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Abstract

This thesis is devoted to the development of relativistic Dirac-based models for describing com-

plete sets of quasielastic (p,p”) and (p,7) polarization transfer observables at medium energies.

The original relativistic-plane-wave-impulse-approximation (RPWIA) model of Horowitz
and Murdock is modified to include the phenomenological Horowitz—Love—Franey meson—exchange
(HLF) model for the NN amplitudes, and new HLF parameter sets are generated between 80
and 200 MeV. Medium effects are incorporated by replacing free nucleon masses in the Dirac

plane waves with more refined effective projectile and target nucleon masses.

For a %0Ca target at a fixed momentum transfer of 1.97 fm ™!, and incident energies between
135 and 300 MeV, the sensitivity of complete sets of quasielastic (p,p”) and (7, 7) polarization
transfer observables is investigated with respect to nuclear medium effects, ambiguities in 7NN
coupling, exchange contributions to NN amplitudes, and spin—orbit distortions. It is seen that,
(1) compared to (p,p"’) scattering, the (p, 1) polarization transfer observables are more sensitive
to pseudoscalar versus pseudovector forms of the 7NN coupling, (2) as the incident proton
energy is lowered, nuclear medium effects and spin—orbit distortions become more important,
(3) nuclear medium effects are extremely sensitive to the type of pion coupling, (4) contrary
to the original RPWIA, exchange contributions cannot be neglected at energies as high as 500
MeV. For an optimal study of nuclear medium effects, this investigation stresses the urgent
need for measurements of complete sets of quasielastic polarization transfer observables for both
(p,p") and (p, 7@) reactions at energies lower than 200 MeV. Comparison of RPWIA predictions
with the small amount of available data yields an inconsistent picture: The (p,p”’) data favour a

pseudoscalar coupling for the pion, whereas the limited (p)7) data suggest a pseudovector form.

Our poor treatment of distortions is considered to be the main source for this inconsistency.

The issue of distortion effects on polarization transfer observables is addressed by develop-
ing the theoretical framework for the relativistic distorted wave impulse approximation. As an
additional improvement over the RPWIA, models of nuclear structure (relativistic Fermi—gas
model, relativistic mean—field approximation, and local-density—approximation) are developed,
whereby the nuclear structure information is contained in a large set of nuclear response func-

tions, which are systematically evaluated using standard many-body techniques.
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Samevatting

Hierdie proefskrif handel oor die ontwikkeling van relatiwistiese modelle, gebaseer op die Dirac—
formalisme, vir volledige stelle parameters vir spinpolarisasie-oordrag in die geval van kwasi—

elastiese (p,p ') en (p, ) verstrooiing by medium energieé.

Die oorspronklike Relatiwistiese Vlakgolf-Impulsbenadering (RVI) van Horowitz en Mur-
dock is gewysig om ook die fenomenologiese meson—uitruilmodel van Horowitz, Love en Franey
(HLF-model) vir die nuckleon-nukleon (NN) amplitudes in te sluit. Hiervoor is 'n nuwe stel
HLF-parameters vir die energiegebied 80 — 100 MeV bereken. Om effekte van die omringende
kernmedium in te sluit, is effektiewe nukleon massas tans vir beide die projektiel- en die teiken-

nukleon op 'n nuwe, verfynde wyse bereken.

Vir die kwasi-elastiese reaksies (p,7 ') en (p,7) met “°Ca as teikenkern, invallende energieé

—1 is volledige stelle

tussen 135 en 500 MeV en ’'n (vaste) momentum-oordrag van 1,97 fin
polarisasie-parameters bereken. Laasgenoemde se gevoeligheid is ondersoek ten opsigte van
effekte van die kernmedium, dubbelsinnighede ten opstigte van die 7TNN-interaksie, die bydraes
van uitruilterme tot die NN-interaksie en die golfvervorming as gevolg van spin—baan koppeling.
Die volgende is bevind: (1) Die polarisasieveranderlikes van die (7, 71)-reaksie is meer gevoelig
ten opsigte van die keuse tussen 'n pseudoskalare of 'n pseudovektor term in die 7NN—-interaksie,
as dié van die (p,p’ ') reaksie; (2) Effekte van die kernmedium en spin-baan vervorming word
belangrik by lae energieé; (3) Die effekte van die kernmedium is uiters gevoelig vir die tipe

pion—koppeling; (4) In teenstelling met die oorspronklike RVI, kan uitruileffekte nie by hoér

energieé, byvoorbeeld 500 MeV, verontagsaam word nie.

Hierdie ondersoek beklemtoon dat, vir 'n behoorlike studie van effekte van die kernmedium,
veral vir energieg laer as 200 MeV, volledige stelle van polarisasie-veranderlikes van beide (p,7’')
en (p,7) reaksies gemeet moet word. Vergelykings met die beperkte beskikbare data (hoof-
saaklik vanaf onvolledige stelle veranderlikes) lewer 'n onsamehangende prentjie: Die (p,7)—
polarisasieveranderlikes gee voorkeur aan 'n pseudovektor term in die 7NN-interaksie, waar
die (p,p ') veranderlikes egter 'n pseudoskalare-term verkies. Die oorsaak van hierdie nie-
konsistensie kan moontlik aan die weglating van vervorming van die invallende golf deur die

kernmedium gewyt word.
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Laagenoemde vervorming is aangespreek deur 'n rekenaarprogram te ontwikkel, waarmee ver-
vormde Dirac-golwe beken kan word. Verder is die totale formalisme is ontwikkel, waaruit verder
polarisasie-parameters met sulke vervormde golwe bereken kan word. Dit wend die sogenaamde
“reponse”—funksie vir veeldeeltjiesisteme aan, waarmee die kernmedium se nie-homogeniteite,
geassosieerd met die vervorming (byvoorbeeld die benadering vir plaaslike digtheid) en ander

effekte elegant hanteer kan word.
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pp observables (using the notation of Ref. [Br78] ) at an incident laboratory
kinetic energy of 160 MeV, versus the centre-of-mass scattering angle. The solid
lines show the observables calculated directly from the Arndt amplitudes, while
the dotted lines are based on the new HLF parameters. The observables are
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pn observables (using the notation of Ref. [Br78] ) at an incident laboratory
kinetic energy of 160 MeV, versus the centre-of-mass scattering angle. The solid
lines show the observables calculated directly from the Arndt amplitudes, while
the dotted lines are based on the new HLF parameters. The observables are
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pn observables (using the notation of Ref. [Br78] ) at an incident laboratory
kinetic energy of 200 MeV, versus the centre-of-mass scattering angle. The solid
lines show the observables calculated directly from the Arndt amplitudes, while
the dotted lines are based on the original HLF parameters. The dashed lines use

the Maxwell parameters [Ma96]. The observables are defined in Appendix C.

The difference, | D} f‘HLF (M*)-DF f —SVPAT (pr+)|, for (p,5") [solid circles] and
(p, 1) [open circles] polarization transfer observables D; ; based on a direct SVPAT
parametrization of the NN amplitudes and those based on the HLF model, as a
function of laboratory energy, and at the quasielastic peak. All calculations use

the PS form of the 7NN vertex, and the solid lines serve merely to guide the eye.
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The difference, | D} (M*) — Df¥(M*)|, between the polarization transfer (5,7 ')
observables Dj/; calculated with a pseudovector (PV) and a pseudoscalar (PS)
term in the NN interaction, respectively, as a function of laboratory energy, and
at the quasielastic peak. Open circles represent (p,7) scattering, whereas solid
circles represent (p,p"’) scattering. All calculations are based on the HLF model

of the NN amplitudes. The solid lines serve merely to guide theeye. . . . .. ..

The values of |DZP;9].(M*) — D; 1;(M)|, based on the HLF model, for (p,7) (open
circles) and (p,p’’) (solid circles) scattering, are plotted in precisely the same way
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The values of |[DF ,‘]’ (M*) — Dj +j(M)|, based on the HLF model, for (p,7) (open
circles) and (p,p’’) (solid circles) scattering, are plotted in precisely the same way

W R N ST T Y

The values of |DF’ ,‘]’ (M*)pyu — DY ,‘; (M*) Direct| are plotted in precisely the same
way as in Fig. 3.11. Open circles represent (p,7i) scattering, whereas solid circles
represent (p,p’) scattering. The subscripts “Direct” and “Full” refer to calcu-
lations where the exchange terms have respectively been neglected and included
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The sensitivity of quasielastic (p,p ') and (p,7) unpolarized double differential
cross sections (7%%-) in mb sr™! MeV~! to (a) the theoretical uncertainty in
the HLF parameters, (b) PS versus PV forms of the 7NN vertex, (¢) PS medium
effects, (d) PV medium effects, and (e) exchange contributions. The figures are
plotted as a function of laboratory energy at the quasielastic peak. Open circles
represent (p,7) scattering, whereas solid circles represent (p,p’) scattering. The

notation is identical to that used in Figs. 3.19 — 3.22, except that d—n,d‘:’l—E,— is now
1 1

replaced by df:ﬁ. The solid lines serve merely to guide theeye. . ... ... ..
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Unpolarized double differential cross section as a function of transferred energy w
over the quasielastic peak for '2C(p,7) at 186 MeV and 6,,=20°. The centroid
of the quasielastic peak is at w &~ 50 MeV. Data are from Ref. [Wa94]. The
solid lines indicate free mass (M) calculations [Free M|, dotted lines represent
effective mass (M*) PV calculations based on the HLF model [PV(M*)-HLF],
dashed lines display effective mass (M*) PS calculations based on the HLF-model
[PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations

based on a direct SVPAT parametrization of the Arndt phases [PV (M*)-SVPAT].122

Polarization transfer observables as a function of transferred energy w over the
quasielastic peak for 12C(p,7) at 186 MeV and 6,,=20°. The centroid of the
quasielastic peak is at w &~ 50 MeV. Data are from Ref. [Wa94]. The solid lines
indicate free mass (M) calculations [Free M|, dotted lines represent effective mass
(M*) PV calculations based on the HLF model [PV(M*)-HLF], dashed lines
display effective mass (M*) PS calculations based on the HLF-model [PS(M*)-
HLF], and dashed-dotted lines show effective mass (M*) calculations based on a
direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT]. . . . . ..

Unpolarized double differential cross section as a function of transferred energy w
over the quasielastic peak for 12C(p, p") at 290 MeV and 6},,=29.5°. The centroid
of the quasielastic peak is at w ~ 80 MeV. Data are from Ref. [Ch90], where
P and Ay refer to induced polarization and analyzing power respectively. The
solid lines indicate free mass (M) calculations [Free M], dotted lines represent
effective mass (M*) PV calculations based on the HLF model [PV(M*)-HLF],
dashed lines display effective mass (M*) PS calculations based on the HLF—-model
[PS(M*)-HLF], and dashed-dotted lines show effective mass (M*) calculations

based on a direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT)].124
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3.27 Polarization transfer observables as a function of transferred energy w over the
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4.1
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quasielastic peak for 2C(p,p") at 290 MeV and 6,,=29.5°. The centroid of
the quasielastic peak is at w ~ 80 MeV. Data are from Ref. [Ch90], where P
and A, refer to induced polarization and analyzing power respectively. The solid
lines indicate free mass (M) calculations [Free M|, dotted lines represent effective
mass (M*) PV calculations based on the HLF model [PV (M*)-HLF], dashed lines
display effective mass (M*) PS calculations based on the HLF-model [PS(M*)-
HLF], and dashed-dotted lines show effective mass (M*) calculations based on a
direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT]. . . . . ..

Polarization transfer observables for a range of transferred energy w over the
quasielastic peak for % Fe(p,p’) 290 MeV and 6,,,=20°. The centroid of the
quasielastic peak is at w ~ 40 MeV. Data are from Ref. [Ha88], where P and A,
refer to induced polarization and analyzing power respectively. The solid lines
indicate free mass (M) calculations [Free M], dotted lines represent effective mass
(M*) PV calculations based on the HLF model [PV(M*)-HLF], dashed lines
display effective mass (M*) PS calculations based on the HLF-model [PS(M*)-
HLF], and dashed-dotted lines show effective mass (M*) calculations based on a

direct SVPAT parametrization of the Arndt phases [PV(M*)-SVPAT]. . . . . . .

The initial (unprimed) and final (primed) nucleon—nucleus centre—of-mass refer-
ence frames used for defining the kinematics and spins of the projectile and ejectile
distorted wave functions. 6, denotes the scattering angle in the nucleon—nucleus
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The square of the magnitude of the optical-model wave function | x (7 )|2, for
the scattering of 5 MeV protons from '2C, on the scattering axis. The optical-

model parameters are giveninthetext. . ... ... ... ... ..........

The magnitude of the optical-model wave function |x(*)(7*)|, for the scattering of
5 MeV protons from '2C using the parameters specified in the text. The direction
of the incident beam is indicated by the arrow, and the focus is indicated by the
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The phase variation of the optical-model wave function x(*)(#*) for the scattering
of 24 MeV neutrons from '8Sn, using the optical-model parameters specified in
the text. The incident direction is that for increasing phase value. The double

line indicates the approximate radius of the !'8Sn nucleus. . . . . . ... ... ..

The magnitude of the optical-model wave function |x(*)(#)| for the scattering
of 24 MeV neutrons from ''8Sn, using the parameters specified in the text. The
direction of the incident beam is indicated by the arrow, and the focus is indicated

by the most pronounced region. . . . . . . . . . ... ... ...

Elastic scattering spin observables [differential cross section (4Z), analyzing power

(A,) and spin rotation function (Q)] for protons scattering from “°Ca at 200 MeV,
calculated using the global optical potential parameters from Refs. [Mu87b,Ho91a).
The solid and dashed curves are calculated using the scattering amplitudes C;
obtained from both the upper and lower component matching conditions in

Eqgs. (4.196) and (4.203) respectively. . . .. . ... ... ... ... ... ...,

Elastic scattering spin observables [differential cross section (g%), analyzing power
(A,) and spin rotation function (Q)], for protons scattering from 4°Ca at 200 MeV,
calculated using the global optical potential parameters from Refs. [Ha90]. The
solid and dashed curves, which are identical, are calculated using the scattering
amplitudes CLi obtained from both the upper and lower component matching

conditions in Eqs. (4.196) and (4.203) respectively. . . . .. ... ... .....

E.1 Direct and exchange Feynman diagrams for electron—electron scattering. . . . . .
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Laboratory and centre-of-mass coordinate frames for describing polarization

transfer observables for elastic NN scattering. . . . . ... ... ..........

Diagram illustrating the meaning of the NN polarization transfer observables.
The spin directions before and after the scattering are represented in the incident
and outgoing laboratory coordinate systems, defined by (3, #, £) and (s, A, £)
respectively. The spin direction associated with the incident proton indicates the
state of polarization of the incident beam; and that associated with the outgoing

proton indicates the component of the final polarization that is measured. . . . .

The rotation angle 8 of the in-plane component of PS¢3tt (in the outgoing particle

frame) with respect to the original in—plane P (in the projectile frame).

Coordinate frame for derivation of expressions for the asymptotic laboratory mo-
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Chapter 1

Scientific motivation

1.1 Introduction

Historically, work in medium energy nucleon-nucleus scattering physics started in the 1950’s
[Ra92] and has continued since. As we enter the new millennium, research in medium energy
(~100 MeV to ~1 GeV) proton-nucleus scattering continues to attract widespread theoretical

interest, and accounts for a significant fraction of the experimental effort at medium energies.

Traditionally, nuclear structure and nuclear reactions have been studied using models based
on the nonrelativistic Schrédinger equation. In recent years, however, considerable attention
has been devoted to relativistic descriptions of nuclei and nuclear reactions based on the Dirac
equation. In particular, this thesis is concerned with the development of relativistic Dirac—
based models for the interpretation of complete sets of quasielastic (g, p”) and (p, 7) polarization
transfer observables (also called spin observables), for targets nuclei ranging from '2C to 208Pb,
incident proton energies between 100 and 500 MeV, and for three-momentum transfers larger

than ~0.5 fm~!. The next sections expand on the following:

quasielastic scattering,

both (p,p") and (p,7) reactions,

complete sets of polarization transfer observables, and

relativistic models.
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1.2 Why consider quasielastic proton scattering?

At moderate momentum transfers (|¢'| > 0.5 fm™!) quasielastic proton scattering is the dom-
inant mechanism for nuclear excitation: the status of quasielastic scattering is reviewed in
Chapter 2. Quasielastic proton scattering is considered to be a single-step process, whereby a
projectile proton knocks out a single bound nucleon in the surface of the target nucleus, while
the remainder of the nucleons act as “spectators”. This quasielastic process is characterized by
a broad peak in the nuclear excitation spectrum, the centroid of which nearly corresponds to
free NN kinematics, and a width resulting from the initial momentum distribution of the struck
nucleon. At the high momentum transfers of interest, nuclear shell effects are unimportant, and
the quasielastic peak is well separated from the discrete states and low—lying resonances in the
excitation spectrum. Hence, deviations of the scattering observables from the corresponding
free NN values could be attributed to medium modifications of the free NN interaction. Conse-
quently these reactions offer a direct means to study how the fundamental free NN interaction

is modified by the surrounding medium of the nucleus in which it occurs.

One of the aims of this thesis is to investigate to what extent a single-step, surface—peaked,
NN interaction can account for data at the quasielastic peak. In addition, by comparing
quasielastic scattering from a nuclear target to free NN scattering from a hydrogen target at
the same kinematic conditions, differences in the observables are used to understand how the

nuclear environment affects the free NN interaction.

1.3 Why consider both (p,p’) and (p,n) reactions?

Quasielastic (p,p’) and (p,n) reactions probe different parts of the medium-modified NN in-
teraction: (p,p’) scattering probes both isovector and isoscalar parts of the NN interaction,
whereas (p,n) charge-exchange reactions sample only the isovector components, particularly
those directly related to pion exchange [Wa94, Ho94]. Furthermore, since the Lorentz character
of the isovector amplitudes is totally different from that of the isoscalar amplitudes, one expects
quasielastic (p,p') and (p,n) reactions to yield different, but complementary, information about

the different components of the NN interaction.
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1.4 Why consider complete sets of spin observables?

With the recent developments in polarized proton beams and high resolution spectrometers
with focal plane polarimeters, it now becomes possible to measure complete sets of quasielas-
tic polarization transfer observables (also called spin observables), in which incident proton
beams polarized in an arbitrary orientation are utilized, to determine the components of the

polarization of the scattered protons (see Appendix G).

Polarization transfer observables are sensitive to any changes in the spin dependence of the
NN interaction in the medium. The primary role of distortions on the incoming and outgo-
ing proton wave functions is to reduce the cross section. However, since polarization transfer
observables are essentially ratios of cross sections, handwaving arguments suggest that these
distortions largely cancel, and thus the polarization observables should be insensitive to distor-
tions. Hence, simple plane wave models, which ignore distortions, should provide an adequate
first—order description of the quasielastic polarization transfer observables. In addition, experi-
mental data in the quasielastic region seem to be almost independent of the type of nucleus: at
the high excitation energies of interest one nucleus looks like another. This suggests that one
is extracting fundamental properties of nuclear matter, rather than the individual properties of
a single state. Hence, by considering quasielastic scattering to the continuum, one minimizes
the uncertainties in nuclear structure of discrete final states, and thus, relatively simple models
of the target nucleus, such as a Fermi-gas description, should be adequate. Indeed, one of the
aims of this thesis is to investigate to what extent nuclear matter at high excitation energies

behaves as a collection of nearly free nucleons.

Comparison of theoretical predictions of polarization transfer observables to data, for both
quasielastic (7, p") and (7, 7) reactions, provide extremely stringent tests for the various models

for quasielastic proton scattering.

1.5 Why consider relativistic models?

The term “relativistic”, as used in this thesis, is associated with the use of the Dirac equation,
with its relativistic treatment of the dynamics and kinematics, as opposed to the nonrelativistic

Schrodinger equation with either nonrelativistic or relativistic kinematics.
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Conventional wisdom claims that relativistic effects are unimportant for nuclear structure
problems. Indeed, considering that the maximum kinetic energy Tjq, of a nucleon (with free
mass m) in the nucleus is determined by the groundstate Fermi momentum kr = 1.4 fm~! to

be

212
Trnaz = L A 40 MeV
2m

which corresponds to a velocity of about one-third that of light (v = 0.28 ¢), one expects only
minor modifications due to relativistic kinematics and dynamics. Nevertheless, there are a
number of compelling reasons for pursuing relativistic models of nuclear structure and nuclear

scattering, a few of which are listed below [Se86, Ho91b, Ho94al:

e It is important to have a manifestly Lorentz covariant formalism, especially for reliable
extrapolation of nuclear systems to extreme conditions of density, temperature, or mo-
mentum transfer. These conditions may arise in astrophysics (early universe, supernovas,
neutron stars), relativistic heavy ion collisions, and in experiments performed at large

momentum transfers.

e Historically, the first great triumph of the Dirac equation was its explanation of the spin
and magnetic moment of the electron. One can label spin as an intrinsically relativistic
phenomenon. The relativistic 4—component Dirac equation provides a natural explanation
of the nuclear spin—orbit force. Useful and successful relativistic formalisms have recently

been developed for nuclei, for instance, the relativistic mean field theory [Se86].

e Nuclear saturation is a basic consequence of the nuclear force that causes all nuclei to
have about the same density and binding energy per nucleon. A simple and intrinsically
relativistic mechanism for nuclear saturation is found in a simple relativistic mean field

approximation.

e Simple relativistic models provide an excellent description of spin observables for elastic
proton scattering at medium energies. Only very sophisticated state—of-the—art nonrela-

tivistic models [A191] can describe elastic proton scattering with the same level of accuracy.

e Compared to nonrelativistic Schrodinger optical potentials, relativistic Dirac optical po-

tentials exhibit a much more systematic and physical behaviour as functions of energy,
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nuclear radius, and nuclear mass; for example, global Dirac optical potentials exist [C092]
which describe all elastic proton scattering observables in the 65 to 1040 MeV range, and

for various nuclei from 2C to 298Pb.

Although there are a number of theoretical reasons for preferring relativistic Dirac—based models
to nonrelativistic Schrodinger—based models, the justification for the use of the Dirac equation,
in this project, lies largely in the outstanding success of this phenomenological approach to date.
Currently an extremely useful phenomenological theory, referred to as Dirac phenomenology,
exists which yields a comprehensive description of many aspects of nuclear dynamics: for review

articles, see Refs. [Pi84, Ce86, Se86, Wa87, Re89, Ho91b, Ra92, Se97].

It is interesting to understand exactly how Dirac phenomenology achieves its remarkable

success. This is briefly discussed in the next section.

1.5.1 How does Dirac phenomenology achieve its success?

Most relativistic approaches to nuclear physics, such as mean field theories [Se86], optical fits
to elastic proton—nucleus scattering data [CI83], and the relativistic impulse approximation
[Sh83a], suggest that the optical potential, involves large attractive Lorentz scalar (typically
~ —400 MeV) and repulsive time-like vector (typically ~ +350 MeV) contributions. Relativistic
mean field theory relates these potentials to large sigma (scalar) and omega (vector) meson
fields [Se86]. This theory is phenomenological in the sense that, once the scalar and vector
couplings are adjusted to reproduce the saturation density and binding energy of nuclear matter,
relativistic mean field theory provides a good description of the ground state properties of many

nuclei, and also accounts for spin—orbit coupling in nuclei.

The scalar potentials enter the Dirac equation on the same footing as the free nucleon mass
m. Since these potentials are quite large (~ —400 MeV), they have the effect of introducing a
major reduction of the nucleon mass when the nucleon is in nuclear matter. The combination
of the attractive scalar potential and the free nucleon mass m is often referred to as an effective
mass m*, and is equal to ~ 0.6 m in infinite nuclear matter. This concept of an effective mass is
an essential element in the success of Dirac phenomenology, and will be discussed in more detail

in Chapter 3. On the other hand, the time-like vector potentials enter the Dirac equation in
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the same way as the energy eigenvalues. The combination of the large repulsive vector potential
(~ +350 MeV) and the larger attractive scalar potential (~ —400 MeV), yields a dispersion
relation, between the momentum and energy of a relativistic nucleon in nuclear matter, which
is essentially the same as the corresponding relation for the nonrelativistic Schrodinger equation

which, for decades, has provided a reasonably satisfactory description of nuclear structure [Ce82].

An alternative approach to relativistic nucleon dynamics, which also gives large scalar and
time-like vector potentials, comes from the work of Bunny Clark and collaborators [C183] who
studied the phenomenology of the Dirac equation for elastic proton—nucleus scattering. In this
work, the Dirac equation with phenomenological scalar and time-like vector potentials replaces
the standard central and spin—orbit potentials of traditional Schrodinger phenomenology. Using
just as many fitting parameters as in nonrelativistic phenomenology, Clark and collaborators
provided a superior description of elastic scattering spin observables. Again, the strengths of
the scalar and time-like vector potentials are ~ —400 MeV and ~ +350 MeV in the nuclear
interior, with geometries following the nuclear densities. The relativistic potentials show less
energy dependence than equivalent nonrelativistic potentials. There exists a relation between
the relativistic scalar and time-like vector potentials and the usual spin-independent and spin—
orbit potentials of the Schrodinger equation: this is readily understood by reducing the Dirac
equation to an equivalent Schrodinger—like second order differential equation [C183] as shown in
Appendix A. The resulting effective spin—independent and spin-orbit potentials, which are an
order of magnitude smaller than the relativistic potentials, are referred to as the “Schrédinger—
equivalent potentials”. The large scalar and time-like vector potentials nearly cancel to form the
relatively small spin—-independent potential, whereas they constructively add to reproduce the
relatively strong spin—orbit potential: the strengths of these central and spin—orbit potentials
are in close agreement with those obtained by a pure nonrelativistic Schrodinger—based analysis

of elastic scattering data.

The successful description of elastic scattering spin observables, based on the Dirac phe-
nomenology of Clark and collaborators, was initially viewed with skepticism because, as pointed
out by Stephen Wallace [Pi84], “you can fit almost anything with enough free parameters”.
However, to the surprise of McNeil, Shepard and Wallace, their parameter—free development of
the relativistic impulse approximation (RIA) [C183a, Mc83, Sh83a], gave essentially the same
nuclear potentials as those found by Clark’s phenomenological fits: in the RIA, free NN ampli-
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tudes, from phase shift data in an invariant Dirac representation, are folded with nuclear target
densities, determined from the relativistic Dirac-Hartree equations, to generate microscopic
scalar and time-like vector optical potentials without any free parameters. Consequently, the
RIA (and subsequent developments by Horowitz and Murdock [Mu87b], and Tjon and Wallace
[Tj85, Tj85a, Tj85b, Tj87, Tj87a]) served to strengthen the idea of a Dirac phenomenology
based on strong opposing scalar and time-like vector potentials. The RIA provides an excellent
description of all elastic scattering spin observables over a wide range of energies and nuclei

[Ho91b)].

1.5.2 Dirac phenomenology and quasielastic scattering

The failure of all nonrelativistic Schrodinger—-based models [Sm88] to describe the quasielastic
(p,p") analyzing power at 500 MeV, together with the tremendous success of Dirac phenomenol-
ogy discussed in the previous section, lead to the development of the Relativistic (Dirac) Plane
Wave Impulse Approximation (RPWIA) by Horowitz and collaborators [Ho86, Mu87a, Ho88,
Iq88], where the NN amplitudes are based on the Lorentz invariant parametrization of the stan-
dard five Fermi invariants, and the target nucleus is treated as a Fermi gas. Indeed, the accurate
prediction of the above-mentioned quasielastic (p,p’) analyzing power, based on the RPWIA,
has been regarded as a “clear relativistic signature” [Ho86, Mu87a, Ho88, 1q88, Ho91b].

The success of the simple relativistic plane wave model is attributed to the implicit treatment
of medium modifications of the NN interaction. These medium effects (often referred to as
relativistic effects), which predict an enhancement of lower Dirac components of the nucleon in
the presence of strong scalar and time-like vector potentials at nuclear densities, are incorporated
by replacing free nucleon masses in the Dirac plane waves with effective projectile and target
nucleon masses in the context of relativistic mean field theory [Se86]. To date, and to my
knowledge, no nonrelativistic Schrédinger-based model has quantitatively explained the above—
mentioned (p,p’) analyzing power, although a possible nonrelativistic explanation has been

suggested by Brieva and Love [Br90].

Despite the successful prediction of the (p,p') analyzing power, however, the RPWIA model
fails to predict some of the other polarization transfer observables [Ho88]. However, rather than

abandon the original RPWIA in favour of more sophisticated relativistic models, and inspired
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by the encouraging results of the original RPWIA, my approach in this project is to critically
review the underlying assumptions and input parameters of the RPWIA, and to perform more

refined calculations so as to reveal the limitations of the model.

1.6 Scientific goals of this project

The main goal of this project is to develop a consistent description of complete sets of polariza-
tion transfer observables for both quasielastic (p,p”) and (p,7) reactions. More specifically, the

aims of this project are:

e to verify that nuclear matter at high excitation energies behaves as a collection of nearly

free nucleons,
e to search for medium modifications of the NN interaction due to relativistic effects,

e to critically review, and improve, the approximations of the original relativistic plane wave

impulse approximation of Horowitz and Murdock [Mu87a, Ho88, Ho91b],

e to perform a systematic comparison of my refined, and improved, RPWIA calculations
= —3f

with the available data on complete sets of quasielastic (p,p’) and (p,7) polarization

transfer observables, so as to reveal any limitations of the model.

1.7 Organization of thesis

The structure of this thesis is organized as follows:

e In Chapter 2, the concept of “quasielastic scattering” is defined, and the current theoretical

and experimental status of quasielastic polarized—proton scattering is reviewed.

e The aim of Chapter 3 is to critically review, and improve, the approximations of the orig-
inal relativistic plane wave impulse approximation (RPWIA) of Horowitz and Murdock
[Mu87a, Ho88, Ho91b], and to perform a systematic comparison of my more refined calcu-

lations to the available data on complete sets of quasielastic (p,p”) and (p, 7) polarization
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transfer observables, so as to reveal any limitations of the model. Some of the work in

Chapter 3 is published in Refs. [Hi94, Hi95, Hi97, Hi98g|.

e Based on the conclusions of Chapter 3, a theoretical framework is developed in Chapter 4
for calculating complete sets of quasielastic proton—-nucleus polarization transfer observ-

ables, based on the relativistic distorted wave impulse approximation.

S\\‘;HSB/‘?/
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Chapter 2
Quasielastic proton—nucleus scattering

2.1 Introduction

The phrase “quasielastic proton—-nucleus scattering”, as used in the title of this chapter, refers
collectively to both quasielastic (p,p') and (p,n) scattering. The aim of this chapter is to define
and illustrate what is meant by the concept of “quasielastic scattering”, and also to briefly review

the current theoretical and experimental status of quasielastic polarized—proton scattering.

2.2 What is quasielastic proton scattering?

The aim of this section is to define and illustrate what is meant by quasielastic proton—nucleus
scattering. Consider the inclusive proton—nucleus spectra in Fig. 2.1: the upper and lower figures
display the double differential cross sections for inclusive (p, p’) and (p,n) scattering respectively,
as a function of the energy transfer w (also called excitation energy) to a 2C nucleus, at a fixed
laboratory scattering angle of 20°, and for incident proton energies Ti,;, of 400 and 392 MeV
[Ot97a]. Although the spectra in Fig. 2.1 are related to a specific nucleus, scattering angle, and
incident proton energy, they are nevertheless representative of typical inclusive (p,p’) and (p,n)
spectra, for incident proton energies between 100 MeV and 500 MeV, and exhibit a number of
characteristic features. The peak close to zero energy transfer in the (p, p’) spectrum is produced
by elastic scattering, which is defined to be a collision whereby the colliding particles only change
their direction of motion, and possibly spin orientation; none of the kinetic energy is used to
excite the colliding systems internally. The sharp peaks for nonzero values of w correspond to
the excitation of discrete levels in the target nucleus. For small scattering angles, the excitation

region just above the low-lying discrete states usually exhibits giant resonances associated with

10
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Figure 2.1: Double differential cross sections dg—‘;u (in mb sr~! MeV~!) for inclusive 2C(p, p')
and '2C(p,n) scattering as a function of the energy transferred to the nucleus (w), for a labo-
ratory scattering angle of 20°, and incident laboratory kinetic energies (Zjap) of 400 MeV and

392 MeV respectively. The data are from Ref. [Ot97a].
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the collective behaviour of the nucleus [Sw89]. At higher excitation energies, one observes a
broad peak (or bump) centered near the expected energy-loss for free nucleon—nucleon (NN)
scattering, and appropriately called the quasielastic peak (a term first coined by Wall and Roos
[Wa66]). If the nucleons in the target nucleus were at rest and free, a very sharp spike (or peak)
would be seen at an energy loss w = % corresponding to free NN scattering (see Sec. 1.9
in Appendix I), where |¢| is the momentum transfer and m the free nucleon mass. However,
instead of a sharp spike, a broad peak is observed, the width of which is attributed to the

internal momentum distribution, or Fermi motion, of the target nucleons.

Note that for incident proton energies larger than 500 MeV, a second broad peak called
the quasielastic-A peak is observed at energy transfers above the quasielastic peak [Ch80,
Sm85, Fe88|. The quasielastic-A peak occurs at energy transfers which are sufficient to excite
individual nucleons to their first excited state, the delta (A), roughly 300 MeV above the
quasielastic peak. This project is mainly concerned with incident proton energies between 100

MeV and 500 MeV, where the quasielastic—A is not observed.

For the purpose of this project, the term quasielastic scattering (sometimes, also called
quasifree scattering) refers to the process whereby a projectile nucleon knocks out a single bound
nucleon in the target nucleus, while the remainder of the target nucleons act as “spectators”; the
experimental signature for quasielastic scattering is a broad peak (in the inclusive spectrum),
the centroid of which moves in accordance with momentum and energy conservation for free NN

scattering.

2.3 Empirical features of quasielastic proton spectra

Unpolarized double differential cross section data for quasielastic proton scattering are now
available for a wide range of target nuclei (?H - 238U) and incident beam energies (100 MeV-
800 MeV): see Tables 2.1 and 2.2, and also Refs. [Wa66, Wa72, Co72, Wu79, Ch80, An81,
Mo82, Ma84, Mc84, Se85, Fo88, Sw89]. The aim of this section is to identify general empirical
features of inclusive (p,p’) and (p,n) spectra for quasielastic scattering of unpolarized protons.
These features are extremely useful, and need to be incorporated when developing models for

quasielastic proton reactions: see, for example, Sec. 3.2.1 in Chapter 3.
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After the first observation of so—called quasielastic peaks by Wall and Roos [Wa66] for (p,p')
reactions at 160 MeV, on a variety of targets ranging from °Be to 2%°Bi, and for scattering
angles between 10° and 60°, there was a great deal of controversy regarding the interpretation
thereof as arising from genuine quasielastic scattering. However, it is now well established
that for incident energies between 100 MeV and 200 MeV, inclusive spectra only exhibit clear
quasielastic peaks for targets with mass numbers less than about 60, and scattering angles less
than about 25° (see for example Refs. [Ch81, Se86, We85]). There are, however, exceptions to
the rule. For example, the continuum spectra for *He at 98.7 MeV and 149.3 MeV, show no
pronounced quasielastic peaks [We85, Wh90).

Generally, it has been observed that the quasielastic peak becomes more pronounced with
increasing bombarding energy. Furthermore, as the angle increases, the width of the quasielastic
peak broadens, the magnitude of the peak drops, and the centroid moves with free NN kine-
matics. This kinematic behaviour is in contrast to that for the discrete states, which move with
the kinematics of a nucleon striking a heavy target, that is, with nucleon-nucleus kinemaitics.
The above—mentioned features are beautifully illustrated in Figs. 2.2 and 2.3, which display
inclusive spectra for (p,p') and (p,n) scattering, at various laboratory scattering angles, and in-
cident proton energies of 400 MeV and 392 MeV, respectively. Also, note the striking similarity
between the quasielastic peak positions for the 2H data (which essentially represents free NN

scattering [Sa94]) and the '2C data.

Note, from Figs. 2.2 and 2.3, that at low excitation energies the quasielastic region overlaps
with giant resonances and some low-lying discrete-state transitions: At high excitation ener-
gies the inclusive (p,n) spectra exhibit sharp cut-offs due to experimental limitations. For a
quantitative analysis of quasielastic scattering, it is necessary to obtain stand—alone quasielastic
spectra that are free from mixing with the low-lying structures, and which may be extrapo-
lated into the high excitation energy region. For these purposes, a useful semiphenomenological
parametrization of the empirical quasielastic peak has been developed by Wang [Wa93, Wa94]:
the latter encompasses a semiphenomenological Lorentzian function which consistently describes
all inclusive (p,n) spectra at 186 MeV for all targets and scattering angles. In addition, a num-
ber of phenomenological approaches have also been developed for studying the systematics of
quasielastic scattering, so as to provide reliable estimates of the continuum background under

the giant resonances: see, for example, Refs. [Mc86, Ch89, Sw89].
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Figure 2.2: Double differential cross sections dg‘l’w (in mb sr~! MeV~!) for inclusive (p,p’)
scattering from 2C and 2H at 400 MeV, as a function of the energy transferred to the nucleus

(w), for various laboratory scattering angles. The data are from Ref. [Ot97al.
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Figure 2.3: Double differential cross sections dg“’iw (in mb sr~! MeV~!) for inclusive (p,n)
scattering from 2C and 2H at 392 MeV, as a function of the energy transferred to the nucleus

(w), for various laboratory scattering angles. The data are from Ref. [Ot97a).
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Recently, Kalbach [Ka90] has studied and parametrized the systematics of quasifree (p,p’)
and (p,n) spectra for a range of scattering angles and target nuclei, at incident proton energies

between 100 — 1000 MeV. The following phenomenological trends are observed:

e The position of the quasielastic peak closely tracks free NN kinematics. At incident
energies above 400 MeV, the (p,p’) quasielastic peak occurs at very nearly the energy
calculated for free scattering, while the (p, n) quasielastic peak occurs 40 to 45 MeV below
the free value. As the incident energy decreases, the peaks for the two reactions approach

the same energy loss value.

e The shape of the quasielastic peak is typically asymmetric (or Lorentzian-shaped [Wa93,
Wa94]), with the low energy-loss side usually somewhat wider than the high energy-
loss side. The width of the peak generally increases with increasing emission angle up
to at least 50° in the NN centre-of-mass. The general behaviour of the peak widths is

parametrized in terms of the incident energy and sin@ in the NN centre—of-mass.

e The quasielastic peak positions and peak widths do not vary significantly or systematically

with target mass.

e The angle-integrated cross section is described in terms of a peripheral interaction with
a single nucleon in the target nucleus, and has a threshold of 150 — 200 MeV. For (p,p’)
scattering, the cross section roughly varies as A'/3, whereas for (p, n) scattering, for which
the projectile must strike a neutron in the target, the cross section varies approximately

as (&) A3

Besides the peaks exhibited by quasielastic proton spectra, inclusive studies carried out with
other projectiles also show strong quasielastic peaks. For example, (e,€e’), (7, 7') and (*He,t)
reactions exhibit very pronounced quasielastic peaks for a range of target nuclei. Fig. 2.4 shows
the energy loss w of the centroid of the quasielastic peak versus three-momentum transfer
|§| for different probes on a 2C nucleus [Ga90]. The quasielastic peak for (e,e’) scattering
behaves just like that obtained in the (p,n) reaction, that is, shifted about 30 MeV towards
higher excitation energy, while that of the (p,p') reaction follows precisely the relation for free
scattering (indicated by the solid line), namely w = gg (see Appendix I), where m is the rest

mass of a nucleon. The difference in quasielastic peak positions for the (p,p’) and (p, n) reactions



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. QUASIELASTIC PROTON-NUCLEUS SCATTERING 17

has been explained through sum rules Refs. [Wa82, Pa94]; Distortions could also explain the
difference [De91, De93].

Until the early eighties, most studies of quasielastic scattering focused on the interpreta-
tion of unpolarized double differential cross sections. More recently, however, the emphasis
has shifted towards studying complete sets of polarization transfer observables, namely P, A,,
Dpn, Dys, Dgg, Dpg and Dy, for both quasielastic (p,p”) and (p,7) scattering: In each Dy
the primed and unprimed subscripts refer to outgoing and incoming spin directions, respectively
(see Appendix G). Together with the unpolarized double differential cross sections, the polariza-
tion transfer observables provide extremely stringent tests of theoretical models for quasielastic

proton scattering.

2.4 Polarization data for quasielastic proton scattering

With the recent developments in polarized proton beams and high resolution spectrometers with
focal plane polarimeters, it is now possible to measure complete sets of quasielastic polariza-
tion observables (see Appendix G) in which incident proton beams polarized in an arbitrary
orientation are utilized, to determine all the components of the polarization of the scattered

protons.

The aim of this section is to give an overview of existing polarization transfer observable
data for quasielastic (p,p”) and (p,7) reactions for incident proton energies between 100 MeV
and 800 MeV. In addition to the usual polarization transfer observables Dy ;, more recently,
attention has also shifted to other polarization observables, such as the spin-longitudinal and

spin—transverse nuclear responses; this is briefly discussed in Sec. 2.4.3.

2.4.1 Polarization transfer observables

Tables 2.1 and 2.2 list the quasielastic (p,p’) and (p,7) polarization data, respectively, for
incident laboratory kinetic energies 7j,;, between 100 MeV and 800 MeV, where o refers to
the unpolarized double differential cross section dg%, P is the induced polarization, A, is the

analyzing power, D; ; denotes complete sets of polarization transfer observables [Dg, = A,
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Figure 2.4: The centroid energy of the quasielastic peak for 2C as observed in different reactions,
plotted as a function of laboratory energy-loss w versus three-momentum transfer ¢ = |§|. The

data are from Ref. [Ga90].
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Dpny Dgrs, Dgrg, Dgrg and Dy — see also Appendix GJ, and 6,1, denotes the laboratory scattering

angle, unless otherwise specified.

The first measurements of complete sets of quasielastic polarization transfer observables Dy ;
for (p,p") and (P, 7i)scattering, for targets heavier than 2H, were done as recently as 1984 [Ca84]
and 1991 [Ta91], respectively. Currently a number of experimental programs are in progress at
RCNP (Research Centre for Nuclear Physics, Osaka, Japan) and IUCF (Indiana University Cy-
clotron Facility, Bloomington, Indiana, USA) to measure complete sets of polarization transfer

observables for both (7, 5") and (p,7) reactions [Sa96, Ra98].

2.4.2 Empirical features of polarization data

Unfortunately, Kalbach’s [Ka90] phenomenological analysis has not yet been extended to po-
larization data. With the current availability of polarization data, it would be a useful exercise
to study the systematics thereof. Some of the interesting features exhibited by inclusive (7,7")
polarization data in Table 2.1, for energy losses spanning the quasielastic peak, are summarized

below:

e Within the experimental uncertainty, the 200 MeV analyzing power data on ®'Ni and
208ph, for scattering angles between 6° and 20°, are identical [Li84]. The measured values
fall somewhat below the free NN values, but the overall trend with angle follows the

kinematics for free NN scattering.

e The analyzing power for ?H, “He, '2C and °Ca, at 200 MeV and 30°, is suppressed relative
to the free NN values. Qualitatively, the latter suppression follows the trend of the nuclear

density in that it appears to increase monotonically from 2H to “°Ca [Ca95, Ca95a].

e For scattering angles less that 10°, the analyzing power for 2°Pb at 290 MeV is identical to
the corresponding values for free NN scattering [Ch88, Ch89a]. Above 10°, the analyzing
power falls appreciably below the free NN values. At 26° the analyzing power is almost
constant above excitation energies of 80 MeV. The slope of the A, with excitation energy

is relatively small for all scattering angles below 26°.

e For a scattering angle of 20° at 290 MeV, the analyzing power for > Fe, which is identical

to the induced polarization P, is reduced relative to the corresponding free NN value. The
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Table 2.1: List of quasielastic (p,p"’) polarization transfer observables measured at incident
laboratory kinetic energies Tj,, below 800 MeV, where o is the unpolarized double differential
cross section, P is the induced polarization, A, is the analyzing power, Dy ; denotes complete
sets of polarization transfer observables [Dgo, = Ay, Dpn, Dy, Dpg, Dyg and Dy — see also
Appendix G|, and 6),,, denotes the laboratory scattering angle, unless otherwise specified.

Tiab [MeV] Observables Target 6iap [degrees] References
50 o, A, 58N > 6° [Sa83a)
60 o, A, 58Nj 15° - 40° [Ko76]
65 o, Ay 67Li 6° — 85° [To87]
65 7, A, 12, 288j, 458c, S8Nb 20° - 150° [Sa80]
65 o, Ay 158Hg, 19 Ry, SR} 20° - 150° [Sa80]
80 o, A, 58N > 6° [Sa83a]
100 o, Ay M, **He, 12C, °Ni | 17.5°, 30°,45°, 60° [We85]
100 7, Ay 34He 0° - 34° [Ed9d]
150 g, Ay 2H, 34He, 12C, 58Ni 17.5, 30°, 45°, 60° [We85]
150 o, Ay 24Mg, 19Ca, 51V 5° — 140° in 5° steps (St97]
165 o, Ay Mg, 49Ca, 51V 5° — 140° in 5° steps [St97]
186 o, Ay Mg, 9Ca, BV 5° — 140° in 5° steps [St97]
200 o, Dy GON, W Ze, Pl 6° — 20° in 2° steps [Li84]
200 o,Ay, Dpn 00y 30° [Ma93a, Ca95]
200 o, A, 34He 0° — 34° [Ed94]
200 7, P, Ay, Dnn 2H, 34He 30° [Li94]
200 o, A, °H, 12¢ 30° [Ca95]
200 o, Ay 2H, 31He 20°, 30°, 40° [Gu95]
290 o, Dy 120 29.5° [Ch90]
290 7, A, 208 py, 4° — 26° [Ch&8, Ch8ga)
290 o, Dy 5P 20° [Ha88, Ha91]
316 a, A, 12Q 119° - 157° [Ka78]
400 o, A, 116Gy, 208p}, 907 < 6° [Mo82]
400 o, Ay 2H, %714, ?Bi 12° — 28° in 4° steps | [Ot97a, Ot97b]
400 o, Ay 12,13C, natCa, matCu | 12° — 28° in 4° steps | [Ot97a, Ot97Db)
400 o, Ay 181, "S5Ph 12° — 28° in 4° steps | [Ot97a, Ot97b]
420 P, Dy, Dyt s, Div s 1205, 160 23.5° [Ch89]
420 o, Dy ; B 23.5° [Ch90]
500 7, A, 120 119° - 157° [Ka78]
500 o, A, “He, 8Ni, 181Ta | 65°, 90°, 120°, 160° [Ro81]
500 o, Ay 1165y, 208pY,, 907 < 6° [Mo82]
500 o,Dy H, s, SUPh 18.5° [CaB4, Re86]
500 o, A, 208py, 4° - 26° [Ch89a)
500 o, Dy ’H 22.4° - 55.4° [Mag6]
800 7, A, 116Gy, 208y, 907y < 6° [Mo82]
800 o, A, 1, 120 5, 11°, 15°, 20° [Mc84]
800 o, Dy ; 1H, 2H, 12 5°, 11°, 20° [Fess]
647 o, Dy ’H 46.9° — 118.0° [Bag9]
800 o, Dy j ’H 58.3° — 110.0° [Bag9)

1 Scattering angle specified in NN centre—of—mass system
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Table 2.2: List of quasielastic (g, 7i)polarization transfer observables measured at incident labo-

ratory kinetic energies Tj,, below 800 MeV, where ¢ is the unpolarized double differential cross

section, P is the induced polarization, A, is the analyzing power, D;/ ; denotes complete sets of

polarization transfer observables [Do, = Ay, Dyp, Dy, Deg, Dgrg and Dy — see also Appendix

G], and 651, denotes the laboratory scattering angle, unless otherwise specified.

Tiab [MeV] | Observables Target Oia [degrees] References
186 o, P, Ay, Dpyp | ©7Li, 1011B 15.1°, 20.0° [Wa93, Wa94]
186 o, P, Ay, Dpp 12,130y 15.1°, 20.0° [Wa93, Wa94]
200 o, Dy j 2H, 34He, 12C 13°, 37° [Ra98]

200 o,Dy netCa, "%Ph 13°, 24°37°, 48° [Ha98]

200 o, Dy 2j, 12 24°, 48° [Ra98]

200 o, Ay 3He, ‘He 30° [Pagg]

290 o, Ay 130 py 20.4°, 27.0° (for 12C) [Hi93]

295 o, Ay 2H, 12C, 40Ca | 15° — 35° in 5° steps [0t97a]

346 g, P, Dilj 2H, loLi, 120 22° [Wa96]

346 o, P, Dy ; 40Ca, 208Pp 22° [Wa96]

392 o, Ay 2H, 67Li, °Bi | 12° —28° in 4° steps | [Sa94, Ot97a, Ot97b]
392 o, A, 12,13C, nat(Ca | 12° — 28° in 4° steps | [Sa94, Ot97a, Ot97b]
392 o, Ay nat Gy 12° — 28° in 4° steps | [Sa94, Ot97a, Ot97b]
392 o, Ay 181y, natPh | 12° — 28° in 4° steps | [Sa94, Ot97a, Ot97b]
420 o, Ay 12@, 54Fe 24.0° [Hi93]

495 o, Dy [, 1@, Ca 18° [Ta91]

495 o, Ay 2H, 12, natPh 9° — 22° [Ta91a, Pr95]
495 o, Dy 4 2J, 12, 40Ca 12.5°, 18°, 27° [Mc92, Ch93, Ta94]
500 o, Dy j H 22.4° — 55.4° 1 [Mag6]

647 o, Dy ’H 46.9° — 118.0° 1 [Bag9)

795 o, Ay 2H, 12, natPh 9° — 18° [Ta91a, Pr95]
800 o, Dy ’H 58.3° — 110.0° [Bag9]

T Scattering angle specified in NN centre—of-mass system
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most striking feature of the data is the variation (mainly a decrease) of the polarization

transfer observables with increasing excitation energy [Ha88|.

e For '2C, and scattering angles of 29.5° at 290 MeV, and 23.5° at 420 MeV, the symmetry
relations amongst the polarization transfer observables for time-reversal invariance, which
are strictly applicable only to free NN elastic scattering, are valid over the full width of the
quasielastic peak [Ch90]. The induced polarization P is identical to the analyzing power

A,, and both are quenched relative to the corresponding free values.

e The A, data of Otsu et al. [Ot97a, Ot97b] at 295 and 392 MeV are reduced compared to

the corresponding free values.

e For a scattering angle of 23.5° at 420 MeV, all polarization transfer observables for 2C
and 190 are identical. The variation of the polarization transfer observables as a function

of excitation energy is smooth and without structure [Ch89].

e The polarization transfer observables (excluding A,) for H and 2°®Pb, at 500 MeV and
18.5°, are identical [Ca84].

e For scattering angles less than 15°, the analyzing powers for 1'6Sn at 800 MeV, “°Zr at

500 MeV, and 2%8Pb at 400 MeV, are similar to the corresponding free NN values [Mo82].

e At 800 MeV, the polarization transfer observables for 'H, ?H and 2%8Pb are similar for scat-
tering angles 5°, 11° and 20° [Fe88]. The variation of the polarization transfer observables

as a function of excitation energy is smooth and without structure.

Some of the interesting features exhibited by inclusive (g, 7) polarization data in Table 2.2, for

energy losses spanning the quasielastic peak, are summarized below:

e At an incident energy of 186 MeV for a variety of p-shell nuclei (47Li, 1%!1B, 1213(C),
the A, data show a slight enhancement relative to the free NN values. The D,, data
at 15° are close to the free NN values, while at 20° the data in the quasielastic region
(excitation energies greater than 30 MeV) are higher than the free values. In the lower
excitation region (less than 30 MeV), interference between quasielastic scattering and the

giant resonances makes the polarization observables change more drastically than in the
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“pure” quasielastic region. Also, the induced polarization P is almost identical to the

analyzing power A, [Wa94].

e At 200 MeV, the A, data for 3He are similar to those for free NN scattering, whereas for

“He the A, data are generally larger than the free values [Pa98].

e The A, data of Otsu et al. [Ot97a, Ot97b] at 295 and 392 MeV are slightly enhanced

compared to the corresponding free values.

e Sakai et al. [Sa94] have measured double differential cross sections and analyzing powers
for quasielastic (p, 1) scattering from a variety of targets ranging from 2H to *®*Pb (57Li,
natBe, mat( nat(Cy natCy, PatTy PatPh) and for a wide range of scattering angles corre-
sponding to momentum transfers ranging from 1.0 fm~! to 2.4 fm™!, at incident proton
energies of 300 and 400 MeV. The excitation energy of the quasielastic peak for the 2H
reaction almost coincides with that expected for free NN scattering. Thus, the neutron in
a deuteron behaves like a free neutron. Energy shifts of the quasielastic (p,n) peak from
that of 2H to higher excitation energy is observed for all the targets studied at 300 MeV
and 400 MeV, with a gradual increase with target mass reaching almost a constant value
of ~26 MeV beyond 2C. The neutron-number dependence of the effective neutron num-
ber Neg (see Sec. 3.2.7 in Chapter 3) for the (p,n) quasielastic scattering process is well
represented by Neg = 0.85N%5 over a wide mass range from 2H to "*Pb, except for "Li
and 9Be which deviate significantly. The quasielastic analyzing powers for the 2H(p, )
reaction are almost identical to the free NN values. However, the analyzing powers for the
12C(p, i) and *°Ca(p, 7)) reactions behave very differently. In the range of small scattering
angles (|¢| < 1.5 fm~!) they agree with those of the ?H(p), ) reaction, while they are
significantly reduced at large angles (|¢| > 2 fm™!).

e At 346 MeV and 22°, the analyzing power A, and induced polarization P are virtually
identical for 2H, SLi, “°Ca and 2°®Pb [Wa96]. The latter is not true for 2C. All the
polarization transfer observables (for 2H, 6Li, 12C, °Ca and 2%8Pb), except D,, ,, show no
target dependence, and essentially agree with the free values. This is beautifully illustrated
by the data of Wakasa et al. [Wa96] in Fig. 2.5.

e The A, data for 12C at 420 MeV and 24.0° follow a different trend in excitation energy
than for %Fe at the same angle and beam energy [Hi93]. At the quasielastic peak, the
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Figure 2.5: Polarization transfer observables (or coefficients) Dy s, Dpn, Deg, Dye and Dy g
for quasielastic 2H(5,7) (blue/black data points), >C(p,7) (red/grey data points), 4°Ca(g, 7i)
(red/grey data points), and 28Ph(p, i) (red/grey data points) scattering at Tj,p and 22°. The
vertical solid lines mark the energy-loss of the centroid of the experimental quasielastic peak.

The data are from Ref. [Wa96].
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A, data for ?C and 5Fe, at both incident energies of 290 and 420 MeV, are close to
the free NN values. At both incident energies of 290 MeV and 420 MeV, the analyzing
power data for %4 Fe are more steeply sloped as a function of excitation energy, than the
corresponding '?C data, suggesting the importance of structure effects. The A, data for
both 12C and %*Fe at 420 MeV exhibit trends that are closer to what is expected from

quasielastic scattering than the 290 MeV data.

e Polarization transfer observables for 2H, '2C and °Ca, at 495 MeV and 18°, are virtually
identical. Also, the induced polarization P is almost identical to the analyzing power A,

[Mc92, Ch93).

e The A, data for 12C and 2%8Pb, at incident energies of 495 and 795 MeV, show a slight
enhancement relative to corresponding free NN values [Ta9la]. The angular dependence

of the centroid of the quasielastic peak tracks very well with free NN scattering.

e The analyzing power for 12C at 495 MeV, for angles between 9° and 22°, is consistent with
the free charge-exchange value [Pr95]. The analyzing power for 12C at 795 MeV, however,
is on average significantly below the free value. On the other hand, the analyzing power

for "2'Ph at 795 MeV is consistent with the free NN value.

In general, it is seen that for excitation energies spanning the quasielastic peak, and for scat-
tering angles where the quasielastic peak is well above the low-lying resonances and well below
the quasielastic—A peak, the variation of both (7, p”) and (p,7) polarization transfer is smooth
without any structure. As the momentum transfer decreases, so the polarization transfer ob-
servables start to exhibit pronounced slopes as a function of excitation energy. Furthermore, for
quasielastic (p,7) scattering most polarization transfer observables are consistent with free NN
scattering. For (p,p”’) scattering, however, the analyzing power is reduced relative to the values

for free NN scattering.

2.4.3 Combinations of polarization transfer observables

Recently, several papers [BI82, Mo82a, Ic92] have defined a new set of polarization observables
(Do, Dy, Dy, D,) which are appropriate for investigating specific spin channels in inelastic scat-

tering to discrete states, and also for studying inclusive quasielastic (p,p’) and (p,7) reactions
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[B182, Ca84, Re86, Fe88, Ch90, Mc92, Mo82a, 1c92, 0s92, Ch93, Ra94, Ta94, Wa96, Ha98].
These new polarization observables merely represent an alternative parametrization of ex-
perimental results, and are expressed as linear combinations of the conventional polarization
transfer observables Dy ; (excluding A,) defined in Appendix G. The advantage of using this
parametrization is that the experimental longitudinal and transverse spin—flip probabilities are
now directly related (albeit in a model-dependent way) to the theoretical spin-longitudinal and
spin-transverse nuclear response functions, whose interpretation is currently the focus of much

theoretical activity (see the references cited above).

The disadvantage in studying the spin-longitudinal and spin-transverse nuclear response
functions is that the “experimentally” extracted quantities are model-dependent, and hence do
not represent true experimental data [Sh88]. Apart from experimental uncertainties, there are
several potential sources of systematic errors in the absolute magnitude of the separated re-
sponses [Ch93], for example, the model dependence associated with the calculation of distortion
factors [Ic97], uncertainties introduced by the choice of the phase-shift solution used to generate
the NN amplitudes, and multiple scattering effects. Although a lot of interesting physics can
be extracted from studies of spin-longitudinal and spin-transverse nuclear response functions,
this project rather focuses on understanding complete sets of polarization transfer observables,
the latter being directly measured by experimentalists. Once these are properly understood, it
would seem more appropriate to study spin-longitudinal and spin-transverse nuclear response

functions.

2.5 Why is it important to study quasielastic scattering?

The aim of this section is to briefly mention some of the interesting physics issues which are
studied via quasielastic (p,p’) and (p,7) reactions. For more detailed information, the reader

is encouraged to consult the references cited below.

e The cross sections leading to bound states of the residual nucleus comprise only a small
portion of the total cross section, whereas the quasielastic region, on the other hand,
constitutes a large fraction of the inclusive proton—nucleus spectrum. Hence, it is impor-

tant that the mechanism for quasielastic scattering should be properly understood, and



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. QUASIELASTIC PROTON-NUCLEUS SCATTERING 27

included in the framework of theoretical models.

e Quasielastic (p,p") and (p,7) reactions probe different parts of the NN interaction: (p,p")
scattering probes both isovector and isoscalar parts of the NN interaction, whereas (g, 7)
charge—exchange reactions sample only the isovector components, particularly those di-
rectly related to pion exchange [Wa94, Ho94|. Furthermore, since the Lorentz character
of the isovector amplitudes is totally different from the isoscalar amplitudes, one expects
quasielastic (p,p’) and (g, 7) polarization transfer observables to yield different, but com-
plementary, information about the spin-dependent components of the NN interaction (see
Chapter 3). Hence, measurements of complete sets of polarization transfer observables for
both quasielastic (p,p") and (p,7) scattering provide stringent tests of current theoretical

models.

e An important question in nuclear physics is how the nuclear environment modifies the
scattering interaction between two nucleons. In free space, the NN interaction is well
known. The recent interest in the role of relativity in nucleon-nucleus scattering [Ho86,
Mu87a, Ho88, 1q88, Hi94, Hi95, Hi98] has suggested that the quasielastic polarization
transfer observables may provide a clean signature of relativistic effects for the NN inter-
action in the nuclear medium. Hence, quasielastic reactions offer a means to study how
the fundamental free NN interaction is modified by the surrounding medium of the nucleus

in which it occurs. The latter topic is discussed in detail in Chapter 3.

e Quasielastic scattering can also be used to study the residual particle-hole interaction,
which induces collective motion as the struck nucleon interacts with other target nucle-
ons. Although signatures of shell structure, such as low-lying collective states and giant
resonances, disappear at large excitation energies [Ch89, Wa96], the nucleus continues to
respond collectively through the interaction of the residual particle-hole interaction. This
collectivity does not manifest itself in sharp states or resonances, but in gross features
of the spectrum, such as shifts in the position of the quasielastic peak and deviations of
the polarization transfer observables from the free values [Sm88]. Quasielastic scatter-
ing, therefore, offers a means of studying the residual interaction in a region where it is

currently not well known, namely at large energy— and momentum-transfers.

e One of the major aims of experiments performed in the quasielastic region is to separate
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the spin-longitudinal from the spin-transverse nuclear response [0s92, Ra94]. Here an
interesting question is whether the virtual pion field inside the nucleus is strong enough
to cause a collective enhancement of the spin-longitudinal over the spin—transverse nu-
clear response. The existence of such a phenomenon would be very significant because
of its direct relation to Migdal’s original suggestion of the existence of a pion condensate
at sufficiently high nuclear densities [Mi78]. The spin-longitudinal and spin-transverse
nuclear response functions have simple connections to the exchange of p and 7 mesons
between nucleons, and between nucleons and delta isobars, and hence are very relevant
to current investigations into the effects of the isobar on nuclear properties. Beyond this,
there are many issues connected with the spin—isospin resonances that carry over into the
discussion of the role of quarks and gluons in the description of nuclear properties and
interactions, such as the the so—called European Muon Colloboration (EMC) effect, for

example [Ca84, Re86, Be93].

e Nuclear structure usually plays a minimal role in the quasielastic region [Ch89, Wa96] and,
hence, from a theoretical point of view, quasielastic scattering is an attractive problem to

study, that is, simple models of nuclear structure can be used.

e During the past few years, several studies [Sw89, Os92, Ra94] have demonstrated the
usefulness of inelastic proton scattering at medium energies for the study of giant reso-
nances. The continuum background under the giant resonances appears to be dominated
by quasielastic scattering [Sw89]. The largest uncertainty in the determination of giant
resonance strengths arises because of a lack of knowledge of the shape and magnitude of
the underlying continuum [Be81] which needs to be subtracted. The empirical procedure
often used in the past consists of representing the continuum shape with straight lines or
smooth polynomial curves. Different choices of background can, however, lead to quite
different resonance parameters. Hence, current progress in determining these parameters
is closely coupled with the progress in modeling the quasielastic scattering to the nuclear

continuum.
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2.6 Models of quasielastic proton scattering

In order to extract detailed information on collectivity and medium-modified two—body interac-
tions from experimental data, it is necessary to have a good theoretical handle on the important
features of the reaction mechanism and the nuclear structure input. At small momentum— and
energy—transfers, nuclear structure aspects can be incorporated into distorted—wave impulse ap-
proximation (DWTIA) calculations either using a large-basis shell model or the random phase
approximation. A large momentum- and energy—transfers, these calculations become more dif-
ficult and sometimes impossible to implement numerically [Sm88]. Approximate methods must
be used. In this section, a brief overview is given of the successes and failures of various theo-
retical models which have been used for describing both the unpolarized double differential cross
sections and polarization transfer observables for quasielastic (p,p"’) and (p,7) reactions, for in-
cident proton energies ranging between 100 MeV and 800 MeV, and for target nuclei greater or
equal to 12C. Additional, but less complete, reviews of the current status of quasielastic proton

scattering can also be found in Refs. [Sm88, 0s92, Ra94].

2.6.1 Simple Fermi—gas model

Perhaps the simplest, but yet most instructive, model is the simple Fermi-gas model of Bertsch
and Scholten [Be82]. This model ignores nuclear structure (as suggested by the experimental
data of Refs. [Ch89, Wa96]) and treats the nuclear ground state as a Fermi sea with all states
below the maximum Fermi momentum kr occupied. For quasielastic scattering, the struck
nucleon is removed from the Fermi sea, and the recoiled ejectile is also left above the Fermi
sea, that is, Pauli blocking is explicitly incorporated. Despite the simplicity of the Fermi-gas
model, it does, however, provide a qualitative description of unpolarized double differential cross
sections [Be82, Wa93, Wa94|, as well as the most polarization transfer observables [Ch90]. For
example, for quasielastic (p,n) scattering from p—shell nuclei at 186 MeV the simple Fermi-gas
model qualitatively reproduces the centroid and width of the quasielastic double differential cross
section [Wa93, Wa94]. For 420 MeV (p,p") scattering on '2C, this simple model reproduces the
general variation of the complete sets of polarization transfer observables with excitation energy,
except for Dy s and Dy [Ch90]. Generally, for light nuclei (A < 7), and small momentum

transfers (|¢| < %ﬂ), the simple Fermi-gas model breaks down and completely fails to describe



Stellenbosch University ntips://scholar.sun.ac.za

CHAPTER 2. QUASIELASTIC PROTON-NUCLEUS SCATTERING 30

quasielastic scattering data [Be82, Wa93, Wa94].

2.6.2 Semi—infinite slab model (SISM)

Hadronic probes are strongly absorbed in the interior of a nucleus, and hence, quasielastic proton
reactions are strongly surface peaked. A better description than the simple Fermi—gas model,
which takes account of the surface nature of the reaction, is the semi-infinite slab model (SISM)
of Bertsch, Esbenson, Scholten, and Smith [Be82, Es84, Es85, Es86, Sm88]: see Ref. [Sm88] for
a review of the SISM plus subsequent modifications and extensions. In the original SISM model
of Bertsch and Scholten [Be82], the nucleus is approximated as a semi-infinite slab of fermions.
Absorption is treated via an approximate form of Glauber theory, and kinematic effects of Fermi
motion and Pauli blocking are included. The SISM does not account for distortion effects other
than eikonal attenuation of the initial and final nucleon waves. With the omission of distortions,

the SISM reduces to the simple Fermi-gas model discussed in Sec. 2.6.1.

The SISM model has been applied successfully to a wide variety of intermediate energy
reactions which proceed primarily via one-step NN collisions. The model has three notable
features: it redistributes some of the effects of the single-scattering response into a long tail, it
smoothes the response in the low-excitation Pauli-blocking region, and it includes the binding
energy of the nucleus [Ta9la, Pr95]. A distinguishing feature of slab model calculations is that
peak shapes are well reproduced. Compared to Fermi-gas calculations, the slab model puts a
long tail on the high energy-loss side of the quasielastic peak and fills in the region of low energy

loss where Fermi-gas calculations produce a sharp cutoff.

For large momentum transfers (|¢| > kr) the predictions of the SISM and simple Fermi-gas
model are similar, and qualitatively predict the essential features of inclusive unpolarized double
differential cross sections [Be82]. Generally, it is seen that, at intermediate scattering angles,
predictions of the SISM for quasielastic (g, p’) scattering improve with increasing beam energy

[Ch89al.

For quasielastic (p, i) scattering from p-shell nuclei at 186 MeV [Wa93, Wa94], the SISM
provides a good description of the shapes of the spectra, whereas the overall magnitudes are not

correctly predicted and need a |§|-dependent normalization. A similar result was obtained by
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Swenson et al. [Sw89]: For (p,p’) scattering on %Pb at 400 MeV, the SISM calculations had
to be renormalized to fit inclusive data at high excitation energies above the giant resonances;

It is not possible to fit the spectra at all the angles with the same renormalization factor.

Esbenson and Bertsch [Es84] extended the SISM to include one—particle-one-hole random
phase approximation (RPA) correlations due to the nuclear medium. In particular, no account
was taken of spin-orbit distortion. Esbenson, Toki and Bertsch [Es85a] adapted the latter
model to study the ratio of spin-longitudinal to spin-transverse nuclear response functions for
quasielastic (p,p") scattering. Compared to the 500 MeV (p,p”) data of Refs. [Ca84, Re86]
on “°Ca and 2%®Pb at |¢| = 1.75 fm~!, which give a ratio of unity, the SISM model with
RPA correlations overpredicts the data. With the omission of central distortions and RPA

correlations, the SISM reduces to the simple Fermi-gas model.

Okuhara et al. [Ok87] pointed out that the assumption of a semi-infinite slab geometry is
not altogether realistic, especially for lighter nuclei: there work indicates that finite geometry
and absorption effects are crucial in bringing the ratio of spin-longitudinal to spin-transverse

nuclear responses closer to the 500 MeV (p,p’) data of Carey [Ca84].

Smith and collaborators modified the RPA SISM to include 2—particle-2-hole (2p2h) states
as well as two—step processes [Sm88]. Hiusser et al. [Ha88, Ha91] compared data for complete
sets of polarization transfer observables, for quasielastic %Fe(p, p”) scattering at 290 MeV and
|| = 1.75 fm~1, to the SISM results of Smith [Sm88]. The calculated observables Dy, Dy g,
and Dy ¢ are predicted to be close to the free response values, showing little sensitivity to the
residual interaction and to the inclusion of 2p2h damping or two—step processes. The SISM
model of Smith et al. [Sm88] predicts Dy, P, and A, values which are substantially different
from the free values. For the latter observables the slopes versus excitation energy are mainly
caused by the residual interaction and are found to be in reasonable agreement with the data,
although the absolute values for P and A, are considerably larger than the data. Hausser et al.
[Ha88] also find that the use of the Breit frame [Sm88], rather than the optimal frame, produces

the wrong sign for the slopes of Dy y and Dy .

Hicks et al. [Hi89] compared their quasielastic (p,7) data (double differential cross sections
and analyzing powers) measured for '2C and 5‘Fe targets at 290 MeV for a scattering angle of

20.4°, and at 420 MeV for a lab angle of 24.0°, to calculations using the nonrelativistic SISM
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model of Smith [Sm88]. The shapes of the inclusive spectra as a function of excitation energy
are in reasonable agreement with the model. It appears that the surface response model, which
has been successful in predicting (p,p’) data [Ha88], is also adequate to describe the shape
of the quasielastic charge exchange cross sections. The model does not, however, consistently
reproduce the analyzing power data. Smith’s RPA calculations are always very close to the free
NN values of A,, and cannot explain the enhancement ( % Fe data at 420 MeV) or suppression
( 54Fe data at 290 MeV, and 2C data at both 290 and 420 MeV) of the A, data. For '2C(p,7")
scattering at 800 MeV at scattering angles of 5°, 11° and 20° [Fe88], the SISM model of Smith
[Sm88] yields qualitatively good agreement with all the polarization transfer data (Dyp, Dy g,
Dy g, D), except for Dy at 5°. The values of the polarization transfer observables at the
quasielastic peak are often precisely predicted; far away from the calculated peak position, the
agreement can become quite poor, as in Dy 4 at 5°, or Dyy at 11°. With the accuracy of the data,
typically about 0.1, specific nuclear effects are essentially absent; the nucleus seems to behave

approximately as a free Fermi-gas, and a single-step reaction mechanism seems sufficient [Fe88].

Smith and Wambach have developed a model for easily including the effects of 2p2h excita-
tions in calculations of the nuclear response function at large momentum- and energy-transfers
[Sm88a]. They analyzed 5Fe(p, ") data at 290 MeV [Ha88, Ha9l], using the slab-model of Es-
benson and Bertsch [Es84, Es86], and found improved agreement with spin—flip cross sections,

although calculations underpredict the data above ~25 MeV excitation.

Prout et al. [Pr95] have performed calculations which are similar to the SISM of Ref. [Es85],
and also include contributions from two—step scattering. Compared to cross section data for
inclusive (p, n) scattering on 12C and "**Pb at 495 MeV and 795 MeV [Pr95], the calculations are
able to account very well for the shape, but not for the absolute magnitude, of the quasielastic
peak at both energies and for both targets. The two-step contributions do not significantly
alter the shapes of the calculations, but they do add substantial cross section at the largest

momentum transfers.

2.6.3 Nonrelativistic eikonal approximation

Theoretical calculations by Tzeng and Tamura [Tz83], based on the eikonal approximation and

utilizing spin—-dependent amplitudes, provide a consistent description of quasielastic unpolarized
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double differential cross sections and analyzing powers for (7,p’) data at 200 MeV [Li84], and
800 MeV [Mc84, Mc84a). In general, the analyzing power predictions are enhanced relative to

the data, particularly at large scattering angles.

14

Smith and Wallace [Sm85] have developed a formalism for calculating quasielastic (p,7")
spin observables at incident energies larger than 800 MeV. They studied the spin dependence
of quasielastic (p,p"’) scattering using Glauber’s eikonal multiple scattering theory, which is
extended to include multiple knockout collisions as well as the full spin dependence of the NN
amplitudes. Calculations were done for both unpolarized double differential cross sections as well
as complete sets of polarization transfer observables and compared to data (cross sections and
analyzing powers) for 12C(p, p") scattering at 800 MeV [Ch80, Mc84, Mc84a)]. The normalization
of the quasielastic peak agrees well with the data, although the peak position is shifted towards
larger energy loss. Such a shift had been seen before in PWIA and DWIA calculations [Kr70,

Ch80]. Distortions have little effect on spin observables. The normalization of the analyzing

power is a little off: ~0.4 in the single knockout region compared to ~0.3 in the data.

Brieva and Love have developed a nonrelativistic finite-nucleus model based on a local den-
sity approximation to the nuclear response, including nonlocal couplings and off-shell effects
arising from the antisymmetrization of the NN interaction [Br90]. The model relies on the
energy—dependent Franey-Love effective nucleon—nucleon interaction, the interacting Fermi-gas
model, and the distorting nucleon—nucleus optical potential in a local density approximation.
The distorting incoming and outgoing nucleon scattering wave functions are calculated in the
eikonal approximation [Sm88, Br90]. By including the nonlocal couplings explicitly, they ob-
tained an estimate for the range of validity of the “standard” model of quasielastic proton
scattering [Be82, Es84, Ho88, Sm88|, which assumes a direct relation between the inclusive dou-
ble differential cross section and the nuclear response function. In addition, Brieva and Love
also illustrated the level of uncertainty associated with the choice of the effective NN interaction
used in calculating inclusive observables. Their calculations indicated that experimental results
could be understood in terms of the nuclear response function with an uncertainty of ~10 %.
At incident energies near 100 MeV and below, the nonlocal couplings are much more important
and cannot reliably be neglected. The sensitivity of inclusive nucleon scattering to the choice of
the effective NN interaction was also found to be non-negligible. It is interesting to note that

the exact calculations of Brieva and Love [Br90] for the analyzing power, for incident proton
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energies between 100 MeV and 300 MeV, are suppressed relative to the corresponding free NN
values. Thus far, Horowitz and collaborators [Ho86, Mu87a, Ho88, 188, Ho91b, Ho97], have
attributed the latter suppression to relativistic medium modifications of the NN interaction.

The predictions of Brieva and Love have yet to be compared to quasielastic (7,p”) data.

Hicks et al. [Hi93] compared quasielastic (7,7) data (unpolarized double differential cross
sections and analyzing powers) measured for '2C and 54Fe targets at 290 MeV for a laboratory
angle of 20.4°, and at 420 MeV for a laboratory angle of 24.0°, to the nonrelativistic calcula-
tions of Brieva and Love [Br90]. Shell effects accounting for the reaction QQ—value, and target
recoil were shown to be important for predicting the correct position of the quasielastic peak
[Ta91]. The (p,n) analyzing power data at the quasielastic peak are in fair agreement with these
nonrelativistic predictions. The calculations do not, however, properly describe the analyzing

power data for (p,p’) reactions in the quasielastic region.

2.6.4 Nonrelativistic random—phase approximation of the nuclear response

Based on a random-phase approximation calculation (RPA) in symmetric, infinite nuclear mat-
ter with one—pion exchange plus one-rho—meson exchange plus a contact interaction specified
by the Landau-Migdal parameter ¢’, the so—called m + p + ¢’ model, Alberico, Ericson and
Molinari [A182] predicted that, for momentum transfers larger than 1 fm~! in the quasielastic
region, the isovector nuclear responses to mesonic fields are expected to show an enhanced ratio
of the spin-longitudinal to the spin—transverse nuclear response functions. However, analysis of
a variety of (p,p") [Ca84, Re86, Fe88, Ha88, Ch90, Ch93] and (p, 77) [Mc92, Ta94, Ch93] data did
not reveal the expected enhancement. Applications of the latter model [A184], and the subse-
quent development of a random—phase approximation theory of the spin—-isospin nuclear surface
response by Alberico and collaborators [Al87, Al88], have failed to quantitatively describe the
experimental data. Alberico et al. [A182] suggest that the latter discrepancy could be attributed

to distortion (mainly absorption) of the probe, finiteness of the nucleus, and a larger value of

!

g.

De Pace and Viviani [De93, De94] have calculated the spin-isospin responses within the
continuum RPA framework. They employed an extension of the standard RPA to account for

the spreading width of the single particle states through the inclusion of a complex and energy—
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dependent nucleon self-energy. The nuclear responses were then used as the basic ingredient
to calculate hadronic reactions in the Glauber theory framework. Both one— and two-step
contributions to the multiple scattering series were taken into account. Predictions of the
quasielastic peak position for (p,p’) at 795 MeV scattering came out in the wrong position
[Ch80]. The model of De Pace and Viviani could not consistently predict both (p,p’) [Ch80]
and (p,n) [Ta91] double differential cross sections at 795 MeV.

2.6.5 Nonrelativistic distorted wave models

Up to about 1989, the effects of distortion had been treated poorly (see Ref. [I1c89], and references
therein). In most SISM [Al84, Re86] and local density approximation analyses [Sh86, Ok87],
the effects of absorption had only been taken into account in terms of a Glauber approximation
with straight line trajectories. The distortion of the trajectory and the spin reorientation during
scattering were rarely included [Sm88]. There had been very few quantum mechanical calcu-
lations including distortions. Ichimura et al. [Ic89] developed the continuum random-phase
approximation with the orthogonality condition (OCRPA) for calculations of spin-longitudinal
and spin-transverse nuclear response functions. The model takes into account the finite size
of the nucleus, the continuum nature of the single-particle states, and the damping of the
particle states. Ichimura and collaborators compared their calculations of the ratio of the spin—
longitudinal to the spin—transverse nuclear response functions to LAMPF data for quasielastic
10Ca(p, p') scattering at 500 MeV, for various scattering angles [Ca84, Re86]. The combined
effects of distortions, and the finiteness of the nucleus, reduced the ratio from the original SISM
predictions [Es85a, Sh86]. The result is, however, still larger than the experimental ratio of

unity.

Ichimura et al. [Ic94, Ni95] extended the model in Ref. [Ic89], to study the effects of A-
isobars, the dependence on effective interactions, and the effects of distortion in scattering. This
model provides a very poor description of the unpolarized inclusive cross section for 2C(p, n)
at 495 MeV [Mc92, Ch93, Ta94]. The calculation not only fails to predict the location of the
quasielastic peak correctly, but severely underestimates the unpolarized double differential cross
section. It is seen that distortions reduce the ratio of spin—longitudinal to spin—transverse nu-

clear response functions, though the RPA makes the ratio too large. The experimental ratio
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is reasonably well reproduced by free response functions (with no distortions and RPA correla-

tions).

Taddeucci et al. [Ta94] compared their data for ratios of spin-longitudinal to spin—transverse
nuclear response functions for quasielastic (f,7) on 2C and “°Ca at 494 MeV (for scattering
angles of 12.5°, 18° and 27°) to the calculations of Ichimura et al. [Ic89, Ic92a, Ni95]. Two
cases were considered [Ta94]: calculations employing the full RPA response, and calculations
where the residual interaction was set to zero (free response). The free response calculations
gave a good description of the data at all three angles. While this result highlights the possible
importance of distortion effects, the disagreement with the full RPA + DWIA ratios also suggests
that some important physics is being missed by describing the reaction entirely in terms of

single—particle responses.

McClelland [Mc92] and Chen [Ch93] compared their data for ratios of spin-longitudinal to
spin-transverse nuclear response functions, for quasielastic (7, 7) on 2C and “°Ca at 495 MeV
and 18°, to distorted wave calculations of Ichimura et al. [Ic89] with and without a random-—
phase approximation to the nuclear response. The data are in good agreement with calculations

omitting the RPA calculations.

The experimental ratios of spin-longitudinal to spin-transverse nuclear response functions
for quasielastic (f,7) reactions at 346 MeV and 22° on SLi, '2C, “°Ca, and 2%Pb show no
evidence of enhancement [Wa97], in contradiction with the calculations of Ichimura and collab-

orators [Ic94, Ni95].

In Ref. [Ic97], Ichimura investigated the effects of the finiteness of nuclear size, virtual
A—excitation, removal of the universality ansatz, radial dependent effective masses, spreading
widths of particle-hole states and correlations beyond RPA, on the response functions with
RPA correlations. The extent to which distortions can be represented by the Neg prescription
[Ic92] for the extraction of response functions was also investigated. Ichimura concluded that
distortion effects are not necessarily adequately represented by the Neg prescription. Even
considering the above mentioned effects and ambiguities, the large differences between theory

and experiment could still not be explained.

The DWIA model of Chant and Roos [Ch77a, Ch83] has also been applied to analyze in-

clusive (p,p’) unpolarized double differential cross sections and analyzing powers [Ch80, We85,
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Ca95, Ca9bal, as well as the depolarization parameter D,,, [Ma93], following the procedure of
Wesick and collaborators [We85]. The calculations represent a quantum mechanical treatment
of the scattering process, relying on the factorization approximation, and assuming the validity
of the impulse approximation. Strong final state interactions are incorporated via scattering
state wave functions which are solutions to the Schrodinger equation with complex, energy—
dependent optical model potential (OMP) terms. The OMP parameters are generally fitted to
elastic scattering data. Although the original DWIA model of Chant and Roos [Ch77a] was
formulated to describe ezclusive (p,pN) reactions (where N is either a proton or a neutron),
the inclusive (p,p') observables are obtained by integrating the triple differential cross section,
for (p,pN) scattering, over the solid angle of the unobserved nucleon N; the imaginary terms of
the OMP for the associated nucleon are set to zero as there is no loss of flux if this particle is
not observed [We85, Ca95, Ca95a]. For inclusive (7, p') scattering on 4He, 12C, and %°Ca at 200
MeV and 30° [Ma93, Ca95, Ca95a|, these DWIA calculations provide a satisfactory description
of the magnitude and the position of the double differential cross section and the depolariza-
tion parameter Dy, at the quasielastic peak. The DWIA calculations, however, overpredict the

inclusive analyzing power data.

2.6.6 Relativistic plane wave impulse approximation (RPWIA)

Traditionally, reaction dynamics have been described in the framework of the Schrodinger equa-
tion using nonrelativistic or relativistic kinematics for intermediate energy reactions. More
recently, however, considerable success has been obtained using the Dirac equation to describe

elastic and inelastic proton scattering: see Chapter 1 for more detail.

A relativistic-plane-wave-mpulse-approximation (RPWIA) model for quasielastic proton
scattering has been developed by Horowitz, Igbal, and Murdock [Ho86, Mu87a, Ho88, Iq88,
Ho91b, Ho97]. The RPWIA is based on a covariant form of the amplitudes describing the
NN interaction, while the scattering is described through the use of the Dirac equation in
infinite nuclear matter. In the nuclear medium the strong scalar potential enhances the lower
two components of the four-component Dirac wave functions. Horowitz and Igbal [Ho86, Iq88]
developed a model in which this enhancement is parametrized by an effective mass m* calculated

in an eikonal approximation; this effective mass m* is smaller than the free nucleon mass m,
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due to the attractive scalar potential in the nuclear medium. These calculations were later
extended by Horowitz and Murdock [Mu87a, Ho88, Ho91b, Ho97] to include averaging over

Fermi-momentum distributions of the target nucleons.

The following experimental data have been compared to the RPWIA predictions of Horowitz
and Murdock [Ho88]:

- =

e Analyzing power data for quasielastic 2°®Pb(p,p’) scattering at 290 and 500 MeV (for
scattering angles between 4° and 27°) [Ch88, Ch89a]: For free scattering, that is m* =
m, the calculations overpredict the analyzing power data, whereas the relativistic m*
calculations are in acceptable agreement with the analyzing power at the quasielastic
peak. The successful prediction of A, at both 290 and 500 MeV has been attributed to

the relativistic m* effect.

e Unpolarized double differential cross sections for quasielastic 2°®Pb(p,p’) scattering at
400 MeV (for scattering angles between 5° and 15°) [Sw89]: The calculations agree with
the data only at large scattering angles. At smaller scattering angles the relativistic

calculations are not in good agreement with the data.

o Complete sets of polarization transfer observables for quasielastic >*Fe(p, p") scattering at
290 MeV and 20° [Ha88, Ha91]: The most striking feature of their data is the variation
(mainly a decrease) of the polarization transfer observables as a function of excitation
energy. This variation is reasonably well reproduced by the RPWIA calculations for Dy
Dgr g, and Dy g, but not for =Dy ;. The calculations for P, A, and Dy, do not, however,
predict the observed slopes in the data. The enhancement of the lower Dirac component
(relative to free m) at the quasielastic peak goes in the right direction for every spin
observable, with the exception of D,,, where there is essentially no relativistic effect.
The reduction of P or A, at the quasielastic peak is quantitatively reproduced by the
RPWIA, in agreement with previous observations [Ca84, Ch88]. The reduction of P or
A, at present cannot be explained by any other mechanism, and appears to be a purely

relativistic effect.

e The quenching of the analyzing power data relative to the values for free NN scattering,

predicted by the RPWIA [Ho88], was also observed by Chan for 2C(p,p’) at 290 (at
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29.5°) and 420 MeV (at 23.5°) [Ch89, Ch90]. However, the inclusion of relativistic m*
effects via the RPWIA failed to yield the correct variation of Dy s and Dy 4 as a function
of energy loss at 420 MeV, and for Dy, it destroyed the good agreement obtained with

Fermi motion alone [Ch90], that is for m* = m.

e Unpolarized double differential cross sections and analyzing powers for quasielastic 2C(, p')
and %*Fe(p,p') scattering at 290 MeV (20.4°) and 420 MeV (24.0°) [Hi89]: The RPWIA
adequately describes the shape, but not the absolute magnitude, of the double differential
cross sections. Furthermore, the RPWIA model cannot consistently explain the enhance-
ment ( %*Fe data at 420 MeV) or suppression ( *Fe data at 290 MeV, and '2C data at
both 290 and 420 MeV) of the A, data.

e Quasielastic '2C(p,n) analyzing power data at 300, 400, 494 and 795 MeV [Sa94]: The
calculations with pseudoscalar TNN coupling reproduce the A, values for 300 MeV and
795 MeV, while those with the pseudovector 7NN coupling give a good description at 495
MeV. The data at 400 MeV, on the other hand, favour free NN scattering: pseudoscalar

and pseudovector coupling yield identical results for free scattering (se Chapter 3).

e Unpolarized double differential cross sections and analyzing powers for quasielastic 12C(7, n)
and 2%8Pb(7, n) at 494 and 795 MeV [Ta9la]: The relativistic m*-~based Fermi-gas model
does a good job of describing the main features of inclusive spectra. Although the model
fails to predict the absolute magnitude of the quasielastic peak, the angular dependence
of the double differential cross sections is well reproduced. The angular dependence of the

quasielastic analyzing power tracks well with free NN analyzing power.

e For quasielastic (p,p’) and (p,n) analyzing power data at 392 MeV and 400 MeV respec-
tively [Ot97b], on a variety of targets between ?H and "3Pb, the reduction in the (p,p’)
data [relative to free scattering] and the enhancement in the (p,n) data [relative to free
scattering], are simultaneously reproduced by pseudovector 7NN coupling in the RPWIA
model of Horowitz and Murdock [Ho88].

To summarize, the most striking feature of the RPWIA model is that the analyzing power and
induced polarization for the inclusive (p,p’) reaction are predicted to be substantially reduced

compared to conventional nonrelativistic calculations. The smaller effective mass of nucleons in
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the nuclear medium is responsible for this reduction. Such a reduction is observed in experiments
performed at bombarding energies ranging from 200 to 500 MeV. The RPWIA model has,
however, had mixed success in describing complete sets of quasielastic polarization transfer

observables.

2.6.7 Relativistic random—phase approximation

Horowitz and Piekarewicz [Ho94, Ho94a] have developed a relativistic random phase approxi-
mation to infinite nuclear matter for calculating complete sets of quasielastic (p, ) polarization
transfer observables. A reduced value of the nucleon mass in the nuclear medium induces im-
portant dynamical changes in the residual isovector interaction relative to its nonrelativistic
counterpart. As a result, good agreement is found for all polarization transfer observables,
including the ratio of spin-longitudinal and spin-transverse nuclear response functions, when
compared to the quasielastic “°Ca(p, ) of Chen et al. [Ch93] at 495 MeV and |¢| = 1.72 fm~ 1.
In contrast, the ratio of spin-longitudinal and spin-transverse nuclear response functions is un-
derpredicted at |§| = 1.2 fm™! and overpredicted at |¢| = 2.5 fm~!. Horowitz and Piekarewicz
[Ho94] suggest that the inclusion of distortions could remedy the latter shortcomings. For
most polarization transfer observables, except for Dy, ,,, the relativistic RPA model [Ho94]| gives
slightly better agreement with data compared to the original RPWIA model [Ho88|. This is

also the case for the ratio of spin-longitudinal to spin transverse nuclear response functions.

Hicks et al. [Hi89] compared quasielastic (p,7) data (unpolarized double differential cross
sections and analyzing powers) for 12C and %‘Fe targets at 290 MeV and 420 MeV to the
relativistic RPA model of Horowitz and Piekarewicz [Ho94]. The relativistic model, which has
been successful in predicting ~30% suppression of A, for the (p,p') reaction, does not properly

describe the (g, n) analyzing power data.

The relativistic RPA results for quasielastic (p,7) scattering can be summarized as follows
[Ho94a]: Everything else being equal, a relativistic calculation will have less of an enhancement in
the longitudinal to transverse ratio than a nonrelativistic calculation with the same interaction.
Thus, relativity helps the agreement between theory and experiment, but it may not be the
only effect one needs to consider. However, this relativistic effect must be considered along with

other possible effects from full distortions, multistep contributions, problems with the RPA
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approximations, etc.

2.6.8 Other models of quasielastic scattering

The failure of all the above-mentioned nonrelativistic and relativistic models to consistently
predict complete sets of quasielastic (p,p’) and (p,7) polarization transfer observables, as well
as the correct ratio of spin-longitudinal to spin-transverse nuclear response functions at different
momentum transfers, questions the validity of the conventional meson—exchange picture of the
NN interaction for describing quasielastic proton scattering. A number of suggestions have
been made as to how the theoretical discrepancies may be remedied. Brown and Wambach
[Br94] have offered an alternative explanation for the lack of enhancement, in the ratio of the
spin—longitudinal to spin-transverse nuclear response functions, by invoking a rescaling of the
p—meson mass in the nuclear medium. The experimental results seem to confirm the suppression
at low energy loss. Yet, the data do not support the rapid variation with energy loss suggested
by the model. Specifically, the rescaling model predicts a ratio of ~ 1 at the position of the

quasielastic peak, while the data remain constant at a ratio ~ 0.6.

Bertsch, Frankfurt, and Strikman [Be93] have suggested that the answer may be found in
the modification of the gluon properties in the nucleus, suppressing the pion field at distances

below 0.5 fmn.

Ericson [Er94], on the other hand, points out that the s—wave interaction of pions in the
nuclear medium has a complex behaviour: It is appreciably repulsive for space-like pions, but
it becomes small for on-shell pions. The latter behaviour has consequences for a number of
physical quantities, such as the quark condensate in nuclei, and the effective pion mass. It may
also offer an explanation for the discrepancy observed between theory and experiment, where

the s—wave part has been ignored up to now.

Brown and collaborators [Br95] have proposed a solution to the problem based on arguments

of partial restoration of chiral symmetry with density.
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2.7 Concluding remarks

Of all the models reviewed in Sec. 2.6, the most successful models, for describing quasielastic
(p,p") and (p,7) polarization transfer observables, as well as the ratio of spin-longitudinal to
spin—transverse response functions, have been the relativistic plane wave impulse approximation
and relativistic random-phase approximation. In particular, for quasielastic (p,p’) scattering,
the relativistic models predict the observed quenching of the analyzing power relative to the free
analyzing power. To date, all nonrelativistic models fail to predict the latter suppression: an
alternative explanation, for the observed suppression in the (p,p’) analyzing powers, has been
suggested by Brieva and Love [Br90], who developed a nonrelativistic model including nonlocal

couplings in the nuclear response, and the full off-shell behaviour of the NN interaction.

Although relativistic models cannot successfully describe all polarization transfer observ-
ables, of all the models considered thus far, they (relativistic models) seem to be the most en-
couraging. Rather than abandon the original RPWIA in favour of more sophisticated relativistic
models, the approach, in the next chapter, is to critically review the underlying assumptions
and input parameters of the RPWIA, and to perform more refined calculations so as to reveal

the limitations of the model.
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Chapter 3
Relativistic plane wave model

3.1 Introduction

Chapter 2 summarizes the current status of the measurement and interpretation of inclusive
(p,p") and (p, 1) polarization transfer observables at the quasielastic peak. This chapter focuses
on a relativistic Dirac-based plane wave description of quasielastic () ") and (p, 72) polarization

observables.

Recall, from Chapter 2, that quasielastic scattering is the dominant reaction mechanism for
nuclear excitation at moderate momentum transfers (|g| > 0.5 fm™!). It is considered to be
a single-step, surface-peaked reaction, whereby an incoming proton knocks out a single bound
nucleon in the target nucleus while the remainder of the nucleons act as “spectators”. This
process is characterized by a broad bump in the excitation spectrum, the centroid of which
nearly corresponds to free NN kinematics, and a width resulting from the initial Fermi motion
of the target nucleon. At the momentum transfers of interest (|g| > 1 fm™!), shell effects are
unimportant, and the quasielastic peak is well separated from discrete states in the excitation
spectrum. At the high excitation energies of interest, one nucleus looks like another. Essentially
one is probing intrinsic properties of nuclear matter rather than details of the structure of a
given nucleus. Hence, the quasielastic response is a fundamental property of nuclear matter.
The primary difference between free NN scattering and quasielastic proton scattering is due to
the presence of the nuclear medium in the latter. Consequently, deviations of the polarization
transfer observables from the corresponding free NN values are expected to contain information
on nuclear medium modifications of the free NN interaction. Hence, quasielastic scattering
offers the possibility to study how the fundamental two—body nucleon-nucleon (NN) interaction

is modified by the nuclear medium.

43
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In recent years several elastic and inelastic proton-nucleus spin observables have been suc-
cessfully analyzed using relativistic models based on the Dirac equation (see Chapter 2). This
success, together with the fact that all nonrelativistic Schrodinger—-based models [Es85, Sm85,
Ha91] completely fail to successfully describe the analyzing power for quasielastic (g, p”) scatter-
ing at 500 MeV from “°Ca and 20%Pb [Ho86, Ho88], lead to the development of the Relativistic
(Dirac) Plane Wave Impulse Approximation (RPWIA) for quasielastic proton—nucleus scat-
tering [Ho86, Mu87a, Ho88, Iq88]. The relativistic NN amplitudes are based on a Lorentz—-
invariant parametrization of the standard five Fermi invariants (the so—called SVPAT form),
and the target nucleus is treated as a Fermi-gas. For both of the above-mentioned nuclei, the
RPWIA predictions have been spot on, while all nonrelativistic models overestimate the exper-
imental values by ~ 40%. The success of the RPWIA is attributed to the inclusion of nuclear
medium effects (often referred to as relativistic effects) which are naturally incorporated as an
enhancement of the lower components of projectile and target nucleon Dirac spinors resulting
from strong scalar potentials. This amounts to replacing free nucleon masses in the Dirac plane
waves with effective projectile and target nucleon masses within the context of relativistic mean
field theory [Se86]. Besides being strongly motivated by empirical evidence, one of the main
advantages of the RPWIA model is that it is relatively simple, and hence, allows one to sepa-
rately disentangle the effects of various model parameters without being swamped by unnecessary

complezities.

Despite the successful prediction of the analyzing power at 500 MeV, however, most of
the other five polarization transfer observables allowed by parity and time-reversal invariance,
namely Dy, Dgrg, Dgrg, Dgrg and Dy (the primed and unprimed subscripts refer to outgoing and
incoming spin directions, respectively: see Appendix G) favour relativistic predictions based
on free nucleon masses. This inconsistency requires some deeper investigation. Note, however,
that the original RPWIA predictions were based on crude assumptions and unrefined input.
For example, a 10% uncertainty in effective mass values can translate to a 30% effect on certain

polarization transfer observables (see Sec. 3.2.2).

Rather than abandon the original RPWTIA in favour of more sophisticated relativistic models,
my approach is to critically review the underlying assumptions and input parameters, and to

perform more refined, and improved, calculations so as to reveal the limitations of the model.
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The most important refinements to the original RPWIA include more sophisticated calcula-
tions of effective masses for both projectile and target nucleons, and also the implementation of
a relativistic meson—exchange model for the NN amplitudes. For consistency, the latter model
is also used to generate microscopic relativistic optical potentials required for the calculation of
effective nucleon masses. Furthermore, contrary to the previously used SVPAT parametrization
of the NN amplitudes, the meson-exchange model allows one to consider corrections to the
RPWIA due to explicit treatments of exchange contributions to medium-modified NN ampli-
tudes. Indeed, it has been suggested (although not explicitly shown) that a proper treatment of
exchange is crucial for predictions of polarization transfer observables at energies lower than 200
MeV, whereas exchange effects are believed to be negligible at 500 MeV. For the first time, the
importance of medium-modified exchange contributions is investigated via quasielastic (p,p")

and (p,7) scattering.

In the past, concern has been expressed about ambiguities in the SVPAT parametrization
of the NN scattering operator. For example, replacing a pseudoscalar with a pseudovector 7NN
vertex yields identical matrix elements for free NN scattering. Hence, free NN scattering does not
distinguish between these two different forms of 7NN coupling. In the nuclear medium, however,
certain quasielastic polarization transfer observables could be extremely sensitive to the different
mNN vertices. To date, however, no experimental evidence has resolved this ambiguity. Previous
attempts to study this ambiguity [Ho88], for quasielastic proton scattering, were extremely crude
and therefore yielded unreliable results. With a meson-exchange model, however, one is able to
distinguish between pseudoscalar and pseudovector forms of the 7NN vertex. Indeed, one of the
aims of the project is to identify observables which are sensitive to this ambiguity. Comparison

with experimental data could shed light on the preferred type of 7NN coupling.

Previous RPWIA studies were mainly concerned with relativistic effects on quasielastic po-
larization transfer observables at energies higher than 300 MeV [Ho86, Mu87a, Ho88, 1q88].
The question now arises as to how important these effects are at lower energies. Contrary to
initial intuition, relativistic effects are expected to become even more important as the incident
proton energy is lowered [C185, Wa85]: the magnitudes of the real parts of the Dirac scalar and
vector optical potentials, which additively contribute to polarization transfer observables, both

increase, and this may enhance relativistic effects on certain polarization transfer observables.
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The effects of spin—orbit distortions on polarization transfer observables are also considered.
Within the eikonal approximation, the effect of the spin—orbit potential is to rotate both initial
and final state spinors, and in this way directly affects the polarization transfer observables.
Previous studies of spin—orbit distortions [Ho86] focused on quasielastic (p,p") scattering at in-
cident energies of 500 and 800 MeV. In this project, however, the effects of spin—orbit distortions
on quasielastic (p,p"’) polarization transfer observables at incident energies ranging from ~100

to ~500 MeV, and for target nuclei between 2C and 2%8Pb, are investigated.

Since this project is partially motivated by current experimental interest in the measurement
of quasielastic (p,p") and (p,7) polarization transfer observables at NAC (National Accelerator
Centre, South Africa), IUCF (Indiana University Cyclotron Center, USA), and RCNP (Research
Centre for Nuclear Physics, Japan), the primary focus is on incident proton energies ranging

from 135 to 420 MeV.

Both quasielastic (p,p’) and (p,7) scattering are considered, the reason being that these
reactions probe different parts of the NN interaction: Whereas (p,p") scattering probes both
isovector and isoscalar parts of the NN interaction, (7, 7) charge-exchange reactions sample only
the isovector components, particularly those directly related to pion exchange [Wa94, Ho94].
Furthermore, since the Lorentz character of the isovector amplitudes is totally different from the
isoscalar amplitudes, one expects quasielastic (p,p’) and (p, i) polarization transfer observables

to yield different, but complementary, information about nuclear medium modifications of the

NN interaction.

Besides modifying the free NN interaction, the effect of the nuclear medium is also to dis-
tort the incoming and outgoing plane waves. The effect of these distortions is to reduce the
unpolarized double differential cross section relative to its plane-wave value. However, since
polarization transfer observables are effectively ratios of linear combinations of polarized double
differential cross sections (see Appendix G), one expects the effects of distortions to largely can-
cel, thus enhancing sensitivity to nuclear medium-modifications of the NN amplitudes. Thus,
relative to unpolarized double differential cross sections, polarization transfer observables are
expected to be less sensitive to distortions. Hence, a plane-wave model (such as the RPWIA)
is expected to provide an adequate description of the polarization transfer observables. It is

for these reasons that one mainly focuses on the description of polarization transfer observables,
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rather than unpolarized double differential cross sections. In addition, comparison of theoret-
ical predictions of complete sets of polarization transfer observables, namely P, Ay, Dy, Dy,
Dg¢, Dpgand Dy, to experimental data will provide very stringent tests on the validity of the

RPWIA.

The RPWIA formalism is presented in Sec. 3.2. Refined calculations of effective masses for
both projectile and target nucleons are discussed in Sec. 3.2.2, the Fermi-gas model of the target
nucleus is described in Sec. 3.2.3, and two different parametrizations of the NN interaction are
presented in Sec. 3.2.4, namely a Lorentz—invariant parametrization based on the standard five
relativistic invariants (the so-called SVPAT form), and the relativistic Horowitz—Love—Franey
(HLF) meson—exchange model. In Sec. 3.2.7 expressions are derived for the polarization transfer
observables in terms of the invariant scattering matrix elements. The differences between (g, p”)
and (p,7) reactions, in terms of the isospin content of the NN amplitudes and the reaction

Q-values, are discussed in Sec. 3.2.8.

Thereafter, for a 4°Ca target at a three-momentum transfer of 1.97 fm~!, and incident ener-
gies below 500 MeV, the sensitivity of complete sets of quasielastic (p,p’) and (p, 71) polarization
transfer observables is investigated, both qualitatively and quantitatively, within the framework
of the RPWIA, to medium effects, pseudoscalar versus pseudovector forms of the 7NN vertex,
exchange contributions to the NN amplitudes, and also spin-orbit distortions (Secs. 3.2.10 —
3.3.5). In Sec. 3.4, predictions based on the RPWIA model, are compared to published data.
The generation of new Horowitz-Love-Franey meson-exchange parameters, between 80 and 195

MeV, is discussed in Sec. 3.3.3. The summary and conclusions are presented in Sec. 3.5.

3.2 RPWIA formalism

The formalism for the Relativistic Plane Wave Impulse Approximation (RPWTIA) is described
in Refs. [Ho86, Mu87a, Ho88, 1q88]. However, since the RPWIA forms the core of this chapter,
for completeness, the formalism is presented, and new or refined aspects are discussed in detail.
For the purpose of this project, natural units (i.e. # = ¢ = 1) are used [La90], and the
conventions of Bjorken and Drell [Bj64] are adopted.

The RPWIA model is strongly motivated by a large number of experimental observations.
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This is discussed in the next section.

3.2.1 Experimental basis

Although it may, at first, seem rather simple and extremely crude to model the quasielastic
proton—nucleus scattering process in terms of a plane-wave formalism, the RPWIA is strongly

motivated by the following empirical evidence (see Chapter 2):

e The centroid of the quasielastic peak in the unpolarized double differential cross section

roughly corresponds to free NN kinematics, i.e. the peak position is located at an en-

12
ergy transfer of approximately %, where m is the free nucleon mass, and |7 | is the

three-momentum transfer. The width of the quasielastic peak is attributed to the initial

momentum distribution of the struck target nucleon (see Sec. 1.9 in Appendix I).

e Most of the polarization transfer observables at the quasielastic peak correspond to those

for free NN scattering.

e At momentum transfers between 1 and 2 fm~!, the quasielastic peak is well separated

from low-lying discrete states and resonances in the excitation spectrum.

e Shell effects seem to be irrelevant at the high excitation energies of interest.

The experimental evidence, in turn, suggests that:

e The mechanism for quasielastic scattering is a single-step process, whereby a projectile
nucleon knocks out a single bound nucleon in a target nucleus while the remainder of the

nucleons remain inert.
e Polarization transfer observables are insensitive to distortions.
e Multiple scattering effects are negligible for polarization transfer observables.
e Collective excitations are not important.

e A Fermi-gas model, which totally ignores shell effects, should provide an adequate first—

order description of the target nucleus.
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e Deviations of the polarization transfer observables from the corresponding free values could

possibly be related to medium modifications of the free NN interaction.

The above mentioned empirical evidence strongly suggests that the process of quasielastic scat-
tering can be depicted schematically by Fig. 3.1, where {El(g),sl(g)} and {E’1(2),s’1(2)} denote
respectively the initial and final laboratory momenta and spins of the projectile nucleon (sub-
script 1) and target nucleon (subscript 2) involved in the collision process. The lambdas ()\;) are
the five Dirac matrices listed in Table 3.2 and represent the relativistic prescription for the free
NN amplitudes (see Sec. 3.2.4). Nuclear medium modifications (also referred to as relativistic
effects in the RPWIA) are incorporated via effective masses for the projectile (m}) and target
(m3) nucleons. These effective masses, which come about in a natural way in the Dirac-based
formalism, serve to distort the incoming and scattered plane waves, and also correct the free
NN interaction for nuclear medium effects. The calculation and role of these effective masses

will be discussed in subsequent sections.

3.2.2 Effective nucleon masses

For a proper description of the NN interaction in quasielastic proton scattering, medium effects
of the surrounding nucleus have to be incorporated. These are treated as distortions of the
Dirac free—particle wave function by the nuclear scalar potential and, as distortions are generally
larger on low—energy particle waves, they deserve some special attention in the present analysis.
The concept of an effective mass for a Dirac particle in the nuclear medium was introduced
in the relativistic Mean Field Theory (MFT) of the Walecka model [Se86]. For quasielastic
proton—nucleus scattering, the effective masses of both projectile and target nucleons, m} and
my respectively, play a vital role in determining the nuclear medium (or relativistic) effects on
scattering observables. Original RPWIA calculations [Ho86, Mu87a, Ha88, Ho88, Iq88] relied on
rather crude values of the effective masses. However, some observables are extremely sensitive
to small variations in the effective mass, and hence, much emphasis is placed on generating
more refined values of the effective masses. To illustrate this point, Figs. 3.2 and 3.3 plot the
polarization transfer observables (see Sec. 3.2.7) for different projectile effective masses between
0.7m < m} < 1.0m (m being the free nucleon mass) for quasielastic (p,p ') and (9,7)

scattering, respectively, from a %°Ca target nucleus at an incident laboratory kinetic energy
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Figure 3.1: Schematic diagram of the Relativistic Plane Wave Impulse Approximation (RPWIA)
for quasielastic inclusive proton—nucleus scattering. The index 7 is summed over the five Lorentz—
invariant amplitudes listed in Table 3.2. Nuclear medium modifications of the NN amplitudes are
incorporated via effective nucleon masses mi and m3 for the projectile and ejectile, respectively.

The remainder of the notation is defined in the text.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 51

of 200 MeV: the effective mass of the target nucleon is kept fixed at m35 = 0.795m (see
Table 3.1). These predictions are based on a relativistic SVPAT parametrization of the NN
amplitudes, with a pseudoscalar coupling for the pion: the meaning of this jargon, as well as the
details of these calculations, are discussed in Secs. 3.2.4 to 3.2.9. Note the extreme sensitivity of
certain polarization transfer observables to 10% variations in the effective nucleon mass. Hence,
it is important to use refined values of these effective masses when testing the validity of the

RPWIA.

The generation of projectile and ejectile effective masses is discussed in the next section.
The Dirac equation with relativistic scalar S(r) and time-like vector V(r) spherical potentials
resembles the free—particle Dirac equation, with S(r) adding effectively to the mass m of a free

nucleon [see Eq. (A.17) in Appendix A with S(r)=[A(r), V(r)=UY(r), and U}(r)=U}(r)=0):

{~ia- V + B[m + S(r)] - [E - V(")]}gz (7) =0 (3.1)

where the subscripts (4) correspond to (&%g%gg) distorted waves. In the eikonal approxima-

tion the wave function z,l);%, S(F ) is given by [Am83]

1 -
— E+m .3 - + /=
¥z =\ m o R ot T I, (3.2)

E-V(r)+m+ S(r)

where the eikonal phase factor (or Hamilton’s characteristic function) W*(# ) is written in
integral form as [’ = (b, 2)]
W, 2) = - / A2 Vu(B,7) + Veo B, ) (- Bx R — i| R|2)} (3.3)
K] Jo0
with b the impact parameter, and the z—axis is chosen along the direction of the average mo-
mentum K:
— ]_ - -
x= §(k +K, (3.4)
defined in terms of the initial (k) and final (k') momenta in the laboratory frame. V,(r) and
Vso(r) denote Dirac-equation—based central and spin—orbit potentials produced via the trans-
formation of the Dirac equation (3.1) to an equivalent Schrédinger equation (see Appendix A).
Note that in the semi—classical eikonal approximation the path of the scattered proton is ap-

proximated by a straight line through the nucleus (in direction z with impact parameter b). The
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Figure 3.2: The sensitivity of complete sets of quasielastic “°Ca(p,p ') polarization transfer
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observables to 10% variations in the projectile effective mass M}, where M} = ™ The
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incident laboratory energy is 200 MeV and the laboratory scattering angle is 30°.
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effect of the nuclear medium is to distort the free—particle wave functions via the phase factor
W (5,2)

If, on account of the mean—field theory of the Walecka model, the Dirac fields in Eq. (3.1)
are replaced by their mean values [Se86]:
S(r) = (S) and V(r)—=(V),

one obtains a truly free—particle Dirac equation with, however, an effective mass:
m* =m+ (S) . (3.5)

The mean vector field (V') simply shifts the energies of all particles by a fixed amount and
does not affect the scattering process. To incorporate effective masses in the Dirac scattering
wave functions for subsequent calculations of polarization transfer observables, (S) needs to be
evaluated in accordance with the circumstances of the specific nuclear reaction. The procedure
of Horowitz and Igbal [Ho86, Mu87a, 1q88] is essentially followed, and the mean scalar potential

is taken to be
_ [diS(r) w(r)
(5) = J d7 w(r)

where S(r) represents the real part of the scalar potential, and the weighting function w(r)

(3.6)

expresses the probability that both projectile and target nucleons are present at position r in a

spherically symmetric nucleus, that is

w(r) =p(r) T(r), (3.7)
with p(r) the baryon density, and T'(r) the probability that the incoming nucleon will not be

absorbed before reaching position 7.

Since the imaginary component of the optical potential contributes to absorption of the
beam, the probability for the beam being transmitted through the nucleus along an impact
parameter 5, becomes:

T() = lexp[iW™* (b2 = 00)]?
= exp[(—2Im WH(b,z = 00)], (3.8)

where ImW indicates the imaginary part of W in Eq. (3.3). For simplicity, the spin—orbit and
Darwin terms in Eq. (3.3) are omitted, thus yielding

dm [
7() = el /0 dz Tm V(b, 2)] - (3.9)
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The effects of spin—orbit distortion on polarization transfer observables will be considered in
Sec. 3.2.10. Calculations of T'(b) show generally that, because of proton absorption in the
nuclear interior, mainly the surface of the nucleus contributes to (S). In terms of cylindrical
co-ordinates z and b, Eq. (3.6) is written as:

_ JdbbT(b) [dz S(b,2z)p(b,z)

)= T b T®) [ de plb,2) (3-10)

such that an explicit evaluation requires an appropriate nuclear density function p(r) [sometimes
called the baryon density function| and Dirac potentials. Horowitz and Igbal use the functions
S(r) and p(r) of Kobos and Cooper [Ko85| to calculate m] for the incoming protons, both
functions being of Woods-Saxon form. For mj of the target nucleon they use directly a mean
scalar field for nuclear matter in Eq. (3.5), which relies on the assumption that S(r) = ap(r),
but with constant a extracted from infinite nuclear matter. In the present project, apart from
averaging scalar potentials as expressed by Eq. (3.10) [for eventually calculating both m] and
m3], my aim is to employ the most recent and refined functions for the Dirac optical potentials
and nuclear densities. For the purpose of calculating effective masses for the target nucleons
m3, 1 consider the work of Horowitz, Murdock and Serot [Ho91a], who analyze the mutual
interaction of nucleons in a nucleus by relativistic fields describing the exchange of mesons as
in the Walecka model [Se86], and perform selfconsistent Dirac-Hartree calculations to obtain
the fields: they only considered spherically symmetrical closed—shell nuclei, which restricted the
meson fields to the zero component of the vector field V(r) and the scalar field ¢(r): note
that both V9(r) and ¢(r) are real fields. The resulting field equation for the baryons yields a
Dirac equation with —g¢(r) as the scalar potential, adding to the baryon mass, where g, is
the scalar meson coupling constant. In the present case one considers —g;¢(r) to be the scalar
potential for the struck nucleon and, therefore, in the mean field approximation, its effective
mass becomes:

my =m — gs{P) - (3.11)
The computer code TIMORA, of Horowitz and Murdock [Ho91a], is used to calculate, in a
selfconsistent Dirac-Hartree formulation, the potentials ¢(r) and VO(r) for a specific nucleus,

as well as the scalar and baryon density functions py(r) and pp(r). After averaging ¢(r) via

Eq. (3.10) with p(r) = pg(r), one calculates m$ from Eq. (3.11).

The calculation of m} from Eq. (3.5) requires a scalar optical potential S(r) for the projectile
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nucleon. This potential is obtained by folding the components of a NN interaction t—matrix
with the scalar density p,(r) for the specific nucleus: the code FOLDER [Ho91a] is used. There
are two parametrizations for the NN scattering amplitudes, namely the Horowitz—Love-Franey
model [Ho85] discussed in Sec. 3.2.4 with its separation of direct and exchange amplitudes, and a
parametrization by McNeil, Ray and Wallace which uses complex Gaussian functions and treats
the full amplitude as a direct term [Ho91a]. The former is preferred for proton energies below
400 MeV, while parameter sets exist at higher energies for the latter choice. For the t—-matrix
(below 400 MeV) one applies, for consistency, the same Horowitz—Love-Franey NN interaction
which is to be used for calculating the polarization transfer observables in Sec. 3.2.7, and include
pseudovector coupling for the pion, which formerly [Mc83] yielded by far the best agreement
with phenomenological Dirac optical potentials. The real parts of the scalar potentials are then

averaged according to Eq. (3.10) and consequently used to extract the m} values via Eq. (3.5).

Table 3.1 lists various effective nucleon mass values for quasielastic proton scattering from
the nuclei 12C, 160, 40Ca, 5*Fe and 298Pb, at incident laboratory energies of 135, 200, 300, 400
and 500 MeV. Note that M* = T—ZE’ where m is the free nucleon mass. The subscript SC refers
to effective masses based on Self-Consistent optical potentials: the scalar optical potential, used
for extracting mf, is obtained by folding the NN t-matrix with a scalar density generated via the
self—consistent Dirac—Hartree procedure, and the bound scalar potential, used for calculating
m3, is generated via the self-consistent Dirac-Hartree procedure. For comparison, the effective
masses (subscripted by CP) calculated with recent global phenomenological optical potentials
developed by CooPer et al. [Co92] are shown: they fitted proton elastic scattering data in
the energy range 20 — 1040 MeV for targets '2C, 160, °Ca, %°Zr and 2°®Pb. Table 3.1 also
lists the M*-values reported by Horowitz and Murdock [Ho88] and which are subscripted
by HM: the M};,;,—values at 300 MeV are taken from Ref. [Ha88]. The sensitivity of the
polarization transfer observables to the SC, CP and HM effective masses will be discussed
in Sec. 3.3. The general trends exhibited by the more refined SC- and CP—effective
masses are now analyzed. Firstly, for scattering from a specific nucleus, the effective masses of
both projectile and target nucleons increase with projectile laboratory kinetic energy Ti,p, the
increase for the projectile being larger. This can be explained as follows: as T, increases, more
reaction channels generally open for projectile absorption inside the nucleus, manifesting itself

as an increase in the imaginary part of the optical potential. This decreases the projectile’s
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Table 3.1: Effective masses M* =

m
effective number of struck nucleons A.g for various nuclei and laboratory kinetic energies. The
meaning of the various subscripts is defined in the text.

*
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m X .
—, average impact parameters (b), Fermi momenta ky, and

Target | Twb Misc Misc Micp Micp Migy Migy (B kp Act
nucleus | (MeV) (fm) (fm™!)
3¢ |13 0.762 0.762 0.836 0.754 2.109 1.059  4.210
120 | 200 0.795 0.768 0.853 0.775 0.850 0.840 2.136 1.050  4.443
12¢ | 300 0.832 0.772 0.868 0.792 2.162 1.042  4.482
120 | 400 0.862 0.786 0.883 0.807 0.860 0.840 2243 1.020 4.156
12¢ | 500 0.890 0.799 0.892 0.814 0.910 0.870 2.331 0.996 3.636
160 | 135 0.847 0.779 0.828 0.765 2409 1.029 4.875
160 | 200 0.839 0.781 0.846 0.782 2421 1.026 5.311
160 | 300 0.855 0.786 0.862 0.798 2458 1.017  5.302
160 | 400 0.870 0.796 0.871 0.809 2.529 1.000 5.016
160 | 500 0.893 0.809 0.885 0.815 2.631 0976  4.330
0Ca | 135 0.836 0.778 0.810 0.749 3434 1.024 6.736
0Ca | 200 0.832 0.784 0.832 0.771  0.82 0.81 3.484 1.014 7.277
90Ca | 300 0.847 0.787 0.851 0.789 3.510 1.008  7.496
0Ca | 400 0.864 0.798 0.865 0.799  0.83 0.80 3.599 0.989 7.133
40Ca | 500 0.892 0.817 0.879 0.810 0.90 0.85 3.759 0.955  5.973
54Fe | 135 0.819 0.757 0.796 0.722 3.753 1.055 6.494
54Fe | 200 0.817 0.766 0.819 0.748 3.822 1.041 7.066
54Fe | 300 0.833 0.770 0.840 0.769  0.86 085 3.850 1.034 7.378
54Fe | 400 0.853 0.783 0.855 0.781 3.948 1.012 7.044
54Fe | 500 0.885 0.805 0.874 0.794 4123 0974 5.811
208pp | 135 0.828 0.835 0.807 0.767 6.929 0986  7.670
208pp | 200 0.845 0.831 0.842 0.801 0.82 082 6.880 0.922 9.572
208pp | 300 0.860 0.825 0.866 0.822 6.808 0934 11.140
208ph | 400 0.885 0.836 0.885 0.839  0.86 083 6913 0911 11.033
208ph | 500 0.916 0.857 0.896 0.850  0.88 0.85 7.114 0.868 9.146
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transmission 7'(b) through the inner nucleus and shifts the region of proton scattering to the
nuclear surface, where the magnitudes of all nuclear potentials start to decline substantially.
Therefore, as T),p, increases, both (¢) and the magnitude of the real part of (S) decrease and,
with S(r) being negative, this leads to an increase of both m} and m3, according to Eqgs. (3.5)
and (3.11) respectively. In addition, it is known that, as Ty, increases, the magnitude of the
real part of the Dirac optical potential function S(r) decreases at all » [Mc83]. This leads to a
further reduction in (S) and consequently, a further increase in mj. The last three columns in

Table 3.1 list respectively:

e the mean impact parameter (b), which is calculated by replacing S(r) with b in Eq. (3.6),

e the Fermi momentum kr = ( %7r2(p3))%, which is calculated by replacing S(r) with pg(r)

in Eq. (3.6),

e the effective number of struck nucleons (in the nuclear surface) Aeg, which is calculated

from

T(b) f dz p(b, 2)
[ dz p(b,2) '

A = A L (3.12)

The effective masses m] and m3 do not vary significantly with the mass number of the
target nucleus. Also note, that the effective number of nucleons A.g acting as scatterers does
not increase much with nuclear size. This means that for heavier target nuclei, the scattering
becomes more surface peaked and resembles more of a free NN interaction in which the remaining
(heavy) nucleus plays a minor role. This is also reflected by the m}-values for 28Pb, where the
effective masses are close to the free-mass value. On the other hand, the lightest nucleus '2C, is
penetrated more by the incident beam and, on average, a third of all the nucleons partake in the
scattering. Thus, contrary to initial intuition, medium effects are better studied by scattering
protons on light nuclei: this is illustrated by the relatively large differences between effective
masses for '2C and the free-mass value. Furthermore, one also sees that the effective number of
target nucleons A is mainly concentrated in the nuclear surface. This is due to the fact that,
for each nucleus, the average impact parameter (b) is relatively close to the value of the nuclear

radius R = roA%, with 79 = 1.2 fm.

The effect of these M*—values on polarization transfer observables will be discussed in Sec.

3.3. In Sec. 3.2.1 the choice of a Fermi—gas model for the target nucleus was motivated. In the
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following section, the latter model is discussed in more detail.

3.2.3 Fermi-gas model of the target nucleus

At the large momentum transfers ( |¢| > 1 fm~!) and excitation energies (w ~ ]g;nl;) of interest,
nuclear shell effects seem to be unimportant: the experimental polarization transfer observables
are virtually identical for quasielastic (7,7") scattering from '2C and 60 at 290 MeV [Ch89],
and for (p,7) scattering from 2H, Li, 12C, “°Ca and 2%8Pb at 346 MeV [Sa96, Wa96, Wa97].
Hence, it seems reasonable to treat the nucleus as a system of noninteracting nucleons in a
very large volume where one applies periodic boundary conditions for the wave functions, thus
yielding plane waves. This model of the nucleus is referred to as the Fermi-gas model. The
distribution of the plane wave states is represented by a sphere in momentum space whose radius

is the Fermi momentum kr. Recall, from Sec. 3.2.2, that the Fermi momentum kp is directly

related to the average nuclear or baryon density via

b = (n*(pn)? (3.13)

When the bombarding nucleon transfers momentum ¢ and energy w to a target nucleon, the

initial momentum Es of the nucleon (before being struck) is limited to (See Sec. 1.7 in Appendix

I)

min| < B2l < |Emaxl (3.14)
where
= w3l () amp )3
kmm = lkm1n| = ma-x{l 7—5 1—m |,O} (3.15)
and
et - gl @ (g )

Due to the Fermi motion of the target nucleons, all polarization transfer observables need to be

averaged over the Fermi distribution of the target-nucleon momenta ky (see Sec. 3.2.7).
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Nonrelativistically, the energy— and momentum-transfer are related by (See Sec. 1.9 in

Appendix I)

o - 2
(k2 +7)* ko

2m 2m
— 2 o —
q ko -q
- % - m (317)

where m is the free nucleon mass. The first term gives the energy loss of the centroid of the
quasielastic peak which corresponds to free NN scattering from a stationary target nucleon, i.e.
ks = 0. The second term indicates how the width of the peak (FWHM) is related to the

momentum of the struck nucleon [Fe71, Ne88].

In the Fermi—gas model, the ground state of the nucleus is a Fermi sea with all states below
kr occupied. When quasielastic scattering takes place, the struck nucleon is removed from the
Fermi sea, and the recoiled ejectile also remains above the Fermi sea. No scattering takes place
for either |K}| < kp or |ky| < kp. This effect is called Pauli blocking, and becomes important
when |¢'| < 2kp [Be82, Wa93|.

For quasielastic scattering the Fermi-gas model relates the inclusive unpolarized double
differential cross section for quasielastic proton-nucleus scattering to the probability of exciting
a target nucleon from an occupied state within the Fermi sphere to an unoccupied state outside

the Fermi sphere, with momentum and energy being conserved in the transition [Fe71, Ne88].

For a relativistic description of quasielastic proton scattering, one requires relativistic NN

amplitudes as input. These amplitudes form the subject of the next section.

3.2.4 Relativistic NN amplitudes

Most calculations of scattering observables require some form of empirical input, such as, for
example, the experimental NN scattering amplitudes. In direct nuclear reaction theory most
models make use of the impulse approximation which essentially relates scattering observables
to the free NN scattering amplitudes. Normally this approximation is valid for incident beam
energies much larger than the binding energy of the target nucleons, so that the binding energy
can be neglected, and the interaction is considered to be between free nucleons [Ja70]. Although

the validity of the impulse approximation, as used in low to medium energy nuclear reaction
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models is questionable, it is nevertheless used due to the lack of any better approximation.
However, for quasielastic proton scattering it has already been emphasized (see Chapter 2, and
also Sec. 3.2.1 in this chapter) that direct experimental evidence supports the idea of a projectile
interacting with a single, essentially free, target nucleon. Hence, the impulse approximation

should be valid for quasielastic scattering.

The free NN amplitudes are normally extracted from free NN scattering experiments via
suitable phase shift analyses, such as the well-known Arndt phases [Ar86]. In the following two

sections, relativistic parametrizations of the free NN scattering data will be presented.

Relativistic representation of the NN amplitudes

The nonrelativistic McNeil-Ray—Wallace (MRW) [Mc83a, Mu87a| parametrization of the on—-
shell NN scattering operator f, which is consistent with rotation, parity, time-reversal and

isospin invariance, is given by (see Appendix G in Sec. G.4):
(2i|kem|) ™' f = A+ Boy-09+i|7|C(o1A+0y-7) + |7 |[*)Doy - oy -G+ Eoy - 3052 (3.18)

where f is a 4 X 4 operator in the spin space of both initial and final nucleons. The subscript
c¢m refers to the NN centre-of-mass frame, the coefficients A, B, C, D and E are complex
functions of the three-momentum transfer |§ | = |E., — ken| and collision energy Eu, =
\/ |kem|? + M2, and are obtained from phase shift analyses. Introducing the isospin dependence
via (see Appendix B)

A=Ay+AiT71-179, B=By+ BiT1-T2, etc. (3.19)

yields the following parametrizations for the nonrelativistic pp (or nn) and pn scattering oper-

ators, fPP (or f™) and fP", respectively (see Appendix B), namely

2ilkem|) " fP = (Ao + A1) + (Bo+ Bi)oy - o2 +i|7|(Co + C1) (o174 o2 - 1) +

1§ (Do + D1)oy - Goa - G+ (Bo + Er)oy - 202 - 2 (3.20)
with an identical expression for (2i|Em|)‘1 f™, and

(28lkem|) ' ™ = (Ao — A1) + (Bo — Bi)o1 - 02 +i|7 |(Co — C1)(o1A+ o2 - 1) +

|7 |>(Do — D1)oy - Gog- G+ (Eg — Er)oy - 509 - 5 . (3.21)



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 62

The scattering amplitudes for particular spin directions are found by operating on the initial

and final Pauli spinors. The orthogonal directions 2, § and 7 are defined as
5=k, §=kem — k. A=§x2 (3.22)
where
— 1 — -

The scattering matrix is normalized such that the polarized differential cross section for free

NN scattering is given by

do
g = x| F i) (3-29)

where the x’s represent the usual Pauli spinors for the different spin projections of the incident

and scattered particles.

The preceding phenomenology can be parametrized in a form which displays the proper

Lorentz—transformation character. The nonrelativistic scattering operator is replaced

kem
by a relativistic scattering operator F, where F(E.pm,|q |) is a 4x4@4x4 matrix with 256
components in the Dirac spinor space of the two interacting nucleons. The relation between the

nonrelativistic and relativistic scattering matrices is given by [Mc83a]:

(27:|Ecm|)_1XIIIX312f(Ecma |9 ) Xs1Xs2
= U (Kl 80) U (=K 35) F (Bemy 7 U (Kermy $1)U (—kem, 52)  (3-25)

where U (kem, 8) is a Dirac 4-component positive-energy (nucleon) spinor given by

I
- E+m
U(kcm, 3) == W o- Ecm B (3.26)
E+m

X is a two—component Pauli spinor of projection s, o represents the Pauli spin matrices, and

E is given by

E=1/|k|? +m? (3.27)

where m is the free nucleon mass. The Dirac spinors U are normalized such that

U = 1. (3.28)
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This normalization is used by Bjorken and Drell [Bj64] and differs from that used in the Walecka
model [Se86], namely UTU = 1. Again, there is an isospin label for F, with FP? for pp scattering
and FP" for pn scattering. Note that F is an operator in the two—particle Dirac space; it has
256 components when taken between all combinations of nucleon and antinucleon spinors at a
given |¢'| and Egp,. Just as symmetries reduce the number of possible independent spin matrix
elements of f to five (see Appendix G), parity, time-reversal, and isospin invariance reduce the
number of independent amplitudes of F to 44, for on-shell kinematics [Tj85]. Hence, there
can be many different operators F with the same five on—shell matrix elements, but different
4x4Q®4x4 matrix structures. These different structures will give different negative energy spinor
matrix elements of . The information contained in the measurement of the free NN amplitudes,
which are related to the five complex Wolfenstein parameters, determines only a small number
of the components of F, and so some assumptions need to be made about the form of F in
Eq. (3.25). A convenient parametrization, which was originally introduced in the relativistic
impulse approximation, is given by [Mc83a]

5
FBom 7)) = 3 Fi(Bom, |7 )AL - AP (3.29)

=1
where the superscripts (1) and (2) refer to the projectile and target nucleons respectively. The
i’s stand for the five Dirac matrices listed in Table 3.2, and the dot product implies that the
Lorentz indices are contracted. With Eq. (3.29), the right hand side of Eq. (3.25) can now

be written as a sum of five terms:

(2ilkem|) " xh, X, F (Bems 1@ ) Xo1Xs = Fs (O UL) (U Usz) + Fy Uy Uy) (U, Us)

+Fr(Upo*U1)(UyouwUs) + Fa(Upy*v*UL) (U2 7uU2) + Fp(Upy°UL) (Uay°Us) . (3.30)

The scattering matrix in Eq. (3.29) is usually referred to as the SVPAT (Scalar—Vector—

Pseudoscalar—Axialvector—Tensor) parametrization of the relativistic NN amplitudes.

With explicit expressions for the Dirac spinors and the v matrices, the right hand side of
Eq. (3.30) can be written in terms of the independent set of spin operators and Pauli spinors,
and the coefficients can be identified with those of the right hand side of Eq. (3.18). In this
way, the five SVPAT amplitudes (Fs, Fy, Fp, F4, Fr) and the Wolfenstein amplitudes (A,
B, C, D, E) can be written as linear combinations of one another. Hence, one can derive a

5x5 nonsingular matrix O(E.p, |Ea|, |g'|) which gives the MRW (centre-of-mass) amplitudes in
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Table 3.2: Dirac matrix types parametrizing the free NN amplitudes.

F(Bems 7)) = S Fi (Bem, |7 DAY - 22

5

i=1

i Ai

S (scalar) 1

V (vector) Y

P (pseudoscalar) s
A (axial-vector) V5Yu
T (tensor) Opw

terms of the F; invariants [Mc83a, Mu87a):

(4
B
c
D

\ ¥

(

\

\ [ Fs )
Fy
O(Ecm, |kal, 14') Fr
Fp

J\ ¥4

64

(3.31)

Explicit expressions for the individual matrix elements of the 5 x 5 matrix are given in the

paper by McNeil, Ray and Wallace [Mc83al.

For application to quasielastic scattering, the commonly used SVPAT parametrization is

limited in that it does not address the exchange behaviour of the NN amplitudes in the nuclear

medium, and is also rather crude in distinguishing between different forms of the 7NN vertex

(see Sec. 3.2.6). These shortcomings are, however, overcome by using a relativistic meson—

exchange model of the NN amplitudes. The next section is devoted to a discussion of such a

model.
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Relativistic Horowitz—Love—Franey model

In principle, the NN t-matrix can be obtained via solution of the Bethe-Salpeter equation,
where the on—shell NN amplitudes are matrix elements of this t-matrix. However, the complex-
ity of this approach gives limited physical insight into the resulting amplitudes. An alternative
approach is to fit the amplitudes directly with some phenomenological form, rather than generat-
ing the t—matrix from a microscopic interaction. Although the microscopic approach is certainly
more fundamental, the advantage of phenomenological fits lies in their simple analytical form,
which allows them to be conveniently incorporated in calculations requiring the NN t—matrix
as input: see for example, the studies of elastic proton-nucleus scattering [Mu87a, Mu87b]

and proton knockout reactions [Co89, Ma90, Ma93, Ma94, 1k95, Ma96a] based on the impulse

approximation.

The NN t-matrix employed in this work is based on the relativistic meson—exchange de-
scribed in Refs. [Ho85, Ho88, Ho91la|, and will be referred to as the Horowitz—Love-Franey
(HLF) model. Essentially this model parametrizes the NN t-matrix in terms of a number of
Yukawa-type meson exchanges in first—order Born approximation, such that both direct and
exchange NN diagrams are considered separately. The corresponding Feynman diagrams for
the HLF model are shown Fig. 3.4. The HLF model is used to investigate the importance of
exchange effects, and also to study the consequences of different forms of the 7NN vertex on
quasielastic polarization transfer observables at various incident energies. Furthermore, this

model is also used to generate microscopic optical potentials as already discussed in Sec. 3.2.2.

The meson—nucleon coupling constants and meson-nucleon form factors are adjusted to fit
the relativistic NN amplitudes in Eq. (3.25). The fit provides a simple analytical form with
a physical basis in the one-boson exchange mechanism. However, the price one pays for this
simplicity is that:

e the coupling constants have a systematic and small energy dependence,

e the cutoff parameters vary dramatically from one energy to another,

e and, the meson—nucleon coupling constants and cutoff parameters are complex.

Horowitz [Ho85] emphasized that the (small) imaginary couplings are a purely phenomenological
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UI(E]"SI') Uz(i(;”sz') U](EI"SI’) Uz(l_(;',sz')

la|
gi _______ g:
1
g +m
UI(EHSI) Uz(Ez,Sz) U1(E1,S1) Uz(lzz,sz)

Figure 3.4: Feynman diagrams for the direct and exchange terms in the Horowitz—Love—Franey

meson—exchange model. The notation is defined in the text.



Stellenbosch University https://scholar.sun.ac.za

3.2. RPWIA FORMALISM 67

means of obtaining the imaginary amplitudes, that is, they have no physical significance. The
real coupling constants, on the other hand, agree with those obtained from one-boson exchange
potentials. The mesons have different isospins and Lorentz types [Scalar (S), Vector (V), Tensor
(T), Pseudoscalar (P) and Axial-vector (A)] such that there exists a simple relationship between
individual Lorentz—invariant amplitudes and mesons exchanged. This relationship is lacking in
the nonrelativistic Love-Franey model [Lo81a, Hi90], where the NN interaction is represented

by an arbitrary sum of Yukawa functions.

The formalism for the HLF model is now presented. The intention is to parametrize the
righthand side of Eq. (3.25) in terms of a set of meson—exchanges for both the direct and exchange
amplitudes depicted by the Feynman diagrams in Fig. 3.4. For a meson of spin zero and mass
m, one uses the nonrelativistic limit of the Klein-Gordon propagator [Bj64] (valid when the
recoil kinetic energies of the nucleons are neglected relative to their rest mass energies) so that
the mesons have propagators of the form

1

o —— 3.32
17 |* +m? a

where ¢ is the three-momentum transfer, and the meson—nucleon vertices have the following

monopole form factors

(3.33)

with separate masses and cutoff parameters for the real and imaginary parts of the amplitude
denoted by m, m and A, A respectively. From Feynman rules [Bj64, Sa67], the NN-meson

vertex factor is

) XEO @) (3.34)

where L(i) € {S,V, T, A, P}, and T; = (0,1) is the isospin of the i*h meson. If one denotes
the total isospin of the two—nucleon state by T, then the T = 0 scattered wave is symmetric for
interchange of both spatial and spin coordinates, so that there is a relative (+) sign between the
direct and exchange diagrams in Fig. 3.4. For T =1 scattering, the wave function is antisym-
metric for interchange of both spatial and spin coordinates, and hence, there is a relative (—)

sign between the diagrams. Then, up to an overall kinematic factor, the contribution of (real)
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meson i to the i* (real) amplitude is [Bj64, Sa67, Br76]

2
= 9; L 9w i 7 2000 T;
UvUp F;U Uy 2 = ( = ) Uy A U Uy A UQ{Tl -1'2} *
z m?+17° 1+ J%Lf
2 _ ’ _ .
+(—)T—9 (L g, Oy G O Uy - 7o) T (3.35)

= 2
m+1Q1" 1+ 14

where the magnitude of the direct three-momentum transfer |§' | is expressed in terms of the

centre-of-mass scattering angle ., (see Appendix D)
— 7 . 00771 |
1@ =2 Ker |s;1n(—2 ¥, (3.36)

and |@ | is the magnitude of the exchange three-momentum transfer (see Appendix D)

1@ | = 4lEeml? — |72 - (3.37)

The momentum of a nucleon in the centre-of-mass frame is (see Appendix D)

2|i‘;cm | = V2Tiap M (3'38)

where T, is the incident laboratory kinetic energy of the projectile. The meaning of {7 -72}%i
is given by Eqs (3.52) and (3.53) (see also Appendix B). The imaginary part of the i* amplitude
has the same form as Eq. (3.35), except that the real values g;, m; and A; are replaced by the

corresponding imaginary values g;, m; and A;, respectively.

The first term in Eq. (3.35) is already of the form of the righthand side of Eq. (3.30) from
which one can identify the contributions to the F;’s in that expression. The second term is
not of this form because of the different order of spinors in the product. However, it can be
rewritten with a Fierz transformation [Br76, Na90]

(O XETL) (O NET2) = 3 Crpy (T XY Uh) (U2 XV Us) (3.39)
Ll
where
(2 2 1 —2 2

8 -4 0 -4 -8

Cir=-| 24 0 -4 0 24 (3.40)
-8 -4 0 -4 8
\ 2 -2 1 2 2 )
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with the rows and columns labeled in the order (S, V, T, A, P). Hence Eq. (3.30) is rewritten

as
2
_— < 1 ; ie ; s ¢
Ull U2/.7'—5U1U2 0.8 B Ji - 2( =3 )2{1'1 g Tz}T‘ Ull}\L(z)Ulel)\L(z)Ug
m+ |7 14 4]
2
+ (—1)T % {T1 Tz}T ZCL(z)L’Ul')‘ UlUgl)\L U2 (3.41)

m+|QI LPL

and the identification of the contributions to the invariants Fg, Fy, Fr, F4 and Fp can now
be made. Note, that while a meson always contributes to the F; invariant of the same Lorentz
type in the direct term, all the other meson types appear in the exchange term. With the
normalization in Eq. (3.28), the kinematic factor (which differs from the factor presented in
Ref. [Ho85]: see Ref. [Mu87a] and Appendix A in Ref. [Mu87b]) needed to give the free spinor
matrix elements in Eqgs. (3.25) and (3.29) is

im?

. (3.42)
2Ecm|kem|
where the NN centre—of-mass energy E.,, is defined in terms of the NN centre—of-mass momen-

tum ke and the nucleon mass m, namely

Combining all of these factors, the total contribution to the invariant F7,, in Eqgs. (3.29) and

(3.30), from all of the N mesons exchanged is the sum of direct and exchange terms, namely

im? ey
FL= m[FLD(Wl) +FX(1Q )] (3.44)
N .
FP(71) = dpnm{m-m2}5 741 ) (3.45)
=1
FX(Q)) = 1)TZCL(1.)L{TI Y ([a2) (3.46)
Fi(z) = fi(z) —if}(z) (3.47)

Th(@) = 5P (1+ 55) 72 (3.48)
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=2 2
i 9i T \-2
= — _— _4
fI(m) 72 +ng (1 + Azz) ’ (3 9)

where z represents either || or |Q |. The invariant amplitudes for pp and pn scattering are:

Fi(pp) = F(T =1) (3.50)

Fin) = S[R(T=1) + BT =0). (3.51)

The meaning of {7 - T9}7¢ is explained in Appendix B: for the T' = 1 amplitudes

( \

1 for the exchange of T; =0 (isoscalar) mesons
(r1-7m2)% = o ) (3.52)

1 for the exchange of T; =1 (isovector) mesons
\ 7/

and, for T' = 0 amplitudes

1 for the exchange of T; =0 (isoscalar) mesons
Pt o= 4 s . (3.53)

(T1-72

—3 for the exchange of T; =1 (isovector) mesons J

The original HLF parameter sets exist only at incident proton energies of 135, 200, 300 and 400
MeV [Ho85, Mu87a). More technical detail on the types of mesons and fitting procedure for

extracting the HLF parameters can be found in Sec. 3.3.3.

In relativistic quantum mechanics, most scattering observables are usually expressed in terms
of invariant scattering matrix elements. The next section focuses on the invariant scattering

matrix elements for quasielastic proton—nucleus scattering.

3.2.5 Invariant scattering matrix elements

Using the conventions of Bjorken and Drell [Bj64], the invariant matrix element for the quasielas-
tic proton-scattering process, depicted in Fig. 3.1, is given by [Ho86, Mu87a, Ho88, 1q88] (see
also Appendix E)

T
M= Z U(m;’ kiv S,I)AlU(m’{v k1, Sl)ti(agfn’ TeIfJf)ﬁ(m;J kéa SQ)AZU(mEa ka, 32) (354)

i=1
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where the nucleon Dirac spinors U (m*, IZ, s) are given by

I
2 E* +m*
U(m*, k, -9) = W o- E Xs (3.55)
B tm
and are normalized such that
U(m* =m,k,s)U(m* =m,k,s) = 1. (3.56)

X is a two—component Pauli spinor of projection s, o represents the Pauli spin matrices, and

E* ig given by

E* =\/|E |2 + m*2 (3.57)

where m* is the effective nucleon mass defined in Sec. 3.2.2. The invariant functions #;(65F, T%)
are related to the invariant amplitudes F;(0F,Tk), introduced in Sec. 3.2.4, via (see Ap-
pendix F)

—8mi Eﬁ‘ Eeg
b0, Th) = 2Tt le8 g 7 (3.58)

where |keg|Ee is an invariant flux factor [Gr94]. This relation enforces the normalization
condition expressed by Eqgs. (3.24), (3.25) and (3.28). The kinematic quantities T'%, |Eeg| and
Eog are the effective laboratory momentum, kinetic energy and total energy of the projectile in

the frame where the target nucleon is at rest (see Appendix I):

E1E2 - E1 . Eg . m2
T = = ; (3.59)

Eot = Tk +m = \/|ket|2 + m2 (3.60)

where ko is the target-nucleon momentum, which ranges between kpi, and kmax defined by
Eqgs. (3.15) and (3.16), and Iii;1| is expressed in terms of the incident laboratory kinetic energy
Tiap

|1l = \/(Tiab +m1)? — m? . (3.61)

For each momentum ks and azimuthal angle ¢ between ¢ and ];2, the NN amplitudes ¢; are
evaluated at the effective laboratory kinetic energy Telé and NN centre-of-mass scattering angle

i (see Appendix I)

7P —w?in
9 =2 _—)2 3.62
eff sin” ( ZmJLlff ) (3.62)
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where the momentum transfer ¢ is
g=k1—ky=ky—ko (3.63)
and energy transfer w is
w=E}-E=E;-Ej. (3.64)

The starred quantities are defined in the NN laboratory system as
Bf = |k +m;?
B = /IR +my
By = |kl +m3®

B = \Be+mg?.

(3.65)

In practice, a large table of relativistic amplitudes, calculated from the summer 1986 Arndt
phase shifts (with the Coulomb interaction removed), is interpolated quadratically every 25
MeV on T% (from 25 MeV to 1200 MeV) and linearly every 5° on 6<% (from 5° to 175°).

In the next section, the ambiguities exhibited by the relativistic SVPAT parametrization of

the NN scattering operator are discussed.

3.2.6 Pseudoscalar versus pseudovector forms of the 7NN vertex

In the past, concern has been expressed about ambiguities in the form of the relativistic NN
scattering operator F given by Eq. (3.29) [Ma82, Se86, Ho88, Ho91b]. The form shown in
Table 3.2 is sufficient to parametrize the free NN amplitudes. However, as already mentioned in
Sec. 3.2.4, there are many operators with the same five on—shell matrix elements, but different
4x4®4x4 matrix structures. Furthermore, recall that the impulse approximation assumes the

same form (see Table 3.2) for both free and medium-modified NN scattering.

The question now arises as to how the medium-modified scattering matrix, and consequently

the polarization transfer observables, change when other forms of F, different to that specified
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in Eq. (3.29), are used. Once again, it is stressed, that although the different forms of F must
parametrize the same free NN observables, one may expect differences in the medium-modified

polarization transfer observables.

One of the major ambiguities concerns the choice of the 7NN vertex in the amplitudes [Ma82,
Se86, Mu87a, Ho88, Ho91a]. One could use either a pseudoscalar vertex, which simply uses the
five amplitudes in Table 3.2, or a pseudovector vertex. The pion is a pseudoscalar particle
with negative intrinsic parity. Hence the Lagrangian density for pion-nucleon interactions must
contain a term which couples the pseudoscalar pion field 7 to the pseudoscalar density 1ys7
[Se86], where T is the usual isospin operator [Se86]. However, the other commonly used form
contains a term which couples the derivative of the pseudoscalar pion field ## [which is a

pseudovector quantity] to the pseudovector density ¥y, 7.

Elastic proton—nucleus spin observables at energies higher than 400 MeV show no difference
between pseudoscalar and pseudovector couplings of the pion. At lower energies, however, the
differences become larger and the pseudovector coupling is more compatible with the strength
and energy dependence of the real scalar and vector optical potentials [Ho85]. On the other
hand, crude calculations of quasielastic (p,p”) polarization transfer observables at 290 and 420
MeV [Hi94] suggest a pseudoscalar form. However, various theoretical arguments [Se86] support
the pseudovector form. At this stage, however, no overwhelming experimental evidence seems
to clearly resolve this ambiguity, and hence, one of the aims of this thesis is to search for
quasielastic polarization transfer observables that are sensitive to pseudoscalar or pseudovector

forms of the 7NN coupling.

One can only talk about pseudoscalar (PS) or pseudovector (PV) forms of the 7NN inter-
action within the context of a Yukawa—type meson—exchange model, such as the HLF model.
Calculations of quasielastic proton—nucleus polarization transfer observables by Horowitz and
Murdock [Ho88] assumed that the Uy°U amplitudes in Eq. (3.30) were solely due to pion ex-
change. In this case the transition from a pseudoscalar to a pseudovector 7NN coupling was

made via the following substitution in Table 3.2:

_ _ WY

where ¢ is the four-momentum transfer. As noted above, this substitution does not change

the NN amplitudes obtained from fitting free NN data, because the free spinors U in Eq. (3.30)



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATIVISTIC PLANE WAVE MODEL 74

satisfy [using the notation U;(mj) = U(m;], ki, 3i)]
[Ul (m)ApwUi(m) ] [U’ m)ApUa(m)]| = [Ul( )ApsU1(m) ] [ﬁé(m))‘psUﬂm)] ) (3.67)

thus giving the same free NN data: indeed, the PV 7NN coupling in Eq. (3.66) is defined to
yield the same free NN amplitudes as PS coupling. In a nuclear medium, the corresponding

equality is
[T1(mD)ApeUr(m7) ] [U5(m3)ApuUa(m3)] = MM5[U;(m])ApsUr(m])] [Uz(m3)ApsUa(m3)] , (3.68)

such that the pseudoscalar and pseudovector amplitudes are no longer equal, but differ by a
factor MMy [recall that M* = %*] This approximation is acceptable if one assumes that all
the amplitudes are direct, and exchange contributions are negligibly small: recall that the Fierz
matrix allows all mesons in Table 3.4 to contribute to each type of NN exchange amplitude.
Furthermore, the SVPAT amplitudes do not explicitly incorporate the meson mediators of the
NN force, such as the long range pions, for example, and hence, the SVPAT parametrization rep-
resents a fairly crude way of treating the different “pion” couplings: the relativistic SVPAT NN
amplitudes are merely obtained via a matrix relation from a Wolfenstein—type parametrization

of the Arndt phase shifts [see Eq. (3.31)].

A more appropriate way, to distinguish between PS and PV forms of the 7NN vertex, would
be to use the HLF model (or any meson—exchange model for the NN interaction) where the direct
invariants in Eq. (3.30) are expressed as linear combinations of the five exchange invariants via
the Fierz matrix [see Eq. (3.39)], such that the exchange terms from the “pion” contribute to each
type of invariant. Analogous to Eq. (3.68), the transition from a pseudoscalar to a pseudovector
7NN vertex, within the HLF model, is made by performing the following substitution in all

direct and exchange terms in Eq. (3.41) containing the “pion”:
g1r — g7rM1 M2 . (369)

Horowitz [Ho85] points out that the values of the pion coupling are virtually energy indepen-
dent and agree with the corresponding values for one-boson—-exchange—potentials. Hence, the
substitution in Eq. (3.69) should give a fairly accurate description of the pseudovector form of

the 7NN vertex: this is one of the main motivations for using the HLF model.

The ultimate test for the validity of the more refined version of the RPWIA, is to compare
model predictions of observables to all available experimental data. The following section is

concerned with explicit expressions for the scattering observables of interest.
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3.2.7 Scattering observables

Expressions for the (unpolarized and polarized) double differential cross section and polarization
transfer observables, for quasielastic (7, p”) scattering, are now derived in terms of the invariant
scattering matrix M in Eq. (3.54). The corresponding (p,7) scattering observables will be

discussed in Sec. 3.2.8.

Double differential cross section

The general expression for the differential cross section to scatter from initial spin state j = s;
to final spin state ¢/ = s} with particle 2 unobserved is [Bj64, Mu87a, Ho88, Gr92] (also see
Sec. E.4 in Appendix E):

1 mi2  dE, dkh, ms?
o1 — v2| EY By (27)° J (2m)° Ej By

doj_y =

1
(2m)* 6% (K| + Ky — k1 — ko) 5 2 M'M

82, 8%

where, analogous to electron-proton scattering discussed in Sec. E.5.1 in Appendix E, and using
Eq. (3.54), one can express the quantity 3, o M* M as a contraction of a projectile-tensor

Py, with a target—tensor 7", that is

> MM = 3 M

82,84 52,86
= 405 T2) (057, T%)* Pow T™" (3.70)
where
Pnn = [U(m},E},s)AmU(m}, k1, 51)] [U(md, KL sD) MU (md, By s)]* (3.71)
= [ﬁ(mia -’ias’l)AmU(mIak’hSl)] [ﬁ(miaglasl))‘nU(mI’ _‘,173'1)] (372)
and

T = [U(m3, Ky, s5)A™U (ms, k3, 82) ] [U(ms3, Ky, sh)A"U (s, ka, s2) I (3.73)
= [U(m3, k), sp)\™U(m3, ka, 52)] [U(m3, k2, s2)A"U (m3, Ky, )] . (3.74)

Note that since the spinors are parametrized by effective masses m} and m3 [see Eq. (3.55)] and

not the free mass m, the usual Feynman “7” factors and the ¢ function in the formula for do
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are in terms of the E*’s. The approximate incident flux in nuclear matter is taken to be [Gr92]

(also see Appendix E)

— — E
|01 — Ua| ~ lE}l (3.75)
and, furthermore, one also makes use of the fact that [Bj64]
dE, = |E\| E dE} dSV, . (3.76)

Note that there is no star (*) on E{ in Eq. (3.76), since one is interested in the differential free
energy for the cross section, that is, free nucleons are eventually detected. The integral over E’2

selects the value
By=F +k — K, (3.77)

from the 3—space part of the energy—momentum—conserving delta function. Finally, since the
target is treated as a Fermi-gas, the Fermi motion averaging is done over the possible values of
Eg. Hence, the polarized double differential cross section for quasielastic proton scattering can

now be expressed as

dO'j_n'l

_ |k m
dV dE] |k Et*

mi? B /kmax dky m3® §(Bf+E3—Eyf—E})1 LY Mem
kmin 3Tk B3 EY (27)2

min .92,82

where kmin and kmax are defined by Eqgs. (3.15) and (3.16). The factor §7r k3 represents the
volume of a Fermi-sphere in momentum space, and ensures that the double differential cross
section is normalized per target nucleon, i.e. one calculates the double differential cross section
for scattering from a single target nucleon. The integral over d Eg yields:

kmex . § (Bt + E3 — B — Bt
/ d k2 ( 1 2E,* 2 1) - / d|k2
min 2 kmin

(3.78)

I[d
where the angle x between ky and § is fixed by the energy—conserving delta function, yielding

=12 2w EX
COS X = COS X0 = M . (3.79)
2|ko| |4 |
[See Appendix J for the explicit evaluation of the integral on the lefthand side of Eq. (3.78).]
This gives the following expression for the polarized double differential cross section

doj i

|k} |
A% B |ky|

*2 - 5 " o
EI 27r kmax d|k2| |k2| E m3 1
/ / irk3 1| E3Ey (2m)?22 Z M*M .(3.80)

mln 82, 32

X=Xo0
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Defining

z Bl 2B 1 mg® |k|EY
O (|ke2|) = == m1" == — 3.81
(I 2|) |k1| 1 Ei* %'Kk’% E"z" Eé* |q| ( )

the formula simplifies to
dogt — ["ag [
dY, dE} 0 k

To get the unpolarized double differential cross section, one must average Eq. (3.82) over initial

kmax =5 1
Al © (Fa) 3 ¥ M* M

i !
min 52, 32

(3.82)

X=Xo0

spins s; and sum over final spins s}, that is

do

T 4B (3.83)

2 kmax - 1
=/0 d¢/k dfal© (R 7 Y MM

i ’
iy 81,81,82,8

unpol
X=Xo

The additional factor of % comes from averaging over the initial spins. In the next section
expressions for the quasielastic proton scattering polarization transfer observables are written

down in terms of appropriate combinations of the polarized double differential cross sections

given by Eq. (3.82).

Polarization transfer observables

The general expressions for the polarization transfer observables for free NN scattering are
derived in Appendix G. For quasielastic proton—nucleus scattering the expressions for the po-
larization transfer observables are similar to those for free scattering, the only differences being
that one now deals with a relativistic scattering matrix M, and one needs to integrate over
the momenta of the target nucleon. First the initial and final laboratory coordinate frames are
defined in terms of the initial (k) and final (K}) momenta in the laboratory frame, as shown in

Fig. 3.5,

7 —'El = ]Ell
|k1 X klll
= & (3.84)
§ = nBx él
and
W =
7 = K (3.85)
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where 7 is the “normal” spin direction, £ (#') is the initial (final) “longitudinal” spin orientation,
and § (&) the “sideways” spin orientation. Expressions for the analyzing power A, and the
polarization transfer observables D; ; are now written down for an incident proton scattering
from a single target proton; identical expressions also hold for the corresponding observables
for an incident proton scattering from a single target neutron. The resulting (p,p”) observables
are then taken as appropriate averages of the pp and pn observables. Recall, from Appendix
G, that the induced polarization per target proton P(pp), which is also equal to the analyzing
power per target proton A, (pp) in this simple model of quasielastic scattering, is calculated by
summing over the initial spin of the projectile, but not its final spin. Hence (see Eq. (G.154) in

Appendix G)

e (b8, 5 = ) — o (op, 3 = )
ay dE] ‘PP = T gqr g PP T T
Ay(PP) = dO'

do
(pp, 3 = 1) + —=r—=5 (PP, 85 = —1)
a dE] T T YT aoldEr Vot

[dibldgo(ihy B (M M =h) - M M5y = )}

= M (3.86)
/d|k2|d¢@(|k2 T (MM (5p=n) + M* M (5; = —a)}

3],52y32

[ dlaldgo iy X (MM =h) - M M5y = )}

. 81,82, 84
B do (pp) |
sy, dE] """
where jgr—%)ﬂunpol is given by Eq. (3.83) with proton-proton SVPAT amplitudes as input.
168

Note that the notation §; = s} is introduced to refer to the spin orientation of the ejectile in

the rest frame of the nucleon.

The polarization transfer observables per target proton, which express the “probability” for
initial spin direction j going to final spin direction 7/, are defined as (see Eq. (G.155) in Appendix
G)

d. e B di ) 4 d. A
W(PP:J—W)—EZ—E{ (PP,J—*—Z')“EII'%ET (101’,—1—n’)+‘m @, a5y (pp,—j——1')

Dy j(pp) =

do sl do S of do R ke i it
AT (ppj—1 )+d_nllﬁ§' (ppy——1 HW (pp,—5—1 )+d_n'1ﬁ;' (pp,—7——1')

[ dlkz2| dp© (|k2]) & 232,,'2 {M* M (Go1)=M* M (Go—i")=M* M (= =)+ M* M (=5 ——i')}
[ dlk2| d¢© (|k2|) L 232“’,2 {M* M (G2 +M* M (Fo—i )+ M* M (=jo3)+M* M (=j——1')}

(3.87)
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Figure 3.5: The initial and final laboratory coordinate frames used for defining the polarization

transfer observables
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where j and ¢’ refer to the projectile and ejectile spin orientations in the rest frame of the

nucleons. The denominator is merely the unpolarized cross section, so that

_ [ d|k3|d© ([kal) M

Dy (pp) o (3.88)
Y dET |01
where
1 * A a4 4 A & & 4
M= S M MGi=3,8=10)-M"M(3i=],38=—1)
82,85
“M*M(3i==],8; =)+ M* M (3; = -], 3; = —7)}. (3.89)

Note that the notation 8; = s; is introduced to refer to the spin orientation of the projectile in

the rest frame of the nucleon.

Now to get the (p,p’) double differential cross section per nucleus one uses the effective
number of nucleons (see Table 3.1) A.g extracted via the eikonal weighting procedure described
in Sec. 3.2.2. The effective number of protons Z.g and neutrons Neg participating in the

quasielastic scattering process are then assumed to be

%Aeﬁ‘ and Neﬂ' = E Aeﬂr . (3.90)

Zeﬂ = A

such that the double differential cross section for inclusive quasielastic (p,p’) scattering from

Zeg protons and Neg neutrons is given by

dod da (pp) da (pn)
i dB;, ~ 2 g dm; TV g dE (3.91)
do(pn) . . . :
where 207 g 18 given by Eq. (3.83) evaluated using the proton-neutron SVPAT amplitudes.
185
Similarly, the analyzing power A, is given by
_ da (pp) da (pn) do
Ay = [Zeff dQ’l dEi Ay (pp)_l'NeffW y(pn)] /dﬂll dEi (392)
da (pp) da (pn) do
[Z g amy v PP+ N goramr Av (p")] | & am 29)
and the polarization transfer observables (Dj ;) are given by
T do (pp) ,, da(pn) ] dé
Dyj = [ IOl dE] D j (pp) + Nest i, dE;, Dy j (pn)| / 0L dF (3.94)
ds (pp) , da(pn) ] do
[Z a2 P+ N Gordmy Pvi m)| | G am (3.95)
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At
A
and hence, the polarization transfer observables are not affected by the distortions (contained

Note that the factors in the numerators and denominators of Egs. (3.92) and (3.94) cancel,
in Agg). The latter is only valid for the plane-wave formalism where the eikonal approximation
is used to calculate values for A.g. This justifies, to some extent, the claim that polarization

transfer observables are relatively insensitive to distortions effects.

3.2.8 Distinguishing between quasielastic (p,p’) and (p,n) scattering

In this section, one considers how to distinguish between quasielastic (p,p’) and (p, 77) reactions
in terms of isospin content and reaction Q-values. The quasielastic (p,7) reaction probes only
the isovector parts of the NN interaction, whereas the (p,p’) polarization transfer observables
sample both isovector and isoscalar components, and since the Lorentz character of the isovector
amplitudes is totally different from the isoscalar amplitudes, one expects quasielastic (g, p’) and
(P, 1) polarization transfer observables to provide different, but complementary, information on

the medium-modified NN interaction.

Isoscalar and isovector scattering amplitudes

The observables for quasielastic (p,p”) scattering are given by Eqgs. (3.91) — (3.95). For this
reaction, an incident proton can scatter from either protons or neutrons in the nucleus, and hence
the isoscalar (p,p’) observables [isospin transfer is zero] are given by sum of the corresponding
pp and pn observables: Recall that the polarized double differential cross section for quasielastic
(p,p') scattering is obtained by weighting the pp and pn polarized double differential cross

sections with Z.g and Neg respectively.

For charge—exchange (p, 7) scattering, on the other hand, the incident protons either transfer
charge to a target neutron and emerge as a neutron or else knock a neutron out of the nucleus.
The direct amplitude corresponds to the incident proton exchanging its charge through the
interaction with a neutron in the nucleus, whereas the exchange amplitude corresponds to the
neutron being knocked out. To identify the charge-exchange amplitude, one calculates the

matrix elements of Eq. (3.18) for p; + no — n; + p2 and ny + p2 — p; + ng scattering.
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With Egs. (B.2) and (B.3) in Appendix B, for p; + no — n; + po scattering it follows that

(2i|Ecm|)_1 <p n2| f |n1 p2 > = 2[A1 + Bioy - o9 + ‘il(j‘lcl(a'l-’ﬁ +o09- 'fi) +

|71°D1o1 - doz - G+ Eroy - 205 - 2] (3.96)

with an identical expression for n; + p» — p1 + ne scattering. Note that the charge—
exchange amplitude given by Eq. (3.96) is also equal to the difference between the amplitudes
for p + p — p + p scattering [see Eq. (3.20)] and p; + ng — p1 + ng scattering [see
Eq. (3.21)], that is [By78, G183, Fe92]

<pino| flmipa> = <pp|flpp> — <pi1nol f|p2ng >
— o fom (3.97)

In an analogous fashion, the relativistic isovector (p,n) amplitudes can be written as the differ-

ence between the relativistic SVPAT pp and pn amplitudes:
F.(P»'"') = F_(PP) _ F_(Im) (3 98)
7 7 7 ° 5

Hence, for (p,n) scattering, one uses Eq. (3.98) for the amplitudes in Eq. (3.54), and also sets
Zeg = 0 in Egs. (3.91) - (3.95).

Reaction Q-value and energy transfer

The conservation of energy for a nuclear reaction of the form A(a,b)B may be written as [Si90]
Ey+E,+Es=Eg+Ey+ Ep (3.99)

where E, and Ej are kinetic energies of the entrance and exit channels, E, and E4, E}, and
Ep are particle intrinsic energies in the entrance and exit channels respectively. If both @ and b
are elementary particles (e.g. nucleons in the case of medium-energy nuclear physics), then the
intrinsic energies E, and E, may be expressed in terms of the particle rest masses, F, = m, c>
and E, = my c?, where c is the speed of light. Intrinsic energies of the nuclei A and B are

functions of their rest masses and excitation energies E’ and E}:

Ep=my c2+E':1

Ep=mp ¢+ E}. (3.100)
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The energy transfer w is defined as the difference between the relative particle motion kinetic

energies in the entrance and exit channels:
w=E,—Eg. (3.101)
From the law of energy conservation, expressed by Eq. (3.99), Eq. (3.101) can be rewritten as
w=Ep—E} —Qqgs (3.102)
where the ground state Q—value is defined as
Qgs = (Mg +ma —mp —mp) . (3.103)
For quasielastic proton—nucleus scattering, the target nucleus is in its ground state, that is
E, =0, (3.104)
and, hence Eq. (3.102) becomes

w = Ep—Qys

= W' — Qg (3.105)

where ' = FE} is the excitation energy w (or energy transfer) defined in Eq. (3.64). From
Eq. (3.103) one sees that @ = 0 for (p,p’) scattering, and hence w’ = w, whereas for (p,n)
scattering @ < 0, and hence w' # w. Note that for the RPWIA all polarization transfer
observables are calculated as a function of w’. However, experimental observables are plotted as
a function of w. For comparison with experiment, one merely shifts the w' values of the (p,n)

scattering observables by —Q, to obtain the correct w.

3.2.9 Calculational procedure

One now considers how the theoretical expressions for the observables are converted to numbers

which can be ultimately compared to experimental data, thus testing the validity of the RPWIA.

All kinematic quantities in the RPWIA formalism are completely specified from the following

input, namely

e the laboratory kinetic energy 7,1, of the projectile proton,
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e the laboratory scattering angle 6, of the detected ejectile nucleon,
e the free nucleon mass m,

the effective projectile and target nucleon effective masses, m} and mj respectively,

the Fermi momentum kg,

the range of energy transfers w spanning the quasielastic peak.

The exact expressions for all kinematic quantities of interest are derived in Appendix I. Note
that the energy—transfer w is not calculated from Eq. (3.64), but is chosen to span the quasielastic

peak of interest, that is
Wmin < Wi < Wmax (3.106)
where w; represents one of N values of w spanning the quasielastic peak, namely
W = W = Wnin+iAw (3.107)
with

w — Wmi
max min _108
Aw = ———*N (3 )

and 7 ranges from 0 to N. Without hindsight or access to experimental data, one may ask the
question as to how one chooses values for wpnin and wpax which span the allowed phase space
and, hence, span the quasielastic bump in the excitation spectrum. Recall, from Sec. 1.9 in
Appendix I, that the centroid of the quasielastic peak corresponds to scattering from a single

target nucleon at rest (Eg = 0), and the position of the centroid is approximately given by

= (2
w = % (3.109)

where, from Egs. (D.1) and (D.8) [see Appendix D] and Eq. (G.140) [see Appendix G], for a
given laboratory scattering angle 6y,,, the magnitude of the three-momentum transfer |§ | is

approximately given by

7] = V2Tiabm sinbiap - (3.110)

With the centroid of the quasielastic peak known from Eq. (3.109), the values of wpin, and wmax

can be chosen arbitrarily to the left and right of centroid respectively. This procedure at least
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gives one a method for choosing the initial values of wyin and wmax. For each value of w [within
the range specified by Eq. (3.106)], one integrates the observables over the momenta of the
target nucleons [[ d |ky|], corrects for Pauli blocking as discussed in Sec. 3.2.3, and integrates
over the azimuthal angle [[ d¢]: for each value of |ky| [with the range specified by Egs. (3.14,
(3.15) and (3.16)], the integral over ¢ [0 < ¢ < 2] is performed.

Finally, the units of the polarized and unpolarized double differential cross sections, given by
Egs. (3.82) and (3.83)respectively, are considered. The unit of the relativistic SVPAT amplitudes

t; is GeV~2, and hence the unit of the invariant matrix elements squared is
GeV™* = 10712 MeV ™. (3.111)

The unit of the factor preceding » - M*M in Egs. (3.82) and (3.83) is (fic)2 MeV = (MeV)? fm?:
note, that due to the fact that natural units are adopted, the “fic” factor is not explicitly shown
in Egs. (3.82) and (3.83). Hence the unit of the double differential cross section is

1072 fm?® MeV~! sr! (3.112)

where the steradian (sr) serves as a reminder that the double differential cross section is nor-

malized per unit solid angle Q2. Making use of the fact that
1 fm? = 10 millibarns = 10 mb (3.113)
one can rewrite Eq. (3.112) as

1072 x 10 mb MeV~!sr!. (3.114)

Hence, the double differential cross sections are expressed in the usual units of mb MeV~—! sr—1.

Besides studying the sensitivity of polarization transfer observables to nuclear medium ef-
fects, different forms of the 7NN vertex, and exchange contributions to the NN amplitudes (see
Sec. 3.3.2), the importance of spin—orbit distortions on the observables is also investigated. The

subject of spin—orbit distortions is discussed in the following section.

3.2.10 Spin—orbit distortions

The inclusion of spin—orbit distortions at the centroid of the quasielastic peak in the expressions
for polarization transfer observables is discussed in detail in Ref. [Ho86]. The main aspects of

this paper are briefly reviewed.
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In calculating the nucleon transmission probability T'(b) in Sec. 3.2.2, only the central
part of the (effective Schrodinger) optical potential is used. Within the eikonal approximation,
the inclusion of a spin-orbit component adds an additional distortion factor e~#W=(r) to the

incoming Dirac wave function [See Eq. (3.2)] with:
Weo=R(b) o, (3.115)

where

— z A ~
R() = mb/ de Violb, 2Jb % K , (3.116)
—00
and b is the impact parameter, now as a vector.

The spin—orbit distortion manifests itself as a spin rotation operator,

R() = e~ R(B) o (3.117)

=

on the initial state vector, which identifies R(b ) of Eq. (3.116) as the effective (complex) rotation
angle in spin space. The treatment of this rotation is simplified by some approximations: Firstly,
if the projectile scatters halfway through the nucleus [z = 0 in Eq. (3.116)], then one can express
the spin—orbit effect as a rotation of the final state vector using the same R(b ) of Eq. (3.117)
with only a sign change. This is due to the fact that, in the corresponding eikonal integral for
the final state, the same function V;,, being even in z, is now integrated from z = 0 to +o0.

Secondly, b in R(b) of Eq. (3.116) is taken as the reaction average (b) obtained in Sec. 3.2.2.

Consider now the angular average of R over the whole nucleus: First, in the special case
where the projectile particle traverses the nucleus along a straight line (laboratory scattering
angle @ = 0), there is complete cylindrical symmetry with respect to the incoming beam di-
rection. Therefore, the net contribution to (R) equals zero, because the contributions of each
pair of opposing directions of b cancel. However, in the general case of a non-zero scattering
angle 0, contributions to the R-integral [Eq. (3.116)] from two opposing directions of b, one on
the “inside” and one on the “outside” of the scattering bend, will be clearly different because
of the different path lengths traversed through the nucleus. Keeping in mind that R(b) is al-
ways perpendicular to b [see Eq. (3.116)] and considering its components parallel and normal
to the scattering plane separately, it becomes clear that the resultant rotation will only have a

non—zero normal component, R,,.
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Hence for 6 # 0, the distortion effect of V, will be a space rotation of both the initial and final
state vectors around an axis normal to the scattering plane. This is alternatively equivalent to a
rotation on only the Pauli spin matrices; therefore the expressions for the polarization transfer

observables [See Appendix G]:
Tr(o;Mo;M1)

Do — oy M) 3.118
1] ﬁ(MMf) ) ( )
remain of similar form, except for the replacements: o; — o and o; — off, where:
o_iR o e—iR;‘,ono.ie+iRndn ,
oF = ¢HRnTn g g=iMin (3.119)

For the small rotation angles (presently |R,| < 0.2) the rotation can be expanded to first order
in o,. This leads, by means of the commutation relations among the components of o to
linear combinations among the D; /;’s to form the new polarization transfer observables with

spin—orbit distortion (see Ref. [Ho86] for explicit expressions).

Fig. 3.6 presents graphically the amount of spin-orbit distortion on all six polarization
transfer observables (Ay, Dpp, Dy, Dgrg, Dyrg and Dy 1g) as a function of the five chosen inci-
dent laboratory energies; these have been calculated for m} = mj = m, at the centroid of
the quasielastic peak for (p,7 ') scattering by “°Ca, at a fairly large momentum transfer of
1.97 fm~!. The graphs show that the spin—orbit distortion is indeed not a negligible factor;
although being fairly constant with laboratory energy T,p, the relative values increase as Ti,p
decreases. At low energies (T, < 200 MeV) the spin-orbit effect becomes comparable with
other phenomenological effects (relativity and the form of the 7NN vertex) investigated in Sec.

3.3.

Fig. 3.7 presents the spin—orbit distortion of the polarization transfer observables as a func-
tion of nuclear mass. These are calculated for m} = m3j = m at the centroid of the quasielastic
peak and at a fixed incident laboratory energy T, = 200 MeV. The general increase of spin—
orbit distortions with nuclear size agrees with the natural expectation. The very small distortion
effect on the D,,;,—values deserves some physical explanation: If the spin rotation angle R were
completely real, this rotation with its axis perpendicular to the scattering plane (R = R,,) would
have no effect on Dy, which relates polarization components which are also perpendicular to

the scattering plane. However, due to the small absorptive part of the optical potential, R has
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Figure 3.6: Spin-orbit distortion of the (g, ') polarization transfer observables Dy/; as a function
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