a coefficients imposed by rotational invariance, namely 

a (k, k') =a(£: f') . (G.80) 

Analogous to Eq. (G.47) this implies that 

a = a ( k2
, cos 0) . (G.81) 

The operator D (R) is a matrix which acts in the combined spinor space of the projectile and 

target nucleons. In Ref. [Sa85] it is shown that a rotation matrix that acts in a direct product 

space, can be written as the direct product of two rotation matrices which act in the separate 

spaces, that is 

D (R) = D1 (R) ®D2 (R) (G.82) 

where D1 (R) is a 2 x 2 rotation matrix which acts only in the spinor space of the projectile, 

and D 2 (R) is a 2 x 2 rotation matrix which acts only in the spinor space of the target. Note 

that the same rotation, R, appears as the arguments of D 1 and D2. Substituting Eq. (G.82) in 

the second term on the righthand side of Eq. (G.79) gives 

3 3 

L f3i (£: f') nt (R) (It® ar) D (R) = L f3i (£: f') (Di (R) ® D~ (R)) (It® ar) (Dl (R) ® D2 (R)) 
i=l i=l 
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Using Eq. (G.4) one can write 

3 3 

2: f3i (£: l') nt (R) (h ® o-[) D (R) = 2: f3i (£: l') (h ® D~ (R) (Jt D2 (R)). (G.83) 
i=l i=l 

Using the transformation property of the Pauli spin matrices expressed by Eq. (G.6), Eq. (G.83) 

becomes 

3 3 

2: f3i (£: l') nt (R) (I1 ® (Jt) n (R) L f3i (£: l') Rij (Il ® (JJ) 
i=l i,j=l 

(G.84) 

Similarly, the third term on the right side of Eq. (G.79) can be written as 

3 3 

2: ri (£: l') nt (R) ((J[ ®h) n (R) 2: ri (£: l ') (Di (R) ® D~ (R)) (((J)[ ® I2) (D1 (R) ® D2 (R)) 
i=l i=l 

~ (t, (RT);i'Yi (i; i')) (o} oH,). 

Comparing the left and right sides of Eqs. (G.84) and (G.84) yields the following two conditions 

resulting from rotational invariance: 

3 

f3i (k, k') = L (RT)ij {3j (£: l') (G.85) 
-y=l 

and 

3 
-+ .... , ~ T .... ...., 

rdk, k) = L.)R )ijrj(f, f). (G.86) 
j=l 

According to Eq. (G.5), these two equations imply that f3i and ri transform as vectors, and so 

one can write 

and 

fJl (k, k') 

i1 (k, k') = f32 (k, k') 

f33 (k, k') 

11 (k, k') 

1 (k, k') = 12 (k, k') 

r3 (k, k') 

(G.87) 

(G.88) 
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Alternatively, one can work on the basis {X, Z, n} and write: 

jj (k, k') = f3x (k, k') x + (Jz (k, k') z + f3n (k, k') n (G.89) 

and 

1 (k, k') =/X (k, k') X+ /Z (k, k') z +In (k, k') n. (G.90) 

Just as in the case for spin-~ on spin- zero scattering, it follows that expansion coefficients are 

only functions of k2 and cos(). Therefore, rotational in variance implies that 

(G.91) 

and 

(G.92) 

Next, the last term on the righthand side of Eq. (G.79) is considered. Analogous to the ensuing 

discussion, one can write 

3 3 

L Cii (l, l') nt (R) (cr} ® crJ) D (R) L Cij (l, f') (D{ (R) ® D~ (R)) (cr} ® crJ) (D1 (R) ® D2 (R)) 
i,j=l i, j = l 

3 

L Cij (l, f') (D{ (R) cr} D1 (R)) ® (D~ (R) crJ D2 (R)) 
i, j = l 

i,j=l 

(G.93) 
i,j, k, l 

Therefore 

3 3 

L &i j (£: i') nt (R) (a-[® a-J) D (R) = L 
i ,j=l k, l= l 

Comparing the last term on the lefthand side of Eq. (G.79) with the above equation, yields 

another condition imposed by rotational invariance, namely 

3 
......... , '""" T ......... , 

£ i j (k , k) = L..J (R ) i k £kt (£, £ ) Rtj . 

k, l = l 

(G.94) 
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This equation tells us that Cij transforms as a matrix (second rank tensor) [Mo53]. Consequently, 

one may write 

£u £12 £13 

£ = £21 £22 £23 

£31 £32 £33 

(G.95) 

where all the matrix elements are functions of k 2 and cos() in order to have rotational invariance. 

The following aim is to write the matrix £ in terms of the basis X, Z and n. Consider an 

arbitrary 3 x 3 matrix, 

then 

a b c 

A= d e f 

g h 2 

A= (abc) 0 ( ~) +(de f) 0 ( : ) + ~ h o) 0 ( ~ ) 

Consider the first term: 

(abc)® ( n = (aOO)® u) +(ObO)® u) +(OOc)® u) 

a(lOO)® ( ~) +b(OlO)® ( ~) +c(OOl)® ( ~) 
and define 

(G.96) 

(G.97) 

(G.98) 
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Then one can write 

(G.99) 

For notational simplicity one disposes of the transpose symbol, T and just writes 

as x®x . (G.lOO) 

Using the same notation for the other terms in Eq. (G.97) gives 

A= a (x ® x) + b (Y ® x) + c (z ® x) + d (x ®g)+ e (Y ®g) + f (z ®g)+ 9 (x ® z) + h (y ® z) + i (z ® z) 

One now does a basis transformation from the basis {X' y' z} to the basis, {X' z' n}. This will 

only affect the expansion coefficients, therefore 

+ A1 (X ® n) + As ( z ® n) + Ag ( n ® n) 

where each of the new expansion coefficients, Ai, are functions of a, b, c, d, e, j, g and h. Using 

this result one writes £ as: 

3 

£ = L Cij (k2
, cosO) ei ® ej (G.lOl) 

i,j=l 

where 

(G.102) 

Using Eq. (G.91), one writes the second term in Eq. (G.74) as 

(G.103) 

and similarly, using Eq. (G.92), one writes the third term in Eq. (G.74) as: 

(G.l04) 

The last term in Eq. (G.74) requires a bit of manipulation. Let 

3 

£. (<71 ®<72) = L Cij (CJ[ ®CTJ). (G.105) 
i,j=l 
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This equation defines the "·" operation on the LHS. £is now to be interpreted as a 3 x 3 matrix. 

One has, however, an expansion for£, given by Eq. (G.lOl). Therefore 

3 

£ · (il' ® il2) = :L £ij (k~ coso) (ei ® ei) · (il1 ® il2) . (G.106) 
i,j=l 

Using the definition of the '·' operation, given in Eq. (G.105), one may write: 

3 

(ei ® ej) · (il1 ® il2) = :L {ei ® ej)cr (0"~ ® 0";) . (G.107) 
c,r= l 

Since ei only has one row and ej only one column, the direct product defined by Eq. (G.3) 

reduces to 

(G.108) 

and, therefore, 

3 

L (ei)c (O"~ ®h) (ej)r (h ® O";) 
c,r=l 

Hence 

3 

:L t:ij ( (Jt ® O"J) 
i,j=l 

3 

L £ij (k2
, cosO) (51 ® h). ei (h ®52

). ej . 
i,j=l 

Thus the most general form of M, consistent with rotational invariance, is given by 

M a(k2
, cosO)I1 ®I2 +/3(k2, cosO)· {il1 ®I2) +1(k2

, cosO) · {h ®il2) 
3 

+ :L £ij {k2, coso) (il1 ® I2) · ei (h ® il2) · ei (G.l09) 
i,j=l 
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or written out explicitly 

2 1 ~ 2 ~ 2 1 ~ 2 ~ + £zx (k , cosO) (a 0 h)· z (lr 0 a ) · x + £zz (k , cosO) (a 0 I2) · z (I1 0 a ) · z 

One therefore sees that rotational invariance alone leaves 16 independent quantities. 

For NN scattering, it customary [Pa81, Hi90] to define the righthanded coordinate system 

X, Z, n in terms of the incident and outgoing nucleon momenta, k and k' respectively, in the 

NN centre-of- mass system: 

z = 

n = 

k-k' 
lk-k'l 

k+k' 
lk+k'l 

The unit vectors X and Z lie in the reaction plane and the unit vector n is normal to the 

reaction plane. 

Now consider additional symmetries which may be imposed on the system. The argumen­

tation is identical to that followed for the case of spin- ~ on spin-zero scattering, and only the 

final results are quoted, namely 

• the most general form of M , consistent with invariance under rotations and parity is: 
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2 1 ~ 2 ~ 2 1 ~ 2 ~ 

+£xx(k ,cos8)(8 ®I2)·X(h®if)·X+£xz(k ,cos8)(if ®I2)·X(I1®if)·Z 

2 1 ~ 2 ~ 2 1 ~ 2 ~ 
+£zx(k ,cos8)(if ®h)·Z(h®if )·X+£zz(k ,cos8)(if ®h)·Z(h®if )·Z 

(G.llO) 

In this case one has eight independent functions. 

• the most general form of M, consistent with invariance under rotations and time-reversal 

zs: 

2 ~ 2 1 ~ 2 ~ 2 1 ~ 

(h ®if ) ·X+ [zz (k , cos 8) (if ® I2) · Z (h ®a ) · Z + £zn (k , cos 8) (if ® I2) · Z 

(G.lll) 

In this case one has 10 independent functions. 

• imposing rotational, parity and time-reversal invariance gives: 

2 1 ~ 2 ~ 2 1 ~ 2 ~ + £xx (k , cos 8) (if ®h)· X (h ®if ) ·X+ [zz (k , cos 8) (if ®h)· Z (I1 ®if ) · Z 

(G.112) 

In this case, there are six independent functions. 

• imposing the fact that the projectile and target nucleons are indistinguishable 

1 ~ 2 (G.113) 

yields 

k --+ -k 
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k' -+ 
.... , 

-k 

x -+ -x 
z -+ -z 
n -+ n. 

Also 

a 1 ®I2 -+ It 0a2 

It 0 a 2 -+ a 1 012 

Hence, if one demands that M is invariant under exchange of particles, it is clear that the 

functions in the second and third term in Eq. (G.112) must be equal. 

Therefore the most general form of M invariant under rotations, parity, time-reversal 

and exchange of nucleons is then given by: 

2 1 A 2 A 2 1 A 2 A 

+Exx(k ,cos8)(a ®I2)·X(It®a)·X+£zz(k ,cos8)(a ®h)·Z(It®a)·Z 

(G.114) 

where An = f3n = /n, and in this case there are only five independent functions. 

Eq. (G.114) can be recast into several forms: for example, see Refs. [Br78), [Pa81) and [Hi90). 

With the coordinate frame in Eq. (G.58), one can make the following connection between 

Eq.(G.114) and the scattering matrix derived in Refs. [Pa81, Hi90): 

a +-t go 

An +-t ho 

Exx +-t hx 

£zz +-t hz 

Enn +-t hn · (G.115) 
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Another convenient form, which is used in Chapter 3, is the McNeil-Ray- W allace (MRW) 

scattering matrix [Mc83a]: 

The quantity kcm refers to the centre-of-mass momentum, and A, B, C, D and E are five 

complex functions. With the notation 

one means 

(G.116) 

where X, Z and n still represent the previously defined unit-vectors. 

One now aims to express the MRW amplitudes in terms of the amplitudes in Eq. (G.114) . 

The dot- product in the second term is expanded in terms of the basis {X, Z, n}. Then 

1 A 2 A 1 A 2 A + D (a ® !2) · X (!1 ®a ) ·X+ E (a ® h) · Z (h ®a ) · Z. 

Regrouping the terms yields 

Comparison with Eq. ( G.114 ), allows one to make the following identifications: 

a +-+ (2i kcm) A 

An +-+ (2 i kcm) (i lXI C) 

£xx +-+ (2 i kcm) (B + DX2
) 

[zz +-+ (2 i kcm) (B + E) 

£nn +-+ (2i kcm ) B. 
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G.5 Observables for NN scattering 

The expressions for the polarization transfer observables are now derived for the scattering of 

polarized spin-~ beams from unpolarized spin-~ targets. 

G.5.1 Density matrix for incident channel 

For spin-~ on spin-~ scattering, such as NN scattering, the combined spin-space of the incident 

and target particles is four-dimensional. This means that the density matrix for the incident 

channel pine can be expanded in terms of the 16 linearly independent matrices specified in 

Eq. (G.73). Hence, analogous to the procedure in Sec. G.2, one can write 

16 

Pine= LCJ.£SJ.£ 
J.£=1 

(G.117) 

where SJ.£ E 1l in Eq. (G.73). From the properties of the Pauli spin matrices, it follows that 

(G.118) 

This enables one to write 

(G.119) 

and consequently, using the notation defined in Sec. G.4, 

1 16 . 1 . 1 3 . 

4 
L Tr(pmesJ.£)811- = 4Tr(pme14)14 + 4 ~Tr(pme11 ® o-l)11 ® o-l 
J.£=1 z=1 

1 3 . 1 3 . 
+4 L Tr(pmeo-[ ® 12)o-[ ® 12 + 4 -~ Tr(prneo-[ ® a-J)a-[ ® a-J 

z=1 z,J=1 

3 

~Tr(pine)[14 + _FJne. h 0 cP + _Ffne. a 1 0 h + .~ (a[ 0 iJ])a[ 0 aJ](G.120) 
Z,J=1 

where, analogous to Eq. (G.34), the polarization of the projectile and initial target nucleons, 

Pfne and _FJne respectively, are defined as 

Tr(pinea1 ® 12) 

Tr(pine) 

Tr(pine 12 0 iJ2) 

Tr(pine) 
(G.121) 
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The average value of the direct product a[ ® aJ is called the polarization correlation function. 

For the special case of an incident polarized beam scattering on an unpolarized target, Eq. (G.120) 

reduces to 

(G.l22) 

G.5.2 Differential cross section and analyzing power 

Substituting Eq. (G.l22) in Eq. (G.31) yields the differential cross section for the scattering of 

polarized nucleons from an unpolarized nucleon target: 

(:~) ~Tr(MI4Mt) + ~_ptnc · Tr(Ma1 ® I2Mt) 

a-(1 + fitnc . a) 

where a- is the unpolarized differential cross section 

and the asymmetry parameter a is 
__. Tr(Ma1 ® I 2Mt) 
a= Tr(MI4Mt) 

(G.l23) 

(G.l24) 

(G.125) 

Using the explicit expression for M given by Eq. (G.114) and (G.115), with the right-handed 

coordinate system defined by Eq. (G.58) in the NN centre-of-mass system, and evaluating the 

traces (as described in Refs. [Pa81] and [Hi90)) yield the following expression for the unpolarized 

differential cross section in terms of the 5 complex amplitudes go, ho, hx, hz and hn: 

(G.l26) 

The right-hand side of Eq. (G.126) is a function of k2 and cos 0. There is no dependence on 

the azimuthal angle ¢ of the direction k' of the scattered beam. This is a consequence of the 

lack of polarization of the incident beam. 

Recall that n is the unit vector perpendicular to the plane containing the incident and 

outgoing momentum vectors k and k'. Due to the various symmetries imposed on the scat­

tering matrix M, the asymmetry parameter a, also called the analyzing power Ay, defined by 
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Eq. (G.128) is always perpendicular to the scattering plane, that is 

a an 

(G.127) 

where 

a-a = aan = 2 Re(go + hn)h0n . (G.128) 

Hence, Eq. (G.123) can be more explicitly written as 

du ..... 
(dO)= u = a-(0)(1 + aPfnc · n). (G.129) 

The physical meaning of the asymmetry parameter becomes clear if one considers "left" and 

"right" scattering of k' through an angle 0 with respect to k, in the plane of the page. In the 

case of k' in the left direction, a right-handed screw driven from k towards k' moves upwards, 

therefore, the corresponding n is perpendicular to the plane of the paper, and it points upwards. 

Similarly, in the case of k' in the right direction, n is still perpendicular to the plane of the paper, 

but it points downwards. Therefore, the directions of n in the two cases are exactly opposite to 

each other. If n describes the upward normal, then Eq. (G.129) can be written as 

uL(O) = a-(0)(1 + a.P{nc · n) 

UR(O) = a-(0)(1- aPfC. n) (G.130) 

where the subscripts "L" and "R" denote scattering to the left and right respectively. Combining 

these expressions yields 

(G.131) 

For obvious reasons, the quantity afi{nc · n is called the left- right asymmetry. This is exactly 

equal to the asymmetry parameter a for a fully polarized incident beam perpendicular to the 

tt · 1 · p .... inc ~ 1 sea ermg p ane, I.e. 1 · n = . 

G.5.3 The polarization transfer observables 

An expression for the polarization of a scattered nucleon beam is now derived in terms of the 

incident polarization and the so-called polarization transfer observables. 
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Analogous to Eq. (G.34) , for spin-~ on spin- zero elastic scattering, one can write down the 

polarization of the scattered beam beam for NN scattering: 

P_,scatt _ 
1 -

Tr(pscattal ® 12) 
Tr{pscatt) 

Tr(M pine Mt a1 ® 12 ) Tr(pine) 

Tr(pine) Tr{pscatt) 

Tr{M Pine Mt a l ® J2) 

Tr(~ne)O" 
(G.l32) 

where O" = ~n is defined by Eq. {G.31). For the scattering of a polarized nucleon beam from an 

unpolarized nucleon target, Eq. (G.l22) is used to rewrite the latter expression as: 

~pscatt _ 
v li -

3 

a-[ Di'O + L P{';c Di'j l . 
j=l 

(G.133) 

Analogous to Eq. (G.37), the polarization transfer observables Di'i• which relate the ith compo­

nent of the scattered beam polarization to the jth component of the initial beam polarization, 

are defined by 

Tr(MCTJ ® hMtO"t ® !2) 
Di'j = Tr(MI4Mt) (G.134) 

and 

D ·, - Tr(MMtO"t ®h) 
t 

0 - Tr(M I4Mt) {G.l35) 

Consider the special case of an unpolarized incident beam, i.e. 0. Then, using 

Eq. (G.124) , one gets 

(G.136) 

Explicit evaluation of this equation (see for example, Ref. [Pa81]) gives the result 

{G.137) 

Using this result, and comparing Eqs. (G.136) and (G.l25) yields the important result that 

fiseatt , for the case of an unpolarized incident nucleon scattering from an unpolarized nucleon 
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target, is equal to the asymmetry parameter an (or analyzing power Ay), for scattering of a 

polarized nucleon beam from an unpolarized nucleon target, that is 

Pfcatt = Pn = an = Ay , (G.l38) 

where the quantity P is called the induced polarization and Ay is the analyzing power defined by 

Eqs. (G.l25) and (G.l27). The second term in Eq. (G.l33) is evaluated in terms of the explicit 

expression for the scattering matrix M [Pa81, Hi90) yielding 

[ (l9ol 2 + 2lhol 2 -lhxl2 -lhzl2 + lhn i2)(Pfnc. n) ]n 

+ [ (l9o l2 + lhxl2
- lhzl2 + lhni 2 )(Pfnc ·X) 

+ 2 Im(hogo- hohn)P{nc · Z) ]X 

+ [ (l9ol 2 -lhxl2 + lhzl2
- lhn i2)(P{nc · Z) 

-<inc A A 

- 2 Im(hogo - hohn)(P1 ·X) ]Z . (G.139) 

Next, expressions for the traditional Wolfenstein parameters or polarization transfer observables 

Di'j, used in Chapter 3, are obtained. The latter observables are defined in the NN laboratory 

system. Consequently, one needs to express the components of fiscatt (in Eq. (G.133)) along 

the scattered momentum (i') in the laboratory frame, along the perpendicular to this direction 

in the scattering plane ( § ') , and along the direction n normal to the scattering plane, such 

that s', {' and ii form the right- handed coordinate system shown in Fig. G.l. Similarly it is 

necessary to express the components of _Fine along the orthogonal directions s, land ii , shown 

in Fig. G.l, in the laboratory system. Recall that k and k' are the incident and outgoing nucleon 

momenta in the NN centre-of- mass frame, and () is the scattering angle between k and k' . For 

NN elastic, where lkl = lk'l, one can show by nonrelativistic kinematic considerations [Pa81) 

that the laboratory and centre-of-mass scattering angles are related by 

Ocm 
Otab = -

2
- · (G.140) 

The relativistic relations between these scattering angles are found in Ref. [Br78) . Since the 

incident momentum k has the same direction in both the laboratory and the centre-of-mass 

system, and using the fact that for elastic NN scattering lkl = lk' l, one can show that the final 

momentum in the laboratory system points in the same direction as Z = I~!~; I which one now 

relabels as i 1 (longitudinal along the final momentum) (refer to geometrical considerations in 
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" X "' =s 

" " x=s 

282 

ecm- e 
2 

- lab 

" k z=R 
Figure G.l: Laboratory and centre-of-mass coordinate frames for describing polarization trans­

fer observables for elastic NN scattering. 
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Fig. G.1). The perpendicular to this direction, namely X, is now relabelled as s' (sideways). 

Note that the last term in Eq. (G.139) gives the component of fi~eatt in the direction i' and the 

second terms gives the component of .Preatt in the direction s', both in the outgoing laboratory 

system. The first term together with Eq. (G.138), gives the component of .P~eatt in the direction 

normal (n) to the scattering plane. However, the coefficients of the three terms in Eq. (G.139) 

contain components of Pfne along the directions X, n, and Z in the NN centre-of-mass system. 

Our aim is to express the components of Pfne along the right-handed coordinate system defined 

by s = i:, n = fJ and i = z = kin the incident laboratory system. This is achieved by expressing 

(Pfne. X) and (Pfne. Z) in Eq. (G.139) in terms of (Pfne. i) and (Pfne. s). From the geometry 

shown in Fig. G.1, it follows that 

(G.141) 

Substituting Eqs. {G.141), (G.136), (G.138) into Eq. (G.139) , and then substituting the resultant 

expression into Eq. (G.133), yields 

cr(8 , ¢) j>seatt 
cr( 8) 1 

(G.142) 

where the polarization transfer observables Di'j, also defined by Eq. (G.134) {but with the NN 

scattering matrix M defined in the incident and outgoing laboratory systems), are explicitly 

written as 

0"{8)[1- Dnn] = 0"{8)[1- D] 

o-(8)Ds'i = o-(8)A 

o-(8)Ds's = o-(8)R 

o-(8)Dn = o-(8)A' 

o-(8)Dt's = -o-(8)R' 

2{lhxl 2 + lhzl 2
) 

-(lgol 2 + lhx l2 - lhzl2
- lhn l2 ) sin{8tab) 

+2Im{h0go - h0hn) cos(8tab) 

(lgol2 + lhxl 2 -lhzl2 -lhnl 2
) cos(8tab) 

+2Im{h0go- h0hn) sin{8tab) 

(lgol2
- lhxl 2 + lhzl 2 -lhnl 2

) cos(8tab) 

+2Im{h0go - h0hn) sin(8tab) 

(lgo l2 - lhxl 2 + lhz l2 -lhnl2
) sin(8tab) 

-2Im{h0go- h0hn) cos(8tab) . (G.143) 
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The symbols D, A, R, A', and R' represent the so-called Wolfenstein parameters [Pa81, Hi90]. 

Combining Eqs. (G.129) and (G.143) yields the following matrix relation 

1 1 0 Don 0 1 

pseatt 0 Ds'l 0 Ds's pine 
~((), ¢) ls' = a-( e) ls (G.144) 

pseatt Dno 0 Dnn 0 pine 
ln ln 

pseatt 
ll' 0 Dt's 0 Dt't pine 

1l 

where one has introduced the notation 

Don = Ay (analyzing power) Dno = p (induced polarization) . (G.145) 

The pictorial representation of the polarization transfer observables is depicted in Fig. G.2. 

Next, expressions for the polarization transfer observables are derived in terms of the po­

larized differential cross section ~]--+i'· These expressions are used for calculating quasielastic 

polarization transfer observables in Chapter 3. From Eq. (G.142) the following expressions are 

obtained for the specified incoming and outgoing spin directions, namely 

Pfne = n--+ ..Pfeatt = n: ~n--+n = O'P + O'Dnn 

Pfne = n --T Pfcatt = -n: -~n--+-n = O'P + O'Dnn 

Pfne = -n--+ ..Pfcatt = n: ~-n--+n = O'P- O'Dnn 

P-"
1
ine = -n~ ----'- p-"

1
seatt = -n~ .. /T ;:;.p ;:;.D 

-----r -v -n--+-n = v - v nn · (G.146) 

Combining these equations yields 

(G.l47) 

Similarly, from Eq. (G.129) one obtains the following expressions for the specified incoming and 

outgoing spin directions 

Pfne = n --+ ..Pfeatt = n : ~ n--+n = 0' + 0' Ay 

Pfne = n --+ ..Pfcatt = -n : ~n--+-n = 0' + O'Ay 

Pfne = -n --+ Pfeatt = n : ~ -n--+n = a- - a-Ay 

.Pfne = -n--+ ..Pfeatt = -n: ~-n--+-n =a-- O'Ay. 

Combining these equations yields 

(G.148) 

(G.149) 
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Dnn=D 

Ds'.e =A 

r D, =R ss 

D .e's = R' 
r 

D .e'.e =A' -
Figure G.2: Diagram illustrating the meaning of the NN polarization transfer observables. 

The spin directions before and after the scattering are represented in the incident and outgoing 

laboratory coordinate systems, defined by ( s, n, i) and ( ;', n, l ') respectively. The spin direction 

associated with the incident proton indicates the state of polarization of the incident beam; and 

that associated with the outgoing proton indicates the component of the final polarization that 

is measured. 
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From Eqs. (G.147) and (G.149) one gets 

D 
_ O'n-+n - O'n-+-n - 0' -n-+n + 0' -n-+-n 

nn-
O'n-+n + O'n-+-n + 0' -n-+n + 0' -n-+-n 

Combining Eqs. (G.146) and (G.148) yields an expression forAy 

and, the induced polarization P 

P = O'n-+n - O'n--t-n + 0' -n-+n - 0' -n-+-n . 
O'n-+n + O'n--t-n + 0' -n-+n + 0' -n-+-n 

286 

(G.150) 

(G.151) 

(G.152) 

Recall that the induced polarization P is per definition the polarization that results from the 

scattering of an unpolarized beam from an unpolarized target. Defining the following spin­

averaged polarization cross sections 

1 
O'O--tn = 2(0'n--tn + 0'-n--+n) 

1 
O'o--t-n = 2(0'n-+-n + 0'-n--+-n) , (G.153) 

the induced polarization can be written as 

P = O'o--tn - O'o-+-n . 
O'o--tn + O'O--t-n 

(G.154) 

This is the form that is used in Chapter 3. Recall that P = Ay, and hence the analyzing 

power is also given by Eq. (G.154). Following similar arguments that lead to Eq. (G.150), is 

straightforward to show that 

(G.155) 

where 3 € {£, n, s} and i' € {i 1, n, s'}. 

G.6 Polarization observables for spin-~ on spin-zero scattering 

The aim of this section is to derive explicit expressions for the spin observables for spin-~ 

on spin-zero scattering. For convenience, and analogous to the discussion on NN scattering, 

one uses the notations= X and i = Z in Eq. (G.58), where {s, n, i} form a right-handed 
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coordinate system in the laboratory frame of the nucleon-nucleus system. Substituting the 

scattering matrix [Eq. (G.67)] into Eq. (G.37) yields 

Dnn 1 

Ds's Dei 

Di's -Ds'i 

p2 + D~'i + D~'s 1. (G.156) 

The relations between the spin observables imply that, besides the usual unpolarized differential 

cross section, 

(G.157) 

one only needs two independent spin observables to completely describe elastic spin-~ on spin­

zero scattering. These are chosen to be the induced polarization (P = Dno), which is also equal 

to the analyzing power (Ay = Dno) 

2 Re(a {3~) 
p = Ay = Dno = jaj2 + lf3nl2 

and, the spin-rotation function Q 

(G.158) 

(G.159) 

The nomenclature "spin-rotation function" becomes obvious when one expresses the scattered 

in terms of the incident beam polarization, via Eqs. (G.144) and (G.156), in the scattering plane 

only. This gives 

<J s
1 = 0"( O) i <- s <- s 

( 

pseatt ) ( D ,. _ D , • ) ( pine ) 

Pf,eatt Ds'i Di'i pjne 
(G.160) 

where the 2 x 2 matrix reminds one of a rotation in two dimensions. The analogy can be 

made more explicit by writing 

Ds'i 

v'1 - P 2 cos({3) 

v' 1 - P 2 sin({3) 

(G.161) 

(G.162) 

where v'l- P 2 results from the normalization imposed by Eq. (G.l56). Hence, one can write 

(J = <7( 0) 
( 

p;,eatt ) _ ( y'1 - p2 cos({3) 

Pf,eatt v'1 - p2 sin(f3) 

-v'1- p2 sin({3) ) ( p~ne ) 

v'1- P 2 cos({3) Pjne 
(G.163) 
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where it is clear that {3 is the rotation angle of the in- plane component of _pscatt (in the 

outgoing particle frame) with respect to the original in-plane pine (in the projectile frame): see 

Fig. G.3. 
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p scatt 

p inc 

Figure G.3: The rotation angle (3 of the in-plane component of fiscatt (in the outgoing particle 

frame) with respect to the original in-plane pine (in the projectile frame). 

Stellenbosch University  https://scholar.sun.ac.za



Appendix H 

Horowitz-Love-Franey (HLF) parameters 

Real Relativistic Love-Franey parameters 

80 MeV 85 MeV 90 MeV 95 MeV 

Meson 92 A 92 A 92 A 92 A 

11" 12.99 557.36 13.03 557.36 13.06 557.36 13.09 557.36 

'TJ 10.16 2500.00 10.18 2500.00 10.21 2500.00 10.23 2500.00 

(]" -6.26 718.43 -6.28 718.43 -6.29 718.43 -5.31 2046.20 

w 11.54 630.78 11.57 630.78 11.59 630.78 10.45 693.98 

tl -0.33 432.67 -0.33 432.67 -0.33 432.67 -1.25 341.07 

a 1 -2.18 444.57 -2.18 444.57 -2.19 444.57 -4.15 358.28 

8 0.19 236.73 0.19 236.73 0.19 236.73 -1.71 236.73 

p -0.36 547.59 -0.36 547.59 -0.36 547.59 0.90 547.59 

to 1.26 1322.82 1.26 1322.82 1.26 1322.82 2.03 1322.82 

ao 7.07 833.29 7.09 833.29 7.11 833.29 13.11 456.05 

290 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX H. HOROWITZ-LOVE-FRANEY (HLF) PARAMETERS 291 

Real Relativistic Love-Franey parameters 

100 MeV 105 MeV 110 MeV 115 MeV 

Meson 92 A 92 A 92 A 92 A 

1f 13.13 557.36 13.16 557.36 13.19 557.36 13.23 557.36 

'fJ 10.26 2500.00 10.29 2500.00 10.31 2500.00 10.34 2500.00 

u -6.33 718.43 -5.62 2059.59 -6.36 718.43 -5.85 2071.98 

w 11.66 630.78 10.62 701.67 11.71 630.78 10.72 715.64 

tl -0.34 432.67 -0.99 302.06 -0.34 432.67 -0.81 268.89 

a 1 -2.19 444.57 -3.35 326.98 -2.21 444.57 -2.78 299.19 

8 0.19 236.73 -1.21 236.73 0.19 236.73 -0.77 236.73 

p -0.36 547.59 0.31 547.59 -0.36 547.59 -0.15 547.59 

to 1.27 1322.82 1.65 1322.82 1.28 1322.82 1.38 1322.82 

ao 7.14 833.29 11.52 473.27 7.18 833.29 10.27 495.15 
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Real Relativistic Love-Franey parameters 

120 MeV 125 MeV 130 MeV 135 MeV 

Meson 92 A 92 A 92 A 92 A 

7r 13.26 557.36 13.29 557.36 13.32 557.36 13.36 557.36 

'TJ 10.36 2500.00 10.39 2500.00 10.42 2500.00 10.44 2500.00 

() -6.39 718.43 -5.97 2080.07 -6.42 718.43 -6.44 718.43 

w 11.77 630.78 10.71 722.62 11.83 630.78 11.86 630.78 

tl -0.34 432.67 -0.67 240.29 -0.34 432.67 -0.34 432.67 

a 1 -2.22 444.57 -2.39 274.61 -2.23 444.57 -2.24 444.57 

0 0.19 236.73 -0.48 236.73 0.19 236.73 0.19 236.73 

p -0.36 547.59 -0.49 547.59 -0.37 547.59 -0.37 547.59 

to 1.28 1322.82 1.24 1322.82 1.29 1322.82 1.29 1322.82 

ao 7.22 833.29 9.33 539.93 7.25 833.29 7.27 833.29 
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Real Relativistic Love-Franey parameters 

140 MeV 145 MeV 150 MeV 155 MeV 

Meson g2 A g2 A g2 A g2 A 

1r 13.39 557.36 13.42 557.36 13.46 557.36 13.49 557.36 

fJ 10.47 2500.00 10.49 2500.00 10.52 2500.00 10.55 2500.00 

(j -6.45 718.43 -6.15 2095.58 -6.49 718.43 -6.20 2106.40 

w 11.89 630.78 10.57 774.17 11.95 630.78 10.39 813.35 

tl -0.34 432.67 -0.45 188.33 -0.34 432.67 -0.35 162.73 

al -2.24 444.57 -1.83 230.76 -2.25 444.57 -1.64 214.51 

8 0.19 236.73 0.09 236.73 0.19 236.73 0.26 236.73 

p -0.37 547.59 -1.07 547.59 -0.37 547.59 -1.34 547.59 

to 1.29 1322.82 0.94 1322.82 1.30 1322.82 0.82 1322.82 

ao 7.29 833.29 7.48 646.22 7.32 833.29 6.43 794.57 
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Real Relativistic Love-Franey parameters 

160 MeV 165 MeV 170 MeV 175 MeV 

Meson g2 A g2 A g2 A g2 A 

7r 13.52 557.36 13.56 557.36 13.01 565.77 13.05 565.77 

T} 10.57 2500.00 10.59 2500.00 8.65 1386.82 8.67 1386.82 

w -6.52 718.43 -6 .29 1905.29 -6.13 970.28 -6.23 1018.63 

(]' 12.01 630.78 10.12 865.37 10.87 845.81 10.79 834.91 

tl -0.35 432.67 -0.26 136.04 -0.03 240.22 -0.03 201.23 

a1 -2.27 444.57 -1.59 213.75 -1.11 406.53 -1.11 402.54 

8 0.19 236.73 0.18 236.73 0.55 1479.58 0.35 543.17 

p -0.37 547.59 -1.65 547.59 -0.56 917.19 -0.58 906.48 

to 1.31 1322.82 0.73 1322.82 0.38 2919.12 0.33 3202.19 

ao 7.36 833.29 4.99 1760.26 2.029 1002.42 2.23 1249.44 
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Real Relativistic Love-Franey parameters 

180 MeV 185 MeV 190 MeV 195 MeV 

Meson 92 A 92 A 92 A 92 A 

7r 13.08 565.77 13.11 565.77 13.14 565.77 13.17 565.77 

'fJ 8.69 1386.82 8.72 1386.82 8.74 1386.82 8.76 1386.82 

a -6.19 988.30 -6.22 993.49 -6.26 997.58 -6.27 995.17 

w 10.88 842.48 10.89 841.47 10.90 843.93 10.93 844.59 

tl -0.03 218.34 -0.03 213.42 -0.03 193.49 -0.03 194.51 

a1 -1.12 404.28 -1.12 403.69 -1.14 403.19 -1.14 403.15 

8 0.48 997.77 0.46 913.67 0.38 1173.05 0.39 1279.72 

p -0.56 917.19 -0.57 917.19 -0.59 917.19 -0.59 917.19 

to 0.36 3098.55 0.36 3082.16 0.37 1858.35 0.37 1910.32 

ao 2.14 1067.39 2.17 1090.12 2.12 1262.96 2.11 1262.96 
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Real parameters Imaginary parameters 

200 MeV 200 MeV 

Meson 92 A 92 A 

1r 13.20 565.77 -4.37 1099.19 

'TJ 8.78 1386.82 6.89 1162.15 

()" -6.31 1018.96 -2.91 591.32 

w 10.93 835.09 4.51 601.09 

tl -0.03 200.00 0.25 1112.98 

a1 -1.13 403.56 0.78 673.62 

8 0.34 543.17 2.49 529.83 

p -0.59 917.19 -2.01 548.18 

to 0.33 2500.00 -0.87 985.48 

ao 2.27 1262.96 -1.96 944.93 
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Imaginary Relativistic Love-Franey parameters 

80 MeV 85 MeV 90 MeV 95 MeV 

Meson g2 A g2 A g2 A 92 A 

1f -9.19 2057.95 -8.87 1861.55 -8.48 1681.12 -8.46 1880.35 

'f/ 4.53 1200.00 6.09 1200.00 6.52 1200.00 6.78 1200.00 

cr -6.37 535.34 -6.49 581.23 -5.89 549.09 -5.84 559.01 

w 9.22 523.11 8.61 508.75 8.37 517.86 8.23 526.24 

tl 0.97 670.20 0.83 564.99 0.83 635.37 0.87 707.65 

a1 4.38 793.31 4.86 969.94 3.98 825.05 4.01 903.05 

8 4.11 485.83 4.49 535.42 4.17 515.50 4.13 517.86 

p -3.25 470.00 -3.16 465.27 -3.21 482.82 -3.21 492.88 

to -2.46 849.90 -2.21 758.78 -2.09 780.02 -2.12 843.59 

ao -5.42 1038.36 -5.40 1106.96 -4.76 990.52 -4.79 1031.28 
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Imaginary Relativistic Love-Franey parameters 

100 MeV 105 MeV 110 MeV 115 MeV 

Meson 92 A 92 A 92 A 92 A 

1f -8.27 1869.74 -7.94 1676.27 -7.84 1771.34 -7.62 1705.51 

'f} 7.00 1200.00 7.62 1200.00 7.85 1200.00 8.24 1200.00 

(j -5.62 557.74 -5.36 557.29 -5.11 548.05 -4.94 552.27 

w 8.02 531.74 7.63 531.12 7.48 541.01 7.19 540.03 

t l 0.85 746.27 0.79 736.16 0.84 870.21 0.81 894.46 

a l 3.78 855.09 3.54 871.29 3.36 870.18 3.26 902.06 

8 4.05 521.48 3.99 527.77 3.81 513.71 3.77 522.74 

p -3.19 504.24 -3.14 507.21 -3.12 517.58 -3.06 521.04 

to -2.06 873.51 -1.89 848.41 -1.91 934.08 -1.82 939.63 

ao -4.59 1032.54 -4.28 999.48 -4.15 1011.53 -3.99 1025.31 
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Imaginary Relativistic Love-Franey parameters 

120 MeV 125 MeV 130 MeV 135 MeV 

Meson 92 A 92 A 92 A 92 A 

1r -7.44 1696.58 -7.23 1660.29 -6.80 1655.49 -6.82 1655.49 

TJ 8.48 1200.00 8.76 1200.00 8.77 1200.00 8.79 1200.00 

() -4.79 560.48 -4.65 565.26 -4.29 563.64 -4.30 563.64 

w 6.96 540.96 6.70 540.71 6.30 549.91 6.32 549.91 

tl 0.79 964.57 0.77 1001.41 0.73 1115.63 0.73 1115.63 

al 3.19 958.82 3.11 1013.81 2.77 1013.61 2.78 1013.61 

8 3.70 527.63 3.66 535.32 3.44 531.29 3.45 531.29 

p -3.00 525.68 -2.94 529.32 -2.83 541.85 -2.84 541.85 

to -1.76 969.61 -1.69 983.74 -1.57 1031.49 -1.57 1031.49 

ao -3.88 1045.93 -3.76 1062.27 -3.44 1056.91 -3.45 1056.91 
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Imaginary Relativistic Love-Franey parameters 

140 MeV 145 MeV 150 MeV 155 MeV 

Meson 92 A 92 A 92 A 92 A 

7r -6.84 1931.76 -6.59 1829.47 -6.41 1787.24 -6.35 1870.69 

'fJ 9.01 1200.00 9.04 1200.00 9.33 1200.00 10.25 1200.00 

(J -4.21 574.08 -4.07 576.93 -3.88 572.68 -3.66 562.06 

w 6.21 561.14 5.99 560.38 5.79 562.31 5.57 559.81 

it 0.80 1456.08 0.76 1530.15 0.75 1768.09 0.81 3586.30 

a1 2.98 1217.98 2.79 1227.59 2.69 1278.78 2.83 1526.10 

0 3.35 531.25 3.28 532.82 3.19 532.23 3.08 529.42 

p -2.76 542.67 -2.71 546.77 -2.65 550.45 -2.59 552.17 

to -1.66 1238.59 -1.56 1225.43 -1.51 1282.86 -1.53 1409.26 

ao -3.61 1200.93 -3.41 1178.08 -3.28 1192.62 -3.28 1273.06 
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Imaginary Relativistic Love-Franey parameters 

160 MeV 165 MeV 170 MeV 175 MeV 

Meson 92 A 92 A 92 A 92 A 

7r -6.07 1689.72 -5.89 1614.87 -5.79 1672.35 -5.54 1541.06 

'fJ 9.45 1200.00 9.49 1200.00 6.84 1162.15 6.94 1162.15 

() -3.76 600.53 -3.69 613.00 -3.57 608.65 -3.42 601.89 

w 5.37 558.21 5.18 555.97 5.44 602.54 5.26 602.02 

t l 0.70 1886.72 0.67 1886.72 0.53 2026.61 0.49 2056.68 

a l 2.61 1573.79 2.52 1732.04 1.76 1159.38 1.57 1106.47 

8 3.07 538.98 3.02 542.34 2.73 506.17 2.67 506.75 

p -2.51 551.36 -2.44 552.37 -2.29 533.79 -2.24 535.62 

to -1.38 1453.56 -1.29 1513.89 -1.37 1648.34 -1.28 1551.67 

ao -3.10 1247.90 -2.99 1253.36 -2.96 1340.47 -2.77 1281.49 
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Imaginary Relativistic Love-Franey parameters 

180 MeV 185 MeV 190 MeV 195 MeV 

Meson 92 A 92 A 92 A 92 A 

1r -4.99 1313.76 -5.00 1313.77 -4.89 1348.25 -4.70 1295.95 

TJ 6.87 1162.15 6.89 1162.15 7.08 1162.15 7.09 1162.15 

(J -3.19 596.09 -3.19 596.09 -3.06 590.41 -2.96 587.39 

w 4.92 601.47 4.93 601.47 4.83 608.08 4.69 610.49 

tl 0.37 1490.65 0.37 1490.65 0.38 2227.48 0.35 2344.25 

a1 1.17 901.87 1.18 901.87 1.17 973.85 1.06 932.59 

8 2.60 516.96 2.61 516.96 2.52 512.84 2.47 513.71 

p -2.15 542.44 -2.15 542.44 -2.09 542.19 -2.05 543.48 

to -1.08 1241.22 -1.08 1241.22 -1.08 1332.14 -1.03 1288.25 

ao -2.37 1108.98 -2.38 1108.98 -2.35 1168.13 -2.23 1140.79 
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Kinematic relations: Quasielastic scattering 

The aim of this appendix is to derive expressions for the kinematic quantities of interest for 

quasielastic proton-nucleus scattering discussed in Chapter 3. The following input parameters 

are required in order to completely specify all the kinematics: 

• laboratory kinetic energy Ttab of the incident proton beam, 

• laboratory scattering angle Otab of the detected ejectile nucleon, 

• free nucleon mass m, 

• effective projectile and target nucleon effective masses mi and m; respectively, 

• maximum Fermi momentum kp , 

• the range of energy transfers w spanning the quasielastic peak: w is not calculated from 

other kinematic quantities, but is chosen to span the quasielastic peak of interest. So for 

the purposes of this appendix, one regards w as known. 

Given the above input, all the kinematic quantities of interest to quasielastic proton- nucleus 

scattering will now be derived, using natural units, i.e. 1i = c = 1 will be used in this 

Appendix. Furthermore, as in Chapter 3, the following notation is used for the asymptotic (i.e. 

free) energies and momenta in the conventional laboratory frame: 

1. E 1 and k1 refer to the energy and momentum of the projectile nucleon, 

2. Et and k~ refer to the energy and momentum of the ejectile nucleon, 

3. E 2 and k2 refer to the initial energy and momentum of the target nucleon (before it has 

been struck), 

303 
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4. E~ and k~ refer to the final energy and momentum of the target nucleon (after it has been 

struck). 

1.1 Energy of asymptotic incident nucleon in laboratory frame 

The aim of this section is to derive an expression for the energy E 1 of the asymptotic incident 

nucleon in the laboratory frame. 

Energy E and momentum k together form the energy-momentum four-vector 

kiL = (E, k) {I.l) 

and are related via the well-known invariant expression [Go80, Gr87, Si90] 

{I.2) 

where m is the rest mass of the particle under consideration. An expression for the relativistic 

kinetic energy Tis derived by expanding 

E = Vlkl2 + m2 

in a Taylor series {valid for I @I < 1): 

E m(l + ~(~l)2 + ~(~1)4 + ... ) 

m+T 

{I.3) 

{I.4) 

where Tis the relativistic kinetic energy attributable to the relative motion of the system, and 

is given by 

(I.5) 

Given the kinetic energy of the incident nucleon in the laboratory frame Ttab of the proton­

nucleus system, one can calculate the asymptotic (free) energy E 1 of the incident nucleon (in 

the laboratory frame of the proton-nucleus laboratory system) from Eq. (I.4), namely (using 

natural units) 

E1 = Tiab + m (I.6) 

where m is the rest mass of the nucleon. 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX I. KINEMATIC RELATIONS: QUASIELASTIC SCATTERING 305 

1.2 Asymptotic projectile and ejectile momenta in lab frame 

In this section, expressions are derived for the components of the asymptotic three-momenta of 

the projectile and ejectile nucleons in the laboratory frame. 

The magnitude of the asymptotic incident three-momentum of the projectile follows from 

Eq. (I.2), that is 

(!.7) 

where E 1 is given by Eq. (!.6) . To find expressions for the components of k1 and fL it is 

necessary to specify the initial and final laboratory coordinate frames. Consistent with Sec. 

3.2.7 in Chapter 3, the axes of the initial laboratory coordinate frame are defined as 

-+ -+' 
k1 X k1 

1f1 x fu 

(!.8) 

and the final laboratory coordinate frame is defined as 

z' i 

x' ki (!.9) 

i) z'xk~. 

With the x-axis defined along the direction of the incident beam, the x-, y- and z-components 

of k1 are written as 

(kl)x = lk1l 

(kl)y = 0 

(kl)z = 0. (I.lO) 

For an energy transfer of w to the target nucleon, the energy Ei of the ejectile nucleon is obtained 

from Eq. (3.64) in Chapter 3, namely 

E' 1 E1 - w (I.ll) 
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and the corresponding magnitude of the asymptotic three-momentum is given by Eq. (!.2), 

namely 

(!.12) 

From Fig. 3.5 in Chapter 3, the x-, y- and z-components of ki are written in terms of the 

laboratory scattering angle Btab in the xy- or scattering plane, namely 

.... , 
I k1l COS Btab 

I k~ I sin Btab 

(kDz = 0 · (!.13) 

1.3 Three- and four-momentum transfer to the target nucleon 

The aim of this section is to write down expressions for the three-momentum and four-momentum 

transfer for quasielastic proton-nucleus scattering in the laboratory frame. 

The three-momentum transfer if is defined as 

(!.14) 

and, from Eqs. (LlO) and (L13), one can write down expressions for the x-, y- and z-components 

of if, namely 

qy = (kl)y - (ki)y = -lk~l sinBtab 

qz = (kl)x - (kDz = 0 . 

The magnitude of the three-momentum transfer I if I is then calculated from 

and the angle a between if and the Y -axis is given by (see Fig. I.1) 

(!.15) 

(!.16) 

(!.17) 

For a specific energy and three-momentum transfer, w and if respectively, the four-momentum 

squared is defined as 

(!.18) 
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1.4 Initial and final momenta of target nucleons in lab frame 

The aim of this section is to derive expressions for the initial and final target- nucleon momenta, 

k2 and k~ respectively, in the laboratory frame. 

One starts by deriving expressions for the x-, y- and z-components of the momentum k2 of 

the target nucleon {before it has been struck) in the laboratory frame. 

Consider the nucleon-nucleon scattering process depicted in Fig. I.l, where k1 and ki refer 

to the initial and final laboratory momenta of the projectile and ejectile nucleon respectively, 

and the laboratory scattering angle is denoted by Otab· The aim is to express k2 in terms of the 

following three angles (see Fig. I.l): 

• a defined by Eq. {!.17): the angle between q and the negative y-axis (Y), i.e. LCAD, 

• x defined by Eq. {!.27): the angle between AB' and AC, 

• ¢: the azumithal angle between CB and CB'. 

From the geometry of the scattering process depicted in Fig. I.l one can immediately write 

down expressions for the x-, y- and z-components of k2 with respect to the initial xyz frame, 

namely 

(k2)x AG 

AH + HG 

ACsina + CBcosa 

AB' cos x sin a + CB' cos¢ cos a 

AB' cos x sin a + AB' sin x cos¢ cos a 

I k2l (cos X sin a + sin X cos ¢cos a) , {I.19) 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX I. KINEMATIC RELATIONS: QUASIELASTIC SCATTERING 308 

y D 

Figure I.l: Coordinate frame for derivation of expressions for the asymptotic laboratory mo­

menta of the initial and final nucleons within a Fermi- gas model of the nucleus. The symbols 

are defined in the text. 
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ACcosa - BCsina 

AB' cos X cos a 

AB' cos X cos a 

(k2)z BB' 

CB'sin¢ 

- AB' sinxsin¢ 

lk2l sinxsin¢. 

CB' cos ¢sina 

AB' sin x cos ¢sin a 

sin x cos ¢ sin a) , 

309 

(1.20) 

(1.21) 

With Eqs. (1.14) and (1.15), one can also write down expressions for the x-, y- and z-components 

of the ejectile three-momentum k~ , namely 

(k~)x (k2) x + (q) x 

(k~ )y (k2)y + (q)y 

(k~) z = (k2) z . (1.22) 

1.5 Scattering energies in medium-modified Dirac spinors 

The aim of this section is to write down expressions for the scattering energies contained in the 

medium-modified Dirac spinors in Chapter 3. 

The scattering energies E* in the medium-modified Dirac spinors in the invariant matrix 

element M [see Eqs. (3.54) and (3.55) in Chapter 3] are given by expressions of the form of 

Eq. (I.3) , with the exception that the free nucleon masses mare replaced by effective projectile 

and target nucleon masses, mi and m2 respectively. 
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Hence, in the laboratory frame, one writes 

E~ v1k1l2 + m*2 1 
E'* 1 VlkiJ2 + m*2 1 

E2 v1k2l2 + m*2 2 
E'; vJk~l 2 + m22 (1.23) 

where all the three-momenta refer to the asymptotic (free) values. 

1.6 Angle between target-nucleon momentum and if 

The aim of this section is to derive an expression for the angle between the target-nucleon 

momentum k2 and the three-momentum transfer if in the laboratory frame. 

For an energy transfer w to the target nucleon, the energy of the scattered target nucleon is 

(1.24) 

where E?, and E'; are defined by Eq. (1.23). Equivalently, for a three-momentum transfer of if 

to the target nucleon, the final momentum of the target nucleon is given by 

(1.25) 

and from Eq. (1.2) one can write down an expression for the final energy of the target nucleon, 

namely 

(1.26) 

Equating the square of Eq. (L24) to Eq. (1.26) yields the following expression for the angle x 

between the target-nucleon momentum k2 and the three-momentum transfer if, namely 

(1.27) 
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I. 7 Minimum and maximum values of the target-nucleon mo-

mentum 

For a Fermi-gas nucleus, the target- nucleon momentum of an individual nucleon ranges between 

zero and the maximum value kp (see Sec. 3.2.3) , that is 

(I.28) 

However, imposing the additional constraint that the ejectile nucleon must be detected at a 

fixed laboratory scattering angle Otab (i.e. the three-momentum transfer if is fixed) after the 

projectile collides with a target nucleon, places further restrictions on the permissible values of 

the momentum k2 • The latter constraint is incorporated by virtue of the fact that in Eq. (I.27) 

which means that 

and 

lcosx l ~ 1 

qJ-I.qJ-1. + 2wE2 > _
1 

21f2llif I 

(I.29) 

(I.30) 

(1.31) 

The constraints imposed by Eqs. (I.30) and (I.31) on the allowed values of lk2l are now investi­

gated. 

One starts by considering the restrictions imposed by Eq. (I.30) on the allowed values of 

lk2l· Substitution of Eq. (I.23) into Eq. (I.30) yields 

qJ..I.qJ-1.+21"k2l lif l ~ -2wyf1f2l 2 +m22 . (I.32) 

Squaring both sides, making use of Eq. (!.18) , and multiplying all terms by -( 
1 

)2, yields 
4 qJ-1. 

(I.33) 

This condition implies that 

ll k
--.

21
_ Iii I I < w 1 m2

2 

2 2 - (qJ-1.) 2 • 
(I.34) 
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There are two solutions for lk2l which satisfy the above inequality, namely [Ma86a] 

lk I < lq'l + ~ m*2 
2 - 2 2 1- (q:)2 ' (I.35) 

and 

---- lq'l w lk21 2:: 2-2 
m*2 

1- (q:)2 0 

(I.36) 

Next, the restrictions imposed by Eq. (I.31) on the allowed values of lk2l are investigated. 

Substitution of Eq. (I.23) into Eq. (!.31) yields 

(I.37) 

1 
Squaring both sides, making use of Eq. (!.18), and multiplying all terms by 

4
(qJL)2, yields 

lq_.l w2 m*22 
(lk----21 + -)2 > (1 ) 

2 4 - (qJL)2 0 

(!.38) 

This condition implies that 

(I.39) 

There is one solution for lk2 1 which satisfies the above inequality, namely [Ma86a] 

___. lq'lw m*2 
lk21 2:: -22 1- (q:)2 ° 

(1.40) 

Combining the restrictions encompassed by Eqs. (!.28), (!.35), (I.36) and (1.40) yields the fol-

lowing limits on the minimum and maximum values of the initial target-nucleon momentum, 

lk2lmin and lk2lmax respectively: 

. lq'l w m22 lq'l w m*2 
lk2lmin = maximum[ 2- 2 1- (qJ2,- 2 + 2 1 + (q:) 2 , 0] 

. lq'l w m*2 
maximum[ I 2 - 2 1 - ( q:)2 I , 0 ] (!.41) 

and 

. . [ lq' I w 1 m22 
k ] 

mmimum 2 + 2 - (qJL)2 , F . (I.42) 
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1.8 Effective laboratory kinetic energy of the incident nucleon 

The aim of this section is to derive an expression for the effective laboratory kinetic energy of 

the projectile nucleon. The effective NN laboratory frame is defined as that system whereby 

both the initial target-nucleon momentum and kinetic energy of the target nucleon are zero, 

that is 

0. (!.43) 

To derive an expression for the effective incident laboratory kinetic in this system, one needs to 

find the transformation between the conventional laboratory system, where the target-nucleon 

momentum k2 is not zero, and the effective laboratory system defined by Eq. (!.43). To this 

end, one makes use of the fact that the square of the total four-momentum (often denoted by 

the Mandelstam variable s) is an invariant quantity [Si90], that is 

(!.44) 

where the indices "L" and "eff" denote the effective laboratory frame and the subscript "lab" 

refers to the conventional laboratory frame. The total effective laboratory four-momentum is 

given by 

(!.45) 

where 

(!.46) 

and 

--+ L 
(kl)eff [from Eq. (!.43)] . (!.47) 

The total laboratory four-momentum, on the other hand, is given by 

(!.48) 
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where 

Elab E1 + E2 

(k )Jab kl + k2 (1.49) 

and 

E1 Vlkll2 +m2 

E2 Vlk212 +m2. (I. 50) 

Expressions for the x-, y- and z-components of k1 and k2 are given by Eqs. (1.10) and (1.19) 

- (1.21) respectively. Note that, due to the Fermi-motion of the target nucleon (before it has 

been struck), k2 =I= 0. Substitution of Eqs. (1.45) and (1.48) in Eq. (1.44) yields 

(I. 51) 

Substitution of Eqs. (1.46), (1.47), (I.49) and (1.50) into Eq. (1.51), and making use of the 

following relations 

{ (El)~ff }2 l(kl)~ffl 2 + m2 

(El)~ff TL +m2 eff 

(~)~ff (T2)~ff + m2 m2 [from Eq. (1.43)] (I. 52) 

and 

(E1)2 lkll2 m2 

(E2)2 lk21 2 m2 (I. 53) 

yields an expression for Te7r in terms of the conventional laboratory quantities, namely 

(1.54) 

1.9 Nonrelativistic energy-momentum transfer relation 

The aim of this section is to derive a nonrelativistic expression which relates energy- and 

momentum-transfer. 
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Consider a projectile nucleon scattering from a single target nucleon with momentum k2 • 

Using the nonrelativistic relation between kinetic energy and three-momentum, namely 

T = lk 12 
2m 

(!.55) 

[Note: this relationship follows directly from Eq. (!.5) for I~ I « 1], and making use of the 

definition of the three-momentum transfer in Eq. {!.14), one can write down an expression for 

the nonrelativistic analogue of energy transfer w, defined by Eq. {3.64) in Chapter 3, in terms 

of the three-momentum transfer ij 

w = 
2m 2m 

lk2 + ifl2 lk212 
'----------'- - --

2m 2m 

lifl2 k2 . ij 
-2m- + _2_m_ · {!.56) 

The first term gives energy-transfer at the centroid of the quasielastic peak, which corresponds 

to free NN scattering from a stationary target nucleon (i.e. lk2l = 0). The second term indicates 

how the width of the quasielastic peak is related to the target-nucleon momentum k2 of the 

struck nucleon [Fe71, Ne88]. 

1.10 Momentum of incident nucleon in effective NN em system 

The aim of this section is to derive an expression for the momentum of the incident nucleon in 

the effective NN centre-of-mass system in terms of the effective laboratory kinetic energy Tiff 

given by Eq. {!.54). The effective NN centre-of-mass frame, for the elastic scattering of free 

equal-mass nucleons, is defined as that system whereby 

{El)~f! = (ED~ 

{kl)~ + {k2)~ 

l{kl)~l = l(fD~WI 

0 

l{k2)~f!l = l{k~)~l = l(k)~l (say) {!.57) 

where the indices "em" and "eff " are used to denote effective NN centre-of-mass frame. For 

the derivation of interest, one makes use of the fact that the square of the total four-momentum 

(often denoted by the Mandelstam variable s) is an invariant quantity [Si90], that is 

{!.58) 
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where the indices "L" and "eff " denote the effective laboratory frame [defined by Eq. (!.43)]. 

The total effective laboratory four-momentum is defined by Eqs. (I.45) - (!.47), and the total 

four-momentum in the effective NN centr~f-mass system is defined by 

where 

(ktt)~ = [ E~ , (k)~fr] 

(k )~if 

(E1)~ + (E2)~jf 

(kl)~fr + (k2)~fr . 

Substitution of Eqs. (I.45) and (I.59) into Eq. (I.58) yields 

(I. 59) 

(I.60) 

(1.61) 

From the definitions of the two reference frames expressed by Eqs. (I.57) and (!.43), and making 

use of the following relations in Eq. (I.61) 

[(E1)~]2 - l(kl)~trl 

(El)~tr 

(E2 )~ff 

{(El )~fr} 2 

yields the desired expression, namely 

m [from Eq. (1.43)] 

1.11 Effective NN centre-of-mass scattering angle 

(I.62) 

(I.63) 

The aim of this section is to derive an expression for the effective NN centre-of-mass scattering 

angle, where the effective NN centr~f-mass frame is defined by Eq. (1.57) . For the derivation of 

the effective centre-of- mass scattering angle 0~, one makes use of the fact that the direct four­

momentum transfer (often called the Mandelstam variable t) is an invariant quantity [Si90]) , 

that is 

(I.64) 
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where the indices "em" and "eff " denote the effective NN centre-of-mass frame, and the 

subscript "lab" refers to the conventional laboratory frame. With the effective centre-of-mass 

four-momentum transfer given by 

and the laboratory four-momentum transfer 

Eq. (I.64) can be written as 

Making use of Eqs. (3.64) [from Chapter 3], (!.14) and (I.18) in Eq. (!.64), gives 

(qJI.) 2 = -4l(k )~frl 2 sin2 ( 0~) 

(I.65) 

(I.66) 

(!.68) 

where 0~ is the angle between (k1 )~ and (kD~fr. Substitution of Eqs. (I.63) in Eq. (I.68) 

yields the desired expression for the effective NN centre-of-mass scattering angle 0~: 

1 .... 12 2 
ncm _ 2 . -1{ q - W } 
Ueff - Sin L . 

2mTeff 
(I.69) 
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Evaluation of the integral in Eq. (3. 78) 

The aim of this appendix is to evaluate the integral 

(J.l) 

in Eq. (3.78) [Sec. 3.2.7 of Chapter 3]. 

In the initial laboratory frame [defined by Eq. (I.8) in Appendix I], the volume element d k2 

is defined by 

(J.2) 

where the x, y, and z-components of k2 are given by Eqs. (I.19) - (I.21) in Appendix I. To 

evaluate the integral in Eq. (J.l), it is more convenient to express Eq. (J.2) in terms of the scat­

tering angles x and ¢defined in Appendix I. This is achieved via the following transformation 

[Sp74, Sa90]: 

(J.3) 

where the quantity in curly brackets is the Jacobian defined by 

o(kJ)., o(k2)., o(k2)., 
olk21 ox. o¢ 

8[(k2)x, (k2)y, (k2)z] 
~ ~ ~ (J.4) 

8[lk2[,x,¢] olk21 ox. o¢ 

o(k2 )z o(k2)z o(k2)z 
olk21 ox. o¢ 
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With Eqs. (1.19)- (1.21) for the x-, y- and z-components of k2 , one gets the following expression 

for the Jacobian: 

8[(k2)x, (k2)y, (k2)z] ik""' l2 . 
... = 2 Slnx. 

B[lk2l,x,¢] 

Substitution of Eq. (J.5) in Eq. (J.3) in Appendix I, yields 

lk2l2 sinx d lk2l dx d¢ 

lk2l 2 dlk2l d(cosx) d¢. 

(J.5) 

(J.6) 

Next, one writes down an expression for the effective energy of the recoil nucleon E'; in Eq. (J.1) 

in terms of the angle X· From Eqs. (3.63) and (3.65) in Chapter 3, it follows that 

E'* 2 Vlk~l2 +m22 

V(if + k2)2 + m22 

V(E2)2 + lif 12 + 2lk2llif I cos X 

where xis the angle between if and k2. Introducing the variable t defined by 

t = cosx 

and, using Eqs. (J.6) and (J.7), one can rewrite Eq. (J.1) as 

I= 1kmax d lk2l lk2l 2 dtd¢ h1(t) 8[h2(t)] 
kmin 

where 

hl (t) 
1 

(a1 + a2t) - 2 

h2(t) 
1 

as- (a1 +a2t)2 

and 

a1 E~ + lifl2 

a2 2lk2llifl 

as w+E;. 

Making use of the identity [Gr92] 

8[f(x)] L 8(x- xk) 

k 11x-l xk 

(J.7) 

(J.8) 

(J.9) 

(J.10) 

(J.ll) 

(J.12) 

(J.13) 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX J. EVALUATION OF THE INTEGRAL IN EQ. (3. 78) 320 

with Xk being the roots of f(x) contained in the interval of integration, the integral in Eq. (J.l) 

yields 

I 

(J.14) 

With the root of Eq. (J.ll) given by 

to (J.l5) 

and, making use of Eqs. (J.lO) and (J.ll), one gets 

1 

a3 

1-~1 
2a3 

(J.16) 

Substitution ofEq. (J.lO) into (J.l4), and making use of Eq. (J.12) yields the desired expression, 

namely 

rkmax ... {27r lk211 
I = Jkmin d lk21 Jo d¢ 1<7 I x=xo 

where, from Eqs. (J.15) and (J .12), 

cosx = to 
(qJ.£) 2 + 2wE7, 

2lk211<71 

(J.l7) 

(J.18) 
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Spins sums of invariant matrix elements 

The aim of this section is to write down the explicit expressions for the spin sums in Eqs. (3.82), 

(3.86) and (3.83) in Sec. 3.2. 7 of Chapter 3. 

Analogous to the discussion in Sec. E.4 of Appendix E, the spin summations in Eqs. (3.82) , 

(3.86) and (3.83) are readily evaluated using the identities 

'""" * ... - * ... ~ + m* 
~ u (m 'k, s) u2 (m 'k2 , s) = 2m* 

s 

(K.l) 

and 

(K.2) 

where the medium-modified Dirac spinors U(m*, k, s) are defined by Eqs. (3.55) and (3.56) in 

Chapter 3, thus yielding 

L M*M 
S! 1 S~,S2,S~ 

~ Tr {~~ +mi A· ~1 +mi A·} 
~ 1 2* J2* zX . ·-s m1 m1 Z,J-

Tr { ~~ + m2 Aj ~2 + m2 Ai} t": t . 2 2m* 2m* z 1 ' 2 2 
(K.3) 

L M*M 
s[ s2, s~ 

(K.4) 

and 

L M*M 

(K.5) 
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where Si = s1 and Sf = si are the spin four-vectors of the projectile and ejectile respectively. 

Evaluating the traces in the above equations with a computer algebra program ( "Mathemat­

ica") yields the following explicit expressions for the spin summations in Eqs. (K.3) and (K.4) 

(our results confirm the expressions of Horowitz and Murdock in Ref. [Ho88]: note that the 

corresponding expressions in Murdock's thesis [Mu87a] are not entirely correct): 

L M*M 
s2,s~,s1,s~ 

and 

L M*M 

(K.7) 

where 

(K.8) 

and all the kinematic quantities are defined in Appendix I. The quantity sf represents the 

three-spin orientation of the ejectile in the rest frame of the nucleon. Note that the spin sum in 
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Eq. (K.7) [Sec. 3.2.7 of Chapter 3)], used forAy in Eq. (3.86), is dominated by the interference 

of the vector and scalar amplitudes. Using "Mathematica" to evaluate the traces in Eq. (K.5), 

yields an expression with the following structure for spin transfer 3 to i', namely 

L M* M(J --+ i') 
S2,S~ 

n1(X) + n2(X, Y · sj) + 03(X, Y · sD 
+04(X, Y · Sj, S · sD + Os(X)(sj · sD (K.9) 

where X represents the contraction of any two scattering momenta, Y represents any single 

scattering momentum, and the initial and final four-vector spins are given by Sj = s1 and 

s~ = s~ respectively. From Eq. (K.9), one sees that the n functions exhibit the following 

behaviour for the various spin transfers in Eq. (3.89) 

nl(-3--+ i') n 1G--+ i') 

n1 (3 --+ -i') n1G--+ i') 

n1 ( -3 --+ -Z'} n1(3--+ i') 

n2( -3 --+ i') -n2(3 --+ i') 

n2 (3 --+ -i') n2(3 --+ i') 
( ~ ~ , n2 -j--+ -i) -n2(3 --+ i') 

n3( -3 --+ i') n3(3--+ i') 

n3 (3 --+ -i') -n3(3 --+ i') 

n3( -3 --+ -i') -n3(3--+ i') 

n4( -3 --+ i') -n4(3 --+ i') 

n4 (3 --+ -i') -n4(3 --+ i') 

n4( -3--+ -i') n4(3--+ i') 

ns( -3 --+ i') -nsG --+ i') 

ns (3 --+ - i') -nsG --+ i') 

Os( -3--+ -i') nsO--+ i') (K.lO) 

where 3 and i' refer to the projectile and ejectile spin orientations in the rest frames of the 

respective nucleons. Substitution of Eq. (K.9) into Eq. (3.89), and making use of the properties 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX K. SPINS SUMS OF INVARIANT MATRIX ELEMENTS 324 

of the Oi 's in Eq. (K.10), reveals that only the 04 and 0 5 functions contribute to the polarization 

transfer observables in Eq. (3.88), and the 0 1, 02 and 0 3 terms all cancel out. Hence, for the 

purpose of calculating polarization transfer observables defined by Eqs. (3.87)- (3.89), Eq. (K.9) 

can be written as 

L M* M(]---+ i') = 04(X, S · Sj, S · sD + 05(X)(sj · sD (K.ll) 
S2 1 S~ 

where the explicit expressions for 04 and 05 are given by (after doing trace algebra in Eq. (K.5) 

and omitting the 0 1, 02 and Oa terms defined in Eq. (K.9) [Ho88] 

and 

+ 2tvtv[si · K1sf · K2P1 · P2 +sf· P1si · K2K1 · P2- sf· P1si · K1K2 · P2 

+(1- Kl. Pl)(Sf. K2Si. p2 + Si. K2Sf. P2) +Sf. P2Si. KlK2. pl + Si. P2Sf. PlKl. K2] 

+ 2tA.tA[Si. KlSf. PlK2. p2- Si. KlSf. K2Pl. p2- Si. KlSf. P2K2. pl 

+ (1 + Kl. Pl)(Si. K2Sf. p2 +Sf. K2Si. P2)- Sf. PlSi. P2Kl. Kl- Si. K2Sf. PlKl. P2] 

- 8trtr[siKlsf · P1 + 2(si · K2sf · P2 + si · P2sf · K2)] 

+ 2Re(tvts + 2trtA)[si · K1sf. K2 +sf. P1si. K2 +sf. P2si. K1 + si. P2sf. Pd 

+ 2Re(tA_tp + 2trtv)[si · K1sf · P2 +sf· P1si · K2- sf· K2si · K1- si · P2sf · P1] 

+ 4Re(tA_tv)[si · P2sf · K2- Si · K2sf · P2] 

+4, Re(trts)[(1 + K1 · P1)(sf · K2si · P2- si · K2sf · P2) 

- K1 · K2sf · P1si · P2 + K1 · P2si · K2sf · P1 + K2 · P1si · K1sf · P2- P1 · P2si · K1sf · K2) 

+ 4Re(trtp)[(1- K1· P1)(sf · K2si · P2- sf· P2si · K2) + K1 · K2sf · P1si · P2 

404 - Si · s f[tsts(1 + K1 · P1)(1 + K2 · P2) - tj,tp(1- K1 · P1)(1- K2 · P2) 

+ 2(tvtv- tA_tA)(1 + K1 · K2P1 · P2- K1 · P1K2 · P2 + K1 · P2 · K2 · P1) 

- 8trtr(Kl · P1 + K2 · P2) 

+ 2 Re(tvts + 2trtA) (K1 · K2 + K1 · P2 + K2 · P1 + P1 · P2) 

+ 4Re(trtP- t8ts)(K1 · K2P1 · P2- K1 · P2K2 · Pl) 

+ 2 Re(tA_tp + 2trtv )(K1 · P2 + K2 · P1- K1 · K2- P1 · P2)] . 

(K.12) 

(K.13) 
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In doing the trace algebra that lead to the above equations, one also made use of the fact that 

[see Sec. E .5.2 in Appendix E] 

1 
Si · P1 = -* (sl)tk (kl)JJ- = 0 

ml 

Sf· K1 = ~* (si)lk (ki)JJ- = 0. 
1 

Due to the properties of the 0-fnnctions, one can write down the following relations: 

S2 1 S~ 

and, hence 

Mi' i 4 1:: M* M (.h = 3, si = ~') 
S2 1 S~ 

(K.14) 

(K.15) 

(K.16) 

The latter implies that the polarization transfer observable defined by Eqs. (3.87) and (3.88), 

can now be written in a simplified form as 

(K.17) 

where this expression is only valid when the spin sum is given by Eq. (K.ll), that is the 

functions 0 1, 02 and Oa are canceled by virtue of the original definition [given by Eq. (3.87)] 

of the polarization transfer observables. 

The question of how one distinguishes amongst the five polarization transfer observables 

allowed by parity and time-reversal invariance, namely Dno = Don = Ay, Dnn, Ds's, De£, Ds'l 

and Dz's (see Appendix G: the primed and nnprimed subscripts refer to outgoing and incoming 

spin directions defined in Fig. 3.5 of Chapter 3) is discussed. 
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From Sec. E.5.2 in Appendix E one can write down the following expressions for the initial 

and final spin four-vectors Si and Sf, namely [Gr92] 

(K.18) 

where i and i' are the initial and final spin orientations in the rest frames of the projectile and 

ejectile nucleons respectively. From Eqs. (K.12) and (K.13) one sees that the spin-dependence 

of the polarization transfer observables is contained in the following terms: 

Si. Sf = 

(K.19) 

and 

(K.20) 

(K.21) 

(K.22) 

(K.23) 

(K.24) 

(K.25) 

where one has made use of Eqs. (K.8) and (K.18) to write down general expressions for these 

spin-dependent quantities. 

The aim of the following sections is to write down explicit expressions for the spin-dependent 

terms given by Eqs. (K.18) to (K.25) for each of the polarization transfer observables Di'j· 

Before proceeding, one notes that the (i, s, n) [Eq. (3.84) in Chapter 3)] and (x, y, 2) [Eq. (I.8) 

in Appendix I] reference systems are identical, and the (f', s', n) [Eq. (3.85) in Chapter 3)] and 

(x', y', z') [Eq. (I.9) in Appendix I] reference frames are identical. Also recall, from Appendix E 
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that, 

k1 = (kl)xx = [k1[f 

k~ = (kDxx' = [k~[i'. 

327 

(K.26) 

Furthermore, the components of k2 and k~ are always defined with respect to the initial frame 

(f, s, n) displayed in Fig. 3.5 of Chapter 3. 

K.l P olarization transfer observable: Ds's 

The polarization transfer observable Ds's corresponds to the following choice of initial and final 

spin orientations in the rest frame of the nucleon in Eqs. (K.18) to (K.25): 

i s 

i' (K.27) 

Before, writing down explicit expressions for the spin-dependent terms in Eqs. (K.18) to (K.25), 

it is necessary to write derive explicit expressions for the following quantities: 

[k1[R·s' 

lk~li'. s 

Jk~li' · s' 
[k2[k2. s 

(kt)x cos(90 + 0) = -(kt)x sin(Otab) 

[k~l cos(90- 0) = [k~l sin(Otab) = (kDy 

0 

(k2)y 

[k;[k; · s' = "k; · [sin(Otab)l- cos(Otab)s] 

s · s = cos(Otab) 

(k;)x sin(Otab)- (k;)y cos(Otab) 

(K.28) 

where expressions for the x- and y-components of k1, ki, k2 and k~ are given in Appendix I. 
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Substitution of Eq. (K.28) into Eqs. (K.18) to (K.25) yields 

Si . s I -cos( elab) 

(K.29) 

Finally, with Eqs. (K.12) and (K.13) in Eq. (K.ll), and substitution of the latter into Eqs. (K.17) 

and (3.88) (see Chapter 3), the complete expression forDs's is obtained. 

K.2 Polarization transfer observable: Det 

The polarization transfer observable Dn corresponds to the following choice of initial and final 

spin orientations in the rest frame of the nucleon in Eqs. (K.18) to (K.25): 

i i 

i' i'. (K.30) 

Before, writing down explicit expressions for the spin-dependent terms in Eqs. (K.18) to (K.25), 

it is necessary to write derive explicit expressions for the following quantities: 

lklli. i = lkll 

lk1li · i' = lk1l cos(Olab) 

lk1llk~li · £' = lk1llk~l cos(Olab) 

lk~li' · i = lkil cos(Olab) 

lk~li'. i' = lk~l 

lk~llk2lk2 · [icos(Olab) + ssin(Olab)] = [(ki)x(k2)x + (ki)y(k2)y] 

lk~llk~lk~ · i' = lk~llk~lk~ · [i cos(Olab) + s sin(Olab)] = [(ki)x(k~)x + (ki)y(k~)y] 
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lk~lk~ · f' = lk~lk~ · [icos(OJab) + ssin(OJab)] 

i · f 1 = cos(OJab) 

329 

(K.31) 

where expressions for the x- andy-components of k1, k~, k2 and k~ are given in Appendix I. 

Substitution of Eq. (K.31) into Eqs. (K.l8) to (K.25) yields 

lk1llk~l- EiE11* cos(OJab) 
(mi)2 

E1 1*lk1l- Eilk~l cos(OJab) 
(mi)2 

E21*lk1l- Ei(k~)x 
mim2 

E2lk11- Ei(k2)x 
mim2 

E21kil _ [(kl) (kl) + (kl) (kl)] E1
1

* .... 
m*m* 2 x 1 x 2 y 1 Y * *lk1 I 1 2 m1m2 1 
Eilkil- E1 1*lk1l cos(Olab) 

(mi)2 
E21kil I I E11* 
-* -* - [(k2)x(kdx + (k2)y(k1)y] .... · 
m1 m2 mim21kil 

(K.32) 

Finally, with Eqs. (K.12) and (K.13) in Eq. (K.ll), and substitution of the latter into Eqs. (K.17) 

and (3.88) (see Chapter 3), the complete expression for Di'e is obtained. 

K.3 Polarization transfer observable: Dnn 

The polarization transfer observable Dnn corresponds to the following choice of initial and final 

spin orientations in the rest frame of the nucleon in Eqs. (K.18) to (K.25): 

i n 

n. (K.33) 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX K. SPINS SUMS OF INVARIANT MATRIX ELEMENTS 330 

Before writing down explicit expressions for the spin-dependent terms in Eqs. (K.18) to (K.25), 

it is necessary to write derive explicit expressions for the following quantities: 

kl. i lk1li · n 0 

.... ~, 

kl ·t lk1li ·n 0 
.... , ~ 

kl. t lk~li' · n 0 

.... , ~, 

kl ·t lk~li' · n 0 

k2. i lk2lk2 · n (k2)z 
.... ~, k2. t lk2lk2 · n (k2)z 
.... , ~ k2. t lk~lk~ · n (k~)z 

.... , ~, k2. t lk~lk~ · n (k~)z 

i. i' n·n = 1 (K.34) 

where expressions for the x- andy-components of k1, ki, k2 and k~ are given in Appendix I. 

Substitution of Eq. (K.34) into Eqs. (K.18) to (K.25) yields 

Si. Sf -1 

Si. Kl 0 

Si. K2 (k~)z 
---

m2 

Si · P2 (k2)z 
---

m2 

Sf . K2 (k~)z 
---

m2 
Sf· P1 0 

Sf· P2 (k~)z 
(K.35) ---

m* 2 
Finally, with Eqs. (K.12) and (K.13) in Eq. (K.ll), and substitution of the latter into Eqs. (K.17) 

and (3.88) (see Chapter 3), the complete expression for Dnn is obtained. 
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K.4 Polarization transfer observable: Des 

The polarization transfer observable Dt's corresponds to the following choice of initial and final 

spin orientations in the rest frame of the nucleon in Eqs. (K.18) to (K.25): 

i s 

i' i'. (K.36) 

Before, writing down explicit expressions for the spin-dependent terms in Eqs. (K.18) to (K.25), 

it is necessary to write derive explicit expressions for the following quantities: 

lk1li . s = 0 

lk1li · i' = lk1l cos(Otab) 

lk1llk~li · i' = lk1llkU cos(Otab) 

lk~li' · s = lk~l s · [i cos(Otab) + s sin(Otab)] lk~l sin(Otab) 

lk~li'. i' = lk~l 

lk~llk2li' · k2 lkillk2lk2 · [icos(Otab) + ssin(Otab)] (ki)x(k2)x + (ki)y(k2)y 

k~. i lk~lk~ . s = (k~)y 

k~ · i' lk~lk~ · i' = lk~ lk~ · [i cos(Otab) + s sin(Otab)] = (k~)x cos(Otab) + (k~)y sin(Otab) 

i · i' s · i' = s · [icos(Otab) + ssin(Otab)) = sin(Otab) (K.37) 

where expressions for the x- andy-components of k1, ki, k2 and k~ are given in Appendix I. 

Substitution of Eq. (K.37) into Eqs. (K.18) to (K.25) yields 

Si. Sf 
E1'* sin(Otab) 

m* 1 

Si. K1 - (kDy 
m* 1 

Si ·K2 
- (k~)y 

m* 2 

Si • P2 
- (k2)y 

m* 2 
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(K.38) 

Finally, with Eqs. (K.12) and (K.13) in Eq. (K.ll), and substitution of the latter into Eqs. (K.17) 

and (3.88) (see Chapter 3), the complete expression for Des is obtained. 

K.5 Polarization transfer observable: Ds'l 

The polarization transfer observable D s' £ corresponds to the following choice of initial and final 

spin orientations in the rest frame of the nucleon in Eqs. (K.18) to (K.25): 

i i 

i' ~ I 
8 . (K.39) 

Before, writing down explicit expressions for the spin-dependent terms in Eqs. (K.18) to (K.25), 

it is necessary to write derive explicit expressions for the following quantities: 

lk1li · s' = lk1li · [-lsin(Orab) + scos(Orab)] 

lk1llk~li · i' = lk1llkU cos(Orab) 

lklllk21i. k2 

lklllk~li . k~ 

lk~ li'. s' 

lk2lk2. i 

lk1l(k2)x 

lkll(k~)x 

k~ · t lk~lk~ · £ = (k~)x 

k~ · i' lk~ lk~ · s' = lk~lk~ · [ -£ sin(Orab) + s cos(Orab)] = -(k~)x sin(Orab) + (k~)y cos(Orab) 

t·t' i·s' = i·[-lsin(Orab)+scos(Orab)] = -sin(Orab) (K.40) 
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where expressions for the x- and y-components of k1, ki, k2 and k& are given in Appendix I. 

Substitution of Eq. (K.40) into Eqs. (K.l8) to (K.25) yields 

Si ·Sf 
Ei sin( Btab) 

m* 1 

Si. Kl 
E1'*lk1l- Ei(ki)x 

(mi)2 

Si ·K2 
~'*lkll- Ei(k&)x 

mim2 

Si · P2 
E2lkll- Ei(k2)x 

mim2 

Sf ·K2 
(k&)x sin(Btab) - (k&)y cos(Btab) 

m* 2 

Sf· P1 
lk1l sin(Btab) 

mi 

Sf· P2 
(k2)x sin(Btab)- (k2)y cos(Btab) 

(K.41) 
m* 2 

Finally, with Eqs. (K.12) and (K.13) in Eq. (K.ll), and substitution of the latter into Eqs. (K.17) 

and (3.88) (see Chapter 3), the complete expression forDs'£ is obtained. 

K.6 Induced polarization or analyzing power: Ay 

For calculating the induced polarization or analyzing power, it is necessary to evaluate Eq. (K.7) 

where the three-spin vector s 1 is given by 

y. (K.42) 

With (see Appendix I) 

k1 lk1lx 

k~ lk~l cos(Btab)x + lk~l cos(Btab)Y 

k2 (k2)xx + (k2)yY + (k2)zz 

(K.43) 

and imposing energy and momentum conservation, one can write down the following explicit 

expression for Eq. (K.7): 

L M*M 
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