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SYNOPSIS

System identification has been sufficiently formalized for linear systems, but not for empirical

identification of non-linear, multivariate dynamic systems. Therefore this dissertation

formalizes and extends non-linear empirical system identification for the broad class of non-

linear multivariate systems that can be parameterized as state space systems. The established,

but rather ad hoc methods of time series embedding and nonlinear modeling, using multi-

layer perceptron network and radial basis function network model structures, are interpreted

in context with the established linear system identification framework.

First, the methodological framework was formulated for the identification of non-linear state

space systems from one-dimensional time series using a surrogate data method. It was clearly

demonstrated on an autocatalytic process in a continuously stirred tank reactor, that validation

of dynamic models by one-step predictions is insufficient proof of model quality. In addition,

the classification of data as either dynamic or random was performed, using the same

surrogate data technique. The classification technique proved to be robust in the presence of

up to at least 10% measurement and dynamic noise.

Next, the formulation of a nearly real-time algorithm for detection and removal of radial

outliers in multidimensional data was pursued. A convex hull technique was proposed and

demonstrated on random data, as well as real test data recorded from an internal combustion

engine. The results showed the convex hull technique to be effective at a computational cost

two orders of magnitude lower than the more proficient Rocke and Woodruff technique, used

as a benchmark, and incurred low cost (0.9%) in terms of falsely identifying outliers.

Following the identification of systems from one-dimensional time series, the methodological

framework was expanded to accommodate the identification of nonlinear state space systems

from multivariate time series. System parameterization was accomplished by combining

individual embeddings of each variable in the multivariate time series, and then separating

this combined space into independent components, using independent component analysis.

This method of parameterization was successfully applied in the simulation of the above-

mentioned autocatalytic process. In addition, the parameterization method was implemented

in the one-step prediction of atmospheric N02 concentrations, which could become part of an

environmental control system for Cape Town. Furthermore, the combination of the
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embedding strategy and separation by independent component analysis was able to isolate

some of the noise components from the embedded data.

Finally the foregoing system identification methodology was applied to the online diagnosis

of temporal trends in critical system states. The methodology was supplemented by the

formulation of a statistical likelihood criterion for simultaneous interpretation of multivariate

system states. This technology was successfully applied to the diagnosis of the temporal

deterioration of the piston rings in a compression ignition engine under test conditions. The

diagnostic results indicated the beginning of significant piston ring wear, which was

confirmed by physical inspection of the engine after conclusion of the test. The technology

will be further developed and commercialized.

"
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OORSIG

Stelselidentifikasie is weI genoegsaam ten opsigte van lineere stelsels geformaliseer, maar nie

ten opsigte van die identifikasie van nie-lineere, multiveranderlike stelsels nie. In hierdie tesis

word nie-lineere, empiriese stelselidentifikasie gevolglik ten opsigte van die wye klas van nie-

lineere, multiveranderlike stelsels, wat geparameteriseer kan word as toestandveranderlike

stelsels, geformaliseer en uitgebrei. Die gevestigde, maar betreklik ad hoc metodes vir

tydreeksontvouing en nie-lineere modellering (met behulp van multilaag-perseptron- en

radiaalbasisfunksie-modelstrukture) word in konteks met die gevestigde lineere

stelselidentifikasieraamwerk vertolk.

Eerstens is die metodologiese raamwerk vir die identifikasie van nie-lineere,

toestandsveranderlike stelsels uit eendimensionele tydreekse met behulp van In surrogaatdata-

metode geformuleer. Daar is duidelik by wyse van 'n outokatalitiese proses in 'n deurlopend

geroerde tenkreaktor getoon dat die bevestiging van dinamiese modelle deur middel van

enkelstapvoorspellings onvoldoende bewys van die kwaliteit van die modelle is. Bykomend is

die klassifikasie van tydreekse as 6f dinamies Of willekeurig, met behulp van dieselfde

surrogaattegniek gedoen. Die klassifikasietegniek het in die teenwoordigheid van tot minstens

10% meetgeraas en dinamiese geraas robuust vertoon. /

Vervolgens is die formulering van In bykans intydse algoritme vir die opspoor en verwydering

van radiale uitskieters in multiveranderlike data aangepak. 'n Konvekse hulstegniek is

V:oorgestel en op ewekansige data, sowel as op werklike toetsdata wat van 'n binnebrandenjin

opgeneem is, gedemonstreer. Volgens die resultate was die konvekse hulstegniek effektief

teen 'n rekenkoste twee grootte-ordes kleiner as die meer vermoende Rocke en Woodruff-

tegniek, wat as meetstandaard beskou is. Die konvekse hulstegniek het ook 'n lae loopkoste

(0.9%) betreffende die valse identifisering van uitskieters behaal.

Na aanleiding van die identifisering van stelsels uit eendimensionele tydreekse, is die

metodologiese raamwerk uitgebiei om die identifikasie van nie-lineere, toestandsveranderlike

stelsels uit multiveranderlike data te omvat. Stelselparameterisering is bereik deur individuele

ontvouings van elke veranderlike in die multidimensionele tydreeks met die skeiding van die

gesamenlike ontvouingsruimte tot onafhanklike komponente saam te span. Sodanige skeiding

is deur middel van onafhanklike komponentanalise behaal. Hierdie metode van
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parameterisering is suksesvc1 op die simulering van bogenoemde outokatalitiese proses

toegepas. Die parameteriseringsmetode is bykomend in die enkelstapvoorspelling van

atmosferiese N02-konsentrasies ingespan en sal moontlik deel van 'n voorgestelde

omgewingsbestuurstelsel vir Kaapstad uitmaak. Die kombinasie van die ontvouingstrategie en

skeiding deur onafhanklike komponentanalise was verder ook in staat om van die

geraaskomponente in die data uit te lig.

Ten slotte is die voorafgaande tegnologie vir stelselidentifikasie op die lopende diagnose van

tydsgebonde neigings in kritiese stelseltoestande toegepas. Die metodologie is met die

formulering van 'n statistiese waarskynlikheidsmaatstaf vir die gelyktydige vertolking van

multiveranderlike stelseltoestande aangevul. Hierdie tegnologie is suksesvol op die diagnose

van die tydsgebonde verswakking van die suierringe in 'n kompressieontstekingenj in tydens

toetstoestande toegepas. Die diagnostiese resultate het die aanvang van beduidende slytasie in

die suierringe aangedui, wat later tydens fisiese inspeksie van die enjin met afloop van die

toets, bevestig is. Die tegnologie sal verder ontwikkel en markgereed gemaak word.

,.
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1 INTRODUCTION

We have an inherent aspiration to embed observations of Nature as well as our creations in a

pattern of some kind, to better understand, create and control. We also strive to ensure that our

man-made systems remain in good working order and prefer to detect imminent failure before

it strikes. Therefore we, the stewards of Nature, build mathematical models from

observations. Engineers have a significant and very tangible influence on Nature through the

systems and constructions they create. In essence, through the scientific method, we are

locally transforming Nature into engineering systems of all kinds for various purposes.

Efficiency, reliability and maintenance are three major factors in the operation of engineering

systems, ranging from plants such as chemical refineries, electrical power stations and

manufacturing facilities, to aeronautical propulsion systems and all kinds of automotive

vehicles. Cost-effectiveness and conservation of resources are directly affected by efficiency,

while reliability and maintenance influence operational safety, continuity and cost. In most

modem countries, statutory laws and regulations on environmental conservation often dictate

operational boundaries for chemical plants and food-processing factories in terms of

emissions of chemicals, effluent and noise. Certain American states have particularly strict

regulations on the exhaust and fuel emissions from automotive vehicles, California being the

prime example. Likewise, these laws and regulations necessitate proper operational

diagnostics and maintenance of these engineering plants, systems and appliances. Prediction

models to enhance efficient system management and online diagnosis to detect imminent

system failure are therefore indispensable to operational continuity, safety as well as cost

management and environmental protection.

Online diagnosis of complex systems rely strongly on some form of failure detection in order

to maintain satisfactory performance and prolong system life. Often such detection depends

on the operator's skill of interpreting rather rudimentary alarms and single state monitors, such

as digital or analogue displays for temperatures and pressures. A more challenging, though

frequent scenario is the simultaneous interpretation of multiple observations. One relevant

area of such simultaneous interpretation is the diagnosis of sensors and controllers in diverse

engineering systems. Another area of online system diagnostics, which often constitutes a

significant problem, is the need to determine gradual, temporal system deterioration. Often

this deterioration can only be reliably detected through simultaneous interpretation of the
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history of dependent variables and a set of independent variables. An example is the temporal

deterioration of an internal combustion engine, due to wear of the piston rings. Transportation

enterprises and mining operations, among others, have fleets of vehicles or auxiliary power

generators utilizing internal combustion engines. Neglecting the timely observation of a

condition of failure in terms of ring wear will usually result in a costly overhaul of the

cylinder bores. Maintenance could be scheduled more timely and more cost-effectively, if

assistance could be provided in terms of the online interpretation of simultaneous system

states. System diagnostics with regard to some form of automated state observation and

failure detection are therefore required.

Most of the above-mentioned real world systems are dynamic, which means they exhibit

temporal changing behaviour. Chemical, metallurgical and mechanical systems in particular

can be high-dimensional and non-linear. Notwithstanding the current scientific knowledge-

base, the complexity of these processes makes them difficult to understand, model, interpret

and control. As a consequence, engineers often try to develop empirical dynamic process

models for these systems direct from input-output data, rather than attempting to develop time

consuming, expensive fundamental, analytical models. However, in developing these models

several issues have to be addressed, such as the classification of process data, selection of

model structure and order, system parameterization, stationarity of the data, handling of

outliers and noise in the data, parameter estimation and model validation.

The foregoing issues have been sufficiently formalised for linear systems, but not for

empirical identification of non-linear, multivariate dynamic systems. Therefore this

dissertation proposes a formal methodological framework that combines empirical state space

modeling and online system diagnosis of a specific class of non-linear, multivariate dynamic

systems. Chapter 2 defines the system class that is of interest in this dissertation, reviews the

formal methodological structure of linear system identification and reports on relevant

empirical system identification methods within the context of this structure. Chapter 3

describes a methodology for identification of non-linear dynamics based on a one-

dimensional time series observation of a system. The methodology involves classification of

the time series using surrogate data techniques, parameterization of the system by way of time

series embedding, and prediction of the time series with multi-layer perceptron network

models. Particular attention is given to proper validation of the model with the assistance of a

surrogate data technique. Chapter 4 addresses the fast detection of radial outliers in large

multivariate data sets. A novel method for such detection is proposed, based on the

2
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construction of convex hulls arouP..dthe data. In Chapter 5 the system identification method

described in Chapter 3 is expanded to multivariate time series. Parameterization by individual

embedding of time series components is combined with independent component analysis to

reconstruct the system state space. The methodology is applied to the simulation of an

autocatalytic process and the prediction of NOz concentration in an environmental system.

Chapter 6 describes the online diagnosis of temporal trends in critical system states. The

methodology incorporates system identification techniques from the previous chapters to

determine system failure statistically. The technique is applied to the diagnosis of piston ring

wear in an internal combustion engine under laboratory test conditions. Chapter 7 follows

with a discussion of results and conclusions.

3
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2 CURRENT METHODOLOGY FOR EMPIRICAL, NON-LINEAR

SYSTEM IDENTIFICATION

System identification is well defined for linear systems and described in several

comprehensive publications (Ljung, 1987, Norton, 1986, Eykhoff, 1974). Linear, discrete

time dynamic systems can be represented mathematically by a state equation and an output

equation, in a number of state variables (Ogata, 1995), as:

Xt+! = AXt +BUt
Yt=Cxt+Dut

(1)

where x is the state vector, U the input vector of independent variables, t the time and Y the

system output. Empirical identification of the above system from observed input-output data

essentially requires solving for the constant coefficient matrices A, B, C and D, and validating

the resultant model against some criterion. Established linear mathematical techniques

sufficiently meet these requirements.

Non-linear systems on the other hand, are harder to identify. Methods for analysis of non-

linear systems are class restricted, can give partial information and are cumbersome because

non-linear behaviour is diverse and complex (Norton, 1986). This is especially so when

system identification is done by fundamental analytical methods, as opposed to empirical

methods. Standard system identification practice addresses the following aspects: data

acquisition, noise reduction, selection of model structure and order, parameterization,

parameter estimation and model validation. These aspects can be structured into the following

methodological framework:

a) Model selection

b) Data acquisition

c) Parameter estimation

d) Model validation

This chapter sets out to establish a formal identification framework and terminology that will

be used and evolved further in the dissertation. The chapter first defines the system class that

is the focus of this dissertation and reviews current, applicable non-linear system

identification techniques within the above methodological framework. Standard system

identification terminology is used throughout. The notation of Ljung (1987) has been adopted

4
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and suitably modified. Definitions of potentially ambiguous terms and expressions can be

referenced under Terminology. Detailed descriptions of some concepts appear in alphabetical

order in Appendix A.

2.1. Model selection

As was briefly mentioned in the introduction, system identification plays a pivotal role in a

truly enormous range of engineering systems. Whenever algorithms are constructed for

system identification, a model is invariably exploited (Wornell, 1995). Models may be

explicit (when the class of systems is well defined) or implicit (when implicit assumptions are

made with regard to the system producing the signal, such as assumptions on analytical

smoothness). Some classes of systems are larger than others and generally models that apply

to a smaller class tend to perform better than more complex models applicable to a larger

class of systems - that is, each system model from the smaller set of systems generalize more

accurately than systems models from larger classes. There are many systems that produce

signals whose key characteristics are fundamentally different from those produced by

conventional linear time-invariant systems. We are interested in the class of deterministic,

non-linear dynamical systems that can be represented mathematically by a state equation in a

number of state variables. Starting from some initial conditions, the system's state vector fol-

lows a trajectory with time that is confined to some closed subspace of the total available state

space. The dynamic attractor, to which the trajectory thus converges, is a smooth, non-linear

manifold of this state space and defines the true dynamics of the system (Thompson et

aI., 1995). In mathematical terms for discrete-time systems, the state equation is:

Xt+l = f[xt, ut ] (2)

where x is the state vector, U the input vector of independent variables and f the state

transition function that maps the temporal evolution of Xt to Xt+ 1. The output vector of

dependent variables of the system is defined as:

Yt =g[xt,ut] (3)

where g(.) is a nonlinear function that projects Xt and Ut onto the output vector Yt.

In the first part of system identification, the evolution of Xt is reconstructed from the observed

system outputs as defined in section 2.1.3. The remaining steps of system identification focus

on approximating g 0 f as gO: XC~Yt+l and validating the model.

5
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2.1.1. Model class of gO

Several non-linear empirical model classes have been proposed as functional approximations

for gO. Examples are linear and non-linear polynomial regression, non-linear piecewise

regression, regression trees (CART), multi-adaptive regression splines (MARS), kernel-based

models such as radial basis function (RBF) neural networks as well as multi-layer perceptron

(MLP) neural networks. MLP networks and RBF networks are strong functional

approximations (Judd and Mees, 1995), because the optimal approximation error grows more

slowly with dimension than for weak functional approximations. Examples of weak

approximations are global and local linear approximations as well as global polynomials.

Since the class of dynamic systems under discussion requires strong functional

approximations, we shall focus on MLP networks and RBF networks. These methods have the

added advantage that they are relatively easy to apply and are well supported by large

commercial software systems, such as Matlab 4 and 5, G2 with NeurOn-line and Process

Insights in the chemical process industries, and Neuroshell 2 in the financial markets.

Mathematically the sets ofMLP and RBF model structures can be defined respectively as:

M*FF={MFF(B)IB E DM c md}

M*RB={MRB(B)IB E DM c md}

(4)

(5)

where B is the parameter vector of a model, d the order of the model, and DM the set of

possible model parameters. MFF or MRB denotes a model structure while MFF( B) or MRB( B)

indicates a specific model for the estimated parameter vector B.

The set of MLP model structures, M*FF , are currently often implemented as non-linear

regressors and classifiers (Rumelhart et aI., 1994). Provided that the input space is carefully

selected and the topology correctly specified, a MLP model, MFF( B), can successfully

simulate or predict multidimensional non-linear data (Funahashi,1989). A MLP model

structure is specified in terms of the model class, the topology and the nodal transfer

(activation) function of each layer. The network is formed by interconnected nodes arranged

in layers. Each node is a numerical processor, with a linear or non-linear transfer function.

Examples of often used non-linear transfer functions are the bipolar sigmoidal or hyperbolic

tangent function, of the form rfI.....) = [l-exp(') ]/[ 1+exp(')] or the unipolar sigmoidal or logistic

function, rfI.....) = 1/[1+exp(')]. Weights are assigned to the connections, which carry the output
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of nodes forward from one layer to the next. In addition, a layer can also incorporate a bias

constant. The weights and biases constitute the model parameters and are estimated by so-

called training algorithms. The network topology typically comprises a linear input layer, one

or two hidden non-linear layers, and a linear output layer. The number of nodes in the input

layer is equal to the dimension of the input space, while the size of the output layer is equal to

the dimension of the output space. A typical MLP network topology is shown in Figure 1. In

this figure X and Yare the input and output spaces respectively, while W indicate a weight

coefficient and b are a bias vector. For example, lWll means the weight factor for the first

input component to the first hidden node, while ZWll indicates the weight factor for the output

from the first hidden node to the first node in the output layer.

Input
layer

Hidden
layer

Output
layer

x

I dataflow ~

y

Figure 1 Schematic representation of a typical MLP network topology.

Variations on M*FF are the partially and fully recurrent networks. An example of the partially

recurrent network is the Elman network. The output from the hidden layer of an Elman

network is fed back to a set of extra input nodes, the so-called context nodes. Thus the

network is able to reflect in its parameter space a diminishing history of the data, thereby

gaining a capability to extract dynamic information from data. The fully recurrent network - a

network with all nodes interconnected - is not applicable to work in this dissertation and

therefore not treated here.
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The set of RBF networks, M*RB , offer an alternative to M*FF and were originally applied to

strict interpolation in multidimensional space (Powell, 1987; Broomhead and Lowe, 1988).

These networks have a superficially similar structure to MLP networks, except that the hidden

layers tend to be much larger and often consist of Gaussian, rather than sigmoidal transfer

functions. A hidden layer of radial basis function kernels with fixed parameters are placed at

locations along the trajectory defined by the set of data vectors. Typical kernels are the

Gaussian function, rfi...-.) = exp(-IIx-cdl/.8 2), the thin-plate-spline function (Chen et aI., 1991),

rfi...-x) = IIx-ciI1210g(llx-cill),and multiquadratics (Hardy, 1971), rfi...-.) = (x2 + C
2)1/2,c> 0, X E 9i,

where c is the location center of the kernel and .8 the Gaussian spread coefficient. Kernel

spread indicates the width of the kernel, that is, it determines the range of data over which a

kernel is activated. The output layer is a linear combiner of the radial basis function outputs

and only these connection weights are adjustable after placement of the kernels. The crux of

selecting a MRB lies in placing of the kernels (Judd and Mees, 1995) and is further discussed

in section 2.3.5. Figure 2 shows an example of the placement of radial basis functions on a

time series by a RBF network.
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Figure 2 Typical placement of radial basis functions on a time series, using an

RBF network. Solid lines indicate RBF kernels and dotted lines, the

data.
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An enhancement of M*RB, the pseudo-linear radial basis function model, M*PL has been

proposed by Judd and Mees (1995) and contains a combination of linear terms and Gaussian

radial basis function terms.

2.1.2. Model order

Model order is defined as the number of model parameters of a model structure (Ljung, 1987).

For M*FF and M*RB, the model order depends on the dimension of input and output spaces, as

well as the number of nodes in the hidden layer. Determining the order of a non-linear model

can be approached in two ways (Judd and Mees, 1995):

a) approximating g 0 fO by determining the optimal estimation of model parameters of a

certain model structure of specified order.

b) approximating g 0 fO by determining the optimal combination of model parameters of a

preferred subclass of model structures.

According to the first approach, model order is usually determined iteratively by testing

several models of increasing order for generalization against the Sum-Square-Error (SSE)

norm, defined in section 2.3.1. In the presence of noise, it is possible to overfit by

implementing a model of too high an order. Such a model will fit the training data well, but

not generalize well, because the model also partially represent features of the noise

component.

The second approach starts with a subclass of model structures and then optimizes model

order by calculating, for example, Rissanen's minimum description length (MDL) for each

model structure (Judd and Mees, 1995). According to this approach, the model parameters

and model error are encoded as a bit stream of information. A more complex model will

require more bits to encode than otherwise and so will a larger modelling error. The model

structure corresponding with the lowest MDL is therefore optimal. This method presents a

formalized structure to determining model order, as opposed to the first rather ad hoc

approach.

Both above approaches are prominent in system identification and therefore applied in this

thesis.
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2.1.3. Parameterization

For linear models parameterization means selection of a certain state space representation

(Ljung, 1987). For the class of non-linear state space models, parameterization introduces the

concept of state space reconstruction.

Let the time series, Yt = h(xt), be the scalar observation of the output of a nonlinear state space

system at time t. According to Takens (1981), one can reconstruct an equivalent

representation of the system state space from a time series observation, yE mn, under the

condition that the observation function h(.) is smooth. Such a reconstruction is called an

embedding of the observed time series by way of delay coordinates (equivalent state

variables). The number of these coordinates is the embedding dimension, m and the time

delay, k (in multiples of sample period) is the lag between each coordinate. A brief discussion

of the theoretical background of the embedding of time series can be found in Osborne and

Provenzale (1989).

The optimal time lag between the delay coordinates is usually determined by the average

mutual information criterion (Frazer and Swinney, 1986), while the optimal number of

coordinates is typically calculated using the method of false nearest neighbours (Kennel et

aI., 1992). Mutual information is an information statistic that estimates the probability to find

a measurement again, given that the same measurement has been already been made. This

statistic is calculated among all elements of the time series. The time lag is fixed heuristically

at the point of the first minimum of mutual information for the time series. A full description

of the technique of average mutual information appears in section A.l.

The method of false nearest neighbours involves iterating the embedding of the time series in

space of increasing dimension. While unfolding the attractor in space of increasing

dimension, the embedded points that are true neighbours can be progressively distinguished

until, after reaching the optimal embedding dimension, no more additional false neighbours

are discovered. False neighbours appear only because one views the attract or in space of too

small a dimension, thereby mistaking two points for being neighbours. The nearness is

expressed as the Euclidean distance between two points.

In an alternative approach both embedding lag and dimension can be calculated

simultaneously by the method of false strands (Kennel et aI., 1992), which is more robust

against the effects of both measurement and dynamic noise in the data. This method considers

neighboring strands of data instead of only single embedded points and determine whether all
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points on these strands are true neighbors in a similar fashion as for pairs of single points,

discussed above. Both false nearest neighbours and false strands are discussed in section A.3.

In mathematical terms, let y = [YI, Y2, Y3, ... , Yn] be the observation vector of the output of a

dynamic system. According to Takens (1981), an optimal embedding ofy can be expressed as

Xl=[Yi+k(m-I), Yi+k(m-l)-l, Yi+k(m-1)-2, ... , yi1.The set {XI E 9tm, t = 1. .. n} forms the trajectory of the

embedding vector in state space and approximates the dynamic attractor asymptotically as

n~oo. With reference to the state equation (2), XI is the embedding vector, while UI is the

vector of independent variables. The reconstructed attractor is an implicit parameterization of

the system state transition.

After reconstructing the dynamic attractor of the system, a one-step prediction model, M( (J), is

selected as g: xt ~ Yt+1 . Therefore full parameterization of non-linear state space systems is

defined in terms of both {XI E 9tm} and the parameter vector , B, of the selected model

structure M.

2.2. Data acquisition

Since empirical system identification relies on the availability of sufficient, representative

observations of the system, data acquisition is of paramount importance. A number of factors

has to be considered: the dependent variables, independent variables, sampling period and the

number of records that defines a stationary data set.

2.2.1. Selection of independent and dependent system variables

Independent and dependent variables (also called input and output variables) are selected

based on a priori knowledge of the system. In order to determine which of several

independent variables are correlated with the chosen dependent variables, one can apply

second order statistics in the form of cross-correlation analysis to the observation space.

While this is conclusive for linear systems, it is often misleading for non-linear systems

(Abarbanel, 1996). Average cross mutual information (AXMI) at zero lag is a better indicator

of non-linear cross-correlation. AXMI is closely related to AMI (refer to sections A.l and A.2

for details on the definition of AMI and AXMI, respectively).

Where significant cross-correlation is suspected among the independent variables, the input

space can not be determined only on the basis of strong direct correlation of independent
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variables with the dependent variable. Rather, the full set of independent variables should be

separated using, for example, principal component analysis and projected onto those principal

components that declare a specified percentage (e.g. 99%) of the input variance. A more

advanced separation method is Hyvarinen's independent component analysis

(Hyvarinen, 1999), described in more detail in chapter 5. These techniques often result in a

handsome reduction in input space dimensionality and therefore also model complexity.

Mathematically the projection is expressed as:

s=WX (6)

where X represents the independent variables, W the separation matrix and S the statistically

independent components.

2.2.2. Sampling frequency

Highly non-linear systems appear random under linear analysis, even though they are actually

deterministic (Farmer and Sidorowich, 1987). Since these systems are not periodic or even

quasi-periodic, linear analysis, such as Fourier transforms, yields results similar to the linear

analysis of broadband noise. The selection of a proper sampling frequency is therefore not

straightforward. However, it still is possible to apply the Nyquist principle to determining

sampling frequency, by stating that the highest sampling frequency should be between 2 and

10 times the frequency of the highest order interesting dynamics (Ljung, 1987). Interesting

dynamics can be defined as that dynamical behavior of the observed system that one will

attempt to model with a particular system parameterization and selected model structure. It is

also the level of detail in the reconstructed dynamic attractor that one will attempt to describe

using a particular model structure. In practice, this decision on sampling frequency is made in

an iterative and rather subjective manner.

2.2.3. Classification of data

A major problem with empirical systems is to determine a priori whether deterministic

dynamics underlie the data in the first place. To make matters worse, non-linear identification

algorithms that calculate the system dimension from a time series do not always return an

infinite value for stochastic processes (that have infinite dimension) as would be expected.

Osborne and Provenzale (1989) have shown that stochastic data with power law spectra also

yield correlation dimensions with finite values, so that statistics characterizing the
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dimensionality of a system cannot be reliably used for the identification of determinism.

Some stochastic processes generate so-called colored noise that have fractal curves in state

space, but no dynamic attractors (Osborne and Provenzale, 1989). Non-linear identification

algorithms cannot distinguish between fractal curves and fractal attractors. This can be

problematic since reliable classification of the data as a first step in system identification is

important, otherwise the resulting model will not generalize beyond the training data set.

A statistical approach to data classification is the method of surrogate data (Takens, 1993;

Theiler and Pritchard, 1996; Theiler and Rapp, 1996). This method involves a null hypothesis

against which the data are tested, as well as a discriminating statistic. The data are first

assumed to belong to a specific class of dynamic processes. Surrogate data are subsequently

generated, based upon the given data set, by using the assumed process. An appropriate

discriminating statistic is calculated for both the surrogate and the original data (Theiler et

aI., 1992). If the calculated statistics of the surrogate and the original data are significantly

different, then the null hypothesis that the process that has generated the original data is of the

same class as the system that has generated the surrogate data, is rejected. By means of a trial-

and-error elimination procedure, it is then possible to get a good idea of the characteristics of

the original process. Refer to section A.7 for details.

2.2.4. Stationary data sets

Since any model is ultimately limited in its ability to extract information from data by the

total information content in the data, it is imperative for successful implementation of a non-

adaptive, global model to train on a representative, stationary data set. There are several

means to determine stationarity of data, depending on the class of data. Random data can be

tested for stationarity in terms of the invariance of first and second statistical moments of the

data. Deterministic data extracted from a forced linear system should contain the longest

forcing period to be regarded stationary. In non-linear terms, a data set {yE9tn} will be

stationary if and only if it is a sufficient approximation of the dynamic attractor when properly

embedded:

{XI E 9tm} (7)

where 9tm is the m-dimensional space of real numbers. Simple, global statistics such as mean

or variance are often unable to reliably indicate stationarity because they are not closely

related to the geometric characteristics of the dynamic attractor traced by the state vector, Z =

13

Stellenbosch University  http://scholar.sun.ac.za



[X Y], in state space. Invariant properties of dynamic attractors such as correlation dimension

and Lyapunov exponents can determine non-linear stationarity because they are only invariant

when the data set from which the attractor has been reconstructed, is stationary. Unfortunately

these properties are often difficult to estimate reliably (Kennel, 1997; Eckmann and

Ruelle, 1992; Parlitz, 1992).

Kennel (1997) reliably determined sufficient stationarity in non-linear dynamic data sets by

way of a statistical test on a nearest neighbor analysis of embedded data. This method,

however, involves embedding of the observed time series and, unfortunately, time series

embedding of data with a large measurement and dynamic noise content can lead to non-

optimal attractor reconstruction. Kennel reduced the negative influence of noise by

determining nearest strands in an embedded time series instead of only nearest neighbours.

This alternative approach enabled him to improve the reliability of finding a suitable

embedding for his stationarity test.

2.3. Identification criteria and parameter estimation

Parameter estimation methods use a data set collected from a system to estimate the model

parameters. A "good" model will produce acceptably insignificant prediction errors when

applied to the observed data. The prediction error rt is defined as:

~,B = Yt - Yt,B' (8)

where Yt is system output as estimated by the model using parameter vector () and Yt is the

observed system output. In order to quantify "insignificant errors", there are two approaches

among others. One approach is based on a scalar criterion function that measures rt• Another

approach is to demand that rt be uncorrelated with a given data sequence.

There are several parameters estimation methods, such as prediction error methods and the

maximum likelihood method (Ljung, 1987). The MLP and REF model structures that are

implemented in this dissertation traditionally apply prediction errors methods.

When model performance is optimized by minimising the autocorrelation of the prediction

error and the cross-correlation between prediction error and original output data, a simple

whiteness test is sufficient for the identification of linear systems. However, for identification

of non-linear systems the autocorrelation and cross correlation sequences cannot give any

evidence of remaining nonlinear relationships, since any process can always be considered to
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b~ a linear process with respect to its second-order statistics. Higher-order cumulants can give

such evidence. For example, the third-order cumulant can be used to test for Gaussianity of

the simulation error. Hinich (1982) proposed a zero-skewness test as a quantitative test for

normality of a stationary data sample. If the prediction error passed this test, there is no

significant linear or non-linear correlation content, which indicates that the model interpreted

all the dynamic content in the original data. Refer to section A.5 for details.

The following aspects regarding identification criteria and parameter estimation are addressed

in this section:

1. Model fitness norm

2. Pre-filtering

3. Outlier detection

4. Prediction horizon

5. Numerical estimation procedures.

2.3.1. Norm

In the estimation of MFF, MRB and MPL parameters using a prediction error method, the norm

is the Sum Square Error of the model output and is defined in terms of B and the data set Z as:

n
v: -.1".1r.2a,z - n L. 2 t,a

t=1

(9)

where Z = [X V], with X = {Xt E i}tm} being the input space and Y = {Yt E i}tP}, the output

space.

2.3.2. Noise reduction

Observations of system output can be contaminated with measurement noise as well as

dynamic noise. In the presence of measurement noise 51 , the output equation (3) can be

expressed as:

Yt =g(X"ut]+5t (10)
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Measurement noise is caused by measurement inaccuracy, which reduces the signal to noise

ratio of observations and impairs the ability to extract dynamic information through the

simulation model.

Dynamic noise, & can be mathematically expressed as:

Xt+l = f[xt, ut ]+ °t (11)

Dynamic noise results from inherent disturbances of the process that generates the dynamic

orbit of the state vector in state space and tends to increase the model dimension or

complexity. The objective of noise reduction is signal separation without a priori knowledge

of the underlying noiseless dynamics or the noise distribution. For linear systems, filtering is a

common solution to this problem. As pointed out earlier, non-linear data appear random under

linear analysis, therefore linear filtering can seriously impair model validity by removing

interesting high order dynamic information with the noise. Adaptive Moving Average filters,

Volterra filters, bi-linear and multi-linear filters all address the filtering of non-linear systems

with some success. Rauf and Ahmed (1997) presented a class of non-linear adaptive filters

based on successive linearization (Rauf, 1997) for predictive modeling of chaotic systems.

Geometric filtering, another form of non-linear filtering, first embeds the observed time series

in a high-dimensional phase space and then fits local linear models on the resultant geometric

structure. For example, Kostelich and York (1988) demonstrated a method whereby points in

a local neighbourhood on an attractor, reconstructed from the time series, were used to find a

local approximation of the dynamics. The approximations were then used collectively to

produce a new time series which is dynamically more consistent with the reconstructed

attractor. Mees and Judd (1993) warned that geometric filtering can easily be misused through

misunderstanding of the techniques. Since geometric filtering processes impose locally linear

models on data, these processes can force the data to fit a linear model inappropriately if

iterated enough times.

2.3.3. Outlier detection

Failure to remove outliers that result from systematic errors in process measurements can lead

to gross distortion in models or decision support systems derived from these data. Yet,

outliers that arise from actual process dynamics could reveal significant insight into the

process mechanisms, once identified. Outliers in data are not traditionally treated as part of

system identification and is usually dealt with separately. In this dissertation the handling of
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outliers is included in the formal system identification methodology in the same sense as

noise reduction. The handling of outliers is investigated and demonstrated in Chapter 4.

2.3.4. Prediction horizon

A dynamic system can be predicted in two basic ways: one-step or free-run. During one step

prediction the input space is updated with the current observation and the model predicts the

output one sampling step ahead. A variation on one-step prediction is long-step prediction,

where the input stays fixed at the initial value and the model predicts output directly for any

chosen multiple of sampling period ahead. During free-run prediction the input space is

updated with the predicted output and the model predicts the output one sampling period

ahead.

Non-linear deterministic systems, when chaotic, can have a finite prediction horizon regarding

free-run prediction. Starting from any initial state within the basin of attraction, any free-run

prediction for such a system will become ultimately unstable outside the basin of attraction

that contains the dynamic attractor (Abarbanel, 1994). This rule applies unless the dynamics

have been properly reconstructed from data observed in several adjacent basins of attraction.

Even within a specific basin the highly non-linear character limits the free-run prediction

horizon. For chaotic non-linear systems, the largest positive Lyapunov exponent of the

attractor indicates the rate of divergence of neighboring trajectories and gives an indication of

the upper limit of prediction accuracy (Abarbanel, 1994, 1996). Non-linear systems that are

not chaotic do not have positive Lyapunov exponents and therefore have no fundamental

upper limit for prediction.

We are interested in models that iteratively predict system output one step ahead. These

models may also be used for free-run prediction, that is, the embedding, Xi , is updated with

predictions instead of observations while the model is running. The free-run prediction

accuracy is ultimately limited by the size of the largest positive Lyapunov exponent of the

system. Refer to section AA for details on the definition of Lyapunov exponents.

The number of Lyapunov exponents for a system equals the embedding dimension. Each

exponent is invariant for the system. The positive exponents indicate how fast any certainty

about a point on the state trajectory will be replaced by uncertainty. The negative exponents

indicate the rate at which deviations from the attractor will dampen out and converge to the

attractor.
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Starting a prediction from index i and predicting in L steps until i+L, an upper bound on L,

called the instability horizon (Abarbanel, 1996), is approximately given as:

rstL =-
AI

(12)

where rs is the sampling period of the observer function and /1.1 the first Lyapunov exponent.

The initial error at index i scales as a function of the number of iterations L to predict from

index i to i+Lk and can be expressed in terms of the largest Lyapunov exponent by:

SL = eLrsAI

2.3.5. Parameter estimation

(13)

Parameter estimation is the process whereby information is extracted from the observed data

and a model parameter vector estimated as:

() = arg min Ve,z
eEDM

where () is the argument that minimizes the chosen norm, as defined in section 2.3.1.

(14)

There exist several algorithms to estimate the parameters of MFF and all determine the

gradient of the performance function (square error of network output). The simplest algorithm

uses gradient descent to optimize the network weight and bias arrays. Conjugate gradient

methods improve on basic gradient descent in terms of convergence speed. Newton's method

improves again on conjugate gradient methods, but requires calculation of second derivatives

(the Hessian), which is complex and expensive to calculate for MLP networks. Quasi-Newton

methods avoid this and one of these, the Levenberg-Marquardt algorithm (Levenberg, 1944;

Marquardt, 1963), approximates the Hessian as H = JTJ, where J is the Jacobian, containing

first derivatives of network output error with respect to network weights and biases. The

gradient can be computed as g = JTe, where e is the network output error. The weights are

updated at the end of a training iteration as Wk+1 =Wk- (JTJ + ~I] -IJTe. The Levenberg-

Marquardt algorithm converges faster than most other training algorithms (Hagan and

Menhaj, 1994).

Parameter estimation for models structures MRB and MPL involves placement of radial basis

function kernels with the specified spread coefficient after which the weights of the linear
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output is determined by minimizing the sum-square-error norm. Kernel placement IS

traditionally done by a number of methods. Examples are placing of kernel centers at

randomly selected data points, at random points in a bounding box, and at k-means cluster

centroids. Chen et al. (1991) proposed an improved parameter estimation algorithm for the

placement of MRB kernel centers. For MPL, Judd and Mees (1995) found it advantageous to

add Gaussian noise to the data so as to generate so-called chaperon centers that lie at the

perimeter of the data region.

2.4. Model validation

Proper validation ensures the reliable application of the model on new observations from the

same process. Model validation is usually based on statistical tests, such as the significance of

R2 or RMS criteria derived from actual and predicted values or empirical methods such as

cross-validation or hold-out. Although statistical tests of model validity are the preferred

approach (Rivals and Personnaz, 1999), they can unfortunately only be applied when the

statistical properties of the system are known. Also, these statistics are static, global measures

of correspondence between model and observation that do not evaluate local dynamic

correspondence. Likewise, empirical methods such as cross-validation can perform poorly

when used in the selection of linear models (Zhu and Rohwer, 1996; Goutte, 1997) and is

highly unlikely to perform any better with non-linear models.

Model validation is often based on one-step ahead prediction, which is not necessarily a good

indicator of the ability of the model to generalize the underlying (dynamic) process

represented by the data (Zhu and Rohwer, 1996). The residue between prediction and

observation of a linear system will be nearly white (linearly uncorrelated) if the model

declares almost all information in the observations (Ljung, 1987). In the case of a non-linear

system, non-linear correlation may still exist between simulation error and observation, which

a whiteness test will not reveal.

A free-run prediction in which the model has to predict the long-term future behavior of the

system, while being updated with succeeding predicted outputs instead of observed outputs, is

a considerably more rigorous test of the validity of the model (Small and Judd, 1998). To

achieve this, one has to generate a free-run time series with the model, reconstruct the

dynamic attract or from these predicted values and characterize the attractor with some discri-

minating statistic. The dynamic attractor for the actual system is likewise reconstructed from

the observed time series, and characterized. The reliability of the model can thus be assessed
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systematically by comparing the discriminating statistic of the model with that of the experi-

mental data. Refer to section A.7 for details on this so-called surrogate technique.
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3 IDENTIFICATION OF NON-LINEAR SYSTEMS FROM A TIME

SERIES.

The identification of the underlying dynamics of many process systems from experimental

data is typically complicated, owing to a mixture of influences that cause erratic fluctuations

in the time series. These influences can be notoriously difficult to disentangle. The develop-

ment of process models is usually subject to considerable human judgement and can therefore

be very unreliable. This is especially the case when the model priors are unknown and the

model is validated empirically, such as with cross-validation or holdout methods. In this

chapter, it is consequently shown by way of a case study that more reliable empirical

identification of the large class of nonlinear state space systems is possible by applying a

methodological system identification framework, as formulated in Chapter 2.

3.1. Methodology

The identification methodology formulated in Chapter 2 can be applied to a one-dimensional

time series via the following procedure:

a) Classification of data with the help of a surrogate data method, as described in section 2.2,

b) Selecting a system output variable, Yt, model structure M from {M*FF , M*RB}, model

order d, parameterization by embedding of Yt as well as specification of model parameters

e, as described in section 2.1

c) Estimating model parameters, e, as described in section 2.3.

d) Validating the model, M( 8), using free-run prediction and non-linear surrogate data, as

described in section 2.4.

Two aspects of system identification are not included in the above procedure. These are:

a) Handling of outliers in the data, for which a method will be introduced and demonstrated

in Chapter 4.

b) Selection of a stationary length, for which a method will be introduced and demonstrated

in Chapter 5.
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3.2. Empirical identification of an autoc&talytic process

This case study concerns an autocatalytic process in a continuous stirred tank reactor

originally considered by Gray and Scott (1983, 1984) and subsequently investigated by Lynch

(1992). The system is capable of producing self-sustained oscillations based on cubic

autocatalysis with catalyst decay and proceeds mechanistically as follows.

2A + 2B ~ 3B, -rA = klCACB

B ~ C, rc = k2CB

2D+2B~3B, -rD =k3cDCB

(15)

where A, B, C and D are the participating chemical species and k1, k2, k3 the rate constants for

the chemical reactions. This process is represented by the following set of ordinary

differential equations.

dX 2-=l-X -aXZ
dt

dY =l-Y -bYZ2
dt
dZ 2 2-=l-(l+c)Z+daXZ +ebYZ
dt

(16)

where X, Y, and Z denote the dimensionless concentrations of species A, Band D, while a, b,

C denote the Darnk6hler number for A, B and D respectively. The ratio of feed concentration

of A to B is denoted by d and the similar ratio of D to B bye. The process is chaotic, with a

well-defined attractor for specific ranges of the two parameters, d and e. For the settings: a =

18000; b = 400; c = 80; d = 1.5; e = 4.2, and initial conditions [O,O,O]T, the set of equations

was solved by using a 5th order Runge Kutta numerical method over 100 simulated seconds.

This gave approximately 10 000 observations, which were resampled with a constant samp-

ling period of 0.01 s. The Y state was taken as the output variable. Figure 3 shows the attractor

of the data reconstructed from the process states X, Yand Z.
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Figure 3 Attractor of autocatalytic process constructed from process states X,

Y,z.

Two different data sets were considered in order to assess the effect of the size of the data set

on the identification method. The smaller of the two sets consisted of the first 2000 observa-

tions of the original data set of 10 000 observations, while the larger of the two sets consisted

of the first 8000 observations. In each case the remainder of the data was used to validate sub-

sequent models.

Classification of the data with type 2 surrogates (defined in section A.7) was performed first.

This entailed calculation of the correlation dimension for each of the two data sets, as well as

for 15 surrogate data sets generated from each data set. The results for both data sets are

shown in Figure 4(a) and (b). The deterministic character of the data is evident from these

figures. The shape of the correlation dimension curve for the observed correspond with the

wide, two-dimensional ribbon shape of the attractor, curved in three dimensional space. The

magnitude ofthe displacement between the correlation dimension curves of the surrogate data

and that of the observed data is an indication of the difference in complexity between the

random surrogates and the dynamic data. The difference in shape between the data in 4a and

4b is due to the possible non-stationarity of the data in the small data set compared to the

larger data set. Stated differently, the correlation dimension algorithm was exposed to a more

developed attract or in the larger data set. Embedding parameters were m=4, k = 10.
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Figure 4 Correlation dimension (de) vs. scale (log(e)) for Y-state (bottom curve)

of autocatalytic process and its AAFT surrogates based on (a) the

smaller data set, (b) the larger set.

The next step involved the embedding of each of the training and validation data sets in an

appropriate state space. By making use of the method of false nearest neighbours, both the

smaller and the larger data set could be optimally embedded in a three-dimensional space

(m = 3). Average Mutual Information analysis indicated a time lag, k = 7, between embedding

variables. Two non-linear models were subsequently fitted to the data.
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3.2.1. Multi-layer perceptron network model

The first two model structures consisted of multi-layer perceptron neural networks, each with

an input layer of three nodes, a hidden layer with six bipolar sigmoidal nodes (activation

functions of the form gO= [1- expOll[l + expO]) and a single linear output node. The

parameter vectors, B1 and fh, of both MFF1 (B1) and MFFZ( fh) were estimated with the

Levenberg-Marquardt algorithm, based on the smaller and larger data sets respectively. The

optimal model order was determined via cross-validation on the test data, for both the smaller

and the larger data set. For conciseness, MFF81 and MFF8Z will indicate MFF1(Bd and MFFZ(fh),

respectively.

The MFF81 was able to predict the data one-step ahead in the associated validation data set

very accurately (Rz = 0.999), as indicated in Figure 5. MFF8Z performed with the same degree

of accuracy.
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Figure 5 One-step prediction of autocatalytic Y-state (+ marker) vs. Y-state

using a MLP network trained on the smaller data set.

The free-run predictions for the two data sets are shown in Figure 6(a) for MFF81 and Figure

6(b) for MFF8Z' As can be seen from Figure 6(a), MFF81 could predict the data accurately in a

free-run mode, up to about the 60th observation, after which it momentarily became unstable,

then became a pseudo-periodic oscillation that grossly overestimated the actual values of the
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observations. A-1FF6z performed significantly better, but after approximately 180 observations

the predictions started to deviate significantly, as indicated in Figure 6(b). It is possible that

the deviation between the output of MFF6Z and the observed data may be attributed to the

chaotic nature of the process, with the model merely being out of synchronization with the

process.
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Figure 6 Free-run prediction of autocatalytic Y-state with MLP network

models (x marker), (a) MFF61 and (b) MFF620
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3.2.2. Pseudo-linear radial basis function model

The set of pseudo-linear radial basis function model structures previously proposed by Small

and Judd (1998) was also fitted to the data sets by using variable embedding, Gaussian radial

basis functions and an algorithm that optimizes model size via Rissanen's minimum

description length (MDL) of the model during each iteration (Judd and Mees, 1995; Small and

Judd, 1998a). The variable embedding strategies were restricted to a maximum of three-

dimensional embeddings and maximum lag of nine sample periods.

The pseudo-linear radial basis function model structure, MPL, consisted of a combination of

linear terms and a number of Gaussian radial basis function terms. The algorithm of Small

and Judd (1998) determines the combination and number of these terms by using minimum

description length as a criterion. MPLl (B) based on the smaller set used 23 Gaussian kernels,

while MPL2( B) based on the larger data set used 18 Gaussian kernels. For conciseness, MPL61

and MPL62 are used instead of MPLl (B) and MpL2( B). Like the MLP network model, MPL61 and

MPL62 was able to predict the data one-step ahead in the validation data associated very

accurately (R2 = 0.999), as indicated in Figure 7 (for MPL61).
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Figure 7 One-step prediction of observed autocatalytic Y-state with MPL61 vs.

the observed Y-state (x marker).

The free-run predictions are shown in Figure 8(a), using MPL61 and Figure 8(b), using MPL62.

As can be seen from these figures, MPL61 and MPL62 could predict the data more accurately in
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free-run mode than MFFel or MFFe2. This was especially so for the smaller data set, although

MpLe1 left the true attractor after 150 observations. MpLe2 kept up with the attractor until after

observation 200. This was at the expense of a much higher processing cost due to the larger

data length. Both models managed to approximately follow the tendency of the attract or, but

could not quite reach the bottom of the troughs and were also partially out of phase with the

observed Y state.
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Figure 8 Free-run prediction of observed autocatalytic Y-state vs. Y-state (x

marker), for (a) M.>Lel and (b) MPLe2•
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Based on these results, it is clear that analyses of one-step ahead predictions are

comparatively poor indicators of the quality of the models and that the free-run predictions

provide a better idea of the adequacy of the models representing the dynamics of the system.

These analyses can be formalized by comparing the surrogate data derived from the models

with the actual data. The results for MFF82 are shown in Figure 9. The results pertaining to

MFF81 are not shown, owing to the obviously poor quality of the model shown in Figure 6(a).

From Figure 9 it is clear, judged by the broken curve at the bottom that represents the data,

that the model MFF82 (solid curves) has not captured the structure of the data completely,

except in the large-scale region of the dynamic attractor (log EO > -0.9). The peculiar dip in

the bottom curve just after log EO = -0.9 is due to numerical instability in the correlation

dimension algorithm. In Figure IO(a), it can be seen that MPL81 has captured most of the large-

scale structure (log EO > -1.3) of the dynamic attract or, except in the small-scale region (that

is, the detail of the attractor, or high order dynamics). In contrast, MPL82 has evidently

captured most of the dynamic structure of the data at all scales, as indicated by Figure 1O(b)

and is overall the best model investigated here. Take note that the correlation dimension curve

representing the data is different from that in figure 4b, because it has been calculated for a

smaller data set from a different section data (the test data). Embedding parameters were m=8,

k=7.
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Figure 9 Correlation dimension curves of non-linear surrogates of MFF82 and

that of the observed data (broken line, bottom) from the larger data

set.
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Figure 10 Correlation dimension curves of non-linear surrogates and that of the

observed data (broken line, bottom), for (a) MpL81 and (b) MPL82.

Reconstructions of the dynamic attractor of the data, based on the actual data and the free-run

predicted data (MPL8Z) are shown in Figure I I(a) and Figure II(b). As can be seen from these

figures, the two attractors are remarkably similar in appearance to each other and also to the

attractor constructed from the X, Yand Z states, shown in Figure 3. This is confirmed by the
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position of the correlation dimension curve for observed data amongst the cluster of non-

linear surrogates in Figure 1O(b).
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Figure 11 Dynamic attractor of autocatalytic process reconstructed from (a) the

Y-state, and (b) the MpL82 free-run model of the Y-state.

3.2.3. Effect of measurement and dynamic noise

To test the effectiveness of the identification method on noisy data, Gaussian measurement

noise, as well as dynamic noise were added to the autocatalytic process data. The noise level

was set at O.1cr (10% of the sample standard deviation of the training data set) for
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measurement noise. Dynamic noise was added by a modified one-step predistion of the

training data with MPL8Z. Noise of 0.10 (10% of the' sample standard deviation of the training

data set) was added to the i'th point, which was then included in the embedding for prediction

of the (i+ 1)'th point.
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Figure 12 (a) Correlation dimension curves for autocatalytic Y-state with noise

(crosses) and its Type 2 surrogates, and for Y without noise (solid

line). (b) Correlation dimension for Y (solid), with dynamic noise

(dash-dot), or with measurement noise (dotted).
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In Figure 12(a), the correlation dimension curves of the noisy data, their associated surrogates

and the noiseless data are shown, while the correlation dimension curves of the data with only

measurement and only dynamic noise are shown in Figure 12(b). The correlation dimension

curve for the data containing both dynamic and measurement noise appear between the

noiseless data and the random surrogates in Figure 12(a). This is not surprising, since the

noise increased the complexity of the attractor. However, it is interesting to note the relative

positions of the small and large scale sections of the correlation dimension curves in

Figure 12(b). For the data with only measurement noise, the whole correlation dimension

curve has higher values than for the data without noise. On the other hand, the correlation

dimension curve for the data with dynamic noise converges on that for the noiseless data at

larger scales. A higher correlation dimension at small scales indicates more intricate

microstructure in the attractor, or more complex detail dynamics, caused by dynamic noise. A

higher correlation dimension at all scales, indicates an overall more complex structure in the

attractor. Embedding parameters were m=8, k=7.
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Figure 13 One-step predictions of autocatalytic V-state (+ marker) with MPL83

vs. the V-state with measurement and dynamic noise (a), and the free-

run prediction of the same data with MPL83 (b).

Another model structure from the set M*PL was fitted to the noisy data set, resulting in the

model MPL83. This model used 18 Gaussian kernels. Figure l3(a) shows the ability of MPL83 to

predict the data with measurement and dynamic noise one step ahead, while Figure l3(b)

shows the free-run predictions of MPL830 These figures indicate that though the model was
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able to make acceptable one-step predictions, it failed to adequately capture the small-scale

dynamics during free-run predictions by not following the peaks and troughs in the observed

data.

3.3. Conclusions

In this chapter a proposed formal methodology for empirical non-linear system identification

from an one-dimensional time series was successfully demonstrated on an autocatalytic

process. Classification of data prior to model selection and parameter estimation, as well as

validation and comparison of resultant models were performed using surrogate data methods.

With surrogate data methods, model validation is based on criteria related to the topology of

the system's dynamic attractor. Instead of comparing models based on single-valued statistical

criteria, they can be compared on multiple scales of attractor topology by means of surrogate

data methods. This allows better discrimination between models and can in principle also aid

in the development of better models at different dynamic scales, where one model is not

consistently better than the other over the entire range of scales.

From this investigation it is evident that different non-linear models may produce excellent

one-step predictions, from which it may be very difficult to assess or compare the general

validity of the models. For example, from the free-run predictions of the MFF and MPL models

it is quite clear that the MPL models was better able to capture the process dynamics from the

smaller data set, than the MFF models. This result demonstrates the inability of linear

statistics, such as R2
, to truly measure the performance of non-linear models during validation.

This conclusion can be extended to include cross-validation, in which R2 plays the same role

as in single-run validation, as used in this chapter.

As far as the application of surrogate data methods to the autocatalytic process in this

investigation is concerned, the following can be concluded:

• Surrogate data are particularly valuable for the screening of data prior to model building.

It is not always easy to determine the degree of determinism or stochasticity of real-world

data, and this technique allows the engineer to inspect the data prior to building a model.

• Since the correlation dimension characterizes the topology of the attractor of the system in

state space, it is a more rigorous criterion for the validation of dynamic process models

than statistical or empirical criteria often used in practice, such as the R2 statistic.
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• Smaller data sets are less likely to represent the full-range of the dynamic behavior of a

system and can therefore lead to the construction of less accurate global models. This can

be readily assessed by use of surrogate data methods to visualize the performance of the

system.

• Although a multilayer perceptron, as well as a pseudolinear radial basis function model

were capable of similar, accurate one-step ahead prediction of a chaotic autocatalytic

process, the pseudolinear radial basis function model was better able to capture the

underlying dynamics of the system.
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4 FAST OUTLIER DETECTION IN MULTI-DIMENSIONAL

PROCESS DATA

In this chapter the problem of near-real-time detection and removal of up to 15% radial

outliers from large data sets (10000 or more records) is investigated and a practical solution

demonstrated. Radial outliers lie each in a different direction, with their means offset from

that of the good data. There are several classes of outliers. Some classes are more difficult

than others to detect successfully. In general the detection of multiple, multivariate outliers is

particularly challenging. Among these, shift outliers, i.e. outliers that has a mean that is offset

from that of the good data, but with the same covariance matrix, are the most difficult to

detect. On the opposite end, radial outliers are easiest to detect. Outliers can also occur in

multiple clusters with difficulty to detect proportional to the size of outlier clusters.

It often occurs that an outlier is not revealed by inspection ofthe individual components (limit

checking) of a multivariate data vector, since for each component the extreme points are

within acceptable limits. However when plotted together in a phase plot, the outlier becomes

apparent since the vector containing the outlier components protrudes significantly from the

neighbourhood of data vectors. For vectors, x E i)1m with m > 3, it is not possible to directly

visualize and manually inspect for outliers. In the case of m :s; 3, human judgement has often

proved to be subjective and quite inconsistent, hence many mechanistic means have been

proposed so far to detect multiple outliers in multivariate process data. Hawkins (1980) has

reported some multivariate outlier detection methods, for example principal component

residues can be interpreted to identify outliers. In addition, principal component analysis can

be applied in visualization techniques, where the data are projected onto two- or three-

dimensional co-ordinates (Gnanadesikan, 1977). For example, two and three-dimensional

scatter plots of data and the first principle component are often made. Alternatively, outliers

can be detected by cluster analysis, without necessarily visualizing the data. The efficiency of

some of these techniques can be severely limited when high-dimensional data are considered.

Direct statistical approaches such as probability plots can facilitate discovery of outliers that

distort location, scale and correlation estimates of data.

In order to distinguish between valid observations and outliers, it is required to estimate

characteristic parameters of the distribution of observations as well as calculate a test statistic.
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Often the probability distribution of the data is unknown, and consequently one attempts to

find a robust estimator of the location and shape of the multivariate data. Some past methods

include search algorithms to find the minimum volume ellipsoid (Hampel et aI., 1986) or

minimum covariance determinant (Rousseeuw and Leroy, 1987). Most methods are affine

equivariant, which means they are invariant in terms of outcome under linear transformations.

Rocke and Woodruff (1996) gave a comprehensive overview of multivariate outlier detection

algorithms. In their paper, Rocke and Woodruff constructed a two-phase method that

estimates the location and shape (phase one) and determines outliers by applying a X2 outlier

criterion (phase two). In the first phase the location and shape are initially calculated by

sequential point adding, using the minimum covariance determinant as initial estimation of

shape. Finally shape is estimated using bi-weight M estimation. In the second phase a cutoff

point is determined by simulation and the location and shape are updated using the (I-a)

fraction of points falling within the cutoff region. Observations whose Mahalanobis square

distance, using the updated location and shape, is larger than X2p;1_a(P is the dimension of the

data) are rejected as outliers. Arguing that shift outliers are the hardest to locate, they showed

successful results based mainly on this class of outliers. A practical limit to the ability of this

algorithm, in terms of required data and processing time, is a maximum of about 35% outliers

in 20-dimensional data. However, linearly extrapolating the results in table 5 of Rocke and

Woodruff (1996) suggests that computational cost of this method may be prohibitively high

for application to large data sets (size of order 10000 records) often found in industry.

Points on the perimeter of a multivariate data space will by definition be coplanar with a

convex hull constructed around the data, and so will be a fraction of potential outliers in the

data. A novel method implementing this consequence is proposed to detect multivariate radial

outliers in large data sets. The method is based on the use of convex hulls and the

Maha1anobis distance. This method is compared to the Rocke and Woodruff algorithm (Rocke

and Woodruff, 1996) in an example of elliptical random data and applied successfully to test

data recorded on a Diesel automotive engine. The technique has the benefits of low

computational cost with minimal operator input and can be implemented as a real-time outlier

detection tool.

Detecting radial outliers in data does not require the sophisticated search for location and

shape of generalized outlier detection algorithms. Also, a method was required that can be run

on large data sets in real time or near real time (less than 10 seconds wall-clock time). It is
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suggested that a convex hull can indicate the position of radial outliers and that the true

location and shape of the data can be estimated after removing the hull from the data.

The indicated outliers are qualified as true or false using a test statistic based on statistical

properties of the retained data.

4.1. Detecting radial outliers using convex hulls

Formally, the convex hull of a point set P is the smallest convex set that contains P. If P is

finite, the convex hull defines a matrix A and a vector b such that for all x in P, Ax+b <= [OJ.

A convex set can be defined as the intersection of a set of half-spaces, that is the set of points

on one side of a plane. It is possible to fit such a set of half spaces through the outer points of

a data set so that it constitutes a convex set. The convex hull with maximum possible volume

is co-planar with the outer data points in the set, and is by definition convex everywhere along

its surface. For a detailed treatment of convex hulls, the reader may refer to O'Rourke (1994).

When one observes the data space, X E 9{m, outliers tend to stand out from the local trend in

the data. A convex set of the data space will be coplanar with at least some of the outlier

vectors, but not necessarily all outliers, because less severe outliers may be excluded from the

hull under the convex condition. Depending on the topology of the manifold along which the

process state vector evolves, it is possible to improve the success of outlier detection by

constructing the convex hull on the first difference of the data. This approach applies

particularly to processes that can be described by a series of steady state set points with short

transient regions, that is, the data are grouped into a number of distinct clusters, and fall along

a piecewise smooth manifold. Inspecting first differences of such data, the incongruity of

outliers with normal data will be more pronounced than when inspecting the data itself.

Detecting outliers in data requires a criterion by which an outlier can be qualified as a true

outlier. Removal of valid data is undesirable - more so in small data sets (of order 1000

vectors or less). Since a convex hull does not distinguish between outliers and valid data

along the perimeter of data space, a detection criterion can be of significant importance.

Working either with or without first differences of the data, the reasoning regarding outlier

detection runs as follows:

Assume a data set with radial outliers. Construct a convex hull around the data in 9{m . It will

go through at least some of the outliers. Remove the hull from the data. Let d2 be the squared

distance of each vertex on the convex hull to the location of the remaining data, and d12 the
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mean square distance of the remaining data to the location )1 of the remaining data. If one

compares d2 to dl2 , incorporating a sensitivity factor s, it should be possible to distinguish

between true and false outliers.

As an indication of normalized distance between points and a data set, the Malahanobis

distance between points x and y in i)tm is defined as:

dA(x,y)= (x-yf n-I(x-y) (17)

where the metric n, is any p x p matrix related to the data. The choice of metric serves to
normalize distances using a specific statistical property of the data. A commonly used metric

is the covariance matrix. The more familiar Euclidean distance can be seen as the default

Malahanobis distance that uses the identity matrix as metric. To qualify a vertex ofthe convex

hull as an outlier, the convex hull was removed and the Malahanobis distance from the

vertices to the location of the remaining data compared with the mean Malahanobis distance

of the remaining data. A hull vertex qualifies as an outlier if the following inequality is

satisfied:

d~(QOi,)1I) > sd~ (XI,)1I) (18)

where d2(-) is the Mahalanobis distance normalized with the covariance matrix of the

remaining data, QOiE i)tm a vertex of the convex hull, Xl E i)tm the remaining data and s a

sensitivity factor. Since the Mahalanobis distance constitutes a spherical criterion, it will be

optimal for spherical data spaces, but lead to identification of some false outliers for data

spaces that are non-spherical, e.g. elliptically distributed data, like in the example below.

4.2. Procedure for radial outlier detection method

The procedure for radial outlier detection proposed here can be systematically performed in

the following steps:

1. Scale the data, X, by standardizing to zero mean and unit standard deviation. Then

normalize each component Xi to have unit length (IiXill = 1). Standardization and scaling

ensure that all data components are of the same order of magnitude, otherwise a

multidimensional outlier detection algorithm would disregard outliers in components of

comparatively small magnitude.
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2. Depending on the class of data, calculate the first difference, X', of the data, X. As will be

shown in this chapter, radial outlier detection of outliers in Gaussian data does not respond

well when applied to first differences of the data. On the other hand, for data with a

relatively smooth topology first differences enhances the efficiency of the proposed outlier

detection method.

3. Construct a convex hull Qo around XI (or X). The algorithm and code by Barber et al.

(1996) can be used for this purpose.

4. Remove Qo from XI (or X) to give Xl.

5. Calculate the Mahalanobis distance from vertices ofQo to the mean of Xl.

6. Apply the criterion in equation (18), d~(QOi,JlI» Sd~(Xl,Jll)'

4.3. Demonstration of outlier detection method

The outlier detection method is demonstrated in two examples. The first is a normally

distributed data set that has been generated so as to include a number of known outliers. The

second example is a data set recorded of an internal combustion engine on a dynamo test

bench, under controlled conditions. The outliers in this example were unknown before

applying the detection method.

4.3.1. Random data containing outliers

To enable an objective evaluation of the outlier detection technique, a two-dimensional

Gaussian data set was intersected with data describing an ellipse to produce a data set of 533

records. Six outliers were manually created by moving 6 arbitrary points in an XY phase plot

to outside the elliptic boundary. None of the outliers could be detected as such from

inspection of the X (Figure 14) and Y (Figure 15) components of the data set, since they were

within the range {-2.5, +2.5} spanned by each component. However, in a phase plot

(Figure 16) the outliers were clearly visible.
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Figure 16 XY plot of random data showing manually added outliers.

The first approach to detecting the outliers dealt with first differences of the data. A convex

hull was constructed around first differences of the data and then removed. The hull for the

first iteration of the outlier detection procedure appears in Figure 17. Even though the outliers

in the first differences of the data were correctly identified, these outliers did not necessarily

correspond to outliers in the data themselves, as is apparent from Figure 18. Consequently;

after two iterations only two out of the six outliers were removed from the first differences of

the data, as seen in Figure 19. For random data, it appears that extreme values in first

differences of data generally do not coincide well with extreme values in the data themselves.
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indicate identified outliers.
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algorithm, based on first differences of random data.

When applied to the data, instead of first differences of the data, the outlier detection scheme

converged quickly. After one iteration four out of the six outliers were detected correctly with
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the two least severe outliers remaining (Figure 20).The cost of outlier detection was five false

outliers identified at the ends of the long axis of the ellipse. This is due to the spherical outlier

criterion applied to a data set that is very non-spherical in terms of distribution. A default

sensitivity factor, s = 1, was used in all runs. However, since the motivation behind the

convex hull method is fast detection in large data sets, this cost is very low at 0.9% of sample

size. By comparison, the Rocke and Woodruff algorithm detected the same outliers as our

technique, also failing to detect the two least severe outliers. Their algorithm incurred zero

detection cost by not indicating any false outliers, as seen in Figure 21.
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Figure 20 Convex hull constructed around random data during first iteration of

the convex hull outlier detection algorithm. Triangles indicate the data

set after removing the convex hull. Crosses indicate identified outliers.
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Figure 21 Outliers detected in random data with the Rock and Woodruff

algorithm (indicated with crosses).

Since the motivation for this research was "real time outlier detection", the computational cost

in terms of time required to process 10000 elliptically distributed random data points was

investigated. The convex hull technique took 1.0 second to complete one iteration of detection

while the Rocke and Woodruff technique needed 660 seconds, running ANSI C code for both

algorithms under Microsoft@ NT4 on an Intel@ PH 400 Celeron™ processor with 256 MB

RAM.

4.3.2. Internal combustion engine test data

As a second example, the convex hull technique was applied to data recorded during an

endurance test of a Diesel engine under controlled laboratory conditions. Since the data would

be used later to simulate some of the recorded engine states, it was important to remove the

outliers. Also, since the outlier detection mechanism would eventually be required as part of

real-time test monitoring software, it was important to use a method that requires minimal

operator input.

To detect and remove as many outliers as possible, the outlier detection procedure was

iterated twice. This provided the opportunity to detect repeated outliers as well as hidden

outliers during the second pass. The data were first standardized to zero mean and unitary
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standard deviation and then normalized so that each component had unit length. A cop..vex

hull was constructed around first differences of the data. Figure 22 shows the unsealed

outliers, identified during the first pass using a default detection sensitivity, s = 1. In this data

set, outliers indicated in the range between indices 30000 and 40000 are related to a

disruption during the test schedule that caused a sudden fluctuation in the independent

variables. Figure 23 shows the unsealed data after removing the outliers.
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Figure 22 Outliers detected by convex hull construction on first differences of

engine data (detection sensitivity = 1). Crosses indicate outliers

identified during the first iteration.
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Figure 23 Engine data after removing outliers by two iterations of the convex

hull method (the hulls were constructed on first differences of data,

detection sensitivity = 1).

4.4. Conclusions

In this chapter the goal to develop a near real-time algorithm for detecting radial outliers was

effectively achieved by way of an algorithm that incorporates convex hull construction and

removal of points supporting the hull. The convex hull technique also requires no operator

input beyond setting a detection sensitivity ratio, for which the default setting generally

suffices. It runs fast with low computational and false outlier detection costs. The method was

demonstrated successfully on artificial random data, as well as real test data. Our investigation

into computational cost showed the convex hull technique to be two orders of magnitude

faster than the Rocke and Woodruff algorithm. Compared to the Rocke and Woodruff

algorithm, the cost in terms of number of false outliers detected was higher on the random

data, owing to the application of a spherical outlier criterion to elliptically distributed data.

The results for the engine data were satisfactory. Improvements to the procedure to minimize
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false outlier detection could be to replace the outlier criterion by a ratio of distances derived

as follows:

1. Construct a convex hull around the data and remove it.

2. Construct a second convex hull around the remainder of data and reduce the offset of each

hyperplane in the convex set so that on average (I-a) of data fall inside the hull. Assume

this to be the cut-off limit.

3. Calculate by suitable interpolation the vertices of the second hull that are co-directional

with those ofthe first hull.

4. Identify true outliers as those vertices of the first hull for which the ratio of Malahanobis

distances of co-directional vertices exceeds a set amount.

The above modifications to the proposed methodology will appear in future work in this field .
.•.
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5 EMBEDDING OF MULTIDIMENSIONAL OBSERVATIONS.

In this chapter, a novel method is proposed to reconstruct the dynamic attractor of a dynamic,

non-linear process from a multivariate time series observation of the process. Takens'

embedding theory (1981) is combined with Independent Component Analysis

(Hyvannen, 1999) to transform individual embeddings of multidimensional process

observations into a vector space of statistically independent vectors (state variables). The

method is demonstrated on an analytically defined autocatalytic process and an air-pollution

case study.

Embedding of observations in phase space is central to the analysis of non-linear time series.

This topic has been discussed in section 2.1.3 and'imp1emented in Chapter 3. It involves

reconstructing the dynamic attractor for deterministic systems and mapping the attractor onto

the time series, by using a non-linear model structure such as a multi-layer perceptron

network or a radial basis function network.

The attractor can be reconstructed from a time-series by delay-coordinate embedding

(Takens, 1981), and emulates the state space of the system. A state variable represents an

independent energy state of a system, therefore the embedding variables should be statistically

independent. The time-evolution of the state vector along a trajectory through state space

forms the dynamic attractor of the system. In addition, an attractor with optimal structure

expresses maximal information about the dynamic features of the process and this will benefit

any regressor fitted to the data.

While embedding of one-dimensional observations (time-series) is well-established in applied

mathematics, embedding of dynamic systems based on multi-dimensional observations has

not been sufficiently formalized. It is not always possible to predict the time evolution of a

system state from only a single observed variable. For example, the Lorenz system has three

state variables, x y Z, but x = f(x,y), while z = f(x,y,z), therefore z can not be properly

predicted only from x, y or even (x,y). For empirical systems the situation is worse, since the

observed variables required for a prediction model and the dynamic interdependencies are not

obvious. Where only linear relationships exist among observed states (variables), one may use

principle component analysis (PCA) to find a minimum subset of independent variables that

declares a required percentage of total variance. For non-linear relationships, techniques such
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as PCA often are insufficient, since they consider only static covariance. Also, PCA does not

necessarily result in optimal projection of independent components (Friedman et aI., 1974).

Multidimensional observations can be simulated by a model that maps p-l components onto

the remaining component of an 9tP observation space. This does not always ensure optimal

identification of the system that generated these observations. The Lorenz system is a case in

point, where (x,y) is insufficient to predict z. Cao et aI. (1998) proposed embedding all

components of the multi-dimensional observations using an optimal Takens embedding for

each component. The optimal values of embedding dimension for each component were

found by minimizing prediction error of a nearest neighbor, locally constant predictor.

Unfortunately Cao et aI. did not indicate how to optimize embedding lag, which is crucial in

reconstructing a representative attractor for practical systems. Optimization of embedding lag

is especially complex if noise is present in the observations (Lai and Lerner, 1998).

The aim of finding the optimal embedding lag is to determine sufficiently independent

embedding variables from the observed data, to serve as state variables in the dynamic

attractor. Traditionally, embedding lag is calculated using a minimum mutual information

criterion proposed by Frazer and Swinney (1986). To determine the optimum embedding lag

for multidimensional observations, one has to find the mutual information between each point

in anyone component and all points in the other components. Calculating only static mutual

information among observation components is similar to calculating the covariance matrix

during PCA, and does not fully consider nonlinear dynamic correlation. Alternatively,

creating a combined embedding space by the individual embedding of each observed

component could lead to significant statistical dependence between some of the embedding

(lag) variables. In this case the resultant manifold structure would not be optimally

reconstructed from the observations.

A different approach is therefore proposed to embed multidimensional observations that

avoids both linear approximations in finding embedding dimensions and potentially sub-

optimal embedding lags. With this approach, each component of an observation space, Y E9{P,

is treated as a one-dimensional time-series. Embed each component individually to generate a

set of subspaces. Combine these subspaces to form a first approximation of the attractor in

9{A = [9{mj 9{m2 9{m3 , .. 9tmp]. Finally, separate the lag variables and optimize the structure of

the attractor. This results in a reconstructed dynamic attractor based on the observation space.

In addition the resultant attractor structure is an optimal projection of the original embedding

variables.
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There are several ways to separate a set of variables, that is, to remove possible statistical

interdependence from a set of variables. Examples are:

1. Principle Component Analysis (PCA).

2. Projection Pursuit by PCA (Friedman et aI., 1974).

3. Projection Pursuit by Independent Component Analysis (ICA) (Comon, 1994).

4. Blind Source Separation by Self-organizing maps (Pajunen et aI., 1996).

5. Blind Source Separation by ICA (Hyvarinen, 1999).

Some of these methods will also project variables so as to optimize the resultant

multidimensional structure (e.g. Projection Pursuit).

De-correlation and optimal projection by ICA as proposed by Hyvarinen (1999) is an

acceptable median between PCA, on the one hand, and Blind Source Separation using the

minimum description length (MDL) principle (Rissanen,1989), on the other hand

(Pajunen, 1998). PCA, though simple and computationally inexpensive, has limited ability for

optimal projection and component separation, while Blind Source Separation using MDL,

though more capable than ICA, is still computationally prohibitive in practical applications to

classes of non-linearly mixed components.

In this chapter the identification of an autocatalytic and an environmental system is discussed.

Both systems are multidimensional and therefore will be parameterized by various

multivariate embedding strategies. In the first case study a parameterization will be devised

for the simulation of one autocatalytic state in terms of the others. In the second case study a

parameterization will be arranged to predict all observed states. Non-linear model structures

will be fitted to map the embedding at time t to the observation at time t+1. After optimizing

the model structures against the R2 criterion, an iterative free-run prediction will be performed

for the environmental system. That is, the embedding will be updated with predictions instead

of observations while the model is running. The resultant prediction array will be then

compared to the observations, first by inspection, and if very similar qualitatively, in terms of

the correlation dimension statistic.

5.1. Multidimensional embedding methodology

System parameterization by the multidimensional embedding method proposed in this

chapter, consists of the following steps:
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1. Optimal embedding of individual observed components,

2. Scaling embedding components Xi as II Xiii = 1,

3. Optimal projection of state space onto statistically independent state variables.

4. Selection of a non-linear model structure to approximate the output function of the

system.

5.1.1. Optimal embedding of individual components

Each component of the multidimensional observation (time-series), is embedded usmg

Takens' embedding. The embedding lag is determined by the minimum mutual information

(AMI) critetion proposed by Frazer and Swinney (1986) and the embedding dimension by the

false nearest neighbours (FNN) algorithm of Kennel (Kennel et aI., 1992).

Let Y = [Y1,Y2, Y3, ... ,YNY be the array of p-dimensional observations, where

Yj = [YiI'Yi2'Yi3'."'YiP] , i = 1,2,3, ... , N;. Multidimensional embedding ofY results in the

following embedding matrix:

x=
XII

X2I

Xl2

X22

XIp

X2p
(19)

where

XN-JO,1 XN-JO,2 XN-JO,p

Xij ~ [Yi+k}ernr11,} Yi+k }(rn r'l),}

i=1...N,j=1...p

and Jo = max kj(mj -1)+1.
l~j~M

Yi,} ]
(20)

5.1.2. Optimal projection of initial embedding

Projection of the embedding X onto directions that optimize the structure of the attractor and

statistically separate the embedding variables, is achieved by the following linear

transformation:
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S=WX, (21)

where S is the optimal projection of the original embedding X and W is the separating matrix.

The dimension of S may be less than that of X . Thus one may achieve optimal projection,

reduction of dimensionality as well as independence of embedding variables.

To find W, one has to maximize the negentropy JG of X, which is equivalent to minimizing

the cross mutual information amongst components of X, under the constraint of decorrelation

of components. Formally:

M
maximize L JG (w i) wrt. Wi'

i=1

under the constraint,

E{(wf XW) )}= 0jk
where

JG(W)= [E{c(wT X)}-E{G(v)}j

(22)

(23)

(24)

with G some non-quadratic, contrast function that estimates the probability density function of

an independent component, c some insignificant constant, and v a standardized Gaussian

variable. Each vector Wi, is a row of matrix W.

Three practical choices of contrast functions (with their respective derivatives, indicated by

lower-case function symbols) are listed below:

tanh-function, GI(u) = ;1logcosh(alu), gl (u) = tanh(alu)

.. 2 2
GaussIan functIOn, G2 (u) = - al2exp( -a2 T)' g 2 (u) = u exp( -a2 T)

Power 3 function, G3(u) =tu4, g3(u) =u3

(25)

(26)

(27)

A specific choice of contrast function serves to optimize performance of the lCA algorithm.

Gj is optimal for most data sets, G2 for highly super-Gaussian data as well as when robustness

against outliers is important, and G3 for sub-Gaussian data with no outliers. (Super-Gaussian

data has a distribution that "stands out" above the normal distribution curve N(j..L,l), while sub-

Gaussian data has a distribution that lies below the normal distribution curve N(j..L,l).)
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An important condition contained implicitly in equation (24) is the data may not be Gaussian,

otherwise the maximization in equation (22) will not converge. However, should the data tum

out to be Gaussian, or random for that matter, a state space parameterization would be

excluded by classification (as discussed in 2.2.3). Thus choosing independent component

analysis to separate the individual embeddings into subspaces containing independent state

variables is not restrictive.

The maximization of equation (22) is done by a fixed-point algorithm developed by

Hyvarinen (1999), which is a batch process (not gradient decent). It converges at least

quadratically for practically any non-Gaussian distribution using any G and is roughly

equivalent to projection pursuit because it estimates independent components by deflation.

This means the independent components are calculated one at a time in succession.

5.1.3. Selection of a suitable model structure

After embedding the observations, a suitable associated model structure is selected and fitted

to the data set, Z = [S Y].

The models fitted to the multidimensional embeddings were tested and validated by one-step

as well as free-run predictions. In the first case study, one step predictions of the one data

component were done, using perfect knowledge of the other data components. In the second

case study, simultaneous one-step predictions of all data components as well as free-run

predictions were performed. The R2 statistic for one-step prediction versus observations was

selected as linear criterion for embedding quality and model fitness. In addition, free-run

predictions were compared by way of inspection. The prediction stability boundary was

inferred from the estimation of the first global Lyapunov exponent and indicated the

reasonable free-run prediction horizon that could be expected.

A prediction procedure for the above multi-channel embedding strategy can be formulated as

follows:

1. Embed points Yij through Yi+k(m-l),j over P observation components, to form Xi , applying

equations (19) and (20).

2. Scale embedded components to unit vectors.

3. Separate embedded variables to form state variables, by applying equation (21), using W

calculated from the data set used for estimation of the model parameters.
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4. Predict Yi+k(m-l)+sj as Yi+k(m-l)+s,j' where s is step size (normally one sampling unit).

5. For free-run predictions, use the prediction Yi+k(m-l)+s,j in the next embedding Xi+l,

instead of the observation Yi+k(m-l)+s,j.

6. Repeat from step 3 for the length of the prediction run.

Note that if p-1 observations are embedded to predict the p'th observation, then the above

prediction scheme is not free-run but a simulation of y: y=f(x), since the p-1 observations are

fully known at time t.

5.2. Application of the embedding method

The embedding method was applied to a well-defined chaotic autocatalytic process that also

served as case study in section 3.2. In a second case study on air pollution data, the method

was applied to the prediction of atmospheric NOz concentration.

Owing to available software, computer hardware and project time constraints at the time of

this research, the set of MLP network model structures had to suffice for prediction of NOz
concentration. Given the right resources, the set of radial basis function model structures is a

very feasible alternative to the MLP network and will be investigated in future research on

atmospheric pollution.

All the MLP network model structures implemented a single hidden layer of bipolar

sigmoidal transfer functions, defined as gO = [1- exp(.)Y[l + expO]. The output layer

consisted of bipolar linear transfer functions. The Levenberg-Marquardt algorithm was used

for parameter estimation.

5.2.1. Autocatalytic process

The autocatalytic process in this case study has been formulated by Lynch (1992) and is the

same system as defined in section 3.2 as a state space system in terms of the following set of

differential equations:
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dX 2-=l-X-aXZ
dt

dY =l-Y -bYZ2
dt

dZ 2 2-=l-(l+c)Z +daXZ +ebYZ
dt

(28)

where, as before, X, Y, and Z denote the dimensionless concentrations of species A, Band D.

For the settings: a = 18000; b = 400; c = 80; d = 1.5; e = 4.2, and initial condition [O,O,O]T, the

set of equations was solved over 100 simulated seconds using a 5th order Runge-Kutta

numerical method. The result consisted of 23641 points that defined the evolution of the three

states, X Y Z over the whole simulation period. These states were resampled by linear

interpolation with a constant sampling period of 0.0033s to give 30000 records. The data was

sampled at a higher rate than in Chapter 3 and the system was run over a longer time span, to

generate enough data for the stationarity test. Alternatively, the sampling rate could have been

kept as in Chapter 3, and the system just be run over a proportionately longer time span, to

provide the minimum amount of data to test for stationarity. Figure 24 shows the true

evolution of the three state variables (X, Y, 2), while Figure 25 shows the dynamic attractor

traced by the state vector [X Y 2].
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Figure 24 Autocatalytic data, showing X, Y, and Z states resulting from a

numerical solution for the process state equation.
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Figure 25 Dynamic attractor of autocatalytic process (first 10000 records),

constructed from Xb Yt and Zb resulting from a numerical solution

for the process state equation.

The aim of investigating the autocatalytic system was to predict one of the states from th~

other states with a non-linear predictor, using a suitable parameterization.

From inspection of the process state equations (28), it is apparent that Z = F(X, Y, 2).

Consequently a non-linear Multi-In-Single-Out model structure was selected from the set of

feed-forward neural net models, M*FF, to predict ZI+1 in terms of [X Y]I'

The system was parameterized by individual embeddings of X and Y. AMI and FNN

calculations for each of X and Y resulted in an embedding dimension set of {3,3} and lag set

of {21,26}. The large embedding lags was due to the high sampling rate, which results in high

linear correlation between adjacent data points. The individual embeddings were combined

into Ao E ~9 and separated as So=WoAo, using ICA with the G2 contrast function (the only

function for which the ICA algorithm converged). The following model structure was to be

fitted:

Mo: So (t)--joZ(t+ 1) , Mo E M*FF (29)
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The optimal model topology had a hidden layer of 8 bipolar sigmoidal nodes. The effect of

separation by leA was investigated in terms of a second parameterization consisting of the

same embedding as above, but without the explicit separation of embedding variables. This

model structure was called MIand used the same model topology as Mo.

After parameter estimation, the models were tested on records 25001 to 26000 records and

validated on records 26001 to 27000 of the dataset. The test set 25001 to 26000 was unseen

the first time it was used, however in the case of adjustments to optimize the model, the set

was reused to test the model. On the other hand, the validation set, 26001 to 27000, were used

only once - to validate the model after optimizing it- and was therefore unseen by the model

until validation. The prediction of Z by Mo( It) operating on the validation data appears in

Figure 26 and had an R2 statistic of 0.9993. The prediction of Z by MI(el) was very similar

with an R2 of 0.9963. No free-run prediction was performed because it is not defined for

mappings of the form f: X,Y~Z.
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Figure 26 Prediction of Z-state from X and Y taken from the validation data set.

Zs is the prediction (broken line) and Z the observation, while r is the

prediction residue.

5.2.2. NOx -formation

Air pollution in terms of oxides of nitrogen (NOx) is often a serious problem in metropolitan

areas. NO and NOz, collectively known as NOx, are products of high-temperature, aerobic

combustion. Combustion sources of NOx are, among others, spark and compression ignition

engines, oil-fueled power plants and tyre burning. Subsequent to the emission of these

pollutants, they are subjected to solar radiation. The molecules absorb light and convert this

energy into molecular energy. This photochemical reaction results in the formation of NOz

from NO (Grobliki et ai., 1981). Meteorological factors cause the NOx pollutant to be

transported and dispersed in the atmosphere. Not only are these pollutants a health hazard, but

this reaction cycle is one of the precursors to photochemical smog (Dzubay, 1982).
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There are essentially three main approaches to atmospheric dispersion modelling in general:

the Eularian approach, the Lagrangian approach, and the statistical approach (Hassounah and

Miller, 1994). The Eularian approach uses a continuity equation to develop a description of

the physical and chemical processes that govern the relationships between emissions and the

resulting concentrations. It is a rigorous model that addresses physical and chemical processes

from first principles. It requires spatial and time resolved information of emission sources.

Needless to say, it is extremely complex and requires vast amounts of input data and

processmg power.

The Lagrangian approach is the most frequently applied method. The motion of the pollutant

particles in the atmosphere is modeled using a probabilistic description, and this in tum is

used to derive expressions for pollutant concentration. The most commonly used probabilistic

description is the Gaussian plume model. This model has a few simplifying assumptions that

are restrictive (Turner, 1994). It assumes steady state conditions - the rate of emission is

constant, the probability of the wind velocity is independent of time and location.

Furthermore, the concentration of a pollutant along the vertical and crosswind axes, IS

assumed to be normally distributed.

With the statistical approach, statistical techniques are used to establish relationships between

pollutant emissions, meteorological conditions and pollutant concentrations. The time series

of the pollution data is correlated to synchronized emission and weather data using techniques

such as multiple regression analysis, principal component analysis etc. However, most of

these statistical models are linear. Hence, prediction of an evidently non-linear system is done

using linear techniques. This is not ideal since a linear model will fail to identify important

underlying non-linear dynamics.

During the past two decades, important progress has been made in the field of non-linear time

series analysis. An empirical, non-linear regression model of the formation of NOz can be

constructed based on synchronized observations of the chemical constituents and contributing

environmental variables. The two main contributing environmental variables are usually taken

to be ambient temperature and solar radiation. A predictive model would be valuable for

metropolitan planning and management.

Air pollution in the Cape Town Metropolitan Area was selected as a basis for a case study. A

data set was kindly provided by the Cape Town Metropolitan Scientific Services. The data set

contained 8664 records of synchronized, hourly mean concentrations of NO, NOz, ambient

temperature and solar radiation for the city center of Cape Town, observed during 1996.
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NOz concentration (ZN02) was chosen as the dependent variable with the aim to make

acceptable one-step and free-run predictions in terms of NO concentration (XNO) and solar

radiation (XEs). The first 6000 records was selected for fitting a non-linear model. Figure 27

shows NOz concentration. The sample size was determined by a stationarity test on ZN02,

proposed by the author. The test involved dividing a data set of some initial size into two

halves, Yj and Yz. Then the joint histogram P(Yj,Yz) for points of corresponding index in Yj

and Yzwas calculated. Figure 28 shows the evolution in the difference in centroid of the joint

histogram P(Yj,Yz) between iterations. The indicated point of sufficient stationarity was

determined from convergence of the mean difference over a moving window of 64 iterations.

Refer to section A.6 for details. A total of 452 outliers were detected and removed from the

full observation space, using the convex hull technique (Barnard et aI., 1999b) described in

Chapter 4. There was no way to establish how many false outliers existed in the total number

of indicated outliers. An side effect of running the outlier detection algorithm repeatedly, is to

systematically reshape the data space towards a spherical geometry due to the spherical outlier

criterion, therefore the algorithm was iterated only once on the data set. It was accepted that

some removed data were in fact the result of the dynamics and therefore false outliers. The

integrity of the technique as demonstrated in Chapter 4 was trusted and it was assumed that

the percentage of false outliers was not excessive.

After removing outliers, the data was classified as either deterministic or stochastic, using the

surrogate data method described in 3.1. Briefly this entailed that surrogate data were

generated based on the ZN02 data by randomizing the sample index and the Fourier spectrum.

Correlation dimension curves were calculated for both data and surrogates, using the

algorithm by Judd (1992), and mutually compared. The data appeared very random from

inspection of the correlation dimension curves (Figure 29), but not entirely random, otherwise

the curve for ZN02 would have been located among those of the surrogate data. The

consistently lower dimension values for ZN02 indicated some inherent dynamics existed. In the

absence of a known noise model, and given the risks of noise-reduction in non-linear systems

(discussed in section 2.3.2) no explicit pre-filtering was applied to the data. The largest

Lyapunov exponent was estimated as 0.974. The Lyapunov exponents were calculated, using

the algorithm by Brown et. al. (1991) as implemented in the commercial software package,

cspW, by Applied Nonlinear Sciences. Using equation (12), the prediction horizon was then

determined:
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'stL =-A}
}

= 0.974

= 1.02

This result implied a prediction horizon of 1.02 h , which meant that any model could expect

difficulty under free-run prediction. Consequently, one-step predictions were the best one

could hope for, unless some noise-reduction was applied.
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Figure 27 NOz data used for fitting a non-linear MLP model. No filtering was

applied, but outliers were removed.
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of the joint probability matrix between iterations is indicated by
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A principal component analysis (Table I) indicated that environmental temperature had no

major influence on 2No2 and this component was consequently removed from the data set.

Table I lists the loading of each principle component with respect to each variable in the data

set. In addition, the column headings of the table include the eigenvalues as Ai as well as the

cumulative percentage of variance declared by each principal component. From inspection of

the table it is clear that environmental temperature played a small role in terms of the first,

second and third principle components, with loadings of 0.1040, 0.0677 and 0.1265

respectively. Cumulatively, the first three principal components declared 98% of the total

variance in the data. The system was therefore redefined in terms of the three remaining

observed variables: XNo, XEs and 2N02. Optimal parameterization of the system was

investigated in terms of two alternative embedding strategies and associated model structures.

Parameterization according to the first strategy implied embedding all observation

components using optimal individual embeddings summarized in Table II. In terms of the

second strategy only the 2N02 was embedded and the observed XNO and XEs were included as

one-dimensional time series (Table III). The motivation behind the first embedding strategy

was that the three variables were all dependent observations of the microclimatic system and

thus allowed an embedding of each variable. On the other hand, the second strategy treated

XNO and XEs as control variables and thus independent, which did not justify embedding them.

For conciseness, MZ8 is used instead of Mz(8z), and so forth.

Table I Results from principal component analysis of air pollution data.

PC} PCz PC3 PC4

A}: 9.065e-005 Az: 6.798e-005 A3: 1.604e-005 A4: 2.903e-006

(51% variance) (89% variance) (98% variance) (100% variance)

ZNOZ 0.3163 -0.3527 0.8722 -0.1213

XNO 0.4135 -0.7841 -0.4575 0.0691

XT 0.1040 0.0677 0.1265 0.9841

XEs 0.8473 0.5060 -0.1178 -0.1093
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In accordance with the first embedding strategy, the individual embeddings were combined as

Az E 9i17 and separated as Sz=WzAz by ICA with the G3 contrast function. The following

model structure was to be fitted:

Mz: SZ(t)~ZN02(t+1), Mz E M*FF (30)

In accordance with the second embedding strategy, individual embeddings were combined as

A3 E 9i7 and separated as S3=W3A3. The associated model structure was:

M3: S3 (t)~ZN02 (t+ 1), M3 E M*FF (31)

To test the influence of ICA, the system was again parameterized in accordance with the first

embedding strategy, but without separation by ICA, resulting in the following model

structure:

M4: A4(t)~ZN02(t+1), M4 E M*FF (32)

Finally it was investigated if there was any advantage in embedding by specifying a fourth

parameterization, without embedding of any variable. The associated model structure was:

Table II

Ms: [XNOXEs]~ZN02(t+1), Ms E M*FF

Embedding parameters for air pollution data: strategy 1

(33)

m

k

NOz

5

9

NO

5

14

Es

7

9

Table III Embedding parameters for air pollution data: strategy 2

m

k

NOz

5

9

NO

1

o

Es

1

o

MLP networks with single hidden layers were selected as model structures in all cases. For

MZ8 each hidden layer initially consisted of 16 bipolar sigmoidal nodes (activation functions
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of the form gO = [1- expOY[l + expO]). In addition, a bipolar linear output layer was used in

each case. The network parameters were estimated by using the Levenberg-Marquardt

algorithm. The initial model order (7 nodes) was selected on the basis of research (Lawrence

et aI., 1996) that indicated that the back-propagation algorithm will not get trapped in local

minima of the error surface when one less node than the dimension of the input space is

utilized. From this point onward in the optimization of the network, the number of nodes were

doubled at each optimization iteration. Over-fitting was indicated by the network performing

worse against the R2 statistic during testing with 16 hidden nodes than when using 8 hidden

nodes, while with 7 hidden nodes the network again performed sub-optimally. Therefore, 8

hidden nodes were taken as optimal. A more elaborate evaluation of model performance by

surrogate techniques was impossible due to the high noise content of the data and the short

prediction horizon calculated earlier. These conditions disabled free-run predictions over long

enough periods for reliable application of a non-linear surrogate technique, which requires at

least 1000 predicted points for sufficiently accurate estimation of correlation dimension. The

optimal topologies for the other models were determined in similar fashion and are listed in

Table IV.

Table IV Optimal MLP network topologies for various parameterizations of the

NOx system.

Hidden Nodes

M26

8

M36

14

M46

14

MS6

8

All models were tested by doing one-step and free-run predictions on observations 6001 to

7000 and validated on observations 7001 to 8000. These data sets were embedded and

separated using the respective embedding parameters and separation matrices as calculated

from the training data. The validation results for one-step and free-run predictions according

to the first embedding strategy are shown in Table V and Figure 30, and the results according

to the second strategy in Table V only.

Table V R2 statistics for one-step prediction of ZN02 , XNO , XEs
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ZNOZ

XNo

XEs

MZ8

0.7937

0.1989

0.9315

M38

0.7936

0.2346

0.9143

M48

0.8244

0.1741

0.9267

MS8

0.7374

0.1632

0.8621

One-step predictions did not reveal significant difference between the embedding strategies,

as can be seen from the RZ statistics in Table V. For example, 2N02 was predicted best by M48,

XNo by M38, and XEs by MZ8' However, parameterization without embedding clearly led to a

less descriptive model ofthe system, as indicated by MS8in Table V. Separation of embedding
variables by ICA appears to have a slight negative influence on the linear correlation between

prediction of 2N02 with observed 2N02. To clarify whether this meant that MZ8and M38 had
failed to describe all determinism in the data, the prediction residual was subjected to the

Hinich test (see A.5) and found to be Gaussian. This result indicated that the model did

describe all the inherent dynamics and that the noise component is Gaussian. Consequently,

the independent components ofSz were tested for randomness. SZ,7, SZ,16 and SZ,17werefound

to be Gaussian with more than 70% confidence. On the other hand, none of the components of

the A4 were Gaussian, which implied that the noise was mixed with the signals. The

conclusion was that separation by ICA after embedding actually managed to separate the

noise components from the deterministic components. The inclusion of explicit noise

components in the input space probably caused less optimal parameter estimation than when

spreading the noise over all the input components as for M48. Due to time constraints on the

research project, the data were not reconstructed without the noise components, but this could

be a sensible further investigation.

Iterative free-run prediction was attempted up to 48 steps ahead. Then the input to the model

MZ8was reset with the embedding of 2N02 , XNO and XEs at that index and another 48 steps

were predicted. Results were poor, as expected from the short stability horizon, and are shown

in Figure 30. Consequently no surrogate analysis was performed on the free-run prediction

results. A more advanced model class and a suitable noise-reduction scheme should improve

the extreme modeling situation. The results for one-step prediction of 2N02 by M18over the
first 200h of the validation data set appear in Figure 31. The mean prediction error normalized
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with the mean observation of ZN02 was 0.2481. It was concluded from these results that the

model was capable of sufficiently accurate one-step predictions. The ability of the model to

follow the peaks of the observed NOz concentration is particularly significant, since the

maximum expected levels of NOz play an important role in environmental management and

planning.
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Figure 30 Validation of a MLP network model by simultaneous free-run

prediction of NOz, NO and Es, using embedding strategy 1. The result

for NOz is shown here for the (a) first 48 hours, (b) next 48h. Ys and Y

are prediction (dashed line) and observation (solid line) respectively,

while r is prediction residue.
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Figure 31 Validation of a MLP network model by simultaneous one-step

prediction of N02, NO and Es, using embedding strategy 1. The result

for N02 is shown here for the first 200 hours. Ys ,Y, and r are defined

as above.

5.3. Conclusions

In this chapter a method for the embedding of a multidimensional time series was proposed.

The method was demonstrated on two case studies, a chaotic autocatalytic process and the

formation and dispersion of atmospheric NOz. Results from the first case study suggested that

the embedding method had enhanced the ability of a non-linear regressor to simulate a state of

chaotic dynamics in terms of the other states. In the second case study the embedding method

enabled acceptable one-step prediction of NOz. The model based on a parameterization

without embedding, performed significantly worse than the other two models that had used

embedding strategies. In addition it became clear that multivariate embedding combined with

separation of components by ICA enabled at least partial separation of noise components from

the deterministic content.

No noise reduction was done prior to estimating the model parameters, so as to preserve small

scale dynamics in the observations. Improvements in terms of the selection of a model

structure in the first case study, and noise-reduction in the second case study, will probably
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improve these results. The fundamental advantage of the multidimensional embedding

technique has, however, been demonstrated here, especially in the presence of noise.
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6 ONLINE DIAGNOSIS OF TEMPORAL TRENDS IN CRITICAL

SYSTEM STATES

In the previous chapters techniques for the acquisition of a stationary data set, selection of

system variables, system parameterization, noise-reduction, outlier detection, model

parameter estimation and model validation have been addressed. In this chapter most of these

techniques are assembled in a method for the on-line diagnosis of temporal trends in a critical

state of an internal combustion engine. Such an application presents several challenges:

multivariate non-linear modeling in the presence of both measurement and dynamic noise at

unspecified levels, the stationarity of recorded data, outlier handling and the simultaneous on-

line interpretation of several system variables.

The essence of the diagnosis of temporal deterioration in critical systems states lies in the

simultaneous interpretation of more than one system variable and an estimation of the

likelihood of finding the system in a certain state. For the interpretation of simultaneous

states, a reliable and sufficiently accurate model that describes the relevant output behaviour

of the system is required. In addition, the simulation error during system operation can be

compared statistically to the simulation error that resulted from simulating the stationary data

set from which the model parameters were estimated. This evaluation is, broadly spoken, a

likelihood estimation of the system being in the current state and can be used to flag the

operator when the current state is unlikely and therefore in a probable failure condition.

Automation of state observation in automotive engines has developed significantly during this

decade. Several proprietary computerized control and data-logging systems exist in the

automotive industry. However, these systems often fall short regarding simultaneous

interpretation of measured engine states. Recently, the application ofMLP network models of

an internal combustion engine entered into engine control and diagnostics. Atkinson et al.

(1998) developed MLP network models as virtual sensors for adaptive control of engine

emissions as well as diagnostic purposes. A partially recurrent neural net was fitted to linearly

filtered data recorded on spark and compression ignition engines. Grimaldi and Mariani

(1997) experimented with various MLP networks in an investigation to model various

measured engine states. Their research was ultimately aimed at meeting On Board II

Diagnostic (OBD II) regulation by the California Air Resources Board on engine emission
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control diagnostics. However, the important issue of dat.a sample length, which governs model

generalization, was not sufficiently addressed. Also, they used linear filters to attain good

model fit, which could have removed interesting and subtle dynamic information (Kostelich

and Yorke, 1988).

In this chapter, the simultaneous statistical interpretation of multivariate observations using a

MLP network and independent component analysis are proposed. Subsequently, the

diagnostic procedure is applied to data recorded of a compression ignition engine under test

conditions.

6.1. Statistical interpretation of observation and simulation

The simulation model of a multivariate system proposed in this chapter is expressed

mathematically as:

j:X-)Y

which simulates the dependent state vector, Yas

y= j(X)

(34)

(35)

Assume the system to be in either a normal operating condition or a failure condition, caused

by some mechanism of temporal deterioration of the system. The model will be applied to

detect failure of a system by simulating a critical dependent state, given the independent

variables. Since the model will preferably not declare the measurement noise component of

the data, and also may not declare some of the secondary dynamics, there will be significant

temporal variance in the simulation error,

r=Y-Y (36)

Therefore a joint statistical evaluation of the operational history of the observed dependent

state and independent states is used to diagnose the system. The hypothesis is tested that the

system is not in a failure condition, based on the probability to observe a given history of

simulation error values. An internal combustion engine is used as subject in the following

statistical reasoning.

Assume a sequence, S, of N independent, multidimensional observations of a running internal

combustion engine. Let Y be an observation of a dependent variable and X an observation of
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an independent variable, both from S. The total probability to simultaneously find Y in one

specific region of S and X in another, can be expressed in terms of conditional probability:

N
P(Y)= LP(YIX)P(X)

11=1

(37)

The above equation can be simplified and expressed in terms of the appropriate joint

probability:

N

peA) =LP(Y nX)
11=1

(38)

Instead of using a multidimensional X, the joint probability can be reformulated in terms of

Y given in (35):

N
P(Y) = LP(Y nY)

11=1

(39)
;::;P(r)

where the probability distribution of the simulation error, per) over N, approximates the joint

probability.

The probability per) can be implemented in terms of a hypothesis test. Formulate the null

hypothesis that the engine is in normal operating condition. The null hypothesis will be

accepted if the actual probability of observing the simulation error beyond a given limit

percentile does not exceed the threshold probability of failure:

per > rpL) < P3(r > rpL)' (40)

where subscript 'J signifies threshold. If the null hypothesis is rejected, the engine enters a

failure condition. To estimate P3(r>rpd, set a limit percentile for the simulation error in the

training data, which would indicate the upper bound of the normal operating region. Let a

window of size Nw move along the training residue vector. Count the simulation error hits

beyond the limit percentile and normalize with Nw• Average the vector of normalized scores

over N-Nw• This mean, normalized simulation error score is an estimation of the probability

to observe the simulation error beyond the limit percentile. Finally, multiply the warning and

failure threshold factors with this probability to obtain the warning and failure threshold

probabilities, respectively.
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6.2. Diagnostic methodology

The diagnostic method proposed in this paper can be categorized conceptually into three

stages, i.e. preprocessing, model construction, and application. Briefly stated, the procedure

consists of the following steps:

1. Acquisition of a stationary data set.

2. Removal of outliers.

3. Estimation of the parameters of a non-linear, multivariate model, based on the data set.

4. Estimation of the probability of the simulation error to be in the extreme acceptable

operating region, based on the data set used for model parameter estimation.

During operation of the engine, the model simulates the dependent variable while engine

condition is diagnosed based on the statistical analysis of the simulation error in a moving

time window of fixed size.

6.2.1. Preprocessing

The data as recorded can not be used directly to perform malfunction detection, but has to be

preprocessed first. The aim of preprocessing is to convert ASCII data files into numerical

arrays, standardize and scale the data arrays and construct input and output spaces for the

simulation model. Stage one consists of the following steps:

1. Identify the dependent state, Y, and independent states, X={xt, X2, X3, ... xm}.

2. Determine the minimum size of the data set, Z=(X Y], that is stationary in terms of Yand

represents the engine under optimal performance conditions, as described in section A.6.

3. Standardize and scale data components so that 11011 = 1 for} = 1 ... m+1.

4. Detect and remove all outliers from the training set, as defined in Chapter 4.

5. Separate X into independent components, S, so that these declare 99% of variance, using

equation (21) as described in sections 2.2.1 and 5.1.2.

6. Combine input and output spaces as the training set, Z=(S Y] I Z E ms+p, SEms
, YEmp.

7. Standardize and scale Z so that Ilz;11 = 1 and Zi = o.
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6.2.2. Model selection and parameter estimation

In Stage two the model is fitted to the training data, tested for fitness and validated. Finally,

the statistical criteria required for engine diagnostics are calculated. This stage consists of the

following steps:

1. Fit a MLP network model structure to the training data as described in section 2.3.5. As a

heuristic rule, set the initial number of hidden nodes to double the dimension of input

space.

2. Test the model for fitness on part of the data not used for fitting the model as described in

section A.5. Since the model will be a simulation model and not a predictive model,

model performance can not be measured using free-run prediction and non-linear

surrogate methods, since free-run predictions are not defined for pure simulations. R2 is

therefore an acceptable minimum criterion of model performance. Apply a R2 of 0.90 as

minimum fitness criterion and a successful Hinich test as the maximum fitness test. If the

model fails the Hinich test and the R2 -test, attempt doubling the number of hidden nodes

again, refit and retest the model. If the model still fails the Hinich test, but passes the R2_

test, double the number of hidden layers, keeping the previous number of hidden nodes. If

the model again fails the Hinich test, but passes on a randomized index, keep this

topology. The simulation error distribution is already approximately Gaussian, with only

minor remaining correlated information.

3. Validate the model by simulating another section of data, unseen by the fitting algorithm

and not used during testing of the model. Apply the criteria in step 2 (above) on the

simulation error. Use a new validation set if any changes are consequently made to the

model.

4. Determine warning and failure threshold probabilities as described in section 6.1.

6.2.3. Applying the model

In Stage three the model is applied to simulate the dependent state on-line and the simulation

error is statistically evaluated in a moving time window. This stage consists of the following

steps:

1. Start observing all relevant states until the moving time window of Nw samples is filled,

then proceed at the sampling rate from step 2 onwards.
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2. Detect and remove outliers through a single-iteration convex hull procedure.

3. Calculate S =WX over the moving time window, using W from the training set.

4. Standardize and scale the data using the scaling vectors from the training set.

5. Count the observations in the moving time window of simulation error beyond Pi that was

specified for the training data. Normalize this score with Nw to get an estimated per > rPL)

and compare with the threshold PJ(r > rpd calculated on the training data. Test the null

hypothesis against the norm in equation (40). If the hypothesis is rejected, the engine

enters failure state.

6.3. Diagnosing a Diesel engine under endurance testing

The diagnostic methodology was applied to data recorded during endurance testing of a

commercial, turbo-charged and inter-cooled Diesel engine on an absorption dynamometer.

The sampling period was set to three seconds in order to capture interesting transient

behaviour after changeover between set points in the test schedule. A total of 751695 data

records were observed during 626h of testing. All irregular events were logged by the test

operator. The engine performed without apparent malfunction. The aim of the exercise was to

detect online an imminent need for maintenance overhaul of the engine, due to excessive

piston ring wear.

The "blow-by gas flow" of the engine was chosen as the dependent variable indicating piston

ring wear from a total of thirteen observed states. Data directly following the first 120h run-in

period were used for system identification. The minimum stationary data set size was

determined by increasing the initial data sample of 100 records in increments of 100 records.

The change in center of mass of the half samples' joint probability matrix was tested for

Gaussianity over a moving time window of 128 iterations. The test for Gaussian randomness

of the center of mass of the half samples' joint probability matrix is a very conservative

criterion for stationarity under the formulation as used in this dissertation. High confidence

levels such as 90 or 95% would result in over-estimation of the stationary length. This was

established by calibrating the stationarity test during a tedious process of iteratively modeling

the data using data sets of increasing size at each iteration and testing the generalization of the

model on a later section of the recorded data. For the foregoing reasoning and from inspection

of the results in Figure 32, a stationary length of 46200 records (38h) was accepted at a
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moderate confidence level of 66%. All consequent system identification was performed using

a data set of this length.

The selected independent states were engine speed, torque load, induction boost pressure,

coolant temperature at heat exchanger outlet, engine oil temperature, diesel temperature and

post-intercooler temperature (Figure 33). The normalized AXMI between these variables at

zero lag and at a cut-off level of 0.50, indicated that engine speed, torque load, induction

boost pressure, Diesel temperature and post-inter-cooler temperature were strongly correlated

with the blow-by flow rate. After separating the initial input space of selected independent

states, the first two independent components declared 99% of the variance, and formed the

reduced input space to the simulation model.
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Figure 32 Change in center of mass of joint probability for half samples of

increasing sample size.
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Figure 33 Independent and dependent observed states used in diagnostic model,

after removing outliers.

Outliers were eliminated from the combined input and output spaces before reducing the input

space. The outliers were caused by typical test disruptions as well as scheduled maintenance

interruptions. After removing 91 outliers at detection sensitivity level 1.0, a feed-forward

neural net was fitted to the remaining data. The heuristic rule mentioned in section 6.2.2,

dictated that an initial four hidden nodes be used (twice the dimension of input space). The

Levenberg-Marquardt training algorithm converged within four iterations.

Model fitness was evaluated first in terms of randomness in the simulation error, using the

Hinich Gaussian test. After two trials of network optimization, a final topology with a double

hidden layer with 4 nodes each was used. The null hypothesis that the simulation error was

Gaussian was rejected, but accepted when the simulation error index was randomized,

indicating a small remaining deterministic content in the simulation error. The R2 statistic for

the training data was 0.961. The model was tested on data from record 60000 to 80000,

resulting in an R2 statistic of 0.932. Model validation was done on data records 80000 to

90000, resulting in an R2 of 0.926. The model rejected the noise and small scale dynamics,

while it simulated the global, large scale dynamics very well. This is in accordance with the

original intention not to use filtering to improve fit, but rather to rely on model structure,

dimension and the training algorithm to reach an optimal model. The model was accepted,

based on the overall result.
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In order to test the effect of outliers on modelling accuracy, a feed-forward neural net with the

same topology as the above neural net was fitted to the data without removing outliers.

Because of the very low outlier content, the R2 statistic for the training data was only slightly

lower at 0.955.
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Figure 34 Top sub-plot: Simulation of blow-by gas flow (broken line) and

observed blow-by from the validation data set. Bottom sub-plot:

Simulation error.

Diagnosis of engine failure was first demonstrated on the same section of data as used for

validation. This section, consisting of 10000 records, was divided into halves, which will be

called half samples. The second half sample was modified so that the blow-by flow rate

increased by a factor that changed along a linear ramp from a to a maximum of 1.3 at the end

of the half sample (Figure 35). The aim was to detect the point in time where the diagnostic

method would indicate failure condition, based on the modified observed and simulated blow-

by gas flow data. The estimated probability of observations in the critical region was

compared with the acceptable probability in this region inferred from the training data. The

failure condition would be indicated when the probability of observations in the critical region
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exceeded the acceptable probability. The lower boundary of the critical region was defined by

the mean 99% percentile (P99) of a 1000 point window moving along the training residue. The

acceptable probability to observe blow-by gas flow values in this region was the normal

cumulative density function, 1- N 199 ('up ar) = 0.00690, with P99 = 0.220, 'ur = E(E(r]] = -

0.00531 and (J r = E( ~E[(r - rY]) = 0.0914. The simulation error in a 1000 point window

conformed to the Hinich normality test after randomizing the sample index. Using the

artificially induced failure condition, a caution threshold as well as a failure threshold was

calibrated as 5N 199 (,up ar) and 20 N F99 (,up ar) respectively. For the induced failure and

threshold settings in this case study, the engine briefly visited the warning state between

records 2800 and 3800 (before the induced failure) and entered the failure condition at just on

record 7000 as shown in Figure 36.
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Figure 35 Top sub-plot: Blow-by gas flow, observed (solid line) and simulated

(dashed line), for artificially induced excessive blow-by gas flow.

Bottom sub-plot: Simulation error.
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A second data set of 60000 records at the end of the test was diagnosed in terms of blow-by

gas flow. The diagnostic results in Figure 37 indicate that the blow-by gas flow briefly

exceeded the caution threshold, which could be attributed to the piston rings starting to wear

measurably. The short spell of higher than usual variation in simulation residue that occurred

after the transient from low to high load, is an indication of increased instantaneous

fluctuation in blow-by gas flow. On another segment from the second data sample the

diagnostic method indicated a brief visitation to the failure zone, as shown in Figure 38 .
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Figure 36 Top sub-plot: Probability of simulation error, P(Yr), for artificially

induced failure in terms of blow-by gas flow. Solid horizontal line is

failure threshold and broken horizontal line is warning threshold.

Bottom sub-plot: Simulation error, Yr'

On disassembly of the engine, it was found that significant piston ring wear had occurred,

thus confirming the diagnosis. This result suggested that interpreting residual probabilities in

the warning region together with the corresponding residual variance should be implemented

as part of the diagnostic method.
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6.4. Conclusions

An online diagnostic method to detect systematic temporal deterioration of an internal

combustion engine has been successfully demonstrated in this chapter. A sufficiently

stationary data size was determined, using a technique proposed in Chapter 5. The acquisition

of a stationary data set contributed to the construction of a reliable simulation model of blow-

by gas flow of a compression ignition engine. A statistical evaluation of the simulation error

was developed and clearly indicated when the engine entered a failure state, given a

predetermined failure threshold probability. Outlier detection by way of convex hull

technology slightly improved the model generalization, and would be even more beneficial to

the simulation of data that contains a larger outlier content than the data used in this

investigation. In addition, the outlier detection algorithm requires no operator input and is fast

enough to be implemented online during engine operation. Failure diagnosis was first

demonstrated on an artificially deteriorating set of observations and subsequently, on a data

sample from the end of the test, when evidence of wear could be expected to appear. In the

first demonstration the diagnostic algorithm clearly indicated entry into failure state. The

results of the second demonstration warned of imminent excessive blow-by gas flow,

suggesting significant piston ring wear. This was confirmed by physical inspection after

completion of the test.
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Figure 37 Probability of simulation error (top), and simulation error (bottom),

for blow-by gas flow data at 600 h with warning threshold at 0.0746

and failure threshold at 0.298. Note the sudden increase in residual

variance between samples 7000 and 10000. (The sample indices are

relative to the starting index of this data segment.)
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Figure 38 Probability of simulation error (top), and simulation error (bottom),

for blow-by gas flow data at 580 h with warning threshold at 0.0746

and failure threshold at 0.298. Note the brief visitation to the failure

zone. (The sample indices are relative to the starting index of this data

segment).
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7 CONCLUSIONS

In this dissertation I primarily endeavored to formalize and extend nonlinear system

identification for the broad class of non-linear systems that can be parameterized as state

space systems. It was shown in Chapter 2 that the established, but rather ad hoc methods of

time series embedding and nonlinear modeling with MLP network and radial basis function

model structures can be interpreted in context with the established linear system identification

framework.

In Chapter 3 the methodological framework was formulated for the identification of non-

linear state space systems from one-dimensional time series using a surrogate data method. In

this chapter it was clearly demonstrated that validation of dynamic models by one-step

predictions is insufficient proof of model quality. In the particular case study, a chaotic

autocatal~ic process, the R2 statistic, generally used for measuring model fitness and

performance during validation and cross-validation, were identical up to the third decimal

(0.999) for two quite different model structures, a MLP and a RBF model respectively. On the

other hand, free-run predictions used to generate non-linear surrogate data gave adamant

proof of model quality, showing the superiority of the RBF model structure in this particular

case. In addition, the classification of data as either dynamic or random was performed using

the same surrogate data technique. Even when 10% measurement and dynamic noise were

added to the original autocatalytic data, the classification technique still clearly distinguished

the data from non-linearly transformed random data.

Chapter 4 the formulation of a nearly real-time algorithm for detection and removal of radial

outliers in multidimensional data was pursued. A convex hull technique was proposed and

demonstrated on random data as well as real test data recorded from an internal combustion

engine. The results showed the convex hull technique to be effective at a computational cost

two orders of magnitude lower than the more proficient Rocke and Woodruff technique. On

the downside, the convex hull technique falsely indicated five outliers out of 533 observations

(0.9%) when tested on an artificially generated random data set, while the Rocke and

Woodruff technique identified no false outliers. This was a slight cost against the benefit of a

simple and fast outlier detection algorithm.

In Chapter 5 the methodological framework was expanded for system identification as

formulated in Chapter 3, to accommodate the identification of nonlinear state space systems
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from multivariate time series. Specifically system parameterization was accomplisher by

combining individual embeddings of each variable in the multivariate time series, and then

separating this combined space into independent components. This method of

parameterization was successfully applied in the simulation of the autocatalytic process that

was introduced in Chapter 3. In addition, the parameterization method was implemented in

the one-step prediction of atmospheric N02 concentration, which would potentially become

part of an envisaged environmental control system for Cape Town. Furthermore, the

combination of the embedding strategy and separation by independent component analysis

was able to isolate some of the noise components from the embedded data.

Chapter 6 aimed to implement the foregoing system identification methodology in the online

diagnosis of temporal trends in critical system states. The methodology established in the

previous chapters was supplemented by the formulation of a statistical likelihood criterion for

simultaneous interpretation of multivariate system states. This technology was successfully

applied to the diagnosis of the temporal deterioration of the pistons rings in an compression

ignition engine under test conditions. The diagnostic results indicated the beginning of

significant piston ring wear, which was confirmed by physical inspection of the engine after

conclusion of the test. The technology will be further developed and commercialized.

Future activities resulting from this research include the following:

a) Expand the pseudo-linear radial basis function algorithm to accommodate multivariate

embedding strategies.

b) Implement a Minimum Description Length algorithm to optimize MLP network model

structures.

c) Improve the outlier detection method as outlined in section 4.4.

d) Develop an algorithm for noise-reduction based on results from Chapter 5 regarding ICA.

e) Further develop the diagnostic algorithm into prototype form and commercialize for

implementation in industrial automotive and stationary engines. Tests that impose more

complex transient behaviour over a broader operating range on an engine, will be

conducted. The diagnostic technique will be applied to these data to refine the calibration

of warning and failure thresholds.
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In conclusion, my aspiration for knowledge and understanding of Nature has been greatly

enhanced by the research that went into this dissertation, even beyond the boundaries of

Engineering. I wish to speculate that our mental model of Nature might eventually shift from

symbolic fundamental models to purely mathematical parameterizations - currently called

"black box" models. How one will design systems this way is open to conjecture, since our

tradition is to characterize and express properties of materials and systems in terms related to

our existing symbolic models.

The truth is out there, and we endeavour to converge on it.
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TERMINOLOGY AND DEFINITION OF PARAMETERS

Here follows a table of symbols and expressions defined in the text of the thesis.

Simbol Definition

AAFT Amplitude adjusted Fourier transform

AMI Average Mutual Information

AXMI Average Cross Mutual Information

ICA Independent Component Analysis

FNN False Nearest Neighbours

M* Model set

M Model structure

MFF Multi-layer perceptron model structure

MRB Radial basis function model structure

MPL Pseudo-linear radial basis function model structure

M(8), Me A model in terms of parameter vector 8

PCA Principal Component Analysis

in The set of real numbers

8 Model parameter vector

Il mean value

cr standard deviation

MDL Rissanen's Minimum Description Length

MLP Multi-layer perception

NO Normal distribution

P'JO Threshold probability
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RBF

S

SSE

W

X

Z

V

m

k

n

r, rt

t

yet), Yt

j/(t), Yt

Radial basis function

Space of independent components, from lCA

Sum-squared -error

Separating matrix from lCA

An embedding

Data set consisting of input and output spaces

Norm

Embedding dimension

Embedding lag

Number of data records

Model simulation or prediction error

Time, [s]

Scalar system output

Output of model that approximates system output function
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APPENDIX

A.I Average Mutual Information (AMI)

Given the delay vector Xi = [yi+(m-I)n Yi+(m-Z)n Yi+(m-3)n"', yJ for the time senes

y = [YI, Yz, Y3," .Yn] where m is the embedding dimension and n the size of the time series, an

accurate reconstruction of system invariants like the attractor and Lyapunov coefficients are

ensured by an embedding dimension of m > 2d A, where dAis the topological or fractal

dimension of the attractor (Takens, 1981). Time lag, T, is not specified in Taken's theorem,

because it is based upon the assumption of unlimited noise-free data.

In the presence of noise the time lag becomes important. Too small a time lag or window

results in to little information extracted from the data and an attractor contracted into the main

diagonal line in state space. This phenomenon is called redundance (Sauer et aI., 1991) and is

based upon the relative effect of measurement error to the difference between data in a delay

coordinate vector. The effect levels out because the attractor is finite in size, therefore

likewise for the difference between data.

On the other hand, too large a time lag results in data without correlation to be included which

causes an attractor with a false complex shape. This phenomenon is called irrelevance (Sauer

et aI., 1991). Underlying this phenomenon is the local divergence in time between adjacent

trajectories of the state vector, which causes a dynamic error with increasing time lag. This

error levels out due to the finite shape of the attractor.

The dominant method for calculating the time lag is the method of Mutual Information

(Frazer and Swinney, 1986). The time lag is fixed heuristically at the point of the first

minimum mutual information for the time series. This method estimate the probability to find

a measurement again given that the same measurement has been already been made. This

statistic is calculated among all elements of the timeseries.

Information theory is applied in the method of Mutual Information. Since strange attractors

are ergodic with an asymptotic probability distribution, the required probabilities do exist and

information theory is applicable. Measurements can be regarded as signals. Let S be a system

of possible messages, Sl, Sz, S3, . 00' Sn associated with the probabilities
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Ps(SI), ~(S2)' pAs3)' ... , pAsN)' with subscript s denoting a particular system. The average

information gained from a measurement is indicated by the information entropy of the system,

H(S) = -I ~(Si) 10g(~(Si» (41)

The dependence of xU + r) on x(t) can be expressed as the uncertainty of finding xU + r),

given x(t).

(S,q] = (x(t),x(t + r)]

H( QISi) = - ~ Pqls(qISi) 10g[Pqls(qISi)]
I

(42)

The average uncertainty of finding x(t + r) given x(t) is calculated by averaging H(Qlsi)

over Si'

H(QIS) = -I ~(Si)H(Qlsi)
i

= -I ~q(Si ,qi) 10g[ ~q(Si ,qi)]
i ~(sd

=H(S,Q)-H(S)

(43)

The reduction in uncertainty about xU + r) gained from the measurement of xU) is the

mutual information, which is

I(Q,S) = H(Q) - H(QIS)
= I(S,Q)

" ( ) [Psq(Si,qi)]= L.:- ~q si,qi log P. ( .)p. ( .)
l S Sl S ql

(44)

The joint probability distribution, Psq, is estimated by the joint histogram of sand q. In this

dissertation the symbol k, denotes embedding lag as an unit of the sampling period of the

system observer.

A.2 Average Cross Mutual Information (AXMI)

Average cross-mutual information is related to AMI defined in section A.I. A formal

algorithm to calculate this statistic was first proposed by Fraser and Swinney (1986) for
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determining embedding lag, used in time series embedding (Frazer 1989, Abarbanel 1995).

The AXMI between the observation x(t), at time t, and the observation y(t-k), at time (t-k), is

{
p[x(t),y(t-k)] }

Ixy(k) = Ip[x(t),y(t -k)]log2 p[x(t)]p[y(t _ k)] (45)

where P[.] is the probability function in terms of x or y, P[.,.], the joint probability function in

x and y, t the time, and k some lag (multiples of sampling period, r). Let Rxy be AXMI

normalized with the average auto mutual information of the selected dependent state, 1;0;(0) as

reference:

Rxy = Ixy / Ixx

For k=0, Rxy(O) is a non-linear equivalent to linear cross-correlation.

A.3 False Nearest Neighbours and False Nearest Strands

(46)

According to Takens (1981) an attractor will be completely unfolded in an m-dimensional

space given that m > 2d A where dAis the topological or fractal dimension of the attractor.

This requirement is only necessary, so a unambiguous technique is required to establish the

minimum embedding dimension.

The false neighbours algorithm was developed for this purpose by Kennel et aI., (1992).

While unfolding the attractor in space of increasing dimension, the points that are true

neighbours can be progressively distinguished until, after reaching the optimal embedding

dimension, no more additional false neighbours are discovered.

False neighbours appear only because one views the attract or in space of too small a

dimension, thereby mistaking two points for being neighbours. The nearness is expressed as

the Euclidean distance between two points. A neighbour is classified in terms of the Euclidean

distance being within a preset limit.

The technique will fail on data with a high noise content and fails ultimately on white noise.

Alternatively, the False Nearest Strands technique (Kennel, 1995) is better suited for:

a) time series resulting from oversampling

b) using small time delays

c) sparsely populated regions of attractors
A-3
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Overs amp ling can be heuristically identified by a mutual information time lag in excess of

r = lars' in which case the data may be oversampled.

Strand pairs are defined when temporally corresponding points or temporal iterates lie on two

adjacent trajectories as nearest neighbours.

AA Lyapunov exponents

In chaotic (non-linear) systems two states that are nearly identical diverge from each other at

an exponential rate which causes a sensitive dependence on initial conditions. The Lyapunov

exponent characterizes this divergence. Let A. be the Lyapunov exponent, then the distance

between adjacent trajectories after some time t will be

d(t) = d02Al

When averaging this local divergence along the trajectory, one gets

d(tl) = dl
~ d

0
2A(tI-tO)

An overall Lyapunov exponent can be defined as:

1 N d(tk)
A = ~)og2 do(tk-l)

tN -to k=l

(47)

(48)

(49)

The calculation of Lyapunov exponents from data only can be treacherous and should be

approached with circumspection (Brown et aI., 1991; Parlitz, 1992; Abarbanel, 1996). A fairly

reliable method to calculate Lyapunov exponents has been proposed by Brown et aI. (1991)

and was used in this research.

A.5 Model Fitness Test

A data model is normally tested for fitness according to residual correlation with the observed

dependent state. However, the autocorrelation and cross correlation sequences cannot give

any evidence of remaining nonlinear relationships, since any process can always be

considered to be a linear process with respect to its second-order statistics. Higher-order

cumulants can give such evidence. For example, the third-order cumulant can be used to test

whether the simulation error is Gaussian. Hinich (1982) proposed a zero-skewness test as a

quantitative test for normality of a stationary data sample. More specifically one tests the null
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hypothesis that the estimation of bicoherence is zero at a calculated significance level. The

bicoherence (or normalized bispectrum) can be estimated by the direct, Fast Fourier

Transform-based algorithm (Subba Rao and Gabr, 1993; Nikias and Petropulu, 1993) and is

defined in terms ofthe bispectrum, B3y( .) and the power spectrum, PY.YO,

B3y (cuI' CU2)
Bey (CUI' CU2) = [P y'y(CU1)P y.y (CU2)P y.y (CUI + CU2)]

The hypothesis test is based on the mean bicoherence power,

Pbe = IIBey(CUI,CU2f

(50)

(51)

The statistic, Pbc, is X2 -distributed, with p degrees of freedom, which is a function of the Fast

Fourier Transform length and a resolution parameter, c. For details refer to (Hinich, 1982).

Finally, the probability that a X2 random variable with p degrees of freedom could exceed the

value of Pbc is calculated. A high probability indicates that the null hypothesis should be

accepted, that is the data sample has a normal distribution. If the residue scores a high

probability in the test, it can be accepted as Gaussian and therefore the model is a proper

representation of the data.

A test for the linear correlation between the model and the observation is the discriminating

linear statistic, R2, defined as:

R 2 = 1- 1 2 I (y _ y)2
(n-I )0" y

(52)

where y is the observed state, y the simulated state, (J the standard deviation of y and n the

length of y. An arbitrary high value for R2 (e.g. R2 > 0.90) would indicate predicted and

observed output that is sufficiently linearly correlated.

A.6 Stationarity Test

The proposed test for stationarity of a data set is as follows: suppose one would start with a

time-series of size N, divide it into two halves (called half samples), Y1 and Y2, bin each half

sample and compare the contents of each bin. Under the hypothesis that the half samples are

mutually stationary, the joint probability to find data from each half sample in a bin of a given

category should stay constant or vary only randomly, for increasing N. This would imply that
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the topology of the joint probability matrix, P(Y) (\ Yz), converges as N increases towards the

stationary size. The topology can be characterized in terms of a discriminating statistic, e.g.

the center of mass Cm of the joint probability matrix. The value of N at which

L1Cm[P(Y),Yz)]/ M over the past Nw iterations is sufficiently small, will indicate the stationary

sIze.

A.7 Surrogate Data

The method of surrogate data (Takens, 1993; Theiler and Pritchard, 1996; Theiler and Rapp,

1996) involves a null hypothesis against which the data are tested, as well as a discriminating

statistic. The data are first assumed to belong to a specific class of dynamic processes. Surro-

gate data are subsequently generated, based upon the given data set, by using the assumed

process. An appropriate discriminating statistic is calculated for both the surrogate and the

original data (Theiler et aI., 1992). If the calculated statistics of the surrogate and the original

data are significantly different, then the null hypothesis that the process that has generated the

original data is of the same class as the system that has generated the surrogate data, is

rejected. By means of a trial-and-error elimination procedure, it is then possible to get a good

idea of the characteristics of the original process.

More specifically, let x E 9tN be a time series consisting ofN observations, \If a specific hypo ..

thesis, 31j1 the set of process systems consistent with the hypothesis, and T:9tN ---7 U be a sta-

tistic that will be used to evaluate the hypothesis \If that x was generated by some process 3 E

31j1' Generally the statistic U c 9t and it will be possible to discriminate between the original

data x and the surrogate data Xs consistent with the hypothesis given by the probability density

ofT, given 3, i.e. PT,::l(t).

A.7.1. Classes of hypotheses

Three classes of hypotheses are widely used. These are equivalent to the assumption that the

data are identically, independently distributed noise (type 0), linearly filtered noise (type 1)

and a monotonic non-linear transformation of linearly filtered noise (type 2).

Type 2 surrogates are also known as amplitude adjusted Fourier transform (AAFT) surrogates

(Small and Judd, 1998). The procedure for generating type 2 surrogate data consists of the

following steps:
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i) Generation of a normally distributed data set y, reordered to have the same rank

distribution as x, the observed (original) data set.

ii) Generation of a type 1 surrogate data set Ys from y (by phase-shuffling the Fourier

transform ofy).

iii) Finally, rank order Ys and replacing the amplitudes Ysj with that of Xi of

corresponding rank.

A.7.2. Pivotal test statistics

Theiler (1995) has suggested that a distinction can be made between so-called pivotal and

non-pivotal statistics. A test statistic T is considered to be pivotal, if the probability distribu-

tion PT,:! is the same for all processes .:J consistent with the hypothesis \jf, thus PT,:! is invariant

for all .:JE.:JIjI' Moreover, a distinction can be made between simple and composite hypo-

theses. If the set of all processes consistent with the hypothesis (.:JIjI) is a singleton, then the

hypothesis is simple. Otherwise, the hypothesis is composite and can be used not only to

generate surrogate data consistent with a particular process .:J, but also to estimate .:J E.:JIjI' In

fact, .:J has to be specified when the hypothesis is composite, unless T is a pivotal statistic

(Theiler, 1995).

Constrained realization (Schreiber and Schmitz, 1996) schemes can be employed when non-

pivotal statistics are applied to composite hypotheses. That is, apart from generating surrogate

data that represent typical realizations of a model of the system, the surrogate data should also

be representative of a process yielding identical estimates of the parameters of the process

when compared to the estimates of the process parameters obtained from the original data. Put

in a different way, if .:Jest E .:J1jIis the process estimated from the original data x, and Xs is a

surrogate data set generated by .:J' E .:J1jI,then Xs is a constrained realization of .:Jest E .:J'.

As an example, if \jf is the hypothesis that x is generated by linearly filtered independent iden-

tically distributed noise, then non-constrained surrogate data xs' can be generated from a

Monte Carlo simulation based on the best linear model estimated from x. The data xs' can be

constrained by shuffling the phases of the Fourier transform of the data, producing a set of

random data xs" with the same power spectra (and autocorrelation) as the original data x. The

autocorrelation, rank order statistics, non-linear prediction error, etc., would all be non-pivotal
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test statistics characterizing dynamic manifold structures, since the distributions of these sta-

tistics would all depend on the form of the noise source and the type of linear filter. In con-

trast, the Lyapunov exponents and the correlation dimension (fractal dimension) would be

pivotal test statistics, since the probability distributions of these quantities would be the same

for all processes, regardless of the source of the noise or the estimated model. Since recent in-

vestigations have shown that Lyapunov exponents can be misleading in the presence of noise,

the correlation dimension has gained favor as the pivotal statistic of choice.

A.7.3. Correlation dimension

The correlation dimension, dc, is defined as follows.

d 1° 1° 10gCNc = 1m 1m-----''-'-
E:~ON~oo logE

where CN is the correlation function, defined by:

CN(E) ~GrJ;j1v, -Vjll <E)

(53)

(54)

I(o) is a Heavyside function that returns one if the distance between point i and j is within E,

and zero otherwise, while N is the number of observations in the data set.

Reliable calculation of the correlation dimension is not as straightforward as first thought

when the Grassberger-Procaccia algorithm appeared (Grassberger and Procaccia, 1983).

Using this algorithm requires a linear scaling region to reliably calculate the correlation

dimension. Noise strongly influences the approximation of the correlation dimension,

according to Stefanovska et al. (1997). When working with measured (empirical) data, they

stressed in particular the problem of using the Grassberger-Procaccia algorithm to obtain an

adequate scaling region for a valid approximation of the correlation dimension. Lai and Ler-

ner (1998) showed that this region is sensitive to the choice of the embedding lag. Linear

correlation in the data set misleads the algorithm to falsely show convergence to some low

dimension, which could then be misinterpreted for inherent low-dimensional dynamics (Judd,

1994).

Earlier, Judd (1992) pointed out the deficiencies of the Grassberger-Procaccia algorithm and

proposed a different algorithm for calculation of the correlation dimension. This algorithm
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replaces the requirement for a linear scaling region by fitting a polynomial of the order of the

topological dimension in that region. It expresses the correlation dimension for inter-point dis-

tances below a specific scale EO. Instead of comparing estimates of the correlation dimension,

one rather compares the clustering of correlation dimension curves calculated by the Judd

algorithm. This allows the correlation dimension to be used for examining the macro- and

microscale of the reconstructed dynamic attractor. For large data sets it asymptotically

approaches the value of the true correlation dimension as EO goes to zero. Also, the algorithm

is not easily confused by linear correlation in the data (Judd, 1994).

Judd proposed that the correlation dimension be estimated as a function of scale EO using the

following equation, valid for E < EO :

eN (E) ~ EdCq(E) (55)

where q(-) is a polynomial of order ofthe topological dimension.

Finally, accurate calculation of the correlation dimension depends on the minimum length of a

time series. Stefanovska et al. (1997) have shown that too few points in a neighbourhood

leads to overestimation of the correlation dimension when using the Grassberger-Procaccia

algorithm. The Judd algorithm is less sensitive to the number of observations by an order of

magnitude, compared to the Grassberger-Procaccia algorithm. In practical terms, a data set of

approximately 1000 observations is usually sufficient for the Judd algorithm.
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